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ABSTRACT

The complete linear response of plane, elastic lay-
ered solid to a shear dislocation 1s investigated. The
solution 1s expressed as a summation of generalized
rays of the P, S5V, and SH potentials. This allows the
transient response to be obtained upon application of
the Cagniard-deHoop technique. Numerical results of
the full solution containing the near and far field
terms are compared for a whole space, half space, and
layered model with asymptotic solutions to establish the
advantages and limitations of approximate methods.

INTRODUCTION

In the past decade, significant progress in our understanding
of seismograms has been accomplished based largely on our ability
to separate source effects from propagational distortions,
Numerous formalisms have been developed whereby+«synthetic selismo-
grams can be computed at varlous positions on the Earth, for com-
parisons with observed seismograms. Iterative techniques can
then be applied to determine Earth structure or source models or
perhaps some properties of both. The most efficient technique
used to generate synthetics is essentially controlled by the ratio
of the travel time of the disturbance to the source duration, with
optics at the upper limit and statics at the lower. However, a
highly desirable property of any technique is that the physics be
relatively apparent so that the user can easily discern how model
parameters influence the synthetlc motion. In this paper we will
discuss such a technique, called generalized ray theory, where
various useful approximations are made based on the travel time to
duration ratio.
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We assume that earthquakes can be simulated by distributed
shear dislocatlons and that the Earth can be replaced by a lay-
ered elastic medium; both assumptions are suspect but worth con=-
sideration as viable models at our present level of understanding

First, we will consider a shear dislocation in a whele space
expressed in cylindrical coordinstes because of its comparibility
with the layered problem. The layered structure complication is
effectively removed by a generalized ray expansion of the P, SV,
and SH displacement potentials with the Cagniard-deHoop technique
used to obtain the transient response. This basic technique has
been used earlier by Pekeris {1] and his colleagues, and is some-
times called the Cagniard-Pekeris method by Ben—Menahem and
Vered [2]. Japanese selsmologists use a similar technique and
call it the Cagniard-deHoop-Satc method (Kawasaki et al. [31}.
The basic idea appears to have originated with Lamb [4] and has
been modified for special purposes by many researchers,

SHEAR DISLOCATION SOURCE

Haskell [5] introduced a shear fault where a discontinuity
in displacement across a fault plane was allowed, resulting in a
double-couple radiation pattern. Following deHoop's [&] form of
the elastodynamic representation, Harkrider [7] has obtained
convenient forms of displacements and displacement potentials for
a number of different coordinate systems. The solution in cylin-
drical coordinates has been further reduced to z form suitable
for the application of Cagniard's method by Helmberger [8] and
Langston and Helmberger [9]. The results in terms of the
Laplaced transformed displacements along the vertical, tangential,
and radial directions are:

ﬁ = %ﬁ,+ spﬁ
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A~ 2o ~
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vhere z, r, and 0 are the vertical, radial and polar angle ccor-
dinates, respectively, The P wave potential (4), the SV wave
potential (), and the SH wave potential (X) are expressed by
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where only the first term of each potential is required in describ-
ing a pure strike-slip and the second term only for a pure dip-

. slip orientation (Harkrider [7]). The more important definitions

are as follows:

s = Laplace transform variable
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The vertical radiation patterns, as will become apparent
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The integ

1

rals expressed in {(2) can be transformed back into

the time domain by the application of the Cagniard-deHoop tech-
nique, see Gilbert and Helmberger [10] and Harkrider and

Helmberger [11

1. Por example, the field function defined by
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— 2 —anlz-h'
gn(r,z,s) =Ts Im J %: Kn(Spr) e dp (5)
becomes
t c (£,1) '
_ 23 n'’ dp, p(m)
L {r,z,t) = = Im J G2 dt, (6)
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cn(t,T(p)) = cosh(n coshnl(z:jéigjﬂﬁ) .

The geometry is given in Figure la and the deHoop contour T
in Figure 1b, see deHoop [12]. The various functions of p are to
be evaluated along I' defined by choosing those values of p which
make T{p) real and increasing, where

T(p) = pr + n_|z-h] . (7
thusy r 2 R2 1/2
p(1) = < *+ (T ——79 | z-h| (8)
R \'
and
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and
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dr PRIV
where
Im(p) (b}
r
z- Receiver | poé = Re{p)

FIGURE 1. Source-Receiver Geometry and Complex (p) Plane with
Branch Cut Starting at (1/V) and Running Out along the
Real (p) Axes
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R2 = r2 + |z—hf2 .

Note that the integrand is real until

which is the ray parameter corresponding to Snell's law.
In this simple case we have a closed form solution for

ous values of 1 since the equivalent form back in the (w,k) domain

‘has been evaluated by Harkrider [7]. For example,

g,z t) = 5o {15+ & (-0 ne -5y
¥

vari-

(11

where the near-field contribution appears in terms of r. However,

since we need to evaluate integrals similar teo (2) with comp
cated complex integrands later, it should be noted that (8)

13~
can

be evaluated for various values of (t) after a change of variable
as proposed by Helmberger {13]. A relatively fast evaluation of

this type of integral is by nonuniform quadrature techniques
where the polnt spacing is deteyxmined by the rate of change

the integrand. The accuracy of such techniques will be disc

later. First we will examine some useful approximations by

of
ussed
ex-

panding the integrand of (6) in terms of (tnT)“lfz. Note that
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to first order. Thus, we can approximate (8) by
23 ! L d
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=9 i 21/pdp
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when treating a high frequency source with duration, T, such
that T << 2pr,
A still further approximation can be used at very large r's

when
d i(t-t )_l/2 ————-rlv—
dt R (ZtR)l/2
where te = R/V and p = P, and (12) reduces to
G(t-tR)
g (rs2st) = — ¢ s (13)

~called the first motion approximation. This approximation is
valid at teleseismic distances where the ratic of travel time to
duraticn is of the order of 100 or greater, and has proven quite
useful in modeling shallow earthquakes, see Langston and
Helmberger [9].

The approximation used in (12) can be obtained in a slightly
simpler way by returning to expression (5) and using the asymp-
totic form of the modified Bessel function, namely

- [T osPT u-1 . ...
Kn(spr) Jopt © [1+ — + ]

where 4 = 4n?, Substitution of the first term of the above ex-
pression into (5) ylelds (12) after applying the deHoop [12]
technique. Note that the second order term has the form of a
temporal integration of the first term or the form of a near-
field effect. We will discuss the high frequency solution in
the next section keeping only the first term; however, the fur-
ther expansion in higher order terms can be carried out in
similar fashion and will be discussed in the numerical results.

HIGH FREQUENCY SOLUTICN FOR A MULTILAYER PROBLEM

Applying the method of generalized reflection and transmis-
sion coefficients (Spencer [1l4]), it is possible to construct a
representation for a disturbance which has traversed some layer-
ing in some specified mode of propagation. The tangential dis-
placement on the surface of a layered half-space model, where
only the far-field term is retained, becomes

o 4

4ﬂp0 dt

. 2
V(r,0,8,t) = [(t) *521 Ay (O,0.0V, (0] A8
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where
n
2 i dp
v, (t) R Im[( ) IR su. (p) M(p)(p) d)
T if1 g 1
D(t) = far field time history
Hi(p) = product of reflection and transwmission coeffi-

cients

and the summation is over contributing rays. WNumerical evalua=-
tion of these exprassions are discussed in detail by Helmberber
and Malone [15].

The high frequency approximations for the other components
of motion are somewhat more complicated with the vertical dis-
placement on the free surface given by

8 o4 % ] )
W{r,0,0,t) = — | D(L) * AW (15
4Wpo dt 4=1 13
where
2, Y m ap\
Wie) = 3 “{;/E * izl(lm . €4(p) Ry, (p) M, (p) dt)iJ

21 1, F o[y I (o 92
+\/; “[/E * 11 Im(nB SVj\p) Rz (P (p) 3E ) .

The function Iy (p) defines the product of all transmission and
reflection coefficients along the path from the source tc the re-
ceiver. The function RNZ(p) is defined by Rpz(p) or Rgy(p),
depending on the mode of propagation upon arrival at the receiver,
wilth

2 2
_ ZT’IOL(T]B -p )
®2 " ol
(16)
o = 4Pnun§
sz~ 2
B"R(p)
2
R(p) = (né-pz) + 4p2nan8 17
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Rpy and Rgy are called receiver functlons and are derived by tak-
ing the Jimiting conditions as direct P, reflected PP, and SP
converge in time at a free surface, see Knopoff et al., [18] and
Helmberger [8].

The radial displacement, Q, ls obtained by replacing Bpy and

Rgy by Ry, and Ry, defined by

_ TMMgtge
Kor = 73
R7R(p)
(18)
ZHB(Hg - p%) '
Ry, = =g .

82R(p)

The reflection and transmission coefficients used in Iy (p) are
those defined by Helmberger [13]. Synthetic responses for these
solutions will be discussed after we examine the full Cagniard
solution,

FULL CAGNIARD SCLUTION

The high frequency solution discussed in the last section
has many advantages in model studies due to its simplieity. How-
ever, for small values of (spr), one must use the full solution
by applying the transformations used in deriving expression (6).
The displacements given by (1) can be evaluated by substituting
the potentlals (2) and inverting the varicus terms back into the
time domaln. The vertical displacement becomes

Mo d ’
T, 3T D(t) * ) AW, (19)

W(r,z,8,t) =

where W,, W,, and W, correspond to a pure strike-slip, dip-siip,
and 45° dipfslip, réspectively., The strike-slip response can he
wrlitten

t
2 -
Wl(l’sngst) = F Im J- ga(Z) GlRl:Z dr

t
2
+ %-Im J gB(2) SVlRSZ dt (20

where
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2 -1/2

in

‘ d -1/
8,(n) = C(t,T,n) ﬁ: @@ -+ (£-1)
and

RPZ =N, RSz = p for a whole space .

They are given by expression (16) for a receiver on the free
surface. Similar expressions are obtained for the dip-slip and
45° dip-slip cases with n = 1 and n = 0, respectively.

The tangential displacement is slightly more complicated be-
cause of the explicit near-field terms

M : 2
V(r,z,8,t) = ng:%tf [D(t) = jZl Appq V41 (21)

T

t
Vl(r,z,e,t) Im J gB(Z) SHlRT dt

2 t 2
+-? Im J gB(Z) SHlRT(;;) dt dt

(22)

+
ERT

t
In H g,(2) o R (B dr ar

2 t 2
+‘E-Im J gB(Z) SVlRSTC;) dTt dt

where
Ro=ps Ryp=1, Ryo= -nB/p for whole space
and
Rp = 2P Rpp =75 ——» Rgp =75 5
B R(p) B R(p)

for a receiver on the free surface. The dip-slip result is simi-
lar with n = 1 and where the factor in parentheses is reduced by
two.
Finally, the most complicated radial component is expressed
by
Mo d . 3
Q(r,z,0,t) = Z;a; EE‘[D(t) * jzl Aij] (23)
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where
2 t
Ql(r,z,e,t) = I 8y (L ClRPR dt
2 "
+'F J gﬁ(l) SVlRSR aT
+ 2 ff 8,(2) € R dt a (24)
+ 2 f 85 (2) SV R (20 dr de
1
+ E‘J (2) sH ( ) dt dt
and
Fop = 7P > Rep = Mg

for whoie space and given by expression (1B) for a receiver on a
free surface, 8Sdmilar expressions for the dip-slip result are
cbtained by changing the n to 1 and the factor in parentheses re-
duced by two.

The 45° dip-slip result is simply

. t
2
Qa(raz:est) = E'J ga(l) CBRPR dt

t
- %—f gg(1) SV,R, dT . (25)

Thus, to obtain the full solution requires 26 integrations
for each time step which can be compared with numerical results
obtained from closed form whole space solutions in spherical co-
ordinates. Furthermore, the expressions in cylindrical coordi-
nates are poorly behaved at small values of r, as we will see in
the numerical regults discussed in the next section,

NUMERICAL RESULTS

In this section we willl present numerical evaluations based
on the formalism presented earlier for models appropriate for
shallow earthquakes. However, before these equations can be ap~-
plied, we must specify the unknown function D(t), the slip history
or the dislocation across the fault. Although there have been
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many proposed slip histories, we will use the one suggested by
Ohnaka [17] defined by
— (1+ >
[1- (k) e " Jt>0
D(t) =
0 t <0

with the far field given by

_ Kt
D(t) = k%te T

because of its simplicity and its similarity to the Brune [18]
far-field source. The artibrary constant kp will be set at 1 and
10 to simulate a relatively large earthquake, M > 7, and a mod-
erate size, M < 6. We assumed the seismic moment to be

M= 4ﬂpo ><lO23 = 3.4><1024 ergs

which is appropriate for the smaller event and the amplitudes
will be expressed in cm. For earth models, we chose a whole
space, a half space, and a layer over a half space, to keep the
complexity at a minimum but still test some commonly held as-
sumptions, see Table 1. That is, a number of authors have
modeled local earthquakes by reducing the amplitudes of these
observations by two and assuming that the Earth is a whole space,
see for example, Trifunac [19].

As mentioned earlier, the expressions in cylindrical coor-
dinates become unstable at small r's, since the near-field P wave
response grows rapidly and is mostly cancelled by the SV wave.
This means the numerical answer is the difference of large num-
bers, an unpleasant situation. For this reason, and to test the

TABLE 1

Model Parameters

Thickness P-Velocity S-Velocity Density
Layer Tan km/s km/s g/cm?
1 2.0 4.5 2.8 2.6

2 8.0 6.2 3.5 2.7
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heavy algebra, we computed the whole space response in two ways.
First, by evaluating the solution in spherical coordinates, given
by Harkrider [7], and rotating the vectors into the directions r,
z, and 8. The results are given on the right of Figure 2, with
the corresponding solution in cylindrical coordinates, expressions
(20), (22), and (24), given on the left. The short period re-
sults are identical, but the larger periods are somewhat off.
Similar synthetics at larger ranges, A = 16 and 32 km, are iden-
tical for the short and long periods, since the near-field blow
up is not so severe.

In Figure 3 we display the tangential results, V, for the
whole space on the right, half space in the middle, and the asymp-
totic on the left. As might be expected, the comparison between
the whole space and half space is quite good using the factor of
two adjustment, although there is some distortion caused by the
Rayleigh pole. On the other hand, the asymptotic solution is

STRIKE — SLIP
r T T 1 M "
Analyticol
—— w
N
\\’/ ______________
/"\\\‘;
-/ v
P f
N
\h
),—" T o u
kpelo o = hyp=t
DIp-sLIP

Lo b 1 N e | [ 1 L Lo L.
[¢] 2 a4 6 a 0 Q ? & ©

Time, sec

FIGURE 2. Comparison of the Whole Space Numerlcal Results
(Cagniard-deHoop) with the Analytical Results. The
Model Parameters are Specified by the Half-Space Given
in Table 1 with the Top Layer Removed. The Amplitudes
along Each Row are the Same and Given Explicitly in
Figures 3, 4, and 5
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FIGURE 3. Comparison of the Full Cagniard Tangential Response
Displayed on the Left and Middle with the Asymptotic
Results on the Right. The Peak Amplitude in cm is
Given for each Trace with the Whole Space Resulrs
Doubled. Model Parameters are Specified by the Half-
Space in Table 1 with the Top Layer Removed

adequate at the largest range for the short periods, since most
instruments weuld not detect the long period precursor. The only
significant difference between the strike-slip and the dip-slip
results is caused by the radiation pattern.

The corresponding comparisons for the vertical and radial
components are given in Figures 4 and 5. TFor these components
the factor of two, free surface adjustment, is adequate at A = 8,
but at larger ranges the diffracted P complicates the situation.
On the other hand, the comparison between the full and asymptotic
solutions is quite good for the short periods and even the long
periods, except for the strike-slip radial components at A = 8,
16 km. The reason for this is given by the strong near-field
dependence for this particular component as can be seen from ex-
pression (24). The results for the 45° dip-slip case are similar
to those in Figure 5 with the comparison between asymptotic and
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FIGURE 4. Vertical and Radial Comparisons for the Strike-S1lip
Orientation

exact being slightly better because of the smaller order number
of the Bessel functions.

Actually, it is somewhat fortuitous that the asymptotic
solution performs as well as it does, in that the full evalua-
tion of the far-field term gives a poorer approximation to the
full solution. The reason is that the so-called far-field term
contains near-field information due to the unnatural {(r) expan-—
sion. Thus, the far-field term grows rapidly in time, only to
be partially cancelled by the explicit near-field term of
another wave type.

The comparison between the asymptotic solution and the ex-
act can be greatly improved at the larger ranges by including
higher order terms, for example, see Figure 6. This solution
does quite well already at r = 16 km, with the results for other
orientations being nearly identical with the exact after summing
two terms, Op the other hand, the short period results at r = 8
km for the strike-slip case are better than those presented in
Figure 4, but the longer period results are not. This is the
normal behavior of asymptotic solutions, but in this situation
the convergence criterion is complicated by the cancellations



514 D. V. Helmberger, D. G. Harkrider
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FIGURE 6. Comparison of the Varicus Components of Motion for a
Strike-Slip Orientation at A = 16 km for a Whole
Space. The Top Four Rows Contain the Asymptotic Sum-
mation after 1, 2, 4, and 12 Terms. The Full Solution
is Displayed on the Bottom.
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between the various wave types as mentioned earlier.

The general agreement between the full apd asymptotic solu-
tion that occurs in Figures 4 and 5 also carries over intc the
layered model as displayed in Figure 7. The full Cagniard solu-
tion was generated by adding up rays where the integration
process must be performed on each ray separately. Thus, the com-
putation time is much longer than for the asymptotic solution
which sums the rays before performing the convolution,

Fortunately, we pgenerally do not need many rays at small
ranges because the internal reflections are also small and the
exact formalism can be applied. At larger ranges, where many
rays are required to model the waveguide effects, we can uge the
asymptotic formulation.

An example application of the above asymptotic technique to
earthquake modeling is given in Figure 8. The observed displace-
ment is from a strike-slip earthquake of magnitude 5 occurring in
the Imperial Valley, California. This event was located in a
region of known velocity structure given at the top of the
figure. The only unknown parameters were the source depth and

FULL CAGNIARD ASYMPTOTIC
T T T r T T T
1.8 1.8
F\/\ Wsg — T
38 3.85
e
4.8 8.5
Wasg el

7.3 8.5
- Qaqp = - -
1 1 J L. U I B
o B 4 [ 0 3 4 3
Time, sec

FIGURE 7. Comparison of the Full Solution with the Asymptotic
Results (first term only) for a Layer over a Half-
Space Model Given in Table 1.
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Depth
(kmé Miodel
B:088 km/sec  p=1.80 gfcc
995 5 FACE)
2.4 2€
59
Sl 37 28
source
IvC A=33 km

20 sec 25

FIGURE 8. Comparison of a Synthetic with a Strong Motion Record-
ing, 1IVC, of an Earthquake Occurring at Brawley,
California, in November 1976. The Model Parameters
Expressing the Known Structure are Given at the Top of
the Figure with the Source at a Depth of 6,9 km. The
Three Most Important Rays are Indicated Schematically.

slip history, D(t}, assuming the source can be simulated by a
point. After a diligent search the source depth of 6.9 km and a
D(t) specified by a triangular pulse with duration 1.5 seconds
was found to give the best fit, see Heaton and Helmberger [21]
for details and a discussion of the ather components. A similar
study was conducted on a larger earthquake, the Borrego Mountain
event, where the fault was replaced by a distribution of shear
dislocations (Heaton and lelmberger [20]). Both of these studies
involved observations at considerable distances, 30 and 60 km,
respectively, where the first term of the asymptotic solution was
assumed appropriate. However, because of the large numbers of
strong-motion instruments presently being deployed, we will prob-
ably obtain close-in observations of a large earthquake in the
near future, and thus the usefulness of the modeling procedure
presented.
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