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ABSTRACT

Predicting the liquefaction resistance of soil is an important step in the engineering
design of new and the retrofit of existing structures in earthquake-prone regions. The procedure
currently used in the U.S. and throughout much of the world to predict liquefaction resistance is
termed the simplified procedure. This simplified procedure was originally developed by H. B.
Seed and 1. M. Idriss in the late 1960s using blow count from the Standard Penetration Test.
Small-strain shear wave velocity measurements provide a promising supplement and in some
cases, where only geophysical measurements are possible, may be the only alternative to the
penetration-based approach. This report presents guidelines for evaluating liquefaction
resistance using shear wave velocity measurements. These guidelines were written in
cooperation with industry, researchers and practitioners, and evolved from workshops in 1996
and 1998 as well as review comments received on an earlier draft. The guidelines present a
recommended procedure, which follows the general format of the penetration-based simplified
procedure. The proposed procedure has been validated through case history data from more
than 20 earthquakes and 70 measurement sites in soils ranging from clean fine sand to sandy
gravel with cobbles to profiles including silty clay layers. Deterministic liquefaction resistance
curves were established by applying a modified relationship between the shear wave velocity and
cyclic stress ratio for the constant average cyclic shear strain suggested by R. Dobry. These
curves correctly predict moderate to high liquefaction potential for over 95 % of the liquefaction
case histories, and are shown to be consistent with the penetration-based curves in sandy soils.
From logistic regression and Bayesian models, the recommended deterministic curve is
characterized with a probability of liquefaction of about 26 %. To further validate the
procedure, additional case histories are needed with all soil types that have and have not
liquefied, particularly from deeper deposits (depth > 8 m) and from denser soils (shear wave
velocity > 200 m/s) shaken by stronger ground motions (peak ground acceleration > 0.4 g). The
guidelines serve as a resource document for practitioners and researchers involved in evaluating
soil liquefaction resistance.

KEYWORDS: building technology; earthquakes; in situ measurements; seismic testing; shear
wave velocity; soil liquefaction
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

A major cause of damage from earthquakes is liquefaction-induced ground failure. For
example, direct property loss caused by liquefaction during the 1989 Loma Prieta, California
earthquake (moment magnitude, A, = 7.0) was over $100 million (Holzer, 1998). Large
indirect property loss by fire almost occurred in 1989 when liquefaction-induced ground
deformation ruptured water mains that served the Marina District of San Francisco.
Fortunately, the fire in the Marina District at Divisadero and Beach Streets was contained to the
three-story apartment building where it ignited. It was also fortunate that the 1989 earthquake
did not occur closer to the San Francisco Bay area. The cities of Kobe and Osaka, Japan were
not so fortunate. The 1995 Hyogoken-Nanbu earthquake (M, = 6.9) directly struck this
metropolitan area, causing over $100 billion in property damage (Kimura, 1996). A significant
portion of the damage in Kobe can be attributed to liquefaction-induced ground deformation.
These are just two of many examples of major damage caused by liquefaction-induced ground
failure. Predicting soil liquefaction resistance is an important step in the engineering design of
new and the retrofit of existing structures in earthquake-prone regions.

The procedure widely used in the United States and throughout much of the world for
predicting the liquefaction resistance of soils is termed the simplified procedure. This simplified
procedure was originally developed by Seed and Idriss (1971) using blow count from the
Standard Penetration Test (SPT) correlated with a parameter called cyclic stress ratio that
represents the seismic loading on the soil. Since 1971, the procedure has been revised and
updated (Seed, 1979; Seed and Idriss, 1982; Seed et al., 1983; Seed et al., 1985). Correlations
based on the Cone Penetration Test (CPT) and shear wave velocity measurements have also
been developed by various investigators. General reviews of the simplified procedure are
contained in a report by the National Research Council (1985), a workshop report edited by
Youd and Idriss (1997), and a journal paper by Youd et al. (2001).



Small-strain shear wave velocity, Vs, measurements provide a promising supplement and
in some cases, where only geophysical measurements are possible, may be the only alternative to
the penetration-based approach. The use of Vs as an index of liquefaction resistance is soundly
based because both Vs and liquefaction resistance are similarly influenced by many of the same
factors (e.g., void ratio, state of stress, stress history, and geologic age).

Some advantages of using Vs are (Dobry et al., 1981; Seed et al., 1983; Stokoe et al.,
1988a; Tokimatsu and Uchida, 1990): (1) Measurements are possible in soils that are hard to
sample, such as gravelly soils where penetration tests may be unreliable. (2) Measurements can
be performed on small laboratory specimens, allowing direct comparisons between laboratory

and field behavior. (3) Vs is a basic mechanical property of soil materials, directly related to
small-strain shear modulus, G, by:

Gomax = p V& .1
where

p = the mass density of soil.

(4) Gmax, OF Vs, is in turn a required property in analytical procedures for estimating dynamic
shearing strain in soil in earthquake site response and soil-structure interaction analyses. (5) Vs
can be measured by the Spectral-Analysis-of-Surface-Waves (SASW) test method at sites where
borings may not be permitted, such as capped landfills, and sites that extend for great distances
where rapid evaluation is required, such as lifelines and large building complexes.

Three concerns when using Vs to evaluate liquefaction resistance are: (1) Measurements
are made at small strains, whereas pore-water pressure buildup and liquefaction are medium- to
high-strain phenomena (Jamiolkowski and Lo Presti, 1990; Teachavorasinskun et al., 1994; Roy
et al, 1996). This concern can be significant for cemented soils, since small-strain
measurements are highly sensitive to weak interparticle bonding which is eliminated at medium
and high strains. It also can be significant in silty soils above the water table where negative
pore water pressures can increase Vs. (2) No samples are obtained for classification of soils and
identification of non-liquefiable soft clayey soils. According to the so-called Chinese criteria,
non-liquefiable clayey soils have clay contents (particles smaller than 5 um) > 15 %, liquid limits
> 35 %, or moisture contents < 90 % of the liquid limit (Seed and Idriss, 1982). Andrews and
Martin (2000) refined this criteria to soils with clay contents (particles smaller than 2 um) > 10
% and liquid limits > 32 % (by Casagrade-type percussion apparatus) for non-liquefiable clayey
soils. (3) Thin, low Vs strata may not be detected if the measurement interval is too large
(USBR, 1989; Boulanger et al., 1997).



In general, borings should always be a part of the field investigation. Surface
geophysical measurements and cone soundings are often conducted first to help select the best
locations for borehole sampling and testing. Surface geophysical tests usually involve making
measurements at several different locations, and provide general, or average, stratigraphy for
sediments beneath the area tested. The ability of surface geophysical methods to resolve a layer
at depth depends on the thickness, depth, and continuity of that layer, as well as the test and
interpretation procedures employed. Cone soundings provide detailed stratigraphy at each test
location for sediments that can be penetrated. The preferred practice when using Vs
measurements to evaluate liquefaction resistance is to drill sufficient boreholes and conduct
sufficient tests to detect and delineate thin liquefiable strata, to identify non-liquefiable clay-rich
soils, to identify silty soils above the ground water table that might have lower values of Vs
should the water table rise, and to detect liquefiable weakly cemented soils.

1.2 PURPOSE

This report presents guidelines for evaluating liquefaction resistance through shear wave
velocity measurements. The guidelines are based on an earlier report entitled “Draft Guidelines
for Evaluating Liquefaction Resistance Using Shear Wave Velocity Measurements and
Simplified Procedures” by Andrus et al. (1999), which evolved from two workshops. The first
workshop was held on January 4-5, 1996 in Salt Lake City, and was sponsored by the National
Center for Earthquake Engineering Research (NCEER). The second workshop was held on
August 14-15, 1998 also in Salt Lake City, and was sponsored by the Multidisciplinary Center
for Earthquake Engineering Research (MCEER, formally NCEER) and the National Science
Foundation (NSF). These two workshops are herein called the 1996 NCEER Workshop and
1998 MCEER Workshop. The guidelines present a recommended procedure based on the
suggestions given at the workshops, as well as review comments received on the draft
guidelines. The guidelines provide guidance on selecting site variables and correction factors
that are consistent with the shear-wave-based procedure.

From the comments received on the earlier draft guidelines, several improvements have
been made to the guidelines. The major improvements include: (1) Much of the background
and development information is moved to the appendixes to provide a clearer, more practical
description of the recommended procedure. (2) A table is added to compare advantages and
disadvantages of the various in situ Vs test methods for liquefaction assessment. (3) A more
comprehensive description of the database is given, particularly on the nature of the case
histories of gravelly soils. (4) The results of a probability study of the Vs-based case history data
are added to calibrate the recommended liquefaction resistance curve and to compare with the
results of probability studies of the SPT-based case history data.



1.3 REPORT OVERVIEW

Following this introduction, Chapter 2 presents the recommended procedure for
evaluating liquefaction resistance using Vs. Chapter 3 illustrates the application of the procedure
using two case studies. And Chapter 4 summarizes the recommended procedure and identifies
issues that remain to be resolved.

Eight appendixes are included to assist the reader, and to provide information used in the
development of the guidelines. Appendix A presents a list of references cited in the guidelines.
Appendix B provides a list of Symbols and Notation, and Appendix C provides a Glossary of
Terms. Appendix D reviews six proposed Vs-based liquefaction resistance curves. Appendix E
describes the general characteristics of case history data used to develop the recommended
liquefaction resistance curves. Appendix F presents the development of the recommended
curves. Appendix G considers three probability models for the case history data. Finally,
Appendix H presents a summary of the case history data.



CHAPTER 2

LIQUEFACTION EVALUATION PROCEDURE

- This chapter presents guidelines for using the Vs-based liquefaction evaluation procedure
originally proposed by Andrus and Stokoe (1997) and subsequently updated in the report by
Andrus et al. (1999) and the paper by Andrus and Stokoe (2000). The evaluation procedure
follows the general format of the Seed-Idriss simplified procedure, and the general
recommendations of the 1996 NCEER Workshop (Youd et al.,, 1997) and 1998 MCEER
Workshop (Youd et al., 2001). It requires the calculation of three parameters: (1) the level of
cyclic loading on the soil caused by the earthquake, expressed as a cyclic stress ratio; (2) the
stiffness of the soil, expressed as an overburden stress-corrected shear wave velocity; and (3) the
resistance of the soil to liquefaction, expressed as a cyclic resistance ratio. Each parameter is
discussed below.

2.1 CYCLIC STRESS RATIO (CSR)

The cyclic stress ratio, 7, /o', at a particular depth in a level soil deposit can be
expressed as (Seed and Idriss, 1971):

CSR = T2 = 0.65 (ﬂﬂ—J (ﬁ}d (2.1)
o' g o'
where

Tay = the average equivalent uniform shear stress caused by the earthquake and is
assumed to be 0.65 of the maximum induced stress,

an.. = the peak horizontal ground surface acceleration,

g = the acceleration of gravity,

o, = the total vertical (overburden) stress at the depth in question,

o', = theinitial effective overburden stress at the same depth, and

ra = a shear stress reduction coeflicient to adjust for the flexibility of the soil
profile.



2.1.1 Peak Horizontal Ground Surface Acceleration

Peak horizontal ground surface acceleration is a characteristic of the ground shaking
intensity, and is defined as the peak value in a horizontal ground acceleration record that would
occur at the site without the influence of excess pore-water pressures or liquefaction that might
develop (Youd et al., 2001).

Peak accelerations are commonly estimated using empirical attenuation relationships of
Q. as a function of earthquake magnitude, distance from the energy source or surface project
of the fault rupture, and local site conditions. Since many published attenuation relationships are
based on both peak values obtained from ground motion records for the two horizontal
directions (sometimes referred to as the randomly oriented horizontal component), the
geometric mean (square root of the product) of the two peak values is used. According to
Youd et al. (2001), use of the geometric mean is consistent with the derivation of the SPT-based
procedure and is preferred for use in engineering practice. However, use of the larger of the
two horizontal peak accelerations would be conservative and is allowable.

Regional or national seismic hazard maps (http://geohazards.cr.usgs.gov/eq/; Frankel et
al., 2000) are also often used to estimate peak accelerations. If peak acceleration is estimated
from a map, the magnitude and distance information should be obtained from the deaggregated
matrices used to develop the map. The value of a,.. selected will depend on the target level of
risk and compatibility of site conditions. For site conditions not compatible with available
probabilistic maps or attenuation relationships, the value of a,.. may be corrected based on
dynamic site response analyses or site class coefficients given in the latest building codes.

2.1.2 Total and Effective Overburden Stresses

Required in the calculation of &, and o', are densities of the various soil layers, as well
as characteristics of the ground water. For non-critical projects involving hard-to-sample soils
below the ground water table, densities are often estimated from typical values for soils with
similar grain size and penetration or velocity characteristics. Fortunately, CSR is not very
sensitive to density, and reasonable estimates of density yield reasonable results.

The values of g, and CSR are sensitive to the ground water table depth. Other ground
water characteristics that may be significant to liquefaction evaluations include seasonal and
long-term water level variations, depth of and pressure in artesian zones, and whether the water
table is perched or normal.



2.1.3 Stress Reduction Coefficient

Equation 2.1 1s based on Newton’s second where force is equal to mass times
acceleration. The coefficient r, is added because the soil column behaves as a deformable body
rather than a rigid body.

2.1.3.1 Relationship by Seed and Idriss (1971)—Values of r; are commonly
estimated from the chart by Seed and Idriss (1971) shown in Fig. 2.1. This chart was
determined analytically using a variety of earthquake motions and soil conditions. Average 74
values given in the chart can be estimated using the following functions (Liao and Whitman,
1986; Robertson and Wride, 1997):

ra=1.0-0.00765 z forz<9.15m (2.2a)

rs=1174-0.0267 z for9.15m<2z<23m (2.2b)

ra=0.744 - 0.008 2 for23m<z<30m (2.2¢)
where

’z = the depth below the ground surface in meters.

Figure 2.1 shows the average r; values approximated by Eq. (2.2). These average r4 values
were suggested by the 1996 NCEER Workshop (Youd et al,, 1997; 2001) for non-critical
projects.

2.1.3.2 Revised Relationship Proposed by Idriss (1998; 1999)—Figure 2.2 presents
revised average values of 7; proposed by Idriss (1998; 1999) for various earthquake magnitudes.
The plotted curves are averages of many individual curves derived analytically by Golesorkhi
(1989) under the supervision of the late Prof. H. B. Seed. They are defined by the following
relationship (after Idriss, 1998; modified for depth in meters):

In(ry) = a(z) + B(z) M, 2.3)
where

az)=-1.012 - 1.126 sin(# +5.133), and (2.4)

B(z)=0.106 + 0.118 sin(-ﬁz-g +5. 142) . (2.5)
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As shown in Fig. 2.2, the curve defined by Eq. 2.3 for M, = 7.5 is almost identical to the
average of the range published by Seed and Idriss (1971).

The scatter in the individual curves used to determine the average curves shown in Fig,
2.2, as well as Fig. 2.1, is rather large. For example, coefficients determined for a 30 m thick,
loose sand deposit and magnitude 5.5 earthquakes exhibit standard deviations of about 0.1 at a
depth of 5 m and 0.15 at a depth of 10 m. These standard deviation values would be larger if
soil deposits of various thicknesses and stiffnesses are considered. Thus, as an alternative
approach, the variation of 7; with depth may be calculated analytically using site-specific layer
thicknesses and stiffnesses.

2.2 STRESS-CORRECTED SHEAR WAVE VELOCITY

The in situ Vs can be measured by several seismic tests including crosshole, downhole,
seismic cone penetrometer (SCPT), suspension logger, and Spectral-Analysis-of-Surface-Waves
(SASW). Recent reviews of these test methods are given in Woods (1994), Kramer (1996), and
Ishihara (1996). ASTM D-4428M-91 provides a standard test method for crosshole seismic
testing. Standard test methods do not exist for the other seismic tests. Primary advantages and
disadvantages of the various in situ Vs test methods are presented in Table 2.1. The accuracy of
each test method can be sensitive to equipment and procedural details, soil conditions, and
interpretation techniques.

One important factor influencing Vs is the state of stress in soil (Hardin and Drevich,
1972; Seed et al., 1986). Laboratory test results (Roesler, 1979; Stokoe et al., 1985; Belloti et
al., 1996) show that the velocity of a propagating shear wave depends equally on principal
stresses in the direction of wave propagation and the direction of particle motion. Thus, Vs
measurements made with wave propagation or particle motion in the vertical direction can be
related by the following empirical relationship:

Vs=4 (o) (o) (2.6)
where

A = a parameter that depends on the soil structure,

o'y = theinitial effective horizontal stress at the depth in question, and

m = a stress exponent with a value of about 0.125.

10
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Following the traditional procedures for correcting SPT blow count and CPT tip

resistance, one can correct Vs to a reference overburden stress by (Sykora, 1987b; Robertson et
al., 1992):

0.25

Vs = Vs Crs=Vs [& @7
o' :

where
Vsi = the overburden stress-corrected shear wave velocity,
Cys = afactor to correct measured shear wave velocity for overburden pressure;
P. = areference stress, 100 kPa or approximately atmospheric pressure, and
o', = theinitial effective overburden stress in kPa.

A maximum Cys value of 1.4 is generally applied to Vs data at shallow depths, similar to the SPT
and CPT procedures. In using Eq. (2.7), it is implicitly assumed that the initial effective
horizontal stress, o', is a constant factor of the initial effective overburden stress (because both
o', and o', affect Vs as shown in Eq. (2.6)). This factor, generally referred to as K%, is
assumed to be approximately 0.5 at natural, level-ground sites where liquefaction has occurred
or is likely to occur. Also, in applying Eq. (2.7), it is implicitly assumed that V5 is measured with

both the directions of particle motion and wave propagation polarized along principal stress
directions and one of those directions is vertical.

Since the direction of wave propagation and the direction of particle motion is different
with respect to the stress in the soil for each in situ seismic test method, some variations
between measured Vs is expected. These variations are minimized by performing the tests with
at least a major component of wave propagation or particle motion in the vertical direction. To
have a major component of wave propagation or particle motion in the vertical direction,
crosshole tests are conducted with particle motion in the vertical direction, downhole and
seismic cone tests are conducted at depths greater than the distance between the shear beam

source and the borehole or cone sounding such that wave propagation is in the vertical direction,
and SASW tests are conducted with a vertical source.

In soils above the ground water table, particularly silty soils, negative pore pressures
increase the effective state of stress and, hence, the value of Vs measured in seismic tests. This

effect should be considered in the estimation of ¢, for correcting Vs to Vs, and for computing
" CSR using Eq. (2.1).

12



2.3 CYCLIC RESISTANCE RATIO (CRR)

The value of CSR separating liquefaction and non-liquefaction occurrences for a given
Vs, or corrected penetration resistance, is called the cyclic resistance ratio, CRR. Figure 2.3
presents the CRR-Vs; curves developed by Andrus et al. (1999) for magnitude 7.5 earthquakes
and uncemented, Holocene-age soils. The curves are dashed above CRR of about 0.35 to
indicate that they are based on limited field performance data, as discussed in Appendix F. The
curves do not extend much below 100 m/s, since there are no field data to support extending
them to the origin. They are defined by:

2
CRR = MSF 0.022(5”—17&} +2.8( _ ! 1,,) 2.8)
100 Vsi—KVsi Vsi

where

MSF = the magnitude scaling factor to account for the effect of earthquake

magnitude,
Vs = the limiting upper value of Vs, for cyclic liquefaction occurrence, and
K. = a factor to correct for high Vs, values caused by cementation and aging.

The first (or squared) term in Eq. (2.8) is based on a relationship between CRR and Vs; for
constant average cyclic strain derived by R. Dobry. The second term is a hyperbola with small
value at low values of Vs, and a very large value as Vs; approaches V5, .

2.3.1 Magnitude Scaling Factor

The magnitude scaling factor is traditionally applied to CRR, rather than the cyclic
loading parameter CSR, and equals 1 for earthquakes with a magnitude of 7.5. For magnitudes
other than 7.5, Table 2.2 presents scaling factors developed by various investigators. These
magnitude scaling factors were derived from laboratory test results and representative cycles of
loading (Seed and Idriss, 1982; Idriss, personal communication to T. L. Youd, 1995; Idriss,
1998; Idriss, 1999), correlations of field performance data and blow count measurements
(Ambrasey, 1988; Youd and Noble, 1997), estimates of seismic energy for laboratory and field
data (Arango, 1996), and correlations of field performance data and in situ Vs measurements
(Andrus and Stokoe, 1997). Figure 2.4 shows a plot of the various magnitude scaling factors
along with the range recommended by the NCEER Workshop (Youd et al., 1997; 2001).

13
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Table 2.2 - Magnitude Scaling Factors Obtained by Various Investigators. (modified from
Youd and Noble, 1997)

Magnitude Scaling Factor (MSF)
Moment | Seed | Idriss | Idriss | Idriss | Ambraseys Youd & Noble Arango | Andrus
Magnitude, | & | (personal | (1998) [ (1999) | (1988) (1997) (1996)** &
M, Idriss | communi P, % Stokoe
(1982) | cation to <20 <30 <50 (1997)
T. L.
Youd,
1995)
09) @) 3) “) &) 6 M ® O [0 an{ 12
5.5 1.43 2.20 1.625] 1.68 2.86 286 342 444 (1300 220| 2.8*
6.0 1.32 1.76 1.48 1.48 2.20 193 235 292 1200 165( 2.1
6.5 1.19 144 1.28 1.30 1.69. 134 166 199 [1.60 140] 1.6
1.0 1.08 1.19 1.12 1.14 1.30 1.00 120 139 1125 110} 1.25
7.5 1.00 1.00 099 | 1.00 1.00 100 | 1.00 1.00] 1.0
8.0 0.94 0.84 0.88 | 0.87 0.67 0.73 1075 085] 0.8*
8.5 0.89 0.72 079 | 0.76 0.44 0.56 0.65*

*Extrapolated from scaling factors for M,, = 6, 6.5, 7, and 7.5 using MSF = (M,/7.5)33,
**Based on equivalent uniform number of cycles and consideration of distant liguefaction sites (Column 10),
and energy principles (Column 11).

Although the 1996 NCEER Workshop (Youd et al.,, 1997) recommended a range of
magnitude scaling factors for engineering practice, a consensus has not yet been reached by the
workshop participants. At the August 1998 MCEER Workshop, a revised set of magnitude
scaling factors and stress reduction coefficients (see Section 2.1.3.2) were proposed by 1. M.
Idriss. Liao and Lum (1998) present resuits of a statistical analysis supporting the original Seed
and Idriss (1982) factors. The magnitude scaling factors recommended by the 1996 NCEER
Workshop and the revised factors proposed by Idriss (1999) are discussed below.

2.3.1.1 Factors Recommended by 1996 NCEER Workshop—The magnitude scaling
factors recommended by the 1996 NCEER Workshop (Youd et al., 1997) can be represented

MSF = (M) 2.9)
7.5
where
M, = moment magnitude, and
n = an exponent.

15
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Moment magnitude is the scale most commonly used for engineering applications, and is
preferred for liquefaction resistance calculations (Youd et al, 1997). When only other
magnitude scales are available, they can be converted to M,, using the relationship of Heaton et
al. (1982) shown in Fig. 2.5.

The lower bound for the range of magnitude scaling factors recommended by the 1996
NCEER Workshop is defined with n = -2.56 (Idriss, personal communication to T. L. Youd,
1995) for earthquakes with magnitudes < 7.5. 'The upper bound of the recommended range is
defined with n = -3.3 (Andrus and Stokoe, 1997) for earthquakes with magnitudes < 7.5. For
earthquakes with magnitudes > 7.5, the recommended factors are defined with n = -2.56.
Magnitude scaling factors defined by Eq. (2.9) and average r, values originally proposed by
Seed and Idriss (1971) should be used together when applying Egs. (2.1) and (2.8).

2.3.1.2 Revised Factors Proposed by Idriss (1999)—The magnitude scaling factors
proposed by Idriss (1999) are derived using laboratory data from Yoshimi et al. (1984) and a
revised relationship between representative cycles of loading and earthquake magnitude. They
are defined by the following equation:

MSF = 6.9 exp(lf‘{—’") ~0.06 for M, > 5.2 (2.10a)

MSF =1.82 forM, <52 (2.10b)

where exp is the constant e raised to the power of the number given in the parentheses.
Magnitude scaling factors defined by Eq. (2.10) and revised 7, proposed by Idriss (1999) should
be used together when applying Egs. (2.1) and (2.8).

2.3.1.3 Recommended Magnitude Scaling Factors—There is little difference in using
magnitude scaling factors and 7, values recommended by the 1996 NCEER Workshop (Youd et
al,, 1997) and those proposed by Idriss (1999) for magnitudes near 7.5 and depths less than 11
m (see Appendix F, Sections F.2.2 and F.2.3). At magnitudes near 5.5, the difference is
significant. The lower bound for the range of magnitude scaling factors defined by Eq. (2.9)
with n = -2.56 is recommended in these guidelines because it provides more conservative
assessment than with 7 = -3.3 for magnitudes less than 7.5. While the magnitude scaling factors
defined by Eq. (2.9) with n = -2.56 are less conservative than the factors proposed by Idriss
(1999) for magnitudes less than 7.5, the findings of Ambrasey (1988), I. M. Idriss (personal
communication to T. L. Youd, 1995), Arango (1996), Youd and Noble (1997), and Andrus and
Stokoe (1997; as indicated by the very conservative CRR-Vs, curves shown in Figs. F.13 and
F.14) support their use.
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2.3.2 Limiting Upper Value of Vg, in Sandy Soils

The assumption of a limiting upper value of Vs is equivalent to the assumption
commonly made in the SPT- and CPT-based procedures dealing with clean sands, where
liquefaction is considered not possible above a corrected blow count of about 30 (Seed et al,,
1985) and a corrected tip resistance of about 160 (Robertson and Wride, 1998). Upper limits
for Vs, and penetration resistance are explained by the tendency of dense soils to exhibit dilative
behavior at large strains, causing negative pore-water pressures. While it is possible in a dense
soil to generate pore-water pressures close to the confining stress if large cyclic strains or many
cycles are applied, the amount of water expelled during reconsolidation is dramatically less for
dense soils than for loose soils. As explained by Dobry (1989), in dense soils, settlement is
insignificant and no sand boils or failure take place because of the small amount of water
expelled. This is important because the definition of liquefaction used to classify the field
behavior here, as well as in the penetration-based procedures, is based on surface manifestations
such as boils and ground cracks.

The case history data above a CSR value of about 0.35 are limited, as discussed in

Appendix F. Thus, current estimates of }s, rely, in part, on penetration-Vs correlations and, in
part on the case histories. Values of ', can be estimated from:

Vi =215 m/s for sands with FC <5 % (2.11a)

Vs =215-0.5(FC-5ym/s for sands with 5 % <FC <35 % (2.11b)

Vs =200 m/s for sands and silts with FC > 35 % (2.11c)
where

FC = average fines content in percent by mass.

Equations (2.8) and (2.11a) provide a CRR value of about 0.6 at V5; =210 m/s. A Vg value of
210 m/s is considered equivalent to a corrected blow count of 30 in sands with FC = 5 %, based
on penetration-Vs correlations.

2.3.3 Limiting Upper Value of Vs; in Gravelly Soils

Although the V', values given in Eq. (2.11) were determined for sandy soils, the case
history data indicate that these limits also represent reasonable limits for gravelly soils divided
into the same categories based on fines content (see Fig. F.7). This might be considered rather
surprising based on the penetration-Vs correlations presented in the literature for gravelly soils.
For instance, the correlation by Ohta and Goto (1978) suggested a Vs, value of 227 m/s for
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Holocene gravels at an equivalent (N)sp of 30. Similarly, the correlation by Rollins et al. (1998)
provided a best-fit Vs, value of 232 m/s for Holocene gravels. On the other hand, all the
liquefaction case history data exhibit Vs; values of about 200 m/s or less, suggesting that 230
m/s may be inappropriately high. To investigate further the value of Vg, in gravelly soils,
laboratory studies involving Vs measurements in gravelly soils were reviewed. Kokusho et al.
(1995) clearly showed that the shear wave velocity (or stiffness) of gravelly soils varies greatly
and is highly dependent on the particle gradation. Weston (1996) showed similar resuits for
coarse sands with gravels. In both cases, the results show that increasing the uniformity
coefficient can significantly increase the shear wave velocity in medium dense to dense gravels.
On the other hand, very loose gravelly soils, even well-graded gravels, can exhibit shear wave
velocities similar to those of loose sands (Kokusho et al., 1995). The case history data
presented in Fig. F.7 support the premise that gravelly soils that are loose enough to.exhibit
significant liquefaction effects (boils, ground cracks, etc.) have shear wave velocities similar to
loose sands. Hence, the boundaries developed for sandy soils are recommended as preliminary
boundaries for gravelly soils. However, additional work is clearly needed to understand the
relationship between Vs; and liquefaction resistance of gravels.

2.3.4 Cementation and Aging Correction Factor

The recommended CRR-Vs; curves shown in Fig. 2.3 are limited to the characteristics of
the database used to develop them. The database consists of relatively level ground sites with
the following general characteristics: (1) uncemented soils of Holocene age; (2) average depths
less than about 10 m; (3) ground water table depths between 0.5 m and 6 m, and (4) all V;
measurements are from below the water table. Correction factors may be used to extend the
curves to site conditions different from the database.

The correction factor K. is 1 for areas of uncemented, Holocene-age soils. For
Pleistocene-age soils (>10 000 years), average estimates of X, range from 0.6 to 0.8 based on
the penetration-Vs; correlations by Rollins et al. (1998a) and Ohta and Goto (1978),
respectively. Figures 2.6 and 2.7 illustrate two methods for estimating the value of K. using
SPT and CPT test results, respectively. Shown in the figures are correlations for clean sands
and silty soils implied by the CRR-Vs; relationship defined by Eq. (2.8) and 1996 NCEER
Workshop recommended CRR-penetration relationships (Youd et al., 1997). In the example,
the measured values of Vs;, (N))éo, gciv, and fines content are 220 m/s, 8, 55, and 10 %,
respectively. The Vg -penetration correlations in Figs. 2.6 and 2.7 suggest a K. value between
0.71 and 0.75, respectively, for these conditions. The K. value is assumed to be the ratio of the

predicted value of Vs, based on the corrected penetration resistance and fines content, to the
measured value of V.
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The method for estimating K. described above assumes that the strain level induced
during penetration testing is the same strain level causing liquefaction, which may not be true
because pore-water pressure buildup to liquefaction can occur at medium strains in several
loading cycles (Dobry et al, 1982; Seed et al, 1983). The method also assumes that
liquefaction potential, blow count, and cone penetration resistance are not affected by
cementation, which may not be a reasonable assumption. Hence, this suggested method should
be used cautiously and with engineering judgment.

2.4 FACTOR OF SAFETY

A common way to quantify the potential for liquefaction is in terms of a factor of safety.
The factor of safety, F5s, against liquefaction can be defined by:

_CRR
CSR

Fs (2.12)

By convention, liquefaction is predicted to occur when Fs < 1. When Fg > 1, liquéfaction is
predicted not to occur.

As is the case with the SPT- and CPT-based charts, it is possible that liquefaction could
occur outside the region of predicted liquefaction shown in Fig. 2.3. Consequently, the Building
Seismic Safety Council (1997, page 158) suggests a factor of safety of 1.2 to 1.5 is appropriate
when applying the Seed-Idriss simplified procedure in engineering design. The acceptable value
of Fy for a particular site will depend on several factors, including the type and importance of
structure and the potential for ground deformation. Based on Vs-SPT blow count correlations
(see Section F.4) and probability studies (see Section G.2), the recommended Vs-based
procedure is as conservative as the SPT-based procedure outlined by Seed et al. (1985) and
updated by the NCEER Workshop (Youd et al., 2001). Thus, the same range of factor of safety
is recommended for the Vs-based method.

2.5 PROBABILITY-BASED EVALUATION

Probability of liquefaction, P, is required information for making risk-based design
decisions. As discussed in Appendix G, the relationship between P, and F; for the deterministic
procedure described above can be expressed as (Juang et al., 2002; modified from Juang et al,,
2001a):
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In Eq. (2.13), a Fs value of 1 corresponds to points on the deterministic curves shown in Fig.
2.3. Thus, on average, the deterministic curves are characterized by a P, value of 26 %. This
average P, value is similar to probability estimates determined for the SPT-based curves (Liao et
al., 1988; Youd and Noble, 1997; Juang et al., 2000a). The relationship defined by Eq. (2.13) is
plotted in Fig. 2.8, and provides the link between the probabilistic and deterministic methods.
By combining Eqs. (2.8), (2.12) and (2.13), one can obtain a family of P, curves for risk-based
design. The family of P, curves for magnitude 7.5 earthquakes and soils with FC < 5 % is
presented in Fig. 2.9.

pL= (2.13)

It is important to note that Figs. 2.8 and 2.9 are developed assuming Fjs to be a fixed
variable, and possible variations in CRR and CSR are not considered directly. Previous studies
by Juang et al. (2000b) and Chen and Juang (2000) concluded that practically the same P;-Fis
relationship would be obtained even if the uncertainties in CSR and CRR were incorporated in
the formulation for P;. Thus, in general, if the variations of CRR and CSR are not too great, the
figures can be used directly without considering the variations (Juang et al., 2001b).

2.6 SUMMARY

In this chapter, guidelines are presented for evaluating liquefaction resistance through Vs
measurements using the procedure outlined in Andrus and Stokoe (2000). The procedure can
be summarized in the following ten steps:

1. From available subsurface data, develop detailed profiles of Vs, soil type, fines
content and, if possible, soil density and penetration resistance. Identify the
depth of the ground water table, noting any seasonal fluctuations and artesian
pressures.

2. Calculate the values of ¢, and o', for each measurement depth at which
seismic testing has been performed.

3. Correct the Vs measurements to the reference overburden stress of 100 kPa

using Eq. (2.7). The correction factor Cys is limited to a maximum value of
1.4 at shallow depths.
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4. Determine the value of Vs, for each measurement depth using Eq. (2.11)
which is recommended for sandy as well as gravelly soils. If the fines content
is unknown, assume 215 m/s for V', .

5. Determine the value of K.. K. can be assumed equal to 1, if the soil to be
evaluated is uncemented and less than 10 000 years old. If the soil conditions
are unknown and penetration data are not available, assume 0.6 for X_.

6. Determine the design earthquake magnitude and expected value of @mey.

7. Calculate CSR for each measurement depth below the water table using Eq.
(2.1). The value of r; can be estimated from the average curve originally
proposed by Seed and Idriss (1971).

8. Calculate CRR for each value of Vs, using Egs. (2.8) and (2.9) with n=-2.56.
It is important to note that Eq. (2.8) is for extreme behavior where boils and
ground cracks occur.

9. Calculate the value of Fs for each value of Vs using Eq. (2.12). By
convention, liquefaction is predicted to occur when Fs < 1, and not to occur
when Fs> 1.

10. Plot the values of Vs, CSR, CRR and F§s to visually note how they vary with
depth, and how many points fall in the regions of liquefaction and no
liquefaction.

The deterministic Vs-based procedure outlined above is characterized with an average
probability of liquefaction of 26 %. In other words, a soil with a calculated Fs = 1 has a 26 %
chance of liquefaction occurrence based on the case histories analyzed in this study. As
mentioned previously, the Vs-based procedure is as conservative as the SPT-based procedure by
Seed et al. (1985). A factor of safety of 1.2 to 1.5, as suggested by the Building Seismic Safety
Council (1997, page 158), is considered appropriate for design of typical buildings using the
SPT- and Vs-based procedures. This range of factor of safety corresponds to a probability of
liquefaction of about 8 % (for 5= 1.5) to 16 % (for Fs= 1.2). The acceptable value of F; for a
particular site will depend on several factors, including the type and importance of structure and
the potential for ground deformation. For critical structures, a smaller probability of liquefaction
might be required. Equation (2.13) provides an important link between Fs and P, and is
suggested for probability liquefaction evaluations.
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CHAPTER3

APPLICATION OF THE LIQUEFACTION EVALUATION PROCEDURE

To illustrate the application of the liquefaction evaluation procedure described in Chapter
2, two sites shaken by the 1989 Loma Prieta, California, earthquake (M, = 7) are considered

below. The two sites are Treasure Island Fire Station and Marina District Winfield Scott
School:

3.1 TREASURE ISLAND FIRE STATION

Treasure Island is a man-made island located in the San Francisco Bay along the Bay
Bridge between the cities of San Francisco and Oakland. It was constructed in 1936-37 by
hydraulic filling behind a perimeter rock dike. The perimeter dike served to contain the
hydraulic fill and was raised in sections over the previously placed fill. In 1991, Treasure Island
was selected as a national geotechnical experimentation site. Much of the work to date at the
Treasure Island national geotechnical experimentation site centers arounds a ground response

experiment (de Alba and Faris, 1996) with six accelerometers and eight piezometers operating at
various elevations near the fire station.

Extensive field tests have been conducted near the Treasure Island fire station to
characterize ground conditions. Figures 3.1 and 3.2 present Vs and general soil profiles for the
site. The Vs profile shown in Fig. 3.1(a) is from Fuhriman (1993), and was determined by
crosshole testing. The Vs profile shown in Fig. 3.2(a) is based on unpublished SASW test results
by The University of Texas at Austin in 1992. From the description by de Alba et al. (1994), the
upper 4.5 m of soil consists of silty sand fill, possibly formed by dumping. Between depths of
4.5 m and 12.2 m, the soil consists of silty sand to clayey sand, formed by hydraulic filling.

Beneath the hydraulic fill are natural clayey soils. The ground water table lies near the ground
surface at a depth of 1.4 m.

During the 1989 Loma Prieta earthquake, a seismograph station at the fire station
recorded ground surface accelerations. Unlike recordings at other seismograph stations located
on soft-soils in the Bay area, there is a sudden drop in the recorded acceleration at about 15
seconds and small motion afterward (Idriss, 1990). De Alba et al. (1994) attribute this behavior
to liquefaction of an underlying sand layer, although no sand boils or ground cracks occurred at
the site. The nearest liquefaction effect observed is a sand boil located 100 m from the site
(Geometric Consultants, 1990; Bennett, 1994; Power et al., 1998).
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Figure 3.1 presents the liquefaction evaluation for the crosshole test array B1-B4 and the
1989 Loma Prieta earthquake. Values of V5 and CSR shown in Figs. 3.1(a) and 3.1(d),
respectively, are calculated assuming densities of 1.76 Mg/m® above the water table and 1.92
Mg/m® below the water table. Based on peak values of 0.16 g and 0.11 g recorded in two
horizontal directions at the fire station during the 1989 earthquake (Brady and Shakal, 1994), a
geometric mean value of 0.13 g is used to calculate CSR. Stress reduction coefficients are
estimated using the average curve by Seed and Idriss (1971) shown in Fig. 2.1.

For the crosshole measurement at a depth of 4.6 m, values of CSR and Vj; are calculated
as follows:

CSR =065|9mx |l ov |, ~qes| 2138 (ﬁﬂ)om =0.131 (3.1
g o'y g 52.7

and

025 100\°%
Vs] = Vs(Pa] = 134(—5-5) =158 m/s (32)
o' .

Assuming an average fines content of 24 %, from Fig. 3.1(c), and a K. value of 1, the values of
V's1, CRR, and F; are calculated by:

Va =215-05(FC-5)=215 - 0.5(24-5) = 206 m/s 33)
and
. K Vs ) 1 1
CRR = (__‘ﬁ) +b( . - .‘) MSF (3.9)
100 Vsi—KcVs1 Vs
2 -2.56
- Joon( 2 wag L L (L)
100 206-158 206 [ \7.5
=0.119
and
CRR _ 0.119
=== =091 :
Fs CSR 0131 3

Since the value of F5 is less than 1, liquefaction is predicted at this depth.
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Values of Fs shown in Fig. 3.1(e) are less than 1 for the depths of 4 m to about 9 m.
Between the depths of 4 m and 7 m, the sand contains non-plastic fines and is considered
liquefiable. Between the depths of 7 m and 9 m, the soil exhibits plastic characteristics and may
be non-liquefiable by the simple clay criteria (see Section 1.1). Thus, the layer most likely to
liquefy, or the critical layer, lies between the depths of 4 m and 7 m.

Figure 3.2 presents the liquefaction evaluation for the SASW test array. Locations of Vs
measurements for the SASW test array are assumed at the center of the layer used in forward
modeling of surface wave measurements. Values of Fs shown in Fig. 3.2(e) are less than 1
between the depths of about 3.5 m and 11 m. The lowest values of Fs in the non-plastic soil is

0.75 at a depth of 5.3 m. This F§ value is similar to the lowest Fs value of 0.77 determined from
crosshole measurements in the critical layer.

Figures 3.3 and 3.4 present the liquefaction evaluations directly on the recommended
liquefaction assessment chart for the crosshole test array and SASW test array, respectively.
Plots of this type are particularly useful in comparing the range and distribution of Vs; and CSR
values with the case histories used to develop the assessment chart. Based on Fig. F.15, the
assessment chart is well supported within the range of the Treasure Island Fire Station data.

Although no sand boils or ground cracks occurred at the fire station during the 1989
earthquake, the prediction of liquefaction agrees with the conclusion stated above that
liquefaction of an underlying sand cause the sudden drop in the acceleration time histories
recorded at this site (de Alba et al., 1994). A similar sudden drop in the strong ground motion
recordings occurred at the Port Island Downhole Array site in Kobe, Japan, during the 1995
Hyogo-ken Nanbu earthquake (Aguirre and Irikura, 1997), where liquefaction and sand boils did
occur. It is possible that the 4 m thick layer capping the site, predicted not to liquefy, as shown
in Figs. 3.1(e) and 3.2(e), prevented the formation of sand boils at the ground surface (Ishihara,
1985).

3.2 MARINA DISTRICT WINFIELD SCOTT SCHOOL

Kayen et al. (1990) conducted downhole seismic tests at the Winfield Scott School in the
Marina District of San Francisco. Figures 3.5(a) and 3.5(b) present the Vs and soil profiles for
the site. The Vs profile was originally determined based on best-fit line segments through travel
time measurements plotted versus depth. However, the layering assumed in the best-fit segment
method did not seem appropriate for the fill. Figures 3.5(a) presents the Vs profile for the site
determined using the pseudo-interval method (see Appendix E). Figure 3.5(c) presents a profile
of fines content that are based on information provided by Kayen et al. (1990). The upper 7.6 m
of soil at the site consists of sand with 1 % to 8 % fines. The ground water table lies at a depth
of 2.7m.

33



o 06 l I 1 T
C Chart Based on: -
O Average values of Mw=17
) Vs1and amax 23520 <5 Fines
ey ~ Uncemented, ' ’ Content (%)
4p) Holocene-age soils
o
S 1]
= 04
5 Il
3 Liquefaction
§ a -
R No
i Liquefaction
ra 0.2
5 N
n .
$ Fines Content R \ 5A
- A 61034 %
/] " lo >35% A7<—Average
o Fines
O J Content (%)
>
O 0.0 | | 1
0 100 200 300

Overburden Stress-Corrected Shear Wave

Velocity, Vs1, m/s

Fig. 3.3 - Liquefaction Assessment Chart for Magnitude 7 Earthquakes with Data for
the 1989 Loma Prieta Earthquake and the Treasure Island Fire Station Site,
Crosshole Test Array B1-B4 (Depths of 1.5 m to 14 m).
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Many structures, pavements, and public works near the school sustained heavy damage
during the 1989 Loma Prieta earthquake (Kayen et al, 1990). This damage was due to
liquefaction of the sand fill. From maps prepared by Pease and O’Rourke (1995), the site lies on
the margin of the 1906 water front and artificial fill where about 40 mm of settlement occurred.
Mapped sand boils and ground cracks lie just east of the site. Based on these observations, this
site is classified as a liquefaction site during this earthquake.

The Marina District and Treasure Island are located about 82 km from the 1989 surface
fault rupture.~ Assuming a distance of 82 km from the fault rupture, the attenuation relationship
by Idriss (1991) for 1989 strong ground motion records from soft-soil sites provides a median
value of 0.16 g. This value is slightly higher than the geometric mean value of 0.13 g for the
two peak horizontal accelerations recorded at Treasure Island fire station. Thus, a peak

horizontal ground surface acceleration of 0.15 g, the average of these two estimates, is assumed
in the analysis.

Figure 3.5 presents the liquefaction evaluation for the Marina District School site and the
1989 Loma Prieta earthquake. Values of Vs; and CSR are calculated assuming densities of 1.76
Mg/m® above the water table and 1.92 Mg/m’ below the water table. They are plotted in Fig.
3.5(a) and 3.5(d) at the depths midway between receiver locations. Since the sand is uncemented
and less than 10 000 years old, the value of X, is 1. Calculated values of Fy are 0.42, 0.90, and
0.51 at the depths of 3 m, 4 m, and 6.7 m within the sand fill. The silty clay layer beneath the
sand fill is non-liquefiable by the simple clay criteria (see Section 1.1). Thus, having the lowest
average value of Fj, the sand fill just below the water table between the depths of 2.7 m and 4.4

m is identified as the critical layer that liquefied. A prediction of liquefaction agrees with the
observed field behavior.

Figure 3.6 present the liquefaction evaluation directly on the recommended liquefaction
assessment chart for the Marina District. Based on Fig. F.15, the assessment chart is well
supported within the range of the Marina District data.
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CHAPTER 4

SUMMARY AND RECOMMENDATIONS

4.1 SUMMARY

Presented in this report are guidelines for evaluating the liquefaction resistance of soils
through shear wave velocity, Vs, measurements. The guidelines are based on an earlier report
entitled “Draft Guidelines for Evaluating Liquefaction Resistance Using Shear Wave Velocity
Measurements and Simplified Procedures.” From comments received on the earlier report, the
draft guidelines are updated in this report. The guidelines present a recommended procedure for
evaluating soil liquefaction resistance and guidance for its use.

The recommended procedure follows the general format of the simplified penetration-
based procedure originally proposed by Seed and Idriss (1971). Cyclic stress ratios, CSR, are
calculated using Eq. (2.1), with the average stress reduction coefficient estimated from Fig. 2.1.
Shear wave velocity measurements are corrected for overburden stress using Eq. (2.7). Figure
2.3 presents the recommended evaluation curves for uncemented, Holocene-age soils and
magnitude 7.5 earthquakes. These curves are defined by Eq. (2.8) with MSF = 1, p§, = 200
m/s to 215 m/s (depending on fines content), and K. = 1. Equation (2.8) can be adjusted for
other magnitude earthquakes using MSF values defined by Eq. (2.9) with n=-2.56. Corrections
for cemented and aged soils are suggested in Section 2.3.4. A ten-step summary of the
procedure is given in Section 2.6.

The recommended liquefaction evaluation curves, defined by Eq. (2.8), are based on a
modified relationship between overburden stress-corrected shear wave velocity, Vs;, and CSR
for constant average cyclic shear strain suggested by R. Dobry. As discussed in Section 2.3 and
Appendix F, the quadratic relationship proposed by Dobry is modified so that it is asymptotic to
some limiting upper value of Vs;. This limit is related to the tendency of dense granular soils to
exhibit dilative behavior at large strains, as well as the fact that dense soils expel dramatically
less water during reconsolidation than loose soils. Liquefaction and non-liquefaction case
histories from 26 earthquakes and more than 70 measurement sites in soils ranging from clean
fine sand to sandy gravel with cobbles to profiles including silty clay layers are analyzed to
determine the parameters of Eq. (2.8). Penetration-V;s correlations are also considered. The
evaluation curves correctly bound over 95 % of the case histories where liquefaction occurred.

39



By constructing relationships between Vs; and penetration resistance from the recommended
evaluation curves and plotting available in situ test data, it is shown that the Vs;-based
evaluation curves are generally more conservative than the penetration-based evaluation curves.
From logistic regression and Bayesian interpretation techniques (see Appendix G), the
recommended curve for clean soils is characterized with an average probability of 26 %.

Caution should be exercised when applying the procedure to sites where conditions are
different from the case history data. The case history data used to develop the procedure are
limited to relatively level ground sites with the following general characteristics: (1) uncemented
soils of Holocene age; (2) average depths less than about 10 m; and (3) ground water table
depths between 0.5 m and 6 m. All Vs measurements are from below the water table. About
three-quarters of the case history data are for soils with fines content greater than 5 %. Almost
half of the case histories are for earthquakes with magnitudes near 7.

Three concerns when using shear wave velocity as an indicator of liquefaction resistance
are (1) its higher sensitivity (when compared with the penetration-based methods) to weak
interparticle bonding, (2) the lack of a physical sample for identifying non-liquefiable clayey
soils, and (3) not detecting thin liquefiable strata because the test interval is too large. The
preferred practice is to drill sufficient boreholes and conduct sufficient other in situ tests to
detect thin liquefiable strata, identify non-liquefiable clay-rich soils, identify silty soils above the
ground water table that might have lower values of Vs should the water table rise, and detect
liquefiable weakly cemented soils.

4.2 FUTURE STUDIES
The following future studies are recommended:

1. Additional well-documented case histories with all types of soil that have and have
not liquefied during earthquakes should be compiled, particularly from deeper deposits (depth >
8 m) and from denser soils (Vs > 200 m/s) shaken by stronger ground motions (@m.. > 0.4 g), to
further validate the recommended curves. Also, case histories from lower magnitude
earthquakes (M, < 7) may improve estimates of the magnitude scaling factor.

2. Laboratory and field studies should be conducted to further refine estimates of Vg,
the limiting value of Vs for cyclic liquefaction occurrence. For example, careful laboratory
studies may identify more clearly the influence of fines content, gravel content, and particle
gradation on Vs;. Additional careful penetration-Vs correlation studies may also help refine the
Vs, estimates.
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3. Laboratory studies should also be conducted to evaluate the implied assumption
observed in Fig. 2.3 that at low values of V, (say 100 m/s) liquefaction resistance is independent
of fines content.

4. Additional work is needed to evaluate the significance of ignoring soil type and
horizontal stress in the overburden correction.

5. Standard test procedures exist only for the crosshole test. Standard test methods
should be developed for the other in situ seismic tests.
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APPENDIX B

SYMBOLS AND NOTATION

The following symbols and notation are used in this report:

A = 'parameter that depends on soil structure;

a = parameter related to slope of CRR-V5, curve;

a;, az, as = regression coefficients;

Qmax = peak horizontal ground surface acceleration;

By, B; = parameters relating Vs; and penetration resistance;

b = parameter related to slope of CRR-Vs; curve;

b;, by, b3, by = regression coeflicients;

CRR = average cyclic resistance ratio;

CRRy = CRR for cyclic triaxial tests;

CRR, = CRR corrected for high overburden stress;

CRR3s = CRR for magnitude 7.5 earthquakes;

CSR = cyclic stress ratio;

Cvs = factor to correct Vs for overburden pressure;

Dsg = median grain size by mass;

DA = double-amplitude axial strain;

D, = relative density;,

exp = the constant e raised to the power of a given number;

F,F = age and soil type factors for correlating Vs and N};

FC = fines content (particles smaller than 75 pm);

Fs = factor of safety;

f = high overburden stress exponent;

femin) = function of minimum void ratio;

fVs1) = function of Vy;;

fix) = function of x (= Fy);

S ya) = function of average peak cyclic shear strain;

Ji(Fs) = probability density function of calculated Fj for
liquefaction case histories;

f(Fs) = probability density function of calculated F for

non-liquefaction case histories;
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Sres
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shear modulus;

small-strain shear modulus;

Gomax corrected for confining stress and void ratio;
secant shear modulus at y,,;

acceleration of gravity;,

cementation and aging correction factor;

fines content correction factor;

coefficient of effective lateral earth pressure at rest;
high overburden stress correction factor;

natural logarithm function;

magnitude scaling factor;

earthquake moment magnitude;

stress exponent;

SPT blow count in Japanese practice;

SPT energy-corrected blow count;

SPT energy- and overburden stress-corrected blow count;
magnitude scaling factor exponent;

reference overburden stress (= 100 kPa);

probability of liquefaction occurrence

factor to account for effects of multidirectional shaking;
shear stress reduction coefficient;

sine function;

residual standard deviation;

small-strain shear wave velocity;

overburden stress-corrected Vs;

equivalent clean soil value of Vg;;

limiting upper value of Vg, for liquefaction occurrence;
mean stress-corrected Vs;

depth;

function of depth;

function of depth;

average peak cyclic shear strain;

mean;

mass density of soil;

standard deviation;

cyclic deviator stress in cyclic triaxial tests;

initial effective horizontal confining stress;

mean effective confining stress;

initial effective confining stress in cyclic triaxial tests;
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Ov

o’y

Tav

Tmax

total vertical (or overburden) stress;

initial effective vertical (or overburden) stress;

average cyclic equivalent uniform shear stress generated by
earthquake; and

maximum cyclic shear stress generated by earthquake.
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APPENDIX C

GLOSSARY OF TERMS

The following definitions apply to this report:

Case History

Critical Layer

Liquefaction
QOccurrence

Moment Magnitude
Overburden Stress-
Corrected Shear Wave

Velocity

Peak Horizontal Ground
Surface Acceleration

Shear Wave Velocity

Shear Wave

An earthquake and a test array.

The layer of non-plastic soil below the ground water table where
corrected values of shear wave velocity and penetration are the
least, and where cyclic stress ratios are the greatest.

Surface manifestations of excess pore-water pressure at depth,
such as sand boils, ground cracks and fissures, and ground
settlement.

An earthquake magnitude scale defined in terms of energy.

Shear wave velocity measurement corrected to a reference
vertical (or overburden) stress of 100 kPa.

The peak value in a horizontal ground surface acceleration
record that would occur at the site in the absence of liquefaction
Or excess pore-water pressures.

The velocity of a propagating shear wave within a material with
either the direction of wave propagation or the direction of

particle motion in the vertical direction.

A body wave with the direction of particle motion transverse to
the direction of wave propagation.
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Test Array

The two boreholes used for crosshole measurements, the borehole
and source used for downhole measurements, the cone sounding
and source used for seismic cone measurements, the borehole
used for suspension logging measurements, or the line of
receivers used for Spectral- Analysis-of-Surface-Waves (SASW)
measurements.
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APPENDIX D

COMPARISON OF Vs-BASED LIQUEFACTION RESISTANCE CURVES

During the past two decades, several studies have been conducted to investigate the
relationship between Vs and liquefaction resistance. These studies involved laboratory tests
(Dobry et al.,, 1981; Dobry et al., 1982; de Alba et al., 1984; Hynes, 1988; Tokimatsu and
Uchida, 1990; Tokimatsu et al., 1991a; Rashidian, 1995; Rauch et al., 2000), analytical
investigations (Bierschwale and Stokoe, 1984; Stokoe et al., 1988c; Andrus, 1994), penetration-
Vs correlations (Seed et al., 1983; Lodge, 1994; Kayabali, 1996; Rollins et al., 1998b; Andrus et
al., 1999), or field performance observations (Stokoe and Nazarian, 1985; Robertson et al,,
1992; Kayen et al., 1992; Andrus and Stokoe, 1997; Andrus et al., 1999; Juang and Chen, 2000;
Andrus and Stokoe, 2000; Juang et al., 2001a). Many of the liquefaction evaluation procedures
developed from these studies follow the general format of the Seed-Idriss simplified procedure,

where Vs is corrected to a reference overburden stress and correlated with the cyclic stress, or
resistance, ratio.

This appendix reviews seven proposed liquefaction evaluation curves based on CRR and
Vs;. The seven CRR-Vs; curves are shown in Fig. D.1. Each of the curves is briefly discussed
below.

D.1 CURVE BY TOKIMATSU AND UCHIDA (1990)

The best-fit curve by Tokimatsu and Uchida (1990) shown in Fig. D.1 was determined
from laboratory cyclic triaxial test results for various sands with less than 10 % fines (silt and
clay) and 15 cycles of loading. Figure D.2 presents the cyclic triaxial test results. The solid
symbols in Fig. D.2 correspond to specimens obtained by the in situ freezing technique. The
open symbols correspond to specimens reconstituted in the laboratory. Tokimatsu and Uchida
defined the cyclic resistance ratio for cyclic triaxial tests, CRR,, as the ratio of cyclic deviator
stress to initial effective confining stress, o ,;/2 o', when the double-amplitude (or peak-to-peak)
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axial strain, DA, reaches S %. They measured the elastic shear modulus of the specimen at a
shear strain of 10” % just prior to the liquefaction test. This small-strain shear modulus was
normalized to correct for the influence of confining pressure and void ratio by:

G
O e ®-
and
Hems) = %ﬁj—m:—"’ﬁ ©2)
where
Gy = the normalized shear modulus,

€min = the minimum void ratio determined by standard test method, and
the mean effective confining stress.

C'm

Tokimatsu and Uchida selected an exponent of 2/3 rather than 1/2, as determined by Hardin and
Dmevich (1972), because it seemed that a slightly better correlation could be obtained. Values
of e, ranged from 0.61 to 0.91 for the sands tested. The actual values of void ratio in each test
were greater than e, with values ranging from about 0.65 to about 1.4.

By combining Egs. (1.1) and (D.1), one obtains the following relationship for converting
Gy to mean stress-corrected Vs:

0.33 0.5
1 :
VSIm = VS(_J = [@_f_(.eﬂm;)) (D-3)
O'm P
where
Vsim = mean stress-corrected Vs, and
o'w = the mean effective confining stress in kgf/cm? (1 kgf/cm® = 98 kPa).

Tokimatsu and Uchida (1990) suggested using 0.65 as an average value of e, for clean sands.
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The overburden stress-corrected Vs and V;,, can be related by:

1 0.33 3 0.33 1 0.08 3 0.33
V m= V — = V - 4
w2 (i) =72 () ©4)

where

K, = the coefficient of lateral earth pressure at rest (=¢',/ 0", ).
Values of Vg for the best fit curve by Tokimatsu and Uchida (1990) shown in Fig. D.1 are
determined (Andrus et al., 1999; after Tokimatsu et al., 1991a) from Fig. D.2 using Egs. (D.3)
and (D.4), and assuming XK', = 0.5, e, = 0.65, o',, = 100 kPa, and soil density of 1.9 Mg/m®.

For converting CRR. to an equivalent field CRR, Tokimatsu and Uchida (1990)
suggested the following expression originally proposed by Seed (1979):

CRR = (1+§K'o)

. (CRRy) D.5)

where

r. = a constant to account for the effects of multi-directional shaking with a value
between 0.9 and 1.0.

Values of CRR for the best fit curve by Tokimatsu and Uchida shown in Fig. D.1 are determined
from Fig. D.2 using Eq. (D.5) and assuming K, = 0.5 and . = 0.9.

Because the other liquefaction resistance curves shown in Fig. D.1 were drawn to bound
liquefaction case histories, the more conservative lower bound curve for the laboratory test
results by Tokimatsu and Uchida (1990) also is shown. This curve was drawn (Andrus et al,,
1999) from Fig. D.2 following the procedure outlined above.

D.2 CURVE BY ROBERTSON ET AL. (1992)

The bounding curve by Robertson et al. (1992) was developed using field performance
data from primarily sites in Imperial Valley, California, along with data from four other sites, as
shown in Fig. D.3. The soil at these sites contained as much as 35 % fines. Robertson et al.
corrected Vs using Eq. (2.7). The shape of their curve was based on the analytical results of
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Bierschwale and Stokoe (1984). They reasoned that the curve should pass close to the Imperial
Valley (Wildlife site) data point, since liquefaction did and did not occur at this site during the
1987 Superstition Hills (M, = 6.5) and Elmore Ranch (M, = 6.2) earthquakes, respectively.
Robertson et al. used magnitude scaling factors similar to those suggested by Seed and Idriss
(1982), Column 2 of Table 2.2, to position their curve for magnitude 7.5 earthquakes.

D.3 CURVE BY KAYEN ET AL, (1992)

Kayen et al. (1992) studied four sites that did and did not liquefy during the 1989 Loma
Prieta, California, earthquake (M, = 7.0). The four sites are: Port of Richmond, Bay Bridge
Toll Plaza, Port of Oakland, and Alameda Bay Farm Island South Loop Road. The fines
content for soils at these sites ranged from less than 5 % to as much as 57 %. Values of Vs were
measured by the SCPT method and corrected for overburden stress using Eq. (2.7). Figure D.4
presents their data and bounding curve. The curve by Kayen et al. shown in Fig. D.1 was
adjusted for magnitude 7.5 earthquakes by assuming a MSF of 1.19 (see Column 3 of Table
2.2).

D.4 CURVE BY LODGE (1994)

Lodge (1994) considered the same sites that Kayen et al. (1992) studied, as well as other
sites shaken by the 1989 Loma Prieta earthquake. The curve by Lodge was developed as
follows. First, cyclic stress ratios for the entire soil profile at each site were calculated. Second,
available SPT blow counts were corrected for overburden pressure and energy. Soil layers with -
high and low liquefaction potential were identified with the procedure of Seed et al. (1985). Soil
layers with corrected blow count within 3 of the SPT-based curve were eliminated due to
uncertainties in the correlation. Third, Vs measurements from SCPT and crosshole tests were
corrected for overburden stress using Eq. (2.7). Fourth, on a “meter by meter” basis, values of
Vs; and cyclic stress ratio were plotted for both layer types, those which were predicted
liquefiable and those which were predicted non-liquefiable. Fifth, published data for sites shaken
by the 1983 Borah Peak, Idaho, and 1964 Niigata, Japan, earthquakes were added to the plot.
Finally, a curve was drawn to include all liquefiable layers, as shown in Fig. D.5. The curve by
Lodge shown in Fig. D.1 was adjusted for magnitude 7.5 earthquakes by assuming a MSF of
1.19 (see Column 3 of Table 2.2).
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D.S CURVE BY ANDRUS AND STOKOE (1997)

The curve by Andrus and Stokoe (1997) shown in Fig. D.1 was developed for the
proceedings of the 1996 NCEER Workshop (Youd and Idriss, eds., 1997). Several suggestions
were offered at, and after, the workshop concerning how site variables should be define, as well
as the shape of the boundary curve separating liquefaction and no liquefaction. Following the
suggestions and using field performance data from 20 earthquakes and in sifu Vs measurements
from over 50 sites in soils ranging from clean fine sand to sandy gravel with cobbles to profiles
including silty clay layers, Andrus and Stokoe constructed curves for uncemented, Holocene-age
soils with various fines content. The values of Vs were corrected using Eq. (2.7). The curve by
Andrus and Stokoe (1997) for fines content < 5 % along with the case history data are presented
in Fig. D.6. The shape of the curve by Andrus and Stokoe (1997) was based on a modified

relationship between Vs, and CSR for constant average cyclic shear strain suggested by R.
Dobry.

D.5.1 Cyclic Shear Strain and Cyclic Shear Stress

Liquefaction results from the rearranging of soil particles and the tendency for decrease
in volume. Experimental and theoretical studies show that decrease in volume is more closely
related to cyclic strain than cyclic stress (Silver and Seed, 1971); a threshold cyclic strain exists
below which neither rearrangement of soil particles nor decrease in volume take place (Dmevich
and Richart, 1970; Youd, 1972; Pyke et al., 1975), and no pore water pressure buildup occurs
(Dobry et al., 1981; Seed et al., 1983); and that there is a predictable correlation between cyclic
shear strain and pore pressure buildup of saturated soils (Martin et al., 1975; Park and Silver,
1975; Finn and Bhatia, 1981; Dobry et al., 1982; Hynes, 1988). The threshold cyclic strain is
limited to a narrow range of variation, ranging from about 0.005 % for gravels to 0.01 % for
normally consolidated clean sands and silty sands to 0.03 % for overconsolidated clean sands.
In addition, cyclic strain-controlled test results are less affected than stress-controlled tests by
factors such as density, confining stress, anisotropic confining stress, fabric and prestaining
(Martin et al., 1975; Dobry and Ladd, 1980; Dobry et al., 1982; Hynes, 1988). It should also be
noted that the steady state approach to liquefaction evaluation by Poulos et al. (1985) is based
on a triggering strain level. These findings confirm the fact that cyclic strain is more
fundamentally related to pore pressure buildup than cyclic stress, and are strong arguments in
favor of a cyclic strain approach to liquefaction evaluation.
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Cyclic shear strain and cyclic shear stress can be related by the following equation:

Yow = T D.6)

where

the average peak cyclic shear strain during a cyclic stress-controlled test of
uniform cyclic shear stress 7,,, and
the secant shear modulus at 7., during the same cyclic test.

Yav

@),

In the cyclic strain approach proposed by Dobry et al. (1982), the average cyclic shear
strain caused by an earthquake is estimated from:

Omax  Oy?d Gmax
Yav = 0.65 d.7)
g PVsz(G),m

Equation (D.7) is obtained by combining Egs. (1.1), (2.1) and (D.6). The variation of shear
modulus with strain is commonly expressed in terms of (G)r,,/G’"“" called the modulus
reduction factor. The modulus reduction factor can be estimated from an experimentally
determined correlation. Neither pore pressure buildup nor liquefaction will occur when ¥, is
less than the threshold strain. When y,, is greater than the threshold strain, then pore pressure
buildup can occur. The amount of pore pressure buildup can also be estimated from an
experimentally determined correlation.

D.5.2 Dobry’s Relationship Between CRR and V;
R. Dobry (personal communication to R. D. Andrus, 1996) derived a relationship

between Vs and CSR for constant average cyclic shear strain using Egs. (1.1) and (D.6).
Combining Egs. (1.1) and (D.6), and dividing both sides by o”, leads to:

Tav (p ) @),

Vs (D.8)

__.=’Yav —

o'y o'y
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For an overburden stress of 100 kPa, Vs = Vg and curves of constant average cyclic strain can
be expressed by:

CSR = iﬁ =fte) Vs1)* ®D.9)
where
\ G
Sa) = Yav (f) (—lﬂ D.10)

Since CSR equals CRR at the point separating liquefaction from no liquefaction, Eq. (D.9)
provides an analytical basis for establishing the CRR-Vs; curve at low values of Vs, (say Vs; <
125 m/s) and extending them to zero at Vs; = 0.

D.5.3 Modified CRR-Vs; Relationship
Andrus and Stokoe (1997) reasoned that the curve.separating liquefiable and non-

liquefiable soils would become asymptotic to some limiting upper value of Vs;. They modified
Eq. (D.9) to:

| Ve ) 1 1
CRR= a(—ﬂ) +b( - - J MSF 11
{ 100 Vsi=Vs1 Vs ®11
where
Vs = the limiting upper value of ¥ for liquefaction occurrence, and
a,b = curve fitting parameters.

The first term in Eq. (D.11) is a form of Eq. (D.9), assuming f{.,) is independent of initial
effective confining pressure and of pore water pressure buildup. The second term is a hyperbola
with a small value at low values of ¥, and a very large value as Vs, approaches V', .

The curve by Andrus and Stokoe (1997) shown in Figs. D.1 and D.6 is defined by Eqs.
(D.11) and (2.9) witha@=0.03, b= 0.9, n = -3.3, and Vs, = 220 ms. -
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D.6 CURVE BY ANDRUS ET AL. (1999)

Since the publication of the 1996 NCEER Workshop proceedings (Youd and Idriss,
eds., 1997), the case history data compiled by Andrus and Stokoe (1997) have been revised
based on new information, and expanded to include field performance data from 26 earthquakes
and more than 70 measurements siteés. Also, the 1998 MCEER Workshop was held to discuss
developments since the 1996 workshop. From the suggestions given at the second workshop
and using the expanded database, the curve proposed by Andrus and Stokoe (1997) was revised
in the report by Andrus et al. (1999) and paper by Andrus and Stokoe (2000). The revised
curve for uncemented soils with fines content < 5 % along with the case history data are shown
in Fig. D.7. The development of the revised curve is discussed in Appendix F.

D.7 SUMMARY

Seven proposed curves relating CRR and Vs, were discussed in this Appendix. Many of
the differences among the seven curves (see Fig. D.1) can be explained by the following four
factors: (1) The best-fit curve by Tokimatsu and Uchida (1990) is more of a median curve,
while the other curves bound the liquefaction case history data. (2) Portions of the proposed
curves are based on limited data, and the investigator(s) have assumed different levels of
conservatism. In particular, the curves by Robertson et al. (1992), Kayen et al. (1992), and
Lodge (1994) were based on little or no data above Vs of 200 m/s, and were conservatively
drawn in this region. (3) Methods for selecting some site variables and correction factors are
different among investigator(s). (4) Some errors exist in the database by Andrus and Stokoe
(1997), and lead to more conservative curve than the updated curve by Andrus et al. (1999)
above a Vg value of 150 m/s. Thus, the CRR-V5; curve proposed by Andrus et al. (1999) for
clean soils is recommended because it was based on the largest, most correct case history data
set and procedures recommended by the 1996 NCEER Workshop (Youd et al., 1997).
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APPENDIX E

CASE HISTORY DATA AND THEIR CHARACTERISTICS

Shear wave velocity measurements have been made for field liquefaction studies at many
sites during the past twenty years. Table E.1 presents a list of over 70 sites and 26 earthquakes
that have been investigated. Of the 26 earthquakes listed, 9 occurred in the United States; and
the other 15 in Japan, Taiwan, and China. The field performance information for these
earthquakes along with the Vs measurements provides an important opportunity to determine the
relationship between liquefaction resistance and Vs directly from case histories. A detailed
summary of available case history data is presented in Appendix H. This appendix describes the
site variables and characteristics of the database.

E.1 SITE VARIABLES AND DATABASE CHARACTERISTICS
E.1.1 Earthquake Magnitude

Earthquake magnitudes for the 26 earthquakes listed in Table E.1 range from 5.3 to 8.3,
based on the moment magnitude scale. Moment magnitude is the scale most commonly used for
engineering applications, and is the preferred scale for liquefaction resistance calculations (Youd
et al, 1997). When other magnitude scales are reported by the investigator(s), they are
converted to M,, using the relationship of Heaton et al. (1982) shown in Fig. 2.5.

E.1.2 Shear Wave Velocity Measurement

At the more than 70 investigation sites listed in Table E.1, shear wave velocity
measurements were made with 139 test arrays. A test array is defined in this report as the two
boreholes used for crosshole measurements, the borehole and source used for downhole
measurements, the cone sounding and source used for seismic cone measurements, the borehole
used for suspension logging measurements, or the line of receivers used for Spectral-Analysis-
of-Surface-Waves (SASW) measurements. Of the 139 test arrays, 39 are crosshole, 21
downhole, 27 seismic cone, 15 suspension logger, 36 SASW, and one is unknown.
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Table E.1 - Earthquakes and Sites Used to Establish Liquefaction Resistance Curves

Earthquake Moment Site Reference
Magnitude
@ ) 3) 4
1906 San Francisco, California 7.7 Coyote Creek; Salinas River | Youd & Hoose (1978);
(North, South) Barrow (1983); Bennett &
Tinsley (1995)
1957 Daly City, California 53 Marina District (2, 3, 4, 5, Kayen et al. (1990);
School) Tokimatsu et al. (1991b);
T. L. Youd (personal
communication to R. D.
Andrus, 1999)
1964 Niigata, Japan 7.5 Niigata City (Al, C1, C2, Yoshimi et al. (1984;
Railway Station) 1989); Tokimatsu et al.
(1991a)
1975 Haicheng, China 73 Chemical Fiber; Arulanandan et al. (1986)
Construction Building;
Fishery & Shipbuilding;
Glass Fiber; Middle School;
Paper Mill
1979 Imperial Valley, California 6.5 Heber Road (Channel fill, Bennett et al. (1981;
1981 Westmorland, California 5.9 Point bar); Kornbloom; 1984); Sykora & Stokoe
1987 Elmore Ranch, California 5.9 McKim; Radio Tower; Vail (1982); Youd & Bennett
1987 Superstition Hills, California 6.5 Canal; Wildlife (1983); Bierschwale &
Stokoe (1984); Stokoe &
Nazarian (1984); Dobry
etal. (1992); Youd &
Holzer (1994)
1980 Mid-Chiba, Japan 59 Owi Island No. 1 Ishihara et al. (1981;
1985 Chiba-Ibaragi-Kenkyo, Japan 6.0 1987)
1983 Borah Peak, Idaho 6.9 Andersen Bar; Goddard Youd et al. (1985); Stokoe
Ranch; Mackay Dam et al. (1988a);, Andrus et
Downstream Toe; North al. (1992); Andrus (1994)
Gravel Bar; Pence Ranch
1986 Event LSST2, Taiwan 53 Lotung LSST Facility Shen et al. (1991),
Event LSST3, Taiwan 5.5 EPRI (1992)
Event LSST4, Taiwan 6.6
Event LSST6, Taiwan 54
Event LSST7, Taiwan 6.6
Event LSST8, Taiwan 6.2
Event LSST12, Taiwan 6.2
Event LSST13, Taiwan 6.2
Event LSST16, Taiwan 7.6
1987 Chiba-Toho-Oki, Japan 6.5 Sunamachi Ishihara et al. (1989)
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Table E.1 (cont.) - Earthquakes and Sites Used to Establish Liquefaction Resistance Curves.

Earthquake Moment Site Reference
Magnitude
@ | @ 3) @)
1989 Loma Prieta, California 7.0 Bay Bridge Toll Plaza, Bay Stokoe et al. (1992);
Farm Island (Dike, South Mitchell et al. (1994)
Loop Road); Port of
Oakland; Port of Richmond
Coyote Creek; Salinas River | Barrow (1983);
(North, South); M. J. Bennett (personal
communication to R. D.
Andrus, 1995); Bennett
and Tinsley (1995)
Marina District (2, 3, 4, 5, Kayen et al. (1990);
school) Tokimatsu et al. (1991b)
Moss Landing (Harbor Boulanger et al. (1995);
Office, Sandholdt Road, Boulanger et al. (1997)
State Beach)
Santa Cruz (SC02, SC03, Hryciw (1991);
SC04, SCO05, SC13, SC14) Hryciw et al. (1998)
Treasure Island Fire Station | Hryciw et al. (1991);
Redpath (1991); Gibbs
et al. (1992); Furhriman
(1993); Andrus (1994);
de Alba et al. (1994)
Treasure Island Perimeter Geomatrix Consultants
(Approach to Pier, UMO03, (1990); Hryciw (1991);
UMO5, UMO06, UM09) R. D. Hryciw (personal
communication to R. D.
Andrus, 1998); Hryciw
et al. (1998); Andrus et al.
(1998a, 1998b)
1993 Kushiro-Oki, Japan 83 Kushiro Port (2, D) Iai et al. (1995); S. Iai
(personal communication
to R. D. Andrus, 1997)
1993 Hokkaido-Nansei-Oki, Japan 8.3 Pension House Kokusho et al. (1995a,
1995b, 1995¢)
Hakodate Port S. Iai (personal
communication to
R. D. Andrus, 1997)
1994 Northridge, California 6.7 Rory Lane Abdel-Haq & Hryciw
(1998)
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Table E.1 (cont.) - Earthquakes and Sites Used to Establish Liquefaction Resistance Curves.

Earthquake Moment Site Reference
Magnitude
) 3] 3) @
1995 Hyogo-Ken Nanbu, Japan 6.9 Hanshin Expressway 5 Hamada et al. (1995),
(3, 10, 14, 25, 29); Kobe- Hanshin Expressway
e Nishinomiya Expressway Public Corporation (1998)

(3, 17, 23, 28)

KNK; Port Island (Downhole | Sato et al. (1996);

Array); SGK Shibata et al. (1996)

Port Island (Common Ishihara et al. (1997);

Factory) Ishihara et al. (1998)

Kobe Port (7C); Port Island Inatomi et al. (1997),

(1C, 20) Hamada et al. (1995)

Kobe Port (LPG Tank Yard) | S. Yasuda (personal
commuanication to
R.D. Andrus, 1997)

- Values of Vs reported by the investigator(s) are used directly. The one exception is for
the downhole array located at the Marina District School site in San Francisco, California. A
reevaluation of the field data indicates that Vs values reported for the critical layer at this site are
too high. They are recalculated using the pseudo-interval method, as discussed in Section E.2.2.
Only the crosshole measurements made with shear waves having particle motion in the vertical
direction are used. Crosshole measurements near the critical layer boundary that seem high, and
could represent refracted waves, are not included in the average. Some Vs values are from
measurements made before the earthquake, others followed the earthquake. No adjustments are
made to compensate for changes in soil density and Vs due to ground shaking.

E.1.3 Measurement Depth .

In situ Vs measurements may be reported at discrete depths or for continuous intervals,
depending on the test method. When velocities are reported for continuous intervals, as is
typically the case for downhole, seismic cone, suspension logger and SASW measurements, the
depth to the center of each interval is assumed. Thus, if the reported Vs profile has ten velocity

layers, it is assumed that the profile consists of ten “measurements” with depths at the center of
each layer. _
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E.1.4 Case History

In this report, a case history is defined as a seismic event and a test array. For example,
at the Treasure Island Fire Station site, crosshole measurements were made between five
different pairs of boreholes, downhole measurements were made by two different investigators,
seismic cone measurements were made at one location, and SASW measurements were made
along one alignment. Thus, a total of nine case histories are identified for the Fire Station site
and the 1989 Loma Prieta, California earthquake. At the Marina District School site, downhole
measurements were made at one location. Estimates of ground surface acceleration at this site
are available for the 1957 Daly City and 1989 Loma Pneta earthquakes. Thus, two case
histories are identified for the Marina District School site. Combining the 26 seismic events and
139 test arrays, a total of 225 case histories are obtained with 149 from the United States, 36
from Taiwan, 34 from Japan, and 6 from China.

The two exceptions to this definition are the Owi Island No. 1 site and the Moss Landing
Sandholdt Road UC-4 site where additional subsurface information is available. At Owi Island,
pore pressure transducers recorded pore-water pressure buildup for two separate layers. At
Moss Landing, inclinometer measurements indicated lateral movement in an upper loose layer

and no lateral movement in a lower dense layer. Thus, two case histories are identified for each
of these two test arrays.

E.1.5 Liquefaction Occurrence

It is important to realize that the occurrence of liquefaction, in this evaluation, is based
on the appearance of surface evidence, such as sand boils, ground cracks and fissures, and
ground settlement. Case histories are classified as non-liquefaction when no liquefaction effects
were observed. At the Owi Island No. 1, Lotung LSST Facility, Sunamachi, Wildlife (1987
earthquakes), and Port Island sites, the assessment of liquefaction or non-liquefaction
occurrence is supported by pore-water pressure measurements. In addition, liquefaction
occurrence is assigned (in This Report) to the Treasure Island, California, Fire Station case
histories where the strong ground motion records from the 1989 Loma Prieta earthquake exhibit
a sudden drop at about 15 seconds and small motion afterward (Idriss, 1990), indicating
liquefaction (de Alba et al., 1994). Of the 225 case histories, 99 are liquefaction case histories
and 126 are non-liquefaction case histories. Figure E.1 shows the distribution of case histories
with earthquake magnitude.
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Fig. E.1 - Distribution of Liquefaction and Non-Liquefaction Case Histories by Earthquake
Magnitude.

E.1.6 Critical Layer

The layer of soil most likely to liquefy at a site, or the critical layer, is the layer of non-
plastic soil below the ground water table where values of Vs, as defined in Chapter 2, and
penetration resistance are generally the least and cyclic stress ratio relative to Vg, is the greatest.
Figure E.2 presents the cumulative relative frequency distributions for the case histories by
critical layer thickness and predominate soil type (gravel, or sand and silt). Critical layer
thicknesses range from 1 m to as much as 15 m. About 50 % of the case histories have a critical
layer thickness less than 3.5 m; 90 % of the case histories have a critical layer thickness less than
7 m. Overall, the layer thicknesses for the gravel cases are less than the layer thicknesses for the

sand and silt cases

Figure E.3 presents the cumulative relative frequency distributions for the case histories
by average Vs measurement depth in the critical layer and predominate soil type. The average
measurement depths are between 2 m and 11 m for nearly all case histories. Over 50 % of the
case histories have average measurement depths less than 5.5 m. About 90 % of the case
histories have average measurement depths less than 8 m. Overall, the measurement depths for
the gravel cases are less than the measurement depths for the sand and silt cases.
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Materials comprising the critical layers range from clean fine sand to sandy gravel with
cobbles to profiles including silty clay layers. In Fig. E.4, the distribution of case histories with
earthquake magnitude, predominate soil type (gravel, or sand and silt) and average fines content
(silt and clay) is presented. Of the 225 case histories, 28 were for sands with fines content (FC)
<5 %, 90 for sands with FC = 6 % to 34 %, 71 for sands and silts with FC > 35 %, 26 for
gravels with FC < 5 %, and 10 for gravels with FC = 6 % to 34 %.

About 70 % of the case histories are for natural soils deposits, with many formed by
alluvial processes. The other 30 % are for hydraulic or dumped fills. Eight of the fills have been
densified by soil improvement techniques.

At least 85 % of the case histories are of Holocene age (< 10 000 years). Although the
age of the other 15 % is unknown, they are believed to be also of Holocene age.

80 T |
: : Number of case
Fines Content histories = 225
o <5% (189 = sands and
2 601+ [06%to34 % silts; 36 = gravels) —
,‘::_23 N =>235%
I = 47
. G = gravels 2l
Pt G
O 40
© 3 ,
= y
€
3 20 1820 118,
13
8
0 S o ®s o
6.5 6 6.5 7 7.5

Earthquake Moment Magnitude, M,,

Fig. E.4 - Distribution of Case Histories by Earthquake Magnitude, Predominate Soil Type, and
Average Fines Content.
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E.1.7 Ground Water Table

Figure E.5 presents the cumulative relative frequency distributions for the case histories
by depth to the ground water table and predominate soil type. The ground water table for nearly
all case histories lies between depths of 0.5 m and 6 m. Nearly 60 % of the case histories have

water table depths less than 2 m. About 90 % of the case histories have water table depths less
than 4.5 m.

Artesian ];ressures are reported for the Lotung Large-Scale Seismic Test (LSST) Facility
site in Taiwan. At this site, the pore-water pressure distribution is assumed to vary linearly from
a pressure head of 8.1 m at a depth of 7 m to a pressure head of 1.9 m at a depth of 2 m.

E.1.8 Total and Effective Overburden Stresses

Values of total and effective overburden stresses are estimated using densities reported
by the investigator(s). When no densities are reported, typical values for soils with similar grain
size, penetration and velocity characteristics are assumed. In most instances, the assumed

densities are 1.76 Mg/m’® for soils above the water table and 1.92 Mg/m® for soils below the
water table. '
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E.1.9 Average Peak Ground Acceleration

Average values of peak horizontal ground surface acceleration, a,.., are determined by
averaging estimates reported by the investigator(s) and estimates made as part of this study
using attenuation relationships developed from published ground surface acceleration data.
Because many published attenuation relationships are based on both peak values obtained from
ground motion records for the two horizontal directions (sometimes referred to as the randomly
oriented horizontal component), the geometric mean (square root of the product) of the two
peak values is used. Use of the geometric mean is consistent with the development of the SPT-
based procedure (Youd et al., 1997; 2001). For the cases in this study, the difference between
the geometric mean and arithmetic mean values is generally small, within about 5 %.

E.1.10 Average Cyclic Stress Ratio

Cyclic stress ratios, CSR, are first calculated for each “measurement” depth within the
critical layer using Eq. 2.1 and then averaged. Values of r, are estimated using the average
relationship developed by Seed and Idriss (1971) shown in Fig. 2.1. These r, values are used to
follow the traditional format of the SPT- and CPT-based procedures where the magnitude
scaling factor is used to account for all effects of earthquake magnitude.

E.1.11 Average Overburden Stress-Corrected Shear Wave Velocity

Values of Vs within the critical layer are first corrected for overburden stress using Eq.
2.7 and then averaged. The number of values included in the average range from 1 to 22 (see
Appéndix H). Values of Cys used to correct measured shear wave velocities range from 1.4 to
0.9 for most of the data. About 80 % of the case histories have two to seven values in the
average. No adjustments are made for possible variations between seismic test methods due to
different source-receiver orientations with respect to the stress state in the soil. In the
calculations, each site is assumed to be level ground.
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E.2 SAMPLE CALCULATIONS

Calculations for two sites shaken by the 1989 Loma Prieta, California earthquake (M, =
7.0) are presented below to illustrate how values of CSR and overburden stress-corrected shear

wave velocity, Vs, are determined. The two sites are Treasure Island Fire Station and Marina
District School.

E.2.1 Treasure Island Fire Station

Treasure Island is a man-made island located in the San Francisco Bay along the Bay

Bridge between the cities of San Francisco and Oakland. It was constructed in 1936-37 by
hydraulic filling behind a perimeter rock dike.

Extensive field tests have been conducted at the fire station on Treasure Island. Figure
E.6 presents two Vs profiles for the site. The Vs profile determined by crosshole testing is from
Fuhriman (1993). The other Vs profile is based on unpublished SASW test results by The
University of Texas at Austin in 1992. Also presented in Fig. E.6 is the soil profile for the site.
From the description by de Alba et al. (1994), the upper 4.5 m of soil consists of silty sand fill,
possibly formed by dumping. Between depths of 4.5 m and 12.2 m, the soil consists of silty
sand to clayey sand, formed by hydraulic filling. Beneath the hydraulic fill are natural clayey
soils. The ground water table lies near the ground surface at a depth of 1.4 m. The critical layer
is determined to be between depths of 4.5 m and 7 m, where the soil is non-plastic, lies below

the water table, and exhibits the lowest values of Vg, relative to the highest values of CSR in the
layer (see Fig. 3.1).

During the 1989 Loma Prieta earthquake, a seismograph station at the fire station
recorded ground surface accelerations. The peak values in the two horizontal accelerometer
records are 0.16 g and 0.11 g (Brady and Shakal, 1994).

Sample calculations for the crosshole and SASW test arrays are summarized in Tables
E.2 and E.3, respectively. The data points used in the calculations are shown by the open
symbols in Fig. E.6. Total and effective overburden stresses are calculated assuming densities of
1.76 Mg/m® above the water table and 1.92 Mg/m’ below the water table. Stress reduction
coefficients are estimated using the average curve by Seed and Idriss (1971) shown in Fig. 2.1.
The geometric mean of the two peak values observed in the horizontal ground surface

acceleration records is 0.13 g. Using these parameters, values of CSR and Vj; are calculated for
the crosshole measurement at depth of 4.6 m as follows:
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Representative values of CSR and Vs, used to defined the two case histories are determined by

averaging values for each “measurement” depth within the critical layer, as shown in Tables E.2
and E3.

E.2.2 Marina District School

Kayen et al. (1990) conducted downhole seismic tests at the Winfield Scott School in the
Marina District of San Francisco. Figure E.7 presents soil and velocity profiles for the site. The
critical layer lies between depths of 2.7 m, the ground water table depth, and 4.3 m, the base of
sand fill. The average Vs profile shown in Fig. E.7 was determined by Kayen et al., and was
based on best-fit line segments through travel time measurements plotted versus depth. The
second Vs profile 1s determined using the pseudo-interval method (This Report), as illustrated in
Fig. E.8. Both methods should provide similar average values over the same depth interval.
However, the layering assumed for the best-fit line segment method does not seem appropriate
for the fill. For this reason, values of Vs based on the pseudo-interval method are used in this
analysis.

As discussed in Section 3.2, the Marina District of San Francisco experienced a peak
horizontal ground surface acceleration of about 0.15 g during the 1989 Loma Prieta earthquake.

Sample calculations for the Marina District School site are summarized in Table E.4.
The locations of Vs measurements are assumed midway between receiver positions, as shown in
Fig. E7. Total and effective overburden stresses are estimated assuming densities of
1.76 Mg/m® above the water table and 1.92 Mg/m® below the water table. The ground water
table is at a depth of about 2.7 m. Average values of CSR and V5, defining the case history are
determined by averaging values for the two “measurement” depths, as shown in Table E 4
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Table E.2 - Sample Calculations for the Treasure Island Fire Station Site, Crosshole Test Array

B1- B4, and the 1989 Loma Prieta Earthquake.

Measured Overburden
Shear Stress Cyclic Stress-
Wave Total Effective Reduction Stress Corrected
Measurement | Average | Velocity, | Overburden | Overburden | Coefficient’, | Ratio®, | Shear Wave
Number Depth, Vs, Stress’, Stress’, rq CSR | Velocity, Vs,,
m m/s kPa kPa m/s
1 @ 3) ) O] 6) O 3)
1 4.57 134 84.0 52.7 0.97 0.13 158
2 5.49 133 1113 60.9 0.96 0.14 150
3 6.40 144 118.5 69.2 0.95 0.14 158
Average 55 137 101.3 60.9 0.96 0.14 155

! Assuming water table at 1.4 m; and material densities are 1.76 Mg/m® above the water table

and 1.92 Mg/m’ below the water table.

?Based on average values determined by Seed and Idriss (1971).
3Assuming peak horizontal ground surface acceleration is 0.13 g.

Table E.3 - Sample Calculations for the Treasure Island Fire Station Site, SASW Test Array,
and the 1989 Loma Prieta Earthquake.

Measured Overburden
Shear Stress Cyclic Stress-
Wave Total Effective Reduction Stress Corrected
Measurement | Average | Velocity, | Overburden | Overburden | Coefficient’, | Ratio®, | Shear Wave
Number Depth, Vs, Stress', Stress', rq CSR | Velocity, Vs;,
m m/s kPa kPa m/s
m @ 3) “) &) 6) ) ®)
1 5.34 131 98.4 59.6 0.96 0.14 149
Average 5.3 131 98.4 59.6 0.96 0.14 149

! Assuming water table at 1.4 m; and material densities are 1.76 Mg/m® above the water table

and 1.92 Mg/m® below the water table.

?Based on average values determined by Seed and Idriss (1971).
3Assuming peak horizontal ground surface acceleration is 0.13 g.
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Fig. E.8 - General Configuration of the Downhole Seismic Test Using the Pseudo-Interval
Method to Calculate Shear Wave Velocity.

E.3 SUMMARY

The case history data described in this chapter are limited to level and gently sloping sites
with the following characteristics:

(1) average critical layer depths less than 10 m;

 (2) uncemented soils of Holocene age;
(3) ground water table depths between 0.5 m and 6 m; and
(4) all Vs measurements from below the water table.

Of the 225 case histories, 57 are for soils with FC < 5 %, 98 for soils with FC = 6 % to 34 %,

and 70 with FC > 35 %. About 20 % of the case histories are for soils containing more than 10
% gravel. Nearly 50 % of the case histories are for earthquake magnitudes near 7.
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Table E.4 - Sample Calculations for the Marina District School Site and the 1989 Loma Prieta

Earthquake.
Measured : Overburden
Shear Stress Cyclic Stress-
Wave Total Effective Reduction Stress Corrected
Measurement | Average Velocity’ , | Overburden | Overburden _Coefﬁcient’, Ratio*, | Shear Wave
Number Depth, Vs, Stress?, Stress?, ra CSR Velocity,
m m/s kPa kPa Vsi, m/s
(¢))] @ 3) 4) (5) 6) ) ®)
1 3.02 87 52.6 49.9 0.98 0.10 104
2 3.94 136 70.0 58.2 0.97 0.11 156
Average 3.5 112 61.3 54.1 0.98 0.11 130

'Based on pseudo-interval method.
?Assuming water table at 2.7 m; and material densities are 1.76 Mg/m’ above the water table

and 1.92 Mg/m® below the water table.

3Based on average values determined by Seed and Idriss (1971).
“Assuming peak horizontal ground surface acceleration is 0.15 g.
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APPENDIX F

DEVELOPMENT OF LIQUEFACTION RESISTANCE CURVES
FROM CASE HISTORY DATA

In the process of developing the liquefaction evaluation chart shown in Fig. 2.3 all case
histories were initially plotted on the same chart. This aggregation was accomplished through
an adjustment procedure; that is, the CSR values in each case history were adjusted to an
earthquake with M, = 7.5 by dividing by Eq. (2.9) with n = -2.56. As done in penetration
evaluation procedures, the sandy soil case histories were separated into three categories: (1)
sands with average FC < 5 %; (2) sands with average FC = 6 % to 34 %, and (3) sands and silts
with average FC > 35 %. For consistency, the gravelly soil case histories also were divided into
the same three categories based on fines content. However, no case histories exist in the
database with gravel having FC > 35 %. All data are plotted in Fig. F.1 along with the
recommended CRR-Vs; curves. Development of these curves is discussed in this appendix.

The shape of the CRR-V5; curves shown in Fig. F.1 is based on a modified relationship
between shear wave velocity and cyclic stress ratio for constant average cyclic shear strain
suggested by R. Dobry. The modified relationship is expressed as (Andrus and Stokoe, 1997):

Va Y 1 1
CRRy 5= a(i) +b[ - - ) 1
" { 100 Vsi-Vsi Va ED

where

CRR;s = CRR for magnitude 7.5 earthquakes,
Vs = thelimiting upper value of Vg, for liquefaction occurrence, and
a,b = curve fitting parameters.

As discussed in Section D.5, the first (quadratic) term of Eq. (F.1) is a form of Dobry’s

relationship given by Eq. (D.9). The second term is a hyperbola with a small value at low values
of Vs, and a very large value as Vs, approaches Vg, .
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F.1 LIMITING UPPER Vy; VALUE FOR LIQUEFACTION OCCURRENCE

As shown in Fig. F.1, CSR-values above about 0.35 are limited in the case history data.

Thus, current estimates of V', rely, in part, on penetration-shear wave velocity correlations and,
in part, on the data trend in Fig. F.1.

F.1.1 Sandy Soils

In the SPT-based procedure, a corrected blow count, (N;)s, of 30 is assumed as the
limiting upper value for liquefaction occurrence in sands with < 5 % silt and clay (Seed et al.,
1985; Youd et al., 1997). Table F.1 presents estimates of equivalent Vg, for corrected blow
count of 30. The correlation by Ohta and Goto (1978) modified to a blow count with a
theoretical free-fall energy of 60 % (Seed et al., 1985) suggested equivalent Vs; values of 207
m/s for Holocene sands, assuming that a depth of 10 m is equivalent to an effective overburden
stress of 100 kPa. The stress-corrected crosshole measurements compiled by Sykora (1987b)
for Holocene sands and non-plastic silty sands below the ground water table, with (Wj)so
between 25 and 35, exhibited an average V; value of 206 m/s and standard deviation of 41 m/s.
~ Finally, the case history data in this study were used to investigate the ¥s; and (N})so relationship
for well-documented sand layers with less than 10 % fines. These data are presented in Fig. F.2
along with the best-fit relationship that can be expressed as:

Vi = Byl )go P 2

where B; = 93.2 £ 6.5 and B, = 0.231 + 0.022 for soils with fines content < 10 %, and with Vg,
in m/s and (N})so in blows/0.3 m. The plotted data exhibit a mean Vs; value of 204 m/s at a
(N1)so value of 30 and residual standard deviation, S,.;, of 12 m/s.

In the CPT-based procedure, a normalized cone tip resistance, g.;n, of 160 is assumed as
the limiting upper value for liquefaction occurrence in sands with < 5 % silt and clay (Youd et
al,, 1997; Robertson and Wride, 1998). Figure F.3 presents average values of Vs; and g.;» for
soil layers with less than 10 % fines at several sites listed in Table E.1. Also shown in Fig. F.3 is
the best-fit relationship for the plotted data, which can be expressed as: '

Vsi= B [qclN ]Bz ¥F.3)
where B; = 88.2 £ 15.5 and B, =0.154 * 0.037 for soils with fines content < 10 %, and with Vg,
in m/s and g,y is normalized tip resistance based on procedures by Robertson and Wride (1998).

As noted in Table F.2, the plotted data exhibit a mean Vg, value of 193 m/s at a g.,;» value of 160
and residual standard deviation of 19 m/s.
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Table F.1 - Estimates of Equivalent Vs; for Holocene Sands and Gravels Below the Ground

Water Table with Corrected SPT Blow Count of 30.

Equivalent Vsi
Reference Relationship Estimate (m/s) Assumptions
o) @ E) @
Ohta & Vs =69 (N)*'" " F\F, 207 1. N;=60/67 Ng
Goto N; = SPT blow count ...for Holocene | 2. Ng =30
(1978); also measured in Japanese | sands 3. z=10 m s equivalent to
given in practice an overburden stress of
report by z =depth,m 227 100 kPa
Sykora F; =1.00 for Holocene- ...for Holocene | 4. All measurements are
(1987a, age soils gravels from below the ground
page 29) F> =1.085 for sands; water table
1.189 for gravel
...best-fit relationship for 289
sets of SPT and Vs
measurements from Japan
Sykora Correlation between (N;)sp and 206 1. Average for Vs values
(19870, crosshole Vs, normalized to ...for Holocene with (V;)s0 between
page 90); effective overburden stress, sands and non- 25 and 35
This Report | measurements for Holocene plastic silty sands | 2. o' = 100 kPa
sands and non-plastic silty below the water
sands below the ground water | table
table at sites in U.S.A_; 16 sets | ...standard
of measurements (with known | deviation is
SPT equipment) 41 m/s
Rollins et Vs =53 (Neg)*** (o_-v)‘”8 232 1. N'w =30
al. (1998a) ...best-fit relationship using ...for Holocene 2. o'v =100 kPa
equivalent Ny-values from gravels . 3. All measurements are
Becker Penetration Tests and | --MOst of d?ta lie from below the ground
Vs measurements; 186 points thhgn iz? % of water table
from 7 Holocene gravel sites relationship
This Report = 2 204 1. Average for Vg,
(see Fig. Vs =B1 [l ...for Holocene with (N7)s = 30
F.2) By =93.2%6.5 clean sands 2. oy =100 kPa
B, =0.231 i 0'0,22 below the water | 3. Corrected blow count
...best-fit relationship for table based on procedures
uncemented, Holocene-age ...residual given in Seed et al.
sands with less than 10 % non- | g2n4ard (1985) and Robertson
plastic fines; 25 sets of average | deviation is and Wride (1997; 1998)
SPT and Vs measurements all | 15 /s
from below the water table
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Table F.2 - Estimates of Equivalent Vs, for Holocene Sands Below the Ground Water Table
with Normalized Cone Tip Resistance of 160.

Equivalent Vg,
Reference Relationship Estimate (m/s) Assumptions
@ @ €)) @

This Report | Vg, =B, @.w)” 193 1. Average for Vg,

(see Fig. B, =882+15.5 ...for Holocene with g.;y = 160

F.3) B, =0.154 + 0.037 clean sands 2. o'» =100 kPa
...best-fit relationship for below the water | 3. Normalized tip
uncemented, Holocene-age table resistance based on
sands with less than 10 % non- | --residual procedures given in
plastic fines; 23 sets of average | Standard Robertson and Wride
SPT and Vs measurements all deviation is (1997; 1998)
from below the water table 19 m/s

From these estimates, a Vs; value of 210 m/s is assumed equivalent to an (N, ) value of
30 in clean sands (< 5 % fines). A limiting upper Vs; value of 210 m/s for cyclic liquefaction
occurrence at CSR = 0.6 is less than the general consensus value of 230 m/s suggested at the
1998 MCEER Workshop. As a result, Figs. F.2 and F.3 were added specifically to provide
additional evidence to support the use of 210 m/s in clean sands.

For sandy and silty soils with FC > 35 %, the SPT-based chart by Seed et al. (1985)
indicates a limiting upper (N ) value of about 21 for cyclic liquefaction occurrence. Table F.3
presents estimates of equivalent Vs for blow count of 21. The correlation by Ohta and Goto
(1978) suggested equivalent Vs, values of 195 m/s for Holocene sands. The stress-corrected
crosshole compiled by Sykora (1987b) for Holocene sands and non-plastic silty sands below the
ground water table, with (N))s between 16 and 26, exhibited an average value of 199 m/s and
standard deviation of 36 m/s. From these estimates, a Vs value of 195 m/s is assumed
equivalent to an (V)¢ value of 21 in non-plastic soils with FC > 35 %.

To permit the CRR-Vs, curves for magnitude 7.5 earthquakes shown in Fig. F.1 to have
Vs values between 195 m/s and 210 m/s at CRR near 0.6, values of V%, are assumed to range

linearly from 200 m/s to 215 m/s, respectxvely The relationship between s, and fines content,
FC, can be expressed by:

Ve =215m/s for sands with FC < 5 % (F.4a)
Ve =215-0.5(FC-5) m/s for sands with 5 % < FC <35 % (F.4b)
Vs =200 m/s for sands and silts with FC > 35 % (F.4c)
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To illustrate how well the recommended CRR-Vs; curves defined by Eqgs. (F.1) and (F.4)
fit the case history data, the data separated by soil type, are presented in Figs. F.4 through F.7.
The recommended curves provide reasonable bounds for all the case history data above a CSR
value of 0.35, supporting the use of the suggested Vs, values for sands and silts, as well as

gravels. The use of these Vs values for gravels is discussed below.

Table F.3 - Estimates of Equivalent Vs; for Holocene Sands and Gravels Below the Ground

Water Table with Corrected SPT Blow Count of 21.

Equivalent Vg,
Reference Relationship Estimate (m/s) Assumptions
) @ 3) Q)
Ohta & Vs=69 (N)*'P 2% F\F, 195 1. N;=60/67 Nso
Goto N; = SPT blow count ...for Holocene 2. Ngp=21
(1978); also measured in Japanese | sands 3. z = 10 m is equivalent
given in practice to
report by z =depth, m 214 an overburden stress of
Sykora F; =1.00 for Holocene- ...for Holocene 100 kPa
(1987, age soils gravels 4. All measurements are
page 29) F, =1.085 for sands; from below the ground
1.189 for gravel water table
...best-fit relationship for 289
sets of SPT and Vs
measurements from Japan
Sykora Correlation between (N;)sp and 199 1. Average for Vg, values
(19870, crosshole Vs, normalized to ...for Holocene with (N))so between
page 90); effective overburden stress, sands and non- 16 and 26
This Report | measurements for Holocene plastic silty sands | 2. o', =100 kPa
sands and non-plastic silty below the water
sands below the water table at | table
sites in U.S.A_; 31 sets of ...standard
measurements (with known deviation is
SPT equipment) 36 m/s .
Rollinset | Vs= 53 (Neo)*™® (6)" 217 1. Nyp=21
al. (1998a) | _ best-fit relationship using ...for Holocene 2. o', =100 kPa
equivalent Ny-values from gravels 3. All measurements are
Becker Penetration Tests and | -..most of data lie from below the ground
Vs measurements; 186 points | Within £25 % of water table
from 7 Holocene gravel sites | relationship
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F.1.2 Gravelly Soils

Although the V', values given in Eq. (F.4) were determined for sandy soils, the results
presented in Fig. F.7 indicate that these limits also represent reasonable limits for gravelly soils
divided into the same categories based on fines content. This might be considered rather
surprising, based on the penetration-Vs correlations presented in the literature for gravelly soils.
For instance, as noted in Table F.1, the correlation by Ohta and Goto (1978) suggested a Vg,
value of 227 nv/s for Holocene gravels at an equivalent (N;)s of 30. Similarly, the correlation by
Rollins et al. (1998a) provided a best-fit value of 232 m/s for Holocene gravels. On the other
hand, all the liquefaction case history data shown in Figs. F.4 through F.7 exhibit Vs, values of
about 200 m/s or less, suggesting that 230 m/s may be inappropriately high.

To investigate further the value of 5, in gravelly soils, laboratory studies involving Vs
measurements in gravelly soils were reviewed. Kokusho et al. (1995b) clearly showed that the
shear wave velocity of gravelly soils varies greatly and is highly dependent on the particle
gradation. Weston (1996) showed similar results for coarse sands with gravels. In both cases,
the results show that increasing the uniformity coefficient can significantly increase the shear
wave velocity in medium dense to dense gravels. On the other hand, very loose gravelly soils,
even well-graded gravels, can exhibit shear wave velocities similar to those of loose sands
(Kokusho et al., 1995b). The case history data presented in Fig. F.7 supports the premise that
gravelly soils that are loose enough to exhibit significant liquefaction effects (boils, ground
cracks, etc.) have shear wave velocities similar to loose sands. Hence, the authors recommend
the boundaries developed for sandy soils as preliminary boundaries for gravelly soils. However,
additional work is clearly needed to understand the relationship between Vg, and liquefaction
resistance of gravels.

F.2 CURVE FITTING PARAMETERS a AND b

The curve fitting parameters a and b in Eq. (F.1) can be approximated from the case
history data assuming the values of V', given in Eq. (F.4) and a MSF relationship. Three MSF
relationships representing the range of proposed magnitude scaling factors (see Section 2.3.1)
are considered below to establish the values of @ and b in Eq. (F.1).

F.2.1 Magnitude Scaling Factors Recommended by 1996 NCEER Workshop
F.2.1.1 Lower Bound of Recommended Range—Figure F.1 presents the case history
data for magnitude 5.9 to 8.3 earthquakes adjusted using the lower bound for the range of

magnitude scaling factors recommended by the 1996 NCEER workshop (Youd et al., 1997).
The lower bound is defined by Eq. (2.9) with n = -2.56, as discussed in Section 2.3.1. Also
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shown in Fig. F.1 are three recommended CRR-V5, curves for earthquakes with magnitude near
7.5 and various fines content. The three curves were determined through an iterative process of
varying the values of @ and b until nearly all the liquefaction case histories were bound by the
curves with the least amount of non-liquefaction case histories in the liquefaction region. The
final values of @ and b used to draw the curves were 0.022 and 2.8, respectively.

Of the 99 liquefaction case histories, only two liquefaction case histories incorrectly lie in
the no liquefaction region. The two liquefaction case histories shown in Fig. F.1 that incorrectly
lie in the no liquefaction region are two sites at Treasure Island (UMOS and UMO09) where
liquefaction was marginal during the 1989 Loma Prieta earthquake (M, = 7). The sites are
located along the perimeter of Treasure Island. Mapped liquefaction effects generated by the
1989 earthquake near the UMOS5 site are ground cracks with 50 to 90 mm of horizontal
displacement (R. D. Hryciw, personal communication to R. D. Andrus, 1998; Power et al.,
1998).. The nearest mapped sand boil is located 60 m away from the site. At the UMO9 site, as
much as 90 mm of vertical displacement was observed adjacent to a building located 60 m inland
from the site. These displacements are small compared to the meters of displacement that are
expected to occur during larger ground shaking. Thus, liquefaction was marginal at the UMO0S5
and UMO9 sites, and sloping ground may have been a factor. It is interesting to note that similar
incorrect evaluations also are obtained when one uses the SPT and CPT data for these two sites.
The SPT- and CPT-based evaluations for the UMOS site are discussed in Section F.3.1.

F.2.1.2 Upper Bound of Recommended Range—Figure F.8 presents the case history
data for magnitude 5.9 to 8.3 earthquakes adjusted using the upper bound for the range of
magnitude scaling factors recommended by the 1996 NCEER Workshop (Youd et al., 1997).
The upper bound is defined by Eq. (2.9) with n = -3.3, as discussed in Section 2.3.1. Also
shown in Fig. F.8 are the three CRR-V; curves from Fig. F.1. Many case histories plot lower in
Fig. F.8 than in Fig. F.1, because the M, is less than 7.5 for most of the data. The downward
shift in the liquefaction data points near the curves at CRR of about 0.08 is less than 0.01. This
difference is not significant, and is within the accuracy of the plotted case history data.

F.2.2 Revised Magnitude Scaling Factors Proposed by Idriss (1999)

Figure F.9 presents the case history data for magnitude 5.9 to 8.3 earthquakes adjusted
using the revised magnitude scaling factors and stress reduction coefficients proposed by Idriss
(1999, as discussed in Section 2.3.1. Also shown in Fig. F.9 are the three CRR-V5, curves from
Fig. F.1. Many of the case history data shown in Fig. F.9 plot higher than case history data in
Fig. F.1, because the M, is less than 7.5 for most of the data. The upward shift in the
liquefaction data points near the curves at CRR of about 0.08 is less than 0.01. Again, this
difference is not significant, and is within the accuracy of the plotted case history data.
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F.2.3 Comparison of Magnitude Scaling Factors

The proposed relationships for MSF can be compared directly by combining them with
the appropriate stress reduction coefficient into one factor. This factor is the product of r; and
the reciprocal of MSF. Figure F.10 presents values of r4//MSF for the range recommended by
the 1996 NCEER Workshop (Youd et al., 1997) and those proposed by Idriss (1999). As
shown in the figure, there is not much difference between the two sets of r/MSF values for
magnitude of 7.5 and depth less than 11 m. At magnitudes near 5.5 and shallow depths, the
difference between ra/MSF values proposed by Idriss (1999) and values recommended by the
1996 NCEER Workshop is as much as 50 %. Thus, at magnitudes less than about 7, the
difference in using values of MSF and r, proposed by Idriss (1999) and those adopted by the
NCEER Workshop (Youd et al., 1997) is significant in the calculation of CSR.

For example, Fig. F.11 presents two liquefaction resistance curves for earthquakes with
magnitude near 5.5 and clean soils (FC < 5 %). The upper curve was obtained by multiplying
values of CRR defining the curve for FC < 5% in Fig. F.1 by 2.2, the lower MSF recommended
by the 1996 NCEER Workshop for magnitude 5.5 earthquakes (see Eq. (2.9) with n = -2.56).
The lower curve was obtained by multiplying values of CRR defining the curve for FC <5 % in
Fig. F.1 by 1.68, the MSF proposed by Idriss (1999) for magnitude 5.5 earthquakes (see Eq.
(2.10)). Also shown in Fig. F.11 are the available case history data for clean sands determined
using average stress reduction coefficients proposed by Seed and Idriss (1971) and Idriss
(1998). The two curves in Fig. F.11 exhibit differences in CRR of about 0.02 at Vs; = 100 m/s
and 0.1 at Vs; = 200 m/s.

F.3 RECOMMENDED CRR-Vs; CURVES

From the discussion presented above, the recommended CRR-Vs; curves are defined by
Egs. (F.1), (2.9) and (F.4) with a = 0.022, b = 2.8, and n = -2.56. The recommended curves for
moment magnitudes ranging from 5.5 though 8 are presented in Figs. F.12 through F.17,
respectively, along with the case history data. The value of -2.56 for n is recommended for
determining magnitude scaling factors because it provides more conservative CRR-Vs; curves
than -3.3, which is the n value defining the upper bound of the range of MSFs suggested by the
1996 NCEER Workshop (Youd et al., 1997) for magnitudes less than 7.5. Although the
magnitude scaling factors defined by Eq. (2.9) with n = -2.56 provide less conservative CRR-V,
curves than the factors proposed by Idriss (1999) for magnitudes less than 7.5, the factors
determined of Ambraseys (1988), 1. M. Idriss (personal communication to T. L. Youd, 1995),
Arango (1996), Youd and Noble (1997), and Andrus and Stokoe (1997; as indicated by the very
conservative CRR-Vs; curves shown in Figs. F.13 and F.14) supported their use.
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The recommended CRR-Vs; curves shown in Figs. F.12 through F.17 are dashed above
CRR of about 0.35 to indicate that they are based on limited field performance data. The curves
do not extend much below 100 m/s, because there are no field data to support extending them to
the origin. It is important to note that these boundary curves are for extreme behavior, where
boils and ground cracks occur.

F.4 CORRELATIONS BETWEEN Vs; AND PENETRATION RESISTANCE

One can obtain correlations between Vs and corrected penetration resistance from the
recommended CRR-Vs, relationships given in Fig. F.1 and 1996 NCEER Workshop (Youd et
al., 1997) recommended SPT- and CPT-based relationships for magnitude 7.5 earthquakes by
plotting values with equal CRR.

F.4.1 Corrected SPT Blow Count

Figure F.18 presents the correlation of Vs; with (V)0 for clean soils (< 5 % fines), based
on the recommended CRR-Vs;, and CRR-(N})¢ relationships. Also shown are the field data and
mean curve for sands with less than 10 % non-plastic fines from Fig. F.2. The correlation
derived from the CRR relationships lies between the mean and the mean +1S,., curves. The
flatter slope below (N))sp of 6 exhibited by the CRR-based correlation can be explained by
different assumed minimal values of CRR. The CRR-Vjy relationship for magnitude 7.5
earthquakes and FC < 5 % shown in Fig. F.1 provides a CRR of 0.033 for V5; = 100 m/s, the
lowest V5, value shown in the figure. The 1996 NCEER Workshop recommended a CRR value
of 0.05 for (N;)so = 0. The difference between minimal values of CRR is small, and is near the
accuracy of both procedures.

The CRR-based correlation shown in Fig. F.18, along with the plotted field data, provide
a simple method of comparing the Vs~ and (N,)s-based liquefaction evaluation procedures.
Both procedures provide similar predictions of liquefaction potential, when the data point lies on
the CRR-based curve. When the data point plots below the CRR-based curve, the Vs -based
liquefaction evaluation procedure provides the more conservative prediction. When the data
point plots above the CRR-based curve, the SPT-based liquefaction evaluation procedure
provides the more conservative prediction. Because most of the data points shown in Fig. F.18
plot below the CRR-based curve, the Vs,-based procedure provides an overall more conservative
prediction of liquefaction resistance than does the SPT-based procedure for these sites.
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The data point for the Treasure Island UMOS site, which incorrectly lies in the region of
no liquefaction shown in Fig. F.1, plots just below the CRR-based curve, as shown in Fig. F.18.
Thus, this case history also incorrectly plots in the region of no liquefaction on the SPT-based
liquefaction evaluation chart. Furthermore, the SPT-based procedure provides a slightly less
conservative prediction of liquefaction resistance than the shear-wave-based procedure for this
case history.

Although the CRR-based curve shown in Fig. F.18 generally trends parallel to the mean
curve, there is a small hump between corrected blow counts of 8 and 26. This hump suggests -
that either the CRR-Vs; relationship is more conservative or the CRR-(N )¢ relationship is less
conservative in this range. '

Similarly, as shown in Fig. F.19, a correlation between Vs; with (N, )4 for soils with > 35
% fines can be derived from the recommended CRR-Vs; and CRR-(N})so relationships. Figure
F.19 provides the basis for the method of estimating the cementation and aging correction
factor, K., suggested in Section 2.3.4 (see Fig. 2.6).

F.4.2 Normalized Cone Tip Resistance

Figure F.20 presents the correlation of Vs, with g.;» for clean sands with median grain
size, Dso, between 0.25 mm and 2.0 mm, based on the recommended CRR-Vs; and CRR-q.ix
relationships. Also shown are the field data and mean curve for clean sands with less than 10 %
non-plastic fines from Fig. F.3. The correlation derived from the CRR relationships lies between
the mean and the mean +185,.; curves for Vs; = 170 m/s, indicating that the Vs;-based procedure
provides an overall more conservative prediction of liquefaction resistance than does the CPT-
based procedure for these sites. For Vs; <170, the CRR-based correlation lies close to the mean
curve, indicating that both procedure provide an overall similar prediction. The slope of the
CRR-based correlation below g.;v of 20 may be explained by the different assumed minimal
values of CRR, as discussed in Section F.4.1.

The data point for the Treasure Island UMOS5 site, which incorrectly lies in the region of
no liquefaction shown in Fig. F.1, plots on the CRR-based curve, as shown in Fig. F.20. Thus,
the CPT-based procedure provides a similar incorrect prediction of no liquefaction for this site.

Similarly, as shown in Fig. F.21, a correlation between Vs, with g.,» for soils with > 35
% fines can be derived from the recommended CRR-Vs; and CRR-(N,)¢, relationships. Figure
F.21 provides the basis for the method of estimating the cementation and aging correction
factor, K, suggested in Section 2.3.4 (see Fig. 2.7).
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F.5 SUMMARY

The development of the recommended CRR-Vs; curves was outlined in this appendix.
The recommended curves are based on a modified relationship between shear wave velocity and
cyclic stress ratio for constant average cyclic shear strain suggested by R. Dobry. They are
defined by Eqs. (F.1), (F.4) and (2.9) witha=0.022, b =2.8, and n=-2.56. The curve fitting
parameters a and b are determined through an iterative process that involved varying their
values until nearly all the liquefaction case histories were bound by the curves with the least
amount of non-liquefaction case histories in the liquefaction region. Three MSF relationships
are considered in determining the values of a and 4. Equation (F.4), which provides a
relationship between the limiting upper Vs, value and fines content, is based, in part, on the case
history data and, in part, on penetration shear wave velocity correlations. From penetration-Vs
correlations, the recommended CRR-Vs, curves appear to be somewhat more conservative than
the penetration-based curves recommended by the 1996 NCEER Workshop (Youd et al., 1997).
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APPENDIX G

PROBABILITY-BASED LIQUEFACTION EVALUATION

This appendix presents three probability models for the case history data listed in
Appendix H. The probability models are based on the work of Juang et al. (2001a; 2002), and
are derived using logistic regression and Bayesian interpretation techniques. They are compared
with the deterministic evaluation curve by Andrus et al. (1999) for clean soils (¥C < 5 %) shown
in Fig. 2.3. The probability models provide a means of objectively calibrating the deterministic
liquefaction evaluation curve.

To develop the probability models, values of Vs, are adjusted to a clean soil equivalent.
The procedure for adjusting Vs, values involves two steps. First, a CRR value is determined
using Eq. (2.8) for each case history. Second, for each value of CRR, a clean soil equivalent Vg,
value is determined using Eq. (2.8) with 5, = 215 m/s. Thus, this adjustment procedure,
maintains the ratio of CRR to CSR (or factor of safety). The adjustment procedure can be
expressed by:

Vsics = Kp Vsi (G.1)
where

Vsics = the equivalent clean soil value of Vs,, and
K. = afines content correction to adjust Vs; values to a clean soil equivalent.

Values of K. can be approximated using the following equation (Juang et al., 2001a; 2002):

Ke.=1, for FC<5% ~ (G.:2a)
Ko=1+FC-5fVs), forFC=6%t034% . (G.2b)
Ke=1+30/Vs), for FC 235 % (G.2¢)
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where
1% Vo VP
Vo) = 0.009 - 0.0109 | —=L |+ 0.0038 | 3L G3
o) (100) (100 G3)

Equations (G.1) through (G.3) provide an approximate mathematical description of the
adjustment procedure. The adjusted case history data are plotted in Figs. G.1 and G.2 along
with two probability models determined using logistic regression. The logistic regression-based
probability models, as well as a Bayesian-based probability model, are discussed below.

G.1 LOGISTIC REGRESSION MODELS
G.1.1 Logistic Regression Model 1
The first logistic regression-based probability model, called Model 1, is similar in form to

the model used by Liao et al. (1988) for analyzing SPT-based case histories. The probability
equation for Model 1 is given by (Juang et al., 2001a; 2002):

ln|: P]}) jl =a; +a; Vsi,cs + as In(CSRy.5) (G.4)
gy
where

Py = the probability that liquefaction will occur,

a,, az, as = regression coefficients, and

CSR;.s = CSR adjusted to M,, = 7.5.

The mean values of a;, a, and a; are 14.8967, -0.0611, and 2.6418, respectively. The standard
deviations associated with the coefficients are 2.1637, 0.0098, and 0.4268, respectively. The
Nagelkerke coefficient (equivalent to R?) of this regression is 0.58. Probability curves for
Model 1 are presented in Fig. G.1. From the figure, Model 1 appears to provide reasonable P,
curves within the limits of most of the data. However, the Model 1 curves may be
inappropriately too conservative at high values of Vs cs (say > 200 m/s), since a corrected
velocity of 210 m/s is considered equivalent to a corrected blow count of 30 in clean sands and
liquefaction is generally assumed not possible above this value.
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G.1.2 Logistic Regression Model 2

To investigate the influence that the form of a regression equation might have on P,
curves, the analysis is repeated using a slightly different equation. The probability equation for
this second logistic regression model, called Model 2, is defined by (as suggested by William
Guthrie, NIST, to R. D. Andrus, June 1998):

]."PL

ln[ - j|= b;+ b; Vsics+ b3 In(CSR75) + by [ln(CSR7_5)]2 (G.5)

where
b;, by, bs, by = regression coefficients.

The mean values of b;, b,, bs and b, determined by Juang et al. (2001a; 2002) are 10.0155, -
0.0643, -3.9534, and -1.8381, respectively. The standard deviations associated with the
coefficients are 2.6102, 0.0107, 2.1738, and 0.6302, respectively. The Nagelkerke coefficient of
this regression is 0.61. A coefficient of 0.61 is slightly greater than 0.58, suggesting a slightly
stronger correlation for Model 2 than Model 1. Figure G.2 presents P, curves defined by Eq.
(G.5). The Model 2 curves exhibit steeper-slopes than Model 1 curves above a CSR value of
about 0.1. They reach a maximum Vg, cs value at CSR of about 0.33. Above CSR of 0.33, the
curves trend to the left, decreasing in Vs cs with increasing CSR. Nevertheless, the results
clearly show that P, curves determined by logistic regression depend on the form of the
regression equation. While Model 2 provides another possible probability model, one would
expect P, curves to slope towards higher values of Vs, cs with increasing CSR rather than extend
vertically, as suggested by the dashed lines in Fig. G.2.

G.2 BAYESIAN MAPPING MODEL

Juang et al. (1999) pioneered a Bayesian interpretation approach for mapping factor of
safety, Fs, to P.. In their approach, values of Fy are first determined for the liquefaction and
non-liquefaction case histories using a deterministic evaluation curve. The Vsbased curve
shown in Fig. 2.3 is the deterministic curve used in this case. Values of P, are then estimated
from the probability density functions of F§ for liquefaction and non-liquefaction case histories
using Bayes’ theorem. With the assumption of equal prior probability, the P;-Fs mapping
function can be expressed as (Chen and Juang, 2000; Juang et al., 2000a):

b L)
L
11 Fs )+ fan (Fs)

(G.6)
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where

Jfi(Fs) = the probability density function of the calculated Fs for the liquefaction case
histories, and '

Jfin(Fs) = the probability density function of the calculated Fj for the non-liquefaction

' case histories.

An analysis of the 225 case histories yields the probability density functions shown in
Figs. G.3a and G.3b for the liquefaction and non-liquefaction cases, respectively. Applying Eq.
(G.6), the predicted probability of liquefaction for each case history is obtained. Values of P,
and Fs for the case histories are plotted in Fig. G.4. The relationship formed by the Fs -P;
values can be approximated by (modified from Juang et al., 2001a):

1

34
F -
1+ _.L
(0.73J

In Eq. (G.7), a Fs value of 1 corresponds to points on the deterministic curve. Thus, on
average, the Andrus et al. (1999) curve for clean soils (see Fig. 2.3) is characterized with a P,
value of 26 % based on Eq. (G.7). The value of 26 % is slightly less than 30 % initially
determined by Juang et al. (2001a). Subsequent analysis (Juang et al., 2002) revealed that a few
of the calculated P values corresponding to low Fs values (see Fig. G.4) were unreasonably
influencing the coefficients given in Eq. G.7. Thus, Eq. G.7 has been modified slightly from the
preliminary equation proposed by Juang et al. (2001a).

Figure G.5 compares the FsP; relationship defined by Eq. (G.7) for the Vsbased
recommended curve (Andrus et al., 1999) with the Fs-P, relationship developed by Juang et al.
(2000) for the SPT-based recommended curve (Seed et al., 1985; Youd et al., 2001). There is
remarkable agreement between the Vs- and SPT-based relationships. From Fig. G.5, the SPT-
based recommended curve is characterized with an average P, value of 31 %. These findings

suggest that the Vs-based deterministic evaluation curves are somewhat more conservative than
the SPT-based curves.

Equation (G.7) provides an important link between the probabilistic and deterministic
methods. One can obtain a family of P, curves for probability-based design by combining Eqs.
(2.8), (2.12) and (G.7). The family of P, curves for magnitude 7.5 earthquakes and soils with
FC <5 % is presented in Fig. G.6. These curves, called the Bayesian Mapping Model, slope to
the right with increasing CSR, which seems reasonable. They converge to a Vs, value of 215
m/s, the assumed value of V', for clean soils, at high values of CSR.
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G.3 COMPARISON OF PROBABILITY MODELS

Figure G.7 compares the logistic regression model curves for P. = 26 % with the
Bayesian Mapping Model curve for P, = 26 %, which corresponds to the deterministic curve
developed by Andrus et al. (1999) for soils with FC < 5 %. The Bayesian Mapping Model curve
lies between the two logistic regression curves below a V., value of about 195 m/s, indicating
close agreement between the three probability models. Above 195 m/s, the Bayesian Mapping
Model curve closely follows the logistic regression Model 2 curve. Thus, the logistic regression
models support the Bayesian Mapping Model in characterizing the deterministic curve proposed
by Andrus et al. (1999) and Andrus and Stokoe (2000) as a 26 % probability of liquefaction
curve.

The tendency for the P, curves to converge to some limiting upper value reflects the
tendency of dense soils to exhibit dilative behavior at large strains, causing negative pore-water
pressures. It seems reasonable that the P, curves should not continue to diverge with increasing
Vs, or penetration resistance, but should converge somewhat to reflect the behavior of dense
soils, as suggested by the curves shown in Fig. G.6. The wider spread exhibited in logistic
regression-based P; curves at high values of Vs and CSR is believe to be the result of an inherent
property of these models, and not a real-world phenomenon. Thus, the Bayesian Mapping
Model (Fig. G.6) is considered to be an improvement over the logistic regression models, and is
suggested for engineering risk-based design.
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APPENDIX H

SUMMARY OF CASE HISTORY DATA

Table H.1 presents a summary of case history data described in Appendix E, and used in
Appendix F to establish the recommended liquefaction resistance curves. This database is
expanded and modified from the database presented by Andrus and Stokoe (1997). Most of the
modifications are minor with the intent to have the data conform to the guidelines presented in
this document. The major modifications are based on new information or correction of an error
in calculations. Some case histories included in the earlier database by Andrus and Stokoe have
been omitted due to one of the three following reasons: (1) The reported average downhole Vs
measurement is for a depth interval much greater than the identified critical layer. (2) The
critical layer is likely older than 10 000 years and contains carbonate. (3) The location of the
critical layer or field behavior is uncertain. Thé case history data presented in Table H.1 are
essentially the same as the data presented in the draft guidelines (Andrus et al., 1999), with only
a few minor changes. References for the case history data are given in Table E.1.
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