
A SYNTACTIC APPROACH AND VLSI ARCHITECTURES

FOR SEISMIC SIGNAL CLASSIFICATION

Hsi-Ho Liu and K. S. Fu
School of Electrical Engineering

Purdue University
West Lafayette, Indiana 47907

January 1983

ff
This work was supported by ONR Contract N00014-79-C-0574 and the~NSF-Grant

ECS~80-16580.

SECURITY CLASSIFICATION OF THIS. PAGE (When Date,Entered)

REPORT DOCUMENTAriON PAGE READ INSTJ<UCTIONS
BEFORE COMf'LFTINC FORM

RECIPIENT'S CATALOG NUMBER1. REPORT NUMBER 12~_GOVT ACCESSION NO.3.

1fI0-,L}/;;1/ 3 iJr---------- ..L--=--'-~!Zl'_L_=_L_''''_+---.--.----.----------... • __

4. TITLE (and Subtitle) 5. TYPE'. OF REPORT [; PEI·HOD COVERf-n

A SYNTACTIC APPROACH AND VLSI ARCHITECTURES
FOR SEISMIC SIGNAL CLASSIFICATION. Technical)

r-6 .-P-E-R-F-O-R-M-IN-G-O-"-G'r;-[:-p-O-R-T-N-UM-S-E-R---

t-------------.------------------.--+-=-----~_________,c_=_.__ccc____----.-----._.--- -- ...-
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Hsi-Ho Liu and K. S. Fu ONR N00014-79-C-0574)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Purdue University
School of Electrical Engineering
West Lafayette, IN 47907

10. PROGRAM ELEMENT. PROJECT. TAS~-'--­
AREA I} WORK UNIT NUMBERS

,1. CONTROLLING OFFICE NAME AND ADDRESS

Department of the Navy
Office of Naval Research
Arlington, VA 22217

13. NUMBER OF PAGES -~-----'-------,

208 I

""';-;"4-.7':'M::-:ON7':'I:::cTO=OR::-:-:IN::-:G::-A:-:G::-::E::":"N"::::CY~NA:-:M:-::E~&;-:-:AD::-::D:-::R-::-ES::-:Sc:-:-(i:-f d7.'if;-;-fe-re-nt:-:l-ro-m--:::C-on-:-tr-:ol-:7lin--:i/-;O:-:-:Il::---;c--:C)---+7;:,S:-.-;:S~EC:::-:-U-;-;:R~IT~Y:-:C-::-:L-:-A::-;SS:-. ~("~l-:-,"7";"-'e·.-'''--,,-:-t)--·------

unclassified

16. DISTRIBUTION STATEMENT (ollhi" Reporl)

Approved for pUblic release:

"" ~",fct,it'," A' '0' noWN'" 'O:"l

distribution unlimited. . _ __.1

17. DISTRIBUTION STATEMENT (01 tI", a1,strwl onte""lln B1"ck :W. II diller""t from U"I'"rl) 1
I

Approved for pUblic release: distribution unlimited.

--------------- ---·--·1
18. SUPPLEMENT ARY NOTES ~

I
i

.__________ i
19, KEY WORDS (Continue on rf.'verse side if necessary lind identify by block nurnher) 1

I-----------------_._----------------~._------------_. -
20. ABSTRACT ((~Otltl!HH' on rOV('!SI' _"jdt, Jf fH'.-("." ,';llTV lIl1d hlt'nUly t,y h}o('k lluHd}pr)

Syntactic pattern recognition has been applied to seismic classification
in this study. Its performance is better than many existing statistical
approaches. VLSI architectures for syntactic seismic recognition are
also proposed which take advantage of parallel processing and pipelining so
that a constant time complexity is attainable when processing large amount I
of data. Application of syntactic pattern recognition to damage assessment ~

is also proposed and demonstrated on a set of experimental data. - - --<)) J!

______________________/___.14,

DD FORM
1 JAN 73 1473 EDITION OF '1 NOV 65 IS OIJSOLLTL

--_..__ .. -.._----_._._.._---- -
t;FCIJRITY Cl IV:Jr)IF1CA11()N ()!- rH"- 1'/\',1 ,WfWf! }1,1//I I "I.',.,."

SECURITY CLASSIFICATION OF THIS PAGE(Wl".n Dat .. Entered)

)·Seismic waveforms are represented by strings of primitives, i.e.,
sentences, in this study. String-to-string similarity measures based on
both distance and likelihood concepts are discussed along with the symmetric
property and the hierarchy. A fixed-length segmentation is used in the
experiment. Encouraging results comparable to those of the best statistical
approaches are obtained with only two very simple features, namely, zero­
crossing count and log energy. Primitives are automatically selected using
a hierarchical clustering procedure and two decision criteria.

Nearest-neighbor decision rule and finite-state error-correcting
parsers are used for classification. For error-correcting parsing, finite­
state grammars are first inferred from the training samples. These two
approaches have same performance in the experiment? whereas the nearest­
neighbor rule is faster in speed. ?---

Attributed grammar and its parsing are also proposed for seismic
recognition, which could reduce the complexity and increase the descriptive
flexibility of the pattern gramamrs. VLSI architectures are proposed for
fast recognition of seismic waveforms. Three systolic arrays perform the
feature selection, primitive recognition and string distance computation.
These individual units can be used in other similar applications.

Although this study is on seismic classification, it can be extended
or modified to tackle other signal recognition problems.

SECURITY CLASSII"ICATIOf4 01" Tu,r AGE(When D,,'. Enl",ed)

iv

TABLE OF CONTENTS

Page

LIST OF TABLE vii

LIST OF FIGURES viii

ABSTRACT....................... xi

CHAPTER I - INTRODUCTION.. 1

1.1 Statement of the Problem 1.
1. 2 Literature Survey... 7

1.2.1 Syntactic Pattern Recognition and
Digital Signal Processing...................... 7

1.2.2 Pattern Recognition and
Seismic Signal Analysis 13

1.3 Organization of Thesis 17

CHAPTER II - SIMILARIIT MEASURES AND RECOGNITION
PROCEDURES FOR STRING PATTERNS 19

2.1 Introduction 19
2:2 Similarity Measures of Strings 21

2.2.1 Similarity Measures Based on Distance Concept 21
2.2.2 Similarity Measures Based on Likelihood Concept 41

2.3 Error-Correcting Parsing 45
2.3.1 Minimum-Distance Error-Correcting Parsing

Algorithm 46
2.3.2 Maximum-Likelihood Error-Correcting Parsing

Algorithm 52
2.4 Recognition Procedures for Syntactic Patterns 56
2.5 Conclusion 58

v

CHAPTER III - APPLICATION OF SYNTACTIC PATTERN
RECOGNITION TO SEISMIC CLASSIFICATION ; 59

3.1 Introduction , 59
3.2 Preprocessing , 61
3.3 Automatic Clustering Procedure for Primitive Selection 68

3.3.1 Pattern Segmentation 68
3.3.2 Feature Selection 70
3.3.3 Primitive Recognition 71

3.4 Syntax Analysis , 77
3.4.1 Nearest-Neighbor Decision Rule 77
3.4.2 Error-Correcting Finite-State Parsing 77

3.5 Experimental Results on Seismic Discrimination 82
3.6 An Application of Syntactic Seismic Recognition

to Damage Assesment 96
3.7 Conclusion 107

CHAPTER IV - INFERENCE AND PARSING OF ATTRIBUTED GRAMMAR
FOR SEISMIC SIGNAL RECOGNITION 110

4.1 Introduction 110
4.2 Inference of Attributed Grammar for Seismic Signal

Recognition 113
4.3 Error-Correcting Parsing of Attributed Seismic Grammar 121
4.4 Stochastic Attributed Grammar and Parsing for

Seismic Analysis 125
4.5 Experimental Results and Discussion 129

CHAPTER V - VLSI ARCHITECTURES FOR SYNTACTIC SEISMIC
PATTERN RECOGNITION 134

5.1 Introduction 134
5.2 VLSI Architectures for Feature Extraction 137
5.3 VLSl Architectures for Primitive Recognition 143
5.4 VLSI Architectures for String Matching

Based on Levenshtein Distance 150
5.4.1 Levenshtein Distance 153
5.4.2 Weighted Levenshtein Distance 161

5.5 Simulation and Performance Varification 167
5.6 Concluding Remarks 173

vi

CHAPTER VI - SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 176

6.1 Summary 176
6.2 Conclusions 179
6.3 Recommendations 180

LIST OF REFERENCES 182

APPENDICES

Appendix A: Flow Chart for the Simulations 190
Appendix B: Step-by-Step Simulation Results 195

VITA 209

vii

LIST OF TABLES

Table Page

3.1 The criterion function, increments of criterion
function and the classification results of
different cluster number selections 83

3.2 The center of the 13 clusters, the number of members
in each cluster and the primitive symbol of each cluster 88

3.3 Weights for substitution error ,. 92

3.4 Classification results using nearest-neighbor decision rule 93

3.5 The number of nonterminals, productions and negative
samples accepted by the inferred grammars 94-

3.6 The average parsing time and percentage of correct
classification of the error-correcting parsers ,. 95

4-.1 The recognition results, computation time, and
memory used for seismic recognition using an attributed
cfg and a nonattributed fsg 132

5.1 Computation time of sequential algorithm, simulated
computation time for VLSI arrays using sequential
computer, real speedups, theoretical speedups and
speedup ratio 168

Appendix
Table

B.1 The intermediate results of feature extraction at each
time interval for one seismic segment 198

B.2 The intermediate results of primitive recognition at
each time interval for one unknown feature vector 203

B.3 The intermediate results of string matching at each
time interval between two strings 20C.i

viii

LIST OF FIGURES

Figure Page

1.1 An example of two typical seismic records '" 3

1.2 An example of extreme case 4

1.3 Another example of extreme case 5

1.4 Block diagram of a syntactic pattern recognition system 6
1.5 Block diagram of a syntactic pattern recognition system using

the nearest-neighbor decision rule for string pattern 8

2.1 The transformation from string 'aabaab' to 'ababb' 24

2.2 The partial distance 6[i,j] is computed from
6[i,j-1], 6[i-1,j-1] and 6[i-1,j] 25

2.3 An example of global path constraint 26

2.4 Computation of partial distance for (a) type 1, (b)
type 2 and (c) type 3 WLD 34

2.5 An example of dynamic time warping 36

2.6 Examples of some seismic recordings in structural
damage assesment 37

2.7 Examples of slope constraints and corresponding local
distance function of modified time warping distance 40

2.8 computation of partial distance for stochastic models 43

3.1 (a) An example of seismic signal with pulse noise
(glitch). (b) The same waveform after local filtering 63

3.2 (a) Another example of seismic signal with several
pulse noise (glitches) 64

ix

3.3 (a) An original seismic signal. (b) With zero-line
added for comparison. (c) After global adjustment.
(d) After local adjustment 66

3.4 Another example of seismic signaL 67

3.5 tr SB increases as the number of clusters increases 85

3.6 tr Sw decreases as the number of clusters increases 86

3.7 The PFS curve where the maximum value
occurs at number 13 87

3.8 Cluster centers of the 13 clusters in the
two-dimensional feature plane 89

3.9 Examples of the seismic waveforms and
corresponding strings 90

3.10Top level displacement and basement acceleration 98

3.11 Basement displacement of the seven test runs 100

3.12 Top level displacement of the seven test runs 101

3.13 Diagram of slope constraints and local distance
function for string distance computation in damage
assesment application 102·

3.14 Distance between the basement displacement
'. waveform and the top level displacement
waveform of each run 105

4.1 A flow chart of the inference algorithm (Algorithm 4.1) 118

4.2· A flow chart of the parsing algorithm (Algorithm 4.2) 124

4.3 A flow chart of the parsing algorithm (Algorithm 4.3) 128

4.4 A flow chart of the parsing algorithm (Algorithm 4.4) 131

5.1 The special-purpose processor is attached to
a host computer as a peripheral processor : 136

5.2 The internal architecture of the special-purpose
processor 138

5.3 Data setup for (a) feature extraction, (b) primitive
recognition and (c) string matching 139

5.4 Processor array, data movement and operations
of each processor for feature extraction 140

x

5.5 The internal structure of the processor for
feature extraction " 142

5.6 Processor arrays and data movement for
primitive recognition 144

5.7 Data flow and operations of each (a) 'compute'
processor and (b) 'compare' processor 148

5.8 Internal structure and register transfer of (a) 'compute'
and (b) 'compare' processors 149

5.9 (a) Portions of dynamic programming diagram and
(b) corresponding processor array 154

5.10 Internal structure and register transfer of
PE Pi,j at stage 1, 2 and 3 156

5.11 Data movement between PE's 158

5.12 Processors at the same diagonal perform the
same operation; three diagonals are required
for one string (a), and strings can be pipelined (b) 159

5.13 Processor array and data movement for
computing Levenshtein distance 160

5.14 PLA implementation of a simple weight table 162

5.15 A PLA implementation of the weight table
for seismic recognition 164

5.16 Internal structure of the PE for weighted string
distance computation 165

5.17 An implementation of feature extraction with
20 PE's and 60 points in each segment. 171

Appendix
Figure

A.l Flow chart for the simulation of feature extraction 191

A.2 Flow chart for the simulation of primitive recognition 192

A.3 Flow chart for the simulation of string matching 194

B.l Seismic segment (60 points) used in the simulation 197

xi

ABSTRACT

Syntactic pattern recognition has been applied to seismic

classification in this study. Its performance is better than many exist­

ing statistical approaches. VLSI architectures for syntactic seismic

recognition are also proposed which t.ake advantage of I=arallel process­

ing and pipelining so that a constant time complexity is attainable when

processing large amount of data. Application of syntactic pattern

recognition to damage assesment is also proposed and demonstrated on

a set of experimental data.

Seismic waveforms are represented by strings of primitives, Le.,

sentences, in this study. String-to-string similarity mensures based on

both distance and likelihood concepts are discussed along with the

symmetric property and the hierarchy. A flxed-lengt.h :;cgmentatiori is

used in the experiment. Encouraging results comparc:.ble to those of

the best statistical approaches are obtained with only two very simple

features, namely, zero-crossing count and log energy. Primitives are

automatically selected using a hierarchical clustering procedure and

two decision criteria.

xii

Nearest-neighbor decision rule and finite-state error-correcting

parsers aTe used for classification. For error-correcting parsing,

finite-state grammars are first inferred from the training samples.

These two approaches have same performance in the experiment,

whereas the nearest-neighbor rule is faster in speed.

Attributed grammar and its parsing are also proposed for seismic

recognition, which could reduce the complexity and increase the

descriptive flexibility of the pattern grammars. VLSI architectures are

proposed for fast recognition of seismic waveforms. Three· systolic

arrays perform the feature selection, primitive recogn:.tion and string

distance computation. These individual units can be used in other simi­

lar applications.

Although this study is on seismic classification, it can be extended

or modified to tackle other signal recognition problems.

1

CHAPTER I

INTRODUCTION

1.1 Statement of the Problem

In the past, seismic wave analyses were all retained within the geo­

physical field. Underground structure and earthquake analyses are the

most important topics. The major parameters computed from the

recorded seismograms are the location, time, depth and magnitude of

the event and so forth.

In the 1960's, a new problem arose when the idea of the

comprehensive nuclear test ban treaties were proposed. The problem is

how to discriminate between the natural earthquake and the secret

underground nuclear explosion by seismological methods, which in turn

are based on the seismic wave recordings (Bolt, 1976; Dahlman and

Israelson, 1977). Traditional methods use the informations like time,

location, depth, magnitude, complexity, ratio of body wave magnitude

to surface wave magnitude and usually interaction of human experts.

However, these methods are not reliable for small events and require

the involvement of many seismic stations. Recently, pattern recogni­

tion has been applied to the discrimination between these two

categories (see Chen, 1978).

2

It is sometimes very difficult to distinguish between some earth­

quakes and explosions just by looking at the seismic signals only. Even

for experienced analyst additional informations are needed in order to

make correct classification. According to the source mechanism, the

explosion signal should look more like pulse and contain higher fre­

quency than earthquake, while the earthquake signal should last longer

and look more complex. However it is not always true since the depth

of the source, distance and geophysical configuration of the path will

change the waveform significantly. Here are some examples. The

difference between explosion and earthquake is very clear in Figure 1.1,

but not so in Figure 1.2 and Figure 1.3 where neither frequency nor

complexity can tell the difference. In pattern recognition terminology

these two classes are overlapped.

All the existing pattern recognition applications use statistical

approach. Since the complexity and structural information play an

important role in seismic analysis, it is thus natural to pursue syntactic

(structural) approach in seismic pattern analysis. In oil exploration.

the structure of the seismic reflection indicates the underground struc­

ture. In earthquake / explosion classification, the structural informa­

tion is the most important feature. The block diagram of a typical syn­

tactic pattern recognition system is shown in Figure 1.4. Due to the

unknown characteristic about the source and environment, seismic

grammar is usually difficult to construct manually. Therefore, gram­

matical inference techniques will be applied to infer the pattern gram­

mar from a set of training samples. An error-correcting parser will also

be used because the chance that a testing sample is perfectly accepted

by the inferred grammar is very slim. This is usually a rule rather than

3

Figure 1.1 An example of two typical seismic records. The top one is an
explosion; the bottom one is an earthquake.

4

Figure 1.2 An example of extreme case. The top one is a typical explo­
sion waveform; the bottom one is an earthquake record which looks like
an explosion.

5

Figure 1.3 Another example 01 extreme ease. The bottom one is a typical
earthquake wavelorm; the top one is an explosion record which looks likean earthquake.

T
e
st

S
am

p
le

s

A
n

al
y

si
s

T
ra

in
in

g

T
ra

in
in

g
S

am
p

le
s

P
a
tt

e
rn

R
e
p

re
se

n
ta

ti
o

n

P
ri

m
it

iv
e

S
y

n
ta

x
S

eg
m

en
t-

i-"
F

e
a
tu

re
f-a

A
n

al
y

si
s

a
ti

o
n

E
x

tr
a
c
ti

o
n

R
ec

o
g

n
it

io
n

(P
a
rs

in
g

)

_
_

_
S

eg
m

en
ta

ti
o

n
_

_
-

_
_

P
ri

m
it

iv
e

_
_

_
_

--
--

--
--

--
--

--
R

u
le

s
D

es
cr

ip
ti

o
n

.-
G

ra
m

m
a
ti

c
a
l

t
-
-

In
fe

re
n

ce

S
eg

m
en

t-
F

e
a
tu

re
P

ri
m

it
iv

e
-
-

...
f+

a
ti

o
n

E
x

tr
a
c
ti

o
n

S
el

ec
ti

o
n

P
a
tt

e
rn

R
e
p

re
se

n
ta

ti
o

n
4

G
ra

m
m

a
r

I
-
-
-

C
o

n
st

ru
c
ti

o
n

F
ig

u
re

1.
4

B
lo

ck
d

ia
g

ra
m

of
a

sy
n

ta
c
ti

c
p

a
tt

e
rn

re
c
o

g
n

it
io

n
sy

st
e
m

.

rs
in

g
&

C
la

ss
if

ic
at

io
n

R
es

u
lt

s

C
J)

7

an exception in many practical applications, and seismic analysis hap­

pens to be one of them. This is due to the noise and uncertainty of the

source and background. In addition to grammatical approach, we will

also use nearest-neighbor decision rule for classification. Of course, the

distance, or similarity, computation is between the string representa­

tion of the seismic signals. The block diagram of nearest-neighbor

classifier for syntactic patterns is shown in Figure 1.5.

Due to the recent advance of VLSI technology it is now feasible and

will soon become economical to design custom chips for special applica-

tions (Mead and Conway, 1980; Kung, 1979; Ackland, et aI., 1981). A VLSI

system for seismic signal recognition will also be developed in this

study.

1.2 Literature Survey

1.2.1 Syntactic Pattern Recognition and
Digital Signal Processing

Applications of syntactic pattern recognition to digital signal pro­

cessing have received much attention and achieved considerable suc­

cess in the past decade (see Fu, 1982). The most prominent applica-

tions are in the areas of biomedical waveform analysis and speech

recognition. The reason of their success is that these waveforms have

regular and predictable structure. Most biomedical waveforms, e.g.,

ECG wave and carotid pulse wave, are rhythmic and generated by

specific organs of the body where their functions are well understood.

T
e
st

S
am

p
le

s

A
n

al
y

si
s

T
ra

in
in

g

T
ra

in
in

g
S

am
p

le
s

P
a
tt

e
rn

R
e
p

re
se

n
ta

ti
o

n

S
tr

in
g

-t
o

-
N

ea
re

st
-

S
eg

m
en

t-
~

F
e
a
tu

re
~

P
ri

m
it

iv
e

S
tr

in
g

N
ei

g
h

b
o

r
a
ti

o
n

E
x

tr
a
c
ti

o
n

R
ec

o
g

n
it

io
n

D
is

ta
n

ce
D

ec
is

io
n

C
o

m
p

u
ta

ti
o

n
R

u
le

_
_

.S
e
g

m
e
n

ta
ti

o
n

_
--

_
_

_
_

P
ri

m
it

iv
e

_
_

_
_

_
_

_
--

--
--

--
--

--
-

R
u

le
s

D
es

cr
ip

ti
o

n

S
eg

m
en

t-
..

F
e
a
tu

re
i-to

-
P

ri
m

it
iv

e
a
ti

o
n

E
x

tr
a
c
ti

o
n

S
el

ec
ti

o
n

P
a
tt

e
rn

R
e
p

re
se

n
ta

ti
o

n

F
ig

u
re

1
.5

B
lo

ck
d

ia
g

ra
m

o
f

a
sy

n
ta

c
ti

c
p

a
tt

e
rn

re
c
o

g
n

it
io

n
sy

st
e
m

u
si

n
g

th
e

n
e
a
re

st
-n

e
ig

h
b

o
r

d
e
c
is

io
n

ru
le

fo
r

st
ri

n
g

p
a
tt

e
rn

s.

C
la

ss
if

ic
at

io
n

R
es

u
lt

s

en

9

It is thus easy to write a grammar for these waveforms based on their

functions. Horowitz (1975, 1977) developed a syntactic algorithm to

detect the peaks of ECG waves. Albus (1977) used a stochastic finite­

state model to interpret ECG signals. Giese, et a1., (1979) proposed a

syntactic method to analyze EEG signals. Stockman, et 0.1., (1976)

applied a syntactic method to analyze carotid pulse waveforms. The

major problem in biomedical waveform analysis is the noise which could

be generated by muscles or other sources (Albus, 1977).

It has been shown that speech patterns are related to linguistic

items by a complex set of rules belonging to "grammar of speech"

(DeMori, 1977). Therefore, the most effective way of detecting and

recognizing speech patterns is by syntactic method. DeMori (1972) has

shown a syntactic method to recognize spoken Italian digits. The major

problem in speech recognition IS the variability of the speech patterns.

They are speaker-dependent as well as context-dependent. Even for the

same speaker and the same word, the features extracted from different

utterances are usually not the same.

We will review in this section some of the existing syntactic

methods applied to signal processing. Although preprocessing is also

important, we do not include this part here, because it is case depen­

dent and is usually not related to the recognition stage. However, we

will discuss the preprocessing procedure later in our experiments of

seismic signal recognition. We will now concentrate on the major parts

of syntactic pattern recognition system, i.e., segmentation, feature

extraction, primitive selection, grammatical inference or construction,

and syntax analysis.

10

A waveform must be converted into a string of primitives (tree OT

graph for high dimensional representation) before grammatical infer­

ence and syntax analysis can take place. Since a waveform is a one­

dimensional signal, it is most natural to represent it by a string of

primitives. Various series expansion, for example, Fourier series, and

spectral analysis techniques have been used to approximate the whole

waveform. However, they are not suitable for syntactic analysis

because the relationships among one part of the waveform and the oth­

ers are significant in syntactic analysis. Although they can be used to

feature waveform segment, they are subject to the constraint of seg­

ment length and characteristics of the waveform. Pavlidis (1971, 1973,

1974) proposed a linguistic waveform analysis algorithm in which he

partitioned the waveform into several segments by using linear approxi­

mation. The basic idea is to minimize the number of segments by

merging and splitting while the error norm of each segment is retained

below the error tolerance. Horowitz (1975, 1977) extended this idea

and added peak detection algorithm. He gave a syntactic definition to

the positive peak - a positive slope followed by a negative slope or posi­

tive slope followed by zero slope and then followed by negative slope. A

negative peak can be defined in a similar way. He further constructed a

deterministic context-free grammar to recognize positive and negative

peaks. This approach is useful in waveform shape analysis because of

its simplicity. However, the curvature informations are not included.

Another interesting representation of waveform is by tree struc­

ture. It was first introduced by Ehrich and Foith (1976). The peaks and

valleys of the waveform are detected and connected by a relational

tree. Sankar and Rosenfeld (1979) extended this idea by using the

11

concepts of fuzzy connectedness. This method converts one­

dimensional waveform into two-dimensional tree structure. It is useful

for unipolar waveform analysis such as terrain analysis, but not so help­

ful for the analysis of bipolar waveforms such as ECG wave and random

waveforms such as EEG and seismic waves. Another well-known method

of converting one-dimensional signal into two-dimensional image is

called spectrogram which is used very often in speech analysis

(Flanagan, 1972). The spectrogram of a waveform is the plot of energy

as a function of time and frequency. Time and frequency are the hor­

izontal and vertical axes of the picture. Energy is represented by gray

level intensity. This method needs special facilities to convert a small

segment of time-domain signal into frequency-domain representation

efficiently. Automatic interpretation of the two-dimensional image is

still a subject for studies.

Giese et al. (1979) proposed a syntactic method to analyze EEG sig­

nal. The EEG recording is divided into fixed-length segments, each seg­

ment is equal to i-second period. Seventeen features are computed

from the spectral of each segment. A linear classifier is applied to clas­

sify the segments into seven categories. An EEG grammar is manually

constructed and a bottom-up parser without backtracking is used for

syntax analysis.

Stockman et al. (1976) proposed a syntactic pattern recognition

system for carotid pulse wave analysis. A set of thirteen primitives

including various type of line segments and parabolas are used. The

subpattern and primitive extraction starts from the most prominent

substructure, e.g., long line segment, and then less prominent struc­

tures with respect to the more prominent ones, in a prespecified order.

12

A context-free grammar is manually constructed and a top-down parser

is used for syntax analysis.

De Mori (1972, 1977) proposed a syntactic method to recognize spo­

ken digits. First, each 20-msec segment was sent to a low pass filter

and a high pass filter, and zero-crossing intervals obtained at the out­

put of the ~wo filters were classified into certain groups, Le., eight for

LPF and five for HPF. Then, each spoken word is represented pic tori­

cally on a two-dimensional plane. Finally, a context-free grammar is

constructed and a bottom-up parsing is applied. He further introduced

syntactic methods for preprocessing, feature extraction, emission and

verification of hypothesis and automatic learning of spectral features.
"

MotU' and Muchnik (1979) declared that there are two kinds of

curve sources which require the linguistic approach for analysis. One

kind of source is consistent with the phenomenon which is a process of

many stages. The curve consists of parts corresponding to the stages.

The junction of the parts are the time when stages change. The segmen­

tation algorithm should divide the curve into a number of adjacent

parts characterized by the curve shape. Examples of this kind are ECG

waveform and carotid pulse waveform analysis.

The other kind of source represents an object which is chiefly in an

invariable state and occasionally leaves as a result of short-time distur­

bances. For such a curve the segmentation should identify only certain

fragments which are regarded as informative while the remainder are

left out. Example of this kind is the acoustical diagnosis of internal­

combustion engines (Mottl' and Muchnik, 1979).

We feel that seismic wave is the third kind of curve which does not

fall exactly into any of the above two categories. The seismic waves are

13

influenced largely by background as well as by source. Sometimes we

are interested in the background, e.g., oil exploration; ~ometimes we

are interested in the source, e.g., nuclear test detection. This will be

discussed in the next section.

1.2.2 Pattern Recognition and
Seismic Signal Analysis

The major studies of seismic waves can be classified into the follow­

ing areas (Bath, 1979):

1. Seismic prospecting. This is the most attractive topic in these

days. Seismic methods are applied to exploration for occurrences of

oil, are bodies, minerals, etc. The reflection method and the refraction

method are two major methods in use. It should be noted that it is not

possible, at least by now, to detect oil, etc., by seismic or any other

geophysical methods. It is only possible to discover geological forma­

tion which may indicate the occurrence of oil, etc.

2. 1fi-bration measurements. The effect of vibraions, cue to mining,

traffic, etc., on various structures and human beings is dudied. Such

measurements are usually made with accelerographs.

3. Stress measurements. Measurements of absolute stress have

been used to investigate the strength of building materials and stability

in rnines.

4. Earthquake engineering. This field studies the effects of earth­

quakes on all kinds of building structures, especially on crucial struc­

ture such as nuclear power plant.

14

5. Earthqualce prediction. A very importat field although no

significant progress has been made.

6. From the recording of seismic waves to establish the nature of

the source. For example:

a) Nuclear test detection - detect secret underground nuclear

explosion.

b) Seismic detection of rockburst - locate small rupture by seismic

methods.

Most of the existing pattern reconition applications in seismic ana­

lyses are to the classification of earthquake and nuclear explosion.

Chen (1978) proposed a statistical pattern recognition method for

classification of earthquake and nuclear explosion by the seismic wave

recording. He emphasized on the extracton of effective features. Geo­

physical features such as complexity, spectral ratio and third moment

of frequency are tested first. Then he used complex cepstrum, orthogo­

nal transformation, auiocovariance features and short-time spectral

features for classification. His conclusion is that the performance from

a single class of features is somehow limited and the combination of

various features does not improve the performance because of correla­

tion. He suggested to use both statistical and structural features.

Tjostheim (1975, 1977, 1978) suggested that autoregressive

coefficients can be used as features. He has shown that a seismic P­

wave can be represented by an autoregressive model of finite order.

The short-period P-wave is divided into five segments. The first three

autoregressive coefficients of each segment form the feature vector.

The combination of different segments is used to achieve better perfor­

mance. This approach where the whole P-wave is divided into several

15

segments is an improvement, but still no structural information has

been used.

Sarna and Stark (1980) also used autoregressive modeling for

feature extraction, but k-nearest neighbor rule for classification. When

applied to artificial data, this procedure gave excellent results; how­

ever, the results on real seismic / explosion data are very poor. This

may indicate that autoregressive modeling is not suitable for real

sei:;;mic waves. Most of these studies concentrated on feature

selection. Only simple decision-theoretic techniques have been used.

However, syntactic ps.ttern recognition appears to be quite promising in

this area. It uses the structural information of the seismic wave which

is very important in analysis.

Syntactic pattern recognition has been pointed out as a promising

approach to seismic classification (Chen, 1978). While quite a few

statistical approaches have been proposed, we are the first to apply

syntactic approaches to this area. With only very simple features, our

approaches attain encouraging results comparable to those of the best

statistical approaches. Our approaches also differ from the foregoing

syntactic methods in the treatment of primitive selection and grammar

construction. A clustering procedure along with some decision criteria

constitute the primitive selection algorithm in our approach, while

heuristic approaches were used by others. Our pattern grammars are

inferred from the training samples, but most pattern grammars for

signal analysis are constructed manually. An attributed grammar for

our specific application is proposed, which could significantly reduce

the grammar size and increase the flexibility of description. Finally,

16

18

between the two reserviors is determined by the distribution of the two

clusters. Since the nature of the reservior is characterized by the

seismic traces, it is possible to compare the seismic traces of the two

reserviors directly.

Levenshtein distance has recently been applied to speech recogni­

tion (Okuda, Tanaka and KasaL 1976; Ackroyd, 1980). It can be used to

correct the letter or phoneme sequences that are generated by the

recognition machine, or can be built directly into the recognition pro­

cedures. Our VLSI string matcher can be applied to both cases. Futh­

ermore, our primitive recognizer can also be applied to the case in Ack­

royd (l980). Mottl' and Muchnik (1979) proposed a linguistic approach

to the analysis of experimental curves where a special-purpose

language is constructed to describe the pattern. The distance between

two strings is defined as the minimum number of insertion and deletion

of symbols, which is in essence equivalent to Levenshtein distance.

19

CHAPTER II

SIMILARITY MEASURES AND RECOGNITION
PROCEDURES FOR STRING PATTERNS

2.1 Introduction

One important premise in pattern recognition is that we can meas­

ure the similarities between patterns. We say that a pattern belongs to

one class if and only if that pattern is more similar to the members of

this class than the members of other classes. These measures can be

nominal where numbers used only as names, or ordinal where only rank

orders have meaning, or interval where seperation between numbers is

meaningful, or ratios where a natural zero exists. Distance is a popular

candidate for simlarity measure. If the pattern is represented by a

vector, as in the case of statistical approach, the Euclidean distance is

usually used as a similarity measure. The Euclidean di:;;tance has many

nice properties, for example, symmetric and invariant under transla­

tion and rotation.

In syntactic approach, patterns are represented by strings, trees

or graphs, therefore similarity measures must be available for these

syntactic patterns. Several similarity measures have been proposed to

tackle this problem (Fu, 1977; Lu and Fu, 1977, 1978b). Since our major

interest is string patterns, we will review some well-knovvll string simi­

larity measures, discuss their properties and defme u hierarchy of

20

string distanc es.

String similarity measure can be applied to string-matchi.ng in

information storage and retrieval (Hall and Dowling, 1980), speech

recognition (Sakoe and Chiba, 1978), clustering of string patterns (Fu

and Lu, 1977) and nearest-neighbor decision rule for string

classification. It is also used in error-correcting parsing. Given a string

y and a language L (G), an error-correcting parser (ECP) generates a

parse for string x, where x E: L (G) and x is most similar to y.

Section 2 of this chapter discusses various types of string similarity

measures, including both nonstochastic and stochastic models. String

distances are classified into general string distances and special string

distances. General string distances are based on the principles of

insertion, deletion and substitution transformations. Special string dis­

tances are those not based on the above principles. One example is the

time warping distance in speech analysis. We propose another special

distance computation for damage assesment. A hierarchy of general

string distances are also defined. Section 3 describes error-correcting

parsing algorithms which do not require expanded grammars. Section

4 discusses and compares two recognition procedures, namely, the

error-correcting parsing and the nearest-neighbor rule, for syntactic

patterns, and Section 5 gives the conclusion.

This chapter emphasizes the symmetric property of string similar­

ity measures. This is not a problem when we use Euclidean distance as

the similarity measure, since Euclidean distance is always symmetric.

But this is not true when we define string similarity measures, espe­

cially when using weighted distance. The error-correcting parsing algo­

rithms using symmetric string similarity measures are also given which

21

car. not be solved by any other existing parsing algorithm.

2.2 Similarity Measures of Strings

String similarity measures can be defined in terms of two different

concepts, i.e., distance concept and likelihood concept. The former is

for nonstochastic models and the latter is for stochastic models. Con-

sider string x = a 1az ... CLn and string y = b 1b z ... b m , the string simi­

.larity measure between x and y is defined as the distance or probabil­

ity that string y is transformed from string x. The distance or proba­

bility of transformation from x to y is ususlly different from that of

transformation from y to x, therefore, results in an asymmetric simi­

larity measure, i.e., the similarity between x and y is different from the

similarity measure between y and x. This is a big disadvantage in some

applications, for example, in string clustering. The inconsistency in

sim.ilarity measures makes the outcome inconsistent. Therefore we

want to discuss the symmetric property of the string similarity meas-

ure.

2.2.1 Similarity Measures based
on Distance Concept

The distance measures between strings have been proposed for

more than one decade and appeared often in the literature (see Fu,

1982). It is known (Okuda, et al., 1976) that Weighted Levenshtein Dis­

tance (WLD) is more accurate in the correction of string errors than the

abbreviation method (Blair, 1960), the ordered key letters method

(Tanakd and Kasai, 1972) and the elastic matching method

22

(Levenshtein, 1966), where all of these apply substitution, insertion and

deletion to string symbols. Fu and Lu (1977) have classified the weight

metrics into three categories, but did not consider the symmetric pro·

perty of the metric. We would like to further extend this idea and

include the discussion of symmetric property.

A. General String Distances

One of the primitive string distance definitions is called the

Levenshtein distance (Levenshtein, 1966). The Levenshtein distance

between strings x and y, x, Y E: I: ", denoted as d L (x ,y), is defined as

the smallest number of transformations required to derive string y

from string x. The transformations include insertion, deletion and sub­

stitution of terminal symbols.

Definition 2.1 For any two strings x, y E: I: v, we can define a sequence

of transformations J=!T1, T2 , ..• , Tn!. n ~ 0, Ti E: ~Ts, TD • TI~ for 1 ~ i

~ n, such that y E: J(x). The transformations Ts, TD and TI are

defined as follows:

(1) substitution transformation, Ts

(2) deletion transformation. TD

(3) insertion transformation, T1

23

Definition 2.2 The Levenshtein distance d L (x ,y) is defined as

where k j , Tnj and nj are respectively the number of substitution, dele­

tion and insertion transformations in J.

Definition 2.3 A distance between two strings x, y E: 2;., d(x,y) is sym­

metric if and only if d(x,y) =d(y,x).

Since all the insertion, substitution and deletion transformations

are: counted equally, the Levenshtein distance is symmetric. It is

equivalent to assigning weight 1 to each of the transformation. We call

these weights type 0 weights.

The computation of the Levenshtein distance can be implemented

by dynamic programing technique on a grid matrix as shown in Figure

2.1. The partial distance o[i ,j J, which denotes the minimum distance

from point (0, 0) to point (i,j), can be computed from the partial dis­

tances o[i ,j -lJ o[i -1 ,j -lJ and o[i -l ,j J as shown in Figure 2.2. The

total distance is simply o[n ,m.. J, where n is the length of the reference

string and Tn is the length of the test string.

Since the minumum distance is unlikely to occur in some areas of

the grid matrix, for example, the upper left corner and lower right

corner, a globol path constraint can be imposed to save computation

time. Figure 2.3 shows a window constraints such that only those points

(i, n, li-~ I ~ r, where O~i~n, O~j~Tn, r is a selected constant,
Tn

are subject to distance computation. Algorithm 2.1 is for general string

distance computation with global path constraint.

24

.
J

(6,6)

Y
Y

VI'
1 Y

Y

b

b

a

b

a

(0,0)
a a b a b

i

Figure 2.1 The transformation from string 'aabaab' to 'ababb'. The
Levenshtein distance d L (aabaab ,ababb) =2.

6[i-lj]

6[i-lJ-ll

25

o[iJl

o[iJ-ll

Figv.re 2.2 The partial distance 6[i,j] is computed from 6[i,j-l], 6!i-l,j-l]
and 6[i-l,j].

26

J

n

Figure 2.3 An example of global path constraint.

27

Algorithm 2.1. Computation of general string distance with

global path constraint

Input: Two strings x=ala2' . , an and y=b 1b2' .. bm where

eLi, , bj E: l: for all l~i~n, l'5,j~m ,

and a constant r for global path constraint.

Output: The general string distance d (x ,y),

Method:

(1) 0[0, OJ := 0;

(2) for i := 1 to r do o[i, OJ := o[i-1, OJ + D. i ;

(3) for j ,- 1 to m r do 0[O,1J := 0[O,j-1J +D.j ;
n

(4) for j .- 1 to m do begin.

i 1 := :!!:- j - r;
m

i2 := :!!:- j + r;
m

for i := i 1 to i2 do

if (i ~ 1) and (i~n) then o[i,j J := min (i ,j);

('" min (i ,j) is a function for local distance computation *)

end;

(5) d(x,y) := o[n,mJ;

We use a function min (i,j) in Algorithm 2.1 to compute the local

distance. The function min (i ,j) can be computed seperately to match

different local distance constraints and return a distance value. For

Levenshtein distance, min(i,j) = min f o[i-1,jJ + 1, 0[i,j-1J + 1,

0[i-l,j-1J + 1 l if ai j:. bj ; otherwise min(i,j) = o[i-1,j-1]. This

arrangement is more flexible since the dynamic programming portion

never need change, only different function min(i,j) is used for

28

different applications.

The Levenshtein distance appears to be not powerful enough for

many pattern recognition applications. However, it may be sufficient

for string matching in information retrieval (Hall and Dowling, 1980).

Fu and Lu (1977) have proposed a weighted Levenshtein distance (WLD)

where different weights are associated with different transformation

and terminals.

We can make the string distance definition more flexible and prac­

tical by assigning different weights to different transformations and/or

terminals. There are at least three possible cases. In the first case,

different weights are assigned to different transformations but all ter­

minals are treated equally. We call these weights type 1 weights. Here

are the transformations:

() I

Ts, a-
1 W1aw2 W1bwZ for all a,b E: 2:, a ;t:. b, where a- is the cost of

substituting b for a, a- = 0 when b = a.

(2) w1aw2 I TD' 'Y W1 w2 for all a E: 2:, where 'Y is the cost of deleting

a.

(3) W1w2 I TI
, P CJ1aw2 for all a E: 2:, where p is the cost of inserting

a.

The distance defined by these transformations is called type 1

weighted Levenshtein distance.

Definition 2.4: The type 1 weighted Levenshtein distance d fl'l(x ,y) is

defined as

29

where k j , mj and nj are defined the same as in Definition 2.3.

Theorem 2.1 d W1 (x,y) is symmetric, i.e., d W1 (x,y) = d W1 (y,x), if and

only if y =p.

The WLD d Wl(x ,y) can be computed by Algorithm 2.1 where

m1:n(i,j) = min fo[i,j-1] + p, o[i-1,j-l] + (J, o[i-l,j] + yl as shown in

Figure 2.4(a). The weights in step (2) and (3) should also be changed.

In the second case, different weights are assigned to different

transformations and terminals, but the weights associated with the ter­

minals are context-indepentent. We call these weights type 2 weights.

We have the following transformations:

Ts , S(o.,b)
(1) '" 1a "'2 I '" 1b "'2 for all a, b E: ~, a 1= b , where S (a, b) is

the cost of substituting b for a, S (a ,a) =O.

() l

TD, D(o.))
2 "'10."'2 "'1"'2 for all a E: 2:, where D (a is the cost of

deleting o..

Tf ,1(a)
(3) "'1"'2 I "'10."'2 for all a E: 2:, where 1(0.) is the cost of

inserting a.

The distance defined by these transformations is called type 2

weighted Levenshtein distance.

Definition 2.5: The type 2 weighted Levenshtein distance d W2(x, y) is

de:fined as

30

where a ,b E: L: and J is the sequence of transformations used to derive

y from x.

Theorem 2.2 d W2(x,y) is symmetric if and only if D(a) = 1(a) and

S(a,b) = S(b ,a) for all a,b E: 2:.

The type 2 WLD d W2(x ,y) can also be computed by Algoritm 2.1

where min(i,j) = min ~o[i,j-l] + 1(bj), o[i-l,j-1] + S(~,bj)'

o[i-l,j] + D(~)l as shown in Figure 2.4(b) ..

In the third case, the weights associated with the terminals for

insertion and deletion are context-dependent. We call these weights

type 3 weights. We have the following transformations:

I
Ts,S(a,b) ()

(1) c.J 1a""2 ""lb c.J2 for all a,b E: 2:, a ji:. b, where S a,b is

the cost of substituting b for (2, S(a,a) =O.

D (b ,a) is the cost of deleting a in front of b .

1(a ,b) is the cost of inserting b in front of a.

where ""1' CJ2 E: ~ "'.

The reason of using (2) is for symmetric purpose. As we mentioned

earlier, the symmetric property is important in distance computation;

otherwise, the distance between two strings will not be unique, depend­

ing on the selection of reference string and test string. In string recog­

nition, there may not be such problem, since we know the reference

31

and test string. However, in string clustering, the problem will occur,

since we have to treat each string equally. Context-dependent weights

are useful in some other applications, for example, in speech recogni­

tion, where the repetition of some symbols is considered legal. For

instance, the strings x, y, where

x=aaabbc

y= aabbcc

may be considered identical, Le., with zero distance. In this case, it

can be easily implemented by letting J(a,a) =D(a,a) =0 for all a E:2:.

The distance defined by these transformations is called type 3

weighted Levenshtein distance. These transformations are similar to

what Fu and Lu (1977) have proposed but different in two aspects.

First, a right endmarker "&" is used for both the reference and test

strings, therefore no additional transformations are needed to handle

the end point insertion or deletion. From now on, we will use z:;' to

represent z:; U f&l. Second, the weights associated with deletion

transformation are context-depentent.

Definition 2.6: The type 3 weighted Levenshtein distance d W3(x ,y) is

defined as

where a ,b E: Z:;, C E: z:;' and J is the sequence of transformations used to

derive y from x.

Theorem 2.3 d W3 (x,y) is symmetric if and only if D(a,b) = J(a,b) and

5(I':L,6) =5(b ,a) for all b E: Z:;, a E: Z:;'.

32

Before deriving algorithm for computing type 3 WLD, we have to

consider one more problem. Since the weights are context-dependent,

the order of insertion and deletion transformations can no longer be

ignored.

Example 2.1: Let the string y=o.bcda(3 and x=o.a(3, x,y e: 2;", a., (3 e:

('f, UN)", then the transformations from x to y can be

o.a(3I I (a,b) aba(3 II(a,c) abca(3I I (a,d) o.bcda{3, or

o.a(3I I (a,b) aba(3I I (a,d) a bda (3 11 (d ,c) abcda(3, or

o.a(3 II(a,c) o.ca(3 II(c ,b) cxbca(3I I (a,d) cxbcda(3, or

o.a(3 II(a,c) o.ca(3I I (a,d) acda(3 II(c ,b) o.bcda(3, or

a. a (3 II (a ,d) ada (3 II(d ,b) a. bda (3 I I (d ,c) o.bcda(3, or

a. a (3 I I (a ,d) a. da (3 I I (d ,c) 01. c da (3 11 (c ,b) cxbcda(3

There are six different transformations available for Example 2.1.

In fact, there are k! different transformations to insert k symbols in

front of any specific symbol such that all have the same final result. In

Example 2.1 there is no reason to assume that the order of insertion is

"b follewed by c followed by d". Therefore, the minimum cost transfor­

mation should be determined from those six transformations. However,

the computation is much more complicated so that the little gain from

the real minimum cost transformation may not payoff the extra

amount of computation. If we are allowed to chose a suboptimal solu­

tion, we will stick to one type of the transformation, Le., the first one in

Example 2.1.

33

The cases for deletion are similar to those for insertion. Consider

Example 2.1, the transformation from y to x corresponding to the first

one is as follows:

abcdaP>ID(a,d) abcaP>ID(a,c) abaP>ID(a,b) aap>

It is noted that the symmetric property is preserved here.

We can use Algorithm 2.1 to compute the type 3 WLD d W3(x ,y)

where min(i,j) = min f 0[i,j-1J + l(ai+l,bj), 0[i-1,j-1J + S(~,bj),

0[£-1,jJ + D(bj+1,ai) I as shown in Figure 2.4(c). The weights in step

(2) and (3) should also be modified.

We can define a hierarchy on the four types of distances, i.e., type 0

distance is a proper subset of type 1 distance; type 1 distance is a

proper subset of type 2 distance, and type 2 distance is a proper subset

of type 3 distance. They are capable of computing all the general string

distances based on the concepts of insertion, deletion and substitution

transformations. However, there are some exceptions of distance

measurements which do not base on the idea of insertion, deletion and

subtitution transformations. We will call them the special string dis­

tances.

B. Special String Distance

The special string distances mean that these distances can only be

applied to some specific applications, also they are not based on the

idea of insertion, deletion and substitution transformations. One exam­

ple is the dynamic time warping for speech recognition, the other is the

modified dynamic time warping for damage assesment.

In spoken word recognition, the recorded speech signal from

different utterance is different even for the same word by the same

o[
i-

l,
j]
I

J
Io

[i,
j]

o[
i-

l,j
]
I

D
(a

j)
Io[

i,j
]

o[
i-

l,j
]

D
(b

j+
1,

aj
)l

b[
i,j

]
-

b·
p

b·
I(

b
j)

b·
I(

ai
+

1,
b j

)
J

J
J

o[
i-

l,
j-

l]
o[

i,j
-l

)
b[

i-
l,

j-
l]

o[
i,j

-l
]

o[
i-l

,j-
l]

o[
i,j

-t]

c.
J

a·
a·

a·
*'"

I
I

I

(a
)

(b
)

(c
)

F
ig

u
re

2
.4

C
o

m
p

u
ta

ti
o

n
of

p
a
r
t
i
~
l

d
is

ta
n

c
e

fo
r

(a
)

ty
p

e
1.

(b
)

ty
p

e
2

a
n

d
(c

)
ty

p
e

3
W

LD
.

35

perso,n. Meanwhile, the time difference between speech patterns is

nonlinear, therefore a nonlinear matching algorithm is requiered in

order to obtain good recognition results. A special technique called

time warping has been proposed by Sakoe and Chiba (1978). An exam­

ple is shown in Figure 2.5 where x = a 1a2 ... an is the reference pattern

and y = bIb 2 ... bm is the test pattern. Each component ~, bJ· of string

x, y can be a feature vector or a scalar which represents a signal seg­

ment. (The position of each component ~, b j in the grid matrix is

slightly different from what we have used previously.)

Definition 2.7 The time warping distance between strings x and y is

K
dTW(x, y) = 2:: d(c (k))

k=l

where

d (c (k))=d (i (k) ,j (k)) = 11~(k) - bj(k)11

and k is the index of common time axis.

Two major differences between time warping and the general

string-to-string distance can be pointed out immediately. First, one

component, i.e., symbol, in warping function can be used more than

once. For example, component a4 in Figure 2.6 has been used to com­

pared with b 3 and b 4' Second, the components may be skipped without

any cost. Although the general string distance can be modified by let­

ting l(a,a)=O and D(a,b)=0 for a,b E: 2:, to simulate time warping,

there are other restrictions on the time warping function, for example,

slope constraint. Slope constraint will eliminate excessively steep or

gentle gradient from the warping function. For details of slope con­

straints and computation of time warping distance, see (Sakoe and

Chiba, 1978). The weights used for time warping are difIercnt from

36

J

hm • • .. • • • •
· • •· • • • •·
h4 It •
h3 • • • •
h2 • • • •
hI • • • •

....

Figure 2.5 An example of dynamic time warping.

37

c a

d b

Figure 2.6 Examples of some seismic recordings in structural damage
assesment.

38

those for insertion, deletion and substitution, and can be tailored to fit

specific applications.

A path constraint similar to that of general string distance (see Fig

2.3) can also be applied here, i.e.,

li(k)-~(k)1 ~r
m

where r is the path width. This will prevent warping function from hav­

ing unrealistic matches. Sakoe and Chiba (1978) proposed a path con­

straint

li(k)-j(k)1 ~r

This window is along the diagonal axis i (k)=j (k). Since the dynamic

programming proceeds from point (0,0) to point (n ,m), the window

should be along the diagonal axis i (k) = .:!!:....j (k) as shown in Figure 2.3.
m

It has been shown by Sakoe and Chiba (1978) that the symmetric time

warping distance has higher recognition accuracy than asymmetric

time warping distance.

In so.me applications, specifically string distance computation for

damage assesment, one component in one string is equivalent to the

summation of several components in another string. For example, in

Figure 2.6 the top two segments may come from the seismic recordings

of a buildings without damage while the bottom two segments may

come from the same building with certain degree of damage. If we con­

sider each component in Figure 2.6 as an appropriate measurement

then b 3 =a3 + a4 + a 5 + a6 + a7 and d 2 = c 2 + c 3 + c 4' since b 3 is a dis­

tortion of a3' a4' a5' a6 and a7' and d 2 is a distortion of c 2, c 3 and c 4'

39

Therefore we can modify the slope constraints and local distance func­

tions in Sakoe and Chiba (1978) and use them for distance computation.

The modified slope constraints are shown in Figure 2.7. Since the local

distance functions min (i ,j) are symmetric, the modified time warping

distance is also symmetric. The local distance functions min (i,j) are

chang able as we will see in chapter III.

C. Normalized Distance

All the distance measures discussed so far are absolute distances..

For example, consider two pairs of strings Xl' Yl and X2 and Y2'

X I =aaabbbcccddd

YI = acabbbcccdbd

X2 = ad

Y2 = cb

The distance between Xl and YI is two (substitution errors). The dis­

tance between X2 and Y2 is also two (substitution errors). However,

when taking the whole string length into consideration, string pair X I

and Yl are more similar than string pair x2 and Y2' This shows that

equal absolute distance does not necessarily indicate equal similarity.

Sakoe and Chiba (1978) have proposed a normalized distance for

dynamic time warping, which is equal to division of the absolute dis­

tance by the total length of the strings. When absolute distances are

equal, the normalized distances tend to favor longer strings. This same

idea can be applied to general string distance computation with inser­

tion, deletion and substitution.

40

a·I

ro[i-1,j -2J+ IfL£ -bj-bj-11]
o[i,jJ =min l o[i-1,j-1J+ I~-bj I

o[i-2,j -lJ+ 1 ai-l +ai -b,i I

...--~ (i,j)

bj - 2

aj-2 aj-l aj

b·J

ro[i -l,j -3J + Iai -bj -b,i -l-b,i -21
6[i-1,j -2J+ 1 ~ -b j -b j - 1 1

o[i -1 ,j -1 J+ 1 ai -bj 1

6[i-2,j -lJ+ Iai-l+ a i -b,i I
o[i -3,j -lJ+ 1 ai-2+~-1+ai -bj I

o[i,j J =min

"'-'~P--~ (i,j)

bj - 3

aj-3 aj-2 aj-l aj

b·J

Figure 2.7 Examples of slope constraints and corresponding local dis­
tance function of modified time warping distance.

41

2.2.2 Similarity Measures Based
on Likelihood Concept

The string distance measures discussed in the previous section are

for nonstochastic models. In stochastic language, every string is asso­

ciated with a probability (Fu and Huang, 1972). Therefore, we use pro­

bability, instead of weight, to characterize the transformation. Some of

the stochastic context-dependent transformations have been proposed,

for example, substitution has been proposed by Fung and Fu (1975),

substitution and insertion have been proposed by Lu and Fu (1977b).

Here we add context-dependent deletion transformation. We still use

Ts , TI and TD to represent substitution, insertion and deletion

transformation respectively. Associated with Ts , TI and TD we use Ps ,

PI and PD for transformation probabilities. Transformations with

context-dependent probabilities are defined as follows:

probability of substituting b for a.

PD(b lab) is the probability of deleting a in front of b.

PI(ba Ia) is the probability of inserting b in front of a.

for all a E: 2:.

42

The probability associated with the transformation of one string

from another is called stochastic similarity. A higher transformation

probability between two strings means they are more similar. Similar

to the various weights for nonstochastic cases in Section 2.2.1, we can

also define many different types of transformation probabilities, for

example, context independent, terminal independent or transformation

independent. Since they are the simplified versions of the one just

defined, we will only use the above one as an example in the following.

Definition 2.8 The stochastic similarity between strings x and y ,

d S (x ,y), is defined as

where

gj (y Ix) is the probability of transfomations J which derives y from

x.

The transformation probability p (y Ix) is the maximum probability

among those associated with all the possible transformations from x to

y.

Theorem 2.4 dS(x,y) is symmetric if and only if PD(a Iba) =P/(ba 10.)

and Ps(b [e) =Ps(e Ib) for all b ,e E: 2:, a E: 2:'.

The computation of stochastic similarity can also be carried out by

dynamic programming technique. A local probability function replaces

the local distance function of nonstochastic cases. However, the proba­

bility function selectes the maximum of the probabilities which come

from below, left and lower left, see Figure 2.8 for a graphic illustration.

43

e5!i-lJ]

6[i-lJ-l]

6[iJ]

o[iJ-l]

Figure 2.8 Computation of partial distance for stochastic models.

44

Algorithm 2.3 Computation of stochastic string similarity

Input: Two strings x =ala2 '" Clnan +1 and y =b Ib 2 .. , bmbm +1

where CJ.;., bj E: l; for alll:;:;i:;:;n, l:;:;j:;:;m, ~+l =&,

bm + 1 =&, and the probabilities associated with transformations

on terminals in 2: and f& j.

Output: stochastic similarity dS(x,y).

Method:

(1) 0[0, OJ:= 1;

(2) for i := 1 to n do 0[i ,0 J := 0[i - 1,OJ· PD (b 1 ICJ.;. b 1);

(3) for j := 1 to m do o[O,j J := o[O,j -lJ . P1(bjall al);

(4) for i := 1 to n do

for j := 1 to m do begin

o[i,jJ:= max /o[i,j-1J· P1(bjai+llCJ.;.+1),

o[i-1,j-1]' Ps(bj lai), o[,i,-l,j]' PD(bj+ll~bj+l)l;

end;

(5) dS(x,y) := o[n,mJ;

We can also use a global path constraint here to speed up .the com­

putation.

Similarity measure is one of the fundamental constituent of pat­

tern recognition. In some applications, for example, string-matching,

the recognition accuracy relies almost entirely on the accuracy of simi­

larity measure. Even the error-correcting parsing is closely related to

similarity measures. We will discuss the relation between EC (error­

correcting) parsing and similarity measure in the next section. The dis­

tance measures defined in this chapter are not metric. They have the

properties of positivity and symmetry, but do not necessarily have the

property of triangle inequality. The accuracy of actual similarity

45

measure depends on many parameters. The most significant one is the

assignment of weights and probabilities. The weights and probabilities

assignment is case-dependent and usually heuristic. Previous

knowledges and statistics may guide the assignment in some cases.

2.3 Error-Correcting Parsing

Error-correcting parser (ECP) has been proposed in the areas of

compiler design (Aho and Peterson, 1972) and syntactic pattern recog­

nition (Fu, 1977). When a conventional parser fails to parse a string, it

will terminate and reject the string. An error-correcting parser pro­

duces same results as a conventional one when the string is syntacti­

cally correct. However, it also generates a parse for the string even

when it has minor syntax errors. The significance of error-correcting

parsing in compiler design is still controversial since it may misinter­

prete the programmer's intention. However, its significance in syntac­

tic pattern recognition is unquestionable. The most important reason

is the noise problem. The noise may come from sensor device, environ­

ment or data communication. These will cause segmentation error and

primitive recognition error, and therefore result in syntax error. In

m.any cases, the pattern grammars are constructed from a finite set of

training samples, and then used to recognize a larger set of test sam­

ples. Therefore, it is not surprising that the conventional parsers usu­

ally fail to work.

The error-correcting parsing algorithms can be classified into two

categories, one uses minimum-distance criterion the other uses

rnaximum-likelihood criterion. The minimum-distance error-correcting

46

parser (MDECP) is for nonstochastic models where string similarity is

measured by distance. The maximum-likelihood error-correcting

parser (MLECP) is for stochastic model where string similarity is meas­

ured by probability.

The ECP in this chapter is different from other existing ECP's in

two aspects; first, it uses symmetric similarity measures, second, it

does not use expanded grammar.

2.3.1 Minimum-Distance Error-Correcting Parsing Algorithm

For the purpose of generality we will discuss context-free grammar

(CFG) throughout this chapter. Since finite-state laguage (FSL) is a

subset of context-free language, all the principles described here can

be applied to FSL as well. Of course, the implementation can be

modified to increase the efficiency. Given a CFG G and an input string

y E: 2:", a minimum-distance error-correcting parser (MDECP) gen­

erates a parse for some string x E: L (G) such that the distance between

x and y, d (x ,y) is as small as possible. Since we have defined several

different string distance, therefore different error-correcting parsers

can be constructed.

Aho and Peterson (1972) have shown a minimum-distance error­

correcting parsing algorithm which uses the Levenshtein distance. We

will call their algorithm "Algorithm A" for short. They first transformed

the original grammar into an expanded grammar which includes all the

possible error productions. Then, they modified the Earley's parsing

algorithm so that the number of error productions used is stored in the

item list. The productions of the expanded grammar, p', is constructed

from P as follows:

47

(1) For each production in P, replace all terminals a E: 2: by

by a new nonterminal Ea and add these productions to p'.

(2) Add to p' the productions

a) S· -) S

b) S· -) SH

c) H -) HI

d) H -) I

(3) For each a E: ~, add to p' the productions

a) E a -) a

b) Ea -) 6 for all 6 in~, 6 j:. a

c) Ea -) Ha

d) I -) a

e) E a -) A, A is the empty string

In step (3), the productions Ea. -) 6, I -) a and Ea. -) A are called

terminal error productions. The production Ea. -) b introduces a sub­

stituition error. I -) a intorduces an insertion error. Ea. -) A introduces

a deletion error. For the Levenshtein distance, a constant weight, e.g.,

1, is associated with each of these productions. It will also handle the

type 1 WLD d Wl(x ,y) and type 2 WLD d W2(x ,y) in a similar way. For the

type 1 WLD, weight a is associated with production Ea. -) b, weight '(with

E a -) A and weight p with I -) a. For the type 2 WLD, weight S (a ,6) is

associated with production Ea -) 6, weight D (a) with Ea. -) A and weight

I(CL) with I -) a. However, the problem will occur when it comes to type

3 YfLD d W3(x ,y). In order to maintain the symmetric property we must

have D (a ,6) = I (a ,6) for all b E: 2:, a E: 2:' as mentioned in Theorem 2.3.

The expanded grammar will have difficulty in handling context­

dependent transformation weight.

48

Although we can modify this expanded grammar to handle insertion

weights, as did in Fu (1982), it still can not handle the deletion weights.

Since the productions associated with context-dependent deletion

weights will be something like bEa ~ Ea , D(a,b), but this is not a

context-free production rule, even not a context-sensitive production

rule. While the expanded grammars seem unable to solve the sym­

metric problem, we can implement the ECP without the expanded

grammar. This idea of ECP without expanded grammar has appeared in

Lyon (1974) where type a distance is used. His main concern is for

practical reasons: to save space and execution time. Our proposed ECP

using type 3 WLD is a modified Earley's parsing algorithm where the

substitution, insertion and deletion transformations are examined dur­

ing the parsing.

Algorithm 2.4. Minimum-Distance Error-Correcting Parsing Algorithm

Input: A grammar G = (N,'L.,P,S), an input string

y =b Ib 2 ... bm in 'L.", and the weights of transformations

between symbols.

Output: The parse lists 1o, I1, ... ,Im' and d(x,y) where

x is the minimum-distance correction of y, x E: L (G).

Method:

(1) Set j =O. Add [5 ~ . a,O,OJ to Ii if 5 -'10'. is a production in P.

(2) Repeat step (3) and (4) until no new items can be added to I j .

(3) If [A-,;cx' B(3,i,~J is in Ij,and B~I is a production in P, then add

item [B ~ . 'Y,j ,0] to Ii'

(4) If [A->cx . ,i,~J is in Ii and [B->(3 . ky,k ,(J is in Ii, and if no item

of the form [B ->(3A . 'Y,lc ,cp J can be found in Ii' then add an item

49

[B~iJA . 'Y,k ,~+(J to Ii' Store with this item two pointers. The first

points to item [B~iJ' A'Y,k .(J in Ii; the second points to item

[A~cx' ,i,tJ in Ii' If [B~iJA . 'Y,Ic,II?J is already in Ii' then replace II? by

t+(together with the pointers if lI?>t+(.

(5) For each [B~cx . aiJ.i.~J in Ij , add [B~cxa . iJ.i,~+D(bj,a)J to Ii'

Store with this item a pointer to item [B~cx . a{3,i.~J in Ii' If no more

new item of this form can be found. go to step (6); otherwise, go to step

(2) .

(6) If j=m, go to step (9); otherwise j=j+1.

(7) For each item [B-l>cx . a{3,i,~J in Ij - l add [B~cxa . (3,i,t+S(a,bi)J

to Ii' Store with this item a pointer to item [B--)cx . a{3,i,tJ in Ij - l .

(8) For each item [B~cx . a{3,i,t] in Ij - l add [B~cx . a{3.i.t+I(a,bj)]

to Ii' Store with this item a pointer to item [B~cx . a{3.i,tJ in Ii-I' Go to

(2) .

(9) If item [S ~cx . ,0.tJ is in 1m , then d (x ,y) = t. If there are more

than one such items, then choose one with the smallest t. Exit.

In this algorithm, step (5) examines deletion transformations, step

(7) examines substitution transformations and step (8) examines inser­

tion transformations.

The right parse of the input string can be constructed from the

parse lists. Since we use error-correcting parsing, it is possible that

there may exist several parses associated with one input string. but we

only choose the one with minimum distance.

Algorithm 2. 5. Construction of a right parse from the parse lists

Input.' 10 , II"'"1m , the parse lists for string y =61°2' .. bm

O'tLtput.' A parse 1T for x, x Eo: L (G), and the distance

50

d W3(X,y) is minimurn among all the strings in L (G) .

Method:

(1) In 1m choose an item of the form [3 4 0:: . ,O,~J where ~ is as small

as possible.

(2) Let 7T be the empty string initially, and then execute the routine

R([S40:: . ,O,~],m) where R([A 4 0:: . {3,i,7J],j) is defined as follows:

a) If {3=I\, then let 7T be the previous value of 7T followed by the

production number of A 40::. Otherwise, 7T is unchanged.

b) If [A 4 0::' {3,i,7JJ has only one pointer, then execute the item

where it points to. It may be R([A 4 0:: . (5,i,(],j-l),

R ([A 40::' . a{3,i,(],j -1) or R ([A 40::' . a{3,i ,(],j) where 0::= 0:: 'a . Return.

c) If [A~o::' (5,i,7J] has two pointers and 0:: = o::'B , then execute

R([B4!,' ,h,f.L],j) followed by R([A 4 0::'. B{3,i,'l/J],h). Return.

d) If 0::=1\, return.

The parse constructed by Algorithm 2.5 is for x, x E: L(G), Le., no

error productions are included. Usually there is no need to know the

error productions (or equivalently error transformations); but if we do

need to know, we can store the information like D(bj,a), S(a,bj) or

I (a ,b j) in each item. Then we can extract the exact transformations

when we execute R routines. If we are only interested in the minimum

distance, for example, to determine the class membership, then Algo­

rithm 2.4 will be sufficient.·

Algorithm 2.4 is more powerful (because its parse is in terms of

symmetric distance) and is at least as efficient as Algorithm A.

51

Lemma2.1: The time complexity of Algorithm 2.4 is O(n 3) where n is

the length of the input string.

The proof of lemma 2.1 is similar to that of (Aho and Peterson,

1972). Since each item list I j takes time O(j2) to complete, therefore

the total time is O(n 3). We can also show that the number of produc­

tions and the number of items in item lists of Algorithm 2.4 are less

than those of Algorithm A. Therefore, less numbers of productions and

items have to be considered when we add new items to item lists. For

eaeh item [B-loO'.· a(3,i,~J in 1;-1 in Algorithm 2.4 there is an item

[B-loa . Ea,{3,i,~] in 1;-1 in Algorithm A. Let us consider the following

transformations:

(1) Substitition. There is an item [Ea-lo' b,j-l,S(a,b)] in 1;-1

where b=b; and [Ea-lob . ,j-l,S(a,b)J, [B-loaEa · (3,i,~+S(a,b)J in I; in

Alg~rithm A. There is only one item [B-loaa . (3,i,~+S(a,bj)] in I j in

Algorithm 2.4.

(2) Deletion. There is an item [Ea-lo . A, j-1, D(a)J and [B-loaEa . (3,

i, ~+D(a)J in 1j - 1 in Algorithm A. There is only one item

[B-loaa . (3,i,~+D(bj,a)J in Ij - 1 in algorithm 2.4.

(3) Insertion. There are items [Ea -loHa ,j -1,OJ, [H -lo • I,j -1 ,OJ and

[I-~ . b, j -1, I(b)J where b =b j in I j - 1 and items [I -lob . ,j -i,l(b)],

[H-loI· ,j-i, I(b)J and [Ea-loH· a,j-i,l(b)J in1j inAlgorithmA. There

is only one item [B -loa . a (3 ,i, ~+1 (a ,b j)] in Ij in Algorithm 2.4.

Since all the other items not involving error transformations are

unchanged, therefore we can see that the time complexity of Algorithm

2.4 is no more than that of Algorithm A, i.e., the time complexity of

Algorithm 2.4 is O(n 3).

52

We have shown a minimum-distance error-correcting parsing algo­

rithm for any nonstochastic CFG. The distance is symmetric and can

be anyone described in Section 2.2. For a stochasti.c CFG, we can also

construct a maximum-likelihood error-correcting parser which will be

discussed in the next section.

2.3.2 Maximum-Likelihood Error-Correcting Parsing Algorithm

Given a stochastic context-free grammar (SCFG) Gs and an input

string y E: L:", a maximum-likelihood error-correcting parser (MLECP)

generates a parse for some string x E.: L (Gs) such that the probability

P (y Ix)p (x) is the maximum, where P (y Ix) is the deformation proba­

bility from string x to y and p (x) is the probability associated with

string x in L (Gs) (Fu, 1982). There may exist more than one derivation

trees for each x E: ·L (Gs) unless the grammar Gs is unambiguous.

Meanwhile, there will be many possible transformations from string x to

y. We definep(y Ix)p(x) as the one with maximum probability, Le.,

where Pi (x) is the probability associated with the ith distinct deriva­

tion of string x and 9j (y Ix) is the probability associated with the j th

distinct transformation from x to y. The probability p (y Ix) which is

equal to m?-x qj (y Ix) is exactly the same as what we defined for string
J

similarity in Section 2.4.

The proposed MLECP is a modified Earley's parsing algorithm. It

does not require an expanded grammar and is applicable to ambiguous

grammars. The transformation probabilities as well as the insertion,

53

deletion and substitution transformations are examined during the

parsing. The partial probabilies are stored in each item list. Pointers

to the previous items are also stored in the item lists to save parse

extraction time.

Algorithm 2.6. Maximum-Likelihood Error-Correcting Parsing Algorithm

Input: A stochastic grammar Gs = (N ,r"Ps .5). an input string

y = b lb2 ... bm in r,., and the probabilities of transformations.

Output: The parse lists 10 • I 1.... ,Im. andp(y Ix)p(x) where

x is the maximum-likelihood correction of y, x E: L (Gs)'

Method:

p
(1) Set j =a. Add [5 -l> • 0: ,a,p J to I j if 5 -l> 0: is a production in P.

(2) Repeat step (3) and (4) until no new items can be added to I j .

q
(3) If [A-l>O: . B(3,i,~J is in Ij,and B -+ 1 is a production in P, then

add item [B-+ . 1,j ,q] to I j .

(4) If [A-l>O: . ,i,~J is in Ij and [B-l>(3 . A1,1c ,(] is in Ii' and if no item

of the form [B -+(3A . 1,k ,9'] can be found in I j , then add an item

[B->(3A . 'i,k '~'(J to I j . Store with this item two pointers. The first

points to item [B-+(3· A'i,lc ,(J in Ii; the second points to item

[A-+o:' ,i,~J in I j . If [B-l>(3A . 'i.k,9'J is already in I j , then replace 9' by

~.~- together with the pointers if 9'<~.(.

(5) For each [B-l>O: . a(3,i,~] in I j , add [B->o:a . (3,i'~'PD(a Ibja)] to

Ij. Store with this item a pointer to item [B-l>O: . a{5,i,~] in Ij . If no

more new item of this form can be found, go to step (6); otherwise, go

to step (2).

54

(6) If j =m, go to step (9); otherwise j =j + 1.

(7) For each item [B ~cx . ap',i,~J in . Ij - 1 add

[B~cxa . P',i,(Ps(b j la)J to I j • Store with this item a pointer to item

[B~cx . ap',i,tJ in 1j - 1 .

(8) For each item [B ~cx . ap',i ,~J in 1j - 1 add

[B-t-o:· ap',i'~'PI(bjala)J to I j . Store with this item a pointer to item

[B~o: . ap',i,~J in I j - 1 . Go to (2).

(9) If item [5 ~a. . ,O,~J is in 1m , then p (y Ix)p (x) = ~. If there are

more than one such items, then choose one with the largest~. Exit.

The right parse can be extracted from the parse lists. Algorithm

2.5 can be applied here except that in step (1) we choose an item of the

form [5~a.· ,o,t] in 1m which is as large as possible. The parse

extracted here contains no error productions. We can also store and

extract the error transformations as did in the last section. The time

complexity of Algorithm 2.6 is also O(n 3
) since the procedures are

almost identical to those of Algorithm 2.4.

Lemma2.2: The time complexity of Algorithm 2.6 is O(n 3) where n is

the length of the input string.

Suppose G~ is an expanded grammar, then the stochastic language

generated by G; is

where r is the number of distinct transformations from string x to y,

qi (y Ix) is the probability associated with the i th transformation and

p (x) is the probability associated with x. Although string y is

55

generated by the expanded grmmar C;, the probability associated with

y, p (y), can be computed without the expanded grammar.

Algorithm 2.7. Computation of String Probability

Input: A stochastic grammar Cs =(N ,L"Ps ,5), an input string

y =b Ib 2 ... bm in L,", and the probabilities of transformations.

Output: The probability associated with y, P (y), where y is generated by

the expanded grammar C;.
Method:

p
(1) Set j = O. Add [5 ~ . o.,O,p] to Ij if S -;. 0. is a production in P.

(2) Repeat step (3) and (4) until no new items can be added to I j .

g
(3) If [A-.o. . B(i,i,~] is in Ij,and B --Jo /' is a production in P, then

add item [B ~ . I',j ,g] to Ii'

(4) If [A~o. . ,i,~J is in Ii and [B--Jo(i . ky,k ,c:-J is in Ii, and if no item

of the form [B ~{3A . /"k ,rp] can be found in Ii' then add an item

[B-'{3A' 7,k,~·c:-J to Ij . If [B~{3A . 7,k,rpJ is already in Il' , then replace rp

by rp+~'c:-.

(5) For each [B --)0. . a{3 ,i ,tJ in I j , add [B -;'0. a . (i,i ,~. P D (a Ibl' a)J to

I j . If no more new item of this form can be found, go to step (6); other­

wise, go to step (2).

(6) If j=m, go to step (9); otherwise j=j+1.

(7) For each item

[B~o.a . (i,i,~·Ps(bl' la)] to Il' .

in add

56

(8) For each item [B -)u . af3 ,i ,t]

[B-)u· af3,i,t'P/(bja la)J to I j . Go to (2).

58

in I j - 1 add

unambiguous. Although both ECP and NNR have O(n 2) time complexity,

NNR is usually faster than ECP. We will see an example in chapter III.

2.5 Conclusion

We have discussed four types of string similarity measures in this

chapter, and the conditions for them to be symmetric. We also pro­

posed parsing algorithms to deal with the symmetric problem which

can not be carried out by any other ECP. These algorithms are at least

as efficient (computation-wise) as other parsing algorithms. A

minimum-diatance criterion is used for nonstochastic models and a.
maximum-likelihood criterion is used for stochastic models for both

ECP and NNR. Bayes' decision rule can be applied when dealing with

multiclass problems of stochastic models. The class conditional proba­

bility p (x 1 Ci), where Ci =L(Gi), can be computed by Algorithm 2.6.

In NNR, the distance computation employs a dynamic programming

procedure which makes it very easy for implementation in VLSI archi­

tectures. VLSI architectures for ECP and string distances computation

will be reviewed in Chapter V. We also propose a VLSI architecture for

computing the string (Levenshtein) distance in Chapter V.

59

CHAPTER III

APPUCATIONS OF SYNTACTIC PATIERN
RECOGNITION TO SEISMIC CLASSIfiCATION

3.1 Introduction

In this chapter we apply syntactic approaches to two real seismic

classification problems. One is the seismic discrimination between

nuclear explosion and natural earthquake, the other is the seismic

classification in structural damage assesment. These waveforms have

been sampled and digitized before we obtain the data. However, vari­

ous noises exist in both cases. Certain prepocessing procedures there-

fore must be imposed to remove those noises. Section 2 to 5 discuss

application to seismic discrimination, and Section 6 shows application

to damage assesment.

Seismological methods are so far the most effective and practical

methods for detecting nuclear explosions, especially for underground

explosions. Position, depth and origin time of the seismic events are

useful information for discrimination; so are the body wave magnitude

and surface wave magnitude of the seismic wave (Bolt, 1976; Dahlman

and Israelson, 1977). Unfortunately, they are not always applicable and

reliable for small events. It would be very helpful if the discrimination

is based on the short-period waves alone. The application of pattern

recognition techniques to seismic wave analysis has been studied

60

extensively in the last few years (Chen, 1978; Tjostheim, 1978; Sarna

and Stark, 1980). They all use short-period waves only for discrimina­

tion. Most of these studies concentrated on feature selection. Only

simple decision-theoretic techniques have been used. However, syntac­

tic pattern recognition appears to be quite promising in this area. It

uses the structural information of the seismic wave which is very

important in analysis. Seismic records are one-dimensional waveforms.

Although there exist several alternatives (Ehrich and Foith, 1976; San­

kar and Rosenfeld, 1979) for representing one-dimensional waveforms,

it is most natural to represent them by sentences, Le., strings of primi­

tives. In order to make it easy for analysis we divide the pattern

representation procedure into three steps, namely, pattern segmenta­

tion, feature selection and primitive recognition, though they are corre­

lated.

In this chapter, we apply two different methods of syntactic

approach to the recognition of seismic waves. One uses the nearest­

neighbor decision rule, the other uses the error-correcting parsing. In

the first method, a pattern representation sybsystem converts the

seismic waveforms into strings of primitives. The string-to-string dis­

tances between the test sample and all the training samples are com­

puted and then the nearest-neighbor decision rule is applied. The

second method contains pattern representation, automatic grammati­

cal inference and error-correcting parsing. The pattern representation

subsystem performs pattern segmentation, feature selection and primi­

tive recognition so as to convert the seismic wave into a string of primi­

tives. The auLomatic grammatical inference subsystem infers a finite­

sLaLe (regular) grammar from a finite set of training samples. The

61

error-correcting parser performs syntax analysis and classification.

Human interaction is required only at the training stage, mostly in pat­

tern representation and slightly in grammatical inference.

3.2 Preprocessing

The two major problems in preprocessing of digital signal is to iden­

tify the appropriate portion for recognition and to eliminate noise. For

example, the voiced portion should be seperated from the unvoiced

portion in speech recognition; each ECG cycle should be determined in

ECG analysis, and the 'signal' should be recognized in seismic analysis.

'Ne will not discuss these in any detail, though they are important. The

main reason is the variety of their characters. The seismic signals in

our experiment were selected from a huge seismic database. They all

have equal length and have been aligned at the onset.

Noise is always a major problem in digital signal processing. Filter­

ing is the most common technique to remove noise, high-pass, low-pass,

band-pass, just to name a few. These filters eliminate certain regions of

frequency component. Sometimes this may not be desired. For exam­

ple, in Figure 3.1, there is a pulse-like noise within the seismic signal.

This kind of noise is sometimes called glitch. If we apply the signal

through a low-pass filter, it can not eliminate the pulse completely,

meanwhile all the high frequency components of the signal will also be

eliminated. This is not what we want. To avoid this, we need a local

filter which will remove only the pulse noise and leave the rest of the

signal unchanged. This local filtering is possible because the normal

signal does not have pulse in it, the local filter can detect the pulses

62

and then remove them. This local filtering needs human interaction to

specify threshold. Different regions need different thresholds. We can

see from Figure 3.1 that the whole signal can be divided into three por­

tions. The relatively fiat portion at the beginning is the background

noise, which should not be confused with the noise we want to elim­

inate. The next portion has the strongest signal which is called the sig­

nal portion. After the strong signal portion is the weak signal portion

"which is called coda. A point i is said to be a pulse noise if and only if it

satisfies the following two conditions:

(1) absolute magnitude of point i, la(i)l, is greater than or equal to

the threshold.

(2) absolute value of a (i + 1) + a (i -1) - 2 * a (i) is greater than or

equal to the threshold.

The second condition seperates the pulse noise from strong signal por­

tion since the pulse noise is much sharper. After point i is detected to

be a pulse noise, it can be eliminated by letting

a (i) := (a (j) + a (Ie)) / 2

where j < i, Ie > i, point j and Ie are not pulse noise and no point

between J' and Ie is normal signal point.

Figure 3.1 (a) is a signal before filtering, (b) is the same signal after

filtering. Figure 3.2 is another example, but it has more than one pulse

noise. From these two examples we can see the local filter works suc­

cessfully in eliminating the local pulse noise while retaining the original

signals.

Another noise problem of seismic signal is the drift during record­

ing. As can be seen from Figure 3.3(b), the whole signal is somewhat

63

Figure 3.1 (a) An example of seismic signal with pulse noise (glitch). (b)
The same waveform after local filtering.

64

Tl'1"a1·lr n '" ? ("," Ann+hn~ ""'""'mn1e of sPl'smic sl'gn~l ""Tl'th '='cver",l n"I~"" n"i"""".;.. C.l L. \.....- ·.J.I......t \G\} l:l. V-'-L~: 1..... .l:- - _ .. u_~. "-'.' (.",~ 1: "-l._ •• .~......_v~...)r",::::

(glitches). (b) The same waveform after local filtering.

65

below the zero line, especially the beginning portion which is far below

the zero line. In order to retain the details of the original signal, we use

a low order polynomial regression of the original signal and then sub­

tract this polynomial regression from the original signal. The fitness of

the regression is tested by least-squares criterion. We use a 5th-order

polynomial regression for the seismic signals. The regression program

is taken from the book by Carnahan, Luther and Wilkes (1969). The

entire procedure consists of two parts, i.e., global adjustment and local

adjustment. In global adjustment, the polynomial regresssion is applied

to the whole signal and then followed by subtraction. Figure 3.3(c) is

the result after the regression and subtraction from Figure 3.3(b). We

can see that the small segment at the beginning still drifts from the

zero line slightly. Then we apply regression and subtraction La this

small segment; this is called local adjustment. The result after local

adjustment is shown in Figure 3.3(d). Another example is shown in Fig­

ure 3.4. Figure 3.4(a) is the original signal, (b) is the original signal with

the zero line. We can see that the first portion of this signal drift above

the zero line and the rest of the signal drifts below the zero line. Figure

3.4(c) is the result after global adjustment and (d) is the result after

local adjustment. The sequence of applying global adjustment first and

then local adjustment is important. If we reverse the order, it will not

produce the same result as we have otherwise. In our present experi­

ment the segment for local adjustment is selected manually. One alter­

DEltive is to use piece-wise regression to select the optimal breaking

point. This is carried out by breaking Lhe \lrhole signal into two seg­

ments and then fmding regression of each segment. The breaking point

'wlLich results in miminum deviation is the optimal breaking point. This

66

(c.)

Figure 3.3 (a) An original seismic signal. (b) With zero-line added for com­
parison. (c) After global adjustment. (d) After local adjustment.

67

""

Figure 3.4 (a) Another example of seismic signal. (b) Zero-line is added
for comparison. (c) After global adjustment. (d) After local adjustment.

68

must be done on a section of contiguous points. It is time consuming

and therefore is excluded from our experiment. After the above

preprocessing procedures we can perform segmentation and primitive

selection.

3.3 Automatic Clustering Procedure
for Primitive Selection

It has been mentioned in Fu (1982) that the pattern primitives

should serve as basic pattern elements in describing the structural

relations and they should be easily extractable, usually by nonsyntactic

methods. The selection of primitives depends largely on the type of

waveforms. In some applications, the primitives are prespecified by

human expert, e.g., in Giese, et 0.1. (1979). We would like to investigate

the possibility of nonsupervised learning in primitive selection, there­

fore, we use an automatic clustering procedure to select the pattern

primitives. This is important because human selection of pattern prim­

itive may not always be available, besides, it may be unreliable.

3.3.1 Pattern Segmentation

A digitized waveform to be processed by a digital computer is usu­

ally sampled from a continuous waveform which represents the

phenomena of a source plus external noise. For some cases, such as

ECG and carotid pulse wave analysis (Horowitz, 1975; Stockman, et 0.1.,

1976), every single peak and valley are significant, therefore these

waveforms can be segmented according to the shape. For others, like

EEG (Giese, et 0.1., 1979) and seismic vmve analysis in our case, a single

69

peak or valley does not contain significant information, especially when

the signal to noise ratio is low, therefore they should be segmented by

length, either a fixed length or a variable length. A variable-length seg­

mentation is more efficient and precise in representation, but it is usu­

ally very difficult and time consuming to find an appropriate segmenta­

tion. A fixed-length segmentation is much easier to implement. If the

length is well selected it will be adequate to represent the original

waveform. There is a compromise between the representation accu­

racy and analysis efficency. The shorter the segmentation is, the more

accurate the representation will be. But the analysis becomes more

inefficient since the string is longer and the computation time is pro­

portional to string length. Another problem is the noise. If the segmen­

tation is too short, it will be very sensitive to noise.

Pattern segmentation is closely related to primitive selection. The

segment length in speech analysis is 20 milliseconds (DeMori, 1972,

lSI77), and 1 second in EEG analysis (Giese, et a1., 1979). For short­

period seismic signal, a segment length of around 6 seconds is a good

choice. A segment of this length contains adequate information and has

been used by many other researchers (Chen, 1978; Tojstheim, 1975).

Since the sampling frequency of our data set is 10 Hz, a 6-second period

contains 60 points.

We have done experiments on other segment lengths, they are 40

points and 80 points. We selected 41 explosion records out of 111 and

58! earthquake records out of 210 as training samples. The recognition

result for 60-point segment length is 91.0%, i.e., 20 misclassifications

out of 221. When we chose 40 points as segment length, according to

the primitive selection procedure in Section 3.4 the best selecton for

70

primitive number is 18. For primitive number 18, the recognition

result is 72.9%, i.e., GO misclassifications out of 221. If we chose primi­

Live number 13 as we did in GO-point segment length, the recognition

result is still 72.9%, though the detail of classification is different. When

we chose 80 points as segment length, the primitive number selection is

14 and the recognition result is 73.8%, i.e., 58 misc1assifications out of

221.

Although this experiment is by no means conclusive, it does show

that a segment length of GO points is an appropriate selection for

short-period seismic signal. A shorter segment is too sensitive to noise

and a longer segment is too complicated for a primitive. The selection

of segment length is ususlly a subjective judegment and depends on the

characteristic of the signal waveform.

3.3.2 Feature Selection

Any linear or nonlinear mapping of the original measurements can

be considered as features provided they have discriminating capability.

Both time-domain features and frequency-domain features have been

used for seismic discrimination. For example, complexity and autore­

gressive models are features in time domain; spectral ratio and third

moment of frequency are features in frequency domain (Dahlman and

Israelson, 19(7). Since we segment the seismic wave, complexity and

spectral ratio features are implicitely contained in the string structure.

Furthermore, the segment may be too short for a model estimation if

we use shorter segment. Therefore, we selected a pair of commonly

used features, i.e., zero crossing count and log energy of each segment,

which are easy to compute and contain significant information. Easy to

71

compute is a desired property for primitive extraction in syntactic

approach. Zero crossing count roughly represents the major frequency

component of the signal and log energy indicates the magnitude of the

signal. These two features should be able to characterize the signal

segment. Other features may also serve as good candidates. An advan­

tage of syntactic approach is that feature selection is simpler since

features are extracted from smaller segments, and feature selection is

not that critical as is in statistical approach. Since there is no optimal

feature selection algorithm, features are usually subjectively selected.

Although there are criteria such as between cluster and within cluster

scatterness, they have no direct relation to final recognition results.

While other features, including K -L expansion, do not show any

superiority in recognition results in our preliminary experiments, we

will stick to the zero crossing count and log energy.

Since we are experimenting a new approach for seismic discrimina­

tion, we do not particularly emphasize feature selection. In fact, simple

features like these give favorable result in our experiment. This indi­

cates that syntactic approach utilizes structural information instead of

sophisticated feature measurement.

3.3.3 Primitive Recognition

The selection of primitives varies very largely in digital signal

recognition. Line segments from linear approximation of signals have

been used in ECG analysis (Horowitz, 1975, 1977). Parabola and line

segment have been used in carotid pulse wave analysis (Stockman, et

al., 1976). These primitives are mainly used to describe the shape of

the signal waveform. When the shape of the signal wavefonn is not

72

important, other types of primitives must be selected. For example in

spoken word recognition (DeMori, 1972, 1977), silence interval, stable

zone and lines are used as primitives. In EEG analysis (Giese, et aI.,

1979), a group of seven primitives has been specified and a linear

classifier is used to recognize the testing segments. What should we do

if the signal on hand is not as predictable as speech signal, nor can we

specify the primitives as in EEG analysis. One possible solution is by

clustering procedure. A clustering procedure will classify any number

of signal segments into certain number of clusters in an optimal way,

which means minimization of some criterion function.

If the number of primitives, i.e., the number of clusters, has been

selected then any typical clustering technique, e.g., K-means algo­

rithm, can find the optimal clustering. Now the difficult part is how to

select an appropriate primitive number. For example in EEG analysis,

how do we know seven is the best selection. Is there any other better

selection? How does the selection of primitive number affect the final

recognition results? We will discuss all of these questions in this sec­

tion.

Without lost of generality we assume that each signal segment is

represented by a vector of features x =[Xl, X2' ... , XkJ
t . It is noted that

we use decision-theoretic approach for primitive selection. Other

representations may also serve the purpose as long as the similarity

between signal segments can be computed. If the feature space is iso­

tropic, then the Euclidean distance can be used as a measure of simi­

larity and it is invariant under translation or rotation. However, the

invariance can be attained by normalizing the data before clustering.

73

Suppose we want to partition n samples xl, x 2, ... , x n into k dis­

joint subsets C l' C2 , ... , Ck . Each subset represents a cluster. The sam-

pIes in the same cluster are more similar than the samples in different

clusters. One typical approach is to define a criterion function that

measures the clustering quality of any partition of the samples. Then

the problem is to minimize of maximize the criterion function. One of

the most well-known criterion function is the sum-of-squared-error cri­

terion (Duda and Hart, 1973). Let ni be the number of samples in clus­

ter Ci and TTLi be the mean of those samples, where

The sum-of-squared-error criterion is defined as

k

J fJ = I; I; I Ix - TTLi I [2
i=l :Z:£Ci

Another set of criterion functions are derived from scatter matrice.

First, let us introduce some definitions.

Mean vector for i th cluster:

Total mean vector:

1-I; x
n C

1 k
- '" n· TTL·LJ 1 1
n i=l

Scatter matrix for ith cluster:

74

Si = I: (x -mi)(x -mi)t
XEq

Within-cluster scatter matrix:

Between-cluster scatter matrix:

k
S B 2: ni (mi - m) (mi - m) t

i =1

Total scatter matrix:

ST = I: (x -m)(x -ml
x EC

It follows obviously that Sr =Sw + SB

We define the optimal partition as one that minimizes Sw or max­

imizes SB' In doing so we need a scalar measure of the size of a scatter

matrix. The trace of Sw is the simplest measures. Other well-known

measures are the determinant of Sw and the trace of SilSB' For the

sake of computational simplicity we will only consider the trace of Sw

as criterion function. The trace criterion is defined as:

lc

tr Sw 2: tr Si
i=l

k

2: I: II x - mi 11
2 = Je

i=l XECi

which is exactly the same as the sum-of-squared-error criterion. Since

lr Sr = tr SB + tr Sw and tr Sr is independent of how the samples are

partitioned, therefore minimizing tr S w is equivalent to maximizing

tr SE' Where

75

k
tr SB 2:: ni II ffii - m 11

2

i=l

If the number of cluster is known, then the K-means algorithm can

be applied to find a clustering which minimizes the criterion function,

i.e., the sum-of-squared-error Je . When the number of clusters is unk­

nown, at least two approaches can be used to determine the optimal

cluster number. These two approaches turn out to have similar results

in our experiment.

Both approaches use a bottom-up hierarchical clustering pro­

cedure. This algorithm repeats the clustering procedure for Ie = U, Ie =
U - 1 , ... , Ie = L, where U and L are the specified upper and lower bound

respectively. The first approach selects the optimal cluster number by

examining how the criterion function Je changes with Ie. If these n

sa.mples are really grouped into p well seperated clusters, then J e

should increase slowly until Ie =p and then increase much more rapidly

thereafter. The algorithm for bottom-up clustering procedure is shown

a~; follows:

Algorithm 3.1 Bottom-Up Hierarchical Clustering

Input: A set of n unclassified samples, an upper bound U

and a lower bound L.

Output: A sequence of optimal clusterings for the number

of clusters between U and L.

Method:

(1) Let lc = U, Ie is the number of clusters, and arbitrarily

assign cluster membership.

(2) Reassign membership using J(-means algorithm. If

76

Ie -::;,L, stop.

(3) Find the nearest pair of clusters, say Ci and Cj , i "1= j.

(4) Merge Ci and Cj , delete Cj and decrease Ie by one,

go to step 2.

The distance between two clusters is defined by

where mi' mj are the mean vectors of clusters i ,j respectively.

Just as F-statistics can be used in univariate case to test the

significance of group seperation, a pseudo F-statistics (PFS) can be

applied in multivariate case provided that a single measurement of

similarity between samples, e.g., Euclidean distance, is assumed (Vogel

and 'Nong, 1978). A pseudo F-statistics is defined as:

PFS
tT 58 (n - k)

tT Sw (k - 1)

As the number of clusters increases, tT 58 will always increase while

tT Sw will always decrease. However, the PFS value will not monotoni­

cally increase due to the effect of (n-k) / (k-l) which is smaller as k

becomes larger. Therefore, there will be a peak of PFS value some­

where in the middle. Since, like F-statistics, the PFS shows the

significance of group seperation, therefore a larger PFS value means

the clusters are more compact and well seperated. The crietrion here

is to select the maximum PFS value; the corresponding cluster number

will be optimal. For example, in Figure 3.7, the maximum PFS value

appears at cluster number 13, therefore 13is the optimal selection for

cluster nurnber.

77

3.4 Syntax Analysis

If the classification is all we need, then the nearest-neighbor deci­

sion rule is preferred because of its computational efficiency. On the

other hand, if a complete description of the waveform structure is

needed, we have to use parsing (or error-correcting parsing). An error­

correcting parser (instead of conventional parser) is required for most

practical pattern recognition applications. Since noise and distortion

usually cause conventional parsers to fail. It is not unusual that even a

noise-free, distortion-free pattern can not be recognized by a conven­

tional parser, since the pattern grammar is often inferred from a small

set of training samples.

3.4.1 Nearest-Neighbor Decision Rule

The concept of nearest-neighbor decision rule in syntactic

approach is similar to that in decision-theoretic approach. The only

di:fference is in distance calculation. Four types of string distances

hcwe been discussed in chapter two, and they can be computed using

dynamic programming method (e.g., Algorithm 2.1).

3.4.2 Error-Correcting Finite-State Parsing

Before parsing can take place we must have a grammar, which can

be either heuristically constructed or inferred from a set of training

samples. In order to study the learning capability of the syntactic

method, we choose the grammatical inference approach.

Phrase structure grammars have been used to describe patterns in

syntactic pattern recognition (see Fu, 1982). Each pattern is

78

represented by a string of primitives which corresponds to a sentence.

in a language (tree or graph in high dimensional grammars). All strings

which belong to the same class are generated by one grammar.

79

a source grammar which generates a language and we want to infer the

source grammar or automaton based on the observed samples. In the

second case the exact nature of the source grammar is unknown, the

only information we have are some sentences generated by the source.

We assume that the source grammar falls into a particular class and

infer a grammar which generates all the training samples, and hope­

fully will generate some samples belonging to the same class. If a nega­

tive sample set is given, the inferred grammar must not generate any

sarnple in the negative sample set. Grammars more complex than

finite-state grammars and restricted context-free grammars (in Chom­

sky hierarchy) can not be inferred efficiently without human interac­

tion. Furthermore, there exists no obvious self-embedding property in

seismic waves, finite-state grammars will be sufficient in generating

power. Therefore we choose finite-state grammars to describe the

sei:smic waves.

The inference of regular grammars has been studied extensively.

The k -tail algorithm finds the canonical grammar and then merges the

states which are k -tail equivalent. This algorithm is adjustable, the

value of k controls the size of the inferred grammar. Another algorithm

called tail-clustering algorithm (Miclet, 1980) also finds the canonical

grammar, but then merges the states which have common tails. The

original algorithm is not as flexible as the k -tail algorithm, but will infer

a grammar which is closer to the source grammar in some cases. We

can modify the merge criterion to make it more flexible. Since the

grammar is inferred from a small set of training samples, we can only

expect that the inferred grammar generates all the training samples

and will generate other strings which are similar to the training

80

samples. The generating power of the inferred grammar relies entirely

on the merge procedure. If no merge occurs at all, then the inferred

grammar generates exactly the same training set, no more no less.

Since all the seismic records have the same length and alignment in

our experiment, the sentences representing these signals also have the

same length.

Error-Carre c ting Parsing

After a grammar is available, either by automatic inference or by

manaul construction, the next step is to design a recognizer which will

recognize the patterns generated by the grammar. If the grammar G is

finite-state, a deterministic finite-state automaton can be constructed

to recognize the strings generated by G.

Segmentation and primitives recognition errors due to noise and

distortion usually occur in practice. Conventional parsing algorithms

can not handle these situations, therefore, an error-correcting parser

must be used (Fu, 1977).

Since all the sentences in our example have the same length, only

the substitution error needs to be considered. For each production A -)

aB and A a in the original grammar we add A bB and A b

respectively to the covering grammar, where A,B E: N, a,b E: 1:, b ;t::. a,

N is a set of nonterminal symbols and 2: is a set of terminal symbols.

Different weights can be assigned to different error productions, there­

fore, result in a minimum-cost error-correcting parser. The assignment

of weights is a crucial problem. We have used the distance between

clusters a and b as the weight for substituting a by b and vise versa.

Since a finite-state grammar can be represented by a transition

Is I, go to

81

diagram. Thus, a minimum-cost error-correcting parsing is equivalent

to finding a minimum-cost path from the initial state to a final state.

Algorithm 3.2. Computation of Minimum-Cost

Input: A transition diagram with n nodes numbered 1, 2, . __ , n,

where node 1 is the initial state and node n is a final state,

and a cost function Cij(a), for l~i,j~n, a E: 2:, with Cil'(a)

~ 0, for all i and j. An input string s.

Output: m In the lowest cost of any path from node 1 to node n

whose sequence is equal to that of the input string s .

.Method:

(1) Set k = 1.

(2) For all l~j ~n, mIl' =min 1m lk + Ckl' (b), for all l~k~n L where

b is the k th symbol of input string s.

(3) If k < Is I, increase k by 1 and go to step (2). If k

step (4).

(4) Output mIn, which is the lowest cost from node 1 to node n fol­

low'ing the move of input string s _ Stop.

Cost function Cij (a) denotes the cost of moving from state i to

state j while the input symbol is 'a'. mIl' IS the minimum cost from

state 1 to state j. The computation time of Algorithm 3.2 is linear, i.e.,

G (n), where n is the length of the input string. This algorithm is a

finite-state parsing algorithm where only substitution error is con­

sidered. The production number can be stored with Cil' (a), and the

parse can be stored with m Ij'

82

If insertion and deletion errors are to be considered, then the

parser is still similar except that we have to compute and store the

information V(T, S, a) which is the minimum cost of changing character

'a' into some string which can change the state of the automaton from

state T to S (Wagner, 1974). The inclusion of insertion and deletion

errors makes the error correction more complete, but assigning

appropriate weights to insertion and deletion error is even more

difficult.

3.5 Experimental Results on Seismic Discrimination

The seismic data used in our experiments are provided by Profes­

sor C. H.Chen of Southeastern Massachusetts University. The data

were recorded at LASA in Montana. Each record contains 1200 points;

the sampling frequency is 10 points per second. The original data con­

tains 323 records. Due to some technical problems in data conversion

only 321 records were received. Among them 111 records are nuclear

explosions and 210 records are earthquakes.

We have selected forty-one earthquake records and fifty-nine explo­

sion records as training samples. Each record is divided into 20 seg­

ments where each segment contains 60 points. Two features, i.e., zero­

crossing count and log energy, are computed from each segment.

Table 3.1 shows the criterion function Je and its increment from cluster

number 16 down to 2, which are the results of applying Algorithm 3.1 to

the training segments. We can see that the increment of Jr:. is small

before and until cluster number is equal to 13 and then becomes much

larger thereafter. Therefore, we say that 13 is an optimal selection of

83

TABLE 3.1

The criterion function, increments of criterion
function and the classification results of .
different cluster number selections

Cluster Criterion Increment Classif.
No. function of c. f. %

16 359 80.1

15 374 15 81.9

14 392 18 85.5

13 416 14 91.0

12 456 40 84.6

11 510 54 83.7

10 565 55 85.5

9 632 67 81.9

8 698 66 76.5

7 783 85 68.8

6 899 116 57.9

5 1069 170 64.3

4 1360 291 57.9

3 1756 396

2 2464 708

84

cluster number. Also shown in Table 3.1 are the recognition results for

different cluster number selections. The number of clusters is

equivalent to the number of primitives. The selection of 13 clusters

gives the best recognition result. The tr 5 s curve which is monotoni­

cally increaseing is shown in Figure 3.5, and the tr 5 w curve which is

monotonically decreasing is shown in Figure 3.6. The PFS curve is

shown in Figure 3.7. The maximum PFS value appears at cluster

number 13, which is identical to the selection in the previous approach.

Although there is a secondary peak at cluster number 6 in Figure

3.7, this one does not have any significant meaning. The recognition

results of Table 3.1 show no indication of peak at that location. How­

ever, there does exist a secondary peak in recognition accuracy which

occurs at cluster number 10. The possible reasons for these

phenomena are that first, our seismic samples are not very compact

and well seperated; and second, we reassign membership after each

merging, this may affect the PFS value and recognition results. In spite

of the secondary peak, the selection of the dominant peak gives the

best results and should be the rule to follow.

The centers of the 13 clusters and the number of members in each

cluster are shown in Table 3.2. The cluster centers are further plotted

in the two-dimensional feature plane in Figure 3.8. Portions (17 seg­

ments) of two examples, one is a typical explosion; the other is a typical

earthquake, are given in Figure 3.9, which have both original waveforms

and string representations. The second segments of the two waveforms

look the same but have different primitive assignment. This is because

both symbol 'a' and 'e' have very small magnitudes compared with the

oUler symbols (see Figure 3.8), therefore the frequency difference can

85

:36IJO.21 -r----------------------=::::::;;:oo-----,

:3377.10

:U13.99

1!8S0.88

CJ:I
U) 157.78
(f)

l!32'+.67

i!D61.56

:1798.&15

18161&112108
:lS3S.3S of-----r---..-----.----r-----,------.,----,-----4

2

No. of clusters

Figure 3,5 tr SB increases as the number of clusters increases.

86

3805.97 _r_----------------------------,

181612108

1'777.31

1371.58

2588.78

5GO .117 +-----.----..-----...----,r----v-----.-.-.;;;;:::::._---1
2

965."9

299'f.51

3't00.2&+

No. of clusters

Figure 3.6 tr Sw decreases as the number of clusters increases.

87

2.'t2'+.10 -------------------x~------__,

1. 'to 1.67

1.379.2'+

1.356.81

(J)
u.. 1.33'+ .38
n.

1.311.9'+

U!89.51

1.267.08

1816121086
1.2't1t.6S -J---...."..----.----r----...,-----.,.---,.----r----!

2

No. of Clusters

Figure 3.7 The PFS curve where the maximum value occurs at Lumber
13.

88

TABLE 3.2

The center of the 13 clusters, the number
of members in each cluster and the primitive
symbol of each cluster.

Cluster Feature 1 Feature 2 No. of Primitive
No. (Z-C C.) (1. E.) Members Symbol

1 -1.718192 -2.108372 67 a

2 3.336939 -1.740116 36 b

3 -.180208 -2.387472 43 c

4 -1.229273 .987182 187 d

5 .467317 1.048923 179 e

6 .426978 .113834 233 f

7 -.407192 1.283638 209 g

8 -.320940 .440148 245 h

9 1.431115 .168968 73 i

10 -.306735 -.573480 211 j

11 1.485801 -.940290 145 k

12 -1.413536 -.255781 116 1

13 .476520 -.756842 256 m

89

1.50000

+

+
g +e

.:B75000· d

+
.25)000 h +i+

r
+

-.375000 I
::J' +0' e

"- J +
CIJ +kt5 -1.00000 m

C'
0

.-J
-1.62'S00 .

+b

+
-2.25000· a

+
c

-2.87500

-3.:50000 +----r---T"""'--...,----r---..,....----,:----...,.----i
-1.8S000 -1.11875-.387300 .3'f37S0 1.07500 1.8062'5 2.537S0 3.26875 It.ooooo

Zero-crossing Count

Figure 3.8 Cluster centers of the 13 clusters in the two-dimensional
feature plane. The corresponding primitive symbols are also presented.

90

e a g h r
I

i j j "m J
I

:f m m k m
i . I I

a a I a d gig I e I· d I gig I gig I d I ,g Ie I e I

Figure 3.9 Examples of the seismic waveforms and corresponding
strings. The top one is a typical explosion, and the bottom one is a typical
earthquake.

91

not be seen due to the resolution of the drawing. Algorithm 2.1 is

applied for string distance computation, and the nearest-neighbor deci­

sion rule is used for classification. Since all the records have equal

length and alignment, only substitution errors are considered. The

weights for substitution errors are given in Table 3.3. The weight

between pattern primitives is defined as the normalized distance

between corresponding clusters. Classification results and computation

time of the 221 test samples are shown in Table 3.4 where 201 records

are correctly classified, i.e., 91% correct rate, with an average time of

0.07 sec for each record. The experiments were run on a VAX 111780

computer using Pascal programming language.

We use the Ie -tail finite-state inference algorithm to infer pattern

grammars for the seismic waves. When Ie ~ 19, the inferred grammar is

exactly the same as the canonical grammar. When Ie < 19, some

equivalent states will be merged, therefore, result in fewer number of

states and productions. The number of states and productions for vari­

ous values of Ie is shown in Table 3.5; it is getting smaller as Ie gets

smaller. Average parsing time of one string and percentage of correct

classification for different Ie are given in Table 3.6. The parsing time is

shorter when Ie is smaller. This is due to the smaller number of produc­

tions and states. On the other hand, the correct perentage is also

srnaller when Ie is smaller. This is because derived grammars generate

strings which do not belong to the positive sample set. Another reason

of worse performance is that in our case only those states with longest

tails are merged. In terms of transition diagram, this means only those

states which are close to the initial state are merged. Because the le­

tails of those states are empty, and only are they lc -equivalent. This is

92

TABLE 3.3

Weights for substitution error

a b c d e f g h i k 1 m

a o 0.95 0.29 0.59 0.72 0.58 0.68 0.55 0.73 0.39 0.64 0.35 0.49

b 0.95 0 0.67 1.00 0.75 0.65 0.91 0.80 0.51 0.72 0.38 0.94 0.57

c 0.29 0.67 0 0.67 0.66 0.49 0.69 0.53 0.57 0.34 0.42 0.46 0.33

d 0.59 1.00 0.66 0 0.32 0.35 0.16 0.20 0.52 0.34 0.63 0.24 0.46

e 0.72 0.75 0.66 0.32 0 0.18 0.17 0.19 0.25 0.34 0.42 0.43 0.34

f 0.58 0.65 0.48 0.35 0.18 0 0.27 0.15 0.19 0.19 0.28 0.35 0.16

g 0.68 0.91 0.69 0.16 0.17 0.27 0 0.16 0.40 0.35 0.55 0.35 0.42

h 0.55 0.80 0.53 0.20 0.19 0.15 0.16 0 0.33 0.19 0.43 0.24 0.27

i 0.73 0.51 0.57 0.52 0.25 0.19 0.40 0.33 0 0.36 0.21 0.54 0.25

j 0.39 0.72 0.34 0.34 0.34 0.19 0.35 0.19 0.36 0 0.34 0.22 0.15

k 0.64 0.38 0.42 0.63 0.42 0.28 0.55 0.43 0.21 0.34 0 0.56 0.19

1 0.35 0.94 0.46 0.24 0.43 0.35 0.35 0.24 0.54 0.22 0.56 0 0.37

ill 0.49 0.57 0.33 0.46 0.34 0.16 0.42 0.27 0.25 0.15 0.19 0.37 0

93

TABLE 3.4

Classification results using
nearest-neighbor decision rule

Average time for
one strinR: (sec)

0.07

Percentage of
correct classification

91.0 %
201 records are correctly

classified out of 221

94

TABLE 3.5

The number of nonterminals, productions and negative samples
accepted by the inferred grammars. The inference algorithm
is k-tail algorithm with different values of k.

Explosion Earthquake No. of

k
negative

Nonterm. Product. Nonterm. Product. samples
No. No. No. No. accepted

20 681 720 939 996 0

19 681 720 939 996 0

18 669 720 928 996 0

17 641 692 900 970 0

16 604 656 856 926 0

15 566 618 804 874 0

14 525 577 747 817 0

13 484 536 688 758 0

12 443 495 629 699 0

11 402 454 570 640 0

9 320 372 452 522 0

7 238 290 334 404 0

5 156 208 216 286 0

95

TABLE 3.6

The average parsing time and percentage of correct
classification of the error-correcting parsers with
different values of k.

k Average parsng time Percentage of correct
for'one string (sec) classification (%)

20 2.55 91.0

19 2.55 91.0

18 2.72 84.2

17 2.67 81.0

16 2.54 73.8

15 2.33 72.8

14 2.15 71.0

13 2.10 69.7

12 2.03 69.7

11 1.83 71.0

9 1.47 69.2

7 1.15 68.8

5 0.77 -

96

the consequence when all the training samples have equal length. Nor­

mally, the merged states should distribute uniformly between initial

and final states. One final note about Table 3.6 is that the decrease of

parsing time is true for any cases, but the decrease of correct percen­

tage may not be true for other cases because the experimental results

of our limited data set are neither representative nor conclusive.

We also try the tail-clustering finite-state inferene algorithm. Since

there are no two states which have common sentences, therefore no

merge occurs. The productions and nonterminals are the same as

those of k -tail algorithm with k = 20. Again, this is due to the charac­

teristics of this specific data set, and should not be interpreted against

the algorithm itself. We can modify the condition for merge so that two

states are merged when the distance between some of their member

sentences is less than a threshold. This will guarantee a reduction of

grammar size, but again the recognition results may be unpredictable.

3.6 An Application of Syntactic Seismic
Recognition to Damage Assesment

Damage assesment of a structure after strong earthquake is a very

complex problem (Yao, 1979). It is usually performed by a structural

engineering expert who makes his or her judgement by personal experi­

ence and professional knowledge. The key informations include charac­

teristics of the structure, observable damages, seismic (vibration)

recordings and nondestructive testing results. Ishizuka et al. (1981)

have proposed a rule-based damage assesment system which employs

the fuzzy set t.heory and the production system with certainty factor to

97

infer the damage state. Its performance relies on proper assignment of

membership function and design of inference rules. The pattern recog­

nition techniques can also be applied to damage assesment, which is

based on the analysis of seismic recordings. Its advantages are easy to

implement and contains no uncertainty factor.

Seismic recordings, i.e., acceleration and/or displacement record­

ings, are the only records which show the detailed response of the

structure during a strong earthquake. It is quantitative, complete and

objective. Therefore, if we want to apply pattern recognition techniques

to damage assesment, the seismic recordings are very good candidates.

A structure without damage will behave stiffer than the one with dam­

age. Therefore from the seismic recording, preferably displacement

recording for the reason of no high frequency noise, we can tell the

relative degree of damage.

Since each building is different in structure, we have to make

assesment individually. One possible solution is to compare the top

level displacement with the basement displacement. The basement dis­

placement represents the ground motion, i.e., the input to the building.

The deformation distance between these two waveforms will be small if

the building is damaged; otherwise, the deformation distance will be

large. Unfortunately good training samples are unavailable so far. The

rea.l recordings are not only insufficient but also unclassified. However,

there are a few experimental data from the laboratory which can be

used as a starting point.

Figure 3.10 shows the top level displacement and basement

acceleration (at the bottom) during a simulated earthquake test on the

model of a ten-'story reinforced concrete building. There are totally

98

Runl

Figure 3.10 Top level displacement and basement acceleration (bottom).

99

seven test runs. It is obvious from Figure 3.10 that the accleration

waveform is much more complicated than the displacement waveform.

Since they are convertible, we chose displacement seismogram for

cornparison.

Since only the basement accleralions are available, we have to

compute displacements using numerical integration. The basement

displacements of the seven runs are all the same as shown in Figure

3.11, only the magnitudes are intensified from run to run so as to

assure more damage after more runs. The top level displacements are

shown in Figure 3.12. It is not diflucult to see that the top level dis­

placement of run seven is more similar in figuration to basement dis­

placement than the top level displacement of run one is. This shows

thc\t the building structure becomes softer due to the cracks, breaks

and other implicit damages. Some potential damages may not be seen

from the appearence of the building, but they will be shown on the

seismic recording since it reflects the actual structure response. This

is one of the reasons why the analysis of seismic recording is important.

The other reason is that we can compute the similarity, or deformation

distance on the other hand, between the waveforms which can be

further used in a knowledge-based damage assesment system.

Computation of the deformation distance between the seismic

waveforms are based on the modified dynamic time warping distance in

Section 2.2. Comparing Figure 2.6 with Figure 3.12 we will find that the

waveforms in Figure 2.6 are actually taken from those in Figure 3.12.

The slope constraints and local distance functions are shown in Figure

3.13.

100

Run1

Run2

Run3

Runlf

RunS

RunG

Run?

Figure 3.11 Basement displacement of the seven test runs.

lito,. ,.... 'Iv &11'

..., . "-

....

101

Runl

Rune

Run3

Run't

Run5

RunG

Run?

Figure 3.12 Top level displacement of the seven test runs.

102

(i,j)

/7'"
n

o[i,j J =min

r l

o[i -i.j -l J+ Iai - I:; b j -lc -1 I
k=l

l = 1,2, ...•n
l

o[i -l ,j -lJ+ I I: ~-k-1-bj I
k =1

n;;;:: 2

Figure 3.13 Diagram of slope constraints and local distance function for
string distance computation in damage assesment application.

103

The selection of string representation and the selection of compu­

tational algorithm for string deformation distance are correlated. We

observed from the waveforms in Figure 3.12 that several local peaks are

deformed and merge into a large peak. Therefore, we consider each

peak as a component, i.e., primitive or symbol, of string representation.

The next problem is how to describe each peak. Of course, shape and

geometric properties can describe a peak, they are far complicated

than what is needed. Besides, it is difficult to implement these features

in distance computation. The area of each peak contains the informa-

tions about the duration and amplitude of the peak. Since different

cOlnbinations of duration and amplitude may have same area, area

alone is ambiguous. But we don't need to worry about this problem

since we are dealing with recordings from the same structure, such

randomly contrast shapes will not occur. We developed a special string

deformation distance computation for this application, which is a

modified dynamic time warping distance as shown in Section 2.2.1. The

type of this deformation distance is ordinal, i.e., rank orders have

meaning, and interval, i.e., seperation between numbers is meaningful.

However, the lower and upper bounds of this distance is open, i.e., the

distance is in the interval (0, M) where .M is the summation of the total

area of the two strings. For example, if x =a1a2... am, and y = b lb 2... b n

then

M

Each seismic waveform x is converted into a string of real

numbers, x = ala2'''D.n, Ui > 0, such that the ith component of the

string, ai, represents the area of the i th peale The definition of the

104

peak here is the segment between two adjacent zero-crossing points.

Therefore one peak may contain many local maxima and minima. It

often happens that small ripples and zero-crossings may exist due to

the noise. These noisy ripples can be removed by setting a threshold T.

Only those peaks whose areas are larger than threshold T are con­

sidered as effective components. The waveforms are scanned from both

side until a peak larger than T is reached on each direction. The left­

most peak larger than T will be the first component of the string and

the rightmost peak larger than T will be the last component of the

string. This process will eliminate the noisy ripple before and after the

signal. The noisy ripples within the signal are combined with the

nearest peak which is greater than T. Therefore, only the significat

peaks are converted into components of the string. The algorithm for

computing string deformation distance is similar to that of Sakoe and

Chiba's. only the slope constraints and local distance functions are

different.

The deformation distance between the basement displacement and

the top level displacement of each run is plotted in Figure 3.14. Since

each run of the test adds some damage to the structure, the degree of

damage is proportional to the number of tests. Greater damage makes

the structure softer. consequently the deformation distance between

the basement waveform and top level waveform is smaller. It can be

seen from Figure 3.14 that the deformation distance is getting smaller

after more runs of tests. Figure 3.14 also shows that large damage

occurs during the first three runs since the differences of the deforma­

tion distance, i.e., the slope, are larger than those of the later runs.

105

],71.8'iO ~----------------------------.

],55.766

139.&92

123.619

Q1
U
C
I1J 107.&15
~

Ifl
.o-f

~

51.1f712

75.3975

987:32
1f3.2500 +-----r---"'T"""----,r-----r---or---~---.,__--__f

1

59.3237

Run

Figure 3,14 Distance between the basement displacement waveform and
the top level displacement waveform of each run.

106

In order to normalize the length of the strings come from different

event, the deformation distance in Figure 3.14 can be divided by the

length of the basement waveform so that the deformation distance of

different event can be compared. The domain of damage can be divided

into several intervals, for example, negligible, slight, moderate, s~vere,

etc. The deformation distance is used for classification of damage

degree. The classification depends on which category the deformation

distance of one event falls into. Other informations such as human

observations and system identification results are usuful auxilary infor­

mations, for example, to resolve the conflict when the distance falls at

the boundary. But system identification is a very complicated matter,

it is mainly for the study of system characteristics. Visual informations

are easy to obtain and are helpful in resolving conflict and ambiguity.

The proposed system does not have the opportunity to test real

data because of the lack of data. The research in damage assesment is

only in its infancy. No organization or individual has been working on

the collection and classification of the real datEl. We must understand

that appropriate samples for damage assesment are rather difficult to

obtain. The structure must be equipped with recording devices, subject

to strong earthquake and bear certain degree of damage. Therefore,

the demonstration of the proposed method is based on experimental

data only. It attempts to show the feasibility instead of practicability of

the proposed method.

The segmentation of waveform employs some structural (contex­

tual) information. Peak extraction needs structural information,

merge of small peaks with the nearest large peak also needs structural

information. In our demonstration, only the top level recordings are

107

used for comparison. Intermediate levels are similar to top level but

with smallar amplitude.

3.7 Conclusion

In this chapter, syntactic pattern recognition has been applied to

the discrimination of earthquake and nuclear explosion based on

seismic waveforms. The waveforms are segmented by a fixed length. A

clustering procedure classifies these segments and a symbol is assigned

to leach cluster. Finite-state grammars are inferred from the training

set using k -tail inference algorithm. An error-correcting parser and a

nearest-neighbor rule are compared with respect to their performance

in recognition speed and accuracy. Although the classification results

seem to be encouraging, there is plenty of room for improvement. The

selection of a set of distinguishing features is the most important part

in practical pattern recognition applications. The difficulty increases

when the classes are somewhat overlapped. Most of the features which

are effective in decision-theoretic approach can also be used in the syn­

tactic approach for primitive recognition. The number of features

selected should be kept as small as possible for the sake of computa­

tional efficiency.

In string distance computation, the assignment of weights for

transformation errors is a difficult subject especially when insertion,

deletion and substitution are all included. The seperation between clus­

ters can be used as the substitution weights between corresponding

primitives as we did in our experiment. The distance from a cluster

center to the origin can be used as the insertion and/or deletion v{eight

108

of that primitive. Heuristic information may be necessary and helpful

in most cases.

Syntactic approach can be modified to deal with stochastic models

if the probabilities associated with pattern classes and training samples

can be easily determined. In this case, there will be stochastic gram­

mar, stochastic language and maximum-likelihood parsing (see Fu,

1982). We did not apply the stochastic approach because the class and

string probabilities are unavailable. This must be done from the

analysis of the previous records. If the probabilities can be determined

precisely, which can be made to a certain degree, the class-overlap

problem can be solved. Syntactic approach can be made more flexible

by adding numerical information (attribute) to the primitives.

Meanwhile, it can also make the pattern grammar less complex. We will

discuss an attributed seismic grammar and its parsing in Chapter IV.

At the present stage, our experiments show that the nearest­

neighbor decision rule is faster than the error-correcting parsing.

Although the speed of error-correcting parsing depends on the struc­

ture of the grammar, the nearest-neighbor rule is faster in general.

VLSI architectures have been recently applied to both string matching

and recognition (by parsing), which will be discussed in Chapter V.

Decision between simple, faster classification and sophisticated, slower

syntax analysis should be made according to application requirements.

Syntactic pattern recognition has also been applied to damage

assesment where the seismic recordings are the physical measure­

ments. Strings of various length are constructed from the seismic

waveforms. A modified dynamic time warping is developed for comput­

ing the string distance. The segmentation of waveform in syntactic

109

pattern recognition usually uses shape information. Tbe shape informa­

tion appears to be not important for seismic signal. Besides, it does not

have much discrimination capability. The enveloI: s of the signal

appears to be very good features in some cases, for example, consider­

ing Figure 1.2, but not so in other cases, for example, when Figure 1.3

and 1.4 are compared with Figure 1.2. The application to damage asses­

ment shows that special algorithm for string distance computation

must be developed for some applications when the general string dis­

tances seem unable to solve the problem.

110

CHAPTER IV

INFERENCE AND PARSING OF ATTRffiUTED GRAMMAR
FOR SEISMIC SIGNAL RECOGNITION

401 Introduction

Attributed grammars were first formulated by Knuth (1968) where

"meaning" can be assigned to a string in a context-::ree language by

defining "attributes" of the symbols in a derivation tree for that string.

The attributes are defined by functions associated with each production

in the grammar. Although the idea of attributed grammar is due to

Irons (see Knuth, 1968), Knuth included inherited attributes as well as

synthesized attributes which often leads to significant simplification.

WItile attributed grammars were originally proposed 'or programming

languages, they have been applied to pattern recognition recently and

increasingly. Tang and Huang (1979) used attributE d grammars for

image understanding. You and Fu (1978, 1979), Tsai and Fu (19BO) and

Tai and Fu (1981) have applied attributed grammars 1.0 shape recogni­

tion and transformation, Shi and Fu (1982) proposed an efficient

er:~or-correcting parser for attributed tree grammar::: where semantic

information are associated with each terminal but no semantic rule is

associated with the production. Leung (1982) also proposed an error-

correcting parser for attributed grammars vlith applications to charac­

ter recognition. Knuth's formal semantics can also be app lied to

111

patterns described by picture description language (PDL) expressions

(Fu, 1982).

The advantages of using attributed grammars for pattern recogni­

tion are twofold. The inclusion of semantic information increases the

flexibility in pattern description; in the meantime, it reduces the syn­

tactic complexity of the pattern grammar. We may notice that all the

above applications are essentially to pictorial shape recognition where

length and angle are useful semantic informations. This same set of

attributes can also be used in waveform shape recognition, e.g., ECG

analysis, where shape information is very important in recognition.

However, they can not be applied to the signals, e.g., EEG, seismic and

speech, where shape informations are not particularly important. The

segmentation of these signals usually corresponds to a short, fixed- or

variable-length time period. In order not to overlook any transition,

the time periods are usually kept relatively short. Therefore, it is very

common that the same primitive may last for several periods. This

often makes the pattern strings and the inferred grammars unneces­

sarily complicated. The numbers of productions and nonterminal sym­

bols are usually very large as we can see from the experimental results

in Section 3.5. Instead of keeping track of all these identical primitives,

we can use one syntactic symbol to represent the tYPt~ of the primitive

with an attribute to indicate the length of the primitive. This leads to

the application of length attribute to seismic and other similar digital

signal analysis.

A pattern primitive a can be represented by a 2-h.:ple

a=(s,x)

112

wJJ.ere s is a syntactic symbol denoting the primitive structure of a,

and x = (xl,X2,""Xm), m 2.": 0, is an m-dimensional semantic vect.or with

each xi, i = 1, 2, ... , Tn, denoting a numerical measurement. A pattern

string can be represented by ala2a3... ak, where ai = (Si, li)' li is the

length of primitive ai, lsisk. For a fixed-length segmentation, li = C

for all i, where c is a constant. For a variable-length segmentation, li

mayor may not equal t.o lj when i j:. j. In our case, li = c for lsis20,

.where c = 60 points. For simiplicity, wit.h constant IE ngth in mind, we

can eliminate the semantic part. For example, a pattern string may

look like

aaadgggegggggggegeeg

where these are syntactic symbols. It can be further simplified by

merging identical symbols, therefore the above string becomes

adgegegeg

31317 1 121

where the numbers are numbers of unit lengths; eacb unit length con­

tains 60 points in our case. This idea shows some storage improvement

in string representation, and it will show significant. improvement in

g::ammatical inference as we will see in the next. section. Although we

used finite-state grammars to describe the seismic patterns in Chapter

III, we will use attributed cfg's here. This is because attributed fsg's do

not have much reduction in t.he number of productions and nont.ermi­

nals. Only attribut.ed cfg's can drastically reduce t.he production

number, t.herefore make the recognition more efficient. An error­

correcting parser for attributed context.-free grammar is given in Sec­

tion 4.3. St.ochastic attributed grammar and parsing will be discussed

in Section 4.4.

113

4.2 Inference of Attributed Grammar
for Seismic Signal Recognition

An attributed context-free grammar is a 4-tuple G = (VN • Vr, P, S)

where each production rule contains two parts, one is a syntactic rule,

the other is a semantic rule (Knuth, 1968). Each symbol X E: (VN U VT)

is associated with a finite set of attributes A (X); and A(X) is partitioned

into two disjoint sets, the synthesized attribute set Ao(X) and the inher­

ited attributed set A 1(X). The syntactic rule has the following form

where k means the k th production. The sematic rule maps values of

certain attributes of XkO , Xk1 , ... , Xknk into the value of some attribute of

Xkj . The evaluation of synthesized attributes is based on the attributes

of the descendents of the nonterminal symbol, therefore it is a

bottom-up fashion in the tree structure. On the contrary, the evalua­

tion of inherited attributed is based on the attributes of the ancestors,

therefore it is a top-down fashion in the tree structure.

In Chapter III, we have chosen a set of 41 explosio:J. seismic records

as training samples. Each record has been converted :.nto a string of 20

primitives. If we use the k-tail algorithm to infer a finite-state gram­

mar for the pattern class with a value of k = 20, the total number of

productions will be 720 and the number of nonterminal symbols will be

681. In order to reduce the size of the grammar we use one length

attribute, i.e., the number of unit lengths. The input strings are attri­

buted strings, and the production rule of the gramme.r has a syntactic

part as well as a semantic part which contains both synthesized and

inherited attributes. The type of grammar is also Llpgraded into a

114

context-free grammar, due to the type of S-productions. Tai and Fu

(1982) used the length attribute of the strings in the inference of a

class of context-free programmed grammar (cfpg:l. However, the

length attribute is only for the construction of the con~rol diagram, i.e.,

a graphical representation of the success and failure go-to fields. The

inferred cfPg is nonattributed, and the parsing was n:::>t discussed. We

use length attribute in both inference and parsing. The inferred gram­

mars are attributed grammars, and the attribute plnys an important

role in parsing.

To explain our inference procedure, let us first consider one input

string

aaadgggegggggggegeeg

where each primitive has a length attribute 1 which means 1 unit

length. First, it will be converted into the following string by merging

identical primitives.

adgegegeg

3 1 3 171 121

Trteoretically, the length attribute is continuous. But. in digital signal

processing, the waveforms represenesented by a finite number of sam­

pled points, therefore, the length is always discrete in practical cases.

In our case, the length attribute is the number of unit lengths. It is

discrete and is a positive integer. Then we can infer the following attri­

buted grammar

Syntactic rules Semantic rules

(1) S~ADGEGEGEG L(A1)=3,L(D)=l,L(Gl)=3,

L (E 1)= 1,L (G2)=7,L (£2)= 1,

115

L (G3)= 1,L (E3)=2,L (G4)= 1

(2) A~aA l(Al)=l(a)+l(A2)

(3) A~a l(A)=l(a)

(4) D~dD l (D l)=l (d)+l (D2)

(5) D~d l (D)=l (d)

(6) E~eE l(E1)=l(e)+l(E2)

(7) E~e l (E)=l (e)

(8) G~gG l (G 1) =l (g)+l (G 2)

(9) G~g l(G)=l(g)

where L denotes inherited length attribute, l denotes synthesized

length attribute and the number right after the nonterminal symbol is

. used to distinguish between occurrences of like nonterminals. It is

noted that the inherited attributed L does not pass down to the descen­

dents as it usually does; rather it is used to maintain the semantic

information of the training string and as a reference hI' comparison in

parsing. For simplicity we let l (a) = 1 for all a E: V2" When we have

another input string

a a c de hi hjJ f f f J h m J f J J

we convert it into

acdehihfhmJ

21111 1 161 1 4

and add to the grammar the following productions

Syntactic rules

S -'>ACDEHIHFHMF

H-+hH

H -'>h

I -'>iI

I -'>i

116

Semantic rules

L (A)=2,L (C)= 1,L (D) =1,

L (E)= 1,L (H 1)= 1,L(I)= 1,

L (H2)= 1,L (F 1)=6,L (H3)= 1,

L (M) =1 ,L (F2)=4

l(Cl)=l(c)+l(C2)

l(C)=l(c)

l (H l)=l (h)+l (H2)

l(H)=l(h)

l (I 1)=l (i) +l (I2)

l(I)=l(i)

l (Fl)=l (j)+l (F2)

l (F)=l (j)

WE' may notice that after reading a few input strings there will be no

need to add those C-'>cC, C-,>c productions. We only need to add one

production for each input string, i.e., the first production in the above

example. In fact, there are 2m +n productions for a set of n training

strings, where m is the number of nonterminal symbols. We now for­

mulate the inference algorithm of attributed grammars which use

length attribute.

Algorithm 4.1 Inference of Attributed Seismic Grammar

Using A Length Attribute

Input: A set of training strings where each string has a

syntactic symbol and a length attribute.

Output: An Attributed Grammar.

Method:

117

(1) For each input string, merge identical primitives; the length is

the summation of the individual lengths.

(2) For each input string ala2aS... ak, add to the grammar the pro­

duction S -l>A 1A 2A s...Ak where ~ is the nonterminal corresponding to

terminal C4.; and the semantic rule L (Ai) =Li , l:::;;i:=;k. where Li is the

length attribute of primitive C4..

(3) For each primitive a, add to the grammar the production

A-l>aA, L(A l) ::: lea) + l(A 2) and A-l>a, L(A) = l(a), if they are not already

existed.

(4) The set of terminals includes all the different pJ~imitives; the set

of nonterminal includes all the nonterminal symbols in Step (2).

A flow chart of this inference algorithm is given in Figure 4.1. This

inferred grammar will generate excessive strings if we apply syntactic

rules only. However, we can use semantic rules (inherited attributes)

to restrict the grammar so that no excessive strings ar'2 generated.

The inferred grammar from the 41 training strings is shown in the

following.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Syntactic rules

S -l> ACA GHF1J MJ F MKMJ M

S -l>MKLGIFDIFHFMKILIB

S -l> LEIFJLFBFHDJFKJL

S -l> LJLEFKJHFJ M JMIF J

S-l>LJLGFHFHFHIFMJFLFM

S -l>ACDEHIHFHMF

S -l> ALGIMLMKJMLMJ LJL

S -l>LMLGEMKJKMKJKMJM

Semantic rules

(1,1,1,1,1,1.1,2,1,1,1,2,1,1,3,1)

(1, 1. 1. 1,1, 1,1, 1, 1,1,2,1. 1,1,2,1, 2)

(3,2,1,1, 1. 1, 1, 1,1, 1, 1,2, 1,1,1,1)

(1,1, 1,1,1,2,1,1,3,1,1,1,1,1,1,2)

(1,1, 1,1,1, 1,1,2,1,1,1,2,1,1,1,1,1,1)

(2,1,1,1,1,1,1,6,1,1,4)

(1,2,1,2,1,1,1,1,1,1,3,1,1,1,1,1)

(1,1.1,1.1,1,2,1,1,1,1,1,1,1,3,2)

118

(START

convert nonattributed
input strings in to
attributed strings

infer production rules
from the input strings

infer production rules
from the primitives

construct the sets of
nonterminal and
terminal symbols

(STOP

Figure 4.1 A flow chart of the inference algorithm (Algorithm 4.1).

119

(9) S~CKDIFKJMKMJMJM (1,2,1,1,4,1,1,1,1,1,2,2,1,1)

(10) S ~DLDHJMLMJFLMKL (2,1,1,2,1,3,1,1,1,1,1,1,2,2)

(11) S -'> CACEIFKMKJMKM (1, 1, 1, 1, 1, 1, 1, 1,3,2:,5,1, 1)

(12) S -,>LMGPXFIFMJM (2,1,1,1,1,1,2,3,3,4,1)

(13) S-'>ABCGIMKMKBKJM (1,1,1,1,1,4,1,2,2,2,1,1,2)

(14) S -'> CEHIJFMFKJMFMFJ (3,1,1,1,1,1,2,2,1,1,2,1,1,1,1)

(15) S -'>KMKEFMFIJKMJKJKM (1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,2)

(16) S -'> LJEHDFLJMF JLJF J (2,1,2,1,1,1,2,2,1,1,1,1,1,2,1)

(17) S -'>JMGFHMFHFMHLJIM (1,2,2,2,1,1,1,2,1,2,1,1,1,1,1)

(18) S -'> BJEFKMKMKMKMKMK (2,1,2,1,1,1,2,1,1,3,1,1,1,1,1)

(19) S-'>BCBGHEFHFJF 0,1,1,2,3,1, 1,7,1,1,1)

(20) S -'>IKEIHIFIHFIHFLF (1,2, 1,1,1, 1,2,1,1,4,1,1,1,1,1)

(21) S -'>DFHFDFLIF (6,2,1,1,1,2,3,2,2)

(22) S-'>ACEHFJMKFJMKM (1,2,1,2,3,1,3,1,1,1,2,1,1)

(23) S ~JLGHDHLMJL (1,2, 1, 1,1, 1,7, 1,4,1)

(24) S-'>KMBEHFMKBKM (1,1,1,2,1,1,1,4,2,5,1)

(25) S -'>KBKGHMFMFKHMJ (1,1,1,1,1,1,2,2,2,1,1,5,1)

(26) S -'>LMIEIHFHJIKMLKLK (1,2,1,1,1,1,1,1,1,1,1,1,3,1,2,1)

(27) S -'>ADGEGEGEG (3,1,3,1,7,1,1,2,1)

(28) S 4>MACGHFJMFJMJM' (1,1,1,1,1,1, 1,3,1,1,2,2,4)

(29) S -'>JlvlGEFKJlvlKJKMJ (2,1,1,1,1,2,2,5,1,1,1, 1,1)

(30) S 4> LDGEDHDLDLDLD (1,2,1,1,1,1,2,1,1,1,1,2,5)

(31) S -'>IHFEIEHIHIFIFIDI (1,1,1,2,1,1,1,1,1,2:,1,2,1,2,1,1)

(32) S -)HIEIEIFHDHDEBFHF (1,2,2,1,1,2,1,1,1,1,1,1, 1,2,1,1)

(33) S -'> GDEGEIEGIGEDGDE (1, 1, 1, 1,2, 1,5,1,1,1,1,1, 1, 1, 1)

(34) S -'>KBHDGHDHGDGDGHD (2,1, 1, 1,1,1,1, 1,4,1,1,2,1, 1, 1)

(35) S ..."ACAGEFIFKFlv[FlvlJM (1,1,1,1,1,3,1,2,1,1,3,1,1,1,1)

120

(36) S ~LJLGIFLFMJFLFMJMJF (1,1, 1,1,1, 1,1,1,1,1,1,3,1,1,1,1,1,1)

(37) S ~DFDHDHDLDF (4,1,2 c1,2,4,1,1,3,1)

(38) S~HJLFEFGEGFIFEH (1,1,1,1,1,1,1,5,2,1,1,1,2,1)

(39) S ~FJILFHGEIEHEGD (1,1,1,1,2,1,2,2,1,1,2,1,2,2)

(40) S ~BIHEGDGHGHG (3,1,3,2,3,1,1,2,1,1,2)

(41) S~CKCFHDGHGLHDH (1,1,1,2,1,1,1,1,6,1,2,1,1)

(4:8) A~aA l(Al)=:l(a)+l(A2)

(4:3) A~a l(A)=:l(a)

(44) B~bB l(B1)=l(b)+l(B2)

(4:5) B~b l(B)=:l(b)

(4;3) C~cC l (C 1) =: l (c) + l (C2"

(4'7) C~c l(C)=:l(c)

(4,3) D~dD l(D 1)=l(d)+l(D2)

(49) D~d l(D)=l(d)

(50) E~eE l(E1)=l(e)+l(E2)

(51) E~e l (E)=l (e)

(52) F~fF l(Fl)=l(j)+l(F2)

(5:3) F~f l(F)=l(j)

(54) G~gG l(Gl)=l(g)+l(G2)

(55) G~g l (G) =l (g)

(56) H~hH l (H 1) =l (h) +l (H ~~)

(5'7) H~h l(I-J)=l(h,)

(5,3) I~il l(I1)=l(i)+l(J2)

(59) l~i l(I)=l(i)

(60) J~jJ l (J 1) = l (j)+ l (J 2)

(61) J~j l(J)=l(]")

(6'::>~ /(->!c/(l (I(1) =l (lc) +l (/(2)'v)

(63) K--"k

(64) L--"lL

(65) L~l

(66) M--"mM

(67) M--,>m

121

l (K)=l (k)

l(L l)=l (l)+l(L2)

l(L)=l(l)

l (M l)=l (m)+l (M2)

l(M)=l(m)

where (1,1,1,1,1,1,1,2,1,1,1,2,1,1,3,1) is a shorthand for the inherited

attributes whose meaning should be clearly understood from the previ-

ous examples.

This attributed grammar has 67 productions, a more than 90%

reduction from the nonattributed grammar which requires 720 produc­

tions for 91% correct recognition. There are only 13 nonterminal sym­

bols in this attributed grammar, which is equal to the number of termi­

nal symbols. The nonattributed grammar has 681 nonterminals. The

number of nonterminal symbols will not increase in this attributed

grammar and the number of productions will increase at most by one

for each additional input string. We can also expand the inherited attri­

bute into a set of numbers. For example, we may let L(A) = (2, 3, 4L

which means the length of nonterminal symbol A can be 2, 3 or 4. This

will greatly increase the flexibility in some applicatiom.

4.3 Error-Correcting Parsing of
Attributed Seismic Grammar

A modified Earley's parsing algorithm is used for our attributed

context-free seismic grammars. We assume that substitution, insertion

and deletion of terminal symbols are allo'wed, but no substitution,

insertion or deletion of nonterminal symbol is permi-~ted. This means

122

the length of the local segment is variable, even local :claise is tolerable,

but the whole local segment can not be deleted entirely. The local seg­

ment means a segment of identical terminal symbols. The item of this

parsing algorithm has the form [A ~ex . (3, 7], ~, iJ where 7] is a counter

for local syntactic deformation which accumulates the total cost of sub­

stitution of terminal symbols. l; is used for two different purposes.

When A ;t:. 5, l; is used as synthesized attribute of A. On the other hand,

if A = 5 then ~ is used as a counter for semantic deformation which

records the total length variation of nonterminal symbols, and i is the

se.me pointer as a conventional Earley's parser. A parsing algorithm for

expanded attributed grammar using length attribut.e has been pro­

posed by Leung (1982). As usual, we don't need an expanded grammar.

All the deformations are examined during the parsing while errors are

recorded in appropriate counters. The parsing algorithm is shown in

the following.

Algorithm 4.2 Minimum-Distance Error-Correcting Parsing Algorithm

for Attributed Context-Free Seismic Granmar.

Input: An attributed seismic grammar G = (VN , Vr,P ,5) and an

input string y = bIb 2 ...bm in V;.
Output: The parse lists 1 o, II, ... ,lm' and decision whether y is

accepted by the grammar G together with the syntacic and semantic

deformation distances.

Method:

(1) Set j = O. Add [5~ . ex, 0, 0, OJ to Ij if 5~ex is a production in P.

(2) Repeat step (3) and (4) until nO new items can be added to I j .

123

(3) If [A -'>(X • B {3, 71, ~,i] is in Ii ,and B -'>7 is a production in P, then

add item [B -'> . 7, 0, O. n to Ii'

(4) (a) If [A-l>(X' .712, ~2,iJ is in Ij and [A-'>a 'A,7I1, ~l.kJ is in Ii,

then add an item [A--)aA . , 711+712. ~1+~2,1cJ to Ii' (There is no need to

check collision here. since there will be no other item of the form

[A ~ aA . . 71, ~,k] in I j .)

(b) If [A-l>(X·. 712, ~2,i] in Ii and [S-'>{3' A7, 711. ~l,k] is in h, then

add an item [S--){3A . 7, 711+712. ~1+(L(A)-~2),kJ to I j , where L(A) is the

inherited attributed of the nonterminal symbol A.

(5) If j =m, go to st.ep (7); otherwise j =j + 1.

(6) For each item [A-'> . a{3. 71. ~.iJ in I j - 1 add [A-,>a . (3, 7I+S(a,bj),

t+L(bj), i] to I j . where L(b j) is the synthesized attribute of bj . For sim­

plicit.y, we may let l(b j) = 1 for all j. S(a,b j) is substitution cost, and

S(a,bj) =0 when a =bj . Go to (2).

(7) If item [5 -'>(X • , 71. ~, OJ is in 1m , then string y is accepted by

grammar G where 71 is the syntactic deformation distance and ~ is the

semantic deformation distance; otherwise, string y i~ not accepted by

grammar G. Exit.

A flow chart of this parsing algorithm is given in Figure 4.2. It is

noted that (1) The parse extraction is straightforward once the first S­

production is identified, therefore we do not include the parse extrac­

tion algorithm. This is obvious. Since we use attributes, the syntactic

part will be much simpler than that of a nonattributed (context-free)

grammar. (2) Deformation of any type on terminal symbols will be

accepted. For a simple example, the string 'aaadgggegggggggegeeg'

v{ill be accepted by our seiSlnic grammar voiith no error; the string

124

(START

!
j =0. Add [S -+ Q,O,O,O]
to Ij if S -+ Q is a
production in P

If [A -+ Q • B,B, 1J,~, i] is in Ij ,
and B -+ "I is a production
in P then add [8 -> • "I,O,O,j]
to Ij

If [A -+ Q ',I]2'~2,i] is in Ij and
[A -+ a'A,fll'€I,kj is in Ij ,

then add [A -+ aA',I]l +1J2'~1 +x2,k)
to I j

If fA --> Q',fJ2,~2,i] is in Ij and
[S ~ ,B'A"I,I]I'~I,kl is in II.

then add IS -+ ,BA'VII +1J2,€1 +(L(A)-€2l,k]
to Ij

If IS -+',I],~,OI is in 1m,

then string y is accepted by
G, I] is syntactic and ~ is

semantic deformation distances

!
(STOP

Yes
New

items added
to I j ?

No

j=m?

No

I j=j+l I

For each [A -+ 'a,B"I,~,i]

in Ij~l and
[A -+ a',B,I]+S(a,bj),~+I(bj),il

to Ij

Figure 4,2 A fiow chart of the parsing algorithm (Algorithm L1.2),

125

'aadgggeg .. .' will be accepted with semantic error of one unit length on

'A'; and the string 'abadgggeg .. .' will also be accepted with a syntactic

substitution error S(a,b).

The time complexity of Algorithm 4.2 is O(n 2) where n is the length

of the input string, since each item list Ii takes time O(j) to complete.

However, since we only considered substitution error in the seismic

recognition problem in Section 3.5, a simplified ven;ion of Algorithm

4.2, i.e., Algorithm 4.4, can be applied. This special parser is faster

than Algorithm 3.2. The experimental results are given in Section 4.5.

The question about how much advantage we can take by using attri­

butes depends on the selection and characters of the training samples.

If the training samples are very much alike, then there are great possi­

bilities that less syntactic rules are needed; instead, attributes will be

used to distinguish between different patterns. An attributed grammar

can also be constructed manually based on the knowledge about pat­

tern sources. This may sometimes be a great advantage.

4.4 Stochastic Attributed Grammar
and Parsing for Seismic Analysis

Although we do not know the probability distribution of the training

samples at this moment, it is possible to estimate it if more samples

are available. If the probability distribution of the training samples is

known, then we can infer the production probability using the algo­

rithm described in Lee and Fu (1972b). Therefore, we also include a

parsing algorithm for stochastic attributed seismic grammar in this

section. A stochastic version of the attributed grammar shown in

126

Section 4.2 can be formulated as follows. First, a probability is associ­

ated with each production. Second, a probability distribution is associ­

ated with all the possible attributes. For example, if originally L (A) =
13,4, 5l, now it may become L(A) = 1(3,0.25), (4,0.5), (5, 0.25)L where

0.25 = ?rob iL(A)=3l. Finally, probabilities instead of costs are used to

characterize substitution transformations. The probability associated

with each S-production will be the probability of occurrence of the

training string which contributes to that production.

The parsing algorithm of stochastic attributed seismic grammar is

very similar to Algorithm 4.2 except for the following changes. First, 77

is now the probability of syntactic substitution deformation. Second, ~

is still used as a synthesized attribute of A when A j::. S, however, when

A = S, ~ will be the probability of semantic deformations.

Algorithm 4.3 Error-Correcting Parsing Algorithm for

Stochastic Attributed Seismic Grammar

Input: An attributed seismic grammar G = (VN , Vr ,? ,S) and an

input string y =b lb 2 ... b m in V;.

Output: The parse lists I o, I1> ... ,Im, and decision whether y is

accepted by the grammar G together with the synta,:::ic and semantic

deformation probabilities.

Method:

(1) Set j = O. Add [S-J> . ex, 1, 1, OJ to I j if S-J>(X is a production in P.

(2) Repeat step (3) and (4) until no new items can be added to I j .

(3) If [A-J>(X· B(J, 77, ~,iJ is in Ij,and B->-y is a production in P, then

add item [B-J> . ;', 1, 1, jJ to IJ·•

127

(4) (a) If [A-4cx . ,7)2, ~2,iJ is in 11' and [A-4a . A, 7)1' ~l,1cJ is in h,

then add an item [A -4aA . ,7)1 . 7)2, ~1 +~2,k J to Ij . (There is no need to

check collision here, since there will be no other Lem of the form

[A -) aA . , 7), t k J in Ij .)

(b) If [A-)cx· ,7)2, ~2,iJ in Ij and [3-4,6' ky, 7)1. b.kJ is in Ii. then

add an item [3-),6A . "1,7)1' 772, ~1' Prob /~2Lk] to Ij , where 'L(A) is the

inherited attributed of the nonterminal symbol A.

(5) If j =m. go to step (7); otherwise j =j + 1.

(6) For each item [A-)· a,6, 7), ~,i] in Ij - 1 add [A-4a',6,

7)' Ps(b j la), ~+l(bj)' i] to Ij , where l(b j) is the synthesized attribute

of bj . For simplicity, we may let l (b j) = 1 for all j. P s (b j Ia) is substi­

tution probability. Go to (2).

(7) If item [3 -40: . , 7), ~, OJ is in 1m , then stringi'l is accepted by

grammar G where 7) is the syntactic deformation probability and t is

the semantic deformation probability; otherwise, string y is not

accepted by grammar G. Exit.

A flow chart of this parsing algorithm is given in Figure 4.3. Due to

the error-correcting characteristics there may be more than one item

of the form [S -)cx " 7). ~, OJ in 1m . In that case, a decision should be

made based on 7) and E,. Weights can be assigned to 7) and t. Neverthe­

less, this is a rather subjective judgement, and is always a problem

when using both syntactic and semantic informations.

128

(START)

~

j=O. Add [S - '0:,1,1,0]
to Ij if S --> 0: is a
production in P

If [A --> 0: 'B,B, '7, 0] is in I j

and B --> "I is a production in P
then add [B --> '''I,l,l,j) to Ij

If [A --> 0:"'72,';2,ij is in Ij and
[A --> a'A,'7t,';!kj is in Ii' then add
[A --> aA','7,''72'';' +';2,k) to Ij

If IA- O:','72,';2,iJ is in I j and
IS --> ,B·A"I,'7t,';"kj is in Ii' then add
[S --> ,BA'''I,tl,''72,';!' Prob{';2},k] to Ij

New
Yes

L.-:_< items added
to Ij?

iif IS --> 0:','7,';,0] is in 1m ,

then string y is accepted by G,
I] is syn tactic and'; is seman tic
deformation distances

Yes

No

j=m?

1
STOP

I j=j+l I

For each [A --> 'a,B,'7,~,i) in Ij_1 add
[A --> a',B,'7'Ps(bjla),';+I(bj),i]
to Ij

Figure 4.3 A flow chart of the parsing algoriLhm (Algorithm 4.3).

129

4.5 Experimental Results and Discussion

In this chapter we have shown an attributed seismic grammar

which has only 67 productions and 13 nonterminal symbols compared

to the 720 productions and 681 nonterminal symbols of a nonattributed

finite-state grammar. An error-correcting parser (Algoritm 4.2) is also

proposed for this attributed grammar. Since the error-correcting

parser of Algorithm 3.2 considered only the substitution error, a

simplified version of Algorithm 4.2 which ignores the length variation

can be used to greatly increase the processing speed. This is shown in

Algorithm 4.4.

Algorithm 4.4 Top-Down No-Backtrack Error-Correcting Parsing

Algorithm for Attributed Seismic Grammar.

Input: An attributed seismic grammar G = (VN , Vr,P ,S) and an

input string y = b 1b 2 •.. bm in V;.

Output: The minimum distance between y and L (G) where only sub­

stitution error is considered.

Method:

(1) Set N = the number of S-productions, min-distance = a

sufficiently large number.

(2) Set 'I- = 1.

(3) The ith S-production has the form Si ~ Ai1 A i2 ' .. ~Mi' where

Jv['i is the number of nonterminals at the right-hand side of the ith S­

production, Aij E: VN , 1 :S j :S Mi'

(4)Setdist=O,1c =l,l =1.

130

l
(5)(a) If k > 2: L(~p), then l=l+1.

p =1

(b) Apply production ~l -) ail~l and compute dist = dist +

S(~l,blk)' k=k+1. Note that there is one-to-one correspondence

between ~l and C4l, ~l E: VT ·

(6) If 1c~m, go to step (5).

(7) If dist < min-distanct then min-distance =dist.

(8) i =i + 1. If i~N go to (3); otherwise min-distance is the minimum

distance between y and L (G). Exit.

A flow chart of this parsing algorithm is given in Figure 4.4. A parse

of y can be constructed by tracing the productions used in Step (3) and

(5)(b). If the length variation is to be considered then the item lists will

contain a large number of items, and consequently the computation will

be slow. However, Algorithm 3.2 is unable to even cO:1sider the length

variation.

The recognition results and computation time for recognizing one

string are given in Table 4.1. While both attributed cfg and nonattri­

buted fsg show 91% correct recognition, the average computation time

for one string is 0.11 second using attributed seismic grammar and is

2.55 second using nonattributed finite-state grammar. This is because

the finite-state seismic grammar has a large number of production

rules and nonterminal symbols. A large table must be maintained and

searching IS very time-consuming. Although a special-purpose

hardware can be built to speedup the computation, it is slow for a

sequential computer. Algorithm 4.2 is also time-consuming for a gen-

eral context-free grammar. However, the seismic grammar in Section

4.2 is a very special cfg, and the application of the production rules is

131

Initialize N,
min-distance;

i=l

Fetch ith production
Sj--AiJ A i2 ' .. A iMi

dist. == 0
k=l,l=l

Yes

No

Apply Ail--ailAil
dist.=dist. +S(ail,bk)

k = k+l

Yes

Figure 4.4 A flow chart of the parsing algorithm (Algorithm 4.4).

132

TABLE 4.1

The recognition results, computation time,
and memory used for seismic recognition using
an attributed context-free grammar and a
nonattributed finite-state grammar.
(Time is for one string)

Accurate Average memory
Rate Time used

(sec; (bvtes;

Attributed 91% 0.11 41360
cfg

Non-
attributed 91% 2.55 72804

fsg

133

very straightforward. The actual storage used in computer is also given

in Table 4.1.

We mentioned earlier that substitution, insertion and deletion of

terminal symbols are allowed but no substitution, insertion or deletion

of nonterminal symbol is permitted. As a matter of fad, substitution of

nonterminal symbols can be attained in terms of substitution of termi­

nal symbols. Therefore, only insertion or deletion of nonterminal sym­

bols is not allowed. The reason is that if the training samples are well

selected, the grammar should be able to recogniZE! any reasonable

strings. If the test string needs insertion or deletion of nonterminal

symbols in order to be accepted, it is either severely distorted or miss­

ing some string segments. If insertion and deletion of nonterminal

sylubols are to be considered then this becomes a structural­

deformation problem (Tsai and Fu, 1979). 'We can add insertion and

deletion error transformations in Step(6) of Algoritm 4.2 as we did in

Algorithm 2.4. This will make the algorithm more complicated. A dis­

tance threshold should be imposed to eliminate unrealistic parses so

that the item list will not become unmanagable.

134

CHAPTER V

VLSI ARCHITECTURES FOR SYNTACTIC
SEISMIC PATTERN RECOGNITION

5.1 Introduction

Some computational algorithms, for example, matrix multiplication

a.nd inversion in numeric computation and string Dlatching in non-

numeric computation, are very time-consuming so that an efficient

implementation is usually not feasible and economical. However, this

~:ituation has been changed due to the advances in hardware technol-

ogy, i.e., the development of high-speed, high-density and low-cost elec­

tronic devices. Hardware implementation (particularly parallel and/or

pipeline processing) of software algorithm has become an affordable

solution to increase the processing speed because the cost of hardware

is decreasing. Advance in VLSI technology makes it possible to pack

luore components into one chip at a lower price than ever before (Mead

and Conway, 1980). This revolutionary impact sUmulEltes considerable

interest to develop parallel algorithms for VLSI implementation and

build special-purpose chips for specific applications (Kung, 1979, 1980).

A whole book (Bowen and Brown, 1982) has been devoted to VLSI sys­

tems design for digital signal processing. Many computers and proces­

sors have been developed for signal processing. The recent trend is to

135

use attached signal processors, e.g. ,Lincoln Laboratory Fast Digital

Processor (FDP) and Data Genaral AP /130 array processor, instead of

supercomputers as ILLIAC-rv and Advanced Scientific Processor (ASC)

(Bowen and Brown, 1982). More specialized applications for matrix mul­

tiplication, convolution and solving linear equations can be found in

Kung (1979, 1982), Kulkarni and Yen (1982), Hwang and Cheng (1981). A

recent example of special-purpose VLSI architecture is an integrated

multiprocessing array for time warping pattern matching which is used

in speech recognition (Ackland, Weste and Burr, 1981). Pattern m.atch­

ing is the most time-consuming stage in speech reco&;nition especially

when the dictionary is large. Using parallel processing improves the

speed 200 times faster, t.herefore make the real-time application possi­

ble.

Like dynamic time warping, all the string distance computation and

string matching are time consuming. Hardware implementation has

been proposed by Okuda, Tanaka and Kasai (1976) for computing

Levenshtein distance even before VLSI technology is available. They

used delay circuits to implement insertion, deletion and substitution

weights.

We propose in this chapter a VLSI architeet~re for seismic

classification using syntactic approach, which include:, feature extrac­

tion, primitive recognition and string matching. Our string matching

implementation is more complicated than Okuda, et a1.'s, where

different weights are assigned to different symbols in our case. This

special-purpose processor is designed to be aUachecc to a host com­

puter, for example, a minicomputer as shown in Figure 5.1, therefore it

'works like a perihperal processor. Three systolic arrays are proposed

136

SYSTEM BUS

(~llN SPECIAL TAPE I/O
i:EMORY

CPU
PURPOSE DISC DEVICE
PROCESSOR

I

[

Figure 5.1 The special-purpose processor is attached to a host computer
as a peripheral processor.

137

to perform feature extraction, primitive recognition and string match­

ing respectively. Several memory units are required for holding the

intermediate results and for data setup. Figure 5.2 shows the architec­

ture of our special-purpose processor. All these three systolic arrays

perform in time 0 (1), i.e., results can be produced at a constant rate

provided that input data are supplied properly in a pipelined fashion.

The formations of input data are given in Figure 5.3 where (a) is for

feature extraction, (6) is for primitive recognition and (c) is for string

matching. Section 5.2 discusses VLSI architectures for feature extrac­

tion. Section 5.3 discusses VLSI architectures for primitive recognition.

Section 5.4 discusses VLSI architectures for string matching. Section

5.5 shows some simulation results and performance verification. Sec­

tion 5.6 gives the concluding remarks.

5.2 VLSI Architectures for Feature Extraction

The systolic array for feature extraction is linearly connected as

shown in Figure 5.4. The input data, which are the digitized and quan­

tized signal waveform coded in binary form, are stored in seperate

memeory modules in a skewed format as shown in Figure 5.3(a) and

Figure 5.4(a). Each memory module is delay by on,~ unit time, i.e.,

time required to process one data element, from left to right. Each

memory module contains a sequence of words, i.e., discrete signal

points and is connected to a processing element (PE:) of the systolic

array. The data are transferred into the PE's bit by bit, and all the

memory modules are read parallelly. Two features, zero-crossing count

and sum of absolute magnitudes are computed. Absolute sum instead

138

I BUFFER I CONTROL
UNIT

RfJ.:l.

T}
PROCESSOr. ~ PROCESSOIiRMl RAM
AI~RAY -- Mr~AY

~> {)

PROCESSOEI-- I(..:.Ii RM,I
/\RRAY

1)
==> Parallel

RMI - Serial

Fil;;,;ure 5.2 The internal architecture of the special- purpose processor.

139

(a)

x4 X4 X3
4 1 4

X4 X3
3 3

X 4 X3 X3
2 4 2

X 4 X3 X3 X 2
1 3 1 4

X; X2 X 2
4 3

xl x 2 X 2
3 2

x 2 xl x 2 xl
2 1 4

X2
XJ Xl

1 3

Xl Xl
2 2

Xl Xl
1 1

(b) (c)

F'igure 5.3 Data setup for (a) feature extraction, (b) primitive recogni-
tion and (c) string matching.

140

.-

------0-

......

(a)

a

b

S

C

!

(b)

x

Y
d

y .-- S + lal

d +- C + (sgn(a) @ sgn(b))

Figure 5.4 Processor array, data movement and operations of each pro­
cessor for feature extraction.

141

of log energy is used here for the simplicity of implementation. Loga­

rithmic function can be approximated by taking a series expansion (see

Ackland, et al., 1981). Zero-crossing is detected by checking the signs

of every two consecutive points. Any sign change is counted as one

zero-crossing. An exclusive-OR circuit is used for detection of sign

change. Figure 5.4(b) shows the operation of each PE. The internal

structures are given in Figure 5.5. All the n FE's compute the two

features simultaneously and pass the partial results to the next FE's.

Each general-purpose register A, B, C, E and S is i6-bit long. The

micro-operations of each FE are as follows.

(1) (a) Transfer (serially) input data into Register A from external

storage.

(b) Transfer (serially) input data into Register B from Register A of

the left FE.

(c) Transfer (serially) partial result into Register C from Register C

of the left FE.

(d) Transfer (serially) partial result into Register ::: from Register S

of the left FE.

(e) C t- C + (sgn(A) + sgn(B)).

(2) E <- IAI.

(3) S t- S + E.

Steps (l)(a) to (l)(e) can be executed in parallel, therefore can be

completed in 16 machine cycles. Step (2) and step (3) can each be

completed in one machine cycle. The entire operations (1), (2) and (3)

take 18 machine cycles to complete. The time for e;3.ch processor to

complete its entire operations, i.e. 18 machine cycles here, is call a unit

142

a

b

c

B

"...-------'i+

x

d

.r----------(+

S y

Figure 5.5 The internal structure of the processor for feature extrac­
tion.

143

time. Although memory cycle is slower than machine (procesor) cycle,

each memory fetch can take time as long as 18 machine cycles. There­

fore data input can keep up with processor speed. Suppose that input

data are fed in properly, then after n unit times, where n is the

number of data points in one segment, the feature of the first segment

will emerge from the end of the systolic array. There will be a set of

features (of one segment) coming out every unit time thereafter.

Therefore with the systolic array reaching steady state, each segment

only takes 1 unit times, i.e., 18 machine cycles, to complete the compu­

tation. With a uniprocessor, each segment will take O(n) computations

and comparisons. The speedup is n, which is equal to the number of

processors.

5.3 VISI Architectures for Primitive Recognition

In the primitive recognition problem, we compute the distance

between the unknown feature vector and the reference vector, for

example, mean vector, of each cluster (primitive), and then assign the

unknown feature vector to the cluster of the minimUJTI distance. This

procedure can be divided into two steps; first, compute the distances

between the unknown vector and the reference vectors, and then select

the smallest distance. We use a processor array, which contains 'com­

pute' processors, for distance computation and a processor array,

which contains Suppose there are l primitives; each :ximitive i has a

reference feature vector [m\, mk, ... , m/~J where k is Lhe total number

of features. A processor array of l by Ie 'which perfo:~ms the distance

computation is shown in Figure 5.6. The reference vectors of the

144

,,'

ml............. ,
............. .C

md~
m 2 mdI

mi
m 3

m~I

[xf.xi.·xlJ

Primitive symbol

[ml.md mkIJ

[mf'.mJ m/]

[m\ .m~ m~J

[ml.m~ mln

" '.

".

Figure 5.6 Processor arrays and data movement for primitive recogni­
tion.

145

primitives ent.er from the bottom and move up while the unknown

feat.ure vect.ors ent.er from the top and move down. The partial sums

move from left. t.o right.. The dat.a must be properly skewed as shown in

Figure 5.6 and Figure 5.3(b). Since the two data streams move in oppo­

sit.e direction, t.hey must be separated by one unit t.irr~e which is shown

by one space in Figure 5.6; otherwise, some data will just pass instead

of meeting each other.

The unknown feat.ure vect.ors are assumed to come in continuously.

The reference vectors must also repeat their cycles continuously, i.e.,

with the first primitive vector coming right after t.he l th primitive vec­

t.or. After initiation, t.he feat.ure vect.ors will be delayed for l-l unit.

times so that the first feat.ure vector and the first primit.ive vector will

meet at. t.he first. row of t.he processor array. The sum, which is equal to

zero initially, will be the distance at. the end of computation. The func­

tional diagram of each 'compute' processor is shown in Figure 5.7(a),

where x is a component of the unknown feature vect.or, U is a com­

ponent of t.he primitive vector and a is the partial sum. For simplicit.y,

we use the absolute-value distance here. Euclidean dist.ance computa­

tion will t.ake more space and time.

The internal st.ruct.ure and data movement are shown in Figure

5.8(a). Each 'compute' processor contains an arithmetic and logic unit

(ALU), and four 16-bit registers A, B, U and X. The micro-operations are

shown as follows.

(1) (a) Transfer data (serially) into register X from the above PE.

146

(b) Transfer data (serially) into register U from the lower FE.

(c) Transfer partial sum (serially) into register A from the left FE.

(2) B ~ X - U.

(3) B ~ IBI.

(4) A~A+B.

Step (1) takes 16 clock cycles to transfer one word of 16 bits; step (2),

(3) and (4) takes 1 clock cycle each. The entire operations take 19

clock cycles. The unit time here is 19 clock cycles.

After computation of the corresponding components between the

reference vector and the unknown feature vector, the partial sum

moves to the right. When the partial sum passes the k th processor of

the first row. the output will be the distance between vectors [x 1, xJ •

... , xJl] and [m f. mJ, ... , mk1], then it enters the rightmost column of

processors. which are the 'compare' processors. Since the data

streams are seperated by one unit time, the processors on alternate

diagonals (from lower left to upper right) are idle. When vector [x f ,
xd • ... , xAf] enters the second row of the processor array. it will meet

vector [m f. m~ mn. When vector [xl, x~ x{1 enters the third

row, it will meet vector [m r. m~ mk3]; meanwhilE. vector [x r. x~ .

... , Xk2] will meet vector [m r. mf mk2] at row one. We can see from

the above and Figure 5.6 that vector [xl, xi, Xk1] is compared with

HIe reference vectors in the sequence 1. 2, ... , l, vector [x f. xf, , Xk2]

is compared with the reference vectors in the seque;:1ce 2, 3 , l, 1,

and so forth. These operations are overlapped, i.e., pipelined, in a way

that every processor is doing part of the computation and pass the data

and results to the neighbor processors.

147

The functional diagram of the 'compare' processor is shown in Fig­

ure 5. 7(b) where a is the minimum distance computed so far with prim­

itive identifier c, b is the distance just computed and d is the

corresponding primitive identifier input externally. The internal struc­

ture and data movement are shown in Figure 5.8(b). Each 'compare'

processor contains an ALD, two 8-bit registers B, D and two 16-bit regis­

ters A, C. The micro-operations are as follows.·

(1) (a) Transfer partial sum (serially) into register A from C of the

above PE.

(b) Transfer partial sum (serially) into register C from the left PE.

(c) Transfer primitive identifier (serially) into reg:lster B from D of

the above PE.

(d) Transfer primitive identifier (serially) into register D from

external input.

(2) E (- A-C.

(3) If a < c then Ie (- A; D ~ Bl.

Step (1) takes 16 cycles to complete, step (2) takes 1 and step (3)

takes 1. These three steps take 18 cycles, which is 1 cycle shorter than

the 'compute' processor, therefore the 'compare' processcir must be

idle for one cycle in order to synchronize with the 'compute' processor.

The 'compare' processors compare the current dista::l.ce coming from

the left with the distance coming from the above, and pass the smaller

one to the lower processor. Primitive identifiers are fed in from the

right in a similar format as those for data streams. The identifier

streams should be delayed for l +1c -1 unit times so that the first

identifier i 1 enters the flrst 'compare' processor at the same time as

Compute processor

148

Compare processor

x v a c

a--~ b ~ d

y u y z

b~a+ Ix-ul
y~x

v~u

(a)

if a < b
{y~ b; z -::..- d}

else --

{y~a; z ~c}

(b)

Figure 5.7 Data flow and operations of each (a) 'compute' processor and
(b) 'compare' processor.

149

new
partial
SUln

reference
vector

anent

vector
component(a)

anent camp

X r- .B

ALU

I i
AI r

r--1 u r--
own reference

unknown
vector
camp

unkn
vector
com.ponent

partial
sum.

minimum
sum

old
id

new
sum

ALU

external
id

minimum
~um

(b)
new
id

Figure 5.8 Internal structure and register transfer of (a) 'compute' and
(b) 'compare' processors.

150

the distance between [x I, xJ, ... , Xl}] and [m I, mJ, ... , m,}], In order

to assign right identifier to right distance, the identifier streams must

be arranged as shown in Figure 5.6.

With a uniprocessor, the primitive recognition procedure of one

feature vector will take lxk computations and l-l comparisons in our

present example. With the processor array of Figure :5.6, the primitive

recognition procedure of a single feature vector needs l x1c + 1 unit

times. However, a processor array is not designed for the processing of

one single datum, instead, it is for a stream of data. In that case, a new

result will come out every 2 unit times in Figure 5.6. Given l reference

vectors and a feature vectors of dimension k, the array processor will

te,ke 2 unit times to get one result in steady state, while a uniprocessor

te.kes O(l xk) time to complete the computation. The speedup is

l >:k /2. In Figure 5.6, the results contain both the minimum distance

and the primitive identifier, therefore no other proces~ing is required.

Primitive recognizer is essentially a vector pattern matcher.

Therefore it can be used in many other applications, and can be used

indepent of feature extraction and string matching.

5.4 VLSI Architectures for String M:atch:ng
Based on Levenshtein Distance

Nonnumeric computation has become more important and

demanded more hardware algorithms, i.e., algorithms specially

designed for hardware implementations, and architectures recently

dve to the increasing applications in artificial intelligence, database,

in:'ormation retrieval, language translation, pattern recognition, etc.,

151

One of the most important categories in nonnumeric computation is

string pattern matching. Character string matching is very important

in information retrieval and dictionary look up (Hall and Dowling, 1980).

The problem of string pattern matching can generally be classified into

two kinds. We call them exact matching and approximate matching.

For exact matcing, a single string is matched against a set of strings,

usually this particular string is embeded as a substring of the reference

strings. Hardware algorithms for exact matching has been proposed by

Mukhopadhyay (1979), where the test pattern resides in an array of

cells and the reference text is broadcasted to all the cells simultane­

ously character by character. Foster and Kung (1980) designed a VLSI

chip for exact pattern matching with wild card capability, where the

test pattern enters from one end and the reference text enters from

the other end of the linear array. By constrast, for approximate

matching, we want to find a string from a finite set of strings which

approximately matches the test string. Certainly we will also find the

string which exactly matches the test string if it does exist. A good sur­

vey of approximate string matching can be found in Hall and Dowling

(1980). This section concentrates exclusively on approximate match­

ing. Approximate string matching is based on the dea of insertion,

deletion and substitution of terminal symbols. An application example

of approximate string matching which cannot be performed by exact

string matching is thestrj.ng clustering problems, for example, in Lu

and Fu (1978). Wagner and Fischer (1974) proposed a dynamic pro­

gramming method for the computation. Okuda, Tanaka and Kasai

(1976) proposed an algorithm and hardware implementation for garbled

word recognition based on the Levenshtein Nietric. We propose in this

152

section a VLSI architecture for approximate string matching. The dis­

tance measure is (weighted) Levenshtein distance using dynamic pro­

gramming method. Although it is using the minim.lm-distance cri­

te:C'ion in deterministic cases; it can be easily modified to the

maximum-likelihood criterion in probabilistic cases.

Chiang and Fu (1979) studied several parallel architectures,

namely, SIMD, dedicated SIMD and MIMD, for string and tree distance

computation. Each node on the same diagonal of the dynamic program­

ming matrix is computed simultaneously. The time complexity of these

specific parallel systems is O(n+rn), where nand rn are the lengthes

of the two strings under comparison. Our system, differs from theirs in

that we use a systolic array, i.e., a square array of PE's as in Ackland, et

al. (1981) and pipelined data flow for the computation. Therefore we

can obtain the results at a constant rate, i.e., one result after each unit

time.

It is well-known that Levenshtein distance can be computed by

dynamic programming. Therefore, it can be implemented by parallel

processing on VLSI architectures. In this case, parallel computation

and pipeline data flow are combined to process continuously a large

amount of data at a very high speed. The dynamic programming algo­

rithm recursively computes the optimal path from point (1,1) to (rn ,n)

based on its subpaths. In dynamic time warping, there are many slope

constraint.s for selecting subpat.hs. Ackland et al. (1981) chose t.he sim­

plest constraint, i.e.,

153

where Di,j = Ixi -Yj I, Xi, Yj are feature vectors, Si,f is partial sum at

point (i,i). It will be much difficult to implement if ~~hey chose other

slope constraints.

5.4.1 Levenshtein Distance

For Levenshtein distance, there are also many variations. The ori­

ginal Levenshtein distance where each insertion, deletion and substitu­

tion is counted as one error transformation is the easist to implement.

We have developed a processor array for this computation. Aportion of

the dynamic programming diagram and its corresponding processor

array is given in Figure 5.9. Each processor computes ,~he partial sum

where S(ai,bj) = 1 if ai ;t:. bj ; S(ai,bj) =0 otherwise. The computation

can be divided into three stages. The procedures are as follows.

stage 1

(1) (a) Transfer (serially) partial sum Si-l,j-l into D frcm the lower PE.

(b) Transfer (serially) primitive Cl.j, into X from the lower PE.

(c) Transfer (serially) primitive bj into Y from the left PE.

(d) Compare (serially) X with Y; output V = 0 if X := y, V = 1 other-

wise.

b·J

S(i-l,j)

S(i-l,j-l)

b·J

Pi-l,j-l

154

D

a·I

(a)

a·
I

(b)

S(i,j)

I

S(i,j-l)

p..
I,J

Figure 5.9 (a) Portions of dynamic programming diagram and (b)
corresponding processor array.

155

(2) D ~ D + V.

Stage 2

(1) (a) Transfer (serially) partial sum Si-l,j into B from the left PE.

(b) Transfer (serially) partial sum Si,j-l into C from the lower PE.

(c) Send (serially) partial sum Si-l,j to D of the above PE.

(d) Compare (serially) B with C, A <- min(B, C).

(e) Send (serailly) contents of X to X of the above PE.

(f) Send (serially) contents of Y to Y of the right PE.

(2) A <- A + 1.

(3) Compare (parallelly) A with D, R <- min(A, D).

Stage 3

(1) (a) Send (serially) partial sum R to B of the left PE.

(b) Send (serially) partial sum R to C of the above PE.

Stage 1 takes 17 clock cycles to complete (16 for step (1) and 1 for step

(2)); stage 2 takes 18 (16 for step (1), 1 for step (2) and 1 for step (3)),

and stage 3 takes 16. Figure 5.10 shows the internal slructure and the

operations of processor element Pi,;" at stage 1, 2 and 3. Each PE con­

tains a set of registers, an ALD, a control unit and some other combina­

tional logic. Registers A, B, C, D, V and R are general-purpose registers

which are 16-bit long and connected to the ALD. Regi~:ters X and Yare

8-bit long, which are used to store primitives. In our seismic case, we

have 13 primitives; therefore, 4 bits should be enol.,gh to represent

them. In fact, 4 bits, which have 16 combinations, should be sufficient

for many practical applications. However, in order to make our system

more flexible and compatible with other systems which use ASCII code,

156

Stage 1

Primitive

a·I

b·J

v

Si-l,j-l

Partial
Sum

,.......-------1+

Stap;e 2 & 3

Partial
Sums

LSi-l,j B I +1

[Si,j-l C]

Figure 5.10 Internal structure and register transfer of PE Pi,j at :stage 1,
2 and 3.

157

we let registers X and Y hold 8 bits. This generalization will be able to

recognize character strings where each character is in ASCII code, for

example, A ='01000001', B ='01000010', C ='01000011', and so forth.

Figure 5.11 shows the data movement between 4 neighboring PE's

shown in Figure 5.9. All the processors at the same diagonal performs

the same computation as shown in Figure 5.11 and 5.12(a). This format

will move forward one step every 18 clock cycles. Since each string

only needs three diagonals at any time, the other processors can be

used to compute distances of other strings. Therefore, data fiow can be

pipelined as shown in Figure 5.12(b). If we are matc:t:.ing a test string

against a number of reference strings, the distance between the test

string and the first reference string will emerge after p x 18 clock

cycles, where p is the number of diagonals in the array. After that,

there will be one string distance coming out every 3x 18 = 54 clock

cycles. Since stage 1 and 3 have no conflict, they can be ovelapped, Le.,

one diagonal of the array can be used to perform stage 3 of one string

and stage 1 of the next string at the same time, to increase the

throughput.

The structure of processor array and data flow are shown in Figure

5.13. The reference strings enter from the left; the t,~st string enters

from the bottom. The test string must repeat itself continuously in

order to compare with all the reference strings. Both test and refer­

ence strings must be properly skewed and separated as shown in Figure

5.13 so that they will arrive at the right processors aL the right time.

The bookkeeping and selection of minimum distance can be done by a

special-purpose processor or the host computer. One practical prob­

lem is about the dimension of the processor array. The number of rows

1
v

x
l

Ir
-
-
-
-
-

.
,
-
-
-
-

S
ta

ge
1

r
y
l

H
-+

rI
y
IF

:-t
x
t
-
-
-
-
-
-

I
x
~

st
ag

e
2

i

" 1

r
I

1
I

i R
I

r

J
(+

D 1
>

-'
"

()
l

co

y

S
ta

ge
2

Q I
y

t
4

S
ta

ge
3

L
x

]
I

y
I

R

I
D

I
I

R
I I

t
I

H
B

I

rl
T
·~

I=
==

C
='

:=
:..

..J

I
~

F
ig

u
re

5
.1

1
D

a
ta

m
o

v
e
m

e
n

t
b

e
tw

e
e
n

P
E

's
.

159

(a)

Figure 5.12 Processors at the same diagonal perform the same opera­
tion; three diagonals are required for one string (a), and strings can be
pipelined (b).

160

....

....

... -$~

Figure 5.13 Processor array and data movement for computing Levensh­
tein distance.

161

can be set to the maximum length of the reference strings. Since the

length of the test string is unknown, the number of column can be set

arbitrarily. If a test string exceeds the array size, it should be handled

by the host computer or preprocessor. Because the interruption of the

regular computation pattern in a VLSI array will greatly reduce its

efficiency. This situation can be kept to minimum by selecting a

reasonablly large array size. A shorter string will be padded out with

blank to make it equal to the array dimension.

Suppose both the reference and the test string:3 have length l.

With a uniprocessor, the matching process for one unknown string will

take 0 (l Xl) unit operations. With the array processor, it only takes 3

unit times.

5.4.2 Weighted Levenshtein Distances

Since a weighted Levenshtein distance is usually more favorable in

practical application, we now propose a VLSI architec',~ore for its com­

putation. The major problem here is to store all the weights in each

processor, which must be easy to implement and fast for access. For­

tunately, a programmable logic array (PLA) can be used (Mead and Con­

way, 1980). It is a special type of read-only memory, and easy to imple­

ment in a VLSI system. A simple example will illustrate how a PLA

works. Figure 5.14 shows a simple weights table and its PLA implemen­

tation. A PLA consists of two parts, the left part is called the AND

plane, the right part is called the OR plane. Input lines A, B have the

combinations (0,0), (0,1), (1,0), (1,1) which represent the entries of the

weight table. The output XYZ indicate the values of the entries, which

range from 0 to 7. The circles indicate connections. Since we only have

162

B

0 1 XYZ
1 = 0 0 1

0 1 3 3 = 0 1 1
A 5 = 1 0 1

1 5 7 7 = 1 1 1

AND plane OR pl~ne

,- -- - - -- -, r-- - - -- -....,
I I I I

I I I I
I I I I

I I I I
I I I I
I I I I
I I I I
L_ -- -- -- _ .J L _ -- -- _-oJ

4>0 K>o

A B x Y Z

Figure 5.14 PLA implementation of a simple weight table.

163

13 primitives, 4 bits will be enough for discrimination. We take the 4

least-significant bits (LSB) from the primitives for our internal compu­

tation, for example, a = '0001', b ='0010', C = '0011', and so forth. We

need more bits for recognition of character strings. Figure 5.15 shows

the PLA implementation of weight table for substituti:m, insertion and

deletion in our seismic case. There is an input register to the AND­

plane and an output register from the OR-plane; both are 8-bit long.

Register X contains primitive 'a', and register Y contains primitive 'b';

(a, b) is the entry of the weight table. Here the symbols X, Y, A and B

are registers which should not be confused with those in Figure 5.14.

The pair (X = a, Y = b) represents the substitution of 'b ' for 'a'. The

pair (X =a, Y =0000) represents the deletion of 'a'. The pair (X =0000,

Y = 6) means the insertion of 'b ' . The access tilne is very fast, only two

clock cycles; one is needed for input register, the other is for output

register.

Except for the weight table, the computation procedure is similar

to the previous one. The internal structure of the PE's is given in Fig­

ure 5.16. Each PE has an ALD, a PLA (With registers Q and S), a control

unit, two 8-bit registers X, Y and three 16-bit registers B, C, and D.

Register Z contains constant '0000' as symbol A. The clata movement is

similar to that in Figure 5.11.

Stage 1

(1) (a) Transfer (serially) partial sum Si-l,j-l into D from the lower PE.

(b) Transfer (serially) primitive ~ into X from the lower PE.

164

primitives

a b c d e m

a

b

primitives c

d

m

(weights are normalized
to between 0 and 255)

A= 0000

a= 0001

b= 0010

c= 0011

d= 0100

e= 0101

m= 1101

clock
phase 1

AND plane

X
Input

(primitive pair)

··oo·
OR plane

Outputs (Weights)

clock
phase 2

Figure 5.15 A PLA implementation of thewcighL table for seismic reeog-

165

PLA
(Weight table) ALU

t T
Q I I s

I X I [B I
I y I [c] Control_.

I z I I D I

Figure 5.16 Internal structure of the PE for weighted string distance
computation.

166

(c) Transfer (serially) primitive b j into Y from the left PE.

(2) Load (parallelly) the 4 LSB of X and Y into Q, output S (CLj, ,b
J
.) in S.

(3) Compute D ~ D + S.

(4) Load (parallelly) the 4 LSB of X and Z into Q, output D (CLj,) in S.

stage 2

(1) (a) Transfer (serially) partial sum Si';"l,j into B from the left PE.

(b) Transfer (serially) partial sum Si,j-l into C from the lower PE.

(c) Send (serially) partial sum Si-l,j to D of the above PE.

(d) Send (serailly) contents of X to X of the above PE.

(e) Send (serially) contents of Y to Y of the right PE.

(2) (a) Compute B ~ B + S.

(b) Load (parallelly) the 4 LSB of Z and Y into Q, ousput l(b j) in S.

(3) (a) Compute C ~ C + S.

(b) Compute B ~ min(B, D).

(4) Compute D ~ min(B, C).

Stage 3

(1) (a) Send (serially) partial sum in D to B of the right PE.

(b) Send (serially) partial sum in D to C of the above PE.

In Stage 1, Step (1) takes 16 cycles ((a), (b) and (c) operate in parallel),

Step (2) takes 3 cycles (1 for loading, 2 for PLA reading), step (3) takes

1 cycle and Step (4) takes 3 cycles (same as Step (2)). In Stage 2, Step

(1) takes 16 cycles, Step (2) takes 3 cycles ((a), (b) operate in paralle!),

Step (3) takes 2 cycles and Step (4) takes 2 cycles. Stage 3 takes 16

cycles ((a) and (b) both take 16 cycles and can be executed in parallel).

167

Therefore, Stage 1 takes 23 cycles, Stage 2 takes 23 cycles, and Stage 3

takes 16 cycles. As usual, stage 3 can be overlapped. with stage 1 to

save processing time. Due to the weight computation, this system

takes longer time than the previous one.

5.5 Simulations and Performance Verrnc,3.tion

Simulations have been performed for the three systolic arrays:

feature extraction array, primitive recognition array and string match­

ing array. The flow charts for the simulations are given in Appendix A.

The same seismic data as those used in Section 3.5 :lre tested in the

simulations. The results of the simulations are exactly the same as

those of the sequential computer in Section 3.5. Therefore the design

of the systolic arrays are correct and the operations are as expected.

Step-by-step simulation results using sample seismic waveforms are

given in Appendix B. The computation time in our simulation is shown

in Table 5.1. The computation time using a sequential computer is also

given for comparison. it is noted that the listed comp.ltation time is an

average and approximate time which should be used for comparison

only. Suppose that we are dealing with a large amout of data. Similar

to the definition of speedup for multioperation computer in Kuck

(1978), we define the theoretical speedup (TS) of a (systolic) processor

array as

TS =
time interval between consecutive

results using a sequential computer
time interval between consecutive

results using a processor array

T
A

B
L

E
5

.1

C
o

m
p

u
ta

ti
o

n
ti

m
e

o
f

se
q

u
e
n

ti
a
l

a
lg

o
ri

th
m

,
si

m
u

la
te

d
c
o

m
p

u
ta

ti
o

n
ti

m
e

fo
r

V
L

S
I

a
rr

a
y

s
u

si
n

g
se

q
u

e
n

ti
a
l

c
o

m
p

u
te

r,
re

a
l

sp
e
e
d

u
p

s,
th

e
o

re
ti

c
a
l

sp
e
e
d

u
p

s
a
n

d
sp

e
e
d

u
p

ra
ti

o
.

(A
ll

c
o

m
p

u
ta

ti
o

n
s

a
re

fo
r

o
n

e
se

is
m

ic
re

c
o

rd
o

r
e
q

u
iv

a
le

n
t

o
n

e
st

ri
n

g
)

S
e
q

u
e
n

ti
a
l

S
im

u
la

te
d

R
ea

l
T

h
e
o

re
ti

c
a
l

S
p

e
e
d

u
p

A
lg

o
ri

th
m

V
L

S
I

a
rr

a
y

s
S

p
e
e
d

u
p

S
p

e
e
d

u
p

R
a
te

I
>

-' m
(s

e
c
.)

(s
e
c
.)

co

F
e
a
tu

re
0

.3
0

.0
0

5
6

0
6

0
10

0%
E

x
tr

a
c
ti

o
n

P
ri

m
it

iv
e

0
.1

0
.0

0
6

1
7

.4
1

9
.5

89
%

R
e
c
o

g
n

it
io

n

S
tr

in
g

0
.0

7
0

.0
1

5
4

.6
7

6
.6

7
70

%
M

a
tc

h
in

g

169

Therefore the 1'8 for feature extraction is 60/1 = 60, for primitive

recognition is 39/2 = 19.5 and for string matching is 20/3 = 6.67. The

numerators are the numbers of operations for getting one result using

a sequential computer, and the denominators are the time intervals

between consecutive results for VL8I arrays as shown in the previous

sections. Note that the 1'8 for string matching in our experiment is

20/3 = 6.67 instead of 20x20/3 = 133. This is because we only consider

substitution errors, therefore the number of operatioJ:'ls is proportional

to string length, i.e., 20. If insertion and deletion errors are to be con­

sidered, then the whole dynamic programming matrix as shown in Fig­

ure 2.1 should be considered. In the seismic recognition problem the

size of the matrix is 20x20.

The real speedup in our simulations for featLre extraction is

approximately the same as the maximum theoretical speedup. This is

due to the simple structure and data flow of the linearly connected sys­

tolic array. The real speedup (17.4) for primitive recognition is slightly

less than the 1'8 (19.5), which is 89% of the TS. The reason for this is the

increasing complexity of array structure and data flow. More time is

spent on data movement. The real speedup (4.67) for string matching

is also less than the 1'3 (6.67), which is 70% of the 1'3. This is because

the array structure and data flow are even more complicated. The

increasing complexity can be seen from the the desigrs in previous sec­

tions. The theoretical speedup is the upper bound where the real

speedup in simulation is a function of the computations performed and

the underlying architectures.

The simulations are performed on a sequential computer (VAX

11/780). In order to compare the simulation results vrith the results in

170

Chapter III we use the same high level languages (C, Fortran and Pas­

cal). Therefore, there are many overhead in language translation and

program execution. These are some of the reasons for low speedup.

Another reason is data movement which can be performed in parallel

with the computation in VLSI arrays, but can not be done in a sequen­

tial computer. One can not accurately simulate the VLSI system even

using an assembly language. Since most systolic arrays are hardwired,

Le., unprogrammable, there is no instruction decoding or memory

fetch and storage for each instruction. Besides, the parallelism can not

be fully simulated on a sequential computer. The real computation

speeds of the proposed VLSI arrays when fabricated should stay close to

the analytical results as shown in the previous sections, i.e., 1 unit time

for feature extraction, 2 unit times for primitive recol5nition and 3 unit

times for string matcing using WLD.

We would like to consider some problems about actual implementa­

tion and give some examples about the performancE' of our proposed

system. In Section 5.2 we assumed that the length of '"he linear systolic

array is the same as the number of points in each segment. Although a

linear array can be expanded easily, it is sometimes necessary to use

small array to process data of larger size. For example, in the seismic

recognition problem, the number of points in each segment is 60. We

can use a linear array consisting of 60 PE's, or we can use less PE's, for

example, 20 PE's. The implementation using 20 PE's is shown in Figure

5.17, where the data points in each segment are folded into three rows.

This will take three unit times to compute the features for each seg­

ment. Suppose there are 20 PE's with machine cycle 200 ns, then the

time required for feature extraction of 2,000 segments (after it reaches

171

I
X60

2 2 2 xl I
X40 X 41 X22 X40

2 2 X 2 I 1
X20 X21 2 X43 X20

a •• e.lt"~3O.

0 X 2 1 I
1 X42 X23

I 1 I xiX40 X41 X22

I I XlX20 X21 2

0 Xl
1 ,,

c (

~l
b

E~ ~~•• 0 •••• "a.

Figure 5.17 An implementation of feature extraction with 20 PE'~ and 60
points in each segment.

172

steady-state) is equal to 3 x 18 x 2000 x 200 ns =21.6 ms. The time for

reaching steady-state is 20 unit times, which is equal to 20 x 18 cycles

x 200 ns/cycle = 72 f..lS. Since the processing speed of feature extrac­

tion (18 cycles) is faster than that of primitive recognition (19 cycles),

the output of the former can be used directly by the hUeI'. Recall that

the input data for primitive recognition are interleaved by one space

(Figure 5.3(b)). The feature vector of the next segm,~nt is not needed

until after 2 x 19 cycles = 38 cycles. Therefore 30 PE s can be used for

feature extraction and produce a feature vector every 2 x 18 cycles =
36 cycles. Because 30 PE's take 2 unit times to produce a result and

each unit time is equal to 18 cycles. These two opera.tions can be exe­

cuted in parallel to save a half of the total processing time.

Consider string matching using Levenshtein di~;tance, the com­

pa.rison of one test string with each reference string takes 3 x 18 x 200

ns = 10.8 f..lS. With one hundred reference strings, it takes 1.08 ms to

classify each test string, and each test string is exec·~ted sequentially.

Using a systolic array it is possible to make real-time string matching.

Our system can match approximately 90,000 strings per second (10.8

f..lS for one string).

oNe assume in the previous discussion that all strings, test and

reference, have the same length. This is not true in many other appli­

ca.tions. Reference strings are different in length; dmensions of pro­

cessor array can not fit exactly the string size. It is required to make

processor array larger than the string size and pad the string with

blank at the end. If we let the weight of insertion, deletion and substi­

tution of blanks be zero, then we can solve the problem of length

variety and still maintain the regular, synchronous data fiovV' pattern.

173

Long strings and larger array size do not degrade the steady-state

throughput. As usual, results can be obtained every 3x18 =54 cycles.

It only takes longer time, i.e., F x 18 cycles where F is the number of

diagonals, to reach steady-state. Usually the time to reach steady­

state is negligible compared with the total processing time.

The system bus as shown in Figure 5.1 is similar to the Unibus of

DEC PDP-i1 (Kuck, 19(8). The Unibus has a maximum data rate of

4Xi07 bits/sec operating in an interlocked way, Le., the sender waits

until the receiver acknowledges receipt of a word before sending

another word. In our experiment, each seismic record has 1200 points,

and each point is coded into a i6-bit binary number. Therefore, each

seismic record needs 16x 1200 = 19200 bits of storage. It is easy to see

that the system bus can transmit one seismic record from disc to

special-purpose processor in 0.48 ms. However, the typical operating

speed of magnetic disc is from 2.4Xi05 bits/sec to 1.2X107 bits/sec

(Stone, 1980). Therefore the actual time for sending a seismic record

from disc to special-purpose processor is from 80 ms to 1.6 ms. The

output from the special-purpose processor is the classification results,

which use one word (16 bits) for each seismic record to indicate class

membership. The transmission time is 0.4 f..lS for one record.

5.6 Concluding Remarks

We have proposed special-purpose array processors for seismic sig­

nal classification, which can be attached to a general-purpose computer

as shown in Figure 5.1. The host computer can retrieve any intermedi­

ate data frorna special-purpose processor and store them in its own

174

storage, as well as send data to any memory unit of th2 special-purpose

processor. For example, the host computer can retrieve and store the

string representation of the signals for display or for later use. The

host computer can also use anyone of the systolic arrays, for example,

feature extraction array, only.

The design correctness and speedup have been verified by simula­

tions in Section 5.5. From the simulation results it is safe to predict

that the real speedup of the fabricated VLSI processor arrays will be

close to the theoretical speedup. Computer-aided design has greatly

reduce the design cost (Swerling, 1982). The cosUper'ormance ratio of

special-purpose processors will eventually be justified.

Recently, VLSI architectures have been applied to syntactic pattern

re2ognition and to implement parallel computation. Guibas, et al.

(U379) proposed two VLSI arrays for the implementation of combina­

todal algorithms, one is for a subset of dynamic programming prob­

lems, i.e., optimal parenthesization problems which include context­

free language recognition, the other is for transitive closure problems

wt.ich include finite-state language recognition. Based on the array

structure of Guibas, et al., Chu and Fu (1981) proposed VLSI architec­

tures for finite-state language recognition and context-free language

recognition using CYK's algorithm. Chiang and Fu (19132) also proposed

a VLSI systems for context-free language recogniticn using Earley's

algorithm. Ackland et al. (1981) developed a VLSI systems to imple­

ment dynamic time warping for spoken word recognltion. Our string

matcher can be applied to any problem where the Levenshtein di.stance

computation is required. It can be used for string matching in our

selsmic recognition, for character string matchinr in information

175

retrieval (Hall and Dowling, 1980) or for pattern matching in shape

analysis if the object can be represented by a string, ,faT example,

using chain codes (see Fu, 1982). Our primitive recognizer can also be

applied to any minimum-distance recognition problem and vector pat­

tern matching.

176

CHAPTER VI

SUMMARY, CONCLUSIONS, AND RECOMI~ENDATIONS

6.1 SummaIy

We have studied the application of syntactic pattern recognition to

sE'ismic signal classification and proposed special-purpose VL::iI archi­

tectures for the implementation. Our studies concentrate on the

waveforms where shape information is not important or useful, like

seismic signals. EEG and speech signals have similar characteristic as

seismic signal. Chapter I defines the problem of study, oun.nes the

approach to the problem and gives relevent literature survey. Chapter

II discusses string similarity (distance) measures and recognition pro­

cedures. String distances have been classified into two categoLes: gen­

eral string distances which are based on the concept of insertion, dele­

tion and substitution transformations and special string distances.

General string distances are further classified into a hierarchy of four

levels. Symmetric property of string distance has also been di:3cussed.

Recognition can be carried out by either nearest-neighbor decision rule

or error-correcting parsing. We use a modified Earley's parsing algo­

rLhm which does not require an expanded grammar and is able to use

symmetric distance.

177

Chapter III demonstrates the experimental results of seismic

discrimination and damage assesment. If shape is not the major

feature, pattern segmentation is often simpler. We only need to con-.

sider fixed-length segmentation. When shape information is the dom­

inant feature, pattern segmentation is usually associated with primitive

recognition. Generally speaking, a fixed-length segmentation :',s easier

to perform; a variable-length segmentation is more efficient in

representation. However, a variable-length segmentation usually takes

more time in determining the optimal boundary. Furthermore, a

variable-length segmentation sometimes starts from fixed-length seg­

mentation and then merges or splits based on a preset criterion. In

general, we are in favor of fixed-length segmentation provided a. proper

length can be easily selected. Feature selection is problem-dependent;

therefore we did not emphasize on this subject. Primitive recognition

is our first major topic in practical applications. Without any knowledge

about the data, we use a clustering procedure to find the optimal

number of clusters. Two criteria, increment of merge distance and

pseudo F-statistic (PFS), have been used to select cluster number and

they show identical results. Finite-state grammars are inferred from

. the training patterns using the k-tail inference algorithm.. Unless the

patterns are really generated by a finite-state grammar, chosing small

values of k usually worsens the classification result. Our experiments

show that uneven merge of states makes the inferred grammar perform­

ing poorly in recognition. Whenlthe inferred grammar is the canonical

grammar, the recognition results of using NN rule and ECP are the

saIne. According to our experiment, the NN rule takes however much

less computer time than ECP. A modified dynamic time-warping

178

system has been used to measure the distance between the seismic

waveforms of the building during a strong earthquake. This measure­

rnent can be used for damage assesmenL

Chapter N introduces an attributed grammar and parsing for sig­

nal recognition in general, and seismic recognition in particular. If we

use a canonical grammar as the pattern grammar, it usually contains a

large number of production rules and nonterminal symbols. Using

attributes will increase the descriptive power of the grammar as well as

simplify the syntactic rules of the grammar. We use a length attribute

for seismic grammar, which reduces more than 90% of the number of

productions and nonterminals from the nonattributed grammar. Attri­

buted seismic grammars also increase the recognition speed while

maintaining the same recognition accuracy.

Chapter V contains VLSI architectures for string matching, primi­

tive recognition and feature extraction. Although some special'-purpose

chips have been developed for signal recognition, for example, spoken

word recognition, we are making our systems as general as possible.

This is to say our string matcher and primitive recognizer with the

exception of feature extractor can be applied to any other pattern

recognition problem. They employ parallel processing and pipeline

data flow so that very fast throughput can be achieved. This improve­

ment of speed makes real-time pattern recognition possible.

179

6.2 Conclusions

Syntactic pattern recognition has been pointed out as a promising

approach to seismic classification (Chen, 1978). While quite a few sta­

tistical approaches have been proposed, we are the first to apply syn­

tactic approaches to this problem. With two simple features, our

approaches attain better results (91% correct rate) than most of the

existing statistical approaches (Tjostheim, 1975; Sarna and Stark,

1980). Our approaches also differ from the syntactic methods in

Chapter I in the treatment of primitive selection and grammar con­

struction. A clustering procedure along with two decision criteria con­

stitute the primitive selection algorithm in our approach, while heuris­

tic approaches were used by others, e.g., in Stockman, et al., (1976).

Our pattern grammars are inferred from training samples, but most

pattern grammars for signal analysis are constructed manually. An

attributed grammar for the seismic application is proposed, which

could significantly reduce the grammar size and increase the recogni­

tion speed. Finally, VLSI architectures are proposed for seismic

classification, which include feature extraction, primitive recognition

and string matching using (weighted) Levenshtein distance. Our string

matcher is different from many contemparory implementations, i.e.,

exact matching (e.g., in Foster and Kung, 1980), which are not suitable

for pattern recognition applications because of the noise and other

problems, for example, segmentation and primitive recognition errors;

the detail is discussed in chapter V. The computational results can be

produced at a constant rate, i.e., constant time corn.plexity, when using

our VLS1 architectures with pipelined data flow. Although these VLS1

systems are developed for seismic classification, they can be applied to

180

other similar applications.

6.3 Recommendations

Future works about syntactic seismic signal recognition can be

divided into two parts, one is algorithm development, the other is high­

speed implementation. (This can also be applied to other signal recog­

nition problems.) In algorithm development, the possibility of using

variable-length segmentation should be explored. Stochastic grammars

and parsing should be applied when probabilistic information is avail­

able. The inclusion of semantic information in pattern primitive is

another approach (Tsai and Fu, 1980). A conventional pattern

re:oresentation contains only syntactic symbols. A typical speech pat­

tern for dynamic time warping contains only numerical infomation. A

combination of these two will have both syntactic and semantic infor­

mation. The distance computation and parsing of such patterns can be

separated into syntactic deformation and semantic deformation, and

different weights can be assigned to these two deformations. Feature

extraction also needs further studies; linear predictive coefficients and

feEtures from power spectrum are good candidates.

After the algorithms are developed, they can often be implemented

on a parallel architecture, particularly on VLSI architectures. In our

string matcher, a global path constraint can be imposed, therefore

reduce the number of processors. Those special-purpose chips can be

arranged in such a way that the output of one chip is used directly as

the input of another chip. Of course, this can happen only wher all the

chips have the sarne processing speed; oUlCcwisc, buflen: or luLchcs are

181

required between the chips. Although these chips are for special pur­

poses, flexibility should also be considered. The more fiexible the chips

are, the more applications they have; therefore, makes their manufac­

turing cheaper. This combination of algorithm development and tech­

nology advance will make many pattern recognition applications practi­

cal in both cost and speed.

The application of attributed grammar using length attri'aute to

speech recognition should also be investigated. Suppose two strings

x =aaaaaabbbccc and y =aaaabbcc represent different utterances of

the same word. If we use string matching and NNR for classification,

then d (x ,y) 1= 0 regardless that we use the conventional Levensh­

tein distance or weighted Levenshtein distance. Ackroyd (1980) sug­

gested a modified WLD which is computed by subtracting II -J IdID

from the WLD, where I, J are the lengths of the two strings respectively

and dID is the weigth for insertion and deletion. Although this modified

WLD can make d (x ,y) =0, it will cause other problems, for example,

d (y ,z) = 0 for z =aaa. The type 3 WLD proposed in Chapter 2 can solve

this problem by letting D(a,a) = l(a,a) = 0 for all a E:~. However,

there exists one drawback, i.e., there is no restriction on the number of

insertions or deletions. An attributed grammar using length attribute

can be used to solve this problems without side effects. For example, if

string x is .the training sample, then the attributed grammar has pro­

d uction S -)ABC with inherited length attribute (l6,4L f3,2l, f3,2D for

(A,B,C). This attributed grammar will accept both string x and y, but

not z.

182

LI;3T OF REFERENCES

[(Ackland, B., Weste, N. and Burr, D.J., 1981. "An integrated mul­
tiprocessing array for time warping pattern matching," Proc. 8th
Annu. Symp. on Comput. Archil. May 12-14, Minneapolis, pp.
197-215.

[2J Ackroyd, M. H., 1980. "Isolated word recognition using the
weighted Levenshtein distance," IEEE Trans. Acous. Speech, Sig­
nal Processing, vol. ASSP-28, no. 2, pp. 243-244.

[3~ Aho, A.V. and Peterson, T.G., 1972. "A minimum distance error­
correcting parser for context-free languages," SIAM J. Comput.,
voL 1, no. 4, pp. 305-312.

[4] Aho, A.V. and Ullman, J.D., 1972. The Theory of Parsing, Transla­
tion and Compiling, Prentice-Hall, Inc., vol. 1,542 pp.

[5] Albus, J.E., 1977. "Electrocardiogram interpretation using a sto­
chastic finite state model," in Syntactic Pattern Recognition
Application, ed. by Fu, K.S., Springer-Verlag, pp. 51-64.

[6] Allen, R.V., 1978. "Automatic earthquake recognition and timing
from single traces," Bull. Seismol. Soc. Amer., vol. 68, no. 5, pp.
1521-1532.

[7] Anderson, K.R., 1978. "Automatic Analysis of Microearthquake Net­
work Data," Geoexplor, vol. 16, pp. 159-175.

[8] Atal, B.S. and Hanauer, S.L., 1971. "Speech analysis and synthesis
by linear prediction of the speech wave," J. Acoust. Soc. Am., vol.
50, no. 2, pp. 637-655.

[9] Bath, M., 1977. Spectral Analysis in Geophysics, Elsevier, New
York, 563 pp.

[10] Bath, M., 1979. Introduction to Seismology, Birkhauser Berlag,
Boston, 428 pp.

[l1J Biermann, A.W. and Feldman, J.A., 1972. "On the synthesis of
finite-state machine," IEEE Trans. Compnt., vol. C-21, pp. 592­
597.

183

[12J Blair, C. R., 1960. "A program for correcting spelling errors,"
Inform. Contr., vol. 3, pp. 60-67.

[13J Bois, P., 1981. "Reservior recognition in petroleum prospection
considered as an application of close man-machine communica­
tion," Froc. 2nd Int. Symp. on Comput. Aided Seismic Analysis
and Discrimination, North Dartmouth, Massachusetts, pp. 42-47.

[14J Bolt, B.A., 1976. Nuclear Explosions and Earthquakes, The Parted
Veil., W. H. Freeman and Co., San Francisco, 309 pp.

[15J Booth, T.1., 1967. Sequential Machines and Automata Theory,
Wiley, New York.

[16J Bowen, B. A. and Brown, W. R., 1982. VLSI Systems Design For
Digital Signal Processing. Prentice-Hall, Inc., New Jersey.

[17J Box, G.E.P. and Jenkins, G.M., 1976. Time Series Analysis -fore­
casting and control, Holden-Day Inc., San Francisco, 575 pp.

[18J Carnahan, B., Luther, H. A. and Wilkes, J. 0., 1969. Applied Numer­
ical Methods, John Wiley & Sons, Inc., New York.

[19J Chen, C.H., 1978. "Seismic Pattern Recognition," Geoexplor, vol.
16, no. 1/2, pp. 133-146.

[20J Chiang, Y. and Fu, K. S., 1981. "Parallel processing for d'.stance
computation in syntactic pattern recognition," Proc. IEEE
Workshop on CAPAIDM. Nov. 11-13, Hot Springs, VA.

[21J Chiang, Y. and Fu, K. S., 1982. "A VLSI architecture for fast
context-free language recognition (Earley'S algorithm) ,It 3rd Int.
Conj. Distributed Computing Systems. Oct. 12-15, Ft. Lauder­
dale, FL.

[22J Chou, S.M. and Fu, K.S., 1975. "Transition networks for pattern
recognition," Tech. Rept., TR-EE 75-39, Purdue Universiey, Indi­
ana.

[23J Crespi-Reghizzi, S., 1971. "An effective model for grammar infer­
ence," Proc. IFfP Congress, Aug., Yugoslavia, pp. 524-529.

[24J Crespi-Reghizzi, S., 1971. "Reduction of enumeration in gra.mmar
acquisition," Proc. 2nd Int. Joint conj. Artij. Intel., Sept. 1-3,
London, England, pp: 564-552.

[25J Dahlman, O. and Israelson, H., 1977. Monitoring Underground
Nuclear Explosions, Elsevier Scientific Publishing Co., Amster­
dam, the Netherlands.

184

[26J DeMori, R., 1972. "A descriptive technique for automatic speech
recognition," IEEE Trans. Audio Eleetroacoustic, AU-21, pp.89­
100.

[27J DeMori, R, 1977. "Syntactic recognition of speech patterns," in
Syntactic Pattern Recognition Application, ed. by Fu, KS.,
Springer-Verlag, New York, pp. 65-94.

[28J Duda, R.D. and Hart, P.E., 1973. Pattern Classification and Scene
Analysis, Wiley, New York, 482 pp.

[29J Earley, J., 1970. "An efficient context-free parsing algorithm,"
CACM vol. 13, pp. 94-102.

[30J Ehrich, R.W. and Foith, J.P., 1976. "Representation of random
waveforms by relational trees," IEEE Trans. Comput., vol. C-25,
no. 7, pp.725-736.

[31J Flanagan, J.1., 1972. Speech Analysis, Synthesis and Perception,
2nd Ed., Springer-Verlag, New York.

[32J Foster, M. J. and Kung, H. T., 1980. "The desssign of special­
purpose V1S1 chips," Computer, vol. 13, no. 1, pp. 26-40.

[33J Fu, K.S., 1973. "Stochastic languages for picture analysis," Com­
puter Graphics and Image Processing, vol. 2, pp. 433 ..A53.

[34J Fu, KS., 1977. "Error-correcting parsing for syntactic pattern
recognition," in Data Structure, Computer Graphics and Pattern
Recognition, ed. by Klinger, A., et al., Acdemic Press, pp. 449-492.

[35J Fu, K.S., ed., 1977. Syntactic Pattern Recognition Application,
Springer-Verlag, New York.

[36J Fu, KS., 1978. "Syntactic pattern recognition and its application
to signal processing," Proceedings oj the NATO Advanced Study
Institute on Pattern Recognition and Signal Processing, Series E,
Applied Science, no. 29, Sijthoff & Noordhoff International Publish­
ers, The Netherland.

[37J Fu, K.S., 1982. Syntactic Pattern Recognition and Applications,
Prentice-Hall, Inc., New Jersey, 596 pp.

[38J Fu, K.S. and Huang, T., 1972. "Stochastic grammars and
languages," Intern. Journal oj Comput. and Inform. Sci., vol. 1,
no. 2, pp. 135-170.

[39J Fu, K.S. and Booth, T.L., 1975. "Grammatical inference- introduc­
tion and survey," IEEE Trans. Syst., Man, CybeTn., vol. SMC-5, no
1, pp. 95-111, no. 4, pp. 409-423.

lS5

[40J Fu, KS. and Lu, S.Y., 1977. "A clustering procedure for syntactic
patterns," IEEE Trans. Sys., Man and Cybern, vol. SMC-7, no. 10,
pp. 734-742.

[41J Fu, KS. and Yao, J.T.P., 1979. "Pattern recognition and d.amage
assesment," The ASCE EMD Specialty Conference Austin, Texas.

[42J Fukunaga, K., 1972. Introduction to Statistical Pattern Recogni­
tion, Academic Press, New York.

[43J Fukunaga, K and Koontz, W.1.G., 1970. "A criterion and algorithm
for grouping data," IEEE Trans. Comput., vol. C-19, pp. 917-:923.

[44J Fung, 1.W. and Fu, KS., 1975. "Stochastic syntactic decoding for
pattern classification," IEEE Trans. Comput., vol.· C-24, pp. 662­
669.

[45J Giese, D.A., Bourne, J.R. and Ward, J.W., 1979. "Syntactic analysis
of the electroencephalogram," IEEE Tran. Syst., Man., Oybern.,
vol.9, no.S, pp.429-435.

[46J Guibas, 1. J., Kung, H. T. and Thompson, C. D., 1979. "Direct VLSI
implementation of combinatorial algorithms," Caltech ConJ. on
VLSI, Jan., pp. 509-525.

[47J Hall, P.A.V. and Dowling, G.R., 1980. "Approximate string match­
ing," ACM Comput. Surveys, vol. 12, no. 4, pp. 381-402.

[48J Horowitz, S.1., 1975. "A syntactic algorithm for peak detection in
waveforms with applications to cardiography," CACM, vol. 18,no.
5, pp. 281-285.

[49J Horowitz, S.1., 1977. "Peak recognition in waveforms," in Syntac­
tic Pattern Recognition Application, ed. by Fu, KS., Springer­
Verlag, pp. 31-49.

[50J Hwang, K and Cheng, Y. H., 1981. "Partioned matrix algcrithms
and VLSI structures for large scale matrix computations," 5th
Symp. Comput. Arithmetic, May 18-19, Ann Arbor, Mich., pp. 222­
232.

[51J Ishizuka, M., Fu., K.S. and Yao, J.T.P., 1981. "Inexact inference for
rule-based damage assesment of existing structure," Tech. Rep.,
CE-STR-81-5, Purdue University, Indiana.

[52J Joshi, A.K., 1973. "Remarks on some aspects of language structure
and their relevance to pattern analysis," Pattern Recognition, vol.
5, no. 4.

[53J Knuth, D.E., 1968. "Semantics of context-free languages," J. Math.
Sys. Theory, vol. 2, pp. 127-146.

186

[54J Kuck, D. J., 1978. The Structure of Computers and Computa­
tions. John-Wiley and Sons, New York.

[55J Kulkarni, A. V. and Yen, D. W. L., 1982. "Systolic processing and an
implementation for signal and image processing," IEEE Trans.
Comput., vol. C-31, no. 10, pp. 1000-1009.

[5 13J Kung, H.T., 1979. "Let's design algorithm for VLSI systems," Proc.
Caltech Conj. on VLSI, Jan., Pasadena, CA, pp. 65-90.

[5'7J Kung, H. T., 1982. "Why systolic architectures ?" Computer, vol.
15, no. 1, pp. 37-46.

[53J Lee, H.C. and Fu, K.S., 1972. "A stochastic syntax analysis pro­
cedure and its application to pattern classification," IEEE Trans.
Comput., vol. C-21, pp. 660-666.

[59J Lee, H.C. and Fu, K.S., 1972. "A syntactic pattern recognition sys­
tem with learning capability," Froc. Int. Symp. Comput. and
Inform. Sci. Dec. 14-16, Miami Beach, Florida.

[60J Lee, B.C. and Fu, KS., 1972. "Stochastic linguistics for pattern
recognition," Tech. Rep., TR-EE 72-17, Purdue Universiry, Lafay­
ette, Indiana.

[61J Levenshtein, V.I., 1966. "Binary codes capable of correcting dele­
tions, insertions, and reversals," Sov. Phys. Do1cL., vol. 10, pp.
707-710.

[62J Lozano-Peiez, T., 1977. "Parsing Intensity Profile," Computer
Graphics and Image Processing, vol. 6, pp. 43-60.

[6~3J Lu, S.Y. and Fu, KS., 1977. "Stochastic error-correcting syntax
analysis for recognition of noisy pattern," IEEE Trans. CoTnput. ,
vol. C-26, no. 12., pp.1268-1276.

[64-J Lu, S.Y. and Fu, K.S., 1978a. "A syntactic approach to texture
analysis," Computer Graphics and Irnage Processing, vol. 7, no. 3,
pp. 303-330.

[65J Lu, S.Y. and Fu, KS., 1978b. "Error-correcting tree automata for
syntactic pattern recognition," IEEE Trans. Comput., vo. C-27,
Nov., pp. 1040-1053.

[6 13J Lu, S.Y. and Fu, K.S., 1979. "Stochastic tree grammar inference
for texture analysis and discrimination," Computer Graph1.cs and
Image Processing, vol. 9, pp. 234-245.

[6'7J Lyon, G., 1974. "Syntax-directed least-error analysis for context­
free languages: a practical approach," CACM, vol. 17, no. 1 pp. 3­
14.

187

[68J Mead, C.A. and Conway, L.A., 1980. Introduction to VLSI Systems,
Addison-Wesley, 396 pp.

[69J Miclet, L., 1980. "Regular inference with a tail-clustering method,"
IEEE Trans. Syst., Man., Cybern., vol. SMC-l0, pp. 737-743.

[70J Mottl', V.V. and Muchnik, LB.. 1979. "Linguistic analysis of experi­
mental curves," Froc. IEEE, vol. 67, no. 5, pp. 714-736.

[71J Mukhopadhyay, A., 1979. "Hardware algorithm for nonnumeric
computation," IEEE Trans. Comput., vol. C-28, no. 6, pp.384-394.

[72J Okuda, T, Tanaka, E and Kasai, T, 1976. "A method for the correc­
tion of garbled words based on the Levenshtein metric," IEEE
Trans. Comput., vol. C-25, pp. 172-178.

[73J Oppenheim, A.V., 1970. "Speech spectrograms using the fast
fourier transform," IEEE Spectrum, vol. 7, pp. 57-62.

[74J Oppenheim, A.V. and Schafer, R.W., 1975. Digital Signal Process­
ing, Prentice-Hall Inc., Englewood Cliffs, New Jersey.

[75J Pavlidis, T., 1971. "Linguistic analysis of waveforms," in Software
Engineering, ed. by Tou, J. T., vol. 2, Acdemic, New Yor, pp.203­
225.

[76J Pavlidis, T., 1973. "Waveform segmentation through functional
approximation," IEEE Trans. Comput., vol. C-22, pp.689-697.

[77J Pavlidis, T. and Horowitz, S.L., 1974. "Segmentation of plane
curves," IEEE Trans. Comput., vol. C-23, pp.860-870.

[78J Reddy, D.R., ed., 1975. Speech Recognition, Acdemic Press, New
York.

[79J Sakoe, H. and Chiba, S., 1978. "Dynamic programming algorithm
optimization for spoken word recognition," IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-26, pp. 43-49.

[80J Sandvin, O. and Tjostheim, D., 1978. "Multivariate autoregressive
representation of seismic P-wave signals with application to
short-period discrimination," Bull. Seism. Soc. Am., vol. 68, pp.
735-756.

[81J Sankar, P.V. and Rosenfeld, A., 1979. "Hierarchical representation
of waveforms," IEEE Trans. Patt. Analy. and Mach. Intd., vol.
PAMI-l, no. 1, pp. 73-79.

[82J Sa.rna C.S. and Stark H., 1980. "Pattern recognition of waveforms
using modern spectral estimation techniques and its application
to earthquake / explosion data," Froc. 5th Intl. Conf. on Pattern
Recognition, Dec. 1-4, Miami Beach, FL.

188

[B3J Schafer, R.W. and Rabiner, L.R., 1975. "Digital representation of
speech signa}," Froc. IEEE, vol. 63, pp. 662-677.

[B4J Stewart, S.W., 1977. "Real-time detection and location c,f local
seismic events in central California," Bull. Seism. Soc. Am., vol.
67, pp. 433-452.

[B5J Stockman, G., Kanel, L.N. and Kyle, M.C., 1976. "Structural pattern
recognition of carotid pulse waves using a general waveforrn pars­
ing system," CACM, vol. 19, no. 12, pp. 688-695.

[B6J Stone, H. S., ed., 1980. Introduction to Computer Architecture.
Science Research Associates, Inc., Chicago.

[E17J Swerling, S. 1982. "Computer-aided engineering," IEEE Spectrum,
vol. 19, no. 1.1, pp. 37-41.

[EI8J Tanaka, E. and Kasai, T., 1972. "A correcting method of garbled
languages using ordered key letters," Trans Inst. Elec. Commun.·
Eng. (Japan), vol. 55-D, pp. 363-370.

[EI9J Tai, J.W. and Fu, K.S., 1981. "Semantic syntax-directed translation
for ipet.orial pattern recognition," Tech. Rep., TR-EE 81-38, Pur­
due University.

[tIOJ Tai, J. W. and Fu, K. S., 1982. "Inference of a class of CF'PG by
means of semantic rules," Int'l J. of Comput. and Inf. Sci., vol.
1.1,no. l,pp. 1-23.

[~HJ Tang. G.Y. and Huang, T.S., 1979. "A syntactic-semantic approach
to image understanding and creation," IEEE Trans. Patt. Anal.
Mach. Intel., vol. PAMI-1..

[£2J Thomason, M.G. and Gonzalez, R.C., 1975. "Error detection and
classification in syntactic pattern structures," IEEE Trans. Com­
put., vol. C-24.

[93J Thomason, M.G. and Gonzalez, R.C., 1975. "Syntactic recognition of
imperfectly specified patterns," IEEE Trans. Comput., vol. C-24,
no. 1, pp. 93-95.

[94J Tjostheim, D., 1975. "Autoregressive representation of sei;::mic P­
wave signals with an application to the problem of shori-period
discriminants," Geophys. J. R. Astr. Soc., vol. 43, pp. 269-291.

[95J Tjostheim, D., 1977. "Recognition of waveforms using autoregres­
sive feature extraction," IEEE Trans. Comput., vol. C-26, pp. 268­
270.

[96J Tjostheim, D., 1978. "Improved seismic discrimination using pat­
tern recognition," Phys. Earth Planet, inter., vol. 16, pp. 85-108.

189

[97J Tjostheim, D. and Sandvin, 0., 1979. "Multivariate Autoregressive
Feature Extraction and the Recognition of Multichannel
Waveforms," IEEE Tra:ns. Fatt. Analys. and Mach. Intell., vol.
PAMI-l, no. 1, pp.80-86.

[98J Tomek, 1., 1975. "More on Piecewise Linear Approximation," Com­
put. Biomed. Res., vol. 8, pp.568-572.

[99J Tsai, W.H. and Fu, KS., 1979. "A pattern deformation model and
Bayes error-correcting recognition system," IEEE Tran~l. Sys.
Man and Cyber., vol. SMC-9, no. 12,pp. 745-756.

[100J Tsai, W.H. and, Fu, K.S., 1980. "Attributed grammar-a tool for
combing syntactic and statistical approach to pattern recogni­
tion," IEEE Trans. Sys. Man and Cyber., vol. SMC-l0, no. 12, pp.
873-885.

[10 1J Vogel, M.A. and Wong, A.KC., 1978. "PFS Clustering Method," IEEE
Trans. Patt. Analy. Mach. Intel., vol. PAMI-1, no. 3, pp. 237-:245.

[102J Wagner, R.A., 1974. "Order-n correction of regular languages,"
CACM, vol. 17, no. 5, pp. 265-268.

[103J Wagner, R.A. and F'ischer, M.J., 1974. "The string-io-string correc­
tion problem," J. ACM vol. 21, no. 1, pp. 168-178.

[104J Yao, J.T.P., 1979. "Damage assessment and reliability evaluation of
existing structures," Eng. Struct., vol. 1, pp. 245-251.

[105J You, KC., 1978. "Syntactic shape recognition using attributed
grammars," Tech. Rep., TR-EE 78-38, Purdue University, Indiana.

[106J You, KC. and· F'u, KS., 1979. "A syntactic approach to shape
recognition using attributed grammar," IEEE Trans. Sy8. Man
and Cyber., vol. SMC-9, no. 6, pp. 334-345.

190

APPENDIX A

FLOW CHARTS FOR THE SIMULATIONS

Appendix A gives the ft.ow charts for the simulations in Section 5.5.

Figure A.l is the ft.ow chart for feature extraction, Figure A.2 is the ft.ow

chart for primitive recognition, and Figure A.3 is the ft.ow chart for

string matching.

191

regc(i)=O
regs(i)=0
regb(i)=O

read ith data
...-------~ item regd(i)

regs(i)=regs(i)
+ abs(regd(i))

reg(i) =
regc(i) + 1

No

regs(i +1) =regs(i)
regc(i + l)=regc(i)
regb(i +1)=regd(i)

write regc{l),
regs(l)

Figure A.1 Flow chart for the simulation of feature extraction.

j=j+1

192

regx(i,j) = regx (i-I ,j)

regu(i,j) = refv(i,j)

Yes

rega(i,j)=rega(i,j) 1
(regx(i,j)-regu(i,j))

regx(i,j) =ftrv(j)

rega(i,j)=O

Figure A.2 Flow chart for the simulation of primitive recognition.

193

Yes

No

No

regar(i) =regc(i-l)
regc(i) =rega(i,2)
regb(i)=regd(i-l)

regd(i) =idx(i)

Yes

regc(i) =regar(i)
regd(i) =regb(i)

regc(i) =rega(i,2)
regd(i)=idx(i) .

Yes

write regd(13)

Figure A.2 (Continued)

194

regd.. =
dist(sifl,S2(i))

regb. + 1 . =regd..
1 ,I. 1,1

regd.. =regb.. 4-
1,1 1,1-

regd.. =regd..
• 1 1 1)

dls~ (Sl(i),S2(1))

Yes

write regd20,20

Figure A.3 Flow chart for the simulation of string matching.

195

APPENDIXB

STEP-BY-STEP SIMULATION RESULTS

Table B.1 shows the intermediate results of feature extraction at

each time interval for the seismic signal shown in Figure B.lo The sym­

b:)ls a.b ,S.e.x.y and d are described in Figure 5.4(b). We use a

linearly-connected array of 60 processors. Therefore. for a specific

seismic segment, it takes 60 unit times to pass through the processor

array. Since the data can be pipelined, it takes only one unit time to

extract the feature from each segment. The inputs to Table B.2 are the

outputs from Table B.1 after normalization. Table B.2 shows the inter­

mediate results of primitive recognition at each time interval. At time

nand 2n. n = 1, 2 13, the simulation executes 'compute' operation.

At time 3n, n = 1, 2 13, the simulation executes 'compare' opera-

tion. The symbols a.x ,u.b ,y and v of 'compute' operation are

described in Figure 5.7(0.). The symbols a.b ,e ,d ,y and z of 'compare'

operation are described in Figure 5.7(b). A specific feature vector

takes 39 unit times to pass through the processor array. Since the

feature vectors can be pipelined. it takes two unit times to assign a

primitive to each feature vector. The output 'g' from Table B.2 is the

4th symbol of the second string in Table B.3. Table B.3 shows the inter­

mediate results of string matching using the weighted Levenstein dis­

tance. Since only substitution errors are considered. the computation

is straightforward. The syrnbols x ,Y ,d and b represent the rc['isLers as

196

described in Figure 5.16. A specific pair of strings take 39 unit times to

pass through the processor array. Since the strings can be pjpelined, it

takes 3 unit times to compute the distance between an unknown and a

reference string. The recognition results will not be known until we

compare against all the (100) reference strings.

197

Figure B.1 Seismic segment (60 points) used in the simulation to gen­
erate intermediate results of Table B.1 and Table B.2.

198

TABLE B.l

The intermediate results of feature extraction at each
time interval for the seismic segment shown in Figure B.l

t = 1 a = -0.732877 b = 0.000000 S = 0.732877 c=O
x = -0.732877 Y = 0.732877 d := 0

t=2 a = -0.732877 b = -0.732877 S = 1.465755 c=O
x = -0.732877 Y = 1.465755 d=O

t::: 3 a = -0.732875 b =-0.732877 S = 2.198629 c = 0
x = -0.732875 y=2.198629 d=O

t=4 a = -0.578423 b = -0.732875 S :.:: 2.777052 c=O
x :.:: -0.578423 y = 2.777052 d:::O

t :.:: 5 a = -0.423971 b = -0.578423 S = 3.201023 c = 0
x = -0.423971 Y = 3.201023 d=O

t = 6 a = -0.115067 b :.:: -0.423971 S = 3.316090 c=O
x=-0.115067 y = 3.316090 d = 0

t = 7 a:.:: 0.039385 b :.:: -0.115067 S :.:: 3.355475 c = 0
x = 0.039385 y = 3.355475 d = 1

t :.:: 8 a :.:: 0.193837 b = 0.039385 S :.:: 3.549313 c = 1
x:.:: 0.193837 y = 3.549313 d = 1

t:.:: 9 a = 0.193837 b = 0.193837 S = 3.743150 c = 1
x = 0.193837 Y = 3.743150 d = 1

t = 10 a = 0.348289 b :.:: 0.193837 S = 4.091439 c = 1
x = 0.348289 Y = 4.091439 d = 1

t :.:: 11 a = 0.502741 b = 0.348289 S = 4.594181 c :.:: 1
x:.:: 0.502741 y = 4.594181 d :.:: 1

199

t = 12 a =0.657193 b =0.502741 S =5.251374 c = 1
x =0.657193 y =5.251374 d = 1

t = 13 a =0.811646 b =0.657193 S =6.063020 c = 1
x == 0.811646 y =6.063020 d = 1

t = 14 a =0.657193 b =0.811646 S =6.720213 c = 1
x =0.657193 y = 6.720213 d = 1

t = 15 a = 0.811646 b =0.657193 S = 7.531859 c = 1
x = 0.811646 y =7.531859 d = 1

t = 16 a =0.811646 b =0.811646 S = 8.343505 c = 1
x =0.811646 y = 8.343505 d = 1

t = 17 a = 0.811646 b =0.811646 S = 9.155150 c = 1
x = 0.811646 y=9.155150 d = 1

t = 18 a = 0.811646 b = 0.811646 S =9.966796 c = 1
x = 0.811646 y = 9.966796 d == 1

t = 19 a = 0.657193 b = 0.811646 S = 10.623989 c == 1
x = 0.657193 y = 10.623989 d = 1

t = 20 a =0.657193 b =0.657193 S = 11.281182 c = 1
x = 0.657193 y = 11.281182 d = 1

t = 21 a =0.657193 b =0.657193 S = 11. 938375 c = 1
x =0.657193 y = 11. 938375 d == 1

t = 22 a = 0.657193 b =0.657193 S = 12.595569 c = 1
x = 0.657193 Y = 12.595569 d == 1

t == 23 a == 0.657193 b == 0.657193 S == 13.252762 c == 1
x = 0.657193 Y = 13.252762 d = 1

t = 24 a = 0.657193 b =0.657193 S = 13.909955 c = 1
x = 0.657193 Y == 13.909955 d = 1

t == 25 a = 0.811646 b == 0.657193 S = 14.721601 c = 1
x = 0.811646 y = 14.721601 d = 1

t = 26 a = 1.120550 b=0.811646 S = 15.8421.50 c = 1

200

x = 1.120550 Y = 15.842150 d = 1

t = 27 a = 1.583906 b = 1.120550 S == 17.426056 c =1
x == 1.583906 Y = 17.426056 d == 1

t = 28 a = 2.356166 b = 1.583906 S = 19.782223 c =1
x == 2.356166 y == 19.782223 d = 1

t == 29 a = 3.282878 b =2.356166 S = 23.065102 c =1
x = 3.282878 Y = 23.065102 d == 1

t == 30 a == 3.900687 b == 3.282878 S == 26.965788 c = 1
x = 3.900687 Y == 26.965788 d == 1

t == 31 a = 3.437330 b = 3.900687 S = 30.403118 c = 1
x = 3.437330 y = 30.403118 d = 1

t = 32 a == 1.275002 b == 3.437330 S == 31.678120 c =1
x == 1.275002 y =31.678120 d = 1

t == 33 a == -2.122946 b = 1.275002 S = 33.801064 c =1
x == -2.122946 y = 33.801064 d=2

t == 34 a =-5.984246 b == -2.122946 S = 39.785309 c=2
x = -5.984246 y = 39.785309 d=2

t == 35 a == -8.918835 b = -5.984246 S == 48.704144 c == 2
x = -8.918835 y == 48.704144 d==2

t = 36 a = -10.000000 b = -8.918835 S = 58.704144- c = 2
x = -10.000000 y == 58.704144- d == 2

t == 37 a = -9.227739 b = -10.000000 S == 67.931885 c == 2
x == -9.227739 Y = 67,931885 d == 2

t == 38 a == -6.447603 b = -9.227739 S == 74.379486 c = 2
x = -6.447603 Y = 74.379486 d==2

t == 39 a = -2.122946 b = -6.44-7603 S = 76.502434 c = 2
x = -2.122946 Y == 76.502434 d =2

t = 40 a = 2.201714 b = -2.122946 S = 78.704147 c = 2
:::=2.201714- y == 78.704147 d == 3

201

t = 41 a = 6.371919 b =2.201714 S = 85.076065 c = 3
x =6.371919 Y = 85.076065 d = 3

t = 42 a = 8.997603 b = 6.371919 S = 94.073669 c = 3
x = 8.997603 Y = 94.073669 d=3

t = 43 a = 9.769864 b = 8.997603 S = 103.843536 c = 3
x =9.769864 y= 103.843536 d=3

t = 44 a = 9.306508 b = 9.769864 S = 113.150047 c = 3
x = 9.306508 Y = 113.150047 d=3

t = 45 a = 8.070891 b = 9.306508 S = 121.220940 c = 3
x = 8.070891 y= 121.220940 d = 3

t = 46 a = 6.526371 b = 8.070891 S = 127.747314 c = 3
x =6.526371 Y = 127.747314 d =3

t =47 a = 4.672946 b = 6.526371 S = 132.4202513 c = 3
x = 4.672946 y = 132.420258 d = 3

t = 48 a = 2.356166 b = 4.672946 S = 134.7764213 c = 3
x = 2.356166 Y = 134.776428 d=3

t = 49 a = -0.732875 b = 2.356166 S = 135.5093013 c = 3
x = -0.732875 y = 135.509308 d=4

t = 50 a = -3.821918 b = -0.732875 S = 139.33122:3 c=4
x = -3.821918 Y = 139.331223 d=4

t = 51 a = -6.910959 b = -3.821918 S = 146.2421813 c=4
x = -6.910959 Y = 146.242188 d = 4

t = 52 a = -8.764383 b = -6.910959 S = 155.006577 c = 4
x = -8.764383 y = 155.006577 d=4

t = 53 a = -8.918835 b =-8.764383 S = 163. 92541~5 c=4
x = -8.918835 Y = 163.925415 d=4

t = 54 a = -8.146575 b = -8.918835 S = 172.07199l c = 4
x = -8.146575 y= 172.071991 d=4

202

t = 55 a = -7.065411 b = -8.146575 S = 179.137405 c=4
x =-7.065411 Y = 179.137405 d=4

t = 56 a =-5.984246 b = -7.065411 S = 185.121659 c=4
x =-5.984246 Y = 185.121658 d=4

t = 57 a = -4.903082 b = -5.984246- S = 190.024734 c=4
x = -4.903082 Y = 190.024734 d=4

t = 58 a =-3.667466 b = -4.903082 S = 193.692200 c=4
x = -3.667466 Y = 193. (392200 d=4

t = 59 a = -1.814041 b = -3.667466 S = 195.506241 c=4
x = -1.814041 y = 195.506241 d=4

t = 60 a = 0.193837 b = -1.814041 S = 195.700073 c=4
x = 0.193837 Y = 195.700073 d=5

203

TABLE B.2

The intermediate results of primitive recognition at
each time interval for the feature vector from Table B.l
after normalization.

t = 1 a = .000 x = -.161 u=-1.718
b = 2A26 y=-.161 v=-1.718

t = 2 a = 2.426 x= 19.252 u=-2.108
b=458.711 y= 19.252 v = -2.108

t = 3 a= ********** b = 458.711 c = ,*, d = 'a'
y=458.711 z = 'a'

t=4 a = .000 x=-.161 u = 3.337
b= 12.232 y=-.161 v = 3.337

t = 5 a= 12.232 x= 19.252 u = -1. 740
b = 452.920 y= 19.252 v = -1.740

t = 6 a = 458.711 b = 452.920 c = 'a' d = 'b'
y =452.920 z = 'b'

t = 7 a = .000 x=-.161 u=-.180
b = .000 y = -.161 v = -.180

t = 8 a = .000 x= 19.252 u = -2.387
b = 468.287 y= 19.252 v = -2.387

t = 9 a = 452.920 b = 468.287 c = 'b' d = 'c'
y = 452.920 z = 'b'

t = 10 a = .000 x = -.161 u=-1.229
b = 1.142 y=-.161 v = -1.229

t = 11 a= 1.142 x= 19.252 u = .987
b = 334.762 y= 19.252 v = .987

204

t= 12 a = 452.920 b = 334.762 c = 'b' d = 'd'
y = 334.762 z = 'd'

t = 13 a = .000 x = -.161 u = .467
b = .384 y = -.161 v = .467

t= 14 a = .394 x= 19.252 u =1.049
b = 331.763 y= 19.252 v= 1.049

t= 15 a= 334.762 b =3~31.763 c = 'd' d = 'e'
y = 331.763 z = 'e'

t= 16 a = .000 x = -.161 u = .427
b = .345 Y = -.161 v = .427

t = 17 a = .345 x= 19.252 u = .114
b = 366.632 y= 19.252 v = .114

t =18 a = 331.763 b = 366.632 c = 'e' d = 'f'
y=331.763 z = 'e'

t = 19 a = .000 x = -.161 u = -.407
b = .061 y=-.161 v = -.407

t = 20 a = .061 x= 19.252 u= 1.284
b = 322.939 y= 19.252 v= 1.284

t = 21 a = 331.763 b = 322.939 c = 'e' d = 'g'
y = 322.939 z = 'g'

t = 22 a = .000 x = -.161 u = -.321
b = .026 Y = -.161 v = -.321

t = 23 a = .026 x= 19.252 u = .440
b = 353.928 y= 19.252 v = .440

t = 24 a = 322.939 b = 353.928 c = 'g' d = 'h'
y = 322.939 z = 'g'

t = 25 a = .000 x=-.161 u= 1.431
b = 2.533 Y = -.161 v= 1.431

205

t = 26 a = 2.533 x= 19.252 u = .169
b == 366.713 y= 19.252 v = .169

t = 27 a = 322.939 b = 366.713 c = 'g' d = 'i'
Y = 322.939 z = 'g'

t = 28 a = .000 x = -.161 u = -.307
b = .021 y=-.161 v = -.307

t = 29 a = .021 x= 19.252 u = -.573
b = 393.089 y= 19.252 v = -.573

t = 30 a = 322.939 b = 393.089 c = 'g' d = 'j'
y = 322.939 z = 'g'

t = 31 a = .000 x=-.161 u = 1.486
b = 2.710 Y = -.161 v= 1.486

t = 32 a = 2.710 x= 19.252 u = -.940
b = 410.457 y= 19.252 v = -.940

t =33 a =322.939 b = 410.457 c = 'g' d = 'k'
y = 322.939 z = 'g'

t = 34 a = .000 x =-.161 u=-1.414
b = 1.570 y=-.161 v = -1.414

t = 35 a= 1.570 x= 19.252 u = -.256
b = 382.141 y= 19.252 v =-.256

t = 36 a ::: 322.939 b=382.141 c = 'g' d='l'
y = 322.939 z = 'g'

t = 37 a ::: .000 X = -.161 u = .477
b = .406 y=-.161 v = .477

t = 38 a ::: .406 x= 19.252 u = -.757
b =: 400.778 y= 19.252 v = -.757

t = 39 a = 322.939 b = 400.778 c = 'g' d = 'm'
y = 322.939 z = 'g'

206

TABLE B.3

The intermediate results of string matching
at each time interval between strings 'acag
hfijjmjjmmkmjjjm' and 'mlclgijdifhf1m
Icillibb '. The output d = 5.742 is the distance
between these two strings.

t= 1 v - 'a' y= 'm' d == 0.485£>. -

t=2 x= 'c' y= 'm' b = 0.485

t=3 x== 'c' y= 'k' d = 0.900

t=4 x= 'a' y= 'k' b =0.900

t = 5 x= 'a' y= '1' d = 1.253

t= 6 x= 'g' y= '1 ' b = 1.253

t=7 x= 'g' y= 'g' d = 1.253

t= 8 x= 'h' y= 'g' b = 1.253

t= 9 x= 'h' Y = 'i ' d = 1.586

t= 10 x== 'f' y= 'i' b = 1.586

t= 11 li = 'f' y= 'f' d = 1.586

t= 12 x== 'it y= 'f' b = 1.586

t= 13 x= 'i' y= 'd' d = 2.109

t= 14 v - 'j' y= 'd' b = 2.109"' -

t= 15 v - 'j' y= 'i J d = 2.464"' -

t= 16 y- 'j' y= 'i' b = 2.464, -

207

t= 17 x- 'j' y= 'f' d = 2.654. -

t= 18 x= 'm' y= 'f' b = 2.654

t= 19 x= 'm' y= 'h' d = 2.924

t= 20 x= 'j' y= 'h' b = 2.924

t= 21 ;(= 'j' y= 'f' d = 3.113

t = 22 x= 'f' y= 'f' b = 3.113

t= 23 x= 'f' y= 'f' d = 3.113

t = 24 x= 'm' y= 'f' b = 3.113

t = 25 y- 'm' y= 'm' d = 3.113' -

t= 26 x- 'm' y= 'm' b = 3.113. -

t = 27 x= 'm' y = 'k' d = 3.306

t = 28 x= 'k' y= 'k' b = 3.306

t = 29 x= 'k' y= 'i' d = 3.515

t = 30 x= 'm' y= 'i' b =3.515

t= 31 v - 'm' y= '1' d = 3.882.. -

t= 32 x=: 'j' y=: '1' b =3.882

t =: 33 :x = 'j' y = '1 ' d = 4.099

t= 34 v - 'j' y= '1 ' b = 4.099.l'l. -

t=: 35 y- 'j' y= 'i' d = 4.454. -

t= 36 x= ' j' y= 'i' b =: 4.454

t =: 37 v - 'j' y= 'b' d =: 5.173L·l-- -

t = 39 x= '.m' y= 'b' d = 5.742

