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ABSTRACf

Liquefaction causes a large portion of all damage done by earthquakes. The damage
is especially severe to lifeline structures such as pipelines. This report examines the state-of
the-art of the application of System Identification (SI) methods to the liquefaction problem,
with special attention to lifelines. System identification is seen as the best way to ascertain
large strain soil properties in situ. A thorough introduction to SI methods and spectral
analysis is given. The traditional Fourier-based methods are found to be inexact since the
sample variance is equal to the sample mean if averaging techniques are not used. There
is an additional problem since earthquake signals are not stationary. Autoregressive-moving
average models are seen as a better analysis method, especially the newer adaptive methods
that are designed for non-stationary signals. A significant bibliography is included.

KEYWORDS: ARMA modeling, building technology, earthquakes, in situ testing, lifelines,
liquefaction, spectral analysis, system identification
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CHAPTER 1 INTRODUCTION

1.1 Background
1.1.1 Earthquakes and Liquefaction

Over the years, some of the most spectacular, and costly damage caused by
earthquakes has been due to liquefaction of sands. A functional description of liquefaction
can be given quite simply. When a suitably intense earthquake shakes a loose, saturated
sand, the grains tend to consolidate into a more compact packing. Since all these
movements are happening very rapidly, there is no chance for the volume to reduce through
pore water dissipation. The incompressible pore fluid then takes up all the applied stress,
the effective stress goes to zero, and the deposit "liquefies.II Since a liquid has no shear
strength, disastrous consequences occur.

The disastrous consequences of liquefaction was brought to the fore in 1964 by the
Niigata and Alaska earthquakes of that year. Liquefaction also triggers earth slides and
large displacements of earthen dams. A large slide caused by the 1970 Peruvian earthquake
killed over 18,000 people (EERI, 1986). A terrible disaster was narrowly avoided when the
San Fernando dam suffered very large displacements due to the 1971 San Fernando
earthquake. Similar damage has occurred over the years in locations as diverse as China,
Nicaragua, Japan, Charleston, SC, San Francisco, the Imperial Valley, CA, and Idaho.

The effects of liquefaction-caused damage to lifelines are especially costly. Damage
to roads, rail, telecommunications, power, and pipelines of all types is always harmful, but
is especially so during time of emergency. One of the most striking examples of the effect
of lifeline damage on public safety is the occurrences during the 1906 San Francisco
earthquake. After that earthquake, over 490 city blocks were totally destroyed by a fire, the
largest, most deadly fire in U.S. history (O'Rourke et al., 1991). Little could be done to stop
the spread of the fire since the pipelines carrying water were broken due to liquefaction
induced ground displacements. It was estimated that 56 percent of the municipal water
supply was completely cut off.

1.1.2 Estimation Techniques and Liquefaction

The reader might wonder, what does system identification and estimation of large
strain soil properties have to do with liquefaction? While not immediately obvious, there
are several important reasons to pay attention to these methods.

The most important piece of knowledge to be gained is that concerning the actual
behavior of soils under strong motion excitation. At present, the modulus degradation and
effective damping ratio curves are based only on laboratory tests. Laboratory tests will all
yield at best approximate results since no one can run a laboratory test on an undisturbed



loose sand. The preliminary reports from back calculating earthquake response imply that
the laboratory degradation curve might be too high at intermediate strains. In addition, the
results from two independent methods (Chang et aI., 1990; Abdel-Ghaffar and Scott, 1979)
show that the customary hyperbolic shape of the laboratory damping curve might be
incorrect, and actually is S-shaped.

Knowledge about the interplay between pore water pressure build-up, strength of
shaking, and soil nonlinearity is fundamental to rational design for earthquake loading. This
interplay can only be studied by an analysis of undisturbed real-life situations using complete
sets of data such as available from Lotung. It is of utmost importance for the database to
be enlarged with results from other well-instrumented site. Unfortunately, there is a grave
lack of such sites.

The response of soil to strong motion can be used for site characterization and
microzonation (Finn, 1991). In this case, the amplification factor, or spectral ratio, is the
important parameter being sought. The amplification factor is just the transfer function,
which can be estimated much more accurately using the system identification methods. A
simplified microzonation analysis of Charleston, South Carolina was made using SHAKE as
the analysis tool (Elton and Martin, 1989), and the amplification effects of geological
structures have been examined theoretically (e.g. Faccioli, 1991) and experimentally (e.g.
Silva, 1989; Bard and Gabriel, 1986).

A final incentive to study in situ behavior of soils during earthquake strong motion
is brought up in a late paper by Rollins and Seed (1990). This is the question of what
influence structures have on their founding soils. In particular, does a structure increase or
decrease the liquefaction potential, and if the soil does liquefy, will the resulting
displacement be more or less than the free-field? These are important questions since the
present method of analysis and design implies a free-field condition. The available data is
quite scanty, based mostly on a few shaking table and centrifuge tests.

Rollins offers some conclusion as to the effects of different types of structures. These
include indications that excess pore pressure ratios might be significantly lower beneath a
structure, and that the soil near a foundation is more susceptible to generation of excess
pore pressure than the free-field. Free field analysis appears to be too conservative for long
period structures on medium-dense sands, and unconservative for short-period buildings on
loose to medium sands.

In a wide-ranging paper, Ambraseys and Sarma (1969) give calculations showing that
concentrated loads from a structure "may cause much more widespread liquefaction effects
than local inhomogeneities." This is through local failure acting as seed for widespread
progressive failure. On the other hand, the local increased vertical effective stress due to
the structure will decrease the chance of liquefaction. Finding the balance between the two
effects leads to the same questions as Rollins and Seed.
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The ideal way to find definitive conclusions to these important questions is to utilize
input and output soil motions recorded in the free-field and adjacent to a structure. This
data is available right now for one case - the Lotung site. A detailed analysis using state-of
the-art system identification techniques is needed.

1.1.3 Purpose

This report was written to evaluate the current state-of-the-art of in situ methods of
soil property measurement, which allow accurate prediction of liquefaction potential, and
the possible displacements if liquefaction did occur. The report summarizes and evaluates
significant technical papers on the use of system identification methods for estimating soil
parameters needed to understand large strain soil behavior during earthquake loading. This
topic is of direct import to the behavior of lifelines. This report makes no attempt to
identify and enumerate every paper or technical publication written on these subjects. It
serves, rather, as a thorough overview and evaluation of where the profession is today.

The report assumes some degree of technical sophistication by the reader, although
an attempt is made to explain complicated or unfamiliar material. The liberal use of
references should allow the reader to find an understandable source of explanation for most
topics discussed. The report often takes a "critical" point of view when examining proposed
methods. This is to examine the underlying suppositions made by a given approach, which
define the validity and applicability of that method.

1.2 Scope

This report examines the field of system identification, and its applicability to
estimating the behavior of soils undergoing strong motion. Since the field of system
identification is unfamiliar to most geotechnical engineers, Chapter 2 gives an introduction
to the meaning of relevant techniques. Of great importance is the thorough evaluation of
the implications of spectral analysis.

Chapter 3 examines pertinent applications of system identification to liquefaction-type
problems. Special attention is given to using system identification methods to estimate
mechanical properties of soil undergoing intermediate-to-Iarge strains, which can not be
examined by geophysical in situ techniques.

Chapter 4 contains the important conclusions reached in this report, and briefly
summarizes key concepts. A very thorough bibliography is documented in the final chapter.

Finally, it should be mentioned that the most thorough and complete work on the
subject of liquefaction is the report written by the Committee on Earthquake Engineering
of the National Research Council, 1985.
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CHAPTER 2 PRINCIPLES OF PROCESS CHARACfERIZATION IN
THE TIME AND FREQUENCY DOMAINS

2.1 Estimates of Soil Properties from Dynamic Behavior
2.1.1 Introduction

A major component of the lifeline infrastructure are buried pipelines. Over the years,
analytical computer programs have been developed to calculate the effects of earthquakes
on these lifelines. As the programs are able to make more and more accurate predictions,
the significance of the accuracy and relevancy of the input data becomes more and more
important. Most of these analyses use a Winkler model, which replace the soil with springs
and dashpots (Zhang et aI., 1991). The relevant soil parameters become dynamic stiffness
and damping. Since earthquakes excite the soil past the elastic range, estimates of the
strain-dependant soil stiffness and damping are essential for further improvements in lifeline
design.

Field geophysical techniques are relevant to liquefaction analysis in so far as they
provide the shear-wave velocities of a site. The velocities can easily be converted to soil
stiffness, or correlations with liquefaction potential derived directly for S-wave velocity.
However, the shear modulus thus calculated is the small strain modulus, or Gmax, and is only
valid for the elastic region of the soil. The limitation is due to the inability to reliably impart
strains into the soil much greater than lxlO-6. Therefore, it has been impossible to measure
threshold strain, YT' and the modulus degradation curve, G/Gmax> in situ. Direct knowledge
of these variables would bring the ability to make quantitative estimates of potential and
possible displacements closer to reality. Another important benefit would be the possibility
to measure nonlinear material damping.

Attempts to input enough energy into the ground to cause intermediate to large
strains have not been very successful. The amount of energy needed would destroy a bore
hole, and would be destructive on the surface as well. There is also the problem of the
transducers being in the near-field if they are close to a source large enough to cause large
strains in an immediate area. One exception was a project undertaken for the Nuclear
Regulatory Commission (Shannon-Wilson, 1976) where intermediate-to-Iarge strains were
input in a large scale field experiment.

An obvious example of large strain experiment would be the use of high explosives.
While explosives have been used in the Soviet Union to estimate liquefaction parameters
(Florin and Ivanov, 1961), it was done to develop a correlation with settlement, and no
geophysical measurements were made. Positive results of a large in situ impulse test were
reported (Shannon-Wilson, 1976). However, there has been no follow-up on this work, and
other researchers have not attempted similar studies. It is not known at the present time
whether that is because of lack of interest or problems with the reported method.

Preceding page blank



The optimum situation would be the ability to make measurements during different
magnitudes of earthquake excitement. In this case shear strain in the layers of interest, and
stiffness (velocity), would be continually monitored. Since earthquakes can not be made-to
order, the chances of this situation happening are virtually nonexistent. The instrumentation
would also be extremely difficult. However, use of inverse theory allows the soil parameters
of interest to be calculated from attainable data - the ground motion records of the motion
going into the layers of interest, and above the layer itself. This set of information is
available for several sites (Chang et al., 1991, 1990; Holzer et al., 1989).

The modeling of a mechanical system as a transfer function calculated from known
a input-output history is commonly called system identification (SI). If a suitable model is
chosen to represent the system of interest, the model parameters derived will correspond
to important mechanical parameters of the system, such as damping, natural frequency, and
stiffness. Often times, SI is the only method available to estimate these properties, especially
since the method does not actively interfere with the material properties being measured.
This chapter will investigate the theory required to undertake this system identification for
liquefiable soils.

2.1.2 Modeling a System

In the simplest case, a layer of soil can be modelled as a linear system, as diagramed
in Fig. 2.1. In the time domain, the filtering process of a signal passing through this layer
is represented as convolution, Eq. 2.1:

where Yt
~
ht

n
*

n-l

y(n)=L x(m)' h(n-m)=x*h,
m=O

= output time series,
= input time series,
= filter vector or impulse response function,
= l...length of yet),
= convolution.

(2.1)

The process of inversion, or deconvolution, allows the estimation of the system response
function (filter) if the input and output signals are known. Theoretically, the input and
output vectors represent the coefficients of a polynomial (Z-transform) and the system
response function ~ can be solved for by polynomial division (Bracewell, 1978). However,
if there is any noise present, and there ALWAYS is (due to quantization error if nothing
else), the quotient is irrational and frequently becomes unstable.

The usual method of time domain deconvolution is the least squares approach (Silvia
and Robinson, 1979). While the deconvolution process is non-unique, the least squares
method yields a system filter that is unique in a mathematical (least squared error) and
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physical sense (minimum phase). There are other, more involved, time domain solutions
which are not in general use (e.g. Simmons, 1991). The time domain schemes, while
possessing certain advantages, are very computation intensive. The common solution is to
deconvolve in the frequency domain.

In the frequency domain, convolution becomes a simple multiplication (Bracewell,
1978), and Eq. 2.1 transforms into Eq. 2.2:

Y(<a»:X(<a»' H(<a»,

= circular frequency,
= frequency function of input time series,
= frequency function of output time series,
= system frequency response function.

(2.2)

For this report, time domain functions will be indicated by lower case variables and
frequency domain functions by upper case variables, with t and (a) dropped when obvious.
The transformation into the frequency domain speeds computation but does not diminish
the impact of noise on the calculation. If the variance of the measurement is close to the
same order of magnitude as the signal energy at a given frequency, the results of the simple
calculation shown in Eq. 2.2 are seriously flawed (Newland, 1984).

2.2 A Traditional Approach to System Identification
2.2.1 Introduction

As in the time domain, there is an acceptable frequency domain alternative method
for computing the frequency response function using the auto and cross spectrum. Using
these functions, the frequency response function is defined strictly for stationary input signals
as (Bendat and Piersol, 1986):

= auto-spectrum = XX· = Fourier transform of R.xx
= cross-spectrum = yx. = Fourier transform of Rxy
= autocorrelation of x
= cross-correlation of x with Y
= complex conjugate.

7
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The use of the cross-spectrum in calculating the frequency response function is little more
complicated than Eq. 2.2, but has the added benefit that the statistical variability of Gxy is
canceled by the variability of Gr The real part of H is called the system gain factor, while
the phase information is carried by the imaginary part. The frequency response of the
system is now experimentally characterized by H, but useful mechanical parameters such as
damping and stiffness are still unknown. The key is to link the frequency response function
to the defining equations of the system.

2.2.2 Modeling Simple Mechanical Systems - Force Input and Displacement Output

The simple layered soil system in question can be characterized as a damped single
degree-of-freedom (SDOF) system. The most basic dynamic situation is with a known input
force, and the resultant displacement measured, as pictured in Fig. 2.2. While this degree
of knowledge is unrealistic for the earthquake system in question, it is a good model for
surface excitation methods. The forces acting on the mass are given by Eq. 2.4:

and the equation of motion is

mY+cj+kr"!·

(2.4)

(2.5)

where f(t)
fk(t)
fcCt)
fm(t)
y
y
y

= -ky
= -cy
= -my

= dy/dt
= dZy/dt2

= input force
= spring force
= damping force)
= inertial force
= output system displacement
= velocity
= acceleration.

The system response function is defined for an impulsive forcing function. The Fourier
transform of the impulse response function, Y, is the frequency response function, H. Based
on the definition of the Fourier transform and related theorems (Bracewell, 1978) the
transform of Eq. 2.5, with f(t) = 61, becomes

where i = )-1

(-<.>2m+i<.>c+k) Y=1 (2.6)

and the frequency response function is

Equation 2.7 is simplified by defining the damping ratio
and the undamped circular natural frequency

8



Equation 2.7 is now written as

H=Y __1__
k-CJ>2m+iCJ>c'

Cc=
2/fiit

/,= Ii
1I~;;

1
kH=------

1-(:'1'+i2'(J.J

(2.7)

(2.8)

(2.9)

(2.10)

For ease of analysis, the frequency response function can be broken into a system
gain factor and a phase factor by writing Eq. 2.10 in polar form. The gain factor is defined
as

and the phase factor

1
k

IHI = -;::::========= (2.11)

(2.12)

The gain factor is shown graphically in Fig. 2.3. The gain factor for this particular forced
system is called the magnification function. Note that for zero frequency the magnification

9



function is the inverse of the spring constant k The resonant frequency ~ can be read from
the graph of the gain factor, while the fundamental frequency fu always corresponds to a
phase factor of 1.57 f... The damping ratio can be calculated from Eq. 2.13:

(2.13)

or by a simple half·power graphical technique (Richart et aI., 1970). All the system
parameters can be derived from the plots of the frequency response function H calculated
by Eq. 2.3.

2.2.3 Modeling Earthquake Response - Displacement Input and Displacement Output

The field problem being addressed is that of a soil layer where the displacement into
the layer (the bottom) and the displacement at the top of the layer are known. This system
is modeled by the mechanical analog shown in Fig. 2.4. The goal is to use system parameter
identification techniques to compute the soil stiffness and damping from input and output
records, as in the previous example.

The equation of motion for this system is:

my+cj+ky==kx+c:i. (2.14)

All the variables are defined as in the previous example. Applying the Fourier transform
to Eq. 2.14 yields the frequency domain equation Eq. 2.15:

and the frequency response function H is defined as

H== Y== k+i<J>c •
k-<J>2m+i<J>c

10
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..
Constant Parameter Linear System

Fig.2.1 Diagram of a linear system (filter).

Yt -

I
y(t)

k

m

I
I

~ c
0

F(t)

Fig. 2.2 Single-Degree-of-Freedom system, force input-displacement output (Bendat and Piersol, 1986).
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::::::
~
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~

c:.;;;
<.:l

1
k

0.1
k ! I'

Q1 1D
Frequency ratio, tit"

Fig. 2.3 Frequency response function (Gain Factor) of SDOF system with force input (Bendat and Piersol, 1986).
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(2.17)

Substituting damping ratio (Eq. 2.8) and fundamental frequency (Eq. 2.9) into Eq. 2.16 yields

H _1_+_i2'-->.(f.~~)<---

1-(:'1' >12C(f.)

The gain factor of H, defined in Eq. 2.18, is called the transmissibility function since
it defines how much of the forcing displacement is transmitted through the system.

IHI=

The phase factor is given by:

(2.18)

(2.19)

The transmissibility function is shown in Fig. 2.5.

While the graph of the gain factor for the displacement-displacement system look
similar to that of the force-displacement system (Fig. 2.3), the equations are very different.
From Fig. 2.5 it is seen that for any system parameters, the gain factor equals one at a
frequency

The maximum value of the gain factor is related to the damping ratio by

4,2
IHI

VI6'4-S'2-2+2Jl+SC2

(2.20)

(2.21)

which is shown in graphical format in Fig. 2.6 (Crede, 1957). For this system, values can
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r----;~ x(t)

k

C

r---~y(t)

m

Fig. 2.4 Single-Degree-of-Freedom system, displacement input-displacement output
(Benclat and Piersol, 1986).
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only be derived for the damping ratio and resonant frequency. There is not enough
information to directly identify the actual system stiffness and damping. In this case, mass
is an unknown that prevents identification of these parameters. The concept of parameter
mass is not straight-forward for a layer of soil. However, it is quite possible that the use of
the mass of a unit area column of soil will provide a correct solution.

2.2.4 Evaluation of Simple System Identification Techniques

The inability to define all the system parameters highlights an important difficulty of
the system identification method. Even for a simple SDOF system with realistic boundary
conditions there is not a closed-form solution for all the basic parameters. For more
complicated systems the equations get even more intractable and arcane. Often times it is
not possible to find a suitable equation to define the real-world system of interest.

The solution given above is not even valid for the real-life situation of earthquake
loading of a soil profile. The derivation is strictly valid for a time invariant system, which
does not accurately describe a soil strained past threshold strain. The stiffness and damping
of the soil are not linear, and measuring this non-linearity is one goal of utilizing system
identification. In addition, the earthquake forcing function is not time-stationary, so common
spectral estimation methods cannot be used to reduce effects of noise without extensive
increase in the difficulty of the computation. The non-stationary methods solve for the
frequency response function for input excitations that vary through time (Bendat and Piersol,
1986; Newland, 1984). For the traditional "Bendat and Piersol" approach, this involves using
energy spectral density estimates rather than power spectral density estimates since the
period T is finite rather than infinite time for which the power spectrum is defined. The
single summations of Eqns. 2.3 become double summations, since the effect of change
through time must be actively accounted for. The double sum estimates are not as robust
as the ones for time invariant systems since the estimation are made for two stochastic
variables with cumulative variances.

Assuming for the moment a time invariant system, the question is whether the
excitation is stationary or not. If the input is stationary, then the cross-spectral technique
can be used to define the frequency response function, minimizing the effects of noise.
Stationary excitation is only to be expected for some ambient vibration tests or from
controlled oscillatory sources. For these two cases the strain levels are small and the soil will
behave linearly. The forcing function of the oscillatory source is known so that all system
parameters can be estimated using the force displacement model. If the masses of the
system are known, the problem can be solved uniquely for a multiple layered soil profile
(Udwadia, 1985).

Earthquake excitation is obviously non-stationary. It is an unique event changing
through time that can not ever be repeated so the effects of noise can not be eliminated
through direct averaging. Because the input is non-stationary the power spectrum methods
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are strictly invalid since they depend on a statistically representative sampling of an infinite
length signal. However, claim has been made that the spectral methods are equally valid
for non-stationary transient data if there are a sufficient number of trials so that a valid
expected value of the auto- and cross-correlations can be calculated (Bendat, 1990; Bendat
and Piersol, 1986). This ensemble averaging serves to improve the statistical certainty of the
estimates.

2.3 Estimates of a Process in the Frequency Domain
2.3.1 Fourier-based Methods

At this point it is important to examine what exactly is meant by the spectral
representation of a time series, and the results of the various methods of calculating the
"spectrum." The most familiar form of spectral estimation is based on the Fourier transform
of a continuous signal,

(2.22)

This estimate is non-parametric since no particular model of process is assumed in the
formulation of the estimate. However, the process is arbitrarily assumed to be representable
by an orthogonal basis function ofharmonic sinusoids. The basis function could just as easily
be assumed to be a linear combination of damped exponentials (Prony's method), a finite
number of arbitrary complex sinusoid in white noise (Pisarenko harmonic decomposition),
or the output of a sharp bandpass filter centered at each frequency of interest (Capon's
Maximum Likelihood Method) (see Kay and Marple, 1981).

Since F(Ca») is a complex value, the following relation exists:

where IF(<a> ) I
ei<b(w)

= amplitude spectrum
= phase delay spectrum.

(2.23)

The conservation of energy between the time and Fourier domain is given by Parseval's
energy theorem in terms of the square of the amplitude spectrum (Bracewell, 1978). The
energy spectral density is defined as the square of the amplitude spectrum, IF(Ca)) /2, and
gives the distribution of energy as a function of a set of harmonic sinusoid. The square of
the amplitude spectrum is commonly called the periodogram or power spectrum (Robinson,
1982). It is related to the autocorrelation of the same time function by the Wiener
Khintchine theorem which states that the power spectrum is the Fourier spectrum of the
autocorrelation.
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In practice, the data is available for a finite time period, and the data is in discrete
form for manipulation by a digital computer. This necessitates the development of the
discrete Fourier transform (DFf) (Brigham, 1974):

F(~) =Ex(klit) e -i21t1l~ (2.24)
Nlit k=O

Where n
N
T
lif
lit

= 0, 1, 2, ..., N-1 = discrete frequency counter
= number of samples
= digitized period = Nlit
= frequency resolution lINli t
= time between samples.

The amplitude spectrum and the energy spectral density are defined as for the continuous
case. However, the values for the discrete case, taken at the preassigned regular Fourier
frequencies, do not match those for the analog function. This is because the sampled
spectrum is actually the product of F(6)) with the sine function (transform of the time domain
boxcar windowing function which is convolved with the signal during sampling). "Thus the
discrete spectrum based on a finite data set is a distorted version of the continuous spectrum
based on an infinite data set.1! (Kay and Marple, 1981).

The unavoidable windowing of the data in the time domain, and multiplication of the
spectrum with the transform of the window, leads to a smearing of the data referred to as
leakage. For the simplest example of the boxcar window, the DFf representation of a
simple sinusoid will be spread out over a main lobe width proportional to IINAt with ripples
occurring at discrete intervals. These ripples are a function of the mathematics alone, and
are not present in the actual infinite length analog signal. Use of other window shapes can
decrease the amount of ripple, but at the expense ofwidening the main-lobe, thus decreasing
the frequency resolution of the transform. The various windows used also have the
unwanted effect of biasing the data towards the time associated with the peak of the window
(Geckinli and Yavuz, 1978).

The windowing of data is based on the assumption that the portions of the times
series outside the window are zero. For the case of a transient such as an earthquake
seismogram, this assumption is realistic and bias is held to a minimum. For an ongoing
process such as due to a mechanical oscillator, the assumption is unrealistic and the resulting
spectrum will be smeared and biased. For narrow-band signals, the overlapping of adjacent
side-lobes can hide the existence of close-by lower-energy components. However, for wide
band processes leakage is not such an important problem. For a soil-structure interaction
problem there probably would not be much difficulty identifying the first-mode resonant
frequency, but other modes might be hidden.
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Reference to Shannon's sampling theorem shows that the DFT estimate is good over
the frequency band of 0 to 1/(2At) Hz (Brigham, 1974). It is important to note that the
derivation of the DFT forces both the time and frequency domain data series to become
periodic with a period T, even if this is not the case in reality. In order to approximate the
infinite length of signal utilized by the integral transform, the discrete transform implicitly
assumes that the input data series is infinitely repeated, beginning to end. If the beginning
and end of the data do not match and have zero slope, an infinitely quick jump is added to
the data series, with attendant illegitimate high frequency energy.

2.3.2 The DFT and Real-World Systems

As presented by AId and Richards (1980), a serious problem exists when estimating
the amplitude spectrum when the data is "contaminated" by noise. The DFT model of the
spectrum does not expressly take the presence of noise into account, and the noise must be
modeled by the same harmonic sinusoids as the signal of interest. Since real field data is
to be used, noise will always be present from the environment. In addition, digitized data
will always have "noise" due to quantization error. The Fourier transform of the noisy data
N is

where F
X

= discrete transform of the signal
= discrete transform of white noise.

(2.25)

Since the noise is a statistical variable, the linear combination N is also a statistical
variable. Given reasonable approximations (Bloomfield, 1976), the energy spectral density
IN12 is the sum of two squared Gaussian variables (real and imaginary parts of N) and
follows the chi-squared distribution with two degrees of freedom. In this case there is little
confidence that the sample Fourier spectrum is close to the "true" spectrum, since the
standard deviation is now equal to the mean. There is little certainty whether an outlier is
a peak value of site amplification, or acceleration, etc., or a random error.

The most common method of calculating the frequency response function was shown
to be the spectral ratio, Eq. 2.2. A spectral ratio is also used to define site specific
"amplification" of ground motion (Murphy et aL, 1971). The spectral ratio is now seen to
be a ratio of two chi-squared variables with a common mean (from a common source) and
described by the Fisher F distribution with 2x2 degrees of freedom (AId and Richards, 1980).
There is very little statistical certainty with so few degrees of freedom. For this estimate
there is a ninety percent probability that the spectral ratio will lie between 0.053 and 19!
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Simply taking more data is of no help in reducing uncertainty since the only effect is
to increase the frequency resolution AF

where N
At

1AF=-.
NAt

= number of digitized points
= inverse of digitization rate.

(2.26)

Digitizing at a faster rate will have the same effect. The only way to improve the certainty
of the estimate of the spectrum is to average adjacent values, so that the variable now has
four degrees of freedom. If AF is very fine, many values can be averaged, giving a robust
estimate of the spectrum. In order to avoid time-domain aliasing, the number of frequency
values must be reduced each time adjacent frequency bins are averaged. The trade-off is
confidence for frequency resolution.

When an average of adjacent values is taken, an assumption is made that the signal
frequency has not changed between the two bins. Therefore, if the signal is rapidly
changing, with the rate of change being on the order of the desired frequency resolution,
frequency averaging can not be used and the Fourier spectrum gives a very poor estimate
of the !tactual!t spectrum. Averaging also runs opposite to the need to maximize frequency
resolution. This conundrum is the so-called Uncertainty Principle, where the frequency
resolution is inversely proportional to the length of time signal, which in turn needs to be
maximized to reduce variance (McClellan, 1982).

A very effective approach to improving the statistical reliability, or variance, was
introduced by Welch and employs a form of ensemble averaging (Otnes and Enochson,
1978; Welch, 1967). In this method the signal is broken into blocks, the spectral estimate
made for each block, and the resulting spectra averaged. If the blocks of data are
overlapped, e.g. fifty percent when the Hamming window is used, the bias towards the
central values is largely counteracted. This method can only be implemented if there is a
large length of relatively stationary data available.

In order to compare and understand the results of the various estimation techniques
discussed, it will be helpful to introduce an example data series and the actual, calculated
spectrum of this process. The time history is shown in Fig. 2.7a, and is taken from Kay and
Marple (1981). Figure 2.Th shows the true, calculated spectrum ofthis process. The process
has both narrow- and wide-band information, with two line components very close together.
While the spectrum looks simple, this combination is quite difficult to estimate.

Figure 2.8 shows a typical frequency spectrum calculated using the periodogram
method, in this case the normalized square of the DFf. The oscillatory nature of the
estimate is a result of the windowing process. Also, leakage causes broadening of the peaks
which can merge the closely adjacent line spectra, shown in Fig. 2.Th.
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A much improved estimate is given by the Welch estimate shown in Fig. 2.9. In this
case the signal has been windowed so that the large side-lobes (oscillatory shapes in Fig. 2.8)
have been reduced. The variance has been greatly reduced by the averaging process.
However, the two closely spaced line spectra expected around 0.2 have been merged due
to the loss of resolution. In this estimate the locations of the spectral peaks are correct and
the shape of the broadband portion is similar to the true spectrum.

2.3.3 An Improved Non-Parametric Estimator

An extremely powerful non-parametric spectral estimator for almost stationary time
series has been proposed by Thomson (1982). This is the so-called multi-taper method. The
method is derived for short time series which may contain line spectra as well as wide-band
components. The method is rationally derived, as opposed to the ad hoc windowing and
filtering of the classical approach.

In the classical method described above, the data is windowed to try to control
leakage (bias), Fourier transformed, and smoothed to reduce the variance. The initial
windowing increases variance and weights the data from the middle of the time series much
more heavily than equally valid data from the beginning and end of the series. The
smoothing (frequency averaging) is only rational if the actual spectrum is smooth. Finally,
the information from the phase spectrum is discarded. The periodogram estimates are not
a "sufficient statistic" of the data due to the phase information being discarded. Any finite
spectral estimate is an under-determined problem (Thomson, 1982):

Since this equation {the Fourier-based spectrum - ed} is the frequency-domain expression
of the projection from the infinite stationary sequence generated by the random orthogonal
measure dZ(f) onto the finite sample, it does not have an inverse; hence it is not possible to
obtain exact or unique solutions. What we desire are the statistics of those approximate
solutions that are both statistically and numerically plausible.

Thomson explicitly deals with these problems by proposing a unified method which
justifies the data windows used, gives consistent estimates, eliminates bias against low
amplitude areas, contains separate metrics for the variance of line and broadband
components, and for which the size of the time series enters into the method directly. The
solution gives local independent estimates so that the spectrum at a given frequency does
not depend on the spectrum at a distant frequency. Both the spectrum and the log of the
spectrum are "good" estimates, while for the periodogram method the log spectrum is
impossible since use of lag windows when frequency data is rapidly changing yields negative
estimate values.

The multi-taper method starts with the Cramer spectral representation of a function
and estimates the solution to this integral equation by a complex orthonormal eigenvector
expansion. The user chooses the number of expansion terms (tapers) used: the more terms
used the less biased the estimate, at the expense of frequency resolution. The class of

21



0

CD
~

~ -.20
'ii)
c:
Q)

0
t\1 -40....-0Q)
a.en
~ -60:;::::;
~

Q)
a:

-80

0.0 0.1 0.2 0.3 0.4 0.5

Fraction of Sam

Fig. 2.8 Periodogram estimate made from the absolute square of the OFT. The typical
oscillatory shape is a result of windowing.

-60

o

~ -20
'Ci)
c:
Q)

o
~ -40
U
Q)
a.en
~
~
Q)
a:

0.50.40.30.1 0.2

Fraction of Sam

-80 -t------r-------r------r-----..,...-------.
0.0

Fig. 2.9 Classical spectral estimation using the Welch method. The spectrum
is to be compared to the actual spectrum shown in Fig. 2.7b.

22



realizable eigenvalues is limited by weighting the expansion coefficients by prolate spheroidal
wave functions, which happen to be the eigenfunctions of the Dirichlet kernel, so the method
stands as a coherent whole.

The solution is reached over individual local intervals surrounding the
eigenfrequencies f, i.e. (f±w). The resulting estimate is chi-square distributed, but with (2*#
of tapers) degrees of freedom. This is equivalent to (4Nw) DOF, where N is the length of
time series, and w is the frequency radius of interest. With the use of a reasonable number
of tapers, the effective window is very rectangular over the given frequency bin, and there
are very low side lobes (-80 dB for 5 tapers) effectively eliminating bias. A simple check to
see if too many tapers are being used is to examine the eigenvalues in full precision; if they
exceed unity, too many tapers are being used.

The method is non-parametric since the estimation is based exclusively on the time
series supplied rather than on a particular model of the process producing the data. If any
a priori information is known about the signal, e.g. whether the data is bandwidth-limited,
or that no line spectra are present, or the exact nature of the noise, then "estimations of
higher apparent resolution can be made." The power of Thomson's method is that very
good estimations can be made without making imprecise a priori estimations that can skew
the results towards often arbitrarily predetermined results. One of the major problems of
traditional analysis is that the researcher processes and processes the data until it yields the
results that were expected. However, if good prior information about the system is available,
a method optimized for the particular situation should give results superior to those from
a general solution.

The power of this method for a knowledgeable user is shown in Fig. 2.10, which is
from Thomson's paper (1982). The estimate for the test time series is for all practical
purposes the same as the true spectrum. However, Thomson did much more than just
apply his algorithm, which gives the poor result shown in Fig. 2.11. Thomson utilized the
following multi-step estimation procedure.

(1) Apply the multi-taper algorithm.
(2) Calculate the variance using the F-statistic and identify the frequencies of suspected

line components. This step takes a fair amount of experience and knowledge.
Thomson makes decisions that a user of lesser experience might not be able to make.

(3) Subtract the effects of the line components.
(4) Further pre-whiten the spectrum with an autoregressive (AR) prediction error filter.

Thomson uses a fifth-order filter. Pre-whitening is a method used to remove bias
from the estimate (Hardin, 1986; Newland, 1984). By removing spectral peaks, bias
due to leakage is reduced since bias is proportional to the second derivative of the
spectrum. In addition, since the variance of the estimate is proportional to the mean
of the estimate, making the estimate smaller reduces the error. By making the
spectral estimate flat - white - bias is reduced towards zero and the variance is
constant for all frequencies. An initial spectral estimate is made to locate peak
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frequencies, a filter designed to remove these peaks (prediction error filter), new
spectral estimate made, and the estimate postdarkened by recombination of the
removed peaks.

(5) Residual spectrum postdarkened and the line components added, giving the final
estimate.

2.4 Parametric Methods of Process Estimation
2.4.1 Introduction

For the non-parametric approach to spectral estimation, no assumption was made
about the nature of the data except that the time series values are identically zero outside
the windowed section. This condition is true for a complete transient, but obviously is not
for a stationary segment of a transient. Very often some information is known about the
signal or the source. It might be something as simple as the fact that the frequency content
of the region of interest is band-limited. For example, the resonant frequency of a building
is known to lie within a narrow frequency range. Use of a priori information can allow a
very appropriate model of the process to be used to estimate a very accurate spectrum with
a small amount of data.

The energy spectral density, as represented by the standard periodogram approach
discussed above, can be shown to be identical to a parametric model of a least squares fit
of the time series to a simple harmonic model - the DFf (Kay and Marple, 1981). The
discrete Fourier frequencies are preassigned, as well as the number of frequency bins, based
on the digitized period and digitization speed used to sample the data. In addition, noise
is not accounted for in the model, the energy ofwhich is included in the frequency estimates.
The effects of noise must be removed through the various averaging schemes discussed.

In the above discussion of Thomson's approach, it was pointed out that an
unresolvable limitation of the classical DFf approach to spectral estimation is the fact that
a finite set of values (the frequency domain time series) and observations are used to
represent a function in actuality continuous in both the time and frequency domains. In the
parametric approach, a model with a finite number of parameters characterizes the process.
The recorded data is used to estimate the parameters of the chosen model. Note that there
is an implicit requirement that the model be a good representation of the actual physical
process being studied.
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2.4.2 Autoregressive (AR) Models

The most common approach is to model the system as a linear filter, given by Eq.
2.27

(2.27)

where Yj

~
t

= actual data sequence (modeled as the filter output)
= system input sequence (assume white noise for spectral estimation)
= time step counter.

The output is seen as a combination of the input white noise history acted upon by the "b"
coefficients plus the past outputs acted upon by the "a" coefficients. The input series,
involving the "b" coefficients, is a causal moving average (MA) process (convolutional). The
series involving weighted past output values ("a" coefficients) is a noncausal autoregressive
(AR) process. The lengths of the MA and AR processes must be explicitly chosen so that
the model best represents the actual process (an additional piece of required information
compared to the DFf).

In order to solve for the model parameters, Eq. 2.27 is rearranged to give

q p

boXt+blXt-l +... =yt+a1Yt-l +azYt-2+"'=E bAt-k) =Yt+E aty(n-k)
k=O k=l

(2.28)

The Fourier transform of Eq. 2.28 is taken by applying the shifting theorem to yield

Applying the Z-transform, where 7! = eil$.., to Eq. 2.29, and rearranging, gives

Y(,) bo+blZl+bzZ2+ .•.
H=-

lI) X(,) 1+a
1
z1+ar;2+ ...

The amplitude spectrum of the actual data now becomes

b +b zl+b~72+ ...IY 1= 0 1 -r
lI) 1+a

1
z 1+ar;2+ ... '

(2.29)

(2.30)

(2.31)

since the amplitude spectrum of the white noise input Xli) is a constant equal to one. The
numerator polynomial (in Z, order q) is the MA process while the denominator polynomial
contains the AR coefficients.
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If a process is thought to be a function only of the white noise input being acted upon
by the filter model, the process is said to be a moving average process. The denominator
of Eq. 2.31 becomes identically one, and the roots of the factored numerator (MA)
polynomial are all "zeros" of the equation. If the roots are close to the unit circle, then the
amplitudes of the frequencies close to the zeros will become very small. The spectrum will
be able to model smooth spectra with sharp notches very well, but will poorly define sharp
peaks unless a very large number of parameters are solved for. The AR model is popular
since it can describe a complex process with very few parameters calculated from a small
length of data, and there have been many improvements of the estimation procedure.

The standard periodogram approach to spectral estimation can be shown to be a
special case of the MA process (Cadzow, 1982). This is reflected in the fact that for the
time domain analog, the autocorrelation (from the Weiner-Khintchine theorem), it is only
possible to calculate a finite number of time lags (q+1) for finite data. The autocorrelation
was assumed to be zero outside the time of interest, with attendant leakage problems. For
broad-band signals, this assumption is "almost correct", and it was just shown that a MA
estimation would work very well for such a process.

Since any parametric approach is useful only if it actually is a representative model
of the data process, it is important to develop a feel for AR processes. It has been shown
above that an AR process is a feedback process, described in the time domain as

Y =x-ay -a-v _...
ttl t-l :v t-2

(2.32)

The current output of the model is a function of the current input (assumed to be random
for spectral estimation) and a weighted sum of the past outputs. In this sense, the AR filter
can be seen to model discrete integration, combining past outputs, while the MA filter
models a difference (Robinson, 1982).

Robinson (1982) describes the derivation Yule used in 1927 (Yule, 1927) to formulate
the AR spectrum. Yule imagined a simple, damped SDOF oscillator - in this case an air
damped pendulum. This system can be described in a discrete sense by the homogeneous
difference equation

where c(t)
aj

= displacement amplitude at time t
= model parameters, az is the reflection coefficient.
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The solution to Eq. 2.33 can be shown to be

_ lt sin(t+1) c.>o
ct-e . .

SIn c.>o

where

(2.34)

(2.35)

(2.36)

= impulse response function
= fundamental frequency of the impulse response function.

This result should be compared to Eq. 2.3, where an equivalent system was modeled from
mechanical principles rather than by a parametric feedback process.

The pendulum is then excited by a white noise driving function. Yule postulated
several boys with pea shooters irregularly pelting the pendulum from different locations.
The graph of the motion of the pendulum through time will be quite smooth, with the
amplitude and phase varying continuously as given by

where "t

y(n) +a1y(n-l) +aV'<n-2) =x(n)

= white noise input excitation.

(2.37)

The solution for Eq. 2.37 is

N

Yet) =:E c(k)x(t-k)
k~

(2.38)

where N
c(t)

= number of measurements of amplitude taken
= impulse response function given by Eq. 2.34.

The model uses a finite number of chosen parameters, at and~. Using the data
series yet), the coefficients are found by regressing Yt on the past of Yt - self-regression or
autoregression. The solution utilizes the least squares normal equations filled with the
empirical autocorrelation values for the data series, and are called the Yule-Walker
equations. They result in a Toeplitz matrix and the equations are rapidly solved using
Levinson recursion (Levinson, 1947).
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(2.39)

The AR coefficients can now be used to estimate both the amplitude and phase
spectra of the data series. The AR coefficients model the process in the time domain - they
model the time series. The frequency response of the model, i.e. filter, can be realized by
transforming the model parameters. Evaluating the time domain results around the unit
circle, i.e. taking the Z-transform, yields

NIl
Cr»=EC(n)zn= =----

n=O 1+al'~+azZ2 1+e i1 r»+e i2
l&l

The AR model is much different than the MA-type approach made by the
periodogram, which assumed a sinusoidal process with added white noise. If the amplitude
of the white noise increases, the graph will look confusing, but the periodogram will do a
fairly good job (given enough observations) of picking out the sinusoid. However, the
improved resolution given by theAR approach is dependant on the signal-to-noise ratio
between the sinusoid and background white noise, doing a poor job in noisy environments
(Marple and Lawrence, 1987)

For the AR case, the roots of the factored AR polynomial are all "poles." For
frequencies adjacent to poles near the unit circle, amplitudes will be very large, reminiscent
of the shape of a circus tent close to the poles. If it is expected that the spectrum is
dominated by sharp spikes, then the process can be well modeled as an autoregressive
process.

A serious problem can occur if the actual autocorrelation is not zero outside the
limited number of lags available. This problem occurs when the process is actually made
up of sinusoid and white noise. A more suitable model for this system would be one that
does not window the signal, i.e. does not violently truncate the autocorrelation. The most
common such model is the AR model. This model is merely Eq. 2.31 with the numerator
terms are set to zero, except for the zero time lag which is unity (from autocorrelation of
the input white noise series xJ.

Insight into the above discussion is given in Fig. 2.12 (Marple and Lawrence, 1987).
Figure 2.12a shows the actual, complete autocorrelation for a single sinusoid on the left, and
the true power spectral density for a single sinusoid on the right. The assumptions of the
periodogram method, and the realities of data-limited discrete processing, yield the
truncated, windowed, autocorrelation shown on the left of Fig. 2.12b. The matching biased,
inconsistent, periodogram estimate is shown on the right. Finally, the left side of Fig. 2.12c
shows the effective extrapolation to the autocorrelation made by the very simple Yule
Walker solution for the AR coefficients. This extrapolation results in the sharp, unbiased
estimate shown on the right side of Fig. 2.12c.

Unfortunately, there are an infinite number of valid extrapolations of the truncated
autocorrelation. The Yule-Walker approach (Marple and Lawrence, 1987) to estimating the
AR model parameters is based strictly on the truncated autocorrelation and does not extract
the maximum information out of the available data.
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(b) truncated and incomplete ACS due to limited discrete data and the classical estimation
(c) Burg's ACS extrapolation and improved AR spectral estimation (Marple. 1987).
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2.4.3 Maximum Entropy Method

The Burg algorithm (Burg, 1975) is the most popular method for estimating an AR
process. This is the so-called Maximum Entropy estimation. As for all AR methods, the
spectral estimation process is two-fold. The first step is the calculation of the model
parameters from the recorded data. This is done in the time domain, and is where the
effective extension of the autocorrelation manifests itself. The second step is to transform
the AR coefficients into the spectral estimate. However, the Burg approach estimates the
AR parameters without making any explicit estimates of the autocorrelation.

In the time domain, there are only a limited number of lags of the autocorrelation
known, and an infinite number of possible extrapolations. The problem is to choose the
''best'' representative of this infinite class. Burg chose the spectrum which corresponds to
the most random time series whose autocorrelation matches that of the actual data series.
Burg generates a new data set, based on the actual data, which is the most random possible
in an entropy sense. The reasoning is that this imposes the fewest possible constraints on
the solution, minimizing the bias. The extrapolation supplies additional information so that
the estimate has very high resolution compared to other methods, and is optimal for short
data sets (Hardin, 1986).

In this case, the concept of entropy has to do with measuring the information content
of a "message", or combination of symbols (Shannon, 1948). Maximizing information is the
same as maximizing choice when selecting a message; and the more freedom, the more
uncertainty as to the outcome (Radoski et al. 1975). The entropy of a distribution is
maximum when all probabilities are equal. Since Burg's new data set has the most
randomness (maximum entropy), the associated spectral estimate has a high resolution since
it uses all the possible information contained in the estimated autocorrelation, when
extrapolating beyond the limited number of lags to the "true" autocorrelation.

Radoski states that the entropy function to be maximized is

where E
S(<J»

<J>o

at

+6>0

E; f Ln[S(<J»]d<J>

= entropy function
= spectral density
= Nyquist frequency, 7r/Nat radians
= digitization interval.

(2.40)

The problem to be solved is to calculate a spectrum that maximizes the entropy function E,
subject to the constraints of the actual, lag-limited, autocorrelation estimate. For an infinite
data series, the Burg estimation and the periodogram would be identical. Rather than use
the (incomplete) autocorrelation estimates to calculate the AR parameters, i.e. the Yule-
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Walker equations, Burg uses a least squares approach to mmUDlze the forward and
backwards prediction error with respect to the last filter element ~, and solving for the
remainder of the parameters by Levinson recursion. A very important advantage of Burg's
technique is that it is optimized for use of a very small number of data points to yield a
robust system estimate.

Since the introduction of the Burg method, many other estimation schemes have been
proposed to improve on limitations. Swingler (1979) points out that the bidirectionality
constraint limits the application of Burg's method. Not all deterministic signals, such as
exponential decays, can be successfully modeled. This failing should not be too surprising
since Burg's derivation was for stationary signals. Swingler also states that the insistence on
using Levinson recursion causes small frequency shifts for sinusoid under certain phase
conditions. Swingler presents a non-recursive least squares estimate that is functionally
identical to that proposed by Ulrych and Clayton (1976).

Spectra estimated by the AR models have a typical swept-peak shape. The peaks are
located at the correct places, but their shape is not a function of the signal itself. In fact,
the number of peaks calculated is a function of the AR order chosen by the user. There will
be approximately one peak for every two parameters chosen, which follows from Yule's
derivation. The typical AR spectrum shown in Fig. 2.13a exhibits the "peaky" shape and
good estimation of sharp peaks typical of the AR estimate. In contrast, Fig. 2.13b shows the
sharp drops well modeled by the MA spectral estimate. As expected, the combined AR-MA
estimation is a combination of the two. Note that the shape of the peaks is a function of
the estimation procedure chosen and not merely a function of the data itself.

These points are illustrated in Fig. 2.14, which shows the least squares AR estimation
of the spectra presented in Fig. 2.7 (Marple and Lawrence, 1987). This estimate does a far
superior job modeling the actual spectrum than the classical approach, but excessive peaks
are evident.

2.4.4 Autoregressive-Moving Average (ARMA) Model

It has been mentioned above that the AR estimate is not suitable for cases with a low
signal-to-noise ratio (SNR), since the all-pole model is not valid for "sinusoid in white noise."
While most strong-motion records have a high SNR, an important insight can be gained by
examining this problem (Kay and Marple, 1981). The white noise corrupted AR process is
defined as :

(2.40)

= pure AR process
= observed white noise with mean = 0 and variance CJw

2•
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Fig. 2.13 Typical parametric spectra from the (a) AR(4) model, (2) MA(4) model,
and (3) ARMA(4,4) model (Marple, 1987).
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Since the white noise is uncorrelated with the process "n, it can be shown that

0
2
+0 2 A(z)A * J..]l1t

w *ZP,(z) =J..- -->-~!--

A(z)A • ('1.)
(2.42)

where Py(z)
A(z)
*

= spectral density of the corrupted AR process in the Z-domain
= filter parameters
= complex conjugation
= digitization rate.
= variance of the output.

The noteworthy property of Eq. 2.42 is the fact that the spectral density is
characterized by parameters in both the numerator and denominator. This model was
described by Eq. 2.31 and is an ARMA model characterized by both poles and zeroes. The
ARMA model is very powerful in that it can easily model sharp drops, sharp peaks, and
smooth spectral behavior. It is also the most parsimonious estimator. Since the ARMA
model is the most general, it's use would eliminate the problem of deciding whether the
process is AR or MA.

The major problem of implementing an ARMA model is the difficulty in calculating
the parameters. The most straight-forward approach is to solve the Yule-Walker normal
equations for the ARMA process. However, in this case the equations are very nonlinear
and difficult to solve (Cadzow, 1982). Simply applying a least squares solution is not
sufficient since there is no guarantee of convergence, or if the given answer is the result of
convergence on a local extreme.

A common solution is to solve for the AR and MA parameters separately and then
rationally combine the two. This is done by generating the extended Yule-Walker equations,
an example of which is given in Cadzow (1982). Treitel derived a least squares technique
that solves the ARMA parameters in a unified manner, has a minimum-delay denominator,
and always converges (Gutowski et aI., 1978; Treitel et aI., 1977).

Another problem to be considered is the estimation of orders of both the AR and
MA parts of the ARMA model. In addition, for the more complete system identification
models, the orders of the noise system must be consistently estimated independently from
the system (van den Boom and van den Enden, 1974). For some physical systems, such as
the SDOF oscillator for which the AR model was derived, the estimation of AR order has
physical meaning. For other processes, the order must be guessed at, with various
theoretical and empirical methods of deciding the optimum AR order. Akaike (e.g. 1981,
1970) approaches the problem from a similar point of view as Burg, and uses a maximum
entropy criteria for deciding the proper model order. This criteria minimizes the
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"information distance" between the model and the actual process. Too few parameters and
the distance is great, too many and the distance slowly increases due to over-determination.
The criterion is the so-called Akaike Information Theoretic Criterion, or Ale.

There are many empirical methods proposed to determine the proper model orders
(e.g. Marple and Lawrence, 1987; Bohlin, 1984; Astrom, 1980; van den Boom and van den
Enden, 1974). The most straight-forward method is to increase the orders until the
"innovations" series

where Yt
~t

= actual output at time t
= prediction of output at time t made at time t-1

(2.43)

becomes white noise. A second check that all the information is being "used" by the
estimation is to check if the cross-correlation of the input series and the innovations is white
(Astrom, 1980). At this point, all the information available has been used.

Through a process called Wold decomposition it can be shown that AR, MA, and
ARMA processes are related, in that a ARMA or MA process of limited length is equivalent
to an AR model of infinite length. An infinite length of MA filter is also equivalent to a
given AR or ARMA series. Therefore, a AR model with order much greater than the true
model order is a possible solution to a low SNR condition. In order to avoid the problem
of spurious peaks in the spectral estimate, the model order should be kept to less than half
the number of data points.

Another method for dealing with noisy data is to compensate for the uncorrelated
noise. This is done by either weighting the zero lag of the autocorrelation, or a similar
process with the AR coefficients. The rationale behind the increased weighting of the zero
lag is that the noise is considered white, with an autocorrelation of one at the zero lag and
zero thereafter. Increasing the value of the actual autocorrelation at lag zero effectively
suppresses the effect of the noise on the solution.

2.5 Spectral Estimation
2.5.1 Introduction

The parametric and non-parametric methods discussed are just a few of the more
popular models for describing a process. While the thrust has been towards spectral
estimation, it must be remembered that all these methods are time domain solutions with
spectral analogs. The important question now becomes, in the words of John Tukey, "When
should which spectrum approach be used?" (Tukey, 1984). Unfortunately, there is no easy
answer to this question for any interesting real-life situations. For problems of interest, such
as analysis of an earthquake strong motion record, the theoretical caveats needed for the
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mathematical derivation are not applicable, in particular the assumption of stationarity.

An important argument is made by Brillinger and Tukey to approach the subject by
using "leading cases" (Brillinger and Tukey, 1984). An example of this concept is the use of
point mass assumptions in mechanics, which strictly is not "correct," but is commonly used
without complaint and with outstanding results. Rather than approach spectral analysis with
strict hypotheses, Brillinger and Tukey suggest looking at the practice of stochastic spectral
estimation as "...an umbra within a penumbra."

Three successively larger spheres of application can be described:

(1) An inner core of mathematically derived application. This region is generally too
narrow for application to real problems. An example is a process that actually is a
sum of a few pure sinusoids, or a process with these qualities unvarying, realization
after realization. No example from physical science can be given.

(2) A middle area where there is reasonable understanding of the process and the
performance of the method used to assess the process; the meaning of the spectrum
is clear. There usually is additional information about the process at hand, but all
detailed questions are not yet able to be addressed. This large area is dominated by
"stationary" processes with finite variance. ''This is not because the region of use of
the concept of a spectrum is confined to stationary processes, but because stationary
processes are easier to think about."

(3) The third, largest, region is where the technique is actively being used by practitioners
and researchers. In this area the understanding of the model and process gained in
the inner two areas is applied and used. A prime example is the use of spectral
techniques with non-stationary data or "unique", one-of-a-kind data from a process
that "...having a process would require an ensemble of parallel worlds."
(earthquakes?). The famous work of Munk on ocean swells is a perfect example of
the important information that can be gained by applying spectral methods to very
non-stationary time series (Munk and Snodgrass, 1957).

A "non-stationary" process, such as an earthquake strong motion record, can be
interpreted in many different ways. On one end of the scale the signal can be seen to be
made up of short stationary segments, each of which has a story to tell. In fact, this is a
common and useful method for working with non-stationary signals. Both the Thomson and
Burg estimates of spectral density were derived for use on such short data series. Another
approach to the "microzonation" of a data record is the concept of evolutionary spectra put
forth by Priestly (1988). In this approach, the spectrum of an oscillatory process is estimated
in the "neighborhood of time instant t" rather than over all time.
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The other end of the scale is to view physical processes in a very macroscopic light
(Brillinger and Tukey, 1984):

All we know of the world is consistent with the idea that all events are periodic with period
1020 years. And a process made up of all displacements of a periodic phenomenon - with
uniform probability - is a stationary process. Thus anything we find in the world could, with
this definition, come from a stationary process.

2.5.2 The Concept of a "Spectrum"

Non-stationarity does not doom spectral analysis, but requires extra diligence and care
to insure that meaningful estimates are given. The implications of each step must be
examined so that effects such as leakage do not cover the desired information in the process.
The most important implication that must be addressed is, what is meant by the concept of
a "spectrum"?

As commonly used, the frequency spectrum represents a given signal in time as
sinusoids of various frequencies. The various frequency components present in the signal
are presented in their relative energy amplitudes. This usage implies an oscillatory signal
made up of "discrete" sinusoidal components. An example might be the several modes of
excitement of a simple oscillator, or the characteristic frequencies of a "good" rotating
bearing verses "bad". The calculation of the spectrum is merely a mathematical transform
which sometimes makes a desired facet of the data easier to find. In this sense, the
spectrum is no different than the use of semi-log or square-root plots.

This concept of frequency spectrum is in direct contrast to the representation of an
arbitrary waveform shape by its Fourier frequencies. A single square-wave pulse has a well
known spectrum, the sinc function, made up of theoretically infinite frequency components.
In the present context this square-wave does not have "frequency" since it is a single pulse
without multiple oscillations. Multiple occurrences are needed before one can speak about
the frequency of an occurrence and interpret the information yielded as the energy
contained in the various frequencies of oscillation.

For practical applications even this straight-forward "definition" of the spectrum has
conflicting implications. Priestly (1967) gives the example of an exponentially damped sine
wave, a very common physical realization :

where fo = CJ>o!21r.

Y
t

= e -at sin(2rc.fot) (2.44)

An example of this signal at :fo = 20 Hz and a=8 is given in Fig. 2.15a. The Fourier
spectrum pair is shown in Fig. 2.15b, where it is seen that the spectrum, while having a peak
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at 20Hz, contains components of all frequencies. This is a function of the damping, which
makes the signal non-stationary since the variance is continuously changing. However,
practical considerations gives the alternative interpretation that the frequency is a constant
20 Hz while the amplitude is changing as a function of time. No engineer with real-world
experience would dispute the pronouncement that the signal in Fig. 2.15a has a spectrum
indicating a single oscillatory frequency of 20 Hz. In this case the results are "theoretically"
incorrect, but for the engineer estimating the process parameters the "error" at 0 Hz has the
benefit of yielding the system damping.

2.5.3 Non-stationary Signals

It is interesting to note that if an "infinite" sinusoid at 20 hz is sampled over a finite
time, and windowed to minimize leakage, results are very similar to Fig. 2.15b. In essence
sampling turns a signal into a transient and windowing makes the transient non-stationary.
An earthquake strong motion record becomes slightly more "proper" when it is thought of
as a self-windowed signal (of infinite length if desired) with some white background noise.
In this case, the effect of the self-"windowing" is useful since it can provide an insight into
the system damping.

Inherent in the transformation of a time signal to the frequency domain is the
averaging of the signal components over the sampling period T. A piece of time is frozen
over this period and the assumption made that all time before and after is the same, i.e.
repeated forever. The energies present at each component frequency are integrated over
the entire time period T. The difficulty with non-stationary signals is that these energies are
changing during this period. If the frequencies present are changing over this time window,
the resulting estimation, regardless of method used, will be a smeared average as if all the
frequencies with energy were active throughout the entire period.

For weakly non-stationary processes, the effect over a small time period is
unimportant. If needed, the signal can be cut into relatively stationary sections and spectra
found using methods specially designed for short data segments, Le. Thomson's or Burg's
method. This approach can be optimized using an Akaike Ale criterion (Akaike, 1974;
Gersch and Brotherton, 1982).

If newer, recursive/adaptive methods, such as Kalman filtering, are used to yield a
time-varying parameterization of the process, the idea of "frequency" must again be
examined. The concept of an "instantaneous" frequency in the traditional context is
meaningless. There must be some time period T over which to sum the energy expended
(work) at each frequency. The work done is averaged over T, hence power spectrum
(power = work done/time taken).

This problem is largely one of semantics arising from the imprecise manner of
everyday language. In its most common, and traditionally correct usage, the spectrum
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(amplitude, energy, or power) is the infinite sum of sinusoids with arbitrary amplitude and
phase, necessary to represent a given waveform. In this usage the waveform can be
stationary, or a non-stationary transient, oscillatory or simple. In this usage a particular
duration of signal is also not required, e.g. the Dirac delta function being represented by a
sum of sinusoid of all frequencies. As discussed earlier, this approach is strictly correct only
for the infinite analog case, and application to the discrete, digital domain has attendant
problems.

In the case at hand, the problem is to describe or parameterize a process. In
actuality, all the approaches discussed take place in the time domain (the classical Fourier
approach is actually a computationally simpler version of the autocorrelation approach),
yielding an impulse response function. This function is customarily transformed into the
frequency domain, now called the frequency response function or transfer function, since this
representation is visually less complicated and the desired system characteristics are more
obvious. In particular, the system fundamental frequency is exceptionally obvious whatever
method is used to estimate the process spectrum.

The Fourier-based methods attempt to characterize the process autocorrelation by
assuming a uniformly spaced sinusoidal basis function with no explicit parameters involved.
This method was seen to work fine if the process can accurately be modeled thusly. The
parametric methods attempt to explicitly model the process through equations involving a
limited number of parameters that must be experimentally discovered. These methods work
well if the process can be accurately modeled by the chosen method, with the added
difficulty of determining the model order. In both of these methods the process is
characterized by the autocorrelation or model parameters. The spectral presentation is only
an alternative method of presenting the data in a more palatable manner.

2.5.4 The "Instantaneous" Spectrum

Against this background it is sensible to speak of the "instantaneous spectrum," which
now means a frequency domain representation of the behavior of the system at a given
moment. At any given instant a filter (system) can be said to behave as, for example, an AR
process of order two, with the two parameters representing a given damping and resonant
frequency, free to change as the source motion changes or the structure undergoes damage.
As described in Fig. 2.1, what is estimated is a filter that converts the known input into the
measured output. The different methods discussed are merely different schemes for
estimating that filter, which can be presented in the time domain or the frequency domain.
With this clearer understanding in mind, methods allowing time varying system parameters
will be discussed.

An early method of directly analyzing time varying signals was the use of complex
demodulation (Brillinger, 1988; Bloomfield, 1976). For a signal with slowly changing
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amplitude and phase, complex demodulation will supply an estimate of these values. The
method can be thought of as harmonic analysis in a local time span t±At. The frequency
of interest, which must be identified beforehand, is isolated by narrow band-pass filtering.
The signal is modulated by a complex exponential and then locally smoothed to yield the
local amplitude at the frequency in question. This method, which is rather cumbersome and
involves ad hoc filtering and knowledge of spectral peaks, has not been used for
identification purposes and is included here for completeness.

Using traditional methods to estimate strongly non-stationary processes can yield very
unsatisfactory results, as was seen above in the damped cosine example. Priestly (1967)
describes early attempts to define an "instantaneous" spectral estimate, starting in 1952
(Page, 1952). Priestly puts forth an evolutionary (time dependant) power spectrum which
he describes as local energy distributions over frequency. Priestly computes an evolutionary
spectrum using spectral windows with various parameters, similar to the periodogram
approach, and therefor suffers the same difficulties. Recursive least squares methods are
now available which estimate AR or ARMA parameters describing the behavior of the
process at each time step (Marple and Lawrence, 1987).

2.6 Modeling Non-stationary Processes - Adaptive Filtering
2.6.1 Introduction

For practical stationary problems the most straightforward method is in essence least
squares deconvolution, or calculation of the Wiener optimum filter (Kanasewitch, 1981;
Wiener, 1964). This method assumes knowledge of the autocorrelation of the input signal
and the cross-correlation of the input and output signal. The system parameters are solved
for directly in the time domain and the defining response function transformed into the
frequency response function. The problems involved are the estimation of the various
covariance functions without an infinite length of data, and these problems have been
discussed in previous sections. This method is valid if the signal or filter does not change
during the period of interest and could be applied to stationary-segmented data.

The field of adaptive filtering was formed to model non-stationary processes. As the
statistics of the signal change through time, the filter "adapts" to the changing variance with
new parameters that reflect the structure of the system at that point. The predicted value
for the next time step can be compared with the actual value, and the difference
(innovations, Eq. 2.43) will give a measure of how well the filter is doing its job. The term
"innovations" is used because this information is new information that can not be predicted
by the model at this particular step.

Autoregressive parameters can be sequentially estimated so that the parameters are
adaptive to the changing nature of the process (Marple and Lawrence, 1987). The AR
parameters are updated after each data point, tracking slowly non-stationary signals. A
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forgetting factor, commonly a damped negative exponential, is used so that older data carries
less and less weight. The spectral estimation can be made at any time step by evaluating the
AR parameters around the unit circle, giving the spectral description of the behavior of the
process at that time. The most effective variant of the recursive least squares algorithm was
developed by Ljung (Ljung and Soderstrom, 1983; Ljung et at, 1978; Falconer and Ljung,
1978).

2.6.2 Kalman Filters

The most popular direct adaptive filter, or process model, is the so-called Kalman
filter (Kalman, 1960; Kalman and Bucy, 1961). Sorenson (1970) points out that the Kalman
approach is a direct descendant of Gauss's least squares, except now neither the signal nor
the noise model must be stationary - the state may change from sample point to sample
point. The solution is recursive and is presented in state-space (Soderstrom and Stoica,
1989) which uses differential equations rather than integral equations to represent the
model.

Nau and Oliver (1979) state that the Kalman filter is based on a dynamic AR model
defined by "two concurrent random equations of motion":

the AR(p) equations of motion, and the "motions" of the parameters,

cl>t=<I>t-l +bt

(2.45)

(2.46)

where p
H t -1

CPt
at
bt

= number of prior observations utilized,
= vector of p prior data observations ~-1,xt-2, .••,xt-p,

= vector of p AR parameters,
= Gaussian white noise with 0 mean and variance (]2,

= Gaussian white noise with 0 mean and covariance matrix Q.

Equation 2.46 estimates a value of cf>t comprised of p previous parameters, through
a random walk equation. The estimate uses the weighted p previous data points, and yields
a new observation Xl when added to a new noise value.

The problem is to use Xr-l to filter and make good estimates of what values of <Pt-l occurred,
to estimate future values of 9t from Eq. 2.46 and then use Eq. 2.45 to forecast future Xr's,
repeating, as needed, the cycle of filtering and forecasting. (Nau and Oliver, 1979).

The least squares solution solves the equations so that the innovations (Eq. 2.43) - new,
dynamic information that cannot be predicted - are minimized in a least squares sense each
time step
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Kalman noted that all relevant information about all the previous data is contained
in the posterior covariance matrix of the parameter distributions

where H(x)
t = entire history of the process up to and including time t.

(2.47)

The estimate is an explicit function of only the data history and the previous best estimate
of the state, so that there is no need to use linear regression to completely re-estimate the
AR parameters after each new time step.

Graupe (1989) discusses the extension of the Kalman filter to take into account
colored measurement noise, rather than strictly Gaussian white noise. This is possible if the
noise is still uncorrelated with the signal. This Augmented Kalman filter becomes a ARMA
representation, with the colored noise represented by the MA component in a manner
conceptually similar to Eq. 2.42. The theory behind the Kalman filter can be manipulated
to yield the system parameters for the case where there is no a priori information about the
noise, and even when there is no information about the input signal. However, these
techniques seem designed for communications problems where the engineer actually has at
least some additional conceptual information about the system being studied.

The so-called extended Kalman filter has been very successfully applied to non-linear
estimation problems (Ljung, 1979; Astrom and Eykhoff, 1971). The manner of application
is actually straight-forward. The Kalman model is constantly updating its estimation of the
dynamic process by examining the innovations. The dynamics can be due to a changing
input or noise process, or it can be due to the system itself changing. The effect is a
linearization between single time steps, but if the system is changing slowly compared to the
time step used, the linearization is "invisible" and the non-linear behavior is well modeled.
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CHAPTER 3 ESTIMATION OF SOIL PARAMETERS USING SYSlEM
IDENTIFICATION lECHNIQUES

3.1 A Framework of Understanding
3.1.1 Introduction

This chapter will present some interesting and fruitful approaches to applying the
system identification (SI) methods presented in the previous chapter. Given an excitation
input and the system output, the goal is to identify various physical parameters that control
the dynamic behavior of the soil mass. Typical parameters to be identified are soil layer
resonant frequency and damping ratio. These are the obvious choices since it has been
shown that the ARMA evaluation techniques were derived to model the dynamic process
as SDOF oscillators. Other parameters that has been studied are the "amplification" of
ground motion as the seismic energy moves from stiff bedrock to the much more compliant
soil, and identification and simulation of strong ground motions.

This report will be concerned with the application of SI to the problem of identifying
soil parameters. It will not attempt to cover the large field of work done in the application
of SI to the soil-structure interaction problem (e.g. many papers in the journal Earthquake
Engineering and Structural Dynamics; Ghanem et aI., 1991). This report will present some
interesting examples of the use of dynamic models to characterize in situ soil behavior.

The work to date in seismic SI can be divided into two large groups - continuous
excitation and transient excitation. Examples of continuous excitation are shakers and
ambient excitation. Earthquakes and seismic testing methods are examples of transient
excitation. In relation to analysis methods available, these two group can each be divided
into stationary and non-stationary sources. Excitation of the soil through a servo-controlled
shaker is certainly a known, stationary force, so that the straight-forward methods of Bendat
and Piersol (e.g. 1986) can be used to calculate soil damping and resonant frequency. The
use of ambient vibrations, while often considered to be white processes, can very well be at
least weakly non-stationary.

Seismic methods, such as impulse loading and use of explosives, are non-stationary
but very repeatable. The repeatability of the input allows ensemble averaging, and the
averaged process can be well characterized by simple Fourier analysis. Finally, earthquake
excitation is obviously non-stationary and non-repeatable. It is for this situation, where the
amount of information is limited, that system identification techniques are of the most use.

When analyzing the in situ soil profile, the geotechnical engineer must work with very
large "structures." It is difficult to artificially excite a significant mass of the earth to levels
suitable to employ system identification techniques for strain levels even approaching
threshold strain. An obvious source for larger strain levels is an earthquake. In the past
several years there have been a few instrumented sites where strong-motion records have
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been recorded within the soil as well as on the surface. For these cases the techniques
discussed in the previous chapter can be used to calculate soil parameters, as well as to study
how the parameters might change during the shaking.

3.2 Continuous Forced Excitation of the Soil
3.2.1 Introduction

The simplest method of determining the dynamic behavior of a structure is to use
forced vibration. In this case the excitation is under complete control of the experimenter,
and the input forcing function known. If the soil can be modeled as a one layer system for
the problem at hand, then solution presented in Sect. 3.2.2 can be utilized (Richart et al.,
1970). The driving function is stationary, and duplicate data can easily be collected. This
makes a proper DFT-based spectral estimate very accurate. The gain factor can be plotted,
the resonant frequency and soil stiffness found, and the soil damping calculated from the
half-power point (Bendat and Piersol, 1980). This method can be expanded to examine
higher modes of vibration.

3.2.2 Applications to Multiple Layered Profiles

In the more common situation the soil must be considered a layered system, with
each layer having its own distinct set of descriptive parameters. This case is modeled as a
series of SDOF linear oscillators. The system will be characterized as the compound filter
that converts the known force input into the measured surface displacement output. The
solution to this inverse problem is not necessarily unique, especially if the actual input
motion is not precisely known and near-by ''bedrock'' motion is used (Udwadia et al., 1978).

An N-layered soil system typically can be modeled as an N-degree-of-freedom
lumped mass system, as illustrated in Fig. 3.1. If the mass distribution is known, Udwadia
has derived a method whereby the damping and stiffness of all layers can be uniquely
determined for forced VIbration with one surface transducer (1986). The method is valid for
linear response only. Since the force-time history of the exciting shaker and the system
output is known, this method is fundamentally similar to the simple case just described.
Udwadia notes that a good signal-to-noise ratio is an important parameter to insure low
variance in the system parameter estimates.

A similar but less-controlled variant of Udwadia's method is to use background
ambient vibrations as the excitation, making the potentially incorrect assumption that this
excitation is gaussian white noise. An apparent application of this approach is presented by
Ohmachi for a suite of locations in the San Francisco Bay area (Ohmachi et at, 1991).
Three-component surface measurements were taken, three times each at the several
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locations. Small subsections (1024 points) of the data were taken, Fourier transformed, and
smoothed by multiple passes of a Hanning lag window (see Newland, 1984). Three such
spectra were then averaged for each component at each location.

This study was based on a method developed by the Japanese National Rail (JNR)
to study soil characteristics along rail lines using microtremors (frequency content 0.5 to 20
Hz) as excitation (Nakamura, 1989). Noting the virtual impossibility of taking an adequate
amount of data without colored interference from social activities, Nakamura derives a
method to rid the data of these effects. He claims that the social sources, the "noise",
produce mostly Rayleigh waves, dominated by vertical motion. The attempt is then to
eliminate the effects of the surface wave.

Based on a comparison of five rock sites and four soil sites, Nakamura claims that
for rock the magnitude of vertical acceleration is the same as the horizontal. For soils the
horizontal amplitude is greater than for the vertical. This is a broad assumption based on
the small amount of data presented. He goes on to claim that the amplification of motion
from a stiff layer to soft is through multiple reflections throughout the soil layer. This
assumption is patently false since it violates conservation of energy. In fact, net energy is
lost through reflection, otherwise an amplifier using no input energy could be built with a
pile of plates.

This background is used by Nakamura (1989) to state that the effect of the R-wave
can be measured by taking the ratio of the vertical displacement between the surface and
a subsurface acceleration record. Breaking the previously made assumptions, Nakamura
proceeds to derive a method that he claims will allow the estimation of the transfer function
of "surface layers from tremor on the surface only. II This is done through a ratio of the
horizontal and vertical spectra, and called the "spectral amplification factor." The trick
seems to be that, for the frequencies of interest, the R-wave has the same spectral amplitude
in both the vertical and horizontal directions. He then adds, "Note, however, that the
estimation accuracy drops when there exists a noise tremor agreeing with the prevailing
frequency in the estimated transfer function. II

While this technique would nullify common excitation factors, it would also nullify any
common response characteristics. Just because a white excitation itself is uncorrelated (non
orthogonal) does not mean that the vertical and horizontal system response will be
uncorrelated. Until further explanation is published, this method seems to be biased and
not connected to system behavior in an unique manner. Finn (1991) states, "Nakamura's
procedure for determining site periods and amplification factors is based on some tenuous
assumptions." In addition, the parameters reported - "predominant frequencies" and
"amplification factors II - are not the commonly understood process parameters and are index
properties.
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The results presented in Nakamura (1989) shows that the method gives acceptable
results for certain conditions. Indeed, JNR would not monitor the entire length of all
Shinkansen lines if the method gave no useful results. Since the given derivation is
contradictory, either the method works because of R-wave coincidentally canceling for the
sites of interest, or there is a more complete derivation that has not been presented in
English. In addition, there is a problem with using microtremors to characterize the strong
motion behavior of a site. Data from Japan show that the microtremor techniques
overestimate the transfer function by up to a factor of five compared to the strong motion
results (Seo, 1989). In addition, evidence shows that the fundamental period shifts for strong
motion accelerations.

3.2.3 Modal Analysis

The behavior of a well-defined structure under forced vibration can be used to
ascertain information about the supporting soil system. The results of these tests have been
used to measure soil stiffness beneath bridge piers (Crouse and Hushmand, 1987). Thirty
accelerometers were placed at various locations of the bridge, and a detailed modal analysis
of the bridge response to a large eccentric mass shaker was undertaken. It was found that
the second (primary torsional) mode was found to best characterize the soil-structure
interaction.

A variational form of Rayleigh's principle was used to estimate the stiffness of the
Winkler springs used to model the stiffness of the soil beneath the bridge footings.
Lagrange's equations were used to write the equations of motion relating to an assumed
deflection shape. The actual geometric, inertial and displacement responses of the bridge
were then substituted into these equations, and spring stiffnesses estimated when the
substitution led to convergence.

The calculated stiffness of the sounding soil mass matched very well with results from
finite element analysis and experimental estimates. The computed resonant frequencies
were almost identical to those observed for the first four modes. While yielding good results,
this method is quite complicated, both experimentally and computationally. In this case
thirty channels of acceleration data had to be recorded and analyzed. In addition, the
authors note that the technique will only work with very well characterized structures since
the effects of soil and structure must be separated. The values given are for an averaged
lumped soil mass and not for each soil layer independently, therefore this method would
probably not be of much help to identify layers of potentially liquefiable sand.

3.2.4 Estimation of Soil Properties from Impedance Functions

One powerful method of describing the dynamic interaction between a vibrating rigid
body and the soil is through dynamic impedance functions. The method was developed to
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(3.1)

analyze rigid machine foundations as a function of the excitation frequency. The dynamic
impedance function, ~, is decided for an "associated" massless foundation, and then the
steady-state behavior of the actual foundation and any mass resting on it can be easily
calculated. The impedance function can be determined analytically, numerically, or
experimentally. The following discussion of impedance functions is from a paper by Gazetas
(1983).

For each harmonic excitation frequency the impedance, K, is defined as the ratio of
the steady-state force and resulting displacement at the interface of the soil and foundation.
The vertical impedance can be written as

K = ~ ei(,)t = harmonic vertical force
v Ve i(,)t uniform harmonic settlement

Since the dynamic force and displacement will generally be out of phase, the displacement
can be split into one component which is in phase with the force, and an orthogonal
component. The dynamic impedance can then be expressed in a complex form:

(3.2)

where m = displacement mode, i.e. vertical, horizontal, rotational, torsional, or coupled.

In this format, the real part contains the effects of the stiffness and inertia of the supporting
soil mass, and the imaginary part describes the radiational and material damping of the soil
mass. Both the stiffness and material damping are believed to be frequency independent,
so K", will vary due to the frequency dependant behavior of inertial mass and radiational
energy loss.

The SDOF oscillator can also be represented by the complex dynamic impedance
function in the form of Eg. 3.2:

where (k-M<a>2)
C6>
M
k
C

= K1
= K2
= mass
= static soil stiffness
= soil damping.

(3.3)

Therefore, if the dynamic impedance function for a specific footing and soil system can be
both experimentally measured and numerically calculated, the soil parameters can be
identified through an iterative process.
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The impedance function, Eg. 3.3, can be written in a more common form:

where k
/3

= static soil stiffness
= C/Ccr = Cc.>nl2k = damping ratio
= j(k/M) == natural frequency

(3.4)

or, in short-hand form,

(3.5)

where k
K

cs

= static soil stiffness
= (1-c.>2/c.>n2) = stiffness coefficients
= CIk. = damping coefficients.

Gazetas notes that, in the form of Eg. 3.5, the dynamic impedance of the SDOF oscillator
can be seen as the product of the static stiffness of the soil and a complex number
incorporating the dynamic characteristics of the system. The stiffness coefficients decrease
with increasing frequency while the damping coefficients stay constant, as shown by the chart
in Fig. 3.2.

In reality, however, the relation between the stiffness and damping coefficients, and
frequency, is complex for soil-foundation systems. The behavior of the dynamic factor of the
impedance function will depend on the mode of vibration, geometry, rigidity, and
embedment of the foundation, and the profile and elastic properties of the soil system.
These complications are the reason that difficult numerical techniques, only available since
the mid-1970's, must be used to estimate impedance functions. The experimental
determination of these functions has also been a difficult task (Crouse et al., 1990).

A small rigid footing can be excited by forced vibrations to determine actual
impedance functions in situ (Luco and Wong, 1990). The soil is modeled as several
horizontal layers overlying a half-space. The parameters of the theoretical function are
varied until there is a least squares match between it and the experimental function. This
allows the identification of the shear-wave velocities (stiffness), material damping ratios, and
Poisson's ratios of the soil layers. Luco and Wong used the full set of impedance functions,
incorporating all five modes of vibration, in their theoretical calculations.
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This technique was evaluated with a set of data from a foundation test in the Imperial
Valley, CA (Crouse et al., 1990), which only contained the experimental functions for three
modes. The resultant velocities were different from the experimentally measured values, but
within the experimental variance of the SASW method used to measure the in situ velocities.
However, the damping ratio values were very erratic and unrealistic.

The impedance function method has been further refined to improve the damping
estimates CLuco and Wong, 1992). The primary concern of this paper was to ascertain the
effect of frequency on the identification accuracy. Since the applied force is proportional
to the square of the frequency, the force at low frequencies is small and approaches the
noise level. However, damping values are best defined at low frequencies. It was shown
that damping ratios for soil deeper than one-quarter of the wavelength associated with the
frequency of interest cannot be accurately identified. A similar relationship between
wavelength/frequency and depth of sampling was found in the derivation of the SASW
method.

Luco and Wong (1992) also found that data error degrades the estimates of the
properties of deeper layers, especially the damping ratio. As expected, the use of more
impedance functions (different modes) improves the identification. The authors improved
their results by the use of a weighting function (smoothing) on successive estimate iterations.

While the use of impedance functions to estimate in situ soil properties shows
promise and has good theoretical grounding, it is very limited as to the depth of soil it can
characterize. The maximum is only a few meters. The experimental and analytic overhead
is also quite daunting. The forced vibration techniques differ from the typical system
identification methods discussed in Chapter 2 in that the parameters were identified through
mechanistic/deterministic models of specific behavior rather than fitting the output time
series to a more general model such as the AR feedback model.

3.3 Non-stationary Excitation of the Soil System
3.3.1 Continuous Excitation

Forced vibration methods are often limited because there is no way to input enough
energy into the system to allow a large amount of soil to become involved. A solution to
this problem is to use natural excitation. A constant, repeatable source would be
appropriate, since it would allow large data sets and redundancy to minimize bias and
variance in the estimates. Ideally, simple DFf methods could be used with excellent results.
Of course, this assumes that the natural signal is stationary, as was assumed by Ohmachi et
al. (1991). For example, Gersch et al. (1973) used a maximum likelihood ARMA estimation
of the system parameters from two different length time series from a wind-loaded building.
The estimated damping ratio and resonant frequency, and their coefficients of variation,
were consistent for the first two modes of the 625 point and 2500 point series. This led the
authors to conclude that, in this case, the wind loading is a white noise excitation.
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Ambient vibration, however, is non-stationary in the long-term. A straight-forward
solution is to break up the non-stationary record into stationary pieces. The simplest
method is to assume that the variance is changing slowly, and break the record into relatively
short, equal-length segments. These segments can then be independently analyzed and
modeled (Popescu and Demetriu, 1990; Gersch and Martinelli, 1979).

A much more efficient approach is to use the Akaike Information-theoretic Criterion
(AlC) to divide the record into locally stationary, contiguous but not necessarily equal length
segments (Gersch and Brotherton, 1982). Each locally stationary segment is then assumed
to be made up of two components. The first is a stationary time series that is the same for
all the segments and represents the time invariant parameters of the structure being
investigated. The second is a non-specific auxiliary signal and varies from segment to
segment, and can be due to various noise sources.

While it was shown that a regularly sampled vibration record is exactly characterized
by a 2n-2n order ARMA model (Gersch et aI., 1973), Gersch simplifies the problem by
noting that the MA parameters contribute very little to the estimates of the structural
parameters. As explained in Chapter 2, the problem is greatly simplified by modeling the
process as strictly AR, since the calculation procedure is well characterized. It was stated
earlier that MA parameters provide information on the phase relation of the time series,
while the values of the natural frequency and damping ratio depend only on the AR
parameters (Chang et aI., 1982).

The model used, with an auxiliary process, is the ARX model. The AR spectral
estimate is calculated from the AR parameters, and a corresponding pole plot made for
each optimal time segment. Since the structural part is common to all segments and the
auxiliary (noise) part different in each, the complex poles of the structural part will be in the
same location while those of the noise process will vary in each pole plot. This is how the
parameters of interest are pulled out of the general model.

This ingenious method allows more certain estimates of the damping parameter.
Since the variance of the damping estimate is a function of the inverse of the length of data
used to make the estimate, long stretches of stationary data are usually required for robust
estimates. The present method allows the estimates from each segment to be combined with
a final variance inversely proportional to the length of the sum of segments.

Gersch and Brotherton (1982) present an example based on ambient vibration taken
from the top story of the Jet Propulsion Laboratory at the California Institute of Technology.
The values for natural frequency and damping ratio for the first two modes are given in
Table 3.1. These values are very realistic, and the variance of the damping is two to four
times smaller than an earlier analysis made with arbitrary, constant length segmentation.
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Table 3.1 Estimates of Natural Frequency and damping Ratio for the JPL.

Natural Frequency (std. dev.) Damping Ratio (std dev.)

First Mode 1.02 Hz (0.007 Hz) 2.8% (0.57%)

Second Mode 3.14 Hz (0.02 Hz) 3.4 % (0.35%)

3.3.2 Modeling of Earthquake Strong Motion

Earthquakes can be seen as high-energy forcing functions that can be used to excite
a system of interest. Since the earthquake is a one-time transient event, it is by definition
non-stationary. It also is an unique event, so averaging techniques available to continuous
excitations are not applicable. Use of parametric models have the advantage of being
stochastic in nature, parsimonious, and directly related to structural properties. Ifparametric
models can accurately simulate a process, then the necessary filter has been discovered and
the parameters can be used to identify structural properties. The same reasoning is true if
the one-step predictor can be estimated with a parametric model. Up to this point, the
assumption has been made that earthquake strong motion can be accurately modeled by AR
or ARMA techniques without thoroughly investigating whether this is so. This important
assumption will now be examined.

In the 1960's and 1970's there was great interest in modeling seismic events for the
purpose of identifying the source. The driving need was the ability to differentiate nuclear
explosions from seismic events. It was assumed that there is a difference between the
ground motions due to earthquakes and explosions. If earthquakes and explosions could
each be well represented by an AR or ARMA model, the essence of each process would be
condensed into a few parameters, greatly simplifying the discrimination task. In addition,
for certain model structures, the parameters are related to important physical properties
such as earthquake intensity, duration, and distance (Cakmak and Sheriff, 1984).

A detailed attempt to discriminate between blasts and earthquakes derives an AR
model from the initial displacement potential of the two source mechanisms (Dargahi
Noubary et aI, 1978). The P-wave history was found to be modeled as a third-order AR
process. The parameters identified by this analysis are useful for estimating source
properties, such as event duration, and reflections of the direct P-wave. While these
parameters are not of much use to ascertaining the near-surface soil properties, they are of
use to the reflection seismologist.

Closer to the problem at hand, a very understandable exposition of the segment
approach and the application of the Burg estimator of AR parameters to earthquake
characterization is given in a paper by Jurkevics and Ulrych (1978). In this paper the
authors were interested in studying how the process changed through time, rather than
assuming that the system parameters were time-invariant. The Orion Boulevard recording
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of the 1971 San Fernando earthquake was used as the data series, and the surface
accelerogram modeled as a second-order AR process by the Burg method.

Three pieces of information are gleaned from the estimation - the two AR
parameters and the innovations variance. For the frequencies of interest, the system only
exhibited first mode response. The authors point out that while a larger AR order could
have been used to model the event, using the lowest order that adequately represents the
process allows "the motion to be less deterministic in nature, since the filter length is
shorter." The strong motion record is cut into very short segments (one second, fifty data
points) since a short segment best preserves the assumption that the process is stationary
within that segment. The use of the Burg algorithm allows a good estimation to be made
from fifty points (see Chapter 2).

The Z-polynomial representing the second-order system (Eq. 2.38)

H(z)=(1-a1z-a2z2
) (3.6)

is solved by Jurkevics and Ulrych for the complex roots ~ and Zz, which are complex
conjugates located just outside the unit circle. This conjugate pair is illustrated in Fig. 3.3,
in rectangular coordinates. Also shown are the values given as polar coordinates Rand 6
(0:56:51/(2l\t) Hz). 6 gives the frequency location of the pole, or modal peak, while R gives
the peakedness or half-width of the curve. The variance of the innovations is the amplitude
scaling factor.

In order to smooth the data, deterministic curves were fitted to the plotted discrete
values of the three parameters. The sharpness of the peak, R, changed somewhat through
the earthquake process, while the frequency shift was never more than about eight percent.
The innovation variance traced the envelope shape of the accelerogram through time. The
study is quite successful in characterizing the time varying nature of earthquake strong
motion. This helps show the validity of modeling strong motion with parametric models.

An approach more useful for identifying soil parameters is a derivation of an ARMA
model for a SDOF oscillator based on an analog to the continuous-time differential
equations of motion (Chang et al., 1982). The intermediary between the continuous domain
and the discrete domain is the assumption of a match between actual and calculated
autocorrelations. Equations are provided to calculate the damping ratio and resonant
frequency of n-degree-of-freedom oscillators from the 2n AR parameters. Phase relations
are preserved in the MA parameters.

Chang et al. used the Box-Jenkins estimation procedure to calculate the ARMA
parameters (Box and Jenkins, 1976). The quality of the estimation is decided by how well
the residuals approach white noise, and is given by the "Q" statistic (Chang et al., 1982).
The Box-Jenkins method is only applicable to stationary time series, so a problem exists in
applying it to earthquake records. The adopted solution was to divide the complete record
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into constant-length quasi-stationary segments, with five second segments (250 data points
each) giving the most satisfactory results.

Strong motion records from 1942 EI Centro, and the 1971 San Fernando earthquakes
were analyzed. Almost all the data segments were best modeled as ARMA(4,1) processes.
The remaining segments were best fit by an ARMA(2,1) model. For the SW component of
the 1940 Imperial Valley earthquake, recorded at EI Centro, and modeled as ARMA(2,1),
the parameters corresponded to the resonant frequency ranging from 2.4 to 3.2 Hz. The
corresponding damping ratio ranged from 27% to 60%. However, it is not clear to what
physical entity these parameters correspond to since there is not a well-defined system - a
known input into a column of soil (filter) and a measured output. The confusion as to what
physical quantity is being modeled is the inverse of that discussed in Chapter 2. For the case
under discussion, it appears that the AR coefficients model the shape of the ground motion
history, and the corresponding spectral estimate is descriptive of the waveform shape rather
than the mechanical behavior of the earth system.

The Box-Jenkins method used by Chang et al. selects the model order based on the
data itself, rather than by a priori decision. The authors therefore expect that other
earthquakes might yield ARMA orders different from (4,1) and (2,1). The authors also
believe that the source of non-stationarity in the surface strong motions is a result of changes
in the input driving function rather than in the soil (filter), a conclusion with which a
seismologist would heartily agree.

Segmentation of non-stationary strong motion records is still in use today. This
approach offers a straight-forward way to apply familiar, tractable methods to a strictly
inapplicable problem. A recent application applied the Ale-based segmentation scheme
used by Gersch and Brotherton (1982) to earthquake records from Romania (Popescu and
Demetriu, 1990). This choice was made after a thorough review of the various methods
available, including Kalman filter methods that are designed for non-stationary data. An
ARMA model is fitted using the Maximum Likelihood method with the goal of
characterization and simulation of earthquakes with few parameters.

A preliminary canonical correlation analysis provides an "good" initial guess as to the
ARMA orders, and the final choice is made from statistics developed during the Maximum
Likelihood determination and application of the Ale. For simulation, each segment can be
calculated by passing white noise with variance equal to that of the associated ARMA model
through the calculated process filter, and then multiplying the section with an "envelope"
function taken from the actual intensity of the associated earthquake segment.

In general, the simulations of Popescu and Demetriu matched the actual motions very
well, with statistics such as cumulative energy and root mean square acceleration tracking
throughout the record. However, there were some problems with the match for short term
energy for two directional components. Short-term spectra were also calculated for each
quasi-stationary segment, giving a graphical image of the change in the shaking process
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through time. This paper illustrates the utility of the segmentation method of approaching
non-stationary signals, and shows that earthquake strong motion can be well modeled by the
ARMA scheme.

3.3.3 Transforming Non-stationary Signals into Stationary Signals

Another approach to analyzing non-stationary data using methods strictly stationary
in derivation, is to transform the non-stationary data series into a stationary record. The
oldest and simplest technique is to apply the difference operator to the data. Often times
the new data series will be stationary and the parameters solved for with customary
techniques. The parameters can be adjusted to take into account the effect of the
differencing transformation (Bendat and Piersol, 1986).

A more advanced approach is based on the same assumption made by Gersch and
Brotherton (1982), that the non-stationary signal is a linear combination of two components;
(1) a stationary component that is a result of the response of the structure in question, since
the physical properties are generally thought to be time invariant (a problem in soils for
strains greater than the threshold strain), and (2) the second component is a non-stationary
auxiliary input to time varying noise processes.

Based on the loose definition of stationarity used in this report (data variance is
constant through time), this approach sees the earthquake strong motion as a constant-mean
process acted on by an "envelope" function having time-varying amplitude. Polhemus and
Cakmak (1981) construct a polynomial to describe the change in variance over time and
employ it to "correct" the variance to a constant. They use this method to simulate
earthquake strong-motion using an ARMA model (1981). A particular earthquake is seen
as an instance of a stochastic process. Therefore, a "similar" earthquake would not have to
be identical, but only need to have the same stochastic descriptors. Indeed, this is the
stochastic foundation that makes the AR and ARMA methods possible.

Polhemus and Cakmak (1981) devised a three-stage procedure to estimate constant
parameters from a time series with a time-varying variance:

(1) An estimate of the variance function O"z2(t) is made in a non-biased manner. A "power
transformation" is used and fitted to a polynomial using least squares.

(2) The acceleration series is converted to a stationary series. The standard deviation at
each time step is derived from step (1) and is used to normalize the non-stationary
accelerations history into a constant-variance data series.

(3) An ARMA model is fit to the transformed data and the constant process parameters
estimated.
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A new, statistically equivalent, earthquake record can be simulated by passing white
noise through the derived ARMA model and then "denormalizing" the signal with the step
by-step standard deviations calculated in step (2). The model is validated by examination
of the residuals of the actual and simulated data. If the residuals from the two are
uncorrelated (white), then the model has accurately represented the process.

This method has been applied to a suite of earthquake records in an attempt to
estimate seismological variables (Cakmak and Sherif, 1984). The model parameters are used
to estimate values for temblor intensity, duration, distance from the site to the fault, and
local geology. Statistical methods are employed to fit these variables to model parameters,
which now include parameters describing the variance function O'/(t) as well as the familiar
ARMA parameters. The brief results for the 1971 San Fernando earthquake are positive,
but the authors note that much more work needs to be done before the assumptions can be
accepted.

3.3.4 Modeling of Non-stationary Processes - Time Adaptive filtering

A non-stationary process can be modeled directly using time adaptive filtering, where
the estimates of the AR parameters are updated for each time step. An early
implementation of this approach to earthquake strong motion data was in the paper by
Jurkevics and Ulrych (1978) discussed above. The authors modified the Least Mean Squares
algorithm (Alexander, 1986) to operate on the data forward and backward, after Burg
(1975). This modification results in instantaneous spectral estimates with shapes similar to
that calculated by applying the Burg method to segmented data (see Sect. 3.3.2). In
addition, the step size of the adaptive algorithm changed as a function of the local input
amplitude.

The modified algorithm of Jurkevics and Ulrych allows the filter to be applied to the
data in reverse, in order to eliminate startup error. Startup error due to poor initial
estimates and a small past history is especially difficult with seismic signals which are
minimum phase, i.e. energy density is concentrated at the beginning of the signal. The
instantaneous estimates of the two AR parameters and the innovations variance were
averaged in fifty data point segments to smooth the noise, and deterministic curves fitted to
the data. The proper time step to use in the adaptive algorithm was somewhat troublesome
to determine, an improper value either critically underdamps or overdamps the response.

The adaptive estimations reported by Jurkevics and Ulrych were virtually identical
to those calculated by the segmentation method. This result shows that carefully segmenting
non-stationary data does a very good job of characterizing the local, quasi-stationary process.
The frequency and amplitude content of the accelerograms simulated by the resulting filters
were the same as the actual recorded signal.
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A much more direct approach is to utilize the Kalman filter estimation of the AR
parameters. Kitagawa extended the work of Akaike through a state-space AR model with
constrained time-varying coefficients (1983). The model assumes a zero mean, non
stationary data series, such as an accelerogram. In contrast to the method of Jurkevics and
Ulrych discussed above, where the AR coefficients could change abruptly through time and
then had to be smoothed and filtered by art ad hoc technique, Kitagawa employs a linear
constraint to insure that the AR coefficients can only change gradually through time.

The time varying AR model is defined as

where m
n

m

Yn=:E a(i,n)z(n-i)+e(n)
i=l

= counter for AR order l..k
= time step l..N number of data points.

(3.7)

where the AR coefficient is a gradual function of the time step counter n. A simple least
squares fit would entail the calculation of roN parameters from N data points. This large
overparameterization leads to poor estimates. A parsimonious approach is to treat the AR
coefficients as random variables and apply a stochastic rule as to their behavior through
time. The change in the AR parameters is constrained by a "stochastically perturbed
difference equationll

, which must reflect the actual behavior of the process being modeled.
The estimation is now a constrained least squares problem.

For the simplest case, the parameters are modeled as randomly changing, modeled
by a random walk prior distribution, and neighboring coefficients are almost equal. The
equation governing the change is a first order difference model

where 6
n

a(i,n)=a(i,n-l)+a(i,n)

= Gaussian white noise with 0 mean, variance 1"2

= data point number (time step).

(3.8)

If the process, hence AR parameters, changes more slowly, the constraint is better defined
by a second order difference model

a(i,n)=2a(i,n-l) -a(i,n-2)+a(i,n). (3.9)

The order, k, of the difference equation that best models how rapidly the system is changing
through time, must be estimated, and are parameters of the model along with the AR order
m and innovations variance. The variance of the constraint innovations, ,.2, controls the
"intensity" of the stochastic change, and must also be estimated.
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There are now (rn+k+2) parameters to be estimated - k AR parameters, rn
constraints, and the two variances, t?- and .,.2, which can be combined into the ratio J.' =
.,.2/0 2. The ratio J.I. represents the trade-off between the (in)fidelity to the actual data and
the (in)fidelity to the change constraint. The trade-off ratio has been likened to a signal-to
noise ratio, or in Bayesian terms a measure of belief in the a priori assumptions. Non-linear
maximization of the likelihood parameter is used to estimate J.', and the AlC is used to
define the system parameters In, and k At this point Kalman filtering is used to estimate
the values of the model parameters.

An instantaneous power spectral density can be generated from the "instantaneous"
AR estimates. Given the local AR parameters just estimated, aU,n) and t?-, the spectral
estimate can be defined by

where i
m
n
CA>

j

S(cu,n) = a2-::(,-,n)~__
m 2

1-L a(j,n)e-ij (,)
j;l

= J-1
= AR order
= time step of interest
= radial frequency
= counter for Lm AR order

(3.10)

This spectrum is simply a helpful visual aid as to the behavior of the process at that point
in time.

This entire scheme was tested by comparing the theoretical and estimated
instantaneous spectra for synthesized non-stationary AR processes. An example slowly
changing time series is shown in Fig. 3.4. The actual gradually changing spectrum for this
data is shown in Fig. 3.5, and should be compared to the estimated spectrum shown in Fig.
3.6. The estimated spectra, for AR order 5, second order difference constraint, and trade
off ratio 9.6x10-5, is virtually the same as the theoretical solution. The match for rapidly and
instantaneously changing processes match almost as well.

An earlier paper by Kozin (1977) presented a very similar approach. However, Kozin
used an orthogonal family of Legendre polynomials to "constrain" the changing AR
coefficients. He also used a consistency method to apply maximum likelihood to non
stationary signals and AlC to determine the best choice for model order.

The use of Kalman filtering is presented in more detail in later papers, where the
method is directly applied to characterizing earthquake strong motion records (Kitagawa and
Gersch, 1985; Gersch and Kitagawa, 1985). The authors point out that earthquake
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acceleration history is modulated by a slowly changing envelope function, as described by
Polhemus and Cakmak above. This envelope is the change in scaling of the AR parameters
through time, or the "smoothed value of the instantaneous variance." The Kalman-Akaike
based technique just discussed (Kitagawa, 1983) can be used to estimate the smoothed trend
of the innovations variance, or changing power.

The "smoothness priors time-varying AR coefficient" model was applied to the 1971
San Fernando earthquake (Gersch and Kitagawa, 1985) and the 1949 Olympia, Washington
earthquake (Kitagawa and Gersch, 1985). The results for the Olympia temblor will be used
as an example. The authors recalculated and optimized model and constraint order every
one-hundred data points, out of a total twelve-hundred. The actual accelerogram is shown
in Fig. 3.7, with a simulated history shown in Fig. 3.8 for comparison.

The change of the system through time is given by the change in AR coefficients
through time, shown in Fig. 3.9, and the innovations variance history shown in Fig. 3.10.
Notice that the system descriptors change quite infrequently, and with "quantum" jumps.
The variance envelope, or power, shows several "bumps" which the authors believe are
indicative of the arrival of the various wave modes. The local impulse response function of
the process can be computed from the instantaneous AR coefficients and innovations
variance. This information is combined in Fig. 3.lla, which shows the instantaneous spectral
description of the system through time. The spectra actually reveal no more information
than the other plots, but presents the physical relationships in a more familiar manner. For
comparison, Fig. 3.llb shows the instantaneous spectrum for the simulated time history,
shown in Fig. 3.8.

At this writing, these methods have only been applied to model the strong motion
response. It is hoped that Gersch and Kitagawa will adapt this method to estimating the
parameters of a single input-single output system. Attempts are currently being made to
apply extended Kalman filters to directly identifying nonlinear soil properties (Lin, 1990).
This preliminary study was made for a simulated soil system for which the nonlinearity was
assumed to be purely hysteretic. The input and output signals for the soil system are
required for parameter identification, and estimates of the statistical nature of the noise.

The results were varied, with fair success when the model-generated backbone curves
were the desired output. If the soil system is well characterized by the chosen model, then
only one input-output data series is needed to completely describe the soil's nonlinear
behavior. Ifnot, strong motion records for several different strain levels are needed. At this
point many assumptions were made and the system limited, but the results were heartening
and further work on these lines is warranted.
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Fig. 3.4 An artificially generated AR process with a gradually changing spectrum
(from Kitagawa, 1983)
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Fig. '3.5 Actual instantaneous spectra for
time series shown in Fig. 3.4
(from Kitagawa, 1983).
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Fig. 3.6 Calculated instantaneous spectra
for time series shown in Fig. 3.4
(from Kitagawa, 1983).
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Fig. 3.7 Actual accelerogram from the 1949 Olympia) Washington earthquake (from
Kitagawa and Gersch, 1985).

3000 -r------------------------------,
~ooo

1000

-1000

- ~ooo
- 3000 .L.--'--I......OO--'---2......00--'---3......00:---'---4:-:-0r~--'---:5~00:----'---::60:::-0 ---1.--=70::'"0---'-~80::'"0---'--;;90::-0---''---:-:100'0

Fig. 3.8 Simulated time history for the 1949 Olympia, Washington earthquake (from
Kitagawa and Gersch, 1985).

65



I.,
I.' i-
,..
............
•...................

0 500 1000 500 1000
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Olympia temblor (from Kitagawa and Gersch, 1985).

106.--------------- -...

102-:---L---=~--..1.-~'---.l----'---..J----'----'--....J
o . 200 400 600 SOO 1000

Fig. 3.10 Smoothed instantaneous innovations variance for the 1949 Olympia temblor (from
Kitagawa and Gersch, 1985).
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Fig.3.lla Actual instantaneous spectrum
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Fig.3.11b Instantaneous spectrum for the
simulated 1949 Olympia
earthquake (from Kitagawa and
Gersch, 1985).



3.3.5 Summary

Several different methods have been presented to directly assess non-stationary data.
These methods cover a wide range, from transforming the data into a stationary signal to
full-fledged non-linear, non-stationary analysis. The method used will depend on the nature
of the data available and the nature of the information needed to be gleaned. Transforming
the data (Polhemus and Cakmak, 1981) is an acceptable method if the non-stationarity is
mild and mostly in the amplitude. This method does not give much information as to the
time-varying change in frequency and damping.

Segmentation of the data into stationary pieces gives very good results and is widely
used. The approach by Gersch and Brotherton (1982) is the most rational. It makes the
best use of the limited data available and allows the noise model to change through time.
However, if the process of interest has time varying parameters, then a recursive technique,
such as presented by Kitagawa (1983), must be used. In fact, the extended Kalman filter is
often used in other fields to estimate smoothly varying non-linear parameters.

3.4 Estimation of Soil Parameters From Earthquake Strong Motion Data
3.4.1 Introduction

Up to this point, the work presented has been of a theoretical bent, to show the
methods available for estimating system parameters. Understanding these discussions will
allow the reader to understand actual field applications. In this section, actual field
experiments made using earthquake strong motion data are presented.

3.4.2 Use of Shear Beam Theory

An early success using measured response of an earth dam to earthquake excitation
to estimate soil properties was made for the Santa Felicia dam in California (Abdel-Ghaffar
and Scott, 1979). The input (base displacement) and output (crest motion) of the structure
was recorded for the 1971 San Fernando earthquake, and another temblor in 1976 (ML =
3.7). A shear-beam theory model was used to estimate shear moduli and damping ratio for
the rolled-fill earth dam, constructed from gravelly sands.

The soil was modeled as a hysteretic SDOF system with a non-linear restoring force.
An estimate of the hysteretic response can be made by plotting the crest displacement
relative to the base, against absolute acceleration of the dam. Using the shear-beam model,
the slope and area of the hysteresis loop can correspond to shear modulus and damping
ratio (see Richart et aI, 1970). Correlations can also be made to a finite element model
using estimated parameters. The fundamental frequency behavior of the dam was isolated
by narrow band-pass filtering the data. Without this filtering, the plotted hysteresis loops
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were erratic and useless for analysis. The precariousness of this modeling can be
appreciated from the very small displacement of the top of the dam relative to the base 
2.0mm.

The non-stationary response of the dam was analyzed by breaking the record into
approximately one-second segments. Using both two-dimensional shear-beam theory (with
constant shear modulus) and one-dimensional theory (shear modulus varying with depth),
a relationship for dynamic stiffness, G, was derived. For the two-dimensional case the
relationship for G is given by :

where 'r11

Y11

P
vs

<">11

xmax

(i+i)max

G= 't'11 =p( vll )2. (.i+Z}max

Y11 <">11 Xmax

= fundamental mode shear stress
= fundamental mode shear strain
= mass density of dam soil
= shear velocity of dam soil
= fundamental mode natural frequency
= maximum relative displacement of hysteresis loop.
= maximum absolute acceleration of hysteresis loop

(3.11)

A similar relationship exists for the one-dimensional case. In addition, expressions for stress
and strain at any time were derived.

With these equations the relationship between shear modulus and shear strain can
be calculated. Additional information is given by the data from the second, smaller
earthquake. An example of the results is shown in Fig. 3.12, where the stiffness reduction
values calculated are well within the range of those expected. However, a similar analysis
for the damping ratio yielded a curve of different shape than expected - S-shaped rather
than hyperbolic, as shown in Fig. 3.13. The discrepancy might be due to the fact that the
soils tested were predominantly gravels, and there have been virtually no laboratory tests run
on gravel, and the results were accurate. However, it has been seen throughout Chapt. 2
and 3 that the estimations for damping are often inaccurate and inexact.
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3.4.3 Fourier Analysis of Non-stationary Ground Motion

A study has been made of data recorded at the Wildlife site in the Imperial Valley
during the 1987 Superstition Hills earthquake (Vucetic and Zorapapel, 1990). For this
event, three-dimensional accelerograms were recorded at a depth of 7.5 meters at the
surface. In addition, pore water pressure was monitored throughout the shaking. The paper
attempts to correlate a decrease in natural frequency of the soil layer, associated with
degradation of the shear modulus, with the increase of pore water pressure as the condition
of liquefaction is approached. However, it has been postulated that the piezometers were
not functioning properly (Hushmand et aI., 1992, 1991). The methods used in the analysis
are instructive, in addition to giving a view of the state-of-the-practice in the use of system
identification in the geotechnical field.

The system is well-defined for this problem, since both the input and output are
known. Rather than use the more certain AR methods discussed in Chapt. 2, the authors
choose to characterize the motions by simple Fourier spectra, with all the attendant
uncertainty and problems discussed in the previous chapter. The system response function
is not calculated directly through a least squares deconvolution or system identification
procedure, rather is characterized by the spectral ratio. Because it is a simple ratio, a small
error in one of the spectral estimates can have a very large effect on the calculated value.

The non-stationarity of the data is taken into account by segmenting the data,
although the segmenting is not based on preserving sections with a common variance.
Instead, the segmentation is based on physical concerns such as arrivals of various wave
modes, or changes in pore water pressure. The analysis showed that the fundamental period
of the soil layer lengthened as the pore pressure built up and the soil stiffness degraded.
The entire process was also modeled using the DESRAMOD computer program (Vucetic,
1986) which calculates soil and pore water behavior based on a one-dimensional lumped
parameter model. The resonant frequencies calculated by DESRAMOD and those from the
Fourier analysis agreed well, especially for the vertical component.

3.4.4 Parameter Estimation Using Impedance Functions

Actual earthquake excitation has been used to measure experimental impedance
functions of structures for comparison to theoretical functions, with acceptable results (Mau
and Wang, 1990; Loh and Mau, 1989). Loh and Mau studied the modal behavior of the
one-quarter scale model nuclear power plant containment vessel in Lotung, Taiwan. The
rigid structure is very well instrumented so that the rigid body motion could be very well
characterized with simple computation. The paper reports preliminary work, for which the
free-field motion is not taken into account. The best fit between the theoretical impedance
functions and the experimental impedance functions was for the assumed material values
given in Table 3.2.
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Table 3.2 Estimated Material Parameters for Lotung Site (after Loh and Mau, 1989).

Natural Frequency

Damping Ratio

Shear-wave Velocity

2.72 Hz

10.9 %

310 mls

Mau and Wang (1990) continue the work on the Lotung containment structure with
a more complete analysis where the form of the impedance function was not assumed.
Again, only the rocking impedance was studied to simplify the embedded foundation
problem. The coupling terms are ignored, allowing the system to be modeled as a single
input-single-output system, with impedance function acting as the transfer function (filter).
The kinematic input motions must then be calculated from the measured motions.

The dynamic impedance is calculated using the method of Bendat and Piersol (1986),
discussed in Chapt. 2, Sect. 2.2.1. The transfer function is calculated from the ratio of the
cross-spectrum to the autospectrum (Eq. 2.3). The coherence function was also calculated,
and only relationships for frequencies with high coherence (1.5 - 4.5 Hz) were used to define
the impedance function. The results were very poor, possibly because the assumptions made
about lack of coupling were incorrect, or more than one mode must be included in the
analysis to obtain useful results.

3.4.5 Non-linear Ground Response Analyses

Possibly the best set of data for earthquake excitation of soils exists for the test site
operated by the Electric Power Research Institute (EPRI) and the Taiwan Power Co. at
Lotung Taiwan (Tang, 1987). At this site, two locations are instrumented with three
component accelerometers at depths of 47, 17, 11, 6 meters, and at the surface. One array
is in the free-field while the other is adjacent to the one-quarter scale nuclear containment
vessel mentioned in Section 3.4.4. The site is also well instrumented with piezometers at
various depths and locations. The simplified soil profile consists of 30-35 m of silty sand and
sandy silt with some gravel, above clayey silt and silty clay. The water table is within half
a meter of the ground surface. This area is seismically active, and many earthquakes of
exhibiting a wide range of magnitudes have occurred since 1986.

A series of studies have been undertaken at Lotung using parameter identification
to evaluate the non-linear response of soils due to strong motion (Chang et al., 1991, 1990,
1989). The authors note that outside of actual liquefaction sites, there has been no
documented field evidence of the degradation of soil properties with increasing strain (Chang
et al., 1989). One notable exception is the work done for the U.S. Nuclear Regulatory
Commission (Shannon-Wilson and Agbabian, 1975).
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The first phase of the work concentrated on calculating a transfer function for the soil
at several different points of the excitation history. The parameter of interest from the
transfer function was resonant frequency. A simplified analysis for a two-layer system was
used to calculate the effective S-wave velocity since the soil profile was known (Dobry at aI.,
1976). Shear moduli were calculated from the estimates of wave velocity. The strong
motion record was divided in three sections: (1) initial motion before strain levels high
enough to degrade the soil was reached, (2) peak motion, and (3) the coda or ring-down.

The transfer functions were estimated from the ratios of output Fourier spectra and
input spectra from various depths. The Fourier spectra were smoothed by a triangular lag
window. Unfortunately, the data lengths were very short since two of the time windows were
only four seconds long. A Burg estimator would be much more appropriate for this
application. In addition, use of an optimal segmentation scheme (Gersch and Brotherton,
1982) might be very helpful in identifying exactly when the parameters of the system actually
changed.

The shear modulus showed a marked decrease from the initial low-level excitation
to peak deformation. Depending on the depth used as input, the modulus reduction factor
ranged from 0.60 to 0.14. These values are for a magnitude 6.5 earthquake exhibiting a
peak horizontal acceleration of 0.21 g. As a check on reality, the S-wave amplitudes for the
initial segment were in very good agreement with the actual measured values. A
troublesome point is the large discrepancy in modulus reduction factor for the two horizontal
components. The expectation would be that they would be virtually identical, since soil
degradation is usually thought of as a scalar quantity.

This body of data is ideal for checking the results of ground response programs such
as SHAKE (Schnabel et al, 1972) and DESRA-2 (Lee and Finn, 1985). SHAKE was tested
in both the forward prediction mode and the inverse surface-to-depth mode, and DESRA-2
in the forward mode (Chang et aI., 1990). The modulus degradation curve was calculated
from actual field data in the manner discussed immediately above. The equivalent damping
ratio was estimated from resonant column tests and the Seed-Idriss curve. For the SHAKE
analyses, the additional input parameter was the field gathered S-wave velocity profile.

The results from SHAKE show that the calculated motions are higher than actual for
frequencies greater than 0.6 - 1.5 Hz, with the lower frequency associated with the analysis
of a thicker layer of soil. There was no correlation for phase information. The backward
analysis yielded better results than the forward propagation analyses. The disagreements
might be due to the equivalent linear use of a single value of shear modulus per layer. The
modulus used might only be valid for part of the load history, most specifically the peak
strains for which the modulus is corrected for (Chang et aI., 1990).

The results from the forward propagation non-linear DESRA-2 analysis show good
agreement between actual and calculated displacement for frequencies up to about 6 Hz.
There was also good correlation for phase angle for frequencies up to about 3 Hz. The
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shape of the equivalent damping ratio curve back-calculated from the non-linear analysis is
different from that normally expected. Rather than the expected hyperbolic curve, the field
curve is S-shaped. This uncommon S-shaped curve is the same shape as that calculated by
Abdel-Ghaffar and Scott (1979) from actual field data (see Section 3.4.2).

Further work on the shear modulus reduction curve based on actual large strain
measurement is reported by Chang et al. (1991). This study utilized seven different
earthquakes with magnitudes ranging from 4.5 to 7.0, and peak horizontal accelerations
ranging from 0.03 g to 0.21 g. As for the earlier report discussed above (Chang et al., 1989),
shear modulus is estimated from S-wave velocities derived from resonant frequencies and
soil layer thickness. Shearing strains are calculated from wave propagation theory using
SHAKE.

In this study, the non-stationarity of the accelerograms are not taken into account,
with the transfer functions being estimated for the entire time history at once. This means
that the resultant resonant frequency estimated is an average value for the entire strain
history of the earthquake. The earlier work showed that there can be a very substantial
change in soil stiffness through time, so this approach seems incomplete. Of course, for
small events with little or no degradation, the seismic velocities and the back calculated
values match very well.

The equivalent stiffnesses or S-wave velocities calculated from the transfer functions,
are input into the computer program SHAKE, along with damping curves from laboratory
tests. Shearing strains are calculated when recorded surface motions are run through
SHAKE. The calculated strains are open to doubt since the program makes its estimation
from the peak stress value, and calculated strain and stress at different points in the soil
layer. All the problems with the equivalent-linear approach brought up by Chang et al.
(1990) are appropriate here too.

If the described method is accepted as valid, the resulting modulus reduction curves
are as shown in Fig. 3.14, along with a comparison to laboratory test results. The results
show that for small strains (surface acceleration < 0.03 g), the results from geophysical
methods, resonant column, and system identification are in good agreement. For
intermediate strains (5x10-3 to 2x:10-2) the back calculated values for modulus reduction are
up to twenty percent lower than the resonant column measurements. For higher strains of
3xlO-2 to 2x:1O-\ the results from cyclic triaxial tests are in fair agreement with the field
values for shear modulus, with moderated scatter for the laboratory data.

This field test is the most complete to date. However, some compromising
assumptions should be mentioned. The values of S-wave velocity and strain are average
values for the entire event, from low stress to peak and back, and not actual values for any
particular part of the excitation history. The method of calculating the transfer function is
can amplify inaccuracies, since the high variance in Fourier estimates can cause even larger
errors when the ratio is taken. The
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(4.14)

use of SHAKE to calculate strain raises questions, especially given the problems discussed
by the authors one year earlier (Chang et al., 1990). It would be very informative to use this
fine set of data with a more thorough and challenging set of analyses.

Due to the general lack of data sets for which the ground motion input into a soil
profile is known from downhole instruments, an attempt has been made to simplify the
inverse problem so that only the output (surface) strong motion needs to be known
(Tokimatsu et al., 1989). As in the attempt by Nakamura (1989), an assumption has to be
made as to the character of the input motion, since the system can not be solved for with
only the output known.

Tokimatsu assumes one effective soil layer over bedrock. Working from the basic
equation linking S-wave velocity and fundamental period (Dobry et al., 1976),

V ~ 4H. (4.13)
S T

An expression for the shear modulus is derived as

G~16P(~r

where H
p
T

= thickness of the soil layer
= mass density of the soil layer
= fundamental period of the soil layer

The assumption is now made that any increase in the fundamental period is directly related
to a decrease in soil layer stiffness:

where G/Gmax
Tmax

~oc(Tmaxl2
Gmax T

= modulus reduction factor
= fundamental period of the soil layer at 10-6 shear strain.

(4.15)

Assuming linear behavior of the soil mass, a relation for the shear displacement at
any depth z from peak particle velocity and S-wave velocity is given. This derivation
assumes that the shear strain at any depth is just a time-offset displacement of the surface
strain. Although Tokimatsu claims now to be able to accurately calculate shear strain at any
point in the soil mass at any time, he defines an effective shear strain to be 85 percent of
the maximum shear strain. This value is picked since for the first ten seconds of the
excitation, the effective strain is considered to be 85 percent of the maximum shear strain.

For the estimation of damping ratio, Tokimatsu assumes that the input motions from
the bedrock layer are white noise, a poor assumption based on what has been presented in
this report. This assumption, however allows the authors to say that the Fourier spectrum
ofthe surface motions has much the same shape as the spectral ratio (ie. amplification spectrum).
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The authors claim good correspondence between laboratory results and their
technique. However, until a more rational and complete derivation is given, this approach
is not considered useful. There are too many theoretical problems and shaky assumptions
involve to accept it as presented.

A good example of the application of time-adaptive modeling of soil parameters from
earthquake strong motion data is a paper by Safak (1989). While the paper is difficult to
understand, the application of advanced system identification techniques is well illustrated.
In this paper the adaptive scheme uses an exponentially decaying "forgetting-factor" to take
the non-stationarity into account, rather than a full Kalman filter that actually models the
changing parameters directly.

The process is modeled as a single input-single output system where the input and
output are known, but the auxiliary noise input is not known but assumed to be white. The
general model is autoregressive-moving average with a moving average auxiliary input
(ARMAX). The ARMA parameters are estimated by a recursive least squares scheme
known as the Recursive Prediction Error Method. Safak shows that for earthquake ground
motions, a subset of the ARMAX, the ARX (autoregressive with noise) is most appropriate.
If the prediction error series is a stationary Gaussian variable with zero mean, this method
is identical to the Maximum Likelihood estimation.

Proper application of a parametric model to a process requires determining the
proper model order. The simplest criterion is to use the order that minimizes the prediction
error

where e(t)
yet)
~(t)

e(t)=y(t)-y(t)

= prediction error at time t (innovation)
= actual output at time t
= prediction of output at time t made at time t-1.

(4.16)

As discussed in Chapter 2, this estimate can be checked by observing whether the prediction
error time series is white. It was shown that if all available information is retrieved from the
data, the residuals will become a white noise series. However, it is possible for the system
to be correctly modeled while the noise is not. This case still will give the correct transfer
function but not have a white residuals series. The validity of the model can still be checked
by observing the cross-correlation of the input and residuals series. For a valid model, there
will be no correlation between the two since the model "pulls" all the information out,
leaving only the noise. The final choice is to use the AlC, which maximizes the entropy
between the model and actual process.

Safak gives an example of the ARX approach to spectral estimation by analyzing the
surface strong motion from the 1971 San Fernando earthquake. If the input white noise
signal is combined with the auxiliary white noise signal, the ARX model becomes the more
familiar ARMA model. This method is identical to the Burg estimation if the MA
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parameters (which model sharp dips) are not included. As was shown in Chapter 2, this
method avoids making the assumption that the signal is stationary and the noise process is
discrete from the process of interest. Figure 3.15 shows the resulting instantaneous spectral
estimates for one, five, and eighteen seconds into the earthquake (note the log-log scale).
It is seen that the fundamental frequency becomes smaller though the shaking.

The ARMAX model was also applied to estimating the parameters of a soil column
(Safak, 1989). In this case nearby bedrock motion and the surface motion were both known
for a site subjected to the 1985 Chilean earthquake. The estimated parameters are
associated with system fundamental frequency and damping ratio. In the frequency domain
the spectrum shows frequency-dependant amplification. The method used allows the process
parameters to be estimated throughout time so that the change in the system can be
monitored. In this paper only the results for eighteen seconds into the temblor, the coda,
is reported. The results for the first mode are a natural frequency of 1.35 Hz and a damping
ratio of 11.9 percent.

The results in this paper are arrived at through a deliberate, rational approach rather
than trial-and-error, ad hoc methods. Obvious areas of improvement would be to
incorporate some of the techniques developed by Gersch and his cohorts. The author
himself points out that the ARMAX model did not model the noise very well, and suggests
the use of the Box-Jenkins model where the noise is modeled with it's own ARMA
polynomial. Safak also points out that the application of a Kalman filter would take the
non-stationarity more rationally into account.
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Fig. 3.15 Amplitude of the transfer functions of the 1971 San Fernando temblor modeled
as an ARMA (8,7) process at times t = 1, 5, and 18 seconds (from Safak, 1989).
Note log-log scale.
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CHAPTER 4 CONCLUSIONS AND SUMMARY

4.1 A Framework of Knowledge
4.1.1 Estimation Techniques

For the system identification problems of interest to this report, the parameters to
be found are system damping and resonant frequency. The resonant frequency is associated
with the peak of the amplitude spectrum. It has been seen that a single peak is relatively
easy to identify, especially if the proper model has been used for the process. For the very
large resonance peak of the principle harmonic, virtually any method will give a close result,
even for a relatively non-stationary case. However, every method distorts the shape of the
peaks, the usual source of the damping estimate. It is therefore to be expected that system
identification will give good estimates of modal frequencies, but poor estimates of damping.

A study was done by Gersch (1974) in order to determine the greatest degree of
accuracy with which a proper order ARMA model can estimate the damping ratio and
natural frequency of a structure, using the Maximum Likelihood method. He notes that as
the number of data points (N) becomes large, the estimate approaches the actual model and
approaches the Cramer~Rao lower bound of variance. The accuracy is given as the
coefficient ofvariation - standard deviation divided by the mean. For both parameters, the
coefficient ofvariation is inversely proportional to IN and length of the period sampled, and
relatively insensitive to noise. For one thousand data points, the coefficient ofvariation was
less than 0.01 for natural frequency, but greater than 0.2 for damping ratio; this is an order
of magnitude difference.

As a note of caution, while the more complicated models encompass more of a
process in a rational manner, the values needed as input must often be assumed, making the
results less meaningful. The results of the more complicated models should be compared to
those of simpler, more intuitive calculations that allow the engineer to maintain a "feel" for
the validity of the results throughout the evaluation process. In the words of G. E. P. Box,
"All models are incorrect, but some are more useful than others."

4.1.2 Conclusions and Recommendations

Theoretical and practical considerations have shown that transforming a data series
into the frequency domain is not a straight-forward process. The results of a simple DFT
has variance equal to the mean, and is very severely corrupted by leakage. This has resulted
in the tremendous amount of ad hoc attempts to improve on the bias and uncertainty
problems, lumped in this paper as the "classical approach". This presentation has not gone
into detail about these methods, except to become aware of the inherent problems. A
thorough summary and comparison of almost all these non-parametric methods, and
parametric methods, can be found in Kay and Marple (1981). Included Kay and Marple's



paper is a shocking comparison of the results of all the methods, each giving results
unrelated to the others, and all different from the theoretical frequency spectrum.

These problems were directly addressed by Thomson (1982) in deriving the multi
taper method. It is believed that this approach is the 'best" non-parametric spectral
approach if proper pre-treatment of the signal is done. These same considerations are
addressed from a philosophical point of view by many papers of John Tukey (e.g. Tukey,
1984; Brillinger and Tukey, 1984). Blindly applying the FFT to one's data is a very
dangerous thing to do, and the cautions and insights of Tukey should be taken to heart
before starting.

If the process being studied can be modeled as an AR or ARMA process, then the
parametric approach is the best method to characterize the system. The Burg method is
ideal for short, relatively stationary data. The growing family of adaptive and Kalman filters
are proving themselves with non-stationary processes. The AR model was shown to be
initially derived for a SDOF oscillator, and the ARMA model can be derived directly from
the differential equation of motion for an N-degree-of-freedom system, with the damping
ratio and resonant frequency the model parameters (e.g. Gersch and Luo, 1970). A 2n-2n
ARMA model is therefore a valid model for a layered soil system, or soil-structure
interaction problem.

The examination of the various attempts to characterize soil properties through
analysis of the response to earthquake excitation has illustrated some of the main pitfalls and
advantages of using the system identification approach. One important problem in
evaluating the various methods is that there is no "correct" value against which to compare
the results. The mechanical engineer has the advantage of being able to construct a system
similar to that being tested, with known parameters against which to test the method. The
geotechnical engineer never has this luxury. This limitation highlights one of the strengths
of the SI approach, since there is no other way to actually measure the in situ fundamental
frequency and damping ratio for strains even remotely approaching those encountered
during earthquake loading.

The geotechnical community has not utilized the methods, approaches, or warnings
discussed by the system identification community and presented in Chapter 2. The methods
used to date make no acknowledgement to the non-stationarity of the signals, or that the
Fourier spectral estimate may have any limitations or uncertainties. The exceptions to this
are the researchers using forced vibration and fitting impedance functions.

The forced VIbration-impedance function method is very attractive since the
investigators have control over the input signal. Besides simplifying the calculations, this
avoids having to wait many years for an earthquake to occur at a given site. The approach
is also straight-forward in concept. The major problem seems to be an inability of
generating enough energy to involve a deep column of soil. The strains induced in the soil
will be in the low range for the same reason.
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It is recommended that the complete input-output data sets from the Wildlife site and
Lotung be analyzed using the tools provided by the researchers in control. The improved
segmentation scheme of Gersch and Brotherton (1982) is very appealing if the process
parameters are not believed to change during excitation. For situations where the soil is
believed to have undergone degradation, methods taken after Kitagawa and Gersch (1985)
seems to offer the most promise. In any event, application of AR and ARMA spectral
estimators will yield spectral estimates with higher certainty than Fourier analysis.
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