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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center of
excellence in advanced technology applications that is dedicated to the reduction ofearthquake losses
nationwide. Headquartered at the University at Buffalo, State University of New York, the Center
was originally established by the National Science Foundation in 1986, as the National Center for
Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions throughout the
United States, the Center's mission is to reduce earthquake losses through research and the
application of advanced technologies that improve engineering, pre-earthquake planning and post­
earthquake recovery strategies. Toward this end, the Center coordinates a nationwide program of
multidisciplinary team research, education and outreach activities.

MCEER's research is conducted under the sponsorship of two major federal agencies: the National
Science Foundation (NSF) and the Federal Highway Administration (FHWA), and the State ofNew
York. Significant support is derived from the Federal Emergency Management Agency (FEMA),
other state governments, academic institutions, foreign governments and private industry.

The Center's NSF-sponsored research is focused around four major thrusts, as shown in the figure
below:
• quantifying building and lifeline performance in future earthquake through the estimation of

expected losses;
• developing cost-effective, performance based, rehabilitation technologies for critical facilities;
• improving response and recovery through strategic planning and crisis management;
• establishing two user networks, one in experimental facilities and computing environments and

the other in computational and analytical resources.

I. Performance Assessment of the Built Environment

r+ using
Loss Estimation Methodologies

!
IV. User Network

I\. Rehabilitation of Critical Facilities
• Facilities Network using..
• Computational Network Advance Technologies

!
III. Response and Recovery

~ using
Advance Technologies
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For several years now, MCEER has supported research associated with developing nonlinear time
history modeling strategiesfor structural systems. An importantelementofthese codes isfor the user
to have an appreciation ofthe strengths and weaknesses, pitfalls, advantages and disadvantages of
the various types ofhysteretic models employed. In the past, users ofvarious nonlinear time history
analysis programs have needed to be very adept in assigning valuesfor the various parameters that
control hysteretic rules, as little documentation was available. More recently, there has been an
increased awareness and the use of nonlinear time history analysis programs in professional
engineering practice. Instead of developing better programs, there is a need to operate existing
programs in a smarterfashion. Therefore, the purpose ofthis report is: (1) to provide a theoretical
basis for a range of rule-based piecewise linear hysteretic models (in Section 2), as well as
differential equation-based smooth hysteric models (in Section 3); and (2) to provide a sound and
formal reasoning for the basis ofthe above-mentioned models that arefounded on thefundamentals
ofmechanics and the interrelationship between these various types ofmodels (in Section 4). This
research fits in with two ofMCEER's missions: outreach to the professional user community; and
to extend the fundamental knowledge base to enable a high level ofcomputational simulation to be
conducted.
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ABSTRACT

Two versatile hysteretic models for inelastic behavior of macro-models of

structural components- a polygonal model and a smooth model - have been developed.

These models have the capability of simulating deteriorating behavior of strength,

stiffness and bond slip. The theoretical background, the development and the

implementation of these models are presented. The report attempts to show a holistic

picture of the modeling of one-dimensional inelastic material behavior and indicates how

various hysteretic models fit into this framework. It is shown that the models developed

herein are obtained from the basic principles of mechanics and thermodynamics through

numerous assumptions, which lead to certain approximations. Finally, the incorporation

of the hysteretic models into two computer platforms for nonlinear analysis - IDARC2D

and NSPECTRA - is described.
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SECTION 1

INTRODUCTION

Hysteresis is a highly nonlinear phenomenon occurring in many fields involving

systems that possess memory, including inelasticity, electricity, magnetism etc.

Structures when subjected to dynamic loading under strong earthquake excitation usually

exhibit hysteretic behavior. Different structural members and connections are deliberately

designed and detailed to dissipate energy by hysteresis to increase the margin of safety

against seismic collapse (Mazzolani and Piluso, 1996, Priestley and Calvi, 1996, Bruneau

et aI, 1998). Often, special energy dissipating devices are introduced into structural

systems for this purpose (Caspe and Reinhorn, 1986, Soong and Dargush, 1997). The

dissipation of energy may be due to inelastic material behavior, interface friction, etc.

However, under repeated cyclic deformation, there is invariably deterioration in the

characteristics of such hysteretic loops. Such deterioration must be taken into account in

the modeling and design of seismic-resistant structural systems.

The structural engineering community is moving towards fragility analysis and

performance-based approaches for more rational seismic-resistant structural design. The

underlying assumption of such methods is that the level of damage suffered by a structure

due to a given seismic event can be quantitatively predicted. Therefore, more knowledge

about structural behavior beyond the onset of damage is needed to bring such methods to

maturity. Analyses must be conducted to correlate and quantify the stages of damage with

respect to the level of ground shaking and to evaluate the effectiveness of innovative

structural devices and retrofit measures. The basic requirement of such analyses is the
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availability of accurate constitutive models capable of representing deteriorating

structural behavior and their implementation in computer programs to perform nonlinear

structural analysis.

Several such hysteretic models have been developed. These can be broadly

classified into two types - Polygonal Hysteretic Models (PHM) and Smooth Hysteretic

Models (SHM). Examples of the first kind are Clough's model (Clough, 1966), Takeda's

model (Takeda et aI, 1970) and the Three-parameter Park model (Park et aI, 1987). The

Wen-Bouc model (Bouc, 1967 and Wen, 1976) and Ozdemir's model (Ozdemir, 1976),

on the other hand are examples ofthe latter kind. Thyagarajan (1989) discusses a discrete

element model (DEM) for hysteretic behavior based on the concept proposed by Iwan

(1966). This is a polygonal model that becomes smooth in the limit of infinite elements.

Many of these models that are in popular use have been developed independent of each

other based on different behavioral, physical or mathematical motivations. However,

closer examination would show that they share several features and stem from a common

theoretical base. One of the aspects of this work is to establish this common basis. Such

an understanding is important in developing new models and in recognizing physical

limitations of many existing models.

The objectives of the work reported here are:

(a) To develop two versatile hysteretic models - PHM and SHM - with stiffness and

strength deterioration and pinching characteristics.
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(b) To present a holistic picture of the modeling of one-dimensional inelastic material

behavior and justify the use of such models to represent the relationships between

stress-resultants and strains.

(c) To discuss various numerical solution schemes for nonlinear problems involving the

hysteretic models developed and to demonstrate the implementation of the models in

two computational platforms - IDARC2D and NSPECTRA.

The development of the Polygonal Hysteretic Model is presented in Section 2. Section 3

discusses the Smooth Hysteretic Model. The theoretical concerns of objective (b) are

explained in Section 4. The implementation of the two hysteretic models in computer

platforms is shown in Section 5. Section 6 summarizes the work reported and presents

some important conclusions.

The hysteretic models presented here were developed in the context of moment­

curvature relationships of beam-columns. Therefore Sections 2 and 3 refer to the stress

variable as "Moment" (M) and the strain variable as "Curvature" (¢ ). However, these can

be replaced by any other work-conjugate pair, according to the application under

consideration.
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SECTION 2

THE POLYGONAL HYSTERETIC MODEL (PHM)

Polygonal Hysteretic Models (PHM) refers to hysteretic models with piecewise

linear behavior. They are also referred to as multi-linear models. The PHM may be

embodied in the bilinear model, double bilinear model, origin-oriented model, peak­

oriented model, slip model, etc. Such models are most often motivated by actual

behavioral stages of an element or structure, such as, initial or elastic, cracking, yielding,

stiffness and strength degrading stages, crack and gap closures, etc. The model

parameters can represent and therefore can be explicitly assigned to actual physical

quantities. These models are therefore governed by rules that fix distinct points and

dictate the transitions between various stages or branches that occur during the response.

It is however shown in Section 4, that such models conform to the general framework of

inelastic material behavior and that under certain circumstances, they can be represented

by a set of nonlinear differential equations involving internal variables.

Several PHM's have been developed, each to represent a specific type of behavior

(Clough, 1966, Fukada, 1969, Takeda, 1970, Aoyama, 1971, Muto et aI, 1973, Tani and

Nomura, 1973, Atalay and Penzien, 1975, Kustu and Bouwkamp, 1975, Takayanagi,

1977, Nakata et aI, 1978). Park et al (1987) present a comparative study of the features of

these models. The PHM presented in this study is an extension of the Three-parameter

Park Model (Park et aI, 1987). A general framework ofpoints and branches is developed

which can represent any of the aforementioned PHM's as a special case and includes

various forms of degradation. This framework along with the degradation rules is

5 Preceding Page Blank



discussed in the following paragraphs. The reformulation of the polygonal model was

done such that the model is controlled by backbone curves specified by the material or

structural properties. Furthermore, the cyclic behavior is represented by points and

branches which are functions of the backbone parameters and the current instantaneous

forces and deformations. The behavior along a branch and the changes of branches follow

a logic tree.

2.1 Backbone Curves and Types of Cyclic Behavior

The PHM has been implemented with two types of backbone curves - Bilinear

and Trilinear which accommodate cracking models in addition to yielding (Fig. 2.1).

With trilinear backbone curve, the model can be used to establish two types of cyclic

behavior - Yield-oriented with slip and Vertex-oriented (Fig. 2.2). In Fig. 2.4, points

corresponding to bilinear behavior are denoted by primed numbers, and those of vertex­

oriented behavior by double-primed numbers. The yield-oriented model with slip is the

default and is denoted by unprimed points. The model is formulated in such a way that all

of the above type of behavior has the same branch transition rules.

2.2 "Points" and "Branches"

The state of the entity, whose hysteresis is being modeled, is completely defined by a set

of database variables. These database variables are listed Table A.2. It will be seen in

Section 4 that these are nothing but internal variables. A number of control points on the

hysteresis loop are completely defined by these database variables. If the values of these

variables are known apriori, coordinates of the control points can be calculated using
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functions shown in Table A3. Lines between these points are called branches and

represent the path along the hysteresis loop. Each branch leads to a set of other branches

as shown in Table A4. The end points of the branches are listed in Table A5. The

transitions between branches are governed by a set of rules (logic tree) as shown in Table

A6. The model discussed in this section uses 21 control points and 25 branches as shown

in Fig. 2.4. Consider for example, unloading from branch 10, as shown in Fig. 2.3 (a).

The rules of Table A4 and Table A.6 that govern this transition are summarized in Fig.

2.3 (b) and (c).

2.3 Operation of the Model- Force Vs. Displacement Control

(Moment/Curvature Controlled)

The PHM can be driven in three ways:

1. Force controlled - An incremental force is applied and the model responds by

achieving that force increment and the corresponding displacement increment.

2. Quasi-force controlled - An incremental force is given; however, the corresponding

displacement increment is calculated using the stiffness of the current branch. This

displacement is applied to the model and it responds by achieving this displacement

increment and returning the difference between the target force and the achieved

force (capacity force). This method of driving the model is used while integrating by

the method of one-step correction.

3. Displacement controlled - An incremental displacement is applied and the model

responds by achieving that displacement increment and the corresponding force

increment.

7
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(a) Bilinear Backbone (b) Trilinear Backbone

Fig. 2.1 Backbone Curves

(a) Yield-oriented (b) Vertex-oriented

Fig. 2.2 Types of Cyclic Behavior

&4< 0

(a) Unloading from Branch 10 (b) Rules of Transition

Branch 14

"'7 St~ Point=9

Exit Point=21-V
./ Branch 10

,,//

End Point=11

(c) Details of Transition

Fig. 2.3 Illustration of Branch Transition
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2.4 Degradation

The modeling of stiffness and strength degradation, and pinching are discussed

below.

2.4.1 Stiffness Degradation

Stiffness degradation occurs due to geometric effects. The elastic stiffness

degrades with increasing ductility. It has been found that the phenomenon of stiffness

degradation can be accurately modeled by the pivot rule (Park et aI, 1987). According to

this rule, the load-reversal branches are assumed to target a pivot point on the elastic

branch at a distance of aMy on the opposite side, where a is the stiffness degradation

parameter. This is shown in Fig. 2.5. From the geometry in Fig. 2.5, it can be found that

the stiffness degradation factor is given by,

+ M cur + aMy
RK = -------'--

KorfJcur + aMy
(2.1)

where Mcur = current moment, rfJcur = current curvature, Ko= initial elastic stiffness, a =

stiffness degradation parameter, My = M; if (Mcur,rfJcur) is on the right side of the elastic

branch and My = My if (Mcur,rfJcur) is on the left side of the elastic branch. The current

elastic stiffness is given by,

(2.2)
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2.4.2 Strength Degradation

Strength degradation is modeled by reducing the capacity in the backbone curve

as shown schematically in Fig. 2.6. It will be seen in Sections 3 and 4, that this is

equivalent to specifying an evolution equation for the yield moment. The strength

degradation rule is given by,

M+I-=M+I-[l-(¢~~~J;I][l- fJ2 ~]y yO d. +1- 1- fJ H
~u 2 uh

(2.3)

where M;I- = positive or negative yield moment, M;t- = initial positive or negative

yield moment, ¢~!;;. = maximum positive or negative curvature, ¢:I- = positive or

negative ultimate curvature, h = hysteretic energy dissipated, hull = hysteretic energy

dissipated when loaded monotonically to the ultimate curvature without any degradation,

/31 = ductility-based strength degradation parameter and /32 = energy-based strength

degradation parameter.

The second term on the right-hand side of equation (2.3) represents strength

degradation due to increased deformation and the third term represents strength

degradation due to hysteretic energy dissipated. The increment of the hysteretic energy is

given by,

(2.4)
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Fig. 2.5 Modeling of Stiffness Degradation for Positive Excursion.

(for negative excursion the "+" sign changes accordingly)
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Fig. 2.7 Modeling of Slip
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2.4.3 Pinching or Slip

Slip or pinching occurs as a result of crack closure, bolt slip, etc. Slip is modeled

by defining the target point for the loading branch to be the crack closing point. The force

level corresponding to this point is a fraction of the yield moment given by Fy = yFy and

the deformation level is obtained as a weighted average of the yield and ultimate

deformations as shown in Fig. 2.7. Yis the slip parameter.

2.5 Algorithm and Implementation

The PHM is implemented using a number of subroutines. These subroutines and

their functions are listed in Table A.l. The algorithms of these subroutines are shown in

Fig. 2.8 - Fig. 2.11

14



MAIN

Input i1M or i1~

and Database
Variables from MAIN

HYSCONTROL

CONTROL1
Change to Load reversal Branch
if there is a load reversal

CONTROL2
Keep switching branches until the target
point lies in the limits of the current branch.
Update Hysteretic Energy each time.

CONTROL3
• Determine target point
• Degrade Strength if necessary
• Update Database Variables

Find Stiffness of
Current Branch

Return to MAIN

Fig. 2.8 Overall Flow of PHM Module
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( Start )
---,--

Is there a
change in loading

direction?

Yes
,

Call NEXT_BRANCH
and find the load
reversal branch

Is load
reversal taking place
from the first or third

quadrants?

~

Yes
I

I
>--------No------~I

Is load
reversal taking

place from one of
branches 2,4,

13 or 177

No

Is load
reversal taking

place from one of
branches 2,4,

13 or 177

No

*

Yes

Yes

Mark the current
point as positive I-------~

vertex point

Mark the current
point as positive I-------~

vertex point

( Return )1<lI..f-----------------~

Fig. 2.9 Flowchart for Subroutine CONTROLI
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Get Endpoints of .... I
Current Branch ~----------11

I
I
I

Switch to next branch I

i
Update Hysteretic Energy

Shift current pointi
to the end of the I
curre~branch I

No

Is Target
Moment/Curvature within the

limits of the current
branch?

Yes

>---NO-----IK

Has the
target curvature

exceeded
ultimate?

Compute the target
Moment/Curvature

,

It------------yes--
I

y

( Rerum J

Fig. 2.10 Flowchart for Subroutine CONTROL2
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Is it on the
left side of the
elastic line?

Yes

C__S-,ta_rt_)

Is the
maximum

curvature exceeded on
the positive

side?

No
I

Is the
maximum

curvature exceeded on
the negative

side?

No

Yes
Is it on the

right side of the
elastic line?

Yes

No

I
No------'-------------.I

Fig. 2.11 Flowchart for Subroutine CONTROL3
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2.6 Examples

Examples of various types of hysteretic behavior modeled by the PHM are shown

in Fig. 2.12.
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Fig. 2.12 Examples of Hysteretic behavior modeled by the PHM



SECTION 3

THE SMOOTH HYSTERETIC MODEL (SHM)

The smooth model discussed here is a variation of the model originally proposed

by Bouc (1967) and modified by several others (Wen, 1976, Baber and Noori, 1985,

Casciati, 1989, Capecchi, 1991, Reinhom et aI, 1995, Madan et aI, 1997). The derivation

of this model from the theory of viscoplasticity and its resemblance with the endochronic

constitutive theory are discussed in Section 4.

3.1 Plain Hysteretic Behavior without Degradation

Plain hysteretic behavior with post yielding hardening is modeled using two

springs as shown in Fig. 3.1. When a moment is applied to the combination of springs,

the two springs undergo the same deformation. However, springs share the applied

moment in proportion to their instantaneous stiffnesses. The portion of the applied

moment shared by the hysteretic spring is denoted by M*.

3.1.1 Spring 1: Post-yield Spring

This is a linear elastic spring with the post-yielding stiffness of

K post- yield =aK0

where Ko = initial stiffness (elastic) and a = post-yielding to initial stiffness ratio.

21

(3.1)



Spring 1: Post-yielding Spring

Spring 2: Hysteretic Spring M,~

II( •M *+
y

r
I

(l-a)Ko

J
M*,~

I
M *.

y

Fig. 3.1 Two-spring Model for Non-degrading Hysteretic Behavior
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3.1.2 Spring 2: Hysteretic Spring

This is a pure elasto-plastic spring with a smooth transition from the elastic to the

inelastic range. All degradation phenomena occur in this spring as will be described later

in this section. The stiffness of this spring, when it is non-degrading is given by

(3.2)

where N = parameter controlling the smoothness of the transition from elastic to inelastic

range, 771 = 77, a parameter controlling the shape of the unloading curve, 772 =1- 77 ,

*
rPo = rP - ( M) , M* = portion of the applied moment shared by the hysteretic spring,

I-a K o

M;, = (1- a)My' the yield moment of the hysteretic spnng and, sgn = the signum

function. 771 + 772 =1 for the model to be compatible with plasticity. This is discussed in

Section 4.

Asymmetry can be introduced into the model by defining

(3.3)

where M; and M; are the positive and negative yield moments respectively. The

combined stiffness is given by,
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K = K post-yield + K hysteretic

The SHM can now be reperesented as,

3.2 Degradation

(3.4)

(3.5)

The stiffness and strength degradation rules for the SHM are the same as those for

the PHM. They are however modified to fit the formulation of the SHM.

3.2.1 Stiffness Degradation

As mentioned earlier, stiffness degradation occurs only in the hysteretic spring.

Thus the pivot rule is applied only to the hysteretic spring and the resulting hysteretic

stiffness is given by,

(3.6)

where RK = stiffness degradation factor given by equation (2.1).

3.2.2 Strength Degradation

The differential equations governing strength degradation in the SHM can be

obtained by differentiating equation (2.3).
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dM+1­
--,-y_- M+1­

dt - yO (3.7a)

Writing equation (2.4) in the form of a differential equation, we have

. [ . M J .[ (Kpost-yield +R KhysteretiC)]H =M ¢ - =M¢ 1----'---'---~-
RKKo RKKo

(3.7b)

The evolution equations for the maximum positive and negative curvatures can be written

as

(3.7c)

(3.7d)

where U(x) is the heaviside step function. The differential equations (3.7a-d) govern

strength degradation in the SHM. The solution of these equations will be discussed in

Section 3.4.

3.2.3 Pinching or Slip

To model this effect, an additional spring called the slip-lock spring (Baber and

Noori, 1985, Reinhorn et aI, 1995) is added in series to the hysteretic spring. The
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resulting combination is shown in Fig. 3.2. The stiffness of the slip-lock spring can be

written as,

(3.8)

where s = slip length = Rs(¢~ax - ¢;;"ax ), M: = (J"M;, a measure of the moment range

over which slip occurs, M* =AM;, the mean moment level on either side about which

slip occurs, Rs ' (J" and A are parameters of the model and ¢~ax and ¢;;"ax are the

maximum curvatures reached on the positive and negative sides respectively during the

response. It is chosen to be a Gaussian type distribution so that, 1 1 dM =s , the
-00 Kslip-lock

slip length. Any other convenient distribution fulfilling this condition could be chosen for

the slip-lock flexibility.

The stiffness of the combined system is given by

K - K K Hysteretic K slip-lock
- post-yield + K K

slip-lock + Hysteretic
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Spring 1: Post-yielding Spring

Spring 3: Slip-Lock Spring Spring 2: Hysteretic Spring M,~

A\ ( >
*+My

r
I

I s /1 (l-a)Ko! *--' M,~

If I I

J
!

I iI I

My*-I

Fig. 3.2 Three-spring Model for Hysteretic Behavior with Slip
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3.3 Gap Closing Behavior

Often, hysteretic elements exhibit stiffening under higher deformations. This

happens for example in metallic dampers (Soong and Dargush, 1997) when axial

behavior begins to predominate bending behavior and in bridge isolators (Reichman and

Reinhorn, 1995, Priestley and Calvi, 1996) due to closing of the expansion gaps. Such

behavior can be modeled by introducing an additional gap-closing spring in parallel as

shown in Fig. 3.3. The moment in this spring and the stiffness of this spring are given by,

(3.l0a)

(3.l0b)

where M** = moment in the gap-closing spring, Kgap-closing = stiffness of the gap-closing

spring, rpgap = gap-closing curvature, U = heavisidestep function and K and N gap are

parameters.

3.4 Solution of the SHM

There are two possible approaches to solving the equations governing the SHM ­

(i) The conventional incremental approach and (ii) the State-Space Approach (SSA)

(Simeonov et aI, 1999). Equations (3.5) and (3.7) can be used directly in the latter

solution approach. However, only the former approach will be discussed here. For this

purpose, equations (3.5) and (3.7) have to be written in time-independent form. Also,

since the post-yielding and gap-closing springs are algebraic, only the hysteretic and slip-

28



Spring 1: Post-yielding Spring

---

Spring 3: Slip-Lock Spring Spring 2: Hysteretic Spring

.+
My

I S ) ( (l-a)/(o I-- ,

1(/

/
I

My··

Spring 4: Gap-Closing Spring

)

Fig. 3.3 Gap-Closing Spring in Parallel
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loek spnngs are solved and the results added. This results III the following time-

independent differential equations within a global time step:

dM* K K= Hysteretic slip-lock

drjJ K slip-lock + K Hysteretic
(3.lla)

d *+
'My *0+--=M
d¢ y

*+
dMy =M*O-

d¢ y

(3.11 b)

(3.lle)

dH =M*[l- 1 KHystereticKslip-lock ]

drjJ (l-a)RKKo Kslip-lock + KHysteretic
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Equations 3.11 can be solved within each global integration step using any

method such as the adaptive RK45 or the Semi-implicit Rosenbrock methods

(Nagarajaiah et aI, 1989, Press et aI, 1992). The latter require the Jacobian of equations

3.11 for Newton-Raphson iterations. Since it is quite cumbersome to develop the exact

Jacobian, it is derived using two assumptions - the slip-lock element is not considered

and the change of the stiffness degradation factor with deformation is neglected. Since

the Jacobian is only an iteration matrix, these approximations do not cause any error in

the solution. The resulting non-zero components of the 6x6 Jacobian are listed below:

J(2,1) ~ M;oJ1_ (qJ~: J~I l[_ Ih ]l qJu J (l-lh)Hult

{[
1- K Hysteretic ] _ M* J(l,l) }

(l-a)RKKO (l-a)RKKO
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J(3,1) =M;o-ll- [r/J~~X J~l ][- fJ2 ]
r/Ju (I - fJ2)Hult

{[
I _ K Hysteretic ] _ M* J (1,1) }

(1-a)RK KO (1-a)RK KO
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(3.12g)

(3.12h)
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J (6,1) =[1 _ K Hysteretic ] _ M* J (1,1)
(1-a)RK K o (1-a)RK K o

3.5 Examples

(3.12j)

Examples of various types of hysteretic behavior modeled by the SHM are shown

in Fig. 3.4. Ranges of degradation parameters obtained from experimental results of the

SAC Joint Venture (1996) are shown in Table 3.1. Moreover, comparison between

behavior predicted by the SHM and these experimental results is presented in Table 3.2.

33



I· 11""'l I ·1

I I I I I

~ - - ~ -/--'=-j"-T7I!TTJ,7 -
L- - ~ -1- t 1_/- 7.1 _/_1 j - /- !--! - - .
I I / / 1,1 I ,I 1/ ,I If'

,/ / ,/ / ! / I
~, , / ,o! J~, /,~ ,.

I /, j /1 / 1/ i I / / I
r - -I, : - r'-r . r 7 -.';- -;- ,- - - .
I / I I L '/ ./.-J-.., I

r- - 1=-£=-="--- f'- --I - - - 1- - - -
I I! I i

I I I .•",. : I

(a) Large N (Bilinear) (b) N = 5 (c) Asymmetric Yield

I
I I I
f----t---I-- .... o - ~7--

I I I /;/ 1/ Iv
L - - ~ - - _'_//7' _y-,L/L --
: :~/I /~/I / :
~, i' I' : / II 'f ,',

I ,/ I 1/ / /11 .. I I

r - - '/ /71- r 'Y -, ---,- --.
I /1/ / 1/ .~.: I I
f- - ..c-=:tL"::-J~-t:-----..:;;". - - -I - - - 1-- - - -

I I I I I I
I I I _. I I

I
I I I
r- - ~ -t - - -!- - .....

I I ,
L __ .J I

I I
I

l'

~ _bc!f~~$
I
r- - ­
I

(d) 11 = 0.1
(e) Stiffness Degradation

(a=2)
(f) Strength Degradation

(PI = 0.5, P2 = 0.3,~ult = 10)

I I
---1---1----

I ,

---1---1----

I I

I

~. "I'

I
r -
I /
f- - - -t - - -1- - -,

I I I

I I

I
I
r - - -t - _.

I I I
L __ .J 1__ ...... _

I I I

I I

I
---1---1----

I I
---I---f---­

I

I

(g) Slip
(0-= 0.1, Rs = 0.25,A = 0.4)

(h) Gap Closing
(~gap = 2, Ngap = 1.5,K = 0.25)

(i) Combination of (e), (f)
and (g)

Fig. 3.4 Examples of Hysteretic Behavior Modeled by the SHM
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Table 3.1 Range of Parameters

Mild Moderate Severe

a 15 10 4

PI 0.00 0.30 0.60

P2 0.00 0.15 0.30
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Table 3.2 Results from Connection Tests (SAC Joint Venture, 1996)

SPECIMEN
NAME

DETAIL FEATURES
EXPERIMENTAL

RESPONSE
ANALYTICAL

RESPONSE
PARAMETERS
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Table 3.2 Results from Connection Tests (SAC Joint Venture, 1996) (contd.)

SPECIMEN
DETAIL FEATURES

EXPERIMENTAL ANALYTICAL I PARAMETERS
NAME RESPONSE RESPONSE

5ioryDriItRl!io(%) . I I 10o 2
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Table 3.2 Results from Connection Tests (SAC Joint Venture, 1996) (contd.)

SPECIMEN
DETAIL FEATURES

EXPERIMENTAL ANALYTICAL I PARAMETERS
NAME RESPONSE RESPONSE
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SECTION 4

UNIFICATION OF CONCEPTS FOR REPRESENTATION OF INELASTIC

MATERIAL BEHAVIOR IN ONE DIMENSION

4.1 Background

An elastic body is one in which the strain at any point is completely determined

by the current stress and temperature. This dependence on current stress and temperature

is not arbitrary. The principle of state of classical equilibrium thermodynamics (see for

example Moran and Shapiro, 1995) states that the state of a system undergoing a

reversible process is completely determined by one variable characterizing heat transfer

(temperature) and one variable for each mode in which the system can transfer work

(stress). It can be shown (see for example Fung, 1965) that when a process undergone by

an elastic body is adiabatic, the strain energy is the internal energy, that when the process

is isothermal, the strain energy is the Helmholz free energy function, and that in either

case, its partial derivatives with respect to strain are independent of temperature. It can

then be reasonably assumed that most processes of engineering structures are isothermal,

thus excluding temperature from the analysis. When this is not true, additional

constitutive equations involving temperature are required.

The obvious definition of an inelastic body is then, as one in which there is

"something else", besides current stress and temperature that determines strain. The task

of developing inelastic constitutive models is therefore describing this "something else".

Fig. 4.6 shows a schematic of several ways of doing this and how they are related to each
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other. When a material starts behaving inelastically, it departs from the realm of classical

equilibrium thermodynamics. The theory of irreversible thermodynamics must be

applied. Since the principle of state does not hold anymore, it can be postulated that there

exist a number of additional "internal" or "hidden" state variables. In the macroscopic

sense, these variables may for example be yield moment, maximum attained curvature,

etc. The rigorous background to the internal state variable (ISV) theory of irreversible

thermodynamics of inelastic materials was established by Coleman and Gurtin (1967)

using the theory of nonlinear differential equations. The ISV formulation may be written

as,

(4.1a)

or

(4.1 b)

where E = strain, cr= stress, ~ = vector of ISV's and "." denotes differentiation with

respect to time. Nelson and Dorfmann (1995) characterize equations of type (4.1a) as

parallel plasticity models and those of type (4.1 b) as series plasticity models.

Biot (1954) used the ISV theory for a linear hereditary material (linear

viscoelastic) for which the Onsager reciprocal principle (Fung, 1965) holds. His

formulation showed that a general anisotropic linear dissipative material can be
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Fig. 4.1 Spring and Dashpot Representation of Linear Viscoelastic Material
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visualized as a combination of springs and dashpots (Fung, 1965) as shown in Fig. 4.1. A

similar derivation of a general viscoplastic model from the principles of irreversible

thermodynamics has been done by many researchers (for example, Freed et aI, 1991 and

Ristinmaa, 1999). This is however much more involved because the Onsager reciprocal

principle is no longer valid.

The "something else" may otherwise be thought of as the past history of stress.

The past history may be defined precisely using concepts of functional analysis and a

highly mathematical theory known as the theory of materials with memory has been

created to deal with it (Coleman, 1964). In simple terms, this may be represented as,

aCt) = ~ B(S) or B(t) = ~ a(s)
s=-oo s=-co

(4.2)

where B is a functional. This kind of material description is very difficult to work with

and therefore, the constitutive theories based on ISV's are in more popular use. It can be

shown however (Lubliner, 1969) that under certain conditions, the ISV theory is a first

order approximation to the theory of materials with memory.

Yet another way of describing inelastic behavior is to define the evolution of

ISV's by physically motivated rules rather than by differential equations. The

equivalence of these two approaches was demonstrated by Ziaming and Katukura (1990)

and is discussed later. In the following paragraphs, several hysteretic models are

considered and the relationships between them are discussed in the context of the theory

described thus far.

42



4.2 Algebraic Models

4.2.1 Masing's Hypothesis (Beck and Jayakumar, 1996)

If the virgin loading curve is given by an algebraic relationship,

f(tP,M) = 0 (4.3a)

then according to Masing's Hypothesis, the curve between the points (tPv:rtex,M:rteJ and

f( M -7vertex , tP - ~vertex ) = 0

where

(
1+ sgn(~tP») + (1- sgn(~tP») _

M vertex = 2 Mvertex + 2 Mvertex

( l+Sgn(~tP») + (l-Sgn(~tP»)_
tPvertex = 2 tPvertex + 2 tPvertex

4.2.2 Ramberg-Osgood Model

(4.3b)

(4.3c)

(4.3d)

One such algebraic virgin curve that can be used in conjunction with Masing's

Hypothesis to create a hysteretic model is the Ramberg-Osgood Model (Ramberg and

Osgood, 1943) given by,
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(4.4)

where 77 (positive) and N (odd integer) are parameters of the model. It will be shown later

that hysteretic models based on differential equations, that exhibit smooth virgin curves

generally exhibit local violation of Drucker's Stability Postulate (Thyagarajan, 1989).

Although the algebraic model discussed here exhibits a smooth virgin curve, it does not

violate Drucker's Stability Postulate. However it's implementation is extermely involved.

The model resembles the theory of materials with memory. The Menegotto-Pinto

equation (Gomes and Julio, 1997) is another virgin stress-strain relationship that can be

used in conjunction with Masing's Hypothesis.

4.3 Differential Equation Models

4.3.1 Plasticity Based on Yield Surface

According to this theory, there is a distinct boundary in stress-space, which

separates the elastic and inelastic (plastic) states of the material. In three-dimensional

stress-space, this boundary is called the yield-surface. The theory of plasticity based on a

yield-surface is discussed in detail, for example, by Malvern (1969) and Lubliner (1990).

In one dimension, however, this surface reduces to positive and negative yield points.

The resulting constitutive equation is given by (Ziaming and Katukura, 1990),

M=¢KU(¢P(M)U(M; - M)+ ¢KU(¢P(- M) +

¢KU(-¢P(M)+¢KU(-¢P(-M)U(-M; +M)
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or

(4.5b)

or

(4.5c)

Equations 4.5a, band c can be shown to be exactly equivalent. However 4.5a represents

the loading and unloading contributions explicitly and this is useful in the integral

formulation of the infinite spring-slider model discussed later.

4.3.2 PlasticityNiscoplasticity without a Yield Surface

According to Bodner (1968), "yielding is not a separate and independent criterion

but is a consequence of a general constitutive law of the material behavior". Several

constitutive models for both rate-dependent (viscoplastic) and rate-independent (plastic)

inelastic behavior have been derived without a formal hypothesis of a yield surface.

Three such models are discussed here - the Endochronic Model, the Ozdemir Model and

the Wen-Bouc Model. Each of them was conceived based on a different motivation.

Nevertheless, it is shown that they exhibit similar behavior and become identical under

certain limiting conditions.
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4.3.3 Endochronic Theory

The endochronic theory was first propsed by Valanis (1971,1980). The basic

concept is that of an intrinsic time that is related to the deformation history of the

material, the relation itself being a material property. An intrinsic time measure in the

general three-dimensional case is defined for example by,

(4.6a)

where A and B are material properties and £i denotes the plastic component of strain. B =

odescribes rate independent (plastic) behavior. An intrinsic time scale is next defined as

z(;), a monotonically increasing function. This is then substituted for real time in the

convolution integral of linear viscoelasticity. For the uniaxial case, this results in,

Z d
(j = fR(z - z')~dz'

o dz
(4.6b)

Bazant (1976) provides a more physical interpretation of the endochronic theory for the

uniaxial case starting from the Maxwell model and replacing real time by a function of

plastic strain. The resulting model is given by,

(4.7)

where Z = MJKo
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4.3.4 Ozdemir Model (Ozdemir, 1976)

Consider the force displacement relationship for a linear damper (Fig. 4.2a):

M = crjJ (4.8)

The steady-state force-displacement relationship is shown in Fig. 4.2b. Consider this

damper being made nonlinear as follows:

I
. . 1 N

M = crjJ N or rjJ = - M
c

(4.9)

where N is an odd integer to preserve signs. The force displacement relationship of such a

damper is shown in Fig. 4.2d. It is seen that as N tends to 00, the behavior of the damper

tends to a slider. Adding a spring in series to form a Maxwell element with a nonlinear

damper results in,

Rewriting this results in Ozdemir's rate-dependent model:
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1

where r = eM: = <Py = the time constant. As N ~ 00, the model approaches an elasto-

plastic model. However, the yield strength is rate-dependent. It could be moderate-

independent, by making the yield strength a function of the loading or by making N a

function of the rate of loading. Ozdemir (1976) discusses these possibilities. But neither

of these is a general solution. The alternate solution provided by Ozdemir is to make the

time-constant a function of strain rate. It can be shown that there exists a time-constant 't

for each loading rate ¢ that makes the model rate independent. We therefore define

T =I~ .The rate-independent Ozdemir model is then,

(4.10c)

The nonlinear dashpot can now be replaced by a slider (Fig. 4.2j) and the resulting force-

displacement relationship is shown in Fig. 4.2k. Ozdemir also suggests an alternative

interpretation.

Consider equation (4.1 Ob) to be governed by a material time T rather than the

inertial time t. Then,

(4. 11 a)
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Comparing (4.11b) with (4.10c), we have,

where T is now similar to the intrinsic time of Bazant and Valanis.

(4.11b)

(4.11c)

Hardening may be introduced into the model by adding a linear hardening spring

in parallel with the nonlinear dashpot as shown in Fig. 4.2h. The force in this spring is

referred to as the back-stress S. The final equation with hardening (rate-dependent form)

is given by,

. . ( INM ¢ 1 M -8
My = ¢y - -:; My

The resulting force-displacement relationship is shown in Fig. 4.2i.

4.3.5 Wen-Boue Model

(4.10d)

Only the hysteretic component is considered in this model. Bouc (1967) and Wen

(1976), using some mathematical reasoning came up with the following equation

(reformulated by Reinhorn et aI, 1995).
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(4.12)

It can be shown however that this equation can be derived from the equations of

one-dimensional plasticity based on a surface, equation 4.5b, by smoothening the

heaviside step function as follows.

(4.5c)

Assuming for simplicity that M; =-M~ =1My I' we have,

(4.13)

The heaviside step function can be smoothened as follows:

(4.14)

The two are exactly equal when N ~ 00. Substituting (4.14) in (4.13) leads to the special

case of (4.12) for which 771 = 172 = 0.5. From (4.12),
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In the case of monotonic loading in the positive direction,

{

N }dM M
-=K 1- - [771 +772]
drjJ My

Wh M · . dM O·en IS a maXImum, - = ,I.e.,
drjJ

N

1- M max [ ]771 + 772 =0
My

1

M max =M y ( 1 JN
771 + 772

Therefore 771 + 772 = 1 always (Constantinou and Adnane, 1987). A more general

derivation of the relationship between a three-dimensional Wen-Bouc model and a

plasticity model based on a yield function is given by Casciati (l989).Let us now

consider two limiting cases of the Wen-Bouc model.

If N is an odd integer, then,
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if =L _L ( M JN which is exacly the Ozdemir model of equation 4.1 ad.
My tPy tPy My

Case(ii) 17I =0; 7]1 = 1 :

{
N}. M·.

M =K 1- My tP , I.e.,

tP=~{ ~ N}
I--

My

which is the Menegotto-Pinto equation for nonlinear elastic behavior. The Wen-Bouc

model can therefore be thought of as a weighted combination of the rate-independent

Ozdemir model and the nonlinear elastic Menegotto-Pinto model, which produces a

smooth elasto-pIastic model for the particular weight set, 1]1 = 1]2 = 0.5.

4.3.6 Spring and Slider models

Biot's thermodynamic formulation for a linear dissipative material when

interpreted physically leads to a parallel combination of Maxwell models. Ozdemir's

model suggests that a Maxwell model can be generalized with a nonlinear dashpot, which
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in the limit leads to an elasto-plastic model. These factors motive us to consider models

that are combinations of springs and sliders as shown in Fig. 4.3. The Distributed

Element Model (DEM) of Iwan (1966) and Thyagarajan (1989) belong to this class.

Jayakumar (1987) shown that in the limit of infinite springs and sliders, this model leads

to cyclic algebraic models.

4.3.7 Integral formulation of Spring and Slider Models

Ziaming and Katukura (1990) have shown that the elasto-plastic model of

equation (4.5a) (which is nothing but the equation of a single spring-slider series

combination) can be generalized in integral form to represent a multiple spring-slider

model as follows:

(4.15)

where q+, t, q- and f are function of M only and are the integral contribution to the total

stiffness of the spring-slider pairs in phases 1, 2, 3 and 4 respectively in Fig. 4.4. It can be

shown that many of the models discussed earlier can be derived for particular functional

representations of q+, t, q- and f. Some examples are listed below.

55



Fig. 4.3 Spring and Slider Model

M

+Phase 1- q

Phase 4 - f

.t
'" Phase 2 - f

Phase 3 - q-

Fig. 4.4 Integral Formulation of Spring and Slider Models
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4.3.7.1 Elasto-plastie Model

4.3.7.2 Wen-Boue Model

4.3.7.3 Vertex-Oriented Polygonal Model without Hardening
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where RK is given by equation (2.1) and rjJ~ax and rjJ~ax are given by equations 3.7 (c) and

(d).

4.3.8 Smooth Plasticity Models and Drucker's Stability Postulate

Plasticity models are smoothened for two reasons:

• To represent distributed yielding in macro-constitutive models such as Moment­

curvature and Force-deformation relationships

• To alleviate numerical procedures near the yield point.

However, it is found that such smooth models without a yield surface locally

violate Drucker's stability postulate which states that, for any load cycle with initial and

final load level M), the following inequality must be satisfied:

(4.16)

It can be seen that for a cycle ABC, this is not true. However, for larger cycles like CDE,

the postulate holds. Valanis (1981) argues that such local violation of the plasticity

postulate does not invalidate the theory and shows that linear viscoelastic and frictional

materials violate Drucker's postulate as well. Moreover, since this does not cause any

numerical instability and works well for practical load histories, such models can

certainly be used for analysis considering their other advantages. The DEM of Iwan

(1966) has a piecewise linear transition and does not violate Drucker's postulate. But it

involves many more internal variables and does not serve the purpose of easing
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numerical solution. Casciati (1989) proposed an additional hysteretic spnng with

negative energy dissipation, which when added to the Wen-Bouc model reduces the

violation of Drucker's postulate.

4.4 Other Strength Degradation Rules

The degradation rules presented in Sections 2 and 3 are examples of a general

class of degradation rules based on the theory of internal variables. Other such

degradation rules discussed by Ozdemir (1976) and Mostaghel (1999).

4.5 Remarks

The discussion in this section serves to put the hysteretic models developed in

sections 2 and 3 in perspective. It shows how the two models fit in the larger picture of

one-dimensional inelastic material models. Such an understanding would greatly help in

the generalization to three-dimensional inelastic models.

The polygonal model is an abstraction of a combination of a large number of

springs and sliders. The smooth model is obtained by smoothening the yield transition in

surface-based plasticity models and bears similarity to the endochronic models.
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SECTION 5

IMPLEMENTATION IN COMPUTER PROGRAMS

5.1 Background

The utility of any hysteretic model is realized only when it is implemented in

computer platforms for inelastic analysis. The hysteretic models developed in the

preceding sections have been incorporated in two computer programs - IDARC2D

(Version 5.0) and NSPECTRA. The issues involved in these implementations and some

example results are presented in this section.

5.2 IDARC2D Version 5.0

Developed at the University at Buffalo (SUNY), IDARC2D was first introduced

in 1987 (Park et aI, 1987) for the purpose of analyzing earthquake damage in multistory,

reinforced concrete buildings. Since then, numerous enhancements have been added,

including the ability to analyze a wide variety of structures, structural materials, and

damping devices and analysis after the first onset of damage. New features are

continuously being added to IDARC2D and its newest version is Version 5.0. More

information about this program can be obtained from its web site,

http://civil.eng.buffalo.edu/idarc2d50.
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5.2.1 Implementation of Hysteretic Model

IDARC solves the equations of equilibrium of the structure incrementally. Since

the elements involved are frame elements, that are internally statically determinate,

IDARC uses a flexibility-based element formulation and the hysteretic model is used to

represent the behavior of the end-section of an element. (Details can be found in Valles et

aI, 1996). This results in the hysteretic model receiving a moment or force increment

form the global system. This would require the hysteretic model to be operated by force

control resulting in costly iterations at both the local and global levels. IDARC

circumvents this problem by using the method of one-step correction (Park et aI, 1987).

The process is shown in Fig. 5.1. The model returns the unbalanced moment to the global

system. All such unbalanced moments and forces are assemble together and applied to

the whole structure as an equivalent external load vector in the next analysis step.

5.2.2 Example

The example presented here is the analysis of a full-scale model of a circular

column tested under cyclic loading. Detailed description of this example is provided by

Valles et aI, 1996. Figure 5.2 shows the test setup and the applied displacement history.

Figure 5.3 shows the experimentally obtained force-displacement response and the

response predicted by IDARC using the vertex-oriented version of the PHM. An

extensive case study using this program is reported by Naeim et aI, 1998.
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5.3 NSPECTRA

Developed at the University at Buffalo, NSPECTRA is a computer program for

obtaining the response spectra of nonlinear systems. The program can perform the

analysis for a collection of ground motions (maximum 200 ground motions) returning the

response spectra for each ground motion and the average and standard deviation response

spectra of the collection. The program can also print out the time history response for a

particular pendulum in the spectrum. More information about this program can be

obtained from its web site, http://civil.eng.buffalo.edu/nspectra.

5.3.1 Implementation of Hysteretic Model

NSPECTRA integrates the equation of motion of a nonlinear SDOF system using

the Newmark-p method. It calls the hysteretic model with the current values for force,

displacement and other internal variables and the displacement increment. The hysteretic

model is thus driven by displacement control. The model in turn returns the force

increment (or decrement) and the updated values for the internal variables.

5.3.2 Examples

NSPECTRA is run with the Elcentro ground motion with and without

degradation. The results are shown in Fig. 5.4.
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SECTION 6

CONCLUSIONS AND REMARKS

Two hysteretic degrading models -a polygonal and a smooth - have been

developed. The development was based on stiffness, rate of stiffness changes and on the

adjustments of the yield characteristics. Changing the yielding level and the stiffness of

the system, both models accommodate degrading of the hysteretic system. The two

parameters can be adjusted in a combination which can simulate strength deterioration,

stiffness degradation and pinching (or slip). The polygonal model is more cumbersome

in formulation however, it establishes a direct relation between force and displacement

(generalized) which permits reversal of control by force or displacement. The smooth

model has the advantage that can be solved simultaneously with the equations of motion

therefore minimizing the need for iterations. This model can be used in state space

approach as indicated by Simeonov et aI., 1999.

The hysteretic models and their solutions were developed for the nonlinear

analyses of frame structures and these models were implemented in several computer

programs such as IDARC2D, NSPECTRA (for development of inelastic spectra), and

NONLIN (a derivative of well known program DRAIN2D). The formulations are

independent of computer program and can be used as objects in advanced programming.

This report attempts to present a unified theory, which leads to the development

of the above models. Starting from the principles of thermodynamics, the developments

by prominent researchers are surveyed, and the assumptions and the compromises leading
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to newer models were pointed out. Both the polygonal and the smooth models are results

of such reductions and developments.

Progressive collapse analysis of structures can utilize these hysteretic models but

such analysis tools need to be developed yet. Effective solution algorithms for such

potential analysis is the State-Space Approach presented by Simeonov et aI, 1999.
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APPENDIX A

IMPLEMENTATION DETAILS OF THE POLYGONAL HYSTERETIC MODEL

Table A.1 Subroutines and their functions

SUBROUTINE FUNCTION

HYSCONTROL Main Hysteretic Model Control Subroutine.
(Fig. 2.8)

CONTROL1 This subroutine changes to a Load-reversal
branch when there is a change in the direction
of loading. (Fig. 2.9)

CONTROL2 If the target point does not lie on the
current branch, this subroutine keeps
switching branches till target-point lies on
current branch, each time setting the current
point to the end point of the current branch
and updating the hysteretic energy each time.
(Fig. 2.10)

CONTROL3 When this subroutine is called, the target
point always lies on the current branch. The
target point is found by interpolating between
the end points of the current branch. It also
degrades the strength, causing a drop in the
backbone curve. (Fig. 2.11)

POINTS Computes the coordinates of any of the control
points, given the database variables.

NEXT BRANCH Uses the branch-transition rules to determine-
the number of the next branch, given the load
increment and the database variables.
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Table A.2 Variables Governing PHM

SYMBOL MEANING

M cur Current Moment level in the section

¢cur Current Curvature of the section

M1 Moment Increment

£1 Slope of the current branch

M~ax
Maximum positive moment reach by the section at any
time

¢~ax
Maximum positive curvature reached by the section at
any time

M~ax
Maximum negative moment reach by the section at any
time

¢~ax
Maximum negative curvature reached by the section at
any time

M+ Current (degraded) value of positive yield momenty

M- Current (degraded) value of negative yield momenty

M:ertex
Moment at the current vertex point on the positive
side.

¢:ertex
Curvature at the current vertex point on the
positive side.

M:ertex
Moment at the current vertex point on the negative
side.

¢:ertex
Curvature at the current vertex point on the
negative side.

1
M:"I

Positive Cracking Moment

~ Negative Cracking Moment

~ Initial Elastic slope

(Boxed variables are Backbone Parameters. Others are database or internal variables)
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Table A.2 Variables Governing PHM (contd.)

SYMBOL MEANING

IM;ol Initial Positive Yielding Moment

~ Initial Positive Yield curvature

IM;ol Initial Negative Yielding Moment

~ Initial Negative Yield curvature

~ Ultimate Positive Curvature

~ Ultimate Negative Curvature

[2] Positive Post-yield slope as a fraction of the
initial elastic slope

la Negative Post-yield slope as a fraction of the
initial elastic slope

~ Stiffness Degradation Parameter

em Strength Degradation Parameter

[l] Slip (or pinching) Parameter.

(Boxed variables are Backbone Parameters. Others are database or internal variables)
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Table A.3 Point Formulas

FORMULA
POINT Other Terms

¢J M
Used

1 M~ M:" -
Ko

2 M~ M;r -
KO

3 f/J;o M+ -y

4 f/J;o M- -y

5 f/J;ax M;ax -

6 f/J;;"ax M;;"ax -

7 f/J: M; +K:h~: - f/J;o K:h =a+Ko

8 f/J; M; +K;h~; -f/J;o) K;h =a-Ko

Point of intersection of :

• Line joining point 4 and point 8
9'

+ M:ertex +aA1;• Line passing through point RK =
9 ~:ertex,f/J:erteJ and having slope Rt:Ko Kof/J:ertex + aM;

9 ¢J+ - M:ertex 0vertex Rt:K
o

Point of intersection of:

• Line joining point 3 and point 7
10'

_ M:ertex +aA1;• Line passing through point
10 ~;ertex,f/J:ertex) and having slope

RK = .
RKKo Kof/J:ertex + aM;

10 ¢J- - M;ertex 0vertex RKK
O
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POINT

Table A.3 Point Formulas (contd.)

FORMULA

11

12

M

Point of intersection of:

• Line joining point 9 and
point 13

• Branch 1

Point of intersection of:

• Line joining point 10 and
point 14

• Branch 1

Other Terms Used

+ M~ax +aA1;
RK,max =--+-_--::._+

KOt/Jmax + aA1y

I f M~ax > M; and M < M;r then M- .;A;(-"'_="'__ max pV.L y
t----------,...----------j 'f/yu 'f/max

RK,maxKO

13

13

13'

13' ,

Weighting Factor,

WF=r

Point of intersection of:

• Line joining point 8 and
point 4

• Branch 1

"'_ M;/
If 'Yvertex > ;K

o
then same as _

Point 2

Else Point of intersection of:

• Line joining point 9 and

~;ertex,M;ertex)

• Branch 1
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Table A.3 Point Formulas (contd.)

POINT FORMULA

Other Terms Used
fjJ M

WF¢;y +(1- WF)¢;u rM; R- _ M;'ax +aM;
K,max - K ¢- aM-

o max + y

If M:nax <M; and M >M:" then
M:nax -1M;

¢; =¢:mx -
R1,maxK O

14
¢+ =M!hc

Y KO

M~ M:r ¢; = r¢;Ko

Weighting Factor,

WF=r
14 Point of intersection of:

14' • Line joining point 7 and -
point 3

• Branch 1

If ¢+ M!hc then same asvertex < Ko -
Point 1

14' , Else Point of intersection of:

• Line joining point 10 and

~~rtex,M:erteJ
-

• Branch 1

15 ¢~ax M:nax -

16 ¢;ax M;'ax -
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Table A.3 Point Formulas (contd.)

POINT FORMULA

fjJ I M Other Terms Used

Point of intersection of:

• Line joining point 1 and

A point 3

• Line passing through current

point and having slope RtKo

Point of intersection of:

• Line joining point 3 and

B point 5

• Line passing through current

point and having slope R;Ko + M cur +aAf;
17 RK =

Point of intersection of: KO¢cur +aAf;
• Line joining point 10 and

C point 14

• Line passing through current
point and having slope R;Ko

Point of intersection of:

• Line joining point 14 and

D point 15

• Line passing through current

point and having slope RtKo
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Table A.3 Point Formulas (contd.)

POINT FORMULA

t/J I M Other Terms Used

Point of intersection of:

• Line joining point 2 and

A point 4

• Line passing through current

point and having slope R~Ko

Point of intersection of:

• Line joining point 4 and

B point 6

• Line passing through current

point and having slope R~Ko _ M cur +aA1;
18 RK =

Point of intersection of: KOtPcur +aA1;
• Line joining point 9 and

C point 13

• Line passing through current

point and having slope R~Ko

Point of intersection of:

• Line joining point 9 and

D point 13

• Line passing through current

point and having slope KiKo
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Table A.3 Point Formulas (contd.)

FORMULA
POINT

IfjJ M Other Terms Used

Point of intersection of:

• Line joining point 14 and
+ M cur +aA1;

19 point 15 RK =

• Line passing through current KOt/Jcur + aA1;
point and having slope R"KKo

Point of intersection of:

• Line joining point 10 and _ M cur +aA1;
20 point 14 RK =

• Line passing through current
KOt/Jcur +aA1;

point and having slope R"~Ko

21 t/Jcurrent IMcurrent -

A-9



Table A.4 Map of Branch Connectivity

Branch 2

Branch 3

Branch 4

Branch 5

Branch 6

G
Branch 8

A-lO

Branch 7

Branch 9



Table A.4 Map of Branch Connectivity (contd.)

Branch 10

Branch 12

Branch 14

Branch 16

Branch 11

Branch 13

Branch 15

Branch 17
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Table A.4 Map of Branch Connectivity (contd.)

Branch 20

(0

Branch 22

Branch 24
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Branch 21

G

Branch 23

Branch 25
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Table A.S Starting and ending points of branches

Branch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 21 22 23 24 25

start Pt 1 1 2 3 4 5 6 9 10 9 10 11 12 21 21 13 14 21 21 21 21 21 21

End Pt 2 3 4 7 8 9 10 5 6 11 12 13 14 17 18 16 15 10 9 18 17 19 20



Table A.6 Rules for Change of Branch

Current Next Condition
Branch Branch Force Control Displacement Control

In this case,
1 1 is always 1 ¢} i.e.,( ¢start , M start ) /1¢ (¢end - start) <°,

on the negative end there is a load

1 of Branch 1 and reversal.
1 1 is always Also swap start and(¢end , Mend)

on the positive side. Endpoints of Branch 1
1

M!tart <M cur + 11M <M;nd
in this case

Not on Branch 1 and /1¢ (¢;nd - ¢;tart ) >°2
11M> ° /1¢ > °
Not on Branch 1 and /1¢ (¢;nd - ¢;tart ) >0

3
11M < ° /1¢ < °4 11M> ° /1¢ > °

6 11M < 0, M cur >M~ax /1¢ < 0, M cur >M~ax2

21 11M < 0, Mcur<M~ax /1¢ < 0, Mcur<M~ax
(See Fig. A.1 ) (See Fig. A.1 )

5 11M < ° /1¢ < °
7 11M> 0, M cur <M~ax /1¢ > 0, M cur <M~ax3

20 11M> 0, M cur >M~ax /1¢ > 0, M cur >M~ax
(See Fig. A.1) (See Fig. A.1 )

6 M cur >M~ax M cur >M~ax
4

21 Mcur<M~ax Mcur<M~ax

7 Mcur<M~ax M cur <M~ax
5

20 M cur >M~ax M cur >M~ax

8 11M> ° /1¢ > °6
10 11M < ° /1¢ < °

Note: (¢;tart,M;tart ) and (¢;nd ,M~nd ) denote the start and end points ofBranch "i "
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Table A.6 Rules for Change of Branch (contd.)

9 L1.M< 0 11t/J < 0
7

11 L1.M> 0 11t/J > 0

M 2 M 8 M 2 . ¢2 ¢8 ¢2 .start < end < end , 1 . e . , start < end < end,l.e.,
2 end point of Branch 8 end point of Branch 8

8
lies on Branch 2 lies on Branch 2

4 Otherwise Otherwise

M 3 M 9 M 3 . tj} ¢9 ¢3 .start > end > end' 1 . e . , start > end > end' 1 • e . ,
3 end point of Branch 9 end point of Branch 9

9
lies on Branch 3 lies on Branch 3

5 Otherwise Otherwise

L1.M< 0 and M;'ax>M~ , 11¢ < 0 and M;'ax>M~ ,

1 i.e., section has not i.e., section has not
yielded on the yielded on the

10 negative side negative side

12 L1.M< 0 and M;'ax <M~ 11¢ < 0 and M;'ax<M~

14 L1.M > 0 11t/J > 0

L1.M> 0 and M~ax<M; , 11t/J > 0 and M~ax<M; ,

1 i.e., section has not i.e., section has not
yielded on the yielded on the

11 positive side positive side

13 L1.M> 0 and M~ax>M; 11¢ > 0 and M~ax>M;

15 L1.M< 0 11¢ < 0

16 L1.M< 0 11¢ < 0
12

20 L1.M> 0 11t/J > 0

17 L1.M> 0 11¢ > 0
13

21 L1.M< 0 11t/J < 0

Note: (t/J;tart,M;tart ) and (t/J;nd ,M~nd ) denote the start and end points ofBranch "i "
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Table A.6 Rules for Change of Branch (contd.)

14

2

4

13

17

24

M1 > 0, M;ax<M;
(i.e., yielded on
negative side),

M~ax<M; (i.e., not

yielded on positive
side)
OR

b.M > 0, M;ax>M;
(i.e., not yielded on
negative side),

2 14 2 .M start <Mend <Mend (1. e.,
end point of Branch 14
lies on Branch 2)

M1 > 0, M;'ax>M;
(i.e., not yielded on
negative side),

M~:d >M;nd (i. e., end
point of Branch 14
lies on Branch 4)

M1 > 0, M;'ax<M;
(i.e., yielded on
negative side),

M~ax>M; (i.e.,

yielded on positive
. 13 14 13

slde), M start <Mend <Mend
(i.e., end point of
Branch 14 lies on
Branch 13)

M1 > 0, M;'ax<M;
(i.e., yielded on
negative side),

M~ax>M; (i. e.,

yielded on positive

. d) M 14 M 13 (.Sl e, end> end 1.e.,
end point of Branch 14
lies on Branch 17)

M1 < °

!1¢ > 0, M;ax <M;
(i.e., yielded on
negative side),

M~ax<M; (i.e., not

yielded on positive
side)
OR

t,.¢J > 0, M;ax >M;
(i.e., not yielded on
negative side),

2 14 2 .
¢start < ¢end < ¢end (1 • e . ,
end point of Branch 14
lies on Branch 2)

11¢ > 0, M;'ax >M;
(i.e., not yielded on
negative side),

14 2¢end > ¢end (i . e ., end
point of Branch 14
lies on Branch 4)

11¢ > 0, M;'ax <M;
(i.e., yielded on
negative side),

M~ax>M; (i. e . ,

yielded on positive
. 13 14 13

S 1 de), ¢start < ¢end < ¢end
(i.e., end point of
Branch 14 lies on
Branch 13)

11¢ > 0, M;'ax <M;
(i.e., yielded on
negative side),

M~ax>M; (i . e . ,
yielded on positive

. d) ",,14 ",,13 (.
S 1 e , 'l'end > 'l'end 1. e . ,
end point of Branch 14
lies on Branch 17)

11¢ < °
Note: (¢;tart,M;tart ) and (¢;nd ,M~nd ) denote the start and end points ofBranch "i "
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Table A.6 Rules for Change of Branch (contd.)

15

3

5

12

16

25

MI < 0, M~x>M;

(i.e., yielded on
positive side),

M;ax>M; (Le., not

yielded on negative
side)
OR

MI < 0, M~ax<M;

(i.e., not yielded on
positive side),

3 15 M3 .M start > Mend > end ( l . e . ,
end point of Branch 15
lies on Branch 3)

MI < 0, M~ax<M;

(i.e., not yielded on
positive side),

M~~d <M:nd (i. e., end
point of Branch 15
lies on Branch 5)

MI < 0, M~ax>M;
(i.e., yielded on
positive side),

M;ax<M; (i. e.,

yielded on negative
. 12 M15 12slde) , M start > end >Mend

(i.e., end point of
Branch 15 lies on
Branch 12)

MI < 0, M~ax>M;
(i.e., yielded on
positive side),

M;ax <M; (L e . ,
yielded on negative

. d) M 15 M 12 (.Sl e, end < end l. e. ,
end point of Branch 15
lies on Branch 16)

MI > °

I1tjJ < 0, M~ax>M;
(i.e., yielded on
positive side),

M;ax>M; (i.e., not

yielded on negative
side)
OR

I1tjJ < 0, M~ax<M;
(i.e., not yielded on
positive side),
",3 ",15 ",3 .
rstart > rend > rend ( l • e . ,
end point of Branch 15
lies on Branch 3)

I1tjJ < 0, M~ax<M;
(i.e., not yielded on
positive side),

tjJ~~d < tjJ:nd (L e ., end
point of Branch 15
lies on Branch 5)

I1tjJ < 0, M~ax>M;
(i.e., yielded on
positive side),

M;ax <M; (L e. ,

yielded on negative
. ",12 ",15 ",12

S l de), rstart > rend > rend
(i.e., end point of
Branch 15 lies on
Branch 12)

I1tjJ < °, M~ax >M;
(i.e., yielded on
positive side),

M;ax<M; (i. e.,
yielded on negative

. d) ",15 ",12 (.
S l e , rend < rend l. e . ,
end point of Branch 15
lies on Branch 16)

I1tjJ > °
Note: (tjJ~tart,M~tart) and (tjJ;nd ,M~nd ) denote the start and end points ofBranch "i "

A-I7



Table A.6 Rules for Change of Branch (contd.)

AM< 0, M~x>M; !1¢ < 0, M~ax>M;
(I.e., yielded on (i.e., yielded on
positive side), positive side) ,

M;;"ax>M~ (L e., not M;;"ax>M~ (i.e., not

yielded on negative yielded on negative
side) side)

3 OR OR

M< 0, M~ax<M; !::.¢ < 0, M~ax<M;
(Le., not yielded on (i.e., not yielded on
positive side) , positive side) ,

3 22 3 (Le., 3 ¢22 ¢J,3 (i.e.,M start > Mend> Mend ¢start > end> end
end point of Branch 22 end point of Branch 22
lies on Branch 3) lies on Branch 3)

M< 0, M~ax<M; !::.¢ < 0, M~ax<M;

(Le., not yielded on (Le., not yielded on

5 positive side) , positive side) ,
22 3 (i. e., end 22 3 (i.e., endMend <Mend ¢end < ¢end

point of Branch 22 point of Branch 22
22 lies on Branch 5) lies on Branch 5)

M< 0, M~ax>M; !::.¢ < 0, M~ax>M;

(L e., yielded on (Le., yielded on
positive side) , positive side) ,

M;;lax<M~ (Le., M;;"ax<M~ (i.e.,
12 yielded on negative yielded on negative

side) , 12 22 12 side) , 12 22 12
M start > Mend > Mend ¢start > ¢end > ¢end

(Le., end point of (Le., end point of
Branch 22 lies on Branch 22 lies on
Branch 12) Branch 12)

M< 0, M~ax>M; !::.¢ < 0, M~ax>M;
(Le., yielded on (L e., yielded on
positive side) , positive side) ,

16 M;;"ax<M~ (L e., M;;"ax<M~ (L e.,

yielded on negative yielded on negative

side), 22 12. side) , 22 12 .Mend < Mend (1. e. , ¢end < ¢end (1. e . ,
end point of Branch 22 end point of Branch 22
lies on Branch 16) lies on Branch 16)

20 M> ° !::.¢ > °Note: (¢;tart,M;tart ) and (¢;nd ,M~nd ) denote the start and end points ofBranch "i "
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Table A.6 Rules for Change of Branch (contd.)

23

2

4

13

17

21

M1 > 0, M~<M;

(i.e., yielded on
negative side),

M~ax<M; (i. e., not

yielded on positive
side)
OR

M1 > 0, M~ax>M;
(i.e., not yielded on
negative side),

2 23 2 .
M start < Mend < Mend (1 • e . ,
end point of Branch 23
lies on Branch 2)

M1 > 0, M~ax>M;
(i.e., not yielded on
negative side),

M;~d > M;nd (i . e ., end
point of Branch 23
lies on Branch 4)

M1 > 0, M~ax<M;

(i.e., yielded on
negative side),

M~ax>M; (i.e.,

yielded on positive
. 13 23 13

slde) , M start <Mend <Mend
(i.e., end point of
Branch 23 lies on
Branch 13)

M1 > 0, M~ax<M;

(i.e., yielded on
negative side),

M:nax >M; (i. e . ,
yielded on positive

. d) M"23 M 13 (.Sl e, end> end 1.e.,
end point of Branch 23
lies on Branch 17)

M1 < 0

t1.¢1 > 0, M~ax<M;
(i.e., yielded on
negative side),

M~ax<M; (i. e., not

yielded on positive
side)
OR

t1.¢1 > 0, M~ax>M;

(i.e., not yielded on
negative side),

2 23 2 .
¢lstart < ¢lend < ¢lend (1 • e . ,
end point of Branch 23
lies on Branch 2)

t1.¢1 > 0, M~ax>M;
(i.e., not yielded on
negative side),

¢I;~d > ¢I?nd (i. e ., end
point of Branch 23
lies on Branch 4)

t1.¢1 > 0, M~ax<M;
(i.e., yielded on
negative side),

M:"'ax>M; (i.e.,

yielded on positive
. 13 23 13

S 1 de), ¢lstan < ¢lend < ¢lend
(i.e., end point of
Branch 23 lies on
Branch 13)

t1.¢1 > 0, M~ax<M;
(i.e., yielded on
negative side),

M:"'ax >M; (i. e . ,
yielded on positive

. d) ,{,23 ,{,13 ( .
S 1 e , 'f'end > 'f'end 1. e . ,
end point of Branch 23
lies on Branch 17)

t1.¢1 < 0

Note: (¢I;tart,M;tart ) and (¢I;nd ,M~nd ) denote the start and end points ofBranch "i "
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Table A.6 Rules for Change of Braneh (eontd.)

4 M< 0 /:1tjJ < 0
16

20 M> 0 /:1tjJ > 0
5 M> 0 /:1tjJ > 0

17
21 M< 0 /:1tjJ < 0
11 M> 0 /:1tjJ > 0

20
22 M< 0 /:1tjJ < 0
10 M< 0 /:1tjJ < 0

21
23 M> 0 /:1tjJ > 0
10 M< 0 /:1tjJ < 0

24
14 M> 0 /:1tjJ > 0
11 M> 0 /:1tjJ > 0

25
15 M< 0 /:1tjJ < 0

Note: (tjJ;tart,M;tart ) and (tjJ;nd ,M~nd ) denote the start and end points ofBranch "i "

A-20



Fig. A.1 Explanation for Rules which change Branches from 2 to 21 and 3 to 20
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