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ABSTRACT

The behavior of coupled lateral-torsional systems subjected to seismic waves is
investigated analytically. This report presents the numerical results of a
parametric study for structures subjected to seismic waves. Case studies are
provided to show the contribution of each of the selected parameters to the
rotational response of the systems. These parameters are: geometric eccentri-
city, aspect-ratio of the foundation mat, damping ratio, and the ratio of the
rotational to translational frequencies. Dynamic eccentricity is selected as
an index to represent the level of the response. The sensitivity due to the
deviation of the input spectrum is investigated. Accidental. eccentricities
due to seismic waves are also evaluated. Design concerns are given on how the
design eccentricity should be considered based on this study.

Key words: accidental eccentricity; building codes and standards; design
eccentricity; dynamic eccentricity; parametric study; seismic waves;
structural response.
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1. INTRODUCTION

There has been evidence of serious damage in bulldings due to torsional effects
in earthquakes [1~2]. Therefore, it is necessary that adequate torsional resis-
tance be provided for building systems. Current design provisioms in building
codes or standards related to torsional effects [3~5] are mainly based on engi-
neering judgment. These provisions are not necessarily theoretically sound,
e.g., it is known that by taking accidental eccentricity as five percent of

the building dimension in design may not be conservative [5-9] but this figure
is widely used as the accidental eccentricity in present building codes. To
avold structural failures in earthquakes, research is needed to simulate the
real behavior of structural systems subjected to seismic waves.

Recently, analytical models have been developed specifically for determining
dynamic response of coupled lateral-torsional structural systems. For example,
the effects of response due to geometric eccentricity between center of rigidity
and center of mass have been investigated extensively by Kan and Chopra for the
linear and non-linear systems [7-8]. The response of torsionally coupled
elastic systems have been studied by Kung and Pecknold [9] based on a probabi-
listic ground motion model. Dynamic eccentricity has been estimated by Tso and
Dempsey in terms of geometric eccentricity [10]. However, soil-structure inter-
action (SSI) effects were not considered in these studies. To include SSI
effects, a simple approach [11] was proposed that made use of the impedance
functions and input motions as computed in references 12 and 13.

In this report, an analytical result will be presented to illustrate the effects
of a few parameters pertinent - to the characteristics of a structural systen.

The formulation presented in reference 11 will be briefly described. The param—
eters selected in the study are: geometric eccentricity, aspect~ratio of the
foundation mat, damping ratio, and the ratio of the rotational to translational
frequencies. The sensitivity of the response to variation in the ground motion
spectrum is also investigated. Based on these analtyical results, discussions
are given on how the design eccentricity should be considered in the related
seismic design provisions.



2, THE APPROACH

A one-story structural system with geometric eccentricity equal to e at the
first floor is shown in figure 1. The structure is subjected to earthquake
excitations at the ground floor (foundation). The equations of motion may be
written as,

m, 'flyt +em, 'f1¢t +RU g+ cliq =0 (1)
mee Uy + Iy, Uy + Ky Upg + € Upq = 0 (2)
my, ﬁyb + my ﬁyt + mee ﬁ¢t = fy(t) (3)
m.e i}yt + Iyy 'L'JM + I ii¢b = £,(t) (4)

where m, C, K, and U are equal to the mass, damping, stiffness, and displacement,
respectively. Subscript t or b denotes that the term is related to the first or
the ground floor; subscript y or ¢ denotes that the term is related to the trans-
lational or rotational movements; subscript d denotes tht the term is equal to
the difference between the related terms of first floor and the ground floor;
€8sy Uyq = Uyt - be; I¢t and Iy are the rotational mass moments of inertia
taken with respect to the Z-axis located at the center of rigidity, as shown in
figure 1 for the first and ground floors, respectively; fy and f¢ are the
earthquake excitation forces at the foundation.

"U" and "f" may be transformed into the frequency domain, i.e.,

{U} = 2 {Us} exp (1 wg t) (5a)
$=0 ,
and

{£} = = {fg} exp (1 wg t) (5b)
$=0 »

where wg is the frequency. Let the excitation forces between the soil and
foundation, f(s) be expressed as [12-13]:

{£(s)} = [Rel [{ug} - {uEh (6)

where (K¢) represents the impedance matrix, (Ug) represents the foundation
motion, and (Uf) represents the input motion. The subscript f denotes terms
related to foundation mat. Equations l1-4 can be rearranged and written in
matrix form for each wg as:
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- m 2 2 2 11,1 T |
= m, Wy - em, wg - mbms-K‘,:.y 0 U t - KfyUf
y y
- 2 - 2 - 2 - *
em, wg I¢tws 0 I¢bws U¢t Kf¢Uf¢
- Kfy (7)
- 2 - 2 - R - 2 =
mtms+ky ewm, Ky cyiws 0 be 0
- 2 - 2 -
em, wg I¢tws+K¢ 0 K¢ U¢b 0
+ C¢iws - C¢iws
oy ot - - s -t

The response of the structure can be calculated once the impedance functions

and the input motions of the foundation are known. With the Fast Fourier
Transform technique, the dynamic response of the system may be found in the time
domain (e.g., ref. 14). For the problem under investigation, the dynamic eccen-
tricity, E(t), is considered to be equal to the torsional moment, M(t), divided
by the transverse shear, V(t).



3. ANALYTICAL RESULTS OF THE PARAMETRIC STUDY

Dynamic eccentricity is an important variable for indicating the behavior of a
coupled rotational-translational system. Therefore, it is selected as an index
to represent the structural response in the investigation. The effects on
dynamic eccentricity due to variocus parameters are illustrated with a few case
studies. The analytical results are given in this section. Unless otherwise
specified, the general properties of the system are taken as:

= 3.63 x 10715g, m,, = 1.85 x 108 kg, Tge = 3 03 x 107 kg~Tl,
I p = 1.52 x 10 kg-m Kg 1.44 x 10° ﬁ; = 2,70 x 10°* N-m/rad,
Cy and C¢ 2 percent of the critical damplng r tioso

The soil is assumed to have a damping ratio equal to 0.05, w1th Poisson's ratio
equal to 0.33 and the shear modulus equal to 2.15 x 108 N/m?. The impedance
functions agd input motions are taken from references 12 and 13. In these
figures, U; represents the free field motions. The functions are shown in
figure 2 through 5 for foundation mats with dimensions equal to 25.9m x 25.9m
(85 ft x 85 ft) and 51.2m x 12.8m (168 ft x 42 ft), respectively. These curves
are used as input functions in the analysis. The input spectrum is based on
curve a as shown in figure 6 for all cases except otherwise noted. Analytical
results are discussed below for each of the parameters,

Geometric Eccentricity - Dynamic eccentricities of the first floor for cases
with geometric eccentricity ratios , e/r, equal to 0.1, 0.2 and 0.32 are plotted
in figure 7, where r represents the radius of gyration. These curves are
obtained by solving equation 7. The foundation mat is assumed to be 25.9m x
25.9m. It is shown in the figure that the dynamic eccentricity becomes larger
as the geometric eccentricity increases. It is alsc shown that the frequencies
of the system are affected by the geometric eccentricity values. Accidental
eccentricity due to seismic waves can be found by solving equation 7 with e = 0
[11]. The accidental eccentricity corresponding to this case shown in figure

7 is given in figure 8 by the dotted line.

Aspect-Ratio of the Foundation Mat - To illustrate the effects due to the
aspect-ratio of the foundation mat, the dynamic eccentricities are plotted in
figure 9 for a case with the same structural properties as the previous case
except for the dimensions of the foundation mat. The foundation mat selected
here is of rectangular shape with dimensions equal to 51.2m x 12.8m. These two
cases have about the same mat area, but the input functions are different as
shown in figures 2 through 5. Hence, the dynamic eccentricities are different
in terms of magnitude and frequency. The accidental eccentricities for this
case are also shown in figure 8. As expected, the results shown in figure 8
indciate that the eccentricity increases for cases with a larger aspect-ratio.

Damping Ratio of the Structural Systems - The rotational effects due to damping
ratios are shown in figure 10. Dynamic eccentricity for the case with e/r
equal to 0.2 as shown in figure 7 is replotted here. For this case the damping
ratio is equal to 0.02. The corresponding case with a damping ratio equal to
0.07 is also shown in figure 10. It can be seen that the difference between
these cases in terms of maximum dynamic eccentricity is not significant.
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Ratio of the Uncoupled Rotational Frequency to Translational Frequency -
Dynamic eccentricities are shown in figure 1l as a function of the ratio between
the uncoupled rotational frequency to translational frequency. The curve with
a solid line in the figure is a replot of the case with e/r = 0.2 in figure 7.
The ratic is approximately 1.5 for this case. The curve with a dotted line
represents a case with the same system except with a higher I;+. For this
case, Iyt 1is selected such that the rotational frequency is one-third higher
than the case with a solid line. As shown in figure 11, the magnitude of the
eccentricity is lower for a larger ratio of the rotational to translational
frequencies, but the frequency of the dynamic eccentricity is higher if the
ratio is higher. In reference 8 and 9, similar effects are found despite the
fact that the SSI effect was not considered in those studies.

Ground Motion Spectrum - The sensitivity of dynamic eccentricity due to a change
in the spectrum as shown in figure 6 describing ground motion are shown in
figures 12 and 13. Figure 12 shows dynamic eccentricities for e/r = 0.1, 0.2,
and 0.32,respectively, based on the spectrum shown in case b in figure 6. A
replot of the corresponding case for e/r = 0.32 in figures 7 and 12 is shown in
the figure 13 in which, it can be seen that the difference in terms of dynamic
eccentricity is negligible due to the change in input spectrum as represented

by curves a and b in figure 6.
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4, DESIGN CONCERNS

In the present seismic building codes or provisions, a design eccentricity is
used to represent the level of the rotational response. To select the design
eccentricity properly, dynamic effects on structural systems should be consid-
ered. In this study, dynamic eccentricity has been found for a structure sub-
jected to seismic waves. In general, the maximum shear and torsion will not
occur at the same time. The maximum dynamic eccentricity always occurs at the
time of maximum torsion but not the maximum shear. For this reason, the use of
dynamic eccentricity as a reference index not only is a proper approach but can
lead to an economical design. To illustrate this point, V(t) and M(t) for the
case with e/r = 0.2 shown in figure 7 are plotted in figure l4. The vertical
axis in the figure represents the ratios of V(t)/Vpax or M(t)/Mpa.yx, where Vp.y
and Mp,y are the maximum shear and torsion values, respectively. In this case,
the V(t) corresponding to Mp,y is about 88 percent of the Vp,y. Thus, it would
be overly conservative to design a structure based on both Mp,y as well as Vp,x
as in the present practice.

The term "accidental eccentricity” is used in the literature to cover the
torsional effects due to several factors. In reference 3 it is stated that
"these factors include rotational component of ground motion about a vertical
axis; unforeseeable differences between computed and actual values of stiff-
ness, yield strengths and dead-load masses; and unforeseeable unfavorable
distribution of live-load masses.” Actually the "rotational component of
ground motion about a vertical axis” can be computed with an assumption that
the free-field seismic motion is known. For the approach presented here, the
accidental eccentricity can be determined as a special case to the general
solution of the problem. It is shown that the eccentricity is larger for a
structure with a larger aspect ratio of the mat. On the other hand, the effect
of accidental eccentricity on the response of symmetric buildings cannot be

ignored. The solutions obtained here verify the concepts presented in
reference 6.
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5. CONCLUSION

Apalytical results of a parametric study are given for a structure subjected to
seismic waves. For the accidental eccentricity due to seismic waves, the
results shown here verify the concept presented earlier in reference 7, i.e.,
the accidential eccentricities on symmetric buildings cannot be ignored.

Based on the selected index, dynamic eccentricity, it is also shown in this
study that the rotational response of a system depends greatly on geometric
eccentricity, the dimensions of the foundation mat and the ratio of rotational
frequency to translational frequency. The maximum dynamic eccentricity of the
system is not affected significantly by the damping of the system, nor by the
variation of the input spectrum as shown in figure 6. It is important that

all parameters essential to the rotational responses of the system shall be
considered in determining the design eccentricity. The related design provi-
sions in current building codes which consider only the effects of the gecmetric
eccentricity should be updated. To develop consistent [15 ] seismic provisions
based on this approach, further study of various structures under specific
conditions is needed.
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