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ABSTRACT

The optimum parameters of tuned mass dampers (TMD) that result in considerable reduction in the
response of structures to seismic loading are presented. The criterion used to obtain the optimum
parameters is to select, for a given mass ratio, the frequency (tuning) and damping ratios that
would result in equal and larger modal damping in the first two modes of vibration. The
parameters are used to compute the response of several single and multi-degree-of-freedom
structures with TMDs to different earthquake excitations. The results indicate that the use of the
proposed parameters reduces the displacement and acceleration responses significantly. The
method can also be used in vibration control of tall buildings in the so called "mega-substructure
configuration," where substructures serve as vibration absorbers for the parent structure. It is
shown that as a result of selecting the parameters as proposed in this paper, significant reduction in
the response of tall buildings can be achieved." .
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1. INTRODUCTION

The tuned mass damper (TMD) is a passive energy absorbing device consisting of a mass, a spring,
and a viscous damper attached to a vibrating system to reduce undesirable vibrations. According to
Onnondroyd and Den Hartog [12], the use ofTMDs was first suggested in 1909. Since then, much
research has been carried out to investigate their effectiveness for different dynamic loading
applications. Tuned mass dampers are effective in reducing the response of structures to hannonic
[1] or wind [8, 9] excitations. TMDs have been installed in high rise buildings to reduce wind­
induced vibrations. Examples include: the 244 m high John Hancock Tower in Boston [5] with a
TMD consisting of two 2.7 x 105 kg (300 ton) lead and steel blocks; the 2.80 m high Citicorp Center
Office Building in New York City [14] with a TMD using a 3.6 x 105 kg (400 ton) concrete block;
and the Terrace on the Park Building in New York City [19], where a TMD was installed to reduce
the vibrations induced by dancing. For seismic applications, however, there has not been a general
agreement on the adequacy of TMD systems to reduce the structural response.

This report briefly reviews studies on the use of TMDs for seismic applications and proposes a
method for selecting the TMDs parameters by providing equal and larger damping ratios in the
complex modes' of vibration. The optimum parameters are formulated in terms of the mass ratio of
the TMD, damping ratio, and mode shapes of the structure. To show the effectiveness of· the
proposed method, the response of several single and multi-degree-of-freedom structures, with and
without TMDs, to different ground excitations are presented and compared to those from other
methods. The method is also used to compute the tuning and damping ratios of substructures
utilized as vibration absorbers in tall buildings. This concept, referred to as "mega-substructure
configuration" by Feng and Mita [3] uses no external devices nor additional masses to control
vibrations. Comparisons with responses using their method are presented to demonstrate the
effectiveness of the proposed method.

"Because of non-proportional damping, the analysis of TMD systems lends itself to complex modal analysis.
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2. SUMMARY OF PREVIOUS WORK

A typical tuned mass damper consists of a mass m which moves relative to the structure and is
attached to it by a spring (with stiffness k) and a viscous damper (with coefficient c) in parallel as
shown in Figure 2.1. A tuned mass damper is characterized by its tuning, mass, and damping
ratios. The tuning ratio f is defined as the ratio of the fundamental frequency of the TMD OJ, to
that of the structure OJo ' Thus,

The mass ratio J1 is:
J1=m/M

(2.1)

(2.2)

where M is the total mass for a SDOF structure or the generalized mass for a given mode of
vibration of a MDOF structure computed for a unit modal participation factor. The damping ratio of
the TMD is given by:

(2.3)

Several investigators have studied the effect of optimum TMD parameters f and ~ for a given J1 on
reducing the response of structures to earthquake loading. There has not been a general agreement,
however, on the effectiveness of TMDs in reducing structural response to seismic loading. The
following is a brief summary of the studies:

Gupta and Chandrasekaren [4] studied the influence of several TMDs with elastic-plastic properties
on the response of SDOF structures subjected to the S21 W component of the Taft accelerogram,
Kern County earthquake, June 21, 1952. Their study showed that TMDs are not as effective in
reducing the response of structures to earthquake excitations as they are for sinusoidal loads.
Kaynia et al. [7], used an ensemble of 48 earthquake accelerograms to investigate the effect of
TMDs on the fundamental mode response. They found that the optimum reduction in response is
achieved at f =1 and that increasing the period and damping of the structure decreases the
effectiveness of TMDs. They concluded, however, that in general TMDs are less effective in
reducing the seismic response of structures than previously thought. Sladek and Klingner [13] used
the Den Hartog [1] method to select the parameters f and ~ for a TMD placed on the top floor of a
25-story building. The basis for the Den Hartog method is to minimize the response to sinusoidal
loading which for an undamped system results in the following TMD parameters:

f= _I_
1+ .u and ~- OL

fW+tD (2.4)

The analysis of the 25-story building subjected to the SOOE component of the EI Centro
accelerogram, the Imperial Valley earthquake, 1940 revealed that the TMD was not effective in
reducing the response of the building.

The first successful analysis of TMD for seismic loading was introduced by Wirsching and Yao
[20] where they computed the first mode response to a non-stationary ground acceleration for a five
and a ten-story building with two percent damping. They selected a TMD mass equal to one-half
the mass of a typical floor and a tuning ratio f = 1. Considerable reduction in response was
obtained with a TMD damping ratio ~ = 0.20. Later, Wirsching and Campbell [21] used an
optimization method to calculate the TMD parameters for 1,5, and 10-story buildings subjected to a
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stationary white noise base acceleration. They observed that TMDs were quite effective in reducing
the response.

Dong [2] observed that the light wing of a building can act as a vibration absorber for the main
building and reduce its seismic response significantly, while the wing itself may experience large
displacements. Ohno et al. [11] presented a method for tuning TMDs so that the mean square
acceleration response of the main structure is minimized. They assumed that the acceleration power
spectral density of the earthquake ground motion at the base is constant for a certain frequency
range. Jagadish et al. [6] analyzed a two-story structure with a bilinear material behavior subjected
to the S69E component of the Taft accelerogram, Kern County earthquake, 1952 with the top floor
functioning as a vibration absorber for the lower one. They observed that for f =0.8 to 1.0, a
reduction of 50 percent in the ductility demand for the lower story can be achieved. They also
introduced the concept of "expendable top story" where the top floor can absorb a major portion of
the seismic energy and experience damage; thereby, reducing the response of the lower stories.
Such a concept juxtaposes the "soft first story" concept where the earthquake energy is absorbed at
the base or the first level. The soft first story approach, however, is not practical and may
jeopardize the stability and safety of the structure.

Numerous studies on the applicability of TNIDs for seismic applications were carried out by
Villaverde [15, 17], Villaverde and Koyama [16], and Villaverde and Martin [18] where it was
found that TMDs performed best when the first two complex modes of vibration of the combined
structure and damper have approximately the same damping ratios as the average of the damping
ratios of the structure and the TMD. To achieve this, Villaverde [15] found that the TMD should be
in resonance with the main structure (f =1) and its damping ratio be

(2.5)

where {3 is the damping ratio of the structure, J.L is the ratio of the mass of the absorber to the
generalized mass of the structure in a given mode of vibration (usually the fundamental mode) and
<t> is the amplitude of the mode shape at the TMD location. Both J1 and <t> are computed for a unit
modal participation factor. This method was used in several 2-D and 3-D analyses of buildings and
cable-stayed bridges under different ground excitations and was found effective, numerically and
experimentally, in reducing the response. It will be discussed later that Villaverde's formulation
does not result in equal dampings in the first two modes of vibration, especially for large mass
ratios. More recently, Miyama [10] argued that TMDs with a small mass (less than two percent of
the first mode generalized mass) are not effective in reducing the response of buildings to
earthquake excitations. He suggested that most of the seismic energy should be absorbed by the top
story so that the other stories would remain undamaged. The top story should have appropriate
strength, ductility, and supplemental damping to resist the loads. Numerical results indicate that it is
possible to obtain 80 percent energy absorption with a mass ratio of five percent by tuning the
frequency of the top story to that of the structure.

From the above discussions, it seems that TMDs can be effective in reducing the response of
structures to seismic loads. The problem is how to find the optimum TNID parameters in order to
achieve the most reduction in the response. In the next sections, an improvement to the method
introduced by Villaverde is presented and new equations are formulated to insure that the first two
modes of vibration of the structure with TMD will have equal damping ratios which are greater than
(~ + {3)/2. Numerical results are presented to illustrate the effectiveness of the improved method in
determining the TMD parameters for seismic applications.
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3. TMD FOR SDOF STRUCTURES

For a SDOF structure with a TMD (Figure 2.1), the system matrix A in terms of the natural
frequency and damping ratio (mo and f3) of the structure, and the mass, tuning, and damping ratios
( J.1, f, and ~) of the TMD is

a a 1 a
a a a I

A=
-m;f2 m;f2 -2mJ~ 2mof;

(3.1)

m;J.lf2 -m;(1 + J.lf2) 2moJ.lf; - 2m0 (J.lf; + f3)

The eigenvalue problem IA- AI Iresults in the following fourth order equation

The solution of equation (3.2) 1S in complex conjugate pairs with the following complex
eigenvalues:

Ar,,+] = -mr ;, ± i illr ~1- ;; , r=I,3 (3.3)

where Ar is the rth eigenvalue, mr and;, are the natural frequency and damping ratio of the system
in the rth mode, and i is the unit imaginary number (i = p). Villaverde [15] showed that for a
TMD to be effective, the damping ratios in the two complex modes of vibration, ;] and ;3 should
be approximately equal to the average damping ratios of the structure and the TMD, i.e. ;1 == ~3 ==
(~ + f3)I2; thus, increasing the modal damping ratios. To achieve this criterion, it was shown
analytically [15, 16] that the TMD should be in resonance with the main system (f = 1) and its
damping ratio should satisfy equation (2.5). Numerical results, however, show that such
formulation is valid only for mass ratios smaller than approximately 0.005. For larger mass ratios,
substantial discrepancy in the two modal dampings exists for a typical structure with a damping
f3=0.05 (see Table 3.1). Consequently, another procedure to achieve equal dampings is proposed
in this study.

The proposed procedure searches numerically for the optimum values of f and ~ (the optimum
values are those which result in approximately equal damping ratios ~l == ;3) corresponding to a
desired mass ratio J.1. Equation (3.2) shows that the optimum parameters f and ~ are independent
of the natural frequency of the main system mo since the equation is normalized to 01

0
, To

determine the optimum values of f and ~ for a given J.1 and f3, the complex eigenvalue problem
IA- All is solved in the following manner: for a given damping ratio f3 and for each mass ratio J.1,
the values of f and ; are varied, matrix A is formed, and its eigenvalues are computed. The
optimum values are determined when the difference between the two damping ratios ~] and ;3 is the
smallest. The procedure was used for systems with damping ratios f3 = 0., 0.02, and 0.05 and
mass ratios J.1 between 0.005 to 0.15 with increments of 0.005. It was found that the optimum
TMD parameters result in approximately equal modal damping ratios (~I == ~3) greater than (~ +
f3)/2 and equal modal frequencies (011 == ( 3 ). The optimum ratios are presented in Table 3.2.
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Table 3.1. Complex mode damping ratios computed by the Villaverde
method for a structure with damping 13 =0.05.

J1 ~ (~ + 13)/2 ~l ~3
0.005 0.1207 0.0854 0.0983 0.0727
0.010 0.1500 0.1000 0.1207 0.0801
0.020 0.1914 0.1207 0.1544 0.0888
0.050 0.2736 0.1618 0.2281 0.1019
0.100 0.3662 0.2081 0.3218 0.1111

Table 3.2. Optimum TMD tuning and damping ratios for three structural
d . t'ampmg ra lOS.

Mass 13 = 0 13 = 0.02 13 = 0.05
ratio f ~ f ~ f ~
f.1
0.000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
0.005 0.9950 0.0705 0.9936 0.0904 0.9915 0.1199
0.010 0.9901 0.0995 0.9881 0.1193 0.9852 0.1488
0.015 0.9852 0.1216 0.9828 0.1412 0.9792 0.1707
0.020 0.9804 0.1400 0.9776 0.1596 0.9735 0.1889
0.025 0.9756 0.1562 0.9726 0.1757 0.9680 0.2048
0.030 0.9709 0.1707 0.9676 0.1900 0.9626 0.2190
0.035 0.9662 0.1839 0.9626 0.2032 0.9573 0.2320
0.040 0.9615 0.1961 0.9578 0.2153 0.9521 0.2440
0.045 0.9569 0.2075 0.9530 0.2266 0.9470 0.2551
0.050 0.9524 0.2182 0.9482 0.2372 0.9420 0.2656
0:055 0.9479 0.2283 0.9435 0.2472 0.9370 0.2754
0.060 0.9434 0.2379 0.9389 0.2567 0.9322 0.2848
0.065 0.9390 0.2470 0.9343 0.2658 0.9274 0.2937
0.070 0.9346 0.2558 0.9298 0.2744 0.9226 0.3022
0.075 0.9302 0.2641 0.9253 0.2827 0.9179 0.3103
0.080 0.9259 0.2722 0.9209 0.2906 0.9133 0.3181
0.085 0.9216 0.2799 0.9165 0.2983 0.9087 0.3257
0.090 0.9174 0.2873 0.9122 0.3056 0.9042 0.3329
0.095 0.9132 0.2945 0.9079 0.3128 0.8998 0.3399
0.100 0.9091 0.3015 0.9036 0.3196 0.8954 0.3466
0.105 0.9050 0.3083 0.8994 0.3263 0.8910 0.3532
0.110 0.9009 0.3148 0.8952 0.3328 0.8867 0.3595
0.115 0.8969 0.3212 0.8911 0.3390 0.8824 0.3656
0.120 0.8929 0.3273 0.8870 0.3451 0.8782 0.3716
0.125 0.8889 0.3333 0.8830 0.3511 0.8741 0.3774
0.130 0.8850 0.3392 0.8790 0.3568 0.8699 0.3831
0.135 0.8811 0.3449 0.8750 0.3624 0.8658 0.3886
0.140 0.8772 0.3504 0.8710 0.3679 0.8618 0.3939
0.145 0.8734 0.3559 0.8671 0.3733 0.8578 0.3991
0.150 0.8696 0.3612 0.8633 0.3785 0.8538 0.4042
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Figure 3.1 shows the optimum parameters 1 and ~ for different mass ratios and the three structural
dampings. The figure indicates that the higher the structure's damping ratio, the lower is the tuning
ratio and the higher is the TMD damping. The figure may be used to select the TMD parameters by
estimating its mass, computing the mass ratio J-l, and then determining the tuning and damping
ratios 1 and ;. Figure 3.2 shows the modal frequencies and dampings for the structure with
TMD. It is observed from the figure that the higher the mass ratio, the higher the damping in the
modes. From Table 3.2 and Figures 3.1 and 3.2, it is evident that increasing the mass ratio J-l
requires a decrease in the tuning ratio 1 and an increase in the damping ratio ~, thus resulting in a
higher damping in the two modes of vibration.

For design purposes, it may be convenient to present the optimum TMD parameters by simple
equations rather than tables. Curve fitting was used to find 1 and ~ in tenns of J-l and {3. For an
undamped structure, the tuning ratio 1 is found to be equal to 1/(1 + J1) and the damping ratio ~

equal to -J J1 1(1 + J1). For a damped structure, the following equations give close approximations to
the 1 and ~ values presented in Table 3.2: .

and

1=_1[1- fJ CL]
1+J1 ~1+P

;=L+~ II
1+J1 1+J1

(3.4)

(3.5)

These equations result in a maximum error of approximately 0.2 percent in 1 and 0.4 percent in ~.

3.1 Numerical Studies

To examine the effectiveness of the proposed procedure in determining the TMD parameters for
seismic excitations, 30 SDOF structures with periods between 0.1 to 3.0 s with increments of 0.1 s
were analyzed with and without TMDs. The structures had damping ratios {3 ::: 0.02 and 0.05 and
the mass ratios were selected to vary between 0.02 and 0.10 with increments of 0.02. The TMD
parameters used were those presented in Table 3.2. The structures were subjected to a set of 52
horizontal components of accelerograms from 26 stations in the western Unites States (Appendix
A). These records include a wide range of earthquake magnitudes (5.2 to 7.7), epicentral distances
(6 kIn to 127 km), peak ground accelerations (0.044 g to 1.172 g), and two soil conditions (rock
and alluvium). The response (displacement or acceleration) ratio is computed as the ratio of the
peak response of the structure with TMD to the peak response without TMD. The stroke ratio is
defined as the peak stroke length (displacement of TMD relative to that of the structure) divided by.
the peak displacement of the structure. The mean displacement and acceleration response ratios, and
mean stroke ratio for the 30 structures, the five mass ratios, and the 52 records are shown. in Figure
3.3 for a damping ratio of 0.02 and in Figure 3.4 for a damping ratio of 0.05.

The following observations can be made from Figures 3.2, 3.3 and 3.4:
• Reductions in displacement and acceleration responses can be achieved with a TMD, especially

for structures with low damping ratios {3:::0.02 (Figures 3.3 and 3.4).
• Increasing the mass ratio reduces the response (Figures 3.3 and 3.4). This is expected since

increasing the mass ratio results in a higher TMD damping ratio, and consequently, a higher
damping in the two modes of vibration.
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Figure 3.2. Natural frequencies and damping ratios in the first two modes.
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• For a mass ratio of 0.04 (Figure 3.2), the structure with a /3=0.02 will have a damping ratio of
0.12 in the first two modes (six times greater than the damping of the structure), whereas for a
/3=0.05, the first two modes will have a damping ratio of 0.15 (only three times the damping of
the structure). Therefore, UvIDs are more effective for structures with small damping ratios.

• For rigid structures, i.e. structures with periods 0.1 to 0.2 s (Figures 3.3 and 3.4), TMDs are
not effective. The use of a higher mass ratio is not desirable and may be even detrimental to the
structure, especially for a damping ratio of 0.05.

• As expected, the stroke length is larger for systems with small damping ratios. This must be
accounted for in design (Figures 3.3 and 3.4).

To examine the dispersion of the results obtained from the 52 records, the coefficient of variation,
COV (standard deviation divided by the mean) was computed for various cases. Figure 3.5
presents the COV for the displacement response ratio for structures with a damping of 0.05. The
figure shows that the larger the mass ratio, the larger is the dispersion of the results. The COV,
however, for all periods and mass ratios is less than 0.16. Similar values were obtained for mean
acceleration response and stroke lengths.

3.2 Comparison with other methods

The method proposed herein is compared with that introduced by Villaverde. The comparison is
carried out for two SDOF structures with different periods T, dampings [3, and mass ratios J1 as
shown in Table 3.3. Four accelerograms -- the SOOE component of El Centro accelerogram, the
Imperial Valley earthquake, 1940; the S90W component of El Centro accelerogram, the Borrego
Mountain earthquake, 1968; the NOOW component of 8244 Orion Boulevard and the NOOE
component of 7080 Hollywood Boulevard accelerograms, the San Fernando Earthquake, 1971-­
were used in the analysis. The results in Table 3.3 indicate that the method proposed in this study
results in a lower response than Villaverde's method. It should be noted that for a given mass ratio,
the proposed method results in a lower stiffness (compare f =1 with f <1 in equation (3.4» and
lower damping coefficient (compare c; in equation (2.5) With. c; in equation (3.5) than those used
by Villaverde, and yet, gives smaller displacements and accelerations of up to 14 percent. The
proposed method gives a better reduction in the response because it results in approximately equal
damping in the first two modes, whereas, the method by Villaverde results in unequal damping.
The difference between the two modal dampings in Villaverde's method is more pronounced when
the mass ratios are large. Consequently, the mode with the lower damping increases the overall
structural response.

The results in Table 3.3 for the structure with a period T=0.50 s, damping /3=0.05, and a mass
ratio J1=0.12 subjected to the 1940 SOOE component of the El Centro record show practically no
reduction in the displacement response with a TMD. This is so because the addition of the Th1D
shifts the period of the structure from 0.50 s to 0.57 s and the damping ratio from 0.05 to 0.22 (see
Figure 3.2). An examination of the response spectrum of this record reveals that the shift in the
period results in a higher response. It should be noted that TMD parameters selected by the
Villaverde's method resulted in a higher displacement response than that without a TMD.
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Table 3.3. Response of SDOF systems with and without TMDs using the method by Villaverde and the method proposed
in this study.

Structural Method Imperial Valley Borrego Mountain San Fernando San Fernando
Properties of El Centro El Centro Orion Boulevard Hollywood Boulevard

Analysis xmax amax xmax amax xmax amax xmax amax
mm g mm g mm g mm g

T = 0.25 s NoTMD 18.6 1.200 4.3 0.275 10.1 0.648 3.7 0.239

f3 = 0.02 Villaverde 13.3 0.768 2.7 0.155 10.3 0.580 3.8 0.216

/1=0.10 This study 12.5 0.748 2.4 0.141 09.4 0.539 3.5 0.202

T =0.50 s NoTMD 51.6 0.836 7.9 . 0.128 34.4 0.556 13.5 0.218

f3 = 0.05 Villaverde 54.5 0.767 6.5 0.093 38.9 0.537 12.1 0.174

/1=0.12 This study 51.0 0.732 6.0 0.089 33.9 0.498 10.4 0.156



4. TMD FOR MDOF STRUCTURES

In this section, the optimum TMD parameters for MDOF structures are formulated and the
effectiveness of these parameters in reducing the response to earthquake loading is examined. For
an n degree of freedom structure with a TMD attached to one of the floors, there are n+1 pairs of
complex conjugate modes. For a MDOF structure, the mass ratio is computed as the ratio of the
TMD mass to the generalized mass for the fundamental mode for a unit modal participation factor

m
(4.1)

where [M] is the mass matrix and <PI is the fundamental mode shape normalized to have a unit
participation factor. A procedure similar to that for SDOF systems is used to determine the optimum
f and ; that would result in approximately equal frequencies and damping ratios in the first two
modes. Numerical studies were carried out using three MDOF structures: a ten-, a six-, and a three­
story building. The structures are assumed to have the following damping ratios in the first mode
only: 0.02 for the ten-story, 0.05 for the six-story, and zero for the three-story building. The
properties of the three frames together with their fundamental modes dynamic characteristics are
given in Table 4.1. For each frame, a TMD is attached to the top floor to control the response. The
mass ratio J1 is assumed to be 0.05 for the ten story, 0.075 for the six story, and 0.10 for the three
story building. The optimum values of f and ; for the three structures are shown in Table 4.2
along with the resulting damping ratios in the first two modes of vibration. As shown in the table,
the damping ratios are extremely close to each other and are greater than (~ + /3)/2. It should be
mentioned that the TMDs attached to the structures affected only the damping in the first two modes
and had no effect on the other modes which were assumed to have a zero damping.

It was found that the tuning ratio f for a MDOF system is nearly equal to the tuning ratio for a
SDOF system for a mass ratio of J1 ep, where ep is the amplitude of the first mode of vibration for a
unit modal participation factor computed at the location of the TMD; i.e., f MDOF( J1) =
f SDOF( J1 <1». The equation for the tuning ratio is obtained from equation (3.4) by replacing J1 by
J1 ep. Thus,

f- 1[1-/3~]
l+,uep ~~

(4.2)

The TMD damping ratio is also found to approximately correspond to the damping ratio computed
for a SDOF system multiplied by <1>, i.e. f MDOF( J1) = ep f SDOF (J1). The equation for the damping
ratio is obtained by multiplying equation (3.5) by ep

~-<1>[~+ ~]
1+,u ~~

(4.3)

For MDOF structures, the above equations result in an error of 0.4 to 5 percent in the tuning ratio
and 0.5 to 0.8 percent in the damping ratio. If more accurate parameters are needed, a searching
procedure similar to that applied before should be used.

Equation (4.3) indicates that the best location for a TMD is where it results in the largest ;, i.e. at
the level where <1> and consequently the damping in the TMD and in the first two modes are

1 7



Stifness x Mass x 1st mode
103 kN/m 103 kg shape

36.0 100.0 1.231
38.0 100.0 0.965
41.0 100.0 0.515

fJ =0
mOl = 1.41 Hz

M 1 = ¢;[M]¢I = 27] *103 kg

Table 4.1(c). Properties of the three­
tory fl-

Stifness x Mass x 1st mode
106 kN/m ]06kg shape

4.5 8.0 1.327
5.5 8.0 ] .186
7.5 8.0 0.966
8.0 8.0 0.743
9.0 8.0 0.489
10.0 8.0 0.238

fJ =0.05
mOl = 1.23 Hz

M1=¢IT[M]¢I =39598* 103kg

Table 4.1(b). Properties of the six­
story frame

Table 4.1(a). Properties of the ten­
f]

Stifness x Mass x 1st mode
103 kN/m 103kg shape
'34.31 98 1.359
37.43 107 1.321
40.55 116 1.248
43.67 125 1.146
46.79 134 1.019

49.91 143 0.871

53.02 ]52 0.708
56.14 ]6] 0.534

59.26 170 0.355

62.47 179 0.175

fJ =0.02
mOl =0.5 Hz
M, = ¢;[M]¢I =1109* 103kg

........
00

Properties of floors are shown from top to bottom.
First mode shapes and generalized masses are computed for a unit modal participation factor.

Table 4.2. Optimum TMD parameters for the three MDOF structures.

No. of Mass Damping Tuning TMD <I>
stories ratio ratio ratio Damping ~I ~3 ~+fJ at the .

J1 (1st mode) f ratio -- top
fJ ~

2 story

10 0.050 0.02 0.9302 0.3253 0.1759 0.1758 0.1727 1.359
6 0.075 0.05 0.9070 0.4139 0.2437 0.2435 0.2170 1.327
3 0.100 0 0.870] 0.3694 0.1955 0.1953 0.1847 1.231



maximum. Since in most cases, the first mode dominates the response, it is desirable to locate the
TMD at the top floor where the displacement amplitude of the first mode is the largest. Similar
observations have also been reported by Villaverde [15].

4.1 Numerical Studies

To demonstrate the effectiveness of the proposed procedure for computing the optimum TMD
parameters, the ten and six story buildings with and without TMDs were analyzed using four recent
earthquake accelerograms. The records include: the 90 degree component of Corralitos Eureka
Canyon Road accelerogram and the 90 degree component of Capitola Fire Station accelerogram
from the Lorna Prieta earthquake of October 17, 1989; and the 90 degree component of Santa
Monica City Hall Grounds accelerogram and the 90 degree component of Arleta Nordhoff Avenue
Fire Station accelerogram from the Northridge earthquake of January 17, 1994. The displacement
and acceleration responses for the structures with and without TMDs are presented in Table 4.3 for
the ten-story building and in Table 4.4 for the six-story building. It is observed that for the ten­
story building (Table 4.3), a TMD with an effective mass ratio of 0.05 (a mass ratio of 0.04 when
considering the actual mass rather than the generalized mass of the structure) and a damping ratio
/3=0.02 results in a considerable reduction in displacements and accelerations (up to 48 percent).
Similar observations are made for the six-story building with an effective mass ratio of 0.075 (a
mass ratio of 0.062 when considering the mass of the structure) and a damping ratio /3=0.05. As
expected, the higher the intrinsic damping in the structure, the larger is the mass required to achieve
approximately the same level of response reduction.
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Table 4.3. Responses of the ten-story building with and without a TMD with a mass ratio of 0.05.

Corralitos, 1989 Capitola, 1989 Santa Monica, 1994 Arleta, 1994

Level NoTMD WithTMD NoTMD WithTMD NoTMD WithTMD NoTMD WithTMD

xmax amax xmax anlax xmax amax xmax amax xmax amax xmax amax xmax amax xmax amax
m g m g m g m g m g m g m g m g

Top 0.396 2.43 0.271 1.67 0.257 2.04 0.180 1.26 0.483 2.29 0.450 1.51 0.398 1.64 0.203 0.84

9 0.337 1.99 0.235 1.32 0.214 1.12 0.160 1.03 0.443 1.56 0.408 1.26 0.381 1.04 0.182 0.59

8 0.239 1.34 0.177 0.88 0.204 1.40 0.146 1.03 0.402 1.80 0.362 1.34 0.354 1.19 0.163 0.61

7 0.163 0.64 0,122 0.58 0.199 1.44 0.132 0.74 0.376 1.47 0.315 0.98 0.306 0.86 0.136 0.59

6 0.194 1.02 0.137 0.72 0.182 1.06 0.109 0.71 0.361 1.40 0.263 1.10 0.290 0.88 0.138 0.51

5 0.240 1.61 0.165 1.09 0.160 1.32 0.111 0.73 0.322 1.80 0.218 1.31 0.268 1.20 0.134 0.78

4 0.267 1.85 0.169 1.14 0.150 1.37 0.098 0.93 0.284 1.53 0.170 1.09 0.236 1.14 0.117 0.56

3 0.244 1.80 0.156 1.12 0.136 1.10 0.085 0.88 0.226 1.40 0.145 1.13 0.188 0.88 0.089 0.59

2 0.185 1.49 0.126 1.02 0.122 1.43 0.071 0.84 0.164 1.29 0.100 0.81 0.132 0.97 0.059 0.51

1 0.102 1.04 0.070 0.78 0.072 1.30 0.039 0.79 0.092 1.59 0.051 1.12 0.070 0.90 0.032 0.61

Table 4.4. Responses of the six-story building with and without a TMD with a mass ratio of 0.075.

Corralitos, 1989 Capitola, 1989 Santa Monica, 1994 Arleta, 1994

Level NoTMD WithTMD NoTMD WithTMD NoTMD WithTMD NoTMD WithTMD

xmax amax xmax amax xmax amax xmax amax xmax amax xmax alllax xmax
. a

max xmax amax
m g m g m g m g m g m g m g m g

Top 0.277 2.56 0.186 1.65 0.135 1.70 0.110 0.88 0.111 1.68 0.088 1.57 0.158 1.67 0.121 0.96

5 0.254 2.09 0.167 1.50 0.116 1.24 0.09J 1.00 0.096 1.20 0.067 1.06 0.136 1.17 0.104 0.84

4 0.210 1.75 0.135 1.15 0.100 1.72 0.077 1.03 0.081 1.51 0.054 1.07 0.108 1.19 0.087 0.81

3 0.167 1.93 0.103 1.02 0.084 1.61 0.057 0.94 0.063 1.37 0.045 1.00 0.083 1.37 0.066 0.73

2 0.118 1.74 0.068 0.91 0.059 1.45 0.037 0.58 0.042 1.71 0.031 LH 0.053 1.48 0.043 0.87

1 0.060 1.43 0.033 0.76 0.031 1.39 0.020 0.86 0.022 1.62 0.018 1.19 0.026 1.24 0.021 0.81



5. PRACTICAL CONSIDERATIONS

TMDs are relatively easy to implement in new buildings and in retrofitting existing ones. They do
not require an external power source to operate and do not interfere with vertical and horizontal load
paths like some other passive devices do. TMDs can also be combined with active control
mechanisms to function as a hybrid system, with the TMD serving as back-up in the case of failure
of the active device. From the numerical studies presented in sections 3 and 4, it is evident that
TMDs are effective in reducing earthquake-induced vibrations. TMDs, however, require a
considerable mass to achieve a significant reduction in the response, especially for structures with
large dampings. The following practical considerations are noteworthy: .

1. For structures with low damping ratios, TMDs with a low mass ratio can be effective in reducing
the response. Existing mechanical equipment, often placed on the roof, may be used as TMDs by
mounting them with springs and dampers with proper stiffness and damping. Another possibility is
using blocks of concrete, steel, or lead as used in John Hancock Tower and Citicorp Center Office
Building. In any case, TMDs will experience large displacements which must be accounted for in
the design.

2. For structures with high damping ratios, TMDs with large mass ratios are required to
significantly reduce the response. In such cases, the use of roof equipment or addition of heavy
blocks will not provide the mass necessary to introduce sufficient damping in the predominant
modes of vibration. The top floor itself, however, can provide the required mass. The concept of
"expendable top story" introduced by Jagadish et at. [6] or the "energy absorbing story" presented
by Miyama [10] is an effective alternative where the top floor acts as a vibration absorber for the
other floors of the building. The top floor should have the necessary stiffness and supplemental
damping to reduce the response. Although this concept may work effectively, the top floor may
experience large displacements and resonance. Hence, the floor should have sufficient strength and
ductility to account for large displacements.
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6. VIBRATION ABSORBERS FOR TALL BUILDINGS

Feng and Mita [3] assert that, for tall buildings, the high rigidity of the structural components and
dominance of bending deformations prevent the use of conventional damping devices. The high
rigidity requires a large number of damping devices to achieve the desired damping ratios and the
dominant bending deformations render damping devices which utilize shear deformation ineffective.
Consequently, they proposed an innovative vibration control system to reduce the dynamic response
of tall buildings to wind and seismic loads. Their proposed system takes advantage of the "mega­
substructure configuration" used in the design of tall buildings. The substructures, consisting of
several floors, serve to dissipate energy without added masses. The d~tails of such systems are
discussed in reference [3]. They arrive at the parameters of the substructures by. using a two­
degree-of-freedom system and minimizing the mean square response of the main mass to a white
noise ground acceleration for seismic analysis and to a white noise force excitation for wind
analysis. For seismic loading, they give the follOWing absorber parameters which ignore the effects
of damping and the mode shapes of the structure:

and ~=~
2

J..l,u(1- -)
4

(1 + ,u)(l- ,u)
2

(6.1)

where the mass ratio ,u is defined as the ratio of the substructure mass to the floor mass instead of
the substructure mass to the generalized mass of the fundamental mode. Feng and Mita used this
procedure to compute the response of a 200m tall building to the SOOE component of EI Centro, the
Imperial Valley earthquake, 1940, with a damping ratio of 0.02 in each mode. Figure 6.1 shows a
schematic of the building with and without the mega-substructure configuration along with their
properties and the dynamic characteristics of the first mode. The figure shows the modeling of the
substructures as SDOF systems attached to the mega-structure. They assumed that the
substructures have the same mass as the floors they are attached to, resulting in a mass ratio .u=l.
Their procedure results in a considerable reduction in the response of the building (Table 6.1).

To test the effectiveness of the method proposed in this study for computing the absorber
parameters, the building with the same configuration was analyzed using equations (4.2) and (4.3)
to select the parameters. The mass ratio J1 was computed by equation (4.1). Unlike Feng and
Mita's procedure [3] where f and c; are the same at each substructure level, the parameters
computed by equations (4.2) and (4.3) are different for each level because of the influence of the
fundamental mode shape. The lower the substructure in the building, the smaller is the mode shape
amplitude and, consequently from the equations, the larger the stiffness the smaller the damping.
The results of the analysis are presented in Table 6.1 along with those computed by Feng and Mita
[3]. The results show that, using the proposed parameters, a reduction of up to 37 percent in the
response of the mega-structure and up to 53 percent in the stroke length of the substructures are
obtained compared to those by Feng and Mita.
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Figure 6.1. Properties of the Mega-Structure with and without control
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Table 6.1. Response of the mega-structure to the SOOE component of EI Centro.

No Control With Control (Feng and Mita) With Control (This study)
Level Mega-structure Mega-structure Sub-structure Mega-structure Sub-structure

xmax amax xmax amax strokemax amax xmax amax strokemax amax
m g m g m g m g m g

Top 0.478 0.38 0.224 0.20 0.213 0.03 0.140 0.18 0.099 0.05
3 0.427 0.33 0.171 0.15 0.174 0.03 0.137 0.12 0.094 0.04

2 0.288 0.26 0.113 0.18 0.163 0.03 0.122 0.16 0.090 0.05

1 0.163 0.33 0.075 0.21 0.138 0.02 ' 0.073 0.21 0.083 0.03





7. CONCLUSIONS

The overall objective of this study was to detennine the optimum parameters of tuned mass dampers
that result in a considerable reduction in the response to earthquake loading. The criterion used is to
find, for a given mass ratio, the tuning and damping ratios of the device that would result in
approximately equal damping in the first two modes of vibration. The optimum TMD parameters
for SDOF and MDOF structures are presented in tabular and equation forms. It was found that the
equal damping ratios in the first two modes are greater than the average of the damping ratios of the
lightly damped structure and the heavily damped TMD. Consequently, the fundamental modes of
vibration are more heavily damped. The proposed method was used tp select the parameters of
TMDs for several SDOF and MDOF structures subjected to a number of earthquake excitations.
The results indicate that using the proposed TMD parameters reduces the displacement and
acceleration responses significantly (up to 50 percent).

The method was also applied to a vibration control system proposed by Feng and Mita [3] for tall
buildings, namely "mega-substructure configuration", where the substructures in the mega-structure
serve as vibration absorbers. Further reduction in response was also achieved using the method
proposed in this study.

The results also show that in order for TMDs to be effective, large mass ratios must be used,
especially for structures with higher damping ratios. The top floor with appropriate stiffness and
damping can act as a vibration absorber for the lower floors. The safety and functionality of such
floors, however, may present problems since the floors may experience large displacements.
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APPENDIX A. EARTHQUAKE RECORDS USED IN THE STATISTICAL STUDY

Source Peak
Earthquake Mag. Station Name Distance Compo Accel.

(km) (g)
Imperial Valley 6.7 EI Centro Valley 11.6 SOOE 0.348
05/18/1940 Irrigation District S90W 0.214
Northwest California 5.8 Ferndale City Hall 56.3 S44W 0.104
10/07/1951 N46W 0.112
Kern County 7.7 Pasadena - Caltech 127.0 SOOE 0.047
0612111952 Athenaeum S90W 0.053

Taft Lincoln School 41.4 N21E 0.156
Tunnel S69E 0.179
Santa Barbara Court 88.4 N42E 0.089
House S48E 0.131
Holywood Storage 120.4 SOOW 0.055
Basement N90E 0.044

Eureka 6.5 .Ferndale City Hall 40.0 N44E 0.159
12/21/1954 N46W 0.201
San Francisco 5.3 San Francisco Golden 11.2 NlOE 0.083
03122/1957 Gate Park S80E 0.105
Hollister 5.7 Hollister City Hall 22.1 SOlW 0.065
04/08/1961 N89W 0.179
Borrego Mountain 6.4 EI Centro Valley 67.3 SOOW 0.130
04/08/1968 Irrigation District S90W 0.057
Long Beach 6.3 Vernon CMD Bldg. 50.5 S08W 0.133
03/10/1933 N82W 0.155
Lower California 7.1 EI Centro Valley 66.4 SOOW 0.160
12/30/1934 Irrigation District S90W 0.182
Helena Montana 6.0 Helena, Montana 6.2 SOOW 0.146
10/31/1935 Carrol College S90W 0.145
1st Northwest California 5.5 Ferndale City Hall 55.2 N45E 0.144
09111/1938 S45E 0.089
Northern California 5.2 Ferndale City Hall 43.1 N44E 0.054
09/22/1952 S46E 0.076
Wheeler Ridge, California 5.9 Taft Lincoln School 42.8 N21E 0.065
01112/1954 Tunnel S69E· 0.068
Parkfield, California 5.6 Chalome, Shandon, 56.1 N05W 0.355
06/27/1966 California Array # 5 N85E 0.434

Cholame, Shandon, 53.6 N50E 0.053
California Array # 12 N40W 0.064
Temblor, California 59.6 N65W 0.269
#2 S25W 0.347

San Fernando 6.4 Pacoima Dam 7.3 S16E 1.172
02/09/1971 S74W 1.070

8244 Orion Blvd. 21.1 NOOW 0.255
Los Angeles, California S90W 0.134
250 E First Street 41.4 N36E 0.100
Basement, Los Angeles N54W 0.125
Castaic Old Ridge 29.5 N21E 0.315
Route N69W 0.270
7080 Hollywood Blvd. 33.5 NOOE 0.083
Basement, Los Angeles N90E 0.100
Vernon CMD Bldg. 48.0 N83W 0.107

S07W 0.082
Caltech Seismological 34.6 SOOW 0.089
Lab., Pasadena S90W 0.193
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APPENDIX B. LIST OF SYMBOLS

'\nax
A

c

f
g

l

I

m

M

[M]

n

r

T

xmax

f3
¢

<I>

A

J1

OJo

OJI

OJ!, OJ3

~

~J' ~3

Maximum absolute acceleration

System matrix

Damping coefficient of TMD

Tuning ratio of TMD

acceleration of gravity

Unit imaginary number

Identity matrix

MassofTMD

Generalized mass in an MDOF structure

Mass matrix

Number of degrees of freedom

Number of eigenvalues and mode shapes

Natural period

Maximum relative displacement

Damping ratio of structure

Fundamental modal shape

Modal amplitude at the location of TMD

Eigenvalues

Mass ratio of TMD

Natural or fundamental frequency of the structure

Natural frequency ofTMD

Natural frequencies in the first two complex modes

Damping ratio of TMD

Damping ratios in the first two complex modes
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