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. : ABSTRACT
It
Two syntactic methods for the recognition of seismic

waveforms are presented in this paper. The seismic waveforms are
represented by sentences (strings of primitives). Primitive
extraction is based on a clustar analysis. Finite-state grammars
are inferved from the <tvaining samples. The nearest—-neighbor
decision rvule and error—correcting finite-state parsers are used
for pattern claséification. While both show equal recognition
performance, the nearest-neighbor rule is much faster in computa-
tion speed. The classification of rteal earthquake / explosion

data is presented as an application example. -

1. INTRODYCTION

Seismeological methods are the most effective and practical
methods for detecting nuclear explosions, especially for under-—
ground 2xplosions. Position, depth and origin time of the seismic
events are useful information for discrimination; so afe body
wave magnitude and surface wavé'magnitude o# the seismic wave
E1.23.’Un?ortunatelq. they are not always applicable and reliable
for small events. It would be very helpful if the discrimination

+ This work was supported by the NSF Grant PFR 79-062%& and the
OMR Contract NOOO14-79-C-0574. |/
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is based an the short-period waves alone. The application of pat-
tern recagnition techniques €0 seismic wave analysis has been
studied extensively [3-51 in the last few gyears. They all wuse
short~period waves only. Most of these studies concentrated on
feature selection. Only simple decision~theoretic approaches have
been used. However, syntactic pattern recognition appears to be
quite promising in this area. It uses the structyral informstion
of +the seismic wavé which is very imporfant in analysis. In this
paper. we present two different methods of syntacéic approach ¢to
the recognition of seismic waves. One uses the nearegt—-neighbor

decision vrule, the other uses the error~correcting parsing.

In the first method, a pattern representation sybsystem con-
vaerts the seismic waveforms into strings of primitives. The
string-to~string distances between the test sample and all the
training‘samples are computed and then the nearest~neighbor deci-~
sion vule is applied. The block diagram is shown in Figure 1{a).
The second method contains pattern representation. aﬁtomatic'
gfammatical inference and error—correcting parsing. The block

diagram is shown in Figure 1{b}.

The patitern representation subsystem performs pattern seg-
mentation, feature selection and primitive vrecognition so as to
convert the seismic wave into a sfring of primitives. The
auvtoratic grammatical inference subsdstem infers a finite-state
{(regular) grammar from a finite set of ¢training samples. The
error—correcting parser can accept erroneous and noisy patterns.

Human interection is required only in the training stage, mostly
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in pattern representation and slightly in grammatical inference

We wuse our syntactic patten recognition methods to classify

nuclear explosions and earthquakes‘based on the seismic P-waves.

A typical sample from each <c¢lass is shown in Figure 2(a).
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However, extreme cases do exist. A near explosion looks like typ-
ical earthquakes while a deep earthquake looks like typical

explosions. They are shown in Figure 2(b).

1I. PATTERN REP TATION

Seismic records are one-dimensional waveforms. Although
there exist several alternatives (4,71 for rapresenting one-
dimensional waveforms. it is most natural to represent them by
sentences, 1i.e., strings of primitives. Three steps are required
for the conversion —-— pattern segmentation, Feafure selection and

primitive recognition.

A. Pattarn Segmentation

A digitized waveform to be processed by a digital computer
is wusually sampled from a continuous waveform which répresents
the phenomena of a source plus external noise, For some cases:
such aé EKG wave {Bl., every single peak and valley are signifi-
cant. Therefore these waveforms can be segmented according to the
shape. For others, like EEG [?] and seismic wave, a single'peak
or velley does not reveal too much information, especially when
the signal to noise ratio is low. Therefore, they should bhe seg-
mented by length, either a fixed leﬁgth or wvariable length. A
variable~length segmentation is more e#Ficient and precise in
representation, but it is usuvally very difficult and time consum-
ing %o find an appropriate segmentation. A fixed-length segmenta-
tion is much easier to implement. If the length 1is kept short

enough it will bes adeguate to represent the original waveform.
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Figure 2(a) Typical samples from each class, explosion’
(top) and earthquake (bottom).
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Figure 2(b} Extreme cases from each class, explosion
(top) and earthquake (bottom).

The selection of segment length is case dependent. It can be
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anywhere between the two extremes, i.e.. as long as the whole
wavetorm or as short as one point. There are tradgoFFs between
the representation accuracy and analysis efficency. The shorter
the segmentation is. the more accurate the representation will
be. But the analysis becomes more inefficient since the string is
longer and the parsing time is proportional to the string length.
Another problem is the noise, If the segmentation is too short,
it will be very sensitive to noise. A rule of thumb is that each
segmeﬁt shouid. contain several periods u? the wavefofms. In our
seismic data base éach seismic vecord contains 1200 sample
points. The sampling Ffrequency is 10 points per.second. Each
record is divided into 20 segments with &0 points in each seg-

ment.

B. Featyre Selection

This is the most difficult and critical part in pattern
recognifieon, Ang linear functions or nonlinear functions of the
original measurements may be considergd at features provided they
give distrimin;ting power. Both time domain features and fre-
guency domain features have been used for seismiﬁ discrimination.
For example, complexity and autoregressive models are features in
time domaini spectral ratio and third moment of frequency are
features in frequency domain {2]). Birnce we segment the seismic
wave, complexity and spectral ratio features are implicitely con-
tained in the string structure. Furthermore, the segment may be
too shor¢ for a model estimatien if we wuse shorter segment.

Therefore, we selected a pair of commonly used features —— zero
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crossing count and log energy of each segment, which are easy to
compute and contain significant information. Other features may
also serve as good candidates. An advantage of syntactic
approach is that feature selection is simpler. since features are
extracted from segments and each segment is much simpler in com-

parison with the whole waveform.

€. Primitive Recopgnition

After segmentation and feature selection, primitives can be
rg;ognized from +the analysis of training segments, and an iden-
titier assigned to each segment. This problem can be solved in
twe ways -—- either classified by human experts or by a computer.
We chooge the latter, since human classifications are not always
available and reliable. In addition we need to try different seg-
mert lengths in order to find an optimal §egmentation. Therefore,
we use auvtomatic clusbering analysis to classify each segment. In
the ¢clystering process, similar samples will be grouped together.
The similarity between a pair of samples is usvally defined by
the distance between them; Each segment is represeﬁted by a vec-
tor ¥ = (xl, ﬁ;, e xk) where ., L £ i £ k, is the i—-th

 feature, Kk is the total number of features. In our case:, k = 2.

I1¥ the number of clusters is known, then the WK-means algo-
rithm «can bs applied to find a clustering which minimizes a per-
formance index. When the number of tlusters is unknown there is
no universally applicable algorithm &$o determine the optimal

cluster number. We uvee a bottom—up hierarchical clustering algo-
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ritha [10] to +find the clustering of a sequence of cluster
numbers. The starting cluster number can be arbitrarily selected

It may egual to the number of the training segments, but it is
too time consuming even for a moderately large training set.
Therefore we start from a smaller numbér. say 20, to find the
clustering vsing K—means algorithm. The nearest pair of clusters
will bhe merged and the cluster number is decreased by oﬁe. The
K-means algorithm is applied again for reorganization. ‘This
clustering-merging cycle repeats until the cluster number rea;hes

a8 preset lower bogund, say 3, then the procedure stops.

Algorithm 1: Bottom—Up Hierarachical Clystering
Input: A set of n unclassified samples, an upper bound U

and a lower baund L.

Ouput: A sequence of optimal clusterings for the number of

clusters between U and L.

Method:

1) ket ¢ = U, ¢ is the number of clusters, and arbitrarily

assign cluster menbership

2) Reassign membership using K-means algorithm If

cgs L+ stop.

3) Find the nearest pair of clusters, say X; and X},
i X .

4) Merge X; and X&: delete X} and decrease ¢ by one.,

go to step 2.

The distance between two clusters is defined by
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dOX;: X3y = !l m; ~ my !
where m, . m& is the mean vectors of clusters i, j respectively.

The main problem that still remains unsolved at +this point
is to determine the optimal cluster number. Some criteria have
been suggested for determining the optimal cluster number. How?
ever, they are not always applicable. We determine the cluster
numbar by inspecting the increment of merge distance. Nhgn a
merge of two clusters is natural, the increment of merge distance
should b= gmall; otherwise it will be large. This ﬁan only be
determined from a sequence of cluster numbers. The merge dis-
tances of our training samples from 18 clusters down to 7 «clus-—
ters are shown in Table I. The increments of merge distances are
considerably large after ten clusters. Therefore, it is reason-
able %o select ten &9 be the optimal number of clusters. After
the cluster number bhad been determined, an identifier |was
assigned to each cluster. A test segment is assigned to some
cluster it the distance between the test segment and that clusfer
is the smallest. All the seismic waves are thereby converted into

strings of primitives, or sentences.

III. SYNTAX ANALYSIS

If the classification is all we need, then the nearest—
neighbor decision rule is recommended because of it’s computation
efficiency. On the other hand, if a complete description of the
waveform structure 1is needed. we have to use (error-—-correcting)

parsing. An error~—-correcting parser instead of regular pavser is
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TaBLE 1
Merge distances of hottom-up
hierarchical clustering process

’ Cluster Merge distance Increment of
number _ merge distance

i8 18.7 —
17 29. 9 11.2
ié 36. &6 5.7
15 37.7 1.1
14 43. 7 4.0
13 . 476 3.9
i2 | 57.2 2.6
11 L7. 4 16. 2
10 ?4. 5 27. 1

? 105. 4 10. 9

a8 144. 9 39.5

7 _ 187. 1 42. 2

required for most practical pattern recognition applications.
Since noisy and errars in previous processings usually cause reg-
uvlar parsers to fail. It is not uvnusual that even a perfect pat-
tern c¢an not be parsed by & regular parser, especially when the
grammar is inferred from a small et of samples. In that case,
the srror—-correcting parsing is equivalent to finding the dis~
tance between a sentence and a language. The parse of the sen—

tence may contain some error productions.

A. Nearest-Neighbor Dgcision Rule
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The concept of nearest-neighbor decision rule in syntactic
approach- is the same @3 that in decision-theoretic approach. The
only difference is in distance calculation The distance between
two strings is sometimes called Levenshtein distance [11], which
is the minimum number of symbol insertions, deletions and substi-
tutions required in order to transform one string inte the other.
If different weights are assigned ¢to different symbols and/or
operations, then the distance becomes a weighted Levenshtein dis-—
tance. These digstances can be computed using dynamic programming

method ([12]. Figure © shows the shortest path which trensforms

the string on the left into the string an the top.
a o b a a b

"Figure 5§ The shortest path which transforms string ‘ababb’
into string ‘aabaab’. The distance between these
two strings is 2. Horizontal movement means
insertion; vertical movement means deletion;
diagonal movement means substitution, Each
insertion, deletion and substitution have same
weight 1. ‘

B. Error-Correcting Finite-State Parsing

Before parsing can take place we must have a grammar. which

can be either heuristically constructed or inferred from a set of
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training samples. In order to study the learning capability of

our syntactic method, we <choose +the grammatical inference

approach,

Phrase Strycture Grammar

A phrase structure grammar @ is a 4~tuple

G = (Vy VT' P, 8), where

Vg finite set of nonterminal symbols

VTE finite set of terminal symbols, VyU Vr = Vo
vy N vr =¢. |

8 . start symbol, S ¢ V.

P : finite set of productions or rewrite rules of the
farm ok -3 B, of. B € VE ot xni V¥ is the set of all finite
length strings of symbols from ¥V, including A, the null

string, v¥ = ¥ - o

Lett @G = {Uh. Vip + P, 8) be a grammar. If every production in
P is of the form A -> aB, or A -> a, A, BE V,, a g VT’ then the

gramnar 6 is finite-state or regular [13].

Phrase structure grammars have been used to describe pat-
fernse in syntactic pattern recognition C(14]. Each pattern is
represented by a string of primitives which corresponds to a sen-
tence in a language (tree or graph in high dimensional grammars).

All strings which belong to the same class are generated by one

gramaar.

Gramnatical Inference
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A s2ft of sentences S+ is a positive sample of a language
L0y, if 8¥C L(G). A set of sentences 8~ is a negative sample of

a language L(G), if 8§ € L(G).

A positive sample gt of a language L(G) is s€ructurally com—
plete if each production in @ is ugsed in the generation of at

least one string in 8§ [13].

We assume that the set S 1i¢ structurally complete and 5+ [ =
L(GD}. where GD is the inferred grammar. Theoretically., if g* is
2 structurally complete sample of the language L(G) generated by
the finite-state grammar & then the canonical grammar Qc can be
inferred from S*. A set of derived grammars can be 'derived from
_éc. .The derived grammars are obtained by partitioning the sef'oF
nonterminals of the canonical grammar into equivalence rﬁlasses.
Each nonterminal of the derived grammar corresponds to one block
of the partition. Since the number of possible partitions is +too
large it is infeasible to evaluate all the partitions. Therefore
some algorithms such as k—-tail algorithm [161 has been suggested
to reduce the number of derived grammars. These algorithms have
oné disad#antage. The reduced subset of derived grammars may not
contain the source grammar. However, ift will be sufficient if 6ne
only interests in an estimate of the source grammar. There are at
least +two situations where a grammatical inference algorithm can
be used. In the first fase there éxists a source grammar which
generates a language and we want to infer the source grammar or
automnaton based on the observed samples. In the second case the

exact nature of the source grammar is unknown, the only
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information we have is some sentences generated by the source We
~assume that the source grammar falls into a patricular class and
infer a grammar which generates all the training samples, and
hopefully will generate some samples belonging to the same class.
[f a negative sample soﬁ is given the inferred gfammar must not

generate any sample in the negative sample set.

Grammars more complex than finite-gtate grammars and rtes-
tricted context-free grammars (in Chomsky hierarchy) can not be
inFerPed efficiently without human interaction. Therefore we
choose finite-state grammars to describe the seismic waves.
Anofher reason is that no obvipus self—embedding propertg.appears
in seismic waves, finite-state grammars wiil be sufficient in

generating power.

The inference of regular grammars has been studied exten-
sively., The k—-tail algorithm finds ¢the canonical grammar first
and then merges the states which are k-tail equivalent. This
algorithm 1is adjustable:, the value of k controls the size of the
inferred grammar. Another algorithm called tail—-clustering algo-
rithm (173 also finds the canonical grammar first, but then
- merges the states which have common tails. This algorithm is not
as ftlexible as éhe k~tail algorvithm, but will infer a grammar
which is closer to the source grammar in some 'cases. Since the
grammar is inferred from a small set of training samples, we can
only expect that the inferred grammar generates all the training

samples and will generate other strings which are similar to the

training samples.
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The generating power of the inferred grammar relies entirely
on  the merge procedure. If no merge exists then the inferred
grammar will generate exactly the same training set, mo more no
less. 8ince all the seismic records have the same length in our
example} the sgneences representing these signals also have‘ the
same length. _The merge of states does not happen in our experi-

ment when using tail-clustering algorithm.

Error-Coyrecting Parging

After a gremmar is available, either by inference or con-
struction, ¢the next step is to design a recognizer which will
recognize the patterns generated by the grammar. I# the grammar &
is +finite-state, a deterministic finite-state avtomaton can be

constructed to recognize the strings generated by 6.

Noise problem and primitives recognition error usually occur
in -pratice.vConventional parsing algorithms can not handle these
‘sitvations. A few approaches have been proposed. Error-correcting
parsing is one of ¢them C1i8]. The pattern grémm#r is first
transformed into a covering grammar that generates the correct
gsentences 4s well 88 31l the possible erroneous sentences. The
errorse in string patterns are substitution error, deletion error
and insertion error. For nonstochastic grammar., the minimum-—

distance criterion can be used for error-correcting parsing

Since all the sentences in our example have the same length,
anly the substitution errar needs to be considered. For each bro-

duction A -> aB and A ~->» a in the original grammar we add A - bB
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and A ~> b respectively to the covering grammar, where A, B & Vy
a: b € V., bXx a Different weight can ba‘assigned to each error
production, therefore, resulting an minimum—cost error—-correcting
parser. The assignment of weights is very crucial. We wuse the
diétance between clusters a and b as the weight for substituting
a by b and vise versa. Since a ¢€finite-state grammar can be
represented by a transition diagram. Thus, a minimum—-cost error-—
correcting parsing is equivalent to finding a minimum cost path
from initial state ¢o final state. The parsing time is propor-—

tional to the length of the centence.

Algorithm 2 Minimym-Cgst paths

Input. A transition diagram with n nodes numbered 1, 2
r...» 1, where node 1 is initial state and node n is final state,
and a cast function c;_‘} {a), for 1 £ i, J <€ n a€>, with ;£¢] (a)
20, for all i and §. An input string s.

Qutput. m the lowest cost of any path from node 1 to node n

n
whose sequencs is equal to that of the input string s.

Methad.

i) Set k = 1,

2) For all 1| £ 4 £ n, mi} = min {NIK + ck&(b), for all
i € k £ n), where b ies the k-th symbol of input string s.

-

3) I k¥ € isi. increase k by 1 and go to step (2.
If ¥ = isi, go to step (4).
43 output LT which is the lowest cost from node 1 to

node n following the move of input string s. Stop.

The production number can be stored with ciJ(a). and the
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parse can be stored with mq.

I# ingertion and deletion errors are toc be considered, then
the parser will still be similar except that we have to compute
and store the information VW(T, S, a} which is the minimum cost of
changing c¢haracter ‘&’ into some string which can change the
state of the auvtomaton from state T to 8 [19]. The inclusion of
insertion and deletion ervors makes the error correctipn mare
camplete, but assigning appropriate weights ¢o inserfian and

deletion ervor could be oven more difficult.

i¥. EXPERIMENTAL RESULTS

Dur seismic data are provided by professor C. H. Chen. They
were recorded at LASA in Montana. The original data contains 323
Tecords. Due to some technical problems in data conversion we
only get 321 records. Among them 111l records are nuclear explo¥
sions and 210 records are earthquakes. The experiment was Tun on
a VAX 11/780 cohputer vsing PASCAL pregramming language.:A set of
S0 carefully selected samples from each class is vsed as training
samples. The remaining 210 samples are test samples. The weights
for substitution errors are shown in Table II. The results shown
in Table III and Table IV are the information about the inferred
grammar and parsing. The grammars are inferred using K-tail algo—
tithe with diffarent values of k. Table III contains the number
of nonterminals, the number of productions and +the number of
negative samples accepted. Table IV contains average par;ing time

for one s&ring and the percentage of correct classification. It
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can be seen that‘as the value of k becomes smaller, the parsing
time becomes shorter but the classification error becomes larger.
This results from the uneven merge of the nonterminals. Due to
the characteristices of our sample set only thﬁse states having
the longest tails are mevrged. The results using nearest-neighbor
decigsion ryle are shown in Table V. It compares the string-to-
string distance between the test sample and the whole class of
training samples. The computation speed of nearest-neighbor rule
is much faster than that of error—correcting parsers. Althouth
the ultimate performance is about the same. As far as practical
computation is concerned, nearest-neighbor decision rule is much

faster than the grammatical approach.

TABLE II
Weights for substition error

a b € d ] £ g h i J

a 0 0.33 0.45 0.79 0.86 0.76 0.91 0.42 0.40 O0.61
b | 0.33 0 0.28 0.46 0.5 0.54 0.85 0.33 0.48 0. .29
c | 0.45 o0.28 O O0.46 0.44 0.31 0.57 0.23 0.20 0. 4&
d | 0.79 0.4&6 0.46 0 0.22 0.41 0.88 0.24 0.5 0.28
e | 0.86 0.56 0.44 0. 22 0 0.24 0.71 0.24 0.4& 0.48
£ 1076 0.54 0.31 0.41 O0.24 0O ©0.47 0.24 0.24 0.58
g | 0091 0.85 0.57 0.88 071 047 O 0.68 0.7 1.00
h | 0.62 0.33 0.23 0.24 0.24 0.24 0 648 0 0.33 0 .34
i | 0.40 0.48 0.20 0.56 0.46 0.24 0.37 0.33 0 0. 64
;] 0.61 0.29 0.46 0.28 0.48 0.58 1.00 0.34 0. 64 0

Y. CONCLUDING REMARKS
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TABLE 1III
The number of nonterminal, production and negative samples
accepted of the inferred grammars. The inference algorithm
ig k—tail algorithm with different values of k.

Explosion Earthquake - No. of
k negative
Nonterm. Product. Nonterm. Product. samples
No. MNo. No. No. accepted
20 748 796 746 794 | 0
i% 748 7& 746 794 o
18 741 796 737 794 0
17 722 778 715 772 0
16 &?4 751 686 743 o
i5 &56 714 680 708 o
14 &10 668 408 b&b 0
13 560 4i8 561 619 0
i2 310 568 511 569 o
11 450 518 461 %19 )
? 340 418 361 419 0
7 2462 319 261 319 pe.
o 166 222 1464 220 b

Though the classification results seem satisfactory they are
very sensi;ive tp the feature selection, the selection of train-
ing samples and the weight > assignment of error productions.
Although a finite set of samples have some limitations. It still

makles sense to pursue more studies about the following problems.

i. Feature selection. How fo find a set of distinguishable

features is the most important part in practical applications.
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TABLE IV
The average parsing time and percentage of correct
classification of the error~correcting parsers with
different values of k.

k Average parsing time Percentage of correct
for one string (sec) classification (%)
20 2.4 ?0.5
19 2.6 90. 5
i8 2.8 B85.5
i7 2.7 g2. 8
ia 2. & 75. 6
15 2.5 76. 0
i4 2.4 73. 8
i3 2.1 ‘73.3
i2 1.9 72. 9
i1 1.7 .71.0
2 1.4 70. 1
7 | 1.1 70. &6
S c.8 - &60.2

The difficulty increases when the class are somewhat overlapped.
Possible <olution are finding some kind of transformation which
will seperate the classes or selecting the most distinguishable
feature. Most of the features which are effective for statistical
approach can be used for syntactic approach. The selection of
feature number also desérves consideration. Some criteria are

needed w0 that a judgement can be made.

2 Selection of training samples. It would be helpful if
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TABLE V
Classification results using
nearest-neighbor decision rule

Average time for Percentage of
one sfring {(sec) carrect classification
. 07 70.5 %

200 records are correctly
classified out of 221

human experts are available for consultation. The clustering
techn;ques can be wvsed to get an initial training set, then it
tan be adjusted to obtain the best results Clustering techniques
can also be uvsed to find good prototypes from a set of samples.
A srall set of well-selected +training samples will certainly
reduce computation ftime and, in the meantime, may improve the

classification accuracy.

3 Weight assignment of erraor productions, This ﬁart is very
impbrtant in 2rror~correcting parsing, and onlq‘exists in syntac-
tic épproach. Equal weight assignment is very easy ¢to idplement
and has been wused. However, it is not always appropriate since
costs should be different for different errors. The similarity
between fwo primifives is a good reference for assigning weights
ta subs$itution errors. The weights of insertion and deletion:

errors are more difficult to assign. Only heuristic approaches

have besan known sp far.
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