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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center of
excellence in advanced technology applications that is dedicated to the reduction of earthquake losses
nationwide. Headquartered at the University at Buffalo, State University of New York, the Center
was originally established by the National Science Foundation in 1986, as the National Center for
Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions throughout the
United States, the Center’s mission is to reduce earthquake losses through research and the
application of advanced technologies that improve engineering, pre-earthquake planning and post-
earthquake recovery strategies. Toward this end, the Center coordinates a nationwide program of
multidisciplinary team research, education and outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies: the National
Science Foundation (NSF) and the Federal Highway Administration (FHWA), and the State of New
York. Significant support is derived from the Federal Emergency Management Agency (FEMA),
other state governments, academic institutions, foreign governments and private industry.

MCEER’s NSF-sponsored research objectives are twofold: to increase resilience by developing
seismic evaluation and rehabilitation strategies for the post-disaster facilities and systems (hospitals,
electrical and water lifelines, and bridges and highways) that society expects to be operational
following an earthquake; and to further enhance resilience by developing improved emergency
management capabilities to ensure an effective response and recovery following the earthquake (see
the figure below).
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A cross-program activity focuses on the establishment of an effective experimental and analytical
network to facilitate the exchange of  information between researchers located in various institutions
across the country. These are complemented by, and integrated with, other MCEER activities in
education, outreach, technology transfer, and industry partnerships.

The study described in this report examines the use of remote sensing technologies in creating
building inventories for earthquake loss estimation. A key step in constructing these building
inventories using remotely sensed data is to separate the built environment from the ground, i.e., the
bare earth. The report describes an approach using SAR to detect the bare earth by employing a
series of filters that depend on knowing the general heights of buildings, trees and other physical
features on the surface of the earth. The bare-earth algorithm is validated and applied to three study
regions in the Los Angeles area. The authors also investigate the efficacy of using LIDAR (light
detection and ranging) data in constructing building inventories. LIDAR data is more detailed and
accurate than SAR data, and the results from the two technologies were compared. The next report
in this series will focus on using the results of the bare-earth algorithm to estimate the building stock.
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ABSTRACT 

 

In many applications, an important element of using highly detailed elevation data is the ability 

to separate the elevation of the ground from the elevation of vegetation and the built 

environment.  Often, algorithms that accomplish this task are proprietary or are not easily 

adaptable to Geographic Information Systems (GIS) programs.  This report presents a "Bare-

earth" algorithm that uses a mild, multifaceted approach of running several spatially-based filters 

to determine which areas are most likely to be associated with the ground elevation.   

This report represents the first of a two-volume series that examines the use of remote sensing 

technologies in creating building inventories for earthquake loss estimation.  As previous studies 

have shown, one of the most problematic areas of loss estimation is quantifying assets at risk.  In 

many cases, databases constructed for other uses (tax assessor data, census data) are modified to 

estimate building exposure.  At best, these databases are marginally complete and only represent 

values associated with taxable properties.  Thus, many structures that are important from the 

standpoint of regional earthquake loss are not included (e.g., government buildings, educational 

facilities). 

A key step in constructing these building inventories using remotely sensed data is to separate 

the built environment from the ground, i.e., the bare earth.  We show in this report that detecting 

the bare earth must be based on a series of filters.  The most essential of these are: 1) a majority 

filter that helps to screen out anomalous or spurious data; 2) a local minimum filter that is 

effective at screening out tall and moderate-sized buildings; 3) a median filter that is particularly 

effective at screening out short to medium height buildings; 4) a slope filter that is designed to 

eliminate topographic changes associated with objects such as buildings; and 5) a variance filter 

that focuses on eliminating large clusters of buildings. 

The report contains numerous examples that help to validate the approach under a variety of 

conditions.  The algorithms that are contained in this report are expected to have other 

applications beyond building inventory development.  We expect that these same models will 

also have applications in flood modeling, dispersion studies of gaseous materials, and possibly in 
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transportation studies (i.e., determine highway gradients).  This study is part of MCEER’s Thrust 

Area 3 that deals with response and recovery after major disasters. 
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SECTION 1 

INTRODUCTION 

This report represents the first of a two-volume series that examines the use of remote sensing 

technologies in building inventory development.  As previous studies have shown, one of the 

most problematic areas of earthquake loss estimation is quantifying assets at risk.  In many 

cases, databases constructed for other uses (tax assessor data, census data) are modified to 

estimate building exposure.  At best, these databases are marginally complete and, in some cases, 

only represent replacement values associated with taxable properties.  Thus, many structures that 

are important from the standpoint of regional loss are not included (e.g., government buildings, 

educational facilities).   

In a recent Multidisciplinary Center for Earthquake Engineering Research (MCEER) report 

(1999), the authors propose a methodology where remote sensing technologies can be used to 

construct building inventories for loss estimation software.  The authors point out that with the 

recent introduction of high-resolution sensors, it is now possible to image and characterize the 

properties of structures (i.e., buildings, roads, bridges, etc.) whose dimensions are on the order of 

several meters or less in size.  One of the more promising technologies identified was synthetic 

aperture radar or SAR.   

There are two important considerations in translating SAR data into building inventory 

information: 1) being able to outline the footprints of buildings, and 2) characterizing building 

heights.  With these two parameters, it is possible to construct enough information to quantify 

total square footage and possibly building construction type.  With total square footage, one can 

estimate the replacement cost of a building, thus providing a key piece of information in 

characterizing exposure.  By knowing the height of a building, one might infer a particular 

building material type (e.g., steel, concrete, wood, etc.) or construction system for some specific 

geographic region or area of the country. 

Table 1-1 shows the distribution of buildings in Los Angeles County by story height and 

material type.  The data source for this information was the Los Angeles County Tax Assessor’s 

Office; therefore, non-taxable properties such as government buildings are not included in this 
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summary.  The table shows that the most predominant construction type is wood-frame 

construction, accounting for all but 0.03 percent of the total.  However, for story heights greater 

than four stories, the inventory is comprised of either steel, concrete or brick/concrete 

block/other concrete buildings.  For buildings in the 4 to 7 story height category, it is more likely 

that the building type is brick/concrete.  For buildings greater than 7 stories, it is likely that the 

material type would be some kind of steel construction or concrete.  A more careful analysis by 

use (residential, commercial, and industrial) may help to refine these distributions further. 

 
Table 1-1 Number of Buildings by Height and Material Type 

No. of 
Stories 

Wood-
Frame 

Steel-
Frame 

Concrete Brick, 
Concrete 
Block 

Total % Total 

0-3 1,677,951 746 896 52,397 1,731,990 99.95

4-7 0 136 127 175 438 0.027

8+ 0 190 121 56 367 0.023

Subtotals 1,677,951 1,072 1,144 52,628 1,732,795 100

% Total 96.83 0.06 0.07 3.04 100 100

Source: Los Angeles County Tax Assessor’s Office (1994) 

 

Table 1-1 points out that an important parameter in estimating the size and construction type of a 

building is building height.  As this report will indicate, there are a number of advanced 

technologies that will provide building elevation information (i.e., absolute height) relative to 

some datum, e.g., mean sea level.  However, in order to estimate building height, it is necessary 

that we also measure and subtract out the elevation of the ground.  This report documents our 

efforts to develop a “Bare-earth1” algorithm using several different remotely sensed databases. 

This report has been written for a technical audience that may or may not be familiar with the 

fields of Geographical Information Systems and Remote Sensing.  General discussions of GIS, 

the distinction between raster and vector data, the analysis of elevation data within a GIS 

framework, and sources of elevation data are included in Section 1.   In Section 2, we introduce 

our approach for detecting the bare earth using a series of filters that depend on knowing the 
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general heights of buildings, trees and other physical features on the surface of the earth.  As the 

reader will see, the methodology is based on eliminating those features that are least likely to be 

associated with the natural terrain of the region.  In Section 3, we discuss the validation of our 

Bare-earth algorithm using a variety of methods and datasets.  In all comparisons, data from the 

Los Angeles area are used.  Section 4 contains the results of several applications of the Bare-

earth algorithm in the Los Angeles area. To assess its effectiveness for different land-use 

conditions, we include three examples: residential, commercial and industrial area.  In Section 5, 

we investigate the efficacy of using LIDAR (light detection and ranging) data in constructing 

building inventories.  Using data provided by the National Oceanic and Atmospheric 

Administration (NOAA) on coastal areas of California, we were able to apply our algorithms 

using the more detailed and accurate LIDAR data.  In the end, we compare these results to those 

calculated using the SAR data.  An appendix to this report discusses some basic concepts related 

to SAR imaging and data interpretation.  These discussions are meant to help those that are 

unfamiliar with the concept of remote sensing, in particular, SAR imaging. 

1.1  The Current State of Geospatial Data 

In the eighties, geospatial data was an extravagance of large corporations, the military, and other 

government agencies.  Most of the powerful Geographic Information Systems (GIS) and image 

processing programs that could use these data ran on the UNIX platform.  As desktop, laptop, 

and hand-held computers became more powerful, these programs were ported to other platforms 

that allowed efficient sharing of information throughout organizations.  It followed naturally that 

as these programs became more popular, the need for comprehensive training increased. 

Colleges, universities and training facilities across the world responded by offering a broad range 

courses, principally in Geography departments.  Students were instructed in how to “relate” 

different databases where the common link between them was a geographic location. Even with 

the presence of more GIS analysts, however, spatial data has yet to be used to its fullest 

potential. 

                                                                                                                                                                                           
1 Bare earth is a term often used to describe the surface of the earth without the built environment or vegetation.  
Therefore, a bare-earth elevation is one that corresponds to ground elevation. 
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The process of using spatial data in Geographic Information Systems requires a thorough 

understanding of the data and the analytical tools that are available to process these data.  GIS 

professionals often find themselves in a facilitator role, explaining to engineers, social scientists, 

politicians, and others exactly what information is stored and how it can be used to answer 

important questions.  Since the power of geospatial data is largely derived from its ability to 

relate separate and often complex datasets, communication is extremely important.  That is, one 

needs to understand the capabilities of such systems in order to ask the right questions.  

Digital spatial data is an extremely valuable resource.  It is commonly asserted by GIS 

professionals that seventy to eighty percent of all data has a spatial element.  Exploiting the 

value of this information, however, can be a challenge and does require a comprehensive 

understanding of spatial analysis techniques and methodologies.  As more examples of GIS 

analysis become available, there should be greater understanding of the efficacy of digital maps 

as statistical tools or devices.  Newspapers, for example, routinely publish small illustrative maps 

with their stories.  It is not uncommon to see radar data overlaid onto three-dimensional terrain 

maps in television weather reports.  Internet sites offer maps with driving instructions that are 

based on sophisticated routing algorithms that calculate the most efficient path between two 

locations. These are just a few examples of how spatial data have been used in the popular 

media.  

The idea that the reliability of a map depends on the reliability of the underlying data is key to 

understanding geospatial data.  The presidential election in 2000 illustrates how the presence of 

map data in the media has begun to focus attention on data reliability.  As digital maps become 

more prevalent in business and the general media, the public as a whole will gain a better 

appreciation of the process used to generate these maps.  As we find new ways of using GIS 

maps to describe our environment, GIS concepts will begin to be understood by more people.  

Additionally, technical issues are currently impeding the effective use of spatial data in general 

and elevation data specifically by most users.  The elevation of the Earth’s surface is a very 

important parameter in GIS.  For example, it is much easier to interpret quantitative data on a 

map if presented within a topographic structure.  Adding a three-dimensional perspective is even 
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more effective when viewing phenomenon that are influenced by the contour of the earth, e.g., 

landslides, weather patterns, or flood zones. 

As modeling with GIS becomes more sophisticated, there will be a strong demand for elevation 

data not only as a visual component, but also as an analytical component. The surface of the 

earth is used in GIS to conduct “line of sight” studies for locating telecommunication equipment 

in urban areas, for modeling dispersion of hazardous gases between buildings, or predicting blast 

zones from high explosives.  Algorithms have also been developed to delineate watershed zones 

and flood inundation areas based on the use of ground elevation data (Garbrecht et al., 1999).  

Detailed elevation data are required to analyze vulnerability to landslides (Monmonier, 1997).  

In order for these applications to use elevation data, there must be an integration of raster GIS 

models and vector GIS models. 

1.2 Geographic Information Systems 

GIS is a branch of Information Systems (IS).  In general, the focus of most GIS programs is to 

link various forms of vector data (points, lines and polygons) to their database attributes.  

Elevation data are usually represented using a raster model.  A raster data file consists of a two 

dimensional array of values that represent a given condition or phenomena everywhere within its 

domain.  Figure 1-1 displays how the same phenomena can be displayed in both raster and vector 

formats.  In Figure 1-1a, the raster data represents a linear feature with the value of "5" as a 

series of grid cells.  The cells are typically square with the real world position of the corner cells 

stored with the file.  Operating on a raster model is usually fast, efficient, and optimal for 

imagery and elevation data.  In Figure 1-1b, the same feature is represented as a line.  Internally, 

the GIS software stores information on what nodes form the line (A, B, and C).  The software 

stores the location of these points in real world coordinates (with varying degrees of accuracy).  

Each line is given a unique number.  The unique number is used to link the line segment to the 

attribute data, in this case the number five.  Vector analysis is ideal for spatial queries and 

integration with traditional information systems. 
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a. Raster    b. Vector 

 
FIGURE 1-1 Raster and Vector Data Models:  

 

The ability to analyze elevation data is greatly facilitated by a raster-based GIS model (Berry, 

1995).  Most government and commercial GIS applications depend heavily upon vector data, so 

that the data can easily be integrated into other databases.  Depicting raster and vector data in the 

same GIS is routinely done for display purposes.  For example, it is common to see an aerial 

photograph or a satellite image displayed with vector data such as highways or city boundaries 

overlaid.  However, analytically, each data set is operated on separately and sometimes using 

different programs or modules.   

There has been a lag in the integration of raster-based technologies into standard GIS tool sets.  

The raster tools that have become available through add-ons such as "Spatial Analyst" for 

ArcView and "Vertical Mapper" for MapInfo Professional provide functionality primarily for 

site suitability modeling where interpolation of vector data is required rather than image 

processing.  To a GIS professional, there are key differences between "images" (remotely-sensed 

data) and "grids" (cell data populated by vector data), even though the format of these data are 

essentially the same, i.e., two-dimensional arrays of numbers at a given location with a given cell 

size.  

Converting raster data to vector data in a GIS is an error-prone, largely interactive process that 

often results in splinters (fragmented polygons of data).  It is difficult, for example, to classify 

remotely sensed data into land use categories for a vector based analysis, such as an overlay with 

hazard (e.g., earthquake ground motions) data.  The data usually need to be run through a 

cleaning or filtering algorithm that “clumps and sieves” the raster data into congruent polygons 

to reduce splintering.   
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Currently, classification algorithms that separate images into several categories of land are much 

more effective if there is user intervention (referred to as supervised classification).  The user 

essentially trains special algorithms (e.g., maximum likelihood or neural network algorithms) to 

interpret images for future use (Mather, 2000).  This process can be error prone and usually 

requires the specialist to validate the results.  There are libraries of spectral responses that 

classify images without user intervention, but many of these have been tailored towards 

agriculture and environmental applications.  

Typically, satellite data or other raster data are brought under vector data to observe change or 

provide other visual information. As users become more sophisticated, the demand for integrated 

databases will increase, and the need for user-friendly applications to merge raster and vector 

data will become evident.  This type of integration is key to using remotely sensed data for 

decision support systems (DSS). 

1.3  Digital Elevation Data and Remote Sensing 

Measuring the elevation of the Earth’s surface is one area where a number of industries have 

come to understand the importance of obtaining accurate data.  Publicly available databases of 

ground elevation are often not detailed enough for analytical applications and users have come to 

question the reliability of that data.  The most commonly used source of elevation data is the 

Digital Elevation Models (DEMs) from the U.S. Geological Survey. There is no statistical 

analysis of the accuracy of these DEMs with respect to the real world, only with respect to the 

contour maps from which they were derived (Bottlemy, 2000).  The integration of raster and 

vector data, the demand for three-dimensional modeling and visualization tools, and the desire to 

have powerful vector databases merged with raster and image processing tools will all contribute 

to an increase in the demand for more accurate elevation data.  The following discussion 

provides a list of methods used to create DEMs that depend on remote sensing technologies.  

Global Positioning Systems. Global Positioning System (GPS) data are collected by receiving 

radio signals from a constellation of satellites, all broadcasting data.  By measuring the time it 

takes to receive each signal, a GPS unit can calculate the distance to each satellite.  After 

calculating the distance to three or more satellites, the unit can triangulate its position.  It is 
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possible to create a ground surface elevation map using GPS equipment, however, it is not very 

practical since it would take many, many measurements to populate even a very small area.  

Light Detection and Ranging. Light Detection and Ranging, or more commonly referred to as 

LIDAR, is an airborne remote sensing technology that, like GPS, produces extremely accurate 

ground elevations for a series of point locations.  The technology works by measuring the time it 

takes for light to be transmitted from the sensor to the ground and back to the sensor.  By cross-

referencing this distance with detailed GPS information on the location of the aircraft, the 

elevation of the ground can be calculated (Baltsavias, 1999).  These points are then averaged to 

create a ground elevation surface.  Elevation data from LIDAR must be measured from almost 

directly below the sensor. Because of this, data can only be collected for relatively narrow 

swaths of land.  An airplane or helicopter must transect a city many times in order to obtain a 

complete data set.  This process can be very expensive for large areas.   

Interferometric Synthetic Aperture Radar. Interferometric Synthetic Aperture Radar (IFSAR) 

offers a cost-effective alternative to LIDAR.  Although the elevations derived using SAR data 

are not nearly as accurate as the elevations from LIDAR, these data are much less expensive to 

collect and process.  Radar imaging technology is based on sending microwave signals from an 

airborne or space-borne sensor to earth and measuring the time it takes for the signal to come 

back to the sensor.  In the case of interferometry, signals are produced from two antennae. Each 

antenna records the amplitude and phase of the radar wave as it travels back to the sensor. The 

difference in phase and angle between the two antennae can be analyzed to produce an elevation 

map of the ground and everything on it (Perry et al., 1998).  In two-pass interferometry, the same 

SAR sensor visits the same scene in a different time. The signal phase difference measures the 

elevation of the region. 

A major advantage of IFSAR is that high-resolution data can be collected and processed 

relatively quickly by airplane, which potentially makes it very useful for both disaster response 

and building inventory collection.  Radar also has the advantage of penetrating cloud cover, 

making it very useful for immediate disaster response.  This is particularly true for large floods.  

During the Midwest U.S. Floods of 1993, for example, optical imagery (e.g., Landsat and Spot 

data) was not available for several months because of extensive cloud cover.  In contrast, radar 
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imagery data (i.e., ERS-1 data) was available to help determine the extent of flooding 

(Brakenridge et al., 1994).  Because the data are collected from the side of the plane (referred to 

as "side-looking"), a much wider swath is possible. When the data are averaged over large 

regions, extremely precise measurements of change in the horizontal direction are possible 

(Zebner et al., 1994). 

When SAR elevation data are analyzed at individual locations, the results can be problematic, 

especially in an urban environment.  As the radar waves encounter tall buildings, they will often 

ricochet from several surfaces before they return to the antennae (Figure 1-2, line A).  This 

phenomenon is referred to as “lag”.  Much of the data will also bounce away from the antennae, 

as with line C.  A large area on the ground will be left with no values, as between the building 

and the location where ray B contacts the ground.  This is referred to as “shadowing”.  In order 

to use radar data to find the heights of buildings, the maximum SAR reading for a building 

should be used.  This yields the height of the building in reference to sea level. To find the height 

of the building in reference to the ground, there must be a separate data layer that measures the 

elevation of the “Bare Earth”, or the height of the ground without vegetation or buildings. If a 

building is located in the shadows of other buildings, it is possible that the height of that building 

will not be detected at all.  This is common in clusters of tall buildings, where it is very hard to 

detect a shorter building (Houshmand, 2000). 

 

 
FIGURE 1-2 SAR Interaction with the Built Environment 
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In residential areas, there are very few problems with shadowing; however, the heights of the 

buildings are much closer to the inherent error associated with the data.  The SAR X-Band data 

provided by Intermap for this study (10 GHz, wavelength = 3.24 cm) has an absolute value error 

of one standard deviation that ranges from 1.5 to 5 meters (see 

http://www.intermaptechnologies.com/HTML/mapp_star3i.htm).  In residential areas, the 

heights of the buildings are much closer to this noise level.  Another source of error in residential 

areas is “mixed pixel” effects.  When the height of an area is measured with SAR, the responses 

from several radar waves are averaged to give one reading.  The data that are averaged are 

associated with an individual pulse of waves, which covers a 5-meter square area.  The effect is 

somewhat analogous to a huge flashlight, where the center is focused on a specific area, but the 

area that reflects diffuse light is much larger.  In residential areas where buildings are so close to 

the ground, the height that becomes averaged over this 5-meter area will often mix the height of 

the ground with the height of the structure, resulting in a diminished residential building height.  

These mixed pixels make it difficult to determine the height of individual structures. 

The potential for extracting and quantifying information about the built environment with 

remotely sensed data is enormous.  LIDAR data combined with high-resolution multi-spectral 

optical data are the best sources for extracting these data (Brunn et al., 1997).  Unfortunately, the 

cost to collect these data is high, particularly for large areas. Using SAR data to detect and 

statistically profile the built environment is challenging but the results are promising.  It may be 

that for most disaster response situations, lower resolution SAR data may be more than adequate.   

In the next section, we present our approach for detecting the bare earth.  As the reader will see, 

we do this by employing a series of filters that eliminate those datasets that are clearly not 

associated with the ground surface. 
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SECTION 2 

DETECTION OF THE BARE EARTH FROM A DEM 

In order to analyze the heights of buildings using SAR data, one must model the height of the 

ground without vegetation or manmade structures.  When digital elevation information is 

extracted from SAR data, it estimates the height of the earth's surface and everything on it, all in 

relation to an arbitrary location (e.g., sea level).  Only when you subtract out the height of the 

bare earth do you get the heights of structures, trees and other features.   

In Figure 2-1(A), the elevations of houses and trees are obscured by the height of the hill.  

Subtracting the height of the hill brings the height of the built environment into view and makes 

the heights of structures available for analysis.  Bare-earth algorithms separate the ground 

elevation from the heights of buildings and trees.  This allows the two components of elevation 

to be analyzed separately.  Once the height of the built environment and vegetation has been 

separated from the natural terrain, elevations associated with trees can be separated from the 

built environment either through spectral analysis or by setting a threshold for the minimum 

height of buildings (Weidner, et al., 1995).   

 

 
             A        B             C 

 
FIGURE 2-1 Absolute Elevation (A), the Bare Earth (B) and 

the Height of Objects on the Earth (A minus B equals C).  
 

Under ideal circumstances, SAR data are very accurate.  If the terrain is gently sloping, with the 

right amount of smoothing to eliminate inherent errors, precise measurements of elevation can be 

made.  In an urban environment, however, it is much more difficult to reliably capture accurate 

elevations.  For example, the SAR data that are collected from an aircraft are side-looking.  
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Thus, all objects behind other objects are not visible.  This can be a problem where there are 

many tall buildings.  Additionally, large swaths of land in front of large buildings may be 

obscured, because the radar waves ricochet from the ground to the building and back to the 

sensor.  These phenomena are known collectively as “lag” and “shadow.” Another problem with 

SAR data is that the angle of the building with respect to the sensor determines the strength of 

the response, and thus the reliability of the reading.  The exact same process that produces 

reliable results when imaging a sand dune will produce unusable results when imaging Lower 

Manhattan, for example.  The appendix to this report explores some of these anomalies in detail.  

When imaging smaller buildings, the results can also be problematic.  Small, single-family 

dwellings often produce the equivalent of mixed pixel effects in optical data.  In these instances, 

radar waves reflect from many different objects in the area associated with one, 5-meter by 5-

meter area.  This may include houses, trees, and the ground itself.  The result is an average 

elevation, which diminishes the height of single-story buildings.  When the elevation data are 

plotted, the mixed pixel effects cause right angles to become rounded.  The effect is frequently 

compared to a "canopy", as it appears as if cloth has been draped over the buildings.  The images 

are sometimes likened to melting ice cream.  For larger buildings, it is possible to use the 

maximum response for a building footprint, but for smaller single-family dwellings, even the 

highest elevation may have mixed pixel effects. 

Despite these apparent deficiencies, SAR data offers several important advantages over other 

imaging technologies, especially when analyzing large urban areas.  First, using SAR 

technology, it is possible to image a relatively large area during a single flight.  For the Los 

Angeles area, Intermap Technologies was able to use a swath of 8 kilometers to image “strips” of 

the Los Angeles Basin.  This swath can be compare to one of several hundred meters that is 

characteristic of LIDAR applications. Second, because SAR technology is based on radar 

technology, it is not impeded by poor weather conditions or even nighttime conditions.  For this 

reason, SAR imaging is considered a useful post-disaster remote sensing tool.  Finally, when 

used as part of a dual antennae or repeat-pass system (e.g., interferometric), useful information 

on elevation changes over time or between before and after scenes of a disaster can be produced.  

This information can be important in identifying areas that have been affected by large-scale 
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tectonic movement, landslides or collapsed structures.  In the remaining sections of this chapter, 

we present an approach for creating bare-earth elevations using high-resolution SAR data. 

2.1  Envisioning the Problem 

Finding which SAR elevations are part of the ground surface is a challenging task.  Although 

one can come up with logical statements that should detect the ground, variances in topography 

and problems with the SAR data render any one algorithmic solution less than adequate.  For 

example, it is logical that the ground could be associated with the most frequent elevation in a 

given area; say a city block.  However, there are many blocks that are populated with large 

structures or groups of buildings with the same height.  In hilly areas, the height associated with 

the ground may repeat only for a very short distance.  Another way in which the ground height 

could be estimated would be to try to find the elevations of streets.  However, streets are often 

above or below ground level.  Cars and trucks can obscure the true elevation of streets.  In 

addition, noise in the SAR data makes it necessary to verify that individual elevations are in 

agreement with the surrounding elevations.  Logically, the ground should be the lowest elevation 

within a certain distance.  But what distance does one pick?  A short distance might interpret the 

tops of buildings as ground level; a large distance would exclude changes in elevation.  We 

found that a mild, multifaceted approach centered around the spatial characteristics of features 

on the ground in relation to their surroundings is the most reliable way to determine the location 

of the ground.   

2.2  Overview of Approach 

To find the height of the bare earth, we follow a three-step process.  First, elevations are 

extracted from the raw SAR DEM data based on low correlation values of intensity or 

reflectance.  Elevations with high correlation values are run through a filter to eliminate noisy 

and erroneous data (Figure 2-2, step 1).  These filtered SAR data and the original raw data are 

then passed through a series of spatially based criteria to determine which elevations can safely 

be assumed to be part of the ground (Figure 2-2, step 2).  In attempting to delineate the ground 

surface, we remove as much of the built environment as possible while still leaving a significant 

portion of the ground.  The height of the ground at selected locations is then used to interpolate 
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elevation values in areas covered by the built environment.  Finally, a median filter is used to 

smooth the data thus eliminating sharp transitions in elevation.  The bare-earth elevation data are 

then subtracted from the cleaned and filtered elevation data, leaving the estimated height of 

vegetation and the built environment (Figure 2-2, step 3).  Each of these steps is discussed in 

detail in the following sections. 

The following steps include procedures to filter and smooth intermediate data sets.  It is 

important to note that these filtering processes are not performed on the final data set.  As a 

result, they should not introduce any additional error in the original elevation data.  They simply 

provide a framework for eliminating data that are not associated with the ground surface.  

2.3 Cleaning and Identifying Reliable Elevation Values  

As discussed previously, digital elevations derived from SAR sensors are subject to error for 

numerous reasons. In order to effectively use these data, the data must be cleaned and cross-

referenced with surrounding data values.  If these values are positive (i.e., elevations above mean 

sea level), they must be further analyzed to see if they are likely to be part of the ground.  At this 

point of the analysis, negative values are removed from the original data set.  

 2.3.1  Extracting Cells with Low Correlation 

Screening the data for reliable values begins with removing elevations with poor correlation 

indices.  Interferometric SAR, or IFSAR, produces a DEM by measuring the difference in phase 

recorded by two antennae.  This phase difference is then converted to a distance through a 

process called phase unwrapping.  The two antennae can be on the same satellite or airplane, or 

they can be on separate satellites running in tandem.  A correlation analysis is generally 

performed on the intensities of the signals measured between the two antennae.  The intensity is 

a measure of the strength of the signal received by the antennae.  The higher the correlation 

between two signals, the more dependable the digital elevation values are.  Elevation values 

computed from poor-intensity correlations are likely to be spurious and unreliable.   
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FIGURE 2-2  The Process used to detect the Height of the Bare Earth 
and the Built Environment 
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Poor correlation can indicate that a physical object, such as a tall building, has altered the 

geometry of the return signal in such a way that one antenna receives a weaker signal (see 

Appendix A).  Poor correlation can also be caused by a weak signal return, generally associated 

with long, flat surfaces such as freeways or bodies of water.  In Figure 2-3, the darker areas in 

the left frame indicate areas of low correlation and generally outline streets.  This is evident by 

comparing the left image with the middle image, which is an aerial photograph of the same area.  

The frame on the right depicts in black, areas where the correlation value is below 0.85.  In 

general, these darker areas are not considered good candidates for extracting ground elevations 

because numerous factors contribute to their variation or uncertainty. 

 

  
 

FIGURE 2-3 Correlation of Intensity for Industrial Study Area 

 

2.3.2  Applying the Majority Filter 

After the poor correlation data are extracted, the elevations are rounded to the nearest meter and 

smoothed with a majority filter, which is described below.  Rounding the data to the nearest 

meter allows us to pass the data through the majority filter, a critical step in eliminating spurious 

data points. 

Anomalous data points can be real elevations, or they can be associated with noise and error.  A 

majority filter works by scanning through each individual elevation and comparing it with the 

elevations of surrounding cells.  Each cell is replaced by the elevation that occurs most 

frequently amongst the surrounding cells and the cell being analyzed.  The number of cells 

included in this evaluation depends on the window specified for the filter.  In our majority filter, 
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we used a 3 by 3 window size that compares a middle cell with the eight adjacent cells.  If a 

majority value cannot be established because two or more cell values occur with the same 

frequency (a tie) or because each cell contains a different value, the elevation value is replaced 

by a null value.  In Figure 2-4a, there are two instances where a majority value cannot be 

established and thus, these cells are replaced by null values.  Figure 2-4b displays the null 

values. Cells with a null value are not considered in the bare-earth calculations.    

 

 
 

            a. SAR Data Before Filter                        b. SAR Data After Filter 

   
FIGURE 2-4 Results of the Majority Filter (N=Null) 

 

The majority filter cleans the data in several ways.  It removes some of the elevations that are 

associated with cars, bushes, lampposts and other small objects within the terrain.  It also helps 

to reduce the effects of speckle noise and other SAR data errors.  Data elevations that cannot be 

verified by the neighboring cells are less likely to be associated with the bare earth.  Although it 

is easy to imagine cases in which the majority filter would throw out useful data (extracting 

some of the ground surface), SAR data in its raw state is generally unusable.  Much of the 

literature on SAR data discusses different algorithms for filtering the data.  Visually interpreting 

raw SAR data is very difficult, which is why the data are frequently averaged, a process known 

in image processing as "multi-looking".  Loss of some data is unavoidable when working with 

SAR data.  Without filtering the data, noise and small changes in elevation would be considered 

as ground elevations, leading to an over estimation in ground height and an underestimation of 

the heights of buildings.   
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Running various filters on the data can also introduce errors.  The error associated with running a 

majority filter on the data can be twofold.  A valid elevation can be replaced by the elevation of 

neighboring cells.  If a valid fluctuation in the elevation occurs so as to affect a 2.5 by 2.5 meter 

grid cell, but not its neighbors, it is unlikely that a change in this cell will significantly influence 

the computed height of a structure.  Therefore, the general smoothing of the data set should not 

greatly change the elevation.  The second way in which a majority filter can introduce error is if 

a valid bare-earth elevation is removed from the data and is no longer considered as a bare earth 

candidate.  The more cells that remain after the cleaning and filtering process, the more data that 

will be used to create the ground surface elevation, and the more accurate the final surface will 

be.  However, it is much more disruptive to the final surface elevation to have spurious 

elevations considered than to have good elevations thrown out.  Even though a certain 

percentage of cells with anomalous heights may be valid bare-earth elevations, an elevation that 

cannot be validated by its neighboring cells is inherently unreliable as a bare earth candidate, and 

thus, is removed.  This process of applying the majority filter is presented in Figure 2-5. 

2.3.3  Negative Values 

In the vast majority of cases, elevation values at or below sea level are incorrect.  Negative or 

zero values occur in SAR data because of lag and shadowing effects (see Appendix A).  These 

values can be safely removed from the data set. 

2.4  Topographical Filters 

Identifying the ground elevation presents a compromise between interpreting large flat buildings 

as ground and undercutting hilly terrain.  We found that a multi-criterion approach involving the 

spatial characteristics of features on the ground in relation to their surroundings was the best way 

to determine the location of ground elevations.  These spatial characteristics include the 

minimum height of the surrounding area, the median elevation of the surrounding area, the 

immediate slope of the cell with respect to the surrounding elevations and the change in slope 

over a wider region.  Although the algorithm does not work in mountainous regions and 

interprets the middle of very large structures as ground (such as the Convention Center in 

downtown Los Angeles), it does a very good job of minimizing any potential miscalculations by 

addressing the problem from several different perspectives. 
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FIGURE 2-5 Applying the Majority Filter to Clean and Identify 
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Through a series of filters that analyze the elevation of a cell with respect to neighboring 

elevations, assumptions are made as to what topographical qualities of an area are likely to 

represent the ground surface.  The following sections present the assumptions used in this study 

to determine the ground surface.  These assumptions are: 

1. The ground represents the lowest elevation within a certain distance. 

2. The ground is at or below the median elevation within a certain distance. 

3. The ground has a slope or gradient that is less than the changes in elevation 

associated with objects on the ground, such as trees and buildings. 

4. The slope of the ground varies less than the slope of the built environment. 

2.4.1  Local Minimum 

The most obvious way to find the ground is to locate the lowest point within a certain distance.  

Occasionally, this will return the elevation of a ditch or a construction site, or bad data resulting 

from lag or shadows, but usually this value will correspond to the height of the ground.  The 

difficulty in executing this approach is finding the appropriate search radius.  To read the correct 

elevation beyond the footprint of a large building, such as a mall or a school, the search radius 

would have to be very large, the size of an average city block or more.  When you have a slight 

incline in another area, this same approach selects the minimum height at the bottom of the hill, 

which leads to an overestimation of building stock.  As the search radius decreases, the tops of 

the largest buildings will be interpreted as ground height, and an over estimation of the ground 

height will occur, which leads to an underestimation of building stock.  For the purpose of 

finding the height of the ground, it is important to have a search radius that is large enough that it 

would look beyond most buildings.  If a building is larger than twice the radius chosen, then the 

center of the building area will be mistaken for a possible ground elevation.  If these heights are 

not removed by another methodology, the height of the structure could be underestimated.  In 

practice, however, much of the building remains and the maximum heights in these areas will be 

combined with the building footprint to produce an accurate building height.   
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In this study, we have chosen a minimum filter search radius of 25 cells.  Each cell is 2.5 meters 

by 2.5 meters, so the resulting search radius is 62.5 meters.  This distance was chosen because it 

is approximately the area of a city block.  Larger and smaller distances were used in testing, and 

a search radius of 125 meters in diameter allowed for the extraction of most buildings, and in the 

absence of steep slopes, established good results.  Rigorously establishing the ideal search radius 

given data resolution is an area for future research.  A building must be longer than 125 meters 

in one direction before the top of the building is mistaken for ground elevation.  If a location is 

mistaken for the ground, there is a good chance that it will be screened out by one of the other 

filtering criteria.   

Starting from the cleaned and filtered DEM, a local minimum filter is applied to the data.  A 

minimum filter creates a new grid layer with the same dimensions and cell size as the initial data 

set.  Each cell in the new grid is populated with the minimum elevation value of the initial data 

set within a certain radius (25 cells in this case). This results in a new surface that represents the 

lowest elevation within the boundaries of the search radius.  Figure 2-6 provides an example of 

how a minimum filter works on the eight adjacent cells.   

 

 
 

 a. SAR Data before Filter    b. SAR Data after Filter 

 
FIGURE 2-6 Results of the Minimum Filter 

 

Figure 2-7 provides a flowchart of the Minimum Filter Process.  To illustrate the concept, we use 

a part of the Wilshire Boulevard corridor as an example.  The minimum elevation filter will strip 

out most buildings from the data, leaving a minimum height that corresponds to the bare-earth 

elevation or ground height in some areas, but not all areas.  Spurious low data values, which 
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were not removed by the majority filter, will cause circles of low values in a minimum elevation 

data set.  These values can correspond to shadowing as described earlier and can be seen in 

Figure 2-7 as circular patterns along Wilshire Boulevard (upper right-hand image). 

A minimum elevation data set is very good for determining which cells are well above the lowest 

elevation and removing them.  Subtracting the local minimum from the cleaned SAR data leaves 

the height above the minimum elevation.  The minimum elevation can be envisioned as a 

substitute for the bare-earth elevation.  Using this analogy, the difference between the SAR 

elevation and the minimum elevation represents an approximation of building and vegetation 

height.  Because of errors in the minimum elevation data, it is not an accurate bare earth 

estimate, but it allows us to remove areas from further analysis that have a height significantly 

above the minimum elevation.   

Removing cells greater than six meters above this minimum reliably extracts elevations 

associated with many buildings and trees from the data set without affecting the natural terrain.   

During testing, it was determined that 6 meters was high enough to accommodate a reasonable 

rise in terrain over 62.5 meters (search radius of 25 cells), but would still remove a significant 

portion of the built environment.  The last image in Figure 2-7 shows the results for a small area 

around Wilshire Boulevard.  The lighter areas represent land and the darker gray areas have been 

marked as unlikely candidates for a bare-earth elevation.  This data set is combined with three 

other criteria in a Boolean operation where an area must pass all filters in order to be considered 

as ground.  Elevations associated with houses that are less than six meters above the 

neighborhood minimum elevation have several additional filters with which they can be marked 

as part of the built environment.  Figure 2-8 shows the rationale for using six meters to extract 

non-ground elevation areas. 
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FIGURE 2-7 Minimum Filter Flowchart 
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FIGURE 2-8 Removing Cells more than Six Meters above the Local Minimum Elevation 

 

Both the six-meter criterion and the 25-cell criterion were determined through experimentation.  

As with the six-meter difference, the 25-cell search radius also represents a compromise.  When 

the search radius increases, the minimum height assigned to each cell becomes less relevant to 

the site at the center of the radius.  Natural topography will eventually be undercut by the 

minimum elevation.  If the natural elevation is undercut by an amount larger than the height of 

extraction (in this case, 6 meters), then the height of the ground will be underestimated and the 

building stock will be overestimated.  Choosing an appropriate search radius represents a trade-

off between undercutting topography and including large buildings. 

2.4.2 Local Median 

It is more difficult to intuitively understand the rationale of the median filter than it is to 

understand the minimum filter.  In searching for the ground, it is natural to look for the lowest 

point within a given area.  However, as established in the previous section, this procedure can be 

problematic.  Looking for the minimum elevation is very useful for screening off tall buildings 

but does little to screen off shorter structures.  Optimizing the routines to address shorter 

structures introduces errors associated with undercutting topography.  The median filter 

methodology works in a manner very similar to the minimum elevation algorithm, but there is 

little risk in undercutting topography, unless there is nothing on the ground.  



 

 25

A good way to visualize the median elevation filter is to think about an urban landscape and 

imagine that one way to find the ground would be to throw out everything above the middle.  It 

is a simple and effective solution that eliminates much of the built environment where the 

minimum elevation fails.  There are many cases in which this criterion does not identify the 

ground, such as short buildings next to very tall buildings, but these elevations tend to be 

extracted by other procedures, which are discussed in the following sections.  Very few grid cells 

associated with ground height appear to be extracted by this methodology. 

As with the local minimum filter, the median filter starts from the cleaned and filtered DEM.  A 

local median filter is then applied to the data set.  The median filter creates a new grid layer with 

the same dimensions and cell size as the initial data set.  Each cell in the new grid is populated 

with the median elevation associated with a 25-cell radius, creating a new surface of the median 

elevations.  Figure 2-9 presents a flowchart that describes how the median filter works. 

The result of the median filter is an average ground height that is consistently above ground 

level, but below many features on the ground.  This height is subtracted from the cleaned SAR 

data set.  Everything with a difference of one meter or more is considered unlikely to be part of 

the ground.  A difference of zero indicates that the ground height is the local median.  These 

areas are not extracted, because for long and flat stretches of land, they are equal to the ground 

height. 

Comparing the results of the minimum and median filters for the Wilshire Boulevard area 

(Figure 2-9, step 2 and Figure 2-7, step 2), it can be seen that the median filter is effective at 

extracting much of the built environment regardless of topography, whereas the minimum filter’s 

effectiveness is limited by both topography and the height of the structure.  Upon closer 

examination, it is also evident that the median algorithm is more effective at extracting smaller 

structures and clusters of vegetation.  Figure 2-10 shows an illustration of how the median filter 

works in this study. 
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FIGURE 2-9 Median Filter Flowchart 
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1 meter

 
FIGURE 2-10 Removing Cells More Than One Meter Above the Median Elevation 

 

Finally, Figure 2-11 gives an example of how the median filter works when viewed as a grid 

system.  Note once again that this operation is performed on the eight cells that surround a 

particular grid cell.   

 

 
 

 a. SAR Data Before Filter b. SAR Data After Filter 

 
FIGURE 2-11 Results of the Median Filter 

 

2.4.3  Slope between Neighboring cells 

The third topographically-based screening method of removing buildings and trees from the 

elevation data is to extract areas with steep slopes.  The steepest slopes in a DEM are usually 
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associated with objects projecting from the earth's surface.   A new grid layer is created with the 

same dimensions as the original data set.  Each cell is populated with the maximum slope 

determined from the raw SAR data set.  The maximum slope is the maximum angle between a 

cell and the eight adjacent cells.  The unfiltered, uncleaned SAR data are used instead of the 

filtered data set because the filtered data set removes anomalous data values that help detect the 

high slopes associated with buildings.  Slopes above a twenty-degree angle are identified as 

areas associated with the built environment or vegetation.  Topography with slopes above 20 

degrees generally do not extend over long distances in urban environments.  Figure 2-12 shows 

the grid scheme that is associated with this particular algorithm. 

 

 
 

 a. SAR Data before Filter  b. SAR Data after Filter 
 (in meters) (in degrees) 
 

FIGURE 2-12 Results of the Maximum Slope Filter (assumes 2.5 by 2.5 meter cell size) 

 

The effect of the computed slope can be observed for the Wilshire Boulevard area in Figure 2-

13, image B.  In this area, there are several steep hills that were not steep enough to be affected 

by the screening process.  The Santa Monica Mountains just north of UCLA are extracted using 

this filter.  The inability to extract building heights in mountainous regions is a limitation of this 

algorithm.  The filter does a good job of extracting areas that might have been missed by the 

other algorithms, especially the areas surrounding corners of buildings and trees.  The Veteran's 

Memorial Cemetery appears in the upper left-hand side of Figure 2-13 (image C) as two parallel 

lines of trees (trending southeast to northwest).  The other filters do a good job in detecting the 

lines of trees in the cemetery, but the slope filter actually outlines the boundaries of trees.  This 

filter effectively identifies the high slope elevations and assures that these elevations are not 
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considered as ground height.  The corridor of tall structures along Wilshire Boulevard is almost 

entirely removed, as represented by the dark areas in Figure 2-13, image C.  

The reader may ask why twenty degrees?  Twenty degrees is very low number, as most 

elevations associated with the built environment are much steeper and many naturally occurring 

hills in urban areas have slopes exceeding twenty degrees.  Twenty degrees was chosen after 

reviewing slope maps for some of the pilot test areas (see Section 3.3).  Although the slope of a 

specific urban area may be almost entirely angles, that are close to 90 or 0 degrees, the 

calculated slope from the SAR data will be a wide range of values.  This anomaly must be 

considered when extracting the bare earth from the SAR data. 

2.4.4  Variance in Slope 

The final topographic screening algorithm begins with the slope calculated in the previous 

section.  Using the slope values calculated above, an estimate of the variance of the slope of all 

cells within a 25-cell radius is computed.  Areas where the standard deviation (square root of the 

variance) exceeds 20 degrees are extracted from the data set.  As in the case of the previous 

filter, the theory is that the natural terrain will have a much more gradual change in slope.  

Unlike the previous filter, the variance in slope filter extracts entire areas surrounding sites with 

consistently variable slopes.  These areas are typically associated with clusters of buildings.  

Figure 2-14 shows the grid scheme used to extract cells using this filter. 

The effect of this filter can be seen in the last image in Figure 2-15.  Much of the area removed 

had been removed in the previous steps.  However, this procedure extracts large areas around tall 

buildings, ensuring that elevations affected by shadowing and lag effects are not left in the bare 

earth data set. 
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FIGURE 2-13 Maximum Slope Filter 
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 A. SAR data before Filter  B. SAR data after Filter  

 
FIGURE 2-14 Results using the Variance in Slope Filter 
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FIGURE 2-15 Removing Cells where the Standard Deviation is greater than what would be 

expected from the Natural Terrain 
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2.5 Combining the Filters 

The results of the four topographically-based filters are combined with a Boolean "AND" 

operation (see Figure 2-16).  If an area is found unlikely to be ground in any of the filters, it is 

extracted.  Because a wayward elevation associated with the top of a building can raise the 

ground level significantly, it is safer to error on the side of extraction than inclusion.  Notice in 

the Wilshire Boulevard example how the individual filters appear to fall short of extracting all of 

the cells associated with buildings and trees, but together, the filters appear to work to well in 

extracting a significant portion of the built environment.   

Minimum Median Slope Change in Slope

Estimated location
of ground elevation

(light-shaded areas)

 
 

FIGURE 2-16 Multiple Criteria Algorithm for Screening Out Cells likely to be associated 
with Trees and the Built Environment 

 
2.6  Allocation and Smoothing 

The cells classified as the ground elevation form the basis of the Bare-earth algorithm.  Once the 

bare earth regions are established, the digital elevations from the cleaned and smoothed DEM are 

placed into a separate grid cell layer.  The ground elevations of the cells that were removed 

during the process of estimating ground height are now populated with the value of the nearest 

cell.  This distance is measured as the distance from cell center to cell center in real world 
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coordinates, as opposed to cell coordinates.  The height of the cell is not factored into the 

distance computation.  If a cell is at an equal distance from two or more sources, it is assigned to 

the source that is first encountered in the algorithm.  Figure 2-17 presents sample results from 

the Euclidean algorithm. 

 

 
 

 a. SAR Data before Filter b. SAR Data after Filter 
 

FIGURE 2-17 Results of the Euclidean Allocation Filter (N=No Data) 

 

The Euclidean distance allocation serves to expand the calculated ground DEM values to those 

areas covered by vegetation and the built environment.  Several interpolation algorithms were 

investigated in depth for an area surrounding the UCLA campus.  This study area includes some 

of the sharp topography directly north of the campus.  Algorithms that were investigated include 

spline, trend, inverse distance weighted, and several types of kriging (without the examination of 

semi-variograms).  An Avenue program was written to vary the parameters of these interpolation 

options in ArcView and the results were exported to a spreadsheet.  More than 136 images were 

generated for ten test regions. 

Spatial interpolation is used in geostatistics to extrapolate a series of point samples into a 

surface, often over very long distances.  It is useful in other applications that require the 

interpolation of sparse sample data for decision-making, such as business geographics.  All of 

the interpolation algorithms attempt to predict the value at a given location based upon the trend 

of the surrounding data.  The underlying principle used in these algorithms is that points close 

together in space are more likely to have similar values than points further apart (Tobler's Law of 

Geography).  The equations vary in effect from honoring abrupt changes in the surface to 
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creating a very smooth, gradual elevation that might actually pass through very few of the 

sample points.  Each equation has variables that must be optimized.   

Ten test areas were each analyzed with a series of interpolation algorithms and the results were 

compared with the USGS ground elevation data.  All of the algorithms depend in one way or 

another on a specified search radius or on a number of surrounding points.  Assigning one 

number or one radius within which to search for a trend was not feasible, given the diverse 

topographical makeup and data density.  An optimal value could possibly be achieved through a 

“neighborhood” analysis.  We found that regardless of which values we chose, the interpolation 

algorithms typically amplified any errors in the data, rather than dampened them.  Creating a 

customized linear interpolation algorithm that detected and minimized the effects of residuals 

might provide a more accurate Bare-earth algorithm.  However, we found that an assignment to 

the closest cell was by far the most effective method of creating a surface from the ground 

elevation points.   

The last step in creating the bare earth elevation is to average the data to smooth abrupt surfaces 

introduced by assigning the closest value.  This function also serves to “soften” the effects of 

elevations associated with buildings or vegetation that may have been missed by the screening 

process.  The completed bare-earth elevation is subtracted from the cleaned and filtered SAR 

data, resulting in an estimation of the elevation associated with vegetation and the built 

environment.  This process of using Bare-earth algorithms to identify the heights of buildings is 

presented in Figure 2-18.  The following section provides a detailed discussion on the procedures 

used to validate the Bare-earth algorithm.   
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FIGURE 2-18 Methodology for using the Bare-Earth Algorithm to Estimate 
the Heights of Buildings
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SECTION 3 

VALIDATION OF THE BARE-EARTH ALGORITHM  
 

Validation of the Bare-earth algorithm was accomplished using GPS data, NGS (National 

Geodetic Survey) data, USGS DEM elevations, aerial photographs, raw SAR data, GIS 

databases, tax assessor databases, and observed data.  As is typical with projects involving 

geospatial data, the validation process involved setting up various experiments to test the 

algorithms and then adjusting the variables based on the results of the tests.  In these 

experiments, the control points were observed ground and building locations in aerial 

photographs.  Agreement between the various sources was determined through both visual 

inspection and statistical analysis.   

3.1  Spot Checking Elevations with GPS Data 

By spot-checking our locations with a GPS unit at various sites around the University of 

Southern California (USC) campus, we were able to confirm that the USGS aerial photographs 

were registered with the TIGER street database (1990 census data) and the SAR data provided 

by Intermap Technologies.  Although the USGS DEMs were too course to establish precise 

horizontal registration, the elevations were in agreement with the SAR data.  The GPS readings 

were established using a Magellan ColorTRAK unit.  Latitude and Longitude were recorded in 

the WGS 84 datum.  Each location recorded involved at least a minute of averaging signals and 

at least four satellites.  The locations chosen for calibration were landmarks that were not 

surrounded by features that could obstruct the SAR measurements.  These landmarks included 

locations on the football field, the tennis courts, intersecting streets, and other identifiable 

objects in open areas. 

The hand-held GPS unit provided very precise horizontal coordinates.  However, the unit failed 

to provide the vertical accuracy necessary to establish a reasonable elevation.  Some GPS data 

points were continually averaged in one location for a period of about fifteen minutes.  Even 

with this averaging, vertical readings fluctuated by over twenty meters. The vertical accuracy of 

the unit was not listed in the documentation, but generally, the vertical accuracy of GPS units is 

much worse than the horizontal accuracy (Gilbert, 1997).  Because there are often several 
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satellites broadcasting signals from several different horizontal directions from the user at any 

given point in time, GPS units are able to triangulate an accurate horizontal position. However, 

in the vertical direction, there are only satellite units above, and at approximately the same 

distance, so triangulation is much more problematic.  We are investigating the feasibility of 

obtaining more accurate elevation readings using differential GPS. 

3.2  Comparing Elevations with National Geodetic Survey Data 

The National Geodetic Survey (NGS), a division of the National Oceanic and Atmospheric 

Administration  (NOAA), collects precise measurements of latitude, longitude, and elevation of 

sites above mean sea level.  These data are made available in Digital Survey Data files.  The 

vertical accuracy of these data is generally on the level of less than a foot.  However, the data do 

not necessarily correspond to ground level elevations.  All of the surveyed points are 

accompanied by text descriptions approximately a page long.  A program written by ImageCat 

was used to extract the coordinates from the descriptive data, but the textual descriptions were 

not reviewed to determine which markers corresponded to the ground height.  For example, one 

of the data points used contained the description "The bronze bench mark disc, in the top of the 

north abutment of the concrete bridge over the Arroyo Calabasas flood control channel".  

Another stated, "Set in the south end of the west concrete headwall for Bell Creek flood control".  

Since these points often do not represent ground level, fieldwork would be required to measure 

the height above ground level.  The results of the following analysis, however, indicate that most 

of the points in this database are likely to represent a ground location. 

The survey data can be downloaded from the NGS website by USGS quadrangle 

(http://www.ngs.noaa.gov/cgi-bin/ds_quads.prl).  The survey data covering our study regions 

were downloaded and the points that fell within the bounds of the SAR data were cross-

referenced with the raw SAR and bare earth elevation data. 

179 points fell within the geographic region of our SAR data.  Unfortunately, six surveyed points 

did not have an associated NGS height, and eight points did not have a raw SAR height 

associated with them because of problems in the data.  Because of the large elevation difference 

between the San Fernando Valley and the Los Angeles basin, the remaining elevations were 
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separated into two sets of data.  129 of the remaining 165 points were located in the Los Angeles 

Basin, or the Downtown Los Angeles, Hollywood, and Santa Monica regions.  The remaining 36 

points were located in the San Fernando Valley. 

The error associated with the raw SAR data, as reported by Intermap, is an absolute value of 1.5 

to 5 meters (one standard deviation).  That statistic was based on an analysis of a sample that 

included the highest elevations observed for single buildings, and not on a random collection of 

ground points.  The accuracy of the bare-earth data, in comparison to the NGS data is very 

impressive given the noise level of the raw SAR data and that the NGS points do not always 

correspond to ground level elevations.  A more accurate assessment of the NGS database could 

be performed by reading the text and extracting only those survey points that definitely qualify 

as ground level, such as those located on sidewalks.  Many of the markings were on freeway 

overpasses and bridges over flood control channels.  These could be extracted and the analysis 

redone.  This would involve, however, sorting though hundreds of pages of descriptive text.  

Figure 3-1 displays a histogram showing the difference between the SAR and the NGS survey 

data, for both the bare earth and the raw data.  The majority of the data falls between three or 

four meters, which is consistent with the reported error of the SAR data.  The Bare-earth 

algorithm decreases the absolute difference in most areas.  Where the difference in elevation is 

very high, the NGS markers are probably not on the ground. 
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FIGURE 3-1 Histogram Showing the Difference between SAR and NGS Elevations at 
Survey Data Points (165 locations) 

 

It is interesting to note the peaks around -7 meters in the bare-earth SAR data and 7 meters in the 

Raw SAR data (see Table 3-1).  Seven meters is about the height of a bridge or a freeway 

overpass.  To examine the possibility that a bridge or overpass may be the cause of the 7-meter 

spikes, the 11 sample points with an absolute difference of 7 meters were extracted from the 

database.  Six of the 11 sampled points were identified as freeway areas.  A review of the 

descriptions revealed that all of these locations were associated with onramps or freeway 

intersections.  Of the remaining five, three were survey points associated with major street 

intersections.  In these cases, the raw SAR elevation was 7 meters higher than the surveyed 

point, perhaps due to noise, stoplights or bridges.  In two of the three major intersections, 

applying the Bare-earth algorithm brought the difference between the SAR elevation and the 

surveyed elevation to zero; in the other case the error was 2 meters. 
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TABLE 3-1 The Difference between SAR and NGS Elevations (in meters)  
of Digital Survey Data Points (all locations) 

 
Difference -7 -6 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

Bare Earth SAR 6 3 4 12 24 53 37 13 8 3  2   

Raw SAR   5 9 22 31 29 16 13 11 4 3 2 5 

 

 
The remaining two points were areas in which the SAR elevations were 7 meters lower than the 

surveyed data.  One of these data points fell directly on top of the first floor of the Los Angeles 

courthouse, as can be seen in Figure 3-2, photograph A.  The accompanying descriptive text 

states that this point should actually be "1.4 feet south of a brass handrail" in front of the 

building.  In the second case (point B), the surveyed point illustrated some of the difficulties 

discussed in previous sections.  The point was located in an area of downtown Los Angeles 

where the ground transitions from a flat area to a steep terrain (Macy Street and Spring Street).  

The raw SAR height was 37 meters below the surveyed elevation, and the corresponding 

correlation was 0.74.  The Bare-earth algorithm did a good job of bringing this error to within a 

tolerable level.  This point is represented in Figure 3-2 as point B.  The three survey points 

(shown as white solid circles) surrounding point B had an error of less than a meter, indicating 

that this error would have little or no impact on the measurement of building height. 

 

    
 

FIGURE 3-2 NGS Survey Points where SAR Bare-Earth Elevations were 7 meters below 
the Surveyed Elevation 
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A one-to-one comparison of the bare earth elevation to the NGS elevation in the Los Angeles 

area revealed a linear relationship between these data with a slope close to one and an intercept 

close to zero (see Figure 3-3).  The equation for the best linear fit was y = 0.9821x - 0.3681 with 

an R2 of 0.9807.  If the y-intercept is constrained to zero, the equation becomes y = 0.9776x with 

an R2 = 0.9807 again.  The y-intercept is close to zero here, indicating that there does not seem 

to be a systematic vertical shift in the two data sets.  The average residual difference between the 

bare earth and the NGS survey data was -1.5769, with a standard deviation of 4.3543.  Figure 3-

4 shows a similar plot using the raw SAR elevation data.  

Figure 3-5 shows a comparison of the SAR versus NGS curves for both a raw SAR and bare- 

earth condition.  We can see in the left-hand figure that the trend of the raw SAR data is slightly 

above the surveyed data and the trend of the bare earth data is slightly below the height of the 

surveyed data.  The trends vary only slightly from an ideal match, which is shown as the 45-

degree line.  The scatter plot in the right-hand frame of Figure 3-5 shows a distribution of raw 

SAR and bare earth data points plotted as a function of the NGS data.  As illustrated in the left-

hand figure, the raw SAR data (triangles) are generally higher than the bare-earth (circles) 

elevations.  Figure 3-6 illustrates the same trend for the San Fernando Valley.   
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FIGURE 3-3 NGS and Bare-Earth SAR             FIGURE 3-4 NGS and Raw SAR 
 Elevations at Survey Data Points Elevations at Survey Data Points  
 in the Los Angeles Basin in the Los Angeles Basin 
 

Raw SAR
Bare Earth SAR

Raw SAR
Bare Earth SAR

 
 

FIGURE 3-5 NGS, Raw SAR and Bare-Earth SAR Elevations at Survey Data Points in the 
Los Angeles Basin 
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FIGURE 3-6 NGS, Raw SAR and Bare-Earth SAR Elevations at Survey Data Points in the 

San Fernando Valley 
 
 
This comparison with the NGS data demonstrates that the Bare-earth algorithm smoothes out the 

raw SAR data and brings the SAR data into agreement with the more precise surveyed data.  

Some discrepancies between elevations produced by the Bare-earth SAR algorithm and those 

recorded in the NGS surveyed data can be traced back to freeway overpasses and in one case, a 

hillside.   

3.3  Comparisons with USGS 30-Meter DEM Data 

The USGS 30-meter DEMs essentially cover most of the populated areas of the entire country.  

They can be downloaded at http://edc.usgs.gov/doc/edchome/ndcdb/7_min_dem/states/CA.html. 

These data have a vertical accuracy that varies from region to region and generally depends upon 

the slope of the terrain.  The quoted RMS error for "level 1" accuracy is as high as 15 meters, 

although most of these areas have a RMS error of 7 meters.  RMS error is assessed and reported 

by 7.5-minute quadrangles. These quadrangles correspond to the USGS grid for topographic 

maps.  Elevations for comparison were gathered from a series of at least 28 control points.  

Elevations at the control points were taken from "…field control, aerotriangulated test points, 

spot elevations, or points on contours from existing source maps with appropriate contour 

interval" (USGS, 1995). 
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Through discussions with scientists at the USGS National Mapping Division, it was determined 

that these control points are generally not saved in any format; not even on paper.  It was also 

determined that the RMS error quoted in the literature does not pertain to the error between the 

elevation reported and the true ground elevation.  In fact, no such estimates are available 

(Bottlemy, 2000; Benson, 2000).  The threshold value of 1/2 the contour interval quoted pertains 

to the error that exists between the DEM and the paper maps for Level 2 DEMs.  Level 1 DEMs 

occasionally have errors estimated from ground truth data, and sometimes the given RMS error 

is associated with the error between the paper map and the DEM, depending on the methodology 

used to derive the DEMs, which depends on the year the DEM was created (Merrill, 2001).  

There is no given error associated with the contours of the paper maps.  The error on these maps 

would depend on the contour interval and other factors, which change from quadrangle to 

quadrangle.  Additionally, errors in horizontal accuracy or datum transformations will greatly 

impact the accuracy of USGS DEMs (Garbrecht, 1999) 

The spatial resolution of the USGS DEM data is much coarser than the 2.5-meter posting that is 

associated with the SAR data.  Thus, it cannot be used in place of the Bare-earth algorithm.  

However, the USGS DEM data provide another source of information to validate the Bare-earth 

algorithm, especially in flatter regions.  The bare-earth elevation was validated using the USGS 

30-meter DEMs by analyzing the height differences at street intersections, and through visual 

inspections. A description of these comparisons is given below.  

In instances, where data sets were analyzed individually, it was possible to examine the 

applicability of the USGS elevations on a case-by-case basis. In terrain where the elevations 

change rather rapidly, a comparison with the USGS data is not appropriate.  In flat terrain, 

especially in areas where there were many buildings, the USGS does provide an additional 

source of data for comparison.  It was generally possible to visually assess the transects and 

determine the applicability of the USGS data. For street intersection elevations in the Santa 

Monica study region, this was not an issue.  In mountainous areas, the differences became more 

apparent.  The lower resolution of the USGS data is also fairly easy to assess visually.  Changes 

in elevation might be represented in discrete steps when compared to the SAR data.    
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3.3.1  Visual Inspection of Selected Sites or Areas  

A series of ten study areas were established to test the results of the Bare-earth algorithm.  These 

ten study areas were also used to optimize the variables in the algorithm.  The size of each study 

area varied from very small, such as the area surrounding the Los Angeles Convention Center, to 

very large regions in the San Fernando Valley.  Study areas were chosen because of their 

significant natural and cultural features that can often influence SAR-derived elevation data.  

Table 3-2 lists the locations of these ten study areas along with brief descriptions as to why they 

were chosen.    

The ArcView programming language Avenue was used to export thumbnail images of the maps 

from each region.  Visual Basic was used to arrange these images in a large spreadsheet that was 

printed for visual inspection.  The Avenue code was also used to create images of every spatial 

variable in the final Bare-earth algorithm, as well as spatial variables that were discarded.  

Several topographic parameters were generated and investigated for their potential effectiveness 

in detecting ground elevations.  A sample of the images cataloged in the spreadsheet is provided 

in Table 3-3.  Thematic shading was done using an equal area range assignment.  Although the 

ranges are not equally spaced (e.g. 25, 50, 75, 100) or rounded for quick interpretation (10, 30, 

50, 100), this scheme allows for optimal visual interpretation.  Table 3-3 presents the reader with 

a sample of various parameters computed while developing the Bare-earth algorithm.  It was 

very useful to examine each aspect of the algorithm independently, and cross-reference each 

aspect with other parameters visually. 

The larger spreadsheet used to create Table 3-3 was integral in developing the Bare-earth 

algorithm.  As theories for extracting the bare earth were discussed, additional parameters were 

added to the spreadsheet, along with summary statistics.  Transects were taken and graphed for 

each area (for a more in depth discussion of the transects, see Section 3.3.2).  Scatter plots were 

then generated and correlation coefficients computed for each transect. 

The spreadsheet was useful in optimizing the variables of the Bare-earth algorithm.  For 

instance, an Avenue program was written to vary the search radius for the neighborhood median 

criteria.  The corresponding bare-earth elevations were created for each of the study areas.  The 
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difference between the USGS DEM and the bare-earth elevations was computed and areas 

classified as ground surface using each criterion were overlaid onto USGS aerial photographs.  

This analysis allowed the project team to detect when the neighborhood search radius was too 

small (i.e., leaving area on buildings) and when it was too large (the resulting ground data was 

too sparse).  

TABLE 3-2 Study Areas chosen for evaluating Bare-Earth Algorithm 

 
Study Area Description SAR DEM 

USC USC Campus. Slight slope with many 
buildings. Moderate shadowing problems.  
Near sensor. Low correlation. 

 
UCLA Edge of the UCLA Campus.  Some 

campus buildings and houses, leading up 
into very hilly terrain.  

 
Wilshire Blvd. The "Miracle Mile" area.  Several isolated 

high-rise commercial structures along the 
boulevard.  Region varies topographically.  
There are many large apartments and 
houses as well.  

W. Pico Blvd & 
S. Beverly Glen Blvd 

Mostly residential with some big 
apartments and movie studios.  Moderate 
terrain changes. There is also a big park in 
the area. 
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TABLE 3-2 Study Areas chosen for evaluating Bare-Earth Algorithm (continued) 
 

Study Area Description SAR DEM 

Century City Small cluster of high-rise buildings in 
moderately hilly terrain. 

 
West of Dodger 

Stadium 
Very hilly area west of Dodger stadium. 

 

Downtown Moderately hilly area with tall buildings.  
Bad shadowing. 

 

Santa Ana / Santa 
Monica / Golden 

State freeway 
interchange. 

Freeway interchange in an industrial area. 

 
Convention Center Large Building 

 
San Fernando Valley Residential, commercial mix.  Gently 

sloping. 
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TABLE 3-3 Sample of Image Catalog and Statistical Profile Generated for the  
USC Study Region 

A. Region Name USC B. Description USC Campus. Slight 
slope with many 
buildings. Moderate 
shadowing problems.  
Near radar sensor. 
Low correlation. 

C. Map of SAR 
DEM 

 

D. Map of Average 
Height of SAR DEM 

 
E. Histogram of 
Elevation data 

 

F. Statistical Summary 
of the Elevation Data 

Rows = 529 
Cols = 514 
N    = 249458 
Mean = 24.208364 
SD   = 4.6451 
Min  = -39.5255 
Max  = 82.1399 
Range= 121.6654 

G. Map of Slope 
 

 

H. Map of Mean Slope 
for a 25-Cell Radius 

 
I. Slope Statistics RMean = 

14.8579945 
SD   = 12.98890 
Min  = 0.00000 
Max  = 83.00000 
Range= 83.00000 

J. Map of Standard 
Deviation of Slope 25-
Cells Radius 

 

K. USGS DEM 

 

L. USGS aerial photo 

 
M. Map of Local 
Minimum 25-Cells 
Radius 

 

N. Points Selected  
for Interpolation  
on Raw SAR Data 
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TABLE 3-3 Sample of Image Catalog and Statistical Profile Generated for the  
USC Study Region (continued) 

O. Interpolation 
Method 
 
Inverse Distance 
Weighted 
Nearest Neighbor 
12 
Power 2 

 

P. Interpolated Surface
-USGS DEM 

 

Q. Profile with 
Photo 

 

R. Hillshade of  
Interpolated Surface 
-USGS DEM 

 
S. Scatter Plot 

 

T. Profile  

 
 

 

U. Cells Selected 
for Average Height 

 

V. Average-based 
Ground Height (Slope 
20, Area Slope 20, 
Height Within 3 of 
Minimum)  

W. Interpolated 
Ground Surface 
Estimate- USGS 
DEM 

 

X. SAR Height -
Interpolated Ground 
Height 

 
 
 

3.3.2  Visual Inspections of Transects 

To further investigate the local effects of the Bare-earth algorithm, eight linear features were 

drawn on each of the study areas.  These "transects" were drawn over significant features in the 

data that warranted further investigation.  In some cases, they were large buildings, clusters of 

large buildings, or flat streets.  Elevation values from each dataset (i.e., USGS DEM, the raw 

SAR data, and the results of our bare-earth DEM) were extracted at equal intervals along each 
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transect line and graphed for comparisons.  Thematic maps and images of these data sets were 

extracted using ArcView and imported into a large spreadsheet with aerial photos.  This allowed 

for an analysis of discrepancies between the visible objects in the photos and bare-earth 

elevation data.   

Table 3-4 contains a sample of images from the larger spreadsheet.  Starting with the column on 

the left, we have USGS aerial photos from two different regions.  The region in the first row is a 

relatively flat area with tall buildings; the second area is the UCLA campus showing a steep hill.  

Looking at the photographs, you can recognize the features that will affect digital elevation 

estimates, such as major roads, buildings, trees, and so forth.  In the second column, we show the 

raw, unfiltered SAR elevation data.  The heights corresponding to these colors are outlined in the 

last column.  These ranges apply to all of the raster thematic maps.  By reviewing the SAR data 

in relation to the aerial data, it is easy to understand how certain objects affect the elevation data.  

In the upper row, for instance, the effects of lag and shadowing become clear. Streets are visible 

as areas of lower elevation.  Differences in building heights can be detected both through the 

shading of the SAR data and through the shadows cast in the aerial data.  In the UCLA series 

(second row), ridges of trees can clearly be delineated in both data sets.  The flatter areas can be 

seen as tennis courts or parking lots. 

 

TABLE 3-4 Elevation Data from a Linear Sample (Transect) 
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The results of the Bare-earth algorithm are displayed in the third column.  For transect A, the 

patterns created by the bare-earth DEM are not consistent with what we would expect from 

ground elevation data because the Bare-earth algorithm has screened out much of the area.  The 

remaining digital elevations are allocated to the surrounding cells creating a map of the bare 

earth.  Still, we can tell that the elevations derived from the Bare-earth algorithm are somewhat 

consistent with the USGS data shown in the fourth column. 

Figure 3-7A shows an elevation profile (in meters) for the transect shown in Table 3-4, line A.  

The line is broken up into 100 equal segments.  The elevation of each point is posted from left to 

right on the graph.  The lightest line corresponds to the SAR data, the medium weight line 

corresponds to the bare earth data, and the darkest line corresponds to the USGS data.  We can 

see that although there are discrepancies between the USGS and the bare-earth data, the USGS 

data provides a good source of comparison.  Though looking at this graph, it would be very 

difficult to predict the elevation of the ground using SAR data alone.   

In Figure 3-7B, which corresponds to Table 3-4 line B, there is a much wider discrepancy 

between the USGS data and the bare-earth data.  By comparing the bare-earth data to the SAR 

data, we can see that there is little variance in these two data sets.  By examining the aerial data 

for this same area, we see that most of the elevations along the transect are associated with the 

ground.  Although we cannot determine from the available information whether the SAR or the 

USGS data is more accurate, we can assume that this discrepancy is the reason for the variations 

seen in Figure 3-7B.  These two examples illustrate that although the USGS DEM provides an 

important source of comparison, it is not an appropriate source of data for estimating bare-earth 

elevations.   
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FIGURE 3-7 Graph of Elevation Values Along a Transect 

 

3.3.3  Comparison of Elevations at Street Intersections 

The SAR elevations were also compared to the USGS DEM data by examining elevations at 

street intersections.  We felt that intersections would be good points of comparisons because of 

the high likelihood of actually locating and comparing ground elevation points.  The spatial 

extent covered by this limited analysis was a one-mile square area that included a residential 

section of Santa Monica.  We chose this area because we had canvassed the heights of buildings 

in this area in another phase of this study.  Thus, we were familiar with the terrain and buildings 

in this neighborhood.   

A street database (extracted from the 1990 TIGER census files) was first overlaid onto USGS 

aerial photographs.  Because TIGER data is sometimes lacking in accuracy, the streets were 

adjusted so that the street centerlines corresponded with the center of the streets in the USGS 

aerial photograph.  The nodes that intersected two or more line segments were extracted and 

written to a separate point file.  This point file was used to compare elevation data from the 

Bare-earth algorithm and the USGS DEM database.  In addition, we eliminated any intersections 

that included heavy vegetation (such as trees).  Aerial photos were used to perform this 

extraction.  In the end, we were left with a little over 100 points (or intersections) to perform 

these comparisons. 
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We also used this exercise to examine the relative difference in elevation between the ground 

and what we perceived to be the heights (or roofs) of single-family dwellings.  To some extent, 

this was also a check on the relative error of the raw SAR measurements.  That is, if no 

difference was seen between ground-based SAR elevations and the elevations associated with 

structures, then it would be difficult to characterize the heights of short structures or buildings. 

The first scatter plot is displayed in Figure 3-8.  SAR-derived bare-earth elevations are plotted 

along with the corresponding USGS DEM elevations.  There are two lines on the graph, the solid 

one indicates the line of perfect agreement, i.e., there is exactly a one-to-one correspondence 

between the two datasets.  The dashed line indicates the best linear fit of the data using least 

squares approach.  The two lines are essentially indistinguishable from each other at the higher 

elevations.  For the lower elevations, these lines are still very close. The equation for the best-fit 

line is y = 1.017 x - 1.7071, where r2= 0.9925.  The negative intercept indicates that for the best 

fit, the USGS registers a higher elevation than the SAR data.  This may be due to a different 

interpretation of "sea level" elevation of 1.7 meters, or it may be due to an error in either of the 

data sets.  This difference is inconsequential for the bare-earth algorithm, as it will not affect the 

calculated height of the building.  In this limited analysis of the Santa Monica area, the 

correlation coefficient was very high.  This implies that although there may have been a small 

vertical shift between the two data sets, there is very high correlation between data sets.  Given 

the small scaling, the data sets were in strong agreement on the location of the ground elevation.  

This underscores both the success of the algorithm and the need to compute the bare earth, rather 

than use a different data set, such as the USGS DEM. 
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FIGURE 3-8 USGS DEM and Bare-Earth SAR Elevations at Street  
Intersections (Santa Monica Area)  

 

In Figure 3-9, a small sample of rooftop elevations has been added to the previous data set.  The 

elevation each rooftop was estimated by taking the maximum or highest observed SAR elevation 

within the building footprint.  These values are represented in the figure by the dark diamonds.  

The reason why the new data points only show up at the higher elevations is because the selected 

study area was located in the more hilly part of Santa Monica.  Approximately 40 structures 

were included in this limited analysis. 

 

This simple analysis shows that all of the elevations associated with rooftops are higher than the 

mean line representing the bare earth.  The equation of the least squares fit of the rooftop data is 

y = 1.0011 x + 2.4129.  The y-intercept in this last equation is roughly 4 meters higher than the 
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previous intercept.  This corresponds to about 12 feet, or roughly the height of a one-story 

building, given the slightly reduced height of single story buildings in SAR data (due to mixed 

pixel effects and error).  The conclusion from this comparison is that the SAR-derived bare-earth 

estimates of ground elevation compare very favorably with the USGS DEM data and that there is 

enough difference between the bare earth results and the raw SAR elevations of rooftops to 

conclude that building heights can be detected using SAR technology.   

 

 
FIGURE 3-9 Comparison of SAR-derived Bare-Earth Elevations with the Heights 

of Single-Family Dwellings, as determined through use of Raw SAR Data 
 

 

 

 



 

 57

SECTION 4 

GENERATING THE BARE EARTH TERRAIN USING SAR TECHNOLOGY  

To test the application of the Bare-earth algorithm to larger regions, we applied our methodology 

to three areas of Los Angeles: a portion of the San Fernando Valley, Downtown Los Angeles, 

and the Wilshire Blvd./Santa Monica area.  The extent of our study areas is displayed in Figure 

4-1.  There are over 212 square kilometers of data within the three regions.  Quantifying the 

bare- earth terrain for an extended area allowed us to investigate how the algorithm would 

perform in a variety of situations.  Intermap data was purchased for three noncontiguous areas.  

These areas were selected because of their diversity in terms of development types and density.  

The data surrounding downtown Los Angeles, for example, contain a dense core of very tall 

buildings as high as 1,000 feet.   

 

 

 
 

FIGURE 4-1 Study Areas 
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The Downtown area of Los Angeles is very typical of many large U.S. cities.  You have a mix of 

very tall commercial office buildings and smaller, shorter retail establishments.  You also have 

large pockets of industrial buildings.  Just a few miles away from the center of downtown, you 

have single- and multi-family residential areas.  These areas are essentially the older areas of Los 

Angeles, with many blocks developed prior to the 1920’s.   

The San Fernando Valley is considered a suburb of Los Angeles, although it is within the city of 

Los Angeles and constitutes a substantial portion of the population of the city.  The area was 

developed primarily after World War II; there is also a lot of recent construction, i.e., post-1970.  

Like much of the development in America during this time period, the San Fernando Valley is 

characterized by expansive areas of single-family, residential dwellings crossed by main 

thoroughfares lined with malls and large commercial or industrial buildings.  This area was 

chosen as an example of this type of development.   

The Wilshire Blvd./ Santa Monica study region is a very diverse area, in terms of building stock 

and topography.  This area includes clusters of very tall buildings (over 10 to 15 stories), 

industrial areas, high-density residential and extended single-family dwellings.  In addition, this 

area borders the Santa Monica Hills, thus making the topography of this region very diverse. 

Our goal in studying these three areas was to 1) test the Bare-earth algorithm in its effectiveness 

to extract non-ground elevations for large regions, and 2) re-calibrate the parameters of the 

algorithm to optimize the separation of the bare earth and the built environment.   

4.1  San Fernando Valley  

The application of the Bare-earth algorithm to the San Fernando Valley produced a very crisp 

separation of the built environment and bare earth, Figure 4-2.  This separation is particularly 

evident where there are large building footprints, e.g., northwest portion of the study area.  In 

this figure, the white, or no shade areas represent ground elevations.  The shaded areas represent 

buildings or trees, with darker shades indicating higher elevations.   
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FIGURE 4-2 Ground Elevations and Building Footprints for San Fernando Valley 

 

Figure 4-3 provides annotation to the footprints in Figure 4-2.  The region is transected every ten 

blocks or so by major streets lined with large buildings.  In some areas, this can be seen very 

clearly.  For example, this is very evident in the area just west of the Northridge Fashion Center.  

There are also several clusters of large buildings that can be identified as specific buildings or 

facilities, such as the Van Nuys Airport, CSU Northridge, several large malls, and the large 
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industrial buildings that surround the railroad tracks.  These areas are delineated extremely well.  

Therefore, most large manmade structures have been effectively identified or stripped out of the 

image by the Bare-earth algorithm. 

 
 

FIGURE 4-3 Ground Elevations and Building Footprints for San Fernando Valley 
 (with Annotation) 
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There were three significant features in the San Fernando area that were not large buildings but 

were interpreted as not being bare earth.  Two of the areas were associated with large manmade 

dams: the Porter Estate Dam and the Chatsworth Reservoir.  These areas are generally 

characterized by steep slopes and the presence of large manmade structures.  The third feature is 

the channeled Los Angeles River that runs through the San Fernando Valley.  As in the case of 

the two reservoirs, the algorithm detected the sharp changes in elevation and assumed that this 

area was either a building or a row of tall trees.  The algorithm interpreted the bottom of the 

stream channel as ground elevation and the walls of the channel as some manmade structure.  

For a distance of 62.5 meters surrounding the channeled streambed, the elevation of the ground 

is interpreted falsely as being above the ground level.  Essentially, this is the same problem that 

we have with freeways when they are below grade thoroughfares.  

Future research should focus on recognizing these longer structures as non-buildings and 

devising tests or criteria that include these areas as ground surface.   

4.2  Downtown Los Angeles 

Figure 4-4 displays ground elevations and extracted building footprints for the downtown region.  

As in the previous figures, the white or non-shaded areas represent ground surface and the 

shaded areas indicate buildings or other structures; the darker the shade, the higher the elevation.  

In contrast to the San Fernando Valley, this area is characterized by many topographic changes 

in elevation.  In the top part of the figure, you see large, dark areas that are associated with the 

Elysian Park area.  The area generally slopes downward from north to south.  
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FIGURE 4-4 Ground Elevations and Building Footprints for Downtown Los Angeles 
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Figure 4-5 provides annotation to the previous image.  Detecting the footprints of very tall 

buildings, particularly during a single pass of the area, is considered very difficult, if not 

impossible.  Because of shadowing and lag problems, some buildings disappear completely and 

others have very narrow swaths of data associated with them.  Because the data are obtained 

through side-looking radar, there will always be structures that are missed because they are in 

the shadows of other taller buildings. 

 

 
 

FIGURE 4-5 Ground Elevations and Building Footprints for Downtown Los Angeles 
(with Annotation) 



 

 64

 

Some of the problems associated with extracting the bare earth in this area include 1) not 

detecting the ground in steep terrain (Elysian Park Hills), 2) interpreting some of the areas 

around the Los Angeles River as long buildings, and 3) showing or interpreting very little of the 

Downtown area as ground surface.  This last problem can be attributed in large measure to the 

steep terrain in this area.  There were a number of observations, however, that provided positive 

reinforcement for the existing algorithm.  These included 1) the algorithm worked almost 

perfectly in separating the bare earth from the built environment in the industrial area, 2) the 

results in the residential areas followed a close delineation of the major streets and roadways, 3) 

some major streets in the central part of the city were, in fact, identified, 4) the algorithm 

correctly identified above-grade freeway structures as manmade, and 5) the algorithm worked 

correctly to identify many large building structures as buildings and not as large fields. 

Outside the main downtown core, “shadowing” and “lag” did not appear to be a major problem.  

Figure 4-6, displays two images of the area just east of downtown.  Figure 4-6a displays the 

ground elevations and building footprints resulting from the algorithm, while Figure 4-6b shows 

the same area as seen in a USGS aerial photograph.  Again, in Figure 4-6a, the white areas 

represent the ground surface and the darker areas indicate buildings.   

  
a. SAR                                                      b. Aerial Photo 

FIGURE 4-6 Comparison of SAR-derived Bare-Earth Elevations and  
with Aerial Photograph (Industrial Area of Los Angeles) 
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Figures 4-7 and 4-8 display similar views of the Downtown Los Angeles area using two different 

sources of data.  Figure 4-7 is a photo taken from a commercial airplane.  Figure 4-8 was created 

using the Bare-earth algorithm and SAR elevation data for this area.  Figure 4-8 is the result of 

1) identifying the footprints of major buildings in downtown using USGS aerial photos, 2) 

determining the maximum elevation associated with each footprint using the SAR data, and 3) 

subtracting from that elevation, the ground surface as determined by the Bare-earth algorithm.    

 

 

FIGURE 4-7 Aerial Photo of Downtown Los Angeles 

 

 

FIGURE 4-8 Three-Dimensional View of Downtown Los Angeles created using Bare-Earth 
Algorithm and SAR Data 
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The calculated heights of buildings in Figure 4-8 were then fused with street data and transferred 

to VRML using Avenue programming.  The colors are random and for visualization only.  The 

buildings in the foreground of the VRML image (Figure 4-8) are the industrial buildings in 

Figure 4-6b.  Not all of the buildings are in the right height proportion to each other, but the two 

main peaks of tall buildings are clearly captured, with shorter buildings in between and 

surrounding these crests.  This is significant, given the shadow and lag in the raw SAR data. 

4.3  Wilshire Blvd./Santa Monica Area 

 
The Wilshire Blvd./Santa Monica area is a very diverse area that includes high-rise buildings, 

single-family and multi-family residences, commercial construction and large open areas, such 

as parks.  This area was studied extensively during the testing phase of our Bare-earth algorithm 

development.  As had been demonstrated in the other study areas, the results in the hilly areas, 

such as the Santa Monica Mountains produced unreliable results.  Areas where there was clear 

separation of the bare earth and tall buildings included along Wilshire Blvd, the UCLA campus, 

Century City, and the Santa Monica airport.   

Figures 4-9 and 4-10 present the results of our Bare-earth algorithm for the Wilshire Blvd./Santa 

Monica area.  Large areas of high-density residential development can be easily discerned from 

lower density residential areas, both by the heights of structures and the densities of the 

footprints.  This area represents a very diverse array of building use, much of which can be 

inferred from the pattern of the extracted footprints.  This area is topographically challenging as 

well.  Although the algorithm worked very well in the steep regions directly around Wilshire 

Boulevard, there were several areas where the steep terrain caused problems for the algorithm.  

In general, these problem areas corresponded closely to where the slope of the earth changed 

suddenly.  To test this hypothesis, we used the USGS DEM data to map where these sudden 

changes were occurring.  The slope was calculated using the USGS DEM data and mapped.  The 

resulting slope map (Figure 4-11) revealed that the areas that undercut the natural terrain in the 

Figures 4-9 and 4-10 corresponded to areas with steep slopes.  These inaccuracies appear in 

Figure 4-10 as areas labeled "Steep Terrain".   
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FIGURE 4-9 Ground Elevations and Building Footprints for the Wilshire Blvd. 
and Santa Monica Area 
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FIGURE 4-10 Ground Elevations and Building Footprints for the Wilshire Blvd. 
and Santa Monica Area (with Annotation) 
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FIGURE 4-11 Slope of the Wilshire Blvd./Santa Monica Region as Computed from USGS 
30-Meter DEMs (in Degrees) 

 

4.4  Assessment of Bare-Earth Algorithm 

The lessons learned from applying the Bare-earth algorithm on large sets of data were very 

similar to those learned in the previous section, i.e., Validation of the Bare-earth algorithm. 

These lessons were: 

• Areas that are densely populated with buildings (particularly tall buildings) are 

problematic.  The algorithm, however, does a good job at stripping out everything that is 

not part of the ground.  As we saw in Century City, the elevations from the surrounding 

areas are extended to underfill areas populated by tall buildings.  The algorithm does a 

poor job of detecting small or moderately tall buildings in clusters of high-rise buildings 

from SAR data.  This problem, unfortunately, is not addressable with the SAR data, since 

the SAR signal does not penetrate to ground level in these areas.   
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• Areas with steep hills were problematic, but for very short distances.  The ground surface 

will not be detected in these areas until the ground levels out.  These situations will result 

in mild errors that resemble a single contour line around the base of the hill.   

• Mountainous areas, such as the Santa Monica Mountains, yield inaccurate results.  

Fortunately, the number or density of buildings in these areas will be small. 

• Many large manmade structures such as highways, channeled streambeds, and dams are 

interpreted as being above ground, and must be distinguished from the heights of 

buildings. 

We also learned that it was difficult to optimize the criteria defined in Section 2 for all areas.  

What worked best for some areas was not always the best solution in other areas.  As we will see 

in the next section, a large part of the solution in this regard is better and more accurate data. 

There needs to be more work done to understand the influence of natural terrain on our bare-

earth calculations.  For example, it should be possible to detect changes in the natural terrain by 

analyzing the relationship between slope and the variance of the slope.  Modifying the thresholds 

to allow more terrain to be interpreted as ground on natural hills should allow the algorithm to 

identify more of the building stock.  In the next section, we examine a new technology that could 

offer high-resolution elevation data that might overcome many of the problems uncovered above. 
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SECTION 5 

TESTING THE BARE-EARTH ALGORITHM WITH LIDAR DATA 

The Bare-earth algorithm in this study was created using SAR as the elevation data source.  

Artifacts such as lag and shadowing which caused the algorithm to become ineffective in dense 

urban settings may actually be non-existent using LIDAR technology, i.e., light detection and 

ranging (Bolter, 2000).  These artifacts, as we have seen, have caused buildings to be lost, and 

have directly influenced our ability to accurately detect the bare earth in certain situations. 

However, the advantage of using LIDAR data comes at a cost.  Because the technology requires 

a very narrow swath, it may take many days or weeks to complete a comprehensive survey of a 

large city.  On the other hand, using SAR, imaging a large area may be accomplished in one 

flyover.  As with all new technologies, pricing will change with availability and competition.  

Today, there are over 100 companies that offer LIDAR capabilities2.  Also, there may be a 

hybrid solution involving using SAR data for the majority or a city and LIDAR data for the 

dense urban cores. 

After completing the testing of the Bare-earth algorithm using SAR data, we conducted a limited 

validation study using LIDAR data that was received from the National Oceanic Atmospheric 

Administration (NOAA).  In October 1997, NOAA collected LIDAR data for much of the 

Southern California coastline.  The intended use of these data was to monitor coastal erosion.  

Most of the areas covered by this acquisition did not include buildings.  However, there were 

several stretches of coastline that did capture residential development, i.e., from Manhattan 

Beach to Redondo Beach, and part of Long Beach, California.  Unfortunately, these areas did not 

overlap with any of the SAR data.   

LIDAR data is collected as a series of elevations at specific points.  These points do not 

represent a grid, as with SAR data.  The data are made available as an ASCII file of a series of 

latitude, longitude, and elevations for specific locations, or "x,y,z" data.  The data were 

downloaded in the raw xyz format and translated into 2.5-meter postings, so that the same search 

radii could be applied using these new data.  The data was converted to 2.5-meter grid cells by 

averaging all the elevations that fell within each of the 2.5-meter grid cells.  LIDAR data is 
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generally collected with a density of point locations that far exceed SAR data resolution. LIDAR 

data is much more accurate then SAR data, and this accuracy led to a more accurate registration 

of ground elevation.  

5.1  Manhattan Beach and Redondo Beach  

To test the application of the Bare-earth algorithm using LIDAR data, we started with the same 

set of parameters used in the SAR tests.  That is, the same search radii and the same height 

thresholds.  Manhattan Beach and Redondo Beach were chosen for the initial tests.  Our goal 

was to assess whether the Bare-earth algorithm could be universally applied regardless of the 

type of elevation data used.  Specifically, we were interested in whether the resolution or 

accuracy of the results (i.e., bare earth extractions) would improve if better elevation data were 

used. 

While the initial results here were promising, we did not feel that the improved accuracy was 

commensurate with the level of improvement in the data, i.e., only marginal improvement was 

seen.  Therefore, we re-visited the basic procedures used to filter the data to see if the parameters 

or models needed to be adjusted to optimize the performance of the algorithm.  The first 

discovery that we made was that because of the improved accuracy of the data, the majority and 

median filters were not necessary.  The majority filter was not needed because the presence of 

anomalous or spurious points was essentially eliminated.  Because the data were so much more 

accurate than the SAR data for residential building heights, the threshold for the minimum 

elevation filter had to be changed.  The software code was modified and the bare earth was then 

recalculated.  This time, the results appeared to perfectly outline much of the housing stock, thus 

allowing an accurate representation of the bare earth.   

To focus on this problem, the algorithm was modified to produce map layers of all intermediate 

data layers.  During this process, it was discovered that the difference between the LIDAR data 

and the derived bare earth was greater than 6 meters for a large portion of the area.  The 

difference between the neighborhood minimum elevation and the raw elevation was examined 

for areas with higher than expected values.  Investigation of street elevations in this area 
                                                                                                                                                                                           
2 See http://www.airbornelasermapping.com/ 
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revealed that heights below 9 meters might actually catch these steep slopes.  Adjusting the 

parameters of the Local Minimum filter (see Section 2.4.1) to identify differences of 9 meters 

instead of 6 meters led to more crisp elevation surface for Manhattan Beach.  To validate these 

results, USGS aerial data were obtained for these sites and the extracted heights were overlaid on 

top of this imagery.  These results are presented in Figure 5-1.  Figure 5-1, map B presents the 

initial results of the algorithm using the 6-meter criteria for the local minimum filter.  Map C 

displays the results after changing the threshold from 6 meters to 9 meters.  For the vast majority 

of the area, this change led to significantly better results.  In Map C, it is very easy to see the 

ground elevations via the streets.  Similar results were achieved in Redondo Beach with the 

improved algorithm.  

 

 
 A B C 

 

FIGURE 5-1 Bare Earth Results using LIDAR Data in Manhattan Beach 
 (elevations in meters) 

 
A) USGS aerial photography of Manhattan Beach 
B) Ground Elevations and heights of buildings using initial algorithm 
C) Ground Elevations and heights of buildings using modified algorithm. 
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5.2  Long Beach 

The Bare-earth algorithm – both initial and modified for use with LIDAR data - was applied in 

the Long Beach area.  In this area of Long Beach, there are many tall condominiums on the 

oceanfront.  The area has a steep cliff that is roughly fifteen to twenty meters above sea level.  

The condominiums that have been built here often are built into the cliff, i.e., split- or multi-

level.  The entrances of these buildings face north, and thus are located several stories above sea 

level.  The south sides of these buildings face the ocean and thus have floors that are very close 

to sea level, see Figure 5-2.   

 

 
 

FIGURE 5-2 Three-Dimensional View of Cliff leading up from the Beach.  
Image created from USGS Aerial Data Draped Over LIDAR Data  

(no vertical exaggeration) 
 

Beyond the cliff and oceanfront condominiums is a high-density residential area with many large 

houses and apartments.    

In this series of tests, it was found that the initial (or 6-meter threshold) filter did a better job at 

matching the actual bare-earth elevations.  We believe that in this case, the 9-meter threshold 

was too high to effectively extract two-story apartment buildings.  The 9-meter difference 

between the minimum and the raw LIDAR height was well above the threshold necessary to 

exclude these buildings from being considered as ground elevation candidates.  Thus, the 

modified algorithm overestimated the amount of bare earth in this area.   

This particular area of Long Beach is characterized by natural terrain with slope gradients higher 

than 20 degrees from horizontal.  Despite the steep terrain, the Bare-earth algorithm did a 

reasonably good job of extracting the elevation of the tall buildings that are built into the cliff.  
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The difference in height between the front and back of these buildings varied depending on the 

height of the cliff.  Figure 5-3, image A, displays the estimated elevation (based on the use of 

LIDAR) for several tall structures along the beach.  The structures can be identified in the 

corresponding aerial photograph, which is provided in image B of the same figure.  Obtaining 

this level of accuracy in building heights was a very pleasant surprise.   

 

  
            Scale                                 A. LIDAR                                           B. Aerial Photo     

 
FIGURE 5-3 Large Buildings on a Cliff in Long Beach 

 

Even though these were limited tests, we feel that they demonstrate the importance and value of 

obtaining high-resolution digital elevation data.  These applications using LIDAR technology 

helped to demonstrate how the problems encountered in the SAR tests (miscalculating bare-earth 

elevations in areas of steep slope) could be overcome with higher quality information.  Future 

tests might focus on re-investigating some of the problem areas in the San Fernando Valley and 

Downtown Los Angeles to see if using LIDAR data eliminates these problems.  In any event, we 

are extremely encouraged by the success of the Bare-earth algorithm using advanced LIDAR 

technology. 
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SECTION 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

This report is Volume 1 of a two-part series that focuses on the application of remote sensing 

technologies – synthetic aperture radar (SAR) and LIDAR – for bare-earth detection and 

building inventory development.  This particular report discusses our findings in bare-earth 

detection.  Once the bare-earth elevation is separated from the remotely sensed elevation, this 

elevation can be analyzed in terms of its effectiveness in detecting the heights of buildings.  If 

the ability to detect the height of buildings is established, the classification of the landscape into 

residential, commercial, and industrial land uses can be addressed.  This is the subject of the 

second report in this series.   

The methodology used to detect the bare earth is based on a series of filters and mathematical 

operations on the data.  The most essential of these are: 1) a Majority filter that helps to screen 

out anomalous or spurious data; 2) a Local Minimum filter that is effective at screening out tall 

and moderate-sized buildings; 3) a Median filter that is particularly effective at screening out 

short to medium height buildings; 4) a Slope filter that is designed to eliminate topographic 

changes associated with objects such as buildings and trees protruding from the ground; 5) a 

Variance filter that focuses on eliminating large clusters of buildings; and 6) an Euclidean 

Allocation operation that creates a surface from the areas identified as most likely to be 

associated with ground height. 

Based on an analysis of three large study areas and numerous site-specific studies, we have 

developed an algorithm utilizing a mild, multifaceted approach that distinguishes the spatial 

characteristics of the built environment from the ground.  These filters are mild in the sense that 

the search radii and thresholds are devised such that they conservatively estimate the location of 

the ground, and multifaceted in the sense that they identify the location of the ground through 

several different filters that address different aspects of the problem.  Although there are several 

principles that would seem to be likely candidates for finding the bare-earth elevation simply and 

quickly (i.e. interpolating the street height, minimum elevation, or the most frequent elevation) 

these methodologies did not work well when put to the test for large areas.  The most effective 

solution involved approaching the problem gently from several different spatial perspectives.  
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In general, the results of the Bare-earth algorithm were very successful given the quality of the 

SAR data in urban areas.  The results of the algorithm were even more encouraging when used 

with LIDAR data.  Areas where the Bare-earth algorithm did particularly well in detecting the 

height of the ground were areas of moderate height and terrain.  Examples include industrial 

areas, commercial corridors, and residential neighborhoods (e.g., the San Fernando Valley).  

Other successes include the industrial buildings located just east of downtown Los Angeles and 

the commercial and residential neighborhoods of Santa Monica, which are often very hilly.  

Throughout much of the region, a comparison of detailed city maps, aerial photographs, and the 

building footprints that resulted from the application of the Bare-earth algorithm was 

encouraging. 

The optimal thresholds and variables associated with some of the filters were different for the 

two data types studied (SAR and LIDAR).  The LIDAR data did not require as many data 

filtering operations.  Some of the thresholds used in the Bare-earth algorithm were initially 

optimized for the SAR elevations, which because of noise in the data, generally resulted in 

diminished building heights in residential areas.  A thorough investigation of the optimal values 

for LIDAR should be performed in the future. 

There are several variables and thresholds within the algorithm that would be more effective at 

accurately identifying the height of the ground if modified in conjunction with the natural slope 

of the terrain.  The natural slope can be separated from the slope associated with manmade 

terrain by examining the relationship between neighborhood slope and variance in slope.  That 

is, areas where there is a steep slope over a long distance but a low variation in the slope index 

are more likely to be associated with the natural terrain.  Because of this, we believe that 

additional research is required to examine the relationship between slope, search radius, and 

threshold parameters. 

The algorithm did not work in mountainous terrain, a known limitation.  However, the algorithm 

also did not work for steep hillsides in moderate terrain.  In these areas, long contour-like areas 

of land would be left by the algorithm, incorrectly perceived as being above the ground.  These 

long irregularities are not unlike the results of some large manmade features that caused 

problems for the algorithm.  Both the Los Angeles River, a manmade drainage basin, and several 
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freeways were left behind.  An area of further research is to determine the possibility of 

detecting and extracting these sinuous features from the results. 

The algorithm was especially problematic in clusters of large buildings.  This is a limitation of 

the data, as the radar does not penetrate to the ground in these areas.  For example, there is a 

large hill in the middle of downtown Los Angeles known as "Bunker Hill" that was largely 

undetected.  Even so, the general character of the downtown area seemed to be captured.  

Certainly enough to identify the area as an urban core, and perhaps estimate the building stock 

with a high margin of error. 

LIDAR stands out as a possible technology for detecting building height in even the densest 

urban cores.  Although expensive, the prospect of using LIDAR in these cores and 

supplementing this data with SAR seems reasonable.  Our limited studies with LIDAR data 

indicate that with slight adjustment due to the accuracy of the data, LIDAR can be used to 

capture the height of buildings almost perfectly.  Further research is needed to optimize all 

variables and thresholds with respect to the natural terrain.  The subject of the next report in this 

series focuses on using the results of the Bare-earth algorithm to estimate the building stock. 
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APPENDIX A 

BASIC PRINCIPLES ON SAR IMAGING 

 

Radar imaging works by sending microwave pulses toward a target and measuring the return 

time and intensity that is reflected back to the sensor or antenna.  Normally, wavelengths are on 

the order of 1 cm to 1 m, which corresponds to a frequency range of about 30 GHz to 300 MHz.  

For an imaging radar system, about 1500 high-power pulses per second are transmitted toward 

the target, with each pulse having a duration of about 10-50 microseconds.  Typical bandwidths 

fall in the range of 10 to 200 MHz.  Higher bandwidths correspond to finer resolutions of the 

image.   

The term synthetic aperture radar, or SAR, refers to the technique used to simulate a long 

antenna by combining signals (echoes) received by the sensor as it moves along a particular 

flight track.  In the case of SAR, both phase and amplitude information are used, in contrast to 

conventional radar that uses only amplitude.  This allows a larger aperture to be synthesized, 

thus allowing for higher resolution images.  SAR imaging is possible using both airborne 

(airplane) and space borne (satellite) platforms.  For example, in the U.S., airborne systems are 

operated by the National Aeronautics and Space Administration (NASA) with its Air-SAR 

system, and by Intermap Technologies, through its Star-3i system.  Satellite-based systems that 

offer SAR capabilities include Radarsat, ERS-1 and ERS-2, and J-ERS.  These systems should 

be distinguished from those that primarily offer optical imaging, e.g., SPOT, IKONOS and 

Landsat. 

The products from SAR imaging fall into three basic categories: elevation data, reflectance or 

intensity data, and correlation information.  Elevation information is possible when IFSAR data 

are collected.  IFSAR refers to interferometric synthetic aperture radar and is usually performed 

using an airborne or space borne platform with several antennae.  A SAR image is formed for 

each receiving antenna with each image having an associated magnitude and phase.  The 

difference in return times from the two antennae appear as a difference in phase for each pixel 

imaged.  These differences will vary from pixel to pixel and this information eventually 

characterizes the height differences on the ground.  See http://southport.jpl.nasa.gov or 

http://erim.org for more details on SAR and IFSAR.  
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When a radar image is viewed, what is seen is a mosaic of dots of varying shades and intensities.  

Each pixel represents a radar backscatter for that area on the ground.  Depending upon the 

roughness of the surface, the moisture level of that area, or the “look” angle from the sensor, the 

processed image may be light or dark.  Light or bright areas represent high backscatter, or areas, 

which return a large fraction of the radar energy back to the sensor; dark areas represent low 

backscatter, or areas, which tend to reflect much of the energy away from the sensor.  Flat areas 

typically result in low backscatter, while areas containing extensive vegetation tend to be high 

backscatterers.  Depending upon the orientation of buildings and streets relative to the sensor, 

backscattering may be high or low.  Figure A-1 provides an illustration of radar images based on 

different surface conditions.  These surface textures caused by SAR imaging can be very useful 

in determining landuse.  Unfortunately, they are highly dependent on the orientation of the SAR 

data with respect to the sensor. 

 

Figure A-1  Radar Image versus Ground

Flat Surface        Forest   Mountains       Rough

Surface

Radar Image

 
 

Figure A-2 shows an aerial view of the Federal Building located on Wilshire Blvd. near the 405 

Freeway.  The building is essentially a rectangular-shaped building with a large tower located on 

the southern boundary.  The tower is roughly 10 meters higher than the rest of the building.  The 

overall height of the building (excluding the tower) is over 70 meters.  Although the outline in 

Figure A-2 suggests an “H” shape footprint for the building, only the top portion of outline 
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where the tower is located is the actual building.  The lower part of the “H” footprint surrounds 

possibly a parking structure. 

In Figure A-2b, we observe for the same outline the pixel elevations as determined through 

analysis of airborne SAR data.  The airborne SAR data for this study was provided by Intermap 

Technologies Ltd. located in Alberta, Canada and Englewood, Colorado.  These data were 

collected during a flight in late May of 1998 and the general “look” or observation angle is seen 

in Figure A-2b.  The posting of SAR data was 2.5 m.  The measurable heights in Figure A-2b are 

seen in quadrants 2c and 3c.  In 2c, we are picking up the elevation of the top of the building.  In 

3c, we are measuring the elevation of the tower.  In 3e, and 5c and 5d, we are picking up 

equipment located on top of the parking structure, which are observable from the aerial 

photograph in Figure A-2a.  Note that the elevations shown in the legend have not been 

normalized to the actual ground height.   

What is also evident from this figure is that we are picking up elevation data for only part of the 

building, i.e., quadrants 2c and 3c.  The white areas of the figure indicate parts of the image 

where no data have been collected.  These “no data” areas include quadrants 3a, 3b and 4a.  

Because of the observation or look angle of the sensor, the tower in quadrant 3c is obstructing 

our view of these areas.  These areas are referred to as “shadow” zones.  In addition, there are 

“no data” zones in quadrants 1d, 1e, 2d and 2e.  The reason for this problem is due to a 

phenomenon called "lag" or “layover” effects.   

Shadow zones, seen in quadrants 3b and 4a, are simply zones that are behind the buildings.  

Since the data are collected from the airplane in a side looking direction, rather than being 

collected straight down, as with LIDAR data, there are areas which the radar does not penetrate 

because a structure is literally in the way. 

Layover refers to a situation where imaging is often complicated by multiple signals overlaying 

onto the same pixel.  The right angles, which are formed between a building and the ground, 

form an area where the radar waves will ricochet from the ground, to the building, back to the 

antennae.  The extra distance caused by the ricochet will place the perceived distance from the 

antennae farther than it actually is.  Figure (A-3) illustrates how this can happen for a large area 
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next to a building, facing the antennae.  Multiple signals are defected creating a blank space (1d, 

1e, 2d and 2e) where the true distance should be recorded.  Because of the right angles, these 

signals in Figure A-2 end up overlaying on top of each other, causing not only a gap in elevation, 

but a stronger intensity reading from a location on top of the building (indicated by the oval 

circle in Figure A-3 (lag).  This phenomenon is more of a problem with tall structures.   

a. Aerial Photo

Figure A-2  Aerial Photo and SAR Elevation Data for Federal
                     in West Los Angeles.  Note that Tower in Fig. 5a. is
                     meters higher than the rest of the

ToweN

b. Pixel Elevations from SAR

1 2 3 4
 a

 b

 c

 d

Look∠

5

 e

 
 

 

 
 

Figure A-3  Lag or Layover Effects with tall buildings. 
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The effects of lag and shadowing are tempered by utilizing the building footprint.  However, in 

downtown areas, the lag and shadowing effects will obscure the heights of buildings.  Utilizing 

optical data to aid in the extraction of the height can help detect these buildings, but not detect 

their height.   

SAR vertical accuracy is also affected by noise.  Noise can be caused by radiation from other 

sources.  Radar waves will also ricochet from surface to surface, causing a speckling affect.  

These waves will also interfere with each other, effectively canceling themselves out or 

resonating with each other to form higher amplitudes.  When looking at a SAR image, this 

causes a salt and pepper effect (See Figure A-4).  In order to create an interferogram in an area 

with low correlation, the phase data must be averaged for several pixels.  The averaging 

essentially dampens the elevation recordings that are within the noise level, such as in the case of 

small houses.   

 
 

Figure A-4  Salt and Pepper Effect Caused by Noise in SAR Intensity Image 
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