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ABSTRACT 

Test results of four hybrid post-tensioned concrete beam-to-column connections are presented. 
These tests constitute Phase IV B of an experimental program on 1I3-scale model precast 
moment resisting connections being conducted at the National Institute of Standards and 
Technology (NIST)~' The objective of the test program is to develop guidelines for the design 
of moment resistant precast connections in regions of high seismicity. 

The hybrid connections consist of mild steel used as energy dissipators and post-tensioning steel 
used to provide the required shear resistance. Variables examined were different amounts and 
type of mild steel. The amount of post-tensioning steel was kept constant. The specimens were 
subjected to reversed cyclic loading in accordance with a prescribed displacement history. The 
performances of the connections were evaluated based on comparisons of energy dissipation 
capacity, connection strength, and drift capacity with previous NIST tests (phases I - IV A). 

The results show that a hybrid precast connection can be designed so that it matches the 
performance of a monolithic connection in terms of energy dissipation, strength, and drift 
capacity. 

KEYWORDS: Building Technology, beam-column, concrete, connections, cyclic loading, 
joint, precast, post-tensioning, story drift. 
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1). Fig. 2.3, Page 8 - The grouting scheme is for the model but the dimensions are for the 
prototype. 

2). Fig. 2.4, Page 9 - The init. beam prestresses are 2.98, 2.83, 2.76, and 3.0 MPa for 
specimens M-P-Z4, N-P-Z4, O-P-Z4, and P-P-Z4, respectively. 

3). Fig. 2.6, Detail A, Page 11 - The dimension 8.3 mm should be 4.15 mm. 

4). Page 13. Last paragraph. The amount of fibers used was 1.78 kg/m3 (3 Ib/yd3) not 
8.7 kg/m3. 

5). Fig. 3.28, Page 36 - The title for the Y-axis should read [Cyclic Energy 
Dissipated/(Pred. Mom. * Story Drift)]. 

6). References, Page 43 - The reference: 

Cheok, G. C., Stone W. C. and Lew, H. S (1993), "Performance of 1/3-Scale Model 
Precast Concrete Beam-Column Connections Subjected to Cyclic Inelastic Loads - Report 
No.3," NISTIR 5246, NIST, Gaithersburg, MD, August, 1993. 

should read: 

Cheok, G. C. and Stone W. C. (1993), "Performance of 1/3-Scale Model Precast 
Concrete Beam-Column Connections Subjected to Cyclic Inelastic Loads - Report 
No.3," NISTIR 5246, NIST, Gaithersburg, MD, August, 1993. 
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1.0 INTRODUCTION 

Precast concrete frame construction is not presently used extensively in seismic regions of the 
USA. The UBC [ICBO, 1991] permits only certain specific building systems to be used and a 
precast frame is not one of them. The reason is that extensive research on cast-in-place frames 
has led to the development of reinforcement details that provide suitable ductility, and these 
details are now prescribed in the UBC. In most cases, such detailing cannot be easily achieved 
in a purely precast system. The result is that most precast structures can be made to satisfy the 
UBC only under the guise of an "undefmed structural system" [Sec. 2333 (f) 6] which must " 
. .. be shown by technical and test data which establish the dynamic characteristics and 
demonstrate the lateral force resistance and energy absorption capacity to be equivalent to 
systems listed in Table No. 23-0 for equivalent Rw values" [Section 2333 (i) 2]. This 
requirement makes approval of a precast frame very difficult. In addition, another UBC 
requirement calls for "reinforcement resisting earthquake-induced" forces to conform to ASTM 
A 706 and A 615 Grades 40 and 60 specifications which excludes prestressing steel as well as 
other types of energy dissipating alloys. Since the advantages of precasting and prestressing are 
interlinked, this provision on prestressing inhibits the use of precast concrete. 

Therefore, an experimental program to examine the behavior of 1I3-scale model precast concrete 
beam-column connections subjected to cyclic inelastic loads was initiated at the National Institute 
of Standards and Technology in 1987. The objective of the program was to develop 
recommended guidelines for the design of an economical precast moment resisting beam-to­
column connection for use in regions of high seismic risk. The basic concept used for the 
precast connections was the utilization of post-tensioning steel to connect the precast elements 
and to provide the required shear resistance to the applied loads. 

The test program is divided into four phases. Phase I [Cheok and Lew, 1990] was the 
exploratory phase in which four monolithic specimens were tested. Two of these specimens 
were designed to UBC [ICBO, 1985] seismic Zone 2 specifications and two to Zone 4 
specifications. The results from these tests serve as a reference level for the precast tests. In 
addition to the monolithic tests, two precast connections were tested. These specimens were 
designed similarly to the monolithic Zone 4 specimens. The objective of this phase was to 
determine the viability of the concept. Based on the results of Phase I, six precast specimens 
were tested in Phase II [Cheok and Lew, 1991]. The objective of this phase was to improve the 
cyclic energy dissipation characteristics of the precast specimens. The location of the post­
tensioning steel and the type of post-tensioning steel were investigated. Because of stiffness 
degradation observed in the earlier precast specimens during the latter stages of the tests, the use 
of partially bonded post-tensioning steel was studied in Phase III [Cheok and Lew, 1993]. Two 
precast specimens were tested in this phase. 

Hybrid precast connections were studied in Phase IV. The connections are termed hybrid 
because they contained both mild or low strength steel and prestressing (PT) or high strength 
steel. The basic premise for this concept was that the mild steel served as an energy dissipator 
while the friction force developed between the beam and the column by the post-tensioning force 
provided the necessary shear resistance. Concern was raised that the shear resistance provided 
by this arrangement would not be sufficient to resist the applied shear loads in addition to gravity 
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loads. To address this concern, simulated gravity loads were applied to the beams for the Phase 
IV tests. 

Phase IV was divided into two sub-phases, A and B. In Phase IV A [Cheok, Stone, Lew, 
1993], six tests were conducted on three archetype designs. The objectives of this sub-phase 
were to test the hybrid concept and to determine the most promising archetype design. The 
results from this phase were used to determine the specimen details for Phase IV B. One of the 
specimens in Phase IV A, which incorporated replaceable mild and PT steels, was tested three 
times. In Phase IV B, four "production" type tests were conducted. The term production is 
used as the precast beams and columns were fabricated by a precaster. The connections were 
then assembled and tested at NIST. The primary variable in this sub-phase was the amount and 
type of mild steel. The PT steel was located at the centroid of the beam. This location was 
shown in Phases I to IV A to produce the largest drift capacity prior to yielding of the PT steel. 

A steering committee was formed to provide technical guidance for Phases I-III. The members 
of this committee include Mr. Dan Jenny (formerly with the Precast/Prestressed Concrete 
Institute, PCI), Dr. Robert Englekirk (Englekirk and Sabol, Inc.), Dr. S. K. Ghosh (Portland 
Cement Association), Mr. Paul Johal(pCI), and Dr. Nigel Priestley (UC at San Diego). Partial 
funding for the Phase IV tests was made available from ConREF (Concrete Research and 
Education Foundation) of the American Concrete Institute. Also, an ACI oversight committee 
was formed (see organizational chart in Appendix C on page 59) to provide technical guidance. 

This report provides a description of the Phase IV B specimens and a comparison of the results 
from this phase to the results from Phases I - IV A. This is the fourth report in a series 
describing NIST work on precast moment resisting frames. Detailed results from Phases I, II, 
III and IV A may be found in NIST reports Cheok and Lew [1990, 1991], Cheok, Stone, and 
Lew [1993], and in papers by Cheok, Stone, and Lew [1992], and by Cheok and Lew [1993]. 
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2.0 PHASE IV SPECIMEN DESCRIPTION, DETAILS AND TEST PROCEDURE 

2.1 Summary of Phase IV A Results 

The basic concept of the Phase IV specimens was to use mild steel as energy dissipators and to 
use prestressing (PT) steel to provide the necessary shear resistance. Typically, the mild steel 
consisted of Grade 60 (fy = 414 MPa) deformed reinforcing bars, and the PT steel consisted 
of high strength bars (t;,u = 1034 MPa) or prestressing strands (fpu = 1862 MPa). To maintain 
the clamping force, the PT steel was designed to remain in the elastic range. 

Two methods were used in the Phase IV A specimens to delay yielding of the PT steel. One 
was to place the PT steel in the middle of the beam where it would experience less strain and 
to fully grout it (I-P-Z4 and K-P-Z4). The other was to have unbonded PT steel located at the 
top and bottom of the beam (J-P-Z4). In both cases the mild steel was located at the top and 
bottom of the beam and was fully bonded. Specimen J-P-Z4 had one third more mild steel than 
did specimen K-P-Z4. A third specimen, L-P-Z4, was tested three times. The specimen in the 
first two tests, L-P-Z4 A and L-P-Z4 B, contained only unbonded PT steel. These tests were 
conducted to determine the type of PT steel -- high strength bar or strand -- to be used in the 
third test. The specimen in the third test, L-P-Z4 C, consisted of unbonded mild steel and PT 
steel located at the top and bottom of the beam. The intent of this type of system was that it 
represented a repairable system whereby both the mild and PT steels could be replaced after 
being damaged. Basic connection details for specimens I-P-Z4 to L-P-Z4 are given in 
Appendix A, Figs. Al to A3. 

Premature bond failure of the mild steel in specimen I-P-Z4 at a story drift of approximately 
1.7% rendered the results for this specimen inconclusive. As a result, specimen K-P-Z4 was 
constructed similarly to specimen I-P-Z4 and tested. Failure of specimens K-P-Z4 and J-P-Z4 
resulted when the mild steel bars fractured. The story drifts at failure for specimens K-P-Z4 and 
J-P-Z4 were 3.1 % and 3.6%, respectively. Comparisons with the monolithic Zone 4 specimens 
show comparable connection strength and ductility for specimens K-P-Z4 and J-P-Z4. Similar 
cyclic energy dissipation to approximately 2 % story drift was observed between these two 
precast specimens and the monolithic specimens. 

Specimen L-P-Z4 C, the replaceable system, failed at a story drift of 2.0%. This specimen 
failed prematurely. A detailed explanation of this can be found in Cheok, Stone, and Lew 
[1993]. In brief, failure resulted from a compromise in the detailing due to problems with steel 
congestion from scaling the prototype connection by a factor of 3. It is considered unlikely that 
this type of premature failure would occur in a prototype connection. Removal of both the mild 
steel and the post-tensioning steel after testing was accomplished with little difficulty; thus 
proving the feasibility of the design. The cost of such a replaceable connection, however, may 
prohibit its use in practice. 

A summary of all the beam-column connections tested at NIST is given in Table 2.1. 
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Table 2.1. Description of NIST Precast Connections 

PT Steel 
PT Steel dist. Length of Mild Steel 

Test Specimen Seismic Type" from debonded 
Phase Names Zone Typeb Bonde extreme PT Steel Area Bondd 

fiber, ~ (mm) (mm2
) 

(mm) 

I A-M-Z2 2 M --- --- --- --- 568 F 
B-M-Z2 

I A-M-Z4 4 M --- --- --- --- 613 F 
B-M-Z4 

I A-P-Z4 4 P B F 89 --- --- ---
B-P-Z4 

II A-P-Z2 2 P S F 63 --- --- ---
B-P-Z2 

II C-P-Z4 4 P B F 135 --- --- ---
D-P-Z4 

II E-P-Z4 4 P S F 102 --- --- ---
F-P-Z4 

III G-P-Z4 4 P S P 102 1219 --- ---
H-P-Z4 

IV A I-P-Z4 4 P S F 254 --- 142 F 
K-P-Z4 

IV A J-P-Z4 4 P B U 51 914 213 F 

IV A L-P-Z4 A 4 P S U 40 914 --- ---

IV A L-P-Z4 B 4 P B U 40 914 -- ---

IV A L-P-Z4 C 4 P S U 40 914 186 U 

IVB M-P-Z4 4 P S P 203 1511 142 P 

IV B N-P-Z4 4 P S P 203 1511 131 P 

IV B O-P-Z4 4 P S P 203 1511 213 P 

IV B P-P-Z4 4 P S P 203 1511 197 F 

a M = Monolithic; P = Precast 
b B = Post-tensioning bars; S = Prestressing strands 
c F = Fully grouted; P = Partially grouted; U = Unbonded 
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2.2 Phase IV B Specimens 

2.2.1 Introduction 

Four beam-column connections were tested in Phase IV B. The design forces used to design the 
precast connection were based on those used for a monolithic connection. The prototype 
structure was a 12-story office structure with a story height equal to 3.96 m. It was designed 
based on the following values: Rv = 12, Z = 4, I = 1, S = 1, Ct = 0.030. 

The precast beams and columns were fabricated by a major U.S. precast company using standard 
practices at their plant in California and shipped to NIST where they were assembled and tested. 
The objective of this phase of the test program was to determine the optimum combination of 
mild and PT steels and to examine the use of an alternate type of mild steel as a means of 
improving the energy dissipation characteristics of the connection. 

In Phase IV A, the beams had a nominal moment capacity of 2440 kN-m (c/> = 0.9, fy = 
414 MPa) and a maximum moment capacity of 3241 kN-m (c/>=1.0, fy = 1.25 * 414 MPa = 
517 MPa). Since one of the variable in the Phase IV B specimens was the amount of mild steel, 
the nominal and maximum moment capacities served as lower and upper bounds, respectively, 
in the design of the beams. 

The intent at the beginning of Phase IV B was to proportion the mild and PT steels so that the 
ratios of the moment contribution from the mild steel to that from the PT steel would be 10%, 
20% and 30%, respectively. The mild steel in these cases would consist of Grade 60 (fy = 414 
MPa) reinforcing bars. The mild steel in the fourth specimen would consist of 304 stainless 
steel bars with the moment contribution ratio of the mild steel to the PT steel equal to 20 % . 

However, due to the available sizes of the reinforcing bars and the PT strands, it was not 
possible to obtain the exact ratios of 10%, 20%, and 30%. Several combinations of varying 
amounts of mild and PT steels were tried. The final ratios used in the specimens were 35 % and 
47%. These ratios corresponded to two and three #3 bars located at the top and bottom of the 
beams, respectively, with 3 - 13 mm Grade 270 strands (t;,u = 1862 MPa). It was decided to 
design the two remaining specimens with similar moment contribution ratios with the difference 
being replacement of the #3, Grade 60 (fy = 414 MPa) bars with 304 stainless steel bars meeting 
ASTM A240-87 [ASTM, 1988] specifications. A specimen with a lower moment contribution 
ratio (20 % - 25 %) would have resulted in one #3 bar top and bottom, and based on the Phase 
IV A results, this connection detail would have low energy dissipation characteristics. 

The reason for using 304 stainless steel bars as the energy dissipators was based on the Phase 
IV A results. It was felt that improved energy dissipation characteristics at higher drift levels 
(> 2.0%) of the Phase IV A specimens could be possible if failure (fracture of mild steel) of 
these specimens was delayed. As 304 stainless steel has a total strain elongation capacity of 
approximately 50%, as compared to about 20% for the Grade 60 reinforcing bars, this steel was 
believed to be a good candidate for use in the Phase IV B specimens. 

Results from the Phase IV A tests indicated that the use of unbonded high strength bars located 
at the top and bottom of the beam yielded at approximately 1.7% story drift. Therefore, it was 
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felt that the use of prestressing strands located at the centroid of the beam would increase the 
chances of PT steel remaining in the elastic range at higher story drifts. Also, the use of central 
post-tensioning that runs the full length of the building reduces the number of anchorages and 
the amount of labor, thereby reducing the cost. 

Placement of the PT steel at the centroid of the beam eliminates the need for dogbones (the 51 
and 68 mm extensions of the beams at the column face as seen in Figs. Al - A3). The idea of 
using a trough which runs down the middle of the beam at top and bottom was proposed and 
decided upon (Fig. 2.1). During construction, the mild steel bars would be dropped into the 
trough and inserted through the ducts in the beams and columns after which they would be 
grouted in place. This trough beam with the "uniform" rectangular cross section makes for 
easier construction and is more acceptable architecturally. 

Trough 

Figure 2.1. Trough Beam Used in Phase IV B Specimens. 

The issue of whether to grout or not to grout the post-tensioning steel required a compromise. 
The advantages of using fully bonded tendons are corrosion protection and redundancy in the 
anchorage if the primary anchorage failed. However, fully bonded tendons run the risk of losing 
their initial prestress by localized yielding of the tendons at the beam-column interface, and 
therefore, the required clamping force. Unbonding the tendons provides the greatest potential 

6 



that they remain in the elastic range which means that the connection would experience no 
permanent drift. Therefore, it was decided that the tendons would be partially bonded, that is, 
the tendons would be unbonded through the column and for a distance on either side of the 
column and would be bonded at mid-span of each bay as shown in Fig. 2.2. The length of this 
unbonded distance in the beam depends on the required development length for the tendons. 
This arrangement would address the concern for progressive collapse for an unbonded PT 
system. 

~ 

I _ 

r 
I 
I 
I 
I 

I 
I .. ,- -Bonded Length 

2.41 m 

I 
L 

Test Subassemblage 
r---

'----

Unbonded Length 
3.99m 

I 
I 
I 

I 

- I • I 
~ I 

Bonded Length 
2.41 m 

I 
-1 

-

"-------

Figure 2.2. Bonding of PT Steel in Prototype Connections. 

It was felt that it would be advantageous to be able to monitor the loads in the PT steel 
throughout the tests. Monitoring of the loads in the PT steel would give an indication of when 
yielding occurred and of the load losses in the PT steel due to yielding and to beam shortening. 
The most obvious method of monitoring the loads was strain measurements on the PT steel. 
However, given the scenario for bonding the PT steel shown in Fig. 2.2, this would have been 
difficult as the chances were poor for strain gages attached to the PT steel to survive the post­
tensioning process and the high strain levels at large drift levels. Therefore, it was decided to 
grout the PT steel as shown in Fig. 2.3 and to install load cells on each tendon on the unbonded 
side. The total bonded length of the PT steel was the same as shown in Fig. 2.2. 
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Load Cell 

Unbonded Length 
3.99m 

Bonded Length 
2.41 m 

Figure 2.3. Bonding of PT Steel in Model Connections. 

Steel angles were also included at the comers of the beams at the column interface as it was 
shown that the beams in J-P-Z4 suffered less damage in these regions than did those in 
specimens I-P-Z4 and K-P-Z4 which did not utilize reinforcing angles. Prevention of concrete 
crushing at the beam comers is especially necessary at higher drift levels. 

In summary, the Phase IV B connections were to have central post-tensioning that was partially 
bonded. The PT steel would consist of prestressing strands and steel angles would be included 
at the comers of the beams at the column face. Two types of mild steel were to be used -
regular Grade 60 (fpy = 414 MPa) reinforcing bars and bars made from 304 stainless steel 
(fpy = 414 MPa). 

2.2.2 Specimen Details 

All four specimens, M-P-Z4 to P-P-Z4, had the same design details. The beam and column 
details are given in Appendix A, Figs. A7 - AlD. All of the specimens were post-tensioned with 
3 - 13 mm, Grade 270 (fpu = 1862 MPa) prestressing strands [ASTM A 416-87a, (ASTM, 
1988)] located at the beam centroid. The initial stresses in the prestressing strands were 
approximately equal to 827 MPa or 0.44 fpu (fpu = 1862 MPa). 

The Phase IV B specimens varied only in the amount and type of mild steel. The mild steel in 
specimens M-P-Z4 and O-P-Z4 consisted of 2 - #3 (top and bottom) and 3 - #3 (top and bottom) 
reinforcing bars, respectively. The mild steel in specimens N-P-Z4 and P-P-Z4 consisted of2-
9 mm cf;> and 3 - 9 mm cf;> 304 stainless steel bars, respectively. The main reinforcement details 

for the Phase IV B specimens are shown in Fig. 2.4. The height and width of the beams in 
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Phase IV B differed from those in Phase IV A due to the elimination of the dogbones in the 
Phase IV B specimens. 
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Grade 270 

(f pu = 1862 Mfa) 

3 - #3, 304 Stainless Steel 
~---il-- (f y =414 Mfa) 

'---____ --1 Top and Bottom 

P-P-Z4 

Figure 2.4. Phase IV B Main Reinforcement Steel. 

The stainless steel bars were machined from 11 mm cp (N-P-Z4) and 13 mm cp (P-P-Z4) round 
stock. The threads in the stainless steel bars are shown in Figs. 2.5 - 2.7. The threads shown 
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in Fig. 2.5 were used for the bars in specimen N-P-Z4 and those shown in Fig. 2.6 were used 
for specimen P-P-Z4. The thread pattern shown in Fig. 2.6 proved to be more effective. 
Figure 2.7 shows a comparison of the stainless steel bars with the different threads. The reason 
for the different threads and size of the stainless steel bars was that the stainless steel bars 
debonded during the test of specimen N-P-Z4. This is discussed in Section 3.1.2. 

9.1mm 
Tolerance 

~~2 
11.1 

1.85 

Detail A 

All dimensions in mm 

Figure 2.5. Threads for 304 Stainless Steel Bars Used in N-P-Z4. 
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See Detail A 

/ 

13 
~.95 

14 .1 
8.3 

Detail A 

1.9-J1~ .1 
10.2 

All dimensions in mm 

Figure 2.6. Threads for 304 Stainless Steel Bars Used in P-P-Z4. 

Figure 2.7. Stainless Steel Bar for N-P-Z4 (bottom) and P-P-Z4 (top). 
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Failure of the Phase IV A specimens resulted from the fracture of the mild steel bars. 
Therefore, it was decided to debond the mild steel bars for a length equal to 25 mm on either 
side of the beam-column interface. From the observations made in Phase IV A tests, it appeared 
that the fully bonded mild steel bars debonded for a short distance on either side of the beam­
column interface at higher drift levels. The intentional debonding of the mild steel would 
therefore not diminish the energy dissipation characteristics of the connection and would delay 
the fracture of the mild steel bars. However, the machined stainless steel bars in specimen P-P­
Z4 were fully bonded to maximize the total development length of the bars. This was to ensure 
against bond failure of the mild steel during the test of P-P-Z4 as occurred in specimen N-P-Z4. 

The stirrups in the beams and the ties in the column were welded reinforcement grids (WRG) 
as shown in Fig. 2.7. The WRG was custom made to fit the necessary requirements for the 
specimens and were made from smooth wire. WRG was used due to the congestion caused by 
the hooks in the stirrups and cross-ties. 

Figure 2.7. Welded Reinforcement Grid Ties for Beams and Columns. 

The design concrete strength was 41.37 MPa. The reinforcing steel in beams and columns was 
Grade 60 (fpy = 414 MPa). The actual material properties are given in Appendix B on page 53. 
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2.3 Post-tensioning and Grouting Procedures 

As shown in Fig. 2.3, the PT steel was to be bonded for only a portion of its length. A rubber 
stopper was used to prevent the grout from flowing into the unbonded section of the PT steel. 
The tapered stopper, slightly larger than the duct, had holes cut out to let the strands through 
and was located by measuring the calculated distance from the stopper to the end of the beam. 
As an added precaution, the strands were greased and sheathed beyond the stopper in the region 
of the strands which was intended to be unbonded. 

When post-tensioning the specimens, the prestressing strands were pulled to an initial stress 
equal to 0.8 fpu to seat the chucks. This lessened the load losses in the strands caused by seating 
of the chucks during the tests at high drift levels. The loads in the strands were then released 
and the strands were stretched to approximately 0.7 fpu at which point shims were placed under 
the chucks as necessary. The sizes of the shims were adjusted so that the fInal stresses in the 
strands were equal to 0.44 fpu. This initial stress was lower than that in previous NIST 
specimens and was decided upon because this would allow the specimens to undergo higher drift 
levels before yielding the PT steel. The forces in the strands at the start of each connection test 
are given in Table 2.2. 

Table 2.2. Strand Forces at Start of Test. 

SPECIMEN STRAND 1 (kN) STRAND 2 (kN) STRAND 3 (kN) 

M-P-Z4 84 (0.46 fpu) 79 (0.42 fp.) 84 (0.46 fpu) 

N-P-Z4 78 (0.43 fpu) 76 (0.42 fpu) 77 (0.42 fpu) 

O-P-Z4 75 (0.41 fp.) 77 (0.42 fpu) 75 (0.41 fpu) 

P-P-Z4 84 (0.46 fpu) 81 (0.44 fpu) 82 (0.45 fpu) 

As with the specimens in Phase IV A, the ducts used in the Phase IV B specimens for the mild 
steel were made of 13 mm ID electrical conduit. These conduits were removed by unwinding 
after the beams were cast. This allowed greater clearance and easier grouting of the mild steel. 
A cable grout was used to grout the mild steel bars and the PT steel. 

The construction joint was made of a fIber reinforced grout. The width of the construction joint 
was 8.5 mm. The fIbers used were 13 mm long and were made of nylon. The amount of fIbers 
used was 8.7 kg/m3 of grout. Prior to grouting the construction joint, the surfaces of the beams 
and columns were roughened to an amplitude of approximately 6 mm and these surfaces were 
wetted down for several hours prior to grouting. The grout used was a commercially available 
non-shrink sanded grout. The strengths of this grout and the cable grout are given in 
Appendix B. 
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2.4 Test Procedure 

The boundary conditions for the connections are shown in Fig. 2.8. Boundary conditions for 
the test specimens were as follows: pinned at the column bottom and roller supported at the 
column top and beam ends. 

3.96m 
typL 

t 

4.57m 

L 
t fi r fi r 

See De ail A Detail A 

f rv 
\. ~ 

fi r 7; 7- 7) T 

Figure 2.8. Boundary Conditions. 

As discussed in Cheok and Stone [1993], the loading history for the Phase IV B specimens was 
based on story drift and is the one recommended for use in the PREcast Seismic Structural 
Systems (PRESSS) Program [Priestley, 1992]. The basic loading history is three cycles at a 
particular drift level followed by an elastic cycle as shown in Fig. 2.9. In the elastic cycle, the 
connection was loaded to approximately 30 % of the peak load in the previous three cycles. 
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0.005 

Figure 2.9. Basic Loading History for Phase IV B Specimens. 

The loading history for specimen P-P-Z4 was similar to that shown in Fig. 2.9 to 3.0% story 
drift. However, after this drift level, the specimen was cycled three times at 1.0%, 1.5%, 
2.0%, 3.0% and 3.5% with an elastic cycle in between each drift level (Fig. 2.10). This was 
done in an effort to detennine the perfonnance of the connection in an "aftershock". 
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Figure 2.10. Load History for Specimen P-P-Z4. 

Concentrated loads simulating gravity loads on the beams were applied to all Phase IV 
specimens. A load of approximately 20 kN was applied to each beam at approximately 89 mm 
from the column face. The load was equivalent to a uniform dead load of 5.3 kPa and a live 
load of 2.4 kPa. The simulated gravity loads on the beams were maintained constant throughout 
the tests. 
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3.0 DISCUSSION OF TEST RESULTS 

3.1 Failure Mode 

In general, the crack widths in all the specimens, both beams and columns, were very small 
( < 1 mm ) throughout the tests and these cracks closed at zero displacement. Because of this, 
the strains in the beam ties were very low and were approximately 10% to 15% of yield. Also, 
closures of the openings between the beam and column at zero displacement were observed, even 
at story drifts of 3.0% - 3.5%. 

As the PT steel was bonded in one beam and unbonded through the other, there existed a 
possibility that the crack pattern might differ in the two beams. However, no discernable 
difference in the crack patterns in the two beams of a specimen was observed. 

In all specimens, crushing of the beams began at a story drift of 0.75 %. The beam comers at 
the column face sustained some crushing at the ends of the angle leg and some crushing inside 
the angle. Although significant crushing of the fiber reinforced grout occurred in the later stages 
of the tests, the grout was held together by the fibers. As with the Phase IV A specimens, no 
vertical slip of the beam relative to the column was observed during the tests. 

3.1.1 Specimen M-P-Z4 (2 - #3, Grade 60 reinforcing bars, top and bottom) 

Fracture of mild steel bars resulted in the failure of specimen M-P-Z4. Two of the bar fractures 
occurred during the cycles to 2.9% story drift and one occurred at the cycle to 3.4% story drift. 
The connection at 1.4% and 3.4% (failure) story drifts are shown in Figs. 3.1 and 3.2. The 
maximum opening between the beam and column at 3.4% story drift was 13 mm. 
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Figure 3.1. M-P-Z4 at 1.4% Story Drift. 

Figure 3.2. M-P-Z4 at failure, 3.4% Story Drift. 
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The forces in each of the PT strands are shown in Figs. 3.3 to 3.5. The peak stresses and 
stresses at the end of each test are given in Table 3.1. As seen in Table 3.1, the average peak 
stress in the PT steel was 0.85 fpu for M-P-Z4 which indicates that the PT steel did not yield (fpy 
= 0.93 fpu) and that it remained in the elastic range throughout the test. A further indication 
of this is shown by comparing the stresses in the PT steel at the beginning and at the end of the 
test. The average stress in the PT steel at the end of the test was 0.39 fpu which means that the 
average total loss (fp ini - fp end) in the PT steel was 0.06 fpu' Therefore, the clamping force 
required to resist the gravity loads was maintained throughout the test to failure. 
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Figure 3.3. Force in Prestressing Strand 1, M-P-Z4. 
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Figure 3.4. Force in Prestressing Strand 2, M-P-Z4. 
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Figure 3.5. Force in Prestressing Strand 3, M-P-Z4. 
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Table 3.1. Peak Stresses and Residual Forces in PT Steel. 

Avg. peak % Story Drift @ Stressb in Stressb in Stressb in 
Specimen stress" in strand 1 @ strand 2 @ strand 3 @ 

Strands Peak Stress Failure end of test end of test end of test 

M-P-Z4 0.85 fpu 3.4 3.4 0.38 fpu 0.37 fpu 0.40 fpu 

N-P-Z4 0.94 5.9 2.9c 0.13 0.11 0.10 

O-P-Z4 0.88 3.9 3.4 0.39 0.40 0.38 

P-P-Z4 0.84 3.4 2.9d 0.53 0.51 0.53 

Stress is the average of values for the 3 prestressing strands. 
The stresses at the end of the tests were equal to the minimum values for all specimens except specimen P-P-Z4. 
The minimum stresses in strands 1, 2, and 3 were 0.44,0.42,0.44 fpu' respectively, for specimen P-P-Z4. These 
minimum values were obtained at 1.0% story drift in the aftershock. 
Specimen experienced bond failure of mild steel. 
This value is that for the specimen in the aftershock, i.e., the specimen did not fail when it was subjected to the 
first 3 cycles at this drift level. 

3.1.2 Specimen N-P-Z4 (2 - 9 mm C/>, 304 stainless steel bars, top and bottom) 

Specimen N-P-Z4 failed prematurely due to bond failure of the stainless steel bars. Bond failure 
of one of the stainless steel bars occurred at approximately 2.0% story drift. Bond failure 
occurred at approximately 2.5%, 3.0%, and 6.0% (second cycle) for the remaining stainless 
steel bars. The bar which debonded at 6.0% story drift had yielded in the fIrst cycle at 6.0% 
before debonding. The opening between the beam and column at 5.9% story drift was 23 mm. 
Figures 3.6 and 3.7 show the specimen at story drifts of 1.4% and 2.9% (failure). 
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Figure 3.6. N-P-Z4 at 1.4% Story Drift. 

. . 
I---~ --~ 

. I 

...; - _-v 

Figure 3.7. N-P-Z4 at Failure, 2.9% Story Drift. 
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Due to the debonding of the mild steel, a decision was made to cycle the specimen to 6.0% story 
drift after the cycles at 3.5 % story drift. This was because no yielding of the stainless steel bars 
was expected to occur due to the debonding and therefore, little additional information on the 
energy dissipation characteristics could be gained by cycling the specimen at story drifts of 
3.5%, 4.0%, 4.5%, etc. The specimen was cycled at 6.0% story drift to determine the stress 
in the PT steel and the ability of the connection to resist both the applied and gravity loads at 
this drift level. 

Debonding of the bars occurred in only one beam (south beam) or on one side of the connection. 
Visual indications point to debonding of the bars in one beam and through the column, but 
debonding did not occur in the other beam. The different stages at which bond failure occurred 
seem to indicate that the development length of the bars, 305 mm, was marginal. 

As seen in Table 3.1, the PT steel yielded at a story drift of 5.9 % . As a result of yielding, the 
average stress in the PT steel at the end of the test was approximately 25 % of initial stress or 
0.1 fpu' However, sufficient clamping force was still produced by the PT steel to resist the 
gravity loads as no vertical slip of the beam relative to the column was noted at zero 
displacement. As shown in Figs. 3.8 to 3.10, the strands did not yield at 3.4% story drift. 
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Figure 3.8. Force in Prestressing Strand 1, N-P-Z4. 
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Figure 3.9. Force in Prestressing Strand 2, N-P-Z4. 
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Figure 3.10. Force in Prestressing Strand 3, N-P-Z4. 
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3.1.3 Specimen O-P-Z4 (3 - #3, Grade 60, reinforcing bar, top and bottom) 

Failure of specimen O-P-Z4 also resulted from fracture of the mild steel bars. Bar fractures 
occurred at story drifts of approximately 3.5% and 4.0%. A total of 8 bars fractured in this 
specimen. The opening between the beam and column at failure was 11 mm. Figures 3.11 and 
3.12 show specimen O-P-Z4 at story drifts of 1.4% and 3.4% (failure). 

Figure 3.11. O-P-Z4 at 1.4% Story Drift. 
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Figure 3.12. O-P-Z4 at Failure, 3.4% Story Drift. 

The PT steel in this specimen remained in the elastic range through failure with an average peak 
stress of 0.88 fpu' The total loss in prestress in the PT steel was 0.02 fpu' The forces in the 
prestressing strands are shown in Figs. 3.13 to 3.15. 
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Figure 3.13. Force in Prestressing Strand 1, O-P-Z4. 
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Figure 3.14. Force in Prestressing Strand 2, O-P-Z4. 
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Figure 3.15. Force in Prestressing Strand 3, O-P-Z4. 

3.1.4 Specimen P-P-Z4 (3 - 9 mm 4>, 304 stainless steel bars, top and bottom) 

Failure of specimen P-P-Z4 resulted from fracture of the mild steel bars. Fracture of the bars 
may in part be due to fatigue as this specimen was subjected to a total of number of 57 cycles 
prior to failure. The bars fractured at story drifts of approximately 2.0% and 3.0% in the 
aftershock. A total of6 stainless steel bars were suspected to have fractured. Figures 3.16 and 
3.17 show specimen P-P-Z4 at 1.4% and 2.9% story drift in the aftershock. 
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Figure 3.16. P-P-Z4 at 1.4% Story Drift. 

Figure 3.17. P-P-Z4 at Failure, 2.9% Story Drift. 
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Unlike the previous specimens, a large area of concrete cover (Fig. 3.18) pulled out of the 
column around the mild steel bars and spalled off. Similar spa1ling of the concrete cover around 
the mild steel bars occurred in the other specimens but to a lesser extent. This may have been 
caused by the fact that the mild steel bars in this specimen were fully grouted whereas the bars 
in the other specimens were debonded 25 mm on either side of the beam-column interface. 

Figure 3.18. Spalling of Concrete Cover, 2.9% Story Drift, P-P-Z4. 

The forces in the prestressing strands are shown in Figs. 3.19 to 3.21. As with the previous 
specimens, the PT steel remained in the elastic range with an average peak stress equal to 0.84 
fpu- As seen in Table 3.1, the stress in the PT steel at the end of the test, 0.52 fpu, is greater 
than the initial stress, 0.45 fpu (Table 2.2). 
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Figure 3.19. Prestressing Force in Strand 1, P-P-Z4. 
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Figure 3.20. Prestressing Force in Strand 2, P-P-Z4. 
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Figure 3.21. Prestressing Force in Strand 3, P-P-Z4. 

Two possible reasons are offered for this increase in stress. At the end of the test, a gap of 
approximately 0.8 rnm to 1.6 rnm existed between one of the beams and the column. This gap 
corresponds to an increase in stress in the PT steel of 105 MPa - 210 MPa based on a modulus 
of elasticity of 199,955 MPa. The difference in the PT steel stress from the start to the end of 
the test is 130 MPa (0.07 fpu) which is within the range stated. One possible reason for the 
existence of the gap is debris falling between the beam and column during the test. Another 
possible reason is that upon fracturing, the two pieces of the elongated mild steel bar were 
misaligned and as a result, kept the gap between the beam and column from closing totally at 
zero displacement. This reason is offered because the stress increase in the PT steel at zero 
displacement (see Figs. 3.19 to 3.21) began after fracture of the mild steel bars occurred. 

3.2 Story Drift 

The hysteresis plots for the Phase IV B specimens are given in Figs. 3.22 to 3.25. The 
hysteresis plots for the monolithic Zone 4 specimens are given in Figs. 3.26 and 3.27 for 
comparison purposes. The story drifts at failure for all specimens are given in Table 3.2. 
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Table 3.2. Connection Strengths and Story Drifts. 

Moment (kN-m) Experimental Number of 
Specimen Name Story Drifts Loading Cycles 

Predicted Experimental @ Failure (%) to Failure 

A-M-Z2 & B-M-Z2 68 80/75 4.4 / 4.6 8/8 

A-P-Z2 & B-P-Z2 49- 54/54 2.5/2.9 5/6 

A-M-Z4 & B-M-Z4 132 148 / 153 3.7/3.4 8/8 

A-P-Z4 & B-P-Z4 160' 186/ 186 3.4 /3.8 13/13 

C-P-Z4 & D-P-Z4 159- 171/ 169 6.3 / 6.2 15/ 15 

E-P-Z4 & F-P-Z4 113- 138/ 146 7.0/6.9 16/15 

G_P_Z4b & H-P-Z4b 111" 123/ 132 5.9/5.6 19/ 18 

I-P-Z4' 133- 138 2.7 7 

J-P-Z4 153- 152 3.6 12 

K-P-Z4 139' 151 3.1 7 

L-P-Z4 A" 126- 105 1.5 36 

L-P-Z4 Bb 98- 82 1.5 36 

L-P-Z4 Cd 141" 117 2.0 38 

M-P-Z4 109' 119 3.4 42 

N-P-Z4' 116- 116 2.9 38 

O-P-Z4 126- 139 3.4 43 

P-P-Z4 1248 128 2.9" 57 

_ Moments obtained from an analysis program [Cheok, Stone, Lew, 1993] which calculates the moments for a section given 
an imposed beam rotation. 

b These specimens were not tested to failure. 
, Bond failure of mild steel. 
d Shear failure in beam. 
• Failure occurred in the aftershock 

33 



400 90 400 90 

300 67 300 67 

200 45 200 45 

100 100 ..-.. 22 t"" ..-.. 22 b g 0 g 
0 0 Il:> 0 Il:> 

Q. 0 Q. 
"'0 

~ "0 g ~ ~ 0 
-22 

'-' 

oS .....:l -100 -100 -22 

-200 -45 -200 -45 

-300 -67 -300 -67 

-400 -90 -400 -90 

-7 -5 -3 -1 3 5 7 -7 -5 -3 -1 3 5 7 

Story Drift (%) Story Drift (%) 

Figure 3.22. Hysteresis Curves for M-P-Z4. Figure 3.23. Hysteresis Curves for N-P-Z4. 
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Figure 3.24. Hysteresis Curves for O-P-Z4. Figure 3.25. Hysteresis Curves for P-P-Z4. 
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Figure 3.26. Hysteresis Curves for A-M-Z4. Figure 3.27. Hysteresis Curves forB-M-Z4. 

As seen in Table 3.2, the Phase IV B specimens had slightly lower story drifts than did the two 
monolithic zone 4 specimens. However, it is the opinion of the authors that the story drifts for 
the Phase IV B specimens would have been slightly higher than those given in Table 3.2 had 
these specimens been subjected to the same loading history as the monolithic specimens. The 
number of cycles that the Phase IV B specimens were subjected to was at least 4 times that of 
the monolithic Zone 4 specimens. 

3.3 Connection Strength 

The connection strengths are given in Table 3.2. The predicted moments for the monolithic 
specimens were calculated based on the actual yield stress of the steel with a factor of 1.25 
applied to it to account for steel strain hardening, the 28-day concrete compressive strength and 
an ultimate concrete strain of 0.003. The predicted moments for the precast specimens were 
calculated using program B6.FOR [Cheok and Stone, 1993]. In brief, steel strain hardening is 
accounted for in the program by using the stress-strain curve for the given steel which includes 
values through bar fracture. The concrete compression force was computed based on a 
triangular stress distribution up to steel yield and on the Whitney stress block thereafter. 

From the predicted moments given in column 2 of Table 3.2, it can be seen that the predicted 
moments for the Phase IV B specimens are lower than those for the monolithic zone 4 
specimens. As a result, the experimental moments for the Phase IV B specimens are slightly 
lower than those for the monolithic Zone 4 specimens. However, it can be reasoned that if the 
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predicted moments for the Phase IV B specimens were similar to the monolithic Zone 4 
specimens, the experimental moments for the Phase IV B specimens would be comparable to the 
monolithic specimens. 

As seen in Table 3.2, the experimental moments obtained for the monolithic specimens were on 
average 14% greater than the calculated moments. For the Phase IV B specimens, the 
experimental moments were on average 4% higher than the predicted moments. 

3.4 Energy Dissipation 

Due to the different yield displacements and concrete strengths for the specimens, it was felt that 
the most practical means of comparing the energy dissipation was to plot the dimensionless 
cyclic energy dissipated against the story drift. The dimensionless quantity of cyclic energy 
dissipated was determined by dividing the energy dissipated per cycle by the product of the 
maximum predicted moment and the story drift (percent) for that cycle. In Fig. 3.28, the 
normalized cyclic energy is plotted against the story drift and a best-fit curve is drawn through 
these points. 
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Figure 3.28. Comparison of the Normalized Cyclic Energy for Phase IV B Specimens. 

36 



As shown in Fig. 3.28, the precast specimens (M-P-Z4, O-P-Z4 and P-P-Z4) matched the 
behavior of the monolithic specimen up to approximately 1.5 % story drift. The code-allowed 
drift for the prototype structure is approximately 1.1 %. As seen in Fig. 3.28, the Phase IV B 
specimens did not perform as well as the monolithic specimen after 1.5% story drift. Two 
points should be made at this stage. As mentioned earlier, the monolithic specimens were 
subjected to a total of 8 cycles prior to failure whereas the Phase IV B specimens were subjected 
to more than 4 times that number of cycles. Also, recent studies [e.g. Priestley and Tao, 1993] 
have shown that the while some energy dissipation is necessary to control deflections, the 
benefits at higher drift levels is unclear. This is because the displacements of the structure are 
more strongly influenced by the individual characteristics of the earthquake than by the amount 
of energy dissipated. 

The poor performance of N-P-Z4 was due to premature bond failure of the mild steel. It should 
be noted that in Fig. 3.28 no data points exist between 3.5 and 6.0% story drifts for N-P-Z4. 
The performance of O-P-Z4 which had 50% more mild steel than M-P-Z4 was similar to that 
of M-P-Z4 up to 1.5% story drift. Thereafter, a distinct difference exists between the two 
curves (Fig. 3.28). The performance of specimen O-P-Z4 was approximately 50% better than 
that of M-P-Z4 beyond 1.5 % story drift. The normalized energy curve for P-P-Z4 in the 
aftershock is approximately 75 % of the original P-P-Z4 curve. This is more clearly shown in 
Fig. 3.29 which shows the cyclic energy dissipated for P-P-Z4. 
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Figure 3.29. Cyclic Energy Dissipation for P-P-Z4. 
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A comparison of specimens P-P-Z4 (304 stainless steel) and O-P-Z4 (Grade 60 reinforcing bar) 
shows no clear improvement in performance in terms of cyclic energy dissipation. It is possible 
that specimen P-P-Z4 (Fig. 3.27) would have attained higher drift levels with similar energy 
dissipation had the specimen been subjected to the same loading history as O-P-Z4. It is, 
however, not possible to assess the contribution towards bar fracture due to fatigue in the bars 
as a result of the additional 14 cycles which constituted the aftershock. 

Another possible explanation for the "mediocre" performance of the 304 stainless steel was the 
"fabrication" of the deformations (ribs) on the bars. Tension tests of the machined stainless steel 
bars showed that these bars exhibited total elongation of approximately 30% (51 mm gage 
length) as opposed to the 55% (51 mm gage length) obtained for a 304 stainless steel bar that 
was not machined. Fracture of these test coupons occurred at the transition from the ribs to the 
reduced area as occurred in the specimen tests. Therefore, if deformed 304 stainless steel bars 
made in the same manner as regular reinforcing bars had been available, the performance of the 
connections with these bars might have been better. 
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4.0 CONCLUSIONS AND FUTURE RESEARCH 

4.1 Summary and Conclusions 

A total of 22 concrete beam-column connection tests constituted a mUlti-year test program at 
NIST on precast concrete connections. Four of these connections were monolithically cast while 
the remaining 18 were post-tensioned, precast connections. The objective of the test program 
was to develop recommended guidelines for moment resisting precast beam-column connections. 
Variables included the amount and placement of the post-tensioning steel, the type of bonding 
of the post-tensioning steel (full, partial, none), the use of low strength steel with post-tensioning 
(hybrid connection), and the type and amount of low strength steel. This report summarizes the 
results of the hybrid connection tests. 

The hybrid connections consisted of partially bonded prestressing steel located at the centroid 
of the beam and low strength, non-prestressed steel located at the top and bottom of the beam. 
The low strength steel was debonded 25 mm on either side of the beam-column interface to 
delay fracture of the bars. 

The results show that a hybrid connection can be designed to match or exceed the performance 
of a similar monolithic connection in terms of connection strength, drift capacity, energy 
dissipation, residual drift, and damage to the concrete. The hybrid connection provides a means 
of connecting the precast members for large forces in severe seismic zones. It takes advantage 
of the best features of precast construction and combines them with the hysteretic damping 
characteristics of a conventional cast-in-place reinforced concrete structure. 

4.2 Code Implications 

Anticipated inelastic drift demand, as prescribed by UBC [Sections 2334(h)2 and 2337(b)4, 
ICBO, 1991], varies with the period of the structure. For office buildings employing moment 
resistant frames, the anticipated drift demand can be shown to be 1.5 % and 1.12 % for structures 
with fIrst mode periods of less than 0.7 s and for structures with periods greater than 0.7 s, 
respectively. The NIST test data clearly indicate that, even for the more rigorous drift 
demand level of 1.5%, hybrid precast beam-column connections exceed the structural 
(hysteretic) damping capacity of an equivalent monolithic joint. In addition, they exhibit 
minimal residual drift and the precast elements sustain very little damage. 

Beyond a drift level of 1.5% and up to a drift level of approximately 3.5%, monolithic (cast-in­
place) joints exhibited between 30% to 90% more structural damping than the precast joints, 
depending on the amount of dissipative steel in the precast joints. However, this extra damping 
was obtained at a cost of the total destruction of the monolithic beams. For drifts ranging from 
1.5% to 3.5%, hybrid precast joints which contained greater amounts of mild steel relative to 
the prestress steel produced structural damping characteristics that were closer to those of the 
monolithic specimens. 

More importantly, destruction of the dissipative elements in the precast joint does not lead to 
failure of the joint (as it would in a monolithic joint). There is a "soft" failure wherein 
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significantly greater drift capacity remains, since at 3.5 % drift the central prestress tendons still 
remained elastic. In the hybrid specimen tested to 6% story drift, a strength level of 
approximately 55 % of maximum moment capacity was maintained after 3 cycles at 6 % drift. 
Of course, no one will design to this drift level, but the point is that the hybrid precast 
connection detail is inherently safer than a monolithic design in the face of unanticipated drift 
demand due to this redundant moment resisting mechanism. 

4.2 Future Research 

Based on the results of the NIST precast concrete connection program, it has been shown that 
a hybrid connection can be designed to resist seismic loading. However, the development of 
design guidelines will require that further studies be conducted to broaden the current database. 
These studies include: 

• Analytical studies on the inelastic behavior of precast connections. Some studies 
have already been conducted by Mole [1994] and by Priestley and Tao [1993]. 

• Additional static tests of hybrid connections with varying amounts and types of 
PT and mild steels, and with varying levels of initial PT stress. The effects of 
different loading histories should also be investigated. 

• Cyclic load tests to determine conservative development lengths for deformed 
energy dissipators which are grouted into precast ducts. Problems with two NIST 
beam-column joint specimens indicated that the development lengths for cast-in­
place deformed reinforcement used in seismic zones as specified by ACI may not 
be conservative for deformed reinforcement grouted into pre-existing ducts. 

• Shake table tests to determine the dynamic properties of the connections. 

• Tests of frames incorporating hybrid connections. 

As discussed earlier, hysteretic damping may play a less significant role in structural behavior 
than the site-dependent earthquake characteristics. Currently, inelastic, transient analysis tools 
employing robust hysteretic models exist to design hybrid precast buildings which will meet the 
strength and drift requirements of the UBC. It will, however, be some time before these tools 
are available to a general structural design office. As an interim solution, parametric analyses 
are being performed at NIST to develop equivalent Rw factors for various classes of precast 
beam-columnjoints employed in structures of varying height founded on representative UBC soil 
types. These analyses will be conducted using a 7-parameter derivative of the program ICARC 
[Kunnath, Reinhom, and Lobo, 1992]. The parameter identification will be carried out using 
the NIST in-house code NIDENT5. 
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Figure AI. Basic Details for Specimens I-P-Z4 and K-P-Z4 (Phase IV A). 
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Figure A2. Basic Details for Specimen J-P-Z4 (Phase IV A). 
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Figure A3. Basic Details for Specimen L-P-Z4 C (Phase IV A). 
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Figure A7. Column Cross Section, M-P-Z4 to P-P-Z4 (Phase IV B). 
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APPENDIX B: MATERIAL PROPERTIES 

Table B.l. Compressive Strengths of Concrete and Grout. 
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28 47 77 75 

Day of Test 53 71 76 
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Figure Bl. #3, Grade 60, Reinforcing Bar Used as Mild Steel in M-P-Z4. 
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Figure B2. 304 Stainless Steel Bar Used as Mild Steel in N-P-Z4. 
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Figure B3. #3, Grade 60, Reinforcing Bar Used as Mild Steel in O-P-Z4. 
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Figure B4. 304 Stainless Steel Bar Used as Mild Steel in P-P-Z4. 
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Figure B5. Prestressing Tendon, 13 mm cP, Grade 270. 
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Figure B6. Wire, 5 mm </>, used in WRG. 
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Figure B7. Wire, 7 mm </>, used in WRG. 
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Figure B8. #3, Grade 60, Reinforcing Bars Used in Beams, M-P-Z4 to P-P-Z4. 
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Figure B9. #6, Grade 60, Reinforcing Bars Used in Columns, M-P-Z4 to P-P-Z4. 
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