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~e National Institute of Standards and Technology was established in 1988 by Congress to "assist
.J.. ~ndustry in the development of technology ... needed to improve product quality, to modernize
manufacturing processes, to ensure product reliability ... and to facilitate rapid commercialization ... of
products based on new scientific discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S.
industry's competitiveness; advance science and engineering; and improve public health, safety, and the
environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national
standards of measurement, and provide the means and methods for comparing standards used in science,
engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized
by the Federal Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic
and applied research in the physical sciences and engineering and performs related services. The Institute
does generic and precompetitive work on new and advanced technologies. NIST's research facilities are
located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their
principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058.

Technology Services
• Manufacturing Technology Centers Program
• Standards Services
• Technology Commercialization
• Measurement Services
• Technology Evaluation and Assessment
• Information Services

Electronics and Electrical Engineering
Laboratory
• Microelectronics
• Law Enforcement Standards
• Electricity
• Semiconductor Electronics
• Electromagnetic Fields!
• Electromagnetic Technology!

Chemical Science and Technology
Laboratory
• Biotechnology
• Chemical Engineering!
• Chemical Kinetics and Thermodynamics
• Inorganic Analytical Research
• Organic Analytical Research
• Process Measurements
• Surface and Microanalysis Science
• Thermophysics2

Physics Laboratory
• Electron and Optical Physics
• Atomic Physics
• Molecular Physics
• Radiometric Physics
• Quantum Metrology
• Ionizing Radiation
• Time and Frequency!
• Quantum Physics'

1At Boulder, CO 80303.
2Some elements at Boulder, CO 80303.

Manufacturing Engineering Laboratory
• Precision Engineering
• Automated Production Technology
• Robot Systems
• Factory Automation
• Fabrication Technology

Materials Science and Engineering
Laboratory
• Intelligent Processing of Materials
• Ceramics
• Materials Reliability!
• Polymers
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• Reactor Radiation

Building and Fire Research Laboratory
• Structures
• Building Materials
• Building Environment
• Fire Science and Engineering
• Fire Measurement and Research

Computer Systems Laboratory
• Information Systems Engineering
• Systems and Software Technology
• Computer Security
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Computing and Applied Mathematics
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• Computer Systems and Communications2

• Information Systems
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Extreme Value Theory and Applications

Proceedings of the Conference on Extreme Value
Theory and Applications, Volume II

Gaithersburg, MD
May 1993

Preface

It appears that we live in an age of disasters: the Mississippi and the Missouri rivers flood millions of acres,
earthquakes hit Tokyo and California, airplanes crash due to mechanical failure, and powerful windstorms cause
increasingly costly damage. While these may seem to be unexpected phenomena to the man in the street, they are
actualIy happening according to welI.defined rules of science known as extreme value theory. For many phenomena
records must be broken in the future, so if a design is based on the worst case of the past then we are not realIy prepared
for the future. Materials will fail due to fatigue: even if the body of an aircraft looks fine to the naked eye, it might
suddenly fail if the aircraft has been in operation over an extended period of time. Extreme value theory has by now
penetrated the social sciences, the medical profession, economics and even astronomy. We believe this field has come
of age. To utilize and stimulate progress in the theory of extremes and promote its application, an international
conference was organized in which equal weight was given to theory and practice.

The Proceedings are published in three Volumes. Volume I, published by Kluwer Academic Publishers, contains
papers of general interest in extreme value theory and practice. Volume II, this Special Issue of the NIST Journal of
Research, contains papers deemed by the Committee to be most directly relevant to NIST's mission. Volume III, NIST
Special Publication 866, contains papers selected for their important contribution to a number of specialized topics.
AlI papers have been refereed and we are grateful to the many engineers and scientists from alI over the world who
served as referees.

The conference was held in May 1993 on the campus of the National Institute of Standards and Technology (NIST)
in Gaithersburg, Maryland, with its Statistical Engineering Division (SED) acting as host. It was organized by Temple
University, Philadelphia, Pennsylvania, and NIST.

The conference had no external funding, and NIST's support was fundamental to its success. We are particularly
grateful to Dr. Lundegard, Chief of SED, whose support was the single most important factor in making the
conference happen. The support ofNIST's Building and Fire Research Laboratory is also acknowledged with thanks.

The Organizing Committee consisted of Janos Galambos (Chairman), James Lechner, Stefan Leigh (Director of
Local Arrangements), James Pickands III, Emil Simiu, and Grace Yang. Stefan's enthusiasm and tireless work was
essential for the success of the Conference. The Conference included three special sessions:

The Centennial Session for Emil Gumbel. Churchill Eisenhart introduced the Session. His personal recolIections
of Gumbel are included in Volume I of the Proceedings. Emil Simiu then spoke on Gumbel's life and work.

The Memorial Session for Josef Tiago de Oliveira. Janos Galambos remembered Tiago, a close friend to many
Conference participants, who was on the initial list of invited speakers. M. Ivette Gomes gave a detailed account of
his work.

The 80th Birthday Session for B. V. Gnedenko. Janos Galambos summarized the work of Gnedenko as the founder
of modern extreme value theory and his contributions to the central limit problem, limit theorems with random sample
size, and renewal theory.

The Conference was opened by Dr. Robert Lundegard who emphasized extreme value theory's role in several
scientific and engineering fields. It ended with a panel discussion on the future of extreme value theory and its
applications. The Panel was chaired by Janos Galambos, and its members were Enrique Castillo, Laurens de Haan,
Lucien Le Cam, and Richard L. Smith.

We sincerely thank Julian M. Ives of the NIST Publications Production Program for his invaluable assistance in
editing and producing this Volume.

Janos Galambos
James Lechner
Emil Simiu

Editors

Charles Hagwood
Technical Editor
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Applications of Extreme Value Theory
in Corrosion Engineering

Volume 99

Philip A. Scarf

University of Salford,
Salford M5 4WT, U.K.

and

Patrick J. Laycock

University of Manchester Insti
tute of Science and Technology,
Manchester M60 lQD, U.K.

1. Introduction

Number 4

In the context of corrosion engineer
ing it is often natural to be concerned
with extreme events. This is because,
firstly, it is these extreme events that
often lead to failure and, secondly, it
may only be possible to measure the
extremes, with much of the underlying
measurements by their very nature un
observable. Statistical methods relating
to extreme value theory can be used to
model and predict the statistical be
haviour of extremes such as the largest
pit, thinnest wall, maximum penetration
or similar assessment of a corrosion
phenomenon. These techniques can be
applied to the single largest value, or
to a given number of the largest values,

July-August 1994

measured over individual areas or cou
pons; or to all values exceeding a given
threshold. The data can be modeled to
account for dependence on environ
mental conditions, surface area exam
ined, and the duration of exposure or
of experimentation. The application of
a selection of these techniques is
demonstrated on data from industry
and from laboratory experiments.

Key words: corrosion; exceedances; ex
treme values; extreme value distribu
tions; generalized Pareto distribution.

Accepted: March 22, 1994

Extremes are typically defined in two ways. Ei
ther by selecting a suitable threshold and then
recording every observation above that threshold;
or by sorting the data, according to some a priori
sampling scheme, so as to select the one, two, or
three, etc., largest value(s). The nature by which
the extremes are defined and hence measured is
then indicative of the techniques appropriate for
modeling and prediction. Most of the statistical
methods relating to extreme values are based, in
the first instance, on the assumption of an underly
ing large sample of possible measurements, all
nominally arising from a single population of such
possible measurements. For extreme value theory
to be used, it is then only necessary for the actual
extremes to be measured. The other possible mea
surements can be ignored and may even be unob-

313

servable with the equipment used to measure the
extremes. The nature of the extreme may be that
of a maximum value or a minimum value. In this
paper we will assume that maximum values are of
interest. In applications concerned with minima,
negating the variable of interest will transform the
problem into one concerned with maxima.

The generalized Pareto distribution (GPD) is
the standard family of statistical distributions to be
used as a basis for modeling data which arise as
exceedances over some threshold. Applications of
this approach for the first of the above extreme
value definitions is examined in the following sec
tion. Methods to ensure the validity of the standard
statistical assumptions while accumulating such
data are discussed. The generalized extreme value
(GEV) distribution can be shown to be the natural
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one to use for single extremes. Data can arise as
the largest value from each of a set of coupons (in
dividual specimens), or from partitioning an area
into equal smaller areas and selecting one maxi
mum from each smaller area. The application of
methods considering such single extremes is also
considered. The joint generalized extreme value
distribution (JGEV) is the appropriate distribution
family to use when the r (say) largest values are
extracted, instead of just the single largest value.
This provides a useful extension to the classical
theory in such a way as to match up with the com
mon practice of measuring the few largest pits at
anyone location undergoing pitting. Using the r
extreme order statistics in this way can increase the
precision of the estimates in the model and hence
improve predictions.

Dependence on time and area can be incorpo
rated for prediction and extrapolation purposes
when applying these distributions, and methods for
modeling the dependence on environmental condi
tions, say, through covariates are indicated.

events. When such data are extracted from a regu
lar grid of values rather than through the engineer
visually identifying isolated corrosion phenomena
and taking one measurement on each, it may be
necessary to edit the values so as to extract only
local cluster maxima rather than using all nearby
points. This is needed to "decouple" the recorded
values and so validate the usual assumption of
statistical independence or exchangeability. A care
ful combination of grid size (to match the scale of
the phenomena being studied) and threshold (to
select for significant phenomena) may be all that is
necessary.

With this form of data set, both the number, n,
of observations and their observed values {yi} are
necessarily random variables. It can be shown, see
for example Ref. [2], that, for sufficiently high
thresholds, and for a wide variety of initial distribu
tions, this number, n, of the exceedances, has
asymptotically a Poisson distribution (with parame
ter A, say) and their sizes, y, have a generalized
Pareto distribution:

2. Exceedances Above a Threshold
G (y) = 1- (1 + l;y/u) -II!;, (1)

These are data collected on the basis of all val
ues exceeding a specified threshold, taken suffi
ciently "high" to imply that certain limiting
statistical results will hold. The data in Table 1, on
pit depths in two stainless steel roofs, were col
lected with just such a threshold, namely 6 /Lm, in
operation. This threshold qualifies as "high" on the
basis that a much lower one, such as 0.06 /Lm for
example, would have produced a very much larger
sample of nascent pits. This is consistent with theo
ries of pitting in steel and other metals. See further
argument supporting this approach in Ref. [1]. This
type of data censoring can arise through built in
limits on measurement capabilities or else through
deliberate censoring of a given data set, typically a
dense time series, so as to isolate the important

Table 1. Pit depths above 6 11m in stainless steel sheet college
roofs (area 500 m2

; samples 10 cm2
; thickness 400 11m)

Roof 1 (50 months)
13110635 262625 23 20 20 18 18 18 17 16 16 15 15 15 14 14
14 14 14 14 14 14 14 12 12 12 12 12 10 10 8 8 8 8 8 8 8 8 8

Roof 2 (29 months)
~~~nn~~~~~Dnn~~~Uu~~

24 24 22 22 20 18 18 16 16 16 16 14 14 12 12 12 8 8 8

314

valid for l+l;y/u>O, with u>O and - 00 <g< 00.

In particular, if these distributional results hold ex
actly for some particular threshold, u say, then the
maximum of this set of values has a generalized
extreme value distribution (see next section) ex
actly, and this will be true for all higher thresholds.
A check that the distribution, Eq. (1), holds can be
made by graphing the mean excess plot, in which
the mean exceedances in the data are plotted
against increasing threshold values. This plot
should follow a straight line with slope g/(l - g)
and intercept u/(l- g); with a horizontal plot cor
responding to g= 0 and a simple exponential distri
bution for the tail. For extrapolation over larger
areas, for extremes derived from random sampling
over a large structure, often the quantity of interest
is the Nth return level

qN =u -~ [1-(AN)~,

where N is either the number of "coupon multi
ples" as a measure of structure size, or else the
number of time intervals into the future. The Nth
return level is interpreted as that level which would
be exceeded on average once every N units of area
(or time).
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The main difficulty which can arise with the
threshold method is the choice of an appropriate
threshold, especially when there is no a priori rea
son for choosing one particular threshold over an
other. In an experiment to consider the prediction
of extreme corrosion rates for carbon steel in a
simulated basalt groundwater [4], a number of 200
mm x 200 mm coupons were exposed for varying
lengths of time. These coupons, having been first
cleaned to remove all corrosion products, were
profiled with spot heights taken at the nodes of a 1
mm lattice. This then gave, after making an adjust
ment for the original coupon surface, a 196 x 196
array of corrosion measurements. False-color his
togram-equalization techniques, displayed on com
puter monitors, were used to validate and inspect
the digitized spot heights from these coupons. A
mean excess plot for a typical coupon exposed for
26 weeks is shown in Fig. 2(a). Note that this plot
was drawn for both the raw exceedances and also
for declustered exceedances. The process of
declustering essentially amounted to identifying all
those "pits" or clusters exceeding a particular
threshold and calculating the maximum ex
ceedance for each "pit." The mean excess plot in
dicates that a range of possible thresholds (300
/-Lm-550 /-Lm) would be appropriate for model fit
ting. Table 2 gives the results for such model fitting
using maximum likelihood for a range of values of
threshold. Here A is the mean exceedance rate per
m2

, CT, and g are the parameter estimates for the
GPO, and q25 and q250 are those levels that would
be exceeded once on average every m2 and every 10
m2 respectively. Standard errors are given in brack
ets. If the q25 is considered, we see that its esti
mated value decreases as the threshold increases,
its value being highly sensitive to the value of g.

Fig. l(c). Mean excess plot for current noise measurements.
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Fig. l(b). Isolated peaks in current noise measurements.

The data in Fig. l(a) are 1024 values of "current
noise" collected during a study of the electrochem
ical nature of pitting. This series was "declustered"
using a moving window of width 40 to give the iso
lated maxima in Fig. l(b). A mean excess plot for
the isolated maxima of the current noise data is
given in Fig. l(c). Consideration of this plot sug
gests that either a large threshold is required or
that the exceedances arise from a mixture of the
tails .of underlying distributions. For an electro
chemical interpretation of this latter phenomenon,
it can be noted that large narrow current spikes
have been described as being typical of intermit
tent pitting corrosion, while steady broader based
but less variable current noise has been associated
with general corrosion, see for example Ref. [3].
Intermediate conditions can be associated with
persistent pitting, widely recognized as the most
threatening scenario for metal structures.

Fig. l(a). Current noise measurements (sample size = 1024).
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Table 2. Summary of model fitting and prediction using maximum likelihood for the generalized Pareto distribu
tion for a typical 26 week basalt groundwater coupon profile

Mean cluster
exceedance Number of

Threshold (J.Lm) clusters A u g q25 q250

300 99 177 4425 98.0 0.01 1158 1406
(333) (11) (0.08) (260) (430)

350 92 146 3650 99.0 0.04 1205 1500
(302) (11) (0.09) (300) (527)

400 97 96 2400 104.3 -0.08 1004 1102
(245) (16) (0.11) (214) (322)

450 83 76 1900 83.4 -0.01 1057 1233
(218) (11) (0.13) (241) (405)

500 90 50 1250 102.6 -0.14 963 1037
(177) (23) (0.17) (213) (309)

550 87 29 725 108.5 -0.23 918 961
(135) (12) (0.31) (250) (339)

Fig. 2(a). Mean excess plot for typical 26 week basalt ground
water coupon profile: O-mean declustered exceedances; 0
mean of all exceedances.

For higher thresholds the large negative value of ~

is indicative of a tail distribution which is shorter
than exponential so implying lower return values.
For lower thresholds the tail appears to be expo
nential implying relatively higher return values.
This effect can be seen further in an exponential
probability plot of the exceedances above 300 j.1m,
Fig. 2(b). As the threshold increases more weight is
given to the extreme observations, which are them
selves smaller than would be expected for an expo
nential tail. The lack of an objective method for
determining the correct threshold therefore leads
to difficulties in prediction.

o
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Fig. 2(b). Exponential probability plot of declustered ex
ceedances above 300 J.Lm.

Data s.uitable for this type of analysis can arise as
the largest value from each of a set of coupons, or
from dividing an area into equal smaller areas and
selecting one maximum from each smaller area,
provided the scale of division and corrosion pat
terns are compatible in the sense described above
for the generalized Pareto distribution. For a sam
ple of independent identically distributed random

3. Extreme Value Distributions
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variables, Xl, ... ,xn, the distribution of Xmax, the data
maximum, depends on n. Suppose however that
there exist location and scale factors, an and bn say,
so that the rescaled variate,y =an +b"x(n) , has a dis
trjbution which is independent of n. This is the so
c~l1ed "stability postulate," and leads immediately
to the fol1owing functional equation (to be solved
for F): F(xt=F(an +bllx). The solution to this
e~uation is the generalized extreme value (GEV)
di~tribution, which can be written in the fol1owing
3-parameter form:

See for example Ref. [5]. Note also that if the as
sumption of independence is relaxed, under gen
eral conditions the distribution, Eq. (2), is still the
appropriate one for maxima. It turns out that al
most al1 standard distributions satisfy the stability
postulate asymptotical1y, although it is only exactly
true for the GEV distribution itself. This is exactly
analogous to the Central Limit Theorem for aver
ages, which is satisfied asymptotical1y by almost al1
standard distributions, but only holds exactly for an
initial Normal distribution. As with averages, which
are assumed Normal, by the Central Limit Theo
rem, and then fitted accordingly, so with maxima, it
is reasonable to assume a GEV distribution and fit
accordingly. Since the dependence of the stability
coefficients, an, btl, on n is typical1y logarithmic, or
slower, we can extract maxima from samples which
are roughly the same size. In engineering practice
this is often almost unverifiable, but nevertheless a
plausible assumption, since the bulk of the data,
"too smal1 to be seen," may be uncounted, let
alone observed. The physical size of components
and common conditions may be the only justifica
tion.

For extrapolation over larger areas (for extremes
derived from random sampling over a large struc
ture) or over longer time periods (for extremes
derived from sampling at regular intervals of time),
the Nth return level can be defined by solving
F(x) = I-liN. Again N is interpreted as in the
previous section. Alternatively, after fitting the dis
tribution to the given data, the implied distribution
of extreme values from future samples over larger
areas and longer lengths of time (with equal base
populations) can be deduced and properties such
as the mean extreme, etc., inferred from this more
fundamental approach. For a ful1 discussion see
Ref. [1]. However, the return period method is par-

years
1.00.80.6

t/Jt =0.293( ± 0.037)t 13

g= -0.216(±0.121).

0.40.2

2.0

ILt =0.912( ± 0.063)t 13

f3 =0.298( ± 0.051)

ticularly easy to implement for type I extreme value
probability plots. For examples of these plots ap
plied to pit depths in steels exposed to marine envi
ronments see Refs. [6,7]. The parameters can also
be regressed on covariates as appropriate, to al10w
for dependence on measured environment vari
ables and/or time, see for example Ref. [8]. A more
subtle approach for modeling covariates would use
an extreme value regression model of the sort con
sidered in the context of the Weibul1 distribution
[9].

In Ref. [10] each of five circular coupons were
exposed to a corrosive medium for each of four
different exposure times: 1000 h, 3000 h, 5000 h,
and 8000 h. The maximum pit depth was measured
in each of six equal sectors on each specimen.
Nominally this gave 120 pit depths in al1, however,
for many coupons, pits overlapped into a number
of sectors and so the number of independent max
ima was significantly reduced. Figure 3 shows a
plot of maximum pit depth against exposure time
for resulting data. The plotted mean function and
upper bound are based on the fitting of a 4
parameter time dependent GEV distribution for
which ILt = J.Lf13, t/Jt = l/Jt13 and g is constant. This
model gives

0.0

0.0

0-
S 1.0
g
X
«J
s 0.5

Fig. 3. Maximum pit depths against time for carbon steel in
alkaline conditions along with fitted mean function (_. -). up
per bound (-) and confidence curves for the upper bound
(---).

(2)

F(x) =exp{ - [1 + g(x - IL)/lIJrl/~,

gx > gIL - t/J =go, t/J >0.
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the few largest pits at anyone location undergoing
pitting. Using all this information rather than just
the single largest extreme enables smaller confi
dence bands to be drawn around predicted values.
However care is needed to ensure that r is not
taken so large as to invalidate the choice of the
asymptotic distribution, Eq. (3).

When g=0, this model reduces to the Gumbel
form of the JGEV with density

A useful diagnostic here is the joint Gumbel plot.
When X(1) ~ ... ~X(r) have density, Eq. (4),
E(x(i))=,..,,-l/J</J(i) (alll::Si::Sr) [14], where </J(') is
the digamma function. Thus a plot of the order
statistics X(i) against - </J (i) will give a straight line
with slope l/J and intercept,.." if the Gumbel form of
the JGEV distribution is appropriate. Such a plot
is shown in Fig. 4 for each of the pitted college
roofs data in Table 1. This plot indicates that these
extremes arise from perhaps a mixture of two tail
distributions. However it was assumed that g=0
for both roofs and that for roof 1, the two largest
values were to be outliers from the model, Eq. (4).
These two values were removed for the purpose of
analysis, and the slopes and intercepts resulting

The corresponding mean function is 111 =

[8 +i'r(l- g)]t.B= 11t/l, which agrees with the com

mon assumption made in the corrosion literature
of a power law growth of the mean maximum pit
depth with time [8,11,12]. The implied upper
bound is then 81 = (Jt/l= (,.." -l/J/g)t/l. Such means
and bounds can be extrapolated out to larger areas
of exposed metal and to longer time periods using
the methods described in Ref. [1]. Standard errors
on the upper bound were calculated by reparame
terizing the problem and constructing a profile
likelihood for 81 as in Ref. [2]. The negative value
for the shape parameter ghas been observed by the
authors of this paper consistently for corrosion
phenomena of many types and in many environ
ments. This has important consequences for ex
trapolation since, in corrosion engineering return
levels are often very large (e.g., it may only be pos
sible to inspect a small number of one meter sec
tions of a buried pipeline which may be hundreds
of kilometers in length), and so for the range of
values of g encountered by the authors, the maxi
mum will be very close to the upper bound or end
point of the distribution. This should be contrasted
with the commonly used g=0, type I extreme value
distribution, [6-8,11] for which there is no upper
bound.

4. Extreme Order Statistics

(4)

120

150

Fig. 4. Joint Gumbel plot for the college roof data: O-roof 1;
D-roof2.
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valid for gXj > g,.." -l/J = g8, l/J > 00 =1,...,r). See for
example Ref. [13]. This is the appropriate distribu
tion to use when the r (say) largest values are ex
tracted from coupons or sampled areas, instead of
just the single largest value. This provides a useful
extension to the classical theory in such a way as to
match up with the common practice of measuring

There is a corresponding asymptotic result con
cerning the joint distribution of the r largest values,
X max =X(1) ~ ... ~X(r), from a sample of independent
identically distributed random variables. Data will
in general then consist of m sets of such largest
values. The joint generalized extreme value distri
bution (JGEV) has density
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,u =7.041( ± 0.71O)t" 1/1 =0.467( ± 0.066)t",

,u =54.2 (± 7.9) 1/1 = 12.5 (± 2.1), roof 1,

,u = 103.2 (± 15.8) 1/1 =26.0 (± 4.2), roof 2.

used as starting values for determining the maxi
mum likelihood estimates of the parameters in Eq.
(4). The fitted values, with their standard errors,
were

o 1st

o 2nd

18001200

hours

600o

600

E

~a. 400Q)
"0

""[

200

Fig. 5. First and second largest pit depths against time for low
alloy steel in deionized warm water, along with fitted mean
function (_. -), upper bound (-) and confidence curves for
the upper bound (---).

BOO

0+-----+------1------<

precision or possible error. There is much evidence
in the literature that g< 0 for the GEV distribution
in the context of extremes of corrosion phenomena.
Return levels are often very large and so, for the
range of values of g encountered, predicted max
ima will often be very close to the implied upper
bound or end point of the distribution.

It should be noted however, that with all the
methods described here, there are pitfalls. When
modeling exceedances, for example, it is difficult to
choose the threshold objectively, and different
thresholds can lead to different predictions. Similar
problems exist in the use of the r largest order
statistics and also the maximum itself. How many
largest order statistics should be used? When
recording single maxima, how large should the
sampled area be? While some theoretical results
are available to answer such questions (e.g., Ref.
[17]) these are not very helpful in a practical con
text.

g= - 0.513( ± 0.126).13 =0.609( ± 0.016)

These are the maximum likelihood estimates for
their data, for which they were only, at that time,
able to report initial probability weighted moment
and regression estimates. Figure 5 shows a plot of
this data along with the fitted mean function and
upper bound, and confidence curves for the upper
bound calculated using the profile likelihood
method discussed in the previous section.

These values are then available for the implied
Gumbel distribution of the maximum value, which
has mean ,u +0.57721/1. This gives 61.4 !-Lm for roof
1 and 118.2 !-Lm for roof 2. Extrapolation could now
proceed according to the method described in the
previous section, noting however that the mean of
the maximum for roof 1 is considerably out of line
with the observed maximum of 131 !-Lm.

Reference [15] reports on an experiment where
15 low alloy steel specimens were suspended in a
deionized warm water bath under free corrosion

.conditions. Specimens were removed at varying in
tervals up to 71 days, then after cleaning, pit
depths and diameters were measured optically. A
4-parameter JGEV distribution incorporating a
power law dependence on time [16] was fitted to
these pit-depths, utilizing the two largest pits from
each side of the specimens giving parameter values:

5. Discussion
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demonstrated on selected sets of corrosion data.
Noting that much corrosion data are inherently of
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1. Introduction

Number 4

Application of extreme value statis
tics to the problem of Type-II pits
growth prediction on hot-water-supply
copper tubing is described. A recom
mendation is suggested for optimum
combinations of the number and the
size of unit samples required for rea
sonable extreme value predictions.
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Modern large buildings in the Tokyo metropoli
tan area usually have a centralized hot-water sup
ply operating 24 h a day. Copper pipe is widely
used in such systems because of its relatively high
resistance to corrosion, coupled with additional
pragmatic merits: it is easy to work with, easy to
install, and relatively cheap.

The seriousness of Type-II pitting corrosion,
however, has increasingly received high recognition
in such hot-water supply systems [1,2,3]. The need
to obtain information regarding the degree of pit
ting corrosion has increased over the last decade
because considerable pipe damage may require
maintenance, and even replacement, and in that
case, proper life prediction is essential to pass rea
sonable engineering judgements and thereby to
perform proper maintenance.

The life prediction of such copper plumbing tub
ing can first be performed by coupling adequate
nondestructive and/or, though less favorable, de
structive inspection techniques with reliable statis
tical analysis. It has been shown that the most

321

promISIng statistical analysis methods for such a
purpose include extreme value statistical analysis
[3,4].

Although such tools have become widespread, a
general method for evaluating the localized corro
sion propensity on existing engineering structures
from limited inspection data, and concrete crite
rion for the number and size of samples required
to obtain a reasonable extreme value prediction is
still not available.

In the present study, a set of pitting corrosion
depth data obtained from 7 year old copper plumb
ing pipe, one third of which was removed from a
centralized hot-water supply system, was examined
by extreme value statistics. Emphasis was placed on
the effect of the total number and size of maximum
pit depths on the accuracy of pit growth prediction.
A concept was ultimately proposed to obtain a rea
sonable prediction of maximum pit depths while
minimizing the total sampling area (or, length) for
analysis.
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Fig. 1. Extreme value probability paper of double-exponential
distribution.

The straight line is drawn in Fig. 1 on extreme
value probability paper. In the present analysis,
emphasis was placed on the optimum combinations
of Nand s for obtaining a reasonable estimate of
the extreme value. Such an analysis becomes feasi
ble through a thorough investigation of all the sam
ples where the depth of the actually detected
deepest pit could be regarded as the probable max
imum pit depth, that is, the extreme value.

Several sets of plots were obtained depending on
the combinations of Nand s .In an exemplifying
case of s =100 mm and N =7, a total of 10 sets of
plots was subjected to regression analysis.

2.2.2 Regression for the Best Fit Line Re
gression analysis based on the MVLUE (Minimum
Variance Linear Unbiased Estimator) method was
made for each data set to determine a straight line
of best fit to the plotted extreme values. The equa
tion of a straight line is given as follows:

(2)

(1)

x

Maximum pit depth

F(y)=1-i/(N+1)

x =expected maximum pit depth,
y =standardized variable,
A=location parameter,
a =scale parameter.

x=A+~

i =rank number,
N =total number.
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2.2 Extreme Value Statistical Analysis

The extreme value statistical analysis was per
formed by using a commercial available personal
computer software package, EVANS [5].

The basic concept of the present extreme value
analysis is briefly reviewed in the following sec
tions.

2.2.1 Extreme Value Probability Plots The
first step of the extreme value analysis included the
preparation of extreme value probability plots, that
is, plots of maximum pit depth data on extreme
value probability paper of the cumulative relative
frequency (F(y)) vs maximum pit depth (x). Maxi
mum pit depths data were arranged in order from
largest to smallest and assigned a rank number.
The vertical plotting position F (y) for each pit
depth value was calculated by the averaged rank
method as follows:

2. Test Procedures

2.1 Test Specimens

Copper pipes totaling 8.88m in length were re
moved from various parts of the centralized hot
water supply system in an ll-story multi-family
dwelling in Tokyo. The system consisted of one
stainless steel storage tank (1.8 m3

) and copper
plumbing pipe having an overall length of about 28
m. The plumbing material was JIS C 1220T type
25AM (outside diameter 28.58 mm and wall thick
ness 0.89 mm) copper pipe for building use. The
system had been operating for about 2600 d before
test piping was removed. In the system, water at a
nominal temperature of 60°C circulated con
stantly. Average flow (i.e., hot-water consumption)
was around 8 m3/d, the storage tank being supplied
automatically with tap water.

The copper piping removed was cut into parts
100 mm long, which were then cut in half to give
half-ring specimens. Each half-ring specimen was
then completely cleaned ultrasonically in dilute sul
furic acid, followed by marking-off to divide it into
10 virtual half-ring specimens of 10 mm unit length,
after which the pit depths were measured by using
an optical microscope of 1 J..l-m precision. By cou
pling two opposite virtual half-ring specimens, a 10
mm long full ring specimen was reassembled, and
the area thus surveyed should be representative of
the pipe at that particular location. Then, by taking
several adjoining full-rings of 10 mm length, for
each unit sample sizes of maximum pit depths
(hereinafter, s: unit length) in the interval 20 mm
up to 200 mm were obtained.
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3. Results and Discussion

3.1 Distribution of Pit Depths

Figure 2 is a histogram showing the relationship
between the pit depths and the total frequency. In
the figure, a total of 970 depth data for all pits
found in one 10 mm long full-ring, removed from
.the 7th floor in the building, was grouped over the
pit depth ranges, 0 mm-0.019 mm, 0.020 mm-0.039
mm, etc. As is evident from the figure, the shape of
the pit depth distribution is a bell-shaped curve
starting at zero, rising to a maximum at around
0.05 mm and thereafter decreasing rapidly with in
creasing pit depths. The lack of "J"-shaped portion
bending to the right in the pit depth range from 0
mm to 0.02 mm, together with the trailing extreme
portion of the tail of the curve up to 0.34 mm, indi
cated that most of the small pits had already had
ceased to grow while only a small number of
deeper pits continued to grow.
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Fig. 2. Pit depths distribution histogram for 10 mm long copper
pipe used for 2600 d in a hot-water supply system operated at
60°C.
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Fig. 3. Plot on a logarithmic-normal distribution diagram of all
data presented in Fig. 2.

y=lnT (3)

T=S/s (4)

Vex) =a 2[A (N,n )y2+ B(N,n)y +C(N,n)] (5)

In Figure 5, the maximum pit depth data for unit
lenghs of 20 mm, 100 mm, and 200 mm were evalu
ated from extreme value analysis on the basis of
Gumbel's double-exponential distribution; the lin
earity of each plot shows that this distribution ap
plies to the maximum pit depth data obtained at
the unit lengths between 20 mm and 200 mm.

Pit depth (mm)

3.2 Minimum Required Nand s

In the practical application of extreme value
statistics, the number and the size of unit samples
for the pit depths survey are to be decided prior to
the destructive (or nondestructive) inspection of
the existing structures.
Reliability of the extreme value prediction de

pends on the following three equations:

f-
f--

200

>-
g 150

"=.,.
"at 100

In Fig. 3, all the pit depth data represented in
Fig. 2 were plotted on a logarithmic-normal distri
bution diagram. The apparent linearity of the plot
indicates that this distribution applies to the loga
rithmic-normal; and hence the maximum pit depth
data obtained in the present pit depth survey were
sampled from the parent populations with a loga
rithmic-normal distribution.

Figure 4 shows the distribution at every floor of
the maximum pit depth detected in each 100 mm
unit length. Though the maximum pit depths
seemed to have a slight tendency to become shal
lower at upper floors, the distribution of pit depths
was regarded as being uniform throughout the
building. The actual maximum pit depth value in
the present survey was 0.452 mm which was de
tected at 6th floor.
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Maximum pit depth (mm)

Fig. 4. Distribution at each floor in the building of the maxi
mum pit depth detected in each 100 mm unit length.

(6)A=mCT

A=location parameter,
CT= standard deviation of the estimated

extreme value,
m =assumed number (1, 2, 3, etc.)

y =standardized variable,
T =return period,
S =total length,
s =unit length,
V(x) =variance of the estimated extreme

value,
A(N,n), B(N,n), C(N,n)=MVLUE

coefficients,
a =scale parameter.

where

It is obvious from these equations that for in
creased reliability, hence for a minimized V(x), it is
required to increase s (therefore to decrease T)
and/or to increase N. In the interest of economy,
however, there must be a natural limitation to the
increase of Nand s for the extreme value survey.

In theory, the optimum combinations of Nand s
can be determined from Eqs. (3) to (5) once the
distribution parameter (that is, a ratio of the loca
tion parameter to the scale parameter, a/A) is
reasonably assumed (that is, empirically or experi
mentally), and the extent of the standard deviation
of the error of extreme value estimates, CT, may be
expected to be:
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That is, the decision may be made to reduce CT to
11m of A[6].
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Fig. 5. Double-exponential distribution type of extreme value probability plots for s =20 mm, 100 mm, and 200 mm.
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Based on this analysis, the following conclusions
can be drawn concerning the optimum conditions
for obtaining a reasonable extreme value predic
tion.
1) The number and the size of unit samples for the

extreme values survey may be determined so
that the variance of the extreme value estimates
is to be minimized under a definite distribution
parameter, wherein the standard deviation of
the estimates is expected to be 113 of the mode
of distribution.

2) A return period of 500 with a total sampling
length amounting to 2.5% of the entire parts
may be desirable for an increased reliability of
extreme value prediction.

4. Concluding Remarks

3.3 Maximum Pit Depths Prediction Based on the
Optimized Nand s

Figure 7 shows the results of the maximum pit
depths prediction by using the combinations of N
and s from Fig. 6. Unit lengths for this evaluation
were not sampled at random locations, but were
ordered from one end of the lower floors upward.
Thus the results were represented by correlating to
the locations wherefrom those unit lengths used in
the prediction were removed. It can be seen that
the scatter of estimated extreme values decreased
with increasing s. As would be expected, the scat
ter was narrower at m =5 as compared with m =3.

To determine the general tendency in the reli
ability of the present extreme value prediction,
Table 2 was developed from data on Fig. 7 by tak
ing an average for each item. The results indicate
the following:
1) The assumptions for alA and m, that were

made prior to the analysis, have conservatively
been met.

2) Increased m did not always result in increased
reliability which indicated that m =3 might be
reasonable in the interest of economy.

3) Except for the cases of s = 10 mm, the maximum
detected pit depth value of 0.452 mm fell closely
between the average of estimates ± 10'.

4) Although the level of s is to be kept as low as
possible, because the total sampling length (ie.,
N x s) may increase with increasing s, at least
2.5% of the whole structure is to be subjected to
extreme value evaluation at a return period of
500 or the less.

40
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20
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T

Unit length T N Xmax A a a/A
(mm) (mm) (mm) (mm)

50 177.6 172 0.575 0.28415 0.05621 0.198
100 88.8 86 0.528 0.30446 0.04986 0.16
200 44.4 43 0.506 0.3221 0.04866 0.151

Table 1. Location, scale, and distribution parameters deter
mined from all maximum pit depth data obtained in the survey

Table 1 shows the result of extreme value analy
sis to obtain the relationship between unit length
and distribution parameter. In the analysis, all pit
depth data obtained from the whole lengths were
brought into consideration. It can be seen in the
table that the distribution parameter, alA, de
creased with increasing unit length, ultimately ap
proaching to a definite level of 0.15.

Optimum combinations of Nand T (hence, s)
required for controlling 0' down to 11m of A were
obtained as shown in Fig. 6 corresponding to alA of
0.15 and 0.20. It stands to reason, that the number
of unit lengths, N, can markedly be reduced by
loosening the requirement for the reliability, that
is, by decreasing m. N may also be reduced by de
creasing alA. Though N may be reduced by in
creasing s (hence decreasing T), it should be noted
that the total length required for a pit depths sur
vey can increase on the contrary.

Fig. 6. Optimum combinations of Nand T to control a- at levels
of 1/2, 1/3, 1/4, or 1/5 of A under the limitation of a/A = 0.2.
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Fig. 7. Distribution at each floor of the estimates of maximum pit depths on the basis of the optimum
combinations of Nand T under the limitations of A = 3(7 and 5(7.

Table 2. Summary of the extreme value prediction

Estimated
~Unit length Return Sample Location Scale maximum Oxmax

S period number parameter parameter pit depth
Oxmax

(mm) T N Aav aav xmax

10 888 14 0.241 0.043 0.534 0.069 3.50

A =3(7 20 444 12 0.269 0.034 0.478 0.054 4.98
40 222 9 0.288 0.035 0.467 0.058 4.98

100 88.8 7 0.313 0.028 0.428 0.045 6.94

10 888 33 0.218 0.046 0.559 0.047 4.63

A =5(7
20 444 28 0.266 0.040 0.491 0.040 6.67
40 222 23 0.282 0.039 0.487 0.039 7.25

100 88.8 18 0.312 0.034 0.463 0.032 9.71
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1. Introduction

Number 4

Application of extreme value statistics
to corrosion is reviewed. It is empha
sized that the concept of corrosion
probability is important for a quantita
tive evaluation of corrosion failure and
its prediction, especially for localized
corrosion. Extreme value statistics is
quite useful for assessing the maximum
pit depth and/or the minimum time for
crack generation. The maximum pit
depth depending on the surface area
can be evaluated by using the Gumbel
distribution with the concept of return
period. A standardized procedure is
proposed for estimating the maximum
pit depth. Examples of corrosion failure

July-August 1994

analysis using extreme value statistics,
which were reported mainly in Japan,
are shown. Accumulated experiences
suggest that an appropriate classifica
tion of data based on the corrosion
mechanism is required before applying
extreme value analysis.

Key words: corrosion probability; fail
ure time; Gumbel distribution; localized

-corrosion; maximum pit depth; MVLUE
method; return period; Weibull distri
bution;
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Development of extreme value statistics and its
application to various fields, including corrosion,
has been described by Gumbel in Ref. [1] and [2].
Evans is one of the pioneers of modern corrosion
science, and first established the concept of corro
sion probability [3, 4]. Eldredge [5] used extreme
value statistics to obtain the maximum value of pit
depth on an oil well tube wall as a function of tube
surface area. Scott [6] found a logarithmic depen
dence of the maximum pit depth on surface area,
and explained that dependence by referring to Trip
pet [7]. Aziz [8] and Eledredge [5] discussed almost
all important points to be considered for the analy
sis of corrosion pit data and made use of the return
period concept. This concept, originally introduced
in the fields of hydrology or meteorology, is now
used to obtain a size factor which makes it possible
to estimate the maximum pit depth in a large sur
face area based on the distribution of a small num
ber of pit depth data from the small surface area
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samples. In Japan, early review papers on corrosion
probability and extreme value statistics by Masuko
[9] and Shibata [10, 11] contributed to the study of
the extreme value statistics as applied to corrosion
problems. Ishikawa [12,13,14] and Imagawa
[15,16,17] applied extreme value statistics to ana
lyze engineering data. Kase [18, 19] reviewed
Lieblein's paper [20], introducing MVLUE (mini
mum variance linear unbiased estimator) method
for estimating the distribution parameters. Lieblein
had given the coefficient of MVLUE up to N = 6.
Recently, Tsuge [21] had calculated the coefficients
up to N =45, and confirmed that the parameters es
timated by the MVLUE method are unbiased and
efficient and are consistent with values estimated by
the method of moments or maximum likelihood
when the sample size exceeds more than 20. The
committee of Japan Society of Corrosion Engineer
ing USCE) proposed a standard procedure [22] to
estimate the maximum pit depth from the small
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sample size data by using the MVLUE method, and
a computer program named EVAN [23] was devel
oped. Recently Laycock et al. [24] reported that a
generalized extreme value distribution is more con
venient for corrosion depth analysis, because no
preliminary assumption on the type of distribution
is needed. An introductory book [25] by Kowaka et
al. helped to differentiate extreme value analysis
among corrosion workers in Japan. General back
ground on extreme value statistics is provided by
Ang and Tang [26], and Kinnison [27].

Table 2. Examples of the extreme value analysis for corrosion
using the Weibull (exponential) distribution

Example Ref.

1. Failure life analysis of stress corrosion [56]
cracking of stainless steel heat exchanger tubes

2. Failure life distribution of stainless steels [57]
in high temperature and high pressure water

3. Effect of CaClz concentration on SCC life time [58]
distributions of stainless steels

4. Evaluation of SCC failure life of stainless steel [59]
in high temperature water

F (x)=exp (-exp (- (x-A)/a), (1)

where F(x) is the cumulative probability of pit
depth, x, and A and a are the location and scale
parameters. The reduced variate, y,

2.1 The Gumbel Distribution

The procedure is proposed mainly for analyzing
pit depth distribution by using the Gumbel distribu
tion and the return period in order to estimate the
maximum depth of the larger surface area from
which small area specimens are sampled. The Gum
bel distribution is expressed as

2. Application of the Extreme Value
Analysis to Corrosion

In the early 1980s, meetings and symposia
[28,29,30,31] were held in Japan for discussing the
basic principles of extreme value statistics as well as
difficulties and problems in their application to cor
rosion. In Table 1, several topics for which the
Gumbel distribution is applied are listed. Table 2
includes cases analyzed using the Weibull distribu
tion, including the exponential distribution. Before
discussing case histories, the standard procedure
[22] proposed by the committee is briefly explained;
details are available elsewhere [22, 32].

Table 1. Examples of the extreme value analysis for corrosion
using the Gumbel distribution y = (x - A)/a (2)

Example Ref.
is introduced, and then

(3)

(4)

y = -In (-In (F(y)))

F(y) = 1-i/(1 +N),

where i is the i th of the ordered value, x, in de
scending order and N is the total number of sample.
Plotting y as a function of x yields a best-fitting
straight line; its slope provides 1/a and its intercept
(at y = 0) yields A. Instead of this graphical estima
tion of the parameters, more reliable estimates of a
and A can be obtained by using the MVLUE (min
imum variance unbiased estimator) method, the
maximum likelihood and the method of moments.
Among them the MVLUE method which is dis
cussed by Lieblein [20] is found to be more efficient
and unbiased for small size samples. The MVLUE
estimator can be calculated by

is used for constructing the Gumbel probability pa
per. Plotting position for the cumulative probability
can be calculated simply by

[49]

[37]

[42]

[55]

[44]

[16]

1. Life prediction of super heater tubes of the power
plant

2. Application of the extreme value analysis to
heating tubes of the boiler

3. Estimation of the maximum amount of impurity
segregation in steel

4. Failure life estimation of SCC for Ni base alloys
5. Extreme value analysis of the corrosion depth of

the oil tank plate

[41]
[35]
[36]
[50]

6. Life prediction of heat exchanger tubes [51]
7. Eddy current examination system for heat exchanger [43]

tubes with the extreme value analysis
8. Extreme value analysis of pitting corrosion of heat [52]

exchanger tubes
9. Methods for the parameter estimation of the pit

distribution in plants
10. Ultrasonic method for heat exchanger tubes with

the extreme value analysis
11. Maintenance system for coated heat exchanger tubes [45]
12. Corrosion of steels in sea water [53]
13. Analysis of perforation of zinc plating steels by [54]

extreme value statistics
14. Fatigue crack behavior of high strength steel in

artificial sea water
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(5)

where ai (N, n) and hi (N, n) are weights for each
sample depending on the sample size, N, and trun
cated number, n, which are tabulated in the table
given by Tsuge [21, 23] up to N =45. The weights,
A, B, C, of variance, V,

where y, 11 and m are the location, scale and shape
parameter, respectively. This third type of asymp
totic distribution for the smallest value can be trans
formed to the first type for the largest value, that is,
Eq. (1), by changing I-F(t) to F(z) and by intro
ducing the following reduced variate

X=ln(t-y),z=(X-A)la. (11)

V=a2 (A (N,n)y2+B(N,n)y+C(N,n)) (6)

are also found in the table given by Tsuge [21, 23].
For the pit depth distribution, the return period, T,
is defined as

The same MVLUE method used for Eq. (1) can be
utilized for parameter estimation, because the fol
lowing relations exist between the parameters of
both distributions;

T=Sls, (7)
A =In(11), a = 11m. (12)

where S is the surface object (e.g., a tank plate) to
be examined and s is the area of the small speci
mens which are sampled randomly from the objec
tive. The return period, T, is in effect a size factor.
The mode, A, of the pit depth distribution for the
small specimen is simply obtained by the MVLUE
estimators mentioned above, and the mode for the
T times larger surface, X max, is given by

Xmax=A +aln (T). (8)

The above unified procedure for estimating
parameters of the Gumbel and Weibull distribution
was coded in the computer program EVAN [23].

3. Examples

Several examples are provided to demonstrate
the usefulness of extreme value statistics for analyz
ing corrosion problems.

The perforation probability, P, of the maximum pit
through the wall thickness, d, is given by

P=l-exp (-exp(- (d- (A+aln (T)la)). (9)

Finally, the procedure [22] requires reporting the
surface area of the object, S, with the small sample
area, s, providing the return period, T ( = Sis), and
the number of samples, N, with data number, n, ac
tually obtained. In addition, the original thickness
of the plate, d, and the perforation probability, P,
if needed are to be stated. The above procedure
does not request to check a goodness of fit of the
distribution obtained to the Gumbel distribution,
but recommends to examine the fitness by the Kol
mogorov-Smirnov or chi-square test if needed.

2.2 The Weibull Distribution

The third type for the smallest value called the
Weibull distribution

F (t) = 1- exp ( - «t - y )/11)"') (10)

can be fitted to the failure life distribution of stress
corrosion cracking [33, 34] as shown in Table 2,
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3.1 Maximum Pit Depth of Oil Tank Plate

Through the 1960s and 1970s a number of oil
tanks were built in Japan. In the late 1970s there
occurred frequent oil leakages from tanks due to
corrosion failure. Oil refinery or petrochemical in
dustries were located along the seacoast and oil
leakage caused serious environmental damages. In
1976, the fire service law was revised to enforce in
spection of the thickness of the base and annular
plates of oil tanks every time oil was evacuated. On
these occasions extreme value analysis was applied
and found to be a powerful tool for estimating the
maximum pit depth. It is emphasized that data for
the base plate and the annular plate should be con
sidered separately because they are characterized
by different corrosion damage and mechanisms.

The law requests that plate thickness has to be
measured at the corners of every 10 cm square on
the whole surface of the plate. This inspection pro
cedure contributed greatly to reducing corrosion
leakage, but was time-consuming and costly. The
extreme value analysis was then studied intensively
in this field [35] [36]. Pit depth distribution sampled
from the whole base plate was found to obey the
Poisson distribution.
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Araki et al. [36] found that the largest value from
each small square (s =1 m2

) being randomly sam
pled obeys the Gumbel distribution as shown in
Fig. 1 [36]. The slope and intersect of the line
(a =0.694 and A =1.41) were estimated by the
MVLUE estimators of Eq. (5). In this case, the sur
face area of the base plate, S, was 1535 m2 and the
return period or size factor was calculated to be
T = Sis = 1535. The maximum depth, Xmax, was cal
culated by Eq. (8):

Xmax =1.41 +0.694 x In (1535) =6.50 mm

which is shown also in Fig. 1. These data were ob
tained for a base plate which was exposed for 12.6
years. Data for both annular and base plate exposed
for 7.7 years were plotted in Fig. 2 [36], from which
the first leak due to the maximum pit is to be ex
pected after 17.6 years for the base plate and 23.5
years for the annular plate, respectively. The effect
of N, s, on the estimates was examined and it was
concluded that the MVLUE method is optimal for
N < 20 and the maximum likelihood method is reli
able for N > 20.
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Fig. 1. The Gumbel plot of the maximum pits on the bottom
plate of the oil tank.
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Fig. 2. Estimated depth of the maximum pit on the whole sur
face as a function of operation years, and prediction of failure
life for the bottom and annular plate.

3.3 The Pit Depth Distribution of Steel Piles in
Sea Water

Since the 1970s, steel pipes and piles have been
used extensively in Japan for harbor construction,
because lead time for construction could be
reduced compared with using concrete. Recently,

3.2 Rupture of Heat Exchanger Tubes of the
Boiler

Super heater and economizer tubes of boilers are
exposed to high temperature gases with salt de
posits which cause severe corrosion attack. Corro
sion attack is not uniform, but localized at several
sites, wall thinning at the localized site resulting in
burst. Regular inspection is needed to predict time
for replacement of the tube before burst. All tubes
have to be examined for predicting exact time with
high confidence, but cost of inspection being high,
that Fukuda et al. [37] introduced the use of
extreme value analysis to supplement the inspection
of a small number of tubes. In Fig. 3, the largest val
ues of wall thinning observed for 14 tubes are plot
ted on Gumbel probability paper. The distribution
of wall thinning at every inspection time is seen to
obey the Gumbel distribution and the maximum
thickness determined by the return period (40
tubes) increases with operation time as shown in
Fig. 4. A criterion for a proper replacement time
has been proposed, which requires replacement
when the wall thickness reaches half of the design
thickness, tsy • Risk of burst could be avoided by
estimating the depth and noting the proposed crite
rion.
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corrosion of steel pipes and piles was found to cause
the collapse of harbor structures. Then corrosion
damage of steel structures exposed in sea water has
been inspected and analyzed by using extreme value
analysis. Hoh et al. [38] reported that three differ
ent types of depth distribution were found for steel
piles and plates depending on exposure time and
exposure location such as water level and deep sea
(Fig. 5). The type A distribution which exhibits a
nearly straight line, was found for uniform corro
sion loss, its mean value being below 1.0-1.2 mm
thickness. The type C distribution obeying the
Gumbel distribution was observed for heavily local
ized specimens. The type B distribution is a mixed
type of A and C distributions. The estimated depth
using the return period was consistent with observa
tions.

Fig. 3. The Gumbel plots of the maximum thickness loss of
boiler tubes used for different operation times.

Fig. 4. Thickness loss of boiler tubes as a function of operation
time and estimation of rupture time.
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Fig. 5. Various types ofthe distribution observed for steel piles
and pipes exposed in sea water.

3.4 Classification of Data Based on Corrosion
Knowledge

In any of the cases mentioned earlier, measured
sets of data is fitted by two or three distributions
and must be separated from each other before the
analysis in order to obtain the maximum value.
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Imagawa et al. [15,16,17,39] presented many cases
which require classification of data. For example,
data for the heat exchanger tubes had to be classi
fied into the inlet and outlet side samples because
corrosion form and its degree of damage were dif
ferent at the two locations owing to exposure to dif
ferent temperatures. For the oil tank, Imagawa
observed that more deep pits were formed on the
welding line compared with other parts. He ob
tained the different estimated value of the pit depth
for each classified sample. At the present time, the
classification was done on corrosion knowledge and
experience, but it is required to establish a proce
dure based on a common criterion.

3.5 Crack Depth Distribution of Stress Corrosion
Cracking

Stress corrosion cracking is one of the most dan
gerous corrosion failure and shows random occur-

,. .....I.-I"'-'.............._ ....1.iI

100 200 H_I

I--- 2000 ---
(p)

renee which is a very specific and common feature
of materials fracture. The Weibull distribution has
been known to be quite useful to analyze the distri
bution of fracture strength of various materials [40]
and also has been found to be applicable for analyz
ing failure life distribution due to stress corrosion
cracking [33, 34].

An interesting application of the Gumbel distri
bution for analyzing the crack depth distribution
has been reported by Tsuge [41]. The laboratory ex
periment for evaluating the susceptibility of stress
corrosion cracking of Type 304 stainless steel was
done by using a bent specimen of u-shape. Bending
gives stress to the specimen and the environmental
condition of high pressure water causes many
cracks, which can be revealed by sectioning the
specimen after the test as shown in Fig. 6. Distribu
tion of the crack depth plotted in the Gumbel prob
ability paper showed two lines with an inflection

e type

J---r-
Fig. 6. The distribution of intergranular corrosion attacks and cracks observed for sensitized
type 304 stainless steel exposed to the BWR simulated water (DO 8 ppm, 250 cc).
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point as can be seen in Fig. 7. This inflection point
was found to correspond just to a depth for initiat
ing the intergranular crack. Thus the initiation of
the intergranular crack growth could be separated
from the initial process of purely chemical inter
granular corrosion.

3.6 Estimation of the Maximum Segregation of
Impurities in Steel

Continuous casting of steel is one of the innova
tive technologies achieved by the steel industry.
Segregation and its band which are formed during
solidification at the center of slab remain after
rolling and work as initiation sites for fracture phe
nomena such as lamellar tear and hydrogen induced
cracking (HIC). The maximum amount of segrega
tion was found to be related to the above fracture

phenomena, so that extreme value analysis was ap
plied for estimating the maximum amount of segre
gation in steel plate from small area samples [42],
the concentration of impurities being measured by
using EPMA. The maximum amount of segregation
thus determined can be used to predict the suscep
tibility to lamellar tear. It should be emphasized
that the statistical procedure for the chemical anal
ysis is mainly concerned with the mean and stan
dard deviation which assesses the reliability of the
measurement, but not with extreme values. In re
cent years, highly sensitive analytical methods have
been developed, but it is not clear how to correlate
the data of small area samples to that of the total or
bulk specimen. The ratio of the analytical area to
the bulk specimen reaches almost to 10-9

, and ex
treme value statistics is expected to be useful.
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Fig. 7. Distributions changing with exposure time, the initial distribution corre
sponding to intergranular corrosion and the second to intergranular cracking.
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3.7 Non-Destructive Methods With the Extreme
Value Analysis

Various types of nondestructive methods are
used for inspecting and examining corrosion dam
age in order to prevent failure. High sensitivity and
resolution in time or in space are required for the
measurement. In addition, a computer-aided opera
tion becomes popular, because huge amounts of
data must be evaluated. For the heat exchanger, a
thousand tubes must be checked and the number of
data easily exceeds 105

• An eddy current sensor [43]
and ultrasonic sensor probe [44] to steel tubes, and
an impedance sensor probe [45] for coating tubes
have been developed with the data logger and the
extreme value analysis software.

4. Discussion

The size effect on the maximum pit depth is
found to be estimated with confidence by introduc
ing the concept of the return period. Theoretical
bases of the procedure have been provided by ex
treme value theory [1]. Our experience shows that
the pit depth distribution obeys the normal or expo
nential distribution, which belong to the exponen
tial distribution family. Thus the maximum values of
pit depth extracted from the exponential family dis
tribution may reasonably be expected to obey the
Gumbel distribution. Thus the size effect could be
rationally predicted by using the concept of return
period.

Evans [46] pointed out, however, that some cases
as observed by Wormwell et al. [47] does not obey
a normal or exponential type distribution, but that
the tail of the distribution is limited at a certain
depth. Evans emphasized that such a limit is rea
sonable for the case of anodic reaction control situ
ation and this limited depth gives a rough indication
of the greatest pit depth to be expected on a much
larger area. Evans, however, did not check another
possibility using the type III distribution which has
an upper limit. Recently Laycock et al. [24] dis
cussed that usefulness of the generalized extreme
value (GEV) distribution:

F(x) =exp (- (l-k(x -u )/a)1/k kx < = a +uk,

(13)

because the distribution subsumes all three types
with the sign of a shape parameter, k. When k is

334

zero, negative or positive, the distribution changes
to type I, type II, and type III, respectively. They
found that the pit distribution on stainless steels in
acidified chloride solution fits the GEV distribution
with k positive, indicating that the type III for the
largest value could be fitted. The type III distribu
tion has a bound or a limit with increasing area, as
suggested by Evans.

What sample size, or what size of specimen area
should be used are questions from non-specialists in
statistics. For this question, we proposed a proce
dure or criterion for choosing s, Nand T based on
the variance given by Eq. (6). The surface area, S,
of the object is given, and the sampling area, s, is
selected so as to include at least one pit. Then
T( =S /s) is obtained. Accumulated data of the
parameters of a and A suggest [32] that the ratio of
a/A for localized corrosion is below, or not much
larger than, 0.3. Kinnison [48] states that the asymp
totic theory predicts a constant ratio of 0.313 for all
extreme value distributions. Then it can be assumed
that the ratio a/A, is 0.3. If we wish to control vari
ance within (A/3)2, the following relation can be de
duced from Eq. (6)

(A/a3)2=A(N,n)y2+B (N,n)y +C. (14)

Equation (14) can be solved for y or T as a function
of N and a/A, as plotted in Fig. 8. When the ratio
of a/A can be equated to 0.3 as discussed before, a
suitable number of samples can be found for a given
return period, T. From this figure, the required size
of samples is N =30 for T =1200, or N =20 for
T = 274 and so on. This figure is approximately the
same as what was observed empirically.

5. Conclusions

Extreme value statistics has been found to be a
powerful tool for estimating the maximum value of
localized corrosion depending on the surface area.
Accumulation of data and experience, however, re
veals that statistics is less importarit than corrosion
experience and knowledge for obtaining a reason
able estimation; measured data must be classified
based on the form of corrosion damage and its de
gree before the analysis. Properly classified data is
found to provide a very reasonable value. Nonde
structive methods for measuring wall thickness with
various types of sensors, combined with extreme
value analysis, have been developed in recent years.
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1. Introduction

Number 4

Simple models playa key role in the
microstructural analysis of mechanical
failure in composites and other materi
als with complex and often disordered
microstructures. Although equal load
sharing-models are amenable to rigor
ous statistical analysis, problems with
local load enhancements near failed re
gions of the material have so far re
sisted exact analysis. Here we show for
the first time, that some of the simpler
of these local-load-sharing models can
be solved exactly using a sub-stochastic
matrix method. For diluted fiber bun
dles with local load sharing, it is possi
ble to find a compact expression for
the characteristic equation of the sub
stochastic matrix, and from it obtain an
asymptotic expansion for the largest ei
genvalue of the matrix. This in turn
gives the asymptotic behavior of the

July-August 1994

size effect and statistics of the fiber
bundle models. We summarize these
results, and show that the important
features of the exact result can be ob
tained from a single scaling analysis we
had developed previously. We also
compare the statistics of fracture with
the appropriate limiting extreme-value
survival distribution (a Gumbel distribu
tion), and, as previously indicated by
Harlow and Phoenix, note that the
Gumbel distribution performs quite
poorly in this problem. We comment
on the physical origin of this dis
crepancy.

Key words: extreme-value distributions;
scaling analysis; size effect in fracture.

Accepted: March 22, 1994

It has been known since the pioneering work of
Chaplin [1] and well known since the classic work
of Griffith [2] that randomly occurring flaws or
weak links effectively determine the observed ten
sile strength of materials. Early on it was realized
that the dependence of failure upon the weakest
part of a material structure gives rise to non-Gaus
sian statistics for fracture stress and strain. These
developments lead to the classical period of the de
velopment of the statistics of extremes by mathe
maticians such as Dodd [3], Frechet [4], Fisher and
Tippett [5], von Mises [6], Gnedenko [7], and
Gumbel [8].
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Following the work of Duxbury et al. [9-11],
there have been many attempts to use random net
work models to determine the statistics and size
dependence of material breakdown [12-16]. These
calculations have in many cases elucidated the gen
eral behavior and size dependence of breakdown,
but few exact results have been produced.

Perhaps the simplest model that shows the statis
tics of brittle failure has been the pure-flaw, chain
of-bundles model of Harlow and Phoenix [17]
which has been studied by Harlow [18] and more
recently by Harlow and Phoenix [19]. In this model
there is a series or chain of m structurally and
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statistically independent bundles of n elements
each as shown in Fig. 1, where the vertically ap
plied uniaxial stress is shared by the surviving verti
cal fibers (bonds). Each element or fiber is
independently present with probability p and ab
sent with probability f =1 - p. The survival proba
bility of the chain of bundles is then the survival
probability of a single bundle raised to the power
m. The main difficulty in this analysis is calculating
the survival probability of a single bundle. The ex
tension of this theory to the survival of two-dimen
sional networks is straightforward and amounts to
the approximation that cracks or flaws only exist
and break along the direction transverse to the di
rection of the applied stress. Following Harlow and
Phoenix, we assume the local-load-sharing model
for a flaw (crack) of length n to be

Ulip= uo(1 +n/2), (1)

which is to say that the entire force applied to the
cluster is concentrated at the tip (on the fibers ad
jacent to each end of the flaw or vacancy cluster).
Failure of any surviving bond (all of which have the
same strength) leads to a rip which causes failure
of the entire bundle. Solution of this model re
quires finding the bond (weakest link) which expe
riences the largest stress enhancement and that
stress which would break this most stressed bond.

Fig. 1. A one dimensional array of intact bonds (fibers) and
flaws (vacancies). The tensile stress u, is applied vertically.

Duxbury, Leath, and Beale [11] showed how a
one-dimensional model such as this could be used
as a simple model for fracture or breakdown of a
two-dimensional network. If one considers that
cracks or flaws only exist and break horizontally,
then the two-dimensional model becomes that il
lustrated in Fig. 2 (i.e., no horizontal bonds break).
Then if we impose spiral boundary conditions,
where the last site in a row is connected to the first
site of the previous row on the other side of the
sample, then the N x N network problem is re
duced to a one-dimensional chain of N 2 fibers (or
bonds) in parallel like that in Fig. 1.
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Fig. 2. A two dimensional lattice with only horizontal cracks.
Spiral boundary conditions identify each site on the right edge
with the site on the left edge of the previous row.

2. Single-Cluster Calculation: The Sub
Stochastic Transition-Matrix Method

In this calculation one assumes that the weakest
link is the pure flaw or cluster of vacancies of the
largest size that exists in the sample. The survival
probability is then closely related to the probability
that in a sample of length L ( = N 2

) that there are
no clusters of vacant bonds (flaws) of size greater
than some prescribed value n. Using a generating
function technique Duxbury, Leath, and Beale [11]
calculated exactly the asymptotic form of the prob
ability to be

(2)

in the limit of large L. It is now possible to rederive
this result while introducing the sub-stochastic
transition-matrix method. Following Harlow [18]
we define all possible endings of a fiber bundle of
length L +1 and the way in which· those endings
may be generated from a bundle of length Land
the probabilities of those endings. Since there are
no allowed clusters larger than n, the allowed bun
dle endings or distinctive endings at a particular
site are an occupied site (1) followed by 0:::: r:::: n
vacancies (0) so that these distinct endings
are spanned by the basis vector cPL T=
(cP(lJ,cP(loJ,cP(llJO).... ,cP(JO...O»L where the last element
contains n zeros.
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times (A -I), so there is an additional spurious
root atf (since we are interested in the largest root,
this does not affect the analysis). Since M is primi
tive and non-negative, its largest eigenvalue is real
and distinct and it can easily be seen that all the
eigenvalues are less than 1 and Amax approaches 1
for large n. Thus we set Amax =1- € and expand Eq.
(8) to lowest order in € and f', which gives us

Then the probability increment for going from a
cluster of size r to a cluster of size r I on the next
site is included in the matrix product

pp ... P cP(l) cP(l)

0 0 ... 0 cP(10) cP(lO)

Mcf>J= Of (3a)
0 0

o 0 ... f 0 cP(1o...0) if cP(1o...0) . 1
y+

which is the same as the matrix M operatingj times
on the probability vector cPo for the starting site, or

Amax = I-pf'+l +O(f").

Then, we obtain

(9)

(3b) (10)

The probability CL (n) that there are only clusters
up to size n in the entire bundle (or network) of
size L is thus

(4)

where the sum is over all the elements of cPL. The
simplest and most natural boundary conditions are
periodic ones where CL (n) becomes the trace

which confirms the result Eq. (2) by the sub
stochastic transition-matix method.

In order to find the failure probability as a func
tion of applied stress, we use the load-sharing rule
Eq. (1), coupled with the fact that the failure of the
bond carrying the largest local stress nucleates
catastrophic failure, and thereby use the relation

(11)

since the 1st and L th sites must be the same, where
Ak are the eigenvalues of M. We find the eigenval
ues of M via its characteristic equation

where D"-l is the n Xn determinant for clusters up
to size (n - 1). With Do = (a -1), the solution, upon
iteration of Eq. (7a), is the characteristic equation

(12)

where Ob is the breaking strength of a single fiber.
Note that we could have used a variety of other
load-sharing rules here, and for example the same
expression with n raised to an arbitrary power is
also of physical interest. This result combined with
Eq. (10) yields the probability 5(0") that a fiber
bundle will survive at stress 0"

For large nand L, this becomes the modified
Gumbel form, introduced previously [10,11] in the
analysis of the random fuse network. Although
CL (n) in Eq. (10) becomes a Gumbel distribution
in n, the substitution of nCO") from Eq. (11) pro
duces a modified Gumbel distribution that is signif
icantly different from a Gumbel form in 0" in the
high-reliability tail of the distribution. This modifi
cation is discussed further in Sec. 4.

(5)

(7a)D" = -D"-l +(-1)" ab",

where a =p/A and b =f/A =(l-p )/A. A cofactor
expansion of the determinant D" about its last row,
gives immediately the recursion relation

(a -1) a a a
b -1 0 0

D" =detIM/A -/1= 0 b =0,
-1 0

0 0 b -1 (6)

(-1)" D" = (a -1) +ab +ab 2 + "'+ab" =0. (7b) 3. Double-Cluster Calculation

Summing this geometric series we obtain

(8)

This equation is the characteristic equation of M

Several authors [12,16,19,20] have suggested that
the most critical defect is not a single cluster of n
vacancies, but rather a double cluster (double co
linear crack) of n vacancies separated by a single
occupied site located anywhere within the n + 1

339



Volume 99, Number 4, July-August 1994

Journal of Research of the National Institute of Standards and Technology

adjacent sites. Such a double crack is shown in Fig.
3a. This candidate for the most critical crack is ap
pealing because the stress enhancement at the in
terior occupied site grows as n in network models
rather than as n 1/2 (as for the edges of a single
crack in a two-dimensional network) and because
the increased entropy of the (n +1) locations of the
occupied site makes it more probable. Thus, fol
lowing Harlow and Phoenix [19], we consider the
probability of bundles of length L with repeated
double cracks (and single cracks when the occupied
site is at either end) not exceeding n vacant sites in
any two adjacent cracks separated by a single site.
These repeated double cracks are shown in Fig. 3b.

_------A.....--......,
]]~-L-l_·_IT

o 0 0 0 jp 0 0 0lp 0 0lp 0lp </J(I)

o 0 0 010 0 0 010 0 010 010 ~I~

o f 0 0 0 I0 0 0 0 I0 0 0 I0 0 I0 </J(lIKI)

o 0 f 0 0 I0 0 0 0 I0 0 0 I0 0 I0 <P<HKKI)

QQQL QIQ QQQIQ QQIQ QIQ </J(IlKKKI)

o p 0 0 0 lOp 0 0 lOp 0 lOp I0 </J(IOI)

o 0 0 0 0 If 0 0 0 I0 0 0 I0 0 j0 </J(101O)

M 4</JL = 0 0 0 0 010 f 0 010 0 0\0 010 </J(lOIlKI) =q,L+I

QQQQ QIQ QL QIQ QQIQ QIQ </J(lOIlKKI)

o 0 P 0 0 I0 0 pOlo 0 pi 0 0 I0 </J(lOOl)

o 0 0 0 0 I0 0 0 0 If 0 0 I0 0 I0 </J(lIKlIO)

QQQQQIQQQQIQL QIQQIQ </J(lIKllIKl)

o 0 0 p 0 \0 0 0 pi 0 0 0 I0 0 I0 </J(HKKll)

QQQQQIQ QQQIQ QQIL QIQ </J(lIKKllO)

o 0 0 0 plo 0 0 010 0 0\0 010 </J(IlKKKll) (13)

survival configurations (we don't have to consider
configurations which start with O's).

A great simplification in the characteristic equa
tion

a) MlI cP =AcP, (14)

a a a ... ... a cPl cPl
ab ab ... ... ab 0 cP2 cP2

M'cP=
ab 2 ab 2

... ab 2 0 cP3 c/JJ (15)ab3 ab 3 .. ' 0 =

where a =p/A, and b =f/A. This M' matrix can be
considered as a new transition-matrix which adds a
cluster at a time rather than a bond or fiber at a
time. Thus we have the characteristic determinant
equation.

a-I a a a
ab ab -1 ab 0

DlI =det
ab 2 ab 2 ab 2-1

=0. (16)
ab 3 ab 3

-1 0
ab" 0 0 0 -1

where cP are the eigenvectors of Mil, is possible
since most of the rows of Mil contain only a single
non-zero element f. This gives, for example
fcP(l) = AcP(lO) or bcP(1) = if/A )cP(l) = cP(lO). By such rela
tions, we can eliminate all the rows of Mil except
the rows with p 's corresponding to the reduced ba
sis vector cP = cP(l),cP(lOI),cP(I00I), ... ,cP(lOO...OI). The result
ing (n +1) equations give an (n +1) x (n +1)
matrix M', which satisfies the reduced characteris
tics equation

o
o 0 cPII+1ab" 0 0

~ r'---"---"'"""

D_---1·~I I 1=::=0=
~ '--y----l

Fig. 3. a) A double cluster of ~ n total vacancies plus one iso
lated occupied bond. b) Repeated, overlapping double clusters;
each pair of clusters as indicated by the brackets contains ~ n
total vacancies plus one isolated bond.

b)

Harlow [18] showed that this problem is
amenable to analysis by the sub-stochastic transi
tion-matrix method. The load-sharing rule is still
given by Eq. (1) as before but now n is the sum of
the number of vacant sites immediately on the left
and right of any isolated intact bond or fiber. Thus
it is necessary to keep track of not only the number
of vacancies in the cluster being considered but
also those in the previous vacant cluster. There are
now (n +1)(n +2)/2 distinct endings that must be
considered at a site (or bundle ending); these are
given by the basis vector cP = cP(lJ,cP(lO) ... cP(lo...O);

cP(lOI), cP(1010)••• cP(lOlO...O); cP(lOOI) ••• cP(lOOlO...O); •• '; cP(lO...OI)' where
there are no more than n total vacancies in any
element. With this ordering of states the n = 4 sub
stochastic matrix for this problem, for example, is
given by Eq. (13).

With periodic boundary conditions Eq. (5) still
holds and we again analyse the largest eigenvalue
of Mil' As a technical point, note that since we are
using periodic boundary conditions, we can always
start the matrix process at a surviving bond, and so
the endings considered above include all possible
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(22)

from the possible locations of the single bond in a
double cluster of size (n + 1). The ( - p ) is a correc
tion to properly handle the single-cluster cases as
well as the double-cluster case, since these are in
cluded whenever the isolated bond is located at
one end of the double cluster. It is only important
for small n.

In order to check and better understand the
asymptotic form Eq. (21) of Amax and the impor
tance of the other eigenvalues Ai we have made sev
eral numerical evaluations of the various
equations. First, we have numerically found the
largest eigenvalue Amax of the original, full, sub
stochastic transition-matrix M as given by Eq. (13).
Using the unit vector as a starting vector we re
peatedly apply the matrix M to it. Since the largest
eigenvalue is unique, this process converges expo
nentially to the largest eigenvalue. We found in
general that convergence occurred to six significant
figures with at most 50 matrix products (even for
matrices M of dimension (n +1)(n +2)/2 =10,000.
The sparsity of M with this iterative procedure
eliminated matrix-storage problems. The results of
this iterative procedure for C~(n) versus n are
shown in Fig. 4 as solid lines, and the dots give A~ax

with Amax as given by the asymptotic form Eq. (21).
Good agreement is seen for all p, with a small devi
ation in the p =0.2 data. However, a more strin
gent test is needed in the high-reliability (large n)
tail. Thus, in Fig. 5 we plot the quantity

(19)

(20a)

(20b)
z+nl2-1_ Z_nl2-1 1

z+nI2_z _nI2 =s-l_abn12 '

Z (n-l)/2_z (n-l)12
+ - (1 + b(n+l)l2)(n+l)/2_ (n+l)12 S - a ,z+ z-

For small n these determinants can be evaluated
directly. For example,

where Dm(abl,b) is Dm(a,b) with a replaced by
(ab~, and where

But by expanding the determinants Eq. (16) by
rows and columns, we can show that there is an
exact recursion relation

Note that s =s(a,b,n)=s(ab,b,n -2)=s(ab2,b,n
-4) which is key in the solvability of the recursion
relation Eq. (18). After some detailed analysis, we
have found (see [21] for details), that this recur
rence equation may be solved. The resulting char
acteristic equation is given by

for n ~ 3 and odd. While for n even ~ 4, we find,

In Eqs. (20a) and (20b),

The key quantity s is given by Eq. (19) above.
Equations (20a,b) are the exact expressions for the
characteristic equation of the original M in Eqs.
(13) and (14).

Again we find that the largest eigenvalue of M is
near 1 for large n, so we set A = 1- E and expand
Eqs. (20a,b) and find that in both cases, to lowest
order in E and 1',

s±v?"=4b
2b

(20c)
1.0

0.8

0.6
C\..(n)

0.4

0.2

0.0
0 10 20 30 40 50

n+l

Comparing this double-cluster result to the single
cluster result Eq. (9) we find the expected (n +2)

Fig. 4. A plot of the double-cluster probability Cdn) vs (n + 1),
for p = 0.2, 0.5, and 0.8. The dotted line is the asymptotic form
given by Eq. (24). The solid lines are found from evaluating the
largest eigenvalue numerically, and by using C~ (n) = A';.x.
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Fig. 6. Plots of the exact value of [1- (tr(ML))lIL ]t!"+l vi;

(n +1) obtained numerically from M (circles); for L = 1000, for
a) p = 0.5 and b) P = 0.2. The solid line is the asymptotic form
Eq. (22).

which is again of the form of a modified Gumbel
distribution with slightly different coefficients from
Eq. (12).

8

10

Thus, following the same arguments as at the end
of Sec. 2, we find that to leading order the survival
probability of the entire network or chain-of-bun
dIes is

largest eigenvalue is dominant. A numerical test of
this convergence is shown in Fig. 6, for L =1000,
and shows that for large lattice sizes, the most im
portant corrections to C~(n) are the higher order
contributions to Amax, which are of 0 (j3n/2) , rather
than the neglected smaller eigenvalues of M, which
are relatively unimportant here.

Finally, we obtain the asymptotic form

(23)

10080

, , , [

a) p == 0.5

60

n+l

I ' ,

4020

, , , I ' , ,

7.5

2.5

50

"t10.0 -

10 20 30 40 50

n+l

4

3

E

flJ+1
2

b) p==0.2

Fig. 5. Plots of f/!"+1 vs n + 1, for a) p =0.5 and b) p = 0.2. The
solid lines are the asymptotic form as given by Eq. (22); the
circles are the exact values of (1- Ainu)/!" + 1as obtained by iter
ating M numerically.

1 11
+1

The solid straight line versus (n +1) is the asymp
totic result, which is linear in n and this is com
pared with the iterated numerical values (circular
symbols), for p =0.5 and 0.2. For large n, in all
cases the two calculations agree. But for small val
ues of p < 0.5 there appears a minimum in
(1- Amax)/f' + I versus n which corresponds to higher
order terms in f'. In particular the next order term
in A~ax is O(j3nl2) which would appear as a O(f'/2)
correction in Fig. 5.

Finally, we test for the accuracy of neglecting all
but the maximum eigenvalue A~ax. It is possible to
directly, numerically evaluate the trace of M L by
iteration since it only requires storage of the matrix
and one vector at any time. Using this method, we
have evaluated the quantity

which should converge to (1 - Amax)/f' + I when the
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4. Extreme-Statistical Form

For large L, we can easily find the limiting form
of C~(n) as given by Eqs. (10) and (24) respec
tively,

CL(n) - exp[ - L P exp( - n 10g(1if))], (26)
L~'"

and

C~(n) - exp[-L«n +2)p2_p)exp(-n log(l/f))],
L~", (27)

as the upper limit behavior for large n which is im
portant in the high-surviveability tail of the distri
bution. This is a Gumbel distribution, as is
expected from the exponential [p f' or n p f'] be
havior for the probability of large clusters [Castillo,
1988].

On the other hand, the surviveabilities S (u), and
S'(u), in the limit L ~ 00, are found to be modified
Gumbel forms [from Eqs. (12) and (25)],

SL(u) - exp[ - Lp exp( ~ (~-1)log(1if))] (28a)
L~",

ification of the Gumbel form is essential in order to
correctly represent the important high-reliability
tail. Note that this is not true of the Weibull distri
bution, which as well as being a stable limiting ex
treme-value distribution, does have the physically
correct behavior as stress approaches zero. This is
one good reason why the Weibull distribution is a
very robust form in the analysis of failure problems.
We suggest that the family of modified Gumbel
distributions of the sort Eq. (28), should be simi
larly robust, in contrast to the conventional Gum
bel distribution which is of limited use in the
analysis of the statistics of material failure.

5. General Scaling Behavior

The size dependence and general form of the
limiting distribution can usually be found from a
back-of-the-envelope scaling calculation which we
introduced previously [9,11]. First, for the single
cluster calculation, consider the probability PL (n )
of finding a cluster of size n in a sample of size L.
The order of magnitude of this probability is

and, (32)

S~(u) - exp[-L(~p2-p)exp(-(~-1)
L~oo

That the dominant behavior of SL(u), and S~(u) is
exp( - LA exp( -~)) as u tends to zero is essential
to ensuring that the survival distributions have the
proper limiting approach to one when the applied
stress approaches zero. Harlow and Phoenix [19]
have numerically shown that this high-reliability
tail can not be well described by a Gumbel form for
u (such as exp(-LAexp(B(u-uo)))). But this
failure is obvious since the Gumbel form doesn't
approach one until u~ - 00, so at sufficiently small
stresses it must be inaccurate. Nevertheless the
standard texts on extreme distributions (see, for ex
ample [8] or [22]) seem to suggest that the Gumbel
distribution is the appropriate one in such cases.
The difference clearly is in the form of the nor
mally assumed scaling limN~oo[S(u)f=S(aNu+bN),
which fits the shift and slope of the limiting func
tion S (u) at its median, but fails near the high-reli
ability limit u =O. It would seem that instead a
more general scaling form limN~"'[S (n (u))f =

S(aNfl(u)+bN) must be allowed to also include the
proper high-surviveability limit near zero stress. In
many practical material-failure problems, this mod-

(34)

(33)

(35)

(36)

1
InL

1+ 2In(lif)

(L) 1
U

e 1+nmaxl2

and obtain the size dependence

since, for normalization, ~ p 2f' = p, and since
there are L different locations in the sample where
a cluster could be located. For the maximum clus
ter size to be expected in a sample of size L we set

or, from the load-sharing rule Eq. (1), the break
down stress Ue

scales to zero logarithmically in the thermodynamic
limit. A similar argument for double clusters gives

since there are (n + 1) places to put an isolated
bond in the n -double-clusters. We then obtain the
same limiting form Eq. (35) for ue(L), although

(28b)log(l/f))].
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there are additive (log(logL» corrections in the
double-cluster case. The logarithmic scaling law in
turn implies that the failure statistics is of the dou
ble-exponential form given in Eq. (28). The
Weibull and Frechet distributions always give
power-law size scaling. These qualitative argu
ments are very powerful and are confirmed by the
rather elaborate, exact calculation described here.
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1. Introduction

Number 4

The inclusion rating method by statis
tics of extreme values (IRMSE) using
yarea of inclusions as the size parame
ter enables one to discriminate between
current super-clean steels. Moreover,
IRMSE enables one to predict the size
(yareamax) of maximum inclusions con
tained in domains larger than the in
spection domain. The statistical
distribution of yaream"X can be used
for the quality control of materials and

July-August 1994

for the prediction of a scatter band of
fatigue strength. Practical procedures of
inclusion rating and prediction of a
scatter band of fatigue strength are
shown.

Key words: fatigue; high strength steel;
nonmetallic inclusion; statistics of ex
treme values.
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With the increase in cleanliness of steels, con
ventional inclusion rating methods are no longer as
useful as before, because conventional inclusion
rating methods cannot determine the cleanliness of
new clean steels. Although the cleanliness of steels
has been markedly improved in the last two
decades, the fatigue strength of recent clean high
strength steels cannot attain the ideal value ex
pected from their high static strength. Nonmetallic
inclusions are predominantly the cause of lower fa
tigue strength even for such clean high strength
steels. Thus, in order to predict the fatigue strength
behavior and to evaluate quality, we need a new
inclusion rating method relevant to recent super
clean steels. The inclusion rating method based on
statistics of extreme [1] is most relevant for this
purpose. In the following, we call this method In
clusion Rating Method by Statistics of Extreme
(IRMSE).

In this study, we shall first show that if we choose
an appropriate size parameter for inclusions, the

345

size of inclusions obey the statIstIcs of extreme
value theory. The appropriate size parameter is the
square root of projected area of the maximum in
clusion contained in a standard inspection area or
volume, y'area max • Second, we predict the size of
the maximum inclusion which may be contained in
a larger area or volume than the standard inspec
tion area and, lastly, we use the size parameter,
y'areamax, to predict the scatter band of fatigue
strength of hard steels.

The merits of IRMSE, in comparison with con
ventional methods, are (1) to distinctly discrimi
nate the cleanliness of recent super-clean steels,
and (2) to predict the size of larger inclusions con
tained in a domain larger than the inspection do
main. This method is useful for quality control of
materials and for improvement of the steel making
processes. It also enables one to predict the scatter
of the fatigue strength of a large number of mass
production products.
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2. Nonmetallic Inclusions as a Fatigue
Fracture Origin

Figure 1 shows an example of the nonmetallic
inclusion which was observed at fatigue origin of a
bearing steel under a rotating bending fatigue test.
If this inclusion did not exist in this specimen, the
fatigue strength of this specimen should have been
higher than the applied stress, ua = 1078 MPa.
Since the size and location of nonmetallic inclu
sions scatter randomly, the fatigue strength of high
strength steels naturally scatters. Although there
has been a firm opinion that the chemical composi
tion and shape of nonmetallic inclusions substan
tially influences the fatigue limit, Murakami et a1.
[2-5] have shown the incorrectness of the conven
tional opinion by their detailed experiments and
analyses, and reported distinct experimental evi
dence that the size of inclusions (defined by
Varea) is the most crucial geometrical parameter.
It is empirically known that the intrinsic fatigue
strength of steels is determined by the hardness
(Hv) of its microstructure. For steels with Hv < 400,
nonmetallic inclusions contained in current com
mercial steels are not detrimental and we have the
following empirical formula

where UK' is the fatigue limit (MPa) and Hv is the
Vickers hardness (kgf/mm2

). However, for steels
with H v > 400, the effect of inclusions reveals itself
and the intrinsic or ideal fatigue limit given by Eq.
(1) cannot be attained. The fatigue strength de
pends on the size (Varea) and location of the fatal
inclusion and Hv of the matrix. Murakami et a1.'s
[6-9] fatigue limit prediction equations are classi
fied into three categories depending on the loca
tion of fatal inclusions (see Fig. 2):

Fatigue limit for a surface inclusion [Fig. 2(a)]

UK' = 1.43 (Hv + 120)/(Varea )116 (2)

Fatigue limit for an inclusion in touch with free
surface [Fig. 2(b)]

UK'=1.41 (Hv +120)/(Varea)1I6. (3)

Fatigue limit for an internal inclusion [Fig. 2(c)]

UK'=1.56 (Hv +120)/(Varea)1I6, (4)

where the units are UK': MPa, Varea: J.Lrn, and Hv:
kgflmm2

•

Fig. 2. Various locations of inclusions causing fatigue fracture.

Since for a constant value of area, an inclusion is
most detrimental when it exists just in touch with
the free surface of a specimen, we can use ~3)
in combination with the maximum size Varea max

obtained by IRMSE to predict the lower bound
(uK'r) of scattered fatigue strength of many speci
mens or machine elements.

(a) Surface inclusion

Inclusion•
(c) Interior

inclusion

Free surface
/

Free surface
/

Inclusion

(b) Inclusion just
below surface

•"-
Inclusion

Free surface
/(1)UK' =1.6 H v

Vickers hardness Hv = 745 kgf/mm2

Applied stress at surface iTa = 1078 MPa
Cycles to failure Nf = 7.94 x 106

Square root of projection area of inclusion yarea = 9.8 11m
Distance from surface h = 158 11m
Applied stress at inclusion iT' = 1034 MPa
Chemical composition of inclusion: AI-Mn-S-O

Fig. 1. A typical example of inclusion observed at the center of
fatigue fracture origin [super-clean bearing steel, SUJ2(N)].

3. Inclusion Rating of Various High
Strength Steels by Statistics of
Extreme

Figure 3 explains the practical procedure to im
plement the inclusion rating by statistics of extreme
values. The details of this method are reported in
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enables one to discriminate quantitatively the dif
ference among the cleanliness levels of the same
kind of materials produced by different companies
or produced by a company at different perio~s.

Thus, this information will be useful for the quality
control of materials and the improvement of the
steel making process.

It is not a priori evident to what extent the ex
treme values yareamax of inclusions contained in
various steels follow extreme statistics value. How
ever, Murakami et al. [3,5-11] have shown many
examples of measurements which obey the statis
tics of extreme value theory. Uemura and Mu
rakami [12] carried out a three-dimensional
numerical simulation to find the statistical distribu
tion of the extreme values yarea max of inclusions
which were distributed in a constant volume with
the size (D) distribution of the type,

Fig. 4. Cumulative frequency of the extreme values of inclusions
[Super-clean bearing steels, SUJ2(N) and SUJ2(H»).

Murakami et al.'s papers [3,5,9-11]. The procedure
is briefly explained in the following, see [11]..

(1) A section perpendicular to the maXImum
principal stress is cut from the specimen. After pol
ishing with a n02000 emery paper, the test surface
is mirror-finished with buff.

(2) A standard inspection area So (mm2
) is fix~d.

Generally, it is advisable to take a mIcroscope pIC
ture for an area approximately equivalent to So. In
the area So, the inclusion of maximum size is se
lected. Then, the square root of the projected area
yareamax of this selected inclusion is calculated.
This operation is repeated n times (in n areas So)
(see Fig. 2). _

(3) The values of yareamaxJ are classified, start
ing from the smallest, and indexed: (withj = L.n).
We then have the following relation:

Fig. 3. Practical procedure of the inclusion rating by statistics of
extreme values.

Fj =j x 100/(n +1)

Yj = -In[ -lnU /(n +1)].

The cumulative distribution function Fj and the
reduced variates Yj are then calculated from the
equations.

(4) The data are then plotted on probability pa
per. The point j has an absc.issa coordinat~ of
yareamaxJ while the ordinate axIS represents eIther
Fj or Yj. An example of the curve is shown in Fig. 4.

Figure 4 shows the inclusion ratings ?y IRMSE
for two kinds of super-clean bearIng steels,
SUJ2(N) and SUJ2 (H). The total oxygen con
tained in these steels is 8 ppm for SUJ2(N) and
5 ppm for SUJ2(H). This kind of information

1 D
4>(D) =- exp (--),

m m

where m is the mean value, and they confirmed the
validity of IRMSE (Fig. 5). In addition, they ind!
cated the quantitative difference between two-dI
mensional and three-dimensional measurements,
though the difference virtually vanishes with in
creasing inspection domains.
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extreme values of inclusions
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Fig. 5. Numerical simulation of the inclusion rating by statistics of extreme values on the materi

als with the inclusion size distribution of the type cf>(D) =-.!.exp ( _!!.),
m m

348



Volume 99, Number 4, July-August 1994

Journal of Research of the National Institute of Stand'ards and Technology

4. Application to Prediction of Scatter
Band of Fatigue Strength

Figure 6 illustrates the shape and dimension of a
tension-compression fatigue specimen [13]. The
material used is tool steel, SKH51. The chemical
composition is shown in Table 1. Table 2 shows the
mechanical properties.

20
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Fig. 7. Statistical distribution of the extreme values, the maxi
mum size of inclusion at the center of fracture origin (Tool
steel, SKH51).
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Fig. 6. Shape and dimension of tension-compression fatigue
specimen (mm) (Tool steel, SKH51).

Figure 7 shows the extreme value distribution of
v'area of the inclusions found at the fracture origin
of 34 specimens. The data in Fig. 7 are the extreme
values obtained by the fatigue test but not by the
two-dimensional metallographic method described
in Sec. 3. Figure 8 indicates the location of these
inclusions on the fracture surface. If the tension
compression fatigue test is not performed correctly,
that is, specimens are subject to a bending moment
due to a bad alignment or the curving of the speci
men axis, nonmetallic inclusions existing near the

Table 1. Chemical composition in wt% of material (Tool Steel,
SKH51)

Fig. 8. Relationship between the size (yarea) and location of
inclusions at the center of fracture origin (Tool steel, SKH51).

C Si Mn P S Cr W Mo

0.81 0.31 0.29 0.018 0.002 3.92 6.10 4.85

V Co Cu Ca AI Mg 0

1.81 0.46 0.07 0.004 0.035 0.0005 0.0018

free surface are likely to appear as the fracture
origin on the fracture surface [14]. In such a case,
unusually low fatigue strength is likely to be ob
tained. Since the fatigue fracture origins shown in
Fig. 8 are distributed randomly on the section of
specimen, these data may be valid for the statistical
analysis. However, it should be noted that when

Table 2. Mechanical properties of quenched and tempered test material (Tool steel,
SKH51)

Vickers
Heat 0.2% Tensile Reduction hardness

treatment Proof stress strength Elongation of area H v

(MPa) (MPa) (%) (%) (kgf/mm2)

Heat treat. 1 1820 2110 2.9 3.7 615
Heat treat. 3 2270 2560 2.0 0 654
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} lower limit
rYwl

the surface inclusions became the fracture origins,
the data were not plotted on Fig. 7, because such
inclusions are more detrimental than an inclusion
having the same size and existing internally and ac
cordingly they may be a little smaller than the exact
maximum inclusion.

In the case of the data of Fig. 7, the volume of
the test part of one specimen (Fig. 6) corresponds
to one inspection domain and there are 34 extreme
values in Fig. 7. Therefore, Fig. 7 can be used for
predicting the expected maximum size of the inclu
sion which may be contained in more specimens
than those used in fatigue tests. For example, an
inclusion having yareamax~138 /-Lm is expected to
be contained in 100 specimens (N = 100).
Combining this yareamax (= 138 /-Lm) and Eq. (3),
the lower bound (O"wf) of fatigue strength of 100
specimens can be predicted.

Figure 9 compares the scatter observed in exper
iments and the predicted lower bound O"wf of the
scatter band. The prediction is in good agreement
with experiments. The prediction of the lower
bound of fatigue strength explained above can be
used for the quality control of machine elements
which are produced by mass-production and can
not be tested individually.

The data as shown in Fig. 7 offer us reliable in
formation on inclusions expected to be contained
in other specimens. However, obtaining the data
shown in Fig. 7 requires preparation of many pre
cise specimens and time consuming fatigue tests.
To avoid this inconvenience, the author has pro
posed an alternative two-dimensional method as

1300 upper limit

~i~~ )(fish-eye(2 specimens) //rYwu =1. 6Hv

~ fish-eye (1 specimen»)()( )()(
1000 )( .. )()(

",ell 900 • broken /
..... 0 not broken / )()()(.,;
~ 800 / ~. ..,;
b 700 / '6. )(

/ oro
600,/. ro
500 / NumberofN=10

400//

300
ZOO

100 rYwl ~ 1. 41 (Hv + lZ0) / (;a:;ea",aJ 1/6

°ZOO 300 400 500 600 700 800 900 1000
Hv kgf/mm2

Fig. 9. Comparison between the experimental results and the
lower bound of fatigue strength which was predicted on the ba
sis of Eq. (3) and the maximum size of inclusion (Tool steel,
SKH51).
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explained in Sec. 3. A sufficient number (N) of in
spection domains (inspection areas) necessary to
predict reliably yarea max for more specimens or
larger areas should depend on the materials to be
inspected and on the inspection area So observed
by the image processor combined with an optical
microscope. From the author's experience, it is rec
ommended that N be larger than 40 for So =0.031
mm2

•

Several Japanese industries have already put the
method proposed in this study in practice [15].

5. Conclusions

(1) If we define the size of nonmetallic inclu
sions contained in commercial steels by the square
root of th~ojected area, yarea, the maximum
values, yarea max, in a definite inspection domain
obey the statistics of extreme value theory.

(2) The inclusion rating method by the statistics
of extreme values (IRMSE) based on yareamax can
be used for a new inclusion rating method. IRMSE
enables one to discriminate distinctly between re
cent super-clean steels, while conventional inclu
sion rating methods are no longer valid as the
method to evaluate the cleanliness of new clean
steels.

(3) IRMSE is useful not only for a relative eval
uation of materials but also for the prediction of
the expected maximum size of inclusions to be con
tained in a domain larger than the inspection do
main. The value of yareamax can be used with the
fatigue strength prediction equation to predict a
scatter band of fatigue strength of high strength
steels.
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1. Introduction

Number 4

The critical level for ozone, above
which it has a detectable effect on bio
logical targets, is potentially to be set
by the United Nations Economic Com
mission for Europe at 300 nL'h/L
hours per annum over 40 nUL. It is
therefore important to determine the
aggregate exceedance over 40 nUL
throughout the United Kingdom. Over
most of the UK, ozone concentrations
are unknown so we rely on our under
standing of the atmospheric processes
and on the statistical properties of
ozone concentrations to interpolate
between monitoring sites. This paper
describes the application of statistical
models derived for storm severity data
to the ozone data for the United
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Kingdom. Aggregate excess distributions
were fitted to data from all rural moni
toring sites using a Weibull model with
a 40 nL/L threshold. At this threshold
the scale parameter has a spatial inter
pretation, but, with higher thresholds,
there were problems with missing data
and small scale spatial effects were not
detected. The approach appears suc
cessful for all except very large aggre
gate exceedances which deviate from
the Weibull predictions.

Key words: aggregate excess distribu
tion; critical level; mapping; ozone.
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The major public concern with ozone, 0 3, in
Europe has focused recently on the existence of
"ozone holes" in the stratosphere caused by the de
pletion of ozone as a consequence of chlorofluoro
carbon emissions. Ozone is also present in the
troposphere and in the planetary boundary layer at
concentrations, Le., volume fractions between 10
and 200 nUL (Le., parts per billion, ppb =10-9

). In
the second half of the last century European mean
concentrations ranged between 10 ppb and 15 ppb
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[8]. Current mean concentrations are about twice
these values and ozone episodes with peak concen
trations between 100 ppb and 200 ppb occur, a level
known to cause damage to many plant species.
Episodes happen if the precursor gases for photo
chemical ozone production (oxides of nitrogen, NO
and N02, and volatile organic compounds, VOCs)
are present in suitable meteorological conditions
for the chemical reactions to occur (ideally hot sum'
mer days with clear skies and low wind speeds).
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Fig. 1. Hours when ozone exceeds 60 ppb.

Although the meteorological conditions leading
to ozone episodes are similar in a general sense at
all sites, the climates of northern and southern Eu
rope lead to very different patterns of events. In
northern Europe, typical episodes occur when a sta
tionary spring or summer anticyclone provides the
conditions for ozone production from the emitted
precursor gases to add appreciably to the back
ground concentration of about 30 ppb. Typical pro
duction rates give net increases of 10 ppb to 20 ppb
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Fig. 2. Typical altitude effect on the diurnal cycles of ozone
concentration.

per day and a succession of 8 to 10 such days leads
to peak concentrations of 150 ppb to 200 ppb. Often
in northern Scandinavia, Britain, Ireland and west
ern France the ideal meteorology exists but in the
absence of upwind precursors. In Germany and
central Europe almost all wind directions provide
the precursors and hence the NW-SE gradient in
episodes. In southern Europe, the meteorological
conditions are more stable and episodes can occur
every day for long periods. However the effects of
both sea breezes and the development of intense
thermal low pressure areas on the air circulation
causes very variable patterns of ozone exposure.

Superimposed on this two dimensional surface
there is a daily cycle in ozone concentration which
is a very important and variable feature. At low al
titude inland sites a marked diurnal variation (of
the order of 30 ppb) is observed but at high eleva
tion the amplitude of the diurnal cycle gradually re
duces to less than 5 ppb at mountain tops. Figure 2
shows data for 1 day at both Great Dun Fell (847 m
above sea level) and Wharleycroft (206 m above sea
level), two sites which are less than 10 km apart.
Hill tops are generally windy sites at which the ter
restrial surfaces are well connected to the free tro
posphere and where the downward supply of ozone
to the surface exceeds the rate of deposition. At low
level sites the thermal stratification of the atmo
sphere with the development of a nocturnal inver
sion restricts the supply of ozone from above during
the night and morning. In these conditions both de
position to the surface and the nocturnal atmo
spheric chemical titration of ozone with nitric oxide
causes the surface concentrations of ozone to de
cline, potentially to negligible levels. At coastal sites
the effects of land and sea breezes strongly modify
the ozone exposure of the ground.

70 r---------r------:----,
....... ::..

" ......

°3
1m 100 h y_l

lIT] 200 h y_l

o up to 500 h y_l

The description of spatial patterns in exposure of
vegetation to ozone over Europe has been ham
pered by the limited availability of monitoring data,
the very large spatial variability in ozone concentra
tions and a poor understanding of the underlying
mechanisms regulating the ozone exposure of ter
restrial ecosystems. Defining a threshold for phyto
toxicity is not simple. However, at 60 ppb of ozone
there is little doubt that there is a clear contribution
from photochemical production in polluted air and
a map of hours over 60 ppb for Europe (Fig. 1) is a
guide to some broad trends [4]. In a large area
north of the Alps, covering most of Germany and
parts of neighbouring countries, 200 hours per year
above 60 ppb is common. North and west of this
area the annual duration of exposure declines but
to the east there is so little information available
that mapping is uncertain. The Mediterranean zone
of high ozone exposure reflects recent work
showing that ozone episodes are common events in
this region but the levels have not yet been well
quantified.
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In the summer months, taken as April to Septem
ber, during the part of the day when the atmo
spheric boundary layer was well mixed by
turbulence, ozone concentrations at neighbouring
sites were very similar. For each threshold, an em
pirical relationship was derived between the hours
over the threshold for the whole day and the hours
over the threshold for the well mixed period, taken
to be 1200 to 1800 GMT. For the threshold at 60
ppb, the relationship was

3. Modelling Aggregate Excess

In work on flood levels for the River Thames, An
derson and Dancy [2] modelled the aggregate ex
cess, that is the sum of the exceedances over a
threshold, within a cluster· using a Weibull distribu
tion. There are similarities between ozone data and
flood level data. A Pareto distribution has been
shown to predict the peak excesses of ozone con
centrations at a rural site using a threshold of 40
ppb [7]. There is a seasonal component in the data,
since high concentrations rarely occur over the win~

ter period, but this has not been modelled at
present. Also ignored was the probable increase in
mean values of ozone concentration over the time

where h60 was the total hours over 60 ppb, t60 was the
hours over 60 ppb between 1200 and 1800 GMT
and z was the altitude of the location in meters. This
relationship was applied to the spatial interpolation
of hours over 60 ppb for 1200 to 1800 GMT to
provide a map (Fig. 5) with clear topographical in
fluence. The coastal effect, which can extend for 5
km to 20 km inland depending on meteorological
conditions, was ignored; typically coastal ratios
were around 2 rather than 1.3. The maps are only
for the summer months, April to September, but
ozone levels very rarely exceed 40 ppb during the
remainder of the year.

This approach emphasizes the spatial variability
of ozone exposure within small areas. The relation
ships for the different thresholds are empirical and
must be recalculated for each threshold and they do
not provide a general description of high concentra
tion events. Direct estimates of exposure in terms of
a dose measurement like ppb.hours are not avail
able although a minimum estimate could be made.
If the decision were made to set different windows
to match the growing seasons of different vegeta
tion types, the whole procedure could be difficult to
implement.

The main concern with rural ground level ozone
concentrations is the damage which can be caused
to plants and to human and animal health.

For vegetation, some sensitive species show visi
ble or physiological effects following exposure to 40
ppb or 50 ppb [3]. However, the effect of exposure
can be modified by the presence of other
atmospheric pollutants and, since ozone causes
damage to vegetation through stomatal uptake, by
nutritional status, light, temperature and humidity.
There is genetic variability in the ozone response
within species as well as between species and, al
though considerable attention has focused on crops
and forests, little is known about the impact on
semi-natural vegetation. Timing of the exposure
within the life of the plant can be important as can
be the time for recovery between exposures [6]. The
United Nations Economic Commission for Europe
is considering a tentative proposed critical level of
300 ppb . h above 40 ppb during daylight hours for
the growing season of the vegetation. A critical level
is defined as one below which ozone has no de
tectable effect. However, there are a number of out
standing issues which it is hoped to resolve by the
end of 1993 and the adopted critical level may well
be different. The proposed critical level would
probably be exceeded in most of Europe at present.

Concern for human health in the UK at the cur
rent levels of ozone is growing but better assess
ments of population and individual exposure are
thought necessary [6]. This aspect may in time be
the main argument for emission controls of the ma
jor precursor gases.

It is important to differentiate between the dose
which a plant or human receives, that is incorpo
rated into the individual's system by some method,
and its exposure, that is the level in the atmosphere
around the individual. In this paper current meth
ods for determining plant exposure in the UK are
described and then the potential application of ex
treme value theory is explored.

2. Ozone Exposure Maps of the UK

Ozone exposure has recently been mapped for
the UK at three concentration thresholds: 40 ppb,
60 ppb and 90 ppb [5]. There were about 17 rural or
semi-rural monitoring stations between 1987 and
1991 which recorded hourly mean concentrations in
Britain and Ireland (Fig. 3). As the differences be
tween sites which were geographically close was as
large as the differences between geographically dis
tant sites, a straight spatial interpolation between
sites gave a map similar to that in Fig. 4.

355
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hours (Apr-Sep)

above 140

120 - 140

100 - 120

80 - 100

60 - 80

below 60

.~

Fig. 3. Locations of 15 monitoring sites on the UK mainland
(2 sites, Lough Navar and Mace Head, are on Ireland).

period of data collection, as this increase was small
compared to both the diurnal fluctuations and the
accuracy of the recording methods.

Anderson [1] has looked at ozone data for one
site, Stevenage, for a longer time period. There was
evidence of nonstationarity in that data set and he
shows that there is a need for temperature, or some
similar measure, as a covariate. This problem is still
under investigation but for the time period consid
ered in this paper, 1986 to 1991, no covariate has
been used. Anderson also derived a method of
extrapolating to higher thresholds than those used

356

.~

Fig. 4. Interpolated map of the number of hours when ozone
exceeds 60 ppb.

in fitting the models, a very useful tool for deter
mining exposures to plants with different sensitivi
ties to ozone.

The data for the 17 sites have been fitted using a
single threshold of 40 nUL and a Weibull distribu
tion for the aggregate excess. The data were declus
tered using a minimum time separation of 48 hours.
There were about 100 clusters for the sites with
relatively complete data sets. Some sites were not
operational in the earlier period of collection and
one site had only 3 years data.
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Fig. 5. Altitude adjusted interpolated map of the number of
hours when ozone exceeds 60 ppb.
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Fig. 6. Q-Q plot for Weibull model (40 ppb threshold, 48 hour
separation) fitted to data from Ladybower.

a =0.091 + 0.083 nmod
4

- 0.023 emod (3)

also shapes typically illustrated by the plot for Lady
bower (Fig. 6). Most of the data were on a reason
ably straight line but the Weibull distribution
underpredicted a few data points, usually no more
than five, at the higher values.

The shape parameter, a, from the fitted Weibull
model was clearly related to a SE-NW trend across
the country. To investigate this further, the a values
were regressed on other available data.

The sites were referenced to a line from Lulling
ton Heath, a site on the south-east coast of
England, to Strathvaigh in the north of Scotland
using two variables, nmod, the distance north-west
along the transect, and emod, the perpendicular dis
tance from the transect with positive values being to
the east. The actual distances were divided by the
length of the transect to give manageable numerical
values. The relationship between a and nmod was
nO'1-linear and the simplest function of nmod which
fitted well was nmod4. A linear function of emod im
proved the fit. One site, Bottesford, had a high
residual. This site has peculiar local features which
can give it the characteristics of an urban site and
was removed from the data. The subsequent regres
sion equation

(2)

hours (Apr-Sep)

above 1<40

120 - 1<40

100 - 120

80 - 100

60 - 80

below 60

P(S >s) =exp( - a'sO)

The two parameter Weibull model

.~

was fitted. The shape parameter, 8, varied between
0.4 and 0.6 for all sites. When 8 was constrained to
the value 0.5, there were only slight increases in the
values of the likelihood function. The spatial varia
tion was therefore explored using only the scale
parameter a.

The Q-Q plots showed that, as expected, the fit of
the Weibull model varied from site to site. There
were some very straight line plots but there were
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explained about 85% of the variation and produced
an acceptable residual pattern. The 2 remote sites,
Strathvaigh and Mace Head (on the west coast of
Ireland) had the most influence on the fit.

When a threshold of 60 ppb was used, there were
problems in fitting the model to the data. Each site
had only about four independent clusters per year
and fitting a Weibull model was very difficult since
the likelihood surface was quite flat. Results were
obtained by assuming 8 was the same for a 60 ppb
threshold as for a 40 ppb threshold. However, it
became apparent that there were potentially two
difference sources for the higher exceedances and
that separation of these sources was critical with the
increased threshold level.

4. Discussion

The results of these fits are encouraging although
a number of problems have occurred. The Weibull
distribution with a threshold of 40 ppb and e fixed
at 0.5 gives an interpretable underlying pattern for
the whole country. The SE-NW gradient would be
expected. Areas to the east of the chosen transect
are more influenced by air masses from continental
Europe and would be expected to have more ozone
episodes. The lack of detection of an altitude effect
at this threshold is not entirely surprising as high al
titude sites can have mean ozone concentrations
quite close to this threshold. However an altitude
effect would be expected at a higher threshold.

At the 60 ppb threshold two main problems oc
cur. The first, and possibly the most important, is
lack of data. The declustering algorithm which has
been used takes the rather simple approach of re
moving clusters with missing data. When monitor
ing stations are running continuously, usually
recording several times per minute, there are a
whole series of glitches which can occur in the data
for reasons wholly unconnected with the concentra
tion values. In particular there may well be a series
of instrumentation tests which usually occur during
the working day and often at least once per week.
Data capture rates of over 90 % on hourly values
are regarded as good but not all sites on the net
work are achieving these rates. Therefore, careful
decisions on the treatment of missing data are likely
to give more information for analysis.

The second problem is one of determining
whether there are two distinct distributions re
quired to model threshold exceedances or whether
the Weibull model is the wrong approach. If a mete-
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orological covariate is introduced [1], it is not clear
where it should be measured. Rapid ozone produc
tion can be occurring 50 km or 100 km downwind in
good sunny conditions but the monitoring site may
be sitting in quite a different climate. Clearly, fur
ther investigation of the peak and close to peak val
ues will be required.

Although large exposure to ozone can be accu
mulated by a plant at concentrations over 100 ppb,
these are relatively rare occurrences in the UK and
are often, if not always, associated with very dry
conditions. How much of the ozone will enter the
plant's system, given that the plant is probably
under considerable water stress by the afternoon
period, is not clear. Even if the models do not per
form very well at the highest exceedances, if they
can perform reasonably well for the remainder of
the exceedances they could be of considerable ben
efit when critical levels for vegetation are consid
ered. For human health problems, of course, a
different perspective is required.

This approach, when combined with a model of
time between clusters, has the potential of produc
ing valuable information for the assessment and
mapping of critical levels for vegetation. However,
some further progress is required with models for
the 60 ppb threshold and with identification of local
scale variability in concentration levels.
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This work examines the potential con
nections between extreme value statis
tics, problems in aerosol science, and a
recent technique of solving ill-posed in
version problems, called EVE (Extreme
Value Estimation). EVE estimates
functionals of the unknown solution by
searching the extreme (maximum and
minimum) values of that functional
within a set of acceptable solutions.
The statistics of occurrence of extreme
values in real life were not considered
when this method was developed. The
results of this technique are more con
servative than those of the other meth
ods used to solve the problem of
aerosol size distribution estimation like
non-linear least squares, expectation
maximization, regularization, etc. The
utilization of the customary methods of
deconvolution may lead to an underes
timation of the possibility of occurrence

July-August 1994

of extreme values in real life. It is sug
gested that consideration of extreme value
statistics might aid in better defining
the limits to be placed on the physically
acceptable solutions in the EVE decon
volution. Other problems could also
benefit from the application of extreme
value statistics including the estimation
of the second highest value of mea-
sured airborne particle mass in the con
text of the ambient air quality standard
for particulate matter less than 10 11m
and the determination of the Maximally
Exposed Individual as required under
the 1990 revisions to the Clean Air Act.

Key words: aerosol mass concentra
tions; aerosol size distributions; decon
volution algorithms; maximally exposed
individual; particulate matter 10 11m.
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1. Introduction 2. Aerosol Size Distribution Estimation

Although extreme value statistics has been ap
plied to environmental phenomena such as maxi
mum wind speed and wave heights, it has not been
applied to air pollution regulations, concentration
estimation, or other related problems. Since many
of the problems related to the effects of pollution
on public health and welfare are dependent on the
high end of the distribution of concentrations and/
or exposures, there appears to be an opportunity to
bring the developments in extreme value statistics
to an area that could make good use of such meth
ods. In this paper, three possible applications of
extreme value statistics will be presented with the
hope of sparking interest in bringing these tools to
bear on some difficult but interesting problems.
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One common problem in aerosol science is the
estimation of the aerosol particles size distribution
from measurements of their aerodynamic behavior
(penetration or deposition) through a separation
device. For small particles « 300 nm), the pene
tration through a device is governed by the parti
cle's diffusivity while for large particles (> 300 nm),
inertial impaction is the usual separation mecha
nism. The response of the device is known either by
calculation or measurement using particles of
known size. For the unknown aerosol, the penetra
tion is measured through a series of stages that
sequentially remove additional particles. From the
known characteristics and a limited number of mea
surements, the size distribution of the aerosol is
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where No is the total airborne concentration that is
being partitioned into the various size intervals.
Equation 2 can be rewritten in matrix form.

2.1 Conventional Methods

The observed sequence of particle concentrations
penetrating through each stage of a size segregating
device contains information on the size distribution
of that aerosol. In general, the number of particles
penetrating through a given stage of the system can
be expressed by

where 1 is the number of stages in the device, J is the
number of size interval midpoints in the distribu
tion, Pij is the penetration of the jth particle size,
dpU), through the ith stage, and N; is the number of
particles penetrating the ith stage. The f; values
must be nonnegative. However, there is generally
no other objective apriori information on the nature
of the distributions. The size distribution is not nor
malized so that

If1 is greater than or equal to J, then the problem
is overdetermined and can be solved for a unique
solution using methods such as least squares. How
ever, because the size distributions typically cover
several orders of magnitude in particle diameter, it
is normally necessary to estimate more midpoint
values than measurements (I <J). There is then no
unique solution to the problem.

Because collection by diffusion varies slowly with
particle size, the penetration values for adjacent
size ranges are often quite similar to one another.
The penetration functions for a screen diffusion
battery used for separating particles in the 0.5 nm to
500 nm range generally have substantial collinearity
and thus, the problem is ill-conditioned as well as
underdetermined [1]. Phillips [2] concluded that di
rect inversion of theses equations rarely produces
physically acceptable solutions.

Two techniques for solving the ill-posed set of
equations have been developed by Twomey [3] and
by Maher and Laird [4]. There is limited theoretical
justification for these methods. In practice, how
ever, they have been widely used in the aerosol field
with satisfactory results in many cases. Different
variations of the Twomey algorithm have been pro
posed (e.g., [5]).

Other approaches have sought specific solutions
within the feasible solution space by incorporating
additional constraints on the problem. For example,
Wolfenbarger and Seinfeld [6] assume that the dis
tribution is fully smooth from one interval to an
other. However, it is certainly possible to have
aerosol sources that produce particles with a very
narrow initial distribution and thus, the overall
aerosol size distribution may not be truly smooth.
Thus, in all of these solution methods, a solution,
but not necessarily the solution will be obtained.

2.2 Extreme Value Estimation

Replogle et al. [7] initially suggested the concept
that the primary "solution" is the set of all those
points that could produce the observed values.
Paatero [8,9] recognized that this approach could
be applied to the aerosol inversion problem by
considering a one-to-many mapping of the mea
sured N onto I such that there is the set D (N) of
possible solutions corresponding to each possible
measured N. The set D(N) is defined as the collec
tion of all such solutions I that allow the reproduc
tion of the measured N by Eq. (4) when reasonable
values are used for E. Then the true unknown solu-'
tion f is a member of the set D (N) with a high prob
ability. D(N) is then the set of acceptable solutions.

(3)

(2)

(4)

i = 1, ...,1

J

NO=L/i,
j=l

N=p·f+E.

J

N i =L Pij 'Ij
j=l

where Ni is the concentration penetrating through
the ith stage, P(i,dp) is the known particle size pen
etration characteristics for particles of diameter dp

through stage i, I (dp) is the size distribution func
tion to be estimated, and €i is the error in fitting the
measurement.

The normal approach to solving this equation is
to express it as a series of linear, simultaneous
equations relating the particle penetration fraction
to discrete values of the size distribution and the
stage penetration functions.

estimated. In general there are fewer measure
ments than parameters to be estimated and there
can be collinearity problems in the penetration ma
trix describing the instrument to complicate the
problem further. There are a number of conven
tional approaches to providing a solution, but since
the problem is underdetermined, one cannot insure
that they will provide the true solution. It is also dif
ficult to estimate error bounds for these solutions.
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In[L if)] ~ In[L (jo)] -canst· K (6)

so that Q(j) is the sum-of-squares for the case in
whichfand N are substituted into Eq. (1). The op
timum solution would then be the one that maxi
mizes L or minimizes Q. The minimum Q value is
denoted Qo corresponding to fo. Maintaining the
non-negativity constraints, the members of accept
able solution set, D, must be such that

where K is a confidence parameter with a typical
value of 3. In this way, the set of acceptable solu
tions of the original equation that fit sufficiently
well are determined. In estimating the effects of ex
posure to this airborne activity, it may be of interest
to estimate a function of the distribution. The dose
to cells in the bronchial epithelium could be calcu
lated by

To initiate the analysis a best fit, fo, is calculated
such that the nonnegative constraints are satisfied.
Additional solutions are calculated that are suffi
ciently close to the best fit estimation that they fall
within a criterion for acceptable solutions. For each
of the estimated quantities, the largest and smallest
values within the set D (N) are taken as the bounds
of the confidence interval in which the true solution
will fall at some high probability.

The question is then how to define what solutions
are acceptable. The likelihood function, L (N,f) is
the probability of observing N when f is given. It will
be assumed that

2.3 Activity-Weighted Size Distributions

Activity-weighted size distribution have been
measured in a number of normally occupied houses
[11-13] using an automated, semi-continuous
graded screen array (ASC-GSA) described by Ra
mamurthi [14] and Ramamurthi and Hopke [15].
The ASC-GSA measurement system is a diffusion
battery that uses a combination of six sampler-de
tector units operated in parallel. Each sampler-de
tector unit couples wire screen penetration, filter
collection, and activity detection with a solid state
detector in a way as to minimize depositional losses.
The system samples air simultaneously in all of the
units, with a flow of about 15 Ipm through the sam
pler slit between the detector and filter holder sec
tion in each unit. The sampled air is drawn through
a filter. Complete details of the sampler are pro
vided by Ramamurthi and Hopke [15].

Computer control of sampling, counting, and
analysis permits automated, semi-continuous oper
ation of the system with sampling every 1.5 h to 3 h.
The activities of each radon progeny are estimated
from alpha spectra collected during two counting
intervals: the first one during sampling and the sec
ond 20 min after end of sampling. The observed
concentrations of 218po, 214pb, and 214Bi are used to
reconstruct the corresponding activity-weighted
size distributions using the Expectation-Maximiza
tion algorithms [4] in six inferred size intervals in
geometric progression within the 0.5 nm-500 nm
size range. In addition to the individual size distri
bution for each decay product, the total airborne
activity concentration can be characterized by the
Potential Alpha Energy Concentration (PAEC).
The PAEC can be calculated from the individual
progeny concentrations by

(5)

(7)Q(j)~Qo + K,

I 1£01
2

-In(L) =canst . i~ s; =const· Q(j) ,

or alternatively,

where c], C2, and C3 are the activity concentrations of
the three radon decay products in Bq m- 3

•

(8)

where G (dp) is the dose per unit airborne alpha ac
tivity in the size range dp to dp + ddp [10]. To exam
ine the original distribution, the cumulative sums
are estimated as represented by the following se
quence of functionals:

+2.86 X 10-6
• C2 +2.10 X 10-6

• C3 , (10)

where the F(d) is the cumulative size distribution
for the aerosol. The EVE(P) approach estimates
such functionals by determining their confidence in
tervals.

J

F(d)= L
j=l

.1j =1 if dp ~ d

.1j =0 if dp > d , (9)

2.4 Results

Measurements have been made in a number of
houses in Northeastern North America. To illus
trate the use of the EVE(P) algorithm for deconvo
luting the activity size distributions, samples taken
in houses in Arnprior, Ontario and Parishville, NY
will be presented. In each home, radon and the size
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Fig. 1. Cumulative distribution for PAEC for a sample taken
in an occupied home in Arnprior, Ontario.

distributions of each of the three decay products
and the PAEC were determined at 2 h intervals.
The details of the experiments in Arnprior are
given by Hopke et a1. [11]. In this home, radon con
centrations were relatively low ( < 100 Bq m-3) and
generally in the range of 25 Bq m- 3 to 45 Bq m- 3

•

The cumulative probability distribution for PAEC is
shown in Fig. 1. The outer boundary lines are the
EVE(P) results for the 95% and 99% confidence in
tervals. The solid central line is the EM deconvolu
tion result. Although the specific solution obtained
by the EM algorithm should fall within the EVE
bounds, it may lie anywhere within the feasible re
gion. The confidence band will not necessarily be
symmetrically distributed about the specific solu
tion obtained by any particular algorithm.

(11)
n·EE- =OE-·--.1..

I ' m;'

Fig. 2. Cumulative distribution for PAEC for a sample taken in
an occupied home in Parishville, NY.
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3. Other Applications

3.1 Ambient Air Quality Standard for PM10

In 1987, the U.S. Environmental Protection
Agency promulgated a new National Ambient Air
Quality Standard (NAAQS) for airborne particu
late matter [17] which defined a size-selected por
tion of the ambient aerosol, particulate matter less
than 10 f.Lm or PMlO, as important for protection hu
man health and a new way of the determining when
the standard had been violated. It is the form of the
24 h standard that involves extreme values. The
standard requires that samples taken over 24 h in
tervals not show more than 1 "expected ex
ceedance" of 150 f.Lg m-3 per year averaged over a
3 year period. Particle samples are not usually taken
daily because of the manpower requirements
needed to manually weigh unexposed filters, change
them in the field, and weigh the exposed filters
again. A minimum sampling regime would collect
samples every 6th day. Thus, over a year approxi
mately 61 samples might be collected. It is assumed
that these samples are lID and thus, the number of
"expected exceedances" can be estimated as

probability distribution of the solution. Such prop
erties might help in better defining the limits of the
set of acceptable solutions. This could help in re
ducing the confidence intervals of the EVE decon
volution technique without sacrificing the reliability
of estimation.
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Another analysis was performed on samples from
a home in Parishville, NY with much higher radon
concentrations (500 Bq m- 3 to 600 Bq m- 3

) and
thus, the bounds on the feasible region might be
smaller [16]. The comparison of the EM size distri
bution with the EVE(P) distribution for PAEC is
shown in Fig. 2. The EM-derived distribution does
not appear to fully fit within the EVE(P) bounds.
The question is then whether the current EVE(P)
approach is the best description of the bounds on
the feasible region.

Consideration of extreme value statistics could
lead to the following suggestion: it might be possible
to define some statistical properties for the extreme
members of the set of acceptable solutions, even
when there exists no general information about the
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where for a given year i, EE; is the number of esti
mated exceedances, DEi is the number of observed
exceedances, m; is the number of samples taken,
and ni is the number of days in the year. Thus, if 61
samples are taken in a 365 day year, then 1 observed
exceedance becomes 6 expected exceedances. If
this observed exceedance is the only one that occurs
during a 3 year interval, then the 6 expected ex
ceedances are divided by 3 years to yield an average
number of expected exceedances of 2 which is
greater than 1 and hence the area is in non-attain
ment of the standard. In other words, the average
number of expected exceedances in any 3 year pe
riod is given by

2n 3n
= 1-P(I DEi :52) 3.15 < m :5 3.15

3n
= 1-P(I DEi :53) 3.15 < m :5n

(16)

The probabilities of observing 0 to 3 exceedances in
any 1 year given the chosen sampling frequency can
be estimated using the exponential distribution
given in Eq. (17).

P(I DEi =0) =P0
3

P(I DEi =1)=3Po2po

or

1
P(c$L) =1-

365
=1-exp(-y+2.0) (13)

P(c>L)=exp(2.0-7.90 f) , (14)

where c is the mass concentration of airborne par
ticulate matter and L is the maximum concentration
allowable under the standard. The probability of an
average number of exceedances being greater than
1 will be examined by examining P(E > 1.05).

A plot of the probability of declaring an area in
nonattainment as a function of the number of sam
ples taken per year is shown in Fig. 3. For c < 1.0L,
classification as nonattainment is a Type I error.
For c > 1.0L, probability of proper classification
represents the power of the approach. The disconti
nuities occur because of the change in the integer
values of the number of expected exceedances that
occur at different nlm values. It can be seen that for
an area that is exactly in attainment (c = 1.0L),
there is a probability of up to 60% that it will be
misclassified as nonattainment depending on the
number of samples taken per year. This form of the
standard, therefore, has a high probability of a type
I error in order to attain a reasonable power to
identify real nonattainment areas.

P(I DEi =2) = 3pip2 + 3P/Po

P(I DE =3) = P1
3 + 3Pt?P3 + 6POP1P2 (16)

(12)
1 3

E=-' LEE;.
3 ;=1

Davidson and Hopke [18] examined some of the
problems that arise as a result of the application of
such a standard given incomplete sampling. To il
lustrate the difficulties, the upper tail of the distri
bution of airborne mass concentrations will be
represented by the following exponential distribu
tion:

0.8

P(E~1.05)=P(IEE;/3 ~ 1.05)

=P(I EEi ~ 3.15)

=1-P(IEE; < 3.15)

=1-P (I DEi < 3.15' nlm)
(15)

Thus, the probability of nonattainment classifica
tion is dependent on the number of measurements
per year.
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n 2n
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Fig. 3. Probability of classifying an area as being in nonattain
ment of the 24 h NAAQS for PMw based on an exponential dis
tribution model of the tail.
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The goal of this standard is to have the second
highest actual value whether measured or not, be at
or below the prescribed concentration. Thus, alter
native approaches that can more accurately esti
mate the second highest value in the tail of an
extreme valued distribution would potentially
provide equal or greater power while lowering the
probability of making a misclassification error. Such
an estimation process would make the standard
more efficient while maintaining or possibly im
proving its effectiveness.

3.2 Most Exposed Individual

Under the Clean Air Act Amendment of 1990,
the Congress has mandated that major emission
sources of hazardous air pollutants, defined as ma
terials on a list of 189 substances given in the Act,
must install emission control systems. After these
systems are in place, the residual risk to the most
exposed individuaL must be assessed. If the risk is
found to be > 10-4

, the EPA Administrator must
decide what additional steps, if any, are to be taken
to reduce this risk. Previously the most exposed in
dividual (MEl) has been defined as a person living
continuously at the fence line of the facility 200 m
from the emission source for 70 years. The idea of
a 24 h per day, 70 year lifetime exposure for this in
dividual is obviously an overestimate of the real
maximally exposed individual. Recently EPA has
revised its guidelines for exposure assessment to
support the development of a distribution of expo
sures that an individual might encounter. However,
extreme value statistics is never mentioned in any of
the discussions of the use of the upper tail of the
distribution to examine exposure and thus risk to
the most exposed individual. Since the inaccurate
estimation of the residual risk could result in sub
stantial costs for no health benefit if the maximum
exposure is overestimated or result in death or ad
verse health effects if underestimated, the best
statistical methodologies should be applied to this
important estimation problem. This situation ap
pears ideally suited for extreme value statistics and
thus should simultaneously provide interesting
statistical problems to solve and value to the society
by solving them properly.

4. Conclusions

There appear to be a number of areas in the air
pollution field in which rigorous application of ex
treme value methods could provide useful contribu
tions to solving important environmental problems.
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The better estimation of the bounds for aerosol size
distributions, the determination of attainment or
nonattainment of the NAAQS for PMIO, and expo
sure and risk assessments at the high end of the
range of possible exposures all could benefit from
substantial involvement of extreme value statistical
expertise. It is hoped that this report will spark in
terest in one or more of these problem areas.
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1. Introduction

Number 4

A trivariate extreme value distribution
has been derived from the logistic
model for the multivariate extreme
value distribution. The construction of
its corresponding probability distribu
tion and density function is described.
In order to obtain the parameters of
such a trivariate distribution, a general
ized maximum likelihood estimation
procedure is described to allow for the
cases of samples with different record
lengths. Furthermore the reliability of
the estimated parameters of the trivari
ate extreme value distribution is mea
sured through the use of relative

July-August 1994

information ratios. A region in North
ern Mexico with six gauging stations
has been selected to apply the trivari
ate model. Results produced by the
proposed model have been compared
with those obtained by general extreme
value (GEV) distribution functions.

Key words: distribution functions;
distribution models; flood frequency
analysis; method of maximum likeli
hood; trivariate extreme value distribu
tions.
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Flood frequency analysis has been carried out by
using univariate distribution functions, the extreme
value distributions being an important set of distri
butions used in this field of study. Generally,
parameters of such distributions are estimated
from a short record of flows. The variability of
these estimates has prompted exploration of joint
estimation models which use information from
streamflow records of neighboring gauging stations.

In pioneering papers Finkelstein [1], Tiago de
Oliveira [2], and Gumbel [3] gave the foundations
for the multivariate approach to extreme value dis
tributions. Following this work, several bivariate
extreme value models began to appear in the liter
ature. Rueda [4] explored the logistic and mixed
models for bivariate extreme value distributions
when both marginals are extreme value type I
(EVI) distributions. He reported improvements in
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the estimation of parameters when the bivariate
approach is used. Raynal [5] developed and ap
plied three bivariate options from the logistic
model of bivariate extreme value distribution for
flood frequency analysis. He found that there exists
an improvement in the parameter estimation
phase, even in the case when both samples have
the same record lengths.

Herein, the trivariate approach of multivariate
extreme value distribution is presented with a view
to its application to flood frequency analysis.

General characteristics, the procedure for
estimation, and reliability of parameters of the
trivariate extreme value distributions will be de
scribed in the following sections. An actual applica
tion of the proposed model to six gauging stations
in Northern Mexico is presented in the paper.
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2. Characteristics of the Trivariate Logis
tic Model

From the multivariate extension of the logistic
model for bivariate extreme value distribution [3],
the trivariate approach is:

F(x, y, z, !!)=exp{ -[(In F(x»"'

+( -In F(y»"' + (-In F(z»"'}l!m, (1)

where m is the association parameter (m;::: 1) and
F(s)=F(s, !!) is the marginal distribution function
of s. Equation (1) must satisfy the following in
equalities (Tiago de Oliveira [6, 7]):

F(x)F(y)F(z):5 F(x,y, z):5 min[F(x),F(y),F(z)]

(2)

The combinations have been named (Escalante
[8]):
a) Trivariate extreme value distribution type 111

(TEV111) or TriGumbel distribution. All mar
ginals are EVI distributions.

b) Trivariate extreme value distribution type 112
(TEV112) or BiGumbel-GEV distribution.

c) Trivariate extreme value distribution type 122
(TEV122) or BiGEV-EVI distribution.

d) Trivariate extreme value distribution type 222
(TEV222) or TriGumbel distribution. All mar
ginals are GEV distributions.

The particular form of Eq. (1), when the marginals
are GEV distributions for the maxima, is (Escalante
[8]):

1

[F(x, y, )F(x, z)F(y, z)J4

F( )
[F(x, y)F(x, z)F(y, zH/2

:5 X, y, z:5 [F(x)F(y)F(z)]l (3)

Marginal.s in Eq. (1) can be either EVI distribu
tions:

F (s )= exp ( - exp - (s : u)) (4)
(6)

or GEV distributions:

F(s) =exp- (1- (s :u) {3 )1/Il. (5)

where Ui, a; and {3i, i = 1, 2, 3, are the location, scale
and shape parameters of the marginal GEV distri
butions for the maxima. The corresponding proba
bility density function is (Escalante [8]):
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r

Ii

p3. Estimation of Parameters

The method of maximum likelihood for estimat
ing the parameters of trivariate extreme value dis
tributions has been chosen due to its characteristics
for consistency in large sample estimation and ap
plicability in estimating the parameters of cumber
some density functions.

For the case of trivariate distribution functions,
the sample arrangements could allow having either
an equal or different record length in any of the
samples to be analysed.

In order to consider all possible combinations of
data, it is required to have a sufficiently flexible for
mulation, therefore the following general form of
the likelihood function will be used based on the
generalization obtained by Anderson [9]:

[

/II JIt [ /12 J/2L (x, y, z, fl) = /J f(Pi , flI) i~ f(Pi, qi, fl2)

(8)
where:

= are respectively the univariate and
bivariate record lengths before the
common period n3,

=are respectively the bivariate and uni
variate record lengths after the com
mon period n3,

=is the variable with univariate record
before the common period,

(P, q) = are the variables with bivariate record
before the common period,

(x, y, z) = are the variables with trivariate record
during the common period,

(r, s) =are the variables with bivariate record
after the common period,

= is the variable with univariate record
after the common period,

= are indicator numbers such that:
Ii =1 if ni > 0 and Ii =0 if ni =O.

The logarithmic function will be used instead of
the likelihood function. So, Eq. (8) is transformed
into:

[

/II J
LL (x, y, z, fl) =II /~ In f(Pi, flI)

[
/12 J [ In J+lz I~ In f(Pi, qi, fl2) +h i~ In f(x, y, z, fl3)

[
/14 J [ "5 J+14 /~ In f(ri, Si, fl4) + Is i~ In f(ri, fl5) .

(9)

The maximum likelihood estimators of parame
ters for the trivariate extreme value distributions
are those values for which Eq. (9) is maximized.

The corresponding logarithmic likelihood func
tion for the trigeneral extreme value (TEV222) dis
tribution function, based on Eq. (9) from [8] is
shown in Eq. (10):

( ( )) )

1/1IIbl-2

+ In ( (1- (Pi ~)Up) f3p )1IIb1/
fJp + 1- qi :JUq

f3q 1IIbl/fJq
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+In((1- (Xi :IU1 ) {31 )m'/Pl + (1- (Yi :2U2 ){32 )m'/Pz + (1- (Zi :3U3 ) (33 )m'/P3rm

'-3

where:

mt trivariate association parameter
mbl, mb2 bivariate association parameter before and after the common period, respectively.

nl liS

L lnf(pi' !M and L lnf(ri, !!s) take the form:
;=1 i=1
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"2 "4

Similarly, 2: lnf(pi, qi, 1h) and 2: lnf(ri, Si, 1M take
i=1 1=1

the following form (bivariate relationship with both
GEV marginals):

+In (1- (Wi ~Uw)/3w )mbi/lw-I

distribution as compared with the univariate coun
terpart was the asymptotic relative information
ratio.

Table 1 shows a sample of relative information
ratios obtained by using the following set of
parameters:

UI =15.0, al =2.0, f31 = - 0.20

U2 =12.0, a2 =1.2, f32 = - 0.15

U3 =10.0, a3 =1.0, f33 = - 0.10

Table 1. Asymptotic relative information ratios of the parame
ters of the TEV222 distribution for the maxima n3 = 25; m, = 2;
mb2=2

( ( )) )

lImb-2
+ 1- Wi~Uw /3w mbi/lw

Parameter n4

UI 0
25
50
75

UI 0
25
50
75

o

1.0868
1.4460
1.6295
1.7408

1.0141
1.2712
1.3941
1.4662

25

1.3695
1.5942
1.7201

1.2274
1.3753
1.4555

50

1.5055
1.6823

1.3256
1.4356

75

1.5856

1.3821

U2

(12)

{31 0
25
50
75

o
25
50
75

1.2405
1.3864
1.4514
1.4883

1.0876
1.0599
1.0500
1.0450

1.3555
1.4382
1.4806

1.3722
1.2263
1.1683

1.4041
1.4671

1.5094
1.3333

1.4312

1.5903

Given the complexity of the mathematical expres
sions in Eq. (10) and their partial derivatives with
respect to the parameters, the constrained multi
variable Rosenbrock method, Kuester and Mize
[10], was applied to obtain the maximum likelihood
estimators for the parameters by the direct maxi
mization of Eq. (10). The required initial values of
the parameters to start the optimization of Eq. (10)
were provided by the univariate maximum likeli
hood estimators of the par<;lmeters for the case of
the location, scale, and shape parameters. The ini
tial values of the association parameters, bivariate
and trivariate, were set equal to 2, following the
procedure developed by Escalante [8].

4. Reliability of Estimated Parameters

The indicator selected to measure the reliability
of estimated parameters when using the trivariate
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{32

o 1.0135
25 0.9835
50 0.9734
75 0.9684

o 1.2442
25 1.1324
50 1.0934
75 1.0736

o 1.0882
25 1.0604
50 1.0506
75 1.0736

o 1.0126
25 0.9822
50 0.9790
75 0.9669

o 1.2437
25 1.1314
50 1.0923
75 1.0724

1.2151 1.3065 1.3587
1.1046 1.1788
1.0604

1.3469 1.3901 1.4140
1.2069 1.2507
1.1507

1.0462 1.0302 1.0217
1.0417 1.0313
1.0390

0.9553 0.9334 0.9218
0.9549 0.9395
0.9542

1.0268 0.9535 0.9166
1.0246 0.9704
1.0223
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5. Case Study

A region located in Northern Mexico, with a total
of six gauging stations, was selected to apply the
proposed methodology to the flood frequency anal
ysis. Tables 2-4 show the results of the application
of the trivariate extreme value distributions for the
maxima to the data recorded in such gauging
stations.

In order to compare the goodness of fit between
the univariate and trivariate maximum likelihood
estimates of the parameters in stations considered
in the case study, the standard error of fit, as de
fined by Kite [11], was obtained and is displayed in
Table 5.

Table 2. Correlation coefficients and relative sample sizes for
the triplets of stations for the case study

Triplets of Correlation Relative sample sizes
stations coefficient nj nz n3 n4' ns

Acatitan-Sta Cruz-Ixpalino 0.926 9 2 26 0 0

Choix-Huites-Sn Francisco 0.969 0 14 18 7 0

Table 3. Univariate maximum likelihood estimates of the
parameters of the GEV distributions defined by the data of the
gauging stations of the case study

Station Location Scale Shape

Acatitan 576.21 283.80 -0.62

Choix 236.69 130.15 -0.12

Huites 1564.78 978.87 -0.57

Ixpalino 772.57 473.97 -0.38

Sn Francisco 926.53 532.56 -0.65

Sta Cruz 835.74 440.23 -0.40

Table 4. Trivariate maximum likelihood estimates of the
parameters of the TEV222 distribution defined by the data of
the gauging stations of the case study

Station Location Scale Shape

Acatitan 568.93 269.44 -0.64

Choix 220.85 128.29 -0.39

Huites 1603.30 1038.53 -0.68

Ixpalino 795.03 490.86 -0.46

Sn Francisco 943.69 540.73 -0.67

Sta Cruz 850.97 467.74 -0.52
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Table 5. Standard errors of fit for gauging stations of case study

Standard error of fit
Univariate Trivariate

Station (GEV) (TEV222)

Acatitan 244.40' 253.90

Choix 87.70 58.80'

Huites 1024.00 831.90'

Ixpalino 537.90 393.00'

Sn Francisco 350.80' 401.50

Sta Cruz 497.20 259.60'

• Minimum standard error of fit.

6. Conclusions

The logistic model for trivariate general extreme
value distribution for the maxima has been
proposed. Asymptotic and data base results suggest
that the proposed model is a suitable option to be
considered when performing flood frequency analy
sis.
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1. Introduction

Number 4

Floods and draughts constitute extreme
values of great consequence to society.
A wide variety of statistical techniques
have been applied to the evaluation of
the flood hazard. A primary difficulty is
the relatively short time span over
which historical data are available, and
quantitative estimates for paleofloods
are generally suspect. It was in the con
text of floods that Hurst introduced the
concept of the rescaled range. This was
subsequently extended by Mandelbrot
and his .colleagues to concepts of frac
tional Gaussian noises and fractional
Brownian walks. These studies intro
duced the controversial possibility that
the extremes of floods and droughts
could be fractal. An extensive study of
flood gauge records at 1200 stations in
the United States indicates a good cor-

July-August 1994

relation with fractal statistics. It is con
venient to introduce the parameter F
which is the ratio of the 10 year flood
to the I-year flood; for fractal statistics
F is also the ratio of the 100 year flood
to the 10 year flood and the ratio of
the 1000 year flood to the 100 year
flood. It is found that the parameter F
has strong regional variations associated
with climate. The acceptance of power
law statistics rather than exponentially
based statistics would lead to a far
more conservative estimate of future
flood hazards.

Key words: Brownian walks; floods;
fractals; Gaussian noises; time series.

Accepted: March 22, 1994

The flow in a river can generally be considered
a time series. The extreme values in the time series
constitute floods. Floods present a severe natural
hazard; in order to assess the hazard and to allo
cate resources for its mitigation it is necessary to
make flood-frequency hazard assessments. The in
tegral of the flow in a river is required for the de
sign of reservoirs and to assess available water
supplies during periods of drought.

One estimate of the severity of a flood is the
peak discharge at a station V. The magnitude of
the peak discharge is affected by a variety of cir
cumstances including: (1) The amount of rainfall
produced by the storm or storms in question, (2)
the upstream drainage area, (3) the saturation of
the soil in the drainage area, (4) the topography,

377

soil type, and vegetation in the drainage area, and
(5) whether snow melt is involved. In addition
dams, stream channelization, and other man-made
modifications can affect the severity of floods.

In order to estimate the severity of future floods,
historical records are used to provide flood-fre
quency estimates. Unfortunately, this record gener
ally covers a relatively short time span and no
general basis has been accepted for its extrapola
tion. Quantitative estimates of peak discharges as
sociated with paleofloods are generally not
sufficiently accurate to be of much value. A wide
variety of geostatistical distributions have been
applied to flood-frequency forecasts, often with
quite divergent predictions. Examples of distribu
tions used include power law (fractal), log normal,
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dimension of a fractional Brownian walk is related
to the Hausdorff measure by [15]

The parameter F is a measure of the severity of
great floods.

An alternative way of writing Eq. (3) is

(4)

(5)

(6)

(3)

(2)

. 1
N=T'

D=2-H

with T an integer number of years. Self-similar river
flows imply a power-law scaling of peak annual dis
charges and recurrence intervals.

This scale invariant distribution can also be ex
pressed in terms of the ratio F of the peak discharge
over a 10 year interval to the peak discharge over a
1 year interval. With self-similarity the parameter F
is then also the ratio of the 100 year peak discharge
to the 10 year peak discharge. In terms of Hand D
we have

where Iv is the number of floods per unit time with
flows that exceed V. This relation will be used to analyse
actual flood-frequency data. The quantities Iv in Eq.
(5) and Tin Eq. (3) are related by

so that we have

and with O<H < 1 we have 1<D <2.
An extension of the self-similar analysis of rivers

as a time series is to treat floods as a discrete fractal
set. In order to avoid difficulties with annual vari
ability we hypothesize that the peak annual dis
charge Vm in a time interval T is related to the
interval by

2. Analysis

In most cases the flow in a river is a continuous
function of time, thus it is appropriate to treat the
flow as a time series. It is straightforward to study
the spectral characteristics of the time series by de
termining the coefficients of a Fourier expansion.
For most river flows there will be a strong annual
peak associated with seasonal variations in rainfall.
However, it is of interest to examine the longer
range trends in the data. If the Fourier coefficients
have a power-law dependence on frequency over a
significant range of frequencies a fractal depen
dence is obtained (with some constraints on the
power).

IfV (t) is the volumetric flow in a river as a func
tion of time, the condition that the flow is fractal
requires that

gamma, Gumbel, log Gumbel, Hazen, and log Pear
son. Many discussions of this work appear in the lit
erature [1-7].

An independent approach to reservoir storage
was developed by Hurst [8, 9]. Hurst spent his life
studying the flow characteristics of the Nile and in
troduced the rescaled range (R/S) analysis. He
found that the variations of the storage (the range)
scaled with the time period considered as a power
law. Mandelbrot and Wallis [10-13] introduced the
concepts of fractional Gaussian noises and frac
tional Brownian walks and related these to R/S
analysis; all are recognized as fractal distributions.
They also introduced the Noah and Joseph effects.
The Noah affect is the skewness of the distribution
of flows in a river and the Joseph effect is the per
sistence of the flows. Although the concepts intro
duced by Hurst and Mandelbrot and Wallis have
been considered in a wide variety of applications
[14], they have not influenced approaches to flood
frequency forecasting. This point will be a central
feature of this paper along with a general discussion
of the applicability of fractal statistics.

(1)

and from Eq. (2) we have

(7)

Data will be used to obtain a; F, H, and D will then
be found from Eqs. (4), (7), and (8).

Before considering actual examples we will also
introduce rescaled range (R/S) analysis. Hurst [8,9]

where V(t +T) - V(t) is the difference in flow after
a time T, H is known as the Hausdorff measure, and
f(y) is a normalized cumulative probability distribu
tion function. When f(y) is the error function and
H =1/2 this relation defines a Brownian walk. If
0< H < 1 and f(y) is the error function, this relation
defines fractional Brownian walks. The fractal

1D=2-- .
a

(8)
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and the range is defined by

The volume of water in the reservoir V(t) is given
by

V(t)=V(O)+ rV(t') dt'-t V(T) (10)

proposed this empirical approach to the statistics of
floods and draughts. The method is illustrated in
Fig. 1. Consider a reservoir behind a dam that never
overflows or empties, the flow into the re~ervoir is
V(t) and the flow out of the reservoir is V(T) de
fined by

Hurst exponent HI, thus the Hurst exponent is
equal to the Hausdorff measure of the integrated
signal, a Brownian walk with H = 0.5. Mandelbrot
and Wallis [1Q.-13] introduced the concept of frac
tional Gaussian noises and their integrals,
fractional Brownian walks. They showed that the
Hurst exponent HI of a fractional Gaussian noise is
equal to the Hausdorff measure of the correspond
ing fractional Brownian walk.

If 0.5 < HI < 1 the original time series is said to be
persistence; adjacent values are more strongly cor
related than if they were random. The higher the
value of HI, the greater the persistence. If
o<HI < 0.5 the original time series is said to be an
tipersistent; adjacent values are less correlated than
if they were random.

(9)i7 =~rV(t)dt.

Hurst et a1. [16] found that for many time series the
rescaled range satisfies the empirical relation

where Vrnax is the maximum volume and Vrnin the
. minimum volume stored during the interval T. The
rescaled range is defined as RIS where S is the stan
dard deviation of the flow during the period T

[
1 IT - ]112S ('n = T 0 (V (t) - V)2 dt.

(11)

(12)

(13)

3. Examples

We now turn to the analysis of flood-frequency
records. As our first example, the 10 benchmark
stations considered by Benson [2] will be studied.
Benson [2] applied a variety of geostatistical distri
butions to the data from these stations, these will be
compared with the fractal approach discussed
above. The maximum annual floods for two stations
are given in Fig. 2. Values for station 1-1805 on the
Middle Branch of the Westfield River in Goss
Heights, Massachusetts are given in Fig. 2a for the
period 1911-1960 [17] and values for station
11-0980 in the Arroyo Seco near Pasadena, Califor
nia are given in Fig. 2b for the period 1914-1965
[18].

• •
•••••• _••••••• e••• _.. • ••••••••_.

•• ••

where HI is known as the Hurst exponent. Examples
included river discharges, rainfall, varves, tempera
tures, sunspot numbers, and tree rings. In many
cases the value of the Hurst exponent is near 0.7.

v~ ~~~~~ _

600

200

(a)

• •

•

• •

•

•
•••

200

1920

(b)

1940

•

1960

1920 1940

•• • e.
o • -. • e. •• •••• •• ••• ••

1960

Fig. 1. Illustration of how rescaled raT!ge (R/S) analysis is car
lied out. The flow into a reselVoir is V (t) and the flow out is
VeT). The maximum volume of water in the reselVoir during the
period Tis Vrnax(T) and the minimum Vrnin(T); the difference is
the range R (T) = Vrnax(T) - Vrnin(T).

100 •

•
•• • e. •.-..

If a Gaussian white noise sequence of numbers is
integrated or summed the result is a Brownian walk.
An RIS analysis of the white noise sequence gives a

Fig. 2. Maximum annual floods for (a) station 1-1805 on the
Middle Branch of the Westfield River, Goss Heights, Massachu
setts and (b) station 11-0980 in the Arroyo Seco near Pasadena,
California.
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Fig. 38. NUqJber of floods per year with a peak discharge
greater than V. Station 1-1805 in Goss Heights, Massachusetts
during the period 1911-1960.

In order to assess the applicability of fractal
statistics the number of annual floods N with a peak
discharge greater than V(m3/s) is divided by the
sampling period to give the mean number of floods
per year Iv with a peak discharge greater than the
specified value. The log IvCV) is then plotted against
log 1% Results for station 1-1805 are given in Fig. 3a,
the solid line is the least square fit of Eq. (5) with
the data over the range 50 < V < 200 m3/s; large
floods are omitted from the fit because of their
small number. The solid line corresponds to a = 2.3;
from Eqs. (4), (7), and (8) we have H =0.435,
F =2.72, and D = 1.56. Results for station 11-0980
are given in Fig. 3b, the solid line is the

best fit of Eq. (5) with the data over the range
10 < V< 100 m3/s. The solid line corresponds to
a = 1.1; from Eqs. (4), (7), and (8) we have
H = 0.909, F = 8.11, and D = 1.09. In both cases the
fit to the scale-invariant (fractal) relation is quite
good. The values of Hand F in California are con
siderably larger than in Massachusetts. Large floods
are relatively more probable in the arid climate
than in the temperate climate.

The values of H, D, and F are given for all ten
benchmark stations in Table 1. The correlations
with the fractal relation (5) in Fig. 3 are typical of
the ten stations. The parameter F is a measure of
the relative severity of flooding. The higher the
value of F the more likely that severe floods will oc
cur. Our results show that there are clear regional
trends in values of F. The values in the southwest
including Nevada (F = 4.13) and New Mexico
(F =4.27) as well as California (F =8.11) are sys
tematically high. The high values can be attributed
to the arid conditions and the rare tropical (mon
soonal) storm that causes severe flooding. Central
Texas (F =5.24) is also high and Georgia (F =3.47)
is intermediate. These areas are influenced by hur
ricanes. The northern tier of states including Mas
sachusetts (F = 2.72), Minnesota (F = 2.95),
Nebraska (F = 3.47), and Wyoming (F = 3.31) range
from low values in the east to intermediate values in
the west. Washington (F = 2.04) has the lowest
value of the stations considered; this low value is
consistent with the maritime climate where ex
tremes of climate are rare.

We have also determined the Hurst exponent for
the ten benchmark stations. Values ofRIS for T =5,
10,25, and 50 years (RIS = 1 for T = 2 by definition)
are given in Fig. 4a for station 1-1805 (Westfield,

1000.

o

500

o

o

200
Vm3/s

1000.0'50

I

~o.l

·z

~ 0.1
·z

o

0.01 11~0:---;20:::---I_.l.-5-=-'O:-l--Uo:-IJ..00---2...JOL..0-...L

'ilm3/s

Fig. 3b. NUqJber of floods per year with a peak discharge
greater than V. Station 11-0980 near Pasadena, California dur
ing the period 1914-1965.

Table 1. Values of the Hausdorff measure H, fractal dimension
D, flood intensity factor F, and Hurst exponent HI for the 10
benchmark stations

Station River (State) H D F HI

1-1805 Westfield (MA) 0.435 1.56 2.72 0.67

2-2185 Oconee (GA) 0.540 1.46 3.47 0.72

5-3310 Mississippi (MN) 0.470 1.53 2.95 0.72

6-3440 Little Missouri (WY) 0.520 1.48 3.31 0.72

6-8005 Elkhorn (NE) 0.540 1.46 3.47 0.67

7-2165 Mora (NM) 0.630 1.37 4.27 0.73

8-1500 Llano (TX) 0.719 1.28 5.24 0.70

10-3275 Humboldt (NV) 0.616 1.38 4.13 0.66

11-0980 Arroyo Seco (CA) 0.909 1.09 8.11 0.68

12-1570 Wenatchee (WA) 0.310 1.69 2.04 0.72
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MA) and in Fig. 4b for station 11-0980 (Pasadena,
CA). Good correlations are obtained with (13) tak
ing HI = 0.67 for station 1-1805 and HI = 0.68 for
station 11-0980. Values of HI for all ten stations are
given in Table 1. The values are nearly constant
with a range from 0.66 to 0.73 indicating moderate
persistence. It is not surprising that the values of
the Hausdorff measures H differ from the values of
the Hurst exponent HI since the former refers to
the statistics of the flood events and the latter to the
statistics of the running sum.

10

H=0.67~

@

R
S

1@'2:.........---I.--'---L-L--L.L.L...l.
10
----

2
L
O

----'----'---;!SO

'tyr

Fig. 48. The rescaled range (R/S) for several intervals T.
Station 1-1805. The correlations are with Eq. (13) and the Hurst
exponents HI are given.

10

H, =0.6B

R

S

1@2:.........,---'---'--~-'----'-L....L...l.10----!2LO ----'----'---='5'0

'tlyr

Fig. 4b. The rescaled range (R/S) for several intervals T.
Station 11-0980. The correlations are with Eq, (13) and the
Hurst exponents HI are given.

However, the results indicate that there is consid
erable variation of a (H, D, and F) but very little
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variation in HI. A simple explanation is that the for
mer is sensitive to the Noah effect while the latter
is sensitive to the Joseph effect. The relative scaling
of floods is sensitive to the skewness of the statisti
cal distribution but is not sensitive to the persis
tence of flows or floods. An important conclusion is
that R/S analysis is not relevant to flood-frequency
hazard assessments.

Many statistical distributions have been applied
to historical records of floods. Benson [2] has given
six statistical correlations for each of his ten bench
mark stations. His results for the 2-parameter
gamma (Ga), Gumbel (Gu), log Gumbel (LGu), log
normal (LN), Hazen (H), and log Pearson type III
(LP) are given in Fig. 5a for station 1-1805 and in
Fig. 5b for station 11-0980. Also included in each
figure is the self-similar (fractal) estimate (F). For
large floods the fractal prediction (F) correlates
best with the log Gumbel (LGu) while the other
statistical techniques predict longer recurrence
time for very serious floods. The fractal and log
Gumbel are essentially power-law correlations
whereas the others are essentially exponential.

While the ten benchmark stations provide a basis
for comparing statistical approaches, they hardly
made a convincing case that fractal statistics are
preferable to alternatives. A principal difficulty is
the relatively short time span over which reliable
records have been collected. In order to try to over
come this difficulty we have analysed a large num
ber of records and superimposed the results. We
have utilized a digitized 40 year data set for 1009
stations unaffected by flood control projects [19].
The distribution of the stations over the United
States is given in Fig. 6a. We will separately con
sider the data from the 18 hydrologic districts, these
are illustrated in Fig. 6b.

The largest floods in each of the 40 water years
are ordered, the largest annual flood is assigned a
period of 40 years, the 2nd largest annual flood a
period of 20 years, the 3rd largest annual flood a
period of 13.3 years, and so forth. The log of the
peak discharge for each flood is plotted against the
log of its assigned period and the best straight line,
Le., from Eq. (3), is obtained. Two randomly se
lected examples are given in Fig. 7.

Results for station 1-860 on the Warner River in
Davisville, NH, are given in Fig. 7a. The best fit
straight line gives H =0.68; from Eqs. (2), (4), and
(7) we have F = 4.8, D = 1.32 and a = 1.46. Results
for station 3-2305 on the Big Darby Creek in Dar
byville, OH are given in Fig. 7b. The best fit straight
line gives H = 0.386; from Eqs. (2),(4), and (7) we
have F = 2.43, D = 1.61, and a = 2.59.
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Fig. Sa. Flood frequency predictions for Station 1-1805. The peak discharge Vis given as
a function of recurrence intervals T. The scale-invariant (fractal) prediction, F, is com
pared with the six statistical predictions given by Benson (1968); 2 parameter gamma (Ga),
Gumbel (Gu), log Gumbel (LGu), log normal (LN), Hazen (H), and log Pearson type III
(LP).
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Fig.5b. Flood frequency predictions for Station 11-0980. The peak discharge V is given
as a function of recurrence intervals T. The scale-invariant (fractal) prediction, F, is com
pared with the six statistical predictions given by Benson (1968); 2 parameter gamma (Ga),
Gumbel (Gu), log Gumbel (LGu), log normal (LN), Hazen (H), and log Pearson type III
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Fig. 6b. Hydrologic regions of the continental United States.
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In Fig. 9a the 111 fractal fits for hydrologic region
3 are given, the fits for regions 4, 16, and 17 are
given in Figs. 9b, 9c, and 9d. The peak flow at a pe
riod of 10 years was normalized by the drainage
area upstream of the station. If peak flows were
simply proportional to upstream drainage areas in a
hydrologic district then all the plots should fall on a
single band. In fact, there is more than an order of
magnitude variation. This is not surprising but the
details of the variations should be helpful in provid
ing a better understanding of the flood hazard.

The regional variations in F are clearly illustrated
in Table 2. The highest values of F are generally as
sociated with the arid southwestern states in regions
12, 13, 15, and 18, the mean value of F for these re
gions is F = 5.03. The lowest mean value for F is in
region 17, the Pacific Northwest, with F =2.08. In
some cases the standard deviations for F in a dis
trict are large. For district 18 (primarily California)
the mean is 5.34 and the standard deviation is 2.4.
In this case much of the deviation can be identified
with the presence or absence of snow run off. Those
stations with large upstream snow packs have rela
tively small values for F compared with those sta
tions with little or no upstream snow packs.
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p50
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Fig. 7a. The peak daily discharge for the largest annual floods
over 40 years as a function of the assigned period: Station 1-0860.
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4. Conclusions

Historical flood-frequency records have been ex
amined to determine whether fractal (power-law)
statistics are applicable. Although it must be recog
nized that the relatively short duration of historical
records restricts the validity of conclusions; never
theless, quite good agreement is obtained between
fractal statistics and observations for 10 benchmark
stations and for 1200 other stations in the United
States. The basic question in terms of flood hazard
assessment is whether extreme floods decay expo
nentially in time, or as a power law. If the power-law
behavior is applicable then the likelihood of severe
floods is much higher and more conservative
designs for dams and land use restrictions are
indicated.

For fractal behavior the ratio of the 10 year to the
1 year flood F is also the ratio of the 100 year to the
10 year flood and the ratio of the 1000 year flood to
the 100 year flood. We find large regional variations
in values of F. In arid regions such as the south
western United States the values of F are nearly
three times the values in more temperate regions
such as the northwestern and northeastern corners
of the country. Smaller values of F are also found if
upstream drainage areas have large snow packs.

10010

Period (yr )

100 L-_--'-----'---''--'--"--'-..LLL-_--'-----'----'-L...L-L..LLJ
1

Fig. 7b. The peak daily discharge for the largest annual floods
over 40 years as a function of the assigned period: Station 3-2305.

In order to determine the quality of the fit of the
data to the fractal relation Eq. (3), the ratio of the
measured peak flow to the value predicted by the
fractal fit is given for periods of 1, 2, 5, 10, 20, and
40 years in Fig. 8. The 111 stations from hydrologic
region 3 are given in Fig. 8a, the 57 stations from
region 4 in Fig. 8b, the 10 stations from region 16 in
Fig. 8c, and the 100 stations from region 17 in Fig.
8d. If all points were unity the fit would be perfect.
The mean deviations from the fractal relation are
only a few per cent. The deviations for larger values
of the period are greater as would be expected since
the individual points are only a few floods. How
ever, the mean values of the 40 year floods are close
to the fractal extrapolation. This agreement pro
vides support for the applicability of fractal statis
tics to the estimation of the flood hazard.
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Table 2. Average values and standard deviations of the flood
intensity factor F for the 18 hydrologic districts

Hydrologic F Standard Number
regions deviations of stations

1 2.369 0.377 54
2 2.998 1.313 147
3 2.758 0.617 III
4 2.183 0.289 57
5 2.396 0.509 129
6 2.505 0.324 38
7 2.782 0.738 123
8 3.021 0.979 22
9 4.7 1.586 13

10 3.557 1.677 64
11 3.897 1.801 46
12 4.848 1.559 13
13 4.104 2.121 14
14 2.283 0.51 18
15 6.066 1.08 11
16 2.778 0.752 10
17 2.076 0.357 100
18 5.134 2.4 39

The relevance of R/S analysis to flood frequency
forecasting has also been addressed. For the ten
bench mark stations we find the Hurst exponent to
be HI =0.7 ± 0.03. This value indicates moderate
persistence for the floods but also shows that deter
minations of Hurst exponents are not useful for
flood hazard assessments. The Hurst exponent does
not correlate with the fractal flood parameter F. In
the terms introduced by Mandelbrot and Wallis [10]
the Hurst exponent is sensitive to the Joseph effect
or persistence of events whereas the fractal flood
parameter F is sensitive to the Noah effect or skew
ness of the statistical distributions of floods.

It certainly remains to be demon§trated that frac
tal flood frequency statistics are generally valid.
However, the success indicated in the results given
here raises the interesting question whether the un
derlying physical processes are inherently fractal.
Fractal statistics will be applicable to any scale in
variant process. They are also applicable to dynam
ical systems that exhibit self-organized criticality
[20]. One speculative conclusion is that the storms
that generate floods are associated with the self
organized critical behavior of the atmosphere.
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1. The Model

In order to utilize limited historical
wind records for estimating extreme
wind speeds for natural hazards dam
age mitigation, a Markov chain model
for generating long-term annual ex
treme winds, on the basis of short-term
records, is investigated. Basically, this
simulation model consists of three com
ponents. They are state of wind speeds,
wind speed distribution functions, and
transition probability matrices.

The basic strategy of our simulation
model is to generate the time series of
hourly wind speeds in parts: for those

winds associated with well-behaved cli
mates and those with extreme winds.
Applications of this model to generate
long-term extreme winds, on the basis
of short records at Houston Interconti
nental Airport of Texas, are demon
strated.

Key words: extreme wind speed; Gum
bel distribution; Markov chain model;
simulation; transition probability matrix.
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Recent efforts have been made to improve the
methods of utilizing short-term wind records
[1,2,3;4]. Our contribution to this endeavor is the
development of stochastic simulation models which
generate hourly wind data on a daily cycle basis
[5,6].

The three essential elements in the Markov
chaiQ model are: state of wind speeds, wind speed
distribution functions, and transition probability
matrices.

1.1 State of Wind Speeds

In the simulation process for a given wind site,
the first step is to divide the entire range of ob
served wind speeds into a finite number of states.
This is performed with reference to the probability
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histogram derived from the observed wind data for
that site. A computer program called WSTAT was
developed for performing this task.

1.2 Distribution Functions

The second basic element involves the wind
speed distribution functions, viz., the probability
density functions (PDF) and the cumulative distri
bution functions (CDF) o(wind speeds in various
states. In this paper, four types of PDFs are uti
lized to fit a wind speed histogram, viz., uniform,
linear, exponential and Weibull distribution func
tions. The exponential and Weibull distributions
are exclusively reserved for the last state in which
extreme winds are involved.
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1.3 Transition Probability Matrices

With m states determined, an m x m transition
probability matrix PM can be determined as

The transition probability pij is actually a condi
tional transition probability of wind speed V T going
from one state i at hour 7" to wind speed VT+l of
state j at hour 7" +1 or

4. By means of Eq. (5), compute PM(s,r), the
transition probability matrix of period r in
season s. A total of R x S transition probabil
ity matrices will be obtained.

5. Determine the state of the succeeding hour's
wind speed. For any given wind speed in state
i of this current hour (with specified period r
and season s), the succeeding hour's wind
speed state interval "k" can be determined.

6. Determine the value of the succeeding hour's
wind speed. With the state k determined in
Step 5, the simulated wind speed for the suc
ceeding hour can thus be obtained.

Repeat steps 5 and 6 until a desired period of sim
ulation is attained. A computer program called
WSIM was developed for generating the hourly
wind data.

(2)

(3)

(1)

m

L Pij =1, for i =1,2,...,m
j=!

PM =[Pij] for i,j =1,2,...,m

in which, pij have the following properties:

In this paper, a day is divided into several peri
ods. Similarly, the variation of mean monthly wind
speeds is accounted for by grouping consecutive
months with similar wind speed trends into a num
ber of seasons for a year. If the number of periods
in a day and the number of seasons in a year are R
and S, respectively, then there will be R x S transi
tion probability matrices in the simulation process.
A typical transition probability matrix for a given
period r and season s can be expressed as

and

pij > 0, for all i and j .

PM(s ,r) = [Pii"1

(4)

(5)

3. Markov Property and Stationary Tests

In order to substantiate the major assumptions
made earlier, a test must be performed of the
Markov property, Le., the existence of dependency
between two adjacent hourly wind speeds. This
simulation technique is only applicable to station
ary time series; the intended simulation model is a
stationary first order Markov chain. Consequently,
a test of stationarity of the historical wind speed
times series is necessary prior to the acceptance of
the simulated results. Anderson and Goodman's
method [7] was used in performing these tests in
Sec. 4.

where s =1,2,...,S, and r =1,2,... ,R. A computer
program called WTPM was developed for calculat
ing the PM(s ,r).

2. Simulation Procedures

Some sequential steps of generating hourly wind
data points at a given site are briefly described as
follows:

1. Divide the historical wind data into subsets so
that program WSTAT may be executed.

2. Define R, number of periods in a day, and S,
number of seasons in a year, so that program
WTPM is activated.

3. Calculate PDFs and CDFs of the historical
data.

4. Application

The simulation model based on the described
procedures is applied to wind data collected at the
Houston Intercontinental Airport in Texas. In this
illustration, three periods in a day (1:00 a.m.-9:00
a.m., 10:00 a.m.-7:00 p.m., and 8:00 p.m.-mid
night) and two seasons in a year (November-May
and June-October) were considered. The periods
of a day were decided from the averaged diurnal
wind speeds at the site. Therefore, by using Eq. (5),
six transition probability matrices were calculated.

Based on the 20 years (January 1973 to Septem
ber 1992) of hourly wind records available at Hous
ton Intercontinental Airport, eight simulation runs
were made. Each run generated 100 years of hourly
wind speeds. Historical record periods for the eight
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runs are: the first 5 years (January 1973-Decem
ber 1977); the second 5 years (January 1978
December 1982); the third 5 years (January 1983
December 1987); the fourth 5 years (January 1988
September 1992); the first 10 years (January
1973-December 1982); the second 10 years (Janu
ary 1983-September 1992); the first 15 years (Janu
ary 1973-December 1987); and all 20 years
(January 1973- September 1992).

The annual extreme wind speeds of the historical
data (1963-1990), and of eight sets, each 100 years
long, of simulated hourly data, are plotted on Type
I probability paper (Fig. 1). Using the Gumbel line
fitted to the historical data as the reference, the
performance of the simulation model is summa
rized in Table 1. As shown in this table, the devia
tions of the simulated 25-year, 50-year, or 100-year
wind speeds from the reference Gumbel line were

measured by Sv, Cramer-Rao's standard deviation
of the inherent sampling error of the historical
records [8,9]. As indicated in Table 1, the differ
ences between the simulated annual extreme wind
speeds and the values obtained from the reference
Gumbel line of historical data at 25 year or 50 year
or 100 year recurrence intervals are all smaller
than one Sv. This result is very encouraging.

The plots of cumulative distribution functions
for the historical as well as the 100 year generated
records at Houston Intercontinental Airport are
presented in Fig. 2. As shown in this figure, the
curves derived from the generated records closely
match those of the historical records, which implies
that the characteristics of the historical wind
speeds at Houston Intercontinental Airport were
adequately represented.

Table 1. Estimated annual extreme wind speeds from historical records and from
simulation methods at Houston Intercontinental Airport

Recurrence
interval Va-V,

Data period (in years) Va SV V, -g;-

1963-1990 25 26.6 1.78
50 28.8 2.13

100 30.9 2.48
1/1973-12/1977 25 27.6 -0.56

50 28.7 0.05
100 29.9 0.40

2/1978-12/1982 25 27.8 -0.67
50 29.1 -0.14

100 30.3 0.24
1/1983-12/1987 25 27.4 -0.45

50 28.4 0.19
100 29.4 0.60

1/1988-9/1992 25 27.4 -0.45
50 28.6 0.09

100 29.8 0.44
1/1973-12/1982 25 27.4 -0.45

50 28.6 0.09
100 29.7 0.48

1/1983-12/1987 25 28.1 -0.84
50 29.4 -0.28

100 30.7 0.08
1/1973-12/1987 25 27.6 -0.56

50 28.8 0.00
100 30.0 0.36

1/1973-9/1992 25 27.9 -0.73
50 29.6 -0.38

100 31.3 -0.16

Va = extreme wind speed from .annual series in m/s and 10 m above ground level.
V. = simulated extreme wind speed in m/s and 10 m above ground level.
Sv=Cramer-Rao's standard deviation of inherent sampling error of historical
records.
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s. Conclusions

A procedure for predicting extreme wind speeds
at a location along the Gulf Coast is demonstrated.
The results obtained from the application of this
model are very encouraging. Although 20 years of
data were available for the particular station in the
illustration, computer simulation runs were made
on the basis of 20 year, 15 year, 10 year, and 5 year
database. It has been shown that it is not necessary
to have 20 years of continuous data and that even a
5 year record is adequate for showing good com
parison between the simulated results and histori
cal data. Further research effort is being
undertaken at the University of Hawaii at Manoa
to study the applicability of this method to other
stations along the Gulf Coast and other parts of the
continental United States.
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1. Introduction

Number 4

Models for extremes of environmen
tal processes have been studied exten
sively in recent years. The particular
problems arising when attempting to es
timate return levels from sequences of
measurements on the appropriate vari
ables have been considered in some
detail. In particular, the aspects of sea
sonal variation and short-range depen
dence have received a great deal of
attention. In this paper we present a
case study based on 10 years of hourly
wind speed measurements collected at
a U.K. site, elucidating the most suc
cessful procedure emerging from an ex
tensive study of this data. The basic
model (in which an extreme value
distribution is fitted to cluster peak ex
cesses over a high threshold) is stan
dard. However the emphasis is on a
number of practical problems which

July-August 1994

will arise when such models are fitted
to wind speeds, but which have re
ceived little consideration. These in
clude: model selection and assessment
of model adequacy when the threshold,
and some or all of the parameters, are
allowed to vary seasonally; the choice
of the best combination of threshold
and cluster identification procedure;
and the choice of a measure of preci
sion for return level estimates. The aim
is to suggest an algorithm which can be
generally applied to the problem of
gust return level estimation at individ
ual sites.

Key words: extreme value theory; gen
eralized pareto distribution; peaks over
threshold; return levels; statistics of ex
tremes; wind speed.

Threshold models for exceedances have been
widely adopted in recent years in the study of ex
tremes of environmental processes. The main ad
vantage of such models over the so-called
"classical" extreme value models (in which a limit
ing distribution is fitted to the largest order statis
tics selected form fixed time intervals) is their
greater flexibility in the manner in which events are
identified as "extreme." This generally leads to a
larger number of extreme events being available
for analysis, and this in turn to more precise esti
mates for return levels and return periods.
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The price paid for the increased efficiency of
data exploitation and consequent improvements in
estimation precision is, as one would expect, a
greater complexity of model. Seasonal variation
and short-range correlation, almost always present
in environmental time series, can no longer be ig
nored in the manner of a traditional "annual max
ima" analysis (or "Gumbel analysis"). Instead they
must be given careful consideration. Models which
take account of both of these features have re
ceived considerable attention in the literature (e.g.,
Refs. [2,3,7,8] and the associated discussion).
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In this paper we consider a complete study of a
sequence of wind speed measurements recorded at
a single U.K. site. We address some of the practical
complexities that arise when adopting a threshold
based approach to extremes of environmental time
series. In particular, the related issues of

1. choosing a threshold large enough for the distri
bution of excesses to approximate to a limiting
form,

2. allowing the threshold and some or all of the
parameters to vary seasonally,

3. employing a threshold-based declustering
method for identification of storm peaks,

give rise to a situation which requires some careful
consideration in terms of the practical application
of existing models.

The theoretical arguments supporting the use of
threshold models in the manner considered in this
paper, already validated in previous studies (e.g.,
Ref. [8]), suggest that the techniques employed
should be applicable at any site at which the natu
ral mechanism underlying the generation of ex
treme winds is not capable of taking on several
distinct forms (e.g., hurricanes and conventional
storms). Thus the approach considered here could
be viewed as a possible algorithm for the estima
tion of the extreme wind potential at any site in a
temperate climate.

2. Background to the Study

2.1 Wind: The Variable

The behaviour of wind velocity as a continuous
variable demonstrates certain characteristics which
distinguish it from other environmental variables.
In common with other such variables, clear sea
sonal patterns and short-range dependence are
strong features of the wind climate at most loca
tions. However, in comparison with these others,
wind velocity is fairly well-behaved in a number of
ways. Unlike sea-level (Ref. [9]), wind speed does
not naturally break down into distinct components,
and unlike rainfall, the wind does not arrive in
clearly identifiable episodes. In comparison with
many environmental phenomena, wind velocity is
not subject to very violent departures from the
norm. Although a wind velocity of 20b mph may
sound rather severe, from a statistical point of view
such departures from mean levels are small com
pared with those· occasionally demonstrated by
rainfall levels over short periods, flow rates in riv-

400

ers, and concentrations of certain pollutants. The
relative stability of wind velocity is more akin to
sea-level behaviour, but wind speed differs from
sea-level in being one of the most rapidly varying of
all environmental variables. Conditional on the un
derlying "level" of the wind (characterized by
storms and periods of calm), many distinct gusts
can be observed in periods as short as several min
utes. In a sense therefore, while being rather sta
ble, the wind can provide us with a great deal of
information in a relatively short time. This
strengthens arguments supporting limiting asymp
totic distributions for the most extreme gusts, and
potentially allows us to make inferences about
long-period return levels from comparatively short
runs of measurements.

2.2 Extreme Value Models: Exploiting the
Variable

We consider the problem of estimating gust re
turn levels for specified periods of the order of 50
or more years, when data available consist of
recorded maximum gusts taken over short intervals
(say 1 hour or 1 day), and are collected over a time
period which may be short in comparison to the
return periods (perhaps less than 10 years). In such
situations, a classical approach based on annual
maxima is unworkable, due to sparsity of data.
Methods which make use of several order statistics
from each year (for example the "r largest" ap
proach advocated by Tawn [9] in analysing extreme
sea-levels) can produce viable estimates of 50 year
gust return levels from as little as 10 years of data
[10]. However, such methods must take account of
serial correlation, and are vulnerable to the effects
of seasonal variation. Seasonal effects could be in
corporated into the models, but given the addi
tional complexity this would entail, it is thought
preferable to convert to a threshold-based ap
proach. The main advantage over the use of order
statistics from fixed time intervals is the additional
flexibility in the choice of extreme events for analy
sis. This arises from allow.ing the number of such
events which occur over a fixed period to vary ac
cording to the behaviour of the wind during that
time. Serial correlation can be dealt with by identi
fying clusters of observations above a threshold,
which are deemed to be correlated, and discarding
all but the largest observation within each cluster.
The aim here is to filter out a set of independent
"cluster peak excesses" for further analysis (Ref.
[7]). Seasonal variability in the behaviour of
extremes can be incorporated by allowing the
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threshold (above which events are deemed to be
extreme), and the distribution of excesses over this
threshold, to vary through the year. However the
justification for such a model is not immediate and
is worth considering in a little more depth.

It is usual in strongly seasonal climates for the
occurrence of truly extreme wind speeds to be con
fined to a certain part of the yearly cycle. In the
U.K. for example, it is very unusual for wind dam
age to occur outside the period October through
March. However a model for extreme values which
takes account of this seasonality will select as ex
treme events all gusts which are large given the time
ofyear. If the probability of important levels being
exceeded during certain seasons is negligible, then
there is only a point to modelling the extremes ob
served during these periods if we believe that they
can supply additional information about what may
happen in the seasons in which genuinely large
events can occur. For this to be the case, we must
assume that there is some homogeneity in the .ex
tremal behaviour across the different seasons
that in some sense it is fundamentally the same
mechanism which is responsible for the generation
of large gusts throughout the year, and it is just
some of the associated parameters of this mecha
nism which change. Fortunately, there are often
good reasons for making this assumption. In tem
perate climates, it is essentially the same alternat
ing passage of anticyclones and depressions which
leads to all the storms which occur throughout the
year. It is merely the severity of these systems
which is seasonally variable. Hence it seems rea
sonable to assume that the manner in which large
events cluster together will be broadly homoge
neous throughout the year.

A further, more tentative contention is that the
patterns of turbulence caused by the local terrain
around a site also remain essentially unchanged
throughout the annual cycle. Since it is this turbu
lence that is the cause of gusting, i.e., very short
term fluctuations away from the mean wind speed,
and since the systems generating sequences of high
or low mean speeds appear to differ from season to
season only in their severity, we suggest that the
shape of the upper tail in the distribution of gusts
could well be homogeneous throughout the year
(Le., the distribution of extremes varies seasonally
only in terms of location and scale). In terms of
fitting extreme value distributions to large gusts,
this would be reflected by the shape parameter
(denoted here by k) being held constant across all
seasons.
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Of course homogeneity conditions on both clus
tering behaviour of large gusts, and the shape of
the upper tail in their distribution, must be verified
from the data. However, previous studies suggest
that such assumptions are often validated, and can
then provide an important route to a more efficient
exploitation of data. This will be demonstrated in
the case study which follows. Working with hourly
maximum gusts collected at Sheffield University
for the U.K. Meteorological Office over a 10 year
period 1975-1984, we identify four steps to the esti
mation of return levels. Implementing this al
gorithm, we obtain useful return level estimates for
10, 50, and 1000 years. The level of precision at
tached to these estimates is greater than any
achieved via a whole range of conventional analy
ses applied to the same data, as well as some more
novel models (see Ref. [10]).

3. Step 1-Generating a Stationary
Series

3.1 Dealing with Seasonal Variation

Davison and Smith [3] identify two basic ap
proaches for handling seasonal data:

1. the removal of known seasonal components to
create a stationary (prewhitened) series;

2. a separate seasons approach, in which a differ
ent model is fitted within each of a finite num
ber of seasons.

For wind-speed data there are no clearly defined
seasonal components. Also, as Davison and Smith
[3] point out, it is important that the seasonal ef
fects identified are those which affect the upper
tails, rather than the central portion of the data.
We therefore advocate the separate seasons ap
proach (with a different extreme value model being
fitted to large gusts from each season) as the more
natural choice. However, as stated in Sec. 2, we
hope to be able to exploit homogeneities across
seasons in the mechanisms underlying generation
of extreme gusts. This may involve application of a
uniform procedure for identification of clusters of
large observations, and/or the fitting of a constant
shape parameter across all seasons. Now the as
sessment of goodness-of-fit of extreme value mod
els generally entails graphical rather than formal
methods, due to the intractability of the latter, and
the ease of application and interpretation of the
former. In particular, the mean excess plot [mean
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residual life (MRL), or conditional mean excess
(CME)] is advocated for the limiting Generalized
Pareto Distribution (GPD) fitted to threshold ex
cesses (see Lechner, Leigh, and Simiu [5,6] for ar
guments in justification). In order to check our
homogeneity assumptions we must be able to as
sess the adequacy of the model to all the seasons
simultaneously. For this purpose we suggest the
generation of a prewhitened series for the prelimi
nary stages of the analysis only, namely the choice
of an appropriate seasonally varying threshold, an
accompanying method of identifying clusters of ob
servations above this threshold, and the initial as
sessment of model adequacies.

In this paper, we take our seasonal unit to be 1
month. Experience suggests that by dividing the
year into 12 equal-length seasons, we strike a good
balance between the two conflicting requirements
of a) reflecting reasonably accurately the continu
ous nature of seasonal changes in climate, and b)
retaining a substantial amount of data for analysis
within each season. The models we will consider
thus consist of a separate GPD fitted to cluster
peak excesses within each month, the threshold
also being allowed to vary on a monthly basis. We
will assume a homogeneous clustering mechanism
throughout the year, but retain the option of allow
ing the shape parameter k to vary from month to
month, or constraining it to take a single value
across all months. (In other situations where a dif
ferent length of season is considered appropriate,
the arguments laid out below would apply un
changed.)

Under such a separate months model, an appro
priate set of prewhitening operations would be pro
vided by separate transformations tm for each
month m (applied to all the observations in month
m). In order to know the precise transformations
required, we would need to know the parameters
in the GPDs fitted to cluster peak excesses within
each month. Since we have not yet established how
to obtain the cluster peak excesses (CPEs), we can
not know these values. However it is possible to
make an educated guess at an appropriate set of
monthly transformations, as shown in the following
sections.

3.1.1 Homogeneous Shape Parameter k We
consider first the situation in which the GPD shape
parameter k is assumed constant over all months. It
is then easy to show that a set of linear transforma
tions tm(x)=an,x+bm; a>O, m=1, ... , 12 can be
chosen to render the distribution of CPEs over a
single threshold homogeneous GPD across all
months (see Ref. [10]).
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In order to form estimates for the required
transformations, we bear in mind that it is the up
per tails of the monthly distributions of all
recorded maximum gusts (in our case hourly)
which will yield the CPEs. Since the clustering
mechanism is assumed homogeneous across all
months, we suggest that a good approximation to
the appropriate transformations will be obtained
by making the upper tails of the empirical monthly
distributions of all recorded maximum gusts coin
cide with each other in some sense. Since the re
quired transformations are linear, this can be
achieved by transforming two high quantiles (e.g.,
0.95 and 0.99) from each month to two distinct ar
bitrarily specified points, say the corresponding
theoretical quantiles of the unit exponential distri
bution. Explicitly, we would transform empirical
monthly quantiles Zl,m and ZZ,m to the corresponding
exponential quantiles ql and qz by solving the
simultaneous equations:

(1)

for am > 0 and bm, and for each m = 1, ... , 12. The
precise choice of quantiles is not critical, and is
somewhat arbitrary. It is determined by the neces
sity of moving as far as possible into the upper tails,
while still retaining a substantial amount of data
between the two quantiles, and above the largest of
them (in order to keep sampling error to a mini
mum).

3.1.2 Variable Shape Parameter k If the
shape parameter k is allowed to vary from month
to month, the required monthly transformations
are no longer linear. However, the arguments lead
ing to approximately the correct transformations
being obtained (by causing the upper tails of the
empirical monthly distributions of all monthly gusts
mutually to coincide) still hold, This time transfor
mations which will lead to monthly cluster peak ex
ceedances being homogeneous GPD over a single
thres~old are of the form tm(x) =amlog(x -em) +bm;
am > 0 (easily obtained by considering the transfor
mation which maps one GPD c.d.f. onto another).
Estimates can be obtained by transforming three
high quantiles (e.g., 0.90, 0.95, and 0.99) from each
month to distinct arbitrary points. For example the
empirical quantiles ZI,m, ZZ,m, and Z3,m from each
month m could be transformed to the corresponq
ing theoretical quantiles qi, qz, and q3 of the unit
exponential distribution by (numerically) solving
the simultaneous equations:
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for am > 0, bm, and em, and for each m = 1, ... , 12.

3.2 Implementation for the Sheffield Data

For each month, 10 years of hourly maximum
gusts constitute approximately 7300 observations.
Hence there are about 365 points lying above the
0.95 quantile; 73 above the 0.99 quantile. The sam
pling error in estimating these quantiles' theoreti
cal values via the empirical equivalents is therefore
reasonably small. We initially make the assumption
of a homogeneous shape parameter. As we shall
see in Sec. 4, this appears to be well-founded. For
each month, then, linear transformations which
map the two empirical quantiles to their theoretical
unit exponential counterparts (2.996 and 4.605),
are applied to all hourly maxima. The resulting
prewhitened sequence occupies the range [ - 4.559,
8.596].

4. Step 2 - Threshold Selection

4.1 Methodology

Having created an approximately stationary (in
the upper tail at least) sequence of hourly maxi
mum gusts, we are in a position to experiment with
various choices of threshold and cluster identifica
tion procedure.

We propose a constant threshold for the
prewhitened series, based on the assumption that
the region of the data to be treated as extreme will
constitute the same upper quantile for all seasons.
Applying the inverses of the prewhitening transfor
mations to this threshold in monthly segments will
then provide the seasonally varying threshold for
use in the final model.

Exceedances of the threshold will occur in clus
ters (storms) from which we wish to choose only
the peak excesses for modelling. We need to be
able to identify these clusters, bearing in mind that
some of the observations within a storm may lie
below the threshold. Of several possible methods,
we opt for a fixed termination time approach,
whereby a storm is deemed to have ended when a
certain required number of consecutive observa
tions below the threshold are observed. The advan
tage of this method over some others is that it
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allows both the duration of storms, and the dura
tion of intervals between them to vary according to
the data, reflecting the inherent natural variability
of these quantities.

The threshold and the termination interval may
be regarded as the two parameters for estimation
in this section of the analysis. Formal estimation
procedures such as maximum likelihood are inap
propriate here: distributional assumptions on CPEs
only hold if the threshold is chosen high enough,
and we do not wish to impose a specific model
structure on the underlying process which gener
ates storms and periods of calm. However, graphi
cal procedures are highly effective in this capacity.
In particular the mean excess plot (the mean resid
uallife plot: see Ref. [4]; or conditional mean ex
cess plot: e.g., Ref. [5,6]) performs well. This is
produced by simply plotting the mean excess of all
model data above threshold u against u for a range
of such thresholds. Linearity in the plot corre
sponds to a good fit of the GPO to excesses of the
model data over any threshold above which the lin
earity holds. In our case the model data will be the
selected cluster peak exceedance magnitudes.

Note that the threshold and the termination in
terval must be chosen in combination, because
these two parameters interact in the manner in
which they determine the set of cluster peak ex
ceedances actually selected. Basically, provided
both are large enough, the set of corresponding
CPEs should be iid GPO, because

1. the GPO exhibits a threshold stability property,
whereby a good fit above a certain threshold im
plies a good fit above all higher thresholds, with
merely a change in scale parameter, and

2. if the termination interval is long enough for the
CPEs to be approximately independent, then
this will still hold for increased intervals.

However, subject to this constraint, we wish to
make both quantities as small as possible, in order
to maximize the number of valid CPEs selected for
analysis.

In principle, it would be possible to produce a
large number of mean excess plots to examine the
model adequacy under a whole variety of combina
tions of threshold and termination interval. In
practice however, this would prove a very cumber
some route to making an appropriate choice. In
stead we propose a simple modification to the
mean excess plot which leads to considerable
streamlining of the selection procedure. For a
given termination interval z*, we propose that the
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mean excess above threshold u is plotted against u,
with the identification of cluster peak exceedances be
ing carried out separately for each threshold u. We
will call this device a reclustered excess plot. The
idea here is that linearity in such a plot above a
certain threshold a suggests both a good fit of the
GPD to CPEs over u selected using termination
interval z*, and a robustness of the mean CPE to
the threshold at which declustering is carried out.
Note that if such a robustness were not present, it
would cast considerable doubt on the validity of the
declustering procedure.

By producing individual reclustered excess plots
for a range of values of z * (each one requires sur
prisingly little computation time), we should .be
able to identify the smallest such value for whIch
the independence criterion for the CPEs is met to
a good approximation. This will be the smallest
value yielding a plot which straightens out above a
certain level u. This value of uis then chosen as the
best threshold for the corresponding value of z*,
giving the optimal pairing (u, z*)'. *. .

Note that having selected the paIr (it, z ), It IS
strongly recommended that a conventional mean
excess plot is obtained for the CPEs so obtained,
the plotting range being u ~ it. This is to verify the
validity of the choice, and in particular to check
that approximate linearity in the reclustered excess
plot is not caused by lack of fit of the GPD and
non-robustness to the declustering threshold hav
ing opposing effects, and thereby cancelling one
another out.

For a more in-depth discussion of reclustered ex
cess plots and their validity, see Ref. [10).

We suggest that we first work with a
prewhitened series obtained under the assumption
of a homogeneous shape parameter k, since this
will provide a very useful improvement in return
level estimation precision if it proves to be justi
fied. Only if the reclustered and mean excess plots
suggest a poor fit for all trial values of z * do ,:,e
recommend relaxing this assumption and workIng
with a prewhitened series created using non-linear
transformations.

Note that the effect of a moderate failure in the
assumption of homogeneous clustering behaviour is
not liable to be serious. While this implies that z*
should be allowed to vary seasonally, the above
procedure will tend to lead to the selection of the
smallest z * value large enough to work .for all sea
sons: any smaller value of z * will fail in some parts
of the annual cycle, and this should show up as a
lack of fit of the overall GPD model to CPEs from
the prewhitened series.
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4.2 Implementation for the Sheffield Data

Figure 1 shows reclustered excess plots produced
for termination intervals z *=0 (all excesses), 6 h,
15 h, 30 h, 60 h, and 120 h. Here we are using the
prewhitened series obtained at the end of Sec. 3,
based on the homogeneous k assumption. The
plots appear to straighten for z *=30 h (debatable),
60 h, and 120 h, but not for the smaller termination
intervals. Conventional mean excess plots (Fig. 2)
produced for z *= 15 h, 30 h, 60 h, and 120 h using
the corresponding linearity thresholds it = 2.8, 2.6,
2.7, and 3.3 (for z *= 15 h we use the inflection
point) broadly support the findings, and w~ con
clude that z *=15 h is too small; z *=30 h IS bor
derline' and z *= 60 h or z *= 120 h is large enough., .

The fact that the fit of a single GPD to thIS
prewhitened series appears good supports the ho
mogeneity assumption on k, and we do not need to
abandon this in favour of a model which allows k to
vary.

We select the pairs (it =2.6, z* =30) and
(u =2.7, z*=60) as our choices for the next stage
of modelling. We retain two combinations because
of the doubt over the adequacy of the termination
interval z *=30 h, and in order to check on the
robustness of final results to the precise choice of
CPEs. The 10 years of hourly maximum gusts yield
respectively 525 and 352 CPEs under the two pair
ings. The thresholds 2.6 and 2.7 lie at the 0.923 and
0.935 quantiles in the empirical distribution of
transformed hourly maxima.

5. Step 3 - Model Verification

5.1 Likelihood Ratio Tests

From any given choice of threshold and termina
tion interval, and the corresponding monthly sets
of cluster peak exceedances, we are able to move
directly to a separate seasons model for the raw
(untransformed) cluster peak exceedances. Und~r
the appropriate model, the excesses of these In
month m over a segmented monthly varying
threshold (obtained by applying the inverses of the
prewhitening transformations to the threshold it
identified in Sec. 4) are independent GPD(um,km),
with distribution functions

scale parameters Um > 0; shape parameters km arbi
trary; andGm defined on 0 <y < 00 if km :::;; 0, and
o<y < um/km if km> O. The case km=0 is inter
preted as the limit km ~O, and is the exponential
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distribution with mean (Tm. The parameters (Tm and
km can be estimated via numerical maximum likeli
hood estimation. (N,B. at this stage of the mod
elling, the values Um are treated as fixed constants.
Starting values for (Tm and kmcan be provided from
the graphical estimates for scale and shape
parameters for the prewhitened CPEs obtained us
ing the fact that the fitted line on the mean excess
plot should have slope - k/(1 +k) and intercept
(T/(1 +k); see Ref. [3]. Applying the inverses of the
prewhitening transformations to the GPD((T,k) will
give good preliminary estimates for (Tm and km), It
is then possible to verify the choice of homoge
neous or variable shape parameter k via a likeli
hood ratio test-twice the decrease in fitted
log-likelihood when k is constrained to be homoge
neous (over a model in which it can vary from
month to month) should be chi-square on 11 de
grees of freedom (11 is the change in the number
of model parameters) under the null hypothesis of
homogeneity, In the surprising event of the test re
sult conflicting with the decision reached in Sec, 4,
we recommend the likelihood ratio result as the
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more reliable, due to its more rigourous justifica
tion, In this instance, we would have to be satisfied
that the preliminary analysis of Sec, 4 has at least
allowed us to get to this stage, while proving to be
somewhat misleading!

Notice that once the thresholds and the termina
tion interval have been chosen, a separate seasons
model which allows the shape parameter to vary
from month to month is in fact equivalent to a
model in which each season is treated entirely sep
arately, i.e., no further homogeneities are incorpo
rated. If the extremes occurring in some seasons
are not truly large values, then including these sea
sons in any further analysis will contribute little to
return level estimation,

5.2 Graphical Evaluation

The overall fit of the separate months model for
the magnitudes of excesses over thresholds can be
verified via probability plots or quantile plots (plots
of fitted distribution function versus empirical dis
tribution function, or fitted quantile versus empiri-
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Table 1. Results when the separate months model is fitted to
cluster peak exceedances obtained using z' = 30 h

Table 2. Results when the separate months model is fitted to
cluster peak exceedances obtained using z' = 60 h

cal quantile; the plotting points being defined by
the cluster peak exceedances). By using the fitted
parameter values to transform each monthly set of
CPEs to a common margin (say unit exponential),
the fit to all seasons can be assessed simulta
neously.

5.3 Implementation for the Sheffield Data

Tables 1 and 2 contain thresholds Um and maxi
mum likelihood estimates for Um and k( =km for all
m =1, ..., 12) for the separate months model fitted
to the CPEs obtained from z *=30 hand z *=60 h,
respectively.

Likelihood ratio tests confirm the validity of the
homogeneous k assumption: for the cases z *=30 h
and z *=60 h, respectively, 8.23 and 7.56 are com
pared with a chi-square distribution on 11 degrees
of freedom; no evidence that k should vary from
month to month.

The overall adequacy of the model in both in
stances is strongly supported by the probability and
quantile plots shown in Fig. 3.

6. Step 4 - Return Level Estimation

6.1 Profile Likelihood Confidence Intervals

For given monthly thresholds Um and GPD
parameters Um and km , m = 1, ... , 12, the r year re
turn level qr is obtained as the solution of the equa
tion

12

4 Am[1-km(qr -Um)/um]lIkm=r- 1, (4)
m=l

where Am is the monthly exceedance rate of
threshold um • This arises by setting the exceedance
rate of level qr in any given year, given by the LHS
in Eq. (4), equal to 1/r. (Note that if qr ~ Um for any
m, then the quantity Am[1-km (qr -Um)/o;nr1km

should be replaced by Am; and if for any m km> 0
and qr ~ Um + Um /km , the replacement should be by
zero, because of the range on which the GPD is
defined.)

We have not yet considered the monthly ex
ceedance rate parameters Am. Assuming a Poisson
rate of storm occurrence (following Ref. [7]), the
maximum likelihood estimates for these are simply
the mean annual numbers of storms occurring in
each month. A point estimate for qr can be ob
tained by substituting the thresholds Um , and the
parameter estimates for Am, Um, and km into Eq.
(4), and solving numerically. Standard errors can
be estimated via techniques such as the delta
method, but the construction of symmetrical confi
dence intervals within a specified number of
standard errors either side of the mean is not rec
ommended. Instead, we strongly suggest the use of
profile-likelihood. Rather than use the limiting
quadratic form of the likelihood surface, profile
likelihood makes use of its actual shape for the
data in question. The severe asymmetry of the sur
face often encountered when it is calculated for re
turn levels suggests that conventional symmetrical
confidence intervals are highly misleading.

The details involved in the calculation of profile
likelihood confidence intervals for return levels are
not entirely straightforward, and we describe them
here. For each of a range of possible values of the r
year return level qr, we maximize the log-likelihood
with respect to the model parameters subject to the
constraint Eq. (4), which ensures that qr is in fact
the desired return level. Technically this can be

Ii:

Ii:

0.3603 (0.0469)

0.4975 (0.0573)

Month (m) Urn Urn

1 38.38 16.75 (2.01)
2 29.68 15.60 (1.99)
3 34.65 11.37 (1.39)
4 29.57 10.63 (1.25)
5 24.85 7.68 (0.79)
6 25.77 8.75 (0.96)
7 24.26 7.23 (0.79)
8 23.71 9.22 (1.08)
9 29.95 12.12 (1.37)

10 29.52 10.76 (1.26)
11 34.45 12.34 (1.53)
12 33.27 16.03 (1.84)

Month (m) Um 0;"

1 39.95 23.28 (2.60)
2 30.94 22.93 (2.60)
3 35.77 14.09 (1.57)
4 30.52 13.61 (1.51)
5 25.65 9.48 (0.95)
6 26.52 11.52 (1.20)
7 25.07 8.76 (0.90)
8 24.45 11.97 (1.30)
9 31.03 16.75 (1.89)

10 30.69 13.57 (1.44)
11 35.58 16.32 (1.98)
12 34.75 19.98 (2.11)
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Fig. 3. Probability and quantile-quantile plots.

achieved by making one of the parameters the sub
ject of Eq. (4). Suppose, without loss of generality,
that 0'1 is chosen. Then Eq. (4) gives

where

12

C = I A",[l-km(qr -Um)/Um]. (6)
m=2

The return level qr is fixed at the desired level, and
the log-likelihood L =- L (qr) maximized with re
spect to the parameters Am, km, and 0'2, ... , U!2. At
each iteration in the maximization, Ul is calculated
numerically from Eq. (5), and L is obtained as fol
lows: suppose the CPEs occur over a period of I
years, and the number of CPEs in month m in year

I
j is nmj. Let nm=.I nmj, and denote the CPEs Ymi;

J=1

i =1, ... , nm • Then

12 [ ( 1 ) nm ( ~) ]L = I - nm log Um + -k - 1 .~ log 1-
m=l m 1-1 Um

12 12 12 I

-I I Am + I nm log Am - I .Ilog(nmj!). (7)
m=l m=l m=IJ=l

A confidence interval for qr can then be formed via
inversion of a likelihood ratio test, i.e. as the set of
values qo for which 2[L (qr) - L (qo)] is not signifi
cant when compared with a chi-square distribution
on one dJ., where qr is the m.l.e. for qr.

6.2 Implementation for the Sheffield Data

Tables 3 and 4 give point estimates and 95% pro
file-likelihood confidence intervals for the 10, 50,
and 1000 year return levels at the Sheffield site,
using the CPE sets obtained via z * =30 hand
z * =60 h, respectively.

Figure 4 shows the profile-likelihood for q50 ob
tained using z * =30 h, illustrating the gross asym
metry in the surface. The vertical line is plotted
through q50 =82.4 knots. The horizontal line lies at
a level 0.5 x xf(0.95) below the maximized log-.
likelihood, the intersections with the surface thus
providing the bounds for the 95% confidence inter
val.

408



Volume 99, Number 4, July-August 1994

Journal of Research of the National Institute of Standards and Technology

95% Profile-likelihood confidence interval

95% Profile-likelihood confidence interval

Fig. 4. Profile likelihood for 50 years return level.

Sheffield. Theoretically motivated models appear
to be vindicated by the good fit demonstrated by
the plots, and homogeneity arguments pertaining
to the wind process in different seasons are sup
ported. The consistency of inferences drawn from
the two sets of CPEs obtained using z *=30 hand
z *=60 h suggests a robustness of results to the in
formal methods employed in the selection of
thresholds and in cluster identification procedures.
Finally, while the entire recommended procedure
may appear quite complex, once the appropriate
software has been set up it can be implemented
very quickly and easily, even on a small machine
such as a Sun SPARC station.

Despite the success of the algorithm described,
which it is expected will be repeated at other sites,
it is very important to bear in mind a number of
cautionary comments. In particular, we must re
member that we have relied very heavily on the
assumption that there is essentially a single meteo
rological mechanism which is responsible for the
generation of all extreme gusts. It is clear that this
is violated in climates where several distinct types
of storm can generate extreme winds (e.g., both
normal temperate zone storms and hurricanes can
occur and generate very high velocity winds). At
sites at which such climates prevail, considerations
different to those presented in this paper apply.
For example, it may be that we know that hurri
canes can occur at a site, but the short run of data
available does not include any hurricanes. This
highlights a basic limitation in any extreme value
analysis-if we cannot assume that all the physical
mechanisms which can generate extremes have been
observed in our data, we cannot produce realistic esti
mates for return levels. The best we could do under
such circumstances is attempt to import knowledge
on the unobserved mechanisms from other sites.
Any such analysis would, of course, be extremely
vulnerable to inter-site differences in behaviour,
which could only be assessed theoretically.

In the more favourable situation where instances
of all the relevant types of system have been ob
served, it seems clear that separate models should
be fitted to the extremes generated by each one.
The overall exceedance rate of any particular high
level could then be expressed as a sum of compo
nents corresponding to each system type, and re
turn levels estimated numerically in a manner
similar to that employed in Sec. 6.

Two further aspects of the models considered
here are worth brief discussion:

110

(81.8, 103.8)

1000 (qllJ(MJ = 88.8)

1000 (qHXKI = 85.8)

(82.3, 97.8)

10090

fifty year return level

(77.0, 93.9)

50 (qso=82.4)

50 (qso = 82.5)

(78.4, 93.1)

80

Return period and m.l.e. for return level

Return period and m.I.e. for return level

(72.0, 84.9)

Table 3. Point estimates and 95% profile-likelihood confidence
intervals for some return levels: z· = 30 h

10 (qlO=76.4)

Table 4. Point estimates and 95% profile-likelihood confidence
intervals for some return levels: z· = 60 h
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7. Discussion

The analysis of the previous four sections seems
to be very satisfactory for the data collected at
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7.1 Piecewise Seasonality

The discontinuous (piecewise) nature of the
manner in which all seasonally varying parameters
are modelled clearly does not match the continuous
change inherent in natural processes. However, ex
perimentation with model modifications which al
low the parameters to vary continuously [10],
suggests that inferences are barely altered in rela
tion to a separate months model for extreme wind
gusts. The significant increase in computation time
incurred by fitting continuously varying parameters
is therefore not thought to be worthwhile.

7.2 Weibull.Type Tails

More interestingly, we note that the shape
parameter k fitted to the Sheffield data is very defi
nitely positive. A likelihood ratio test overwhelm
ingly rejects a null hypothesis wh.ich co~strains k t?
be zero, in favour of an alternative which allows It
to be greater than zero.

Positive k values correspond to a Weibull-type
upper tail (with a finite upper endpoint) for the
distribution of extremes. Traditional analyses, on
the other hand, have been based on the assumption
of a Gumbel-type upper tail for extreme wind
speeds (with no upper endpoint), following from
the notion that there is no natural upper bound to
wind velocity anywhere near the orders of magni
tude at which wind-speeds are actually observed.
However, the findings of this paper concur with
those of many other authors. Lechner, Leigh, and
Simiu [5], for example, find that a Weibull distribu
tion performs significantly better than a Gumbel
distribution for the majority of a sample of 100 sta
tions studied in the United States. These authors
point out that convergence to the Gumbel dist~ibu

tion can be extremely slow, and that the Welbull
distribution, as a penultimate asymptotic approxi
mation can then often provide a better fit even for
sample'sizes as large as one billion. In view of this
consideration, we contend that the arguments sup
porting the use of the Gumbel distribution .are
something of a red herring as far as any practical
applications are concerned, and that if the data
supports the case for Weibull-type upper tail.s, then
a positive shape parameter should duly be fitted!

7.3 Conclusions

The analysis of the Sheffield data presented in
this paper has stood up to a fairly rigourous
scrutiny. Further, the assumption of a single mete-
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orological mechanism underlying the generat~on of
extreme gusts is believed to be well-founded In the
U.K., and we suggest that even the estimates of
1000 year return levels produced from the 10 years
of data can be quoted with some confidence (pro
vided that we remember that the quotation of a
1000 year return level does not incorporate any
forecast of a homogeneous climate over the next
1000 years!). It is worth elaborating here on ~he

precise manner in which the extreme value paradigm
[1] has been applied to our problem of return level
estimation. Theoretical (asymptotic) arguments
suggest that the GPD should provide a good ap
proximation to cluster peak excesses over
thresholds, provided the thresholds are large
enough. Since the approximation does appear to be
good for all thresholds above a level clos: to. ~he

upper 93rd percentile of the data, we feel Justified
in assuming that the asymptotic arguments are ap
plicable at these levels. By their very nature, they
are then applicable at all higher levels. This en
ables us to extrapolate beyond the upper endpoint
of our sample, and hence estimate return levels for
periods far longer than those for which data have
been recorded. There is obviously a limit to the
extent to which this extrapolation is viable, but
hopefully this should be self-apparent: provide.d
the method of calculating confidence intervals IS
not based on unfounded assumptions about the
shape of the likelihood surface, any atte~pt to :x
trapolate too far will simply lead to confidence In

tervals which are too wide to be of use.
However, this last point leads to a very important

cautionary note. Most of the analyses on which cur
rent design-level specifications are based make the
assumption of Gumbel-type upper tails. The effect.
of this has almost certainly been to over-estimate
return levels at most sites. Thus structures have of
ten been designed to be stronger than is actually
necessary, and the precision of return level esti
mates has not' been of crucial importance. In con
verting to the more appropriate Weibull-type tails,
it becomes essential to make adequate allowance
for the margins of error associated with return
level estimation. To rely, for example, on a proce
dure such as the delta-method, which does not cap
ture the inherent asymmetry in these error
margins, could prove disastrous!
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1. Introduction

Number 4

An empirical extreme value distribution
with lower and upper bounds proposed
by the author is applied to represent
probability distribution models for max
imum load intensities of the earthquake
ground motion, the wind speed, and
the live load in supermarkets. One of
the difficulties in the estimation of the
parameters is determining the upper
bound value. Nevertheless application
of the proposed distribution to the an
nual maximum earthquake ground mo
tion results in considerable improve
ments over other models. Possible im-
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provements to the annual maximum
wind speed model are discussed. The
proposed distribution is also a good
candidate for the live load extremes.
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live load; extreme value distribution;
Frechet distribution; Gumbel distribu
tion; maximum bedrock velocity; upper
bound value; windspeed.
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Probabilistic load models are utilized for limit
state design procedures and safety assessments of
structures. Since lifetime maximum loads have to
be applied to these analyses, appropriate probabil
ity distributions are needed to represent load in
tensity models. The Gumbel distribution (Type I
extreme value) and the Frechet distribution (Type
II extreme value) are often used for such purposes.

When the coefficient of variation (cov) is not
large, discrepancies of the upper tails may not be
very serious. However for load intensities with
fairly large cov such as earthquake ground motions,
existing extreme value distributions do not provide
good fits to statistical data. Then an empirical ex
treme value distribution with both upper and lower
bounds proposed by the author [1] is a good alter
native to improve probabilistic load models.

Statistical data were prepared for the annual
maximum earthquake ground motion, the annual

413

maximum wind speed, and live load extremes in
crowding situations. The significance of the pro
posed distribution is discussed in terms of lifetime
maximum statistics.

2. Proposed Extreme Value Distribution

Three types of extreme value distributions are
commonly used for engineering purposes. Cumula
tive distribution functions' are written as follows [2],

F1=exp[-exp{-a(x-b)}] -oo<x<oo (1)

Fn(x)=exp[ -G~€rJ €<x< 00 (2)

Fm(x)=exp[ - (:=:YJ -00 <x <w (3)
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reduced variate, y

10
y=0.1

y=0.5
x
ai y=1.0
::J
Cii y=1.5 y=2.0>
E

5 y=3.0::J
E
'x y=5.0CIl
E

(4)

where a , b, C, E, 'Y, w, v are parameters which char
acterize the form of distribution. Distributions ex
pressed in Eqs. (1), (2), and (3) are the Gumbel,
Frechet and Weibull distributions respectively. In
Eq. (1), the random variable x could theoretically
vary between - 00 and + 00, while in Eq. (2) the
lower bound value, E, and in Eq. (3) the upper
'bound value, w, exist. When natural phenomena are
considered, it seems reasonable that the physical
quantity has a positive value with an upper bound
limit. On consideration the formula of Eqs. (2) and
(3), the following empirical extreme value distribu
tion has been proposed [1]

V = lOo.61M -(L66+¥) logx-(O.631+ ';3) (5)

Fig. 2. Effect of parameter 'Y on proposed distribution with
w =10, U =exp(4/'Y). (Gumbel distribution probability paper.)

where a focal depth of 30 km is uniformly assumed
to calculate x.

The annual maxima of bedrock velocity calcu
lated according to Eq. (5) are plotted on Gumbel
probability paper for four sites, i.e., Sendai, Tokyo,
Osaka, and Fukuoka in Fig. 3. The 50 largest data
from annual maxima in the 400 year period were
used, since minor earthquake motions were consid
ered to be missing in historical records or docu
ments and so should be eliminated from the
analysis.

Earthquake

The seismic hazard estimation has often been
based on earthquake occurrence models assuming a
Gutenberg-Richter relationship. An alternative es
timation is possible when sufficient number of
earthquake records are available to acquire annual
maximum earthquake ground motion data at a site.
Such an approach is rather common in Japan begin
ning with Kawasumi's work in 1951 [3]. A recent at
tempt was made by applying the proposed
distribution of Eq. (4) [4]. Some modifications were
introduced in this study. Earthquake data for the
last 400 years were utilized according to Usami's
catalogue [5]. Kanai's attenuation law was chosen
as a representative relationship between the
bedrock velocity, V, and the magnitude, M, with the
hypocentral distance, x, expressed in the following
formula [6]

3. Annual Maximum
Ground Motion Model

reduced variate, y

Fig. 1. Effect of parameter u on proposed distribution with
w = 10, 'Y = 1.0. (Gumbel distribution probability paper.)

where wand E are upper and lower bound values,
respectively, and u and 'Yare scale and shape
_parameters, respectively. It can be seen that when x
approaches the lower bound, E, Eq. (4) approaches
Eq. (2) with C = (w - E )/u and when x approaches
the upper bound, w, Eq. (4) approaches Eq. (3)
with v =w -u(w - E).

In order to demonstrate the form of the proposed
distribution, the effect of parameter u with w =10
and 'Y =1.0 for Eq. (4) is shown in Fig. Ion Gumbel
probability paper, with x on the ordinate and re
duced variate y on the abscissa. In a similar way the
effect of parameter 'Y with w =10 and u =exp (4/y)
for Eq. (4) is demonstrated in Fig. 2.
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Fig. 3. Extreme value fitting to annual maximum bedrock velocity of earthquake motion in Japan, where the solid and dashed lines
indicate the proposed and the Frechet distribution, respectively.

The upper bound value could be assumed from
tektonic findings on the fault activity [4], however
the upper bound magnitude seems to provide a
fairly rough estimate for a particular site as a varia
tion of magnitude by 0.1 causes only 15% change in
the estimation of V.

The proposed distribution fitted to plotted data
by the least squares method is shown where the
value of w in Eq. (4) was chosen by engineering
judgment as w = 5.0, 12.0, 10.0 and 3.0 for Sendai,
Tokyo, Osaka and Fukuoka, respectively. The
Frechet distribution fitted by the same method is
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also shown in a dashed line for comparison. The ex
istence of saturation tendency indicates that the
representation by Eq. (4) is better.

The difference in the results between the pro
posed distribution and the Frechet distribution can
be summarized in Table 1. The error is estimated in
terms of the normalized square root of sum of
squares error as,

where Xi is the ith annual maximum data andxiis the
corresponding value estimated from the distribu
tion model, and n =50 for earthquake models.

Although the extimated mean of 50 year maxi
mum values based on the Frechet distribution is
similar to that based on the proposed distribution,
estimated cov values for the 50 year maxima based
on the Frechet distribution, which are the same as
those for annual maxima, are considerably greater
than those yielded by the proposed distribution.
Significant reduction in the error estimate also indi
cates the appropriateness of the proposed distribu
tion. The cumulative distribution of the 50 year
maximum was obtained as the 50th power of the cu
mulative distribution function of the annual maxi
mum, i.e., it was assumed that the annual maxima
are mutually independent. The mean and cov of the
50 year maximum were calculated numerically for
the proposed distribution as the closed form rela
tionship between the mean and variance and the
parameters in Eq. (4) is not obtainable.

4. Annual Maximum Wind Speed

The Gumbel distribution is often used to repre
sent the annual maximum wind speed distribution.

The possibility of improved representation by Eq.
(4) is examined for sites where some saturation ten
dencies are observed, i.e., Aomori, Akita, Nagoya
and Kagoshima.

The wind speed data were corrected by taking
into account changes of measurement height and
the change of the terrain roughness in the period
between 1960 and 1970 [7]. Measured data at
meteorological agency stations in the period be
tween 1929 and 1991 were utilized. Plotted data and
distribution curves fitted to the plots, as was done
for the earthquake cases, are shown in Fig. 4, with
dashed lines representing the Gumbel distribution.
The upper bound w =35 (m/s) was used for Aomori
and Akita, while w =40 was used for Nagoya and
Kagoshima in Eq. (4). Although the difference be
tween the two types of distributions is not as signif
icant as in the case of earthquakes, error estimates
are improved except for Nagoya, where the fitting is
rather poor in comparison with other cases as seen
in Table 2. The use of a nonzero lower bound value,
e.g., € =10, could improve the fitting for the case of
Nagoya. However, this was avoided. Two different
major factors, such as the occurrence of typhoons
and monsoons, could be the reason for the concave
shape of plots on the Gumbel probability paper.

Estimated mean and cov values for the annual
maxima and the 50 year maxima are also listed in
Table 2. The reduction in estimation of cov of the
50 year maximum for the proposed distribution can
be pointed out. When the existence of an upper
bound for the extreme value distribution of wind
speed is accepted, such a reduction could result in
a smaller load factor in the probability-based
design.

Table 1. Statistics of maximum earthquake ground motion

Proposed distribution, Eq. (4) Frechet distribution, Eq. (2)
Site Annual max 50 year max Annual max 50 year max

w u 'Y E c 'Y E
Mean coy Mean coy Mean coy Mean

Sendai 5.0 28.7 1.30 0.11 0.32 1.56 2.52 0.33 0.455 2.88 0.23 0.63 0.74 2.44

Tokyo 12.0 57.6 1.15 0.125 0.61 1.73 5.46 0.48 0.660 2.34 0.25 1.03 1.30 5.49

Osaka 10.0 90.9 1.18 0.21 0.34 1.99 3.48 0.60 0.303 2.06 0.37 0.52 3.29 3.50

Fukuoka 3.0 45.8 1.19 0.10 0.18 1.58 1.43 0.44 0.199 2.51 0.24 0.30 1.03 1.41
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Fig. 4. Extreme value fitting to annual maximum wind speed in Japan, where the solid and dashed lines indicate the proposed and the
Gumbel distribution, respectively.
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Table 2. Statistics of maximum wind speed

Proposed distribution, Eq. (4) Gumbel distribution, Eq. (1)
Site Annual max 50 year max Annual max 50 year max

w u 'Y E a b E
Mean coy Mean COy Mean coy Mean coy

Amori 35 1.09 3.00 0.02 18.4 0.19 27.9 0.08 0.37 16.8 0.02 18.4 0.19 29.1 0.12

Akita 35 0.70 2.98 0.02 22.0 0.14 30.1 0.05 0.41 20.6 0.03 22.0 0.14 31.7 0.10

Nagoya 40 1.63 2.79 0.08 17.3 0.25 29.8 0.10 0.29 15.4 0.08 17.4 0.25 30.9 0.14

Kagoshima 40 1.39 2.05 0.02 19.4 0.29 34.0 0.08 0.23 16.9 0.03 19.4 0.29 36.8 0.15

5. Simulated Extreme Live Load

Extraordinary live loads for the ultimate limit
state design may be estimated based on computer
simulations according to a scenario for extraordi
nary situations. One reported possibility is to model
crowd-gathering situations in supermarkets [8].
Room plans with specified shapes and weights of
racks with goods and other furnishings were used
according to surveyed data, and crowd-gathering
situations at one corner of each room were simu
lated for typical cases such as,

(a) from 0.3 person/m2 to 5.0 person 1m2

(b) from 1.0 person/m2 to 10.0 person 1m2

Personnel loads were distributed in the area with
no racks or furniture, and 700 N was postulated as
the weight of a person.

The equivalent uniformly distributed loads
(EUDL) were calculated for 'Slab end bending mo
ments in a shorter span and for girder end bending
moments. The detailed procedure is described else
where [8].

The plotted data with distribution curves of Eqs.
(1) and (4) are shown in Fig. 5 in a similar manner
to Figs. 3 and 4. Dashed lines represent the Gumbel
distribution of Eq. (1). The upper half of the data
were used to obtain parameters of distributions by
the least squares method. The upper bound values
of 4 kPa and 7 kPa were used for cases (a) and (b),
respectively.

Results are summarized in Table 3. Saturation
tendency is clear for case (b) where the error is sig
nificantly reduced by the proposed distribution.
Assumed personnel load intensities in the scenario
are somehow arbitrary and a further survey could
improve models introduced herein. Nevertheless
the usefulness of the proposed extreme value distri
bution with upper bound can be recognized.
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Fig. S. Extreme value fitting to simulated extraordinary live loads due to crowding concentration in supermarkets, where the solid and
dashed lines indicate the proposed and the Gumbel' distribution, respectively.
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6. Concluding Remarks

An empirical extreme value distribution with
both upper and lower bounds was reviewed. The
usefulness and improved fit to extreme load intensi
ties available, such as the annual maximum earth
quake ground motion, the annual maximum wind
speed and the extreme EUDL due to crowding situ
ations in supermarkets, were demonstrated. Use of
the simpler commonly used Gumbel or Frechet dis
tributions could cause some significant overestima
tion in the coefficient of variation for lifetime
maximum loads.
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1. Introduction

Number 4

The object of this paper is to propose
a stochastic method for evaluating the
magnitude of future earthquakes taking
account of nonstationarity in earth
quake occurrence. For this purpose, the
strain energy accumulation in the focal
region was estimated by means of the
earthquake data of the past 100 years
in Japan. Furthermore, the distributions
of maximum ground accelcration were
derived by means of the attenuation
law. As a result, we found that the
distributions of maximum ground accel
eration fit the type III extreme value
distributions and that the expected

July-August 1994

values of those distributions depend on
the strain energy accumulation signifi
cantly. Finally, it is pointed out that
the nonstationarity in earthquake occur
rence should be taken into consider
ation in order to evaluate the earth
quake load in design.

Key words: earthquake; extreme value
distribution; magnitude; maximum
ground acceleration; nonstationarity;
strain energy accumulation in focal
region.

Accepted: March 22, 1994

Since Japan is located on the subduction zone
of a few plates, seismicity is active and many struc
tures have been damaged during large earth
quakes. To evaluate the characteristics of earth
quake load in design it is important to develop a
highly accurate method for estimating the ground
motion within the service life of a structure.

Both deterministic and probabilistic methods are
available. The former methods estimate the ground
motion by means of the dislocation model. Suzuki
and Satou [1] have applied this model to a great
earthquake expected in the Tokai region. The
latter methods evaluate the probability distribution
or the expected value of recurrence of the ground
motion by considering earthquake occurrence as a
probabilistic event. Kawasumi [2] has proposed one
such method employing cumulative frequencies. At

421

present, it can be pointed out that probabilistic
methods are more suitable for estimating the
ground motion than deterministic methods, be
cause a geophysical model and its parameters in
earthquake occurrence are not known with cer
tainty [3].

However, in traditional probabilistic methods, it
is assumed that the process of earthquake occur
rence is temporally stationary, Le., that the proba
bility of occurrence is invariant in time. Actually, it
is rare for another large earthquake to occur in the
same region immediately after a large earthquake.
Moreover, since the service life of a structure
ranges from several decades to about 100 years, it
is not reasonable to assume stationarity in earth
quake occurrence within the service life of a struc
ture.



Volume 99, Number 4, July-August 1994

Journal of Research of the National Institute of Standards and Technology

The object of this paper is to estimate strain
energy accumulation in focal regions at present
and to propose a new method for evaluating the
ground motion.

quake will occur is predictable given the size of the
preceding earthquake, but it is difficult to estimate
the size of next earthquake. Anagnos et al. [5] de
scribed this model by following Markov's renewal
process.

2. State of the Art P [Yll + I = J, Til + J - Til ~ t IYo, . , . , Y" ; To, ... , T" ]

Some seismic risk analyses in which the non
stationarity in earthquake occurrence is taken into
consideration have been suggested. Typical models
of seismic risk analyses - the time-predictable
model, the slip-predictable model, and the semi
Markov model are reviewed as follows.

= P[Y"+l = J, TIl+I-T"~tIY,, = I] (1)

where

I ,J = the state depending on the size of the
earthquake

Yll the state of the fault after the nth event

Fig. 1. Time-predictable model.

TIME

TIME

the time of the nth event.Til

This means that the joint probability from
present state to the next state depends only on the
present state and is independent of past history. A
change of stress release by measuring a coseismic
slip in a fault has been proposed, because it is diffi
cult to directly measure the level of stress release.

2.2 Slip-Predictable Model

This model, proposed by Shimazaki et al. [4] pre
dicts the size of an earthquake based on the inter
val times. Figure 2 shows schematically the stress
accumulation and release at a fault. For this model,
it is assumed that the stress at the fault drops to
zero after each earthquake. The time up to the
next event is random, and the longer the interval,
the greater the event due to the release of the
larger stress. Kiremidjian et al. [6] extend the slip
predictable model to a site hazard model using the
attenuation law. However, the occurrences of suc
cessive earthquakes are independent according to
the above assumption, and the process of fore
shock, mainshock, and aftershock at the same fault
cannot be rationally explained.

2.3 Semi-Markov Model

This model was proposed by Patwardhan et al.
[7]. It is based on the assumption that the size of
the earthquake and the interval of time until the
next earthquake are influenced by the amount of
strain energy released by the previous earthquake.
However, a weakness of this model is that subjec
tive assessment is required when classifying the
magnitude. That is, the evaluated value is supposed
to vary with the classified magnitude because if the
magnitude is changed by only 1.0, the released en
ergy varies by about thirty times. Also, the validity

t%J
>u--E-:::E
-< tn
-1 -=:» ~
::It: tn
=:» C>
uU

2.1 Time-Predictable Model

This model was proposed by Shimazaki et al. [4].
Time history of the stress accumulation and release
in a fault is represented schematically in Fig. 1.
This is, stress accumulates at a constant rate up to
a certain threshold, at which time an earthquake
occurs and accumulated stress is released. The size
of the earthquake is determined by the level of the
released stress. The time when the next earth-
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of the assumed probability distribution for the time
interval is questionable.

As mentioned above, it is necessary to harmo
nize the stochastic model with the geophysical
model of earthquake occurrence for purposes of
seismic risk analysis, because the parameters in any
model contain some uncertainties. Therefore, we
based our research on the theory of plate tectonics
[8]. This theory postulates that "the strain energy is
accumulated due to the interaction movement of
the plates. At the time when the accumulated
strain energy reaches a certain extent, an earth
quake occurs due to the break of the plates, and
the strain energy is released. So, some interval is
necessary for the accumulation of strain energy
leading to the occurrence of the next event."

In this analysis, it is assumed that the size and
the time interval before the occurrence of the next
earthquake depend on the strain energy accumula
tion in the plate at present. A method for forecast
ing the magnitude of future earthquakes and the
distributions of maximum ground acceleration at
several main cities in Japan is proposed.

Fig. 2. Slip-predictable model.

(2)

M = M'-0.5

M = M'-0.6

M = M'-0.5

M=M'

1885-1895

1896-1915

1916-1925

1926-

3.1 Earthquake Data

In this analysis, we employ data on earthquakes
occurring in or near Japan from 1885 to March
1988 available from the Meteorological Agency
[9,10,11,12,13]. However, since the accuracy of
methods used in the past to evaluate magnitude is
unreliable, the data are corrected by means of the
following method [14] proposed by the Ministry of
Construction. The method is based on the assump
tion that "the long-term incline of the curved line
of energy accumulation is almost constant and that
the incline from 1926 to 1973 shows a value pecu
liar to Japan." The magnitudes of earthquakes
which occurred from 1885 to 1925 are corrected by
the following formulas

In this analysis, the focal region which would in
fluence Japan is restricted to latitudes from 25° N
to 50° N and longitudes from 125° E to 150° E. This
zone is divided into meshes of OS and relative
strain energy accumulation in each mesh at present
is estimated. Next, in each mesh, the extremal dis
tributions of magnitude of earthquakes which are
expected to occur in the next n years are estimated.
Furthermore, the extremal distributions of maxi
mum ground acceleration at main cities are derived
by means of the attenuation law.

Presently, it is difficult to estimate the absolute
strain energy accumulation, but seismic risk analy
sis can be performed by estimating the relative
strain energy accumulation, according to the fol
lowing assumptions.

3. Seismic Risk Analysis

where M = magnitude before correction

M' = magnitude after correction.

We consider that a deep earthquake (focal depth
larger than 100 km) does not have much influence
on surface ground motion and that plate thickness
is approximately 100 km. Therefore, we limited our
investigation to earthquakes with a focal depth of
100 km or less occurring after 1926 when focal
depth was added to earthquake data.
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3.2 Fault Model

A released amount of strain energy is assumed in
allowance with the following equation proposed by
Gutenberg and Richter.

3.3 Cluster Division of Each Mesh

It is assumed that the rate of strain energy accu
mulation is constant regardless of time. In general,
there are areas which are similar with respect to
the changing conditions of the plates and release
conditions of the strain energy. But it is currently

In general, fault movement is not uniform in ei
ther time or space. But fault movement must be
simplified for the sake of modeling the earthquake
occurrence from a technical viewpoint. So in this
analysis, it is assumed that a rectangular fault oc
curs at the time of earthquake occurrence, that its
center agrees with the epicenter, that the ratio of
its long side to its short side is 2 : 1, and that a
section of the fault is at an angle of 45° with the
horizontal plane. Moreover, it is assumed that the
long side runs parallel to a longitudinal line if the
epicenter is located at latitude from 35° N to 41° N,
and parallel to a latitudinal line otherwise [15].

Furthermore, in allowance with the concept of
the basic fault model by Kanamori [16], it is sup
posed that strain energy is released uniformly in
proportion to some meshed part of the shadow
which the rectangular fault casts on the horizontal
plane. In practice, however, the areas releasing the
strain energy do not always spread around the epi
center, but stretch in only one direction in many
cases. Therefore, with regard to data on such faults
included in the earthquake fault parameter hand
book in Japan [15] and to enable interpretation of
the shapes of the faults, it is assumed that the epi
center agrees with the center of the faults. Con
cerning the relation between section of a fault and
magnitude, the proposed equation by Satou [15] is
adopted, and the length of the long side of a fault
is determined by the following equation:

(5)

ME =::; 7.4

7.4 < ME =::; 7.7

ME> 7.7

1) cluster 1

2) cluster 2

3) cluster 3

where ME = the magnitude into which the annual
average released energy in a mesh from 1885 to
March 1988 is converted by Eq. (4).

The amount of the annual average released en
ergy for each cluster is averaged, and it is defined
as the progress rate of strain energy accumulation.
Furthermore, in the case of ME < 4.5, it is regarded
as the strain energy released mainly by the inelastic
slip and is not dealt with because the released
strain energy is small. The result of classifying each
mesh is shown in Fig. 3. The meshes not indicated
by marks do not belong to any cluster. From this
figure, it is recognized that many earthquakes have
occurred along the plates.

3.4 Evaluation of the Strain Energy
Accumulation in Each Mesh at Present

In order to evaluate the relative strain energy
accumulation (Eij) in a mesh (i,j) with latitude
iO N and longituder E as the center, it is necessary
to estimat~ the strain energy accumulation of the
plate at the time of occurrence of the oldest earth
quake adopted in this analysis. In general, it is sup
posed that the recurrence period is peculiar to
each focal region, but it is difficult to evaluate
them strictly at present. Kanamori [8] reported that
the average interval time of a great earthquake
with a magnitude on the order of 8.0 is about 100
years on the Pacific side and offing. So in this anal
ysis, it is assumed that all strain energy accumula
tion is released at least once about every 100 years
in each mesh. Based on this assumption, the mini
mum strain energy accumulation (min E ij ) on the

difficult to accurately estimate the accumulation
and the release of strain energy. In this analysis,
therefore, in order to grasp the relative strain
energy accumulation in each mesh, each mesh is
classified into the following three clusters based on
the distribution of the sum of total released energy
in each mesh from 1885 to March 1988. This
assumption is based on the thinking that it is more
rational to apply ergodicity to the meshes in which
the released rate of strain energy is almost equal
than to all meshes. The cluster division is deter
mined by considering the relationship between the
earthquake magnitude and the amount of earth
quake data.

(3)

(4)

10gL = 0.5 M -1.88,

log E = 1.5 M + 11.8,

L = length of the long side of a fault

M = magnitude.

E = released amount of strain energy

M = magnitude.

where

where
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Fig. 3. Cluster division of each mesh.

Fig. 4. Parallel movement of the strain energy-time curve.

strain energy-time curve is regarded as being rela
tive strain energy accumulation 0, and the strain
energy-time curve is moved in parallel as shown in
Fig. 4. The relative strain energy accumulation
(Eij) in each mesh at present is estimated by the
preceding method. The value of the relative strain
energy accumulation in each mesh of each cluster
is represented in Figs. 5 to 7. In cluster 3, the rela
tive strain energy accumulation is divided into
three classes, i.e., high (more than 300 erg), middle
(200--300 erg) and low (less than 200 erg). In clus
ter 2, the accumulation is divided into high (more
than 150 erg), middle (100--150 erg) and low (less
than 100 erg) (1 erg = 107 joules). As the strain
energy accumulations in all meshes. of cluster 1 are
not high, that cluster is divided into three equal
parts.
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Fig. 5. Strain energy accumulation (Cluster 3).

3.5 Evaluation of Extremal Distribution of
Magnitude Considering the Strain Energy
Accumulation at Present

In this section, the extremal distributions of mag
nitude in each mesh are evaluated. The process by
which the strain energy is released in allowance
with the size of the earthquake, and is again accu
mulated as time passes, is repeated in each zone.
Thus, the strain energy accumulation at present
greatly influences the extremal distribution of mag
nitude of the earthquake expected to occur in the
future. If sufficient earthquake data are gathered,
it is possible to obtain the extremal distributions of
magnitude of each mesh. However, the earthquake
data measured by seismographs in Japan are 100
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years old at most; the period of observation is not
sufficient in light of the recurrence period of
great earthquakes. So in this analysis, to evaluate
the extremal distributions of magnitude in each
mesh, ergodicity is applied to each mesh in the
same cluster. Figure 8 shows a flow-chart of the
analysis based on this assumption. Figure 9 shows
this method schematically. First, the strain energy
accumulation of Eij in a mesh (i ,j) at present is
evaluated, and the strain energy accumulation of
Ei'i' equal to Eij is determined based on strain
energy-time curves in other meshes of the same
cluster. Next, this time is defined as Ti,i' and the
maximum released strain energy (maxilEi'i') for n
years from Ti,i' is converted into the magnitude by
Eq. (4). Some samples from each mesh (i ,j) are
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3.6 Evaluation for Extremal Distribution of
Maximum Ground Acceleration

Ten cities in Japan where earthquake observato
ries are situated are chosen as the points for calcu
lating the maximum ground acceleration. The
following attenuation law [17] suited for standard
clay is proposed by the Public Works Research In
stitute of the Ministry of Construction and is
adopted in this analysis.

obtained. To evaluate the form of the distribution
these samples are plotted on the Gumbel proba~
bility paper. Assuming that n = 50 years, the
samples in meshes around Sendai are plotted on
the Gumbel probability paper in Figs. 10 to 13.
Figure 10 shows the extremal distribution of cluster
3, Figs. 11 and 12 show that of cluster 2 and
Fig. 13 shows that of cluster 1. On Gumbel proba
bility paper, the type I extreme value distribution is
indicated by a straight line, type II is indicated by
a lower convex curve and type III is indicated
by an upper convex curve. The upper limit value is
decided from maximum sample data rounded off to
one decimal and parameters are decided by using
the method of least squares.

427

where

Ace max = 18.4 X lOo.302M X .1 -0.8 (6)

Ace max = maximum ground acceleration

M = magnitude

.1 = epicentral distance
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and the characteristic largest value of the extremal
distribution of the magnitude in the mesh (i J'), and
Mij is obtained as in b).

d) The previous operation is done for each mesh
for maximum ground acceleration. Then using the
following equation, the distribution function at city
Fa (a) is obtained.

The extremal distribution of the maximum
ground acceleration is estimated as follows.

a) It is assumed that a mesh (i,j) is a hypocen
ter, and the epicentral distance from the center of
the mesh to a city is calculated.

b) Magnitude Mij is obtained from the attenua
tion law for which the epicentral distance and an
acceleration Acc max are substituted.

(7)

II m

Fl/(a) = IIII Fada)
i = I j = I

(8)

c) The value of the distribution function Faij{a)
at a maximum ground acceleration Acc max is evalu
ated by using the shape parameter, the modal value

e) Fl/ (a) is obtained by the preceding operation
from b) to d) for some (Acc max) accelerations, and
the relation between Fa (a) and a is plotted on
Gumbel probability paper.
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The minimum strain energy accumulation (min EIJ)
in mesh (i,j) is regarded as relative strain
energy accumulation 0, and the strain energy
accumulation at present (EIJ) is estimated.

1

Mesh (i',j') in the cluster which
mesh (i,j) belongs to is gathered.

!
The strain energy accumulation EI 'j' equal to EIJ
is obtained from the strain energy - time curve in
mesh (i ',j'), and this time is defined as TI 'J '.
The maximum released straIn energy (lIaxAEI' J') for
n years from TI 'J' is converted into the magnitude.

!

The data of n-year maximum of magnitude in each
mesh are plotted on Gumbel probability paper and
are fitted to the extreme value distributioa

Fig. 8. Flow·chart of the analysis.
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Thus, the extremal distributions of the maximum
ground acceleration at main cities are obtained.
Figures 14 and 15 show the distribution for 50 year
maximum of maximum ground acceleration at
Sendai and Tokyo, respectively. Moreover, in order
to examine the nonstationarity, the expected values
and the coefficients of variation of the distributions

for 50, 40, 30, 20, and 10 year maximums of maxi
mum ground acceleration in 1988 are shown in
Table 1. Furthermore, the expected values and the
coefficients of variation of the distributions for the
50 year maximum of maximum ground acceleration
at the different starting points (1968 and 1988) are
shown in Table 2.
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Fig. 15. Distribution of 50 year maximum of maximum ground
acceleration at Tokyo.

4. Results and Considerations
4.1 Relative Strain Energy Accumulation

Figures 5 to 7 show the relative strain energy
accumulation in each cluster at present. It can be
recognized that most meshes in each cluster are
distributed near the boundary of the plate of the
Pacific side in Kanto, Tohoku, and Hokkaido, and
many earthquakes occur in those places. Moreover,
it can be assumed that a large earthquake is likely
to occur in places in which the strain energy
accumulation is high such as in cluster 3 at present.

4.2 Extremal Distribution of the Magnitude in
Each Mesh

The distributions for the 50 year maximum of
magnitude in the meshes near Sendai are shown in
Figs. 10 to 13. Judging from theoretical curve of the
type III extreme value distribution, the data ac
counting for the relative strain energy accumula
tion at present obviously fit this distribution. The
probability of the occurrence of a large earthquake
is greater as the strain energy accumulation at
present increases. For example, comparing Fig. 11
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Table 1. The expected values and the coefficients of variation of the extremal distributions of maximum ground acceleration at main
cities (1 gal = 1 cm s -2)

Name of City Statistics 10 year 20 year 30 year 40 year 50 year

Sapporo Mean value (gal) 41 42 45 46 46
COVa(%) 16.2 15.9 15.6 15.4 14.6

Sendai Mean value (gal) 127 129 139 140 143
COV(%) 28.7 28.5 28.5 28.3 28.8

Tokyo Mean value (gal) 189 199 211 224 229
COV(%) 29.1 29.9 30.0 29.9 30.0

Niigata Mean value (gal) 52 53 57 58 59
COV(%) 21.9 22.3 20.7 19.9 19.4

Nagoya Mean value (gal) 260 260 262 263 263
COV(%) 5.4 5.4 3.6 3.9 3.9

Kyoto Mean value (gal) 87 90 91 93 94
COV(%) 10.6 11.9 12.2 13.1 13.5

Osaka Mean value (gal) 85 94 94 99 100
COV(%) 28.9 24.7 27.7 28.3 28.2

Hiroshima Mean value (gal) 83 96 99 104 108
COV(%) 23.0 27.2 25.3 26.2 25.2

Takamatsu Mean value (gal) 107 110 123 124 129
COV(%) 32.4 30.1 28.4 28.2 27.0

Fukuoka Mean value (gal) 93 104 117 133 137
COV(%) 23.4 23.7 22.1 22.4 22.0

a COY: Coefficient of Variation.

with Fig. 12, which show the distribution for the 50
year maximum of magr:' I Ide in the meshes at
cluster 2, the magnitude at a probability exceeding
0.2 is less than 7.5 in Fig. 12 and 7.0 in Fig. 11,
respectively, because the strain energy accumu
lation at present in Fig. 12 is higher than that in
Fig. 11.

Therefore, it is thought that the form of the
distribution of the 50 year maximum of magnitude
remains unchanged, but that the magnitude at the
probability of occurrence varies depending on the
strain energy accumulation at present.

4.3 Extremal Distribution of Maximum Ground
Acceleration at Main Cities

The distributions for the 50 year maximum of
maximum ground acceleration at main cities are
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shown in Figs. 14 and 15. Those distributions fit the
type III extreme value distribution as do the distri
butions for the 5Q year maximum of magnitude.
The expected values and the coefficients of varia
tion of the distributions for 50, 40, 30, 20, and
10 year maximums of maximum ground accelera
tion in 1988 are shown in Table 1. Those values
reflect the strain energy accumulation at present in
the mesh in which the cities are located. Com
paring the expected values for n = 50 years in
Table 1 with the seismic risk map of maximum
ground acceleration by Gotou and Kameda [18] in
Fig. 16, the expected values yielded by this analysis
for Kyoto and Osaka are extremely low. Extensive
earthquake data were available for the Kyoto area
in which population and culture have been concen
trated; the analysis by Gotou and Kameda used
historical earthquake data based on estimations
from the ancient records.
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Table 2. The expected values and the coefficients of variation of
the extremal distributions of maximum ground acceleration in
1968 and 1988 (1 gal = 1 cm S-2)

Name of City Statistics 1968 1988

Sapporo Mean value (gal) 49 46
COVa(%) 12.9 14.6

Sendai Mean value (gal) 151 143
COV(%) 29.9 28.8

Tokyo Mean value (gal) 239 229
COV(%) 30.1 30.0

Niigata Mean value (gal) 58 59
COY (%) 18.0 19.4

Nagoya Mean value (gal) 261 263
COV(%) 3.8 3.9

Kyoto Mean value (gal) 96 94
COV(%) 12.4 13.5

Osaka Mean value (gal) 139 100
COV(%) 16.0 28.2

Hiroshima Mean value (gal) 117 108
COV(%) 20.3 25.2

Takamatsu Mean value (gal) 136 129
COV(%) 21.9 27.0

Fukuoka Mean value (gal) 144 137
COV(%) 17.6 22.0

a COY: Coefficient of Variation.

4.4 Examination of Nonstationarity in Maximum
Ground Acceleration

According to Table 1, the expected values of
extremal distribution of maximum ground accelera
tion at Sapporo and Niigata are almost constant
from n = 10 years to n = 50 years because the
seismicities of these cities are not active. However,
in other cities, there are large differences in the
expected values between n = 10 years and n = 50
years; in particular difference in Tokyo is 40 gal
(1 gal = 1 em s -2). Moreover, the expected values
and the coefficients of variation of the distributions
for the 50 year maximum of maximum ground
acceleration at the different starting points (1968
and 1988) are shown in Table 2. According to
Table 2, the difference of the expected values in
Niigata and Nagoya are small, but about 10 gal in
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Tokyo and Sendai, and 40 gal in Osaka. So, it is
recognized that the expected value of maximum
ground acceleration varied due to the strain energy
accumulation at that time. Therefore, it is neces
sary to consider the nonstationarity in earthquake
occurrence when determining the earthquake load
in design.

5. Conclusions

This analysis employs seismic risk analysis in
which the focal regions which would have an
influence on Japan were restricted. This zone was
divided by meshes with OS angles, and relative
strain energy accumulation in each mesh was
estimated by taking account of the nonstationarity
in earthquake occurrence. The distributions for the
50 year maximum of magnitude in each mesh were
evaluated. Furthermore, the extremal distributions
of maximum ground acceleration at the main cities
were derived by means of the attenuation law.
From this analysis, the following conclusions can be
stated:

(1) A procedure of seismic risk analysis taking
account of the relative strain energy accumulation
was proposed.

(2) The distributions for the 50 year maximum
of magnitude in each mesh fitted the type III
extreme value distribution very well.

(3) As the strain energy accumulation at present
increases, the value of magnitude at a probability
of occurrence becomes greater.

(4) The distributions for the 50 year maximum
of maximum ground acceleration at main cities also
fitted the type III extreme value distribution.

(5) The expected value of maximum ground
acceleration at a city reflected the strain energy
accumulation at present in the mesh in which the
city is located.

(6) this analysis is capable of forecasting the
earthquake load suited to the service life of a struc
ture. That is, it is possible to determine a more
rational earthquake load in design by estimating
the strain energy accumulation at the time when
the structure will be constructed.

(7) This analysis is capable of evaluating the
extremal distributions for maximum ground accel
eration and those expected values in all parts of
Japan, and it seems that these statistics are useful
for the criterion of aseismic design.
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Statistical period: 1200 years

Recurrence period: 15 years

Fig. 16. Seismic risk map by Gotou and Kameda.

As mentioned above, this seismic risk analysis is
capable of taking account of the nonstationarity in
earthquake occurrence by estimating the strain
energy accumulation in each mesh at present. So,
with this analysis, it is possible to forecast earth
quakes by adopting new earthquake data and to
estimate the earthquake load suited to the service
life of a structure. However, the data on large
earthquakes with recurrence periods of 200 to 300
years are probably insufficient because the earth
quake data of the past 100 years in Japan as
measured by seismograph are used in this analysis.
In this analysis, the seismicity gaps are not treated
and the attenuation law· is used to cope with
standard clay. For obtaining more accurate find
ings, it is necessary that the attenuation law be
suited to each place and condition of clay.
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1. Introduction

Number 4

The objective of the present paper is to
explore the application of different
extreme value procedures to a selected
grid point in the NESS (North Euro
pean Storm Study) data set. For the
purpose of the present benchmark
study, each of the participants was
invited to submit estimates of a signifi
cant wave height with a high return
period at a given grid point in the
North Sea, together with a detailed
description and a rationale of the ap
proach used in deriving extreme wave
heights. Submissions from five industry
groups were received, compared, and
benchmarked against one another. This
analysis leads to a number of conclu-
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sions regarding the actual usc and mis
use of extreme value techniques in the
fields of engineering and oceanography.
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The NESS project [1] was funded by eleven par
ticipants and conducted by a consortium of five
research institutes in Europe. The NESS users
group built up considerable experience in the field
of extremal value (EV) applications. (For a list of
acronyms see Appendix A.) Valuable input was
received from recognized experts in EV theory. It
should therefore be made clear that the objective
of the present comparison is not to review/criticize
the use of particular extreme value techniques.
Rather, the objective is (1) to reflect upon the
diversity of the modelling assumptions and the pro
cedures used to determine extreme wave heights,
(2) to report on how the different groups set out to
deal with difficult issues such as data reduction,
statistical and parameter uncertainty, hindcast
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model uncertainty, and the consideration of mea
sured data, and, (3) to seek constructive guidance in
this area from the extreme value specialists present
at the NIST/Temple University EV Conference.

2. The NESS Data Set

The wave model used in the North European
Storm Study (NESS) is an adaptation of the model
HYPAS (Hybrid Parametrical Shallow Water wave
model by Gunther and Rosenthal [2]). The model
results used here are from the "fine" grid model,
which has a resolution of 30 km and output
available every 3 h. Data are available for the peri
ods: 1) 25 continuous 6 month (October-March)
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winter periods for the winters of 64/65 through 881
89; 2) three continuous 6 month (April-September)
summer periods for the summers of 77 through 79;
3) continuous data for the month of April 85; and
4) 40 discrete storm periods in the April-September
summer periods between 1968 and 1988. The sig
nificant wave height, Hs, from the model is based
on the spectral definition of Hs, Le., four times the
square root of the spectral variance. It is assumed
that Hs is representative of a 3 h average sea state
in a 30 kIn by 30 km square around the grid point,
and that all storms, which would have any effect on
annual extreme values of Hs, are included in the
data set.

3. Benchmark

The NESS grid point used in the present studies,
was selected to be a location in the Forties area of
the North Sea with latitude 57.777° N and longi
tude 0.952° E and a water depth of about 100 m.
The NESS participants were invited to provide, as
a minimum requirement, their "best" estimate of
a 100 year return period significant wave height,
HS-1OO, for this grid point together with a short
writeup describing how and why a particular EV
procedure was used. Five industry groups submit
ted contributions; for the purpose of this paper, it
was agreed not to identify the contributors; they
will be referred to as groups A, B, C, D, and E. All
the contributors exceeded the basic requirement of
providing a 100 year return wave. Particular em
phasis was given to the question of how to account
for the uncertainty associated with the hindcast
model itself. The contributors' supererogation
should not come as a surprise - many of the analy
sis procedures are coloured by subjective choices
and assumptions: it is very much up to individuals
to decide what looks good, what techniques are ap
propriate, how they should be used, and which
numbers will finally be acceptable.

The emergence of the NESS database in the
North Sea is not the cause of the divergence of
extreme value analysis methods. To date extremal
analyses have been based on available measured
wave data sets-each with their own degree of ac
curacy and length of record. Only one attempt has
been made to use the measured data in a consis
tent manner in estimation of extremes. The results
of that pioneering effort are reported in the
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U.K. OTH 89 300 Supporting Document [3]. Be
cause those results were intended to provide
"indicative" values of extreme environmental crite
ria, implicit interpretations were made, for exam
ple in extreme value extrapolations, to reduce the
risk that the results might be underestimates. It
was also accepted at the time that a case for other
values could be made. For reference, the results
at Forties in that document provide an HS-1OO of
14.3m.

In the following five Sections, the five bench
mark study contributions are summarized.
Acronyms are used to denote the several cdfs used
by the contributors; to avoid confusion caused by
unclear terminology, the distributions correspond
ing with each acronym are listed in Appendix A.
Whenever "storm peaks" are used in a subsequent
analysis, the contributors resort to the same peak
identification procedure: peaks are identified by
determining the maximum wave Hs within a mov
ing 18 h window - the average duration of a storm
event.

4. Contribution A

Two basic techniques are used. The first one
(A1) consists of fitting all 3 hourly data to a (three
parameter) Weibull (W3), a Gumbel (G), or an
FT3 distribution (the extreme value distribution
with an upper bound) using either MOM or LS.
The selection between the two distributions is
made on the basis of individual judgment or a
goodness-of-fit (GOF) criterion.

The second technique (A2) is a peak over
threshold (POT) analysis of all peak storm event
values exceeding a given level. The threshold data
are fitted to either an exponential cdf (EXP) or a
two parameter Frechet cdf (F2); MOM or LS are
used to estimate the parameters of these condi
tional distributions; a plotting position i In +1 is
used in the case of LS, but it is not clear in which
direction errors were considered. Selection is based
on best visual fit or GOF. Threshold upcrossings
are assumed to be Poisson distributed, with A esti
mated as the average number of storms (with peak
wave exceeding the threshold) per year. The NESS
results for the selected gridpoint are given in Table
1, together with results of the same analysis per
formed on a set of proprietory measured wave data
from the same area, at Forties.
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Table 1. Group A results; 100 year return period Hs (m)

Al

W3,LS
G,LS
FT3, LS
W3,MOM
G,MOM

A2

FR2, LS
EXP, LS
PZ,MOM
EXP,MOM

Average of Hs with good quality fit

Convert "spot" to "3 hourly"
Account for 1989-1992 data
Offset NESS/measurements
Adjusted estimate

Final estimate

a Good quality fit.

NESS (3 hourly data)

11.4a

13.2
lOY
11.9
16.3

50 storm peaks with Hs > 7.6 m

10.7
1O.9a

10.4
10.5

10.8

+0.6
+1.2
12.6

12.6

Measurements ("spot" data)

13.0·
13.6
12.3
12.8·
14.0

52 storm peaks with Hs > 7.6 m

14.2
14.1 a

13.3
13.5 a

13.4

-0.9

12.5

The 100 year return values of the distributions
selected on the basis of a good quality fit are now
averaged, and it appears that there is a substantial
difference of some 2.6 m between NESS and
measured data (Table 1). Three corrections are
applied:

(1) The measured data consist of Hs estimates
taken at a point ("spot data") over a 20 min
sample interval and recorded at hourly or 3
hourly intervals; a "new" data base was cre
ated by converting them to 3 h averages simi
lar to NESS. Extreme value analyses on the
original set and the converted set were com
pared and it was found that the "3 h average"
data consistently gave lower estimates of 100
year Hs extremes in comparison to "spot"
data. The variation ranges from 0.5 m to
1.2 m, with an average value of 0.9 m, or
about 6% (see Table 1).

(2) The NESS database finishes at the end of
March 1989. Some storms in the North Sea
since that date have been very severe; indeed
the most severe storm measured at Forties
occurred in December 1990, when an Hs of
11.6 m was recorded. The effect of this miss
ing data in the NESS archive was assessed,
albeit indirectly, by examining the effect that
the equivalent period has on extrapolations of
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the Forties measured data. From the various
analyses performed for the above periods, the
effect on 100 year Hs estimates of including
data recorded in the period April 1989 to May
1992 ranged from increases of 0.2 m to 0.9 m.
The average increase across the analyses was
0.6 m, or about 5% of the shorter period esti
mate.

(3) Both regression and extreme value analyses
have been performed on selected overlaps
between NESS and measured data. The re
gression analyses revealed that the mean
NESS wave height was some 10% higher than
the measured wave height, but when extrapo
lated to extremes, the 100 year Hs estimates
from NESS were between 0.5 m and 2.0 m
lower than extrapolations from the measured
database, with an average difference of 1.2 m.
This apparent offset could be due to a wide
range of factors, many (if not all) of which are
under investigation by-the NESS User Group
at the time of writing.

All three corrections are captured in Table 1.
The conservative view taken in applying the three
corrections is indicative of the safety margin associ
ated with the final estimate Hs-lOO =12.6 m;
however, no specific uncertainty band is provided.
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5. Contribution B

Group B's procedure for wave criteria determi
nation for Forties is as follows:

(1) Extract storm peak data at the reference grid
point with a threshold of Hs =6.0 m and an
18 h window (298 storm peaks).

(2) Select the Annual Extreme Value (AEV) for
each of the 25 years from the 298 peaks. The
25 values range from 6.9 m to 9.9 m. The rea
sons for using AEV instead of POT method
are described to be the following:

• AEV shows consistently better fits than
POT (higher correlation coefficients,
smaller mean square errors in the case of
LS, and larger likelihood functions in the
case of MLE);

• The extremes from AEV are not influ
enced by the threshold, i.e., they are less
subjective;

• Extremes based on AEV method tend to
be higher than POT (more conservative);

• In the North Sea, due to the high fre
quency of storms, the highest Hs in a year
'does represent the wave severity for the
year in most cases, whereas for POT,
when calculating extremes for various
thresholds, it is sometimes found that the
storm frequency for the best fit is less than
1.0/year, less than that for AEV.

(3) The 25 Annual Extreme Values are fitted to
six distributions: G, BM, FR3, FT3, W3,
EXP, using two estimation methods: LLS and
MLE. All six LLS fits are very good since the
correlation coefficients all exceed 0.98. Only
three MLE fits are considered acceptable:
this was judged on the basis of the relative
magnitudes of the likelihood function. The

Table 2. Group B results; 100 year return period Hs (m)

range of the 100 year Hs given by the nine
good fit cases (6 LLS and 3 MLE) is from
10.6 m to 11.5 m (Table 2). Since Gumbel is
theoretically sound for annual extremes and
the Gumbel LLS gives an excellent fit, it was
decided that Gumbel LLS would be used
throughout the analysis. Plotting positions for
LLS are i /n + 1 and squared errors on Hs are
minimized.

(4) To take consideration of possible bias in
NESS, measured, smoothed storm peaks at
the Forties location are plotted against the
corresponding peak Hs from NESS. Only
peaks exceeding 6.0 m are considered. A re
gression analysis yields the best fit linear
function

Hs, measured = 0.63+0.9746Hs, NESS (1)

with a standard deviation of 0.93 m.

(5) The 298 NESS peaks are adjusted on the
basis of Eq. (1), and the analysis steps 2 and 3
are repeated; this is shown in the second
column of Hs-lOO values in Table 2.

(6) Scatter is now considered by adding random
errors to the adjusted 298 storm peaks.
Random errors are generated using a Monte
Carlo simulation assuming a normal distribu
tion with a standard deviation of 1.0 m (1.0 m
is selected as a round-off value of the regres
sion model error of 0.93 discussed above). An
AEV LLS Gumbel analysis is performed on
the Hs data containing random errors. After
10,000 simulations the average HS-lOO is
12.4 m with a sample standard deviation of
0.66m.

(7) The proposed 100 year return period Hs is
taken to be 12.4 m.

G, LS
BM, LS
Ff2, LS
Ff3, LS
W3, LS
F,MLE
Ff2, MLE
W3, MLE
Incl. Random Errors (STD = 1.0 m)

Final estimate

NESS (3 hourly data)

11.0
10.7
11.1
11.0
10.8
10.6
10.8
10.6
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12.4

NESS with Linear adjustment

11.4
11.2
11.4
11.3
10.9
11.1
11.3
10.9
12.4
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6. Contribution C

Group C established the following EV procedure
for NESS data. The method accounts for spatial
spreading using neighbouring grid points, but this
aspect of the procedure will not be described. To
start with, the 2 parameter Weibull cdf (W2) is fit
ted to the cumulative frequency distribution of all
the data. In practice, however, a best fit is sought
for the top 10% of these data. MML is used to
estimate the parameters. POT is suggested as an
alternative method for a finer 10 x 10 km grid, but
not for the 30 x 30 km grid under consideration.

The NESS extremes are now corrected to take
into account hindcast model uncertainty by apply
ing all of the following techniques:

C1: add random Gaussian noise at 5%, 8%, and
10% to the W2 cdf (the KESPL method) and
record the increase of HS-IOO.

C2: obtain short return period quantiles, specifi
cally those having exceedance probabilities
equal to 121k and 11k, where k =365 x 8/2 is
approximately the number of NESS data per
year; then multiply these two values with 1.86
and 1.40, respectively, (the RATIO method).
The idea of scaling short return period values
to 100 year estimates using factors obtained
from measurements, originates from the so
called Jenkinson method used by the UK Met
Office for deriving extreme wind speeds.

C3: use a linear equation to transform both W2
parameters to "equivalent measured" para
meters (the PARAMETER method). The
equation derives from an existing regression
between hindcast and measured data.

The final step is to interpret the results obtained
and to compare them with all available measured
data (Table 3). In the case of Forties, the Hs-lOO

based on measurements was found to be 13.29 m;
this indicates that a 8% noise level is appropriate
under C1, and a 1 year ratio method under C2. The
100 year return values for C2 and C3 are averaged,
and this value is then averaged with C1. This is
considered to be the best "equivalent measure"
HS-IOO. Finally, this result is averaged once more
with the direct NESS estimate and a correction
factor of 1.03 is applied to take into account that
NESS covers only the 6 month winter period in
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each year. The results in Table 3 should be used
with caution: certain values are valid for the aver
ages of 5 gridpoints (including our reference point)
covering the Forties area.

7. Contribution D

Group D's Method is a POT method of storm
peak values. The threshold is varied in increments
of 0.1 m, until a good visual fit is obtained to the
following distributions: Gumbel (G), Exponential
(EXP), two-parameter Weibull (W2), Pareto (P),
lognormal (LN), and generalized gamma (GG);
parameters are estimated using LS or MML,
except in the last case where a MOM based on
Stacy and Mirham [4] is used. The empirical cdf is
taken to be i In *+ 1, where n * is the number of
data exceeding the threshold.

In this particular case, little variation in Hs-lOO

was detected when the threshold was varied from
7.0 m to about 7.9 m, and reasonable fits were
obtained using G, GG, and LN. The final selection
of a threshold of 7.8 m was guided by the principle
that a POT analysis should ideally be conducted
using (approximately) the top 40 data. The best
visual fit on a Gumbel plot is obtained by the GG
(Table 4). The estimate of HS-lOO is 10.7 m, which
is rounded to 11.0 m.

Measured storm peak data at the Forties are
taken into account by multiplying the NESS
estimate by 1.07. The value of this multiplication
factor is justified on the basis of the following two
considerations:

(a) perform a peak-to-peak scatter plot (mea
sured vs NESS): the best fit regression line
forced through the origin has a slope equal to
1.07;

(b) a POT an'alysis (threshold = 7.0 m) is con
ducted on the measured data and on the
corresponding NESS data (i.e., the NESS
data occurring simultaneously with the mea
~ured data). The 100 year return period on
the
former turns out to be 7% greater than the
NESS Hs-lOO; the generalized gamma cdfwas
also used for this purpose.

Table 4 summarizes the intermediate values and
shows Group D's best estimate Hs-IOO = 12.0 m.
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Table 3. Group C results; 100 year return period Hs (m)

1. Directly from NESS (W2, MLE)
2. Measured data available
3. C1 using noise at 8%
4. C2 using 1:100 ratio
5. C3
6. Best "Equivalent Measured": 0.5 C1 + 0.25 C2 + 0.25 C3
7. Final estimate = 1.03 X average of 1 & 6

a These values are averages of 5 grid points located in Forties.

Table 4. Group D results; 100 year return period Hs (m)

POT with threshold of 7.8 m (n· = 37)

11.3
13.3a

11.4a

12.4
12.4
12.2a

12.2a

9.8
10.4
9.7
9.9

13.0
1O.7a

11.0
12.0

1. Gumbel using MML
2. Gumbel using Ls
3. LN using MML
4. LN using LS
5. P using MML
6. GG using MOM
7. NESS best estimate (round off of 6.)
8. Correction based on Measured Data: (7.)a 1.07

--------------------------
a Indicates best fit.

8. Contribution E

POT storm are fitted to one of three distribu
tions that are left-truncated below the threshold xu:
Gumbel truncated (GT), Frechet truncated
(FR2T), and Weibull truncated (WT). In the
present application, however, the second cdf failed
to give a good fit and was discarded. The likelihood
expressions involve three parameters: the two
basic parameters, together with xu. In practice, the
MML is applied to determine the two basic
parameters, given xu. The associated 95% confi
dence bands on the corresponding 100 year return
values are determined using the 2 x 2 observed
information matrix, given xu. The candidate distri
bution is selected on the basis of (1) the correlation
coefficient for LS residuals in the Hs direction
(usually> 99%), (2) the mean error on cumulative
probabilities (generally ~ 0.05), (3) the mean square
error on cumulative probabilities (generally ~ 0.01),
and (4) visual assessment.

To determine the threshold xu, the above proce
dure is repeated in order to find a range of
thresholds over which both the goodness-of-fit
statistics, as well as the extrapolated design value
are stationary. The selection process is guided by
the condition that the annual storm frequency at
the site should be between 1.0 (0.5) and 3.0 (4.0).

440

This frequency is proportional to the inverse of the
number of peaks exceeding xu. The half range of
the two parameter confidence interval obtained
using the MML procedure for the selected Xu, is
now added to the Hs-100 value. The addition of the
half-range confidence interval derives from the
concern noted in Contribution A that the 3 h aver
age hindcast data overly smooths storm peaks as
compared to the 20 min "spot" measured data. In
the comparisons to measured data at three North
Sea sites which have been performed to date, use
of the confidence interval results in an unbiased
extrapolation at both the 40 year and the 100 year
return period.

As with the previously discussed procedures, the
impact of several severe storms which have oc
curred after the NESS hindcast period was also
considered. Measured data from those storms were
used to artificially extend the hindcast database. A
repeat of the above procedure using the extended
database resulted in an increase in the extrapo
lated 100 year wave height by 0.7 m. The best
estimate of Hs, shown in Table 5, including the
confidence interval and consideration of post-Ness
storms, is 12.0 m.
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Table 5. Group E Results; 100 year return period Hs (m)

Hs-IOO (m)

Threshold x 0 (m)

Stationary range

Number of points> x 0 Annual storm frequency Fit to GT Fit toWT

Final design value

Add 0.7 m to account for post NESS storms

7.00
7.15
7.25
7.35
7.45
7.55
7.65
7.75
7.85

Average

Best NESS estimate

Add 95% CI as described

118
92
81
68
56
50
44
37
29

4.7
3.7
3.2
2.7
2.2
2.0
1.8
1.5
1.2

10.8 10.6
10.6 10.4
10.7 10.5
10.6 10.4
10.5 10.3
10.6 10.4
10.6 10.5
10.6 10.6
10.7 10.3

10.6 10.4

10.5

11.3

12.0

12.0

9. Summary

Five NESS participants were asked to provide
their best estimate of the 100 year return signifi
cant wave height at a given grid point in the North
Sea. We cannot help being pleasantly surprised
with the astonishing array of approaches used by
the participants: all submissions attest to the fact
that the contributors have an expert understanding
of the NESS statistics and the extreme value
methods needed to formulate engineering design
criteria. Our second impression is equally com
pelling: not withstanding the diversity of selected
EV methods and the variety of subsequently

Table 6. Summary of Recommended Hs-IOO (m)

applied "adjustments/corrections," it is interesting
to observe that the recommended Hs-lOO values lie
very close to one another.

Table 6 summarizes the final results. The first
row lists the HS-lOO obtained from a direct EV
analysis of the NESS data: all values submitted can
essentially be rounded off to the same number:
11.0 m. This value may be contrasted with the
aforementioned reference approach (R), which
was seen to result in a significant wave height of
14.3 m.

Value based exclusively on NESS data
Recommended value including all corrections/uncertainties

A

10.8
12.6
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B

11.0
12.4

C

11.3
12.2-

D

11.0
12.0

E

10.5
12.0

R

14.3
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10. Evaluation

Each submission contains a fair number of steps
that require the use of good judgement and subjec
tive reasoning. Several issues are simply not
amenable to quantitative evaluation. For instance,
the reason for selecting a particular approach may
be that it is a given group's standard way of dealing
with extreme value problems, or it may be an
approach strongly favored by one or more people,
or it may be a series of procedures developed over
the years, which enjoys a history of frequent and
successful use. At the same time, each group must
attempt to derive a result that is theoretically
defensible as well as one that will in all likelihood
be acceptable to the outside world (management,
designers, regulatory agencies, etc.)

Consequently, there are several aspects of the
submissions that are difficult to interpret. Keeping
these limitations in mind, it seems reasonable to
identify the following basic criteria to assess the
quality of a particular approach:

(1) How practical and clear is the suggested
approach? A convincing procedure must be
lo~ical and simple to use.

(2) Is the method theoretically sound and does it
lead to accurate results? Is it based on recog
nized statistical techniques and proven results
from extreme value theory?

(3) Can the method be generalized easily to other
gridpoints and locations or is it very depen
dent on a particular data structure? How wide
is its range of applicability?

(4) How sensitive is the method to assumptions
regarding data, distribution types? Is the
method robust? Can confidence intervals
easily be constructed? Is parameter/statistical
uncertainty taken into account?

(5) Does the method allow for adjustment based
on measured data; is the hindcast model un
certainty taken into account?
In fact, two questions should be considered:
(5a) When measured data are available at

the site, can a suitable procedure be
used to incorporate them in any way?
and;

(5b) When no measured data are available
at the site, can the intrinsic hindcast
model uncertainty be accounted for in
a NESS EV analysis?
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A detailed evaluation is not attempted, but it is
felt that most of the methods used would get a fine
score against each of the above criteria, with the
exception of criterion (5b). This is due to the lack
of a consistent technique to account for the intrin
sic hindcast model uncertainty, even in the absence
of measured data. Another weakness would be re
flected in criterion (4): parameter uncertainty and/
or short data uncertainty should be addressed in
extrapolating to high return values.

On a theoretical level, we feel somewhat uneasy
about the use of "cumulative" data (as opposed to
working with storm peaks): the implication on
estimating high extreme values is not clear. As far
as distribution choices are concerned, three con
siderations jump to mind. First, we are somewhat
surprised that no contribution included the
(3 parameter) generalized extreme value cdf in the
analysis; this is a particularly flexible distribution
and it could virtually be used on its own to model a
wide range of tail behaviors. By the same token, no
attempt was made to look at an analysis based on
seasonal extremes, month-by-month extremes, and
the effective use of more than just one high
order statistic (for instance through the use of the
i dimensional generalized extreme value cdf).
Weighted least squares also failed to be selected as
a convenient way to correct tail behavior. With
regard to the POT analyses, it is somewhat
puzzling to see that distributions which would not
be expected to yield good fits were included in the
analysis (one would expect POT density functions
to be monotonically decreasing starting at the
threshold).

Further discussion is needed to investigate the
quality of the different approaches.

11. Problem Issues

In the course of evaluating the different submis
sions, it becomes clear that there are a number of
grey areas with issues that will need to be dealt
with at some point in the future. Guidance needs
to be sought from experts in EV analysis and from
experienced oceanographers and engineers with
regard to these matters. The following list may not
be complete, but it does contain a set of both gen
eral and particular issues identified in the process
of analyzing the five contributions:
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11.1 Issues related to EV analysis

1. Selection of storm peaks from 3 hourly data;
smoothing/interpolation of peaks; storm dura
tion: can the 18 h window criterion be relaxed?

2. Least Squares Methods: plotting position to be
used, particulary in the case of upper tail anal
ysis; in which direction should errors be consid
ered: variable, log (exceedance probability),
weights?

3. POT: How many data are needed; How does
the threshold need to be selected (almost all of
the contributors used different criteria); In
deriving EVs, is it preferable to use quantiles
simply on the basis of an adjusted exceedance
probability or on the basis of a compound
Poisson cdf?

12. Appendix A. Acronyms Used for
Distribution Functions and
Analysis Methods

A,B,C,D,E: the 5 contributing groups

AEV: Annual Extreme Value (Method)

BM: Borgman cdf

x > 0; b > 0

EXP: exponential cdf:

EV: Extreme Value

FR2: 2 parameter Frechet (or Fisher-Tippett Type
2, or log extremal) cdf:

FR3: 3 parameter Frechet (or Fisher-Tippett Type
2, or log extremal) cdf:

FR2T: Left-truncated Frechet cdf

FT3: the Fisher-Tippett Type 3 (or, the inverted
Weibull) cdf:

4. Develop means to construct confidence inter
vals associated with some of the more compli
cated methods. Only contributor E made an
attempt to account for parameter uncertainty.

5. When using the "cumulative" (all data) ap
proach, assess the impact of correlation
between peaks, particularly when only a small
percentage of the top data is used.

6. Evaluate the impact of discontinuous data on
determining r year return periods; in the par
ticular case of AEV, what is the impact of
using 6 month (winter) extremes?

11.2 Additional Issues

7. Measured Data; the various used/proposed
methods require a detailed examination. Clari
fication and consensus is needed on how to
"combine" hindcast and measured data. Some
of the approaches reflect a sense of "we know
what number we want to get close to, so let's
select a method that will get us there"; this
arbitrary aspect should be addressed.

8. Spatial Spreading; this issue was not part of the
present analysis, but contributor C showed that
any method should also be applicable to a
series of gridpoints, rather than just one
gridpoint.

9. Inclusion of recent storms and/or recently
observed high Hs values in a NESS extreme
value analysis. Only contributor A explicitly
addressed this seemingly important issue.
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( x-a)F(x) = 1-exp - -b- x > a; b > 0

x>O;b,c>O

x > 0; b, c > 0

x < a; b, c > 0
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G: Gumbel cdf W3: the 3 parameter Weibull cdf (or the FT3 for
minima)

-oo<x <+00; b > 0

x > a; b, c > 0

GG: 3 parameter generalized gamma cdf with
probability density function: W2T: Left-truncated Weibull cdf

x > 0; a, {3, A > 0

GOF: goodness-of-fit

GT: Left-truncated Gumbel cdf

HYPAS: Hybrid Parametrical Shallow Water Wave
Model

MOM: method of moments

MML: methods of maximum likelihood

MLE: maximum likelihood estimate

LN: 2 parameter log-normal cdf (Log of the vari
able has a normal edt)

LS, LLS: least squares, linear least squares

NESS: North European Storm Study

P: Pareto cdf

x > 1; {3 > 0
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1. Introduction

This paper discusses the most common
problems associated with the determi
nation of design wave heights. It analy
zes two common methods used in
fitting wave data and shows some of
the stability or inconsistency problems
associated with commonly used distribu
tions. Some methods to obtain confi
dence intervals, detecting of outliers

and treatment of missing data are
given.
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As in many other fields of engineering, the
design of ocean or marine structures is governed by
extreme values of wave heights. Several methods
have been given in the past for the determination
of design values. However, no method is widely
accepted by the engineering community.

Traditionally, the analysis of yearly maxima has
been considered as a good method for this pur
pose. However, recently, peak value methods arose
as a promising alternative.

The aim of this paper is to compare these two
methods and illustrate some of the problems
related to their use.

2. Two Standard Methods in the
Determination of Wave Height
Design Values

In this section we analyze the following two well
known procedures for obtaining design wave
heights: the peak value method arid the yearly max
ima method.
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The first one employs the peak wave heights of
individual storms and thus composes a set of ex
treme wave data. The second one uses the yearly
maxima.

Several authors have criticized the second
method in that it discards large wave heights, when
they occur in years with large storms, but includes
relatively small wave heights which are maxima of
calm years.

2.1 The Peak Value Method

This method consists of -the following steps:

1. Fit the peak values of individual storms to a
parametric family of distributions

Fo(x; Ao, So, f3o), (1)

where Ao, So and f30 are the parameters. In some
cases these three parameters can be reduced to'
two or even to a single one. The fitting of the
above family can be done either by using all data
or only tail data (Peak over threshold (POT)
method).
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It is worthwhile mentioning that this distribu
tion corresponds to the wave height of a storm,
that is, we assume that the cdf of the maximum
wave height of storms is Eq. (1).

2. Use the following cdf for the maximum wave
height in a period of duration D years:

where k is the mean number of storms per year,
or determine the wave height, XT, associated
with a return period T, that is, solve, for x, the
equation

Fo(x; Ao, 80, {30)k=1-~. (3)

Note that the cdf in Eq. (2) implies the assump
tion of independence of storms.

Confidence interval determination

Outlier detection

Treatment of incomplete series

(7)- 00 <x < 00

F (x; A, 8) = exp [ - exp ( A ; x ) ] ;

2. The maximal Weibull family

3.1 Some Distribution Families Used in the
Analysis of Wave Data

The most common used distributions in the anal
ysis of wave heights are the following:

1. The Gumbel family

(2)Fo(x; Ao, 80 , {3o)Dk,

2.2 The Yearly Maxima Method

This method consists of the following steps:

3. The maximal generalized extreme value or
Jenkinson's family

1. Fit the yearly maxima to a parametric family of
distributions

(4)

x~ A (8)

where AI, 81 and {31 are the new parameters.
This is equivalent to assuming that the yearly
maxima follow a distribution which belongs to
Eq. (4).

2. Use the following formula to extrapolate to the
maximum of a period of D years:

(5)

F (x) =exp { _ [1 + (x;;:) ] -k } ;

1 + (x -B) 0
kA ~

4. The minimal Weibull family

(9)

or determine the wave height x associated with
a return period T, Le., solve the equation for x:

(6)
x~A (10)

3. Some Problems Related to the
Data Analysis

In the analysis of data one has to deal with some
problems. Among them we mention the following:

Selection of the families Fo(x; Ao, 80, {30) or
FI(x; AI, "h, {31)

Estimation of the parameters of the selected
families

The Gumbel, maximal Weibull and maximal
Jenkinson's families are justified from a theoretical
point of view, because they are the limit distribu
tions for maxima (see Galambos [5] or Castillo [2]).
It is interesting to note that the Jenkinson's family
includes the other two, as particular cases, and the
maximal Frechet family (for k > 0). The Frechet
distribution is not justified in this case because
wave heights are physically limited, no matter we
deal with shallow or deep waters (see Castillo and
Sarabia [3] and [4]).
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The minimal Weibull distribution, though widely
used, is not theoretically justified in the case of
maxima. Its only justification is that its range can
be made to be consistent with the positive charac
ter of wave heights. In addition, we remind the
reader that it belongs to the maximal domain of
attraction of the Gumbel type, i.e., it is asymtoti
cally equivalent to a Gumbel distribution of the
type Eq. (7).

However, due to the fact that this distribution is
widely used in the analysis of wave heights, it seems
convenient to make here some comments.

Initially we can say that this distribution has the
following advantages:

For A =0, its range is (0, (0), that is, it does not
include negative values of the random variable.

Assuming that the location parameter, due to
physical reasons, is fixed to zero, it depends
only on two parameters. This makes the estima
tion process much simpler.

Its associated domain of attraction is Gumbel
type. Thus, it could be used if this were the
actual case.

Its main drawbacks are the following:

Its range is unbounded on the right. This con
tradicts the physical reality.

It does not cover the Weibull domain of attrac
tion that could be the real situation.

It is an asymptotical minimum law.

It is not stable with respect to maximum opera
tions. Thus, if the minimal Weibulllaw is satis
fied for yearly maxima the maxima of periods of
duration different from one year cannot satisfy
this law. This problem can be solved by adding
an extra parameter to this family, which leads
to the extended minimal Weibull family.

Consequently, the minimal Weibull family could
be used if and only if we were sure that the domain
of attraction of wave heights is of a Gumbel type.

In order to determine the domain of attraction
of a given distribution several methods are avail
able, such as the Pickands' or the curvature
methods (see Castillo [2] chapter 6 and Castillo,
Galambos and Sarabia [3]).

3.2 Estimation Methods

Several methods have been used to estimate the
parameters of the families Eqs. (7) to (10). The
most important are:
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The maximum likelihood method

The method of moments

The least squares method

The probability paper method

The Goda's method

The percentile method

3.2.1 The Maximum Likelihood Method This
method is based on maximizing the likelihood of
data with respect to the parameters. The central
idea consists of assuming that the sample comes
from a population with parent distribution belong
ing to a parametric family and choosing the
parameter values that maximize the probability of
ocurrence of the sample data.

This is the best known method in statistics and it
is recognized as the most convenient, due to its
statistical properties. It leads to the best estima
tors, which, in addition, are asymptotically normal.
This allows asymptotic confidence intervals .for
the parameters to be easily obtained. Using the
8-method, to be described later, the confidence
interval of any regular function of the parameters
can be obtained, too. In particular, confidence
intervals of percentiles can be obtained in this
manner.

In order to estimate an extreme value distribu
tion with the purpose of extrapolation beyond the
data range, only high order statistics must be used
and the rest must be discarded. Thus, we recom
mend the method indicated by Castillo [2], in
chapter 5.

In the case of the minimal and maximal Weibull
families, the estimation process can lead to some
problems, either because the likelihood function
becomes unbounded (13:::; 1) or because some non
regularities, for some values of the shape parame
ter (1 < 13 < 2). However, it can be applied to values
of the shape parameter larger than or equal to 2
without any problem. Thus, once the estimates are
available, it is necessary to check that their values
are cO)1sistent with the initial hypothesis. Here we
give the following recommendations:

If the shape parameter takes a negative value,
this means that the data indicate a Frechet type
domain of attraction. This suggests the pres
ence of at least one outlier that gives an erro
neous curvature in the right tail.

If we get a value of 13:::; 1, we can think on the
presence of outliers. This value of the shape
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xpi =A-8(-logpi)l/fJ; i=I,2,3, (14)

Thus, the percentile or orderP satisfies the equa
tion

where Pi can be written, using the Gringorten's
formula, as:

G(x)=exp[ _(A;X),I]. (11)

(15)

(16)

(17)

(13)

(12)

i -0.44
Pi=n+O.12'

Xl' =A - B( -logp ) IIfJ •

[ (
A -Xp)fJ]p=exp - -8- ,

A = xPi + 8 ( -logpl) I/fJ

XPZ-XP18 = .
(-logpl) I/fJ_ (-logpz) IIfJ'

XPZ-XP1 (-logp2) I/fJ_(-logpl) I/fJ

xp3 -xpZ (-logp3) I/fJ-(-logpz) I/fJ'

which depends only on the parameter {3 and thus, it
can be easily solved by an iterative method, as the
bisection method for example, with a personal
computer. Once (3 is known, the values of A and B
can be obtained from any two of the equations in
Eq. (14). For example:

where i is the rank of the order statistic associated
with Pi.

From Eq. (14) we get

from which we get

Equating the three percentiles of ordersp .,pz,P3
of sample and population, we get the following sys
tem of equations:

tribution is by means of the percentile method.
This method consists of equating as many percen
tiles in the sample and the theoretical distribution
as the number of parameters to be estimated.

As an illustrative example we use this method for
the estimation of the parameters of a three parame
ter maximal Weibull family.

The cdf of the maximal Weibull distribution is:

parameter indicates that the probability density
function is increasing in the tail, which contra
dicts the physical reality.

• If we get 1 < {3 < 2 then the law is far from the
Gumbel law (note that Gumbel corresponds to
(3 = 00).

• If the value of the A parameter is less than the
maximum of the sample this indicates that
there is an outlier.

3.2.2 The Method of Moments This method
consists of equating the moments of the sample to
the moments of the theoretical distribution. We
use as many moments as there are parameters to
be estimated and we get the same number of equa
tions from which the parameters can be obtained.
The asymptotic properties of the moment estimates
are good but worse than those associated with the
maximum likelihood estimates.

This method can also be applied to tail estima
tion, using the moments of the truncated distribu
tion.

3.2.3 The Least Squares Method This method
consists of minimizing the sum of squares of the
differences between the theoretical and the empiri
cal values. There are many versions of this method.
In some cases the random variable scale is used to
measure the errors and in other cases the probabil
ity or the return period scales are used (see chapter
4 of Castillo [2]).

The main advantage of these methods is that
they give an explicit solution and do not depend on
convergence of any algorithm, as is the case with
the maximum likelihood method.

Nevertheless, these methods are sensitive to the
plotting position formulas used in the estimation
method.

3.2.4 The Probability Paper Method By prob
ability paper method we understand a visual
method, in which the data is drawn on probability
paper and a straight line is visually fitted to data.

The main drawback of this method is that it
depends on the plotting position formula used in
the graphic representation and the subjective
criteria for selecting the optimal fit.

3.2.5 The Goda Method Goda [4] fits a mini
mal Weibull distribution, truncated at the
threshold value Xu, to the right tail of data. By right
tail are meant the wave heights above a second
threshold value Xl > >xo.

3.2.6 The Percentile Method One way of ob
taining quick estimates of the parameters of a dis-
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For the estimates to be consistent with the
model we must have

(18)

where (Xt,X2, • •• ,XII) is the sample.
If the percentiles are arbitrarily chosen, this

inconsistency can easily appear. Thus, it is good
practice to choose as one of the percentiles the
maximum of the sample X(II)'

In addition, if we are dealing with a tail estima
tion we must choose the adequate percentiles, that
is, percentiles in it.

In order to improve the quality of the estimates
we can use three groups of percentiles instead
of three percentiles, that is, replace the system
Eq. (14) by the system

3.2.7 Plotting Position Formulas There is
much controversy about the plotting position
formulas to be used for representing data on prob
ability paper and the posterior estimation by least
squares methods.

The resulting estimates are sensitive to the plot
ting position formulas being used. This confirms
the fact that the least squares method is not opti
mal. Note that maximum likelihood or moment
methods do not depend on plotting positions.

The discussion of the appropriateness of various
formulas is intended to avoid or reduce some of the
errors involved (in this case authors recommend
using formulas leading to unbiased estimators).

However, we mention here that all plotting posi
tion formulas are asymptotically equivalent.

3.3 ~-Method

j = 1,2,3

~
X· = A--

P, mj

i=kj +mj-1

L
i=kj

(19)

The 8-method (Bishop, Fienberg, and Holland
[1]) allows us to obtain confidence intervals of
certain regular functions of the parameters, as
functions of the parameter estimates, and its vari
ance-covariance matrix.

Let

be k functions of the set of parameters
AI, A2, ... , As. Then, according to the 8-method,

where mj, (j = 1, 2, 3) are the numbers of percen
tiles included in each group. With this, equation
Eq. (16) becomes Eq. (20).

1]i = hi (AI, A2, ... , As); i = 1, 2, ... , k (21)

=
............ ....

h2(AI, A2' ... , As), . .. , hk (AI, A2' , As» (22)

is an estimator of (1] 1, 1]2, ... ,1]k) which is asymp
totically normal and has mean

(20)
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and variance-covariance matrix

iJh l Bh 2 Bh k
T

BA I BAI BA I

1:* = Bh l Bh 2 Bhk

BA2 BA2 BA2

iJh l Bh 2 Bh k

BAs BAs BAs

Bh l Bh 2 Bhk

BAI BAI BA I

1: iJh l Bh 2 Bh k (24)
BA2 BA2 BA2

Bh l Bh 2 Bh k

BAs BAs BAs

The maximal Weibull distribution satisfies the
necessary regularity conditions for the asymptotic
normality if f3 ~ 2. Thus, if we have a sufficiently
large sample coming from a population with maxi
mal Weibull parent, we can write:

vii«A, 8, ~) - (A, 8, f3» ~ N (il, 1:) (28)

where
(29)

where I = (aij) is the information matrix associ
ated with the maximal Weibull family, that is,

-1 1 1 1 1, 1
al3 = I AfJ =-T(l--) +-r(2--) +-T (2--)

f3 f3 8 f3 8 f3

(32)

wAherAe 1: iSA the variance-covariance matrix of
(AI, A2, ... , As).

3.4 Estimation of Percentiles of the Maximal
Weibull Distribution

As a simple example of the 8-method we give the
confidence interval of one percentile of the three
parameter maximal Weibull distribution. We as
sume that the parameter f3 is larger than 2.

3.4.1 Point Estimate The percentile xl' of the
maximal Weibull distribution is:

a - I _ f32
22 - 00 - 8I

a33 = I fJfJ = ;2 (1 +T"(2»

(33)

(34)

(35)

Thus, according to the invariance principle, the
maximum likelihood estimator of that percentile,
is:

Xl' = A - 8( -logp )1/fJ . (25)

(26)

and J is the matrix of the second order partial
derivatives, with respect to the parameters of the
model, of the function

G(t; A, 8, f3) = log [l-F(t; A, 8, f3)].

If we consider now the function:
3.4.2 Maximum Likelihood Estimators: Asymp

totic Theory We assume here that the sample
consists of those observed values above the
threshold value t (type II censoring), that is, the
probability density function is given by

I, (x) = I(x; A, 8, f3)
1 - F(t; A, 8, f3)

(27)

I(A,8,f3) =xl' = A-8(-logp)1/fJ,

with partial derivatives:

II = .il. = 1
BA

12 = 11. = - (-logp)l/fJ
J8

(36)

(37)

and I and F are the pdf and cdf of the maximal
Weibull family.
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then, by the 8-method we have:

where

from which the confidence interval for the percen
tile xp at level a becomes:

3.6 Treatment of Incomplete Series

If we know about the existence of r storms in a
given series, but we ignore the peak intensities we
can perform an estimate based on the known peaks
and then make a correction for the unknown
peaks. This means estimating the cdf with the
known peaks and raise to the power (n +r )/n,
where nand r are the number of known and un
known peaks, respectively.

4. Critical Analysis

3.5 Outlier Detection

In this section we give a method to detect the
presence of outliers in the sample data. The method
is based on the fact that if we make the following
change of variable:

Y = F(X)

(40)

(41)

In this section we analyze the previous methods
and discuss some of their inconsistencies.

4.1 Inconsistencies due to the Lack of Stability
With Respect to Maximum Operations

When several design methods are recognized by
the engineering community a certain consistency in
the respective results should be expected. We shall
see that this is not the case for some of the previous
methods.

Let us assume that we try to fit the minimal
Weibull family

where Ao, 80 and {3o are the parameters. Then, Eg.
(2) transforms to

where F(x) is the cdf of X, the resulting random
variable, Y, is uniform U(O,l).

In addition we know that the maximum of a
random sample of size n coming from a standard
uniform parent has cdf

Fymax(y) = y" = Prob[Ymax~Y]. (42)

We shall say that the sample maximum is one
outlier if the probability of being exceeded is very
small. Thus, the value Yo can be considered as criti
cal for the maximum value of the sample if

{ (
X - Ao ) f30}F(x; Au, 80, {3o) = 1-exp - ~ ,

FD(x; Ao, 80 , {3o) = F(x; Ao, 80 , {3o)Dk =

{ [ (
X - Ao ) f30] }Dk1-exp - --

80

(46)

(47)

Prob[Ymax>yu] = Fyma,(yu) = 1-y3 = a (43)
and the wave height associated with a return period
T becomes Eg. (3):

with a very small (0.01, 0.05, etc.). Then, we get

Yo = (l-a)l/ll (44)

{ [ (
1 )llk]}11f30

XI' = Ao +80 - log 1 - 1 - T (48)

This critical value refers to the random variable
Y. Thus, we need to obtain X by means of the in
verse of Eg. (41). As one example, for the maximal
Weibull distribution we get

Let us assume that now we also use the minimal
Weibull family in Eg. (4):

(45)
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where AI, l>t, f31 are the new parameters. Then,
Eq. (5) becomes FD(x; At, /)1) = { exp [ - exp (AI/)~X)]r (56)

and

{ [ (X- Al )/h]}D1-exp - ~ (50)
(57)

and the wave height associated with a return
period T, from Eq. (6), is

and, taking into account that

(51)
{ exp [ - exp (AIl)~X)Jr =

{ [ ( AX)J}Dk Ilkexp - exp Il)~ =

the coincidence of the pairs Eqs. (54)-(56) and Eqs.
(55)-(57) implies

That is, the coincidence of both is possible for any
value of k.

The same conclusion is valid for any of the
Weibull Eq. (8) or the Jenkinson's Eq. (9) families.

(58){ [ (
AI-/)llogk-x)]}Dk

exp - exp /)1

The minimal Weibull model is inconsistent in the
following sense: It is not stable with respect to max
imum operations, that is, when the cdf is raised to
a given power s ;z! 1, then, the resulting cdf is not
minimal Weibull. Thus, though Eq. (46) is minimal
Weibull, Eq. (47) is not minimal Weibull for Dk;z!1.
In other words, if we assume a minimal Weibull
distribution for the peaks of storms, the yearly
maxima cannot be minimal Weibull and vice versa.
In fact for equations Eqs. (47) and (48) to be
identical to Eqs. (50) and (51), respectively, i.e., for
consistency, we must have

which implies k = 1, that is a mean number of one
storm per y~ar, which is not the case.

However, if, instead of using the minimal Weibull
family we use the maximal Gumbel family

4.2 Inconsistencies Associated With the Lack of
Stability With Respect to Truncation

Goda's method is inconsistent for the following
reasons:

Fo(x; Ao, /)0) = exp [ - exp (AO/)~X) ] , (53)

then, Eqs. (47), (48), (50) and (51) become

FD(x; AO, /)0) = {exp [ - exp (AO/)~X )]} Dk (54)

1. It gives different estimators for different values
of Xo.

2. If the truncated distribution belongs to the
minimal Weibull family it cannot belong for a
different threshold value. Thus, different
designers using different threshold values
necessarily arrive to different models.

In the following paragraphs we shall make a de
tailed analysis of this problem.

With respect to the first inconsistency it is clear
that because the method only uses the data above
the second threshold value Xl, the resulting esti
mates should be independent on the first threshold
value Xo.
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parent distribution in the domain of attraction for
maxima of a Gumbel type.

Consequently, as a summary, we recommend to
fit the sample data above the threshold to one of
the following three families:

If the domain of attraction is Weibull type, fit
the right tail to the maximal Weibull family

In relation to the second inconsistency, the
model should be stable with respect to truncations.
With the purpose of clarifying this idea, let us
assume that we choose a family of candidate distri
butions H(x;y), where the second argument y is
one parameter, which, without loss of generality,
can be assumed to be the threshold value. Then, if
the wave height exceeding z has as cdf the function
H (x, z), then, the wave height exceeding y should
have a cdf given by

{ (
Ao-X )~()}Fo(x; Ao, l)o, f3o) = exp - ~ (65)

where the right hand term arises from the consis
tency condition that expresses that the family
H (x; z) remains valid for any value of the threshold
parameter, which in this case is y.

Equation (60) is a functional equation. Its gen
eral solution can easily be obtained by making
z = Zo, that is,

if the maximal domain of attraction is Gumbel
type, fit the right tail to the maximal Gumbel
family

or to the extended minimal Weibull family

where

H(x;z)-H(y;z)
1-H(y;z) = H(x;y),

G(x)-G(y)
H(x;y) = 1-G(y) ,

(60)

(61)

[ ( Ao-X)]Fo(x; Ao, l)o,) = exp - exp ~

Fo(x; A, l), (3) = {1-exp [ - (~r]) '1;

x~o

(66)

(67)

where

Nevertheless, we remind the reader that this
solution can be satisfactory only in the case of a

H(' l) fJ.) = [F(x; l), fDr - [F(y; l), /3)]" (63)
x,y, ,fJ 1-[F(y;l),f3)]"'

F(x; l), (3) = 1-exp [ - (~r] , (64)

where f3, l) and TJ are the parameters to be esti
mated. In the last case we are assuming that
the cdf of the maximum wave height in an
indeterminate period, to be estimated, is mini
mal Weibull.

Note that fitting the right tail means fitting a
truncated model with basic distribution given by
Eqs. (65), (66) or (67).

All these models are consistent in the previously
mentioned sense.

4.3 Inconsistencies Associated With the Use of
H. and T.

It is very common in the Ocean Engineering field
to work with the significant wave height, H s , and
period, T., as the basic variahles for extreme value
analysis of waves. However this is not correct
because T. is the mean zero up-crossing period and
H. is defined as the mean of the 1/3 largest waves.
These two random variables are convenient to jus
tify normality assumptions in wave spectra, but can
not be accepted if an extreme value analysis of wave
height, H, is to be performed. In fact, distributions
in different domain of attraction types can lead to
the same distribution for H s and/or Tz , thus, obscur
ing the tail properties of single waves.

(62)G(x) = H(x;zo).

For H (x; y) to be a cdf, then G (x) must also be a
cdf.

Equation (61) proves that any consistent family
H (x; y) must come from another family G (x) by
means of a truncation procedure.

The minimal Weibull family, used by Goda, does
not satisfy this condition. Thus, it is inconsistent.

With the purpose of having a consistent family in
the two previously given senses, one solution would
consist of assuming G (x) to be extended minimal
Weibull with null location parameter. This would
imply that the sample data above the threshold
value Xl should be fitted to the family
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5. Conclusions

From all the above we get the following conclu
sions:

1. The most convenient families to fit wave height
data in the tails are:

• The maximal Weibull family

• The maximal Gumbel family

However, the extended minimal Weibull family
can be used too.

Before fitting the Gumbel or the extended
minimal Weibull families, the domain of attrac
tion for maxima must be checked using, for
example, the Pickands or the curvature meth
ods. For the estimation of the parameters,
the maximum likelihood or the method of
moments applied to the truncated distributions
is recommended.

In the case of the maximal Weibull family, the
shape parameter f3 must be larger than unity. If
it is not, the data suggests an increasing proba
bility density function in the tail, which contra
dicts·the reality.

2. It is recommended the elimination of outliers
by means of the following iterative method:

(a) Estimate all parameters with all data but
the maximum

(b) Check for the outlier character of the
maximum by the previously indicate
method

(c) If it is an outlier, remove the maximum
and start the process again; if it is not,
repeat the estimation with all the valid
data

3. If there are missing data correct the obtained
cdf by raising to the power (n +r )/n where n
and r are the number of known and unknown
data, respectively.

4. Significant wave height H s and mean up-cross
ing periods Tz are not adequate variables to
analyze the extreme value behaviour of wave
heights.
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1. Introduction

Number 4

Jack-up platforms are sensitive to
dynamic amplification in waves because
their fundamental period can be as
high as 7 s-8 s. Whereas the dynamic
motion of the platforms is rather well
described by linear theory the excita
tion depends nonlinearly on the wave
height. The stochastic wave loading is
thus far from being normally dis
tributed.

In this paper dynamic amplifications
obtained by the diffusion theory ex
tended to cover nonnormal excitations
are compared with available time simu
lation results in irregular seaways. Gen-
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erally, the time simulations seem to
yield responses less nonlinear in the
wave heights than the responses esti
mated from the diffusion theory. Expla
nations for these discrepancies are
discussed and mainly attributed to a
proper choice of total damping.

Key words: diffusion theory; dynamic
amplification; Jack-up platforms; non
Gaussian waveloads; nonlinear wave
response.
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The jack-up drilling rig concept, Fig. 1, has
proved to be very convenient in the exploration for
oil and gas in offshore areas. Therefore, requests
are made for designs able to operate in increasing
water depths. Due to their sizes and independent
leg configuration the natural periods of their lowest
vibration modes become comparable with the dom
inant wave periods in the design sea states. As an
example jack-up rigs with leg lengths of 160 m, hull
masses of the order 15,000 t and lowest natural pe
riods around 8 s are currently under construction.
For such structures dynamic amplification of the
wave load responses is certainly to be expected.

The wave loading on the legs can be estimated us
ing Morison's equation. Usually, the legs are truss
like, with each leg consisting of three (or four)
vertical chords connected by horizontal and oblique
bracing members. The diameters of the individual
members are so small that the wave loads on the
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legs become drag dominated. Alternative designs
for smaller platforms have considered circular cylin
dricallegs, yielding inertia-dominant waveloads [1].
For larger platforms the circular cylindrical leg de
sign is not feasible as the loadings and thereby the
required amount of steel are so much higher than
for the truss leg design that it cannot be counterbal
anced by lower production costs.

A drag-dominated wave load implies a loading
which is nonlinear in the wave height. Furthermore,
the integration of the wave load up to the actual po
sition of the wave elevation on a leg and the non
symmetry (Stoke's 5th order wave) of the wave
profile magnify these nonlinearities in the base
shear, the overturning moment and associated re
sponses.

The structural stiffness of the jack-up rig in the
lowest vibration mode is characterized by the leg
stiffness, the distance between the legs, the bottom
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Aft. legs

Wave direction..

Forward leg

Fig. 1. Jack-up platform with cantilever.

H

support conditions, the distance L from sea bottom
to the platform deck and the leg-jack-house flexibil
ity. The global vibration pattern is normally beam
like with a maximum horizontal deck deflection of
the order of 1 %-2 % of L in the design sea states.
A linear structural analysis would therefore nor
mally suffice. However, the additional overturning
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moment in the deflected state due to the high axial leg
loads from the deck mass must be included by the so
called P - {) effect and, in a dynamic analysis, by reduc
ing the leg bending stiffness.

A jack-up rig is a highly stressed structure. Therefore,
it is important that an accurate stn~ctural evaluation is
performed. Such an analysis should be done, not only
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•• • 2 2
Y(t)+2«l U-\JY(t)+wo(t)=wo Yi,(t),

when the jack-up is subjected to a regular long
crested wave. The coefficients Ai will depend on the
platform geometry, the water depth, the wave

2. Stochastic Dynamic Analysis

For a linear single-degree-of-freedom system the
equation of motion for the response Y(t) can be
written

(3)

(2)
/I

Yil(t) = 2: Ai h (t)i
;=0

yields all required statistical moments of the re
sponse, which makes extreme value predictions very
easy. This is done without using any stochastic lin
earization procedures as required in the frequency
domain method. Finally, compared to time simula
tion procedures, the present method is much faster
to apply and does not have the problems with ex
treme value predictions inherent in time simulation
procedures.

The aim of the present paper is to evaluate the
proposed procedure [8] by comparing results with
those obtained from time simulation procedures.
Previous comparisons [8], [9], with results based on
a usual SDOF procedure have been very favorable
as well as have been comparisons with time simula
tion results for a large offshore jacket structure [10].
In the next section the present stochastic dynamic
procedure is described. Then it is applied to data
presented in [5], obtained using a time simulation
procedure and the importance of the various ap
proximations and different modelings is discussed.

where U-\J and ~o is the natural frequency and damp
ing ratio, respectively. Time is denoted by t and dif
ferentiation with respect to t by ( . ). The function
Yo(t) is seen to be the quasistatic response obtained
neglecting the dynamic behavior of the structure
(U-\J~ 00).

IfYo(t) represents a global jack-up response vari
able like the base shear or overturning moment,
then it has been shown, [3], [8]-[10] that it can quite
accurately be represented by a polynomial descrip
tion in terms of the wave height H.

when designing a new structure, but also when a
jack-up rig is moved to a new location. In order to
get uniform and reliable site approval procedures, a
large study was initiated by a group of companies
involved in jack-up design and operations. A sum
mary of this project is presented in [2]. Generally
three different methods are applied:

• Single degree of freedom methods (SDOF).
• Frequency domain methods.
• Time-domain methods.

In the first procedure the quasistatic solution, de
termined by neglecting the motion of the platform,
is amplified by a dynamic amplification factor
(DAF) calculated by the classical SDOF formula.
This will introduce errors due to the nonlinearities
in the wave loading and several approximative pro
cedures have been used [3]-[5], aiming at reducing
these errors.

The frequency domain methods rely on a suitable
linearization of the wave loads with the wave height.
The resulting linear dynamic system is then solved
exactly. The non-Gaussian behavior of the extreme
values is then simply estimated by multiplying the
standard deviation of the linear response with a fac
tor depending on the ratio between the root-mean
square values of the drag and inertia terms in the
wave loads.

Due to the assumptions inherent into above-men
tioned methods, time simulation procedures are of
ten used. For a specific stationary stochastic sea
state random time signals of wave elevation and
corresponding wave kinematics are generated, typi
cally by superposition of first order (Airy) wave
components. A structural analysis of the jackup-rig
including dynamic and nonlinear effects is then car
ried out using time steps of the order of 0.5 s. The
main drawback in this method is that due to exces
sive computational costs only a limited number of
time simulations, each covering a few hours, can be
generated. The extrapolation of these results to ex
treme value predictions for design approval can be
difficult. Several applications of time simulation
procedures to jack-up rigs have been published [1]
[2], [4]-[7].

In a previous paper by the author [8], an alterna
tive method has been developed. The method is
based on exact solution of a linear single-degree-of
freedom system subjected to a non-Gaussian excita
tion. Like in the SDOF method the present method
also needs the nonlinear quasistatic response as in
put but now the dynamic effects are calculated
much more consistently. The present procedure
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theory applied and the current profile. No closed
form solution exists and the actual values ofA; must
be derived by curve fitting from the numerical
results.

The wave period T in the applied regular wave
and in equivalent wave elevation h is taken to be
uniquely given by the wave height H, using for in
stance Odland's formula [11]

a very poor approximation for a wave load process
U(t) and the standard procedure to overcome this
problem is to pass the white noise process g(t)
through a filter defined by

(8)

Thereby, the spectral shape S'I of 1] becomes

with T in seconds and H in meters.
In a stationary stochastic sea state with significant

wave heights H s the individual wave heights H have
been found to be Rayleigh distributed with a root
mean-square value close to H s/2yii. Furthermore,
the phase lag E in Eq. (3) can be taken to be uni
formly distributed. Then the parameter h, Eq. (3),
becomes normal distributed with zero mean and
standard deviation equal to Hsl4. Thereby, the
stochastic equivalent of Eq. (2) becomes

Compared to the usual wave spectra of the Pierson
Moskowitz type the spectrum S'I (w) has the disad
vantage that S'I (0) ~O. The spectral shape S'l'(w)

T =1 +4.1 H°.4, (4)

of the process

(10)

Here

where Tp is the spectral peak period for the sea
state. The normalizations are such that all three
spectra have a unit variance implying that

much better resembles the Pierson-Moskowitz
spectrum: This is illustrated in Fig. 2, where the
normalized spectra S'I(w), S,/,(w) are compared
with the normalized Pierson-Moskowitz spectrum

(11)

(14)

(13)

S=2~gW~
7T

cp(t) = 7j (t )/wg

for both S'I and S,/"
Furthermore, the spectral parameters Wg and ~g

are chosen such that the peak values and peak fre
quencies for all three spectra coincide [8], yielding

11

Yo(t) = La; U(ty (5)
i=O

with
ai =A; (Hs/4Y (6)

and where U (t) is a standard Gaussian process with
zero mean and unit variance. In most cases a cubic
polynomial, n =3, will suffice.

Clearly the curve fitting and the specific values of
T =T(H) used to obtain the quasistatic response
description, Eq. (2), impose some inaccuracies in
the coefficient ai. Therefore, if time simulation re
sults are available for the stochastic quasistatic re
sponse, Yo, then these results could be used directly
to generate proper values of ai. For example, from
the four lowest statistical moments: mean, standard
deviation, skewness, and kurtosis, it is straightfor
ward to determine the four coefficients aj in a cubic
description of Yo(t) [8]. This possibility will be con
sidered in the next section.

The solution of Eq. (1) with the right hand side
given by Eq. (5) will be based on the theory of dif
fusion processes. Therefore the forcing function
g(t) must be a normal white-noise process with a
covariance function satisfying

E[g(t) g(t + 1")]=27TS 8(-7"), (7)

where S is the spectral density of g and 8(1") is
Dirac's delta function. A constant spectral density is ; ~g=0.222 (15)
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- : 5", (W)

- :S1J(W)

--- : SpM(W)

in a stationary sea state. In the present case i, j = 1,
2, 3, 4 and only the D 44 component in the 4 x 4 ma
trix D is different from zero.

As the vector C(Z) is given in polynomial form, it
is straightforward to apply the procedure given by
Krenk and Gluver [12] to obtain exact values for the
statistical moment of Y. Here only the four lowest
moments are determined and used to define

Tp =9s uniquely a cubic polynomial approximation for
Y(t), [8]

(22)

f E[C(Z) !]+

3 W (red/s)2

5
( l/ s )

\

2 \
\
\
\
\
\
\
\
\
\
\
\
\
\
\

0
0

Fig. 2. Comparison between the normalized spectra S~ (w),
Sop(w) and SPM(W).

In the following normal process U(t) in Eq. (5) will
be taken as

Extreme values of Y(t) are finally obtained by re
placing U(t) with corresponding extreme values,
that is by y2 InN for the most probable largest
peak among N peaks.

Eqs. (1), (5), (8), and (11) can be written as Ito dif
ferential equations

where

U(t)=q;(t)

i =C(Z(t» +W(t),

(16)

(17)

3. Numerical Results

For a linear single-degree-of-freedom system
subjected to a Gaussian excitation, a dynamic am
plification factor can be defined as [11]

dynamic amplification factor =

and

(18)
[f '" ]1/2

o l/J2(W) 5 (w ) dw
(24)

C(Z)=

U-\JZ2
/I

-2 (0 U-\JZ2-U-\JZt +WO L a;Zi
i=O

(19)

where l/J is the classical dynamic amplification factor

W(t)={O, 0, 0, t(t)/wgY. (20)

and where 5 (w) is the spectral density of the qua
sistatic response (the excitation) Yo. Furthermore,
0:, is the standard deviation of the excitation given
by

Since W(t) satisfies the white noise property (26)

E[W(t)W(t+'T)]=DB(t) , (21)

it follows from diffusion theory, e.g., [12] that the
statistical mean value E [g(Z)] of any function g of
Z satisfies

Examples of dynamic amplification factors deter
mined by Eq. (24) are shown in Fig. 3. Three spec
tral densities 5 (w) are used, the Pierson-Moskowitz
spectrum, Eq. (12), the spectrum 5'1 (w), Eq. (9),
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and the spectrum S<p(w), Eq. (10). The damping ra
tio is taken to be (0 =0.07 and it is seen that at res
onance the dynamic amplification factor is only
about half the value of r/J( Wo) =1/2 (0.

OAF r--------,--------,----------,

sentations (A, B) of the overturning moment as
function of the deterministic wave height H. Similar
curves are obtained for the base shear and also
when using the Stoke's 5th order wave theory. All
these results are expressed in terms of coefficients
Ai to be used in Eq. (2).

• : Direct Calculations

Fig. 4. Overturning moment for the jack-up-rig considered [5],
subjected to a regular long-crested stretched Airy wave.

-1

a.T.M.
(105

Nm
),-----------------,-,

2

The coefficients Ai are then used in Eq. (6) to ob
tain values of ai valid for the stationary stochastic
design sea state. From these coefficients the four
lowest statistical moments are calculated by the
procedure given in [8]. The results are given in
Tables 2 and 3 and compared with those presented
in [5] from a quasistatic time simulation procedure.
Furthermore, these tables contain the dynamic re
sults determined by the present stochastic dynamic
procedure and by dynamic time simulations in ran
dom seaways [5]. From Table 2 it is clear that the
choice of wave theory and curve fitting procedure
has only a marginal influence on the quasistatic
overturning moment. Therefore Table 3 for the
base shear only contains results for one of these
choices. Also it appears that the statistical moments
calculated from the deterministic results using Eqs.
(2)-(6) are remarkably close to those found from
time simulations except perhaps for the kurtosis
which is somewhat lower in the time simulations.

1.51.0 T IT° p

/I
/

/
/

/
1.0 /

o 0.5

2.0

For a linear system subjected to a Gaussian exci
tation the same dynamic amplification factor will
apply to both standard deviations and extreme val
ues. Typical values of the fundamental period
To =2'TT"/Wo are around 8 s for large jack-up rigs
whereas the peak spectral period Tp in the design
sea state is about 16 s. From Fig. 3 one could then
expect dynamic amplification factors in the vicinity
of 2. However, most time simulation results [4]-[7],
yield dynamic amplification factors for the extreme
values much lower and even sometimes below 1. In
the following this difference will be discussed using
data for the example jack-up rig considered in [5].

First deterministic, quasistatic results for this
jack-up rig were computed using both the Stretched
Airy and the Stoke's 5th order wave theory. The
results obtained for the overturning moment
(OTM) using the Stretched Airy wave theory are
shown in Fig. 4. Corrections for P-l> effects have
been made. The wave period T is taken in accor
dance with Eq. (4). The sensitivity of the calculated
results to the choice of T is exemplified in Table 1.
It is seen that minor variations in T around the
value given by Eq. (4) do not change the overturn
ing moment significantly.

Two different curve fitting procedures have been
used in Fig. 4 to generate cubic polynomial repre-

3.0

Linear
~o =0.07

Fig. 3. Dynamic amplification factor (DAF), Eq. (24), for the
standard deviation of a linear one degree-of-freedom system,
using different excitation spectral densities.
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Table 1. Sensitivity of overturning moment (OTM) to wave
period T, H = 13.7 m (45 ft), Stoke's 5th order wave

Wave period T max OTM min OTM
(s) (lOS Nm) (lOS Nm)

9.854 3.108 -0.811

11.261 2.635 -0.941

12.690 [Eq. (4)] 2.428 -1.112

14.077 2.457 -1.261

Table 2. Statistical moments and dynamic amplification factors
(OAF) for the overturning moment in the design sea state,
R., = 12.8 m, Tp = 15.5 s

Time Based
Overturning Stoke's 5th Stretched Airy simu- on
moment fit A fit B fit A fit B lation (*)

Quasistatic

Mean/stand. 0.197 0.198 0.192 0.193 0.200 (*)
dev.

Skewness 2.60 2.77 2.50 2.61 2.99 (*)

Kurtosis 25.7 29.7 24.3 27.0 18.4 (*)

Dynamic

Mean/stand. 0.081 0.082 0.079 0.080 0.128 0.080
dev.

Skewness 0.17 0.19 0.16 0.18 1.29 0.19

Kurtosis 6.89 7.60 6.67 7.15 8.40 5.30

OAF/stand. 2.43 2.41 2.43 2.41 1.49 2.50
dev.

OAF 1.36 1.36 1.36 1.36 1.08 1.39
(N=1000)

Table 3. Statistical moments and dynamic amplification factors
(OAF) for the base shear in the design sea state, H s = 12.8 m,
Tp =15.5s

Base shear Stoke's 5th Time simulation Based on
(BS) [5] (*)

Quasistatic

Mean/stand. dev. 0.163 0.160 (*)

Skewness 2.43 2.23 (*)

Kurtosis 32.2 13.7 (*)

Dynamic

Mean/stand. dev. 0.068 0.122 0.065

Skewness 0.17 1.34 0.12

Kurtosis 8.18 9.01 4.71

OAF (stand. dev.) 2.40 1.24 2.46

OAF (N = 1000) 1.37 1.05 1.38
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The only additional information needed to calcu
late the dynamic responses by the present stochastic
dynamic procedure is the fundamental period To
and the total damping ratio (0, see Eq. (1). For the
example jack-up rig To = 8.45 s whereas the damping
ratio is specified to 0.05 [5]. However, the time sim
ulations are carried out in [5] using a single-degree
of-freedom formulation which includes coupled
fluid-leg interaction terms. These terms will reduce
the dynamic response and therefore act as addi
tional (hydrodynamic) damping. The total damping
in these time simulations must thus be greater than
0.05. In the present calculations, Eq. (1), (7)-(23),
the damping ratio has been taken to be (0=0.05.
The consequences of larger actual damping will be
discussed later.

It is seen from Tables 2 and 3 that the dynamic
amplification factor is nearly the same whether the
quasistatic input is taken from Eqs. (2)-(6) or from
the quasi static stochastic time simulations per
formed in [5] (the results marked by (*)). The dif
ference in kurtosis is apparently not important.

For both the base shear and the overturning mo
ment the dynamic amplification factors for the stan
dard deviation turn out to be around 2.4 whereas
the dynamic amplification factor for the most prob
able largest response peak among N =1000 peaks
becomes 1.36. As To/Tp = 8.45/15.5 = 0.54 the dy
namic amplification factor for the standard devia
tion is seen to be in accordance with Fig. 3 taking
into account that the damping in the present exam
ple is (0 = 0.05. Tables 2 and 3 also show that the
dynamic effects tend to reduce the skewness and
kurtosis making the response more Gaussian than
the quasistatic response. Thereby, the dynamic am
plification factors for the extreme values become
smaller than for the standard deviation with de
creasing values for increasing values of N.

The most severe disagreement between the re
sults from the present stochastic dynamic procedure
and the time simulations is clearly in the dynamic
amplification factors. They are consistently smaller
in the time simulations.

Before looking after possible explanations it
should be stressed that the above results only con
cern one specific jack-up rig. Other results obtained
by time simulations have shown larger dynamic am
plification factors. For instance the dynamic ampli
fication factor for standard deviation of the
overturning moment is found in Ref. [6], Figs. 7 and
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11 to be 5.583/2.521 =2.21 for a comparable jack-up
rig and sea state. Also [4] shows dynamic amplifica
tion factors around two without specifying precisely
the extreme value level.

One source of uncertainty is the damping ratio.
In the present stochastic dynamic procedure the to
tal damping has to be specified whereas in the time
simulation procedure the hydrodynamic damping is
automatically taken into account by the relative ve
locity terms in Morison's equation. Therefore, it
could be interesting to see how much the total
damping should be increased before results in ac
cordance with the time simulations are obtained. In
Table 4 such results are shown and it is seen that
first for a total damping ratio of about 20 % good
agreement on dynamic amplification factors is ob
tained. Such damping is rarely expected in real jack
ups although [4] presents experimental values
around 10 % for a model test. A total damping as
low as 2.2 % has on the other hand been estimated
from full scale measurements [14]. As mentioned
previously, the stochastic dynamic time simulation
procedure in [5] includes 5 % damping in addition
to some damping from fluid-structure interactions
(Eq. (26) in [5]). This must result in an effective to
tal damping in the time simulation results greater
than 5 %' but how much greater it is not possible to
say.

A further verification of the present procedure
will clearly require more detailed comparisons with
time simulation results including estimations of the

total damping in the time simulations as function of the
severity of the sea state. Until then it seems reasonable
to assume that if the total damping is known then the
present procedure will yield results with uncertainties
mainly related to the assumption of a single degree-of
freedom system. Note that P - 8 effects are included in
To through a reduced leg stiffness [11].

To illustrate the potential of the present procedure,
Fig. 5 shows the variation with sea state of the non
Gaussian behavior and of the dynamic amplification
factor for the most probable peak value among 1000
peaks for the overturning moment. In particular, one
should note that even in extreme sea states some
dynamic amplification occurs. There are two reasons for
this. First the stochastic sea state averages out the
classical dynamic amplification factor as shown in Fig. 3.
Secondly, the non-Gaussian parts of the quasistatic exci
tation Yo are amplified differently. In Fig. 6 the dynamic
amplifications associated with a pure quadratic and a
pure cubic excitation are shown. The linear excitation,
Fig. 3, has a maximum dynamic amplification factor for
To/Tp =1, whereas the quadratic excitation yields
maxima for To/Tp=0.5 and the cubic excitation maxima
for To/Tp=0.33 and To/Tp=l. Thus depending on the
relative magnitude of the linear (al), quadratic (az) and
cubic (a3) terms in the excitation Yo, Eq. (5), the largest
dynamic amplification factor can appear within a range
of To/Tp values. For the example considered here in
Fig. 5, the linear and especially the cubic terms domi
nate yielding a maximum dynamic amplification factor
when the spectral peak period Tp gets close to the

Table 4. Statistical moments and dynamic amplification factors (DAFs) for the overturning moment in
the design sea state, (Hs = 12.8 m, Tp = 15.5 s) as function of total damping {o

Mean Stand. dev. Skewness Kurtosis DAF
ti, /L (T K3 IGj

Stand dev, N=903

0.05 20.5 258 0.19 5.3 2.50 1.39
0.10 20.5 193 0.52 7.1 1.87 1.26
0.15 20.5 165 0.90 8.4 1.60 1.19
0.20 20.5 148 1.25 9.4 1.44 1.13

Quasistatic
time sim. 20.5 103 2.99 18.4 1.00 1.00

[5]

Dynamic
time sim. 19.6 153 1.29 8.4 1.49 1.08

[5]
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Fig. 5. Skewness K3, kurtosis IGj and dynamic amplification fac
tors for the dynamic overturning moment as function of the sig
nificant wave height,

fundamental natural period To. Note, however, that
most jack-up rigs have ToITp=0.5 in the design sea
state which is where the dynamic amplification fac
tor from the quadratic term is largest. This is the
reason why the dynamic amplification factor in Fig.
5 levels off for H, around 13.7 m (45 ft).

"

Fig. 6. The dynamic amplification of the standard deviation
and the most probable largest peak among 1000 peaks for a pure
quadratic and a pure cubic excitation.

DAFr--------------------,
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OAF
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1.0 0.5
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Finally, Fig. 7 shows for sake of completeness the
variations of the skewness and the kurtosis for a dy
namic system subjected to a pure quadratic and a
pure cubic excitation. Note that a quadratic excita
tion has K3 =2 Y2, K4 = 15 whereas the cubic excita
tion has K3 =0, K4 =46.2. The change towards a
Gaussian behavior is clearly significant already for
To>O.l Tp•

The procedure consists of three steps:
(i) determine the wave load response using a suit

able nonlinear regular wave theory neglecting
the motion of the platform,

(ii) fit a polynomial in the wave height through the
calculated response maxima and minima,

(iii) assume a deflection mode in the form of the
first horizontal vibration mode and solve the
corresponding equation of motion in stationary
sea states using the theory of diffusion pro
cesses.

4. Conclusions

A procedure able to predict dynamic' global re
sponses of jack-up rigs subjected to wave loads in
stationary stochastic seaways has been described.

For an example jack-up rig it is observed that the
dynamic amplification quite significantly changes
the statistical behavior of the response toward a
Gaussian process. Also, a significant dynamic
amplification is found in the extreme sea states
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where the spectral peak period is about twice the
lowest natural period. These results are in agree
ment with previous findings [1]-[13] using various
formulations and jack-up geometries.

Comparisons with time simulations performed
for the example jack-up rig considered in [5] have
indicated that the main uncertainty in the present
procedure relates to a proper choice of total damp
ing. In order to clarify this point estimates of total
damping ratios from time simulation results would
be extremely helpful. Such dampings would include
fluid-structure interaction effects and will vary with
time. Suitable average values must then be defined.
In this context also doubts expressed on the use of
the relative velocity term in Morisons equation
should be mentioned [13].

Fig. 7. Skewness K3 and kurtosis 14 for a dynamic system sub
jected to a pure quadratic and a pure cubic (K3 = 0) excitation.
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1. Introduction

Number 4

This paper studies the applicability of the
path integral solution technique for esti
mating extreme response of nonlinear dy
namic oscillators whose equations of mo
tion can be modelled by the use of Ito
stochastic differential equations. The state
vector process associated with such a
model is generally a diffusion process,
and the probability density function of the
state vector thus satisfies the Fokker
Planck-Kolmogorov equation. It is shown
that the path integral solution technique
combined with an appropriate numerical
scheme constitutes a powerful method for
solving the Fokker-Planck-Kolmogorov
equation with natural boundary condi-

July-August 1994

tions. With the calculated probability den
sity function of the state vector in hand,
one can proceed to calculate the required
quantities for estimating extreme re
sponse. The proposed method distinguishes
itself by remarkably high accuracy and
numerical robustness. These features are
highlighted by application to example
studies of nonlinear oscillators excited by
white noise.

Key words: extreme response; nonlinear
oscillators; path integral solution; random
loading.

Accepted: March 22, 1994

An important element in the safety assessment of
many engineering systems, is the task of estimating the
probability of extreme events that may jeopardize the
structure in some specified sense. Very often, this prob
lem can be formulated as finding the probability that
some time varying random quantity does not exceed a
specified capacity level during a given time period.
Stated this way, the problem typically reduces to a study
of the extreme values of a stochastic process originating
as the response of a system subjected to some stochastic
loading process.

In this paper the focus will be on the problem of
estimating the extreme response of nonlinear dynamic
systems subjected to random forcing processes. In re
cent years the methods of time domain Monte Carlo
simulations, see, e.g., Refs. [1-5], have received consid-
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erable attention as a tool for estimating response statis
tics. These methods are versatile and attractive in the
sense that nonlinearities can be easily dealt with. The
main drawback at present is the large CPU times needed
for accurate prediction of extreme responses. Even if
this issue seems to become less of an obstacle every
year, portending perhaps that such methods may domi
nate practical estimation of response statistics of nonlin
ear systems in the not too distant future, it will still be
desirable to have available alternative methods of calcu
lating the response statistics, both simplified and more
elaborate. Here we shall explore a method based on the
theory of Markov diffusion processes. The justification
for using this theory is related to the fact that the re
sponse of nonlinear dynamic systems to broad band
random excitation can very often be accurately de-
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Prob {M(T)::Sz }=exp{-vHz)T} (T --1(0). (2)

Adopting the assumption that upcrossing of high levels
are statistically independent events, which leads to Pois
son distributed crossings, it follows that an asymptotic
approximation of the probability distribution function of
the extreme value of the process Z(t) during a time T,
denoted by M(T) (=sup{Z(t);O::St:::T}), is given by

The accuracy of Eq. (2) depends to a large extent on
the effective bandwidth of the response process Z(t).
Decreasing bandwidth leads eventually to a significant
clumping effect of large response peaks, invalidating
the assumption of statistically independent upcrossing of
high levels. Methods that aim at correcting for this effect
have been proposed for Gaussian (Refs. [14,15]) and

scribed by applying the theory of multidimensional
Markov processes. By this, the extensive theory of
Markov diffusion processes can be brought to bear on
these problems. In particular, it can be shown that the
probability law of response quantities can be derived by
solving a partial differential equation, viz., the Fokker
Planck (-Kolmogorov) (FPK) equation, see Refs. [6,7].
In most cases of practical interest, this equation has to be
solved numerically.

In the next section we shall describe a method for
solving the FPK equation that is based on a formal
solution of the same equation. This solution is obtained
by invoking the fact that a Markov diffusion process
locally looks like a Brownian motion. By using the
Markov property, the global solution can then be con
structed by linking the local solutions, which are known
explicitly. The obtained solution is generally known as a
path integral solution (PIS). The reader is referred to
Ref. [7] for a further discussion. One of the first efforts
to exploit the PIS method explicitly in developing nu
merical solution algorithms is described in Ref. [8].
Subsequently, other authors have also used the PIS ap
proach to solve various random vibration problems, cf.
Refs. [9-13].

Before embarking on a description of the PIS method,
it is expedient to briefly show how the obtained solutions
are used in an extreme value analysis. Assuming that the
response quantity of interest is a scalar (real) stationary
stochastic process, Z(t) say, the PIS method typically
provides a numerical estimate of the joint probability
density function (PDF) ido,o) of Z(t) and Z(t)=dZ(t)/
dt. It is now assumed that the mean level upcrossing rate
vHo) of Z(t) can be calculated from Rice's formula as
follows

where A ~ Rn is some event, x, x' ERn, dx=dx, ...dxn.

Prob {X (t) E A Ix(t')=X' }= f 0: ofp (x,t Ix' ,t')dx, (5)

where 8.')'=1 for X=Y, 8.')'=0 for x¥oy. Equation (4)
is a short-hand notation for the relation

E[f f h(s ,t)dWj(s)dW/t)]=8 jjf h(t ,t)dt, where h(o,o)

is a non-random function.
Equation (3) is interpreted here as an It6 stochastic

differential equation (SDE). Since it is often relevant to
consider Eq. (3) as being obtained as a limit of equations
with band limited noise processes, it may happen that
m (0) should contain correction terms to ensure a consis
tent limiting solution, cf. Ref. [6]. It is assumed here that
this consideration has already been made, and that Eq.
(3) has the final form to be used subsequently.

It is demonstrated in Ref. [6] that the solution X (t) to
Eq. (3) is a Markov vector process. Its transition proba
bility density function (TPD), p (x,t Ix' ,t' ), is defined
by the equation

E[dWj(t)dWj(t+T)]=8ij8t.t+TdT, iJ=I,... ,m, (4)

Here m(o)=[m,(o),...,mn(o)y, mk) denotes a real func
tion of n real variables. Q(o)=(qij(o» denotes an nXm
matrix where each qij(0) is a real function of n real
variables. W(t)=[W,(t), ...,Wm(tW where Wj(t),
j=l, ... ,m are standard, real Brownian motion processes,
which are mutually independent, see e.g., Refs. [6,7].
That is, E[Wj(t)]=O and

2. The Path Integral Solution

dX(t)=m [X(t)]dt+Q [X(t)]dW(t). (3)

The path integral solution (PIS) method is suitable for
calculating the joint probability density function (PDF)
of a vector process X(t)=[X,(t), ... ,xn(t)f (T-transposi
tion) satisfying a stochastic differential equation of the
following form, cf. Ref. [6],

non-Gaussian (Ref. [16]) processes. However, this point
will not be pursued any further here. We shall assume
that Eq. (2) provides an acceptable approximation.
Hence, the central parameter to be determined is the
upcrossing frequency v~ 0 ), which is easily calculated
once the joint PDFido,o) of Z(t) and Z(t)=dZ(t)/dt has
been made available. In the next section it is shown how
this PDF can be calculated for the response of a wide
range of nonlinear oscillators subjected to white noise
or filtered white noise loading.

(1)

00

vHz)= fYidZ,Y)dY.
o
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Provided that m (.) and Q(.) satisfy certain regularity
conditions, see Ref. [6], it can be proved that the TPD
p(x,t Ix' ,t' ) (t~t'~O) is the solution of a partial differ
ential equation of the form

:tP(X,t !X',t' )=-~ a~i[mi(X)p(X,tIx',t' )]

o denote appropriate zero-matrices and G(·) denotes an
(n-r)X(n-r)-matrix function with elements gik),
i J=r+1,... ,n. G(·) will be called the reduced diffusion
matrix. Equation (6) can now be rewritten as

a
a p(x,t IX',t' )=-±aa [mi(x)p(X,t Ix',t' )]
t i-I Xi

1 n n a2
+2~ ~~ [gij(x)p(x,t Ix',t' )],

i-I j-l X, Xl
(6)

1 n n a2
+2.~ .~ aX ax· [gij(x)p(x,t IX',t')].

,-r+l J-r+l I J

(12)

where G(x)=(gij(x»=Q(X)Q(X)T=(~:_1 qik qjd, and

with initial condition p (x ,t' Ix' ,t')=8(x-x'). G (.) will
be called the diffusion matrix and Eq. (6) will be re
ferred to as the Fokker-Planck-Kolmoforov (FPK)
equation. Since clearly Prob{X(t) ERn X(t')=x'}=1
the TPD satisfies the following normalization condition

Proceeding in a manner similar to the derivations in
Ref. [7], it can be shown that the TPD for small values
of 7(=t-t') is given by the following expression, which
is correct up to terms of order 7

2

r

p(X,t+7 Ix' ,t)={D8(Xi-X;'-mi(x')7)}
i-I

Letf(x ,t) denote the PDF of the random vector X(t).
If f(x,t')=w(x) for some initial PDF w(x), then it is
recognized from Eq. (6) and the relation

J.;:Jp(X,t IX' ,t')dx=1. (7)

(Xi-x;'-mi(x')7) [G(x')-I];-rJ-r(xrx/-mj(x')7)},
(13)

f(x ,t)=J•••Jp(X,t Ix' ,t')w(x')dx' (8)
R"

that f(x ,t) itself is a solution of Eq. (6) satisfying the
initial condition f(x ,t' )=w (x).

In this paper we shall be interested primarily in sta
tionary solutions fs(x) to Eq. (6), that is

fs(x)=limf(x ,t)=lim p(x,t Ix' ,t' ) (9)
/.....:;00 '--,,00

provided they exist. Even when both limits exist, it is
clear that limf(x,t) provides the faster convergence
when the initial conditionf(x,t')=fs(x). This comment
is relevant to the numerical implementation of the PIS
method, and will be discussed below.

To obtain the PIS appropriate for the dynamic systems
studied in this paper, it is necessary to be more specific
on the structure of the matrix function Q(.). In particu
lar, it will be assumed that the first r rows of Q(.) are
zero, that is

qij(.)=O for i=I, ... ,r; j=I, ... ,m (r<n) (10)

and that qij(.)¢O for at least one j for every i=r+1,...,n.
This implies that the diffusion matrix G(·) assumes the
form

(11)
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where IGI denotes the determinant of the reduced dif
fusion matrix G, assumed to be positive definite. This
implies that IG I> O. [G-I]ij denotes the element in po
sition i J of the inverse matrix of G. As shown in Ref.
[7], the expression given by Eq. (13) is not unique, but
seems to be well suited for our purpose.

Having obtained an explicit expression for the TPD
for a short time step, one can now invoke the Markov
property. This aIlows a TPD over a time interval of
arbitrary length to be expressed in terms of a product of
short-time TPDs. By dividing a given time interval (t',t)
into N small time intervals of length 1'=(t- t')/N, it is
found that (tj=t'+j7, t=tN

, x=x(N), t'=to, x'=x(O»

Similarly, with an initial PDFf(x' ,t')=W(X' ), the PDF
f(x ,t) will be given by

Hence, by combining Eq. (13) with Eqs. (14) or (15),
a formal (approximate) solution of the FPK equation can
be written. Equations (14) and (15), which are often
referred to as PIS, constitute the core of the numerical
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solution procedure to be described subsequently. It is
realized that a numerical solution according to this
method, automatically provides the evolution in time of
the (conditional) PDF of the Markov process X (t) from
given start conditions in terms of an initial density
!(x' ,t')=w(x'), including the degenerate case
!(x' ,t')=8(x' -xo), for some starting point xo. It is also
worth noting how the PIS relates to the physics of the
dynamic model, which is expressed through the coeffi
cients rnj(o) and qij(o), cf. Eq. (3). The evolution in time
of the PDF as expressed by the PIS, is seen to be directly
determined by these coefficients in an explicit manner.
This fact is a very important advantage of the PIS
method, and reveals its fundamental physical signifi
cance.

The representation of p(XV-I),fj_1 Ix' ,f') by B-splines
makes it possible to retain high numerical accuracy even
with a fairly coarse basic grid ifp (XV- I),tj _ 1Ix' ,t') is not
too singular. By substituting from Eq. (17) into Eq. (16),
Eq. (19) is obtained

Ml Mn

p(x(}),tj Ix' ,t')=2: 0002: rv-I)(k],ooo,kn)
k\-I kn-I

It is seen from Eq. (13) that since rn/o) and gij(o) are
not functions of time t, the TPDs cannot depend on
absolute time, but only on the time increment. Markov
processes whose TPDs have this property, are called
homogeneous. It follows that

3. Numerical Implementation ( (j) ·1 V-I) . )- «(j) I V-I) 0) '-1 2p x ,t) X ,frl -p X ,T X "j-, , ..., (20)

MI Mn

p(XV-I),fj Ix' ,f')=2: ooo2:rv-I)(k],ooo,kn)
kl-I kn-l (22)

which holds for any tj -fj _ I=T2:0.
From Eqs. (19) and (20) it is seen that for a fixed

value of the time increment T, each of the integrals on
the right hand side ofEq. (19) need to be calculated only
once, and can be stored for repeated use. That is, the
following parameters are calculated initially and stored

B1I ...ln =fo 0 Ofp(x(}) T IXV-I) 0) ®B(xV-1»dxV- I).kI···kn Rn (1, ...ln), ';-1 k,

(21)

Having calculated the TPD p(XV\tj Ix' ,f') at the grid
points by using Eq. (22), a spline interpolation is again
carried out and a new set of interpolation coefficients
{J'I\kl, ...,knnr-':'1 are calculated. This provides an up
dated representation of the TPD for time step j, cf. Eq.
(17). For each time step, the normalization condition Eq.
(7) is checked. That is, if

Here, the index 1;, i=1, ... , n, refers to grid point number
1; for the state space variable X;. It may be noted here that
due to the properties of the TPD for small time incre
ments T, the tensor Bt\;::~kn has a strongly banded charac
ter with the elements decreasing rapidly away from the
main diagonal kl=l],...,kn=ln • This has important impli
cations for the efficiency of the computer program. Let
pW.ln=p(xN~...ln),tj Ix' ,t'). Then Eq. (19) can be rewritten
as

(17)

(16)

where Mrnumber of grid points for the i'th state vari
able Xi, {07_ IBk;(onr-':'1 is a tensor product basis of cubic
B-splines and {rv- I)(k],000 ,knnr-':'I is the set of interpola
tion coefficients associated with time fj - I . It is assumed
that each set {Bk;(onr-.:.], i=l,ooo,n, is a basis of cubic
B-splines associated with the knot sequence determined
by the grid points for the i'th variable Xi' The tensor
product B-spline is defined by

The discretization of state space for the numerical
solution makes it appropriate to employ an interpolation
and smoothing procedure to increase the numerical effi
ciency. It was found that application of cubic B-splines,
as detailed in Ref. [17], offered the desired accuracy and
smoothness for the type of problems considered in this
paper. This procedure was used as follows. At each time
step tj-I~fj, p(xv-I),fj_l Ix' ,t') is represented as a cubic
B-spline series in the following manner

In the numerical implementation, the PIS is obtained
by an iteration process based on the Chapman-Kol
mogorov equation expressed as

(18)
00

IT LBk;(x)dx=qj (23)
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N(t) denotes a stationary, zero-mean Gaussian white
noise satisfying E[N(t) N(t+'T)]=S('T), where S(e) de
notes Dirac's delta function, r is a positive constant and
g(E) is a function of the total energy E=E(Z,Z) given
as follows

E'

Ps(z,i)=C exp{- ~Jg(s)ds}, (31)
o

For this example m2(z,i)=-ig[E(z,i)]-h(z), and
we may choose Q21=Q22=Wt=W2=0. Q23=r and
dW3(t)=N(t)dt. The stationary, joint PDF, denoted by
ps(e), is then determined by the relation, cf. Refs.
[20,21]

and q/=F 1.0 within the desired accuracy, then the follow
ing replacement is made to restore the correct normal
ization.

This normalization check and replacement strategy con
tributes to producing a very stable and accurate numer
ical procedure.

4. Examples

The accuracy and power of the developed PIS proce
dure will be illustrated by application to specific case
studies taken from two classes of dynamic models. Both
models are described by Eq. (3) with n=2 and m=3.

This implies a two-dimensional state space vector
X=(X1,x2l=(z.zl. Further, m(e) and Q(e) are such that
ml(XI ,x2)=X2 and %(e)=O for j=I,2,3. Assuming suffi
cient restrictions on m(e) and Q(e), cf. Refs. [6,7], X(t)
becomes a Markov diffusion process. Invoking Eq. (13),
it can be shown that, up to correction terms of order 'T2

,

the associated TPD assumes the form

where

Z+Zg (E)+h (Z)=r N(t).

1 . 2
E=-Z +V(Z)

2

z

V(z)=Jh(s)ds.

o

(28)

(29)

(30)

p(x,'T 1x' ,0)=8(Xl-XI'-X2' 'T)ep(X2,'T 1 x' ,0). (25)

P(X2,'T 1x' ,0) is given by the relation

P(X2, 'TI x' ,0) 1 ex { (X2- X2'-mi X')'T)2}
v'2'ITf3(x')'T p - 2f3(x')'T '

(26)

where E'=i2/2+V(z), and C is a normalization constant
to ensure a total probability equal to 1.0.

For the illustration purposes in this paper, we have
chosen the following special case of Eq. (28)

.. . 1 . 2 1 2 1 4 1/2
Z(t)+2a(t){I+E['2Z (t)+'2Z (t)+'4AZ (t)] }+Z(t)

where +AZ\t )=2VgN(t) (32)

4.1 Example I-The Caughey Oscillator

There is a class of dynamic models for which there
exist an analytical solution for the stationary joint PDF
of X. A member of this class may be called a Caughey
oscillator, Ref. [20]. The generic equation of motion for
this oscillator can be written as

By combining Eqs. (25) and (26), and applying the
solution technique described in the previous section, the
TPD p (x,t 1x' ,t') for large t- t' can be calculated. By
this; the time evolution of the system when it starts from
rest, for example, can be studied. The stationary PDF is
obtained in the limit as t- t' -700• For application of the
PIS method to other problems involving both two- and
three-dimensional state space vectors, the reader may
consult Refs. [11-13,18,19].

3

f3(x')=2: q2/X' )2.
j-I

(27)
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with parameters g, E, and A.
The stationary PDF only depends on the parameters E

and A, and the numerical solution for the following set
of parameter values has been calculated (E,A )=(0,0)
(Gaussian response), (0, 0.2) (Duffing oscillator) and
(0.5, 0.1). The calculations were carried out with the
same number of grid points .on both axes in state space,
aviz., 45. Since the resulting PDFs are·actually indepen
dent of g, the value ~0.1 was chosen for the Gaussian
and Duffing cases, while ~0.5 was adopted for the last
case. The time increments used were 7'=0.0025 s, 0.001
s, and 0.02 s, respectively. The total CPU time on a DEC
station 31001 was about 5 minutes for each case. In Figs:

'Certain commercial equipment, instruments, or materials are identi
fied in this paper to specify adequately the experimental procedure.
Such identification does not imply recommendation or endorsement
by the National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessarily the
best available for the purpose.
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I and 2 are shown the marginal PDFs of the displace
ment response for the three case studies considered,
together with the corresponding analytical solutions. In
Fig. 3 are given the corresponding analytical and numer
ical results for the mean upcrossing rate. It is seen that
in all three cases the agreement between the numerical
PIS and the analytical solution is very good over the
whole range of probability levels given. In fact, the
accuracy can be retained down to much lower probabil
ity levels (= I0- 1°) at a moderate increase in computer
time.

4.2 Example 2-Parametric and External
Excitation

are independent Gaussian white noises satisfying

E[N/t)N/t+T)]=Jj 8(7), j=1,2,3, (34)

where IJ are positive constants. For this example it
is found that m2(z,i)=-2~i-'Y[z2+i2/wg]-w5Z,

q21(Z,i)=-2~ir" q22(z,i)=-w5Zr2 and Q23(Z,i)=r3.
This model was studied by Dimentberg [22], who

showed that when

(35)

a closed-form expression for the stationary joint PDF
can be obtained. It is given as

where C is a normalization constant and

By this, we have the opportunity to test the accuracy of
the PIS method for this kind of dynamic model. The
results of two particular cases will be presented.

In this example, the response statistics of a nonlinear
oscillator subjected to both external and parametric ran
dom excitation will be illustrated by applying the
methodology of the paper to two specific case studies.

The equation of motion of the oscillator is the follow
ing

i+2~[l+N1(t )]Z+'Y[Z2+ Z:]Z+w5[l +N2(t )]Z=N3(t).
• W o

(33)

Here ~, 'Y, and £do are positive constants, Nj (t),j=I,2,3,

(36)

(37)

0.6..------r------,-------.--------r--------,..------,

0.4
.~
'"c
0

"0

~ 0.3
:E
o:l
.0

8
ll.

0.2

Displacement

Fig. 1. Probability density function of displacement response for the Caughey oscillator in example I. Ana
lytical solutions: --, 6=0, A=O; -. -., 6=0, A=0.2; - - - -, 6=0.5, A=O.1. Numerical path integral
solution: +, 6~0, A~O; X, 6~0, A~0.2; 0, 6~0.5, A~O.1.
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Case 1: Here the following parameter values were
used. ~.1, ')1=0.1, 000=1.0, 17=2.5, Ii=O.I, n=O.3.
For the numerical calculations a grid size of 49X49
points and a time increment 7'=0.01 s was used. The total
CPU time on a DEC 3100 work station was 3 min for the
PIS calculation. The results for the analytical and nu
merical solutions are given in Figs. 4-6. In Figs. 4 and
5 are shown the marginal PDF of the displacement re
sponse and in Fig. 6 is shown the corresponding mean
upcrossing rate.

Case 2: In this case the following set of parameters
were used. ~.1, ')1=0.4, 000=1.0, 17=5.0, Ii=0.2,
n=0.3. A grid size of 51 X51 points together with a
time increment 7'=0.01 s were chosen. The CPU time
was about the same as in the previous case. The same
results as for Case 1 are presented in Figs. 4-6.

5. Conclusions

A numerical method for estimating the extreme re
sponse of nonlinear oscillators excited by white noise,
or filtered white noise, has been described. The example
calculations presented show that the method gives very
accurate estimates of the required joint PDF. In fact, for
every example having analytical solution on which the
method has been tested, complete agreement has been
found with proper choice of grid size and time incre
ment in the numerical solution procedure. In the present
paper, of course, only a few cases can be given. Experi
ence with the method indicates that two-dimensional
problems can be solved routinely with high accuracy
requiring a few minutes CPU time on a work station
(DEC station 3100). The solution of three-dimensional
problems requires more care in the sense that computer
capacity starts to become an issue of importance. In
such cases the CPU time easily runs into hours.
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'"c 0.40
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Fig. 4. Probability density function of displacement response for the oscillator in example 2, case I and 2.
Analytical solutions: --, case I; _. - ., case 2. Numerical path integral solution: +, case I; 0, case 2.
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1. Introduction

Number 4

Salt induced concrete delamination is a
problem often encountered in parking
garage slabs in northern climates where
deicing salts are heavily used. A ran
dom field model of the delamination
process is investigated and compared
against some field data. Delaminated
regions of the slab are modeled as ex
cursions of a random field above a pre
scribed threshold and the growth of
these regions with time is obtained by
allowing the threshold to fall as a func-
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tion of time. Simulation based excur
sion statistics are used to obtain the
mean and variability of various aspects
of the delamination process using this
mode!.
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lamination; level excursions; random
fields; rehabilitation; reliability.
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The delamination and spalling of concrete sur
faces in parking structures in northern climates is
an ongoing and expensive problem. The Trans
portation Research Board [1] estimates that be
tween 50 and 150 parking structures in the
Northeast and Midwest United States will need to
be rehabilitated each year for the next 10 years at
an average cost of $1 million per structure. With
out proper design and/or maintenance, deicing
salts brought in by vehicles from the roadways are
deposited on the concrete surface along with water.
Chloride ions gradually penetrate the concrete and
electro-chemical processes lead to corrosion of the
reinforcing steel. This results in both a degradation
of structural integrity and, since the corrosion
products occupy considerably more volume than
the original steel, delamination or spalling of the
concrete surface and loss of utility.

This paper is aimed at developing a tool to aid
in a rational probabilistic approach to the rehabil
itation of parking structures. Such an approach
allows the optimal allocation of limited resources
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to this ongoing and rather expensive maintenance
issue. A simple stochastic model involving only a
few parameters is used herein to represent what is
known to be a complex phenomenon. The follow
ing factors are suggested by Public Works Canada
[2] to have the largest effect on the onset of con
crete delamination;

chloride ion input: quantities of deicing salts
used,

• concrete penneability: influenced in turn by
water/cement ratio, intensity and frequency of
cracking, surface coatings/sealers and construc
tion practices,

• ambient temperature, humidity, precipitation

• concrete cover depth

• pH of local aggregates

• conductivity: wetness of concrete.

It is immediately recognized that virtually all of
these factors are highly variable from structure to
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structure and within a single structure from point to
point. As well, on a practical basis for an existing
structure, some of the factors are unknowable ex
cept through extensive destructive testing. Clearly a
representative model should not require experi
mental validation on a per structure basis, where
the experimentation may be more expensive than
the final repairs. This, in fact, is the primary motiva
tion for the use of stochastic models.

In a different approach to the same problem,
Attwood et al. [3] develop a limit state function for
parking structures based on a critical fraction of
floor area delamination, Dec,

(1)

where m:::;O denotes the "failure" state, S is the
annual delamination rate, a is a correction factor
accounting for ambient temperature and crack
widths, ( is time in years, and fI is the time to initia
tion of delamination (also in years). Note that the
second term is taken to be zero for all (:::;(1.

Attwood et al. employ a First-Order Reliability
Method (FORM) to estimate reliabilities associ
ated with the delamination of a parking garage
structure. In their approach, all of the factors ap
pearing in Eq. (1) are expressed in terms of random
variables having assumed distributions and the joint
cumulative probabilities are evaluated using
FORM.

In this paper a 2-dimensional random field model
representing the spatial delamination process over
time is investigated. The random field may be
loosely interpreted as the out-of-plane stress field
at the reinforcement level (which changes randomly
from point to point over the area of the slab). De
laminated regions are represented by excursions of
the random field above some threshold which can
be thought of as a critical concrete resistance to
horizontal splitting. In fact the stress field itself will
not be considered in that it is unmeasurable in prac
tice. Rather, the field excursions will be used to rep
resent the delaminated regions directly, since these
regions are measurable to some extent. A simple
random field model is adopted whose primary moti
vation is to attempt to shed light on the following
questions;

1) what is the mean and variability of the total
area of delamination as a function of time?
2) what is the average size of individual delami
nated regions as a function of time?

3) how many delaminated regions can be
expected in a slab?
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These are essentially questions regarding the statis
tics of excursion regions and so some simulation
results regarding excursion statistics will be pre
sented in the next section.

Figure 1 illustrates an example of excursions of a
random field above some predefined threshold. In
the context of this paper, the dark regions can be
viewed as areas where concrete delamination has
occurred at some fixed time. As time progresses,
delaminated regions are expected to grow in size,
corresponding to a falling threshold level. A falling
threshold is equivalent to a rising mean, in the case
of a homogeneous field. Since the excursion statis
tics in the next section are developed as functions of
the threshold, the falling threshold interpretation is
used here rather than a rising mean. In either case,
a nonhomogeneous field could be employed, if the
data so indicated, by considerably extending the
simulation based study (in the absence of analytical
results). In this preliminary investigation, only a ho
mogeneous field is considered.

Fig. 1. Excursions of a two-dimensional random field above
threshold bO'.

To represent the delamination process, excur
sions of an isotropic Gaussian random field having
mean zero and unit variance will be used. Although
other values of mean and variance are possible, the
excursion statistics are dependent purely on the
distance between the mean and the threshold. This
distance can be expressed in units of (T, the stan
dard deviation, so that there is no advantage in
choosing anything other than a mean zero, unit
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variance field. The quantity bu will be referred to
henceforth as the physical threshold and b alone as
the threshold. The choice of an isotropic Gaussian
process has been made largely for simplicity, there
being little evidence available to clearly justify other
types of random functions.

2. Excursion Statistics in Two Dimen~

sions

between cell variance and point variance will be ig
nored in this paper, although the results presented
in the various plots to follow are accurate in this re
spect. For a more rigorous treatment of this issue,
see Ref. [6].

Within a given domain V =[0, L 1] x [0, L 2] of area
AT =L 1 L 2, the total excursion area per unit area,
Db, where the process Z (x) exceeds some
threshold, can be defined by

which, for a zero-mean Gaussian process yields

For a homogeneous process, the expected value of
Db is simply

Db =l
T

Iv I (Z(x) -bu) dx, (3)

(4)

(5)

I( ) = {1 if t::::O
t 0 if t < 0 .

where bu is the physical threshold of interest, u 2 be
ing the variance of the process, and I (.) is the indi
cator function defined on V (taken to be zero
outside the domain V)

With respect to excursion statistics, such as the
mean number and area of isolated excursions, ana
lytical results developed to date are asymptotic in
nature, accurate only at very high thresholds where
the excursion process approaches a Poisson point
process. Often in engineering problems the interest
is in thresholds which are quite a bit lower, such as
the delamination process considered herein. In or
der for the proposed random field model to be use
ful in this context, excursion statistics should be
available. This section summarizes a study in which
excursion statistics are obtained through Monte
Carlo simulation. Specifically, an ensemble of 2000
realizations of an isotropic zero mean, unit variance
Gaussian random field, Z (x), with Markovian co
variance function,

(2) (6)

are produced using the Local Average Subdivision
(LAS) method [4, 5], where 7' is the lag vector and
(J is the scale of fluctuation. The scale of fluctuation
is loosely interpreted as the distance over which
correlation is significant. Since many of the statis
tics of interest depend strongly on the scale of fluc
tuation, 2000 realizations were generated at each of
5 different scales of fluctuation.

Individual realizations are decomposed into
excursion regions and "holes," using a space-filling
algorithm, over a range of thresholds b =[- 4, 4].
The mean and variance statistics of the excursions
are estimated over the ensemble. It should again be
emphasized that b is measured in units of standard
deviation, for example b =2 implies a threshold at
two standard deviations from the mean. For a unit
variance field there is no distinction between the
value of b and the physical threshold level. However
the local averaging performed by the LAS method
results in a slight decrease of the variance of the dis
cretized field, as dictated by local averaging theory.
In that each field is represented as a discrete lattice
of 128 X 128 "cells," the variance of each cell varies
from 0.971 at the smallest scale of fluctuation con
sidered to 0.999 at the largest. The distinction

where ep is the standard normal distribution func
tion. The estimate of E[Db ], denoted mDb' derived
using the simulation results is shown in Fig. 2 and is
in complete agreement with Eq. (6). Figure 2 (b)
shows the estimated standard deviation of Db de
noted SDb' Note that while E[Db] is independent of
(J, its variance is not. In keeping with the practice of
normalizing all results, the scale of fluctuation has
been normalized with respect to L =~ in these
plots. Note also that the horizontal threshold axis
values decrease to the right - this is because the
threshold axis is associated with time in the next
section and time increases to the right as usual.

Figure 3 shows the estimated mean and standard
deviation of the number of isolated excursion re
gions, Nb , denoted mNb and SNb respectively, as a
function of scale and threshold. Although not read
ily apparent from the plot, the limiting value of mNb

at the right edge of the plot (b -;. - 00 ) is 1. In other
words, a single excursion exists over the entire do
main for very low thresholds. At the other extreme
(b-;. 00), the limiting value is zero as expected.
Although the roughness of the estimate SNb' as seen
in Fig. 3(b), is as yet unexplained, it appears un
likely that it arises from statistical uncertainty in the
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Fig. 3. Estimated statistics of number of isolated excursions, Nb : a) mean, b) standard deviation.

estimation procedure. Based on a sample size of
2000 realizations, a 90 percent confidence bound on
the standard deviation of N b is about ± 0.025sNb

which is smaller than the size of most of the
"bumps" seen in Fig. 3(b).

Within a given realization, the average area of an
isolated excursion per unit domain area, De, can be
obtained using the number of excursions,

4(b) is derived using the assumption that the sizes
of isolated excursions are independent. While this is
true from realization to realization, it is clearly not
true within a single realization. Thus Fig. 4(b) can
only be considered to be a rough indication of the
true variability of the area of isolated excursions.

3. Calibrating the Model

Since Db is the sum of the Nb isolated excursion
areas, the expected value of De is just

Figure 4(a) illustrates this result using the esti
mated mean value of Nb shown in Fig. 3(a). The
estimated standard deviation of De shown in Fig.

There are essentially only two parameters in the
random field model considered in this study. These
are the scale of fluctuation, 8, and the threshold
level, b. Although there is little published experi
mental evidence to allow a clear statement of what
these parameters should be for a given structure,
some preliminary estimates are possible. First the
relationship between the threshold level and the
age of the structure can be obtained by fitting
delamination versus age data collected by Trow [7]
and presented in Ref. [3] to the curve of Fig. 2(a).
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A good fit was obtained using least squares re
gression (r 2 =0.93) on the linear relationship
b = 3.17 - 0.22St. To obtain this relationship, the
total fraction of delaminated area observed by
Trow, Db, was plotted against b = ep-l(l-Db) and
a best fit line obtained. Figure S(a) shows the re
gression results and Fig. S(b) shows where the ob
served delamination results would appear on Fig. 2.
To expand the scale, only positive thresholds are
shown in Fig. S(b). The choice of function relating
time and threshold is largely arbitrary as long as
b (t) is a decreasing function over all times of inter
est (assuming delaminated areas cannot "heal").
While a quadratic gives a slightly better fit to the
raw data, it violates this principle and so cannot be
used to extrapolate.

Some additional unpublished data was made
available to the author by Public Works Canada
based on a survey of a single parking garage struc
ture in Ontario, Canada. Figure 6 illustrates this
data. The ± 1 standard deviation curves are ob
tained using Fig. 2(b) with elL =0.1. Clearly, for
such a choice in e, the variability in Db predicted by
the random field excursion model underestimates
the variability in the observations. The additional
variance arises because the time-threshold relation
ship b (t) is itself a function of random coefficients,
as implied by the regression analysis. Alternatively
and equivalently, the additional variability could be
ascribed to the fact that the delamination field is
not homogeneous on such a scale. When considered
at the scale of a typical bay, some bays show much
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Fig. 4. Estimated statistics of isolated excursion areas per unit area, De,: a) mean, b) standard deviation.
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with r 2 =0.86. Notice that for such a case, the vari
ability in the observations is substantially reduced

generally, although this appears indicated. Since
plan views of the delaminations are available from
Public Works for individual bays of approximately
5 m x 5 m in extent (L =5), attention will be re
stricted to data on such a scale over which the field
can be considered homogeneous. Choosing one
such area from the Public Works data, the mea
sured delamination fraction as a function of time is
shown in Fig. 7. In this case the line of best fit was
found to be

higher delamination rates than others, perhaps cor
responding to smaller mean cover depths and/or
higher CI- inputs. Note also that larger values of ()/
L lead to higher standard deviations in Db so that
the variability seen in Fig. 6 could also be explained
by larger values of (). However the choice of ()
should not be based on the variability in Db, rather
this observation indicates that perhaps the Gauss
Markov covariance model is not appropriate.

In this study, b(t) will be treated as a determinis
tic function which corresponds to the choice of a
homogeneous random field. It is beyond the scope
of this initial investigation to consider estimating
the parameters of a nonhomogeneous (or self
similar) field to represent the delamination process

b =4.13-0.172t (7)
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and that 2/3 of the observations lie on or within the
± 1 standard deviation curves for elL =0.1 (see
also Fig. 5). This result appears encouraging al
though it is recognized that it could be due in part
to the reduced number of samples, even though
similar results were found for most other bays.

Before considering the estimation of e, it is worth
pointing out a further difference between the ran
dom excursion model and the commonly accepted
delamination model. Salt induced reinforcement
corrosion is generally believed to involve two stages
(see Ref. [8]): 1) an initiation phase during which
the alkalinity of the concrete surrounding the rein
forcement (which renders the steel passive) is re
duced by the migrating Cl- ions, and 2) an active
phase during which corrosion takes place. Attwood
et al. [3] estimates the initial phase to last 4.7 years.
During this phase no corrosion is assumed to take
place. Note that such a model can only be applied
to points in the slab where the concrete is in contact
with the reinforcement.

In contrast with this two stage model, the random
field excursion model admits some probability of
delamination even at time t =O. Using Eq. (7), one
obtains b = 4.13 at time t = 0, so that the expected
total delamination area per unit area is 1.7 x 10-5 or
about 17 mm2/m2 of slab. At these levels the precise
definition of delamination comes into question. If it
is strictly interpreted as a loss of bond between the
concrete and reinforcement then this result is not
unreasonable given the presence of cracks, voids
and the initial state of the reinforcement. At time
t =5 years, the expected total delamination area is
still only about 6 cm2/m2 of slab, a level which is
probably still largely undetectable at the surface of
the slab and presumably would correspond to corro
sion in the immediate neighborhood of surface
cracks. Although it is believed that cracks do not
contribute significantly to the areal delamination
process [8], it is not unreasonable to expect that
they can be initiators of the corrosion process at dis
crete points in the slab. If this is the case, then the
many year delay before the onset of observable lev
els of delamination implies that the corrosion
growth should be quite slow at first. The results
predicted by Fig. 2(a) are in basic agreement with
this in that E [Db] grows very slowly for b decreasing
to about 2 [corresponding to t < 12 years using
Eq. (7)].

Turning now to the estimation of the scale of
fluctuation, e, it becomes apparent that this task is
complicated by the type and quality of data avail
able. Ideally, one would take meaSurements of the
corrosion induced stress field over a number of
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structures, estimate a spatial covariance structure
and from this obtain e. Even if this approach were
possible, the nonhomogenieties mentioned above
would make it difficult. However, in general the
stress field is unmeasurable and what little data is
available generally consists of surveys giving the
spatial extent of delaminated regions. Figure 8(a) il
lustrates such a survey while Fig. 8(b) is a realiza
tion of the random field excursions using e=0.5 m.
Once the time-threshold relationship has been
established, and for the purposes of this argument
Eq. (7) will be used, a possible technique of estimat
ing e would be to count the average number of
excursions and enter Fig. 3(a) at the appropriate
threshold to estimate OIL. Purely on the basis of
Fig. 8(a) this yields estimates of e=2 to 4 m (e/
L = 0.4 to 0.8). However realizations at this scale
yields excursions which are generally far too well
connected as shown in Fig. 9. Realizations at such
large scales appear like large land masses with many
small islands close to shore. Figure 8(a) has
"islands" that are more uniform in size and distri
bution implying a smaller scale of fluctuation. In
Fig. 8(b), produced using e=0.5, the larger islands
are of similar size to the delaminations seen in Fig.
8(a). This along with arguments to follow supports
the choice of a smaller scale of fluctuation.

While one cannot expect the plots in Fig. 8 to be
identical since they are both independent realiza
tions of a random process, any more than one could
expect the pattern of delaminations in another
building to be identical, a number of points can be
made about the two plots;

1) there is no apparent spatial orientation of the
delamination regions in the observations of Fig.
8(a), indicating that the assumption of isotropy is
acceptable, at least for this case.

2) about half of the excursions in the random field
model (Fig. 8b) are of very small extent. This frac
tion increases at larger scales. On the other hand,
in Fig. 8(a) there are only very few "small' areas
appearing in the later survey. It seems reasonable to
suspect that additional small delamination regions
are in fact occurring in the real slab but that the
chain-drag surveying technique is unable to resolve
them. Operator bias will almost certainly also be
present due to the prior knowledge of existing de
lamination areas.

3) the random field model is much "rougher"
than the observed delamination plots. Again this is
likely a problem with the ability of the chain-drag
survey to resolve detail.
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(a)

Fig. 8. a) Observed delamination regions at ages 1 =13 years (dark grey) and 1 =22 years (light grey) on a
5 m x 5 m portion of a parking garage slab. b) Excursions of a random field above b = 0.34(1 = 13) and
b =19(1 =22) using IJ =0.5 and Eq. (7).

Fig. 9. A realization of excursions at 1= 13 years (dark grey)
and at 1 = 22 years (light grey) using IJ = 4 m on a 5 m x 5 m field.

The last two points illustrates the difficulty in esti
mating () on the basis of delamination surveys. The
chain-drag method depends on setting up reverber
ations in the delaminated concrete. For delamina
tion details below a certain size, the frequency shifts
are undetectable to even the most sensitive human
ears, rendering them unnoticeable. Thus many of
the delamination details on which an estimation of
() depend are unavailable using current surveying
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techniques. To some extent the deficiencies in the
chain-drag procedure could be accommodated sim
ply by introducing more local averaging in the ran
dom field model- effectively smoothing the field.
While such a "correction" would not likely result in
an improved delamination model, it may allow
improved estimates of (). For the purposes of this
investigation, the realization based estimate of
() =0.5 m is used.

4. Discussion

Conceptually the model proposed herein is quite
attractive in that the delamination process is indeed
a threshold excursion process in two dimensions.
Once the details of the model have been established
(type of distribution, time-threshold relationship
and scale of fluctuation) and some of the properties
of threshold excursions in two dimensions have
been determined analytically or via simulation, the
model can be used in a reliability context. For ex
ample, using Eq. (7), at time t = 12 years (b =2.07)
Fig. 2 along with Eq. (6) indicates that mDb =0.0194
and SDb =0.0080, using () =0.5 m. IfDb is assumed to
have a Beta distribution, which is properly bounded
between 0 and 1, then the probability that Db is less
than 3 % at 4 years is given by

(8)

In turn, if a target reliability of 0.9 were chosen
against delamination in excess of 3 %, then
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inspection of the garage would be recommended at
t = 12 years for this structure.

Because the model includes the spatial aspects of
delamination, it can be used to evaluate testing and
mapping procedures. For example, at time t =12
years one could expect about 42 isolated excursions
on a 5 m x 5 m slab (8 =0.5 m) with a standard de
viation of about 11. The area of each isolated excur
sion would average about 0.011 m2 with a standard
deviation of about 0.022 m2

• Surveys which yield re
sults considerably different than these may require
verification using other techniques. In addition, the
spatial description of delamination could be used in
a structural reliability study. For this the simulation
approach could be employed to yield a measure of
the degree of clustering of the delamination regions
(see Ref. [6]).

One recognizes that the excursion model is at
tempting to predict the cracked state of a concrete
slab. In that internal cracks are exceedingly difficult
to map, even in controlled laboratory conditions,
the model is to some extent intuitive and wi11likely
remain so until improved surveying techniques are
developed. Nevertheless the model demonstrates
some promising features and can be used as a pow
erful reliability tool when its parameters are clearly
defined in terms of additional data and simulation
studies. In particular, the data shown in Fig. 6 indi
cates that perhaps alternative correlation functions
[see Eq. (2)] should be studied-multiple-scale or
self-similar type random fields are suggested, show
ing the small scale behaviour over small regions
while reflecting also the large scale, slower varia
tions over larger domains. Also the fact that the
model allows delamination to occur at time t =0 (or
before) implies that some thought should be given
to the assumption of a Gaussian random field and/
or the time-threshold relationship. In the interim,
however, the choice of a Gaussian field and linear
time-threshold relationship leads to results which
appear reasonable for any time t > O.
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1. Introduction

Number 4

Calculations of the first and second
moments of displacement damage
energy distributions from elastic colli
sions and from nuclear reactions, at
proton energies ranging from 10 MeV
to 300 MeV, are incorporated into a
model describing the probability of
damage as a function of the proton
f1uence and the size of the sensitive
micro-volume in Si. Comparisons be
tween the predicted and measured
leakage currents in Si imaging arrays
illustrate how the Poisson distribution
of higher energy nuclear reaction
recoils affects the pixel-to-pixel variance
in the damage across the array for pro
ton exposures equivalent to mission
duration of a few years within the
earth's trapped proton belts. Extreme
value statistics (EVS) quantify the
largest expected damage extremes

July-August 1994

following a given proton f1uence, and
an analysis derived from the first-princi
ple damage calculations shows excellent
agreement with the measured extremes.
EVS is also used to demonstrate the
presence of high dark current pixels, or
"spikes," which occur from different
mechanisms. Different sources of spikes
were seen in two different imager
designs.

Key words: charge coupled devices;
charge injection devices; displacement
damage; extreme value statistics;
microdosimetry; satellite imagery;
satellite microelectronics.
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Proton-induced displacement damage degrades
semiconductor electrical properties by introducing
localized energy states within the band-gap which
result in increased generation dark current, carrier
recombination and charge trapping. On average,
the permanent proton-induced damage in bulk Si is
proportional to the average amount of energy
which has been imparted through non-ionizing
processes following elastic and inelastic scattering
of Si atoms [1-3]. However, on micro-volume scales
appropriate for microelectronics, average damage
is a poor indicator of damage effects because of
differences in the number of incident particles and
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fluctuations in energy deposition which are an
unavoidable consequence of collision kinematics.

Characterization of displacement damage in Si
micro-volumes has particular importance for satel
lite imaging array applications. Device radiation
hardening solutions have largely solved problems
associated with ionization effects. However, parti
cle irradiation seriously degrades charge transfer
efficiency through carrier trapping and increases
dark current by carrier generation. Permanent dark
current increases from single particle interactions
have been reported in sensor arrays following pro
ton and neutron irradiation [4,5]. Pixel-to-pixel
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For proton energies of practical interest in satel
lite orbits, the damage is caused by recoiling atoms
from collisions with Si atoms. As depicted in Fig. 1
[7], elastic scattering by the Coulombic field of the
nucleus dominates for protons below 10 MeV,
though at higher energies, nuclear elastic scattering
also becomes important. By 60 MeV, about half of
the displacement damage is due to nuclear inelastic
reactions which dominate above 100 MeV. Elastic
cross-sections are relatively lIigh with recoil ener
gies typically less than 1 keV as opposed to in
frequent nuclear reactions emitting very damag
ing MeV-range recoils. In this work, the first and
second moments of the recoil spectra are calcu
lated separately for each type of interaction.

The average damage energy from all elastic
recoils is obtained by numerically integrating the
product of the differential cross section weighted
by the corresponding recoil damage energy, over all
scattering angles. Damage energy is defined here
as the portion of energy lost by a recoil through
mechanisms other than ionization as calculated by
Lindhard et al. [8]. Note that this represents an
important adjustment to the total energy imparted
by the reaction atoms which must be assessed for
evaluating either the nonionizing or the ionizing
energy imparted. The second moment calculations
proceed in the same manner, except the recoil
damage energies now appear to the second power.
The variance follows as the second moment minus

Log N

variations in dark current increases following
multiple interactions within each pixel have also
been shown to depend on the incident particle and
energy [3,6].

Orbital proton energy spectra, whether from the
earth's trapped radiation belts or solar flares, typi
cally peak at very low (and more damaging) ener
gies and decrease exponentially with increasing
proton energy. Typical spacecraft structural shield
ing effectively attenuates lower energy protons re
sulting in spectra extending from a few MeV to
several hundred MeV with average energies over
20 MeV. Proton linear accelerators and cyclotrons
are therefore well suited for monoenergetic charac
terizations of damage verses proton energy which
can then be incorporated in damage predictions for
a given environment and shielding configuration.

For the proton energy range of 10 MeV to
300 MeV, this work explains the average damage
and pixel-to-pixel damage fluctuations in terms of
calculated parameters reflecting the energy depen
dence of the proton-silicon interactions; The analy
sis predicts the damage distribution within a given
array as illustrated for the particular case of a
charge injection device (CID) depletion volume
and the cross-sections and Si recoil energies
applicable to 12 MeV, 22 MeV, and 63 MeV pro
ton induced damage. This enables a direct com
parison between the predicted damage distri
butions and the observed dark current histograms
reported in [3] across a range of energies important
for orbital environments.

Dark current extremes, which may follow from
damage extremes, are a particularly serious con
cern for a variety of satellite imager applications.
These "hot pixels" of "spikes" interfere with the
instruments ability to resolve small, dim objects
such as low magnitude stars which might be used
for a star tracker guidance system. Also, spikes in a
image can place overhead on data compression al
gorithms and burden telemetry channels. Extreme
v.alue statistics are well suited for characterizing
the frequency and magnitude of these spikes.
These tools are applied' to proton damaged CID
imagers to illustrate this approach, and we show
that for one particular CID design, the spikes can
be accurately predicted based on the calculated
probabilities and kinematics of proton-initiated
nuclear reactions.

Fig. 1. Frequent coulombic scattering from protons of a
few MeV initiate low energy recoil atoms resulting in isolated
defect sites. More energetic protons can impart more energy to
recoil atoms via nuclear elastic and inelastic reactions resulting
in less frequent but more complex damage structures.
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Fig. 2. The mean and variance of the total elastic damage energy
are plotted versus proton energy along with a best-fit curve. The
moments were calculated based on elastic differential cross
section data [1 and references therein] indicated by circles and
triangles.

calculated as in the elastic case, and the results are
summarized in Table 1. Further details and
comparisons with data are discussed in [1,3].

3. Damage Calculations

For a given proton energy, the mean and variance
describing the probability density function (pdf)
for damage from single interactions, as listed in
Table 1, allow independent evaluation of the dam
age expected from the elastic and inelastic recoil
categories. For the elastic category the mean for the
pdf describing damage at a given proton fluenee is
the product of the number of interactions and the
mean of the pdf for single interactions. The number
of interactions is the product of the average cross
section, the incident particle fluence, and the num
ber of Si atoms in the sensitive volume.

The elastic scattering component of the variance
associated with the fluence dependent pdf is esti
mated as the product of the number of interactions
and the single interaction pdf variance shown in
Fig. 2. This is possible because Poisson fluctuations
in the number of elastic recoils per pixel do not con
tribute significantly to the final result. In the regime
where N, the average number of interactions per
volume element, is greater than 20, the N -fold con
volution of the single interaction pdf with itself
leads to a Gaussian elastic damage distribution with
mean and variance as described above.

For sensitive volumes and fluences of interest
here, the average number of inelastic recoils ranges
typically from a fraction to a few, and a discrete
Poisson distribution determines the probability of a
given number of inelastic recoils. The pdf governing
the inelastic damage energy for a pixel with N;
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the first moment squared, as is customary. Figure 2
plots the mean and variance of non-ionizing energy
for proton energies from 10 MeV to 300 MeV, and
Table 1 lists the values of experimental interest,
along with the total elastic cross-sections and recoil
energies.

The inelastic reaction cross-sections are esti
mated according to the empirical formula of Letaw
et al. [9]. Calculations of primary recoil energies
consider both the initial intranuclear cascade and
subsequent evaporation of nucleons. The momen
tum imparted during the evaporation phase is esti
mated using a Brownian motion model. Next, the
average and variance of the damage energy are
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Table 1. Proton recoil spectrum parameters

Proton Cross Mean recoil Mean damage
energy section energy energy
(MeV) (BARNS) (MeV) (MeV)

Elastic reactions

12 1548 3.40 x 10- 4 1.76 x 10- 4

22 857 4.68 x 10- 4 2.13 X 10- 4

63 318 7.77 x 10- 4 2.87 X 10- 4

Inelastic reactions

12 0.670 0.267 0.0765
22 0.723 0.569 0.111
63 0.523 1.44 0.152

~
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Variance of damage
energy
(MeV)2

4.77x 10- 0

7.71 x 10-0

1.62 x 10-5

2.05 X 10- 3

2,71 X 10- 3

3.11 X 10-3
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Fig. 3 (a). The Gaussian distribution with no inelastic recoils de
scribes elastic damage and convolved distributions show com
bined damage from elastic and 1 through 10 inelastic recoils.
(b) Weighting according to the Poisson probabilities precedes
the superposition to determine combined damage probabilities.
The simulation applies to the Si CID sensitive volume of
1300 11m3 and 4.0 x 1010 12 MeV protons/cm2

•

inelastic recoils reflects the N;-fold convolution of
the pdf for single inelastic damage. For purposes of
this analysis, the form of the single event pdf for
inelastic recoil products is approximated as a two
parameter gamma distribution with mean and vari
ance as indicated in Table 1.

Since the elastic and inelastic processes are in
dependent random variables, the combined damage
for pixels in which both occur follows as the con
volution of the pdfs describing each of the two
categories. Figure 3 illustrates this simulation for
the specific case of the imaging array used in this
study in which damage from a fluence of 4.0 x 1010

12 MeV protons/cm2 occurs, and each pixel's sensi
tive volume is 1300 !Lm3. The Gaussian distribution,
shown in Fig. 3a as the N; = 0 case, describes dam
age corresponding to an average of 4,000 events per
pixel. Figure 3a curves for N; = 1 through 10 inelas
tic recoils per pixel reflect increases in both the
means and variances as the shape tends toward
Gaussian. Figure 3b shows the pdf for total com
bined damage as the superposition of the pdfs in
Fig. 3a, after weighting by their associated Poisson
probabilities according to the average of 1.8 inelas
tic recoils per pixel. This average is arrived at by
considering the number of silicon atoms present in
the 1300 !Lm3 volume, and the composite cross
section for nuclear inelastic reactions for 12 MeV
protons as shown in Table 1.

>uz
w

5
wa:
u.
w
>
~
wa:

o

o

2

1.0 2.0
DAMAGE ENERGY (MeV)

A

488

Early in a space mission or in a relatively benign
orbit, the fluences may be 1-2 orders of magnitude
lower, at about 108 cm -2. In this low fluence
regime, the very low probability of inelastic recoils
suggests that two would probably not be observed
in the same volume element. The number of elastic
recoils per volume would be correspondingly low
resulting in very large relative changes within the
pixels where nuclear reactions occur. The product
of the low probability of an inelastic event with the
large number of pixels determines the pixel popu
lation for which damage exceeds the average by
factors of up to 1,000.

4. Predicting Damage Extremes

In addition to being a necessary tool for assessing
radiation-induced fixed pattern noise, the probabil
ity density function describing damage throughout
the array can be used to predict the number of
elements sustaining exceedingly large damage in
creases after a specified exposure. In [6] it was
shown how extreme value statistical analysis can
describe the measured distribution of pixels with
the largest damage increases following 12 MeV and
63 MeV proton damage to the Si em. For a broad
range of proton energies and fluence levels, the
largest extremes were shown to obey a Type 1 ex
treme value distribution. Next it will be shown that
the particular Type 1 distribution describing pro
ton-induced damage extremes can be predicted
from the calculated pdf described above.

Figure 4 shows an expanded view of the tail
region in Fig. 3b which identifies the contributions
to the pdf from the 11 populations containing
o through 10 inelastic recoil events per pixel. The
damage energy distribution has a mean of
0.85 MeV, and the skewed high energy tail extends
to about 1.8 MeV. Individual distributions are iden
tified according to the number of inelastic recoils.
Figure 4 illustrates how several of the component
distributions contribute to the probability of ex
cee.ding large damage energies. Based on a total
pixel population of 61,504, the inset presents the
number of pixels expected above the specified
damage level, Ed. This number is the total popula
tion multiplied by Pd, the probability of exceeding
damage energy Ed within the whole array. This
probability is calculated as the summed pdf inte
grated from Ed to infinity.
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S(po) = -In[-ln(po)]. (2)

5. Comparison with Dark Current Data

Devices are fabricated in an n-type Si epitaxial
layer doped with 5 x 10 14 P atoms/cm2

• A field iso
lation oxide confines the collection area to about
17 mm x 17 mm, but for purposes of dark current
studies only the 1300 J.Lm3 depletion volume leads
to carrier generation.

All dark current data reported here were ac
quired at 18.0 °c and correspond to a 248 x 248 sub
set of the array. After each proton exposure and
measurement the dark current increase for each
element was calculated by a pixel-by-pixel subtrac
tion of the pre-irradiation value. This correlation
removes imager spatial noise not resulting from
radiation. Temporal read-out noise accounts for
less than 5% of the dark current spreads reported
here. More detailed descriptions of the imaging
array and the dark current measurement are pro
vided in [6].

Proton irradiations with energies of 12 MeV,
22 MeV, and 63 MeV were performed at the
University of California at Davis cyclotron facility.
The beam line and dosimetry have been described
previously [13]. Irradiations were conducted at a
nominal dose rate of 1 kRad(Si)/s with all leads
grounded. Dark current measurements were ini
tiated about 15 minutes post irradiation and re
peated after 1 day and again after about 1 week. No
significant annealing was observed over this period.

In Fig. 5, comparisons are made between dark
current data histograms and calculated damage
energy distributions in the CID pixels. The calcula
tion approach described above has been exercised
for three 12 MeV proton fluences corresponding to
averages of (1.8, 4.5, and 9.0) inelastic recoils/pixel.
Based on the population of 61,504 pixels and
Poisson statistics, the maximum numbers of inelas
tic recoils expected in any single pixel are 10, 16,
and 24, respectively. For comparing the calculations
to dark current data, a conversion factor relates the
average dark current and the mean damage energy.
For the three fluences, the average conversion fac
tor of 2.2 nNcm2 per MeV of damage energy varies
by up to 10%, which reflects the experiment's
dosimetry uncertainty. The calculated damage
curves in Fig. 5, based on the first and second
moments of the non-ionizing energy imparted by
the recoil spectrum, describe the dark current dis
tribution to a remarkable degree of accuracy.

Comparisons for 22 MeV and 63 MeV proton
damage show similar agreement. The coefficient of
variation, defined as the ratio of the standard
deviation to the mean damage (or dark current), is
a dimensionless figure-of-merit. At 12 MeV,
22 MeV, and 63 MeV, the experimental and calcu-
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The associated standard variate specific to the ex
treme value cumulative probability plot is given by:

Fig. 4. For the simulation depicted in Fig. 3, volumes containing
from 1 to 10 inelastic recoils contribuite to the population of
pixels with the most damage. The inset shows the number
expected above a given damage energy for a 61,504 pixel array.

Two steps are necessary to compare these results
on the basis of the cumulative Type 1 extreme value
distribution. As discussed in [6,10-12], extreme
value analysis can be applied to data to evaluate the
probability of exceeding a certain value within any
population size by evaluating a set of largest values
extracted from subsets of a given population. In the
next section we will treat the case where the 61,504
pixel population has been subdivided into 248
groups of 248 pixels each. Using Pd as defined
above, the probability, po, of having no pixels ex
ceeding Ed within the group of 248 pixels can be
evaluated using the discrete binomial distribution
as:

Thus Ed, or a proportional quantity such as dark
current, can be plotted against the corresponding
standard variate to predict the Type 1 extreme dis
tribution specific to the pdf from which it is gener
ated. Detailed discussions of extreme value analysis
are discussed in the references [11,12], and applica
tions to this study will be illustrated in the following
section.

Calculations described in the previous section are
compared here to measured dark current increase
distributions specific to proton-induced damage in
a General Electric 256 pixel x 256 pixel Si cm.
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Fig. 5. Calculated damage energy distributions show excellent agreement with
measured dark current histograms from a Si CID damaged by 12 MeV protons.
Calculations are based on averages of (1.8, 4.5, and 9.0) inelastic recoils per pixel,
and the damage distribution shapes reflect the associated discrete Poisson distribu
tions.

lated results agreed within 2%, 12%, and 15%
respectively [14]. Also at 63 MeV, with 45% of the
damage caused by inelastic recoils, the means of
the two distributions are normalized by a factor of
2.0 nNcm2 per MeV of damage. This does not
differ significantly from the conversion factors de
termined for 12 MeV, thus demonstrating that the
average damage is proportional to the energy lost
through non-ionizing processes, and that the ex
pected damage from both the elastic and inelastic
categories is present.

The somewhat better agreement between calcu
lated and measured damage distributions at the
lower proton energy of 12 MeV could be influenced
by characteristics associated with high energy
recoils. At proton energies of 12 MeV and 63 MeV,
the contribution to the total damage from inelas
tic reaction recoils increases from roughly 15% to
45%. Also, as this fraction increases, the average
inelastic recoil energy (and range) also increases,
and at higher proton energies the higher energy
recoil ranges approach the smallest dimension
of the sensitive volume (about 2 J.Lm). These issues
would be even more important for smaller sensi
tive volumes (i.e., CfE loss in a CCDs buried
channel).
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6. Largest Dark Current Extremes

Here the measured largest dark current in
creases are compared to the calculated damage
maxima for the specific cases of the three 12 MeV
proton fluences of Fig. 5. For each proton energy
and fluence level, the dark current extreme popula
tions are generated by subdividing the 61,504 pixel
population into 248 groups of 248 pixels each. The
largest value from each group comprises the popu
lation of extremes. Figure 6 depicts how the ex
treme distribution is derived for the case of the
lowest fluence level shown in Fig. 5 (note this
example also corresponds to the calculations for
Figs. 3b and 4). After ranking and estimating the
probability according to the [rank/(n +1)] for n
samples as in [6], the standard variate follows from
Eg. (2), and the measured dark current extremes
can be compared with the Type 1 extreme value
distribution using a Type 1 cumulative probability
chart.

Likewise, damage maxima calculated as de
scribed in section C can be compared to the same
Type 1 extreme probability distribution using
Egs. (1 and 2) and the normalization constant of
2.2 nNcm2 per MeV of damage energy. Figure 7



Volume 99, Number 4, July-August 1994

Journal of Research of the National Institute of Standards and Technology

10000
4.0xl01Ocm- 2

50
12 MeV p+ rNl

40
8000

0
00

248 PIXELS/BIN 30

>- 0
248 BINS

~ 6000
20

0
w 0 10=>
@4000

0

a: 0 0
u.

0

2000 0 0
0

0
0

4 6 80 2

a DARK CURRENT (nA'cm- 2)

Fig. 6. Measured dark current histogram for 61,504 pixels
following exposure to 4.0 x 1010 12 MeV protons/cm2

• The 248
extremes are from groups of 248 pixels.

compares measured dark current extremes, for the
three 12 MeV proton fluences treated in Fig. 5, to
predicted damage maxima according to the Type 1
distribution. The linear character of the data and
calculation show that they obey a Type 1 distribu
tion, and the close agreement at each fluence
demonstrates the robustness of the analysis. The
return period abscissa at the top of Fig. 7 identifies
the largest expected dark current increase for a
given number of array subsets. For example, at the
fluence of 2.0 x 1011/cm2 the return period value of
10 corresponds to about 13 nNcm2 indicating the
largest expected increase within a set of 10 groups
or 2,480 pixels. Good agreement also exists be
tween the measured and predicted extremes from
63 MeV protons.

The ability of the calculation to predict the
largest measured dark current changes offers in
sight into the mechanisms responsible for proton
induced damage extremes. The linear response on
the Type 1 plot indicates that a single mechanism is
probably responsible for largest values while the
slope reflects the variance. As pointed out in Fig. 4,
the largest damage regions in this fluence regime
follow from the probabilistic treatment of pixel
populations damaged by several inelastic reaction
recoils.

When the probability of an inelastic recoil per
pixel is much less than one, as is the case in many
natural space environments, the analysis can deter
mine the total number of pixels expected with dam
age above a given level. In this regime, where the
background radiation-induced damage can be quite
low, largest damage regions can be several hundred
times the average. Some of the array subsets would
have largest changes dominated by single inelastic
recoil damage and others by the largest of the less
damaging elastic recoils. In this case, agreement
with the Type 1 cumulative chart could be expected
only with sufficiently larger bin sizes so that each
bin would include at least 1 pixel with damage from
an inelastic reaction.

A qualitative comparison of such a situation fol
lows from our evaluation of the proton response of
an alternate CID imager design. The important as
pects of this "narrow row" design were previously
discussed in [6], with the key difference resulting in
spurious high electric field profiles near the row
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Fig. 7. Cumulative probability distributions demonstrate excellent agreement between
calculated damage extremes and the measured dark current extremes based on a 248
pixel by 248 group extreme value analysis. Though not shown here, similar agreement
is obtained for damage from 63 MeV protons.
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electrodes. The comparison of the dark current
and extreme distributions for this device type,
shown in Fig. 8, can be made with the previously
discussed design at the same proton exposure level,
as in Fig. 6. Note that the average dark current is
doubled, but more importantly, the character of
the extreme distribution is markedly different. The
consequence of this is more evident in the proba
bility chart of Fig. 9. Clearly the narrow row design
results in an extreme distribution which is not Type
1 when analyzed as before. Rearrangement of the
array to 31 bins of 1984 pixels offered a better
match with the Type 1 distribution. Even so, the
extremes for this case cannot be understood based
on first principles analysis of damage mechanisms
as before. We concluded that in this case, the

largest extremes were not caused by conventional
charge generation, and extreme value statistics
played a critical role toward quantifying the likeli
hood and magnitudes of this other mechanism. In
[4] we discuss supplemental measurements and
analysis which have lead us to conclude that the
high field regions were causing localized lowering
of the band-gap resulting in field enhanced emis
sion and tunneling currents. Thus the statistics of
extremes are applied to evaluate design variations
and to assure that optimum imager performance
can be assured. We also concluded that acceptable
designs should have extreme characteristics as
depicted in Fig. 6 which are limited only by un
avoidable consequences of particle-semiconductor
physics.
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Fig. 8. The high electric field CID design yields a different dark current and extreme
response as compared to the same conditions shown in Fig. 6. High electric fields are
thought enhance the leakage currents when associated with damage.
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suggests the role of field enhanced mechanism in causing the largest leakage
extremes.

7. Conclusions

This paper presents an analytic approach for de
termining the pixel-to-pixel distribution of particle
induced displacement damage in micro-volumes
representing sensitive volumes in sensor arrays.
The calculation is based on interaction cross
sections as well as parameters describing the dam
age imparted by the spectrum of particle-initiated
recoils. It predicts the dark current distribution
and largest dark current changes in a Si CID fol
lowing incremental damage with 12 MeV, 22 MeV,
and 63 MeV protons. These proton energies span a
regime important to the natural space environ
ment; lower energy protons for which the damage
is dominated by elastic scattering and higher ener
gies where nuclear reactions become increasingly
important. The analysis illustrates how high energy
recoils from nuclear reactions influence the pixel
to-pixel variance in proton-induced damage and
cause the largest damage occurrences. To under
stand the important exception, we rely on extreme
value statistics to identify and quantify the role of
electric field enhanced emission as a mechanism
for excessive leakage currents.

The calculation is general in the sense that once
the parameters describing the recoil spectrum are
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determined, the particle-induced damage distribu
tion can be calculated as a function of particle type,
particle fluence, sensitive volume, and material.
The significance of these results is that once the
factor relating the mean dark current to the dam
age energy is known from a single measurement on
a particular array, the radiation response in a
specified environment can be predicted. In addi
tion to providing a means for assessing. the radia
tion response of a given imager, this analysis has
flexibility enabling the design-phase evaluation of
the radiation response of different pixel geometry
and materials in a variety of environments.

Extreme value statistics playa critically impor
tant role in understanding leakage current spikes
and in assuring reliable satellite performance. In
ongoing related research we continue to rely on
this valuable tool for assessing damage and single
particle ionization extremes in infrared imaging
arrays and in optoelectronic detector materials for
high data rate spacecraft data links, each of which
must perform to exacting standards to assure reli
able performance of extremely valuable space
assets.
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Various attempts have been made to
develop models for predicting the de
velopment of damage in metals and al
loys due to pitting corrosion. These
models may be divided into two classes:
the empirical approach which employs
extreme value statistics, and the deter
ministic approach based on perceived
mechanisms for nucleation and growth
of damage. More recently, Artificial
Neural Networks (ANNs), a nondeter
ministic type of model, has been devel
oped to describe the progression of
damage due to pitting corrosion. We
compare the three approaches above
statistical, deterministic, and neural net
works. Our goal is to illustrate the
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advantages and disadvantages of each
approach, in order that the most reli
able methods may be employed in fu
ture algorithms for predicting pitting
damage functions for engineering struc
tures. To illustrate the difficulty that
we face in predicting cumulative pitting
damage, we selected a set of data that
was collected in the laboratory. We
compare and contrast the three ap
proaches by reference to this data set.

Key words: artificial neural networks;
deterministic; mathematical modeling;
pitting corrosion; statistics.
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1. Introduction

On the basis of laboratory studies [1], and
through the analysis of field data collected over the
past decade by Battelle Columbus Laboratory [2],
several factors have been identified as contributing
to the development of pitting damage in gas fired
heat exchangers in domestic and industrial service:

(i) The type of alloy used for fabricating the
heat exchanger

(ii) Chloride concentration in the flue gas
condensate

(iii) Temperature
(iv) Exposure time
(v) Ambient versus indoor air
(vi) pH
(vii) Electrochemical potential

Unfortunately, few of these factors are simply
related to the damage functions or to one another.
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Accordingly, it is seldom possible to establish a
simple empirical equation for predicting pitting
damage as a function of these variables. The case
cited above is not atypical, and it illustrates the dif
ficulties faced by those who seek to develop predic
tive models for assessing corrosion damage.
Indeed, the data base established by Battelle is
probably one of the best that currently exists for
the development of pitting damage in an industrial
system. A full interpretation of the Battelle data in
terms of statistical, deterministic, and artificial
neural network models is published elsewhere [3].

In the present paper, we use a more restricted
database to illustrate how various classes of models
are used to analyze the damage caused by pitting
corrosion. These models include a statistical ap
proach based on the Weibull distribution function,
a deterministic model based on a physicochemical
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mechanism, and an Artificial Neural Network
(ANN) that assumes neither a mathematical model
nor a physical model, but which seeks to establish
relationships between the dependent and indepen
dent variables by examining the patterns contained
within the data set.

2. Experimental Data

We used laboratory data to illustrate the time
and potential dependencies of pitting damage. To
do this, we chose a laboratory data set for which the
following independent variables were identified: 1)
concentration of minor alloy elements in weight
percentages, 2) difference in oxidation state be
tween host metal and minor alloy elements, 3) ap
plied potential, and 4) time of observation. Inde
pendent variables 1) and 2) are related to the type
of alloy; and independent variable 4) together with
solution composition (which was maintained con
stant) is determined by the electrochemical poten
tial. Temperature, solution composition, and pH
were maintained constant. The dependent variable
was the total number of pits.

We then used this set to illustrate the prediction
of cumulative damage for pitting corrosion using
three different models: statistical, deterministic,
and artificial neural networks. The data were mea
sured by English and Macdonald at SRI Interna
tional [1].

Several alloys of nickel were fabricated. Each of
the alloys tested was arc-melted from powders un
der an Argon gas blanket in a sealed container. Bi
nary nickel alloys containing AI, Ta, and Mo in
nominal concentrations of 0.1 %, 0.5 %, 1 %, 3 %,
5 %, and 8 % by weight were cast as 100 g buttons
and were sectioned in an acrylic plastic before pol
ishing. The alloying elements were selected on the
basis of their oxidation states relative to nickel (ox
idation state =2). The excess oxidation states range
from 1 for AI to 4 for Mo.

The polished specimens were placed in a cell.
The electrode potential was swept in the positive
direction at 1 mV/s from an initial potential of 0.0
V. This results in a distribution in breakdown po
tentials. Alternatively, the potential was stepped
from 0.0 V to 0.325 V, 0.375 V, 0.4 V, and 0.45 V.
This resulted in a distribution in induction (or ob
servation) times for the nucleation of pits.

In both types of experiments the pit nucleation
and growth events were photographed at 65 x mag
nification at regular intervals. The number of pits
were counted on the pictures taken at different
times and conditions.

496

The pitting data were measured several times on
a similar sample to explore reproducibility. The re
producibility in pure nickel appeared satisfactory
(about 10% difference between runs), but the
reproducibility from alloy composition to alloy
composition was different. Reproducibility was
better at high potentials perhaps because the total
number of pits developed was higher. Reproducibil
ity appeared to be better at high minor alloy con
tents and high oxidation states (about 20 %), than
at low minor alloy contents and low oxidation states
(about 50 %). Regardless of the poor reproducibil
ity in some of the samples, a general trend was ob
served: a) The cumulative number of pits
diminishes with 1) minor alloy element content, and
2) with increasing difference in oxidation state be
tween the base alloy and the minor alloy element;
and b) The cumulative number of pits grows with
increasing applied potential and observation time.

Cumulative pitting damage is an irreversible,
dynamic, time decay, environmentally related pro
cess. The literature is abundant in pitting corrosion
data, but there is a lack of good quality data be
cause of the difficulty of measuring pitting corro
sion when controlling all the environmental
parameters.

All model building is concerned with an attempt
to increase our knowledge of complex physical real
ity. The parameters plus the validity of the model
must be determined from the data. The philosophy
behind the type of model is different. The informa
tion obtained from a purely probabilistic model
(statistic and stochastic models) is about finding
embodied in the data trends that can be used in fu
ture predictions. The information obtained from a
deterministic model is about the physical meaning
of the phenomena itself. The information obtained
with a ANN model is about the dependency and im
portance of input /output relationships. In any case,
the model capabilities need to be tested.

We can start the proce,ss of solving our problem
by listing facts, listing observations, and listing exist
ing laws relating variables and outputs. Then we
hav,e to ask ourselves which will be the best model
to describe the problem, and what do we expect
from the model. Later we need to identify the
model or models to use; specify the constraints,
choose the coordinates, and apply the laws dictated
by the model. Important questions related to the
choice of a correct model are: Is the process static
or dynamic? Is the process stationary or not?; Are
the available data distributed or not? What do the
data mean? What is the data variance? What are
the correlations? In any case, the fitted model you
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use for analyzing your data is the nearest represen
tation of the true situation you have available.

3. Statistical Approach and Results

Stochastic processes are dynamic, and good ex
amples are fatigue, wear, and crack or pit growth.
There are two main types of stochastic pro
cesses: stationary and nonstationary.

It is well known from experimental data that cu
mulative pitting damage is a nonstationary phe
nomenon. It is well known that nonstationary
models and their estimation are notoriously diffi
cult problems to handle except for special cases.
Discrete state continuous Markoff processes are
good examples of models that describe nonstation
ary stochastic phenomena. However, there is no lit
erature on problem solving using nonstationary
finite Markoff chains [4]. On the other hand, for the
last data set [1] (measured at the laboratory), the
cumulative damage versus time was measured, but
the pit depth versus number of pits was not. There
fore, it is impossible to derive a dynamic model for
pitting damage using that data set. The only option
available is to try to fit a static model (i.e., our hy
pothesis is that the numbers of pits versus pit depth
does not change with time). We choose a 2 parame
ter Weibull distribution; for which we assume that
the independent parameters are potential, and the
oxidation state and concentration of the minor al
loying elements. The dependent variables are the
cumulative number of pits and the induction time.
The Weibull distribution function is

F(x) =(1- exp( - (x/f3)"))

where a and 13 are fitting parameters and x is the
dependent variable of interest.

We normalized the data set to 80 % of its maxi
mum value, allowing 20 % of the pits to nucleate if
the time would have been extended to infinity. For
each potential, oxidation state, and percentile of
minor alloy element, we performed a nonlinear fit
to estimate the Weibull fitting parameters.

The choice of a Weibull distribution is arbitrary;
we chose a Weibull distribution instead of some
other probabilistic distribution because of the flexi
bility that this distribution offers in fitting different
shapes obtained when plotting cumulative damage
versus dependent variables.

The nonlinear fits were acceptable (sum of
square errors between fit and data < 20 % for a or
13). We used those data sets for which smooth
changes of a and 13 were calculated as a function of
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potential. That reduced the data base to about 50 %
of the total available (the total data base had 1400
data lines containing number of pits at different ob
selvation times, applied potential, oxidation states,
and percentile of minor elements). We plotted the
a and 13 values as a function of potential. Figures 1a
and 1b show the results. The beta parameter of the
Weibull distribution appears to not change with ap
plied potential at high concentration of minor alloy
elements (5 %), but it changes drastically with ap
plied potential at low concentrations of minor alloy
element (3 %, 1 %). We then fit polynomials de
scribing a and 13 as functions of applied potential,
oxidation state, and percentile of minor alloy
elements.

The Weibull distribution with a and 13 as parame
ters was used to generate the cumulative damage
function. Figures 2a, b, and c show the predictions
obtained with this statistical model. When we com
pared the predictions obtained with this model and
the measured data, we observed that both trends
are similar. However, it would be very risky to use
the model to make predictions for other oxidations
states, percentile of minor alloys elements, or
applied potentials outside the range for which the
Weibull-parameters were calculated.

It is well known that the Weibull distribution is a
sufficiently flexible function that practically any set
of data can be fitted by it. However, the problem we
faced is that we do not know a priori the correct re
lationships between a and 13 and the independent
variables.

Predictions with the same model for oxidation
states greater than 3-2 gave cumulative probability
of zero at any time and are not shown. The designa
tion "3-2" referes to the oxidation state of the al
loying element (AI =3) and the host metal (Ni = 2).

4. Deterministic Model

A completely successful model must account for
all of the phenomenological correlations that exist
between pitting susceptibility and pit velocity, and
various environmental and electrochemical factors,
such as temperature, pH, [ell, potential, time, and
alloy composition. The Point Defect Model (PDM)
[5,6] accounts for the effects of electrochemical po
tential, alloy composition, and environmental con
ditions on the nucleation of pits.

The deterministic model is based on the PDM
and the Solute Vacancy Interaction Model (SVIM)
[7-10]. The PDM proposes that passivity break
down occurs because of an enhanced flux of cation
vacancies from the film/solution to the metal/film
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Fig. 1. (a) Alpha parameter of the Weibull distribution versus
applied potential; at several percentiles of minor alloying elements,
and oxidation states. (b) Beta parameter of the Weibull distribution
versus applied potential; at several percentiles of minor alloying ele
ments, and oxidation states.

interface. If the excess of vacancies arriving at the
interface between the metal and the film can not be
absorbed into the metal or be annihilated by some
appropriate mechanism at high enough rate, they
accumulate to form a vacancy condensate at the
metal film/interface, which then grows to a critical
size. The POM is used to calculate the breakdown
potential and induction time. The effect of the mi
nor alloying elements in the oxide film on the
breakdown parameters is modeled using the SVIM.
The SVIM is based on the hypothesis that highly ox
idized solutes in the passive film electrostatically
complex with the mobile cation vacancies.

The POM and SVIM results in distributed values
of the breakdown potential and induction time, and
complexing between the immobile alloying element
in the film (the "solute") and the mobile vacancies
diminishes the flux of vacancies across the film. This
leads to an increase in the breakdown potential and
the induction time for film breakdown. The higher
the net oxidation state (minor alloy element oxida
tion-host ion oxidation) and/or the higher the per
centile of minor alloying elements in the film, the
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greater the effect on reducing the flux of vacancies
and hence in increasing the pitting potential and
the induction time. Once the pits nucleate, they
grow at different rates. To calculate the pit growth
rate we used 1) a simplistic steady state model sug
gested by Alkire [11]; and 2) a nonstationary model
developed by us [12-13]. The stationary model is ex
pected to be adequate for only short times.

The overall model (combination of the POM,
SVIM, and pit growth) requires the defining of a
number of parameters, as shown in Table 1.

Figure 3a shows the cumulative probability of the
number of pits (normalized to 1) as a function of pit
depth and observational time of 50 S, for an applied
voltage of 0.325 V and for several concentrations of
the minor alloying element with oxidation state of
3-2 (example aluminum in nickel). Figures 3b and
3c show similar plots for oxidation states of 4-2
(e.g., titanium-nickel) and 6-2 (e.g., molybdenum
nickel), respectively, for the same conditions. It is
interesting to note the great effect of minor alloying
elements with high oxidation states. The model pre
dicts that the cumulative probability of the number
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Fig. 2. Predicted cumulative probability, obtained using the statisti
cal model, versus time of observation, at several applied potentials. (a)
Oxidation state 3-2; and 1 % of minor alloying element segregated in
the film. (b) Oxidation state 3-2; and 3 % of minor alloying element
segregated in the film. (c) Oxidation state 3-2; and 5 % of minor
alloying element segregated in the film.

Table 1. Input data used in the calculation of the deterministic/probabilistic model

Parameters Value Units

Stoichiometry
Avogrado constant
Mol vol. of oxide cation
Gibbs energy change"
Gibbs energy change"
Mean diffusion coefficient
Standard deviation
Chloride activity
Electrical field across film
Alpha
Beta
Critical area vacancy size"
Critical vacancy flux"
Temperature
Applied potential
Molar gas constant
Electrical potential film/sol

2
6.023 E+23
30
-40,000
-10,000
5 E-20
0.75 Dmean
0.573/2
1.1 E+6
0.65
-0.01
1 E+ 16
15.87 E+ 12
298.15
-0.55
8.314
-0.5

mol- J

cm3/mol
J/mol
J/mol
cm2/s
cm2/mol

V/cm

V/pH unit
No./cm2

No./cm2 · s

K
VSHE
J K- J mol- 1

V SHE

" Variables that were used to adjust one datum point to scale the results properly.
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Fig. 33. Cumulative probability, calculated using the deterministic
model, versus pit depth for several concentrations of minor alloying
element segregated in the film for oxidation state (3-2).
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Fig. 3b. Cumulative probability, calculated using the deterministic
model, versus pit depth for several concentrations of minor alloying
element segregated in the film for oxidation state (4-2).
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Fig. 3c. Cumulative probability, calculated using the deterministic
model, versus pit depth for several concentrations of minor alloying
element segregated in the film for oxidation state (6-2).

Fig. 4. Difference betwecn calculated breakdown potential
of nickel containing 0 %-5 % of minor alloying elcmcnts with
oxidation states of (_3-2: Ni-Al), (- - - 4-2: Ti-Ni), and
(-. -. -.6-2: Mo-Ni) and calculatcd breakdown potential of
pure nickel (containing 0 % of minor alloying elemcnts).

of pits at all pit depths is higher at lower minor
alloying element oxidation state and at lower con
centration of the minor alloying element. Because
the model does not assume a total number of break
down sites only a normalized probability is ob
tained.

Figure 4 shows the beneficial effect of adding
minor alloying elements with high oxidation states.

Minor Alloy Percent

5. Artificial Neural Network Model and
Results

The breakdown potential is shifted in the positive
direction, indicating that higher potentials are nec
essary to achieve the same damage.

Probably the most efficient method, when data
are available, of establishing relationships between
inputs and results is to use artificial intelligence
techniques. Accordingly, we describe here an Artifi
cial Neural Network (ANN) for predicting pitting
damage functions for condensing heat exchangers.
When the net is trained with reliable. data and
knowledge, we are able to accurately predict dam
age outside the ranges of the input variables.

An ANN is a highly interconnected system
inspired by the brain and formed by simulated
"neurons" represented by a transfer function, and
"weights" associated to the connections of the
"neurons." The back propagation training al
gorithm allows experimental acquisition of input/
output mapping knowledge within multilayer
networks. Because we have experimental data on
the cumulative numbers of pits versus time of obser
vation, as a function of oxidation state, minor alloy
ing element, and applied potential, we decided to
use an ANN backward propagation technique with
supervised learning. During training of the ANN,
the cumulative numbers of pits were used as
"output" and the applied potential, oxidation state,

3%2%1%0%

0.7

0.6

>

~
0.5

0
'0
:t

0.4#.
'0
>

0.3
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minor alloying element concentration, and time of
observation as "inputs." We explored several to
pologies to obtain the best compromise between
learning and computing time for an ANN with 2
hidden layers.

The maximum training time was set to 12 hours
on a Macintosh II microcomputer with a threshold
of 10 % of the normalized input values (input
ouput) [2].

The ANN had the following features:
(i) Heteroassociative memory, for which the

patterns on recall from the memory are purposely
different from the input pattern, because the inputs
and outputs are different and belong to different
classes of information.

(ii) Delta rule type of learning, where the neu
ron weights are modified to reduce the difference
between the desired output and the actual output of
the processed element. The weights are changed in
proportion to the error calculated. This rule also
limits the learning, if the error at the output of the
network is lower than a given threshold. The learn
ing rates of those layers close to the output are set
lower than the learning rates of the other layers.

(iii) A momentum term, which is used to
smooth out the changes.

(iv) A sigmoid transfer function, which is a
monotonically continuous mapping function.

The ANN predictions are in good agreement with
the measured data. Figure 5 shows that correlation.
Considering the difficulty of obtaining high quality
data, we consider that the correlation factor is satis
factory.

.!!l 4
c:
'0

.8 2
E

"z
C1l 0 "."'iii .f"""'""3 "E til"iR'"" -2 "u til " '"z "z "" "~ "" "iiiz -4 ~...J

-6
- 6 -4 - 2 0 2 4

LN (Measured Cumulative Number of Pits)

Fig. 5. Natural logarithm of the predicted ANN total number
of pits versus natural logarithm of laboratory measured total
number of pits. The measurements included several: applied
potentials, observational times, oxidation states, and percent of
minor alloying elements.
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After the ANN was trained, it was used to make
predictions of the number of pits at different ap
plied potentials, observation times, oxidation states,
and percentages of minor alloying elements in the
film. The total number of pits predicted by the
ANN decreased with increasing percentage of mi
nor alloying elements in the film, and with increas
ing oxidation state of the alloying element (Figs. 6a
and 6b). Behavior similar to that predicted by ANN
was observed experimentally.

The ANN, once trained, can be used to explore
the importance of the relationship between
"output" and "inputs." We found that the results
were strongly dependent on observation time (t 3

, t),
have a medium dependency on applied potential
(V Il2

), and show weak dependencies on oxidation
state (Z 113) and concentration of minor alloying
element in the film ([%P/4).

1.0

0.8 /.
~
:c I..
.c 0.6 I
Ie /0-

C1l." 0.4'iii
"5 )E

"U
0.2

~j
~_.-.-. '"'0-0

0.0
150 200 250 300 350

b) Applied Potential, mV

Fig. 6. ANN prediction of cumulative number of pits versus ap
plied potential, at 50 s time of observation; and several percen
tiles of minor alloying elements. (6a) Oxidation state (4-2). (6b)
Oxidation state (6-2).
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6. Discussion

Figures 7a to 7d show the best predictions
obtained with the three models compared with the
laboratory data.

The deterministic model predicts that the cumu
lative probability at low applied potentials is not
only described by a flat curve but that the curve is
displaced to higher times. This prediction coincides
with the experimental observations. The predictions
with the deterministic model at high potentials indi
cated that the plateau corresponding to higher
times is reached sooner than that measured. The
deterministic model is the only model (compared to
the other two models) that brings together an un
derstanding of the problem as well a predictive tool.
Another advantage that the deterministic model
has over any nondeterministic model is that to fit
the model, only an experimental datum point is nec
essary to calibrate the model to the data. The deter
ministic model was developed to predict damage

and cumulative number of pits simultaneously. This
last capability makes it very attractive to the user.

The results obtained with the probabilistic model
are in general agreement with the experimental ob
servations. As with the deterministic model, the
plateau in cumulative damage is reached sooner
than the measured one. However, the curves are
flatter at lower potentials than at high potentials,
but they are not displaced to higher times. The
probabilistic approach needs a large data base, and
the predictive capabilities are limited to the ranges
of variables confined in the data base.

The ANN model describes the cumulative num
ber of pits very close to the experimental measure
ments. The plateaus on cumulative damage
~orrespondvery well to the plateau obtained exper
Imentally. The ANN predictions at low number of
pits are inaccurate, but they are very close to the
experimental observation at higher cumulative
numbers of pits.
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We conclude that little is learned about the phe
nomena when nondeterministic models are used;
however, they can represent invaluable predictive
tools. The statistical model is in a sense more de
manding that an ANN model. It requires a robust
and large data base. We found that an ANN can
learn from "noisy" data, and that the range of pre
diction can be extended outside the range for which
it was trained, if trained correctly [13]. Damage
functions can also be calculated using the determin
istic model based on the PDM and SVIM. The de
terministic model does not need to have an
extensive data base that includes pit depth distribu
tions. On the other hand, the nondeterministic
models need a large data base, and they are unable
to make predictions of partial damage if the pit
depth versus number of pits is not confined to the
data base. Cumulative damage can be interpolated
and extrapolated to other voltages and times, and to
other applied potentials, for any of the three mod
els. In general the results obtained with the three
models were found to be in reasonable agreement
with experimental data [12].

We do not intend to emphasize here the impor
tance of deterministic models over nondeterminis
tic models, but we have to keep in mind, when
picking a model, to choose the one that best repre
sents the observations and that is reasonably easy to
solve. Clearly, the reliability of the extrapolation, in
particular, depends critically on the quality of the
data and on the veracity of the model.
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1. Introduction

Number 4

The stress distribution in bond layers
of two different thicknesses (50 flm and
200 flm) was calculated by finite ele
ment analysis for pairs of rectangular
cross section metal bars bonded to each
other and subjected to four point bend
ing. These stresses were used to aid in
identification of the failure origin by
use of the Weibull risk-of-rupture (RR)
function. By use of the stress distribu
tions, the characteristic strength from
50 flm bond test specimens could be
correlated with that for 200 flm bond
test specimens when the failure was as
sumed to have an interfacial origin.
The finite element meshes were refined
twice and the ratios of characteristic
strengths were recalculated and re
mained virtually unchanged by each of
the mesh refinements. Hence, the iden
tification of the interface as the failure

July-August 1994

origin remained consistent. Further, the
use of stresses extrapolated to zero
mesh size also produced the same ra
tios. Therefore, the RR calculations do
not appear to be sensitive to the mesh
sizes used for the stress calculations
when the meshes arc comparable or
when changed in a comparable manner.
The results show this method can be
consistent and a useful adjunct for
identification of failure origins.

Key words: failure analysis; failure in
bending; failure origin; failure stress;
failure stress and size effect; finite' ele
ment analysis; finite element stress;
origin of failure; Weibull analysis;
Weibull hazard function; Weibull risk
of-rupture function.

Accepted: March 22, 1994

In previous work [1,2] bending tests were con
ducted on adhesively bonded specimens of a dental
alloy. The purpose was to determine:

a) how much the bond thickness influenced the
test results;

b) whether the failure origins appeared to be the
same for the two different bond thicknesses em-
ployed;

c) failure origin through analysis using the risk-of-
rupture (RR) function.

505

In this paper, the finite element method was used
to arrive at the stress distributions used for the RR
analyses that employ the Weibull risk-of-rupture
function l [3]. An ancillary purpose, therefore, was
to ascertain how sensitive the analyses were to the
fineness of the finite-element mesh and, hence,
whether the method can be applied with confi
dence to the analyses conducted for a, b, and c
above.

1 Today, a risk-of-rupture function, defined by Weibull, would
be recognized as a hazard function.
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2. Materials and Methods

P(u) =1-exp - [8 (U/Ob,u)m], (1)

The failure of brittle materials is typically
catastrophic and in many instances the failure
stresses obtained from a set of test specimens fol
low a Weibull distribution. For a homogeneous
isotropic material subjected to a uniform tensile
stress, u, the probability of failure, P (u), is given
by:

(4)

(4a)

(U/OiJ,l)"'
(U/UO,2)m

and the validity of the approximation must be
checked by computation. Here the summations are
over all the elements considered to be involved
with the failure (interface, volume, etc.) and the
stresses can be evaluated by the finite-element
method of analysis.

UO,2 = 0\),1[( L ofj LlD1j )/(L 01; Ll82,i )]l/m, (5)
j i

Note: The stress field in the bond region is typi
cally three dimensional; the analyses of this paper
utilize unidirectional tensile stresses because alter
ations to the principal stresses were found to be
minor and may be ignored. We also note that for a
variety of reasons (plasticity, change in composi
tion, properties, or flaw populations) this analysis
method may not apply for very thin bond layers
approaching micrometers or less.

When 0;(8) is not known as an explicit function,
the relationship between Ob,I and Oll,2 may, in princi
ple, be approximated by [3]):

Canceling terms in UO,u on the right side and u on
the left side leads to

(1a)P(u) =1-exp- [(u/uoY'],

where Ob,u is a characteristic strength for a speci
men of unit dimension; m is a shape factor
(Weibull modulus); and 8 is a size factor (the ratio
of the failure originating dimension to a unit di
mension of the same kind) and represents the vol
ume, V, area, A, or other dimension in which
reside the flaws from which the failure originates
[3]. Eq. (1) is often written as:

where the size of the specimen, 8, is subsumed into
Ob. This form of the equation is commonly used
when analyzing test data and the effects of speci
men size are ignored. It is clear from Eq. (1) that
for specimens of two sizes, 81 and lh., with the same
failure origins and presenting the same distribution
of failure stresses (ml =m2), there will be two dif
ferent values of Uo for Eq. (1a), with the larger size,
call it 81, leading to a value, UO,I, that is less than
Ob,2.

For such specimen sets, the relation between the
characteristic strengths calculated by Eq. (1a) is
[4]:

P(u)=1-exp-[f~(u/ObY'd8], (3)

For a nonuniform tensile stress field, a more gen
eral form of Eq. (1) is necessary:

where the region of integration over 8 is the region
critical to failure (rupture) and it can be in one,
two, or three dimensions. Then the relationship be
tween the values of Ob [Eq. (1a)] as determined
from experiments on sets of specimens having ei
ther one or the other of the bond thicknesses, is
given by the ratios of the exponents of Eq. (3), i.e.,

Ob,2 =UO,I[8d&]lIm. (2) Each assumed failure origin for a specimen has
its own specific 8 with its associated stresses. When
the ratios of volumes, surface areas, interface ar
eas, edge lengths etc. (any dimensions containing
the flaws from which failures may originate) are
properly chosen to be different for experimental
tests, only one set of 8;'s, 0; 's, 8/s, and OJ's should
produce coincidence between the experimentally
determined ratio of O\/s and the ratios of either the
integrals shown by Eq. (4a) or the summations as
shown in Eq. (5).

As with any analysis employing the finite ele
ment (FE) method for determination of the
stresses, a critical question arises as to the FE-
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mesh sensitivity of Eq. (4). If sensitive, then the
method would not, in actuality, be useful for the
correlation of results from differently sized speci
mens.

To provide insight into the ability of this ap
proach to identify sources of failure, rectangular
bond specimens as shown in Fig. 1 were prepared
for testing in four-point bending, with either 50 j.Lm
or 200 j.Lm bond-thicknesses. Rectangular bars of
the bulk bonding material were also tested in
three-point bending. The details of specimen
preparation were given in a presentation by Keeny
et aI. [1]. The number of specimens and the results
for each test series are shown in Table 1.

A three-dimensional, finite-element elasticity
model2 was used for evaluation of the stress distri
bution throughout the volume of the bond region.

The original bond model (Fig. 2) consisted of 2,197
elements in one quadrant of the specimen which
had three planes of symmetry. Subsequent refine
ments of interface and surface elements led to ele
ments 1/2 and 1/3 the original size. The validity of
the model was checked by comparison of the finite
element results for a homogeneous beam with the
analytical solution. Examples of how the bending
tensile stresses change as a function of the thick
ness of the bond layer are shown in Figs. 3, 4, and
5, for which Eb ==E,,/50 where: E b is Young's mod
ulus for the bonding material; and E a is Young's
modulus for the alloy.

If the failure stresses are referenced to the
stresses along the surface, the ratio of the operative
(effective) dimensions, 8, from which the failures
originate are given by Eq. (6):

where O"R denotes the reference stress.
For these calculations the bending stress at the

surface was used as the reference stress for calcula
tions of bending strength and OR,2 = OR,I. Then,
from Eq. (2) and Eq. (6)

1.0mm

t

10.0mm

~
IE

(6)

(7)

Fig. 1. Specimen used for bond testing. The shaded area repre
sents the bonding material between rectangular beams of alloy
that were bonded together. Two small projections were used to
control the width of the bond at either 50 !-Lm or 200 !-Lm.

which is equivalent to Eq. (5).

Table 1. Uncorrected Weibull parameters and mean strengths

Test Gap (!-Lm) Na Ol, (MPa) {range 95%}b m {range 95%}

4-Pt Bend 50 25 110 {106--115} 11.3 {8.2-14.0}
200 25 107 {103-111} 11.5 {8.3-14.2}

3-Pt Bend Bars of 54 85 {81-89} 6.8 {5.5-7.93}
bulk bond
material

aN = the number of specimens.
b{} = the associated confidence bounds on 0'0 and m as determined from the data.

2 Developed at NIST.
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Interface

Fig. 2. A 118 section of a three-dimensional model for finite element calcula
tions of stress. The specimens (Fig. 1) had three planes of symmetry.
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Fig. 3. Result of finite element calculation of the near-surface
bending stress at the bond midplane that bisects the bend speci
mens into symmetrical halves.

3. Results

By the use of the right-hand side of Eg. (7) and
the finite-element-derived stress distributions,
characteristic' strength ratios were calculated for
four potential regions (Table 2) where the failure
of the bond could originate, i.e., volume, surface,
interface, and interface-line-junction failure
origins. These were then compared with the results
obtained from the left hand side of Eg. (7). For
these calculations, a value of m =11.5 was used

Fig. 4. Surface bending stress across the surface of the bond
material, from one interface junction to the opposite one, as
calculated for three thicknesses. The 5 11m thickness is pre
sented to illustrate the trend toward beam stress calculations as
the thickness approaches zero. The deviations from beam the
ory calculations are appreciable for thick bond specimens, show
ing the need to use the more robust finite element method for
the failure analysis employing the RR function.

[in Table 1, m was obtained from Newton-Raphson
iteration for fitting experimental data to Eg. (1)].

The ratio of the experimental characteristic
strengths has a 95% confidence range of 0.955 to
1.11. When this ratio is compared with ratios calcu
lated from the finite element analyses, the inter
face (Table 2) is identified as the origin of failures,
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Fig. S. Finite element calculated stress for the adherend-adher
ent interface surface junction line, illustrating the dramatic ef
fect of bond thickness on interface stresses.

data. The bulk specimens can fail only by volume
or surface failures. The strength ratio calculations
for bond specimens rule out surface failures. The
m value differences then are used to rule out vol
ume failures.

Hence, the most reasonable explanation is that
the bond specimens fail by interfacial failures. This
is consistent with features of the failed specimens
which always presented regions showing interfacial
debonding.

There is some possibility that the strength of the
bond itself would depend on the bond thickness
due to a change in material response (Le., forma
tion of plasticity). Such effects obviously cannot be
dealt with by the linear elastic analysis presented
and within the confines of this analysis, interfa
cially initiated failure is concluded.

An analysis by Weibull RR for bonded speci
mens of two different sizes tested in bending has
shown:

4. Summary

1) Correlations between characteristic strengths,
O"o's, were possible through the use of finite-ele
ment derived stresses in the RR analysis.

2) The correlations were not sensitive to the par
ticular mesh chosen.

3) For the interface, surface, and interface-surface
junction line, the stress ratio calculations em
ploying the element centroid stresses are not
significantly changed by use of stresses from ex
trapolations to the interface. The largest differ
ence is for the interface-surface junction line
and these are shown in Table 2.

4) Because the absolute magnitude of each RR
calculation changes, mesh of the same size and
configuration must be used for each set of com
parisons.

5) The origins of failures can be determined by
suitable testing and analysis of different size
bond specimens and bulk specimens of the
bonding material. This involves the use of a
combined approach, analysis of the Oi/S and m
values.

6) The determination of failure origin by this ap
proach can be useful for focusing attention on
the proper parameters if improvements in sys
tem strength or performance are sought.

1.371.37

Coarse Refined Refined
mesh mesh 1 mesh 2

1.12 1.12 1.12

.995 1.01 1.06

1.26 1.36 1.32

1.24 1.25 1.41

1.38

Interface
surface
junction line

Table 2. Ratios of characteristic strengths calculated from risks
of rupture: (strength, 200 Il-m)/(strength, 50 Il-m). Four-Point
bending

Interface
surface
junction line
(extrapolated)"

Interface

Volume

"Obtained from extrapolations of finite element derived
stresses at centroids to the interface between alloy and bond
layer.

Assumed
failure
origin

Surface

with all other failure ongIns excluded. The row
with the next closest match of strength ratios is that
for volume failures which, with a ratio of 1.12, lies
just outside the 95% confidence range, so this ar
gument, by itself, is somewhat unconvincing. How
ever, volume failures are ruled out because the m
value of 11.5 from the bond tests differs, at the
90% confidence level, from the value of m = 6.8
which was obtained from the bulk specimen test
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1. Introduction

Number 4

We introduce multivariate extremes in the
direction of a given cone. Convergence
results for the number of the kth extremes
are obtained for sampling from a distri
bution having asymptotically independent
radial and spherical components and reg
ularly varying tail of the radial component.
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Let 'Jen = {Xl, ... , Xn } be a point set of independent
identically distributed d -dimensional random vectors
sampled from the probability measure J.L, and K be a
punctured at the origin cone in Rd

, d > 1. We define the
kth layer as

y;<k)('Jen ) = {X; : # (Kx; n 'Jen ) = k-l} k = 1,2, ... ,

where Kx = x+K is the translated cone with vertex in
x E Rd. Intuitively, the kth layer is the set of the kth
extremes of 'Jen in the direction K. The prime examples
we have in mind are (l) the Pareto-optimal points corre
sponding to the first layer in the direction of the positive
orthant, and (2) the total maximum, which may be con
sidered as the first layer in the direction of the cone,
complement to the negative orthant. We are interested
here in the distributions of random variables

Vn (k) = # y;<k) ('Jen ),

counting the number of points in the kth layer. These
distributions depend essentially on both K and J.L.

From a more general viewpoint, the first layer can be
regarded as the set of maximal elements [4] with respect
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to the binary relation [JJl in Rd defined as x[JJly ¢:::} x
y E K. A lternatively, any scale and translation invariant
binary relation generates a cone by setting K = {x E Rd

:

x[JJlO} and the maximal elements are conical extremes.
Two above cases of the counting problem have been

considered in the literature under the assumption that J.L
is either a product of one-dimensional marginal mea
sures or a multivariate normal distribution [2,10,11,12].
It is well known, for example, that if J.L is a product
measure in Rd then the average number of Pareto points
is of the order of (log n )d-l, while the probability that the
multiple maximum exists is n 1-<1.

In this paper we focus on a class of distributions J.L
already studied in connection with multivariate ex
treme-value theory [8] and statistics of convex hulls
[1,5,6,9]. These distributions are characterized by regu
lar variation of the tail of the radial component and
asymptotical independence of radial and angular com
ponents. We show that typically the Vn (k),S converge in
distribution and the expectations have finite limits as
n ~ 00. In the special case of slow variation we calcu
late explicitly the limiting distributions.
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2. Preliminaries and using the iid assumption write for the expectations

lim P{ZI E ·IR! > r} = p (-)
r~oo

~ sa p(C), r~oo. (4)

For x E Bro we have Kx ::J KroY' therefore Eg. (4) along
with the inclusion K"OY ::J Kroy , t> 1, implies

From Kx ::J KII>iiY we derive for sufficiently large ro and
Ilxll > ro that

J-L(Kx ) J-L(KI~iY) 1 a

-(BC);::: (BC) >'2s p(C).
JL I~I J-L I~I

The following lemmas will be used to estimate these
integrals.

Lemma 1. There exists T> 0 such that J-L(Kx ) >
T(1-J-L(BI~I» for all x E Rd

•

Proof Consider first the case where there exists a
linear isomorphism which maps K onto the positive
orthant. Let y be the inverse image of the vector
(I, ... ,I) under this isomorphism. By convexity,
Ky C Kx for all x E B!.

Condition (iii) allows one to select a compact p-con
tinuous set Cc S+ with p (C»O . It is easy to see that
y E int K, the sets K sy , s>O, are increasing as s J, 0 and
Us> 0 Ksy= int K. It follows that C C Ksy for sufficiently
small s. Furthermore, for small s we have also
Al,e C Ksy. Indeed, the points of Al,e are representable as
tx , with t> I, x E C, thus, by convexity, x E Ksy im
plies tx E K,sy C Ksy. Homogeneity implies A,/s,e C Kty.
It follows now from Egs. (I) and (2) that

(2)

(1)

. J-L(At•e )
11m -(BC) = p(C),
t~oo J-L I

. J-L(Bg) -a

hm (B C) = r r> 0,
t~oo J-L I

(iii) p (int S+) > 0, and

(ii) For all p-continuous C C S

(iv) J-L has no atom at the origin.
Consider an iid sample from J-L, 'Jen = {Xl. ... ,Xn },

represented in the polar form as the product of radial
and spherical components: Xi = Ri Zi' where Ri = IlxJ,
Zi = xi/llXi II. The above conditions on J-L have a natural
probabilistic interpretation. Condition (i) means that the
distribution function of the radial component,

We define a cone as a punctured at the origin, scale
invariant Borel set in Rd

, i.e., 0 f1. K, tK = K 'fit> O.
Each cone is uniquely determined by its spherical base
S+ = K n S , where S denotes the unit sphere. We asso
ciate with K also the spherical set S_ obtained by reflec
tion about the origin, So = S\ (S+ U S_) and SO::. = S+ n S_.
The cone with spherical base C C S will be denoted
cone (C).

Set Br = {x E Rd
: Ilxll ::5 r}, Be; = R~r and

Ar,e = cone (C) n B';.
We fix in what follows a cone K and a multidimen

sional probability distribution J-L satisfying the following
conditions:
(i) There exists a ;::: 0 and a probability measure p on S
such that

has a regularly varying tail. Condition (ii) is translated
as

and is to be interpreted as the asymptotic independence
of radial and spherical components, where the limiting
distribution p does not disappear in the interior of S+
(condition (iii». The last condition is not essential and
assumed for technical reasons.

Given a Borel set B C Rd
, we represent the number

of the kth layer points in B as the sum of random indica
tors

n

#,2<kJ( 'Jen n B) = 2: I {Xi E~(k) (:lfnl n Bh

i-I

J-L(Kx ) J-L(Kroy )

(BC ) ;::: (BC) > J-L(Kroy ) > O.
J-L I~I J-L I~I

The assertion follows in this case by setting
T= min(J-L(KrOY )' ! sap(C».

For arbitrary K one can find a smaller cone K' C K,
which is linearly isomorphic to the positive orthant and
still has the interior of its spherical base of positive
p-measure. This is possible since the spherical d-sim
plexes build a measure-generating class on S. It remains
to note that J-L(Kx ) ;::: J-L(KD for any translation, whence
the estimate holds in general. 0
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Lemma 2./fE Vn(l) has a limiting value v E [0,00)
then all EVn(k), k = 2,3, ... converge to this limit as
n-7OO•

Proof Letm(t), t E [0,1], be the distribution function
of the image measure induced by the mapping
XHJL(Kx ). Changing variables transform Eq. (3) to the
one-dimensional Lebesgue-Stiltjes integral

A slight modification of the standard Tauberian theorem
as found in [14] assures that the limiting value of this
integral for k= 1 exists iff m(t) is left-differentiable at
t = 1, in which case the limit and the derivative have the
same value. Applying this theorem in the reverse direc
tion one can easily see that all the EVn(k) 's must have the
same limit. 0

Lemma 3. Assume Yn is an increasing sequence such
that lim n(1-F(Yn»-7Y, y> 0, then

n---)oo

lim sup EV~) ::;; r-1
, (5)

n---)oo

lim sup E # ('p<l)(:len) n B'In) ::;; e-YTr- 1, (6)
n---)oo

with r determined by Lemma 1.
Proof Set

f(t)=f dF(r), tE [0,1].
F(r) "'I

Regular variation of F at infinity implies readily that for
all sufficiently distant discontinuity points the ratio
(jump-size)/(distribution tail) is close to zero. It follows
that (1-f(t»/(I-t)-71 as til (for continuous F this is
obvious since f(t) = t ). Lemma 1, a change of variables
and the Tauberian theorem yield
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Similarly, 'n
lim sup E#(,P<I)(:len)nByn>::;;nj (1-r(I-F(r»"-1

n---)oo 0

dF(r)=

jF(Yn) j'
n 0 (1-r(I-t)"-ldf(t)~n 0 (1-r(1-t»n-l dt

-7e-YTr-1,

where the equivalence can be justified by partial integra
tion.D

3. Pareto-ThUs: a> 0

In this section we study the limiting behaviour of Vn(k)

under the assumption that the regular variation index a
in Eq. (1) is positive. Our plan is to translate Eqs. (1) and
(2) into the convergence, of a suitably normalized sam
ple, to a Poisson process[6,15] and then apply a continu
ity argument to prove also the convergence of the
Vn(k),S.

Compactify Rd by adjoining the infinite point 00 and
then puncture in the origin. The resulting topological
space, say Rd

, is isomorphic to Rd and canonically em
bedded into its compactification, bounded from the
origin Borel sets B C Rd being relatively compact. We
endow the space M (Rd

) of Radon measures with the
vague topology: mn~ miff mn(B)-7m(B) for all rela
tive compacts.

There exists a sequence of positive constants an -7oo

such that the measures vnO ~ nJL{an ·) converge
vaguely to the measure v determined by

v(Ar,c)=r-Up(C), v({oo}) =0. (7)

The limiting measure is in M(Rd
) , being infinite on

balls centered at the origin as well as on the sets
cone (C) with p(C) > 0. In particular, condition (iii)
implies v (int K) = 00. Clearly, v is a product measure in
polar coordinates and has no atoms.

Let ~ be a Poisson point process in Rd with intensity
measure v, and ~n be the random element of M (Rd

)

associated with the scaled sample a;;l :len. Obviously, the
operation of taking a layer commutes with rescaling:
'p<k)(a:len) = a'p<k)(:len), a> 0, therefore the number of
points in each layer remains invariant under scale trans
formations. One can expect in this situation that Vn(k)

converges in some sense to an analogous functional of
the Poisson process.

Define the kth layer of the Poisson sample as

and denote V(k) = #'p<k)(~) the number of points in the
kth layer.
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v(-aK) = 0, (9)

say Yn.I, ... , Yn.p and YIr.'" yp, respectively. These
points may be labeled so that Yn,i -7 Yi , as it follows from
the vague convergence. By the construction, any trans
lated cone Kx with x E Br contains at least k points of g,
thus Br n XV)(g) = (I) and also Br n XV)(gn) = (I) for
j=l,oo.,k.

For Yi E -int K, the cone KYi contains a vicinity of the
origin, where g has infinitely many points. Therefore
Yi fI. nj_ I ,X<k)(g), Yn,i fI. nj. I ,X<k)(gn).

The condition shown in Eq. (9) assures that no one of
Yl, ... ,yp lies on -aK, almost surely.

For Yi fI. -cl K, the shifted cone KYi is bounded from
the origin. Therefore there exists an open vicinity of
cl(Uf= I Ky) which is still relatively compact, and hence
contains at most a finite number of points in addition to
Ylr . .. , Yp . By Eq. (10), g(aKy) = 0 a.s. Again the
poinwise convergence implies g (Kyn) =
g(Ky,) , whence (Vn (I), ••• , Vn (k» = (V(I), ... , V(k» and
thus (11).

Now turn to the convergence in mean. It is enough to
prove Eq. (12) for the first layer, k = 1. It is easy to see
that

EVn(I) ~ fexp(-vn (Kx»dvn(x) = f (... )dvn+
B,

f (... )dvn r > 0
Be,

Take a point x fI. -cl K and a sequence X n -7 x and
consider the indicator functions of the sets Kxand Kxn as
the h's in Lemma 4. The divergence set D is aKx,

whence by (9) and the lemma Vn (Kxn ) -7 v(Kx).
For x E -intK, Xn-7X we have vn(KxJ to v(Kx) = 00

since Kxn contains some fixed vicinity of the origin,for
all sufficiently large n. Therefore in this case also
Vn (Kx.)-7v(Kx) = 00.

To make further use of Lemma 4, consider this
time the functions ho(x) = exp(-v(Kx», hn(x) =
exp(-v(Kx.». For the discontinuity set we have DC
-aK U {x : v(aKx) > O}. The assumptions in Eqs. (9)
and (10) imply v(D) = 0 , hence for any r

(8)f dp(z)
s 4J(z) .

f J. e-r·c/>(z) (r-
a
4J(z»k-1 dp(z)d(-r-a ) =

s It, (k-l)!

The resulting integral does not depend on k, as it is
suggested by Lemma 2. The integration area can be
reduced to S\int S_ since 4J is infinite on int S_.

The following lemma is found in [5].
Lemma 4. Let E be a locally compact, Hausdorffand

separable space; ho, hi, ... be a uniformly bounded
sequence of real measurable functions commonly
supported by a relatively compact set; and mo, ml, ...
be a sequence of Radon measures on E such that
mn~ mo· The set D = {x E E : 3{xn}, Xn-7X, hn(xn)
-4 h(x)} is measurable and if mo(D) = 0 then
f hndmn-7f hodmo.

Now we are ready to prove a convergence result.
Theorem 1. Assume (i)-(iv), a> 0, and

Then for all k = 1,2, ...

vXv{(x,y) E RdXRd : (x-y) E aK} = O. (10)

Using the polar representation, x = rz, and homo
geneity we can write v(Kx) = r-a 4J(z), where 4J(z) =
v(Kz) is a function of the spherical argument. Using
Palm probabilities and integrating along radial rays we
represent the expectations as

Proof By Skorohod's theorem we can find random
point measures ~n, gE M(Rd

) satisfying ~n 4 gn,
~ ~ gand ~n ~ ~ a.s. Thus to prove the convergence in
distribution (10) it suffices to consider the case gn ~ g
a.s. In what follows we fix a typical realization of gand
assume n sufficiently large.

Since v(int K) = 00, g lays in the cone interior
infinitely many points. Select k of them, say Xlr ... , Xk'
Pick r sufficiently small to satisfy Br C nj_l -Kxj as
well as g(aBr ) = 0 and also Br n {XI, ... , Xk} = (I). The
complement B~ is relatively compact hence the
processes gn and ghave there a finite number of points,

LexP(-Vn(Kx»dVn(X) ~ L~XP(-V(Kx»dV(X).
, ,

Now apply Lemma 3 to derive the estimate

The right-hand side here tends to zero as r-70.
Putting this all together and comparing with Eq. (8)

we conclude
lim sup EV(~) ~ EV(I).
n~co
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4. Slowly Varying Tails: a = 0

The first layer is either empty or just one point, maxi
mizing both components, thus this mean value coincides
with the limiting probability of the total maximum.

The limiting distribution and higher moments of the
V~) 's can be, in principle, expressed in terms of some
integrals similar to Eq. (8). These expressions do not
seem tractable by analytical methods because of the
complicated integration domains.

The case of slowly varying radial tail, with a = 0 in
Eq. (1), is of special interest. The above Poisson approx
imation method does not work, since the sample cannot
be rescaled to provide a non-degenerate limit. To get
around, we extend here a method already exploited in
[1], where the number of convex hull extremes of a
sample under slighly stronger assumptions on the
distribution has been studied.

We assume for technical reasons that F is continuous
though, in fact, slow variation is all that is needed.

Let X[~l, ... ,X[~J be the elements of '!en arranged in
the nOfm"decreasing order, i.e., liX[~l II> ... > liX[~1 II.
Set R~l =Rj and Z[~l = Zj, iff X[~l = Xj ; i,j = 1, ... ,n.
One can recognize in the R ~l 's the radial order statistics.
The associated spherical variables, Z~l 's will be called
concomitants. Note that the continuity hypothesis make
the definitions correct since the radial components are
different with probability one.

Maller and Resnick [13] proved that slow variation is
equivalent to

The reverse inequality,

lim inf EVn (1) 2: EV(ll,
n~oo

follows from the convergence in distribution D
Remark. The continuity conditions of Eqs. (9) and

(10) are actually some properties of the spherical mea
sure p. The first one trivially translates as p (-aK) = 0,
but we have not been able to find are-formulation fOf
the second. Sufficient conditions for Eq. (10) are: pis
non-singular, and as+ lies in a (n-2)-dimensional set;
or K is convex, aK has no two-dimensional facets and
p(as+) = O.

Example. Here is a remarkable case where the expec
tations are explicitly computed. Consider the two
dimensional Cauchy distribution specified by the
density dJL(x) = (27Tt1(1+llxllr312dx, x E R2

• The
radial tail is regularly varying with a = 1 and the circu
lar measure is uniform, i.e., dv (rz) = (27T t 1r-2drdz,
r> 0, Z E [0,27T).

Assume first that K is the positive quadrant. The kth
layer are those Xi'S which are exceeded by exactly k-l
points of '!en in both components. Integrating yields

cP(Z) = v(K ) = cos z .+sin z -1 z E (-7TI2, 7T)
z 27T SIn zcos Z

and cP(z) = 00 otherwise. Computing the integral in
Eq. (8) we obtain

lim EVn(k) = 1 + 37T.
n~OO 4 R[i+ll

n P 0
RJil ~ i = 1,2, .... (13)

For k = 1 we have the limiting mean of the number of
Pareto points.

Now suppose K is the complement to the negative
quadrant. The kth layer consists of those Xi'S which
exceed all except some k-l sample points in both com
ponents. We get

cP(z) = cos z.+ sin z +1 . z E (0,7T/2)
27T SIn z cos Z

Our convergence results effectively exploit this fact
combined with the asymptotic independence of the con
comitants shown next.

Let Z[ll, Z[21, ... be iid S-valued random variables
with distribution p.

Lemma 5. Assume that F(r) = JL(B,) is continuous
and Eq. (2) holds. Then

and cP(z) = 00 otherwise. Computing the integral Eq. (8)
in this case, we obtain

Proof. For p-continuous C C S write (2) as

. I-Fdr)
hm 1 F( ) = P (C),
'Y~OO - r

(14)

lim EVn (k) = 1 _!!..
n~oo 4
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where Fdr) = JL(cone (C) n B,). Select arbitrary
kEN and p-continuous spherical sets CI. ... , Ck.
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We have Introduce the random variables

P{ [IJ [kJ }_~
Z. E CI, ... •Z. E Ck - (n-k)!

T.(O) = 0; T/k) = min{i : U~_I .;£<m)(Je.) n {X.[i+IJ.

...• X[~J}=0}. k=l•...• n.

} n! P{ [IJ [IJ
Xk = (n-k)! Z. E CI • R. = Rio ...•

which count the Xi 's in the norm-decreasing order until
the first k layers having been filled. Clearly.
V~) ~ T~) ~ T~k+l). Denote S'" the product of infinitely
many spheres. and set

Z [kl E C R[kJ-R }_~P{Z[IJE C
• b. - k - (n-k)! • I, ...• T(O)(z) = 0; T(k\Z) = min{j : (S+ n {ZI ••••• Zj}) = k}.

V(k)(Z) = #{j : T(k-I) (z) <j ~ T(k)(Z). Zj E 5\S_}.

n!
(n-k)!

J (F(rk))"-kd/L(rlZI) ... d/L(rkZk) =
T\ > ..• >n,

z, ECh •••• z.tE Ct

where z = (ZI, Z2•• •• ) E S'" and inf 0 = 00. For i 2: j
the set

{z E S'" : V(k)(Z) = j. T(k)(Z) = i}

Proof Fix integers VI, ... , Vk; tlo ...• tk = t satisfying
0< tl < ... < tk and 0 ~ Vi ~ ti-ti-I for i = 1•...• k. We
need to prove that

is a finite-dimensional cylinder in S"'.
Denote Z = (Z[IJ. Z[2J•••• ) the sequence with iid

components distributed according to P. T(k) = T(k)(Z).
V(k) = V(k)(Z). It follows from the definition and condi
tion (iii) of Sec. 2 that T(k). k = 1.2•... is a strictly
increasing sequence of finite stopping times with
respect to Z[I]. Z[21•••.

Theorem 2. Assume (i)-(iv). a = O. and p(as+ U as_)
= O. Then for any k = 1.2•...

J
r\ > .. . >rt

J

(
n-l)

n k-1

n!
(n-k)!

lim P{V~) = Vi. T~) = tj; i ~ k} =
n~oo

P{V(i) = Vi. T(i) = ti ; i ~ k}.

(for large r uniformly in n)

n(~=D p(C1) ••• P(Ck- l)r(I-F(rdl-I(F(rd)"-k

dFCk(rk) + E ---7 p(C1) ••• p(cd + E.

as n---7OO • where we have used Eq. (14) and applied an
argument similar to that in Lemma 3. Asymptotically.
the probability is factorized. whence the statement 0

To prove the convergence we combine in what follows
the above lemma and Eq. (13). The idea is that the points
with top layer ranks have also small ranks in the radial
components. On the other hand. conical extremality of
the points with small layer ranks is determined by their.
almost independent. spherical components.

We endow S' with the product measure p' and the
Euclidean metric. Define

D = as+ u as_. gj) = {(ZI, ...• z,) E S':

{ZI ••••• z,} n D = 0}.

.sI1 = {(ZI, ...• z,) E S' : V(i)(ZI, ...• z,) =

Vi. T(i)(zl •...• z,) = ti ; i ~ k}.

The definition of .sI1 is correct due to the cylindrical
property. It is easy to see that gj) is compact• .</f\!!fl is
open and. by the assumption. p'(gj)) = O. It follows,
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p'(sIl) = pt(~). For any 8 there exists silo with the
properties:

sIloC~, p(sIl)-p(sIlo)<8, dist(sIlo,~»O,

p'(asllo)=0. (16)

To prove this, take ~6 = {a E~ :dist (a ,a(.stl\
~» > 8}, then ~6 is an open set, increasing to
~ as 8 -I- 0 . We have p'«~)\~6) < 8 for
sufficiently small 8. On the other hand, a~6 C
{a E S': dist (a,a(~» = 8}, these sets being dis
joint for different 8. Hence the set of the values of 8
with p'(a~6) > 0 is at most countable. Select an appro
priate 8 and set silo = ~6 •

We derive from Eq. (16) with the help of some topo
logical considerations that for sufficiently small €

U (z; + B.) n cone (D) = 0 (Zh"" z,) E silo. (17)
1~1

Assume now that the compound event

occurs. We show next that in this case

Let Q be an element of the finite algebra of spherical
sets generated by S+ and S_. The following equivalence
holds:

Indeed, note first that aQ CD. By (17), Z~J E Q implies
Z~]+B.Ccone(Q). From Eq. (18) we have also
X~J + BR~l C cone (Q). But -X~] E BR~l thus XI~l_

X~l E cone (Q). Use QC instead of Q to prove the
reverse implication.

The definition of sIl and Eq. (18) yield ZI~] E S+,
i = 1, ... ,k. Setting Q = S+ in Eq. (20) we have XI~L

X~l E K, t; < j ~ n. Therefore,

k

{XJ'/+I], ... ,XI~]} n (LJ :£<rn)('Jen» = 0.
rn-I

Let t;_1 <j < ti and Z~] E S_. Setting Q = S_ in Eq.
(20), we have {x,\i+I], ... , X[~l} C (X~l + K). Setting
Q = S+ we have further {X[~], XI~], ... XJ';-tl}
E (X~l + K) . That is, X~] f/:. Urn ~ k :£<rn)('Jen).

Let ti-I <j < ti and Z~l E So . Substituting Q = So into
Eq. (20) we get X~l_X~J E cone (So), j + 1 ~ p ~ n,

together with So = -So and So n S+ = 0 this yields
{X,\i+I], ... , XI~]} n (K+X~l) = 0. For Q = S\S+ and
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P E {l, ... ,j-l }\{thtz, . .. , t;_I} we have X~l f/:.
(K + X[~l). Similarly, for p E {thtz, ... , ti- I } we have

Thus in this case X~l E :£<i-l)( 'Jen).
In the same manner, ZI~l E S+\S_ implies XI~] E

:£<i-I)( 'J{,.).

Summarizing, if Eq. (18) holds then
:£<i)('Jen) = {XI~l : ti- I <j ~ tj , Z~l E S+\S_}, whence
Eq. (19).

Now from Eq. (13) and Lemma 5 (recall that t = tk )

p{(ZI~l, ... ,Z[~l) E silo, €R~l > RJi+ll;
i = 1, ... , td-7p'k(sIlo).

Recalling the definitions of sIl and silo we get

lim infP{V~) = Vi, T~) =ti ; i ~ k} >
n---7OO

P{V(i) = Vi, T(i) = t;; i ~ k }-8.

Take 8 = 8(Vh ... , Vk; t l , ••• , tk) with
.!8(Vh' .. , Vk; tJ, ... , tk) = {3 and choose a diagonal
subsequence of the values of n to get the convergence of
the probabilities in the left-hand side. Recalling that
probabilities sum to one, we derive Eq. (15) by setting
{3-70D

Convergence in mean does not require additional
restrictions, as shown next.

Theorem 3. Under the assumptions of Theorem 2

Proof It is sufficient to consider only the case k = 1.
Denote by In lil and IIi] the indicator functionsof the
events {XI~l E :£<1)('Jen)} and {Z[ll E S\S_, i ~ TIll},
respectively. Clearly,

By an argument similar to that used in Theorem 2 we
show that

Choose 'Yn satisfying npn-7A , where A> 0, Pn =
I-JL(B.y.). The random variable N=#({XI, ... ,Xn }

n B~n> has binomial distribution with parameters (n,Pn)'
By Eq. (6),

E(In[N+I] + . " + II~]) = E(:£<l)(.~en) n By.) ~ e-ATT- I •

(22)
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Fix m and write the expectation as

The first term converges by Eq. (21):

E(Il~l+ ... I[~l)~E(IlIJ+ ... I[m J). The first and the
third terms are estimated by Eq. (22) as

Since N is binomially distributed, we have for the
second term

AP{NA 2: m-l}, n~OO

where NA is a Poisson random variable with parameter
A. Selecting A and then m sufficiently large, we prove
lim sUPn-;oo EY~) ,;;;; Ey(k).

The inverse inequality involving lim inf follows from
the convergence in distribution 0

It is not hard to find the limiting distributions of the
y~)'s. Note first that

where i 2: 0, j 2: 1 and j 2: i. Summing over j we arrive
at the limiting distribution of points in the kth layer:

If the cone satisfies K n -K = '" (or, more generally
p(S+ n S_) = 0 ) then po; = 0 and y(k) is geometrically
distributed. A little additional work is needed to find the
expectation:

(23)

are all iid, therefore it is sufficient to consider only the
first pair. Clearly TO) is geometrically distributed with
parameter p(S+). The probability law of yO) is found
from the following scheme: throw down the iid points
ZlIJ, Z[2], ... in S according to the probability law p
until the first point falls into S+ , then count all the points
falling into S\S_. To make this precise denote

(thus po + p_ + p+-po; = 1). The joint distribution of yO)
and T(l) is this:
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Example. Assume that the radial tail is slowly vary
ing and p is the uniform spherical measure.

For K = R~ we have P+ = p_ = 2-d, and Eq. (23) yield
EY~) ~ 2d -1. In particular, the mean number of Pareto
points in two dimensions converges to 3.

Taking the complement to the negative orthant, we
have P+ = p_ = 1-2-<1 and EY~) ~ (2d_l)-J. In two dimen
sions, the probability that the sample has the double
maximum tends to 1/3.

Appearing of inverse numbers in the above example is
a general phenomenon.We write further Y~) (K) to
emphasize the dependence on the cone.

Theorem 4. Under the assumptions of Theorem 2

lim EY~) (K) EY~) (-Kj = 1,
n~oo

provided one of the numbers P+ or I-p_ is positive.
Proof This follows from Theorem 3, Eq. (23), and the

formulas p_(_KC
) = I-p+(K), p+(-Kj = I-p_(K) 0
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Remark. Given a binary relation, say f!Il, on a sam
pling space, and a random sample 'Jen , there are two
natural ways to define the "kth extremes" of'Je,. : (1)
sample elements Xi which are in f!Il with all other sample
elements with the exception of some k-l points; or
(2) the elements Xi such that there are exactly k-l
sample points which are in the relation with Xi' In the
theory of partially ordered sets extremes (k = 1) of the
first type are called the greatest points, of the second
type-maximal [4]. This is best illustrated by the
natural partial order of Rd

: total maximum is the great
est point, while Pareto set consists of maximal points. If
the binary relation f!Il is generated by a cone K, as
mentioned in Introduction, then the K -extremes are
maximal points, while the _KC -extremes are the greatest
points w.r.t. f!Il. Baryshnikov [3] has proved that the
asymptotic upper bound for the product of expectations
of the numbers of the extremes of both types is at most
1, for any fixed f!Il and k. Theorem 4 shows that this
bound is sharp.

Remark. Normal multivariate distributions can be
viewed as the case of fast decreasing radial tails, a = 00.

The mean number of conical extremes demonstrates
typically the following behavior: for any k, EV~

infinitely grows if K is contained in a half-space, and
tends to zero if K contains a half-space [10,11].
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1. Introduction

Number 4

This article develops new theory and
methodology for the forecasting of
extreme and/or record values in an ex
changeable sequence of random vari
ables. The Hill tail index estimator for
long-tailed distributions is modified so
as to be appropriate for prediction of
future variables. Some basic issues re
garding the use of finite, versus infinite
idealized models, are discussed. It is
shown that the standard idealized long
tailed model with tail index a~ 2 can
lead to unrealistic predictions if the
observable data is assumed to be un
bounded. However, if the model is
instead viewed as valid only for some
appropriate finite domain, then it is
compatible with, and leads to sharper
versions of, sensible methods for pre
diction. In particular, the prediction of
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the next record value is then at most a
few multiples of the current record. It
is argued that there is no more reason
to eschew posterior expectations for
forecasting in the context of long-tailed
distributions than to do so in any other
context, such as in the many applica
tions where expectations are routinely
used for scientific inference and deci
sion-making. Computer simulations are
used to demonstrate the effectiveness
of the methodology, and its use in fore
casting is illustrated.

Key words: Bayesian forecasting; ex
changeability; long-tailed distributions;
record values; tail-index estimator.

Accepted: March 22, 1994

Consider a sequence XI, ... ,x;, of positive random
variables that is exchangeable. We say that X,'+l is
a (new) record value if X,'+l >X, for i = 1,... ,n. See
[2] for some related discussion of record values in
the iid case. The problem that we address concerns
forecasting of the next observation, x,,+l, given that
it is a record value, conditional upon the data
X =Xi, for i =1,... ,n. In other words, given that
X,'+l sets a new record, how large will it be?

In the Bayesian approach, with squared error
loss, the forecast of X,'+l, conditional upon the data
X1, ...,x", and upon X,'+I>max[XI, ...,x;,], is simply
the posterior expectation of X,'+l conditional upon
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the same information. Note that if a sequence is
exchangeable, then the future variables are also
conditionally exchangeable, given the realization of
the first n variables. Hence each of the next N ob
servations has in fact the same posterior predictive
distribution. The posterior expectation for x,,+j,
conditional upon XII +j being larger than each of the
first n observations, is then the same for each j ~ 1.
It may be noted that there are two quite different
questions that arise concerning the forecasting of
future record values. The first concerns the fore
casting of when the next record value will occur,
while the second concerns the forecasting of the
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magnitude of the next record value. In this article
we only consider the second question.1

Although we focus attention here only on the
prediction of the magnitude of X'+1 given that it
sets a new record, there is a relatively straight-for
ward extension of these results to the evaluation of
the posterior expectation of X,+j, given that it sets
a new record. To obtain the prediction of the next
record value, conditional upon the data Xh ...,x",
and upon X,,+j being the next new record value, we
must evaluate the posterior expectation of X,+j,
conditional upon the collection of inequalities that
define the event that X,,+j is the next record value.
This can be done by a generalization of the proce
dure for forecasting X,,+I, conditional upon its be
ing the next record value. For example, the
posterior expectation of X'+2, conditional upon its
setting a new record, can be obtained by condition
ing upon the event that X"+1 sets a new record, and
then making the same type of evaluation as above
for X,,+I, given that it is a record value; or alterna
tively, by conditioning upon the event that
X,+! <max[XI, ...,x,,], and then evaluating the pos
terior expectation of X, +2, given that it is larger
than max [XI, ...,x" ]. Since in the Bayesian frame
work with a specified a priori distribution, the pos
terior probability that X"+1 sets a new record is
known, there is no difficulty in principle in extend
ing the analysis for the posterior expectation of
X,,+I, given that it sets a new record, to the fore
casting of the magnitude of future record values.
Explicit algorithms for doing so will appear in a
later paper.

Although the present paper deals only with the
evaluation of the posterior expectation of X, +1,

given that it sets a record, we shall nonetheless
sometimes speak of forecasting the magnitude of
future record values, since this can be achieved by
the same basic methods. Similarly, one can obtain
the posterior expectation of the maximum over
some finite horizon, say the maximum of
X"+h ...,x,,+N, given that this maximum exceeds our
current record value. This is a problem of consider
able practical importance both in economic fore
casting of interest rates, and in engineering design,
where for example, one desires to build a structure
capable or withstanding severe winds or earth
quake tremors over a certain period of time. To the

1 For those unfamiliar with exchangeability, it may be remarked
that exchangeable sequences are strictly stationary processes,
and can be strongly dependent. An interesting and important
class of exchangeable processes consists of the Markov-P6lya
processes, discussed in [3,4,5,6], which playa major role in the
theory of stochastic chaos.
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best of my knowledge such forecasting has never
been attempted before in the sense of providing a
procedure that could be recommended for serious
consideration in real-world problems.

If we assume a conventional statistical model
with some unknown parameter (), then in principle
these are straight-forward Bayesian problems,
since one can integrate out unknown parameters
with respect to their posterior distribution, to ob
tain the predictive distribution for a new observa
tion; and then condition also upon such a new
observation being a record value, in order to an
swer the question. For example, one could obtain
the posterior expectation and variance for X"+h
given that it is a record value. However in typical
real-world problems involving forecasting of such
extreme values, the model is always uncertain and
often unreliable. This is especially so in the tails of
the distribution, where there is little, if any, past
data to rely upon. Thus to obtain reliable forecasts
requires serious attention to model uncertainly.
See Hill [7] for discussion of the selection of mod
els from a Bayesian viewpoint, Poirier [8] for a
Bayesian analysis of some theoretical models in
economics, and Singpurwalla and Meinhold [9] for
Bayesian robustification theory in a closely related
area.

In this paper we attempt to deal with the prob
lem by using the formulation for inference about
the tails of the distribution initiated in [1]. See [10]
for an exposition, and Csorgo et al. [11] for related
asymptotic theory. This approach utilizes only the
upper order statistics of the past data for inference
about the upper tail, since it is only such order
statistics that fall in the upper tail where the form
of the distribution is assumed known. Seriously to
utilize the information in the other order statistics
requires knowledge concerning the globed form of
the distribution, and such knowledge is often un
available. Suppose that given the parameter a, the
upper tail of a distribution F on the positive real
line is of algebraic form, with tail index a. We as
sume that

1-F(t)=P(X>tla)=C xt-a,

for C > O,a > 0, and t in some interval (A,k) that
is considered relevant for prediction of future ob
servations. It is supposed that a random sample
X; =X;, for i = 1,... ,n, from the distribution is
available, and based upon this data we wish to
forecast the next observation X,+ [. Such prediction
in the Bayesian context amounts to putting forth a
posterior distribution for X, +[, that is obtained by
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integrating out unknown parameters such as 0',

with respect to their posterior distribution, and
then making appropriate forecasts by minimizing
posterior expected loss with respect to some loss
function. In this article we consider only squared
error loss, but our methods can be used in connec
tion with any loss function believed appropriate.
See Aitchision and Dunsmore [12] and Maret [13]
for the Bayesian theory and methodology of such
predictive distributions.

Often a simple summary of the posterior predic
tive distribution, such as the posterior expectation
and variance of X.+l, suffices for many practical
purposes. In typical applications A will be the
largest order statistic of the past data. k can some
times be + 00, but for reasons discussed below will
often instead be some modest multiple of A. We
might be interested, for example, in forecasting the
next observation, X,+ l, conditional upon its being
between x(!) and 5 XX(!), where X(l) is the largest
order statistic of the past data. Forecasting of such
a record value is an especially difficult part of the
overall forecasting problem, since by assumption
there is no past data of this magnitude. Yet in fore
casting extreme values, it is necessary to consider
precisely the situation in which the observation is
more extreme than anything yet seen. For example,
in designing a structure to resist high winds, one
must make allowance for forces more extreme than
have yet been experienced. It would be foolish to
imagine that such forces have already been ob
served at their maximum.

The best that one can do in such circumstances
is to use what relevant theory exists, making sure
that such theory is compatible with the data that
has been seen. In this article we shall rely on the
theory of long-tailed distributions, in which the tail
is known to be of algebraic form at least in some
interval. Many data sets are known to be of this
form. Examples include income distributions, city
size distributions, distributions of genera by spe
cies, insurance claim sizes, word frequency distri
butions, stock market fluctuations, and many
others. See Zipf [14] for graphical presentation of a
great variety of data in support of his theory for
long-tailed distributions. Several theoretical mod
els have been proposed for such data. These in
clude the probability models of Yule [15], Hill
[16,17,18], Hill and Woodroofe [19,20], and Hill,
Lane and Sudderth [3,4]. See Johnson and Kotz
[21] for discussion of the model of Hill [22,17],
which was the starting point for the later models.
As pointed out by Chatterjee and Yilmaz [23],
some of these models are related to stochastic
models for chaos.
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We are particularly interested in the case where
0' is not large, so we are dealing with a truly long
tailed distribution. For any 0' > 0 the distribution of
X'+l is proper, even when k = 00. However, for
fixed known 0' ~ 1 the expectation of X'+l is infinite
if there is no finite upper bound for the data, and
the variance of X, +1 is infinite if 0' ~ 2. Also, if
0' ~ 1 is unknown, which is ordinarily the case, the
posterior distribution for 0' must give sufficiently
small weight to values of 0' near 1, in order for the
posterior expectation of X.+l to be finite. This gives
rise to an important practical issue for Bayesians,
since the predictions are then very sensitive to the
precise form of the a priori distribution for 0' near
1, and the results are not robust. Similarly, if 0' ~ 2
is unknown, the posterior distribution for 0' must
give sufficiently small weight to values of 0' near 2,
in order for the posterior variance of X'+l to be
finite.2

In view of such nonrobustness, it is necessary to
proceed more carefully than in most problems of
statistical inference and prediction. Our method is
to take explicit account of the boundedness of the
observations. In many real world applications of ex
treme value theory, where one deals with maximal
temperatures, wind velocities, rain fall, etc., the
data are generally considered to be bounded. For
example, a wind velocity even double the highest
ever previously experienced, must be regarded as
extremely improbable. Even if such could occur, it
might be regarded as indicating a basic change in
climate such as would invalidate all standard as
sumptions, and so require modification of existing
theory. This suggests that a realistic analysis of the
problem should incorporate a finite upper bound,
say K, for the data.3 Such a bound might be taken a

2 Some may think that because of such issues one should be
considering inference about percentiles, such as the median,
rather than the expectation. However, means are often of par
ticular interest and importance in real-world problems, and of
course are appropriate for squared error loss. If there were no
technical difficulties at infinity with the expectation, would any
one argue against its use for prediction?
3 Instead of requiring that the mass be exactly 0 beyond a cer
tain known bound K, one can alternatively require that the mass
beyond this bound be so negligible as to be of no interest. In the
subjective Bayesian approach it would be remarkable for anyone
to have a probability of 0, to infinitely many decimal points, for
a logically possible event. However, whether or not 0 is taken
literally, in effect one ordinarily ignores values of the observa
tion larger than the bound. For the purposes of this article we
treat such negligible mass as though it were O. An alternative
and nearly equivalent way to deal with the problem is to con
sider only conditional inference, given that the observations are
no larger than the bound. A general theory and methodology for
such conditional inference is proposed in [24].
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good deal larger than is ordinarily believed reason
able. A 10-fold increase above a previous record
value that was based upon substantial data would
often be too large, but is worthy of consideration. If
such an upper bound is incorporated in the analy
sis, then as shown below, even if a::; 1 there is no
problem with infinite moments. We will typically
assume some known finite upper bound K, perhaps
much too large, but we will not necessarily assume
that a ~ 1, and will let the data speak for them
selves in this regard. Since the density in the tail is
proportional to t -a-I, we see that a =0 corre
sponds (in the tail) to a uniform distribution for
the logarithm of the observation. Such a distribu
tion is often used by Bayesians to represent diffuse
a priori knowledge about a positive quantity such as
a variance.

Our precise model is as follows. We assume that
there exists a known constant K such that
O::;X::;K, so that K is a known upper bound for
the data. In applications, ordinarily K < 00, but for
completeness we shall also discuss the case K = 00,

which is sometimes appropriate and is mathemati
cally convenient when a > 2 + € > 2, in which case
no problems arise due to infinite first or second
moments. We do not assume in applications that
one can necessarily determine a smallest such K,
but merely that one can pick some bound. We also
assume that there exist constants k and A with
K > k >A > 0, such that the tail is algebraic, to an
adequate approximation, for A::; t::; k, with 0 mass
beyond K. Let X(I) > ... > X(II) be the descending order
statistics of the past data. Ordinarily we take A to
be the largest order statistic of the past data,
A =X(I). The quantity k is the key variable in our
analysis. It represents the point up to which the
algebraic assumption is assumed to be valid. k is
not a parameter in the usual sense, but is more in
the nature of a decision variable, since in applica
tions the tail will not be exactly algebraic in any
interval, but it will nevertheless be reasonable to
act as if it were approximately of this form for some
intervals. The selection of k in part acts as a means
to specify the portion of the distribution that we
are particularly interested in. Even if X> k we may
not be interested in forecasting X for such extreme

.values, since the occurrence of such would force us
to reconsider our modelling assumptions, as in
[7,24,25].

We are in effect assuming a model in which the
algebraic behavior holds, given a, to a satisfactory
approximation for A ::; X::; k, and that eventually
there is 0 (or negligible) mass beyond some known
K >k. We assume that the same k is appropriate
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for all values of a being given positive weight. Be
tween k and K there must be a transition from the
algebraic tail behavior up to k and the negligible
mass beyond K. In this transition zone the tail of
the distribution may not even be approximately al
gebraic, and if algebraic, may have a different tail
index. The mass between k and K need not be en
tirely negligible, but we assume there is no data
based or other information concerning the form of
the mass distribution in this interval, apart from
the fact that the total mass in the interval is smaller
then C x k - a, as is required by the model. If k is
large enough, then C x k -a, although not entirely
negligible, may be sufficiently small so that the
mass between k and K < 00 has only a slight effect
upon the posterior moments for X,,+I. We shall as
sume that this is the case, so that the tail distribu
tion is of algebraic form from A to k, while beyond
k, although not 0 or entirely negligible, the mass is
of no practical importance for the assessment of
the posterior moments of X II + 1•

Typically, the posterior expectation of C xX(lt
will be of order of magnitude l/(n +1) based on a
previous sample of size n. Compare the maximum
likelihood estimator (;1 of [1, p. 1168]. This also
corresponds to the fiducial analysis of Fisher [26, p.
210], and to the Bayesian non-parametric proce
dure All of Hill [22,27,35]. Thus before observing
Xl, ...,xll' because of the exchangeability there is an
unconditional probability of 1/(n + 1) that X,,+I will
be the maximum, which suggests that even condi
tionally this will often be of the right order of
magnitude. As shown in [5], there is an explicit
parametric model, called a splitting process, for
which this evaluation holds exactly, and such an
evaluation is coherent in the sense of de Finetti
[28,29].

The constant K plays virtually no direct role in
the following analysis, but is important because of
the delicate issues that arise when a::; 2. In this
case if there were no finite upper bound K and the
algebraic tail were assumed valid everywhere be
yond A, then the posterior .predictive variance of
the next observation would be infinite; and the pre
dictive expectation would also be infinite unless the
a priori distribution for a gave sufficiently small
weight to values near 1. There is no known reason
that a must be larger than 2, or even larger than 1,
and the data may in fact clearly suggest that it is
smaller than 1. But an infinite predictive expecta
tion would not correspond to any real world prob
lem that I know of concerning extreme data, and I
doubt that one could seriously recommend such
predictions. For example, they would lead to
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terribly poor performance if predictions were made
and assessed according to some proper scoring rule
or loss function. This change in viewpoint to reflect
the boundedness of the data gives rise to some sur
prising consequences with regard to prediction.

The key choice concerns not K but k, since even
if there were a known finite upper bound K for the
data, it might still not be appropriate to assume the
algebraic form all the way up to K, but only that in
the domain of practical importance the tail is of
this form, say up to k, which is equal to some ap
propriate upper percentile of the distribution. This
is in essence a modelling assumption, just as when
we assume that the normal model for data is suffi
ciently closely satisfied to be useful in the analysis
of that data. Modelling assumptions are rarely ex
actly true, but they are sometimes indispensable in
order to proceed, and often give useful results. See
[7,25,27]. The form of analysis that we recommend
is a conditional analysis, given a specification of k.
For example, with A =X(l), we consider predictive
inference about the next observation given that it
lies between X(I) and some k >X(I). IfL =k/x(l), then
we find that it typically makes a great difference
whether L is of order 5 or order 100, both with
respect to the posterior predictive mean and the
posterior predictive variance for the next observa
tion. Based upon the mathematical and computer
analysis in the next sections, we recommend that
the forecaster make a choice of L, usually with
L ~ 10 and sometimes even with L =2. To illus
trate, when L is chosen to be 3, the adequacy of
our modelling assumption depends on whether it is
or is not the case that the algebraic form holds be
tween X(I) and 3 XX(I), with the mass beyond 3 XX(I)

no longer even approximately of the algebraic form
with the same a as between X(l) and 3 xX(l), and also
with the mass beyond 3 xX(l) sufficiently small so
that for practical purposes it can be ignored. In
principle the optimal choice of k is the largest value
for which the algebraic assumption holds exactly
(or in a suitable sense, approximately); while be
yond that k the tail is no longer of that same form,
and also is of little practical importance in the eval
uation of the first two posterior predictive mo
ments. It would be difficult if not impossible in
typical real-world problems to find such an optimal
k, and so we recommend that several values of k be
chosen, yielding different values for the posterior
predictive moments, and then by means of judg
ment and data-analytic methods that a choice be
made to yield a forecast. See for example Sec. 5 of
[1] for a closely related type of data-analysis. Such
analyses must be made on a computer, rather than
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purely mathematically, and can be quite demand
ing computationally.

We emphasize that it does not seem possible to
avoid such considerations as to the choice of k,
since in even the best of cases, where the tail of the
distribution is known to be of the algebraic form in
the domain of interest, the only alternative to such
an analysis is to simply ignore the boundedness of
the data, and take k = 00. But then our prediction
of the next record value can become infinite, which
is absurd in most real-world problems. Hence the
algebraic tailed model with 1~ a ~ 2 is not compat
ible with unbounded data unless the a priori distri
bution is chosen to give suitably small weight to
values of a close to 1. There may be little or no
evidence for choosing the a priori distribution in
this way, and it does not seem appropriate to do so
merely to avoid the issue, just as it does not seem
appropriate to replace the expectation by the me
dian merely to avoid the issue. At any rate, this
article shows that effective predictions can be
made with any prior distribution for a, including
cases where a ~ 1, provided that one can justify
some finite upper bound K for the observations.

Our underlying motivation is that given the unre
liability of assessments of the far upper tail of a
distribution, for predictive purposes it may be ap
propriate to ignore this far upper tail, i.e., the part
beyond k, or equivalently, to condition upon X
falling in some finite interval, say (x(l),L xX(I)), for
which the algebraic assumption is believed to be
valid, and beyond which there is no assumption
that is believed trustworthy. It is implicit in this
analysis that there is little mass beyond k, and that
in ignoring the case X;;:;k for some appropriately
chosen k, one loses little, while gaining the power'
of a statistical analysis based upon the extreme
value model with some a> O. In the case of a
known finite upper bound K, in effect we perform
conditional inference, given that the observation is
not too large, and then examine sensitivity to the
choice of k. The same is. true if the random vari
able is unbounded and K = 00, since again beyond
a certain percentile one would have no empirical
basis for any assumption in the far upper tail.
Whatever extreme value theory exists for tails of
distributions could not be expected to hold literally
in the far upper tail of the distribution, where no
data has been observed. Nevertheless, one may
have to make some forecasts, and it woilld appear
reasonable to assume that the algebraic assumption
holds for at least some distance beyond X(l). If t'his,
or some other assumed model does not hold
beyond x(l) then plainly no serious theory-based
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V(k,a) ==f2)(k,a) - [f(k,a)j2. (4)

f(k,a)=E(X~ ~X~k, a),

notation. To evaluate the posterior predictive ex
pectation of X we first condition on a, to obtain

(1)

f a~O,2

if a=2
if a=O.

(3)

if a~O,1

if a=1

if a=O.

.c;x-adx
.J1x al dx·f(k,a)

f(k,a)= {~:I~(:)~~~~~
A x (L -I)

In(L)

A 2 a 1-0-·

f2)(k,a) = {2 X~~-; ;n(~\-~ [LT~l]
A 2 LLl)

X 2xln(L)

For a~O, 1, we can also write:

For L = ~, this yields:

and then we take the expectation of this quantity
with respect to the posterior distribution of a to
obtain the predictive expectation of primary inter
est.

Based upon our assumption that the tail is alge
braic between A and k, we obtain

The posterior predictive variance for a future
record value X, given a, is therefore

A similar equation is available for f2 J(k ,a) ==
E (X2~ ~ X ~ k ,a). We obtain:

forecasting is possible. But if through data analysis,
as in [1,26], it has been discovered that the alge
braic assumption is acceptable for say the upper
r +1 order statistics of the past data, then it would
be reasonable to anticipate that this will also be
true for some distance beyond X(I). A Bayesian the
ory of data analysis is put forth in [25] which indi
cates how the classical Bayesian approach must be
modified to deal with issues that arise from such
data analysis.

Finally, real world data sets of interest in regard
to the forecasting of extreme values are not neces
sarily of the long-tailed algebraic form that we have
discussed. In this case we recommend that a trans
formation be first applied to the data in order to
make the upper tail of the long-tailed form. For
example, if the tail is of Weibull form, then the
transformation to exp XS yields an algebraic tail, as
discussed in [1,10]. When the form of the tail is
unknown, data-analytic methods can be used to de
termine an appropriate transformation. In this way,
having learned how to forecast extreme tails for the
long-tailed distributions as a type of standard case,
we can also apply our methods to distributions not
of this form in the upper tail, and then take the
inverse transformation to forecast the extreme val
ues in the original units in which the data were
measured. Such methods are quite common in
statistics, for example in transforming data in order
to obtain approximate normality, using normal
methods for analysis of the data, and then trans
forming back to the original units. In the Bayesian
scenario it is even possible to provide a strong justi
fication for these methods, since conditional upon
the data, one can quite freely transform the
parameters, and obtain the posterior distribution
for the new parameters by the usual calculus of
transformations.

2. Predictive Moments for Known a
It follows from (2) that for a> 1, as L ~ 00 we have

Our object is to evaluate, as meaningfully and
robustly as possible, the posterior moments

a
f(k,a)-A X a -1 . (5)

When a> 1, the right-hand side of (5) decreases
from 00 for a =1 to the value 2 xA when a =2,
with the value 3 xA when a = 1.5. Provided that a
is bounded away from 1 this expectation remains
bounded.

For a ~ 2, the posterior predictive variance goes
to 00 as L~ 00. If we define E =2 - a > 0 then for
large L

for specified A and k, and i = 1,2. The primary ap
plication will be in the case where there has been a
previous sample, Xl, ...,xll' Let D denote the data
XI =Xl, ... ,xll =xII . Given this data, we wish to fore
cast the next observation x,,+Jo It is notationally
convenient to refer to x" + I as X from now on. Since
A will usually be held fixed, we suppress it in the
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Lf-l
f2)(k,a)=A 2xax-- .

E (6) ~
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M =max[X,+I, ...,XII +N ],

f(k) =E[E(XID,A ~X~ k,a)] =E[f(k,a)], (to)

of A, even when a is as small as .10, provided that
L ~ to. In an important class of application A is
taken to be X(l), so that the real action takes place
with regard to a few multiples of the largest obser
vation yet observed. When L ~ 2 we see that the
value of a between .to and 1.90 has very little ef
fect on the posterior predictive first and second
moments. On the other hand, when L is very large
the value of a has a huge effect. For example, the
posterior expectation drops from 37,297 xA when
L = to6 to 2.11 xA, as a changes from .10 to 1.90.
The choice of L can make a huge difference when
a ~ 1. However, in many applications of extreme
value theory, it could safely be assumed that
L ~ to, in which case L has only a minor effect
even when a ~ 1. The choice of L has a greater
effect with regard to the predictive variance, but
again if L ~ to there is substantial robustness.4

Thus the first conclusion that we draw is that in a
real-world problem, where there has been substan
tial data, such as with regard to wind velocities,
temperatures, etc., and where one does not take
seriously the possibility of the next record value be
ing an enormous multiple of the current maximum,
the precise choice of a and L has a limited effect
upon the forecast. This is precisely what we are
aiming for, namely an approach in which one can
seriously input a priori knowledge regarding a and
L in such a way as to see clearly the real but limited
effect of such choices.

Table 1 refers to the case of known a. In prac
tice a will ordinarily be unknown. The Bayesian ap
proach is to employ some a priori distribution 'IT for
a, obtain the posterior distribution for a given D,
and then obtain the posterior expectation of X,
given that A ~ X ~ k. For a specified k, this poste
rior expectation can be written as

where the last expectation is taken with respect to
the posterior distribution of a. Similarly, the poste
rior second moment for X is obtained by evaluating

We employ the theory of [1] to obtain a likeli
hood function for the parameter a based upon the
upper order statistics of the past data. We first
condition upon the upper r + 1 order statistics of
the data lying in the region where the tail is of

4 See [30] for a general formulation of the robustness problem
in Bayesian statistics.

(8)

(9)'IT*(a,C) da dC.

A 2 a
X (a -2)(a -1)2'

From Eq. (3), it follows that for a > 2 the poste
rior predictive variance remains bounded, and as
L~ 00 tends to the limiting value

For each L > 1, and for € > 0, the function
cf>(E)=L<;1 is monotonically increasing in E. For
0< E~ 2 it has a maximum value of IL22-

11 when
E=2, and an infimum of In(L) as E~O. For large
L, as E~O we see from Eqs. (3), (5), and (6), that

Now consider the forecasting of the maximum of
N future observations. Define

and let 'IT*(a,C) be the posterior distribution for
a,C, based upon the data D. The likelihood func
tion L 2(a,f3) of [1], when converted from lower tail
to upper tail inference, can be used to obtain this
posterior. distribution. For t >A, we have

When N = 1 this gives the posterior predictive
distribution for a single new observation consid
ered earlier,except that here we have not yet con
ditioned upon X:::::A. Just as before, one can
consider the posterior moments of M, given that
M:::::A. When N is not small it is very probable that
M :::::X(l), so that a new record will be set. Thus for
large N the predictive distribution of M will be ap
proximately the same as the predictive distribution
of M, given M :::::x(l).

In Table 1 we present for several values of a the
predictive moments as obtained by numerical inte
gration. The predictive mean is denoted by E*(X)
and the predictive standard deviation by SD *(X).
The column labelled DIST gives the posterior pre
dictive probability that X is larger than 2, 3, and 5
times A . Values of a go from .to to 1.90, and values
for L go from 1.25 to to6

• It can be checked that
the above asymptotic formulas hold quite closely
for fixed a.

We see from Table 1 that the posterior expecta
tion of X, given that X> A, is only a few multiples
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Table 1. Fixed ALPHA

ALPHA PRED DIST BOUND

a £*(X) SD*(X) 2 3 5 L

.10 1.12 .07 .93 .85 .79 1.25

.10 1.23 .14 .93 .85 .79 1.50

.10 1.44 .29 .93 .85 .79 2

.10 1.80 .57 .93 .85 .79 3

.10 2.43 1.12 .93 .85 .79 5

.10 3.75 2.45 .93 .85 .79 10

.10 18.70 23.46 .93 .85 .79 100

.10 734.88 1715.25 .93 .85 .79 10'

.10 37297.27 1.28 x 105 .93 .85 .79 106

.50 1.12 .07 .71 .45 .32 1.25

.50 1.22 .14 .71 .45 .32 1.50

.50 1.41 .28 .71 .45 .32 2

.50 1.73 .56 .71 .45 .32 3

.50 2.24 1.07 .71 .45 .32 5

.50 3.16 2.22 .71 .45 .32 10

.50 10.00 16.43 .71 .45 .32 100

.50 100.05 571.77 .71 .45 .32 10'

.50 1001.62 18257.56 .71 .45 .32 106

.90 1.12 .07 .54 .23 .13 1.25

.90 1.22 .14 .54 .23 .13 1.50

.90 1.39 .28 .54 .23 .13 2

.90 1.66 .54 .54 .23 .13 3

.90 2.05 1.00 .54 .23 .13 5

.90 2.67 1.93 .54 .23 .13 10

.90 5.35 10.12 .54 .23 .13 100

.90 13.62 142.79 .54 .23 .13 10'

.90 26.86 1806.66 .54 .23 .13 106

1.10 1.12 .07 .47 .17 .08 1.25
1.10 1.21 .14 .47 .17 .08 1.50
1.10 1.38 .28 .47 .17 .08 2
1.10 1.63 .53 .47 .17 .08 3
1.10 1.97 .96 .47 .17 .08 5
1.10 2.46 1.78 .47 .17 .08 10
1.10 4.09 7.73 .47 .17 .08 100
1.10 6.62 69.46 .47 .17 .08 10'
1.10 8.24 554.67 .47 .17 .08 106

1.50 1.11 .07 .35 .09 .03 1.25
1.50 1.21 .14 .35 .09 .03 1.50
1.50 1.36 .27 .35 .09 .03 2
1.50 1.57 .50 .35 .09 .03 3
1.50 1.82 .87 .35 .09 .03 5
1.50 2.12 1.49 .35 .09 .03 10
1.50 2.70 4.44 .35 .09 .03 100
1.50 2.97 16.98 .35 .09 .03 10'
1.50 3.00 54.72 .35 .09 .03 106

1.90 1.11 .07 .27 .05 .01 1.25
1.90 1.20 .14 .27 .05 .01 1.50
1.90 1.34 .27 .27 .05 .01 2
1.90 1.51 .48 .27 .05 .01 3
1.90 1.69 .78 .27 .05 .01 5
1.90 1.87 1.22 .27 .05 .01 10
1.90 2.08 2.61 .27 .05 .01 100
1.90 2.11 4.93 .27 .05 .01 10'
1.90 2.11 7.23 .27 .05 .01 106
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The (conditional) likelihood function based upon r
and t is then

for a > O. In conjunction with some a priori distri
bution for a this likelihood function can be used to
obtain the posterior distribution for a. If k is large
and a> 1, we see from (5) that

algebraic form, Le., larger than D 0f [1], and then
condition upon the values of the ratios of upper
order statistics Vi =x(i)/x(i+1J, for i = 1, ... ,r. As shown
in [1], if we are indeed in the upper tail of the
distribution where the algebraic form holds, then
conditional upon a, the quantities ei ="i x In Vi are
independent with a common exponential distribu
tion having parameter a. A sufficient statistic for
a, conditional upon the Vi and r, is then

(15)

(16)
t+f3

X 6-1 .

E(--~ID)
a-I

_ ,£ (1 +sy+ 1 X S 8-- 2 X exp[ - (t + {3)s ]ds
- i/'(I+s)'xs 8 lxexp[-(t+f3)s]ds'

E(-- a 1D )= 1 +2(6 -1)/(t + (3) + 6(6 -1)/(t + (3)2
a-I 1+6/(t+f3)

This expectation is finite provided that 6> 1.
For positive integral values of r we can expand

the powers of 1+s using the binomial theorem, and
this allows us to make explicit evaluations. To illus
trate, if r = 1 as in the forecasting of city sizes in
Tables 6 and 7, we have

for 6,13 >0, where c =-'1'(6)/13 8 is a proportionality
constant. In other words, we give a-I> 0 a
Gamma a priori distribution. If 6> 1 we obtain
from Eq. (1) that the posterior expectation of X/A,
given X ~A, is

(12)

(13)

(14)

,
t =t(r) = 2: ei·

i=1

L (a) ex a' x exp[ --, a" ],

In general, the predictive moments of X can only
be obtained by numerical integration. In Sec. 4 we
examine the sensitivity of such quantities to the
data, choice of L, and choice of a priori distribution
for a. The case k = 00, however, has a closed form
analytic solution for a Gamma a priori distribution
of a, and this contributes some insight into the be
havior or the posterior moments of X.

3. k=oo

In this section we exawine the special case in
which the distribution is known to be algebraic ev
erywhere beyond A . In this case, in order for poste
rior moments to be finite, we will have to assume
that a is sufficiently large. It follows from Eq. (1)
that the posterior expectation of XIl + 1, given that it
is in the upper tail and a, is finite if and only if
a > 1. In the Bayesian analysis, with an a priori dis
tribution for a, the unconditional posterior expec
tation of X is finite if and only if the a priori
distribution sufficiently downweights values of a
near 1.

We can gain some insight by supposing that a> 1
has the prior distribution

This reveals the manner in which the expectation
blows up as 6~1. When 6 = 2, the right-hand side
can be written as

1+ (t + {3)(t + {3 + 1)
t+f3+2

For t + 13 = 1, we obtain the value 1.67. This is com
parable with the values in Tables 2, 3, and 4, when
r =t = 1, and L ~ 5. For r =1 and 6 =2, f(k) is ap
proximately (1 +t + 13) xA, provided that t + 13 is
sufficiently large. Similarly, other integral values of
r yield closed form expressions, which provide some
insight as to the behavior or'the posterior expecta
tion of X.

From Eqs. (3) and (11), the posterior predictive
second moment for X, given that X ~A, is

If a> 2 and the a prioJi distribution for a - 2 is of
the Gamma form, with parameters 6,{3, the poste
rior predictive variance for X will be finite, pro
vided that 6> 1. Closed form expressions can be
obtained when r is a positive integer, just as with·
the corresponding predictive first moment.

11'(a) = c X (a - 1)8 - 1exp[ --- 13 (a ,- 1)],

529



Volume 99, Number 4; July-August 1994

Journal of Research of the National Institute of Standards and Technology

Table 2. Uniform prior, LB = 1.001, UB = 1.999, prior mean = 1.50, SD = .29

DATA POST PRED D1ST BOUND

r E*(a) SD*(a) E*(X) SD*(X) 2 5 10 L

1 1.47 .29 1.11 .07 .37 .10 .04 1.25
1 1.47 .29 1.21 .14 .37 .10 .04 1.50
1 1.47 .29 1.36 .37 .27 .10 .04 2
1 1.47 .29 1.58 .51 .27 .10 .04 3
1 1.47 .29 1.84 .88 .37 .10 .04 5
1 1.47 .29 2.16 1.54 .37 .10 .04 10
1 1.47 .29 2.96 5.37 .37 .10 .04 102

1 1.47 .29 3.82 38.95 .37 .10 .04 104

1 1.47 .29 4.30 305.19 .37 .10 .04 106

3 2 1.50 .28 1.11 .07 .36 .10 .04 1.25
3 2 1.50 .28 1.21 .14 .36 .10 .04 1.50
3 2 1.50 .28 1.36 .27 .36 .10 .04 2
3 2 1.50 .28 1.57 .51 .36 .10 .04 3
3 2 1.50 .28 1.83 .88 .36 .10 .04 5
3 2 1.50 .28 2.14 1.52 .36 .10 .04 10
3 2 1.50 .28 2.88 5.16 .36 .10 .04 102

3 2 1.50 .28 3.63 35.99 .36 .10 .04 104

3 2 1.50 .28 4.03 276.83 .36 .10 .04 106

2 3 1.37 .27 1.11 .07 .39 .12 .05 1.25
2 3 1.37 .27 1.21 .14 .39 .12 .05 1.50
2 3 1.37 .27 1.37 .28 .39 .12 .05 2
2 3 1.37 .27 1.59 .51 .39 .12 .05 3
2 3 1.37 .27 1.87 .90 .39 .12 .05 5
2 3 1.37 .27 2.24 1.61 .39 .36 .36 10
2 2 1.37 .27 3.22 5.99 .39 .36 .36 102

2 3 1.37 .27 4.43 46.85 .39 .36 .36 104

2 3 1.37 .27 5.16 377.37 .39 .36 .36 106

5 1 1.67 .25 1.11 .07 .32 .07 .03 1.25
5 1 1.67 .25 1.21 .14 .32 .07 .03 1.50
5 1 1.67 .25 1.35 .27 .32 .07 .03 2
5 1 1.67 .25 1.55 .49 .32 .07 .03 3
5 1 1.67 .25 1.77 .84 .32 .07 .03 5
5 1 1.67 .25 2.02 1.40 .32 .07 .03 10
5 1 1.67 .25 2.49 4.05 .32 .07 .03 102

5 1 1.67 .25 2.80 21.99 .32 .07 .03 104

5 1 1.67 .25 2.93 152.19 .32 .07 .03 105

1 5 1.22 .20 1.11 .07 .43 .15 .07 1.25
1 5 1.22 .20 1.21 .14 .43 .15 .07 1.50
1 5 1.22 .20 1.37 .28 .43 .15 .07 2
1 5 1.22 .20 1.61 .52 .43 .15 .07 3
1 5 1.22 .20 1.93 .93 .43 .15 .07 5
1 5 1.22 .20 2.36 1.71 .43 .15 .07 10
1 5 1.22 .20 3.68 6.97 .43 .15 .07 102

1 5 1.22 .20 5.61 60.75 .43 .15 .07 104

1 5 1.22 .20 6.94 512.81 .43 .15 .07 106

30 20 1.52 .23 1.11 .07 .35 .09 .03 1.25
30 20 1.52 .23 1.21 .14 .35 .09 .03 1.50
30 20 1.52 .23 1.36 .27 .35 .09 .03 2
30 20 1.52 .23 1.57 .50 .35 .09 .03 3
30 20 1.52 .23 1.82 .87 .35 .09 .03 5
30 20 1.52 .23 2.12 1.50 .35 .09 .03 10
30 20 1.52 .23 2.78 4.81 .35 .09 .03 100
30 20 1.52 .23 3.29 28.02 .35 .09 .03 104

30 20 1.52 .23 3.48 185.91 .35 .09 .03 106
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Table 2. Uniform prior, LB = 1.001, UB = 1.999, prior mean = 1.50, SD = .29- Continued

DATA POST PRED DIST BOUND

r £*(a) SD*(a) £ *(X) SD*(X) 2 5 10 L

20 30 1.08 .07 1.12 .07 .47 .18 .08 1.25
20 30 1.08 .07 1.22 .14 .47 .18 .08 1.50
20 30 1.08 .07 1.38 .28 .47 .18 .08 2
20 30 1.08 .07 1.63 .53 .47 .18 .08 3
20 30 1.08 .07 1.98 .96 .47 .18 .08 5
20 30 1.08 .07 2.48 1.80 .47 .18 .08 10
20 30 1.08 .07 4.21 8.01 .47 .18 .08 100
20 30 1.08 .07 7.27 78.63 .47 .18 .08 104

20 30 1.08 .07 9.71 706.23 .47 .18 .08 106

300 200 1.50 .09 1.11 .07 .35 .09 .03 1.25
300 200 1.50 .09 1.21 .14 .35 .09 .03 1.50
300 200 1.50 .09 1.36 .27 .35 .09 .03 2
300 200 1.50 .09 1.57 .50 .35 .09 .03 3
300 200 1.50 .09 1.82 .87 .35 .09 .03 5
300 200 1.50 .09 2.12 1.49 .35 .09 .03 10
300 200 1.50 .09 2.71 4.48 .35 .09 .03 102

300 200 1.50 .09 3.00 18.24 .35 .09 .03 104

300 200 .50 .09 3.04 67.25 .35 .09 .03 106

200 300 1.01 .01 1.12 .07 .50 .20 .10 1.25
200 300 1.01 .01 1.22 .14 .50 .20 .10 1.50
200 300 1.01 .01 1.39 .28 .50 .20 .10 2
200 300 1.01 .01 1.65 .53 .50 .20 .10 3
200 300 1.01 .01 2.01 .97 .50 .20 .10 5
200 300 1.01 .01 2.55 1.85 .50 .20 .10 10
200 300 1.01 .01 4.59 8.73 .50 .20 .10 102

200 300 1.01 .01 8.88 95.94 .50 .20 .10 104

200 300 1.01 .01 13.01 941.80 .50 .20 .10 106

4. k < 00

One of our purposes in this article is to show
that prediction can be very sensitive to the a priori
information introduced regarding L, and that it is
essential to incorporate strong a priori information
as to the magnitude of this quantity in order to
obtain realistic forecasts. No closed form results
are available apart from those of the last section.
We consider now various a priori distributions for
a. In the previous analysis it was not possible to
give a a uniform distribution, since this would re
quire f3 =a and 8 =1, in which case with infinite k
the expectation is infinite. However, with a finite
upper bound for X, we obtain a finite expectation
for any a ~ 0, and in fact even for negative a, al
though this case is of little interest.

Table 2 displays results for the case of a uniform
a priori distribution for a, using a finite grid of pos
sible values for a between LB =1.001 and
VB = 1.999, several values of rand t, and several
choices of L. The prior expectation and standard
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deviation for a and 1.50 and .29, respectively. Table
3 gives such results for a uniform a priori distribu
tion, using a finite grid of values between LB =.001
and VB = 1.999, in which case the prior expectation
and standard deviation for a are 1.00 and .58, re
spectively. In these tables the column labelled
"POST" gives the posterior expectation and stan
dard deviation for a, the column labelled "PRED"
gives the posterior predictive expectation and stan
dard deviation for the next observation X, and the
column labelled "DIST" gives the posterior proba
bility that X is larger than 2; 5, and 10 times A,
respectively.

So far we have only considered very strong a
priori knowledge, such as in Table 1 where a is
known, and very weak a priori knowledge, such as
the uniform distributions.of Tables 2 and 3. In ap
plications it is important also to be able to input an.
a priori distribution for a in which some values are
singled out as being given substantially more
weight than others. A useful family of a priori dis
tributions for a for this purpose is the three-
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Table 3. Uniform prior, LB = 0.001, UB = 1.999, prior mean = 1.00, SD = .58

DATA POST PRED DIST BOUND

r £*(a) SD*(a) £*(X) SD*(X) 2 5 10 L

1 1 1.09 .51 1.12 .07 .50 .24 .15 1.25
1 1 1.09 .51 1.21 .14 .50 .24 .15 1.50
1 1 1.09 .51 1.38 .28 .50 .24 .15 2
1 1 1.09 .51 1.64 .53 .50 .24 .15 3
1 1 1.09 .51 1.99 .98 .50 .24 .15 5
1 1 1.09 .51 2.55 1.90 .50 .24 .15 10
1 1 1.09 .51 5.71 11.70 .50 .24 .15 100
1 1 1.09 .51 59.13 474.46 .50 .24 .15 104

1 1 1.00 .51 1599.34 26459.07 .50 .24 .15 106

3 2 1.31 .42 1.11 .07 .42 .15 .08 1.25
3 2 1.31 .42 1.21 .14 .42 .15 .08 1.50
3 2 1.31 .42 1.37 .28 .42 .15 .08 2
3 2 1.31 .42 1.60 .52 .42 .15 .08 3
3 2 1.31 .42 1.90 .93 .42 .15 .08 5
3 2 1.31 .42 2.32 1.70 .42 .15 .08 10
3 2 1.31 .42 3.98 8.23 .42 .15 .08 100
3 2 1.31 .42 15.97 209.46 .42 .15 .08 104

3 2 1.31 .42 187.75 8561.51 .42 .15 .08 106

2 3 .90 .44 1.12 .07 .56 .29 .19 1.25
2 3 .90 .44 1.22 .14 .56 .29 .19 1.50
2 3 .90 .44 1.39 .28 .56 .29 .19 2
2 3 .90 .44 1.67 .54 .56 .29 .19 3
2 3 .90 .44 2.07 1.01 .56 .29 .19 5
2 3 .90 .44 2.72 2.01 .56 .29 .19 10
2 3 .90 .44 6.76 13.07 .56 .29 .19 100
2 3 .90 .44 70.77 511.32 .56 .29 .19 104

2 3 .90 .44 1619.79 26176.42 .56 .29 .19 106

5 1 1.64 .29 1.11 .07 .33 .08 .03 1.25
5 1 1.64 .29 1.21 .14 .33 .08 .03 1.50
5 1 1.64 .29 1.35 .27 .33 .08 .03 2
5 1 1.64 .29 1.55 .50 .33 .08 .03 3
5 1 1.64 .29 1.78 .85 .33 .08 .03 5
5 1 1.64 .29 2.04 1.43 .33 .08 .03 10
5 1 1.64 .29 2.62 4.57 .33 .08 .03 100
5 1 1.64 .29 3.57 50.32 .33 .08 .03 104

5 1 1.64 .29 7.89 1247.04 .33 .08 .03 106

1 5 .40 .28 1.12 .07 .77 .57 .47 1.25
1 5 .40 .28 1.23 .14 .77 .57 .47 1.50
1 5 .40 .28 1.42 .29 .77 .57 .47 2
1 5 .40 .28 1.75 .56 .77 .57 .47 3
1 5 .40 .28 2.29 1.09 .77 .57 .47 5
1 5 .40 .28 3.33 2.31 .77 .57 .47 10
1 5 .40 .28 12.74 19.46 .77 .57 .47 100
1 5 .40 .28 309.24 1125.56 .77 .57 .47 104

1 5 .40 .28 11841.58 72682.37 .77 .57 .47 106

30 20 1.51 .24 1.11 .07 .36 .09 .04 1.25
30 20 1.51 .24 1.21 .14 .36 .09 .04 1.50
30 20 1.51 .24 1.36 .27 .36 .09 .04 2
30 20 1.51 .24 1.57 .50 .36 .09 .04 3
30 20 1.51 .24 1.82 .87 .36 .09 .04 5
30 20 1.51 .24 2.13 1.50 .36 .09 .04 10
30 20 1.51 .24 2.81 4.92 .36 .09 .04 100
30 20 1.51 .24 3.42 32.25 .36 .09 .04 104

30 20 1.51 .24 3.80 284.87 .36 .09 .04 106
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Table 3. Uniform prior, LB=O.OOl, UB= 1.999, prior mean = 1.00, SD = .58-Continued

DATA POST PRED DIST BOUND

r E*(a) SD*(a) E*(X) SD*(X) 2 5 10 L

20 30 .70 .15 1.12 .07 .62 .33 .21 1.25
20 30 .70 .15 1.22 .14 .62 .33 .21 1.50
20 30 .70 .15 1.40 .28 .62 .33 .21 2
20 30 .70 .15 1.70 .55 .62 .33 .21 3
20 30 .70 .15 2.14 1.03 .62 .33 .21 5
20 30 .70 .15 2.91 2.09 .62 .33 .21 10
20 30 .70 .15 7.49 13.50 .62 .33 .21 100
20 30 .70 .15 46.87 366.86 .62 .33 .21 104

20 30 .70 .15 357.77 10632.53 .62 .33 .21 106

300 200 1.50 .09 1.11 .07 .35 .09 .03 1.25
300 200 1.50 .09 1.21 .14 .35 .09 .03 1.50
300 200 1.50 .09 1.36 .27 .35 .09 .03 2
300 200 1.50 .09 1.57 .50 .35 .09 .03 3
300 200 1.50 .09 1.82 .87 .35 .09 .03 5
300 200 1.50 .09 2.12 1.49 .35 .09 .03 10
300 200 1.50 .09 2.71 4.48 .35 .09 .03 100
300 200 1.50 .09 3.00 18.24 .35 .09 .03 104

300 200 1.50 .09 3.04 67.25 .35 .09 .03 106

200 300 .67 .05 1.12 .07 .63 .34 .22 1.25
200 300 .67 .05 1.22 .14 .63 .34 .22 1.50
200 300 .67 .05 1.40 .28 .63 .34 .22 2
200 300 .67 .05 1.70 .55 .63 .34 .22 3
200 300 .67 .05 2.16 1.04 .63 .34 .22 5
200 300 .67 .05 2.94 2.10 .63 .34 .22 10
200 300 .67 .05 7.62 13.58 .63 .34 .22 100
200 300 .67 .05 41.81 330.65 .63 .34 .22 104

200 300 .67 .05 212.71 7448.90 .63 .34 .22 106

parameter log-normal family. Suppose that
In(a - y) - N(J-t,0'2). This is the three-parameter
log-normal distribution with threshold parameter
y, and is a very convenient and interesting family
with which to make inference about a. See
Aitchison and Brown [31], and Hill [32] for some
properties of this distribution. The integrations in
this case again have to be done by numerical analy
sis. In Table 4 we present results for the case y = 1,
with a taking values between LB =1.001 and
UB =10. The prior mean and standard deviation
for a are 1.50 and .61, respectively.

5. Discussion of Tables

If a > 2 then for fixed known a there is no prob
lem with infinite first and second moments. This is
also the case when a is unknown, except that the a
priori distribution for a must give sufficiently small
weight to values near 2 in order that the second
moment be finite. However, the case a > 2, al
though of some interest, does not deal with truly
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long-tailed distributions. For a> 1, and using a
Gamma prior distribution for a -1 with 5> 1, as
k-HX) the posterior moments of X converge to the
limiting results discussed in Sec. 3, such as in Eq.
(16). We observe, however, that the convergence is
quite slow. For values of k in the practical range,
say L ~ 10, the results are not very sensitive to the
precise value of L, but are quite different from the
limiting results, because the convergence is so slow.
For example, the theoretical value for the multi
plier of A when r =O,t =1,5 ;= 2,{3 = 1, is 3. Using
VB =10, when L =1012 the calculated value for this
multiplier is 2.86, and it is still only 2.98 when
L = 1080. For L ~ 106

, however, the multiplier is less
than 2.16, and for values L ~ 10, it is at most 2.
Thus even in this case, where the posterior expec
tation exists for k = 00, it can still be important to
use a realistic value for L. Although this case can
be described as a genuine long-tailed distribution,
in order for the posterior expectation of X to be
finite when k = 00, it is necessary to take 5 > 1, and
so the a priori expectation for a must be larger than
1+ 1/{3.
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Table 4. Log-normal prior, LB =1.001, UB =10, 'Y = 1, !L = -1.19, u = 1, prior mean =1.50, SD =.61

DATA POST PRED DIST BOUND

r £*(a) SD*(a) £*(X) SD*(X) 2 5 10 L

1 1 1.39 .38 1.11 .07 .39 .12 .05 1.25
1 1 1.39 .38 1.21 .14 .39 .12 .05 1.50
1 1 1.39 .38 1.37 .28 .39 .12 .05 2
1 1 1.39 .38 1.59 .51 .39 .12 .05 3
1 1 1.39 .38 1.87 .90 .39 .12 .05 5
1 1 1.39 .38 2.24 1.62 .39 .12 .05 10
1 1 1.39 .38 3.26 6.09 .39 .12 .05 100
1 1 1.39 .38 4,48 46.61 .39 .12 .05 104

1 1 1.39 .38 5.15 353.95 .39 .12 .05 106

3 2 1.41 .38 1.11 .07 .39 .12 .05 1.25
3 2 1.41 .38 1.21 .14 .39 .12 .05 1.50
3 2 1,41 .38 1.36 .27 .39 .12 .05 2
3 2 1,41 .38 1.59 .51 .39 .12 .05 3
3 2 1,41 .38 1.86 .90 .39 .12 .05 5
3 2 1,41 .38 2.22 1.60 .39 .12 .05 10
3 2 1.41 .38 3.18 5.92 .39 .12 .05 100
3 2 1.41 .38 4.30 44.35 .39 .12 .05 104

3 2 1.41 .38 4.90 332.81 .39 .12 .05 106

2 3 1.27 .23 1.11 .07 ,42 .14 .06 1.25
2 3 1.27 .23 1.21 .14 ,42 .14 .06 1.5
2 3 1.27 .23 1.37 .28 ,42 .14 .06 2
2 3 1.27 .23 1.61 .52 ,42 .14 .06 3
2 3 1.27 .23 1.91 .92 ,42 .14 .06 5
2 3 1.27 .23 2.31 1.67 ,42 .14 .06 10
2 3 1.27 .23 3.50 6.57 ,42 .14 .06 100
2 3 1.27 .23 5.02 52,43 ,42 .14 .06 104

2 3 1.27 .23 5.02 52,43 ,42 .14 .06 106

5 1 2.34 1.17 1.11 .07 .25 .06 .02 1.25
5 1 2.34 1.17 1.20 .14 .25 .06 .02 1.50
5 1 2.34 1.17 1.32 .26 .25 .06 .02 2
5 1 2.34 1.17 1,48 ,47 .25 .06 .02 3
5 1 2.34 1.17 1.65 .77 .25 .06 .02 5
5 1 2.34 1.17 1.83 1.26 .25 .06 .02 10
5 1 2.34 1.17 2.22 3.82 .25 .06 .02 100
5 1 2.34 1.17 2.58 24.18 .25 .06 .02 104

5 1 2.34 1.17 2.74 170.55 .25 .06 .02 106

1 5 1.18 .14 1.11 .07 ,44 .15 .07 1.25
1 5 1.18 .14 1.21 .14 ,44 .15 .07 1.50
1 5 1.18 .14 1.38 .28 ,44 .15 .07 2
1 5 1.18 .14 1.62 .52 ,44 .15 .07 3
1 5 1.18 .14 1.94 .94 ,44 .15 .07 5
1 5 1.18 .14 2.38 1.73 ,44 .15 .07 10
1 5 1.18 .14 3.77 7.11 ,44 .15 .07 100
1 5 1.18 .14 5.73 60,45 ,44 .15 .07 104

1 5 1.18 .14 6.95 483.26 ,44 .15 .07 106

30 20 1,40 .22 1.11 .07 .38 .11 .04 1.25
30 20 1,40 .22 1.21 .14 .38 .11 .04 1.50
30 20 1,40 .22 1.36 .27 .38 .11 .04 2
30 20 1,40 .22 1.58 .51 .38 .11 .04 3
30 20 1,40 .22 1.86 .90 .38 .11 .04 5
30 20 1,40 .22 2.21 1.58 .38 .11 .04 10
30 20 1,40 .22 3.09 5.58 .38 .11 .04 100
30 20 1,40 .22 3.92 36.97 .38 .11 .04 104

30 20 1,40 .22 4.28 252.19 .38 .11 .04 106
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Table 4. Log-normal prior, LB=1.001, UB=1O,.y=1, J.L= -1.19, u=1, prior mean=1.50, SD=.61
Continued

DATA POST PRED DIST BOUND

r E*(a) SD*(a) E*(X) SD*(X) 2 5 10 L

20 30 1.10 .07 1.11 .07 .47 .17 .08 1.25
20 30 1.10 .07 1.21 .14 .47 .17 .08 1.50
20 30 1.10 .07 1.38 .28 .47 .17 .08 2
20 30 1.10 .07 1.63 .53 .47 .17 .08 3
20 30 1.10 .07 1.97 .96 .47 .17 .08 5
20 30 1.10 .07 2.46 1.78 .47 .17 .08 10
20 30 1.10 .07 4.09 7.76 .47 .17 .08 100
20 30 1.10 .07 6.75 71.88 .47 .17 .08 104

20 30 1.10 .07 8.61 607.81 .47 .17 .08 10·

A case of substantial practical importance is that
in which the a priori information about a is weak,
apart from the knowledge that 1 < a:::: 2. There is
substantial empirical data on incomes, stock-mar
ket prices, city sizes, the distribution of biological
genera and species, and many other variables, for
which a:::: 2. See Yule [15] and Zipf [14]. However,
there is no known theoretical reason for taking the
a priori distribution of a to be of the Gamma form,
or for taking 8 > 1. In the case of weak a priori in
formation', the likelihood function is approximately
proportional to the posterior density for a. See the
stable estimation argument of Savage [33] and Ed
wards, Lindman and Savage [34]. For either classi
cal statisticians, to whom the a priori distribution is
non-existent or "unknown," or to Bayesians who
prefer to use some form of "uninformative" prior
distribution, the results of Table 2 should be quite
reassuring. It is possible, despite the delicacy at 00

to obtain robust answers. It may be noted in this
table that typically the posterior predictive expecta
tion of Xn+J, given that it is between X(l) and
10 XX(I), is some modest multiple of the largest ob
servation, at most 3 XX(I); and it is at most 5 xX(l)

when L :::: 100. This is as it should be. One does not,
for example, anticipate wind strengths that are
some enormous factor times the largest yet experi
enced, even given that we set a new record wind
strength. By comparing Table 1 for a = 1.50 known,
with Table 2 for the case r =3,t =2, we see that
there is little sensitivity in either the predictive mo
ments or the predictive probabilities. For example,
when L =5, Table 1 gives predictive moments of
1.82 and .87, and predictive probabilities of .35, .09,
and .03; while Table 2 gives predictive moments of
1.83 and .88, and predictive probabilities of .36, .lO,
and .04. The greatest discrepancies occur for very
large values of L, such as lO6, which are inappro
priate for most real-world applications.

535

Another case of substantial interest is that in
which a is uniform from 0 to 2, so that even more
extreme long-tailed behavior is possible. Again re
sults are not very sensitive to the choice of a priori
distribution, provided that L is not too large. For
example, Table 3 with r =3,t =2,L =5, gives the
predictive moments as 1.90 and .93, and the predic
tive probabilities as .42, .15, and .08. Although
there is a real change from the results of Tables 1
and 2, it is of limited extent, and is in the direction
of making the predictive distribution longer-tailed,
as was to be expected. If anything, one might be
surprised that allowing a to get close to 0, as with
this a priori distribution, did not move the predic
tive distribution much further to the right.

The final case of great interest is where some
definite a priori information is input, as we do here
with the log-normal distribution. Table 4, for the
case 'Y = l,r =3,t =2,L =5, gives 1.86 and .90 as
predictive moments, and .39, .12, and .05, as pre
dictive probabilities. These results are close to
those of Table 2, in which a has the same a priori
expectation as in Table 4.

The reader may compare these various tables for
other values of the parameters, to examine the ef
fect of long-tailed sample data, greater sample
sizes, cases where the a priori information is less
concordant with the data, and the effect of L. For
example, in Table 3 with r = 2,t = 3, so that a=.67,
and L =5, the predictive moments are 2.07 and
1.01, while the predictive probabilities are .56, .29,
and .19. Again, provided that a realistic upper
bound for L is chosen, such as lO, the changes from
previous values are real but of limited magnitude,
and in the direction to be anticipated.

Armed with this information, let us now examine
real-world data on city sizes. Table 5 gives the sizes
of the 30 largest cities in the United States in 1940
and 1988. They are first presented in descending
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Table 5. City size x 10- 3 data

1940 191<8
Ordered Permuted Ordered Permuted

-------_.__._--
7455 1931 7353 987
3397 859 3353 727
1931 302.3 2978 532
1623 305 1698 1647
1504 3397 1647 522
878 368 1070 599
859 816 1036 2978
816 587 987 465
771 399 941 1036
672 1623 924 502
663 456 751 434
635 387 738 511
587 771 732 1070
576 635 727 7353
495 492 645 481
492 301.2 635 732
456 495 617 941
430 663 599 3353
399 306 578 578
387 878 570 570
385 7455 532 1698
368 325 521 617
325 322 511 924
322 319 502 738
319 576 492 645
306 302.2 481 751
305 672 465 492
302.3 430 439 635
302.2 1504 434 427
301.2 385 427 439

·__·~_'_----._--P-_'_--

order, and then in a randomly chosen permutation.
The data for 1940 was previously analysed in [1] to
illustrate use of the tail-index method. The upper
tail of such city size data is generally regarded as
being modelled by Zipfs law, with some tail-index

IX. Tables 6 and 7 give the running forecasts, and
their standard deviations, for the next observation,
based upon the permutation. We imagine, in other
words, that a random sample has been taken from
the population, and that we successively forecast
the magnitude of each upcoming record value. In
this way we simulate the actual forecasting of fu
ture record values based upon a random sample
from a population. It is well known that sampling
(with or without replacement) from a finite popula
tion generates Hn exchangeable sequence. Because
our forecast of the magnitude of the next record
value depends only upon the upper order statistics
of the past data, and not directly upon how many
past values have been observed, we put forth the
same expectation for the magnitude of the next
record value, until we observe a new record value.

The record values (with the first value taken as a
record value by default) for Table 6 occurred at
times 1,5,2], and had the values 1931,3397, 7455,
respectively. Table 6 gives the 1940 forecasts for
L =3,5,10, where each forecast is based upon all
the past data up to the time of the forecast, and
uses only the current upper two order statistics of
the data, so r = 1. The column labelled agives the
current maximum-likelihood estimate of IX based
upon the two upper order statistics, so t =~. The
first row of Table 6 would be read as follows. Based
upon the two largest order statistics (1931,859) at
time 2 in the 1940 permuted sequence, the esti
mate of IX is 1.235. This data (with r = 1 and
t = .810) is used to obtain the posterior distribution
for IX, for a uniform a pliori distribution on the in
terval from 0 to 2. Forecasts and standard devia
tions are then presented for L =3,5,10. For
eX<1mpJe the L =3 forecast of the next record value

Table 6. Forecast of 1940 city sizes x 10- 3

. -- --_., -,-.- - -
City size a Forecast Forecast SD

3 5 10 3 5 10

3397 1.235 3146 3810 4831 1023 1869 3596
7455 1.770 5500 6621 8295 1787 3244 6166
(?) 1.272 12137 14694 18608 3944 7209 13844

._--_._-------_.-

Table 7. Forecast of 1988 city sizes x 10- 3

City size a Fore(;ast Forecast SD
3 5 10 3 5 10

---_._--_._-----_._._-
1647 3.271 1588 1899 2351 516 929 1743
2978 1.953 2663 3202 4001 865 1568 2973
7353 1.688 4824 5810 7290 1569 2847 5420
(?) 1.106 12007 14581 18574 3904 7154 13824
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is 3146 with a standard deviation of 1023, this fore
cast being made using only the previous records of
1931 and 859. The realized value turned out to be
3397. Note that most of the actual values are well
within 1 standard deviation of the forecast. The
row'?, forecasts a next record value, based upon
all the past data, as though the population were not
complete, and is given only for illustrative pur
poses. Table 7 repeats the analysis for the 1988 city
size data. The record values occurred at trials 1, 4,
7, 14, and had the values 987, 1647, 2978, 7353,
respectively.

This type of forecasting problem, based upon a
random sample from a fixed population, is used to
illustrate the procedure in connection with an ex
changeable sequence of observations. As shown by
de Finetti, and discussed in [35], one can always
represent real-world exchangeable sequences in
terms of limits arising in sampling from a finite
population. The exchangeable case is the simplest
scenario in which our methods can be usefully ap
plied. More generally, one must deal with evolu
tionary processes, as for example when successive
records are set over time. For example, if we con
sider the successive Olympic High Jump records,
since 1880, we must keep in mind that we are not
sampling from a fixed population, and that changes
in technique and general level of physical fitness
over time, may have a substantial effect. Similarly,
in considering the next record value of some stock
market index, such as the Dow Jones, there may be
time trends that must be taken into account. How
ever, even in such examples as these, local ex
changeability over sufficiently short time periods
may be a reasonable assumption, and appropriate
modification of the basic forecasting procedure
proposed in this article can be developed.

6. Conclusions

We believe that the above studies indicate that it
is possible to make effective inference and predic
tions about record values. Our methodology can be
used both with uniform a pl10ri distributions, such
as represented in Tables 2 and 3, and with more
informative a priori distributions such as in Table 4.
The case· that is perhaps of greatest interest for
applications is that of the three-parameter log-nor
mal distribution with threshold taken to be 1 or 0,
as may seem appropriate. Uniform a priori distri
butions can, for practical purposes, be represented
as special cases of such log-normal distributions.
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We believe that it is important to study sensitivity
of results to choice of a priori distribution, as rec
ommended in [36,30]. The choice of r and of Lean
be implemented by Bayesian data-analytic tech
niques, such as described in [1,25]. Here in our
forecast of city sizes we took r =1, but substantial
improvements could result from a Bayesian deci
sion-theoretic choice of r.

There are some basic issues concerning the use
of finite models, versus infinite idealized models,
that are especially pertinent in connection with the
problem of prediction for long-tailed distributions.
If one took the conventional idealized model liter
ally in our example, then the analysis of Secs. 1 and
2 demonstrates that there are some logical diffi
culties, if one also views the observations as un
bounded. For in the case of greatest interest,
where it is known that 1:::; a:::; 2, the posterior first
moment may be infinite, even though it is plainly
unreasonable to make a prediction of more than a
few multiples of the largest observation yet seen.
The issue is resolved here by treating the algebraic
model for the tail as only an approximation, valid
in some finite domain. In this case the algebraic
tail is compatible with both the data, and with
putting forth sensible predictions for squared error
loss. See [24] for discussion of the finite/infinite
question in connection with Steinian shrinkage es
timators.

The issue regarding infinite predictive moments
thus turns out to be largely irrelevant for forecast
ing, provided that one is comfortable with using
some reasonable upper bound for the observable
variables. Careless use of infinite models, ignoring
the fact that realistic finite upper bounds are usu
ally available, might instead have led one to the
conclusion that theory-based forecasting is impossi
ble in the case a:::; 2. Since all statistical analyses
must eventually be done on a computer with finite
memory, such infinite models are at best only use
ful guides, and their careless use can lead to nu
merous apparent paradoxes, which have no
real-world importance. The primary conclusion of
this article is that provided that a finite upper
boun,d for the observations can be supplied, as is
ordinarily the case, it is possible to make effective
predictions of future record values. The forecasts
that we have obtained, employing such finite upper
bounds, are by no means perfect, but they do at
least put one in the right ballpark, with predictions
that are at most a few multiples of the previous
record value. I am not aware of other methods
available at present that do so.
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Forecasting is always difficult, and perhaps even
more so for the case of record values in the case of
long-tailed distributions. Nonetheless, often such
forecasts are important in the decision-making pro
cess, and must somehow or other be put forth. We
have suggested a Bayesian methodology which can
make systematic use both of a priori information
and of the current data. When used with care, we
believe these methods can be of value in a variety
of areas.
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Number 4

It is known that the number of ex
ceedances of normal sequences is
asymptotically a Poisson random vari
able, under certain restrictions. We an·
alyze the rate of convergence to the
Poisson limit and extend the result
known in the stationary case to nonsta
tionary normal sequences by using the
Stein-Chen method. In addition, we
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The extreme value theory of Gaussian sequences
has interested many authors, for instance Refs.
[1,4,7,8], dealing with the limit distribution of the
suitably normalized extreme value.

Let {X;,i ~ 1} be a standardized normal sequence
with correlations E (XXi) =rij, i ,j ~ 1, and <P(.) the
distribution function of X;.

Let

II
Nil = I 1(X; >Ulli)

i=1

denote the number of exceedances of a boundary
given by a triangular array {ulli,i:::; n,n ~ 1}. Then it
was also found that Nil converges in distribution to
a random variable having a Poisson distribution
JP(AII ), if the mean number of exceedances
A" =Ii,,"(1- <P(Ulli» remains bounded (cf. Ref.
[4]).
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For practical use of the asymptotic theory, it is
rather important to know the rate of convergence
or at least some upper bound for this rate.

For the stationary case, results on the rate of
convergence have been obtained for instance by
Refs. [2,3,9,10]. The aim of this paper is to give an
upper bound for the total variation distance dlV be
tween Nil and JP(AII ), in the nonstationary case, ex
tending the results of these mentioned papers.

Suppose that for some sequence PII: hi:::; PHI
for i e;t';j, and that the two conditions

PII < 1 for all n ~ 1 (1)
pk:::;A flog k,k ~ 2, for some constant A (2)

are satisfied. Define P as P =max(O, rij, i e;t';j) < 1.
In addition, we assume that the boundary values

tend uniformly to 00:

UII,min = min Ulli~ 00 as n~ 00. (3)
l~i:E=n
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The exceedances of a constant boundary Un; =Un,
1:s; i :s; n, are considered first, where only the tools
given in Ref. [3] are used. We show in the second
result that the method of Ref. [3] can be used also
for nonconstant boundaries {Uni}. But these
boundaries are restricted such that the condition

with boundary values which are constant for fixed
n. This rate is only good if Un,min is not a uniquely
low value, which is supposed for reasonable
boundaries. For the case Un,min is uniquely low, the
rate can be improved.

holds. If we want to extend the results to a more
general class of boundaries such that only

lim sup n (1- c1J(Un,min)) < C < co
n-->""

lim sup An < C < 00
n-->""

(4)

(5)

2. Proof

The proof of Theorem 1 is an adaption of that
used by Ref. [3] in the stationary case. We use the
following lemma which is a straightforward ex
tended version of Lemma 3.4 of Ref. [3].

holds, we need to combine the method developed
by Ref. [4] with that of Ref. [3] to get satisfactory
results (see Ref. [6]).

Our first result for boundaries which are con
stant for fixed n, shows that the given upper bound
of the rate of convergence depends mainly on the
largest positive correlation value p.

Theorem 1: Let {Xi,i ~ I} be a standardized nonsta
tionary nonnal sequence with correlations {rij ,
i ,j ~ I}. Suppose that Irij I:s; PHI for i ~j, such that
Eqs. (1t and (2) hold. Let the boundary values
{Uni =Un ,1:S; i :s; n} and An be real values with
,\" =n (1- c1J(un». Suppose that An:S; C < 00, for
some constant C. Then as n --,'> 00

Lemma 1: Suppose that

!- ((0) (1 rij))(X ,Xj ) - NO' rij 1 .

Define Zi =1(X > Un; ) for some boundary values Uni
where

for some finite constant C.
Then for some constant K depending on C only and
for all n ~2:

i) If O:s; rij < 1, then

1 ~- r
O:s; cov(Z;,Zj):S; K . n -2+~(log n )-ITrij

Yl-rij

(6)

This extends the result of Ref. [3] showing that for
a constant boundary their upper bound of the rate
of convergence in the stationary case holds also in
the nonstationary case.

Theorem 2: Let {X,i ~ I} be a standardized nonsta
tionary nonnal sequence with correlations {ru, i,j ~ I}
as in Theorem 1 satisfying Eqs. (1) and (2). Suppose
that the boundary values {Uni, 1:s; i :s; n ,n ~ I} are
such that Eq. (4) holds. Then Eq. (6) holds.

The first term of Eq. (6) dominates the rate of con
vergence in cases with ~k"l Pk < 00 and P >0.

Then the rate of convergence depends only on the
lowest value Un,min of the particular boundary Un;
and also on the largest positive correlation p. It
extends naturally the results of the stationary case
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ii) If0:S;r;j:S; 1, then

0< (2 2)< Kr;j log n ~r logn
--- COV "J --- n 2 e'

iii) If -1 < rij:S; 0, then

iv) If - 1:S; rij:S; 0, then
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We need for Theorem 2 an extension of Lemma 1.

Lemma 2: Suppose that (Xi ,Xj) and Zi are as in
Lemma 1. For any i,j, define U"ij =min(u"i,u"j) and
V"ij =max(u"i,U"j).

Then for some constant K depending only on C and
for all n ~2:

i) If o~ rij ~ 1, then

0,:::: (Z· Z·)':::: K 1 (CP(U"ij »)11,jj. -:-.~.... cov I, J.... ~ r:;-- UIIIJ
v 1- rij U"ij

ii) If o~ rij ~ 1, then

o~ COV(Zi,Zj)~ K rij cp(u"ij)( cp(v"ij) )h%

iii) If - 1~ rij ~ 0, then

o~COV(Zi,Zj) ~ - (1- <P(u"ij»(1- <P(v"ij»

~ - (1- <P(U"ij »2

iv) If -1~ rij ~ 0, then

(The proof of this lemma is given in [6]).

Theorem 1 follows also by Theorem 2. There
fore, we prove now Theorem 2 by using the method
of Ref. [3].

By Theorem 3.1 of Ref. [3], we have

S" = I ICOV(Zi,Zj)l= I Cij
l~i<j~" l~i<j~lI

is split up into three parts, by using 0 > 0 such that

30 <_P
l+p

There are only finitely many k's with Pk > O. This
will be treated first as Case (i). For indices k with
Pk ~ 0, we distinguish Case (ii) with k <n 8 and
Case (iii) with k ~ n 8.

Case (i): Each term cij of the sum S" is bounded
above by

K n -2/(l+p)(log n) -pl(l +p)

if rij ~ 0 by Lemma 2(i)
or bounded by

Kn -2

if r;j < 0 by Lemma 2(iii).
Since there are finitely many k's with Pk > 0, the
number of terms Cij with Ii - j 1= k and Pk > 0 is of
the order 0 (n). Hence the sum on these terms is
bounded by

K n -(l-P)l(l+p)(log n )-pl(l+p) +K n -I.

Case (ii): There are at most n 8 terms Pk such that
O~ Pk ~ 0 and k <n 8. Hence there are at most
O(n IH

) terms Cij with such a k=li-jl. But each
such term Cij of S" is bounded by

K n -2,l(lH)(log n )-&(1+8)~ K n -2+28

if rij ~ 0 by Lemma 2(i)
or bounded by

Kn -2

Case (iii): Finally we consider the terms such that
Pk~ 0, with k ~ n 8. Note that we have

if rij < 0 by Lemma 2(iv).
Then the sum of these terms cij is bounded by
O(n -;-1+38).If P=0, Le. if rij ~ 0 for i ~j, then using Lemma

2(iv) for the second term of Eq. (7), we get the
second term of Eq. (6) which dominates the first
one in this case, if Pk > 0 for some k. Obviously, if
Pk =0 for all k, then the result holds, since the sec
ond term in Eq. (7) is O.

Thus suppose from now on that P > O.

Because of Eq. (2) the sum

541

< <~<~0_ Pk -- I k .... "I .og u ogn

Each such term Cij of S" gives a contribution

(8)
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if rij ~ 0 by Lemma 2(ii) and by using Eq. (8)

if rij < 0 by Lemma 2(iv).
Taking now the sum on all terms (i ,j) with
Ii -jl~na, we get the second term of Eq. (6).

Finally, adding up all these upper bounds of Cases
(i), (ii), and (iii), the result Eq. (6) of Theorem 2
follows.
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Number 4

The exceedance point process approach of
Hsing et al. is extended to multivariate
stationary sequences and some weak con
vergence results are obtained. It is well
known that under general mixing assump
tions, high level exceedances typically
have a limiting Compound Poisson structure
where multiple events are caused by the
clustering of exceedances. In this paper we
explore (a) the precise effect of such
clustering on the limit, and (b) the relation
ship between point process convergence
and the limiting behavior of maxima. Fol-
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lowing this, the notion of multivariate ex
tremal index is introduced which is shown
to have properties analogous to its uni
variate counterpart. Two examples of
bivariate moving average sequences are
presented for which the extremal index is
calculated in some special cases.
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Extreme value theory for multivariate iid sequences
has been studied for quite some time now but attention
to the dependent case has been relatively recent. For
univariate sequences it is known that local dependence
causes extreme values to occur in clusters, which in turn
results in a stochastically smaller distribution for the
maximum than if the observations were independent. We
begin with a brief review of these results, which we
shall later extend to the multivariate case.

Let {gn} be a univariate stationary sequence. Write
Mn=max{gj, ...,gn} and for 7>0, let {un(T)} denote a
sequence satisfying limn-4oonp{gl>un(T)}=T. Under
quite general mixing assQmptions there exist constants
0:5 0':5 0":51 such that

for all T. (See Ref. [1], although the idea actually dates
back to Refs. [2-4].) Thus if P{Mn:5Un (TO)} converges
for some To, then 0'=0"(=0, say) and hence
limn-4ooP{Mn:5un(T)}=e-1iT for all 7>0. The common
value 0 is then called the extremal index of {gn}' We
shall assume 0 to be positive whenever it exists, since the
case 0=0 corresponds to a degenerate limiting distribu
tion for Mn. Note that 0=1 for iid sequences. Let {in} be
an iid sequence with i,=d g" called the associated iid
sequence, and write Mn=max{i" ...in}. If {gn} has ex
tremal index 0 and limn-4oo P{Mn:5vn(t)}=H(t) for a
suitable family of normalizing constants {vn(t)}, then it
follows (upon identifying e- OT with H(t)) that limn-4oo
P{Mn:5vn(t)}=H(t) where

lim sup P {Mn:5un(T)}=e-O'T and
n-400

(1)

lim inf P {Mn:5un(T)}=e-O"T
n-4OO
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The extremal index is thus a measure of the effect of
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and

so that in particular, limn--'>oo k" P{N,,(J,»O}=(h". Hence
(3)

if and only if

The limiting behavior of M n can therefore be separated
into two parts, one pertaining to the convergence of the
marginals (a univariate problem) and the other to the
convergence of the dependence fynctions. Here we fo
cus attention exclusively on the latter. It should be noted
that the choice of normalising constants does not affect
the dependence function of the limit distribution H, but
only alters the marginals (see Ref. [9], Lemma 3.2).
Since our main interest is in the dependence function,
the present choice of normaiising constants is appropri
ate in view of the fact that it results in Uniform[O,I]'
marginals for the limit distribution when {gn} is iid, so
that in particular DwH. According to Theorem 3.3 of
Ref. [9], the class of all possible limits H in Eq. (3) (for
iid {gn}) is precisely the class of extreme dependence
functions, that is those that satisfy

[8], Chapter 5, for an account of the literature surround
ing this theory. For stationary sequences satisfying a
general mixing assumption, it is known (see Refs. [9,
10], and Theorem 1.1 below) that the class of limiting
distributions of Mn is the same as for iid sequences. In
this paper we explore the precise effect of dependence
on the limiting distribution by extending the univariate
theory described above to the multivariate case. Essen
tially, this involves studying the inter-relationship be
tween the two dependence structures present, one due to
dependence over time and the other due to the depen
dence between the various components of the multivari
ate observations. The ideas become most transparent
when presented in terms of so-called dependence func
tions [8]. Here we adopt the slightly modified definition
found in Ref. [9]. A distribution function Don [O,lt is
called a dependence function if Dj(Dj(u »=Dj(u),
uE[O,I],j=l ,... ,d, where the subscriptj signifies the jth
marginal. The dependence function of a distribution F
on IRd is defined by DF(u)=P{F,(X,)s
u" ,Fd(Xd)SUd}, u=(u"""ud)E [O,l]d, where
(X" ,xd) is a random vector with distribution F. More
generally, any dependence function satisfying
F(x)=D(F,(x,), ... ,Fd(Xd» could be defined to be a de
pendence function of F, although the present choice is
a natural one.

Write T=(O,I)d\ {I} where l=(1, ... ,l)EIRd
, and for

t=(t" ... ,td)ET, let vn(t)=(v",(t,)"",Vnd(td» where Vnj(tj)
satisfies limn--'>oo np{glj>vnj(tj)}=-logtj. Let Hn denote
the distribution function of Mn (i.e., Hn(x)=P {Mnsx }),
with marginals Hnj,j=l, ... ,d. Then (see Refs. [8,11]),

(2)lim E(Nn(J,) INn (.1,»0)=1/e.
n--,>OO

=lim knE(Nn(J,) INn(J,»O)P {Nn(J,»O}
n--'>OO

while on the other hand, limn--'>oo E Nn lO,1 ]=lim'Hoo
nP{g,>un(r)}=r. The cluster size distribution and the
extremal index are therefore related by

=er lim E(Nn(J,) INn(J,»O),
n--'>OO

=lim P {M"sun ( r) }=e-OT,
n--'>OO

lim E Nn[O,1]=lim knE Nn(J,)
n~Ct:J n----)CO

lim P{Nn(J,)=j \Nn(J,»O}=7T(j), j2.1,
n--,>oo

Now let Un=(gn" ... ,gnd), nE7Z} be a multivariate sta
tionary sequence where d21 is a fixed integer, and
write Mn=(Mni, ... ,Mnd) where Mllrmax{g'j, ... ,gnj},
j=l, ...,d. The study of multivariate extremes began in
the early 1950s, focusing mainly on the limiting behav
ior of Mn under a linear normalization, when the obser
vations are iid. The resulting class of limiting distribu
tions was characterized in Ref. [6] and domains of
attraction criteria were given in Ref. [7]. See also Ref.

n

Nn (B)=2, 1{~;>un(T)l{;inEIJ). BelO,I],
i-I

where fA denotes the indicator function of the event A.
Then for a broad class of weakly dependent sequences,
the limit in distribution of Nn , if it exists, is a Compound
Poisson process with intensity (h" and multiplicity distri
bution 7T on {I ,2, ... }. The Poisson events may in fact be
regarded as the positions of "exceedance clusters"
while the multiplicities correspond to cluster sizes.
More explicitly, one may divide the n observations into
kn blocks of roughly equal size and regard exceedances
within each block as forming a single "cluster", so that
the cluster sizes are given by Nn (J;), i=1,... ,kn , where
J;(=Jn,;)=Ck,,' ,t]. For a suitable choice of kndepending
on the mixing rate of {gn}, one then has

dependence on the limiting distribution of M n • The
stochastically smaller limiting distribution of Mn is in
fact a direct result of the clustering of extremes, as
explained below. See Ref. [5] for details.

For fixed 7'>0 let the exceedance point process
Nn=N~T) be defined by
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for each n>1 and t=(tl, ...,td)E[O,I]d. Theorem 1.1 below
shows that the same is true also if {gn} is a stationary
sequence satisfying the following mixing condition.

For tET, let

Assume that {gn} satisfies Li(vn(t». If also Nn--..,d No,
then it may be shown (as in the univariate case) that the
limit No is a point process on [0,1] which is of Com
pound Poisson type. More precisely, the Laplace Trans
form of No is given by

Dn(t)=D (tf,···,td) (4)
Nn(B)=L I{;lnEB}8;, BE[O,I].

i-I

(5)

and for I ::5l:sn-I, define

anrsup{ Ip(AnB)-p(A)P(B) I :AE~t(vn(t»,

The mixing condition Li(vn(t» is then said to hold if
an.l" --..,0 for some sequence {In} satisfying In/n--..,O. This
is the multivariate version of the mixing condition used
in Ref. [5] and is slightly stronger than the D (un) condi
tion in Ref. [9]. Henceforth {gn} will be assumed to
satisfy Li(vn(t», for some or all t, as required.

THEOREM 1.1. Let {gn} satisfy Li(vn(t» for all tET and
suppose that P {Mn::5vn(t)}--..,w H (t), non-degenerate.
Then DH is an extreme dependence function and hence,
in particular, HW)=HC(t) for each tE[O,I]d and c>O
(where tC=(tf, ...,td».

PROOF: The first part is an immediate consequence of
Theorem 4.2 of Ref. [9] while the second part follows
from the definition of extreme dependence functions
upon noting that (by the univariate theory described
above), the marginals of H are of the form Hj(tj)=t/J

where OJ is the extremal index of {gnj}, the jth-compo
nent sequence of {gn}'

In the next section we apply the exceedance point
process approach to multivariate extremes and obtain
some weak convergence results. The multivariate ex
tremal index is then defined (in Sec. 3), based on the
multivariate analogue of Eq. (I). It is seen to be a func
tion of only d-I variables and its properties naturally
extend those of the univariate extremal index. Finally in
Sec. 4 we consider two examples of bivariate moving
average sequences for which the computation of the
extremal index is demonstrated.

2. Exceedance Point Processes

Fix tET and let 8;rI{~;f>V"jtjl}' i=1 ,... ,n ,j=1 ,...d, and put
8;=(8il , ••• ,8;d)' The multivariate exceedance point pro
cess Nn=N~') is then defined by
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-logEexp{-±f fjdNOj}=v f f
.j-I [0,1) xE[O.I) yE7l!!'

d

(l-exp{- L yjj(x )})d7T(Y)dx. (6)
j-l

Here NOj denotes the jth-component of No, v is a
positive constant, 7T is a probability distribution on
72'1'={0, I ,2'00' }'\{O} and fj's are non-negative functions
on [0,1].

Let {kn } be any sequence of positive integers satisfy
ing

Set rn=[n/kn] (the largest integer not exceeding n/kn)
and put Jnl=[O,rn/n]. Define the probability distribution
7Tn on 72'1' by

The following theorem which gives a useful characteri
zation of the convergence of Nn is an immediate conse
quence of the results in Sec. 5 of Ref. [12].

THEOREM 2.1. Nn--..,d No if and only if 7Tn--"'w 7T and
P {Mn::5vn(t)}--.., e- P, and in that case the Laplace Trans
form of No is given by Eq. (6).

Next we consider the iid case in some detail and
obtain an interesting connection with Theorem 5.3.1 of
Ref. [8].

PROPOSITION 2.2. Let {gn} be iid and for fixed tET let
Nnbe defined by Eq. (5). IfNn--..,d No then the multiplic
ity distribution 7T in Eq. (6) is supported on the set
S={O,I }'\{O}.

PROOF: Observe that Li(vn(t» is trivially satisfied since
an.l=O so that we may take In=1 and kn=n. Then
7Tn(y)=P {81=y Ig,$vn(t)}, yE72'1', which is clearly sup
ported on S. The result is now immediate since S is a
closed set and 7Tn --"'w 7T by Theorem 2.1. 0

Making the dependence on t explicit, we now write
NlI=N~I), No=Ng'), Jl=p(l) and 7T=7T(t). In addition we shall
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for each j(k). 1:=sk:=sd. In that case Ndl) has Laplace

Transform given by Eq. (6) with

THEOREM 2.3. Let {gn} be iid. Then N6')~d Ndt) for some

fixed tET if and only if

PROOF: (Sketch) The first part follows from Theorem
2.3 above and Theorem 5.3.1 of Ref. [8] which states
that P {Mn:=svn(t)}~W H(t) if and only if Eq. (8) holds
for each tET. Note that H(t)=e-

Jll so that H and the
v(t)·s can be obtained from each other. Also the 7T(t)·S
can be obtained from the V(I)'S by first inverting Eq. (9)
to get the hj(k)(t)'s and then inverting Eq. (10). (The
inversion of Eq. (9) is carried out inductively using the
fact that the weak convergence of Hn(vn(t)) implies that
of all lower dimensional marginals.) 0

Analogous results for the dependent case take on a
slightly different form. Let {gn} be a stationary se
quence satisfying .:l(vn(t)) for each tET. As before let
rn=[n/kn] where {kn} is any sequence satisfying Eq. (7),
and define

COROLLARY 2.4. Let {gn} be iid. Then N~t)~d Ndt) for

each tET if and only if P {Mn:=svn(t)}~W H (t). More
over Hand {V(t).7T(t)}tET determine each other.

(8)lim nGj(k)(vn(t))=hj(k)(t)<00
n....'"

and write Gj(k)(X)=P {glh>Xh' ....gljk>xik}. For each j(k).
let Yj(k) denote the element in S={O,1 }'\{O} whose jth

component equals 1 if and only if j=j; for some i=1,...,k.

(This defines a natural 1-1 correspondence between S
and the j(k)'s.)

require the following notation from Ref. [8]. For
l:=sk:=sd, letj(k)=(iI,...Jk) denote a vector with integer
valued components l:=Sjl<j2<···<jk:=Sd. and for
x=(x],...,xd)EIRdwrite Xj(k)=(Xjl' ...,xik)' Define the "sur
vival function"

d

v(t)=2:(- 1)k+1 2: hj(k)(t)
k-l Isj<···<iksd

and with 7T(t) determined by the relations

(9)
THEOREM 2.5. Let {gn} be a stationary sequence satis

fying .:l(vn(t))for each tET. Then P {Mn:=svn(t)}~W H (t)
if and only if

hj(k)(t)=v(t) 2: 7T(t)(y).
Y"'YJek)

(10)
for each j(k), 1:=sk:=sd and tET, and in that case

PROOF: Write Sk(t)=Ilsh<"'<ikS~j(k)(t), so that P {gl $
vn(t) }=It_l( -1)k+lSk(Vn(t)). If Eq. (8) holds for each k,

then

d

H(t)=exp{2:( -1)k 2: hj(k)(t)}.
k-l l'5.h<···<A'5.d

d

limnPUj$vn(t)}=2:(-I)k+1 2: hj(k)(t)=v(t), (11)
n-+CO k-l l-::=iI<···<jk'5.d

and hence limn....ooP {Mn:=svn(t) }=e-"ct).

Next observe that for each j(k), 1:=sk:=sd,

PROOF: Observe that the mixing condition .:l(vn(t)) im
plies that {gnj(k)} satisfies .:l(Vnj(k)(t)) for each j(k) (with
obvious notation). Hence it may be shown as in the
univariate case (see Lemma 2.1 of Ref. [1]) that

Gj(k)(Vn(t))= 2: P{81=y}=P{gl$vn(t)} 2: 7Tn (Y), (12)
Y"'~~) Y"'~~)

for each j(k). The result may therefore be proved in
exactly the same way as Theorem 5.3.1 of Ref. [8]. 0

where 7Tn(y)=P{81=y Igl$Vn(t)}. Moreover. this rela
tionship is invertible in the sense that each of the prob
abilities 7Tn (y), yES, can be expressed as a linear com
bination of the Gj(k)(Vn(t))'s. Therefore by Eq. (8),
limn...."'7Tn(y)=7T(t)(y) (say) exists and satisfies Eq. (10).
Hence by Theorem 2.1 N~t) ~d Ndl) where Ndl) has the
specified parameters. Conversely if N~t)~d Ndl) then 7Tn

and P {Mn:=svn(t)} converge (by Theorem 2.1 again),
and hence Eq. (8) follows by virtue of Eqs. (11) and
(12). 0

REMARK: Under the hypothesis of Theorem 2.5, if
N~t)~d NJt>, tET, with parameters v(t) and 7T(t) then
P {Mn:=svn(t)}~W H(t)=e-

Jll
, as in the iid case. However

it is not possible in general to recover the 7T(t),S from H
since the clustering of exceedances may cause the sup
port of 7T(t) to extend beyond S. References [9, 10] give
sufficient conditions (analogous to the D'(un ) condition
of Ref. [13]) under which clustering does not occur, so
that Corollary 2.4 can be extended to stationary se
quences satisfying this condition.
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A distribution function F on IRd is said to be indepen
dent if F(x)=n~IFj(xj), xEIRd

• If {gn} is iid and
P{Mn:5vn(t)}~W H(t), then it follows from Corollary
5.3.1 of Ref. [8] that H is independent if and only if the
marginals ofH are pairwise independent. The analogous
result for the dependent case is stated below. The proof
(which is omitted) is essentially the same as for the iid
case, but uses Theorem 2.5 instead of Theorem 5.3.1 of
Ref. [8].

COROLLARY 2.6. Let {gn} be a stationary sequence sat
isfying ~(vn(t)) for each tET and suppose that
P {Mn:5vn(t)}~W H (t). Then H is independent if and

only if knP {MrnJ>vnJ(tj), Mrn,l>vn,/(t/)}~O for each
I:5j<l:5d, tET, i.e., if and only ifknGr"j(klvn(t))~Ofor

each j(2) and each tET.

It is shown in Ref. [14] that H is independent if
H(t)=n~IHj(tj)for some tE(O,It Although the result
in [14] only stated for iid sequences under a linear nor
malization, the proof essentially rests on the defining
property of extreme dependence functions, namely Eq.
(1). Consequently the result extends to the present more
general situation allowing dependence and non-linear
normalizations. Corollary 2.6 can therefore be improved
as follows.

COROLLARY 2.7. Let {gn} be as in Corollary 2.6 and
suppose that P {Mn:5vn(t)}~WH (t). Then the following
are equivalent:

(i) H is independent,
(ii) H(t)=n~IHj(tj) for some tE(O,Il,

(iii) knGr"j(k)(Vn(t))~O for each j(2), for some tE(O,It

It should be noted that Refs. [9, 10] give some inter
esting sufficient conditions for H to be independent
when {gn} is a stationary sequence. A natural question
to ask in the present context is whether H is independent
whenever fI is. Proposition 3.4 gives a necessary and
sufficient condition for this in terms of the extremal
index, but the answer in general is negative and a coun
ter-example can be found in [10]. It seems more plausi
ble that the converse may be true, i.e., that fI is indepen
dent whenever H is. In fact however, this too is not the
case, as shown by an interesting counter-example in
[15].

We conclude this section by stating a result which
extends Theorem 5.1 of [5] and is proved similarly.

THEOREM 2.8. Let {gn} be a stationary sequence satis
fying ~(vn(t))foreachtETand suppose that M')~dM')
for some tET. Then N~'C) ~d M'C)for each c>O and fur
thermore, p(IC)=Cp(l) and 7T(t')=7T(I) (where tC=(tf, ...,tJ)).
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3. The Multivariate Extremal Index

Let {gn} be a stationary sequence and {gn} the associ
ated iid sequence. Suppose that P {Mn:5vn(t)}~W H (t)
and P{Mn:5Vn(t)}~W fI(t). The multivariate extremal
index of {gn} is then defined by the relation
H (t)=fIlX,')(t) (see Eq. (l)), or more explicitly

O(t)=log H(t)l1og fI(t), tET.

Observe that O(t) is well defined since fI has Uni
form[O,I] marginals and hence, O<H(t)<1 on T. The
following results describe some basic properties of the
multivariate extremal index.

PROPOSITION 3.1. Assume that {gn} satisfies ~(vn(t))for
each tET and has extremal index O(t). Then
(i) O(t)=O(tC) for each tET and c> 0, and

(ii) for eachj=I,...,d, {gnj} has extremal index OJ=O(t)
where tET has all coordinates equal to 1 except the
jth.

(Note that by (i), O(t) is constant along the contours
L,={tc:c>O}, tET, and hence OJ in (ii) is well-defined.)

PROOF: Recall that (by Theorem 1.1) H(tC)=W(t) and
fI (tC)=HC(t) so that (i) follows from the definition of the
extremal index. Next, for tET with all coordinates but
the jth equal to 1, P {Mn:5vn(t)}=P {Mnj:5vnj(tJ} and
hence

Therefore by Theorem 2.2 of Ref. [1], {gnj} has ex
tremal index OJ (say) so that Hj(tj)=t/j • Now
H(t)=fIlX,')(t) by definition of the extremal index, and for
the present choice of t this is the same as Hitj)=tl'),
whence it follows that O(t)=Oj for all such t. 0

For tET, let N~') denote the one-dimensional point
process obtained from N~t) via the map y~I{y*O} from
{O,I}d to {O,I}, i.e., fII<:)(B)=I7_1 /vlnEBI{Bi*o}, BE[JJJ.
Thus N~t) has unit mass at'i/n if and only if g;$vn(t).
Assume that {gn} satisfies ~(vn(t)) and with Jnl as in
Sec. 2, let

PROPOSITION 3.2. Assume that {gn} satisfies ~(vn(t))for

each tET and has extremal index OCt). Then
O(t)=(1imn--.ooIY201 yff~I)(y))-l.
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PROOF: Observe that

" -(t)(Y)=E(N(t)(J )IN(t)(J »0) rnP~~I$Vn(t)}=
LJY7rn n nl n nl P{N(t)(J »O}
y~l n nl

knrn nP{~l$Vn(t)}

-;: knP{Mrn$vn(t)}'

Now limn....'" P {Mn:5vn(t)}=H (t) and limn-.>oo
P {Mn:5vn(t)}=H (t) (by assumption). so that limn '"
nP{~I$vn(t)}=-log H(t) and (by Eq. (13» limn '"
knP{Mrn$vn(t)}=-log H(t). Therefore limn-.>oo 2Y;;"1

Y7T~t)(y)=log H(t)!log H(t)=I/O(t). as required. 0

REMARK: Proposition 3.2 is simply the multivariate ver
sion of Eq. (1) and shows how the extremal index is
related to the clustering of "exceedances." Indeed. ac
cording to the present viewpoint, an exceedance occurs
at time i if ~i$Vn(t). i.e.• if ~nj>vnj(tj) for at least one j.
Thus Propositions 3.1 and 3.2 show that while the de
gree of clustering may depend on t. it is constant on each
Lt. Note also the connection to Theorem 2.8.

The next result gives the relation between the depen
dence functions of Hand H. which is seen to involve the
extremal'index in an intricate manner.

PROPOSITION 3.3. If {~n} has extremal index O(t), tET,
then

where OJ is the extremal index of {~nj}.j=l•...•d.

PROOF: By definition of the dependence function.
DH(t)=P {HI (X1):5t),...,Hd(Xd):5td} where (X), ...,xd) is
a random vector with distribution H. Therefore. since
Hj(tj)=t/J•

or required. 0

REMARKS
1.) Note that s=tC (for some c>O) if and only iflog s)log

sFlog t)log tFaj (say).j=l •...•d-l. Therefore we
may write Lt=Lawhere a=(alo...,ad-l). and hence by
the remark following Proposition 3.2. O(t)=O(a).

, i.e.• the extremal index is a function of d-1 vari
" .. abIes only.

2.) By Proposition 3.3. DH(t?' •...•tJd)=Dj{-t) (t)=DfI(tlJ(t».
Also. if tELa then (t I

8
' •••••tJd)ELa• where a*=(aIOII

Od, ...•aa-IOd-I/Od). Thus DHis obtained by translat
ing the values of DfI(=H) on La onto La"
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3.) While the above results illustrate some of the basic
properties of the multivariate extremal index. they
are far from complete. For instance; it would be
useful to identify the set of all "admissible" 00 for
a given H. that is the set of all 00 such that DHO
defined by Eq. (14) is a probability distribution on
[0.1 ]d. It would also be of interest to study the prop
erties of 0(·) when one or both of Hand H are
independent. In this context we have the following
simple result.

PROPOSITION 3.4. If H is independent, then H is inde
pendent if and only if

d d

0(t)=2:0)ogt/2)ogtj. for some tE(O.I)d.
j-I j-I

In particular, ifboth Hand H are independent then O(t)
is a convex combination of the O/s.

PROOF: If H is independent. then H (t)=H (t)lJ(t)=
(llf-ltj)IJ(t). The conclusion follows immediately from
Corollary 2.7 (iii) upon taking logarithms and noting
that if H is independent. then H(t)=llf-It/j.

The extremal index can be given the following more
general formulation. Let p., and p., be the probability
measures on (O.l)d corresponding to Hand H. respec
tively. Thus for instance,

p.,(A)=lim P{MnEvn(A)}
n....'"

where vn(A)={vn(s) : sEA}. AC(O.I)d. We now define
8(A) via the relationship p.,(A)=p.,6(A)(A), or more di
rectly 8(A)=logp.,(A)!logp.,(A), for subsets AC(O,l)d
such that p., (A »0 and p., (A »0.

Note that 0(t)=8«0.tl)X ... X(0,td» for tET. Thus if
{O(t) : tET} is known along with either of H or H, then
it is possible at least in theory to obtain {8(A) :
AC(O.I)d}. In practice. however. it may not be possible
to obtain 8(A) in a tractable form. but frequently one is
only interested in certain special sets, typically rectan
gles of the form llf-l(aj.bj). and for such sets the compu
tation is easy.

The definition of Mn as the vector of componentwise
maxima actually corresponds to regarding ~i as an ex
treme observation if ~ij>Vnj(tj) for some j. More gener
ally. one may define ~i to be an extreme value if
~iEvn(A) for some AC(O,l)d. in which case 8(A) has an
interpretation as a measure of the clustering of such
extremes. Note that the original definition of extremes
corresponds to letting A=«O.tl)X ... X(O,td)Y' Alter
nately one may consider taking A=(tI.l)X ... x(td.1)
which corresponds to defining ~i as an extreme observa-
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tion if gij>Vnj(tj) for all j. Yet another choice is A=
{t: 2t]>C}.

4. Examples

We conclude with two examples, both involving
bivariate stationary sequences.

EXAMPLE 4.1 Let {'YIn} be an iid sequence, and put
gn'='YIn, and gn2=max{'YIn-', 'YIn }. Let F denote the distri
bution of gn=(gni> gn2) with marginals F, and F2. Then
F2(x)=P{gn2:O=;X}=P{'YIn-':O=;x, 'YIn:o=;x}=F~(x) and

(15)

for all c>O and all sets A with v(A )<00.
Define the bivariate moving average process

Xn=2'J-oCjZn-j, where {C}=[cj.kI]i.l_'}j,",o is a sequence of
real 2x2 matrices satisfying 2'1-0 ICj.kl 1°<00, k,l=l ,2, for
some 8E(0,a), 8:0=;1. For x=(x,,x2)'EIR2, write Axr
{z: CjZE«-00,xI)X(-00,x2)Y}, where A C denotes the
complement of a set ACIR2

• Then [16],

lim P {a;;'Mn:O=;x}=exp{ -y(x)}, and
n--;OO

lim P {a;;IMn:o=;x}=exp{ - y(x)}, xEIRZ,
n--;OO

from which it follows that

If Vnj(tj) satisfies F/(vn/tj»--')tj, j=1,2, then limn--;oo
F~(Vn2(t2»=tF2 so that vnit2)=vnl(tiI2). Moreover
vn,(t,);,::Vn2(t2) if and only if t j 2:tF2, and so

where 'Y(X)=2'J-ov(AxJ) and y(x)=v(UJ-oAxJ)' The ex
tremal index is therefore O(x)=y(x)/y(x), xEIR2. It fol
lows from the definition ofAxJ and Eq. (15) that this is
in fact a function of X/X2' Note that the extremal index
defined above differs from that in Sec. 3 in that it is
defined on IR2rather than [0,1]2. However the two defi
nitions are equivalent as may be seen by means of a
suitable transformation from IR2 to [0,1]2.

The actual calculation of O(x) may be quite difficult
in general, but possible to carry out under appropriate
simplifying assumptions.

Case (i). If CrCjC where C=[ck/]L-l and the c/s are
non-negative constants, then Axrcj1B(x) and
U'J-oAxrcB(x), where B(x)={z: CzE«-oo,x,)X
(-00,x2)Y} and c=max{cj : j2:0}. Therefore by Eq. (15),
v(AxJ=ctv(B(x» and v(UJ-oAxJ)=cUv(B(x» so that
0(X)=C u/2'1-oct·

if t,2:tF2

if t,<ti12
•

if t,2:tF2

if t,<tF2.

The marginals of H are therefore H,(t,)=t, and H2(t2)=
ti l2 so that 0,=1 and O2=112, and the dependence function
of H is DH(t)=H(t" ti)=tl/\t2. For the associated iid
sequence {gn} on the other hand, it is easily verified that

if t,2:ti I2

if t,<ti12
•

We next consider a moving average sequence studied
in Ref. [16].

EXAMPLE 4.2. Let {Zk=(Zkl,zk2)'}, -oo<k<oo, be a se
quence of iid random vectors in IR2. We assume the
existence of a sequence of positive constants an --,)00, and
a measure v on IR2 which is finite on sets of the form
{x : Ilxll>r}, r>O (where 11·11 denotes the Euclidean norm
in IR2), such that nP{a;;'ZoE.}--')v v(.). (Here '--')V'

denotes vague convergence"of measures on IR2 with
respect to the metric d(X"X2)= Iri'-r2' IV 101- 02 1,
where for i=1,2,r; and 0; denote the polar coordinates of
Xi, and aVb=max{a,b }.) The measure v is necessarily
of the form v({x: Ilxll>r ,0(x)EA })=r-US(A) for r>O
and AC[0,27i), where S(-) is a probability measure on
[0,27T) and £DO. Hence in particular [17],

Case (ii). If the C/s are diagonal, i.e., Crdiag[cj"c}:J
with cji2:0, i=I,2, then Axr{z: Cj'z,>x, or Cj2Z2>X2}
and UJ-oAxr«-00,x,/c,)X(-00,x2/C2)Y where C;=
max{cji :j2:0}, i=I,2. In particular, taking X2=00 and
using Eq. (15) as in Case (i), we have v(AxJ )=
Cj~v({z : z,>x,}) . and v(U'J-oAxJ)=c~v({z: Z,>Xl }), so
that the extremal index of {Xn,} is 0,=C~/2'1-oCJJ'

Case (iii). Let D denote the support of v. If DC
{z: z,=O or Z2=0} (which is the case if the coordinates
of Zo' are independent), then we may write

for suitable constants a,2:0 and a22:0. Once again, as
suming the Cj.kl'S to be non-negative and writing
ck/=max{Cj.kl :j2:0} for k,I=I,2, we have (writing
a/\b=min {a ,b }) .
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and

so that using Eq. (16)

8( )= al(xl/cll!\X2/C21)-u+a2(Xl/C12!\X2/C22)-U
x at2;'o(Xt/Cj,11!\Xl/Cj.21) a+a22~(xl/Cj.12AX2/Cj,22) ex·

Thus putting X2=ClO, we have 81=(alc~+a2C12)/(alI~cXll+

a2I~cj~12) and similarly, 82=(alc2;+a2c~D/(alI~cj~21+

a2I~cX22)'
If also Cj,12=Cj,21=0 for each j, (that is if the C/s are

diagonal), then

and in particular, 81=c~/I~cJJl and 82=c2i/I~cj~2' Note
that in this case the limiting distributions of Mn and Mn

are both independent, and hence (in accordance with
Proposition 3.4) 8(x) is a convex combination of 81 and
82•

The non-negativeness of the Cj's assumed above is
not crucial and may be relaxed, although at the cost of
more involved calculations.
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1. Introduction

Lemma 1.1 Equation (1) is equivalent to

lim n [1-F(anX+bn)]=-log H(x)
n->'"

for all x such that O<H(x )<1. (See Marshall and Olkin
[4].)

for all x, because multivariate 'extreme value distribu
tions are continuous.

We shall need the following lemma to prove a propo- .
sition in Sec. 2.

(1)lim Fn(anx+bn)=H(x)
n->'"

If there exist an>O,bnERk,n=I,2,...(an>O~means
a;n>O, i=1,...,k) such that (Zn - bn)/an converges in distri
bution to a random vector U with a nondegenerate distri
bution H (i.e., all univariate marginals of H are nonde
generate). then F is said to be in the domain of attraction
of H, FED(H) by symbol. and H is said to be a multi
variate extreme value distribution. The convergence in
distribution is equivalent to the condition

Multivariate extreme value distributions have been
studied by many authors. and their contributions are
summarized by Galambos [1] and Resnick [2]. The pur
pose of this paper is to obtain some necessary and suffi
cient conditions for domains of attraction of the multi
variate extreme value distributions. The joint asymptotic
distribution of multivariate extreme statistics is also ob
tained. To study multivariate extreme value distributions
and their domains of attraction. Sibuya [3] introduces
.the notion of a dependence function which is also used
by·Galambos [1]. A dependence function or copula is a
useful notion to construct a family of joint distributions.

In this paper. basic arithmetical operations are always
meant componentwise (see Galambos [1]. Chapt. 5).

Let (Xlj,X2j .....Xkj).j=I.2•...•n. be a sample of size n.
of a k-dimensional random vector with a distribution
function F(x). The i-dimensional distribution function
of the components XjJ.Xh.....Xj ; will be denoted
FjJh.j;(Xj!.xh xj)=FJw(xJ(o). We shall also use the
notation Fj, j;(Xj, .....xj;)=FJ(o(xJ(i»=P(Xj,>Xj! ....,Xj,>Xj;).
For k=l and pE(O.I), let r'(p )=inf{x:F(x)2::p}.

Let Zn=(Zln' ....Zkn)' where Zin=max{Xil ....,X;n},
i=I,2,...,k, and let us call Zn a multivariate extreme
statistic.
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2. Domains of Attraction

For any k-dimensiona1 distribution F.

is called the dependence function of F. In this section.
we. derive necessary and sufficient conditions for do
mains of attraction in terms of the dependence function.

Proposition 2.1 Let F be a k-dimensional distribution
and let H be a multivariate extreme value distribution
with univariate marginals Hi. i= 1•... •k. Then the follow
ing statements are equivalent:

J) FED (H).
2) FiED(H;). i= I•...•k. and

3) F;ED(H;). i=I .....k, and

I-D (yl-X)
lim IF =-logDH(Y)forallyE(O,It
xi, . -x

4) FiED(Hi). i=l, ...•k. and

Proof. The proof is straightforward from Lemma 1.1.
Theorem 5.2.3 and Lemma 5.4.1 of Galambos [1]. 0

Proposition 2.2 Let F be a k-dimensional distribution
and let H be a multivariate extreme value distribution
with univariate marginals Hi. i=1•... •k.

(A) FED (H) ifand only ifFiED (H;). i= 1,... •k, and
the functions

for each fixed vector J(i)(i>I) and for all yE(O,I)k are
finite. and the function

k

DH(y;r)=Y""Yk exp{L(-I); L dJ(i)(yJ(i)}
;-2 I ':5j \<···<jj':5k

is a dependence function of H.
(B) The following inequalities hold.

for a nonnegative integer r, where
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r

DH(y;r)=Y""Yk exp{L(-IY L dJ(i)(YJ(;)}
;-2 ISj \<...<j(sk

and DH(y;r) is a dependence function ofa multivariate
extreme value distribution.

Proof. It is easily seen that for all s>O.

From Theorems 5.3.1 and 5.2.4 of Galambos [1]. we
have the result. 0

Example 2.1 (See Examples 5.2.2 and 5.2.3 of Galam
bos [1].) For a Mardia's distribution

and

Thus. by Proposition 2,2 we have FED (H). where

and A(x)=exp(-e-j.

Proposition 2.3 Let F and G be k-dimensional distri
butions and let H be a multivariate extreme value distri
bution,

1) If F,GED(H), then

2) If FED(H), GiED(H;), i=I,....k. and

. I-DF(y)
~W I-DG(y) =1, where 1=0 ...·.1).

then GED(H),
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3. Marginally Independent or Perfect
Dependent Multivariate Extreme Value
Distributions

Let H be a multivariate extreme value distribution
with univariate marginals Hi, i=I,... ,k. Let
H,(x )=H,(xI)· ..Hk(Xk) and H'(x )=min{Hi (Xi ), i=1,... ,k },
then it holds

for all xER k
• Both bounds, H, and H', are multivariate

extreme value distributions. Characterizations of these
distributions are obtained by Takahashi [5].

In the bivariate case Sibuya [3] obtains necessary and
sufficient conditions for FED(H,) and FED(H'). In
this section we generalize his results.

Proposition 3,1 Let F be a k-dimensional distribution
and let Hi be a univariate extreme value distribution,
i=I,...,k. Then the following statements are equivalent:

1) FED (H,).
2) F;ED(Hi), i=1 ,...,k, and there existsyE(O,I)k such

that

3) FiED(H;), i=I, ...,k, and

4) F;ED (Hi)' i=1,... ,k, and

I · I-DF(yl)_1
1m 1 k -.yi, -y

Proof. The proof is straightforward from Theorems 2.2
and 4.1 and Corollary 2.4 of Takahashi [6]. 0

Remark. If k=2, we have the same result as Proposition
3.1 by Corollary 2.2 of Takahashi [6].

Example 3.1 (See Example 5.2.3 of Galambos [1].) For
the Morgenstern distribution

where -1 :Sa:S 1, and

I · I-DF(y,y)_1
1m 1 z -.
yil -y
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By Proposition 3.1 4) we have FED (H,), where
H,(.,)=A(·)A (.).

Proposition 3.2 Let F be a k-dimensional distribution
and let Hi be a univariate extreme value distribution,
i=I,... ,k. Then the following statements are equivalent:

1) FED (H').
2) F;ED(Hi), i=1 ,... ,k, and there exists yE(O,I) such

that

lim(DF(y Iinl))"=y.
n->'"

3) FiED(H;), i=I,... ,k, and

Proof. The proof is straightforward from Theorem 3.1
and Corollary 3.1 of Takahashi [6]. 0

4. Joint Asymptotic Distribution of the
Multivariate Extreme Statistics

In this section, we show the joint asymptotic distribu
tion of several multivariate extreme statistics along the
arguments in Sec. 2.3 of Leadbetter et al. [7]. For sim
plicity we shall consider the bivariate case.

Let (X"fl),,,,,(Xn ,fn ) be a sequence of independent
random vectors with common distribution F. The order
statistics of the components will be denoted by

For i=O,1 ,...,r-l, define

Zn-i=(Xn-;:n, f n- i:n)

and let us call Zn-i an (i+1)-th multivariate extreme
statistic.

Proposition 4.1 Suppose that

for some nondegenerate distribution H. Then, for
x,=(X',YI»XZ=(xz,yz),

where

H j (x"xz)=H (xz){1 +Iog H(x,)-Iog H(xz)
+[Iog H,(x,)-Iog H,(xz)+(h(x"yz)-h(xz))]
x[log HZ{Y,)-Iog Hz(Yz)+(h(xz,yI)-h(xz))]}
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and h(x)=limn...."" F(a.x+bn).

Proof. Define

S3=#{j !Xp-alnXl+b1n or Yp-a2nYl+b2n.j=1.2, ...•n.}.
Sf=#{j IalnX2+b1n<X/,;alnXl+b1n and

Yi:5a2nY2+b2n .j=1.2•.. .•n .}.
S2=#{j IXi:5alnX2+bln and

a2nY2+b2n<Yj:5a2nYl+b2n.r1.2•...•n.}.
Su=#{j Ia.x2+bn«Xj .Y):5a.xl+bn.}=1.2•...•n.}

then. we have

P {(Zn-bn)/an:5xh (Zn-l-bn)/an:5X2}
=P{S3=O. Su=O. Sf:5l. S2:51}
+P{S3=O. Sf2=1. Sf=O. S2=O}.

On the other hand. by using Theorem 5.3.1 of Galambos
[I]. we can evaluate the asymptotic probabilities of the
evens

{S3=i. Sf2=j. Sf=k. S2=m}

for i.j.k.m=O.l. Thus we have the result. 0

Corollary 4.1 Suppose that

for some nondegenerate distribution H. Then, for fixed
r?:.1 and Xl>"'>Xr

- P {(Z: - Pn)/an:5xh...•(Z:-r+l- Pn)/an:5xr}I~O.
as n~oo.

where Z:-i is the (i+I )-th multivariate extreme statistic
from the distribution H, i=O..... r-l. and
Hn(a.x+Pn )=H(x). n=1.2....

Example 4.1 Let F be the bivariate normal distribution
with the correlation coefficient less than one. Then

-P{(Z:-(log n)l:5xh...•(Z:-r+l-(log n)l:5xr}I~O.
as n~oo.

where Z:-i is the (i+I )-th multivariate extreme statistic
from the bivariate exponential distribution whose mar
ginals are equal to the standard exponential distribution
and they are independent. For the univariate case. it is a
well known result (see Weissman [8], Theorem 3).
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1. Introduction

Number 4

It is suggested here that in many envi
ronmental and other contexts the sever
ity of an extreme event might usefully
be represented by the sum of the ex
cesses of a measured variable over a
high threshold. The general form of the
limiting distributions of such sums for a
wide class of models has been derived
by Anderson and Dancy, and has sug
gested methods for the statistical analy
sis of data concerning extreme severity.
This work is reviewed here, and some
extensions to the distributional theory

July-August 1994

are presented. An application of the
methods to atmospheric ozone levels,
which calls for the extension of the ap
proach to take account of covariate in
formation is reported.

Key words: aggregate excess; extreme
event; flood; generalized Pareto distri
bution; ozone; point process; severity;
storm; threshold model; Weibull distri
bution.

Accepted: March 22, 1994

The severity of a storm or a flood is often a func
tion not only of the peak value of whichever envi
ronmental variable is concerned, but also of other
aspects of the extreme event, such as its duration
and temporal shape. An extended run of days with
temperatures just below freezing, for example, can
be more disruptive to everyday human activity and
to animal and plant life than a single day with a
much sharper frost. Similarly, sustained moderately
high water levels in a river or the sea can lead to
greater flooding than a more extreme level lasting
for only a short time. To attempt to analyze such
examples in a way which captures the notion of
severity implicit in them demands an extension of
traditional statistical methods for extremes, which
have tended to concentrate largely on the mod
elling of maxima or storm peaks. In Ref. [1] it was
suggested that for an important class of applica
tions a simple way to quantify the idea of severity
is in terms of the sum of the excesses of the envi
ronmental variable over a high threshold during
the extreme event. In the case of a flood, for exam-
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pIe, this sum or aggregate excess is a discrete ap
proximation to the total volume of water
overtopping the threshold, and in the case of tem
peratures the analogous quantity defined for low
values, the aggregate deficit, is a measure of expo
sure or cumulative damage. In the earlier paper
some distribution theory was developed for aggre
gate excesses, and an application to flood data was
discussed. Here I review that work and present
some extensions of its distributional results, and
discuss a new application to ozone concentrations.

2. Preliminaries

The techniques to be described are related to
threshold methods for extremes [2], and the distri
butional results are formulated in terms of the
Mori-Hsing point process representation [3, 4] for
the structure of high values of a stationary
sequence. We briefly recall ideas from these two
areas.
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where u > 0 is a scale parameter, g(- 00 < g< 00 ) is
a shape parameter, and the range of x is such that
gxlu> -l.

Let N denote the number of exceedances within
a cluster, and suppose that (I ~ ... ~ (N are the cor
responding excesses. Then the suggestion above is
that the aggregate excess within a cluster

Suppose {Xj} denotes a sequence of observations,
and let U be a high threshold. Times j at which
Xj > u are referred to as exceedances of u by {Xj},
and the sizes of overshoots Xj - u at exceedances
are called excesses over the level u. In environmen
tal applications exceedances are often found to oc
cur in clusters corresponding to physical storms.
Threshold methods are based on the modelling of
the peak excess within each cluster by a generalized
Pareto distribution, with distribution function of
the form

(3)lim P(M" $U,,(T)) = lim F"9(U,,(T)).
"-~ n-~

but that infinite values of the Y;j are allowed after
the first point, so that K;, the number of points in a
cluster, is just the index of the last finite Yij . By this
means stochastic properties of K; are subsumed no
tationally in those of {Yij }.

We are interested in particular in clusters of
exceedances by {Xj } of a high threshold u. Let
V=U,,-I(U). Then Xj>u is equivalent to
U,;-I (Xj ) < v, and so, in the limit, clusters of ex
ceedances of u correspond exactly to those clusters
in the point process for which Ti < v. Given that we
are dealing with such a cluster (as we assume from
now on) it follows from the unit Poisson nature of
{(Si,Ti)} that Ti is uniformly distributed over (0, v).

For many {Xj} the transformation u" is related in
a simple way to the marginal distribution function,
F say, of Xj. Suppose in fact that {Xj }, still satisfying
condition ..1, has a positive extremal index fl. Then
([5], Theorem 3.7.2)

on [1, 00) with a random number Ki of points. More
over the processes {Y;j:j =1, ..., K i } for each i are
independent of each other and of the {(Si,T;)} pro
cess, and are identically distributed.

A natural interpretation of this convergence re
sult is that large values of the {X;} sequence occur
in clusters, located in time at the points of a simple
Poisson process, and that values within a cluster
(from the peak downwards) are given, after trans
formation, by Ti , TiY;2, ... respectively (reading up
wards). Note that, since the transformation is
decreasing, a cluster peak corresponds to the lower
endpoint of a vertical string of points in the limiting
point process.

In what follows it will be convenient to suppose
that the point process associated with each cluster
contains infinitely many points Y;j arranged in
increasing order of size

(2)

(1)

lim P(M" $U,,(T)) =e -T.

,,-->00

(
g.) -1/~

G(x:~u)=l- 1+: '

is for some purposes a reasonable measure of the
severity of a storm event. For statistical modelling
we are interested in the distribution of S, particu
larly for high thresholds u. Since S ~ (" we expect
S to have (in the limit as u increases) a tail no
lighter than that of the limiting generalized Pareto
distribution of (I. The distribution of S is also ex
pected to reflect the cluster size and the pattern of
dependence between individual excesses (j.

Suppose now that M" =maxI "i"" X;. It is known
that for many {X;} sequences M" may be normalized
to converge in distribution to some nondegenerate
limit. Suppose in fact that there is a continuous and
strictly decreasing function u" (T) such that, for each
T>O,

nO:Ji(u,,(T)) - -nO log F(U,,(T)) -T,

Hence, if the tail function 1 - F of F is denoted by
:Ji, it follows from Eq. (2) that

Let U,,-I denote the inverse function of U". Consider
now the two-dimensional point process with points
(jln,u,;-I(Xj)). In Ref. [4], which generalizes Ref.
[3], it is proved under a weak long-range mixing
condition L1 that if this point process converges as
n ----'> 00 then its limit has points of the form (Si,
TiY;j), i ~1, l$j$K;, where (Si,Ti), i~l are the
points of a unit Poisson process in m+ 2

, and for each
i, {Yu:j = 1, ... , K;} with Y;I == 1, is a point process

for large n. We may therefore define u" by

u" (T) = :Ji-I(TlnO). (4)
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In particular therefore

n (J g;(u) = v,

and so the excesses within a cluster, in decreasing
order of size, are in the limit (dropping the cluster
index i, no longer relevant)

, = un(T}j)-u

= g;-I(T}jg;(u)lv)-u

= g;-I(T'}jg;(v))-u,

j = 1,2, ... ,N (5)

3.1 Limit Distributions of S

Suppose that the stationary sequence {Xj} satisfies
Hsing's mixing condition ~ and has positive extremal
index, and that the marginal distribution F of the X j is
such that the limiting distribution of peak excesses
within a cluster is generalized Pareto with shape
parameter g. Suppose too that the corresponding point
process {(jln, ull-

l (Aj ))} converges to a limiting process
with the structure described in Sec. 2. Then, as the
threshold level u tends to the upper end point, x+ say,
of the support of X,

lim p(_S_ >s)
u--.x+ n(u)

where T' = Tlv is uniformly distributed over (0,1).
The aggregate excess for the cluster is

where N, the number of exceedances in the cluster,
is

N=max {j: T'}j <1},

and T' is independent of the }j process.

3. Asymptotic Distributions of Aggregate
Excess

In this section we outline various asymptotic dis
tributional properties of aggregate excesses which
follow from the preceding discussion. The asymp
totic distribution of aggregate excess S itself turns
out to depend on the Y process partly through ran
dom sums

j

Rj =L Zij
;=1

where the Zij are defined in terms of {Yi} by

E [ (~j' Y;~<) 1/<] for g>o
s +ls

[ (S + };jj'logY; )] for g=oE exp - .
is

E[(~t<] for g < 0
is s +

(7)

where

y,(u) ={ ~(1/"'(u»)
for g>O
for g=O

x+ -u for g<0
(8)

for a suitable slowly varying function I, and

js = min {j: }j+l = 00 or R(2:.s }. (9)

(Yt lY-1 for g>O

Z;j= log (YY: 1
) for g=O

1-(YY: 1r for g<0.

Expectations in Eq. (7) are taken with respect to the
point process {}j}.

This result is a consolidation and re-statement of
the main limit forms found in Ref. [1]. The proof
essentially a weak convergence argument based on
the Mori-Hsing process-exploits regular and slQw
variation properties of g; implied by the assumption

(6) that cluster peak excesses are, in the limit, general
ized Pareto distributed. For example, when g=0,
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.'1'belongs to the domain of attraction of the Gum
bel extreme value distribution, so that, as x~ 00,

for each w > 0, for some slowly-varying function I
(see, for example, Ref. [6], Sec. 8.13). Thus

3.3 More Explicit Forms for P (8 lye (u ) > s)

When specific models are assumed for the X pro
cess the limiting distributions Eq. (7) take on more
explicit forms. Several examples were studied in
Ref. [1]. Writing

lim p(_S_>s) = {(1 +sign(g)V(s, g»-1/~for g¢o
u-.x+ 'Y~(u) exp( - V(s, 0) for g =0

(11)

it was found that V(s, g) had the same general form
in all cases considered: that of a concave increasing
function of s dominated by s when g 2: 0, and by min
{1,s} when g < O. See Fig. 1.

( -log(T'Yj »l(lf.'1'(u»,

as u~x+, which establishes the connection between
the limiting behaviour of S and the Y -process.

We note that Eq. (7) reveals in reasonably ex
plicit form the dependence of the distribution of S
on the number and pattern of excesses within a
cluster.

3.2 Joint Limit Distributions

The techniques used to obtain these results may
be extended to give limiting distributions for other
quantities. As an example (motivated by a question
from a reservoir engineer about peak water level
and total overtopping discharge at a dam wall) the
joint distribution of peak and aggregate excesses is
as follows.

Under the same assumptions as.in Sec. 3.1, and
with the same notation:

0
C'i

'"C\i

0
C\i

W\'"
~,..:

>
C!

'"0
0
0

0 2 3 4

for g>o

lim P(_S_ >s _(:_1_ >z) =
u-.x+ n(u) 'n (u)

E [ min {(~ :j:~) 1I~, (1 +z)-I1~ }]

E [min {exp( _s +~)sIOgY; ), e-z}] for g=o

(10)

Similar joint limiting distributions may also be
found for (1 and S - (1. Like Eq. (10) they are singu
lar. Methods of statistical analysis based on them
have yet to be explored.
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5
Fig. 1. Forms of the V(s, ~) function.

The findings and examples above motivate an at
tempt to fit aggregate excess data by a distribution
with tail function of this general form. Two such
attempts are described in Sec. 4.

3.4 Higher Thresholds

As often in extreme value Statistics, an aim in
many applications will be extrapolation to longer
time periods or higher levels than seen in data. In
particular, for aggregate excesses, extrapolations to
higher thresholds will often be of interest. For exam
ple, in flood applications knowledge of the aggre
gate excess above a higher threshold might be vital
in estimating the reduction in the size of floods that
would result from improved river or sea defences.
The following presents a simple relationship on
which extrapolation of aggregate excesses could be
based.
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for some parameters a > 0 and c/J was found to give
an acceptable fit to data on S.

the general form of distribution predicted by
asymptotic arguments, and in particular a simple
Weibull distribution with

Suppose that Su and Su' denote aggregate excesses
above levels u and u', respectively, with u < u " in a
cluster in which level u is exceeded (so that Su, but
not necessarily Su', is greater than zero). In a slightly
more refined notation than used earlier, the limit
ing forms in Sec. 3.1 are limits, ~(s) say, of P(Su/
n(u»sISu >0) asu~x+.We are now interested in
P(Su'/n(u»s ISu >0). But

P(S >s)=exp( -as)"'), (13)

4. Applications

( Su' ~I )
P n(u ') > s n(u') Su·>O

P ( y~~) > s ISu > 0) =
4.2 Ozone Concentrations

An analysis of a further set of data, which calls
for the extension of the models above to take ac
count of covariate information, is now reported.

The data consist of hourly mean ozone concen
trations at a suburban site in Stevenage, about 25
miles north of London, over the years 1978--1989.
High levels of ozone are known to cause direct dam
age to vegetation (see, for example, Ref. [7]). One
tentative suggestion is that a plant or tree suffers
damage in proportion to cumulative exposure to
ozone at concentrations above some threshold. The
threshold is not known, and indeed is likely to be
different for different plants, but a figure in the
range 40 ppb-90 ppb might be plausible. Though
this theory is at present no more than a working hy
pothesis, it prompts an interest in the occurrence of
high values of aggregate excesses of ozone concen
trations above moderately high thresholds. The
analysis summarized below is a preliminary investi
gation into the possibility of using the aggregate ex
cess models of Sec. 3 to describe such high doses. A
more complete account of the biological back
ground, and of the application of the method to
spatial variation of exposure over the UK, is given
in Ref. [8].

For the theory of Secs. 2 and 3 to be applicable it
is desirable that we work with independent clusters
of high values. The hourly data were therefore sub
jected to a preliminary declustering procedure,
which selected episodes when concentrations above
a specified 'declustering threshold' were experi
enced, and ensured that such episodes were sepa
rated far enough in time to give some plausibility to
the independence assumption. Figure 2 shows a
time plot of the resulting aggregate excesses above
a threshold of 60 ppb, obtained with a declustering
threshold of 50 ppb and with a time separation be
tween clusters of at least 48 hours - these values be
ing chosen as typical of those of possible scientific
interest. An immediate observation from the plot is
that the assumption of stationarity is suspect: the
middle years 1982-1986 contain some values higher
than seen earlier or later. (There are known diurnal

(12)

for high u, where (I is the peak excess in the cluster.
Thus the distribution of aggregate excesses with
respect to the higher threshold u ' has a point prob
ability at 0 corresponding to the event pal:S;;u')
that no exceedance of u ' occurred, together with a
form over the strictly positive half-line which is the
the same as that of the original distribution of ag
gregate excesses except for an increased scale
parameter. Estimation of this distribution may
therefore be based, through Eq. (12) on estimation
of ~ from data on aggregate excesses of u, and of
pal >u') from data on peak excesses of u fitted to
the Generalized Pareto distribution Eq. (1). Rela
tionship Eq. (12) should also be useful as a means
of checking the fit of specific models for ~, though
this aspect has yet to be investigated.

4.1 Floods on the River Thames

In Ref. [1] an application of some of the limiting
results above to data on levels of the River Thames
is described. The aim was largely exploratory: to see
whether there is support in an important data set
for a model of the general kind suggested in Secs.
3.1 and 3.3, and, if there is, to seek an appropriate
parametric form for the model. The results were
surprisingly positive: confirmation was found for
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patterns in ozone concentrations too, but they are
of too short a duration to affect the present analy
sis.) In view of the apparent nonstationarity a sim
ple model of the kind found useful in the earlier
analysis would not on its own be expected to be par
ticularly successful here: and indeed the Weibull
model Eq. (13) fitted to aggregate excesses above
60 ppb appears to underestimate the sizes of the
highest aggregates.

the evidence from Fig. 3 that not all occurrences of
high temperatures t at the time of an ozone cluster
are necessarily associated with a high aggregate
ozone dose. This suggests a model in which ozone
clusters are assumed to be of two types, the first
showing temperature dependence of the kind
above, and the second showing no dependence on
temperature. Thus

Cluster Peaks Aggregate Excesses
P(S >s) = { exp- (s/8(t))4> for type 1 clusters

exp - (s /8 ')4>' for type 2 clusters

(15)

Fig. 2. Hourly mean ozone concentrations over 60 ppb: Steve
nage 1978-1989.

in which the scale parameter 8 depends on t in the
form 8(t) = 8ePt; and secondly a model suggested by

... ...
,. I.

. ~.. .... '".
• • I •• •a

'-r------r-----,------,-------,-l

(Since sunlight/high temperature is at best only one
of the preconditions known to be necessary for the
formation of ozone, there is some general scientific
justification for a model of this form.) In fitting,
clusters with aggregate excesses above a specified
level were taken to be of type 1. A likelihood ratio
test shows that model Eq. (15) represents a very
worthwhile improvement over Eq. (14) even after
allowing for the inclusion of two extra parameters
(W =27.26, p < 10-\ cut-off level for type 1 =500).
Q-Q type plots for the two covariate models are
shown in Figs. 4 and 5 respectively. (These are con
structed as follows: under model Eq. (14) S/(8ePt )

reduces to a standard Weibull variable with unit
scale parameter and shape parameter cf>:P(S /
(8e Pt»s)=exp(-s4». Thus a plot of the ordered
values of S/(8ePt ) from a sample of size n against
[ -log(i/n + 1)]1/4> should yield an approximate line
of unit slope. Figure 4 is a plot of this kind, and
Fig. 5 is constructed similarly from model Eq. (15).)

Fig. 3. Aggregate excess ozone over 60 ppb vs temperature.
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The processes leading to the formation of ozone
in the atmosphere are photo-chemical- driven by
strong sunlight. It is possible therefore that unusual
weather conditions in the early to mid 1980s may
have had some bearing on the possible inhomo
geneity. Unfortunately sunlight was not recorded at
the Stevenage monitoring site, nor was tempera
ture, which is a crude surrogate for it. Temperature
data were not readily obtainable either from nearby
meteorological stations, but were to hand for
Sheffield, 140 miles north. Figure 3, showing aggre
gate excesses over 60 ppb against monthly averages
of daily maximum Sheffield temperatures, illus
trates that in spite of the geographical separation
there is nevertheless some connection. It appears
that the summers over the relevant years contained
some quite warm spells, presumably experienced in
Sheffield as well as Stevenage. Accordingly Weibull
models which incorporate temperature t as a covari
ate were fitted. Two forms were used:
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useful in estimating return levels of future high
doses of ozone above 60 ppb or, following the re
sults of Sec. 3.4, above higher thresholds.

Fig. 4. Q-Q plot for aggregate excess ozone: simple covariate
model Eq. (14).
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Both plots appear to show a quite good fit to the
Weibull model after allowing for dependence on
temperature, model Eq. (15) doing a little better
than model Eq. (14). Further refinements of the
models allowing temperature-dependence also of
the shape parameter cP gave no worthwhile im
provement in fit as judged by a likelihood test.

Though this is only a preliminary analysis (which
we hope to complete with better temperature data),
the results so far are encouraging. They .appear to
show again that models of the form suggested in
Sec. 3.3, and in particular a Weibull model-after
allowance in this case for nonstationarity-can rep
resent aggregate excess data reasonably well. If this
is confirmed, then for example these models will be

~
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Measurements of many environmental variables
such as wind speeds, rainfall and the concentra
tions of atmospheric and aquatic pollutants are
generally duration-specific: the actual quantities
measured are averages over a specific time interval
rather than instantaneous values. Thus concentra
tions of ozone are typically measured as parts per
100 million averaged over an hour, and wind
speeds are routinely recorded as hourly or daily
mean speeds. In practice however, the scientists
wishing to understand the environmental processes
which lie behind such measurements, and the reg
ulatory body which monitors pollution, often wish
to deal with characteristics measured over some
other time interval: peak concentrations over a day,
for example, or high wind gust values, which in
practice correspond to peak 3-5 s averages. There
is therefore a need to understand the relationship
between the statistics of environmental measure
ments averaged over different time scales, and to
relate these statistics to extreme levels of the vari
ables. In this paper, results on the asymptotic joint
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distributions of extreme averages over different
time periods will be treated. These results will
make it possible, for example, to link long historical
data series containing information about extremes
of daily rainfall (sometimes extending back to the
early years of the century) to the shorter series of
extreme hourly rainfall which have been recorded
only in the past 20 or 30 years. Thus important his
torical information could properly be taken ac
count of in the estimation of floods, something
recognised as higly desirable by hydrologists. An
other area of application of the results is in the
study of the dispersal of airborne pollutants. Here,
it is known (see, for example Fakrell and Robins
[9]) that instruments used to measure the concen
tration of pollutants dispersing in a turbulent flow
cannot resolve the finest scales present in such
flows. Measurements of concentration are there
fore invariably obtained only as averages of the
characteristics of primary physical interest, and so
a statistical theory which links extremes of averages
over different ranges would be of great value
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to scientists working in the area (Mole [10]). One
related area is the study of joint distributions of av
erages and maxima of random sequences. Interest
in such distributions is motivated by analysis of ex
treme winds. For purposes of building design or
public safety, it is often important to estimate the
speed of the most extreme wind likely to occur at a
particular location over a period of years and to do
this it is natural to apply the methods of extreme
value theory to data on maximum gusts. The preci
sion of estimates obtained may be low due to the
limited amount of relevant data-often no more
than 10 or 20 years, so it is desirable to try to im
prove the precision by introducing into the estima
tion procedure other information relevant to
extreme winds. It is natural, thefore, to ask whether
the data on gusts could be augmented by that on
hourly means, as gusts and means are evidently re
lated. One source of guidance here may be provided
by the limit properties of the joint distribution of
means and the maxima.

In Sec. 2, we give a summary of the results that
exist on the joint limiting forms of sums and maxima
of stationary sequences and in Sec. 3 we give some
results on the asymptotic joint distributions of
extreme averages over different time-periods of
sequences which have moving average representa
tions. Possible solutions for the general stationary
case are also indicated.

2. Extremes and Averages

Let {X} be a stationary sequence of random
variables with marginal distribution function
P(X ~x)=F(x) and let

"S" = L X, Mil = m~x)(,. ,n = 1,2, ...
l:Slsn

i=1

Then for the associated iid sequence (Chow and
Teugels [5])

or

where the limit components are independent.
Can dependence amongst Xi modify this limiting

independence? As the following theorem (Ander
son and Turkman [1]) shows, under quite weak con
ditions, dependence does not affect the limiting
distribution.

Theorem 2.1

Assume that {X} is strong mixing and has posi
tive extremal index and for some all, CII and dll ,

S• = SII ~d N(O 1)
II a ' ,

II

M- - (Mil -dll ) d G
II - ~,

CII

where G =A or G =ct>a, for some 0:>2 or G =qra,
for 0: > O. Assume further that {X} satisfies the con
dition

lim klimsup D'(all,u lI ) =0,
k....H~ n-HIO

where

IIlk

D'(an,un)= L =E [I exp (ita,; 1 LXI)
j=1 1=1

I"j

We study here the joint limiting distributions of -11 [X (Aj >UII )] (2)

as n~ 00 for suitable constants all > 0, CII > 0, bll and
d".

Case 1: Light Tailed Case

Assume that Var(X) < 00 and FED (A) or F E
D(ct>a), 0:>2 or F E D(qra), 0:>0, where A(.),
ct>a(.), qra(.) are respectively the Gumbel, Frechet
and Weibull distributions.
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Then S" and Mil are asymptotically independent.
Local dependence condition D'(all, ulI ) is quite

weak and satisfied, for example, 'by m-dependent
sequences and by Gaussian sequences with
summable covariances.

Case 2: Heavy Tailed Case

Assume that

1- F (x) =px -a L (x),

F( -x) =qx-a L(x)
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where L (x) is a slowly varying function and
0< a < 2. Then for the associated iid sequence
(Chow and Teugels [5])

(Sn, Mil) ~d (U, V),

where

Here X(A) denotes the indicator function of the
event A, Wa (t, p) is the characteristic function of a
stable law of index a and parameter p, and k is a
constant depending on a and p. Note that for the
heavy tailed case, U and V are dependent. Can the
type of local dependence of the X -sequence make a
difference to the Chow-Teugels limit? It can! If
large values are cancelled by large negative values,
then sums and maxima can be asymptotically inde
pendent. We show this by constructing an example:

Let {Y;} be a stationary sequence with

e < 1, Y 2= 1 and for v> 0 such that e+ v < 1, let

Let {E;} b~ an iid unit mean exponential se
]

quence, f j =.I E; and {3;} iid taking values + 1 and
-1 with pro'l)~bilities p and q respectively. Then

Theorem 2.2

(i) If 0 < a < 1, P > 0 and conditions D (all)'
D'(all ) of Davis [6] hold then

where D =min {j: 3j = 1}.

(ii) If 1:S;a < 2, P > 0 and conditions D (an),
D'(all ) and D"(all ) of Davis [6] hold then

(i {3j f j -lla - (p -q) E(rvlla(o,I»}, f vila).
]=1.

(iii) Under the conditions of (i) and (ii),

X.-{ Y;,-
-Y;-I

with probability Y;=i
with probability 1- Y;=i

Then it can be shown that {X} is stationary, 1
dependent and 1-Fx(x) =e(e +V)-I X-E, Fx( -x) =
X-E. Hence the limit distribution of (Sn, Mil) for the
associated iid sequence is the Chow-Teugels limit
with a=e and p =e(2e+v)-I. The components of
this limit are dependent. However, (Sn, Mil) of the
dependent {Xi} process can be shown to be asymp
totically independent due the cancellation of large
positive values by large negative values values, thus
showing that local dependence may make a differ
ence on the limit distribution. However, if we rule
out this type of cancellation, then the limit distribu
tion is not affected by the dependence in {X}, as
the following theorem demonstrates (Anderson and
Turkman [4]). One possible local condition which
rules out this type of cancellation is Davis' [6]
D'(an ) condition, which we assume in the theorem.
This restrictive technical condition also rules out
clustering of large and small values above and be
low certain thresholds. Types of processes which
satisfy this condition (and others which we need in

~he theorem) can he seen in Davis [6]. 565

where

and

2-a
3=p--

a '

and C is a positive constant. Note that the value of
the limit does not depend on the dependence struc
ture of {X}.

These results seem to be discouraging for statisti
cal applications. For example, for sequences with
finite variance, the independence of (u, V) does not
offer a basis for the use of average wind speeds in
inferences about gusts, contrary to the evidence
shown in data. This may be due to:

(i) Time intervals are not long enough in prac
tice for asymptotic results to give adequate approx
imations,
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(ii) The correlation structure of the data is not
well represented by our mixing and local depen
dence conditions,

(iii) Residual seasonality remains in the data.
Based on these possible deviations, statistical mod
els establishing connection between means and ex
treme events are suggested in Anderson and
Turkman [3].

3. Extremes of Averages Over Different
Time Scales

The specific problem to be adressed in this sec
tion is as follows: LetX represent the instantaneous
value of the environmental variable at time t, and
denote by XT,t a moving average of {X} over the
range T:

'"
L E(~'an-1Xk) (.) ,

k=1 n

where

E (A)= {I ~f xEA
x ° If not.

It is known that PII converges weakly as n~ 00 to
a point process P, a Poisson process with mean
measure p. on R + x (R + - {On. (Davis and Resnick
call this Poisson measure, the Poisson random mea
sure PRM(Il-) and consider a more general case
which involve the left tail of the distribution as
much as the right tail. Here due to the special sim
ple form of the moving averages, we restrict
ourselves to the space (0,00).)

Here

dp.=dtxax-a- I Ex(O,oo)dx.
1 T-I

XT,t = T LX-i.
i=O

(3) Hence

Then we are interested in the paired series {XT,t,
XS,t} for different fixed Sand T and in particular, in
the joint distributional properties of extremes of the
pair {XT,t, XS,t}.

We will give results only for sequences with the
heavy tailed distributions. The light tailed case is
more complicated, since in this case large values of
the moving averages may occur due to the contribu
tion of several relatively large values of the se
quence in contrast to the heavy tailed case when
large values of the moving averages are dominated
by the largest value of the sequence. The techniques
to be used to study these questions will be develop
ments of those used by Davis and Resnick [8].

Suppose that {X;};':I are iid random variables
with

P(x;>x)-x-a L(x),

where L (x) is slowly varying as x~ 00, that is XED
(cI>a). Take constants all such that

nP(X; >allx)~ x-a,

Consider a point process PII which puts points at

(~, an-I X k ), k =1,2, .... Hence PII is the random
n

point measure on sets in R + x R
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'"L E(~'an-l Xk)(') ~ L E(tkoh) (.),
k=1 " k=1

where {(tk,jk)} k: 1 are the points of P.

Davis and Resnick [8] show that, correspond
ingly, for {XT,i} with same normalization

'" '" T

L E(~'an-1XT.k) (.) ~ L L E(tkojKC;) (.)
k=1 k=1 i=1

{
I i=l 2, ... ,T.

c·= T '
I ° otherwise

and (tk, jk) are as above.
Results for the point process generated simulta

neously by {XT,i} and {XS,i} processes can be ob
tained with a straightforward generalization:

'" '" T

L E(~'a,,-lXT>koa,,-lXS,k) (.) ~ L L E(tk,jkCi,jkCi)(')
k=1 k=! ;=1

(4)
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_._ {-Sl i=1,2, ... ,S.
C, -

o otherwise

The joint limit distribution of MT,n and Ms. n now
can easily be calculated since

«0,1] x « - 00, x] x ( - 00, y DC) = 0)

(

"" T

~P L L E(tkoikCj,ikc;) «0,1] x « - 00, x] X
k=1 i=1

(-oo,y]y)=O)

=p(± E(tk,T-ljk,S-lik) «O,l]X«-oo,x]x
k=1

(- oo,yDC)=O)

=p(±E(tkoik) «0,1] x (Tx 1\ Ts, 00» =0)
j=1

= exp[ - J.L «0,1] x (Tx 1\ Sy, 00 »]

= exp[ - f"" q (x )dx]
TxASy

_ {exp [-p(Tx I\Sy)-«] if Tx 1\ Sy >0
- 0 if not

(5)

Special Cases

[1] S =T. Then

so from theorem 3.1 of Davis and Resnick [8], we
should have

Hence the result Eq. (5) is consistent with the
existing results on this special case.

[2] S =1< T, so Ms." =maXiS" X, and the result
Eq. (5) says that

P( -1M -1M ) -p (TxAy)-·a" T,,, S;x, a" S." s;y ~e .

Note that the above distribution is the joint limit
distribution of the maximum of the {X} process and
the maximum of a moving average of it.

The above set up is a very simple case. The imme
diate question is: what if the {X} are themselves a
dependent sequence?

We can get a partial answer by taking {X} to be
itself a moving average:

""
X = L ajZi-j,

j=1

say, where Zi satisfy the same conditions as the X
and aj ~O (for simplicity)

Thus

XT,i ={X} * {~},
and

X={Z} * {a}.

Hence

XT,i={Z}*{a}* {i}={Z}*{d},

say, where

d={a}*{i}·

Note that for any I = 1, 2, ... ,

1 TAI-1 .
d/ =7' L a/-i, l =1, 2, ...

i=1

As before

P(a,,-1 MT," S;x, a,,-1 Ms." s;y)

P(a - 1M <x a- 1M <y)=~e-p(T(xAY»-·
IJ T,n - ,n S,n - •
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«- oo,x] x (- oo,y]Y)=O), (6)
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where L L E(S,.p,J
1=1 i=l

Note that

"{L E(/k.ikdb ikdj) «0, 1] x « - 00 ,x] x (- oo,y DC) =O}=
;=1

{ik(d;,d;) E (-oo,X]X(-oo,y]),

for every i for which one of the components is non
zero. This is the case iffj kd + sx and j kd + s y, where
d + =max d; and d + =max d;. Hence the limit of Eq.
(6) is given by

p(f Eik(;+I\}+, 00)=0)
k=l

if (;+ 1\1+»0
otherwise

(7)

Hence we see that this kind of dependence in the
underlying process does not change the form of the
limit distribution. It would be interesting to obtain
similar results for general stationary sequences.
This could be done by using characterization of the
limit point processes for the sequence of point pro
cesses with points (tin ,a,,-l X" t =1,2, ... ,n) given
by Davis and Hsing [7] when {XI} is a stationary se
quence with regularly varying tails. In their paper,
Davis and Hsing show that when {XI} satisfies a
proper mixing condition then

II

Nil =L E(!.. a -1 X » (.)
n ' II ,

1=1

converges to a point process N of the form

N=L L E(s"p,Q,j),
1=1 i=l

where

568

is PRM(v) with

dv=dt x -yax- a
-

1dx, x >0,

(This is slightly weaker form of Davis-Hsing limit,
since we consider the convergence only on R + - {O}
not involving the left tail.) They also show that un
der the proper mixing condition, the convergence of
N" to N is equivalent to:

For rll~OO, r,.In~O as n~oo, and k" = [nlrll ],

lim k"P(max X;>a"x)=-yx- a
,

n----JoOO l:!ii;:E;'n

and

'II

P(L EXj/mOXI"j"'IIXj E./m.ax Xi >allx)
j=l l:e=J:E:rn

~Q(.)

Here Q(.) is the distribution of the iid point pro
cesses

From this basic result it may be possible to obtain
the limiting form of

N,: = }: E(l.. a -1 X a -I X ) (.) ,
n'" To"" $,11=1

where

and

1 S

XS,I =-s LX-i'
i=l
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One would expect that if the above sequence of
point processes converges, then the limit point pro
cess should be of the form

00 00 00

L L L €(S" c;P,Q,j, c!P,Q,j),
1=1 j=1 i=1

where

ages of random variables with regulary varying tail proba
bilities, Ann. Probab. 13, 179-195 (1985).

[9] J. E. Fakrell and A. G. Robins, Concentration fluctuations
and fluxes in plumes from point sources in a turbulent
boundary layer, L. Fluid Mech. 117, 1-26 (1982).

[10] N. Mole, A model of instrument smoothing and treshold
ing in measurements of turbulent dispersion, Atmos. Envi
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c/={~

i =1,2 ... ,T

otherwise

i =1,2 ..., S
otherwise
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Straightforward adjustment of Resnick's [11]
arguments which involve consecutive application of
the continuous mapping theorem is not possible,
since these arguments use the convergence of

which is clearly not satisfied by most sequences with
strong local dependence.
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News Briefs

General Developments
Inquiries about News Briefs, where no contact person
is identified, should be referred to the Managing Editor,
Journal of Research, National Institute of Standards
and Technology, Building 416, Room 119, Gaithers
burg, MD 20899-0001; telephone: 301/975-3572.

"ELECTRONIC EYE" IMPROVES ACCURACY
IN LIGHTING
A new device developed at NIST is giving the light
ing industry its most accurate measure of bright
ness ever. This "electronic eye" is twice as accurate
as the lighting standard it replaces, explains a NIST
physicist. NIST scientists are using the electronic
eye to maintain the candela, the international base
unit for measuring light. The electronic eye - a
photometer with a green filter (to measure bright
ness), a silicon photodiode (to direct current flow
as determined by illumination) and an electronic
circuit for signal processing - has an aperture that
works much the same way as the human iris. This
new candela standard will help the lighting indus
try meet new light bulb labeling requirements for
brightness, energy efficiency, and color rendering.
It also will help ensure proper illumination for
vehicle control displays. With the electronic eye,
NIST has shifted from a light source to a light
detector as a primary standard. Although manufac
turers can still purchase standard bulbs from NIST,
they now can send their own detectors to NIST for
on-site calibration. For more information on cali
brations, contact the NIST Radiometric Physics
Division, A221 Physics Building, Gaithersburg, MD
20899-0001, (301) 975-3216.

NAVY REVIEW POINTS WAY TO IMPROVED
CMM PRACTICES
Coordinate measuring machines are state-of-the-

~ art inspection tools for measuring the three-dimen-
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sional geometries of manufactured parts and as
semblies of parts. A NIST survey of how CMMs
are used in U.S. Navy manufacturing facilities
identifies 11 high-priority issues that are key to im
proving CMM applications and quality assurance
practices in the production of high-precision parts
for weapons systems. The review of 22 Navy in
house and contractor-run production facilities
found a significant portion of CMMs to be under
utilized or used improperly-a problem also re
ported in studies of other industries. An estimated
20 000 machines are found in factories and labora
tories worldwide. Areas warranting the Navy's
attention include: integration of CMM inspection
into design and manufacturing; calibrations and
interim tests of CMM performance; effects of
temperature, humidity and other environmental
influences on CMM measurements; measurement
methods for assuring the dimensional accuracy of
large parts and assemblies; increased measurement
throughput and flexibility; and improved under
standing of measurement uncertainty and error
budgets. The review by NIST researchers was
commissioned by the Navy's Manufacturing Tech
nology Program. Single copies of U.S. Navy Coor
dinate Measuring Machines: A Study of Needs
(NISTIR 5379) are available from David Stieren,
BIB Metrology Building, NIST, Gaithersburg,
MD 20899-0001; (301) 975-3197; fax: (301) 869
0822, e-mail: dstieren@enh.nist.gov (via Internet).

STANDARD TO FOCUS ON TURNING
CENTER PERFORMANCE
For prospective buyers of turning centers, deter
mining how one machine tool stacks up against
another can be as futile as comparing apples and
oranges. That's because there are no agreed-upon
methods for comparing the performance - espe
cially the accuracy and repeatability-of different
turning centers or, for that matter, periodically as
sessing the capabilities of machines already on the
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shop floor. A solution is in the offing. In an effort
partially supported by NIST, a committee of the
American Society of Mechanical Engineers (ASME)
has turned its attention to developing performance
evaluation standards for turning centers. The
emerging standard will build on a set of prescribed
procedures for testing machining-center perfor
mance developed by the same committee and
issued as an ASME standard in 1993. That stan
dard, adopted by a growing number of machine
tool users, incorporates many practical tests devel
oped or validated at NIST. NIST researchers are
now working with industrial collaborators to mod
ify existing testing methods and devices or develop
new ones tailored specifically to turning centers.
For more information, contact Denver Lovett (who
chairs the ASME Technical Committee on
Machining and Turning Centers), Room 142 Shops
Building, NIST, Gaithersburg, MD 20899-0001,
(301) 975-3503, e-mail: lov@micf.nist.gov (via In
ternet).

ACCREDITATION FOR CALIBRATION
LABS ANNOUNCED
The National Voluntary Laboratory Accreditation
Program at NIST now will accept applications from
calibration labs seeking accreditation to perform
calibration services based on compatibility with
international standards. The program will help
manufacturers, exporters, testing labs and others to
gain acceptance of U.S. calibration and test results
between countries to avoid barriers to trade.
NVLAP programs are operated in conformance
with ISO/IEC Guide 58: 1993 - Calibration and
Testing Laboratory Accreditation System-General
Requirements for Operation and Recognition.
Accreditation is available to commercial labs; man
ufacturer's in-house labs; university labs; and
federal, state and local government facilities.
Foreign-based labs also may be accredited if they
meet the same requirements as domestic labs and
pay any additional fees required for travel ex
penses. To obtain an application package or for
further information, contact James L. Cigler,
program manager, NVLAP, A162 TRF Building,
NIST, Gaithersburg, MD 20899-0001, (301) 975
4016, fax: (301) 926-2884.

1994 NVLAP PROGRAM DIRECTORY
AVAILABLE
Manufacturers and governments are requmng
laboratory accreditation as a key element in the
acceptance of products in domestic and interna-

tional markets. Recent revisions to procedures for
the National Voluntary Laboratory Accreditation
Program, administered by NIST, have made them
fully compatible with the international standards
(ISO/IEC Guides 58 and 25) used by other accredi
tation systems. The National Voluntary Laboratory
Accreditation Program 1994 Directory (NIST
Special Publication 810) lists more than 700
domestic and foreign laboratories that are accred
ited by NVLAP as of January 1994. The labs are
listed alphabetically, by field of testing and by
state. For a copy of SP 810 (1994 edition), send a
self-addressed mailing label to: NVLAP, A162
TRF Building, NIST, Gaithersburg, MD 20899,
(301) 975-4016, fax: (301) 926-2884.

EXAMINERS NEEDED FOR 1995
BALDRIGE AWARD
NIST is seeking applicants to serve on the 1995
board of examiners for the Malcolm Baldrige
National Quality Award. Applicants for the board
must be experts in quality management and capa
ble of evaluating large and small manufacturing
and service businesses. In addition, quality experts
from the health care and education communities
are needed to participate in a pilot program. NIST
currently is working to adapt the Baldrige criteria
and award program for these communities. Those
selected for the board must take part in a three-day
preparation course based on the award criteria and
examination process. In addition, examiners are
expected to spend 10 days or more reviewing appli
cations, preparing feedback reports to applicants
and, in some cases, participating in site visits. The
Board of Examiners currently has 260 quality
experts. Applications to serve on the 1995 board
will be available in September from the Malcolm
Baldrige National Quality Award Office, A537
Administration Building, NIST, Gaithersburg, MD
20899-0001, (301) 975-2036, fax: (301) 948-3716,
e-mail: oqp@micf.nist.gov (via Internet). Examiner
applications are due Nov. 1, 1994.

ATP PROJECT DEVELOPS WORLD'S
BRIGHTEST GREEN LED
A private company, working with the Department
of Physics at North Carolina State University
(NCSU), has announced the development of a new,
extremely bright, LED (light-emitting diode) with
peak wavelengths in the pure green region of the
spectrum. In work supported by the NIST Ad-
vanced Technology Progmm, the private company ~
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combined its technology for producing high-quality
crystals of pure zinc-selenide with novel fabrication
techniques developed at NCSU to build LEDs that
are estimated to be more than 50 times brighter
than commercial green LEDs. Moreover, the com
pany's LED, which is brightest around 510 nm, is
sjgnificantly more "green" than existing commer
cial diodes (at about 555 nm), which have a pro
nounced yellowish cast. The ATP project is aimed
at developing improved technologies for producing
blue and green light microsources-among the
hardest colors to achieve, but important for build
ing full-color displays and in optical data systems.
Researchers at the private company and NCSU
now are attacking the problem of device degrada
tion. With useful lifetimes of several hundred to
1000 h, the current LEDs are significant improve
ments on the state of the art but still degrade too
quickly for commercial use. The company also
hopes to modify the technology to produce true
greenlblue laser diodes.

WANT TO TRAP CESIUM ATOMS?
USE MICROWAVES
Physicists at the National Institute of Standards
and Technology and Harvard University have
demonstrated for the first time that a cloud of
atoms can be held at a temperature near absolute
zero with microwaves. This experiment, reported in
the May 16, 1994 Physical Review Letters, brings
scientists one step closer to observing an exotic
phase transition known as Bose-Einstein (or just
Bose) condensation. Bose condensation is related
to other macroscopic quantum phenomena such as
superfluidity and superconductivity. In theory, cer
tain atoms will condense into an unusual gas as the
temperature approaches absolute zero. In such an
ideal Bose condensed gas, a large number of atoms
would have essentially no velocity. The microwave
trap holds a small cloud of cesium atoms at a few
microkelvins above absolute zero ( - 273 0q. In the
experiments at NIST, scientists first used inter
secting laser beams to slow and cool the cesium
atoms in a vacuum chamber. Then the lasers were
shut off, and microwave radiation plus a magnetic
field held the atoms in place. Trapping atoms with
microwaves offers physicists an edge in their quest
to observe Bose condensation. The newly demon
strated trap has the advantage that unlike previous
traps, it can, in principle, hold atoms in their lowest
energy spin-state. This would increase the stability
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of the gas, making Bose condensation easier to
obtain. As a next step, the researchers plan to test
the microwave trap on hydrogen atoms at Harvard.

UNITED STATES HARMONIZES STANDARDS
WITH UKRAINE
To enhance trade between the United States and
Ukraine, NIST and the State Committee of
Ukraine for Standardization, Metrology, and Certi
fication (known as DERJSTANDART) have
signed a memorandum of understanding on scien
tific and technical cooperation to remove nontariff
trade barriers between the two countries. The
MOU was completed on May 28, 1994, at the first
informal meeting of the U.S./Ukraine Standards
Working Group in Kiev. It recognizes the growing
importance of the harmonization of standards and
conformity assessment measures to improve inter
national trade. For information, contact the Office
of Standards Services, A603 Administration Build
ing, NIST, Gaithersburg, MD 20899-0001, (301)
975-4000, fax: (301) 963-2871.

NElWORK FOR NEW YORK
MANUFACTURERS EXPANDED
U.S. Commerce Secretary Ronald H. Brown
announced a cooperative agreement with the state
of New York on June 17, 1994, that officially
launched the New York Manufacturing Extension
Partnership. Headquartered at the Rensselaer
Technology Park in Troy, NY, the New York MEP
is the result of four recent awards from the Tech
nology Reinvestment Project (TRP), the federal
government's program to provide funds for dual
use (military and civilian) technology development,
deployment and utilization. The TRP awards to
New York State were used to expand the extension
services provided by the former Northeast Manu
facturing Technology Center, one of seven original
MTCs established by NIST. Specifically, the expan-

. sion includes the operation of four regional New
York MEP centers in New York City, Fishkill,
Endicott and Amherst. The New York MEP, oper
ated by the New York State Science and Tech
nology Foundation, is affiliated with NIST's Manu
facturing Extension Partnership. It is one of 28
extension programs funded through the TRP,
bringing the current number of centers in the
national MEP to 35. For more information on the
New York MEP, contact Jeanne Selmer, New York
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MEP, 385 Jordan Rd., Troy, NY 12180-8347, (518)
283-1010, e-mail: jeanne_selmer@mailgate.nemtc.
itn.org (via Internet).

PAPER DETAILS CALIBRATION SYSTEM FOR
POWER METERS
Using tunable laser diodes, NIST has developed a
new method to calibrate optical power meters, the
most common type of test equipment used in the
optical fiber industry. This system is in addition to
the existing one which NIST has used for years to
calibrate optical power meters at fixed wavelengths
using both collimated beam and fiber/connector
configurations. To minimize measurement errors
associated with the source wavelength and detector
spectral responsitivity, NIST has installed tunable
laser sources in the measurement system. With this
system, optical power meters can be calibrated
both at a particular source wavelength or over
the range of wavelengths of the tunable laser
diode. For a paper explaining the new system in
detail, contact Sarabeth Moynihan, Div. 104, NIST,
Boulder, CO 80303-3328, (303) 497-7765, e-mail:
moynihan@bldrdoc.gov (via Internet).

NIST REPORTS ON METRIC, THE FEDS
AND INDUSTRY
Most U.S. firms that do business abroad are
predominantly metric because of global sourcing of
parts, service, components, and production. A
new report from NIST, A Metric for Success
(NISTIR 5425), states, "The metric system cannot
be avoided in international trade and commerce. It
will be interesting to see how long the United
States can hold out against the worldwide use of
the International System of Units (known as SI),
the modern metric system. What is even more
curious is why would the world's leading industrial
nation want to resist using a world standard?" The
report discusses the worldwide metric momentum,
inefficiencies and benefits, and emphasizes that
"metric equals standardization." Also discussed is
the role of the Commerce Department and NIST
in the national transition to the metric system. A
chronology of metric in U.S. history is included for
reference. Copies of NISTIR 5425 are available
from the Metric Program, A146 TRF Building,
NIST, Gaithersburg, MD 20899-0001, (301) 975
3690, fax: (301) 948-1416.
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ADVANCES IN FIBER OPTIC SENSORS
FEATURED IN PAPER
Fiber optic sensors often have been used for mea
suring magnetic fields and electric current. These
polarimetric sensors incorporate the Faraday effect
whereby the plane of polarization of a light beam is
rotated by a magnetic field. A recent paper high
lights NIST research on the use of diamagnetic
glasses and iron garnets as sensor materials. One
part describes how the Faraday effect in glass
(silica) can be used to make inexpensive current
sensors from optical fiber. The sensor is formed
by looping a single-mode optical fiber around a
conductor. Current sensors using this fiber are
approaching commercial availability for use in the
electric power industry. The paper also describes
NIST research using iron garnets, a class of ferro
magnetic materials, for high-sensitivity magnetic
field and electric current sensors. NIST has devel
oped two current sensors employing iron garnets,
and it expects additional materials research will
result in iron garnet compositions specifically
tailored for magneto-optic sensing applications.
For a copy of technical paper 29-94, contact
Sarabeth Moynihan, Div. 104, NIST, Boulder, CO
80303-3328, (303) 497-7765, e-mail: moynihan@
bldrdoc.gov (via Internet).

BALDRIGE AWARD PROGRAM TRAINS
PILOT HEALTHCARE AND EDUCATION
EVALUATORS
The Malcolm Baldrige National Quality Award
Program has just completed the training of its initial
44 pilot evaluators for education and healthcare.
These pilot evaluators were trained using case study
material developed for the 1994 Baldrige Award
Board of Examiners and using case item material
developed specifically for healthcare and educa
tional institutions. Pilot evaluators will use the
lessons they learned during training to assess
healthcare and educational institution case studies.
These case studies, together with evaluation notes
and a sample feedback report (such as a Baldrige
applicant would receive) will be made available to
the public in the fall of 1994. It is hoped that the
case study material will both educate healthcare
and education institutions on use of the Baldrige
Criteria in quality management assessment of their
institutions, and also provide a learning opportu
nity by disseminating some current leading prac
tices through the content of the case studies.
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In 1995, full-scale pilot efforts are planned in
healthcare and education. Organizations will be
invited to submit applications; the applications will
receive full review, with feedback to the applicants
on their strengths and areas for improvement.
Since this will be a learning activity for both the
Baldrige Program and applicant organizations, no
awards will be presented in the 1995 cycle. Subse
quent to the pilot effort, a decision will be made on
next steps for implementation of new award cate
gories in healthcare and education.

NVLAP PROCEDURES
The Federal Register, Vol. 59, No. 84 of Tuesday,
May 3, 1994, announced the final rule making
changes to regulations pertaining to the operation
of the National Voluntary Laboratory Accredita
tion Program (NVLAP). The NVLAP procedures
are redesignated as Part 285 of Title 15 of the
Code of Federal Regulations.

These procedures have been expanded to in
clude accreditation of calibration laboratories;
updated to achieve compatibility with conformance
assurance and assessment concepts; modified to
ensure consistency with relevant International
Organization for Standardization documents; and
revised to facilitate and promote acceptance of
calibration and test results between countries to
avoid barriers to trade.

The revised procedures will foster cooperation
among laboratories and with other bodies, and
establish the basis for bilateral and multilateral
agreements.

NEW DIGITAL BRIDGE TO PROVIDE
NIST CUSTOMERS IMPROVED
IMPEDANCE SERVICES
NIST scientists have designed, developed, and fab
ricated a digital impedance bridge that will permit
NIST to offer improved impedance services in
response to customers' needs when it is put on line
later this year. Commercial impedance bridges are
used to make critical, practical measurements of
component parameters; electronic circuits provid
ing advanced performance, together with reduced
size of components, make these measurements
more difficult and more critical. Standards that will
be calibrated by the new digital impedance bridge
will in turn be used to calibrate commercial bridges
and their ancillary equipment. Until the new bridge
is in service, NIST is forced to rely on a venerable
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Maxwell-Wien bridge as the basis for its low
frequency impedance services. The new bridge
measures two- or three-terminal impedances with
precisions of 200 to 2000 X 10-6 depending on the
measurement frequency in the range 20 kHz to
100 kHz, the magnitude of the impedance, and the
nature of the transfer standard. The automated
character of the bridge makes it highly flexible, and
many more data points can be taken than were
practical before.

The result is that customers will be able to get a
comprehensive analysis of the performance of the
transfer standards they submit, including informa
tion on drift and on frequency dependence. Other
advantages of the digital bridge are that it offers
more flexible scaling through its sampling system
and it can be calibrated with "unlike" standards,
i.e., calibration of a capacitive transfer standard
at a given frequency does not require use of a
standard capacitor but could use a standard resis
tor at that frequency. NIST scientists also have
developed a special probe intended for calibrating
inductors. The probe consists of a number of pro
grammable ac resistors, each of which can be
switch-selected so as to be within a few centimeters
of the terminals of a standard inductor to minimize
the effect of parasitic impedances. The inductor is
compared to the appropriate probe resistor by
equalizing the currents through both, using the
bridge and its control software. The voltage across
the inductor and the probe resistor is then digitized
and the data are processed using a four-parameter
sine fit to determine the phase and amplitude of
each signal.

NIST HELPS MANUFACTURER INVESTIGATE
TACKY SPOTS FOUND ON PARKING
AREAS OF HARD DISKS
In a recent collaboration with a major U.S. manu
facturer of computer disk drives, a NIST scientist
applied a method known as lateral force mi
croscopy to help the company investigate the pres
ence of micrometer-sized sticky or tacky features
on the 'surface of a hard disk. The possibility of
these features occurring on any part of the surface
of a disk where the read/write heads can be posi
tioned interferes with the design goal of reducing
head flying height, an essential requirement as the
areal bit storage density increases in advanced
magnetic media. Flying heights already are well
below 100 nm. The features are micrometers in'
extent and 20 nm to 30 nm high, comparable to the
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disk peak surface roughness of about 20 nm and
therefore difficult to image by such common meth
ods as optical or electron-beam microscopy. To the
naked eye, the features appear as a dull ring coin
ciding with the area where the heads are parked.

The scientist's work shows that morphology and
friction can be correlated using lateral force
microscopy to identify sources of increased friction.
The lateral force microscope is a derivative of the
atomic force microscope, which can achieve atomic
resolution. In the atomic force microscope, a small
cantilever having an integral tip is scanned over the
surface of a specimen, and deflections up and
down are plotted to provide a topographic map.
Servoing arrangements maintain the force between
tip and specimen surface nearly constant. In lateral
force microscopy, the tip is scanned over the speci
men perpendicular to the long axis of the
cantilever. When a variation of friction between
the tip and specimen surface is encountered, the
cantilever twists slightly. It is this twisting that is
plotted as a function of tip position. Collaboration
is continuing with the disk drive manufacturer
regarding the source and chemical composition of
the sticky features.

OPERATION OF SNS JUNCTION FOR
VOLTAGE STANDARD DEMONSTRATED
AT38K
NIST scientists recently carried out 'an experiment
that serves as a proof-of-principle demonstration
for the operation of superconductor-normal-super
conductor junctions for voltage standards at ele
vated temperatures, near 40 K. This temperature
can be reached with closed-cycle refrigeration
systems and does not require liquid helium as a
cryogen. Although potentially offering uncertain
ties of parts in 1010, Josephson-Junction voltage
array standards have found limited acceptance in
industry even where their capabilities would be
advantageous because they require liquid helium
for cooling to near 4 K. As an original inventor and
developer of the array standards, NIST is investi
gating approaches that would increase their utility.

As part of this work, the division team fabricated
a single yttrium/barium/copper oxide step-edge
junction with a gold barrier and illuminated it with
62 GHz electromagnetic radiation. When they
measured the current-voltage characteristic, they
found the amplitude of the first quantized voltage
step to be 1 mA at 38 K, a value large enough to
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show that the junction could operate at elevated
temperatures without being limited by thermal
noise. The results of this experiment were not con
sistent with predictions of the commonly used
resistively shunted junction model, and a NIST
scientist formulated a new long-junction model
that provided a better understanding of the results.
The theoretical understanding coupled with the
empirical results offer optimism that the proposed
rapidly programmable array can be implemented.
The next experiment will be to demonstrate opera
tion of a junction over a ground plane; following
that, methods for reliably fabricating literally tens
of thousands of nearly uniform junctions will need
to be developed (not necessarily at NIST) to result
in a practical device. The work is described in a
submission to Applied Physics Letters.

CRADA ESTABLISHED WITH PRIVATE
COMPANY TO EVALUATE NEW
CALIBRATION TECHNIQUE AND
THERMAL TRANSFER INSTRUMENT
NIST scientists are working with a private company
to evaluate the high-voltage (100 V to 1000 V) per
formance of a new automated thermal transfer in
strument, Model TRS-104, and to verify the
innovative step-up techniques recommended by the
manufacturer for characterization at those
voltages. A cooperative research and development
agreement (CRADA) has been established for
these purposes.

The project will involve the exchange of well
characterized thermal converters to be used by the
private company to study the performance of the
new instrument and the impact of the new step-up
technique. Although the philosophy underlying the
step-up technique is well established, the com
pany's staff believes that its new method will
permit customers to minimize the number of cali
bration points required to calibrate the instrument.
The CRADA will enable the company to deter
mine if such an approach is feasible. In the course
of this project, NIST staff will re-examine the tech
niques used to calibrate NIST working standards
used for ac-dc difference measurements at high
voltages; reassess the performance of the NIST
high-voltage range resistors; and perform extended
measurements on the company instruments. This
effort is expected to yield improvements in NIST
services as well as a means of verification for the
new instrumentation.
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This is the fourth CRADA undertaken by NIST
in the past 5 years to evaluate the performance of
state-of-the-art instrumentation in this critical
measurement area. Such agreements familiarize
NIST staff with the characteristics of instruments
and standards soon to be on the market and help
industry market superior products.

NIl CHALLENGES ADDRESSED
IN WORKSHOP
NIST recently co-sponsored a Workshop on Ad-
vanced Digital Video in the National Information
Infrastructure (Nil). The wide range of applica
tions that are proposed for Nil - including market·
ing, manufacturing, medicine, education, and
entertainment-impose varying and complex de··
mands on the Nil, including capabilities and fiexi
bilities that are not available in existing computer
or television systems, and are exciting intense inter
est in how the Nil develops. In response, the orga
nizers of the workshop provided a forum for
defining a vision of the role of digital video within
the Nil, identifying the architectural, scaling, and
performance issues in realizing this vision, and
recommending the research, experiments, and
steps to be taken to resolve these issues. Experts in
information services, broadcasting, computing, con
sumer electronics, and government policy broke up
into groups to focus on architectural consider
ations, modular decomposition, interoperability,
display performance, image capture and display
requirements, and digital delivery service.

A full report of the workshop is being prepared
for publication. A feature of the workshop was a
demonstration of the proponent high··definition
television systems that were incorporated into the
Grand Alliance proposal to the Federal Communi
cations Commission for adoption as a broadcast
standard in the United States.

PROJECT FOR IMPROVING PISTON
TURNING MACHINES COMPLETED
WITH SUCCESS
A collaborative project to improve piston turning
machines for the automotive industry has been
conducted for the past 13 months at NIST with
industrial participants from automobile manu
facturers, a machine tool builder, and the National
Center for Manufacturing Sciences. NIST re
searchers characterized one of the new-generation
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piston turning machines loaned from the machine
buildei', modeled its thermal behavior, and gener
ated software to predict the behavior during the
actual cutting operation.

At the end of the development phase, NIST
researchers carried out several days of testing on
the shop floor, cutting aluminum piston billets over
6 h periods. In an attempt to simulate actual
production conditions, certain environmental
conditioi1s were varied and production stoppages
corresponding to plant coffee breaks and lunch
hours were incorporated into test periods. Results
showed up to five times improvement in the accu
racies of the billets machined with NIST thermal
compensation technology as compared with those
machined without it.

NEW, FOWERFTJL THEORY FOR
ELECTRON"IMPACT IONIZATION
CROSS SECTIONS
In collaboration with the University of Nebraska
Lincoln, a NIST scientist has developed a new,
powerful theory that predicts electron-impact
ionization cross sections, needed for modeling and
understanding the interaction of electron beams
with gases, liquids, and solids. This new theory is
expected to provide sorely needed ionization cross
sections for applications in plasma processing, radi
ation damage monitoring, fusion device design, and
in basic atomic and molecular physics.

The theory, using readily available atomic and
molecular data, produces cross sections that agree
with known experimental results within 5% to 10%
from threshold to severai keY in incident energy.
The theory has been verified successfully for light
atoms, ions, neon, and hydrogen and water
molecules. The theory is being applied to angular
distributions of ejected electrons and proton
impact ionization cross sections. Preliminary re
sults on angular distributions are very promising
too. When utmost accuracy is not required, ioniza
tion cross sections based on a 'simpler version of
this new theory can be calculated using a PC
program such as LOTUS-123.

lABORATORY SPECTRA OF A
STRATOSPHERIC CHLORINE
RESERVOIR MOLECULE OBTAINED
The chlorine nitrate (CION02) molecule serves an
important role ii1 the stratospheric chlorine cycle.
It is formed in darkness by the reaction of chlorine
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monoxide with nitrogen dioxide, and the chlorine
removed by this reaction is thus prevented from
reaction with the stratospheric ozone. During day
light hours, however, it is photolyzed back to its
original components. It is sometimes referred to as
a chlorine reservoir. The concentration of strato
spheric chlorine nitrate is monitored using infrared
spectrometers usually carried on balloon or aircraft
flights.

Previous laboratory studies of chlorine nitrate
were unable to resolve the rotational fine structure
of the infrared bands, which is obscured by several
very low frequency vibrational states. In order to
model the temperature dependence (and, there
fore, shape) of the observed stratospheric chlorine
nitrate infrared bands, it is necessary to know the
energy levels and transition probabilities of each
band used for concentration monitoring.

In collaboration with a private company, NIST
scientists have obtained completely resolved
spectra of ClN03 using a newly constructed pulsed
nozzle molecular beam apparatus coupled with a
diode laser spectrometer. The resulting cooling
obtained as the molecular beam passes into a
vacuum greatly simplifies the spectrum by remov
ing the lines originating in vibrational states. The
ClN03 band centered at 1292.5 cm- I

, one of the IR
bands used for remote sensing, has been com
pletely resolved at a beam temperature of 25 K and
with spectral resolution of 0.001 cm-lor better.
With this molecular information, models are being
developed to predict the spectrum of this band at
stratospheric temperatures in order to improve the
monitoring accuracy.

NIST COMMISSIONS MEDICAL AND
INDUSTRIAL RADIATION FACILIlY
NIST has installed an electron accelerator as the
heart of a new user facility for the medical and
industrial radiation communities. The Medical &
Industrial Radiation Facility (MIRF) is based on
an rf-powered, traveling-wave electron linac (linear
accelerator) donated by the Radiation Therapy
Center of Yale University-New Haven Hospital.
The accelerator provides electron energies from
7 MeV to 32 MeV at an average beam current of
up to 0.1 rnA.

Medical linacs are used for treating 500 000 can
cer patients annually in 1300 treatment facilities in
the United States. The medical dosimetry applica-
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tions of the MIRF relate to development and test
ing of instruments and dosimetry systems for use in
the clinical facilities. The MIRF also offers unique
opportunities for industrial research and a number
of companies and consortia have expressed inter
est. Other accelerator applications currently under
investigation include electron-beam treatment of
waste water (University of Maryland), curing of
polymer composites (Oak Ridge National Labora
tory), radiation effects on electronics (University of
Maryland), and use of the accelerator for pro
duction of channeling radiation and coherent
bremsstrahlung (Catholic University and George
Washington University).

IMPROVED TIME SCALE RELIABILIlY
NIST scientists have substantially enhanced the
reliability of the NIST time scale through develop
ment of completely redundant clock measurement
systems. Two identical measurement systems,
controlled by independent PCs, observe the same
physical clocks and both run independent copies of
the AT1 time scale. Both drive independent micro
steppers to provide redundant physical realizations
of UTC (NIST) in real time. One system is used as
the official output, but the other can be switched
into service should there be any failure of the
primary system. The dual systems also are being
used to study the performance of the AT1 al
gorithm in general and especially its robustness in
the presence of measurement noise.

This work provides the basis for operational
changes in the division's long-range plan. First,
these systems will facilitate replacing all of the
large computers with arrays of relatively cheap
PCs. In addition to reducing maintenance costs,
such a network (combined with GPS receivers)
could facilitate widespread sharing of data and net
work-based dissemination of UTC (NIST) at very
high accuracy. The development of dual measure
ment systems also provides the basis for moving the
time scale when building and remodeling begins on
the site. The longer term objective is to separate
(at geographically different locations on the site)
two groups of clocks with their independent
measurement systems. These two clock systems
would be interconnected, but the physical separa
tion would guard against time-scale disruption by a
catastrophe such as a major fire.
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MECHANISM OF MATERIAL REMOVAL
IN MACHINING OF CERAMICS
Grinding with diamond wheels is the most preva
lent method of machining of advanced ceramics. In
this machining method, material is removed by the
individual diamond particles producing a series of
parallel grooves on the machined surface. Existing
models are based on the assumption that material
removal occurs by the formation and propagation
of cracks below the surface of each groove. These
models have been developed for amorphous mate
rials and, therefore, are not suitable for polycrys
talline ceramics.

Recent research results at NIST obtained as part
of the Ceramic Machining Consortium have shown
that material removal in polycrystalline ceramics,
e.g., aluminum oxide, occurs by three processes:
(1) microfracture and chipping within grains;
(2) intergranular fracture and grain dislodgement;
and (3) removal of large segments by formation
and propagation of subsurface cracks. The influ
ence of each process depends on the load applied
to the diamond particle and the microstructure of
the ceramic. The researchers have found that the
present models describing the material removal
process as propagation of subsurface cracks are
adequate for machining of fine-grained ceramics
under large loads, but, under normal grinding
conditions, the other microfracture processes
provide a more accurate description of the removal
process. These results provide new insights into the
basic mechanisms of material removal and the
specific role of ceramic microstructure, as well as
the design of ceramics with improved machinabil
ity, thereby reducing the cost of machining.

MOLECULAR DYNAMICS OF ALTERNATIVE
REFRIGERANTS
The importance of the development of alternative
refrigerants to CFCs (chlorofluorocarbons) is high
lighted by the looming Jan. 1, 1996 ban on CFC
productions. For compressors in home refrigera
tors and auto air-conditioning systems, the chosen
replacement is the hydrofluorocarbon (HFC) 134a
(F3C-CFHz). Although an enormous effort has
been given to the development of the HFCs, there
is still much to be learned of the properties, chem
istry, and interactions of these molecules.

A recent collaborative research effort has been
initiated between scientists at NIST, and a private
company, to investigate by neutron-scattering tech
niques the bonding state and molecular dynamics

~ of HFC 134a and its isome< HFC 134 (HF,C-
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CFzH), encaged in the cavities of zeolite molecular
sieves. Several neutron-scattering techniques are
being combined with complimentary methods, such
as infrared, Raman, and NMR, to obtain a better
understanding of the guest-host interactions, bond
ing geometry and reorientational dynamics of the
adsorbed HFCs 134 and 134a. The insight gained
from this collaborative research effort is directed
toward the development of improved methods for
the separation and storage of the molecular
isomers 134a and 134, both of which are formed
during industrial production of 134a.

SECRETARY OF COMMERCE APPROVES
DIGITAL SIGNATURE STANDARD AS
FEDERAL INFORMATION PROCESSING
STANDARD (FIPS)
The Federal Register of May 19 announced that
the Secretary of Commerce has approved the
Digital Signature Standard (DSS) as FIPS 186. To
be effective in 6 months, the DSS provides the
capability to generate digital signatures that cannot
be forged. This capability is needed by federal
government agencies to carry out their responsibili
ties for electronic exchanges and to improve
government operations through the use of informa
tion technology.

NIST AND THE U.S. NUCLEAR REGULATORY
AGENCY (NRC) COLLABORATE ON
NUCLEAR SAFETY
NIST Special Publication 500-216, Proceedings of
the Digital Systems Reliability and Nuclear Safety
Workshop, presents the results of a workshop held
September 13-14, 1993, in Rockville, MD. The
NRC, in cooperation with NIST, conducted the
workshop to provide a forum for the exchange of
information among experts within the nuclear
industry and experts from other industries, regula
tors, and academia. Topics covered a broad range
of safety issues such as areas where current soft
ware engineering practices may be inadequate for
safety-critical systems, methods for reducing risk in
such systems, and research directions in the use of
digital systems in nuclear power plants.

NEW PUBLICATION PRESENTS
PROCEEDINGS OF TEXT RETRIEVAL
CONFERENCE
NIST Special Publication 500-215, The Second
Text REtrieval Conference (TREC-2), constitutes
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the proceedings of this symposium held at NIST
August 31-September 2, 1993. Co-sponsored by
NIST and the Advanced Research Projects
Agency, the conference was the second in an ongo
ing series of workshops to evaluate new technolo
gies in text retrieval. The event was attended by
150 people involved in the 31 participating groups
composed of industry, academia, and government
researchers.

The goal of the conference was to bring together
research groups to discuss their retrieval results
using a large test collection. Attendees reported on
a wide variety of retrieval techniques, including
methods using automatic thesauri, sophisticated
term weighting, natural language techniques, rele
vance feedback, and advanced pattern matching.
As results had been analyzed with a common eval
uation package, groups compared the effectiveness
of different techniques and discussed how differ
ences between the systems affected performance.

DISTRIBUTED SUPERCOMPUTING
SOFTWARE SUBJECT OF NEW REPORT
NISTIR 5381, Distributed Supercomputing Soft
ware: Experiences with the Parallel Virtual
Machine - PVM, focuses on defining the profile
requirements culminating from NIST's assessment
of the Parallel Virtual Machine (PVM). Developed
by researchers at the Oak Ridge National Labora
tory and Emory University, PVM is a distributed
system consisting of a portable suite of software
designed for use by parallel and supercomputing
application engineers. NIST researchers are study
ing PVM to assist them in defining the system
service requirements needed to support parallel
programming and supercomputing activities in the
general-purpose distributed setting.

FIRST CUSTOMER USES NEW
CALIBRATION SERVICE
A step-gage calibration done for a private company
inaugurated a pilot measurement program offered
by NIST at the Y-12 facility at the Department of
Energy Oak Ridge Centers for Manufacturing
Technology. The calibration was performed on
Y-12's M-60 large-volume, high-accuracy coordi
nate measuring machine. The new service lever
ages NIST's measurement expertise and Y-12's
specialized equipment, enabling the two organiza
tions to respond to a previously unmet measure
ment need voiced by automobile, aircraft and
heavy-equipment manufacturers. Under the ar
rangement, NIST metrologists supervise calibra
tions of end standards and step gauges up to 1.35 m

long, and issue a calibration report. Manufacturers
use these standards to verify the accuracy of their
own measurement machines. Previously, U.S. com
panies were forced to obtain such services from
foreign measurement laboratories. In terms of
accuracy, cost and turnaround time, the new
domestic calibration service tops the performance
of the best foreign supplier, which has been bench
marked by NIST. For more information, contact
David Stieren, BIB Metrology Building, NIST,
Gaithersburg, MD .20899-0001, (301) 975-3197,
e-mail: dstieren@enh.nist.gov (via Internet).

NEW THERMOCOUPLE CAN "TAKE
THE HEAT"
A NIST researcher has invented a class of materi
als for thin-film thermocouples that allows
measurement of temperature changes up to
1200 °C in microsecond increments. Made with
molybdenum silicide or titanium silicide, the NIST
thermocouples can measure temperature changes
in hostile environments such as inside diesel or jet
engines. Widely used fine-wire thermocouples have
much slower response rates (tenths of seconds).
More advanced thin-film platinum/rhodium
thermocouples have microsecond response rates
but deteriorate at 700°C to 900 °C. The patented
NIST materials are made with a thin, outer layer of
heat-resistant silicon dioxide that protects an elec
trically conducting molybdenum or titanium silicide
layer and a pure silicon layer underneath. Temper
ature changes cause proportional changes in
voltage in the silicide layer. For more information,
contact Kenneth Kreider, A303 Physics Building,
NIST, Gaithersburg, MD 20899-0001, (301) 975
2619, e-mail: kkreid@enh.nist.gov (via Internet).

MOTIONLESS REFRIGERATOR LIQUEFIES
NATURAL GAS
A new cooperative research and development
agreement between NIST and a private company
aims to apply refrigeration technology developed
by NIST and Los Alamos National Laboratory to
the task of liquefying natural gas. NIST and LANL
scientists invented the thermoacoustically driven
orifice pulse tube refrigerator (or TADOPTR),
which has no moving parts, contains tubes of
helium gas and is capable of producing a tempera
ture of 112 K. The helium gas is repeatedly
compressed and expanded with sound waves rather
than with a mechanical compressor as in most
conventional cooling systems. The company has
obtained the development license as well as the
exclusive license to the patents through LANL. ~
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The NIST and LANL scientists will assist the com
pany in upscaling the TADOPTR into two versions
that will be manufactured, tested and marketed by
the company. The first will liquefy 1900 L of natu
ral gas per day, while the second will increase that
output to 38 000 Lid. The cost ofTADOPTR lique
faction plants will be very economical, with lique
faction taking place on-site and eliminating trans
portation costs. This means TADOPTRs may help
in areas removed from natural gas pipelines and in
the production of natural gas to fuel the "clean
car" vehicles of the future. For more information,
contact Ray Radebaugh at Div. 836.02, NIST,
Boulder, CO 80303-3323, (303) 497-3710.

CONSORTIUM SEEKS MORE
PREDICTABLE PAINTS
Private companies and the Federal Highway
Administration have joined NIST in a cooperative
research and development consortium to help get
new, highly predictable paint products more quickly
to market. Because of health and environmental
concerns, the chemical makeup and manufacturing
processes for making paints have changed tremen
dously over the past decade. Unlike older paints,
new formulas do not have a well-established history
of performance. Also, reliable methods of predict
ing performance have not kept pace with the
changes. As a result, potential problems with
painted products could cost manufacturers millions
of dollars to repair. The consortium's goal is to find
a better way to predict the service life of paint. It is
expected to last 3 years. For further information
contact Jonathan Martin, B348 Building Research
Building, NIST, Gaithersburg, MD 20899-0001,
(301) 975-6717.

NIST, CHILE TO COLLABORATE ON
ANALYTICAL METHODS
Chilean and American scientists are collaborating
to improve techniques for analyzing environmental
samples and advanced materials. A new interna
tional agreement between NIST and Chile's Com
mission of Nuclear Energy will expand the
analytical capabilities of both institutes. An early
goal of the joint program is to develop and apply
two neutron beam analytical methods. Scientists at
NIST will help the Chileans develop instruments
for neutron depth profiling and prompt gamma
neutron activation analysis. These techniques offer
advantages over other methods in that they do not

... destroy samples. Chilean scientists will provide
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NIST with advanced materials samples, such as
lithium-based superconductors and ceramics, for
analysis and comparison of results. Following the
nuclear methods work, the collaboration could be
extended to other analytical methods, such as
electrochemistry and mass spectrometry.

VIRTUAL REALITY TESTBED UNDER WAY
Virtual reality allows a user to interact with a simu
lated environment as though it were real. Among its
many applications is the ability to realistically prac
tice jobs that are too dangerous, too expensive or
impossible to carry out for real. Private companies
are using virtual reality techniques to help factory
workers fabricate complex wiring assemblies, to test
visibility from construction equipment before it is
built or to study improved methods of automobile
assembly. To enhance the usability and further the
development of virtual reality technology, NIST has
established an Open Virtual Reality Testbed. The
testbed, which includes prototype virtual reality
systems, was set up to encourage the development
of standard interfaces so that component virtual
reality systems from different vendors are interop
erable. A description and sample demonstration of
testbed activities is available online through the
World Wide Web at http://nemo.ncsl.nist.gov/-sressler/
OVRThome.html. For more information, contact
Sandy Ressler, B266 Technology Building, NIST,
Gaithersburg, MD 20899-0001, (301) 975-3549,
e-mail: sressler@oops.ncsl.nist.gov (via Internet).

"FARSIGHTED" DETECTOR SEES
MORE INFRARED
Night vision goggles that detect infrared radiation
are a common feature in spy thrillers. But seeing
in the far infrared (longer wavelength infrared
radiation) has proved more difficult. Now NIST
researchers have developed a detector sensitive
enough to do the job. The detector consists of an
antenna and strip of superconducting material built
into an integrated circuit. The ~ircuit is cooled to
90 K, the material's superconducting transition
temperature. Even tiny amounts of far infrared
radiation collected by the antenna heat the super
conductor near its transition point causing relatively
large changes in electrical resistance. The device is
twice as sensitive and responds 1000 times faster
than other nitrogen-cooled thermal detectors.
Arrays of the new detectors could be useful for
atmospheric studies. For more information, contact
Joseph Rice at B208 Physics Building, NIST,
Gaithersburg, MD 20899-0001, (301) 975-2133.
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JOINT OPTOELECTRONICS AGREEMENT
NOW IN PLACE
The United States and Japan have agreed on the
last critical step before realization of a joint pro
gram to further the design and development of the
advanced computing technologies integrating opti
cal and electronic components. The agreement was
reached at a recent meeting between two Japanese
organizations, the Ministry of International Trade
and Industry and the Real World Computing Part
nership, and five U.S. agencies. It establishes the
process for funding a "broker" through which the
Joint Optoelectronics Project will be carried out in
the United States. The broker is a service that links
designers of advanced computer systems depen
dent on optoelectronic devices and modules with
suppliers of such components in research and
development divisions of companies in both coun
tries. Each country will have its own broker, but
suppliers in both nations will be available to
Japanese and American designers. According to
the agreement, NIST will oversee the selection of
the broker in the United States. The two brokers
will cooperate to bring together designers of in
novative, advanced computer systems and fabrica
tors of 'optoelectronic components, allowing the
designers to evaluate their ideas by manufacturing
experimental prototypes.

SOFIWARE "BUILDS" PROCESS
CONTROL SYSTEMS
New NIST-developed software shows promise as a
tool for rapid prototyping of manufacturing control
systems. Developed as part of a NIST-Ied consor
tium, the software was used successfully to design
and operate the control system for a labora
tory-scale process for making metal powders. The
Expert Control System Shell, or ECSS, features a
rule-based expert system to assist designers and a
graphical user interface resembling a control panel.
Designers can choose from among on-screen ver
sions of push buttons, toggle switches, slide con
trols and other types of actuators. User-interface
options for displaying process data include dials,
charts and graphs. The control system can be oper
ated manually or under the full or partial command
of the expert system. If the designer chooses, the
overall control system can be partitioned into a
series of concurrently running modules that syn
chronize their activities by swapping electronic
messages. Data also are logged for post-process
analyses as well as for simulations of process
changes. A NIST computer scientist who is the

ECSS designer suggests that with further refine
ment and field testing, the software could be used
to build control system architectures for other
types of dynamic manufacturing processes as well
as be adapted to other computer platforms. For
more information on ECSS, contact Steve Osella at
A127 Metrology Building, NIST, Gaithersburg,
MD 20899-0001, (301) 975-4263, e-mail:
osella@cme.nist.gov (via Internet).

DEMO PUTS INTEROPERABILITY
TO THE TEST
A group of computer networking equipment
makers have shown that the Integrated Services
Digital Network could be used to link their prod
ucts and provide communication between diverse
applications. The multicompany hookup used the
Point-to-Point Protocol running over an ISDN
basic rate interface B-channel to demonstrate
interoperable, local- and wide-area-network
connectivity at a recent meeting of the North
American ISDN Users' Forum, or NIUF, held at
NIST. PPP is a set of protocols developed by
the Internet Engineering Task Force that allows
dissimilar LAN connection equipment to negotiate
quickly which features and protocols will be sup
ported by both ends of a network connection. As
part of the demonstration, vendors and end users
accessed Internet, read their electronic mail and
sent files back home. Interoperability, a key com
ponent of the National Information Infrastructure,
will enable rapid expansion of telecommuting,
remote Internet access and connection with branch
offices. Seven vendors from the United States,
Canada and Europe participated in the demon
stration. For technical information, contact Jeff
Fritz of the NIUF's Enterprise Network Data
Interconnectivity Family on (304) 293-2060 or
jfritz@wvnvm.wvnet.edu (via Internet).

CRADA PARTNERS SEEK BETTER-BEHAVED
VAV SYSTEMS
An air-delivery system known as variable air
volume, or VAV, can save energy dollars by deliv
ering just the right amount of air to areas of a
building that need it. But outdated and complex
control strategies for VAV systems are creating
problems such as control instability, poor air qual
ity, and inadequate humidity control and ventila
tion supply. Now, NIST and a private company are
teaming under a cooperative research and develop
ment agreement to help improve the control and
opCmlion of VAV systems. Using a special NIST ~
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laboratory that contains a VAV air-handling sys
tem, researchers from NIST and the company will
evaluate currently used control methods, then
develop and test alternative control techniques and
strategies. Also, various methods for detecting and
diagnosing faults on-line will be explored. The
CRADA project is expected to end in April 1996.
For more information, contact George Kelly, B114
Building Research Building, NIST, Gaithersburg,
MD 20899-0001, (301) 975-5870, e-mail:
gekelly@enh.nist.gov (via Internet), or John Seem,
Johnson Controls Inc., 507 E. Michigan St.,
Milwaukee, Wis. 53201, (414) 274-4677.

LUNAR REFLECTOR WORKS THROUGH
SILVER ANNIVERSARY
One of the space program's longest-running experi
ments-and one with a NIST connection-cele
brated its 25th anniversary in July by continuing to
return data. During their pioneering moon landing
on July 20, 1969, the Apollo 11 astronauts set up a
laser reflector to make precise measurements of
the distance between the Earth and moon. The
still-operational experimental station reflects a
powerful laser pulse aimed at it from telescopes on
Earth. By measuring how long the pulse takes to
return to Earth (the round trip takes about 2.5 s),
scientists have defined the Earth-moon distance to
within 2.5 cm. The reflector was designed primarily
by a NIST scientist at the Joint Institute for Labo
ratory Astrophysics, operated cooperatively by
NIST and the University of Colorado. It consists of
a briefcase-sized aluminum panel studded with 100
corner reflectors (the corners of precision-ground
glass cubes that have been cut off at 45 degree
angles), each about 3.8 cm across. When a ray of
light enters the cut-off surface, it is internally
reflected from the three sides of the corner, exits
the cut-off surface parallel to its entry path and
then returns to its source. The same principle is
used in bicycle reflectors. The Apollo 14 and 15
missions delivered two other reflectors, including
one with 300 cube corners. All three reflectors are
targeted almost nightly by scientists at observato
ries in Texas and France.

NIST TO COOPERATE WITH ARGENTINA
AND ECUADOR
In order to provide a mechanism for scientific and
technical cooperation in chemistry, physics, and
engineering measurement sciences, NIST recently
signed a Memoranda of Understanding with the

.... National [nstitnte for Indnslrial Technology of the

... 583

Secretary of Industries, Argentine Republic; the
Secretariat of Science and Technology, Argentine
Republic; and the Ecuadorian Institute of Stan
dardization, Republic of Ecuador. These memo
randa will provide a framework for the exchange of
scientific and technical knowledge, services, and
the augmentation of scientific and technical capa
bilities. The agreements will be effective immedi
ately for a period of 5 years.

NIST DATA CLARIFIES MODEL FOR TIME
DEPENDENT DIELECTRIC BREAKDOWN
A NIST scientist has carried out work that appears
to resolve the choice of competing models for
predicting voltage breakdown in integrated circuits.
For devices to be reliable, silicon dioxide insulator
layers on integrated circuit chips must resist
voltage breakdown through years of normal use,
and device designers need to be able to estimate
this performance. The reliability of oxide layers
can be predicted by subjecting the devices to
high-voltage stress at elevated temperatures and
extrapolating device failure rates to voltages and
temperatures at which the devices would normally
be used. Calculations of expected device failure
times from the time-dependent dielectric break
down (TDDB) data depend on the model chosen
for performing the extrapolation. Until recently,
two models contended for calculating tso from the
TDDB data, where tso is the time at which half of
the devices would have failed. One model assumed
that tso was depended on reciprocal electric field;
the other model assumed a linear dependence on
electric field.

The scientist realized that if he could heat his
specimen devices to temperatures higher than those
normally used in this type of stress testing, he could
reduce the electric field to values much nearer
those actually encountered by devices in normal
use. At the same time, by using lower fields, he
could avoid failures from breakdown mechanisms
that occur at high fields but that are not likely to
apply in normal device operation. Accordingly, the
NIST scientist used a specially designed wafer
chuck to stress his specimens at temperatures as
high as 698 K (425 0q. The resulting low-field data
revealed a linear dependence of tso on electric field.
The field dependence of data taken at higher elec
tric fields can not be clearly distinguished; either
the linear or reciprocal field dependence can be
used to describe the data. The scientist presented"
these results in a paper on TDDB at the recent
International Reliability Physics Symposium.
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UNCERTAINTIES IDENTIFIEO FOR RAllAR
CROSSoSECTION MEASUREMENTS
In a study of major government fa~ilities, NIST sci·
entists have identified significant sources of mea·
surement uncertainties encountered in both static
and dynamic radar cross-sectio'1 nmges. Radar
cross section is a parameter that defines how easy
it is to detect the presence of an obje,! illuminated
by a radar beam foJ' a given orientation of the ob·
ject with respect to the beam. Radar cross·section
measurements are used to determine the stealthy
performance of aircraft and missiles ann other mil
itary vehicles; they are now becoming of interest
for civilian applications, including air traffic con·
trol, highway traffic control, and shipping opera
tions. The division team developed methods for
estimating component uncertainties and for
combining these into an ovemll uncertainty budget

The goal was to provide a reas00able and uni·
form methodology for evaluating radar cross··sec
tion measurements that can be used for both
indoor and outdoor test ranges to produce compat
ible estimates of uncertainty. A benefit of the pro
cess is that uncertainty estimation identifies
sources of error on which attention needs to be
concentrated to improve measurement quality. The
team studied and compan'd alternative methods of
estimating uncertainties. The overall uncertainty
budget for a specific rne:=\SlJr~ment was developed
as a hierarchy of uncertainty budget t8hles. where
the lower-level tables provide the detHi!s that are
summarized in the upper-lev("l t<lbles. A spread·
sheet computer program W:lS developed to facili·
tate the construction of such a hierarchy of
uncertainty tables. A thorough annlysis of measure
ment uncertainty is a. first step in the development
and implementation of a program for certifying
radar cross-section ranges. Additional detC'ils can
be found in a report Proposed Uncertainty A'1aly·
sis for RCS MeHsurements (NTSTIR 5019).

METHOD FOR ASSESSING ACCURACY OF
ON·WAFER MICROWAVE MEASUREMENTS
BENEFITS INDUSTRY IN NIST VISITS
NIST researchers in collaboration with the l'HST/
Industrial MMIC Measurement Consortium, have
developed a method for experimentally determin
ing the accuracy of on-wafer measurements when
performed using commercially available instrvmen
tation in industrial environments. On-wafer mea
surements play a critical role in the design of
monolithic microwave integrated circuits (MMICs).
On-wafer measurements also h.8ve reduced test

costs and thereby significantly reduced the total
cost of MMICs making them cost effective in com
mercial applications such as personnel communica
tions, wireless networks, and intelligent highway
vehicles. Heretofore, the industry lacked adequate
methods of evaluating the accuracy of on-wafer
m.easurements.

Beginning in July 1993, NIST researchers began
testing the verification method at industrial sites to
determine its effectiveness in quantifying measure
ment errors. Over the following 9 months, they
tested the method at several locations comparing
actual measurement errors to bounds on those
errors predicted by the NIST-developed verifica
tion method. The results showed that the tech
nique effectively revealed errors in the industrial
measurements. These errors were sometimes as
large as 30%, large enough to frustrate the design
process and lead to increased cost. The magnitudes
of the errors were so large and the experiments so
convincing that several participants have been
prompted to adopt entirely new calibration proce
dures. The results of the verification method were
also useful in diagnosing the causes of the calibra
tion errors. This ability to pinpoint the source of
calibration failure turned out to bean extremely
important aid to engineers who otherwise would
have had no guidance in how to correct such prob
lems. The NIST team has begun to explore ways of
establishing the method as an industry standard.

MONOLITHIC SINGLE-FREQUENCY
SOLID-STATE WAVEGUIDE LASER
DEMONSTRATED
Working in collaboration with a researcher at a
University and with a CRADA partner, NIST scien
tists have demonstrated a monolithic single
frequency solid-state waveguide laser. This devel
opment will have important ramifications for
metrology since the rare-earth doped glass wave
guide laser is extremely stable with respect to ther
mally induced wavelength drift and optical
feedback that plagues typical semiconductor lasers.
Furthermore, the waveguide laser, because of its
centimeter-scale size, is more thermally and more
mechanically stable than a similarly doped optical
fiber laser. These attributes show the potential for
applications of the new device as both stable refer
ence standards and stable sources.

The waveguide laser is forced to operate in a
single longitudinal mode by virtue of a distributed
Bragg reflector grating that was photolithographi-
cally formed on the surface of the waveguide. The ~
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laser was fabricated in a special neodymium-doped
phosphate glass that was developed in collabora
tion with a private company. The device is distinc
tive since it demonstrates single-frequency laser
action is possible in a range of approximately 20
nm around the fluorescence peak at 1052 nm. The
waveguide geometry is compatible with optical
fibers. This aspect of the device could be important
since many new local-area network fiber optic
communication systems are envisioned to operate
in this wavelength band. Work is also under way to
demonstrate similar results in erbium-doped glass
operating around the traditional telecommunica
tion wavelength of 1544 nm. Initial results indicate
that it now should be possible to fabricate arrays of
lasers that operate at identical or displaced wave
lengths.

NIST SOFIWARE SIMPLIFYING RESISTMTY
DETERMINATION IN DEMAND
A NIST scientist has developed and published a
collection of computer programs for calculating
resistivity profiles of semiconductor wafers from
measurements of their spreading resistance or
four-probe resistance. There has been considerable
interest in the NIST package, called RESPAC;
several U.S. semiconductor companies have re
quested it. Resistivity is the most important prop
erty for specifying semiconductor material and for
evaluating its suitability for use in integrated
circuits, power devices, or other applications. The
NIST scientist's set of 10 FORTRAN77 programs
incorporate simplified routines for the necessary
mathematical operations and are suitable for use
on a personal computer or workstation. NIST SP
400-91, Semiconductor Measurement Technology:
A Collection of Computer Programs for Two
Probe (Spreading) Resistance and Four-Probe
Resistance, documents the software and supplies
background material to enable the reader to use it
in an optimal manner.

FIRST DIRECT MEASUREMENTS
DEMONSTRATE LOW-NOISE
PERFORMANCE POTENTIAL OF
HIGH·TEMPERATURE
JOSEPHSON JUNCTIONS
Two NIST scientists have made the first direct
measurements of the microwave-frequency noise of
Josephson junctions made from high-critical
temperature superconductor material. Using
yttrium/barium/copper oxide step-edge junctions

~ developed in previous work and an ultralow-noise
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1 GHz measurement system, they have measured
(for the lowest-noise device) a maximum available
noise temperature of 32 K± 2 K at a physical tem
perature of 4.3 K. The peak noise temperature is in
good agreement with published simulations of the
ideal resistively shunted junction model. The re
sults imply that such junctions are capable of noise
performance in millimeter-wave and terahertz
detection and mixing applications that approach
the fundamental quantum mechanical limits.

WORKSHOP ON TESTING STRATEGIES
TRANSFERS NIST METHODOLOGY
TO INDUSTRY FOR ANALOG AND
MIXED·SIGNAL PRODUCTS
NIST scientists hosted and presented the third
workshop on Testing Strategies for Analog and
Mixed-Signal Products at NIST in June to transfer
NIST-developed methodology to industry. Efficient
testing is an essential ingredient for competitive
manufacturing of electronic products. In some
cases, the testing cost can approach and even
exceed the original manufacturing cost. For the
past several years, NIST has conducted a program
to develop widely applicable analytical tools that
can lead to reduction in the number of test-point
measurements and at the same time an improved
prediction of the performance of the item under
test. Participants were introduced to these tools
and a comprehensive framework for developing
and implementing efficient tests for analog and
mixed-signal devices and instruments. For many of
these products it is not physically or economically
feasible to perform exhaustive testing. Therefore,
test engineers must formulate abbreviated strate
gies that are economical to execute but still yield
accurate measures of overall performance.

The attendees represented diverse application
interests, ranging from down-hole instrumentation
(such as used in oil exploration) to the testing of
pacemakers, to the testing of two-dimensional,
charge-coupled device arrays. The agenda con
sisted of tutorial material on matrix algebra,
lectures on the theory of a mathematical procedure
known as QR factorization and test point selection,
and the development of accurate device error
models using physical, a priori, and empirical
approaches. Participants were given hands-on
training in the use of a commercial software
product to implement the matrix operations
needed to develop a given testing strategy. Specific
examples were presented on how to apply the
NIST-developed methods to the problem of opti-
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mizing the testing of data converters (analog-to
digital and digital-to-analog) and other mixed
signal devices, as well as the testing of instruments
such as multirange ac-dc transfer standards.

ATP AND PED SPONSORS WORKSHOP ON
ELECTRON BEAM MODELING
Accurate electron beam modeling is primary to the
development of standards for both microanalysis
and linewidth metrology. A NIST workshop on
"Electron Beam Interaction Modeling for Metrol
ogy and Microanalysis in the Scanning Electron
Microscope," the first of its kind, was held during
the SCANNING 94/SouthEast Electron Micro
scopy Society (SEEMS) 94 Meeting May 17-20 in
Charleston, Sc. The NIST workshop was truly
international with attendees coming from Japan,
Europe, and Russia.

The workshop included four segments: modeling
and its relationship to microanalysis, theoretical
aspects of electron beam interaction modeling,
modeling and its relationship to metrology, and a
discussion and functional workshop session. During
that session, a modeling round robin was agreed
upon based on two defined standard structures,
one for microanalysis and the other for dimen
sional metrology. During both afternoon laboratory
sessions, participants demonstrated their own
modeling programs. The output from this recent
workshop will be archived in a special issue of
SCANNING to be published in late 1994 or 1995.
It is planned that the results of the round robin and
any further work will be reported at a similar
workshop in 1995.

NIST HOSTS WORKSHOP ON ADVANCED
MACHINE TOOL STRUCTURES RESEARCH
NIST held a Workshop on Advanced Machine
Tool Structures Research on April 29, 1994 to
discuss issues related to the development of a new
class of machine tools with parallel kinematics.
Machine tools in which actuators work in parallel
to produce tool or part motions - similar to the
operation of Stewart platform flight simulators
promise many advantages over conventional
machine tools. These include an expected order-of
magnitude increase in stiffness and accuracy, large
acceleration capability, lower part production cost,
and a full six axes of motion. An Advanced
Machine Tool Structures Testbed (AMTST) is
currently being established at NIST to identify and
extend the limits of capability of these new
machines. A primary objective of the workshop was

to explore possibilities for using this testbed for
joint research projects with industry. Approxi
mately 40 attendees from industry, government,
and academia participated in the workshop.

A NIST scientist presented the research activi
ties planned for the NIST AMTST. The primary
research objectives are to:

• adapt current performance evaluation proce
dures to this new class of machine tools;

• investigate high-accuracy metrology systems for
parallel machine tools;

• examine the use of microactuation to enable
extremely precise motions; and

• advance the state of the art in open architecture
machine tool controllers as applied to parallel
machines.

The characteristics of two experimental proto
type parallel machines currently being developed
by private industry were presented. The precision
machining of titanium jet engine rotors as an appli
cation that could benefit from the stiffness and
multiaxis machining capability of a parallel
machine was discussed. Five additional speakers
described research work and programs related to
parallel machines.

A great deal of interest was expressed by the
workshop attendees in participating in the research
to be carried out in the AMTST. In the afternoon,
there was discussion of the possible modes of inter
action and participation. These ranged from
supplying example test parts to be machined to
more formal arrangements such as sending guest
researchers and setting up cooperative research
and development agreements. Attendees were
encouraged to submit ideas and proposals for
cooperative research in the AMTST to NIST.

BODY DIMENSIONS FOR APPAREL
Anthropometric data and apparel sizing is an
important component of appar~l quality. Apparel
can not be top quality unless it fits consumers satis
factorily. In the United States, current sizing stan
dards rely on body-measurement data that were
gathered by the U.S. Department of Agriculture
during the late 1930s. Changes are needed to accu
rately represent today's U.S. population. A NIST
scientist has published a report entitled "Body
Dimensions for Apparel." The report represents a
preliminary set of body dimensions that are
necessary in the manufacturing and fitting of
apparel. It is the result of a comparison of five ~
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body-measurement reports, including documents
on national and international apparel sizing stan
dards. The author expects that the information in
the report will contribute to future body-measure
ment surveys as well as the development of new or
improved sizing standards. In addition, access to
anthropometric databases is expected to be an
integral component of emerging technology for
apparel design engineering.

In recent years, NIST has been developing the
apparel product data exchange standard (APDES).
The Defense Logistics Agency (DLA) is sponsor
ing the APDES project to extend the emerging
international Standards for the Exchange of
Product Model Data (STEP) to include apparel
product data. This work is part of a larger DLA
program to improve apparel manufacturing tech
nology. These extensions will lay the groundwork
for computer integration of the apparel product
life cycle, and it will enable clothing manufacturers
to reap the benefits of standardized product data
representation. The report of body dimensions will
serve as input for developing APDES.

HIGH-FIDELIlY SENSOR
In past years, NIST has developed a high-fidelity
sensor to measure dynamic material displacement
in solids. Theoretical modeling work has provided
a firm foundation for the interpretation of the sen
sor output from various excitation sources on plate
structures. The sensor includes a conical-shaped
piezoelectric ceramic for point pick-up of a surface
displacement and is known as the "NBS conical
transducer." The ceramic provides an effective
coupling to metals, which possess a comparable
acoustic impedance equal to the product of mate
rial density and sound speed. A calibration facility
for acoustic emission (AE) technology in the kilo
hertz to megahertz frequency range has been
implemented based on this research. Industry's
application of this technology includes the monitor
ing of pressure vessel and aircraft structures for
incipient material failure.

Recently, a parallel effort has shown promise for
the development of a high-fidelity AE sensor that
is applicable to polymeric materials, which have an
acoustic impedance very different from that for
metals. This particular sensor is designed with a
polyvinyl diflouride piezoelectric film, attached to a
plastic cone tip, to provide the displacement
voltage transduction. A potential application is for
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the general assessment of composite material qual
ity and specifically for the bond integrity in multi
layered structures.

COLLABORATION WITH HUNGARY'S
NATIONAL OFFICE OF MEASURES
Scientists from Hungary's National Office of
Measures (OMH) visited NIST recently to con
tinue their collaborative research in pH and elec
trolytic conductivity under the auspices of the
U.S./Hungary Science and Technology Program.

NIST and Hungary scientists conducted inter
comparisons of the pH buffer standards that serve
as the respective national standards for this impor
tant and ubiquitous analytical measurement. Under
particular evaluation during this visit was sodium
borate or borax, which is the buffer material for pH
measurements around pH 9. These pH 9 measure
ments are important for the treatment of industrial
boiler water. This material exhibits some unex
plained liquid junction potential effects that may be
related to impurities in the material.

Additional studies were initiated on standards for
low-level electrolytic conductivity measurements
critical to power plants, the pharmaceutical indus
try, and other users of high-purity water. Two
different approaches have been adopted by NIST
and OMH; NIST choosing potassium chloride or
benzoic acid in an alcohol-water mixture, and OMH
choosing dilute solutions of boric acid. These stud
ies involved the comparison of data for the accu
racy, reliability, stability, and compatibility of the
two approaches. The goals of this program are
international comparability and global harmoniza
tion of the standards for the measurements of pH
and conductivity.

NEUTRON INTERFEROMETRY FACILIlY
OPERATIONAL
One of the results from modern quantum physics is
that the elementary constituents of matter behave
not only as particles but also as waves. This wave
particle duality means that elementary particles
can exhibit interference effects analogous to those
observed with light. Interference with light has
been understood for centuries and is now widely
used as a technological tool. Interference with
"matter waves" is an emerging tool with great.
promise in both fundamental and applied science.
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Its development and application is the thrust of the
NIST Neutron Interferometry Facility, which
recently became operational at the NIST Cold
Neutron Research Facility. In this neutron inter
ferometer, a beam of low-energy neutrons is coher
ently split and recombined by near-perfect crystals
of silicon, just as a light beam can be split and
recombined by partially reflecting mirrors. The
interferometry facility employs a number of novel
techniques to obtain the high degree of noise
reduction (acoustic, vibrational, and thermal)
required for these sensitive measurements. Particu
larly noteworthy is a stabilization system that main
tains the position of a 41 metric ton, vibrationally
isolated mass within ± 1 ILm and ± 1 s of arc for
operating periods of weeks to months. Interfero
grams taken at the new facility show phase contrast
of up to 70% and phase stability of better than one
degree per day. These characteristics, which repre
sent considerable improvements on previous instal
lations, will allow a variety of new investigations to
be pursued.

The ionizing radiation research program at the
NIST Neutron Interferometry Facility will include
fundamental metrology studies and a variety of
materials science studies. One very promising
avenue of research is the application of neutron
phase topography for the investigation of hydrogen
and hydrogenous impurities in metals and other
media. The NIST Neutron Interferometry Facility
will be opened as a national user "facility in 1995;
proposals for time allocation are already being
considered.

HIGH MAGNETIZATION ADVANCED
MAGNETIC NANOCOMPOSITES
A cooperative research and development agree
ment (CRADA) between NIST and a private
company has resulted in the improved engineering
of magnetic nanocomposites comprised of a high
concentration of 5 nm diameter 'Y-Fe203 clusters
finely dispersed in a polymer resin. These materi
als, prepared by the ionic exchange of Fe ions with
protons inside the polymer, can be designed to be
superparamagnetic at room temperature and
thereby possess a high magnetization without
remanence. Since the CRADA was signed a year
ago, this collaboration has enabled the private
company to optimize the processing of these
nanocomposites, resulting in an increase in the
saturation magnetization of the ferrofluid version
of the superparamagnetic material by a factor of 2.
This ferrofluid version now possesses magnetiza
tion values approaching 17 A . m2/kg, i.e., 15%

larger than that possessed by common magnetic
fluids. These materials are particularly attractive as
advanced toner materials, new generation magnetic
refrigerants, high-density magnetic recording
media, and high-sensitivity indicators in medical
diagnostics.

DEVELOPMENT OF NEW STANDARDS FOR
THE CONTINUOUS STEEL STRIP INDUSTRY
Electrogalvanized steel for automobile body panels
has become one of the steel industry's major prod
ucts. Because of this, a great deal of effort has been
focused on improving the quality of the coated
sheets and reducing manufacturing costs. One of
the primary ways the industry can accomplish this
is through on-line monitoring of processing and
coating parameters. In response to steel industry
requests, NIST is developing new zinc on steel
Standard Reference Materials for calibrating on
line coating thickness gauges.

Because plating processes vary from line-to-line,
the basic goal of this development effort is to
provide industry with a uniform, well-characterized
zinc coating as a baseline for their thickness mea
surements. NIST researchers have been working
closely with coated strip steel, automotive, and
instrumentation manu- facturers to ensure a stan
dard that will meet their needs for assessing manu
facturing as well as performance capability.

Other applications for the zinc-coating thickness
standard are calibration of laboratory x-ray fluores
cence instruments and acceptance testing by end
users of the electrogalvanized product.

IMPROVED ACCURACY IN QUANTITATIVE
PHASE ANALYSIS
The accurate measurement of phase abundance by
powder diffraction methods is important to a broad
range of technologies. It has particular application
to analyzing the polymorphs of silicon nitride and
zirconia, two ceramic materials being developed for
structural applications in automotive and aircraft
engines. The Rietveld method, wherein the entire
diffraction pattern is used for a refinement of
crystallographic, microstructural, and instrument
parameters, provides the most accurate and precise
method of obtaining results from powder diffrac
tion data.

Therefore, the Rietveld analysis of x-ray and
neutron powder diffraction is being investigated at
NIST, in collaboration with the Los Alamos
National Laboratory, for use in certification of
Standard Reference Materials (SRMs) for quanti-
tative analysis. ~
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The accuracy of a quantitative analysis can be
considered in terms of an ability to match a calcu
lated result from properly characterized specimens.
Rigorous evaluations of the models used in the
Rietveld code were possible by working with well
characterized samples prepared from SRMs and
SRM-candidate materials. Several improved mod
els were incorporated in the Rietveld code, the
most notable of which concerned the contribution
of thermal diffuse scattering to the background.
Using the Rietveld method, the researchers have
verified that SRM 676, an alumina powder, is
phase pure to within 0.2% with 95% confidence.
They also have certified SRM 656, for analysis of
two polymorphs of silicon nitride, not only with
respect to the crystalline phase composition but
also to the amorphous content.

NONDESTRUCTIVE EVALUATION OF
NATURAL GAS PIPELINES USING
GAS-COUPLED ULTRASONICS
Collaborating with Southwest Research Institute
(SWRI), NIST researchers have shown that it is
feasible to use gas as a couplant for ultrasonic
inspection of natural gas pipelines. In the past, the
use of gas couplants was restricted to the transmis
sion and pitch-catch geometries. The NIST/SWRI
work demonstrates that such restrictions can be
overcome so that the same transducer can be used
to send and receive the probing ultrasonic signals
at MHz frequencies. In addition to static tests
using a specially designed apparatus at NIST, mea
surements were carried out in a flowing gas in a
pipeline test facility at SWRI. The experimental
data indicate that it may be feasible to adapt the
basic NIST/SWRI method for in-service inspection
of natural-gas pipelines for thickness gaging and
flaw detection.

ADDITION TO NIST PROFICIENCY SAMPLE
FACILIlY DEDICATED
An addition to the Proficiency Sample Facility of
the NIST Construction Materials Reference Labo
ratories (CMRL) was dedicated on May 18, 1994.
CMRL is jointly sponsored by NIST, the American
Society for Testing and Materials, and the Ameri
can Association of State Highway and Transporta
tion Officials. The addition was constructed to
keep up with growing demand for proficiency
samples of construction materials such as concrete,
cement, soil, and asphalt. The CMRL supplies over
8000 samples annually to construction materials

~ lesting laboralories 10 help evaluale tesl;ng equ;p-
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ment and procedures. Construction of this facility
at NIST is an excellent example of cooperation
between the federal and state governments and
private industry in promoting the quality of con
struction.

NIST DEVELOPS LARGE BUILDING INPUT
FILES FOR MULTIZONE INDOOR AIR
QUALIlY MODEL
NIST has developed input files for the multizone
airflow and indoor air quality model CaNTAM88.
These input files describe four large buildings: a
12-story multifamily residential building, a five
story mechanically ventilated office building with an
atrium, a seven-story mechanically ventilated office
building with an underground parking garage, and a
one-story school building. The physical characteris
tics of each building and its idealization as a multi
zone airflow system are described. These input files
enable a user to employ CONTAM88 (and the most
recent version of the program CaNTAM93) to
study airflow and contaminant dispersal in large
buildings without developing building idealizations
and inputting them into the program. Results of
selected computer simulations are presented to
demonstrate the effects of wind speed, indoor-out
door temperature difference, and the percentage of
outdoor air intake in the supply air on building air
change rates and interzonal airflows in these four
buildings. The report describing these input files
(NISTIR 5440, CaNTAM88, Building Input Files
for Multi-Zone Air Flow and Contaminant Disper
sal Modeling) also contains an appendix with a
database of building component air leakage values.

NIST CO-SPONSORS WORKSHOP ON
STANDARDS DEVELOPMENT
AND THE NATIONAL INFORMATION
INFRASTRUCTURE (NIl)
On June 15-16, 1994 NIST, the Science, Technol
ogy and Public Policy Program at Harvard Univer
sity, and the Technology Policy Working Group of
the Information Infrastructure Task Force co-spon
sored an invitational wor\<shop on standards devel
opment and the evolving NIL NIST Director Arati
Prabhakar and Lewis M. Branscomb, director of the
Science, Technology and Public Policy Center for
Science and International Affairs at Harvard,
opened the workshop discussions. Prabhakar said
that the Information Infrastructure Task Force is
working in partnership with the private sector to set
public goals for the NIl and that the issue of
standards is pervasive to every application area.
Branscomb focused on the importance of standards
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as components of the government's technology
policy and the need to define the roles of govern
ment, industry, and other groups in standards
development.

Workshop presenters and panelists discussed
new practices and new institutions in standards
development, conceptualizing the standards pro
cess, the evolution of standards institutions, the role
of the government, requirements for interoperabil
ity, and the impact of intellectual property rights on
standards development. James Burrows, CSL direc
tor, participated in a panel on standards policy and
the NIl. Papers presented at the workshop and
position papers contributed will be published and
will also be available in electronic form.

SPECIFICATIONS OF AN ELECTRONIC
RESEARCH NOTEBOOK FOR THE NIST
SCIENTIFIC STAFF ISSUED
NISTIR 5395, Preliminary Functional Specifica
tions of a Prototype Electronic Research Notebook
for NIST, presents a study on the feasibility of using
electronic research notebooks (ERNs) at NIST.
The study team interviewed the NIST technical and
scientific staff to survey current notekeeping prac
tices and identify specific needs for the ERN. A set
of basic and enhanced ERN features resulted from
the survey; current technologies and products were
then assessed to see how requirements could be
met. The publication concludes with a proposed
system configuration where functional specifica
tions for a basic ERN are defined.

Standard Reference Data

PROTEIN DATABASE NOW INCLUDES NASA
EXPERIMENTS
A newly expanded database on crystal growth
conditions of biological macromolecules is now
available to help the pharmaceutical and food
industries improve medicines, vaccines, food prod
ucts and other industrial processes. The NIST/
NASNCARB Biological Macromolecule Crystal
lization Database has been expanded to include the
NASA Protein Crystal Growth Archive and data
from international microgravity experiments. The
database was developed by a NIST research
chemist and associate director of the Center for
Advanced Research in Biotechnology. Version 3.0
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of the Biological Macromolecule Crystallization
Database includes data on more than 2000 crystal
structures of 1500 biological macromolecules.
Users can search for data by 20 different parame
ters, such as macromolecule name, crystal density,
crystallization method and year reported. The ex
panded database is available for $415. To order the
NIST/NASNCARB Biological Macromolecule
Crystallization Database, contact the NIST Stan
dard Reference Data Program, A323 Physics
Building, Gaithersburg, MD 20899-0001, (301)
975-2208, fax: (301) 926-0416, e-mail: srdata@
enh.nist.gov (via Internet).
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Calendar

October 4-7, 1994
NORTH AMERICAN ISDN
USERS' FORUM (NIUF)

Location: National Institute of
Standards and Technology
Gaithersburg, MD

Purpose: To develop user-defined applications,
implementation agreements for existing standards,
and tests needed for a transparent, ubiquitous, and
user-driven Integrated Services Digital Network
(ISDN).
Topics: National Information Infrastructure, ap
plications analysis and multimedia, ISDN wiring
and powering issues, and other related ISDN
topics.
Format: Tutorials, users' and implementors' work
shops, and working group meetings.
Audience: ISDN users, implementors, and service
providers.
Sponsor: NIST.
Contact: Sara Caswell, B364 Materials Building,
NIST, Gaithersburg, MD 20899-0001, (301) 975
4853.

October 5-7, 1994
FEDERAL WIRELESS

USER'S FORUM

Location: Gaithersburg Hilton
Gaithersburg, MD

Purpose: To educate users about wireless tele
communication opportunities, expose industry to
government needs, explore the similarity of govern
ment needs to those of non-government users, and
develop application scenarios and solutions.
Topics: Wireless issues, including land mobile
radio, the intelligent vehicle highway system, and
wireless applications.
Format: General and breakout sessions.
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Audience: Current or potential federal, state, and
local government wireless telecommunication
users; nongovernment users; and the wireless
telecommunications industry.
Sponsors: Federal Wireless Users' Forum, Na
tional Communications System, and NIST.
Contact: Tish Antonishek, Secretariat, A216 Tech
nology Building, NIST, Gaithersburg, MD 20899
0001, (301) 975-2922.

October 11-14, 1994
17th NATIONAL COMPUTER

SECURITY CONFERENCE

Location: Baltimore Convention Center
Baltimore, MD

Purpose: To provide a forum for addressing tradi
tional security concerns, as well as security issues
associated with the emerging National Information
Infrastructure (NIl).
Topics: Tracks on research and development, inte
gration and applications, and management and
administration, in addition to a tutorial track.
Topics include directions of IT security, network
security, viruses, risk management, contingency
planning, and privacy.
Format: Five tracks, which provide a combination
of peer-reviewed papers and panel sessions, and
opening and closing plenary sessions on present
subjects and issues of interest and importance to
the community.
Audience: A large, diverse national and interna
tional audience - approximately 1500 to 2000 are
expected from industry, government, and
academia.
Sponsors: NIST and National Computer Security
Center.
Contact: Dennis Gilbert, A216 Technology Build
ing, NIST, Gaithersburg, MD 20899-0001,
(301) 975-3872.



Volume 99, Number 4, July.,.August 1993

Journal of Research of the National Institute of Standards and Technology

October 17-20, 1994
ANNUAL CONFERENCE

ON FIRE RESEARCH

Location: Gaithersburg Hilton
Gaithersburg, MD

Purpose: To report and discuss advances in fire
science, with the intent of stimulating new products
that are more fire-safe and new ways to capture
that value in the ways products are tested and
approved for use.
Topics: The conference will focus on the phe
nomenology of fire, including chemistry and
physics of materials combustion, soot and toxic gas
formation, fire signatures and their detection, fire
induced flows, and flame spread and extinction.
Format: Parallel sessions of oral presentations and
poster sessions.
Audience: All parties with an interest in advances
in fire safety, including researchers on the funda
mentals of fire behavior, fire safety practitioners,
and manufacturers of products potentially im
pacted by fire safety regulations.
Sponsors: Building and Fire Research Laboratory,
NIST.
Contact: Sheilda Smith, B250 Polymer Building,
NIST, Gaithersburg, MD 20899-0001, (301) 975
6864.

October 18-21, 1994
47th ANNUAL GASEOUS

ELECTRONICS CONFERENCE

Location: National Institute of
Standards and Technology
Gaithersburg, MD

Purpose: To report and discuss basic phenomena
and processes in ionized gases, and relevant theory
and experiments concerning basic atomic collision
processes.
Topics: Fundamental processes in electrical break
down of gases and maintenance of discharges of all
types, in-gas lasers, ion sources, plasma chemistry
and innovative plasma applications, plasma treat
ment of waste and pollutants, and diamond film
deposition.
Format: Oral presentations of invited, contributed
talks, and poster presentations.
Audience: Scientists and engineers from academic
and industrial laboratories involved in specified
and related topics.
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Sponsors: Division of Atomic, Molecular, and
Optical Physics, American Physical Society, and
NIST.
Contact: Jean Gallagher, A323 Physics Building,
NIST, Gaithersburg, MD 20899-0001, (301) 975
2204.

November 7-9, 1994
NATIONAL EDUCATORS'

WORKSHOP

Location: National Institute of
Standards and Technology
Gaithersburg, MD

Purpose: This eighth annual workshop is aimed at
improving the teaching of materials science, engi
neering, and technology.
Topics: Experiments and demonstrations of mate
rials science and engineering will be presented.
Format: Lectures and plenary sessions will be held
in addition to mini-workshops for small groups in
various laboratories throughout NIST.
Audience: College and university-level teachers.
Sponsors: NIST, NASA, Norfolk State University,
and DOE.
Contact: Anna Fraker, B254 Materials Building,
NIST, Gaithersburg, MD 20899-0001, (301) 975
6009.

November 22, 1994
WORKSHOP ON TISSUE ENGINEERING:
FROM BASIC SCIENCE TO PRODUCTS

Location: National Institute of
Standards and Technology
Gaithersburg, MD

Purpose: To provide a forum for the review of
research and development advances in tissue
engineering and their application to biomedical
products.
Topics: Basic science and engineering aspects
related to the potential for manufacture of prod
ucts. Topics will include scaffolding, encapsulation,
cell technologies, and biomedical applications.
Format: General session and panel discussions.
Audience: Scientists, engineers, and clinicians with
an interest in tissue engineering research and
development.
Sponsors: NIST, NIH, FDA, and NSF.
Contact: Stan Abramowitz, A409 Administration
Building, NIST, Gaithersburg, MD 20899-0001,
(301) 975-2587.
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HELP COMMEMORATE THE "PIONEER" OF QUALITY

DR. W. EDWARDS DEMING

The U.S. Bureau of the Census and the International Statistical Institute (lSI) are
sponsoring an annual lecture to commemorate and advance the work of Dr. W.
Edwards Deming. Dr. Deming was exceptional in the duration and impact of his
accomplishments, and his commitment to the goal of continuous quality improvement.
He is perhaps best known for his ability to release the power of quality leadership,
develop and use statistical analysis methods, and insist on practical operating improve
ments.

The purpose of this joint Census/lSI lecture series is to provide an opportunity to
re(lect on the wide variety of Dr. Deming's accomplishments, including but not
limited to their implications for government and industry. The lecture will be a
featured event of the Census Bureau's Annual Research Conference, and will be avail
able in an accompanying paper published by each sponsoring organization. Research
conferences have been held each year since 1985 and attract an international audience
of 700--800 persons. The next research conference will be held in March 1995 at a
Washington, DC area location.

Persons from a variety of professional backgrounds and experiences are invited to
submit abstracts for this lecture. The sponsoring organizations will select the lecturer
based on a competitive review of the abstracts. The full published lecture paper will be
distributed internationally. To be considered for the 1995 lecture, you should submit a
3-4 page abstract by October 4, 1994, to:

Maxine Anderson-Brown
Office of the Director, Room 2270-3
Bureau of the Census
Washington, DC 20233

For additional information about the lecture, please contact her at the above address or
at 301-763-1150 or FAX 301-763-4887.



International Workshop on
Semiconductor Characterization:
Present Status and Future Needs

January 3D-February 2, 1995
Gaithersburg, Maryland, U.S.A.

The International Workshop on Semiconductor Characterization: Present Status and Future
Needs will be held Monday, January 30 through February 2, 1995, at NIST in Gaithersburg,
Maryland. The Workshop provides a forum to present and discuss critical issues, problems and
limits, evolving requirements and analysis needs, future directions, and key measurement
principles, capabilities, applications, and limitations. It will be comprised of formal invited
presentation sessions, poster sessions for contributed papers, and panel sessions. Invited sessions
are planned on:

• Si Process Development and Manufacturing - The Drivers
• Analytical Technology and Metrology Requirements for Beyond 0.35 pm Technology
• Process and Characterization Issues
• Above-Si Processing
• Critical Analytical Methods
• Si and Compounds: In-Situ; Real-Time Diagnostics, Analysis, and Control
• Frontiers in Compound Semiconductors

Contributed poster papers are solicited on new breakthroughs and major improvements in
measurement techniques for silicon or compound semiconductors. Authors are requested to
submit a one-page abstract by September 23, 1994 to the Conference Contact below. An
author's kit will be mailed following paper acceptance.

Sponsors:

Conference Chair:

For information, contact:

The Advanced Research Projects Agency, SEMATECH, National
Institute of Standards and Technology, Army Research Office, U.S.
Department of Energy, National Science Foundation, and SEMI.

David G. Seiler, NIST

Jane Walters, NIST
B344 Technology Bldg.
Gaithersburg, MD 20899-0001
Phone: 301/975-2050
Fax: 301/948-2081
e-mail: waiters@sed.eeel.nist.gov



APPLIED DIAMOND CONFERENCE 1995
3rd International Conference on the

Applications of Diamond Films and Related Materials
August 21-24, 1995

National Institute of Standards and Technology
Gaithersburg, Maryland 20899, USA

Sponsor: National Institute of Standards and Technology

Cosponsors: American Physical Society, Materials Research Society

Cooperating Societies: American Carbon Society, American Ceramic Society,
ASM International®, IEEE-Electron Devices Society, Japan New Diamond Forum, SPIE

OBJECTIVES: Major mechanical, thermal, optical, electronic, medical, and chemical applications of
diamond, diamond-like carbon, cubic boron nitride, CoN compounds, and related wide-bandgap
superhard materials may soon be realized due to the rapid progress being made in the requisite
processing technologies. The objective of this biennial international conference is to allow
manufacturers and end-users of diamond and related technologies to interact with scientific
researchers for the purpose of identifying technical barriers that are hindering the large scale
commercial applications of these materials and research strategies for overcoming these barriers.
Topics to be covered include but are not limited to:

• acoustics
• active electronics
• bearings
• biomedical implants
• cutting tools
• deposition optimization
• economic analyses

• electronic packaging
• fabrication processes
• heat management
• low temperature growth
• optoelectronics
• oriented growth
• performance evaluation

• polishing
• process monitoring
• protective coatings
• scale-up
• sensors
• wear resistant surfaces
• windows, lenses, domes

CAll FOR PAPERS: Papers are solicited both on practical applications and on the basic science
needed for removing impediments to applications of CVD diamond, diamond-like carbon, cubic
boron nitride, CoN compounds, and related wide-bandgap superhard materials. A number of
contributed papers will be chosen for oral presentation and the remainder will be presented at
poster sessions. Each contributing author is expected to submit the following material:

An abstract up to one page long, due January 30, 1995. Please provide 5 copies.

A manuscript, four pages long, in camera-ready form, for publication in the proceeding,
due April 15, 1995. Instructions for manuscript preparation will be sent after receipt of the
abstract. Manuscripts of all accepted papers will be published as submitted in the
Conference Proceedings which will be distributed at the conference.

Authors will be notified whether abstracts have been accepted by February 21, 1995. Notification
will be sent to the author listed first on the abstract unless alternate instructions are provided in a
letter accompanying the abstract. It would be helpful to have available the telephone number, FAX
number and/or e-mail address of the contact author. You may include this in your letter.

TECHNOLOGY DEMONSTRATIONS: Demonstrations of products, processing equipment, and
prototype specimens that show progress in the development of applications are encouraged,
although sales promotions are not permitted at NIST. For further information, please contact the
conference chairman.

ADDRESS All CORRESPONDENCE TO: Albert Feldman, Chairman ADC'95, National Institute of~
Standards and Technology, A329 Materials Building, Gaithersburg, MD 20899, USA.
FAX: 301/990-8729; email: feldman@micf.nist.gov



NISTTechnical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology-Reports NIST
research and development in those disciplines of the physical and engineering sciences in which
the Institute is active. These include physics, chemistry, engineering, mathematics, and computer
sciences. Papers cover a broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization. Also included from time to time
are survey articles on topics closely related to the Institute's technical and scientific programs.
Issued six times a year.

Nonperiodicals

Monographs - Major contributions to the technical literature on various subjects related to the
Institute's scientifIC and technical activities.
Handbooks-Recommended codes of engineerin~ and industrial practice (including safety codes)
developed in cooperation with interested industnes, professional organization~, and regulatory
bodies.
Special Publications - Include proceedings of conferences sponsored by NIST, NIST annual
reports, and other special publications appropriate to this grouping such as wall charts, pocket
cards, and bibliographies.
Applied Mathematics Series - Mathematical tables, manuals, and studies of special interest to
physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others
engaged in scientific and technical work.
National Standard Reference Data Series - Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed
ul1der a worldwide program coordinated by NIST under the authority of the National Standard
Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data
(JPCRD) is published bimonthly for NIST by the American Chemical Society (ACS) and the
American Institute of Physics (AlP). Subscriptions, reprints, and supplements are available from
ACS, 1155 Sixteenth St., NW, Washington, DC 20056.
Building Science Series - Disseminates technical information developed at the Institute on building
materials, components, systems, and whole structures. The series presents research results, test
methods, and performance criteria related to the structural and environmental functions and the
durability and safety characteristics of building elements and systems.
Technical Notes - Studies or reports which are complete in themselves but restrictive in their
treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive
in treatment of the subject area. Often serve as a vehicle for final reports of work performed at
NIST under the sponsorship of other government agencies.
Voluntary Product Standards - Developed under procedures published by the Department of
Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish
nationally recognized requirements for products, and provide all concerned interests with a basis
for common understanding of the characteristics of the products. NIST administers this program
in support of the efforts of private-sector standardizing organizations.
Consumer Information Series - Practical information, based on NIST research and experience,
covering areas of interest to the consumer. Easily understandable language and illustrations
provide useful background knowledge for shopping in today's technological marketplace.
Order the above NIST publications from: Superintendent of Documents, Government Printing Office,
Washington, DC 20402.
Order the following NIST publications-FIPS and NISTIRs-from the National Technical Information
Service, Springfield, VA 22161.
Federal Information Processing Standards Publications (FIPS PUB) - Publications in this series
collectively constitute the Federal Information Processing Standards Register. The Register serves
as the official source of information in the Federal Government regarding standards issued by
NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended,
Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315,
dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).
NIST Interagency Reports (NISTIR) - A special series of interim or final reports on work
performed by NIST for outside sponsors (both government and non-government). In general,

~ ;nhial dis"ibution is handled by the spons",; public distribution is by the National Technical
~nformation Service, Springfield, VA 22161, in paper copy or microfiche f",m.
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National Technical Information Service
Springfield, VA 22161

This report was printed specifically for your order
from nearly 3 million,titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Documents that are not in electronic format are reproduced
from master archival copies and are the best possible reproduetions
available. If you have any questions co.ncerning this document or any
order you have placed with NTIS, please call our Customer Service
Department at (703) 487-4660.

About NTIS .
NTIS collects scientific, technical, engineering, and business related
information - then organizes, maintains, and disseminates that
information in a variety of formats - from microfiche to online services.
The NTIS collection of nearly 3 million titles includes reports describing
research conducted or sponsored by federal agencies and their
contractors; statistical and business information; U.S. military
publications; audiovisual products; computer software and electronic
databases developed by federal agencies; training tools; and technical
reports prepared by research organizations worldwide. Approximately
100,000 new titles are added and indexed into the NTIS collection
annually.
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