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ABSTRACT

Semi-active control systems combine the features of active and passive control to reduce the
response of structures to various dynamic loadings. They include: a) active variable stiffness
where the stiffness of the structure is adjusted to establish a non-resonant condition between the
structure and excitation, and b) active variable damper where the damping coefficient of the
device is varied to achieve the most reduction in the response.

This study is concerned with examining the effectiveness of variable dampers for seismic
applications. Three algorithms for selecting the damping coefficient of variable dampers are
presented and compared. They include: a linear quadratic regulator (LQR) algorithm, a
generalized LQR algorithm where a penalty is imposed on the acceleration response, and a
displacement-acceleration domain algorithm where the damping coefficient is selected by
examining the response on the displacement-acceleration plane and assigning different damping
coefficients accordingly. Two single-degree-of-freedom structures subjected to 20 ground
excitations are analyzed using the three algorithms. The analyses indicate that unlike passive
dampers where for flexible structures, an increase in damping coefficient decreases the
displacement but increases the acceleration response, variable dampers can be effective in
reducing both the displacement and acceleration responses. The study indicates that the
generalized LQR algorithm is more efficient than the other two in reducing the displacement and
acceleration responses. The algorithms are used to compute the seismic response of two
flexible structures -- an isolated bridge modeled as a single-degree-of-freedom system and a
base-isolated six-story frame modeled as a multi-degree-of-freedom system. The results
indicate that variable dampers reduce the displacement and acceleration responses of the two
structures to a significant degree.

Key Words: Building technology; Control algorithms; Seismic design; Semi-active
control; Structural dynamics; Variable dampers
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1 . INTRODUCTION

New concepts for active and passive control have been developed for reducing the response of
structures to wind, earthquake, blast, and other dynamic loadings. Passive control refers to
systems that utilize the response of structures to develop the control forces without requiring an
external power source for their operation. Active control on the other hand refers to systems
which require a large power source to operate the actuators which supply the control forces
whose magnitudes are determined using feedback from sensors that measure the excitation
and/or the response of the structure. Semi-active control combines the features of active and
passive systems. These systems require a small power source (e.g., a battery) to operate. They
utilize the response of the structure to develop the control forces which are regulated by
algorithms using the measured excitation and/or response.

Semi-active control systems include two categories: active variable stiffness and active variable
damping. In the first category, the stiffness of the structure is adjusted to establish a non­
resonant condition between the structure and excitation. Variable stiffness devices can be
regulated" to include or exclude the stiffness of a particular section of the structure such as the
bracing system. In the second category, supplemental energy dissipation devices such as fluid,
friction, and electrorheological dampers, are modified to allow adjustments in their mechanical
properties to achieve most reductions in the response. In both categories, similar to passive
systems, control forces are generated using the motion of the structure and like active systems,
controllers are used to monitor feedbacks and develop the appropriate command signals for
selecting the stiffness or the damping coefficient of the device.

This stu<;!y focuses on the use of semi-active control algorithms for structures with variable
damping devices. Several investigators have studied the suitability of variable dampers and
have found them to be effective in reducing the response of structures to different dynamic
loadings. In addition to requiring a small power source to operate, the control forces developed
by these devices oppose the direction of motion; thereby, enhancing the overall stability of the
structure.

The next section presents a brief summary of previous work on development of semi-active
control algorithms for variable damping devices. Three algorithms are discussed and their
effectiveness in reducing the displacement and acceleration responses of structures to seismic
loading is examined. The algorithms are used in several structures modeled as single- and
multi-degree-of-freedom systems subjected to different earthquake excitations to demonstrate
their effectiveness in reducing the response.
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2 . SUMMARY OF PREVIOUS WORK

For active variable dampers, the damping coefficient crt) during the response can be adjusted
between upper and lower limits, Cmax and cmin; i.e.,

(2.1)

Several investigators have developed algorithms to select the proper damping coefficient during
the response. Patten et al. (1993) and Sack et al. (1994) introduced a hydraulic actuator with an
adjustable orifice and used a closed loop control algorithm to select the damping coefficient of
the device at each increment of time. They used a "clipped optimal control algorithm" based on
the linear quadratic regulator (LQR) with a check on the dissipation characteristics of the control
force. Their results indicate that a variable damper can significantly reduce the response of a
structure to seismic forces. In another study, Patten et al. (1994a) used a bang-bang (also
referred to as two-stage, bi-state, or on-off) algorithm based on Lyapunov's method to select
the damping coefficient. They used the algorithm for a 3-story frame and subjected the frame to
the 1979 El Centro accelerogram. The variable damper reduced the response of the frame by
approximately 54% when compared to the response with no control. Other studies have been
carried out to investigate the effectiveness of similar devices in reducing the response of bridges
to vehicle-induced vibrations (Patten et aI., 1994b and 1996).

Feng and Shinozuka (1990, 1993) have shown that for isolated bridges, increasing the damping
of the isolation system reduces the relative displacement but increases the absolute acceleration.
They suggested that the isolation system should contain a variable damper and used two semi­
active algorithms for regulating the damping coefficient of the device. One is a bang-bang
algorithm where crt) is set to Cmax when the relative displacement response divided by a
referenced displacement is greater than the absolute acceleration response divided by a
referenced acceleration. For the opposite case, crt) is set to cmin• The other is an instantaneous
optimal algorithm introduced by Yang et al. (1987). Numerical results indicate reductions of
approximately 41 % in peak displacement and 22% in peak acceleration responses for the case
where the bridge was subjected to the SOOE component of El Centro, 1940. Kawashima and
Unjoh (1993, 1994) used a displacement dependent damping model to select the damping
coefficient of a variable fluid damper. Analytical results and shake table tests of a 30 m long
bridge indicated reductions of 24% and 44% in displacement and acceleration responses,
respectively. In a later study, Yang et al. (1994) used the sliding mode control theory to design
an algorithm for the variable damper suggested by Kawashima (1993, 1994). The idea behind
the sliding mode control theory is to drive and maintain the response trajectory into a sliding
surface where the motion of the structure is stable. Numerical results indicate that further
reductioqs in the seismic response of the bridge can be achieved using the sliding mode
algorithm (Kawashima and Unjoh, 1993 and 1994).

Dowdell and Cherry (1994a, 1994b) used a bang-bang semi-active linear quadratic regulator
(LQR) algorithm to control the slip forces in friction dampers. They computed the response of a
single and a six degree-of-freedom structure to a band limited white noise excitation with and
without semi-active friction dampers. The results showed significant reductions in the inter­
story drifts of the structures. In another study, Yang and Lu (1994) introduced a multi-stage
semi-active friction damper to reduce the seismic response of cable-stayed bridges and showed
numericaJly the effectiveness of the damper. Loh and Ma (1994) used a bang-bang semi-active
algorithm based on Lyapunov theory for a 3-story frame and showed that the effect of variable
dampers on the response can be significant. Calise and Sweriduk (1994) used robust control
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techniques for variable damping devices and demonstrated their effectiveness in reducing the
response.

In an extensive analytical and experimental study, Symans and Constantinou (1995) developed
and tested a two-stage and a variable semi-active fluid damper. For the two-stage damper, they
used a base shear coefficient and a force transfer control algorithm, while for the variable
damper, they employed a feedforward, a skyhook damping, a linear quadratic regulator (LQR),
and a sliding mode control algorithm. Their study included a single- and a three-story frame
under different seismic excitations. The results indicated that while variable dampers
significantly reduced the response compared to the no control case, no reduction was observed
when compared to the device acting as a passive damper with a damping coefficient cmax'

The study by Symans and Constantinou (1995) indicates that the use of semi-active dampers in
structures is inefficient when compared to passive systems. Since their study was limited to a
SDOF structure with a period of 0.36 s and a 1vIDOF structure with a fundamental period of
0.56 s, the efficiency of the device for other periods merits further investigation. This study
considers a broad range of periods for which semi-active control with variable dampers may be
more efficient than passive dampers in reducing the response. In the next sections, three semi­
active control algorithms are examined to determine the effectiveness of variable dampers in
reducing the seismic response. A semi-active variable device with a damping coefficient
between cmin and Cmax and the same device acting as a passive damper with damping coefficients
cmin and Cmax are compared to assess the effectiveness of the system.
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3. DISCUSSION AND ANALYSIS

Increased damping in structures allows the dissipation of a larger portion of the input energy
and consequently, a further reduction in the response. The reduction, however, depends on the
flexibility or rigidity of the structure. Feng and Shinozuka (1990, 1993) have reported that for
isolated bridges, increased damping has opposite effects on the absolute acceleration of the
girder and the relative displacement between the girder and the piers. A similar observation has
been made by Sadek et al. (1996) who showed that for flexible structures (structures with
periods longer than approximately 1.5 s), an increase in damping while further decreases the
displacement response, it usually increases the acceleration response. Variable dampers where
the damping coefficient can be adjusted between an upper and a lower limit may be effective in
reducing both the relative displacement and absolute acceleration responses. Reducing the
absolute acceleration response may be important in designing structures which house sensitive
equipment such as hospitals, communication centers, computer and electronic rooms, etc.
where the equipment may be damaged by large floor accelerations. Large accelerations may
also cause discomfort to occupants.

To illustrate the influence of supplemental damping and structural period on the seismic
response of structures, six single-degree-of-freedom structures with periods T = 0.2, 1.0, 1.5,
2.0, 2.5, and 3.0 s and a structural damping ratio f3 of 0.05 are used. Two supplemental
passive dampers with damping ratios gequal to 0.05 and 0.40 were considered. The structures
were subjected to the set of 20 horizontal components of accelerograms listed in Appendix A.
These records include a range of earthquake magnitudes, epicentral distances, peak ground
accelerations, and soil conditions. The relative displacement and absolute acceleration response
ratios are computed as the ratio of the peak response of the structure with the supplemental
damper to the peak response without the damper. The average response ratios for the twenty
records for the six structures are shown in Table 3.1. The table shows that for structures with T
< 1.5 s (rigid structures), increasing the supplemental damping ratio from 0.05 to 0.40
decreases both the relative displacement and absolute acceleration; whereas for structures with T
~ 1.5 s (flexible structures), increasing the supplemental damping ratio decreases the relative
displacement but increases the absolute acceleration. Therefore, for flexible structures,
reductions in both the displacement and acceleration responses may be possible with a variable
damper than with a passive damper (fixed damping ratio), i.e. achieving a displacement
response close to that obtained with gmax and an acceleration response close to that obtained
with groin' For rigid structures, however, the efficiency of using a variable over a passive
damper is questionable. In the next section, three semi-active control algorithms are discussed
and compared with each other in order to examine the effectiveness of variable dampers in
reducing the displacement and acceleration responses of structures.
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Table 3.1 Summary ofthe average response ratios for six SDOF structures with passive
damping

T=0.2 s T=1.0 s T=1.5 s T=2.0 s T=2.5 s T=3.0 s
damping (2) (3) (4) (5) (6) (7)

ratio Xmax amax Xmax amax Xmax amax Xmax amax Xmax amax Xmax amax
(1)

~min = 0.05 0.81 0.82 0.81 0.83 0.81 0.84 0.84 0.88 0.86 0.91 0.89 0.95

~max = 0.40 0.46 0.54 0.42 0.72 0.46 0.94 0.54 1.19 0.56 1.36 0.59 1.55

6



4. SEMI-ACTIVE CONTROL ALGORITHMS

The governing differential equation of motion for an n-degree of freedom structure with mass
matrix M, damping matrix C, and stiffness matrix K with m semi-active dampers subjected to
ground acceleration xg(t) is given by:

Mx(t) + Cx(t) + [(x(t) = Du(t) - M1x/t) (4.1)

where the n-dimensional vector x(t) represents the relative displacement, the m-dimensional
vector u(t) the control forces generated by the dampers, and the n-dimensional vector 1 the unit
vector. The matrix D (size n x m) defines the locations of the control forces generated by the
dampers. Using the state-space representation, Equation (4.1) takes the form:

z(t) = Az(t) + Bu(t) + HXg (t) (4.2)

where z(t) = [xT (t),xT (t)] is a 2n-dimensional state vector. The system matrix A and the
matrices B and H are given in Soong (1990). Three semi-active control algorithms for
regulating the damping coefficient of the variable dampers are considered in this study. They
include: a) a semi-active linear quadratic regulator (LQR), b) a semi-active generalized LQR,
and c) a semi-active displacement-acceleration domain.

4.1 Semi-Active LQR Algorithm

This algorithm, referred to herein as SA-1, is the classical linear quadratic regulator which has
been extensively used for active control (Soong, 1990, Yang et aI., 1992) and for semi-active
control (Patten et aI, 1993, 1994a; Dowdell and Cherry, 1994a, 1994b; Symans and
Constantinou, 1995) of structures. In this algorithm, the control force u(t) in Equation (4.1) is
selected by minimizing the following quadratic expression for the cost function over the
duration of the excitation (Soong, 1990):

tf

J = f[ZT (t)Qz(t) +uT(t)Ru(t)]dt
o

(4.3)

where tf is the duration of excitation, and Q (size 2n x 2n) and R (size m x m) are positive
semi-definite and positive definite weighting matrices, respectively. If the elements of Q are
larger than those of R, reducing z(t) has priority over reducing u(t). For a closed-loop control
configuration, minimizing Equation (4.3) subject to the constraint of Equation (4.2) results in a
control force vector u(t) regulated only by the state vector z(t) such that:

u(t) = _..!. R-1BT pz(t) = Gz(t)
2
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where matrix G (size m x 2n) represents the gain matrix, and matrix P (size 2n x 2n) is the
solution of the classical Riccati equation which after neglecting the excitation tenn reduces to:

The damping coefficient of damper i at time t can be computed from Equation (4.4) as

(4.5)

2n

'" G. ·z.(t)
() £.J l,J J

*() ui t j=!C t - -- - -'-----
i - xi(t) - xi(t) ,

i=l,m (4.6)

where xi(t) is the relative velocity between the ends of damper i. Using the constraints in
Equation (2.1), the damping coefficient is selected as

Croin,i c; (t) ~ croin i

ci(t) = c;(t) c .. < c~ (t) < c . (4.7)
mm,~ l max,l

Cmax,i c; (t) ~ Cmax i

It can be shown that a passive damper with coefficient cmin is obtained when Q in Equations
(4.3) and (4.5) is a null matrix and a passive damper with coefficient Cmax is obtained when the
elements of Q approach infinity.

To examine the effectiveness of this algorithm, two SDOF structures with periods T =0.2 s and
3.0 s and a structural damping ratio f3 =0.05 are considered. Each structure contains a variable
damper with a damping ratio ranging from groin = 0.05 to gmax = 0.40. The structures are
subjected to the 20 ground excitations listed in Appendix A. In the analysis, R is a scalar set
equal to 11K and Q is selected as (see Wu et al., 1995)

(4.8)

where q is a parameter reflecting the importance of the reduction in the state vector z(t) or the
control force vector u(t). The mean response ratios (the average of the peak displacement or
acceleration response with semi-active control divided by their counterparts with no control) for
q ranging from 0 to 1.0 are computed and plotted in Figure 4.1 for T = 0.2 s and in Figure 4.2
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for T = 3.0 s. The plots indicate that for q = 0, the mean response ratios are very close to those
with a passive damper with ~min = 0.05, and for q ~ 0.5, the mean response ratios are nearly
the same as those with a passive damper with ~max =0.40 (compare columns 2 and 7 of Table
3.1 and the ordinates at q = 0 and q =1 in Figures 4.1 and 4.2, respectively). For q between 0
to 0.5, the response ratios are between those with passive dampers with ~min and ~max. For the
structure with T = 0.2 s (Figure 4.1), increasing q decreases both the relative displacement and
absolute acceleration. For the structure with T = 3.0 s (Figure 4.2), however, increasing q
decreases the relative displacement but increases the absolute acceleration. Figure 4.1 shows
that for the structure with T =0.2 s, a variable damper is inefficient and the use of a passive
damper with a damping ratio ~max is more advantageous.

Shown in Table 4.1 (column 4) are the average response ratios for the structure with T = 3.0 s
where q is adjusted to give a displacement response ratio of 0.70 (q = 0.12). This ratio is
selected as a baseline for comparing the responses from the three algorithms. The table
indicates that, compared with a passive damper with ~max (column 3), using the SA-1 algorithm
increases the relative displacement by 0.11 (11 %)1 and reduces the absolute accelerations by
0.40 (40%).

Table 4.1 Summary of the average response ratios for the structure (T = 3.0 s) with passive
and semi-active dampers

Control Passive, ~min Passive, ~max SA-1 SA-2 SA-3
(1) (2) (3) (4) (5) (6)

Xmax 0.89 0.59 0.70 0.70 0.70

amax 0.95 1.55 1.15 0.95 1.09

4.2 Semi-Active Generalized LQR Algorithm

This algorithm, referred to herein as SA-2, was introduced by Yang et al. (1992) for active
control of structures and is adopted for semi-active control in this study. In this algorithm, the
cost function is augmented by imposing a penalty on the absolute acceleration of each degree-of­
freedom to control the acceleration response of the structure. The generalized cost function has
the form

If

J = J[ZT (t)Qz(t) + X~ (t)QaXa(t) +U
T(t)Ru(t)]dt

o

1 The Xmax and amax in Table 2 are percentages of the uncontrolled response.
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in which xa(t) is the absolute acceleration vector and Qa (size n x n) is a symmetric positive
semi-definite weighting matrix. If the elements of Qa are larger than those of Q, reducing the
absolute acceleration vector xa(t) has priority over reducing the state vector z(t). The absolute
acceleration vector xa(t) can be computed from Equation (4.1) as

(4.10)

where Ao =[-M-1K,-M-1C] and Bo =M-1D. The cost function, thus, takes the form

(4.11)

Minimizing Equation (4.11) subject to the constraint of Equation (4.2) results in a control force
vector u(t) of the form

(4.12)

where {; (size m x 2n) is the gain matrix and P (size 2n x 2n) is the solution to the classical
Riccati equation which takes the form:

(4.13)

in which

(4.14)

Similar to the SA-l algorithm, the damping coefficient of damper i at time t can be expressed as
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2n

"f;. ·z·(t)
() £..J I,J J

C~(t) =!:!l.!- = ~j=_l _

I Xi(t) Xi(t)'
i=l,m (4.15)

where x/t) is the relative velocity between the ends of damper i. Imposing the constraints in
Equation (2.1), the damping coefficient will be

Cmin,i c; (t) ~ Cmin,i

ci(t) = c;(t) cmin i < c; (t) < Cmax i (4.16), ,

Cmax,i c; (t) ~ Cmax,i

It can be shown that for a null Qa matrix, the SA-2 algorithm reduces to the SA-l algorithm.

The two SDOF structures with T = 0.2 s and 3.0 s with a variable damper are analyzed using
the SA-2 algorithm. The same scalar R = 11K and matrix Q (Equation 4.8) with q = 0.5 for
both T = 0.2 sand T = 3.0 s are used in this example. It should be noted that q = 0.5 results in
a response approximately the same as that using a passive damper with ;max = 0.40 (see Figures
4.1 and 4.2). For SnOF systems, Qa is a scalar and equal to qa which reflects the importance
of the reduction in the state vector z(t) or the acceleration response vector xa (t).

The mean displacement and acceleration response ratios for the two SDOF structures subjected
to the 20 accelerograms for qa ranging from 10° to 105 for T =0.2 sand 103 to 107 for T =3.0 s
are shown in Figures 4.3 and 4.4, respectively. The figures show that for small qa the response
with a variable damper is close to that with a passive damper with ;max = 0.40 (compare
columns 2 and 7 of Table 3.1 and Figures 4.3 and 4.4, respectively). Figure 4.3 shows that for
the structure with T = 0.2 s, increasing qa increases both the displacement and acceleration
responses and again the variable damper is not as efficient as a passive damper with a damping
ratio ;max = 0.40. Figure 4.4 indicates that for the structure with T = 3.0 s, the variable damper
is effective in significantly reducing the acceleration response while slightly increasing the
displacement response.

Shown in Table 4.1 (column 5) are the mean response ratios for the structure with T =
3.0 s where qa is adjusted to give a mean displacement response ratio of 0.70 (qa =1.0 X 105

).

The table shows that compared with a passive damper with ;max = 0.40 (column 3), the SA-2
algorithm increases the relative displacement by 11 %, but it decreases the absolute accelerations
by 60% (the acceleration response is the same as that with a passive damper with ;min = 0.05,
see column 2 of Table 4.1). This demonstrates the effectiveness of the SA-2 algorithm in
reducing the acceleration response.
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4.3 Semi-Active Displacement-Acceleration Domain Algorithm

This algorithm, referred to herein as SA-3, is a refinement of the bang-bang algorithm presented
by Feng and Shinozuka (1990, 1993). The refinement assumes a displacement-acceleration
domain (Figure 4.5) where the horizontal axis represents the relative displacement response and
the vertical axis the absolute acceleration response normalized to a reference parameter Q. This
parameter, which has the unit of S-2, is used as a weighting factor to impose different penalties
on the displacement and acceleration responses. At any time t, the response may be represented
by a single point on the displacement-acceleration domain. The angle 8 (t) between the
horizontal axis and the line connecting the origin to the response point, Figure 4.5, is used to
select the damping coefficient. This angle is:

8( )
-II xa(t) I IQ

t = tan
I x(t) I

Ix(t) I

Figure 4.5 Displacement-acceleration Domain for algorithm SA-3
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A small () (t) indicates a large displacement response with respect to the normalized acceleration
and consequently requiring a higher damping coefficient. The opposite is true for a large () (t).
It is therefore desirable to assign a large damping coefficient Cmax for small () (0 ~ ()(t) ~ ()I) and
a small damping coefficient cmin for large () (n /2 - ()I ~ ()(t) ~ n /2) where the angle ()l is yet to
be determined. A linear variation of the damping coefficient with () (t) is used for
()I ~ ()(t) ~ n /2 - ()I (see Figure 4.5). Thus, the damping coefficient may be selected as
follows:

Cmin

(4.18)

It is seen from Equation (4.17) that increasing Q decreases () (t) which results in selecting a
large crt). Consequently, reducing the relative displacement has priority over reducing the
absolute acceleration. The opposite is true for decreasing Q. The reference parameter Q,
therefore, reflects the importance of reduction in relative displacements or absolute
accelerations.

Contrary to the first two algorithms (SA-l and SA-2) which depend on the structural properties
(stiffness, damping, and mass) which may be affected by errors in estimating their values, the
SA-3 algorithm depends on the measured response only, Equations (4.17) and (4.18). The SA­
3 algorithm is, therefore, robust with respect to the uncertainties in estimating the structural
parameters.

The two SDOF structures with T =0.2 sand 3.0 s with variable dampers are analyzed using the
SA-3 algorithm. Different values for ()l were assumed. It was found that a ()l between n;l1O to
n;l30 resulted in the largest reductions in the response. The mean displacement and acceleration
response ratios for the 20 records for ()l = n;l1O and for Q ranging from 101 to 105 for T =0.2 s
and 10-2 to 104 for T = 3.0 s are plotted in Figures 4.6 and 4.7, respectively. The figures show
that for small Qs, the response is approximately the same as that with a passive damper with
~min = 0.05 and for large Qs, the response is nearly the same as that with a passive damper with
~max =0040 (compare columns 2 and 7 of Table 3.1 and Figures 4.6 and 4.7, respectively).
Figure 4.6 shows that for the structure with T =0.2 s, a semi-active control is inefficient and
that a passive damper with ~max is more advantageous.

Shown in Table 4.1 (column 6) are the mean response ratios for the structure with T = 3.0 s
where the value of Qis adjusted to give a mean displacement response ratio of 0.70 (Q= 8 S-2).
The table indicates that compared with a passive damper with ~max' the SA-3 algorithm
increases the relative displacement by 11 % and reduces the absolute accelerations by 46%.
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4.4 Discussion and Comparisons of Algorithms

Based on the analyses and the results presented, the following may be concluded:

1. Variable dampers are more effective than passive dampers in reducing the seismic response
of flexible structures (T ~ 1.5 s) where increased damping has opposite effects on the
displacement and acceleration responses. Examples of this type of structures include base­
isolated structures, tall buildings, and isolated and cable-stayed bridges. For rigid structures
(T < 1.5 s), however, variable dampers are not effective in improving the response as
compared to passive dampers.

2. Based on the results in Table 4.1, the generalized LQR algorithm (SA-2) is more effective
than the other two in reducing the response. The use of the SA-2 algorithm results in an
acceleration response nearly the same as that with a passive damper with a low damping ratio
(~min =0.05) while the displacement response is increased by only 11% compared with a
passive damper with a high damping ratio (~max =DAD). The effectiveness of the SA-2
algorithm results from the penalty imposed on controlling the absolute acceleration response
which is a major concern in flexible structures with supplemental damping.

3. Both the SA-l and the SA-3 algorithms result in similar responses, Table 4.1. The SA-3
algorithm, however, is somewhat preferable to SA-l since it is inherently robust with respect
to structural uncertainties.
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5. APPLICATIONS

Two examples are presented to demonstrate the performance of variable dampers in reducing the
seismic response of structures. The first is a bridge modeled as a single-degree-of-freedom and
the second is a six-story base-isolated frame modeled as a multi-degree-of-freedom.

5.1 Bridge

A bridge modeled as a SDOF structure was used to assess the effectiveness of the algorithms in
reducing the seismic response. The bridge is similar to that used by Feng and Shinozuka
(1990, 1993). It has a mass of 1.02 x 106 kg and a hybrid control system consisting of an
isolator with a stiffness 3300 kN/m and a variable damper. The damping ratio for the bridge is
assumed as 2% and the damping coefficient of the variable damper varies between cmin = 150
kN.s/m and Cmax =1200 kN.s/m. The bridge was subjected to four accelerograms -- the N21E
component of Taft Lincoln School Tunnel, Wheeler Ridge earthquake, 1954; the S74W
component of Pacoima Dam, San Fernando earthquake, 1971; the 0 degree component of the
Corralitos Eureka Canyon Road accelerogram, the Lorna Prieta earthquake, 1989; and the 90
degree component of the Arleta Nordhoff Avenue Fire Station accelerogram from the
Northridge earthquake, 1994; each scaled to a peak ground acceleration of LOg. The results of
the analyses with no control and with passive control (passive damper) with damping
coefficients cmin and Cmax are shown in Table 5.1 (columns 2-4) which indicate that an increase in
damping decreases the relative displacements and increases the absolute accelerations.

The bridge was also analyzed with a variable damper using the three algorithms. For the SA-1
algorithm, the scalar R is set equal to 11K and the matrix Q is computed by Equation (4.8). By
varying q, different combinations of displacement and acceleration are obtained. Shown in
Table 5.1 (column 5) are the responses for q =0.12 where it is observed that Xmax and~ are
between those obtained with cmin and cmax' The bridge was also analyzed using the SA-2
algorithm with q =0.6 (q =0.6 resulted in a response approximately the same as that using a
passive damper with cmax) and different values of qa' The results for qa = 3 X 105 are shown in
Table 5.1 (column 6) where it is noted that the displacement responses are close to (or even
lower than) those with cmax and the acceleration responses are close to those with cmin ' The
analysis with the SA-3 algorithm was carried out for (}z = 7l11O and different Q values. The
results presented in Table 5.1 (column 7) are for Q = 7 S·2. Similar to the SA-1 algorithm, the
responses are between those with a low and a high damping coefficient. The results in Table
5.1 underscore the advantage of using the SA-2 algorithm.

5.2 Base-Isolated Frame

A six-story base-isolated frame was considered to examine the effectiveness of the three
algorithms in reducing the displacement and acceleration responses of MDOF structure. The
column stiffnesses are ki = 3 x 105 kN/m, floor masses mi = 1.0 x 105 kg, and the damping
ratio is assumed to be 5 % in each mode. The frame is supported at its base by an isolator with
a linear stiffness kb =9,000 kN/m, a mass mb = 1.4 x 105 kg, and a variable damper with
damping coefficients between cmin = 100 kN.s/m and Cmax =900 kN.s/m. Tables 5.2 and 5.3
show the responses with passive dampers to the S74W component of Pacoima Dam, San
Fernando earthquake, 1971; and the N21E component of Taft Lincoln School Tunnel, Wheeler
Ridge earthquake, 1954; both scaled to a peak ground acceleration of 1.0g. The tables indicate
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(columns 2 and 3 in each table) that an increase in the damping coefficient of the isolator
decreases the displacements and increases the accelerations.

The frame was also analyzed with a variable damper at the base using the three algorithms. For
the SA-l algorithm, the R matrix is a scalar and is set equal to 1, and the Q matrix is computed
from Equation (4.8). Similar to the SnOF case, different displacement and acceleration
responses are obtained by varying q. Column 4 in Tables 5.2 and 5.3 show the responses
when q = 700 where it is observed that the absolute accelerations are reduced and the
displacements are increased when compared with the response with a passive damper with cmax'

For the analysis using the SA-2 algorithm, the scalar R =1 and the matrix Q with q = 5000
which results in a response approximately equal to that with a passive damper with cmax are
used. The Qa matrix is selected as

(5.1)

where I is the identity matrix (size 7 x 7). By varying qa different penalties can be imposed on
both the state and acceleration vectors. It was found that with qa = 1.5 x 105

, a displacement
close to that with a passive damper with Cmax and an absolute acceleration close to that with cmin
were obtained as shown in Tables 5.2 and 5.3 (column 5). To further reduce the acceleration
response of the isolator, a higher penalty was imposed on its absolute acceleration by changing
the element which corresponds to the isolator acceleration in the identity matrix -- element (7,7)
-- to a larger number (7 instead of 1) and using a qa = 105

• This change resulted in a further
reduction in the acceleration response of the frame as shown in Tables 5.2 and 5.3 (column 6).

A similar analysis was performed to investigate the effectiveness of SA-3 algorithm for the
base-isolated MDOF structure where the displacement-acceleration domain was defined using
the isolator response. The analysis (results are not included) showed that the algorithm was not
effective and the accelerations obtained were greater than those using a passive damper with
cmax'
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Table 5.1 Summary of the response of the bridge with no control and with passive and semi-active dampers

Control No Control Passive, cmin Passive, cmax
SA-1 SA-2 SA-3

(2) (3) (4) (5) (6) (7)
(1) xmax amax xmax amax xmax amax xmax amax xmax amax .xmax amax

m g m g m g m g m g m g
Taft, 1954 0.250 0.083 0.236 0.085 0.181 0.137 0.199 0.122 0.175 0.079 0.197 0.125

Pacoima Dam, 1971 0.170 0.056 0.144 0.050 0.114 0.086 0.118 0.074 0.106 0.048 0.116 0.074

Corralitos, 1989 0.297 0.098 0.246 0.083 0.157 0.137 0.183 0.107 0.151 0.088 0.182 0.091

Arleta, 1994 0.488 0.161 0.411 0.143 0.308 0.218 0.340 0.195 0.350 0.128 0.358 0.185

Table 5.2 Response of the six-story base-isolated frame to the Pacoima Dam accelerogram

Passive, Cmin Passive, Cmax SA-1 SA-2a SA-2b
Level (2) (3) (4) (5) (6)

(1) xmax amax xmax amax xmax amax xmax amax xmax amax
m g m g m g m g m g

Top 0.150 0.256 0.115 0.302 0.136 0.282 0.115 0.266 0.116 0.242

5 0.150 0.245 0.115 0.279 0.136 0.263 0.115 0.246 0.116 0.230

4 0.149 0.226 0.114 0.258 0.135 0.238 0.114 0.227 0.115 0.226

3 0.147 0.203 0.114 0.213 0.134 0.213 0.113 0.198 0.114 0.204

2 0.145 0.208 0.112 0.223 0.132 0.212 0.112 0.211 0.112 0.200

1 0.143 0.212 0.111 0.245 0.130 0.224 0.110 0.224 0.110 0.210

Base 0.139 0.212 0.108 0.261 0.127 0.239 0.107 0.235 0.108. 0.223
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Table 5.3 Response of the six-story base-isolated frame to the Taft accelerogram

Passive, Cmin Passive, Cmax
SA-l SA-2a SA-2b

Level (2) (3) (4) (5) (6)
(1) xmax amax xmax amax xmax amax xmax amax xmax amax

m g m g ill g m g ill g

Top 0.170 0.337 0.141 0.428 0.161 0.370 0.134 0.378 0.136 0.396

5 0.169 0.311 0.140 0.392 0.160 0.340 0.133 0.370 0.135 0.374

4 0.167 0.273 0.138 0.322 0.158 0.286 0.132 0.324 0.134 0.336

3 0.164 0.278 0.135 0.326 0.155 0.305 0.129 0.319 0.132 0.333

2 0.161 0.308 0.132 0.392 0.151 0.357 0.127 0.345 0.129 0.346

1 0.157 0.334 0.128 0.432 0.147 0.384 0.124 0.362 0.127 0.343

Base 0.153 0.351 0.124 0.447 0.143 0.404 0.121 0.360 0.124 0.330



6. CONCLUSIONS

The overall objective of this study was to investigate the effectiveness of variable dampers in
reducing the response of structures to earthquake loading. Three semi-active control algorithms
are presented and compared. They include: 1) a linear quadratic regulator (LQR) algorithm
referred to as (SA-I) which has been used extensively in active and semi-active control of
structures; 2) a generalized LQR algorithm referred to as (SA-2) with a penalty imposed on the
acceleration response which was introduced by Yang et aI. (1992) for active control and is
adopted for use as a semi-active control algorithm in this study; and 3) a displacement­
acceleration domain algorithm referred to as (SA-3) where the damping coefficient is selected
based on the location of the response parameters on the displacement-acceleration plane.

Two single-degree-of-freedom structures (a flexible and a rigid) were analyzed with the three
algorithms using 20 accelerograms for the excitation. The results indicate that:
a) variable dampers can be effective in reducing the acceleration response of flexible structures
such as base-isolated and tall buildings, and isolated and cable-stayed bridges where an increase
in damping adversely affects the acceleration response. Variable dampers, however, are not
effective for rigid structures as compared to passive dampers;
b) the SA-2 algorithm is more efficient than the other two in reducing the displacement and
acceleration responses. The efficiency of this algorithm is, in most part, due to the penalty
imposed in controlling the absolute acceleration response; and
c) the SA-1 and SA-3 algorithms result in similar efficiency in reducing the response of single­
degree-of-freedom structures, although the SA-3 Algorithm is more robust.

The three algorithms were used to compute the seismic response of an isolated bridge modeled
as a SnOF structure and a base-isolated frame modeled as a MDOF structure. The results
indicate that for these two structures which can be classified as flexible, variable dampers are
quite effective in reducing the displacement and acceleration responses. The SA-3 algorithm,
however,_ is not effective as the other two for multi-degree-of-freedom structures.
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APPENDIX A. EARmQUAKE RECORDS USED IN mE STATISTICAL
STUDY

Source Peak
Earthquake Mag. Station Name DistancE Compo Accel.

(kIn) (g)
Northwest California 5.8 Ferndale City Hall 56.3 S44W 0.104
10/07/1951 N46W 0.112
San Francisco 5.3 San Francisco Golden 11.2 NI0E 0.083
03/22/1957 Gate Park S80E 0.105
Helena Montana 6.0 Helena, Montana 6.2 SOOW 0.146
10/31/1935 Carrol College S90W 0.145
Parkfield, California 5.6 Temblor, California 59.6 N65W 0.269
06/27/1966 #2 S25W 0.347
San Fernando 6.4 Pacoima Dam 7.3 S16E 1.172
02/09/1971 S74W 1.070

250 E First Street 41.4 N36E 0.100
Basement, Los Angeles N54W 0.125

LomaPrieta 7.1 Corralitos - Eureka 7.0 90 deg. 0.478
10/17/1989 Canyon Road Odeg. 0.630

Capitola - 9.0 90 deg. 0.398
Fire Station Odeg. 0.472

Northridge 6.7 Arleta Nordhoff Ave. - 9.9 90 deg. 0.344
01/17/1994 Fire Station 360 deg. 0.308

Pacoima Dam - 19.3 265 deg. 0.434
Down Stream 175 deg. 0.415
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APPENDIXB. LIST OF SYMBOLS

A system matrix
amax maximum absolute acceleration response

B control force location matrix in state-space
C damping matrix
Cmax maximum damping coefficient
Cmin minimum damping coefficient
c(t) damping coefficient of the variable damper
D control force location matrix
G gain matrix
g gravity acceleration
H excitation location matrix in state-space
I identity matrix
J performance index
K Stiffness matrix
kb isolator stiffness
M mass matrix
m number of dampers
mb isolator mass
n number ofdegrees of freedom
P Riccati matrix
Q weighting matrix
Qa weighting matrix
q parameter or multiplier
qa parameter or multiplier
R weighting matrix
T natural period
t time

t.r duration of excitation
u control force vector
x displacement vector
Xa absolute acceleration response

xg ground acceleration

Xmax maximum relative displacement

z state vector

8(t) angle defIning the response in the displacement-acceleration domain

~max maximum damping coefficient ofvariable dampers
~min minimum damping coefficient ofvariable dampers
n reference parameter
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