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ABSTRACT

Two syntactic methods for the recognition of seismic

waverorms are presented in this paper. The seismic waveforms are

represented by sentences (strings of primitives). Primitive

extraction is based on a cluster analysis. Finite-state grammars

are inferred from the training samples. The nearest-neighbor

decision rule and error-correcting finite-state parsers are us.d

for pattern classification. While both show equal recognition

perrormance, the nearest-neighbor rule is much ~aster in computa-

tion speed. The classification of real earthquake I explosion

data is presented as an application example.

1. INTRODUCTION

Seismological methods are the most effective and practical

methods for detecting nuclear explosions, especially for under-

ground ~xplosions. Position, depth and origin time 0' the seismic

events are useful information for discrimination; so are body

wave magnitude and surface wave magnitude of the seismic wave

(1,2J. Unfortunately, they are not always applicable and reliable

for small events. It would be very helpful if the discrimination

* This work was supported by the ~'F Grant PFR 79-06296 and the
ONR Contract N00014-79-C-0574. V
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is based on the short-period waves alone. The application of pat

tern recognition t.chni~ues to seismic wave analysis has been

studied extensively [3-5] in the last few years. They all use

short-period waves only. Most of these studies concentrated on

feature selection. Only simple decision-theoretic approaches have

been us~d. However, syntactic pattern recognition appears to be

~uite promising in this area. It uses the structural information

oT the ~eismic wave which is very important in analysis. In this

paper, we present two different methods of syntactic approach to

the recognition of seismic waves. One uses the nearest-neighbor

decision rule, the other uses the error-correcting parsing.

In the first method, a pattern representation sybsystem con

verts the seismic waveforms into strings of primitives. The

string-to-string distances between the test sample and all the

training samples are computed and then the nearest-neighbor deci

sion rule is applied. The block diagram is shown in Figure 1(a).

The second method contains pattern representation, automatic

grammatical inference and error-correcting parsing. The block

diagram is shown in Figure 1<b).

The pattern representation subsystem performs pattern seg

mentation, feature selection and primitive recognition so as to

convert the seismic waVe into a string of primitives. The

auto~atic grammatical inference subsystem infers a finite-state

(regular) grammar from a finite set of training samples. The

error-correcting pars.r can accept erroneous and noisy patterns.

Human interaction is re~uired only in the training stage, mostly
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in patte'l"n representation and slightly in grammatical inference.

We use our syntactic patten recognition methods to classify

nuclear explosions and earth~uakes based on the seismic P-waves.

A typical sample ~rom each class is shown in Figure 2(a).
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Ho~ever, extreme case. do exist. A near explosion looks like typ

ical earthquakes while a deep earth~uake looks like typical

explosions. They are shown in Figure 2(b).

11. PATTERN REPRESENTATION

Seismic records are one-dimensional waveforms.

there exist several alternatives [6,7J for representing one

dimensional waveforms, it is most natural to represent them by

senteMces, i. e., strings of primitives. Three steps are required

for the conversion -- pattern segmentation, feature selection and

primitive recognition.

A. Pattern Segmentatign

A digitized waveform to be processed by a digital computer

is usually sampled from a continuous waveform which represents

the phenomena of a source plus external noise. For some cases,

such a~ EKG wave C8l, every single peak and valley are signifi

cant. Therefore these waveforms can be segmented according to the

shape. For others, like EEG [9] and seismic wave, a single peak

or velley does not reveal too much information, espe~ially when

the signal to noise ratio is low. Therefore, they should be seg

mented by length, either a fixed length or variable length. A

variable-length segmentation is more efficient and precise in

representation, but it is usually very difficult and time consum

ing to find an appropriate segmentation. A fixed-length segmenta

tion is much easier to implement. If the length is kept short

enough it will be adequate to represent the original waveform.
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E't<p los"or,

Figure 2(a) Typical 5amples from each class, explosion
(top) and earthquake (bottom).

E'Kplos\or,

Figure 2(b) Extreme cases from each class, explosion
(top) and earthquake (bottom).

The selection of segment length is case dependent. It can be
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an~where between the two extremesl i. e. I as long as the whole

waveiorm or as short as one point. There are tradeo'fs between

the representation accuracy and analvsis effieeney. The shorter

the segmentat i on is, the more ae curate th e representat i on wi 11

be. But the analysis becomes more inefficient since the string is

longer and the parsing time is proportional to the string length.

Another problem is the noise. If the segmentation is too short,

it will be very sensitive to noise. A rule of thumb is that each

segm~nt should contain several periods of the waveforms. In our

seismic data base each seismic record contains 1200 sample

poi nts. The samp Ii ng frequencv is 10 points per see ond. Eac h

record is divided into 20 segments with 60 points in each seg

ment.

~. Feature Selection

This is the most difficult and critical part in pattern

recognition. Any linear functions or nonlinear functions of the

original measurements may be considered as features provided they

give discriminating power. Both time domain features and 're

~uency domain features have been used for seismic discrimination.

For example, complexity and autoregressive models are features in

time domain; spectral ratio and third moment of fre~uency are

features in frequency domain (2J. Since we segment the seismic

wav" complexity and spectral ratio features are implicitely con

tained in the string structure. Furthermore, the segment may be

too short for a model estimation if we use shorter segment.

ThereTore, we selected a pair o~ commonly used features -- zero
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crossing count and log energy of each segment, which are easy to

compute and contain significant information. Other -Features may

also serve as good candidates. An advantage o-F syntactic

approach is that feature selection is simpler, since features are

extracted from segments and each segment is much simpler in com-

parison with the whole wave~orm.

~. Primitive Recognition

After segmentation and feature selection. primitives can be

recognized from the analysis of training segments, and an iden-

tiflier assigned to each segment. This problem can be solved in

two ways -- either classified by human experts or by a computer.

We choose the latter, since human classifications are not always

available and reliable. In addition we need to try dif-Ferent seg-

ment lengths in order to find an optimal segmentation. Therefore,,

we use automatic clustering analysis to classi-Fy each segment. In

the clustering process, similar samples wiH be grouped together.

The similarit~ between a pair of samples is usually defined by

the distance between them. Each segment is represented by a vec-

tor X = (x, ... ,

feature, k is the total number of features. In our case, k = 2.

If the number of clusters is known, then the K-means algo-

rithm can be applied to find a clustering which minimizes a per-

forn:ance index. When the number of clusters is unknown there is

no universally applicable algorithm to determine the optimal

cluster number. We use a bottom-up hierarchical clustering algo-
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rith~ riO] to find the clustering of a se~uence of cluster

numbers. The starting cluster number can be arbitrarily selected.

It may e~ual to the number of the training segments, but it is

too time consuming even Tor a moderately large training set.

ThereTor~ we start from a smaller number, say 20, to find the

clustering using K-means algorithm. The nearest pair of clusters

will be merged and the cluster number is decreased by one. The

K-means algorithm is applied again for reorganization. This

clustering-merging cycle repeats until the cluster number r~aches

a preset lower bound, say 5, then the procedure stops.

Algorithm 1: Bottom-~ Hierarachicil Clustering

Input: A set of n unclassified samples, an upper bound V

and a lower bound L.

Ouput: A sequence of optimal clusterings Tor the number of

clusters between V and L.

Method:

1) Let c = V, c is the number of clusters, and arbitrarily

assign cluster menbership.

2) Reassign membership using K-means algorithm. If

c ~ L , stop.

3) Find the nearest pail" aT clusters, say Xi and X~,

i ~ J.

4) Merge Xt and XJ' delete XJ and decrease c by one,

go to step 2.

The distance between two clusters is defined by
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cl (Xi' Xj) = I I mo{ - mJ I I

where mi' mt is the me.n vectors of clusters it j respectively.

The main problem that still remains unsolved at this point

is to determine the optimal cluster number. Some criteria have

been suggested for determining the optimal cluster number. How

ever, the~ are not always applicable. We determine the cluster

number by inspecting the increment of merge distance. When a

merge of two clusters is natural, the increment of merge distance

~hould be 'JImalli otherwise it will be large. This can only be

determined from a se~uence of cluster numbers. The merge dis

tances of our training samples from 18 clusters down to 7 clus

ters are shown in Table I. The increments of merge distances are

considerably large after ten clusters. Therefore, it is reason

able to select ten to be the optimal number of clusters. After

the cluster number had been determined, an identifier was

assigned to each cluster. A test segment is assigned to some

cluster if the distance between the test segment and that cluster

is the smallest. All the seismic waves are thereby converted into

strings of primitives, or sentences.

lll. SYNTAX ANALYSIS

If the classification is all we need, then the nearest-

neighbor decision rule is recommended because of it's computation

efficiencv. On the other hand, if a complete description of the

waveioPffi structure is needed, we have to use (error-correcting)

parsing. An error-correcting parser instead of regular parser is
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TABLE I
Merge distances of bottom-up

hierarchical clustering process
!
! Cluster Merge distance Increment of

number merge distance

18 18.7 -
17 29.9 11. 2

16 36.6 6.7

15 37. 7 1. 1

14 43. 7 6.0

13 47.6 3. 9

12 57.2 9.6

11 67.4 10.2

10 94. 5 27. 1

9 105.4 10.9

8 144.9 39. 5

7 187.1 42.2

required for most practical pattern recognition applications.

Since noisy and errors in previous processings usually cause reg-

ular paT'5eT'S to fBi 1. It is not unusual that even a perfect pat-

tern c<OJn not be parlled bl,l a regular parser, espec ially when the

gram~ar is inferred from a small set of samples. In that case,

the error-correcting parsing is equivalent to finding the dis-

tance between a sentence and a language. The parse of! the sen-

tence may contain some error productions.

A. N!arest-Neighbor Decision Ryle
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The concept of nearest-neighbor decision rule in syntactic

approach is the same as that in decision-theoretic approach. The

only difference is in distance calculation. The distance between

two strings is sometimes called Levenshtein distance (11), which

is the minimum number of symbol insertions, deletions and substi-

tutions re~uired in order to transform one string into the other.

If different weights are assigned to different symbols and/or

operations, then the distance becomes a weighted Levenshtein dis-

tance. These distances can be computed using dynamic programming

method [12J. Figure 5 shows the shortest path which transforms

the string on the left into the string on the top.

0. b b

b

a.
b

b

~ 1

~
~
~
~

Figure 5 The shortest path which transforms string 'ababb'
into string 'aabaab'. The distance between these
two strings is 2. Horizontal movement means
insertioni vertical movement means deletioni
diagonal movement means substitution. Each
insertion, deletion and substitution have same
we ight 1.

~. Errgr-Correcting Finite-State Parling

Before parsing can take place we must have a grammar, which

can be either heuristically constructed or inferred from a set of
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t~.ining samples. In o~der to stud~ the learning capability of

our syntactic method, we choos. the grammatical inference

approach.

Phrase St~ycture Qrammar

A phrase structure grammar G is a 4-tuple

Q = (V~, VT' P, S), where

VN: finite set of nonterminal symbols

Vr : Tinite set of terminal symbols, VN U VT = V,

VN n VT .. 1>.
S start symbol, S E VN.

P finite set of productions or rewrite rules of the

form rJ. -) ~, 01, ~ E V*, or:!l\)... i V· is the set of all finite

length strings oil symbols from V, including)\, the null

string, V~ = V* - <~}.

Le1; G = (V,." VT , P, S) be a grammar. r-P everlJ production in

P is 01 the Torm A -) aB, or A -) a, A, B E VN, a E VT , then the

gran~ar Q is ilinite-state or regular [13J.

Ph~ase structure grammars have been used to describe pat-

tel' nsin s y n t act i cpat t ern l' e cognit i on C14 J . Ea c h pat t ern i s

represented by a string of primitives which corresponds to a sen-

tenee in a language (tree or graph in high dimensional grammars).

All strings which belong to the same class are generated by one

grammar.

Gra~~atical Inferenc,



- 13 -

A set of sentences S+ is a positive sample of a language

L(C), if S+~ L(OL A set of sentences S· is a negative sample oT

a language L(O), if S" =L(O).

A positive sample S+ of a language L(O) is structurally com

plete if each production in Q is used in the generation of at

least one string in S (15J.

We assume that the set S is structurally complete and s+ =
L(OD)' IIIhere (1) is the inTerred grammar; Theoretically, if S+ is

a structurally complete sample of the language L(Q) generated by

the finite-state

in~erred from S+.

grammar 0 then the canonical grammar Qc can be

A set of derived grammars can be derived from

Qc' The derived grammars are obtained by partitioning the set of

nonterminals of the canonical grammar into equivalence classes.

Each nonterminal of the derived grammar corresponds to one block

of the partition. Since the number of possible partitions is too

large it is infeasible to evaluate all the partitions. Therefore

so~e algorithms such as k-tail algorithm (16) has been suggested

to reduce the number of derived grammars. These algorithms have

one dis~dvantage. The reduced subset of derived grammars may not

contain the source grammar. HOlllever, it lIIill be sufficient if one

only interests in an estimate of the source grammar. There are at

least trlllO situations IIIhere a grammatical inference algorithm can

be used. In the first case there exists a source grammar which

generates a language and we want to inTer the source grammar or

autonaton based on the observed samples. In the second case the

exact nature of the source grammar is unknown, the only
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information we have i. some sentences generated b~ the source. We

assume that the source grammar falls into a patricular class and

infer a grammar which generates all the training samples, and

hopefully will generate some samples belonging to the same class.

If a negative sample set is given the inferred grammar must not

generate any sample in the negative sample set.

Grammars more complex than finite-state grammars and res

tricted context-free grammars (in Chomsky hierarch~) can not be

inferred eT~icientlv without human interaction. Therefore we

choose ~inite-state grammars to describe the seismic waves.

Another reason is that no obvious self-embedding property appears

in seismic waves, finite-state grammars will be sufficient in

generating power.

The inference of regular grammars has been studied exten

sively. The k-tail algorithm finds the canonical grammar first

and then merges the states which are k-tail e~uivalent. This

algorithm is adJustable, the value of k controls the size of the

inferred grammar. Another algorithm called tail-clustering algo

rithm (173 also finds the canonical grammar first, but then

merges tne states which have common tails. This algorithm is not

as flexible as the k-tail algorithm, but will infer a grammar

which is closer to the source grammar in some cases. Since the

graffimar is inferred from a small set of training samples, we can

only expect that the inferred grammar generates all the training

samples and will generate other strings which are similar to the

training samples.



- 15 -

The generating power of the inferred grammar relies entirely

on the merge procedure. If no merge exists then the inferred

gram~ar will generate exactly the same training set, no more no

less. Since all the seismic records have the same length in our

example, the sentences representing these signals also have the

same length. The merge of states does not happen in our experi

ment w~en using tail-clustering algorithm.

Error-Co~recting Parsing

After a grammar is available, either by inference or con

struction, the next step is to design a recognizer which will

recognize the patterns generated by the grammar. If the grammar G

is ~inite-state, a deterministic finite-state automaton can be

constructed to recognize the strings generated by G.

Noise problem and primitives recognition error usually occur

in pratice. Conventional parsing algorithms can not handle these

situations. A ~ew approaches have been proposed. Error-correcting

parsing is one of them [18]. The pattern grammar is first

transformed into a covering grammar that generates the correct

sentences as well as all the possible erroneous sentences. The

errors in string patterns are substitution error, deletion error

and insertion error. For nonstochastic grammar, the minimum

distanc~ criterion can be used for error-correcting parsing.

Since all the sentences in our example have the same length,

only the substitution error needs to be considered. For each pro

duction A -~ aB and A -~ a in the original grammar we add A -> bB
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and A -) b respectivelv to the covering grammar, where A, B E VN,

a, b E VT , b ~ a. Different weight can be assigned to each error

production, therefore, resulting an minimum-cost error-correcting

parser. The assignment of weights is verll crucial. We use the

distance between clusters a and b as the weight for substituting

a by b and vise versa. Since a finite-state grammar can be

represented by a transition diagram. Thus, a minimum-cost error-

correcting parsing is eq,uivalent to finding a minimum CO'5t path

from initial state to final state. The parsing time is propor-

tional to the length of the sentence.

Algorithm g: Minimwm-~ Rath!

Input. A transition diagram with n nodes numbered 1, 2

, ... , n, where node 1 is initial state and node n is final state,

and a cost function c(J (a), for 1 ~ i, j ~ n, a E~, with ciJ (a>

~ 0, for all i and J. An input string s.

Output. mIn the lowest cost of anll path from node 1 to node n

whose seq,uence is eq,ual to that of the input string s.

Method.

1) Set k = 1.

2> For all 1 ~ J ~ n, m1} := min <m lK + c ICJ (b ) , for all

1 ~ k ~ n}, where b is the k-th symbol of input string s.

3) If k <: lsI, increase k by 1 and go to step (2).

IT 1< = lsI, go to step (4).

4) output mtn , which is the lowest cost from node 1 to

node n fallowing the move of input string s. Stop.

The production number can be stored with CiJ (a), and the
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parse can be stored with mtj .

I~ in~ertion and deletion errors are to be considered, then

the par$er will still be similar except that we have to compute

and store the in~orm.tion V(T, S, a) which is the minimum cost of

changing character 'a' into some string which can change the

state o~ the automaton from state T to S (19J. The inclusion o~

inseition and deletion errors makes the error correction more

complete, but assigning appropriate weights to insertion and

deletion error could be even more difficult.

~. EXPERIMENTaL RESULTS

Our seismic data are provided by professor C. H. Chen. They

were recorded at LASA in Montana. The original data contains 323

records. Due to some technical problems in data conversion we

only get 321 records. Among them 111 records are nuclear explo

sions and 210 records are earth~uakes. The experiment wa~ run on

a VAX 1ll/7S0 computer using PASCAL programming language. A set of

50 care~ully selected samples from each class is used as training

samples, The remaining 210 samples are test samples. The weights

'01" sub$titution errors are shown in Table II. The results shown

in Table III and Table IV are the information about the inferred

grammar and parsing. The grammars are inferred using K-tail a1go

tithi~ with dHferent values of k. Table III contains the number

o' nonterminals, the number o' productions and the number of!

negative samples accepted. Table IV contains average parsing time

for one string and the percentage of correct classification. It
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can be seen that as the value of k becomes smaller, the parsing

time becomes shorter but the classification error becomes larger.

This results from the uneven merge of the nonterminals. Due to

the characteristics of our sample set only those states having

the longest tails are merged. The results using nearest-neighbor

decision rule are shown in Table V. It compares the string-to-

stri~g distance between the test sample and the whole class of

training samples. The computation speed of nearest-neighbor rule

is much faster than that of error-correcting parsers. Althouth

the ultimate performance is about the same. As far as practical

computation is concern~d, nearest-neighbor decision rule is much

faster than the grammatical approach.

TABLE II
Weights for ~ubstition error

a b c d e g h i J

a 0 0.33 0.45 0.79 0.86 0.76 0.91 0.62 0.60 0.61

b 0.33 0 0.28 0.46 0.56 0.54 0.85 0.33 0.48 0.29

c 0.45 0.28 0 0.46 0.44 0.31 0.57 0.23 0.20 0.46

d 0.79 0.46 0.46 0 0.22 0.41 0.88 0.24 0.56 0.28

e 0.86 0.56 0.44 0.22 0 0.24 0.71 0.24 0.46 0.48

T 0.76 0.54 0.31 0.41 0.24 0 0.47 0.24 0.24 0.58

9 0.91 0.85 0.57 0.88 0.71 0.47 0 0.68 0.37 1.00

h 0.62 0.33 0.23 0.24 0.24 0.24 0.68 0 0.33 0.34

i 0.60 0.48 0.20 0.56 0.46 0.24 0.37 0.33 0 0.64

J 0.61 0.29 0.46 0.28 0.48 0.58 1.00 0.34 0.64 0

~. CONCLUDINQ REMARKS
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TABLE III
The number of nonterminal, production and negative samples

&ccepted of the inferred gr.mmar~. The inference algorithm
i9 k-tail algorithm with different values of k.

Explosion Earthq,uake No. o-F
k negative

Nonterm. Product. Nonterm. Product. samples
No. No. No. No. accepted

20 748 796 746 794 0

19 748 796 746 794 0

18 741 796 737 794 0

17 722 778 715 772 0

16 694 751 686 743 0

15 656 714 650 708 0

14 610 668 608 666 0

13 560 618 561 619 0

12 510 568 511 569 0

11 460 518 461 519 0

9 360 418 361 419 0

7 262 319 261 319 2

5 166 222 164 220 6

Though the classification results seem satisfactory they are

very sensitivet.o the feature selection, the selection of train-

ing samples and the weight assignment of error productions.

Although a finite set of samples have som~ limitations. It still

ma~es sense to pursue more studies about the following problems.

1. Feature selection. How to find a set of distinguishable

features is the most important part in practical applications.



- 20 -

TABLE IV
The average parsing time and percentage of correct

classification of the error-correcting parsers with
different values of k.

k Average parsing time Percentage of correct
for one string (sec) classification ('1.)

20 2.6 90. 5

19 2.6 90. 5

18 2.8 85. 5

17 2. 7 82.8

16 2.6 75.6

15 2. 5 76.0

14 2.4 73.8

13 2.1 73.3

12 1.9 72.9

11 1.7 71. 0

9 1.4 70. 1

7 1. 1 70.6

5 0.8 60.2

The difficulty increases when the class are somewhat overlapped.

Possible solution are finding some kind of transformation which

will seperate the classes or selecting the most distinguishable

feature. Most of the features which are effective for statistical

approach can be used for syntactic approach. The selection of

feature number also deserves consid~ration. Some criteria are

needed ~o that a Judgement can be made.

2 Selection of training samples. It would be helpful if
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TABLE V
Classification results using

nearest-neighbor decision rule

Average time for Percentage of
one string (sec) correct classification

0.07 90. 5 r.

200 records are correctly
classified out of 221

human experts are available for consultation. The clustering

techniques can be used to get an initial training set, then it

can be adJusted to obtain the best results. Clustering techniques

can also be used to find good prototypes from a set of samples.

A s~all set of well-selected training samples will certainly

reduce computation time and,

classification accuracy.

in the meantime, may improve the

3 Weight assignment of error productions. This part is very

important in error-correcting parsing, and only exists in syntac-

tic approach. Equal weight assignment is very easy to implement

and has been used. However, it is not always appropriate since

costs should be different for different errors. The similarity

between two primitives is a good reference for assigning weights

to substitution errors. Th~ weights of insertion and deletion

errors are more difficult to assign. Only heuristic approaches

have been known so far.
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