A SYNTACTIC APPROACH AND VLST ARCHITECTURES

FOR SEISMIC SIGNAL CLASSIFICATION

Hsi-Ho Liu and K. 3. Fu
School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

January 1983

‘ By
. This work was supported by ONR Contract NOOO14-79-C-0574 and the” NSP-Grant
ECS. 80-16580. '






SECURITY CLASSIFICATION OF THIS PAGE (Whan IPats Entered)
i .

REAL (NSTRUCTIONS
7 REPORT DOCUMENTATION PAGE BEFORE COMPLETING #ORM
. REFORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
;? # A e ‘? y
f?‘“#{ffj)‘;{_j‘ gA e BT o
4. TITLE (’Hnd Sub!it!e} 5. TYPFPE OF REPORT & PCRIGD COVERED

A SYNTACTIC APPROACH AND VLSI ARCHITECTURES

FOR SETSMIC SIGNAL CLASSTFICATION, Technical |

6. PERFORMING 030G, HEPORT NUMOER

7. AUTHOR(s) ” 8. CONTRACT GR GRANT NUMBE Rfs)
Hsi-Ho Liu and K. 5. Fu ONR NOOO14-79-C-0574 )

3. FERFORMING ORGANIZATION NAME AND ADDRESS 0. PRGGRAM F1 EMENT PROJECT, Tatr ]
Purdue University AREA & WORK UNIT NUMBE RS

School of Electrical Engineering
Wesat Lafayette, IN 47907

11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT QOATE
Department of the Navy January 1983
Office of Naval Research THUWBER BF FAGL T
Arlington, VA 22217 208

14. MONITORING AGENCY NAME & ADDRESS(if different from Cantrolling Qffice) 15. SECURITY CLASS. {of (his repaort)
unclassified

154, DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Reporl}

Approved for public release: distribution unlimited.

17. DISTRIBUTION STATEMENT (of tho abxstract onlered in Hieck 20, i Jdifferent from Repart)

Approved for public release: distribution unlimited.

18. SUPPLEMENTARY NOTES

19, KEY WORDS (Continue an teverse sido if necessary and identlly by bBlock munher)

_— - e e e e s o

200 AQGTRACT (Canthan. i coeetne 8ide 1 o ooty d iden(ify by hloc & nimior)

.. - Syntactic pattern recognition has been applied to seismic classification
in this study. Its performance is better than many existing statistical
approaches. VL3I architectures for syntactic seismic recognition are

also proposed which take advantage of parallel processing and pipelining so
that a constant time complexily 1s attainable when processing large amount
of data. Application of syntactic pattern recognition to damage assessment
is alse proposed and demonstrated on a set of cxperimental data. - -7

I

DD | 'j:\)::M” 1473 EDITION OF 1 NOV 65 15 OH50LETE -

CECURITY O AGRIFICATION OF 11 bn o0 Whar Bt 1 itegads



SECURITY CLASSIFICATION OF THIS PAGE(When Data Enterad) .

“Seismic waveforms are represented by strings of primitives, i,e.,
sentences, in this study. String-to-string similarity measures based on
both distance and likelihood concepts are discussed along with the symmetric
property and the hierarchy. A {ixed-length segmentation is used in the
experiment. Encouraging resulfts comparable to those of the best statistical
approaches are obtained with only two very simpie features, namely, zerc-
crossing count and log energy. Primitives are automatically selected using
a hierarchical clustering procedure and two decision criteria.

Nearest-neighbor decision rule and finite~state error-correcting
parsers are used for classification. ¥For error-correcting parsing, {inite-
state grammars are first inferred from the training samples. These two
approaches have same performance in. the experiment, whereas the nearest-
neighbor rule is faster in speed.s——

Attributed grammar and its parsing are also proposed for selsmic
reccgnition, which could reduce the complexity and increase the descriptive
flexibility of the pattern gramamrs. VLSI architectures are proposed for
fast recognition of seismic waveforms. Three systolic arrays perform the
feature selection, primitive recoghition and string distance computation.
These individual units can be used in cther similar applications.

Although this sftudy 1s on seismic c¢lassification, it can be extended
or modified to tackle other signal recognition problems.

SECURITY CLASSIFICATION ©F Tw¢ -AGE(When Dats Entered)



iv : el
TABLE OF CONTENTS e
i f
#
Page
LIS T OF TABLE o e e e e e e s vii
LIS T OF BIGU R . i e e e e e e e r e aa e e viii
ABSTRACT . e e e et e xi
CHAPTER I - INTRODUCTION . ... e [ 1
1.1 Statement of the ProbleIm ... 1
RSN I AC) o R ATE =T 1 1 = PP i
1.2.1 Syntactic Pattern Recognition and
Digital Signal Processing ... i 7
1.2.2 Pattern Recognilion and
Seisrnic Signal Analysis. oo 13
1.3 Organization of Thesis ... e 17
CHAPTER II - SIMILARITY MEASURES AND RECOGNITICON
PROCEDURES FOR STRING PATTERNS. ..., ... 19
.l Inlrod U o 18
2.2 Similarity Measures of Strings ... 2]
2.2.1 Similarity Measures Based on Distance Concept............ 21
2.2.2 Similarity Measures Based on Likelihood Concept ......... 41
2.3 Error-Correcting Parsimg ..o e e 45
2.3.1 Minimum-Distance Error-Correcling Parsing
Algorithom. .o 46
2.3.2 Maximum-Likelihood Irror-Correcting Parsing
Algoribhrm . e 52
2.4 Recognition Procedures for Syntactic Patterns ... o6

2. D Come S 0Tl o 58



CHAPTER III - APPLICATION OF SYNTACTIC PATTERN

RECOGNITION TO SEISMIC CLASSIFICATION. ...t 58

I IS 51 % o To RE Kol 4 T3 « N O OSSP 58

I o T e Lo LT3 o - U TP PP UTPUON 61

3.3 Automatic Clustering Procedure for Primitive Selection......... 68

- 3.3.1 Pattern Segmentalion.........cooooiiiiiniiiiiiiic 68

3.3.2 Feature Selection.... ..o 70

3.3.3 Primitive Recognition. ... e e 71

3.4 Syntax Analysis oo OO 77

3.4.1 Nearest-Neighbor Decision Rule . .oociviveiiiiiii i nriannans Kald

3.4.2 Error-Correcting Finite-State Parsing .....oocoviiiiiiienns 7

3.5 Experimentsal Results on Seigmic Diserimination ....ooooiinon B2
3.6 An Application of Syntactic Seismic Recognition

to Damage Assesment..........iiin eere e 96

B R O3 TN F- 3T o o R PSP OO 147

CHAPTER IV - INFERENCE AND PARSING OF ATTRIBUTED GRAMMAR

FOR SEISMIC SIGNAL RECOGNITION ... i e 110

4.1 Il od Ul iom . 110
4.2 Imderence of Altributed Grammmar for Seismic Signal

D= aT 070 1 9 X ) P PSP 113

4.3 Brror-Correcting Parsing of Attributed Seismic Gramrmar...... 121

4.4 Stochastic Attributed Grammar and Parsing for

Seismic Analysis oo e, e e 125

4.5 Experimental Results and Discussion oo, 129
CHAFPTER V - VLSI ARCHITECTURES FOR SYNTACTIC SEISMIC

PATTERN RECOGNITION ..o i e e rrene vvene e e 134

0.1 Imbroduchion . 134

5.2 VLS! Architectures for Feature Extraction .....cooooviviinininen. ‘...137

5.3 VLS Architectures for Primitive Recognition..................ooe0. 143
2.4 VLEI Architeciures for String Maiching
Based on Levenshiein Digtance. ..o e, 130
b.4.1 Levenshtein Distance ... o, 153
5.4.2 Weighted Levenshtein Distance ..., 161
Simulation and Periormance Varification. ..o, 187

oo
o o

Concluding Remarks



CHAPTER VI - SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS ....176

SR TT 45 o 5 o -1 o) U U RUO 176
ST 0oy ¢ ol RV E=) T ) ¢ 1 TP, 179
6.3 RecommendationsS........oooiviiiiiiiiiinen ... ST 180
LIST OF REFERENCES.............. ............................. 182
APPENDICES
Appendix A: Flow Chart for the Simulations ... .190
Appendix B: Step-by-Step Simulation Results .o i 195






vil

LIST OF TABLES

Table

a.1

The criterion funetion, incrermnents of criterion
function and the classification results of
different cluster number selectiions

3.2 The center of the 13 clusters, the number of members
in each cluster and the primitive symbe! of each cluster.
3.3 Weights for substitution error.............
3.4 Classification resulls using nearest-neighbor decisicn rule
3.5 The number of nonterminals, productions and negative
samples accepted by the inferred grammars....................
3.6 The average parsing time and percentage of correct
clasgification of the error-correcting parsers ......... .o.ooenl
4.1 The recognition resulits, cormputation time, and
memory used for seismic recognition using an attributed
cfg and a nonatiributed fsg .. ...
6.1 Computation time of scquential algorithm, sirnulated
computation time for VL3I arrays using sequential
computer, real speedups, theoretical speedups and
SPEEdUR FaliO. i
Appendix
Table
B.1 The intermediaie resulis of feature extraction at cach

timme interval for one seismic segment

B.2 The intermediate resulis of primitive recognition at

each time interval for one unknown feature vector

B.3 The intermediate resulls of string matching at each

time interval betweon two stritigs o

Page

........ =00






viil

LIST OF FIGURES

Figure Page
1.1 An example of two typical seismic records. ... 3
1.2 An example of exXireIne Cage o e 4
1.3 Another example of extreme case ..o . B
1.4 Block diagram ol a syntactic pattern recognition system........... 6
1.5 Block diagram of a syntactlic pattern recognition system using

the nearest-neighbor decision rule for string pattern............... 8
2.1 The transformation from siring 'aabaab’ to 'ababb’.. ... 24
2.2 The partial distance ¢{i,j] is computed from

6[1,3-11, 8[1-1,51] @nnd S[EL,J] cveeeereoreee et 25
2.3 An examptie of global path constraint ... 26
2.4 Computation of partial distance for (a) type 1, (b)

type Rand () type 3 WLD .o 34
2.8 An example of dynamic time WarpIng ..o 36
2.6 Examples of some seismic recordings in structural

damage assesmentl ... 37
2.7 Examples of slope consiraints and corresponding ioccal

distance function of modified time warping distance................. 40
2.8 compulation of partial distance for stochaslic models ............... 43
3.1 (a) An example of geismic signal with pulse noise

(glitch). {b) The same waveform after local filtering .................. 63
3.2 (a) Another example of seismic signal wilh several

pulse noise (BlLehes) 64



ix

3.3 (a) An original seigmic signal. (b) With zero-line
added for comparison. (¢) After global adjustment.

(d) After local adjustment ... 66
3.4 Anoiher example of seismic signal....................... ..................... 67
3.5 tr Sg increases as the number of clusters increases ... 85
3.6 tr Sy decreases as the number of clusters increases ................. 86

3.7 The PFS curve where ithe maximum value
occurs at number 13, e e 87

3.8 Cluster centers of Lthe 13 clusters in the
two-dimensional feature plane ... 89

2.9 LExamples of the seismic waveiorms and

corresSpPonding StrimES. o e O 90
3.10 Top level displacement and basement acceleration............ooeeues a8
3.11 Basement displacement of the seven test runs ...l 100
3.12 Top level displacement of the seven test runs...................... e 101
3.13 Diagram of slope constraints and local distance

function for string distance computation in damage

asgsesment application . e 102"
3.14 Distance between the basement displacement

"waveform and the top level displacement

waveform of each TUn ... e 1056
4.1 A fiow chart of the inference algorithm (Algorithm 4.1} .............. 118
4.2 A flow chart of the parsing algorithm (Algorithm 4.2).................. 124
4.2 A flow chart of the parsing algorithm {(Algorithm 4.3)..........cool 128
4.4 A flow chart of the parsing algorithm (Algerithm 4.4)......ccooienn. 131
5.1 The special-purpose processor is atiached Lo

a hosl computer as a peripheral processor....cooiiiiiineiiiiiienaae 138
5.2 The internal architecture of the special-purpose

el aloTal=E-1-To o PN 138
5.3 Dala setup for (a) {eature extraction, (b) primitive

recognition and (¢) string matching.........oooooiiiiiii 138

5.4 Processor array, data movement and cperalions
ol each processor for feature cxtraction..........coo e, 140



5.6 The internal structure of the processor for
feature extraction .................. e 142

5.6 Processor arrays and data moevement faor
Primitive recogmiliomm i s 144

5.7 Dala flow and operalions of each (a) 'compute’
processor and (b) 'COmMPare’ ProCESSOT .. c.iviiiiiirit i 148

5.8 Internal siructure and register lransfer of (&) 'campute’
and (b) COmMPare’ PrOCESSOTS ti it terrr ettt eerrete ittt aaeenaaeean 149

5.8 (&) Portions of dynarmic programming diagram and

(b) corresponding PrOCESSOT BITAY ciiitiie i irarreeerirrerararieeeasens 154
5.10 Internal structure and register transier of

PEP;;atstage L, 2and 3. 156
6.11 Data movement between PE's . 158

5.12 Processors al the same diagenal perform the
same operation; three diagonals are required
for one string (&), and strings can be pipelined {b) ... 159

5.13 Processor array and data moevement for

computing Levenshtein distance ... i 160
5.14 PLA implementation of a simple weight table ........................... 162
5.15 A PLA implementation of the weight table

for seismic recognilioml ... TR 164
5.18 Internal structure of Lhe PE for weighled string

distance compubation. ... 185
5.17 An implementation of feature extraction with

20 PE's and 60 peints in each segment.............o [71
Appendix
Figure
A1 Flow chart for the simmulation of {eature extraction .................... 191
A.2 Flow chart for the simulation of primitive recognition................ 182
A.3 Flow chart for the simuiation of string matching ... 164

B.1 Seismic segment (60 points) used in the simulation ..o, 197






X1

ABSTRACT

Syntactic pattern recognition has been applied to seismic
classification in this study. Its performance is better than many exist-
ing statistical approaches. VLSI architectures for syniactic seismic
recognition are also proposed which take advantage of parallel process-
ing and' pipelining so that a constant time complexity is attainable when
processing large amount of data. Application of syntactic pattern
recognition to damage assesment is also proposed and.demonstrated on

a set of experimental data.

Seismic waveiorms are represented by strings of primitives, i.e.,
sentences, in this study. String-to-string similarity measures based on
both distance and likelihood concepts are discussed along with the
symmetric property and the hierarchy. A fixed-lenglh segmentation is
used in the experiment. Encouraging results compareble to those of
the best statistical approaches are cbtained with only tLwo very silmple
features, mamely, zero-crossing count and log energy. Primitives are
automatically selected using a hierarchical clusiering procedure and

two decision eriteria.
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Nearest-neighbor decision rule and finite-state error-correcting
parsers are used for clazsification. For error-correcting parsing,
finite-state grammars are first inferred from the training samples.
These two approaches have same performance in the experiment,

whereas the nearest-neighbor rule is faster in speed.

Attributed grammar and its parsing are also proposed for seismic
recognition, which could reduce the complexity and increase the
descripiive flexibility of the pattern grammars. VISl architectures are
proposed for fast recognitien of seismic waveforms. Three systolic
arravs perform the feature selection, primitive recogn tion and string

distance computation. These individual units can be used in other simi-

lar applications.

Allhough Lhis study is on seismic classification, it can be extended

or modified to tackle other signal recognition problems.



CHAPTER I

INTRODUCTION

1.1 Statement of the Problem

In the past, seismic wave analyses were all retained within the geo-
physical field. Underground structure and earthquake analyses are the
most important topies. The major parameters compuied from the
recorded seismograms are the location, time, depth and magnitude of

the event and so forth.

In the 1960's, a mnew problem arose when the idea of the
comprehensive nuclear test ban treaties were proposed. The problem is
how to discriminate between the natural earthquake and the secret
underground nuclear explosion by seismological methods, which in turn
‘are based on the seismic wave recordings (Bolt, 1976; Dahlman and
Israelson, 1977). Traditional methods use the informatiens like time,
location, depth, magnitude, complexity, ratio of body wave magnitude
to surface wave magnitude and usually interaction of human experts.
However, these methods are not reliable for small events and require
the inveélverment of many seismic stations. Recently, pattern recogni-
tion has been applied to the disecrimination between these two

categories (see Chen, 1978).



It is some‘tinﬁes very difficult to distinguish between some earth-
guakes and explosions just by looking at the seismic signals only. Even
for experienced analyst additional informations are needed in order to
make correct classification. According to the source mechanism, the
explosion signal should look more like pulse and contain higher fre-
guency than earthquake, while the earthquake signal should last longer
and look more complex. However it is not always true since the depth
of the source, distance and geophysical configuration of the path will
change the waveform significantly. Here are some examples. The
difference between explosion and earthquake is very clear in Figure 1.1,
but not so in Figure 1.2 and Figure 1.3 where neither frequency nor
complexity can tell the difference. In pattern recognition terminology

these two classes are overlapped.

All the existing pattern recognition applications use stalistical
approach. Since the complexily and structural information play an
importani role in seismic analysis, it is thus natural to pursue syntactic
{structural} approach in seismic pattern analysiz. In oil exploration,
the structure of the seismic reflection indicates the underground strue-
ture. In earthquake / explosion classification, the structural informa-
tion is Lhe maost important feature. The block diagram of a typical syn-
Lactic patiern recognition system is shown in Figure 1.4. Due to the
unknown characterislic about the source and environment, seismic
grammar is usually ciifficult to consiruct manually. Therefore, gram-
maltical inference techiiques will he applied to infer the pattern gram-
mar [rom a sel of training samples. An error-correcling parser will also
be used because the chance that a testing sample is periectly accepted

by the inferred grammar is very slirn. This is usually a rule rather than



Figure 1.1 An example of two typical seismic records. The top ore is an
explogion; the botiom one is an sarthquake.



Figure 1.2 An example of extreme case. The top one is a typical explo-
sion waveform; the boitom cne is an earthquake record which locks like
an explosion. ‘ :



Figure 1.3 Another example of extreme cas
earthquake wavelorm: the

€. The bottom One is a typical
tap one is an ExXp
an earthquake.

lesion record which locks like
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an exceplion in many practical applications, and seismic anaiysis hap-
pens io be one.of them. This is due to the noise and uncertainty of the
source and background. In addition to grammeatical approach, we will
also use nearest-neighbor decision rule for classification. Of course, the
distance, or similarity, computation is between the string representa-
tion of the seismic signals. The block diagram of nearest-neighbor

classifier for syntactic patterns is shown in Figure 1.5,

Due to the recent advance of VL3] technoiogy il is now feasible and
will soon become economical to design cuslom chips Jor special applica-
tions (Mead and Conway, 1980; Kung, 1979; Ackland, et al., 1981). A VLSI
system for seismic signal recognition will also be developed in this

study.

1.2 Literature Survey

1.2.1 Syntactic Pattern Recognition and
Digital Signal Proces=sing

Appliéations of syntactic pattern recognition to digital signal pro-
cessing have received much attention and achieved considerable suc-
cess in the past decade (see I'u, 1982). The most prominent applica-
tions are in the areas ol biomedical waveform analysis and speech
recognition. The reason of their success is that these waveforms have
regular and predictable structure. Most biomedical wavelorms, e.g.,
ECG wave and carolid pulse wave, are rhyvthmic and generated by

speciflic organs of the body where their funcliong are well understood.
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It is thus easy to write a grammar for these waveforms bazsed on their
functions. Hoerowitz (1975, 1977) developed & syntactic algorithm to
detect the peaks of ECG waves. Albus (1977) used a stcchastic finite-
state model to interpret ECG signals. Giese, et al., {1879) proposed a
syntactic method to analyze EE( signals. Stockman, et al., (1978)
applied a syntactic method to analyze carotid pulse waveforms. The
major problem in biomedical waveform analysis is the noise which could

be generated by muscles or other sources (Albus, 1977).

It has been shown that speech patterns are related to linguistic
items by a complex =set of rules belonging to "grammar of speech”
(DeMori, 1977). Therefore, the most effective way of detecting and
recognizing speech patterns is by syntactic method. DeMori (1972} has
shown a syntactic method to recognize spoken [talian digits., The major
problem in speech recognition is the variability of the speech patterns.
They are speaker-dependent as well as context-dependent. Even for the
same speaker and the same word, the features extracted from different

utterances are usually nol the same.

We will review in this section scme of the existing syntactic
methods applied to signal praocessing. Aithough preprocessing is also
important, we do not include this part here, because it is case depen-
dent and is usually not related to Lthe recoguition stage, However, we
will discuss the preprocessing procedure laler in our experiments of
seismie signal recognition. We will now concentrate on the major parts
of syntéctic pattern recognilion syslemn, i.e., segmentation, feature
extraciion, primitive selection, grammatical inference or construction,

and syntax analyzis.
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A waveform must be converted into a string of primitives (tree or
graph for high dimensional representation) before grammatical infer-
ence and syntax analyvsis can take place. Since a waveform iz a one-
dimensional signal, it is rmost natural to represent it by a string of
primitives. Various series expansion, for example, Fourier series, and
spectral analysis techniques have been used to approximate the whole
waveform. However, they are not suitable for syntactic analysis
because the relationships among one part of the wavelform and the oth-
‘ers are significant in syntactic analysis. Although they can be used to
feature waveform segment, they are subject to the constraint of seg-
ment length and characteristics of the waveform. Pavlidis (1871, 1873,
1974) proposed a linguistic waveform analysis algorithm in which he
partitioned the waveform into several segments by using linear approxi-
~mation. The bagic idea iz to minimize ithe number of segme‘nts by
merging and splitting while the error norm of each segment is retained
below the error tolerance. Horowitz (1975, 1977) extended this idea
and added peak detection algorithm. He gave a syntactic definition to
the positive peak - a positive slope followed by a negative slope or posi-
tive slope followed by zero slope and then {ollowed by negative slope. A
negative peak can be defined in a similar way. He further constructed a
determinisiic context-free grammar to recognize positive and negative
peaks. This approach is useful in waveiorm shape analysis because of

its simplicity. However, the curvature informations are not included.

Anolher interesiing representation of waveform is by tree struc-
ture. It was first introduced by Ehrich and Foith {1976). The peaks and
valleys of the waveform are detected and connected by a relational

tree. Sankar and Rosenfeld (1879) extended this idea by using the
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cencepts of fuzzy connectedness. This method converts one-
dimensicnal waveform into two-dimensional tree structure. It is useful
for unipolar waveform analysis such as terrain analysis, but not so help-
ful for the analysis of bipolar waveforms such as ECG wave and random
waveforms such as EEG and seismic waves. Another well-known method
of converting one-dimensional signal into two-dimensional image is
called spectrogram which is used very olten in speech analysis
(Flanagan, 1972). The spectrogram of a waveform is the plot of energy
as a function of time and ifrequency. Time and frequency are the hor-
izontal and vertical axes of the picture. Energy is represented by gray
level intensgity. This method needs special facilities to convert a small
segment of time-domain signal into irequency-deomain representation
efficiently. Automatic interpretation of the two-dimensional image is

still a subject for studies,.

Giese et al. (1879) proposed a syntactic method to analyze EEG sig-
nal. The EEG recording is divided into filxed-length segments, each seg-
ment is equal to l-second period. Seveniteen features are computed
from the spectral of cach segment. A linear classifier is applied io clas-
sify the segments into seven categories. An EEG grammar iz manually
constructed and a bottém—up parser withoutl backtiracking is used for

syntax analysis.

Stockman et al. (1976) proposed a syntactic pattern recognition
system for carotid pulse wave analysis. A sel of thirteen primitives
including various type of line segments and parabolas are used. The
subpatiern and primitive extraction starts from the most prominent
substructure, eg., long line segment, and then less prominent siruc-

tures with respect to the more prominent ones, In a prespecified order.
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A context-free grammar is manually constructed and a top-down parser

is used for syniax analysis.

De Mori (1972, 1977} proposed a syntactic method to recognize spo-
ken digits. First, each 20-msec segment was sent to a low pass filter
and a high pass filter, and zero-crossing intervals obtained at the out-
put of the two filters were classified into certain groups, i.e., eight for
LPF and five for HPF. Then, each spoken woerd is represented pictori-
cally on a two-dimensional plane. Finally, a context—frere grammar is
construcled and a bottom-up parsing is appiied. He further introduced
syntactic methods for preprocessing, {eature extraction, emission and

"veriﬁcation of hypothesis and automatic learning of spectral features.

Mottl' and Muchnik (i979) declared that there are two kinds of
curve sources which require the linguisiic approach for analysis. One
kind of source is consistent with the phenomencn which is a process of
many stages. The curve consists of parts corresponding to the stages.
The junction of the parts are ihe time when stages change. The segmen-

- tation algorithm should divide the curve into a number of adjacent
parts characterized by the curve shape. Exampies of this kind are ECG

wavelorm and carotid pulse waveform analvsis.

The other kind of source represents an object which is chiefly in an
invariable state and occcasionally leaves as a result of short-time distur-
bances. For such a curve the segmentation should identify only certain
fragments which are regarded as informative while the remainder are
left out. Example of this kind is the acoustical disgnosis of internal-

‘combustion engines (Mottl’ and Muchnik, 1979},

We fzel that seizsmic wave is the third kind of curve which does not

fall exactly into any ol the above two categories. The seismic waves are
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influenced largely by background as well as by source. Sometimes we
are interested in the background, e.g., cil exploration; sometimes we
are interested in the source, e.g., nuclear test delection. This will be

discussed in the next section.

1.2.2 Pattern Recognition and
Seismic Signal Analysis

The major studies of seismic waves can be classified into the follow-

ing areas (Bath, 1979):

1. Seismic prospecting. This is the most attractive Lopic in these
days. Seismic methods are applied to exploration for occurrences of
oil, ore bodies, minerals, ete. The reflection method and the refraction
method are two major methods in use. It should be noted that it is not
possible, at least by now, to detect cil, etc., by seismic or any other
- geophysical methods. It is ouly possible to discover geological {orma-

tionn which may indicate the ocourrence of oil, eic.

2. Wibration measurements, The efTect of vibraiong, cue to mining,
traffic, ete., on various structures and hurman beings is studied. Such

measurements are usually made with accelercgraphs.

3. Stress meoasuremenis. Measuremcenis of absclute stress have
been used to investigale the sirengih of building matlerials and stability

in mines.

4. Farthguake engineering. This field studies the cffectz of carth-
gquakes on all kinds of building structures, especially on crucial slruc-

ture such as nuclear power plant.
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5. Earthguake prediction. A very importat field although no

significant progress has been made.

6. From the recording of seismic waves to establish the nature of

the source. For example:

a) Nuclear test detection - detect secrel underground nuclear

explosion.

b) Seismic detection of reckburst - locate small rupture by seismic

methods.

Most of the existing patiern reconiiion applications in seismic ana-
lyses are to the classification of earthquake and nuclear explosion.
Chen (1978) proposed a statistical pattern recognition method for
clasgification of earthquake and nuclear explosion by the seismic wave
recording. He emphasgized on the extracton of effective features. Geo-
physical features such as complexily, speciral ratio and third moment
of frequency are tesied first. Then he used complex cepstrum, orthogo-
nal lransformation, aulocovariance features and shori-lime spectral
features for classification. His conclusion is that the performance from
a single class of {ealures is somehow limited and the combination of
varicus features does not improve the performance because of correla-

tion. He suggested to use both statistical and structural features.

Tjostheim (1875, 1877, 1978) suggested that autoregressive
coefficients can be used as features. He has shown that a seismic P-
wave can be represenied by an auloregressive meodel of finite order.
The short-period P-wave is divided into five segments. The first three
autoregressive coefficients of each segment form the {eature vector.
The combination of aifferent segments is used to achieve better perfor-

mmance. This approach where ihe whole P-wave iz divided into several
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segments is an improvernent, but still ne structural informeation has
beern used.

Sarna and Stark (1980) also used autoregressive modeling for
feature extraction, but k-nearest neighbor rule for classificalion. When
applied to artificial data, this procedure gave excellent results; how-
ever, the results on real seismic / explosion data are very poor. This
may indicate that auloregressive modeling is not suitable for real
seizmic waves. Most of these studies concentrated on feature
selection. Only simple decision-thecretic techniques have heen used.
However, syntactic pattern recognition appears Lo be quite promising in
this area. It uses the structural information of the seismic wave which

is very important in analysis.

Syntactic pattern recognition has been pointed ocut az a promising
approach Lo seismic eclassification {(Chen, 1978). While quite a few
statistical approaches have been proposed, we are the first to apply
syntactic approaches to this area. With only very simmple {features, cur
approaches attain encouraging results comparable to those of the best
statistical approaches. Cur appreaches also differ Ifrom the foregoing
syniactic methods in Lhe treatment of primitive sglection and grarmmar
construction. A clustering procedure aiong with some decision crileria
constitute the primitive selection algorithm in our appreoach, while
heuristic approaches were used by others. Our patiern grammars are
inferred irom the training samples, but most pattern grammars for
signal analysis are constructed manually. An attributed grammar for
our specific application iz proposed, which could significantly reduce

the grammar size and increase Lhe flexibility of description. [inally,
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between the two reserviors is determined by the distribution of the two
clusters. Since the nature of the reservior is characterized by the
seismiic traces, it is possible to compare the seismic traces of the two

reserviors directly.

Levenshtein distance has recently been applied to speech recogni-
tion {Okuda, Tanaka and Kasai, 1976; Ackroyd, 1980). It can be used to
correct the letter or phonerne sequences that are generated by the
recognition machine, or can be built directly into the recognition pro-
cedures. Qur VL3I string matcher can be applied to both cases. Futh-
ermore, our primitive recognizer can also be applied to the case in Ack-
royd (1980). Motitl’ and Muchnik (1979) proposed a linguistic approach
lo the analysis of experimental curves where a gpecial-purpose
language is constructed to describe the patiern. The distance between
two strings is defined as the minimum number of insertion and deletion

of symbols, which is in essence equivalent to Levenshtein distance.
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CHAPTER 11

SIFTLARITY MEASURES AND RECOGNITION
PROCEDURES FOR STRING PATTERNKS

2.1 Introduction

One Important premise in pattern recognition is that we can meas-
ure the similarities between patterns. We =zay that a pattern belongs to
one clags if and only if that pattern is more zimilar to the members of
this class than the members of cther classes. These measures can be
neminal where numbers used conly as names, or ordinal where only rank
orders have meaning, or interval where seperation between numbers iz
meaningful‘, or ratics where a nalural zero exists. Distance is a popular
candidate for simlarity measure. If the paitern is represcnted by a
vector, as in the case of statistical approach, the Euclidean distance is
usually used ag a gimilarity measure. The Euclidean diztance has many
nice properties, for example, symimelric and invarian! under transla-

tion and rotation.

In syntactic approach, patterns are represented by strings, trees
or graphs, therefore similarity measures musl be available for these
syntactic patterns. Several similarity measures have been proposed to
tackle this problem (T'u, 1877; Lu and I'u, 1877, 1978%). Since our major
interest is string pallerns, we will review some well-known string simi-

larity measures, discuss lheir properties and define a hierarchy of
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string distances.

Siring similarity measure can be applied to siring-matching in
information storage and retirieval (Hall and Dowling, 1880), speec'h
recognition (Sakoe and Chiba, 1878), clustering of siring patterns (Fu
and Lu, 1977} and nearest-neighbor decision rule for string
classification. It is also used in error-correcting parsing. Given a siring
vy and a language L(G), an error-correcting parser (ECP)} generates a

parse for string z, where z € L(G) and z is most similar to y.

Seciion 2 of this chapter discusses various types of string similarity
measures, including boih nonstochastic and stochasiic models. String
distances are classified into general siring distances and special string
distances. General string distances are based on the prineiples of
insertion, deletion and substitution transformations. Special string dis-
tances are those noi based on the above principles. One example is the
time warping distance in speech analysis. We propose another special
distance computation for damage assesment. A hierarchy of general
string distances are also defined. Section 3 describes error-correcting
parsing algorithms which do not require expanded grammars. Section
4 discusses and compares iwo recognition procedures, namely, the
error-correcting parsing and the nearest-neighbor rule, for svntactic

patllerns, and Section & gives the conclusion.

This chapter emphasizes the symmetric properiy of string similar-
ity measures. This is not a problem when we use Euclidean distance aé
the gimilarity measurc, since FKuclidean distance is always symmetiric.
Butl this iz nol true when we define siring similarily measures, espe-
cially when using weighted distance. The error-correcting parsing algo-

rithms using symrnetric siring similarity measures are also given which
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car. not be solved by any cther existing parsing algorithm.

2.2 Similarily Measures of Strings

String similarity measures can be defined in terms of two different
concepts, i.e., distance concept and likelilood concept. The fo:rmer is
for nonstochastic models and the latter is for stochastic models. Con-
sider string £ = a o, - -+ @, and string v = &,65 - - - b,,, the string simi-
Jlarity measure between £ and ¥ is defined as the distance or probabil-
ity that string vy is transformed from siring . The distance or proba-
bility of transformation from « to ¥ is ususlly different irom that of
transformation from ¥ to =z, therefore, resulis in an asymmetric simi-
larity measure, i.e., the similarity between =z and v is different {rom the
gimilarity measure belween y and x. This is a big disadvantage in some
applications, for example, in string clustering. The inconsistency in
similarity measures makes the outcome inconsistent. Therefore we

want to discuss the symmmetric property of the string similarity meas-

ure,

2.2.1 Similarity Measures based
on Distance Concept

The distance measures between strings have been proposed for
more than one decade and appeared often in the literature (see Fu,
1982). It is known (Okuda, et al., 1978) that Weighted Levenshiein Dis-
tance (WLD) is more accurate in the correction of siring errors than the
abbreviation method (Blair, 1980), the ordered key letters method

(Tanakd and Kasai, 1972) and the elastic malching method
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(Levenshtein, 19686), where all of these apply substitution, insertion and
deletion to string symbols. Fu and Lu {1877} have classified the weight
metrics into three categories, but did not consider the symmetric pro-
perty of the metric. We would like to further extend this idea and

include the discussion of symmetric property.

4. Generol String hstances

One of the primitive siring distance definitions is called the
Levenshtein distance (Levenshtein, 1966). The Levenshtein distance
between strings & and ¥, £, ¥ € £°, dencted as df{z,y), is defined as
the smallest number of transformations required io derive string y
from string x. The transformations include insertion, deletion and sub-

slitution of terminal symbols.

Definition 2.1 For any two sirings =, ¥ € £°, we can define a sequence
of transformations J={7y, Ts, ..., T}, n =20, 7; € {Ts, Tp, NHi{for 1l =1
< n, such that ¥ € J(x). The transformations 75, Tp and T; are

defined as follows:

(1) substitution transformation, Tg
Ts
wiawp |——wbwpforalla,b e L, a £ 5b.
(2) deletion transformation, Tp
T
Wi wy | wwp for all a € I
(3) insertion transformation, 7,
T
FPPYAPN |—Imja.mz foralle € Z.

where wq, wg € £°.
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Dejinition 2.2 The Levenshtein distance di{z y) is defined as

gz, y) = m_in[lcj + oy + nj]
E

where k;, m; and n; are respectively the number of substitution, dele-

tion and insertion transformations in J.

Dejinition 2.3 A distance between two strings z, v € £°, d(z ) is sym-

metric if and only if d{z,y) = d(y.z).

Sinece all the insertion, substitulion and deletion transiormaticns
are counted equally, the Levenshiein distance is symmetric. It is
equivalent to assigning weight 1 to each of the transformation. We call

these weights type 0 weights.

The computiation of the Levenshtein distance can be implemented
by dynamic programing technique on a grid matrix as shown in Figure
2.1. The partial distance 6[%,7], which denotes the minimum distance
from poini (0, 0) to point (4,7), can be computed from the partial dis-
tances 8[i,7—1] 8[i—i.7—t] and é{i—1,7] as shown in Figure 2.2. The

total distance is simply &[n,m ], where n is the length of the reference

string and m is the length of the test string.

Since the minumum distance is unlikely to oceur in some areas of
the grid matrix, for example, ithe upper left corner and lower right
corner, a globol path constraint can be imposed to save computation

time. Figure 2.3 shows a window constraints such thal only those points
{i, 7). li—Irg | <= v, where O<i=n, Osj<m, r is a selected constant,
m

are subject to distance computation. Algorithm 2.1 is for general string

distance computation with global path constraint.
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Bt

(6,6)

Figure 2.1 The transformation from string ’sabaab’ to 'ababb’. The
Levenshtein distance df{aabaab ababb) = 2.



8li~1,J] ’“_6ﬁjl

5ﬁ~13—1]5 83 j—1]

Figure 2.2 The partial distance 6[i,j] is computed from &[i,j-1], 6[1-1,j-1]
and &[i-1.j].
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Figure 2.3 An example of global path constraint.
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Algorithm 2. 1. Computation of general string distance with
global path constiraint
Input: Two strings z=aa, - -+ o, and y=b,bs - - b, where
o;, b; € & for all 1=i=n, 1=j=<m,
and a consiant r for global path constraint.

Output: The general string distance d{z,y).

Method:
(1) 6[0, 0] := 0O
(2Yfori:=1tor do 8%, 0] :=48[i-1, 0] + A,

(3)forj := 110 %—r do 6[0,7] := 6[0.7 =17 + A;;
(4) for j =1 to m do begin

i1:= B—j -1
== ;

i2 = %j + 1
fori: =11l toi2 do
if (i = 1) and (i<n) then 6[1,j] := min (1,7 );
(* man(i,7) is a function for local distance computation *)
end;

B d(z.y) =6[nm];

We use a funciion min(i,7) in Algorithm 2.1 tc compute ithe local
distance. The function min(i¢,7) can be computed seperately to match
different local distance constraints and return a distance value. For
Levenshtein distance, min(i,7) = min { 6{i—1,7] + 1, 6{2,7—1] + 1,
S[A-17-1] + 1 ] i a; £ b;, otherwise min(i,j) = &[i—1,7—1]. This
arrangement is more flexible since the dynamic programming portion

never need change, only differenl Tunction min(i,7} is used for
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different applications.

The Levenshlein distance appears ito be not powerful enough for
many pattern recognition applications. However, it may be sufficient
for string matehing in information retrieval (Hall and Dowling, 19880).
Fu and Lu (1977) have proposed a weighted Levenshiein distance (WLD)
where different weights are associated with different transforrﬁation

and iterminals.

We can make the string distence definition more flexible and prac-
tical by assigning different weights to different transformations and/or
terminals. There are al least three possible cases. In the firgt case,
different weights are aszigned to different transformations but all ter-
minals are ireated equally. We call these weights type 1 weights. Here

are the transiormations:

£

{1} iz ws | wbws foralle,d € Z,a # b, where o is the cost of

substituting & for e, ¢ = O when & = a.

(28) winws | Tp. 7 wwp for all B € T, where v is the cost of deleting
@,

() wiwg |-T"' d iz wy for all @ € I, where p iz the cost of inserting
[FAN

where @, wp € T’

The distance defined by these transformations is called iypel

weighted Levenshtiein distance.

Definition 2.4: The type i1 weighted Levenshiein distance d7{z y) is

delined as
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d¥¥z,y) =mingo - k; +7-m; +p-n;
7

where k;, m; and n; are defined the same as in Definition 2.3.

Theorem 2.1 d"(z,y) is symmetric, i.e., d¥ Yz y) = d"Yy,z), if and
ornly if ¥ = p.

The WLD dWl(a:,y) can be computed by Algorithm 2.1 where
min(t,j) = min {8[1,7—1] +p, §[i—1,5-1] + o, 8[1—1,7] + ¥} as shown in
Figure 2.4(a). The weights in step {2) and (3) should also be changed.

In the second case, different weighls are assigned to different
transformationsg and terminals, but the weights associated with the ter-
minals are context-indepentent. We call these weights type 2 weights.
We have the following transformations:

Te, S{a,b
(1) winws I-S——-g-?-'—lwlb woforalla,b € Z,a # b, where S{a,b) is

the cost of substituting & fera, S(a,z) = 0.

Tp, D}
(2) wiaws ]—~2-——(~—f- tyep for all & € T, where D(a) is the cost of
deleting o.
Ty Il '
(38) wiws i-—~{——£—l— witws for all 2 € I, where 7(e) is the cost of

inserting .
where w;, wy € L.

The distance defined by these transformations is called fype?2

weighted Levenshtein distance.

Definition 2.5: The type 2 weighted Levenshtein distance & ¥%(z,y) is

deined as
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d¥%z y) = mj'm 355 (m,8) + ¥, D;(a) + ij(a)l

J

where ,b € ¥ and J is the sequence of transformations used to derive

y from x.

Theorem 2.2 d"?(r y) is symmetric if and only if D(a) = /(a) and
S{(a,b)=5(b,e)foralle,b € 2.

The type 2 WLD d%2(x,y) can also be computed by Algoritm 2.1
where min(i,j) = min {3[i,7~1] + 7(b;), 8[i—=1,j=1] + S{ay,;),
5[i—1,7] + D{a;)} as shown in Figure 2.4(b)..

In the ihird case, the weights asscciated with the terminals for
insertion and deletion are context-dependent. We call these weights
type 3 welghts, We have the following transformations:

Te, S(a,b
(1) syews |-—-‘—9—--£---l~mlb wpforalle,b € £,a # b, where S(e,b} is

the cost of substituting ¢ for e, S{a,a) = 0.

Tp, D(b,
(2) wiabws ]l—(—ﬂmibwz for all e € £, b € ZyYt&l, where

(b ,z) is the cost of deleting @ in front of &.

Ty, I{a,b
(3) wyows |—I—(—a'———)— wibawy for all & € £, o € L t&l, where

f(2,b) is the cost of ingerting & in front of .
where w, wz € .

The reason of using (2) is for symfnetric purpose. As we mentioned
earlier, the symmetric property is important in distance computation;
otherwise, the distance between two strings will et be unigque, depend-
ing on Lhe selection of reference string and test string. In string recog-

nition, there may not be such problem, since we know the reference
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and test string. However, in siring clustering, the problem will oceur,
since we have to treat each string equally. Contexi-dependent weights
are useful in some other applicaticns, for example, in speech recogni-
tion, where the repetition of scme symbols is considered legal. For
instance, the strings =z, v, where

r=aaoabbc

y= aabbcc

may be considered identical, i.e., with zero distance. In this case, it

can be easily implemented by letting /(ea,a) = D(e,a) =0foralia € .

The distance defined by these iransformations is called type 3
weighted Levenshtein distance. These trans{ormations are similar to
what Fu and Lu (1977) have proposed but different in two aspects.
First, a right endmarker “&" is used for both the reference and Lest
strings, therefore no additienal transformations are needed to handle
the end point insertion or deletion. From now on, we will use T to
represent £ |y {&!. Second, the weighis associated with deletion

transformation are context-depentent.

Definvition 2.6. The type 3 weighted Levenshtein distance d"3(z y) is

defined as
d"%3(z,y) = min 28(eb) + 2 0;(c,a) + ¥ (c,a)
J

where a,b € £, ¢ € £ and J is the sequence of transfiormations used to
derive ¥ fromx.

Theorem 2.3 d"¥3(z,y) iz symmetric if and only if D(a.b) = I(a,b) and
S(a,b)=5SMb,a)forallb e £, o .
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Before deriving algorithm for computling type 3 WLD, we have to
consider ane more problem. Since the weights are context-dependent,
the order of insertion and deletion transformations can no longer be

ienored.

Frample 2.1: Let the string y=abedap and z=caf, z,y € ", o, f €

(£ UN)’, then the transformations from z to ¥ can be

onf 1M—abaﬁ II—(Ef—l—abca,G }-Mabcdu.ﬁ, or
aaf iﬁﬂ)—cxbaﬁ 1erbdaﬁ’ LMabcdaﬁ, or
o Iir—(g'i)—aca,ﬁ |M—abcaﬁ }M-l—abcdaﬁ, or
aafl |£E‘—q—)—aca,ﬁ |—‘r—(9’—@—cxcdaﬁ ]Mabcduﬁ. or
oS ﬁ-ﬁa‘—'d)—ad.ﬂ,ﬁ }—I—L@‘—bj—abdaﬁ |-{-@'—C)—abcdaﬁ, or
aaf 1ﬂ9’—’g—)—adaﬁ }Macdaﬁ |-—I—(5-'£)—abcdaﬁ'

There are six different transformations available for Example 2.1.
In fact, there are k! different transformations to insert & symbols in
front of any specific symbol such that all have the same final result. In
Example 2.1 there is no reason Lo assume ithat the order of insertion is
"b foliewed by c followed by d". Therefore, the minimum cost transfor-
mation should be determined from those six transformationé. However,
the computation is much more complicaled so that the little gain from
the real minimum cost transformation may not pay off the exira
amount of computation. If we are allowed to chose & suboptimal solu-
tion, we wilt stick to one type of the transformation, i.e., the first cne in

Example 2.1.
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The cases for deletion are similar to those for insertion. Consider
Example 2.1, the transformaltion from v to z corresponding to the first

one is as follows:

It is noted that the symmetric property is preserved here.

We can use Algorithm 2.1 to compute the type 3 WLD d"3(z,y)
where min (i,7) = min { 6[i,7—1] + 7(2;41,8;), 6[i—1,7-1] + S{a;,b;),
8{i—1,7] + D(bj4q.2;) { as shown in Figure 2.4(c). The weightis in step
(2) and (3) should also be modified.

We can deﬁﬁe a hierarchy on the four types of distances, 1.e., type O
distance is a proper subset of type 1 distance; type 1 distance is a
proper subset of type 2 distance, and type 2 distance is & proper subset
of type 3 distance. They are capable of computing all the general string
distances based on the concepts of insertion, deletion and substitution
transformations. However, there are some exceplions cof distance
measurements which do not base on the idea of insertion, deletion and
subtitution transformations. We will call them the specizl string dis-

tances,
EB. Special String Dislance

The special string distances mean that these distances can only be
applied to some specific applications, alse they are not based on the
idea of insertion, deletion and substitution transformations. One exam-
ple is the dynamic time warping lor speech recognition, the other is the

modified dynamic time warping for damage assesment.

In spoken word recogmnition, the recorded speech signal from

differenl utterance is different even for the same word by the same
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person. Meanwhile, the time difference between speech paiterns is
norlinear, therefore a nonlinear mateching algorithm is requiered in
order to obtain good recognition results. A special technicue called
time warping has been proposed by Sakoe and Chiba (1978). An exam-
ple is shown in Figure 2.5 where z = a,a, ... u, is the reference pattern
and ¥ = &40 ... b, is the iest pattern. Lach component a;, &; of string
z,y can be a feature veclor or a scalar which represents a signal seg-
ment. (The position of each component z;, &; in the grid matrix is

slightly different from what we have used previously.)

De finifion 2.7 The time warping distance between strings r and v is
W K :
d(z, y) = 3 d(c(k))
k=1
where
d{c(k))=d(i(k).j (k) = llasm) - 050
and k£ is the index of commeon time axis.

Twe major differences between time warping and the general
string-to-string distance can be peinted out immediately. First, one
component, i.e., symbol, in warping function can be used more than
once. For example, component a, in Figure 2.6 has been used Lo com-
pared with &4 and &4. Second, the components may be skipped without
any cost. Although the general string distance can be modified by let-
ting /(a,a)=0 and D(a,6)=0 for a,b € I, to simulate time warping,
there are other restrictions on the time warping function, for example,
slope consiraint. Slope constraint will eliminate excessively zleep or
gerntle gradient from the warping function. For details of slope con-
strainis and computation of time warping dislance, see (Sakoe and

Chiba, 1978). The weights uscd for time warping are different from
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Figure 2.5 An example of dynamic time warping.
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Figure 2.8 Examples of some seismic recordings in structural damsage
assesment.
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those for insertion, deletion and substitution, and can be tailored to fit

specific applications.

A path consiraini similar to that of general string distance (see Fig

2.3) can aiso be applied here, i.e.,
e =T () | <
()= P (k) | = 7

where 7 is the path width. This will prevent warping function from hav-
ing unrealistic matches. Sakoe and Chiba (1978) proposed & path con-

straint
li(k)=j (k)| =7

This window is along the diagonal axis i{(k)=j(k). Since the dynamic

programming proceeds from point {0,0) to point (r,m}, the window

should be along the diagonal axis 1(k) = %j(k) as shown in Figure 2.3.

It has been shown by Sakoe and Chiba (1978) that the symmetric time
warping distance has higher recocgnition accuracy than asymmetric
Ltime warping distance.

In some applications, si)eciﬁcally string distance computation for
damage assesmernt, one component.in one string is equivalent to the
summation of several components in another string. For example, in
Figure 2.6 the top itwo segments may come ifrom the seizsmic recordings
of a buildings without damage while the botiom two segments may
come from the same building with certain degree of damage. 1If we con-
sider each component in Figure 2.6 as an appropriate measurement .
thenbg=ast+ta,+ta; +t g+ ayand dy = cg + Ccg + C,, since by is a dis-

itortion ol ag, a4, @y, ag and a,, and d, is a distortion of cp, ¢3 and cy.
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Therefore we can modify the slope consiraints and local distance func-
tions in Sakoe and Chiba (1878) and use them for distance computation.
The modified slope constraints are shown in Figure 2.7. Since the loeal
distance functions min(i,7) are symmetric, the modified time warping
distance is also syrmmmetric. The local distance functions min(i,7) are

changable as we will see in chapter IIL
C. Normolized Distance

All the dislance measures discussed so far are absolute distances.

I'or example, congider two pairs of strings x4, ¥, and 5 and ¥y,

x4, = aaabbboeoddd
y, = acabbbececodbd
o = od
Yz = cb

The distance between z, and v, is two {(substitution errors). The dis-
tance between z, and y, is also two (substitution errors). However,
when taking ihe whole string length into consideraticon, siring pair =,
and y, are more similar than string pair , and y,. This shows thatl
equal absclute distance dees not necessarily indicate equal similarity.
Sakoe and Chiba (i1978) have proposed a normalized distance [or
dynamiec time warping, which is equal to division of Lhe absolute dis-
tar.ce by the tolal length of the strings. When absolute distances are
egual, the normalized distances tend to favor longer strings. This same
idea can be applied to general string distance computation with inser-

tion, deletion and substitution,
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b; (i,3)
| [ 6[1:,;'—1]??—'63-{ l
: 6[1,9] = min |6[i—1.7—1]+|a;=b;
bj-1 ] Slim1j 1+ |y —b5 ]
-1 ¥
b [8[4 1,5 —21+ |2 —b;—bj1]|
! 8[¢,5] = min| oli—1,7—1]+|a;—b;]
6[i-2,7 —1]+ ;- +a;—b; |
big

(51:'11""1,_?—3]“' i E.L'-bj.—b}_l—bj_zl
8lt—1,7 =]+ oy ~b;~b; |
6{i—1,7 —1]+|a;—b; ]|
6[i—2.7—1]+{a;_+a;~b;|
6[1—3,7 —1]+|a;_pta;_ +a;~b;|

Figure 2.7 Examples of slope constraints and corresponding local dis-
itance function of modified time warping distance.
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2.2.2 Similarity Measures Based
on Likelihood Concept

The string distance measures discussed in the previous section are
for nonstochastic models. In stochastie language, every string is asso-
ciated with a probability (Fu and Huang, 1972). Therefore, we use pro-
bability, instead of weighti, to characlerize the transformation. Some of
the stochastic context-dependent transformations have been proposed,
for example, subslitution has been proposed by Fung and Fu {1975},
substitution and insertion havé been propoesed by Lu and Fu (1977b).
Here we add context-dependent deletion lransformation. We still use
T, T; and Tp to represent substitulion, insertion and deletioﬁ
transformation respectively. Associated with 7g, Ty and Tp we use Fg,
F; and Fp for transformation probabilities. Transformations wiih
context-dependent probabilities are defined as follows:

Ts., Ps(b 19)

(1) wyawy | wibwys for all a,b € Z, where Pg(b|a) is the

probability of substituting & for a.

Tp, £pb|ab)

(2) wiabws | wbwy for all @ € £, b € I, where

Pp(b|ab) is the probability of deleting o in front of &.
T], P[(bﬂ. 1 EL)

(3) wyzwy | wibaw, for all & € £, @ € £, where

P;(ba |o) is the probability of inserting & in front of a.

where w;, wy € £, and

L Pg(bla)t Z Pp(blab)t T Frba'ia) =1
beL heY bel

foralle € X.
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The probability associated with the transformation of one siring
from another is caile_d stochastic similarity. A higher transformation
probability between two strings means they are more similar. Similar
to ithe various weights for nonstochastic cases in Section 2.2.1, we can
also define many different types of transformation probabilities, for
example, context independent, terminal independent or transformation
independent. Since they are the simplified versions of the one just

defined, we will only use the above one ag an exam_ple in the following.

Definition 2.8 The slochastic similarily between sirings =z and vy

d” (x,y), is defined as

’

d¥(z,y) =plyiz)

mjax Qs (y i:’C)

where

7;(¥ |z ) is the probability of transfomations J which derives ¥ from .

The transformation probability p(y |z ) is the maximum probability
amorng lhose associated wiih all the possible transformations from z to
.

Theorem 2.4 d¥(zy) is symmetric if and only if Ppla |ba) = P;(bala)
and Pg(b|c) = Pg(clb)forallbec €%, e € T,

The computaticn of stochastic similarity can also be carried out by
dynamie programiming technique. A local probability function replaces
ihe local distance function of nonstochaslic cases. However, Lthe proba-
bility function sclectes the maximum of the probabilities which céme

{froem below, lefi and lower left, see Figure 2.8 {for a graphic illustration.



PD(bj+l | a'ibj+1}

6li~1.]] 3 6]
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6li~1,j~1] 8[i,5-1]

Figure 2.8 Computation of partial distance for stochastic models,
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Algorithm £.3 Compulation of stochastic string similarity
Input; Twostrings o = o0 ... apapand ¥y = bbb o by b i
where gy, b; €  for all 1=i<n , I1sj=m, ap,y = &,
b,, .1 = &, and the probabilities associated with transformations
on terminals in £ and {&jJ.
Output: stochastic similarity d5(z,y).
Method,
(1) 6[0, 0] := 1;
(2)fori := 1 tomn do 6[4,0] := 6[i=1,0] - Pplb,la;b,);
(3)for j := 1 tom do 6[0,7] := 6{0,5 —1] - P!(bjﬂﬂﬂ-;);
(4)fori:=1tomn do
for 7 := 1 tom do begin
6[4.,5] := max {8[2.5 =11 - Pr(byoyqloye),
6[i—1,7—1] Pe(b;lay), 8[i—1,7] Pp(berlagb;i)l
end;

(5} d%{z,y) = 6[n m];

We can alsc use a global path constraint here to speed up the com-

putation.

Similarity measure is one of the fundamental constituent of pat-
Lern recognition. In some applications, for example, string-matching,
the recognition accuracy relies almost entirely on the accuracy of simi-
larity measure. Even the error-correcting parsing is closely related to
similarity measures. We will discuss the relation between EC (error-
correcting) parsing and similarity measure in the next section. The dis-
tance measures defined in this chapter are not metric. They have the
properties of positivity and symmetry, but do not necessarily have the

property of triangle inequality. The accuracy of actual similarity
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measure depends on many parameters. The most significant one is the
aszsignment of weights and probabilities. The weights and probabilities
aggignment iz case-dependent and usually heuristie. Previous

kriowledges and stalisties may guide the assignment in some cases.

2.3 Error-Correcling Parsing

Error-correcting parser (ECP) has been proposed in the areas of
compiler design {(Aho and Peterson, 1972) and syntactic pattern recog-
nition (Fu, 1977). When a conventional parser fails to parse a string, it
will terminate and reject the string. An error-correcting parser pro-
duces same results as a conventional one when the string is syntacti-
cally correct. However, it also generales a parse for the string even
when it has minor syntax errors. The significance of error-correcting
parsing in compiler design is still controversial since it mav misinter-
prete the programmer's intention. However, its significance in syntac-
tic pattern recognition is unquestionable. The most important reason
is the noise problem. The noise may come from gensor device, environ-
ment or data comrmunication., These will cause segmentation error and
primitive recognition error, and therefore result in syntax error. In
many cases, the pattern grammars are conslructed from a finite set of
training samples, and then used Lo reccgnize a larger set of test sam-
ples. Therefore, it is not surprising that the conventional parsers usu-

ally fail to work.

The errcr-correcting parsing algorithms can be classified into two
categories, one uses minimum-disiance criterien the olher uses

maximum-likelihood criterion. The minimum-distanece error-correcting
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parser {MDECP) is for nonstochastic models where string similarity is
measured by distance. The maximum-likelihoad error-correcting
parser (MLECP) is for stochastic model where siring similarity is meas-

ured by probahility.

The ECP in this chapter iz different irom other existing ECP’s in
two agpects; first, it uses symmetric similarity measures, second, it

does not use expanded grammar.

2.3.1 Minimum-Distance Error-Correcting Parsing Algorithm

For the purpose of generality we will discuss contexl-iree grammar
(CFG) throughout this chapter. Since finite-state laguage (FSL) is a
subsel of context-free language, &ll the principles described here can
be applied to FSL as well. Of coursze, the implementation can be
modified to increase the efficiency. Given a CFG & and an input string
v € £°, a minimum-distance error-correcting parser (MDECP) gen-
eraltes a parse for some string = € L{&) such that the distance between
z and ¥, d{x v) is as small as possible. Since we have defined several
different siring distance, therefore different error-correcting parsers

can be constructed.

Aho and Peterson (18972) have shown a minimum-distance error-
correcting parsing algorithim which uses the Levenshtein distance. We
will call their algorithm "Algorithm A" for short. They first transformed
the original grammear inlo an expanded grammar which includes all the
possible error productions. Then, lthey modified the Earley’s parsing
algorithm so that the number of error productions used is stored in the

itern list. The productions of the expanded grammar, F, is constructed

from P as fcllows:
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(1) For each production in P, replace all terminals ¢ € T by
by a new nonterminal £, and add these productions to 7.

(2) Add to P’ the productions

a) S > 5

b) S » SH

) H - HI

d) H -~ 1T
(3) For each @ € T, add to P the preductions

a) g » o

b) B, b foralldinZ, & £a

c) B, » Ha

d)/ -

e} £, = A, Ais the emply string

In step (8), the productions £, » b,/ » a and &, - A are called
terminal error productions. The production &, - & introduces a sub-
stituition error. 7 - o intorduces an insertion error. £, - A iniroduces
a deletion error. T'or the Levenshiein distance, a constant weight, e.g.,
1, is associated with each of these productions. It will also handle the
type 1 WLD d"!(z %) and type 2 WLD &¥3(z %) in a similar way. For the
type 1 WLD, weight v is associated with produclion £, - b, weight v with
E, - A and weight p with 7 - e. For the type 2 WLD, weight S(a.b) is
associated with production £, - &, weight D{e) with £, » A and weighl
I{o) with 7 » a. However, the problem will occur when it comes Lo type
3 WLD ¢%3(z,y). In order to maintain the symmetric property we must
have D(a,b) = I{ab)forallb € £, ¢ € ¥ as mentioned in Theorem 2.3.
The expanded grammar will have difficully in handling context-

dependent transformation weight.
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Although we can modify this expanded grammar 1o handle insertion
weights, as did in F'u (1982), it still can not handle the deletion Weights.
Since the productions asscociated with context-dependent deletion
weights will be something like 8E;, - E,, D(e,b), but this is not a
context-free production rule, even not a context-sensitive production
rule. While the expanded grammars seem unable to solve the sym-
metric problem: we can implement the ECP without the expanded
grammar. This idea of ECP without expanded grammar has appeared in
IL.yon {1974} where type U distance is used. His main concern is for
practical reasons: to save space and execution time. Qur proposed ECP
using type 3 WLD is a modified Earley’s parsing algorithm where the
substitution, insertion and deletion transiormations are examined dur-

ing the parsing.

Algorithm 2. 4. Minimum-Distance Error-Correcting Parsiﬁg Algorithm
Imput. A grammar & = (N,Z,P,5), an input string |
Yy = bybs. b, inL° and the weights of transformations
between symbols.
Output. The parse lists- g, 74,....0, and d(z,y) where
z is the minimum-distance correction of 4y, z € L{G).

Method:

(1) Set 5 = 0. Add [S~ - &,0,0} to [; if §»a is a production in P.

(2) Repeat step (3) and (4) until no new items can be added to ;.

(3) f [A»o - BBAE]is in J;,and B~ is a production in P, then add
item [B- -+ 7,5,0] to I;.

(4) i [A»o - i¢] isin J; and [B~»F - Ay,k.¢]is in [, and if no item

of the form [B-fA:vk,¢] can be found in /;, then add an item
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(B84 7.k, &+¢] to I;. Store with this item two pointers. The first
points to item [B-f 4vk.¢] in I;; the second points to item
[A-o - ,i.€] in ;. Ti [B-BA - 7.k,¢] is already in [;, then replace ¢ by
£+¢ together with the pointers if ¢>&+¢.

(5) For each [B-a - af,i.]lin [;, add [B-ao - Bi,6+D(b;,0)] to 1;.
Store with this item a peinter to item [B-a - aB,%,£] in /;. I no more
new item of this form can be found, go to step (6); otherwise, go Lo step
(2.

(8) If j‘=m, go to step (9); otherwise j=j7+1.

(7} Far each itemn [B-a - 2§,1,£]in /;_; add [B-oaa - ,6’,1:,5-!—5'(0.,6-)]
te J;. Store with this item a pointer to item [F»a - af.i.&]in J; ;.

(8) For each item [B-a - aBi,£] in /;, add (B-a - afi,647(a,b;)]

to 7;. Store with this item a pointer to item [B-a - af,i,£] in J;_;. Go to
(2).

(9) If item [S -« - ,0,f] is in I,,, then d(z,y) = & 1f there are more

than one such items, then choose one with the smallest £ Exit.

In this algorithm, step (5) examines deletion transformations, step
(7} examines substitution transformations and step (8) examines inser-

tion transformations.

The right parse of the inpul string can be constructed frem the
parse lists. Since we use erfor*correciing parsing, 11 is possible that
there may exist several parses associated with one inpul string, but we

only choose Lthe one wilh minimum distance,

Algorithm 2.5, Construction of a right parse from the parse lists
Input: Iy, 74..... I,. the parse lists for siring ¥ = ;b5 -+ &

b

Outpul: A parse wiorz, x € L((), and Lhe distance
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d"3(z y) is minimum among all the strings in L(G).

Method.!

{1) In I, choose an item of the form [S+a - ,0,&] where £ is as small

as possible.

{2) Let 7 be the empty string initially, and then execute the routine
R{S-»a - 0,E],m) where R([4->a - 8,1,m],7) is defined as {olicws:
a) lf B=A, then let 7 be the previous value of 7 followed by the

production number of 4»a. Otherwise, 7 is unchanged.

b) If [A»a - B,i,m] has only one pointer, then execute the item
where il points  to. It may be R{[4d-a-g1i,&],5-1),
R([4-»a - efiélj=1)or R([A=a - aB,i,¢].7) where a=a'e. Return.

¢) I [A»e - £,4,m] has two pointers and a=a B, then execute
R([B-vy - ,h,ul,j7) followed by R([A~a + EZ,i,%1 k). Return.

d) If a=A, return.

The parse constructed by Algorithm 2.5 is for z, £ € L{G), i.e., no
error productions are inciuded. Usually there is no need to know the
error productions (or eguivalently error transformations); but if we d.o
need ic know, we can store the infermation like D(&;,2), S{a,b;) or
I(z,b;) in each item. Then we can extraci the exact transiormations
when we execute A routines. If we are only interested in the minimum
distance, for example, to determine the class membership, then Algo-
rithm 2.4 will be sufficient.

Algorithm 2.4 iz more powerful (because its parse is in terms of

symmelric distance) and is at least as efficient as Algorithm A.
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Lemma2.1: The time complexity of Algorithm 2.4 is 0(n3) where n is

the length of the input string.

The proof of lemma 2.1 ig similar to that of (Aho and Peterson,
1g72). Since each item list J; takes time 0(7%) to complete, therefore
the total time is O(n%). We can also show that the number of produc-
tions and the number of items in item lists of Algorithm 2.4 are less
than those of Algorithm A. Therefore, less numbers of productions and
items have to be considered when we add new items to item lisis. For
each item [B-a - af,i,£] in I;_, in Algorithm 2.4 there is an item
[Boa - Egf,t,6] in [;-; in Algorithm A. Let us consider the following
tremsformations:

(1) Substitition. There is an item [Ez- - b,7-1,5(a.b)] in I;_,
where b=b; and [Ey-b - ,7-1,5(a,b)], [Boak, - §1.6+5(a,b)] in I; in
Algo'rit,hm A. There is only one itemn [B-oa - §,4,6+S5(e,b;)] in /; in
Algorithm 2.4.

(2) Deletion. There is an item [Eg~ - A, j—1, D(a)} and [B-af, - B,
i, &+D(a)] in I;_; in Algorithm A There is only one item
[Booa - f1.8+D0{b;,a)]in /;_; in algorithm 2.4.

{(3) Insertion. There are items [#, »He,5—-1,0], [H~ - 1,7—1,0] and
(/- &, j—1, I(b)] where &=b; in /;_; and items [/-b - j—1,7(b)}],
[H-1-,7—1,1(6)] and [Eq~H - 2,7-1,1(4)] in [; in Algorithm A. There
is only one item [B-«a - 2B,i,6+7(a,b;)]in J; in Algorithm 2.4,

Since all the other items not involving error transformations are
unchanged, therefore we can see that the time complexity of Algorithm
2.4 is no more than that of Algorithm A, i.e., the time complexity of

Algorithm 2.4 is O(n®),
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We have shown a minimum-distance error-correcting parsing algo-
rithm for any nonstochastic CFG. The distance is symmetric and can
be any one described in Section 2.2. For a stochastic CFG, we can also
consiruct a maximum-likelihood error-correcting parser which will be

discusgsed in the next section.

2.3.2 Maximum-Likelihood Error-Correcting Parsing Algorithm

Given a stochastic contexi-free grammar (SCFG) G, and an input
string ¥ € £°, a maximum-likelihcod error-correciing parser (MLECP)
generales a parse for some string € L(G;) such that the probability
iy lz)p(z) is the maximum, where p(y |z} is the deformation proba-
bility from string = to y and p{z} is the probability asscciated with
string =z in L(G,) (Fu, 1982). There may exist more than one derivation
trees for each z € L(G,) unless the grammar G; is unambiguous.
Meanwhile, there will be many possible transformations from siring x to

y. We define p(y |z )p(x) as the one with maximum probability, i.e.,

pylz)n(z) = max g;(y |z )p;(z)

where p;(z) is the probability associated with the ith distinct deriva-
tion of string z and g;(y |x) is the probabilily associated with the jth
distinet transiormation from z to y. The probability p(y [z} which is

equal to max g;(¥ |z) is exactly the same as what we defined for string
J
similarity in Section 2.4.

The proposed MLECP is a modified Earley's .parsing algorithm. It
does nol require an expanded grammar and is applicable to ambiguous

grammars. The transformation probabilities as well as the insertion,
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deletion and substitution transformations are examined during the
parsing. The partial probabilies are stored in each item list. Pointers
to the previous ilems are also stored in the item lists to save parse

extraction time.

Algorithm 2.6, Maximum-Likelihood Error-Correcting Parsing Algorithm
Imput: A stochastic grammar G, = (N,Z,7,,5), an input string
v =bbs..b,y inZ”, and the probatilities of transiormations.
Output: The parse lists Ig, 7q,..-.0,, and p{y |z )p(x) where
z is the maximum-likelihood correction of ¥, z € L(Gy).

Method:

)
(1) Set j =0.Add [S~ - «,0,p] to [; if § » o is a production in P.
(2) Repeat step (3) and (4) until no new items can be added to ;.

q
(3) If [A»a - BB,i,&] is in I;,and B > 7 is a production in P, then
add item [B> - y.j.9] to [;.

(4) If [A~»a - ,i,&]isin [; and [B~fF - A,k ,¢] is in [, and if no item
of the form [B-BA -7,ic,rga] can be found in J;, then add an item
[B-BA - v,k,E¢] to /;. Store with this item two pointers. The first
points te item [B-8 Av.k.¢] in [;; the second points to item
[4»o - ,4,€] in I;. I [B-BA - 7.k,¢] is already in [;, then replace ¢ by
£-¢ together with the pointers if p<&-¢.

{5) For each [B-a - cfi ] in I;, add [B~aa - §,1,¢6 Pp(alb;a)] to
I;. Store with this item a pointer to item [F-a-af,4,£] in ;. I no
moré new item of this form can be found, go Lo step (6); otherwise, go

to step (2).
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(8) If =m, go to step {9); otherwise j=j7+1.

(7} For . each item [B-o - afi,E&] in fyy add
[B-ae - B8,1,8Pg(b;|a)] to ;. Store with this item a pointer to item
[Booa - gfi.£]in ;.

(8) For each item [B-o - af,i ] in I add
[B-a-aBi,&FP(bjala)] to J;. Store with lhis item a pointer te item
[B-a - ap,i,£]in I;_;. Go to (2).

(N If item [S»a:,0,§) is in I,, then p(y |z)p(x) = & If there are

more than one such items, then choose one with the largest £ Exit.

The right parse can be extracted from the parse lists. Algorithm
2.5 can be applied here except that in step (1) we chocse an item of the
form [S-o-,0,&] in [, which is as large as possible. The parse
exiraclied here contains ne error productions. We can also store and
exiract the error transformations as did in the last section. The time
complexity of Algorithm 2.6 is also O(n%) since Lhe procedures are

almost identical to those of Algorithm 2.4,

Lermnma2.2: The time complexity of Algorithm 2.8 is 0(n®) where n is

the length of the input string.

Suppose G, is an expanded grammar, then the stochastic language

generated by G, is

L) =lwpe) lyeS o= ¥ Yalylz)p()
zel(G)i=1

where 7 is the number of distinet transformations from string = to y,
7;(y |z) is the probability associated with the i*" transformation and

o{x) is the probability associated with x. Although string ¥y is
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generated by the expanded grmmar G;, the probability associated with

y, p{y ), can be computed without the expanded grammar.

Algorithm £ 7. Computation of String Probability
Input: A stochastic grammar G, = (N,X,F,5), an input string
y = byba. b, inL’, and the probabilities of transformations.
Output: The probability associated with v, p (y), where v is generated by
the expanded grammar G;.

Method.:

P
(1)Setj =0.Add [S~ - a,0,p] to J; if § » a is a production in P.
(2) Repeat step (3) and (4) until no new items can be added to /;.

q
(3) If [A»a - BBA,%,£] is in J;,and B - 7 is a production in P, then

add item [B- - 7,5.9] to I;.

(4) U [A»a - itlisin [; and [B~f - Ay,k . ¢] is in [, and if no item
of the form [B-fA - 7,k,¢] can be found in {;, then add an item
(B=BA vk .&¢)to [;. If [BoBA 7,k ,¢] is already in /;, then replace
by g+£-¢.

(5) For each [B»a  af,i,£] in [;, add [B-aa - B,1,8 FPplaib;a)] to
I;. 1f no more new item of this form can be found, go to siep (6); other-
wise, go to step (2).

| (8) If =m, go Lo step {9); otherwise j=7+1.

(7) For each item [B-oa - af,i,f] in I add

[Boaa - 81,8 Pg(b;la)]to [;.
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(8) For each itemn [B-»a - af,i,t] in I add
[Boa-aBi.&Pr(bjala)] to I;. Goto (R).

58

unambiguous. Although both ECP and NNR have 0{n2) time complexity,
NNE is usually fagter than ECP. We will see an example in chapter III.

2.5 Conclusion

We have discussed four types of string similarity measures in this
chapter, and the conditions for them to be symmetric. We also pro-
posed parsing algorithms te deal with the symmetric problem which
can nol be carried out by any other ECP. These algorithims are at least
as efficient {(computation-wise} as other parsing algorithms. A
minimum-diatance criterion is used for _nonstochastic models and a
maximum-likelihood criterion is used for stochastic medels for both
ECP and NNR. Bayes' decision rule can be applied when dealing with
multiclags problems of stochastic models. The class conditional proba-

bility p(z | (), where C; = L(G;), can be computed by Algorithm 2.8.

In NNR, the distance computation employs a dynamic programming
procedure which makes it very easy for implementation in VLSI archi-
tectures. VL3I architectures for ECP and string distances computation
will be reviewed in Chapler V. We also propose a VL3I architecture for

computing the string (Levenshtein) distance in Chapter V.
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CHAPTER IIT

APPLICATIONS OF SYNTACTIC PATTERN
RECOGNITION TO SEISMIC CIASSIFICATION

3.1 Intreduction

In this chapter we apply syntaciic approaches to two real seismic
classification problems. One is the seismic discrimination between
nuclear explosion and natural earthquake, the other is the seizmic
clagsification in structural damage assesment. These waveforms have
been sampled and digitized before we oblain the data. However, vari-
oug neises exist in both cases. Certain prepocessing procedures Lhere-
fore must be imposed to remove those noises. Section 2 to & discuss

application to seismic discrimination, and Section 6 shows application

tc damage assesment.

Seismological methods are so far the most effective and practical
methods for detecling nuclear explosions, especially for underground
explosions. Position, depth and origin time ol the seismic events are
useful information for discrimination; so are the body wave magnitude
and surface wave magnitude of the seismic wave (Bolt, 1976: Dahlman
and Israelson, 1877). Unforlunately, they are nol always applicable and
reliable for small evenls. It would be very helpiul if the diserimination
iz based on the short-period waves alone. The applicalion of paltern

recegnition techniques to seismic wave analysis has been sludied
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extensively in the last few years {Chen, 18%8; Tjostheim, 1978; Sarna
and Stark, 1980). They all use short-period waves only for discrimina-
tion. Most of these studies concentrated on feature selection. Only
simple decision-theoretic techniques have been used. However, syniac~
tic pattern recognition appears to be quite promising in this area. It
uses the structural information of the seismic wave which is very
important in analysis. Seismic records are onc-dimensional Wa{feforms‘
Although there exist several alternatives (Ehrich and Foith, 1976; San-
kar and Rosenfeld, 1979) for representing one-dimensional waveforms,
it i3 most n.atu:ral to represent them by seniences, l.e., strings of primi-
tives. In order to make it easy for analysis we divide the pattern
representation procedure into three steps, namely, patiern segmenta-

tion, feature selection and primitive recogniticn, though they are corre-

lated.

In this chapter, we apply two different methods of syntactic
approach to the recognition of seismic waves. One uses the nearest-
neighbor decision rule, the other uses the error-correcting parsing. In
the first method, a pattern represeniation sybsystern converts the
seismic waveforms into strings of primitives. The siring-to-string dis-
tances between the test sample and all the training samples are com-
puted and then ithe nearest-neighbor decisicn rule is applied. The
second method conlains p;attern representaiion, automatic grammati-
cal inference and error-correcting parsing. The patiern representation
subsystem performs pattern segmentation, feature selection and primi-
live recognition so as to convert the seismic wave into a string of primi-
tives. The automatic grammatical inference subsystem infers a finite-

state (regular) grammar from a finite set of training samples. The
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errar-correcting parser performs synlax analvsis and classification.
Human interaction is required only at the training stage, mostly in pat-

tern represenlation and slightly in grammalical inference.

3.2 Preprocessing

The two major problems in preprocessing of digital signal is te iden-
tily the appropriate portion for recognition and to eliminate noise. For
example, the voiced portion should be seperated from the unveoiced
portion in speech recognition; each ECG cycle should be determined in
ECG analysis, and the 'signal’ should be recognized in seismic analysis.
We will not discuss these in any detail, though Lthey are important. The
main reason is the variely of iheir cheracters. The seismic zignals in
our experiment were selected Irom a huge seismic database. They all

have equal iength and have been aligned at the onset.

Neise is always a major problem in digital signal processing. Filter-
ing is the most common technique Lo remove noise, high-pass, low-pass,
band-pass, just to name a {few. These fillers climinate certain regions of
ifrequency component. Sometimes this may nol be desgired. For exam-
ple, in Figure 3.1, there iz a pulse-like noise wilhin the seismic signal.
This kind of noise iz sometimes called glitch. 1 we apply the signal
through a low-pass filter, it can not eliminate the pulse completely,
meganwhile all the high freguency components of the signal will also be
eliminated. This is not what we want. To avoid thiz, we need a local
filter which will remove only the pulse noise and leave the rest of Lhe
signa! unchanged. This local filtering is possible because the normal

signal does not have pulse i it, the local filler can delecl the pulses
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and then remove them. This local fillering needs human interaction to
specify threshold. Different regions need different thresholds. We can
see irom Figure 3.1 that the whole signal can be divided into three por-
tions. The relatively flat portion at the beginning is the background
noise, which should nol be confused with the noise we want to elimm-
inate. The next portion has the strongesl signal which is called the sig-
nal portion. After the strong signal portion is the weak signal portion
which is called coda. A poini 7 is said to be a pulse noise if and only if it
satizsfles the following two conditions:

(1) absolute magnitude of point 1, |e (i}, is greater than or equal to
the threshold.

(2) absolute value of e{i+1) + a(i—1) - 2 * e (i) is greater than or
equal Lo the threshold.
The second condition seperates the pulse noise from strong signal por-
tion since the pulse noise is much sharper. After point 1 is detected to
be a pulse noise, it can be eliminated by letting

a(i) = (a(j) +a(k)) /2

where 7 < t, & > 4, point § and & are nol pulse noise and no point

between 7 and k iz norrmal signal point.

Figure 3.1{a) iz a signal before filtering, (b) is the same signal after
fillering. Figure 3.2 is another example, but it has nﬁore than onerpulse
noise. From these iwo examples we can see the local filter works sue-
cessiully in eliminating the local pulse noise while I'eta-ining the original

signals.

Another noise problem of seismic signal is the drift during record-

ing. As can be seen from: Figure 3.3(b), the whole signal is somewhal
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Figure 3.1 (a) An examble of seismie signal with pulse noise {gliteh). (b
The same waveform after local filtering.
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Ticure 2.2 {a) Anether example of seismic signal with several puire noise
(glitches). (b) The same waveform after local fillering.
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balow the zero line, especially the beginning portion which is far below
the zero line. In order to retain the details of the original signal, we use
a low order polynomial regression of the original signal and then sub-
tract this polynomial regression from the original signal. The fitness of
the regression is tested by least-sguares criterion. We use a 5ih-order
polyromial regression for the seismic signals. The regression program
is taken from the book by Carnahan, Luther and Wilkes (1969). The
entire procedure consists of Lwo partis, 1.e., global adjustment and local
adjustment. In global adjustment, the polynomial regresssion is applied
to the whole signal and then followed by subtraction. Figure 3.3(c) is
the result after the regression and subtraclion from Figure 3.3(b). We
can see that the small segment at the beginning still drifts from the
zero line slightly. Then we apply regression and subtraction te this
small segment; this is called local adjustment. The result after local
adjustment is shown in Figure 3.3(d). Another example is shown in Fig-
ure 3.4. Figure 3.4(a) is the original signal, (b) is the original signal with
the zero line. We can sce Lthal the first portion of this signal drift above
the zero line and the resl of the signal drifts beloew the zero line. Figure
3.4(c) is the result after global adjustment and (d) is the result after
local adjustment. The sequence of appiying glebal adjustment first and
then local adjustment is important. If we reverse the arder, il will not
produce the same resull as we have otherwise. In our.present experi-
ment the segment for local adjustment is selected manually, One alter-
native is to use piece-wise regression te select the optimal breaking
point. This is carried oul by breaking the whole signal into two seg-
ments and then finding regression of each segment. The breaking point

wlhich resulls in miminum devialion is Lhe optimal brealiing point. This
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Figure 3.3 (a) An original seismic signal. (b) With zerec-line added for com-
parison. (e) After global adjustment. {d) After local adjustment.
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Figure 3.4 (a) Another example of seismic signal. {(b) Zero-line is added
for comparison. (c) After global adjustment. (d} Alter local adjustment.
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must be done on a seclion of contizuous peoints. It is time consuming
and therefore is excluded from our experiment. After the above
preprocessing procedures we can perform segmentation and primitive

selection.

3.3 Automatic Clusltering Procedure
for Primitive Selection

It has been mentiaﬁed .in Fu (1982) that the pattern primitives
should serve as basic pattern elements in deseribing the structural
relations and they should be easily extraclable, usually by nonsyntactic
methods. The selection of primitives depends largely on the iype of
waveforms. In gome applications, the primitives are prespecified by
human experli, e.g., in Giese, et al (19’?9). We would like to invesiigaie
the possibility of nonsupervised learning in primitive selection, there-
fore, we use an automatic clustering procedure to select the pattern

primitives. This is impertant because human selection of pattern prim-

itive may not always be available, besides, it may be unreliable.

3.3.1 Pattern Segmentation

A digitized waveform to be processed by a digital computer is usu-
ally sampled from a continucus wavelorm which represents tihe
phenomena of a source plus external noise. For some cases, such as
ECG and carctid pulse wave analyzis (Horowitz, 1975: Stockman, et al.,
1978), every single peak and valley are significant, therelore these
wavelorms can be segmented according Lo the shape. For others, like

ERG {Glese, et al, 1979) and seismic wave analysis in our case, a single
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péak or valley does not contain significant information, especially when
the signal to noise ratio is low, therefore they should be segmented by
length, either a fixed length or a variable length. A variable-lenigth seg-
mentation is more efficient and precise in representation, but it iz usu-
ally very difficult and time consuming to find an appropriale segmenta-
tion. A fixed-length sepgmentation is much easier to implement. [f the
length is well selected it will be adequate to represent lLhe original
waveform. There is & compromise between the representation accu-
racy and analysis efficency. The shorler the segmentaticn is, the more
accurate the represeniation will be. But the analysis becomes more
inefficient since the string is longer and ihe computation time is pro-
portional to string length. Another problem is the noise. If the segmen-
tation is too short, it will be very sensitive Lo noise.

Pattern segmentation is closely related to primitive selection. The
segment length in speech analysis is 20 millisecends (DeMori, 1972,
1677), and 1 second in EEG analysis (Giese, et al.,, 1979). For short-
periad seismic signal, a segment length of around 6 seconds is a good
choice, A segment of this length contains adeguate information and has
been used by many other researchers (Chen, 1878; Tojstheim, 1975).
Since the sampling frequency of our data set is 10 Hz, a 6-second period
centains 60 points.

We have done experiments on other segment lengths, they are 40
points and 80 points. We zelected 41 explosion records out of 111 and
5¢ earthgquake records out of 210 as training samples. The recognitien
result [or 60-point segment length iz 91.0%, ie., 20 misclassifications
out of 221. When we choze 40 points as segment lenglh, according to

tire primitive seleclion procedure in Section 3.4 the best selecton for
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primitive number is 18. ¥For primitive number 18, the recognition
result is 72.8%, i.e., 60 misclassifications out of 221. I we chose primi- -
Live number 13 as we did in 60-point segment lengih, the recognition
result is still 72.9%, though the detail of classification is different. When
we chose 80 points as segment length, the primitive number selection is
14 and the recognition result is 73.8%, i.e., 58 misclassifications out of
221,

Although this experiment is by no means conclusive, it does show
thal a segment length of 60 peints is an appropriate selection for
short-period seismic signal. A shorter segment is too sensitive Lo noise
and a ienger segment iz too complicated for a primitive. The selection
of segment length is ususlly a subjective judegment and depends on the

characleristiic of the signal wavelcrm.

3.3.2 Teature Selection

Any linear or nonlinear mapping of the criginal measurements can
be considered as features provided they have disceriminating capability.
Both time-domain fealures and frequenéy-domain features have been
used for seismic discrimination . For example, complexity and autore-
gressive models are features in itime domain; spectral ratio and third
moment of frequency are features in frequency domeain (Dahlman and
Israelson, 1977). Since we scgment the seismic wave, complexity and
spectral ratio features are implicitely contained in the string structure.
Furihermeore, the segment may be tco short for a model estimation if
we use shorter segment. Therefore, we selecled a pair of commonly
used features, i.e., zero crossing count and log energy of each segment,

which are easy to compute and contain significant infermation. Easy to
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compute is a desired property for primitive extraction in svntactic
approach. Zero crossing count roughly represents Lthe major frequency
component of the signal and log energy indicales the magnitude of the
gignal. These two features should be able io characterize the signal
segment. Other features may also serve as good candidates. An advan-
tage of svntactic approach is that feature selection is simpler since
features are exlracted {from smaller segments, and fealure scleclion is
not that crilical as is in slatistical approach. Since there is no optlimal
feature selection algoritlim, features are usually subjectively selected.
Although there are criteria such as between cluster and within cluster
scatterness, they have nc direect relaticn Lo final recognition results.
While other {features, including K-L expansion, do not show any
supericrity in recognitien results in our preliminary experiments, we
will slick to the zero crossing count and log energy.

Since wc are experimenting a new approach for seismic discrimina-
tion, we do not particularly emphasize feature selection. In fact, simple
features like these give févorab]e resull in our experiment. This indi-
cates that syntactic appreoach utilizes structural information instead of

sophisticated feature measurement.

J.3.3 Primitive Recognition

The selection of primitives varies very largely in digital signal
recognition. Line segmenls [rom linear approximation of signals have
been used in ECG analysiz (Ilorowitz, 1875, 1977). Parabola and line
segment have been used in carotid pulse wave analysis (Stockman, et
al., 1978). These primitives are mainly used Lo desecribe Lhe shape of

the signal waveforri. When the shape of the signal wevelormn iz nol
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important, other types of primilives must be selected. For example in
spoken word fecognition (DeMori, 1972, 1877), silence interval, stable
zone and lines are used as primitives. In EEG analysis {Giese, et al,
1979), a group of seven primitives has been specified and a linear
clasgifier is used to recognize the testing segments. What should we do
if the signal on hand is not as predictable as speech signal, nor can we
specify the primitives as in EEG analysis. One possible solulion is by
clustering procedure. A clustering procedure will classify any number
of signal segments into certain number of clusiers in an optimal .Way,

which means minimization of some criterion function.

If the number of primitives, i.e., the number of cmsters, has been
selected then any typiecal clustering technigue, e.g., K-means algo-
rithm, can find the optimal clustering. Now the difficult part is how to
select an appropriate primitive number. For example in EEG analysis,
how do we know seven is the best selection. Is there any other better
selection? How does the selection of primitive number affect the final
recognition results? We will discuss all of these questions in this sec-

tion.

Without lost of generalily we assume ithat each signal segment is
represented by a vector of features z = [z, xa, ..., 2, |¢. It is noted that
we use decision-thecretic approach for primitive selection. Other
representations may alsc serve the purpose as long as the similarily
helween signal segments can be compuled. If the feaiure space is izo-
Ltropic, then the Euclidean distance can be used as & measure of simi-
larity and il is invariani under translalion or rotation. However, the

invariance can be attained by normalizing the data before clustering.



7o

Suppose we want to partition n samples z!, z% ..., z" into k dis-

joint subsets 'y, Ty, ..., . Each subset representis a cluster. The sam-
ples in the same cluster are more similar than the samples in different
clusters. One typical approach is to define a criterion function that
measures the clustering quality of any partition of the samples. Then

the problem is to minimize of meaxirize the criterion function. OCne of

th

4

most well-known criterion function is the sum-of-squared-error eri-
terion (Duda and Hart, 1873). Lecl n; be the number of samples in clus-

ter C; and my; be the mean of those samples, where

1
m,; = =—=—— T
‘ g x?C..

The sum-of-squared-error criterion is defined as

k
Je= % % flz-m, 12

=1 :CEC}

Another set of criterion functions are derived from scatter matrice.

First, let us introduce some definitions.

Mean vector for wlh cluster:

_ 1
T zel

Total mean vector:

1
I - — TL_- Trt .
n L

Seatter matrix for 41h cluster:
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Sy = 'EZC (x = m;)(z - my)

Within-cluster scatter matrix:

k
Sy = L 5

i=]

Netween-cluster scatter matrix:

Sp = i n{m; —m)(m; —m)*

i=1
Total scatter matrix:

Sp= 3 (& —m)z ~m)

zel

It follows obviously that Sy = Sy + Sp

We define the optimal partition as one that minimnizes Sy or max-
imizes Sp. In doing so we need a scalar measure of the size of a scatter
malrix. The trace of Sy is the simplest measures. Other well-known
measures are the determinant of Sy and the trace of Sy'Sy. For the
sake of computational simplicity we will only consider the trace of Sy

as criterien funetion. The irace eriterion is defined as:

I k
tr Sp= Y trS;=%Y % itx —m; 1% = J,

i=1 i=1 1l
which is exactly the same as Lhe sum-of-squared-error criterion. Since
lr Sq =4r S +1ir Sy and £r S is independent of how the samples are

partitloned, therefore minimizing {r Sw iz equivalent to maximizing

ir Sg. Where
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tr Sp= Y |Imy —m1?
i=1
If the number of cluster is known, then the X-means algorithm can
be applied tc find a clustering which minimizes the criterion funection,
ie., the sum—of—squared;error Jo. When the number of clusters is unk-
nown, at least two approaches can be used to determine the optimal

cluster number. These two approaches turn out to have similar results

in our experiment.

Both approaches use a hottom-up hierarchical clustering pro-
cedure. This alporithm repeats the clustering procedure fork = U, k =
-1,k =L, where [V and L are the speceified upper and lower bound
respeclively. The first approach selects the optimsal cluster number by
examining how the crilerion {unction J/, changes with & I these n
samples are really grouped inte p well seperated clusters, then J,
should increase slowly until & = p and then inerease much more rapidly
thereafter, The algorithm for bottom-up clustering procedure is shown

as follows:

Aigorithm 3.1 Bottom-Up Hicrarchical Clusiering
Input: A set of » unclassified samples, an upper bound U
and a lower bound L.
Ouiput: A sequence of optimal clusterings [or the nummber
of clusters between U/ and 7.
Method.!
(1) Let & = U, & is the number of clusters, and arbitrarily
assign cluster membership.

(2) Reassign membership using A-meang algerithm. I
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k=1, stop.
(3) Find the nearest pair of clusters, say C; and G, 1 # 7.
(4) Merge C; and (;, delete C; and decrease k by one,

go to step 2.

The distance beiween iwo clusters is defined by

a6, C) = [imy —mg ||

where m;, m; are the mean vectors of cluslers 1,7 respectively.

Just as F-statistics can be used in univariate case to testi the
significance of group seperation, a pseudo F-statistics (PFS) can be
applied in muliivariate case provided that a gingle measurement of
sirnilarity between samples, e.g., Buclidean distance, is assumed (Vogel
and Wong, 1978). A pseudo F-statistics is defined as:

ir Sp (n —k)

FFS = 38, 6 = 1)

As the number of clusters increases, fr 5y will always increase while
tr Sw will ailways decrease. However, the PFS value will not monotani-
cally increase due to the effect of (n—k) 7/ (k—1) which is smaller as k
becomes larger. Therelore, lhere will be a peak of PFS value some-
where in Lhe middle. Since, like F-statistics, the PFS shows the
significance of group seperation, therefore a larger PFS value means
the clusters are more compact and well seperaled. The crietrion here
is to ;select the maximum PFS value; the corrésponding cluster number
will be optimal. Tor example, in Figure 3.7, the maximum PFS value
eppears al cluster number 13, therefore 13-z the optimeal selection for

cluster number.
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3.4 Syntax Analysis

If the classification is all we need, then the nearest-neighbor deci-
sion rule is preferred because of its computlational efficiency. On the
other hand, if a complete descriplion of the waveform structure is
needed, we have Lo use parsing {(or error-correcting parsing). An errar-
ccerrecting parser (instead of conventional parser) is required for most
practical pattern recognition applicalions. S5Since noise and distortion
ugually cause conventicnal parsers to fail. It is not unusual that even a
ncise-free, distortion-free pattern can not be recognized by a conven-
tional parser, since the patitern grammar is often inferred from a small

sel of training samples.

3.4.1 Nearest-Neighbor Decision Rule

The concept of nearestneighbor decision rule in syntactic
approach is similar to that in decision-theoretic approach. The only
difference is in distance calculation. Four tvpes of string distances
heve been discussed in chapter iwo, and they can be computed using

dynamic programrning method (e.g., Algorithm 2.1,

3.4.2 Error-Correcting Finite-Slale Parsing

Before parsing can take place we must have a grammar, which can
he either heuristically constructed or inferred from a set of training
samples. In order to study the learning capability of the syntactic

mzthod, we choose the grammatical inference approach.

Fhrase structure grammars have been used io describe pallerns in

syntactic patlern recognition (see u, 1882). Fach patiern is
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represented by a string of primitives which corresponds to a sentence
in a language (tree or graph in high dimensional grammars). All strings

which belong to the same class are generated by one grammar.

Grammatical Inference

A set of sentences S* is a positive sample of a language L(G), if §*
¢ L(G). A set of sentences S~ is a negative sample of a language L(G),
it S7 ¢ L{G;.

A positive sample S* of a language L{G) is structurally complete if
each production in & is used in the generation of at least one string in

S* (Fu and Booth, 1975}

We assume that the set S7* is structurally complete and St ¢
L{Gp), where Gp is the inlerred grammar. Theoretically, if 5% is a
structurally complete sample of the language L(G) generated by the
finite-state grammar & then the canonical grammar Ge can be inferred
from S*. A set of derived grammars can be derived from Gp. The
derived grammars are obtained by partitioning the set of nonlerminals
of the canonical grammar into equivalence classes. Each nonterminal of
the derived grammar corresponds to one block of the partition. Since
ithe number of possible partitions is too large it is infeasible Lo evaluale
all the partitions. Therefore some algorithms such as k£-tail algorithm
(Biermann and Feldman, 1972) has been suggested to reduce the
number of derived grammars. These algorithms have one disadvaniage.
The reduced subset of derived grammars may not contain the source
grammar. However, it will be sufficient if we only interest in an estimate
of the source gramumar. There are al least two situations where a gram-

matical inference algorithm can be used. In the first case there exists
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a seource grammar which generates a language and we want to infer the
source grammar or automaton based on the observed samples. In the
second case ithe exact nature of the source grammear is unknown, the
only information we have are some seniences generated by the source.
We assume that the source grammar falls into a particular class and
infer a grammar which generates all the training samplles, and hope-
fully will generate some samples belonging to the same class. If a nega-
tive sample =et is given, the inferred grammar must not generate any
sarnple in the nepative sample sel. Grammars more complex than
finite-state grammars and restricted contexi-free grammars (in Chom- -
sky hierarchy) can not be inferred eﬁicient]jf without human irterac-
tioa. Furthermore, there exists no obvious seli-emhbedding property in
seismic waves, finile-state grammars will be suflicient in generating
power. Therefore we choose finite-stale gramimars lo describe the
selsmic waves,

The inference of regular grammars has been studied extensively.
The k-lail algorithm finds the canonical grammar and then merges the
states which are k-tail equivalent. This algorithm is adjustable, the
value of k controls the size of the inferred graminar. Another algorithmm
called iail-clusiering algorithm (Miclet, 1980} alse finds the canonical
grammmar, but then merges the states which have commeon tails. The
original algorithm is not as flexible as the &£ -lail algorithm, bul will infer
a grammar which is closer to the source grammar in some cases. We
can modify the merge criterion to make it more flexible. Since the
grammar is inferred from a small set of training sampleg, we can only
expect that the inferred grammar generates all the training sampiles

and will generate olher strings which are similar to the iraining
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‘samples. The generating power of the inferred grammar relies entirely
on the merge procedure. 1II e merge occurs at all, then the inferred
grammar generates exactiy the same training sei, no more no less.
Since all the seismic records have the same length and alignment in
our experiment, the sentences representing these signals alse have the

same length,

Error-Correciing Forsing

Alter a grammar is available, either by autoratic inference or by
manaul consiruction, the next siep is to design a recognizer which will
recognize the patterns generated by the grammar. If the grammar G is
finile-state, a deterministic finite-state automaton can be constructed

Lo recognize the sirings generated by G.

Segmentation and primitives recognition errors due to noise and
distortion usually occur in practice. Conventional parsing algorithms
can not handle these situalions, ltherefore, an error-correcting parser

must be used (Fu, 1977).

Since all the sentences in our example have the same length, dnljr
the substitution error needs to be consgidered. F'or each production 4 -
o and 4 -+ a in the original grammar we add 4 - 6F and 4 - &
respectively to Lthe covering grammar, where 4,8 e N, a,b ¢ Z, b £ o,
N iz a set of nonterminal symbois and Z is a set of terminal symbols.
Different weights can be assigned to different error proauctions, there-
fore, result in a minimum-cost error-correcting parser. The asgignment
of weighls is a crucial problem. We have used the dislance between
clusters o and & as the weight for substituting ¢ by & and vise versa.

Since a finile-state grammar can be represented by a transition
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diagram. Thus, a minimum-cost error-correcting parsing iz eguivalent

to finding a minimurm-cost path from the initial state to a final state.

Algorithm 3.2, Computation of Minimum-Cost
Mmput: A transition diagram with mn nodes numbered {, 2, ..., 1,
where node 1 is the initial state and node n is a final state,
and a cost function Gy (a), for 1=i,7<n, ¢ € L, with C;(a)
= 0, for alli1 and 7. An input string s.
Output: m iy, the lowest cost of any path from node 1 to node n

whaose sequence is equal to that of the input string s.

Method.

(1) Set k = 1.

(2) For all 1=sj=n, m,; = min {m,;, + G (b)), for all 1=k=n i, where
b iz the kth symbol of input string =.

(3)Ii k < is|, increase &k by 1 and go to step (2). [T & = |s |, go to
step (4).

(4) Qutput m,, which is the lowest cost from node 1 to node n fol-
lowing the move of input string s. Stop.

Cost function C'?;j(a] denotes the cost of moving from state i1 to
state 7 while the input symbol is 'a’. my; is the minimum cest from
state | to state 7. The computation lime of Algorithm 3.2 is lincar, i.e.,
Q(n), where n is the length of the inpul string. This algorithm is a
finite-stale parsing algorithm where only substiiution error is con-
sidered. The production number can be stored with (;(a), and the

parse can be stored with m ;.
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If insertion and deletion errors are to be considered, then the
parser is still similar except that we have to compute and store the
infermalion V(T, S, ) which is the minimum cost of changing character
‘o’ into some string which can change the staile of the automaton from
state T to S (Wagner, 1974). The inclusion of insertion and deletion
errors makes the error correction more complete, but assigning
appropriate weighls to insertion and deletion error iz even maoare

difficult.

3.5 Experimental Besulis on Seismic Discrimination

The seismic dala used in our experiments are provided hy Profes-
sor C. H. Chen of Southeastern Massachuseiis University. The data
were recorded at LASA in Montana., Each record contains 1200 points;
the sampling frequency iz 10 points per second. The original data con-
tains 323 records. Due to some technical problems in data conversion
only 321 records were received. Among them 111 records are nuclear

explosions and 210 records are earthquakes.

We have selected forty-one earthquake records and fifty-nine explo-
ston records as training samples. Each record is d_ivided into 20 seg-
ments whers each segment contains 80 points. Two features, i.e., zero-
crossing count and log energy, are computed from each segment.
Table 3.1 shows the erilerion function J, and its inerement from cluster
number 16 down to 2, which are the results of applying Algorithm 3.1 to
the Lraining segments. We can see that the increment of J, is small
beiore and until cluster number is equal Lo 13 and then becomes much

larger therealler. Thersiore, we say that 13 is an cpiimal selection of
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TABLE 3.1

The criterion function, increments of criterion
function and the classification results of -
different cluster number selections

Cluster Criterion Increrment Classif.

No. Tunction of c. {. 7%
16 359 - 80.1
15 374 15 81.9
14 382 18 85.5
13 416 14 81.0
12 4566 40 84.6
11 510 54 83.7
1G b65 Sl 85.5

o 632 67 81.9
8 a8 66 76.5
¥ 783 85 68.8
6 859 116 57.8
5 1069 170 64.3
4 1360 291 57.9
3 1758 388 -

2 2464 708 -
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eluster number. Also gshown in Table 3.1 are the recognition results for
different  cluster number selections. The number of clusters is
equivalent to the number of primitives. The selection of 13 clusters
gives the best recognition result. The {r &z curve which iz monotoni-
cally increaseing is shown in Figure 3.5, and the ér Sy curve which is
monotonically decreasing is shown in Figure 3.6. The P¥S curve is
shown in Figure 3.7. The maximum PFS value appears at cluster

number 13, which is identical to the selection in the previous approach.

Although there is a secondary peak al cluster number 6 in Figure
3.7, this one does mot have any significant meaning. The recognition
reslults of Table 3.1 show no indication of peak at that location. How-
ever, there does exisl a secondary peak in recogniti-on accuracy which
occurs at cluster number 10. The possible reasons for these
phenomena are that first, our selsmic zamples are not very compact
and well seperated; and second, we reassign membe}ship afier each
merging, this may aﬁ"e.ct the PFS value and recognition results. In spite
of the secondary peak, the selection of the dominant peak gives the

besl results and should be the rule to follow.

The centers of the 13 clusters and the number of members in each
cluster are shown in Table 3.2. The cluster centers are further plottied
in the two-dimensional feature plane in Figure 3.8. Portions (17 seg-
ments) of two examples, one is a typical explosion; the other is a typical
earthquake, are given in Figure 3.9, which have both criginal waveforms
and string representations. The second segments of the two waveforms
look the same but have different primitive assignment. This is because
both symbol 'e’ and ‘¢’ have very small magnitudes compared with the

olher syinbols (see Figure 3.8), Ltherefore the freguency difference can



SSB

3640 .81

3377.10

3113.99 +

2587.78

i2061.56 -

1798.45 -

153% .35

Figure 3.5

L Ll

T
8 11 l2 14 iG

-+ 4
-2

No. of clusters

ir Sp increases as the number of clusters increazes.

19



55U

86

3803.97

3400, B4

2994 .31 -

29e8.786 -

218304 +

1777.31 -

1371.586

965, 849 +

T T

Se0.117 T \
2 & 6 8 19 - 14 16

MNo. of clusiers

Figure 3.6 tr Sy decreases as the number of clusters increases.

ie



87

iYye4.10

1401.67 A

1379.24%

13956.81 1

1334.38

PFS

1311.94 1

1289, 51 +

1267.08

1244.63

-

i) T T
2 Y4 6 e 10 i2 14 16 i8

MNo. of Clusters

Figure 3.7 The PIS curve where the maximum value occurs at rumber
13.



838

TABLE 3.2

The center of the 13 clusters, the number
of members in each cluster and the primitive
symbol of each cluster.

Cluster Feature 1 Feature?2 No. of Primitive
|_No. (Z-C C)H (L. E.) Members Svmbol
! 1 -1.716192 -2.108372 67 a

2 3.336939 -1.740116 38 b
3 -.180208 ~-2.387472 43 c
4 -1.229273 087182 187 d
o 467317 1.048823 178 e
8 ARB8978 .113834 233 f
7 -.407192 1.283638 209 g
, 8 -.320940 440148 245 h
g 1.4311158 .168968 73 i
10 -.308735 -.573480 211 i
11 1.485801 -.940280 145 k
12 -1.413536 -.2h5781 116 1
i3 4765620 -, 756842 236 m
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Figure 3.9 IExamples of the seismic wavelorms and corresponding
strings. The top cne iz a typical explozion, and the botteom one is a typical
carthquake.
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not. be seen due to the resolution of the drawing. Algorithm 2.1 is
applied for string distance computatiorn, and the nearest-neighbor deci-
sion rule is used for classification. Since all the reccrds have egual
lergth and alignment, only substituiion errors are considered. The
weights for substitution errors are given in Table 3.3. The weight
between patlern primitives is defined as lhe normelized distance
between corresponding clusters. Classification resulis and computation
time of the 221 Lest samples are shown in Table 3.4 where 201 records
are correctly classified, i.e., 81% correct rate, with an average time of
0.07 sec for each record. The experiments were run on a VAX 11/780

computer using Pascal programming language.

We use the k-tail finite-state inference algorithm to infer pattern
grammars for the seismic waves. When & = 14, the inferred grammar is
exactly the same as the canonical grammar. When & < 18, some
equivalent stales will be merged, thereicre, result in fewer number of
states and productions. The number of states and productions for vari-
oug values of k is shown in Table 3.5; it is getting smallerAas I pets
smaller. Averapge parsing time of one siring and percentage of correct
classificalion for different & are given in Table 3.6. The parsing time is
shorter when &k is smaller. This is due to the smaller number of produc-
Ltions and states. On the olher hand, the correct perenlage is also
smaller when & is smalier. This is because derived gramimars generale
strings which do not belong to the posilive sample set. Another reason
of worse performance is thiat in our case only those states with longesi
tails are merged. In lerms of lransilion diagram, this means only Lhose
states which are close to the initial state are merged. Because the k-

tails of those states are empty, and only are they k-eguivalent. This is
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TABLE 3.3

Weights for substitution error

' m | 0.49

.25

a b C d 1= i g h i j k 1 m

a 0 0.85 0.29 (.58 0.72 0.58 0.868 0.55 0.73 0.39 D.64 0.35 0.49
b | 0950 0.67 1.00 0.75 0.65 0.91 0.80 0.51 0.72 0.38 0.94 0.57
C 0.29 D.67 O 0.67 0.66 0.49 0.89 0.53 0.57 0.34 0.42 0.48 0.33
d 0.59 1.00 0.66 0 0.32 0.35 0.16 0.20 0.52 0.34 0.63 0.24 0.46
e 0.72 0.75 0.668 032 0 0.18 C.17 0.18 0.25 0.34 0.42 0.43 0.34
b f 0.58 0.85 0.48 0.35 0.18 0 0.27 G.15 0.18 0.19 0.28 0.35 0.16
e 0.68 0.91 0.69 0.18 0.17 0.27 0 0.16 0.40 0.35 0.556 0.35 0.42
h 7| 0.55 0.80 0.59 0.20 0.19 £.15 0.16 0 0.33 0.12 0.43 0.24 0.27
1 0.73 0.51 0.57 052 0.25 0.18 0.40.0.33 0 0.38 0.21 0.54 0.25
] 0.39 0.72 0.34 0.34 0.34 0.19 0.35 0,18 036 0 0.34 0.22 0.15
k 0.64 0.38 0.42 0.63 0.42 0.28 0.55 0.43 0.21 0.34 0 0.56 0.19
1 0.35 0.94 0.46 0.24 6.43 0.35 0.35 0.24 0.54 0.22 0.56 © .37

0.57 0.33 0.46 0.34 0.16 0.42 0.27 0.15 0.12 0.37 O
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TABELE 3.4

Classification results using
nearest-neighbor decision rule

! Average time for Percentage of
one string (sec) correclt classification
91.0 %
0.07 201 records are correctly

classified cut of 221
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TABLE 3.5

The number of nonterminals, productions and negative samples
accepted by the inferred grammars. The inference algorithm
iz k-tail algorithm with different values of k.

Explosion Farthquake No. of
K | negative
Nonterm. Product. | Nonterm. Product. samples
No, No, No. Ne. accepted
20 681 720 939 998 0
19 681 720 939 996 a
. 18 669 720 | 28 8998 .0
17 841 692 800 970 0
186 604 556 856 Q26 0
15 566 618 804 874 0
14 525 a7y 747 817 0
13 484 536 688 758 0
12 443 495 629 B899 0
11 402 454 570 640 0
8 - 320 72 452 Y 0
7 238 280 334 404 G
5 158 208 216 288 0
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TABLE 3.6

The average parsing time and percentage of correct
classification of the error-correcting parsers with
different values of k.

k Average parsng timme  Percentage of correct
for'one string {sec) classification (%)
20 2.55 91.0
18 z2.05 21.0
18 2.72 B4.2
17 2.67 81.0
18 2.54 73.8
15 .33 72.8
14 2.15 71.0
13 2.10 89,7
12 2.03 8G.7
11 1.83 71.0
9 1.4 68.2
7 1.15 64.8
5 0.77 -
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the consequence when all the training samples have equal length. Nar-
mally, the merged states should distribute uniformly between initial
and final states. One final note about Table 3.6 is that the decrease of
parsing time iz true for any cases, but the decrease of correct percen-
tage may nol be true for other cases because the experimental resulls

of cur limited data setl are neliher representaiive nor conclusive.

We alzo try the tail-clustering finite-state inferene algorithm. Since
there are no two states which have common sentences, therefore no
merge occurs. The productions and nonterminals are the same as
those of k-lail algorithm with & = 20. Again, this is due 1o the charac-
teristics of this specific data set, and should not be interpreted against
Lhe algorithm itsell. We can modify lhe condition for merge so thét two
states are merged when the distance beiween some of their member
senlences iz less than a thresheld. This will guarantee a reduction of

grammar size, but again the recognition results may be unpredictable.

3.6 An Application of Synlactic Seismic
Hecognition to Damage Assesment

Damage assesment of a structure afler strong earthquake is a very
complex problem (Yao, 1979}, Ii is usually performed by a structural
engineering expert who makes his or her judgement by personal experi-
ence and professional knowledge. The key informations inciude charac-
terislics of the structure, observable damages, seismic (vibratiom)
recordings and nondestructive testing results. Ishizuka et al. (1981)
have proposed a rule-based dameage assesmeni system which employs

the fuzzy set theory and the production system with certainly factor to
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infer the damage state. Its performance relies on proper assignment of
membership function and design of inference rules. The pattern recog-
nition techniques can also be applied to damage assesmenti, which is
based on the analysis of seismic recordings. lts advantages are easy to

implement and contains ne uncertainty factor.

Seismic recordings, i.e., acceleration and/or displacement record-
ings, are the only records which show the detailed response of the
gstructure during a strong earthguake. It is quantilalive, complete and
objecilive. Therefore, if we want to apply pattern recogniticn techniques
to damage assesment, the seismic recordings are very gocd candidates.
A structure without damage will behave stiffer than the one with dam-
age. Therefore from the seismic recording, preferably displacement
recording for the reaéon of mo high frequency noise, we can tcil the

relative degree of damage.

Since gach building is different in structure, we have to make
assesment individually. One possible solution is to compare the top
level displacement with the basement displacement. The basement dis‘—
placement represents the ground motion, i.e., the inpul 1o the building.
The deformation distance between these iwo waveforms will be small if
the building iz dameged; olherwise, the deformatlion distance will be
large. Unforlunately good training samples are unavailable sc far. The
redl recordings are not only insufficient bul also unclassified. However,
there are a few experimenlal dala from the laboralory which can he

used as a slarting point.

Figure 3.10 shows the top level displacernent and bascment
acceleration (at the botiom) during a simulated earthquake test on the

model of a ten-story reinforced concrete building. There are totally
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Runl

Figure 3.10 Top level displacement and basement acceleration (bottom).
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zseven test runs. It is obvious from Figure 3.10 that the accleration
wavelform is much more complicated than the displacement waveform.
Since they are convertible, we chose displacement seizmogram for

comparisoer.

Since only the basement acclerations are available, we have to
compute displacements using nurmerical iniegration. The basement
displacements of the seven runs are all lhe same as shown in Figure
3.11, only the magnitudes are inlensified frem run to run so as to
aszure moere damage after more runs, The top level digplacernents are
shown in Figure 3.12. It is not diffucult ito see that the itop level dis-
placement of run seven is more similar in figuration to basement dis-
placement than the top level displacement of run one is. This shows
that the building structure becomes softer due ito the cracks, breaks
and other implicit damages. Some potential damages may not be seen
from ihe appearence of the building, bul they will be shown on the
seismic recording since it reflects the actual structure response. This
is one of the reasons why the analysis of seismic recording is irnportant.
The cther reason is that we can compute the similarity, or delormation
distance on the other hand, between the wavelorms which can be

Turther used in a knowledge-hagzed dameage assesment system.

Computation of the deformation distance between the seismic
waveforms arc based on the modified dynamic time warping distance in
Seciion 2.2, Comparing Figure 2.6 with Figure 3.12 we will find Lthat the
waveforms in Figure 2.6 are actually taken from those in Figure 3.12.
The slope constraints and loeal distance functions are shown in Figure

3.13.
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Figure 3.11 Basement displacement of the seven test runs.
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Figure 3. 12 Top level displacement of the seven tesl TUns.
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gtring distance computation in damage assesment application.



103

The selection of string representation and the selection of compu-
tational algorithm for string deformation distance are correlated. We
observed from the waveforms in Figure 3.12 that several local peaks are
deformed and merge into a large peak. The.refore, we consider each
peak as a componernt, i.e., primitive or symbol, of string representation.
The next problem is how to describe each peak. Of course, shape and
geomelric properlies can describe a peak, they are lar complicated
than what is needed. Besides, it ig difficult to implement these features
in distance computation. The area of each pcak contains the informa-
tions about the duration and amplitude of the pezk. Since different
combinalions of duration and amplitude may have same arca, area
alone is ambiguous. But we don’'l need ic worry about this problem
since we are dealing with recordings from the same structure, such
randomly contrast shapes will not occur. We developed a special string
defcrmation distance computation for this application, which is a
meodified dynamic time wérping distance as shown in Section 2.2.1. The
type of this deformation distance is ordinal, ie., rank orders have
meaning, and inlerval, i.e., seperation between numbers is meaningful.
However, the lower and upper bounds of this distance is open, i.e., the
distance is in the interval (0, M) where ¥ is the summaticn of the tatal
area of the two strings. For example, il z = a,0,...a,, andy = b,b,...b,

then

Fach =eismic waveform =z is converied into a siring of real
numbers, r = oqa5..a,, ¢; > 0, such that Lthe 1th component of the

string, @, represents the area of the ith peak. The definition of the
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peak here is the segment between iwo adjacent zero-crossing points.
Therefore one peak may contain many local maxima and minima. It -
often happens that small ripples and zero-crossings may exist due to
the noise. These noisy ripples can be removed by setting a threshold 7.
Only those peaks whose areas are larger than threshold 7 are cdn—
sidered as effective components. The waveforms are scanned from both
side unlil a peak iarger than 7 is reached on each direction. The left-
most peak larger than T will be the first component of the siring and
the rightmost peak larger than 7 will be the lasi component of the
string. This process will elitninate the neisy ripple belore and after the
gignal. The noisy ripples within the signal are combined with the
nearest peak which is greatér than 7. Therefore, only the significat
peaks are converted into components of the string. The algorithm for
computing string deformation distance is similar to that of Sakoe and
Chiba’'s, only the slope constraints and local distance functions are

different.

The deformation distance between the basement displacement and
the top level displacement of each run is plotied in Figure 3.14. Since
each run of the test adds some damage to the siructure, the degree of
damege is proportional lo the number of tests. Greater damage makes
the structure softer, consequently the deformation distance between
the basement waveform and top level waveform is smaller. It can be
scen from Figure 3.14 Lhat the deformation distance is getting smaller
after more runs of tests. Figure 3.14 also shows that large damage
ccours during the first three runs since the differences of the deforma-

tion distance, i.e., the slope, are larger than those of the later runs.



1056

171.84%0

155,766 1

139.592

123.619 4

107.545 1

Distance

g1 . 4712

75,3975

59,3237 1

43.2300

-
-
~
=

Run

Figure 3.14 Distance between the basement displacement wavelorm and
the tow level displacement waveform of each run.
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I order to normalize the length of the strings come irom different
event, the deformation distance in Figure 3.14 can be divided by the
length of the basement wavelorm so that the deformation distance of
different event can be compared. The domain of damage can be divided
into several intervals, for example, negligible, slight, moderate, sgvere,
etc. The deformation distance is used for classificetion of damage
degree. The classgification depends on which calegory the delormation
distance of one event falls into. Olher informeations such as human
observations and system identification results are usuful auxilary infor-
mations, for example, to resolve the conflict when the distance falls at
the boundary. But systern identification is & very complicated matter,
it is mainly for the study of system characteristics. Visual informations

are easy to obiain and are helpful in resolving conflict and armbiguity.

The proposed system dees nol have ihe opportunily to test real
data because of the lack of data. The research in damage assesment is
only in its infancy. No organization or individual has been working on
Lhe collection and classification of the real daia. We must understand
Lhat appropriate samples for damage assesment are rather difficuli to
abtain. The structure must be equipped with recording devices, subject
to gtrong earthquake and bear certain degree of damage. Therefore,
the dermonstration of the propozed meihod is based on éxperimental
data only. [t attempts to show the feazibilily instead of practicability of
the proposed method.

The segmentation of waveform employs some structural {(contex-
tual) information. Peak extraction needs structural information,
merge of small peaks wilh the nearest large peak also needs structural

information. In our demenstration, only the top level recordings are
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used for comparigon. Intermediate levels are similar tec top level but

with smallar amplitude.

3.7 Conclusion

In this chapter, syntactic pattern recognition has been applied io
the discrimination of earthqual;e and nuclear explosion baged on
seismic waveforms. The wavelorms are segmented by a fixed length. A
clustering procedure classifies these segments and a symbol is assigned
to sach eluster. Finite-stale grammars are inferred irom the training
set using k-tail inference algorithm. An errcr-correcting parser and a
nearesi-neighbor rule are compared with respect to their performance
in recognition speed and accuracy. Althcugh the clagsification results
seem Lo be encouraging, there is plenty of room for improvement. The
selection of a set of distinguishing features is the most important part
in practical patiern recognition applications. The difficuliy increases
when the classes are somewhat overlapped. Most of the features which
are effective in decision-theoretic approach can also be used in the syn-
tactic approach for primitive recognition. The number of fecatures
selected should be kept as small as possible {or the sake of computa-

tional efTiciency.

[n string distance computalion, the assignment of weighis for
transformation errors is a difficult subject especially when insertiomn,
deletion and substitution are all included. The seperation between clus-
ters can be used ag the substitution weights between corresponding
prirmitives as we did in our experiment. ‘The distance from a cluster

center to the origin can be used as Lhe inserlion and /or deletion weight
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of thatl primitive. Heuristic information may be necessary and helpful

in most cases,

Synlactic approach can be modified to deal with stochastic models
if the probabilities associated with pattern ciasses and training samples
can be easily determined. In this case, there will be stochastic gram-
mar, stochastic language and maximum-likelihood | parsing (see Fu,
1982). We did not apply the stochastic approach because the class and
string probabilities are unavailable. This must be done from the
analysis of the previous records. If the probabilities can be determined
precisely, which can be made to a ceriain degree, the class-overlap
problem can be solved. Syntaclic appreach can be made more flexible
by adding numerical infermation (attribute) to the primitives.
Meanwhile, it can also make the patlern grammar less complex. We will

discuss an atiributed seismic grammar and its parsing in Chapter IV.

At the present stage, our experiments show that the nearest-
neighbor decigsion rule is faster than the error-correcting parsing.
Although the speed of error-correcting parsing depends on the struc-
ture of the grammar, the nearesi-neighbor rule is faster in general.
VLS! architectures have been recently applied to both string matehing
and recognition (by parsing), which will be discussed in Chapter V.
Decision between Simplé, faéter classification and sophisticated, slower

syntax analysis should be made according 1o application requirements.

syntactic pattern recogniticn has also been applied to damage
assesment where Lhe seismic recordings are the physical measure-
ments. Strings of various length are constructed from the seismic
waveforms. A modified dynamic time warping is developed for comput-

ing the string distance. The segmenlation of waveform in syntactic
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pattern recognilion usually uses shape information. Tre shape informa-
tion appears to be nol important for seismic signal. Besideg, it does not
have much discrimination capability. The envelogps of the signal
appears to be very good features in some cases, for example, consider-
ing Figure 1.2, but not so in other cases, for example, when IMigure 1.3
and 1.4 are compared with Figure 1.2, The application to damage asses-
ment shows that special algorithm for string distance computation
must be developed for some applications when the general slring dis-

tances seem unable to solve the problem.
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CHAPTER IV

INFERENCE AND PARSING OF ATTRIBUTED CRAMMAR
I'OR SEISKMIC SIGNAL RECOGNITION

4.1 Introduction

Attributed grammears were first formulated by Knuth (1988) where
"meaning"” can be assigned to a string in a context-‘ree language by
defining "attributes” of the symbols in a derivation itree for thal string.
The attributes are defined by functions associated with each production
in the grammar. Although lhe idea of attribuied grémmar is due to
Irons (see Knuth, 1968), Knuth included inherited attributes as well as
synthesized attributes which often leads to significant simplification.
While attributed grammars were originally proposed Jor programming
languages, they have been applied to patlern recognilion recently and
increasingly. Tang and Huang (1979) used attributed grammars for
image understanding. You and Fu (1878, 1979), Tsai and Fu (1980} and
Tal and Fu (1981) have applied atlributed grammars Lo shape recogni-
ticn and transformation. Shi and Fu (1982) propesed an efficient
error-correcting parser for attributed tree grammars where semantic
information are associated wilh each terminal but no semantic rule is
asscciatled wilh the production. Leung (1982) alsc proposed an error-
correcting parser for attributed grammars with applications to charac-

Ler recognition. Knuth's formal semantics can also be applied to
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patterns described by picture description language (PDL) expressions

{Fu, 1882).

The advantages of using atiributed grammars for patiern recogni-
tion are twéfold. The inclusion of semantic information increases the
flexibility in pattern description; in the meantime, it reduces the gyn-
taclic complexity of the pattern grammar. We may notice that all the
above applications are essentially to pictorial shape recognition where
length and angle are useful semantic informations. This same set of |
atiributes can also be used in waveform shape recognition, e.g., ECG
analysis, where shape information is very important in recognition.
However, they can not be applied te the signals, e.g., EEG, seismic and
speech, where shape informations are not particularly importani. The
segmentation of these signals usually corresponds to a short, fixed- or
Variable;iength time period. In order nol to overlook any transition,
the time perieds are usuaii'y kept relatively short. Therefore, it is very
common that lthe same primitive may last for several periecds. This
often makes the paitern strings and ihe inferred grammars 'unnecew
sarilty complicated. The numbers of productlions and nonterminal sym-
bols are usually very large as we can see from the experimental resuilts
in Section 3.5. Instead of keeping track of all.these identical primitives,
we can use one syntaclic symbol ic represent the type of the primitive
with an attribute to indicate the length of the primitive. This leads to
the application of length attribute to seismic and other similar digital
signal analysis.

A pattern primitive @ can be represented by a 2-tuple

a = (s, =)



112

where s is a syntactic symbol denoting the primitive structure of e,
and z = (z1,%a,....%y ), M = 0, is an m-dimensional semantic vector with
each z;, 7 = 1, 2, ..., m, denctling a nuwmerical measurcment. A pattern
string can be represented by ajiasas..0,, where a; = (s;, L), {; is the
length of primitive a;, 1<i=k. For a fixed-length segimentation, {; = ¢
for all 4, where ¢ is a constant. For a variable-length segmentation, {;
may or may nol cqual lo {; when <+ # 7. In our case, [; = ¢ for 1=4=20,
‘where ¢ = 80 points. For simiplicity, with constant le.ngth in mind, we
can eliminate the semantic part. For example, a patiern siring may

look like

cacdgggeggggyggegeey

where these are syntaclic symbols. It can be further simplified by

merging identical symbols, thereiore Lthe above siring becomes
adgegegeg
313171121

where the numbers are numbers of unit lengths; gach unit length con-
tains 80 points in our case. This idea shows some storage improvement
i slring representation, and it will show significant improvernent in
gramimatical inference as we will gsee in the next sectlion. Although we
used finite-state grammears to describe the seismie patterns in Chapter
I[II, we will use attributed cfg’'s here. This is because atiribuled isg’s do
not have much reduction in the number of productions and nontermi-
nals. Only attributed cfg’s can drastically reduce the produeclion
number, therefore make the recognition more efficient. An error-
correcting parser for attributed context-iree grammaear is given in Sec-
tion 4.3. Stochastic attribuled grammar and parsing will be discussed

int Section 4.4.
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4.2 Inference of Attributed Grammear
for Seismic Signal Reccgnition

An attributed context-free grammar is a 4-tuple G = (Vy, ¥p, P, S5)
where each production rule contains two parts, one is a syntactic rule,
the other is a semantic rule (Knuth, 1868). Each symbol X € (Vy U -VT)
is associated with a finite set of attributes 4(X); and A(X) is partitioned
inlo two disjoint sets, the synthesized attribute set 4y(X) and the inher-

ited attributed set 4,(X). The syntactic rule has the following form

Xeo = Xp1Xen - Xin,,

where k means the kth production. The sematic rule maps values of
certaln attributes of Xy, Xy, ... Xgn, into the value of some atiribute of
Xgj- The evaluation of synthesized atiributes is based on the attributes
of the descendenis of the nonterminal symbol, therefore it is a
bottom-up fashion in the tree structure. On the conirary; the evalua-
Lion of ihherited attributed is based on the attributes of the ancestors,

therefore it is a top-down fashion in the tree structure.

Iz Chapter III, we have chosen a set of 41 explosic seismic records
as training samples. Each record has been converted nto a string of 20
primitives. If we use the k-tazil algorithm to infer a finite-staie gram-
mar lor the patiern class with a value of & = 20, the total number of
nroductions will be 720 and the number of nonterminal symbols Wiil be
681, In order to reduce the size of the grammar we use one length
attribute, i.e., the number of unit lengths. The input strings are attri-
buted strings, and the production rule of the grammer has a syntactic
pari as well as a semantic part which contains both synthesized and

inherited attribules. The type of grammar is also upgraded ints =
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context-free grammar, due to the type of S-productions. Tai and Fu
(1982) used the length attribute of the strings in the inference of a
class of context-free programmed grammar (cfpg). However, the
length attribute is only fof the construction of the con:irol diagram, i.e.,
a graphical representation of the success and failure go-to fields. The
inferred cfpg is nonattributed, and the parsing was nost discussed. We
uze length atiribute in both inference and parsing. The inferred gram-
mars are atiributed grammars, and the aliribute plays an important
role in parsing. 7

To explain our inference procedure, let us first consider one input

siring

ceandgygeggyggugggegeeg
where each primitive has a length atiribute I which means | unit

leagth. First, it will be converted inta the following SLring by merging
identical primitives. '

acdgegegeg

313171121
Theoretically, the length attribute is continuous. But in digital signal
processing, the waveforms represenesented by a finite number of sam-
plad points, therefore, lhe lenglh is always discrete in practical cases.
In our case, the length attribute is the number of unit lengihs. It is
discrete and is a positive integer. Then we can infer thie following attri-

buled grammar

Syntactic rules Semantic rules

(1) S-ADGEGREGEG L(A1)=3 L(D)=1,L(G1)=3,
' I(EN=1,0(G2)=7,L(E2)=1,



(2)
(2)

A-anA
d-a
D-dD
D-d
E-ell
E e
G-gG
G g
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L(G=1,L(E3)=R,L(G4)=1
LAD=1(a)+1{42)
t{A)=1l(a)
HDUV=L(d)+L(D2)
{=i(d)
LED=L(e)+L{E2)
HE)=L(e)

- UGH=L(g)+(GR)

H{G)=l(g)

where L denocotles inherited lengih atiribute, ! denotes synthesized

length attribute and the number right after the nonterminal symbol is

~used to distinguish between occurrences of like nonterminals. It is

noted thai the inherited attributed L does not pass down to the descen-

dents as it usually does;, rather it is used to maintain the semantic

information of the training string and as a reference for comparison in

parsing. For simplicity we let {{a) = 1 for all @ € V;-. When we have

anather input string

cacdehithffffffhmfffs

we convert it intao

ccdehihfhm]

21111116114

and add Lo the grammar the following productions
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Syntactic rules Semantic Tules

S+ ACDEHIHFHMF  L(4)=2.L(C)=1,L(D)=1,
LEY=1,L(HD=1,L(1)=1,
L(H2)=1,L(F1)=6,L(H3)=1,
L(M)=1,L(F2)=4

CocC L(CV)=L(e)+1(C2)
C-e (Y=l (c)

H-hH L(H1)=L(R)+L{H2)
H-h L(HY=1(R)

I3l LTU)=L(i)+L{I2)
T4 {)=L{x)

FsfF L O)=L(F )+ (72)
rof LY=L )

We may notice that after reading a few input strings there will be no
need to add those C-o(C, C-¢ productions. We bnly need to add one
oroduction for each input string, ie., ithe first produciicn in the above
example. In fact, there are 2m +n produclions for a set of mi training
strings, where m is the number of nonterminal symbols. We now for-
mulate the inference algorithm of atiributed grammars which use

length attribute.

Algorithm 4.1 Inference of Attributed Seismic Grammar
Using A Length Atiribute
Input, A zet of training strings where each string has a
syntactic symbol and a length attribuie,
Output: An Altributed Grammar.
Method.
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(1) For each inpﬁt string, merge identical primitives; the length is
the summation of the individual lengths.

(2} F'or each input string a,asas...a;, add to the grammar the pro-
duction 5-+414243...4; where 4; is the nonterminal corresponding to
terminal a;; and the semantic rule L(4;) = {;, i<i=<k, where I; is the
length attribute of primitive o;.

(3) Tor each primitive r, add to the grammar the production
Awad, 1{4) = l{a) +1(4;) and A-a, {{4) = {{a), if they are not already
existed.

(4) The set of terminals includes all the different primitives; the set
of nonterminal includes all the nonterminal symbols in Step (2).

A fiow chart of this inference algorithro is given in Figure 4.1. This-
inferred grammar will generale excessive sirings if we apply syntactic
rules only. However, we can use semantic rules (inherited attributes)

to regtrict the grammar so that no excessive strings are generated.

The inferred gramrmar from the 41 iraining strings is shown in the

~ following.
Syntactic rules - Semantic rules

(1) S>ACAGHFIJMIFMEKMJIM (1,1,1,1,1,1,1,2,1,1,1,2,1,1,3,1)
(2)  S-MKLGIFDIFHFMKILIB (1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,1,2)
(3) S>LEIFJLFEBFHDJFKJL (3,2,1,1,1,1,1,1.1,1,1,2,1.1,1, 1)
{43 S LJLEFKSJHFIMIMIFT (1,1,1,1,1,2,1,1,3,1,1,1,1,1,1,2)
( 5) S LJLGRHFHFHIFMIFLEM (1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1)
(8) S-ACDEHIHFHMI (2,1.1,1,1,1,1,6,1,1,4)
( 7) S ALGIMLMKJMLMSLIL (1,2,1,2,1,1,1,1,1,1,3,1,1,1,1,13}

(8) S > LMLGEMKIKMETEKMIM (1,1,1,1,1,1,2,1,1,1,1,1,1,1,3,2)
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START

i

convert nonattributed
input strings into
attributed strings

infer production rules
from the input strings

¥

infer production rules
from the primitives

Y

construct the sets of
nonterminal and
terminal symbols

L 4

( sTop )

Figure 4.1 A flow chart of the inference algorithm (Algerithm 4.1).



S~ CKDIFKIMKMIMIM

S DLDHJMLMI FLIEKL

S > CACEIFKMKIMEM

S+ LMGFKFIFMJIM

S +ABCGIMKMKBKJM

S+ CEHIJFMFKIMFMFJ
S > KMEEFMFIIKMIKIKH
S LJEHDFLIMFILIF]
8> JMGFHMFHFMHLIIM
S BIEFKMKMKMKMKMK
S > BCBGHEFHFJF

S > IKEIHIFIHFIHFLF

S DFHFDFLIF

S ACEHFJMEKFIMKM

S - JLGHDHLMJL

S+ KMBEHFMKBKM

S KBKGHMFMFKEMJ

S LMIEIHFHJIKMLKLK
S+ ADGEGEGEG

S > MACGHFJMFIMIM'

S JMGEFKIMKIKMS

S+ LDGEDHDLDLDLD

S~ JHVEIEHIHIFIFID]

S HIEIEIFHDHDEBFHF
S GDEGEIEGIGEDGDE

S > KBHDGHDHGDRGDGID
S > ACAGEFIFKFIFHTM

(1,2,1,1,4,1,1,1,1,1,2,2,1,1)
(2,1,1,2,1,3,1,1,1,1,1,1,2,2)
(1,1,1,1,1,1,1,1,3,2,5,1,1)
(2,1,1,1,1,1,2,3,3,4,1)
(1,1,1,1,1,4,1,2,2,2,1,1,8)
(3,1,1,1,1,1,2,2,1,1,2,1,1,1,1)
(4,1,1,1,2,1,1,1,1,1,1,1,3,1,1,2)
(2,1,2,1,1,1,2,2,1,1,1,1,1,2,1)
(1,2,2,2,1,1,1,2,1,2,1,1,1,1,1}
(2,1,2,1,1,1,2,1,1,5,1,1,1,1,1)
(1,1,1,2,3,1,1,7,1,1,1)
(1,2,1,1,1,1,2,1,1,4,1,1,1,1,1)
(6,2,1,1,1,2,3,2,2)
(1,2,1,2,3,1,3,1,1,1,2,1,1)
(1,2,1,1,1,1,7,1,4,1)
(1,1,1,2,1,1,1,4,2,5,1)
(1,1,1,1,1,1,2,2,2,1,1,5,1)
(1,2,1,1,1,1,1,1,1,1,1,1,8,1,8,1)
(3,1;3,1,7,1,1,2,1)
(1,1,1,1,1,1,1,3,1,1,2,2,4)
(2,1,1,1,1,2,2,5,1,1,1,1,1)
(1,2,1,1,1,1.2,1,1,1,1,2,5)
(1,1,1,2,1,1,1,1,1,2,1,2,1,2,1,1)
(1,2,2,1,1,2,1,1,1,1,1,1,1,2,1,1)
(1,1,1,1,2,1,5,1,1,1,1,1,1,1,1)
(2,1,1,1,4,1,1,1,4,1,1,2,1,1,1)
(1,1,1,1,1,5,1,2,1,1,3,1,1,1,1)
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S LILGIFLFMJFLFMJMJF  (1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1)
S DFDHDEDLDF (4,1,2,1,2,4,1,1,3,1)
S->HJILFEFGEGFIFE (1,1,1,1,1,1,1,5,2,1,1,1,2,1)
S-*FJILFHGEIEHEGD (1,1,1,1,2,1,2,2,1,1,2,1,2,2)
S-+BIHEGDGHGH G- -~ (3,1,3,2,3,1,1,2,1,1,2)

S~ CKCFHDGHGLHEDH (1,1,1,2,1,1,1,1,6,1,2,1,1)
A=A L(AD)=t{a)+L(4A2)

Ao L(A)=L{a)

B-b8 LB D)=L{&)}+1(52)

B-b ' L(B)=L{b)

C-cC H{C1)=L{c)+L{C2)

C-c . H{C)=L(c)

D-dD LD D) =L(d)+L{D2)

D-d L{D)=1{d)

E-ell : LHE1D=l{e)+Ll(F?2)

F-e L(EY=L(e)

FofF LF D=L )+L(F2)

=7 LF)=L(f)

GgG LG =L{g)+L(G2)

G-g L(G)=l(g)

H-hH ' LHD=LR)+L(H)

H h L{HY=L(h)

Il L(I1)=L(5)+1(12)

T4 : HIy=L(1)

J g D=L +L(J2)

J =7 L(J)=L(7)

K=K LKD) =l (2 + (KR
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(63) K-k L{E)=L(k)

(64)  LolL L D)=L()+L(L2)
(65) Lol L()=L(1)

(66) M-mil LM 1) =t (m ) +L (M 2)
(67) M-m L(M)=L{m)

where (1,1,1,1,1,1,1,2,1,1,1,2,1,1,3,1) is a shorthand for the inherited
attributes whose tneaning should be clearly undersiood {rom the previ-

ous examples.

This atiribuied grammar has B7 productions, a more than 80%
reduction from the nonattributed grammar which requires 720 produe-
tions for 91% correct recognition. There are only 13 nonterminal sym-
bols in this atiributed grammar, which is equal Lo the number of termi-
nal symbols. The nonattributed grammar has §81 nonterminals. The
number‘ of nmonterminal symbols will not increase in this attribﬁted
grammar and the number of preductions will increas= at most by one
for each additional input string. We can alsc expand the inherited attri-
bute into a set of numbers. For example, we may let L{4) = {8, 3, 4,

which means the lengih of nonterminal symbal 4 can be 8, 3 or 4. This

will preatly increase the flexibility in some applications.

4.3 Error-Correcting Parsing of
Attributed Seismic Grammar

A modified Farley's parsing algorithm is used for our attributed
conlext-free seismic grammars. We assume that substiitution, insertion
and deletion of terminal symbols are allowed, but ne substitution,

ingertion or deletion of nonterminal symboel is permizied. This means
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the length of the local segment is variable, even loeal aocise is telerable,
but the whole local segment can not be deleted entirely. The local seg-
ment means a segment of identical terminal symbols. The ilemn of Lhis
parsing algorithm has the form [d-a - 8, 1, &, i] where » is a counter
fer local syntaclic deformation which acoumulates the lotal cost of sub-
stitution of terminal zymbels. £ is used for two different purposes.
When 4 # 5, £is used as synthesized attribule of 4. On the other hand,
if 4 = 5 then £ is used as a counter for semantic d=formation which
records the total length variation of nonterminal symbols, and 1 is the
seme pointer as a conventional Earley’s parser. A parsing algorithm for
expanded attributed grammar using length attribule has been pro-
posed bjf Leung (19B2). As usual, we don't necd an expanded grarmmar.
All the deformations are exarnined during the parsing while errors are
recorded in appropriate counters. The parsing algorithm is shown in

the foliowing.

Algorithm 4.2 Minimum-Distance Error-Correctling Parsing Algorithm

for Attributed Conlexi-Free Seismic Grammar, .

Imput: An attributed scismic grammar G = (Vy, Ve, P,.S) and an

input string ¥ = &6,bs...6,, in V7.

Output; The parse lists Ig 714,....0p, and decision whether y is
accepted by the grammar G together with the syntacic and semantic

deformation distances.
Method:
(1) Setj = 0. Add [S> - «, 0,0, 0] to J; if §-ais a production in P.

(2) Repeat step (3) and (4) until no new items can be added to J;.
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(N [A»a-FA n, £1] is in I;,and Z~7 is a production in 7, then
add item [~ -9, 0,0, 7] to I;.

(4) (a) If [A»a -, 7g &24] is in J; and [4-a - 4,7y, £1.k] is in I,
then add an item [4-ad -, ny+ne, &+Ek] to I;. (There is no need to
" check collision here, since there will be no cther item of the form
[4-ad4 - n, Ek]in J;.)

(b} If [A»o-, My £pt] in {; and [S$-28- 47, ny, £1,k] is in [, then
add an item [S-84 - ¥ ny+na, §+(L{A)~E&) k] to I;, where L{4) is the
inherited attributed of the nonterminal symbql A. |

() If j=m, go to step (7), otherwise j=j+1.

(8) For each itermn [A~ - af. n, £1] in [;-; add [d~a - 8, n+5(a,b;},
£+1(d;), 1] to I;, where I (b;) is the synthesized attribute of 6;. For sim-
plicity, we may let I{b;) = 1 for all j. S(q,bj) is substitution cost, and
S(a,b;) = 0 when a = b;. Go to (B).

(7) I item [S~a-,n, & 0] is in I,,, then siring ¥ is accepted by
grammar & where 7 is the syntactic deicrmation distance and £ is the
semantic deformation distance; otherwisze, string v is not accepted by
grammar &. Hxit.

A flow charl of this parsing algorithm is given inl Figure 4.2. It is
noted that (1) The parsé extraction is straighticrward once the first S-
production iz identified, therefore we do nol include the parse extrac-
tion algorithm. This is obvious. Since we use attribules, the syntactic
part will be much simpler than that of a nonattributed (context-free)
srammar. (2) Deformation of any type on terminal symbols will be
accepted. For‘a simple example, the String. ’aaadgggegggggggegeeg'

will be accepled by our seismic grammar with no error; the string
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_START

j=0. Add [S = ,0,0,0]
oL ifS—-aisa
produetion in P

l

If A - o B 6 i]isin L,
and B — ~is a production
in P then add |B — - 4.0,0,jj
to [j

!

M [A ~ o yaail is in I; and

(A — a-An. £ k] Isin 1,

then add [A — aA- g, 49,5, + 350
to 1,

:

M A — oo ps,Lqi] is In 1, and

[S — AAvym, €.k is in T,

then add [S — BA-vn, +yo,&, HLIA)-£) K]
te )

If[S — 3,0 isinl,,
then string y is aceepted by
G, y is syntactic and £ is
semantic deformation distances

j=j+1

( sToP ) !

For each [A — +adn.£.i]

in 1,_; and

[A — a*f+5(a.by), £+ b, ) ]
to I;

Figure 4.2 A flow chart of the parsing algorithm (Algorithm 4.2).
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’

'aadgygeg...” will be accepted with semantic error of cne unit length on
‘4", and the string 'ebadgggeg...’ will also be accepied with a syntactic

substitution error S{a.b).

The time complexity of Algorithm 4.2 is O(n®) where n is the length
of the input string, since each item list /; takes lime O(j) to complete.
However, since we only considered substitution error in the seismic
recognition problem in Section 3.5, a simplified version of Algorithm
4.2, ie., Algorithm 4.4, can be applied. This special parser is faster
than Algorithm 3.2. The experimental results are given in Section 4.5.
The question about how much advanlage we can take by using attri-
butes depends on the selection and characters of the training samples.
H the training samples are very much alike, then there are great possi-
bililies thal less syntactic rules are needed, instead, attributes will be
used to distinguish between different patterns. An atiributed grammar
can also he congtructed manually based on the knowledge about pat-

tern sources. This may sometimes be a great advantage.

4.4 Stochastic Attributed Grammar
and Parsing for Seismic fAnalysis

Although we do not know the probability distribution of the iraining
samples al this moment, it is possible to estimate it if more samples
are available. [f the probability distribution of the training samples is
knowrn, then we can infer the production probability using the algo-
rithm described in Lee and Fu (1872b). Therefore, we also include a
parsing algorithm for stechastic atiributed seismic grammar in this

scetionn. A stochastic version of the atiributed grammar shown in
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Seection 4.2 can be formulated as follows. First, a probability is assecci-
atzd with each production. Secend, a probability distribution is associ-
atzd with all the possible attributes. For example, if originally L(4) =
{3, 4, 5!, now it may become L(4) = {(3, 0.25), (4, 0.5), (5, 0.25)}¢, where
0.20 = PrabiL(A)=34 Finally, probabilitics instead cf costs are used Lo
characterize substilution transformations. The probability associated
with each S-production will be the probability of occurrence of the
training string which contributes to that preduction.

The parsing algorithm of stochaslic atlributed seismic grammar is
very similar to Algorithm 4.2 except for the [ollowing changes. First, n
is now Lhe probability of syntactic substitution deformeation. Second, ¢

is still used as a synthesized attribute of A when A £ .5, however, when

4 = 5, £ will be the probability of semantic delermations.

Algorithm 4.3 Error-Correcting Parging Algerithm for

Stochastic Attributed Seismic Grammar

Mmput: An attributed seismic grammar & = (Vy. Ve, F,5) and an

input string ¥y = b1bo.. by, in Vo

Qutput: The parse lists [y, 4.4, and decision whether ¥y is
accepled by the grammar G together with the syntartic and semantic

" deformation probabilities.

Method.
(1)Setj =0 . Add [S» - a, 1,1, 0] toJ; il S»«isaproduction in P.
(2) Repeat step (3) and (4) until no new items can be added to J;.

(3)If {A=a - Bf, 7, &i]is in [;,and B~vy iz a production in /7, then
add item [B~» -, 1,1, 7] to I;.
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(4) (a) U [Ad-a -, 7z &) is in [; and [4d-a - 4, 7,, E,k] is in I,
then add an item [A-~ad -, 71 - ng, €1+E2.k] Lo ;. (There is no need to
check collision here, since there will be no other iem of the form

[A»ad -, 7, &k] in 1;)

(b) I [A>a -, mg &24] In /; and [S-B -.A'y, 71, £k ] is in I, then
add an item [S-f84 - 7, m; - na, £, - Prob{gslk] to I;, where 'L(4) is the
inherited atiributed of the nonterminal symbol 4.

(5) f j=m, go to step (7); otherwise =7+ 1.

(8) For each item [A- af, 7 £i] in Loy, add [4d-e B
n - Pg(byla), &+l(b;), 1] to I;, where L(b;) is the synthesized attribute
of b;. For simplicity, we may let 1(b;) = 1 for all . Ps(b; [a) is substi-
Lution prebability. Go to (2).

(7) If item [S—a-,7n, & 0] is in I, then string v is accepted by
grammar G where 7 is the syntaclic deformation probability and £ is
the semantic deformation probability;, otherwise, string ¥ 15 not

accepted by grammar &. Exit.

A flow chart of this parsing algorithm is given in Figure 4.3. Due io
the error-correcting characterisiics there may be more than one item
of the form [S-a -, m, £ 0] in [,. In that case, a decision should be
made based onn and £ Weights can be assigned ton and €. Neverthe-
less, this is a rather subjective judgement, and is always a problem

when using both synlactic and semantic informations.
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J=0. Add S — -a.1,1,0f
to [, ifS—aisa
production in P

l

If (A — oB3nci is in L
» and B — v is a production in P

ther add |B — =y, 1,1j} to ]

l

If [A — avpa &) is in I; and
A~ a*An, £ k] Is 1n I, then add
[A — aAsn,n.E, +Eak| tO I

i

If [A — o np.€pi] 18 In I and
[ — #Any,.£ k) 18 in I, then add
[S — BAyn 06" Prob{fz},k] to Ij

New
~items added
Jo1?

Yes

if {8« a*g,£0]1s In I,
then string v is accepted by G,
g 1s syntaciic and £ Is semantic
deformation distances

1

( sTor ) 3

For each [A — -agn.&i} in I, add
[A — a2 P (b] a). £+ |
to Ij

Figure 4.3 A flow chart of the parsing algorithm (Algbrithm 4.3},
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4.5 Experimental Resulis and Discussion

In this chapter we have shown an attribuled seismic grammar
which has only 67 productions and 13 nonterminal sy'lmbcls compared
te the 720 productions and 681 nonterminal symbols of a nonatiributed
finite-state grammar. An error-correcting parser (Algoritm 4.2.) is also
proposed for this atiributed grammar. Since the error-correciing
parser of Algorithm 3.2 considered only the subslitution error, a
simplified version of Algorithm 4.2 which igneres the length variation
can be used to greatly increase the processing speed. This is shown in

Algorithm 4.4.

Algorithm 4.4 Top-Down No-Backtrack Error-Correcting Parsing

Alpgorithm for Attributed Seigmic Grammar.

fnput; An atiributed seismic grammar & = (Vy,Vy, P,S) and an
input string ¥ = b,b,...b,, in Vy.
Cutput, The minimum distance between v and L(G&) where only sub-
stitution error is considered.
Method:
(1) Bet N = the number of S-produclions, min-disiance = a
sufTiciently large number,
(2) Set i = 1. .
(3) The ith S—produétion has the form S; = 4545 -+ Ay, where
M, is the number of nonterminals at the right-hand gide of the 4th 5-
production, 4, € Vy, 1 = 7 =< M.

(4)Setdist =0,k = 1,1 =1,
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(53(a) T & > i L(Ag), then I={+1,
p=1

(b) Apply production 4; - ayd; and compute dist = dist +
S{ay,by). k=k+1. Note that there is one-to-one correspondence

between 4; and a5, oy © Vo,
(68) If b=m , go to step {5).
(7) If dist < min-distanct then min-distance = dist.

(8Yi=i+1. Ifi=N go to (3); otherwise min-distance is the minimum

distance belweeny and L{&). Exit.

A flow chari of this parsing algorithm is given in Figure 4.4. A parse
of y can be constructed by iracing the productions used in Step (3) and
(5)(b). If the length variation is Lo be considered then the item lists will
contain a large number of items, and consequently the compulation will
be slow. However, Algorithm 3.2 is unable to even coasider the lengtih
variation.

The recognition results and computation lime for recognizing one
string are given in Table 4.1. While both attributed cfg and nonattri-
buled fsg show 91% correcl recognition, the average computation time
for one string is 0.11 gecond using attribuled seismic grammar and is
2.55 second using nonattributed finite-state grammar. This is because
the finite-state seismic grammar has a large number of production
rules and nonterminal symbols. A large table musi be maintained and
searching is very time-consuming. Although a special-purpose
hardware can be buill to speedup the computlation, il is slow [or a
sequential computer. Algorithm 4.2 is also time-consuming fo.r a gen-
eral context-free grammar. However, the secismic grammar in Section

4.2 is a very special cfg, and the application of the production rules is
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Initialize N,
min-distance;
i=1

i

Feteh ith preduction
Si—AjAp - A

¥

v
dist. = 0
k=1, =1

1=1+1

Apply Aj—ayAy
dist. =dist. + S{aﬂ,bk)
E=k+1

A dist. <N
. min-distan

min-distant =dist

i=itl e ]

Yes

~ STOP )
Figure 4.4 A flow charl of the parsing algorithm (Algorithm 4.4),

e



TABLE 4.1

The recognition results, computation time,

and memory used for seismic recognition using
an attribuied context-free grammar and a
nonatiribuled finite-staie grammar.

(Time is for one string)

i Accurate Average Imemory ‘

Rate Time used
(sece) (bvtes)
Attributed 91L% 0.11 41360
clig
Non-
attributed 91% 2.55 TRA04
' fsg
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very straightforward. The actual storage used in computer is aiso given
in Table 4.1, |

We mentioned eariier that substitution, insertion and deletion of
terminal symbols are allowed bul no substitution, insertion or deletion
of nonlerminal symbol is permitted. As a matter of fact, substitution of
nonterminal symbols can be attained in terms of substitution of termi-
nal symbols. Therefore, only ingertion or deletion of nonterminal sym-
bols is not allowed. The reascn iz that if the training samples are well
selected, the grammar should be able Lo recognize any ressonable
slrings. II lhe tesl slring needs insertion or deletion of nonterminal
symbols in order to be accepted, it is either severely distorted or miss-
ing seme string segments. If insertion and deletion of nonterminal
symbols are to be considered ‘then this becomes a structural-
deformatlion problem (Tsai and Fu, 1879). We can ddd insertion and
deletion error transformations in Step(6) of Algoritm 4.2 as we did in
Algerithm 2.4. Thiz will make the algorithm more complicated. A dis-
tance threshold should be imposed to eliminale unrealistic parses so

thal the ilern list will not become unmanagable.
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CHAPTER V

VISI ARCHITECTURES FOR SYNTACTIC
SEISHIC PATTERN RECOGNITION

5.1 Introduction '

Some computational algorithms, for example, matrix multiplication
and inversion in numeric computation and string matching in non-
riumeric computation, are very time-consuming so that an efficient
implementation is usually not feasible and ecocncmical. However, this
gituation has been changed due to the advances in hardware technol-
ogy, i.e., the development of high-speed, high-densilty and iow-cosl elec-
tronic devices. Hardware implementation (particularly parallel and/or
pipeline processing) of software algorithm has become an affordable
solulion to increase the processing speed because the cost of hardware
is decreasing. Advance in VL3I lechnology makes it possible Lo pack
more companents intoe one chip at a lower price than ever before (Mead
and Conway, 1880). This revolutionary impact stimulaies considerable
interest to develop parallel algorithms {er VLS] implementiation and
luild special-purpoese chips for specific applications (Kung, 1979, 1980).
A whole book {(Bowen and Brown, 1982) has been devated to VL3I sys-
tems design for digital signal processing. Many computers and proces-

sors have becn developed [or signal processing. The recent trend is to
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use attached signal processors, e.g., Lincoln Laboratory Fast Digital
Pracessor (FDP) and Data Genaral AP/130 erray processor, insiead of
supercomputers as [LLIAC-TV and Advanced Scientific Processor (ASC)
(Bowen and Brown, 1882). More specialized applicati;)ns for matrix mul-
tiplication, convolution and solving linear equations can be iound in
Kung (1978, 1982), Kulkarni and Yen (1988}, Hwang and Cheng (1981). A
recent example of special-purpose VLS architecture is an integrated
multiprocessing array for time warping patiern matching which is used
in speech recognition (Ackland, Weste and Burr, 1881). Patitern match-
ing is the most time-consuming siage in speech recognition especially
when the dictionary is large. Using parallel procegsing improves the

gpeed 200 times faster, therefore make the real-time application possi-

ble.

Like dynamie tirme warping, all the string disiance somputation and
string matching are time consuming. Hardware imrplementation has
been proposed by Okuda, Tanaka and Kasal (1978} for computing
Levenshtiein distance even belore VLSI technology is available. They
used delay circuits to implement insertion, deletion and substitution

weights,

We propose in this chapter a VL3l archilecture for seismic
classification using syntactic approach, which includes feature extrac-
tion, primitive recognition and stririg matching., QOur string matching
implementation is more complicated than Okuda, et al.’s, where
different weights are assigned to different symbols in our case. This
special-purpese processor is designed to be attached to a host com-
puler, for example, a minicomputer as shown in Figure 5.1, therefore it

werks like a perihperal processor. Three systolic arrays are propoesed
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Figure 5.1 The special-purpose processor is attached to a host computer
as a peripheral processor.
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io perform feature extraction, primitive recognition and string match-
ing respectively. Several memory units are required for holding the
intermediate results and for data setup. Figure 5.2 shows the architec-
lure of cur special-purpose processor. All these three systolic arrays
perform in time O(1), ie., results can be produced al a constant rate
provided ihai input data are supplied properly in a pipelined fashion.
The formations of input data are given in Figure 5.3 where (e) is for
feature extraction, (b) is for primitive recognilion anc (¢) is for string
matehing., Section 5.2 discusses VLS architectures for feature extrac-
iiorn. Section 5.3 discusses VLSI architectures for primitive recognition.
Section 5.4 discusses VL3I architectures for siring matching. Seection
5.5 shows some simulation results and performance verification. Sece-

tion 5.6 gives the concluding remarks.

5.2 VL5I Architectures for Feature Extraction

The systolic array for feature extraction is linearly connected as
shown in Figure 5.4. The input data, which are the digitized and quan-
tized signal wavelorm coded in binary form, are stored in seperate
memeory modules in a skewed formal as shown in Figure 5.3(e) and
Figure 5.4{a). Fach memory module is delay by on2 unit time, ie.,
lime required to process one data element, from left to righl. Each
memory module contains a sequence of words, i.e., discrete signal
points and is connected to a processing element (PE) of the systolic
array. The data are transferred into the PE's bit by bit, and all the
memory modules are read parallelly. Two features, zero-crossing count

and sum ol absecluie magnitudes are compuied. Abgolile sum instead
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Figure 5.2 The internal architecture of the special- purpose processor.
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Figure 5.3 Data setup for (a) [eature extraction, (b) primitive recogni-
tion and (¢) string matching.
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cessor for feature extraction.
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of log energy is used here for the simplicity of implementation. Loga-
rithmic function can be approximated by taking a series expansion (see
Ackland, et al.,, 1981). Zero-crossing is detected by ::heckiﬁg the signs
of every two conseculive points. Any sign change is counted as one
zero-crossing. An exclusive-ORl circuit is used for detectlon of =sign
change. Figure 5.4(b)} shows the operation of each PE. The internal
structures are given in Figure 5.5. All the n PE's compute the two
fealures simultaneously and pass the parlial resulits Lo the next PBE's.
Each general-purpose register A, B, C, E and 5 is 18-bit long.’ The

micro-operalions of each PE are as follows.

(1) {a) Transfer (serially) inpui data into Register A from external
storage.
(b) Transfer (serially) input data intoc Register B from Register A of

Lhe left PE.

(¢) Transfer (serially) pariial resull intoc Register C from Register C

of the left PE.

(d) Transfer (serially) partial result into Register & from Register S
of the left PE.
(e) C « C + (sgn{A) + sgn(B)).
(2) E « |A]
{(3) S« 35 +1I.
Steps (1)(a) to (1)(e) can be executed in parallel, therefore can be
completed in 16 machine cycles. Step (2) and step (3) can each be
compleled in one machine cycle. The entire operations (1), (2) and (3)

teke 18 machine cycles to complete. The time for each processor to

complete its entire operations, l.e. 18 machine cveles here, is call a unit
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Figure 5.5 The internal structure of the processoer for feature extrac-
tion.
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time. Although memory cyele is slower than machine (procesor) cyeole,
each memory felch can take time as long as 18 rnachine cyeles. There-
fore data input can keep up with processor speed. Suppose that input
data are fed in properly, then after » unit times, where n iz the
number of data peoinis in one segment, the feature of the first segment
will emerge from the end of the systolic array. There will be a set of
features (of one segment) coming out every unit time thereafter.
Therefore with the systclic array reaching steady state, each segment
only takes 1 unit times, i.e., 18 machine cyveles, Lo complete the compu-
tation. With a uniprocessor, each segment will take O(n) computations
and comparizens. The speedup is m, which is equal to the number of

processaors.

5.3 VLSl Architectures for Primitive Recognition

In the primitive recognition problem, we compute the distance
between the unknown leature vector and the reference vector, for
example, mean vector, of each cluster (primitive), and then assign the
unknown feature vector to Lthe cluster of the minimum distance. This
procedure can be divided into two steps; first, compute the distances
between the unknown vector and the reference vectors, and then select
the smallest distance. We use a processor array, which contains 'com-
pute’ processors, for distance computation snd a processor array,
which contains Suppose there are I primitives; each o»rimitive 2 hag a
reference feature vector [m?, mb, ..., m}] where k& is the total number
of features. A processor arrayv of [ by & which performs the dislance

computation is shown in Figure 5.6. The reference vectors of the
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primitives enter from the bottom and move up while the unknown
feature vectors enter from the top and move down. The partial sums
move from left to right. The data must be properly skewed as shown in
~ Figure 5.6 and Figure 5.3(b). Since the two data streams move in oppo-
site direction, they must be separated by one unit time which is shown
by one space in Figure 5.8; otherwise, some data will just pass instead

of meeting each other.

The unknown feature veclors are assumed to come in continuously.
The reference vectors must alsc repeat their cycles continuously, ie.,
with the first primitive vector coming right after the {ih primitive vec-
tor. After initiation, the feature vectors will be delayed for i—1 unit
times so that ﬁhe first feature vector and the first priymitive vector will
meet at the first row of the processor array. The sum, which is equal to
zero initially, will be the distance at the end of computation. The func-
tional diagram of each 'computle’ processor is shown in Figure 5.7(a),
where £ is a component of the unknown feature vector, » is a com-
ponent of the primitive vector and o is the partial sum. For simplicity,
we use Lhe absolute-value distance here. Euclidean distance computa-
tion wili take more space and time.

The internal structure and data movement are shown in Figure
5.8(a}). Each 'compute’ processor contains an arithmetic and logic unit
(ALU), and four 16-bil registers A, B, U and ¥. The micro-operations are

shown as follows.

(1) {a) Transfer data (serially) inlo register X from the above PE.



146

(b} Transfer data (serially) into register U from the lower PE.

(¢} Transfer partial sum (serially) inte register A from the left PE.

(2) Be«X-U.
(3) B « |Bj.
(4) A « A + B.

Step (1) takes 18 clock cyecles to transfer one werd of 18 bits; step (2),
{(3) and (4) takes 1 clock cyecle each. The entire operations take 19

clack cycles. The unit time here is 19 clock cyeles.

After computation of the corresponding components between the
reference vector and the unknown feature vector, the partial sum
moves to the right. When the partial sum passes the &k th processor of

the first row, the output will be the distance between vectors [::“11 .'1:21,

ozl and [m{, mg, ..., my], then it enters the rightmost column of

processors, which are the ‘'ccmpare' processors. Since the data
streams are seperated by one unit time, lhe processcrs on alternate

diagonals (from lower lefl lo upper right) are idle. When vector [z],

.'I:r'i, . ﬂ:kz

o ] enters the second row of the processor array, it will meet

vector [m 2%, mg, .., m®]. When vector [z, zd, ..., z,}| enters the third

3

row, it will meet vector {m 3P, m3, ..., mg 2 gZ

]; meanwhile, veclor [z§, =5,
.., of] will meet vector [m?, m#, ..., mZ] at row one. We can see from
the above and Figure 5.6 that vector [z}, =}, ..., z] is compared with
the reference vectors in the sequence i, 2, ..., I, veetor [z 12-, zzz, ey zf]
iz compared with the reference veclors in the sequeance 2, 3, ..., L, 1,
and so forth. These operations are overlapped, i.e., pipelined, in a way

that every processor is doing part of the computation and pass the dala

and results to the neighbor processcrs.
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The functional diagram of the 'compare’ processor is shown in Fig-
ure 5.7(b) where 2 is the minimum distance computed so far with prim-
itive identifier-c, & is the distance just computed and & is the
corresponding primitive identifier input externally. The internal struc-
ture and data movement are shown in Figure 5.8(b). Each ’‘compare’
processor contains an ALU, two B-bitl regisiers B, D ana two 16-bit regis-

ters A, C. The micre-operations are as follows.

(1} (a) Tranmsfer partial sum (serially) inte register A from C of the

above PH.
(b) Tramsfer partial sum (serially) into register C from the left PE.

(¢) Transfer primitive identifier (serially) into register B from D of

the ahove PT.

(d) Transfer primitive identifier (serially) into register D from
external input.

(2} E« A-C.

(3) I o < ¢ then {C « A; D « B{.

Step (1) takes 16 cycles to complete, step {2) takes 1 and step (3)
takes 1. These three steps take 18 cycles, which is 1 eycle shorter than
ithe 'compute’ processor, therefore the 'compare’ processor must be
idle for one cycle in order to synchrenize with the 'compute’ processor.
The 'compare' processoers compare the current distance coming from
the leit with the distance coming from the above, and pass the smaller
one to the lower processor. Primitive identifiers are {ed in from the
right in a similar formal as those for data streams. The identifier
streams should be delayed for I+k—1 unit times sco that the first

identifier ¢; enters the first 'compare’ processor al the same time as
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Figure 5.7 Data flow and operations of each (a) 'compute’ processor and
(h) 'compare’ processor.
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the distance between [zi, zd, ..., 21} and [m}, md, .., m;1]. In order
to assign right identifier to right distance, Lhe identifier streams must

be arranged as shown in Figure 5.6.

With a uniprocessor, the primitive recognition procedure of one
feature vector will take {xk computations and I —1 comparisons in our
present example. With the processor array of Figure H.8, the primitive
recognition procedure of a single feature vector needs (xk+1 unit
times. However, a processor array is not designed for the processing of
one single datum, instead, it is for a stream aof data. In that case, a new
result will come out every 2 unit times in Figure 5.6. Given { reference
vectors and a feature vectors of dimension &, the array processor will
teke 2 unit times to get one result in steadvy state, whiie a uniprocessor
tekes O(ka) time to complele Lhe computation. The speedup is
Ik /2., In Iigure 5.6, the resulis contain both the minimum distance

and the primitive identifier, therefore no octher processing is required.

Primitive recognizer iz essentially a vector pattern matcher.
Therefore i can be used in many other applications, and can be used

indepent of feature extraction and string matching.

5.4 VLSI Architectures for String Matehing
Hased on Levenshiein Distance

Nennumeric computation has become more impertant and
demanded wmore hardware algorithms, ie., algorithms specially
designed for hardware implementations, and architectures recently
due to the increasing applicalions in artificial intelligence, database,

infermaticn retrieval, language translation, pattern recognition, ete.,
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One of the most important categories in nonnumeric computation is -
siring pattern matching. Character siring matching is very important
in inforrnation retrieval and dictidnary look up (Hall and Dowling, 1980).
The problem of string pattern matching can generally be classified into
two kinds. We call them exact matching and approximate matching.
For exact mateing, a single string is matched against a set of strings,
ugually this particular string is embeded as a substring of ther reference
strings. Hardware algorithms for exact matching has been proposed by
Mukhopadhyay (1979), where the test paltern resides in an array of
cells and the reference iext is brocadcasted to all the cells simultane-
ously character by character. Foster and Kung (1280 designed a VL3I
chip for exacl patiern matching with wild card capability, where the
Lest pattern enters irom one end and the reference text enters from
the other end of the linear array. By constrast, for approximale
matching, we want to find a string from a finile setl of strings which
approximately matches the test string. Certainly we will also find the
string which exactly matches the test string if it does exist. A good sur-
vey of approximate string matching can be found in Hall and Dowling
(1980). This section concentrates exclusively on approximate match-
ing. Approximale string maitching is based on the idea of insertion,
deletion and substitulion of terminal symbols. An application example
of appreoximate slring malching which cannol be performed by exact
string matching lis the string clustering problems, for example, in Lu
and Fu {1978). Wagner and Fischer (1974) proposed a dynamic pro-
cramming method for the computation. Okuda, Tgnnaka and Kasai
(1976 p‘roposed an algorithm and hardware implementation for garbled

word recognition based on the Levenshlein Metric. We propose in this
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section a VLSI architecture for approximate string matching. The dis-
tance measure is (W'eighieci) Levenshtein dislance using dynamic pro-
gramming method. Although it is using the minimumn-distance ori-
terion in deterministic cases; it can be easily modified to the

maximum-likelihood criterion in prebabilistic cases.

Chiang and Fu (1979) studied several parallcl architeclures,
namely, SIMD, dedicated SIMD and MIMD, for string and tree distance
computalion. Fach node on the same diagonal of the dynamie program-
ming matrix is computed simmultaneously. The time complexity of these
specific parallel systems is O(n+m ), where n and m are the lengthes
of the two sirings under comparisen. Our sysiem, differs from theirs in
that we use a systolic array, i.e., a square array of PE’s as in Ackland, et
al.. (1981) and pipelined data flow for the computation. Therefore we
can obtain the results at a constant rate, i.e., one result after each unit

time.

IL is well-known thal Levenshtein distance can be computed by
dynamic programming. Therefore, it can be implemented by parailel
processing on VLSI architectures. In this case, parallel computalion
and pipeline data flow are combined to process continuously a large
amount of data at a very high speed. The dynamic programming algo-
rithm recursively computes the optimmal path from point (1,1) to (m,7)
based on itz subpaths. In dynamic titne warping, there are many slope
constraints for selecting subpaths. Ackland el al. (1681) chose the sim-

plest constraint, l.e.,

Sy = Py + min 91,5, 521 51090 j
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where D; ; = |z;~y; LT, y; are feature vectors, 5;y is partial sum at
point {1,7}. It will be much difficult to implement if they chose other

slope constraints.

5.4.1 Levenshtein Distance

For Levenshtein distance, there are also many variations. The ori-
ginal Levenshiein distance where each insertion, deletion and substitu-
tion is counted as one error transformation is the easist to implement.
We have developed a processor array for this computation. A portion of
the dynamic programming diagram and its corresponding processor

array is given in Figure 5.2. Bach processor computes the partial sum

S'i—l,J'+1
Silj = min S’i"l,j"—1+5(a’i’bj')
Oy -1t

where S{a;,b;) = 1if a; # b;; S(a;,b;) = 0 otherwise. The computation
can be divided into three stages. The procedures are as {ollows.
Stoge 1
(1) (&) Transfer (serially) partial sum S;_; ;- into D frcm the lower PE.
(b} Transfer (serially) primitive e,; into X from the lower P_E.
(e} Transier (serially) primitive b; into ¥ from the left PE.

(@) Compare (serially) X with V; output V= 01if X =¥, V = 1 other-

wige.
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Figure 5.9 (a) Portions of dynamic programming diagram and (b)
corresponding processor array.
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(2) D« D+ V.

Stoge 2

(1) (a) Transfer (serially) partial sum S;_,, into B from the leit PE.
{b) Transfer (serially} partial sum S; ;-; into C from the lower PE.
(c) Send (serially) partial sum 5;.;; to D of the above PE.
(d) Compare (serially} B with C, A « min(B, C).
(e) Send (serailly) contents of X to X of the above PL.
(f) Send (serially) contents ¢f Y Lo Y of the right PE.

(2) A« A+ 1.

(3} Compare (parallelly) A with D, R « min(A, D).

Siage 5

(1) (a) Send (serially) partial sum R to B of the left PE.
(b) Send (serially) partial surmn R to C of the above PE.

Stage | takes 17 clock cyeles to complete (16 for step (1) and 1 for step
(2)); stage 2 takes 18 (16 for step (1}, 1 for step (2) and 1 for step (3)),
and slage 3 takez 16. Figure 5.10 shows the internal structure and the
operatlions of processor element F; ; at stage 1, 2 and 3. Each PE con-
Lains a set of registers, an ALU, a conirol unit and soms other combina-~
tional logic. Registers A, B, C, D, V and R are general-purpose registers
which are 16-bit long and connected to the ALU. Registers X and Y afe
B-bit long, which are used to store prifnitives. In our seismic case, we
have 13 primitives; therefore, 4 bits should be enovgh to represent
them. In fact, 4 bits, which have 16 combinations, should be sufficient
for many practical applications. However, in order to make our system

mere {lexible and compatible with other systems which use ASCII code,
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Figure 5,10 Internal structiure and register transfer of PE 7 ; at stege 1,
2 and 3.



we let registers X and Y hold 8 biis. This generalization will be able to
recognize character strings where each character is in ASCII code, for

example, A = 'G1000001’, B = '01000810’, C = '0100C011", and so forth.

Figure 5.11 shows the data movement between 4 neighboring PE's
shown in Figure 5.8. All the processors at ihe same diagonal performs
the same computation as shown in Figure 5.11 and 5.12(a). This format
will move forward one step every 18 clock cycles. Since each string |
cnly needs three diagonals at any time, the other processors can be
used to compute distances of other strings. Therefore, data fiow can be
pipelined as shown in Figure 5.12(b}. I{ we are matcking a test string
against a number of reference sirings, the distance between the testi
string and the first reference string will emerge after px18 clock
cvceles, where p is the number of disgonals in the array. After that,
there will be one string distance coming oul every 3x18 = 54 clock
cycles. Since stage 1 and 3 have ne conflict, they can be ovelapped, i.e.,
one diagonal of the array can be used ito periorm stage 3 of one string

and stage 1 of the next string at the same time, Lo increase the

throughput.

The structure of processor array and data flow are shown in Figure
5.13. The reference strings enter from the lefi; the test string enters
irom the bottom. The test string must repeat itself continuously in
order to compare with all the reference strings. Both test and refer-
ence sirings must be properly skewed and separated as shown in Figure
5.13 so that they will arrive at the right processors alt the right time.
The bookkeeping and selection of minimum distance can be done by a
special-purpose processoer or the hest compuler. One practical prob-

Clem is aboutl lhe dimension of the processor array. The number of rows
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Figure 5.12 Processors at the same diagonal perform the same opera-
tion; three diagonals are required for one siring (a), and strings can be
pipelined (b).
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can be set to the maximum length of the reference sirings. Since the
length of the test string is unknown, the number of column can be set
arbitrarily. If a test string exceeds the array size, it should be handled
by the host computer or preprocessor. Because the interruption of the
regular computation pattern in a VLSI array will greatly reduce its
efliciency. This situation can be kept to minimum by selecting a
reasonablly large array size. A shorter string will be padded out with

blank to make it equal to Lthe array dimension.

Suppose boih the reference and the tesl strings have length 1.
With a uniprocessor, the matching process for one unknown string will
take O(Ix{) unit operations. With the array processor, it only takes 3

unit times.

5. 4.2 Weighted Levenshtein Distances

Since a weighted lLevenshtein distance iz usually more favorable in
practical application, we now propose a VL3I architectiore for its com-
putation. The major problem here is to store all the weights in each
processor, which must be easy to implemenl and fast for access. For-
tunately, a programmable logic array (PLA) can be used (Mead and Con-
way, 1980). It is a special type of read-only memory, and easy to imple-
menl i a VLSI system. A simple example will illustrate how a PLA
works. Figure 5.14 shows a simple Weights table and its PLA implemen-
tation. A PLA consists of two parts, the left part is called the AND
plane, the right part is called the OR plane. Input lines A, B have the
combinations (0,0}, {(0,1), (1,0}, (1,1} which rcp‘resent the entries of the
weight table. The output XYZ indicate the values of the entries, which

range from 0 to 7. The circles indicate connections. Since we only have
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Figure 5.14 PLA implementation of a sitnple weight table.
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13 primitives, 4 bits will be enough for diserimination. Wé taks the 4
least-significant bits (LSB) from the primitives for our internal compu-
tation, for example, & = '0001', & = '0010", ¢ = '0011’, and so forth. We
need more bits for recognition of character strings. Figﬁre 5.15 shows
the PLA implementation of weight table for substitution, insertion and
deletion in our seismic case. There is an input register ito the AND-
plane and an output regisier from the OR-plane; both are 8-bit long.
Register X contains primitive 'e', and register Y contains primitive '&';
(e, &) is the entry of the weight table. Here the symbols X, Y, A and B
are regisiers which should not be confused with those in Figure 5.14.
The pair (X = e, Y = &) represents the substitution of ‘%' for ‘a’. The
pair (X = a, Y = 0000) represents the deletion of 'a’. The pair (X = 0000,
Y = &) means the inzertion of 'd’'. The access time is very {ast, only two
clock cycles; one is needed for input register, the other is for butput

register.

Exceptl for the weight table, the computation precedure is similar
to Lhe previous one. The internal siructure of the PE's is given in Fig-
ure 5.16. Bach PE has an ALU, a PLA (with registers Q and S), a control
unit, two B8-bit regi.sters X, Y and three 186-bii registers B, C, and D.
Register Z contains constant '0000' as symbol A. The data m.ovement is
similar to that in Figure 5.11.

Siage 1
(1) (a) Transfer (serially) partial sum S;-15-1 into D from the lower PE.

{b) Transfer (serially) primitive a; into X from the lower PE.
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Figure 5.15 A PLA implementation of the weirnl table for selzsmic recog-

nivior.
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Figure 5.16 Internal siructure of the PE for weighted siring distance
computation.
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(¢) Transfer (serially) primitive &, into Y {from the left PE.
(2) Load (parallelly) the 4 LSB of X and Y into Q, outpul. S(a,,b;) in S.
(3) Compute D « D + 3.
(4) Load (parallelly) the 4 L3B of X and Z into Q, outpul J(g;) in S.
Stage 2
(1) (a) Transfer (serially) partial sum S;_;; intc B frem the left PE.
(b) Transifer (serially) partial sum S; ;. inio C from the lower PE.
(¢) Send (serially) partial sum 5;_;; to D of the above PE.
(d) Send (serailly} contents of X to X of Lthe above PE.
(e) Send (serially) contents of Y te Y of the right PE.
(2} (&) Compule B« B+ 5.
(b) Load (parallelly) the 4 LSB of Z and Y into Q, output J(&;) in S,
(3) (a) Compute C « C + S,
(b} Compute B « min{B, D).
(4) Compute D « min(E, C).
Stoge 3
(1} {a) Send (serially) partial sum in D {o B of the right PE.
(b} Send {serially) partial sum in D te C of Lthe above PE.
In Stage 1, Siep (1) takes 16 eycles ((a), (b) and (c¢) operate in parallel),
Step {2) takes 3 eyecles (t for loading, 2 for PLA reading), step (3) takes
1 cycle and Step {4) takes 3 cycles (same as Step (2)). In Stage 2, Step
(1) takes 16 cycles, Step (2) takes 3 cycles ({a), (b) operate in parallel},

Step (3) takes 2 cycles and Step (4) takes 2 cycles. Stage 3 iakes 18

cyeles ((&) and (b) both take 16 cycles and can be executed in parallel).
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Therefore, Stage 1 takes 23 cycles, Stage 2 takes 23 cveles, and Stage 3
takes 16 cyeles. As usual, stage 3 can be overlapped with stage ! to
save processing time. Due to the weight computation, this syvstem

takes longer time than the previous one.

5.5 Simulations and Performance Verification

Simulations have been performed for the three systolic arrays:
feature exlraction array, primitive recognilion array and string match-
ing a.fray. The flow charts for the simulations are given in Appendix A.
The same seismic data as‘those used in Section 3.5 are tested in the
simulations. The results of the simulations are exactly the same as
those -of the sequential computer in Section 3.5, Therefore the design
of the systolic arrays are correct and the coperations are as expected.
Step-by-step simulation resulis using sample seismic wavelorms are
given in Appendix B. The computation time in our simmulation is shown
in Table 5.1. The computation time using a séquential computier is also
given for comparison. it is noted that the listed compatation time is an
average and approximate time which should be used for comparison
only. Suppose that we are dealing with a large amoul of data. Similar
to the definition of speedup for mullioperaticn computer in Kuck
(1978), we define the theoretical speedup (TS) of a (svstolic) processor

array as

time interval between consecutive
TS = results uging a sequential computar

Ltime interval hetweern consecutive
resulls using a processor array
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Therefore the TS for feature extraction is 80/1 = &0, for primitive
recognition iz 39/2 = 19.5 and for string matching is 20/3 = 6.67. The
numerators are the numbers of ocperations for getting one result using
a sequential computer, and the denominators are the time intervals
between consecutive resulls for VLSI arrays as shown in the previous
sections. Note thati the TS for siring matching In our experiment is
20/3 = 6.67 instead of 20%20/3 = 133. This is because we only consider
substitution errors, therefore the number of cperations is proporticnal
to string length, i.e., 20. If insertion and deletion errors are to be con-
sidered, then the whole dynamic programrning matrix as shown in Fig-
ure 2.1 ghould be considered. In the seismic recognition problem the

size ol the matrix is 20x20.

The real speedup In our simulations for feature extraction is
approximaiely the same as the maximumn theoretical speedup. This is
due lo the simple structure and data flow of the linearly connected sys-
tolic array. The real speedup (17.4) for primitive recognition is slightly
less than the TS (19.5), which is 88% of the TS. The reason for this is the
increasing complexity of array structure and dats flow. More time is
spenl on dala movement. The real speedup (4.67) for string matching
is also less than the TS (6.67), which is 70% of the TS. This is because
the array struclure and daia flow are even more complicated, The
increasing complexity can be seen from the the desigrs in previous sec-
tions. The thecretlical speedup is the upper bound where the real
speedup in simulation is a funciion of the computations performed and

the underlying architectures.

The szimulations are performed on & sequential computer (VAX

11/780). In order to compare the simulation results with the results in
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Chapter IIT we use the same high level languages (C, Fortran and Pas-
cal). Therefore, there are many averhead in language translation and
program execution. These are some of the reasons for low speedup.
Another reason is data movement which can be performed in parallel
with the computation in VLSI arrays, but can not be Jdone in a sequen-
tial computer. One can not accurately simulate the VLSI system even
using an assembly language. Since most syslolic arrays are hardwired,
i.e., unprogrammable, there is no instruction decocding or memory
fetch and storage for each instruction, Besides, the parallelistm can not
be fully simulated on a sequential computier. The real computation
speeds of the proposed VLSI arrays when fabricated should stay close Lo
the analyvtical results as shown in the previous sections, i.e., 1 unit time
for feature extraction, 2 unit times for primitive recegnition and 3 unit

times for string matcing using WLD.

We would like to congider scme problems about actual implemehta—
tion and give some examples about the performance of our proposed
system. In Section 5.2 we assuined that the length of the linear systolic
array is the same as the number of points in each segment. Although a
linear array can be expanded easily, il is sometimes necessary to use
small array to process data of larger size. For example, in the Seismic
recognilion problem, the number of points in each segment is 50. We
can‘use a linear array consisting of 80 PE’s, or we can use less PR'g, {for
example, 20 PE's. The implementation using 20 PE’'s is shown in Figure
5.17, where the data points in each segment are folded inte three rows.
This will take three unit times to compule the features for each seg-
ment. Suppose there are 20 PE's with machine cycle 200 ns, then the

time required for feature extraction of 2,000 segments (after it reaches
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steady-state) is equal to 3 ¥ 18 x 2000 % 200 ns = 21.8 ms. The time for
reaching steady-state is 20 unit times, which iz equal to 20 X 18 cyeles
x 200 ns/cyele = 72 us. Since the processing speed of feature extrac-
tion (18 cyeles) is faster than that of primitive recognition (19 cycles),
the output of the former can be used directly by the latter. Recall that
the inpui data for primitive recognition are interleaved by one space
(Figure 8,3(b)). The feature vector of Lhe next segment is not needed
urntil after 2 x 19 cycles = 38 cycles. Therefore 30 PE's can be used for
feature extraction and produce a feature vector every 2 x 18 cycles =
36 cyceles. Because 30 PE’s take 2 unit times to produce a result and
each unit time is equal to 18 cycles. These two operations can be exe-

cuted in parallel Lo save a half of the total processing time.

Consgider siring matching using Levenshlein distance, the com-
parison of one test siring with each reference stiring takes 3 x 18 x 200
ng = 10.B us. With one hundred reference sirings, il takes 1.08 ms {o
classify each test string, and each test string is execited sequentially.
Using a systolic array it is possible to make real-time string matching.
Qur system can match approximately 90,000 sirings per second (10.8

ue for one string).

We assume in the previous discussion thal all strings, test and
reference, have the same length. This is not lrue in manyv other appli-
calionis. Reference strings are differenl in length; d mensions of pro-
cegsor array can not fit exactly the string size. It is required to maké
processor array larger than the string size and pad the string with
blank at the end. II we let the weight of insertion, deletion and substi-
tution of blanks be zerc, then we can solve the problem of length

variely and still maintain the regular, svnchronous cata fiow pattern.
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- Long strings and larger array size do noi degrade the steady-state
throughput. As usueal, results can be obtained every 3x18 = 54 ecycles.
it only takes longer time, i.e., px18 cycles where p is the number of
diagonals, to reach steady-state. Usually the time to reach steady-

state is negligible compared with the total processing Lime.

The system bus as shown in Figure 5.1 is sirnilar te the Unibus of
DEC PDP-11 {Kuck, 1978). The Unibus has a maximum data rate of
4%107 bits/sec operating in an interlocked way, i.e., the sender waits
until the receiver acknowledges receipt of a word before sending
another word. In our experiment, each seismic record has 1200 points,
and each peoint iz coded into a 186-bit binary number. Therefere, each
seismic record needs 16x1200 = 19200 bits of storage. It is easy to see
Lthat the system bus can transmit one seismic record from disc Lo
special-purpose processor in 0.48 ms. However, the typical operating
speed of magnetic dise is from 2.4x10% bits/sec to 1.2x107 bits/sec
(Stone, 1980). Therefore the actual time for sending a seismic record
from disc to speeial-purpose processor is from 80 ms to 1.6 ms. The
output from the special-purpose processor is the classification resulis,
which use one word (18 bits) for each seismic record to indicate class

membership. The transmission time is 0.4 us for one record.

5.6 Concluding Remarks

We have proposed special-purpose array processors for seismic sig-
nal clasgification, which can be attached to a general-purpose computer
as shown in Figure 5.1. The host computer can retrieve any intermedi-

ate data from a special-purpese processor and store them in iils own
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storage, as well as send data to any memeoery unit of the special-purpose
processor. For example, the host computer can retrieve and store the
string representation of the signals for display or fcr later use. The
host computer can algse use any one of the systolic arrays, for example;

fealure extraclion array, only.

The design correciness and speedup have been verified by simula-
tions in Section 5.5, From the simulation results it is safe to predict
that the real speedup of the fabricated VL3I processor arrays will be
close to the theoretical speedup. Computer-aided design has greatly
reduce the design cost {Swerling, 1982). The cost/per’ormance ratio of

special-purpose processors will eventually be justified.

Recently, VLSI architectures have been applied to synlactic patiern
recegnition and lo implement parallel computation. Guibas, et al
(1979) proposed two VLSI arrays for the implementation of combina-
torial algorithms, one is for a subset of dynamic programming prob-
lems, i.e., optimal parenthesizalion problems which include contexl-
iree language recognilion, the other is for transitive closure problems
which include finite-state language recognilicn. Based on the array
structure of Guibas, el al.,, Chu and Fu (1981) propesed VLSI architec-
tures for finite-state language recognition and coniext-iree language
recognition using CYK's algorithm. Chiang and Fu (1982) alsa proposed
a VLSI systems for context-free language recogniticn using Earley's
algorithm. Ackland et al. (1881) developed a VL3Il systems to imple-
ment dynamic time warping for spoken word recognition. Our siring
mateher can be applied to any preblem where the Levenshtein distance
computation is required. Il can be used for string meatching in our

seismic recognition, for character string malching in information
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retrieval (Hall and Dowling, 1880) or for pattern matching in shape
analyziz if the object can be represented by a string, .for example,
using chain codes (see Fu, 1882). Our primitive recognizer can also be
applied to any minimum-distance recognition problem and vector pat-

tern matching.



L76

CHAPTER V]

SUMMARY, CONCLUSIONS, AND RECOMIENDATIONS

6.1 Summary

We have studied the application of syntactic pattern recognition to
seismic signal classification and proposed special-purpose VLS1 archi-
tectures for the implementation. Our studies concentrate on the
waveforms where shape information iz not important or useful, like
seistnic signals. EEG and speech signals have similar characteristic as
seismic signal. Chapter I defines the problem of study, outlines the
approach to the problem and gives relevent literature survey. Chapler
II discusses siring similarity (distance) measures and recognition pro-
cedures, String dislances have been classified into two categories: gen-
eral siring diétances which are based on the concept of insertion, dele-
tion and substitution transformations and special string distances.
General string distances are further classified inte a hierarchy of four
levels. Symmetric property of string distance has also been discussed.
Recoguition can be carried out by either nearest-neighbor decision rule
or error-correcting parsing. We use a modified Earley’s parsing algo-
rithm which does not require an expanded grammar and is able to use

symrnetric distance.
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Chapter III demonstirates the experimental results of seismic
discrimination and damage assesment. [f shape is not the major
feature, patilern segmentation is often simpler. We only need to con-
sider fixed-length segmentation. When shape information is the dom-
inant feature, pattern segmentation is usually associated with primitive
recognition. Generally speaking, a fixed-length segmentalion is easier
to perform; a wvariable-length segmentation is more efficient in
representalion. However, a variablé-length segmentation usually takes
more time in determining the optimal boundary. Iurthermore, a
variable-lengih segmentation sometimes starts from fixed-length seg-
mentation and then mnerges or splits based on a preset criterion. In
general, we are inn favor of fixed-length segmentation provided a proper
leniglh can be easily selected. Feature sclection is problem-dependent;
therefore we did not emphasize on this subject. Primitive recognition
iz our first major topic in practical applications. Without any knowledge
about the dala, we use a clustering procedure to find the optimal
number of clusters. Two criteria, increment of merge disiance and
nseudo F-statistic (PIFS), have been used to select cluster number and
they show identical results. Finite-state grammars are inferred from
. the training patterns using the k-tail inference algorithm.. Unless the
patierns are really generated by a finite-state grammar, chosing small
values of & usually worsens the classificalion result. OQur experiments
show that uneven merge of states makes the inferred grammar perform-
ing poorly in recognition.’\’\’henithe inferred grammar is the canomnical
grammar, the recognilion resulls ol using NN rule and ECP are the
samie. According to our gxperiment, the NN rule takes however much

icss computer time than ECP. A modifled dynamic time-warping
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gvstem has been used ito measure the distance between the seismic
waveforms of the building during a strong earthquake., This measure-

ment can be used for damage assesment.

Chapter IV introduces an aitribuied grammar and parsing for sig-
nal recognition in general. and seismic recognition in particular. If we
use a cancnical gramrmar as the pattern grammar, it usually contains a
large number of production rules and nonterminal symbols. Using
aliributes will increase the descriptive power of the grammar as well as
simplify ihe synlactic rules of the grammar. We use a length attribute
fer seigmic gramrmnar, which reduces more than 80% of the number of
productions and nonterminals Irerm the nonatiributed grammar. Attri-
buted selsmic grammars also increase the recogniticon speed while

mainiaining the same recognition accuracy.

Chapler V contains VLII architectures for string metching, primi-
tive recognition and feature extraction. Allthough some special-purpose
chips have been developed for signal recognition, for example, spoken
waord recognition, we are making our systems as gencral as possible.
This is to say our string matcher and primitive recognizer with the

xceplion of feature extractor can be applied to any other pattern
recognition problem. They empley parallel processing and pipeline
dala Nlow so that very fast throughpul can be achieved. This itnprove-

ment of speed makes real-time pattern recognition possible.
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6.2 Conclusions

Svniactic pattern recognition has heen pointed ocut as a promising
approach io seismic classification (Chen, 1978). While quite a few sta-
tistical approaches have been proposed, we are the first to apply syn-
tactic approaches to this problem. With two simple features, our
approaches attain betler results (81% correct rate) than most of the
exisling statistical approaches (Tjostheim, 1875; Sarna anc Stark,
1980). OQur approaches also differ from the syntactic methods in
Chapter [ in the treatment of primitive selection snd grammar con-
struction. A clustering procedure along with two decision criteria con-
stitute the primitive selection algorithm in our approach, while heuris-
tic approaches were used by others, e.g., in Stockman, et al., (1878).
OQur pattern gramimars are inferred frem training semples, bul most
pattern grammars f{or signal analysis are constructed manually. An
attributed grammar for the seismic application is proposzed, which
could significantly reduce the grammar size and increase the recogni-
tion speed. Finally, VLSI architectures are proposed for seismic
classification, which include feature extraction, primitive recognition
and string matching using (weighted) Levenshtein distance. Our string
malcher is different from many contemparory impiementaticns, i.e.,
exacl mat;ching (e.g., in Foster and Kung, 1280), which are not suitable
for pattern recognition applications because of the noise and other
problems, [or example, segmentation and primitive recognition errors;
ithe detail is discussed in chapter V. The computational resulis can be
produced at a constantl rale, i.e., constant time complexity, when using
our VL3I architectures with pipelined data fiow. Although Lhese VLSI

systems are developed {or seismic classification, they can be applied to
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other similar applications.

6.3 Recommendations

Future works about syntactic seismic signal recognition can be
divided into two parts, cne is algorithm develapment, the other is high-
speed implermnentation. (This can also be applied to other signal recog-
nition problems.) In algorithm development, the possibility of using
variable-length segmentation should be explered. Stochastic grammars
and parsing should be applied when probabilistic information is avail-
ahie. The inclusion of semantic information in pattern primitive is
éﬁother approach (Tsai and Fu, 1980). A conventional pattern
reoresentation contains only syntactic symbols. A typical speech pat-
tern for dynamic time warping contains cnly numerical infemation. A
combination of these two will have both syntactic and semantic infor-
mation. The distance computation and parsing of such patterns can be
separated into syntactic deformation and semantic deformation, and
different weights can be assigned to these two deformations. Feature
exiraction also needs further studies; linear predictive ceoefficients and

ieciures from power spectrum are good candidates,

After ithe algorithms are deveioped, they can aoften be implemented
on a paraliel archilecture, particularly on VL2l architectures. In our
siring matcher, a global path constraint can be imposed, therefore
reduce the number of processors. Those special-purposze chips can be
arranged in such a way Lhat lhe output of one chip is used directly as
Lthe input of ancther chip. Of course, this can happen only wher all the

chips have the same processing speed; othiorwize, bufliers or lulches are
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required between the chips. Although these chips are for special pur-
poses, flexibility should also be considered. The more flexible the chips
are, the more applications they have; therefore, makes their manufac-
turing cheaper. This combination of algorithm development and tech-
nology advance will make many pattern recognition applications practi-

cal in both cost and speed.

The application of attributed grammar using length attribute to
speech recognition should also be investigated. Suppose two strings
z =aaaaaabbbccc and y=auaabbce reprcsent different utterances of
the same word. If we use string meatching and NNR for classification,
then d{z,y} # 0 regardless that we use the conventional Levensh-
tein distance or weighted Levenshtein distance. Ackroyd (1880) sug-
gested a modified WLD which is compuled by subtracting {/—Jidpp
frem the WLD, where 7, J are the lengths of the two strings respectively
and d;p is the weigth for insertion and deletion. Although this modified
WLD can make d{z,y) =0, it will cause other problems, for example,
d{y,z} = 0 for z=aaa. The iype 3 WLD proposed in Chapter 2 can solve
this problem by letting D{z,c) = /{a,2) = 0 for all & € . However,
there exisis one drawback, i.e., there iz no restriction on the number of
insertions or deletions. An atiribuled grammar using length aliribute
can be used to seolve this problems without side effects. Vor example, if
string x is the training sample, Lthen Lhe aitribuled grammear has pro-
duction S-+ABC with inherited length attribute ({6,4%, (3,2}, 13,2} for
(4,B,C}. This attribuled grammar will accept both string z and y, bul

not .
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APPENDIX A

FLOW CHARTS FOR THE SIMULATIONS

Appendix A gives the flow charts for the simulations in Section 5.5.
Figure A1 ig the flow chart for fealure extraction, Figure A.2 is the flow
chart for primitive recognition, and Figure A.3 is the flow chart for

string matching.
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_fread ith data
1 item regd(i)

¥

regs(i) =regs(i)
+ abs(regd(i))

“and regd(i)* ™

\Jegh(i) < o7

¥

write rege(l),
regs(l)

regs(i-+1)=regs()

Y

rege(i+1)=rege(i)
regb(i+1)=regd(i) ( sToP )

i=i+1

Figure A.1 Flow chart for the simulation of feature extraction.
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-
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¥

regu(i,j)=refv{i,j)

rega(i,j) =rega(i,j-1)

rega(i,j)=0

il
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(regx({i,j)-regu(i,j))

j=j+1

rege(i)=rega(i,]j)

Figure A2 Flow chart lor the simulation of primitive recognilicon.
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rege(i)=regali,2) regd(i)=idx{i)
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rege(i)=regar(i)
regd(i)=regb(i)
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1 j=it1

write regd{13)

i

( STOP )

Figure A.2 (Continued)
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Figure A.3 Flow chart for the simulation ol string matching.
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APPENDIX B

STEP-BY-STEP SIMULATION RESULTS

Table B.1 shows the intermediate results of feature exiraction at
each time interval for the seismic signal shown in Figure B.1. The sym-
bols o,6,5,c,2,y and d are described in Figure 5.4(b). We use =a
Iineariy-connected array of 80 processors. Therefore, for a specific
selsmic segment, it takes B0 unit times to pass through the processor
array. Since the data can be pipelined, it takes only one unit time to
extract the feature from each segment. The inputls to Tahle B.2 are the
outputs from Table B.! afiter normalization. Table B.2 shows the inter-
mediate results of primitive recognition at each time interval. At time
n and 2n, n =1, 2, ..., 13, Lhe simulation execules 'compute’ operation.
At time 3n, n = 1, 2, ..., 13, the zimulation execules 'compare’ opera-
tion. The symbols e,z,u.b,y and v of ’compute’ operation are
described in Figure 5.7{a). The svmbols a.b,c,2,y and z of 'compare’
operation are described in Figure 5.7(b). A specific [ealure vector
takes 39 unit times to pass through the processor array. Since the
ifealure {Tectors can be pipelined, it takes two unil times to assign a
primitive to each fsature vector. The ouiput 'g’' from Table B.2 is the
4th symbol of the second =siring in Table B.3. Tabkle B.3 shows Lhe inter-
mediate results of string matching using the welghled Levenstein dis-
lance. Since only substitution errors are considered, the computation

is straightiorward. The svmbols z,y,d2 and & reprezent the registers as
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described in Figure 9.16. A specific pair of sirings take 39 unit tirnes to |
pass through the processor array. Since the sirings can be pipelined, it
takes 3 unit times to compute the distance between an unknown and a
reference st;ing. The recognition results will not be known until we

compare against all the (100) reference strings.
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Figure B.1 Seismic segment (60 points) used in the simulation to gen-
erate intermediate results of Tabie B.1 and Table B.2. '
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TABLE B.2

The intermediate results of primitive recognition at
each time interval for the feature vector from Table B.1
after normalization.
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TABLE B.3

The intermediate results of siring matching
at each iime interval belween strings "acag
hfijgmifmmbmijim’' and 'milgifdifhffm
krllibb ’. The outputl d = 5.742 is the distance
between these two strings.
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