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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a
national center of excellence in advanced technology applications thatis dedicated to the
reduction of earthquake losses nationwide. Headquartered at the University at Buffalo,
State University of New York, the Center was originally established by the National
Science Foundation in 1986, as the National Center for Earthquake Engineering Research
(NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions
throughout the United States, the Center’s mission is to reduce earthquake losses
through research and the application of advanced technologies that improve engineer-
ing, pre-earthquake planning and post-earthquake recovery strategies. Toward thisend,
the Center coordinates a nationwide program of multidisciplinary team research,
education and outreach activities.

MCEER’s researchis conducted under the sponsorship of two major federal agencies, the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA),
and the State of New York. Significant support is also derived from the Federal
Emergency Management Agency (FEMA), other state governments, academic institu-
tions, foreign governments and private industry.

The Center’s Highway Project develops improved seismic design, evaluation, and
retrofit methodologies and strategies for new and existing bridges and other highway
structures, and for assessing the seismic performance of highway systems. The FHWA
has sponsored three major contracts with MCEER under the Highway Project, two of
which were initiated in 1992 and the third in 1998.

Of the two 1992 studies, one performed a series of tasks intended to improve seismic
design practices for new highway bridges, tunnels, and retaining structures (MCEER
Project 112). The other study focused on methodologies and approaches for assessing
and improving the seismic performance of existing “typical” highway bridges and other
highway system components including tunnels, retaining structures, slopes, culverts,
and pavements (MCEER Project 106). These studies were conducted to:

* assess the seismic vulnerability of highway systems, structures, and components;

* develop concepts for retrofitting vulnerable highway structures and components;

e develop improved design and analysis methodologies for bridges, tunnels, and
retaining structures, which include consideration of soil-structure interaction mecha-
nisms and their influence on structural response; and

e develop, update, and recommend improved seismic design and performance criteria
for new highway systems and structures.
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The 1998 study, “Seismic Vulnerability of the Highway System” (FHWA Contract
DTFH61-98-C-00094; known as MCEER Project 094), was initiated with the objective of
performing studies to improve the seismic performance of bridge types not covered
under Projects 106 or 112, and to provide extensions to system performance assessments
for highway systems. Specific subjects covered under Project 094 include:

* development of formal loss estimation technologies and methodologies for highway
systems;

* analysis, design, detailing, and retrofitting technologies for special bridges, includ-
ing those with flexible superstructures (e.g., trusses), those supported by steel tower
substructures, and cable-supported bridges (e.g., suspension and cable-stayed bridges);

* seismic response modification device technologies (e.g., hysteretic dampers, isola-
tion bearings); and

* soil behavior, foundation behavior, and ground motion studies for large bridges.

In addition, Project 094 includes a series of special studies, addressing topics that range
fromnon-destructive assessment of retrofitted bridge components to supporting studies
intended to assistin educating the bridge engineering profession on the implementation
of new seismic design and retrofitting strategies.

This report presents the results of an analytical and experimental study on the behavior of XY-
FP isolation systems under earthquake excitations. The general objectives were to: 1) introduce
new knowledge on the tri-directional behavior of XY-FP isolated systems under general earth-
quake excitations; 2) experimentally and analytically study the potential uses of XY-FP bearings
for the seismic isolation of highway bridges by exploring different sliding properties on the
isolators; and 3) verify the accuracy of mathematical models to predict the behavior of XY-FP
bearings. A truss bridge was used for the experimental testing. Among the many conclusions
drawn, the experimental results demonstrated the effectiveness of the XY-FP bearings as an
uplift-prevention isolation system: the XY-FP bearings simultaneously resisted significant
tensile loads and functioned as seismic isolators. This research extends work reported in
"Experimental and Analytical Studies of Structures Seismically Isolated with an Uplift-
Restraint Isolation System, ” by P.C. Roussis and M.C. Constantinou, MCEER-05-0001.
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ABSTRACT

The XY-FP Friction Pendulum (XY-FP) bearing is a modified Friction Pendulum ™ (FP)
bearing that consists of two perpendicular steel rails with opposing concave surfaces and a
connector. The connector intends to resist tensile forces and to provide both independent sliding
in the isolators’ principal directions and free-rotation capacity. Numerical and experimental
studies on an XY-FP isolated truss-bridge model were conducted to study both the response
under three-directional excitations and applications to bridges. An XY-FP isolated truss-bridge
model was tested on a pair of earthquake simulators using harmonic and near-field earthquake
histories. The experimental results demonstrated the effectiveness of the XY-FP bearings as an
uplift-prevention isolation system. The construction detail of the small-scale connector of the
XY-FP bearings and misalignment of the isolators on the test fixture did not permit fully
uncoupled orthogonal responses. Numerical analyses on an XY-FP isolated bridge with different
isolation periods in the principal directions subjected to near-field ground motions demonstrated
the effectiveness of the XY-FP bearings to limit displacements in either the longitudinal or the
transverse direction. Numerical analyses that investigated the sensitivity of the XY-FP isolation
system response to differences in the bearings’ coefficients of friction demonstrated that
bounding analysis using uniform upper and lower estimates of the coefficient of friction will
generally provide conservative estimates of displacements and shear forces for isolation systems
with non-uniform isolator properties.
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SECTION 1
INTRODUCTION
1.1 General

The XY-FP bearing is a modified Friction Pendulum™ (FP) bearing that consists of two
perpendicular steel beams (rails) with opposing concave surfaces and a mechanical unit that
connects the rails (the connector). The connector resists tensile forces, slides to accommodate
translation along the rails and provides rotation capacity about a vertical axis. The idealized
connection allows independent sliding in the two orthogonal directions when the XY-FP bearing
is subjected to bi-directional (horizontal) excitation. The XY-FP bearing can be modeled as two
uncoupled unidirectional FP bearings oriented along the two orthogonal directions (rails) of the
XY-FP bearing.

The research project reported herein extended the first experimental and analytical study of XY-
FP bearings at the University at Buffalo (UB) by Roussis (2004). The Roussis study showed the
effectiveness of the new isolator as an uplift-prevention isolation system in a 1/4-length-scale
five-story isolated frame that was subjected to earthquake shaking applied in the vertical and one
horizontal direction of the frame. Herein, the attention was shifted to applications of XY-FP
bearings to bridges and to study the behavior of XY-FP isolated systems under tri-directional
excitations. The XY-FP bearing has two key features for bridges, namely, resistance to tensile
axial loads, and the capability to have different isolation properties in the principal directions of
the isolators.

The XY-FP bearing is an orthotropic sliding isolation system since the idealized decoupled bi-
directional (horizontal) operation of the isolator allows it to have different mechanical properties
(restoring force and friction force) in each of its principal directions. Friction and restoring
forces can be varied through the choice of the friction interfaces and the radius of curvature in
each principal direction of the bearings, respectively.

The orthotropic property of the XY-FP bearing allows two different periods of isolation in each
principal direction of the isolated structure. In bridges, this property permits an engineer to:

1. Limit displacements in either the longitudinal or transverse direction of the bridge to
protect expansion joints, satisfy space constraints, etc.
2. Direct seismic forces to the substructure in the direction that is most capable to resist them.

Seismic excitations combined with unfavorable bridge geometries might produce localized uplift
(in the absence of restraint) or tensile forces in isolation bearings. Bridges with irregular curved
or skewed spans, bridges having a relatively large vertical distance from the superstructure center
of mass to the horizontal line of action of the bearings, and bridges with an unfavorable spacing
of bearings, might have isolators that uplift or experience tensile forces. The idealized XY-FP
bearing can be an option for the seismic isolation of such structures.



1.2 Objectives and general methodology

The general objectives of this research work were: 1) to introduce new knowledge on the tri-
directional behavior of XY-FP isolated systems under general earthquake excitations; 2) to
experimentally and analytically study the potential uses of XY-FP bearings for the seismic
isolation of highway bridges by exploring different sliding properties on the isolators; and 3) to
verify the accuracy of mathematical models to predict the behavior of XY-FP bearings.

The experimental work was carried out in the Structural Engineering and Earthquake Simulation
Laboratory (SEESL) at the University at Buffalo using a pair of earthquake simulators. The
experimental work was conducted using a one 1/4-length-scale truss-bridge model (Warn, 2006)
supported on XY-FP bearings. The truss-bridge model is a steel-truss superstructure with a clear
span of 10.67 m (35 feet) and a total weight of 399 kN (90 kips). The set of bearings used in the
experimental component of this project was similar to the bearings studied by Roussis (2004).

The main objectives and the corresponding general procedures of the research work were:

1. To evaluate the three-directional response of XY-FP isolated systems, the effects of
different ground motions on XY-FP isolated systems, and the effectiveness of the XY-FP
bearings: a series of earthquake-simulator tests of the XY-FP isolated truss-bridge model was
performed; the XY-FP isolated system was subjected to accelerations orbits and unidirectional,
bi-directional, and three-directional near-field earthquake-shaking.

2. To study the effectiveness of XY-FP bearings for resisting tensile axial loads during tri-
directional shaking and changes in response of the XY-FP isolated system to different
magnitudes of axial load on the bearings: a series of earthquake-simulator tests were carried out
using an XY-FP isolated truss-bridge model to induce overturning moments and vertical
accelerations capable of overcoming the compressive loads, generating tensile axial loads in
some of the XY-FP bearings.

3. To investigate the effectiveness of the XY-FP bearings to limit displacements in either
the longitudinal or transverse direction of the bridge models and to direct seismic forces to the
principal directions of the models according to sliding properties of each axis of the isolated
models and to investigate the sensitivity of the response of a XY-FP isolated bridge to
differences in the coefficients of friction of the bearings: numerical analysis of a sample isolated
bridge in different configurations using sets of XY-FP bearings with different sliding properties
was carried out using near- and far-field sets of ground motions.

4. To experimentally assess the force-displacement characteristics of XY-FP bearings under
simple bi-directional (horizontal) excitations: a series of earthquake-simulator tests of the XY-FP
isolated truss-bridge model was performed using harmonic excitations applied in one and two
directions.

1.3 Report organization

This report is organized into nine sections; a list of references follows section nine. Section 2
summarizes key experimental studies on sliding seismic isolation systems for bridges and uplift



(tension) restraint systems. Section 3 is a detailed introduction to XY-FP bearings that includes a
literature review of the mathematical idealizations of the conventional FP bearings, the
mathematical idealization for XY-FP bearings, and the results and discussions of simple
numerical examples that compare the responses of XY-FP and FP bearings. Section 4 provides a
description of the earthquake-simulator test plan including details of the truss-bridge model, the
XY-FP bearings, the test setup, the instrumentation, and the test procedures for two and three-
directional harmonic and earthquake excitations. Section 5 describes the effects of rotation about
a horizontal axis of parts of FP and XY-FP bearings on isolator force-displacement relationships.
Section 6 describes results and presents observations on harmonic and earthquake-simulation
tests of the XY-FP isolated truss-bridge model. Section 7 presents results and observations on
numerical analyses of the XY-FP isolated truss-bridge model subjected to the test excitations.
Section 8 is a case study that investigates both the response of an XY-FP isolated bridge with
different radii of curvature in the principal directions and the sensitivity of the XY-FP isolation
system response to differences in the coefficients of friction of the bearings. Section 9 contains a
summary of the key findings and conclusions drawn from this study.






SECTION 2
SEISMIC ISOLATION OF BRIDGES
2.1 Introduction

This section summarizes key experimental studies on sliding seismic isolation systems for
bridges (section 2.2) and uplift (tension) restraint systems (section 2.3).

The experimental studies on sliding seismic isolation systems for bridges reviewed herein
focused on the study of isolated superstructures. The superstructures were isolated from their
substructures by either Friction Pendulum™ (FP) bearings or flat sliding (FS) bearings with
displacement-control devices and/or energy dissipation devices. The majority of the earthquake-
simulator tests of bridge models equipped with sliding isolation bearings were carried out at the
University at Buffalo (UB).

Section 2.2 presents these UB studies; the results of a recent experimental study at the University
of California at Berkeley of a bridge deck isolated with FP bearings; and experimental studies of
sliding isolated bridge models at the Public Works Research Institute in Japan, the European
Laboratory for Structural Assessment in Italy, and the Korean Institute of Machinery and
Materials. Section 2.2 concludes with a summary of a study on the performance of the sliding
isolation system of the Bolu Viaduct No. 1 during the 1999 Duzce earthquake in Turkey: the
only documented case to date of a bridge equipped with a sliding isolation system subjected to a
strong earthquake.

Little work, research and implementation, has been completed to date on uplift restraint systems
in seismically isolated structures. Section 2.3 presents experimental studies of uplift restrainers
for elastomeric, FP and FS bearings, a pre-stressing strategy for uplift restraint, and the first
study of the XY-FP bearing for uplift restraint in a framed structure. Section 2.3 also describes
the application of an uplift restraint system in a Japanese seismically isolated building and an
application of a counterweight system to prevent uplift in a seismically isolated bridge.

2.2 Experimental studies on sliding isolation systems for bridges
2.2.1 Constantinou et al. (1991)

The first large-scale testing of a bridge deck model with sliding bearings was conducted by
Constantinou et al. (1991) at UB. A series of earthquake-simulator tests of a 1/4-length-scale
bridge deck model were conducted with two types of sliding isolation systems: 1) FP bearings;
and 2) FS bearings with displacement-control devices.

The bridge deck model consisted of two reinforced concrete girders (6-1 m long with a cross
section of 610 by 305 mm) and a reinforced concrete deck (152 mm deep). Steel plates were
added to the concrete deck, for a total weight of 227 kN. Historical and artificial ground motions
with different intensities and frequency contents were applied in the longitudinal direction of the
deck model.



The deck model was supported on four FS bearings; one displacement-control device was
installed in the longitudinal direction of the deck. Figure 2-1 presents the construction of a FS
bearing. The friction interface of the FS bearing was a polished stainless steel plate, which faced
the upper plate and a disc of low-friction composite material, which faced the lower plate. The
lower plate, which was restrained laterally, was supported by an adiprene disc that allowed small
rotations to keep the surfaces of the friction interface in full contact. The minimum and
maximum coefficient of friction of the friction interface was 0.06 and 0.12, respectively.

Superstructure Upper ;}dte Low-frictipn composite
mm) material dlsbl3
i i
I I
L1 Il (]
uxn [ E—— 0y
Adiprene disc A . .
\ Polished stainless
steel plate

Lateral restraint
Lower plate

Figure 2-1 Construction of a flat sliding (FS) bearing (Constantinou et al., 1991)

Figure 2-2 presents the construction of the displacement-control device used in these tests. The
device was configured with springs and friction assemblies in series and had bilinear hysteretic
behavior. The spring assembly was equipped with helical steel springs bounded by a spring
hook, by guide bars, and by plates, that permits the springs to compress when sliding occurs in
the friction assembly. No relative displacement occurs in the displacement-control device as long
as the imposed force is less than its characteristic strength of the device, which is the slip force in
the friction assembly. Once the imposed force exceeds the characteristic strength, sliding occurs
in the friction assembly and the springs are compressed. The post-sliding stiffness of the
displacement-control device is equal to the compressive stiffness of the spring. The characteristic
strength of the device could be adjusted to any desired level and varied between 5% and 8% of
the supported weight in the earthquake-simulator tests.

Spring  Guide bar Tension bolt

Backing
E plate

Graphite impregnated
bronze plate

=i U
| Spring assembly | Friction |
I ! assembly ]
Figure 2-2 Construction of the displacement-control device (Constantinou et al., 1991)



In the earthquake-simulator tests, the total friction force in the isolation system (FS bearings plus
displacement-control device) varied between 12% and 18% of the supported weight. The peak
restoring-force in the displacement-control device did not exceed 8% of the supported weight;
much less than the slip force in the friction assembly. The fundamental period of the isolated
deck, considering the spring stiffness of the displacement-control device (in the absence of
friction) and the mass of the deck, was 1.16 seconds.

The concrete deck model was isolated with four FP bearings. The radius of curvature of the FP
bearings was 248 mm, for a sliding period of 1.00 second. The minimum and maximum
coefficients of friction of the FP bearings were 0.03 and 0.11, respectively.

The effectiveness of the two isolation systems was determined by comparing motions of the
earthquake simulator to those of the isolated deck. In all tests, the deck accelerations and
bearings displacements were smaller than the accelerations and displacements of the earthquake
simulator. The deck acceleration did not exceed 21% of the peak acceleration of the earthquake
simulator, and the displacement across the bearings did not exceed 28% of the peak displacement
of the earthquake simulator. Table 2-1 in Section 2.2.5 summarizes the maximum responses of
the tests using the two isolation systems.

2.2.2 UB/Taisei project for sliding isolation of bridges
2.2.2.1 General information

During the early 1990s, the National Center for Earthquake Engineering Research (NCEER) was
funded by Taisei Corporation to develop and validate sliding isolation systems for bridges. The
project had two key components: 1) a study of active systems by Taisei and Princeton
University; and 2) a study of passive systems by Taisei and UB.

The UB/Taisei component of the project consisted of experimental and analytical studies of
sliding isolation systems installed in a bridge model. The isolation systems included FP bearings
(Constantinou et al., 1993), FS bearings with rubber springs restoring-force devices and/or fluid
damping devices (Tsopelas et al., 1994a, 1994c), and lubricated FS bearings equipped with E-
shaped mild steel dampers (Tsopelas et al., 1994d).

The 1/4-length-scale bridge model was a one-span-bridge with flexible piers. It had a clear span
of 4.8 m, a height of 2.53 m, and a total weight of 158 kN. The fundamental period (model) in
the longitudinal direction in the non-isolated condition was 0.26 second. Figure 2-3 is a
photograph of the isolated bridge model.

Historical and artificial ground motions with different intensities and frequency contents were
applied in the longitudinal direction of the bridge. In selected tests, both horizontal and vertical
earthquake-shaking were imposed.
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Figure 2-3  UB/Taisei project bridge model (Tsopelas et al., 1994a)

The bridge model was configured to simulate a single span, a two-span or a three-span bridge.
The sliding bearings were locked for selected tests using side plates to simulate a non-isolated
bridge. The force-displacement characteristics of the isolation systems were measured by
displacement-controlled excitation tests of the bridge model, which had its deck attached to
reaction frames using struts and its piers stiffened by braces.

Specific information on the tests with the different sliding isolation systems is presented below.
Table 2-1 in Section 2.2.5 provides summary information on the responses of the different
isolated bridge models.

2.2.2.2 FP bearings

Constantinou et al. (1993) presents the results of the tests of the isolated bridge model of Figure
2-3 equipped with FP bearings. Four FP bearings with a radius of curvature of 559 mm were
installed between the bridge deck and the load cells that were supported on the piers. The sliding
fundamental period of the model was 1.50 seconds.

The friction interfaces of the FP bearings consisted of four different self-lubricated-low-friction
composite materials and stainless steel. Displacement-controlled tests showed similar
coefficients of friction for the four interfaces. Two different articulated sliders with contact
pressures (p) of 17 and 276 MPa were used to evaluate responses at two substantially different
levels of sliding friction: 1) a maximum coefficient of friction of 0.06 (p=276 MPa), and 2) a
maximum coefficient of friction ranging between 0.10 and 0.12 (p=17 MPa).

The isolation of the bridge model using FP bearings with the higher coefficient of friction (0.10-
0.12) was more effective than the isolation of the bridge model using FP bearings with the lower
coefficient of friction (0.06). In the tests using the low coefficient of friction FP bearings, the
deck acceleration did not exceed 32% of the peak acceleration of the earthquake simulator, and
the displacement across the bearings did not exceed 86% of the peak displacement of the
earthquake simulator. In the tests using the high coefficient of friction FP bearings, the deck
acceleration did not exceed 23% of the peak acceleration of the earthquake simulator, and the



displacement across the bearings did not exceed 76% of the peak displacement of the earthquake
simulator.

2.2.2.3 Bridge model equipped with FS bearings, rubber restoring-force devices, and fluid
dampers

Tsopelas et al. (1994a) presents the results of studies of the bridge model equipped with three
different components: 1) FS bearings, to support the deck weight and to dissipate energy by
friction; 2) rubber devices, to provide a restoring-force and to be used as a displacement
restrainer once a specific displacement is reached; and 3) fluid viscous dampers, to enhance the
energy dissipation of the system.

The sliding interfaces of the FS bearing were polished stainless steel with the following
composite materials: 1) an unfilled PTFE (polytetrafluoroethylene) with a coefficient of friction
ranging between 0.06 and 0.15; 2) a glass-filled PTFE with a coefficient of friction ranging
between 0.06 and 0.14; and 3) a PTFE-base with a coefficient of friction ranging between 0.04
and 0.07. The coefficients of friction of the glass-filled PTFE and of the PTFE-base composite
interfaces did not change significantly after a large number of tests, whereas the coefficients of
friction of the interface using unfilled PTFE composite material decreased with an increasing
number of tests. Mokha et al. (1988) explains the later observation on transfer of PTFE material
to the stainless steel plate with repeated testing.

Two rubber restoring-force devices were installed in the bridge model between the deck and the
beams of each pier. Each rubber device consisted of a steel cylinder that contained radial rubber
elements and an inner steel bar to fix the device to the structure. The resistance of these devices
is provided by the deformation (elongation and compression) of the rubber elements. For
displacements less than 35 mm, the restoring-force device worked as a horizontal spring with
near linear behavior. For displacements between 35 mm and 50 mm, the stiffness increased. At a
displacement of 50 mm, the device was nearly rigid and served as a displacement restraint.

To obtain rubber restoring-force devices with different stiffness, these devices were configured
using natural rubber of three different hardness. Three different devices were then tested: 1)
devices with a stiffness (secant stiffness at a displacement of 35 mm) of 47 kN/m, 2) devices
with a stiffness of 112 kN/m, and 3) devices with a stiffness of 162 kN/m.

To provide viscous damping of over 50% of critical, the bridge model was equipped with four
FS bearings, two rubber devices, and four linear viscous fluid dampers. Tsopelas et al. (1994a)
presents the mechanical properties and the principles of operation of the fluid viscous damper.

Seven different protective systems were configured and tested using the three friction interfaces,
the rubber devices with three different stiffness and/or the viscous dampers. The fundamental
periods in the longitudinal direction of the bridge model, considering the secant stiffness of the
rubber devices and the mass of the model, ranged between 1.33 and 2.47 seconds.

Similar responses were reported after testing three different isolated configurations that used FS
bearings with friction forces of about 14% of the supported weight and the three rubber devices



of different stiffness. Tsopelas et al. (1994a) explained these similar responses by the small
restoring forces that were developed in the three isolation systems (ranging between 2.5% and
8% of the supported weight) as compared with the friction forces. In these tests, the rubber
devices acted primarily to control bearing displacements rather than to modify the periods of
isolation.

Similar to the studies with FP bearings, the isolation of the bridge model using FS bearings with
the higher coefficient of friction (0.14-0.15) was more effective than the isolation of the bridge
model using FS bearings with the lower coefficient of friction (0.07). In the tests using the low
coefficient of friction FS bearings, the deck acceleration did not exceed 44% of the peak
acceleration of the earthquake simulator, and the displacement across the bearings did not exceed
56% of the peak displacement of the earthquake simulator. In the tests using the high coefficient
of friction FS bearing, the deck acceleration did not exceed 25% of the peak acceleration of the
earthquake simulator, and the displacement across the bearings did not exceed 41% of the peak
displacement of the earthquake simulator. Further, in the tests using the high coefficient of
friction FS bearing and when the displacement restrainers were fully activated, the deck
acceleration did not exceed 52% of the peak acceleration of the earthquake simulator, and the
displacement across the bearings did not exceed 46% of the peak displacement of the earthquake
simulator.

Selected tests were conducted in the bridge model equipped with FS bearings having the higher
coefficient of friction (0.06-0.15), the rubber devices with stiffness of 112 kN/m, and the fluid
viscous dampers. The addition of fluid dampers enhanced the energy dissipation to the point that
the displacement restrainers were not activated in any of the tests. The deck acceleration did not
exceed 60% of the peak acceleration of the earthquake simulator, and the displacement across
the bearings did not exceed 37% of the peak displacement of the earthquake simulator.

2.2.2.4 Flat sliding (FS) bearings with preloaded fluid viscous dampers

Tsopelas et al. (1994c) presents the results of experimental studies conducted on the bridge
model equipped with FS bearings, which had a maximum coefficient of friction of 0.14, and
fluid restoring-force-damping devices to provide a re-centering capability and damping. The
resistance of the fluid restoring-force-damping device was provided by a combination of preload,
the restoring-force and viscous damping.

Two fluid restoring-force-damping devices were installed between the deck and the beams of the
piers. The devices were compressive fluid springs that were pressurized to develop a preload.
The preload was selected to be slightly greater than the minimum friction force in the isolation
system to allow the devices to re-center the bridge and eliminate residual displacements. The
preload for the two devices was 10 kN; the minimum friction force was 9.0 kN. The post-preload
stiffness of each device was 100 N/mm. During the tests, the deck acceleration did not exceed
49% of the peak acceleration of the earthquake simulator, and the displacement across the
bearings did not exceed 41% of the peak displacement of the earthquake simulator.

10



2.2.2.5 Lubricated sliding bearings with E-shaped mild steel dampers

Tsopelas et al. (1994c) presents the results of experimental studies of the bridge model isolated
with an elasto-plastic isolation system. The isolation system was configured by four isolators:
each isolator consisted of two E-shaped dampers and a lubricated (greased) FS bearing.

The tested bearings were scaled unidirectional versions of bridge isolation bearings that were
developed by Italian engineers and used in a number of bridges in Italy (Tsopelas et al., 1994d).
The E-shaped elements deform, yield, and dissipate energy during seismic excitations. The
coefficient of friction at the lubricated friction interface ranged between 0.01 and 0.02. Figure 2-
4 presents the construction of the isolation bearing. The E-shaped mild steel dampers showed
stable hysteretic characteristics after a large number of cycles. The isolation system had a
characteristic strength (friction force plus damper yield force) and a maximum restoring force of
18% and 2% of the supported weight, respectively.

During the tests, the deck acceleration did not exceed 39% of the peak acceleration of the
earthquake simulator, and the displacement across the bearings did not exceed 50% of the peak
displacement of the earthquake simulator.

After comparing the results of the different isolation systems tested in the UB/Taisei project,
Tsopelas concluded that all of these isolation systems produced comparable deck accelerations
but that the maximum and residual displacements were largest in the elasto-plastic isolation
system.

The results of the UB/Taisei project using the different sliding isolation systems showed that the
vertical components of the ground motions had a minor effect on the global responses of the
isolated bridge; the responses of the different systems to the longitudinal and vertical
components of the ground motions were most similar to the responses for longitudinal shaking
only.

2.2.3 Study of a FP system at the University of California at Berkeley

In the late 1990s, researchers at the University of California at Berkeley began an experimental
and analytical research program to provide data to calibrate analytical models of isolation
bearings during bi-directional motion, and to study the application of different isolations systems
in bridges. The program involved the testing and analysis of a bridge deck model with three
different isolation bearings: high damping rubber, lead-rubber, and FP bearings.

Mosqueda et al. (2004) presents the results of the experimental studies of a rigid block model,
simulating a rigid bridge superstructure, supported by FP bearings. The rigid block was subjected
to displacement orbits and to three-dimensional earthquake histories. The objectives of the
earthquake-simulator tests were to evaluate the bi-directional response of the isolation system,
the effects of different ground motions on the response of isolated bridges, and to further develop
mathematical models of isolators to predict response under bi-directional excitation. The ground
motions were selected to represent different source mechanisms, soil types, intensities, and
durations.
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The FP bearings had a radius of curvature of 762 mm, for a sliding period of 1.75 seconds. The
displacement capacity of the FP bearings was 178 mm. The rigid block, with a total weight of
290 kN, was supported by four isolators on the earthquake simulator. To obtain the force-
displacement characteristics of the bearings, the rigid block was attached to reaction blocks off
the simulator platform using struts, and subjected to displacement controlled bi-directional
orbits. Figure 2-5 presents the system used for the characterization of the bearings. The
maximum coefficient of friction of the friction interface ranged between 0.08 and 0.10. During
the tests, the deck acceleration did not exceed 18% of the peak acceleration of the earthquake
simulator.

The response of the FP system to bi-directional (horizontal) ground motions showed a strong
coupling of the response in the two orthogonal directions. Mosqueda confirmed the early
observations of Tsopelas et al. (1994b) about the need to consider the coupling effect between
the two orthogonal force components, to properly model FP bearings. Furthermore, the
comparison of responses of the FP system to three-directional and bi-directional ground motions
confirmed that the vertical components of the ground motion had a minor effect on the global
response of the isolated bridge system.

. - ongitudnal Fac
elevation

ﬂ Jl elevation
@ @ Earthquake simulator
Plan view
a. Tested system b. Rigid block with struts attached

Figure 2-5  Test configuration to characterize the FP bearings (Mosqueda et al., 2004)
2.2.4 Other experimental studies
2.24.1 Feng et al. (1994)
Feng et al. (1994) presents the results of earthquake-simulator tests on a bridge model isolated
with FS bearings and rubber restoring-force devices. The tests were carried out at the Public
Works Research Institute (PWRI) in Japan for a joint research project between NCEER and
PWRI.

The isolation system is the same as that tested in the UB/Taisei project (Tsopelas el al. 1994c).
The friction interface of the FS bearings had a coefficient of friction ranging between 0.08 and
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0.20. The FS bearings had a semispherical surface, which allowed the bearings to rotate freely.
The capacity of the earthquake simulator did not allow the application of ground motions to the
bridge model that could lead to the displacements level required to activate the rubber restoring-
force devices as displacement restrainers.

The one-span girder bridge model with two 2.5 m tall piers and a span of 6.0 m, had a total
weight of 390 kN. The fundamental period of the bridge was 0.48 second in the non-isolated
condition. The fundamental period of the isolated bridge model was 2.44 seconds. During the
tests, the deck acceleration did not exceed 44% of the peak acceleration of the earthquake
simulator.

2.24.2 Ogawa et al. (1998)

Ogawa et al. (1998) presents the results of earthquake-simulator tests of a bridge deck model
with an isolation system consisted of FS bearings and rubber restoring-force devices. The
configuration of the isolation system was based on the UB/Taisei isolation system studies
(Tsopelas el al. 1994c¢). The FS bearings had a rubber layer that allowed small rotations to keep
the surfaces of the friction interface in full contact. Each bearing incorporated a duct and
pressurized water to eliminate residual displacements following each test. Figure 2-6 shows the
FS bearing with the duct used to pressurize the water.

Upper shoe PTFE
Middle plate

Lower shoe Rubber layer

Figure 2-6  FS bearing (Ogawa et al., 1998)
2.24.3 Pinto et al. (1998)

Pinto et al. (1998) describes large-scale pseudo-dynamic tests of an isolated bridge model that
were carried out at the European Laboratory for Structural Assessment (ELSA) in Italy. The
purpose of the tests was to study the performance of two isolator configurations for an irregular
bridge model. The isolation system was of the elasto-plastic type and consisted of FS bearings
with dampers configured with vertical ductile steel spindles (cantilever vertical beams with non-
uniform cross sections).

A 1/2.5-length-scale model simulated a four-span continuous deck bridge with a total weight of
6674 kN. The prototype bridge had four 50 m spans with piers of different heights (7, 14 and 21
m). The irregular bridge configuration, with a shorter pier at the center of the bridge, was tested
using two different sliding isolation arrangements: a fully-isolated bridge including FS bearings
and dampers on all piers and abutments; and a partially-isolated bridge with the isolation system
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installed only in the central shorter pier. The two isolation arrangements and the non-isolated
bridge model were tested applying the horizontal components of ground motions in the
transverse direction of the bridge model. Figure 2-7a shows schematic elevations of the tested
bridge configurations.

The influence of the isolation systems was documented using displacement demands at the tops
of the piers. Figures 2-7b and 2-7c present the displacements reported by Pinto for two load
cases. Peak displacements at the top of the central (short) pier in both the fully-isolated and the
partially-isolated configurations did not exceed 12% of the displacements in the non-isolated
bridge. Peak displacements at the top of the lateral (left and right) piers in the fully-isolated
bridge did not exceed 68% of those displacements in the non-isolated bridge.

Furthermore, peak displacements at the top of the lateral piers in the partially-isolated bridge
ranged between 85% and 132% of those displacements in the non-isolated bridge. Pinto
describes the partially-isolated model as an adequate option for isolation of bridges to reduce
clearances at the abutments and to exploit the deformation capacity of the piers.

2244 Nakajima et al. (2000)

Nakajima et al. (2000) studies the effect of vertical ground motions on the horizontal response of
a sliding isolation system. A series of pseudo-dynamic tests were conducted in a model that
simulated a bridge girder supported by an isolation system. The isolation system consisted of a
FS bearing and a rubber restoring-force device. The test model had a supported weight of 366
kN. The tests were conducted using a 1/4-length-scale FS bearing with a maximum coefficient of
friction of 0.13. The effect of the rubber device was considered numerically as a horizontal linear
spring. The responses of the system to the horizontal and vertical components of the ground
motions were similar to those responses when only the horizontal components of the ground
motions were applied. Nakajima confirmed the early observations about the minor effect of
vertical components of ground motion on the horizontal response of sliding isolation systems.

2.2.4.5 Kim et al. (2001)

In a series of earthquake-simulator tests carried out at the Korean Institute of Machinery and
Materials, Kim et al. (2001) studied the behaviour of a rigid block with 32 kN of weight
supported by two different sliding systems and subjected to three-directional ground motions.

The rigid block was supported first by four FP bearings with a radius of curvature of 500 mm for
a sliding period of 1.42 seconds and a maximum coefficient of friction of 0.19. Later, the rigid
block was supported by four FS bearings with a maximum coefficient of friction of 0.17 and by
two rubber bearings; the combined stiffness of the rubber devices was 59 kN/m. The
fundamental period of the model, considering the rubber stiffness and the mass of the block, was
1.47 seconds. Kim reported similar responses in the two isolation systems. The deck acceleration
did not exceed 30% of the peak acceleration of the earthquake simulator.
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2.2.5 Summary remarks

The experimental studies reported thus far in this section showed the effectiveness of sliding
bearings to seismically isolate superstructures of bridges. The isolation systems reduced both
deck accelerations and substructures forces, and controlled deck displacements.

To compare the effect of the different isolation systems in the studies reported in this section,
Figure 2-8 and Table 2-1 present the peak responses of the isolated bridge decks with the
corresponding peak responses of the earthquake simulators. The key conclusions of these studies
are:

1. The sliding isolation systems described in this section reduced significantly both deck
accelerations and substructures forces. Maximum accelerations of the bridge decks were
significantly smaller than maximum accelerations of the earthquake simulators. In the tests using
ground motions with peak acceleration greater than 1.00 g, the peak acceleration of the bridge
decks ranged between 18% and 25% of the peak acceleration of the earthquake simulators.
Furthermore, in the tests using ground motions with peak acceleration ranging between 0.44 g
and 1.00 g, the peak acceleration of the bridge decks ranged between 26% and 60% of the peak
acceleration of the earthquake simulators.

2. The sliding isolation systems controlled deck displacements such that the peak
displacements across the bearings were smaller than the peak displacements of the earthquake
simulator. The peak displacements across the bearings ranged between 18% and 86% of the peak
displacement of the earthquake simulator.

3. Isolation systems using FP or FS bearings with friction forces ranging between 10% and
20% of the supported weight were more effective at reducing deck accelerations than systems
using FP or FS bearings with friction forces ranging between 6% and 7% of the supported
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Figure 2-8 Maximum responses of different experimental studies (Constantinou el al., 1991;
UB/Taisei project; Mosqueda et al., 2004; Feng et al., 1994; and Kim et al., 2001)
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weight. Per Table 2-1, when isolation systems using bearings with the higher friction forces were
subjected to ground motions with peak accelerations greater than 1.00 g, the corresponding peak
accelerations did not exceed 25% of the peak acceleration of the earthquake simulator.
Furthermore, when isolation systems using bearings with the lower friction forces were subjected
to ground motions with peak accelerations smaller than 0.52g, the peak accelerations did not
exceed 44% of the peak acceleration of the earthquake simulator.

4. The vertical component of the earthquake shaking had a minor effect on the global
horizontal responses of the sliding isolated bridge models.

2.2.6 Performance of a bridge equipped with sliding bearings and dampers during the
1999 Duzce earthquake in Turkey

An assessment of the performance of the sliding isolation system of the Bolu Viaduct No. 1
during the 1999 Duzce earthquake in Turkey by Roussis et al. (2003) is summarized herein. It
represents the first comprehensive study of a bridge equipped with a sliding isolation system
subjected to strong earthquake shaking. The construction of the Bolu Viaduct No. 1 was almost
completed when it was subjected to a near-field pulse-type ground motion from the 1999 Duzce
earthquake. The viaduct was severely damaged (Roussis et al., 2003).

The 2.3 km long viaduct has 59 spans of 39.2 m supported by 58 piers. The superstructure
consisted of seven simply supported pre-stressed concrete box girders in each span. Each beam
was seated on two FS bearings. The spans are connected by a slab that is continuous over the
piers for ten spans (see Figure 2-9).

Continuous slab

Girder
Cregcent-moon-

ed damper

a. Installation of the isolation system b. Crescent-moon-shaped damper

Figure 2-9 Isolation system of the Bolu viaduct 1 (Marioni et al., 2000)

The viaduct had an elasto-plastic energy dissipation system installed on each pier cap. Figures 2-
9a and 2-9b show the configuration of the isolation system and a photograph of the energy
dissipation device, respectively. Shock transmission devices were installed between the crescent-
moon-shaped damper and the substructure in the longitudinal direction of the viaduct to allow
longitudinal displacements under service conditions (traffic, creep, shrinkage, and temperature).
The shock transmission devices become rigid under earthquake excitations to allow for the
proper operation of the energy dissipation device (Roussis et al., 2003).
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Each crescent-moon-shaped damper consists of an inner and outer ring connected by 16 radial
steel C-shaped elements. The inner and outer rings were connected to the substructure and
superstructure, respectively. As the superstructure moves relative to the substructure, the C-
shaped elements deform, yield, and dissipate energy.

The Duzce earthquake led to residual displacements of the viaduct superstructure relative to the
piers of about 1,000 mm and 500 mm in the longitudinal and transverse directions of the viaduct,
respectively. All FS bearings were damaged. The beams either slid on their pedestals or fell off
their pedestal onto the top of the piers below. Cable and lateral restrainers at the expansion joints
prevented the beams from falling off the piers.

The results of analyses carried out by Roussis et al. (2003) indicated that a lack of displacement
capacity in the isolation system led to its failure. Numerical studies of the viaduct subjected to
design ground motions scaled according to the AASHTO (American Association of Highway
and Transportation Officials) Guide Specifications (AASHTO, 1999), produced displacements in
the isolation system of about 820 mm, whereas the measured displacement capacity of the
isolation system was 210 mm. Numerical analyses of the viaduct subjected to simulated near-
field ground motions that included the characteristics of the shaking that struck the viaduct, led
to displacements in the isolation system of about 1,400 mm.

23 Uplift restrainers for seismically isolated structures
2.3.1 Uplift restrainer-displacement-control device for elastomeric bearings

Griffith et al. (1988) studied experimentally an uplift restrainer-displacement-control device for
elastomeric bearings. This device was installed in a central hole in the elastomeric bearing.
Figure 2-10 presents the bearing-device configuration and the uplift restrainer-control
displacement device.

==y

Figure 2-10  Uplift restrainer-displacement-control devices for elastomeric bearings
(Griffith et al., 1988)

The device consists of two bolts contained within a cylindrical sleeve that allowed an elongation
of the device. Each bolt has a semispherical end held in a spherical machined indentation on the
top and bottom plates of the bearing. The bolt heads are placed together in the center of the
sleeve while the device is not elongated. Once the device is elongated by a specific amount
(defined by the height of cylindrical sleeve), the device becomes taut. After the bearings are
displaced horizontally, the bolt heads are constrained by the ends of the sleeve and the horizontal
stiffness of the bearings is increased (Griffith et al., 1988).
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Using earthquake-simulator tests conducted on a 1/4-length-scaled nine-story steel frame,
Griffith studied the effectiveness of this uplift restrainer-control displacement device. To provide
a rigid floor level to the eight-column frame, two rows of four columns each were bolted to stiff
wide-flange beams. Two different isolation configurations were placed under the rigid floor: one
with the steel frame supported on eight regular elastomeric bearings connected to allow the
bearings uplift, and the other with four regular elastomeric bearings placed below the interior
columns and four bearings equipped with the uplift restrainer displacement-control devices
placed below the corner columns.

In some tests, the uplift restrainer devices installed in the bearings were fully engaged and the
horizontal stiffness of the bearings was increased. The shear forces in the isolators with the
restraint devices fully engaged were significantly larger than those forces in the isolation system
that used regular elastomeric bearings that were free to uplift (without the devices). The
horizontal accelerations in the superstructure were up to 100% greater with the restrainer devices
fully engaged than those accelerations in the structure equipped with regular elastomeric
bearings only.

2.3.2 Uplift restrainer device for FP bearings

Zayas et al. (1989) introduced an uplift restraint device for FP bearings. Figure 2-11a shows the
uplift restrainer, which consists of rods to resist tensile axial loads and to limit vertical
displacements while allowing the lateral displacement of the isolator. Figure 2-11b shows a
photograph of an application of FP bearings with the uplift restrainer in the retrofit of an elevated
water tank.

2.3.3 Uplift restraint for FS bearings

Nagarajaiah et al. (1992) studied experimentally the viability of using FS bearings with an uplift
restraint for applications to medium-rise buildings. Figure 2-12 presents the construction of the
FS bearing with the uplift restraint device.

The inner part of the uplift restrainer device was faced with polished stainless steel, while the
side and bottom surfaces of the lower plate (in contact with the uplift restraint) were faced with a
low-friction composite material. The purpose of the friction interface of the uplift restraint device
is to mitigate horizontal movements during the activation of the uplift restraint system.

The effectiveness of the isolation system using uplift restraints was determined through
earthquake-simulator tests on a 1/4-length-scale six-story frame model that had a total weight of
231 kN and a height-to-width ratio of 4.5. The test results showed the effectiveness of the sliding
isolation system in reducing both the lateral accelerations and overturning moments and in
preventing uplift. This uplift restraint system was implemented in FP bearings at the San
Francisco abutment in the Oakland-Bay-Bridge in San Francisco (Roussis, 2004).
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Figure 2-12  Construction of the FS bearing and uplift restraint (Nagarajaiah et al., 1992)

2.3.4 Uplift restraint in a Japanese seismically isolated building

Mitsusaka et al. (1992) describes an uplift restraint mechanism used in a seismically isolated
building in Japan. The Excel Minami building is a 10-story building with lead rubber bearings
and uplift restraint devices. Each uplift restraint consists of two U-shaped interlocking
orthogonal steel arms fixed to the foundation and to the superstructure. Once uplift occurs, the
steel arms engage each other, preventing further vertical displacements. The device was designed
to work only when the vertical displacement exceeded 10 mm. The engaging surface is faced
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with a hard solid lubricant to allow horizontal displacements. Figure 2-13 is a photograph of the
uplift restraint mechanism.

Figure 2-13  An uplift restraint application -Excel Minami building-Kosihigaya-Japan
(Mitsusaka et al., 1992)

2.3.5 Pre-stressed isolators to prevent uplift or tension loads

Kasalanati et al. (1999) studied the use of pre-stressing to prevent either uplift or tension loads in
FS bearings, FP bearings and elastomeric bearings. The purpose of the pre-stressing tendons was
to provide additional compressive force to counteract the tension or uplift effects on the isolation
bearings, minimizing the development of additional forces on the bearing and in the structure as
a result of changes of geometry in the tendons during horizontal displacements.

The effectiveness of the pre-stressing strategy in preventing uplift or tensile axial loads on the
bearings was illustrated by displacement-control tests using pre-stressing tendons with isolation
bearings and by imposing horizontal displacement histories with a varying vertical load. The
vertical load on the bearings was increased by the tendons; the tendons introduced additional
lateral stiffness at the same time. Pre-stressing of isolation bearings was described as one option
to prevent uplift or tension, regardless of the state of deformation of the bearing. Further studies
were recommended to improve the understanding of the behavior of pre-stressed isolation
bearings.

2.3.6 Counterweights to prevent uplift or tension forces on the bearings

Constantinou et al. (1998) described a pair of seismically isolated highway bridges over the
Corinth Canal in Greece. Each bridge consists of a continuous pre-stressed concrete box girder
supported at each abutment by six elastomeric bearings and at each pier by one FS bearing.
Counterweights were implemented at the abutments to avoid uplift and tension loads on the
isolation system for possible combinations of dead load, live load and earthquake shaking.
Figure 2-14 shows a part elevation of the bridge.
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Figure 2-14 Elevation of a highway bridge over Corinth Canal (Constantinou et al., 1998)
2.3.7 The XY-Friction Pendulum (XY-FP) bearing as an uplift prevention device

Roussis (2004) provides evidence of the effectiveness of the XY-FP bearing as an uplift-restraint
isolation bearing in the first experimental and analytical study on XY-FP bearings. A 1/4-length-
scale single-bay-five-story frame with a total weight of 106.5 kN (24 kips) was isolated using
four XY-FP bearings. The isolated frame was subjected to earthquake shaking applied in the
vertical and one horizontal direction of the frame. The XY-FP bearings used in the experimental
work have radii of curvature in both principal directions of 990 mm (39 in.). Displacement-
controlled tests of single bearings provided the following information on friction interfaces: the
friction interfaces had maximum coefficients of friction of 0.14, 0.11, and 0.07 for vertical
compressive loads of 27 kN, 54 kN, and 108 kN, respectively, in both principal directions of the
bearings. For an axial tensile load of 27 kN, the maximum coefficient of friction in both principal
directions was 0.08.

The XY-FP bearings isolated the frame in three different configurations, namely, 1) the lower
beams of the bearings (concave surface facing upwards) were oriented in the longitudinal
direction of the earthquake simulator (see Figure 2-15), 2) the lower beams of the bearings were
oriented in the transverse direction of the of the earthquake simulator, and 3) the lower beams of
the bearings were oriented at 45° to the longitudinal direction of the earthquake simulator. Figure
2-15 presents information on the tested isolated frame.

The maximum level of isolation was obtained in one test using the bearings oriented at 45° to the
longitudinal axis of the earthquake simulator. The maximum acceleration of the earthquake
simulator was 1.3 g and the corresponding base shear of the frame was 19% of the total weight,
that is, the base shear of the frame was 15% of the maximum acceleration of the earthquake
simulator. In this condition, the maximum compressive load on one of the bearings was about 2.4
times the gravity weight supported by the bearing (26.6 kN), and the maximum tensile axial load
on one of the bearings was about 0.4 times the gravity weight supported by the bearing.
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Figure 2-15  1/4-length-scale isolated frame with XY-FP bearings (Roussis, 2004)

During testing, the maximum compressive axial load on one of the bearings was 3.22 times the
gravity weight supported by the bearing. The corresponding base shear was 17% of the total
weight for a maximum acceleration of the earthquake simulator of 0.66 g. The maximum tensile
axial load on one of the bearings was 0.91 times the gravity weight supported by the bearing.
The corresponding base shear was 15% of the total weight for a maximum acceleration of the
earthquake simulator of 0.75 g. Details on XY-FP bearings are presented in Section 3.

25






SECTION 3
MODELING FRICTION PENDULUM ™ (FP) BEARINGS
3.1 Introduction

This section provides a general introduction to the Friction Pendulum ™ (FP) bearing and the
XY -Friction Pendulum (XY-FP) bearing, a literature review of the mathematical idealizations of
the conventional FP bearings, the mathematical idealization for XY-FP bearings, and the results
and discussions of simple numerical examples that compare the responses of each type of FP
bearing.

The FP bearing was developed by Earthquake Protection Systems (EPS) in the mid 1980s and
has been used for the seismic isolation of new and retrofitted structures since that time (Mokha et
al., 1996). The FP bearing has also been installed in buildings, bridges, industrial facilities and
infrastructure. Examples of FP bearing applications are presented in Zayas (1999).

The FP bearing consists of a concave sliding plate, an articulated slider and a housing plate. The
concave and housing plates are typically constructed of ductile cast iron and the concave surface
is typically constructed of ASTM A 240 stainless steel type 316L. The articulated slider is
typically machined from ASTM A 240 stainless steel type 304. Both the surface of the
articulated slider in contact with the concave surface and the surface of the housing plate in
contact with the articulated slider are faced with a low-friction composite material. Figure 3-1
presents a cross section of a FP bearing. Figure 3-2 is a photograph of a FP bearing.

Low-friction composite material

Housing plate (ductile cast iron) (bonded to the housing plate)
| - / |
R
Stainless steel concave Concave plate (ductile cast iron)

surface of radius R . . .
Low-friction composite material

(bonded to the slider)

Figure 3-1 Cross section of a Friction Pendulum ™ (FP) bearing

Figure 3-2 Photograph of a FP bearing (http://www.earthquakeprotection.com)
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The XY-FP bearing is a new type of FP isolator. It is manufactured by EPS and described in
Roussis (2004). An XY-FP bearing consists of two perpendicular steel beams (rails) and a
mechanical unit that connects the rails (hereafter termed the connector). The connector resists
tensile forces and slides to accommodate translation along the rails. Each rail has a sliding
stainless steel concave surface: the lower-rail-concave surface faces up while the upper-rail-
concave surface faces down. The connector has sliding surfaces faced with a high bearing low-
friction composite material. Figure 3-3 is a three-dimensional drawing of an XY-FP bearing.

Figure 3-3 3D-drawing of the XY-FP bearing (Roussis, 2004)

The intention of the construction detail of the connector is to uncouple the rails in the orthogonal
directions. The XY-FP bearing and its orthogonal uncoupling offer some advantages over the FP
bearing in terms of energy dissipation; displacement control and tension (uplift) resistance. A
detailed explanation of these potential advantages is presented later in this section.

Figure 3-4a presents an isometric view of an XY-FP bearing. Figure 3-4b presents schematic
cross sections of the XY-FP bearing. Figure 3-4b shows the connection detail for the rails.
Grooves machined at the cross sections of the rails engage the connector. This connector
provides resistance to tensile axial loads and intends to permit independent sliding in the two
orthogonal directions.

The friction contact areas of the XY-FP bearing in compression are different than those in
tension (see Figure 3-4). Figure 3-4b shows the friction interface surfaces of the XY-FP bearing
in compression as 4 and 4°. When the bearing is in compression, friction develops in each rail at
two different locations: the contact points between the concave surfaces of the rails and the
connector and the contact points at the articulation mechanism.

Figure 3-4b also shows the friction interface surfaces of the XY-FP bearing in tension as B and
B’. In tension, friction develops at the contact points at the engagement mechanism.

3.2 Characteristics of Friction Pendulum ™ (FP) bearings

The FP bearing can slide in any direction within the spherical concave surface under bi-
directional excitation. The FP bearing shifts the natural period of the structure with the pendulum
motion and dissipates energy by friction. The operation of the FP bearing is the same whether the
concave surface faces upwards or downwards. Constantinou et al. (1993) presented a complete
description of the properties of the FP bearing.
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Lower rail

a. [sometric view of a XY-FP bearing

Upper rail

Connector

7 Lower rail

=

Friction-interface
surfaces

Articulation

Lower rail

b. Schematic cross sections of a XY-FP bearing

(4 and A4 are the friction interfaces of the bearing in compression. B and B’ are the friction interfaces of the bearing
in tension)

Figure 3-4 Construction information for the XY-FP bearing

Figure 3-5 shows the FP bearing operation. (3-1) presents the undamped pendulum equation,
which is expressed in terms of the radius of curvature of the spherical surface (R), the lateral

displacement and acceleration of the isolator relative to the substructure (U and U,
respectively) and the gravitational acceleration (g).

U+EU=0 (3-1)
R

Equation (3-2) presents the undamped natural period (7' ) of a rigid mass supported on FP
bearings, which is determined from the sliding pendulum equation (3-1) and expressed in terms
of R and g. The isolated period is independent of the supported weight.
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Figure 3-5 Operation of FP bearing based on pendulum motion

T=2rx \/E (3-2)
g

3.2.1 Modeling FP bearings undergoing unidirectional excitation

Zayas et al. (1987, 1989) presents the force-displacement relationship for the FP bearing
undergoing unidirectional excitation. The force-displacement relationship is capable of
representing the global bilinear behavior of FP bearings. It has been validated by several
reduced-scale earthquake-simulator tests and by large-scale static and dynamic tests (Zayas et al.
1987, 1989; Constantinou et al. 1991, 1993, 1999; Mosqueda et al. 2004, etc.).

The force-displacement relationship can be derived from the free body diagram presented in
Figure 3-6 and by assuming small displacements. The FP bearing is considered in its deformed
position and the moment equilibrium is then formulated:

WU F,
(3-3)

M,=0— F= +
Rcos@ cos@

where F'is the horizontal resisting force in the direction of sliding, 7 is the weight carried by the
bearing, and F, is the friction force developed at the sliding interface.

The fact that the FP bearings are typically designed for a maximum displacement (U) that is
smaller than 20% of the radius of curvature (0.2R) enables small displacements theory to be used
(Constantinou et al., 1993). For small values of 8, cos@ =1 and (3-3) takes the form:

F :%uwf (3-4)
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Figure 3-6 Free body diagram of the FP bearing (Constantinou et al., 1993)

From the equilibrium of the bearing in the vertical direction and with the assumption of small
displacements, the weight carried by the bearing (#) can be assumed to be approximately equal
to the normal load (NV):

W=Ncos6 — F,sinf=N (3-5)

The friction force developed at the slider-spherical surface interface (£)) in a sliding FP bearing
is defined as the product of the coefficient of friction (x) and the normal force (N); and acts in

the direction opposite to that of the relative velocity of the isolator (U).
F, = uNsgnU (3-6)

Substituting (3-5) and (3-6) into (3-4) yields
N i
F=EU+,LLngnU (3-7)

The normal force (V) on the isolator varies with both the vertical ground accelerations and the
effect of overturning moment on the bearing. Equation (3-8) presents the vertical load variation
for vertically rigid structures (N is time-dependent once the dynamic equilibrium is formulated).

N = W{l iﬁi%J (3-8)
g

where U . 18 the vertical ground acceleration, and N, is the vertical force due to overturning
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(x according to the direction of the force). When the magnitude of the vertical contributions of
the vertical ground acceleration and/or of the overturning moment is large enough to overcome
the compressive vertical force, the bearing uplifts and the lateral load in the bearing is zero due
to the loss of contact between the slider and the spherical surface.

Experimental testing of friction interfaces of Teflon-base-composite material and stainless-steel
(Mokha et al., 1988, 1990, 1993; Constantinou et al., 1990, 1999; Bondonet et al., 1997,
Mosqueda et al., 2004) has shown the dependence of the coefficient of friction on both the
sliding velocity and the contact pressure. The relationship between the coefficient of friction (u)
and velocity can be idealized using the relationship of Constantinou et al. (1990):

1= o= Fone = Lo (3-9)

is the
pressure-dependent coefficient of friction at a low sliding velocity, and a is a constant that
depends on both the contact pressure and the interface condition (a controls the variation of the
coefficient of friction with sliding velocity). The coefficient of friction increases gradually from
f.in to f.atlow velocity and remain eventually constant at f, . at high velocity.

where f,

max

is the pressure-dependent coefficient of friction at a large sliding velocity, f,

min

Tsopelas et al. (1994b) presents the following expression to account for the pressure dependence
of 1. 1n(3-9). The coefficient of friction reduces with increased contact pressure.

fmax = Jmaxo — (fmaxo - fmaxp ) tanh(.sp) (3_10)

where p is the pressure, f

max p

is the maximum coefficient of friction at very high pressure, f,

ax 0
is the value of the coefficient at very low pressure and € is a constant parameter that controls the
transition of £, between very low and very high pressures. Per Tsopelas et al. (1994b), f . in

(3-9) can be assumed to be independent of pressure for the Teflon-base composite materials
typically used in the FP bearings.

3.2.2 Modeling FP bearings undergoing bi-directional (horizontal) excitation

The FP bearing is a bi-directional sliding system when subjected to a bi-directional (horizontal)
motion. Bi-directional excitation can be caused by bi-directional input motions and/or by
structural irregularities. Constantinou et al. (1990) presents a model based on a coupled
differential equation that describes the friction force of the bearing undergoing a bi-directional
excitation. The coupled differential equation is based on the differential equation originally
developed by Bouc (1971), subsequently extended and used by Wen (1976) for random
vibrations studies, and later extended by Park et al. (1986) to account for bi-directional response.

Equation (3-11) presents the horizontal forces [F,, F,] ina FP bearing undergoing bi-directional
excitation with the translational displacements [U,, U,]. The force components [F,, F,] are
coupled by [Z,, Z,] which are dimensionless variables governed by the differential equation
proposed by Park et al. (1986) and presented in (3-12). The quantities Z, and Z, in (3-12) account
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for the stick-slip condition: Z ==%1 and Z, =+1 during the sliding phase, whereas |Zx| <1 and
‘Z y‘ <1 during the sticking phase.

N N
Fo=" U +uNZ,, F, =" U, +uNZ, (-11)

{Z}Y}_{AUX}{ zysenlU,2,)+B) 2.z (ysen(U, Zj)’Lﬂ {U} (3-12)

ZyY B AU}, Zy(j/sgn(Uxe)+,B) Zz(}/sgn(UZ U

y y

where 4, y and B are dimensionless quantities that control the shape of the hysteretic loop

(typically calibrated with experimental data), and Y is the yield displacement. Mokha et al.
(1991) showed that when A/(S+y)=1, (3-12) describes a circular interaction curve and has the
solution:

Z_=cosd Z, =sin6 (3-13)

where @ is the angle with respect to the x-axis:

(U
@=tan" | == (3-14)
UX
Substituting (3-13) into (3-11) gives
_N 0 _N in @ 3-1
FX—EUX+,uNcos , Fy—EUy+,uNsm (3-15)

Equation (3-16) presents the magnitude of the instantaneous resultant force F,, with
U*=U;+U;.

= [F2+F} = %JW +24R(U, cos@+U, sin @)+ u*R? (3-16)

The force component in the x-direction F, approaches the unidirectional force in the x-direction
when the force component in the y-direction F), approaches zero, and vice versa for the y-
direction. Further, when unidirectional motion with any degree of orientation is imposed to the
bearing, the resultant force is oriented in the direction of the motion, and its magnitude is the
magnitude of the unidirectional force in that direction. Moreover, neglecting the restoring force
components in (3-15), the resultant force magnitude in bi-directional sliding is the friction force
UN : the force of a flat sliding (FS) bearing or a FP bearing with a infinite radius of curvature.

The bi-directional force-displacement relationship of a FP bearing undergoing bi-directional
(horizontal) motion has been modeled by Mosqueda et al. (2004) as a rate independent plasticity
model. Figure 3-7 presents the plasticity model components: the elastic component with the post-
yield hardening stiffness K, = N/R, and the hysteretic component modeled as elastic perfectly
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plastic with a yield force Q, =N and with an initial stiffness K, —K,, where K, =Q,/Y
(elastic stiffness).

For the rate-independent plasticity model, the force-displacement relationship is given by
F=K,U+F, (3-17)

where F=[F, F| 1", u=[U,, U, 1", and F, is the hysteretic force is given by
F,=(,-K,)(U-U,) (3-18)

where Up is the vector of plastic displacements. The yield surface is circular and satisfies the
condition ®(F ).

o(F,)=|F,|-0,<0 (3-19)
F F F
Op[
Ki-K
K - _
U / v U
P
a. Elastic force b. Hysteretic force c. Plasticity model

Figure 3-7 Plasticity model components (Mosqueda et al., 2004)

Mosqueda et al. (2004) defined F, for the FP bearing as the bi-directional friction force, namely,

F o~ N U, (3-20)
L. |

Substituting (3-20) into (3-17) yields

E}K{Z}WNL{U} (3-21)
e e,

Equation (3-21) is the same as the solution of the coupled differential equation for a circular
interaction curve presented in (3-15) if U =HUH cos@ and U ) =HUH sin@.

34



Mosqueda validated the plasticity model by several three-directional earthquake-simulator tests
of a rigid deck supported on four FP bearings. The measured responses of the tests correlated
well with the analytically predicted responses obtained using the plasticity model with a circular
yield surface.

Almazan et al. (2003a) extends the differential equation proposed by Park et al. (1986) to
consider large displacements. In the Almazan formulation, a gap element was included to model
uplift and impact on the bearing when subjected to tensile axial loads. One end of the gap
element was attached to the structure and the other end slid on the spherical surface. Since a gap
element does not transmit tension force, an algorithm was included in the formulation to assign
the force to the gap element at each time instant. Thus, the force on the gap element is either zero
once the displacement on the gap is greater than zero or the product of the gap stiffness (a large
stiffness) by the gap displacement. The Almazan model was validated by several three-
dimensional earthquake-simulator tests carried out at the Catholic University of Chile (Pontificia
Universidad Catolica de Chile) using a three-story frame supported on FP bearings (Almazan et
al., 2003b).

33 Characteristics of an XY-Friction Pendulum (XY-FP) bearing
3.3.1 Force-displacement relationship of XY-FP bearings

An XY-FP bearing is modeled as two unidirectional FP bearings oriented along the two
orthogonal directions of the XY-FP bearing.

Figure 3-8 presents an isometric view and free body diagrams of the rails of the idealized XY-FP
bearing sliding in the two directions. The XY-FP bearing subjected to a compressive load is
shown in its deformed position. The force-displacement relationships for the x and y directions of
the XY-FP bearing sliding in both directions are:

N

Eororpy = R_Ux + I, (3-22a)
N

Fxv-rey = R_Uy +F, (3-22b)

y

where F yy ) and F,,, ) are the horizontal resisting forces (hereafter termed the shear
forces) in the x and y directions, respectively; N is the normal force (3-8); R and R, are the
radii of curvature of the rails in the x and y direction, respectively; U, and U, are the lateral

displacements of the isolator relative to the substructure in the x and y directions, respectively;
and F; and F are the friction forces in the x and y directions defined by Roussis (2004) as

follows:

fo = (/1hx

F, = (/uhy|N| + U

N|+

side

F|lsen(,) (3-23a)

Jsen(U,) (3-23b)

Fx
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Figure 3-8 Isometric view (original and displaced position) and free body diagrams of the rails
of the XY-FP bearing in compression

where 4, and u,, are the velocity- and-pressure-dependent coefficients of friction associated
with the horizontal contact surfaces (during compression or tension) on the rail of the bearing,
and u,, 1s the velocity- and-pressure-dependent coefficient of friction associated with the side
contact surfaces between connector and the rails of the bearings. The top part of Figure 3-8
illustrates the surfaces associated with 4, , u, and g, . The absolute value of the normal
forces is included in the friction forces of (3-24) to generalize the use of these equations for XY-
FP bearings subjected to tensile axial loads.

Inserting (3-22a) and (3-22b) into (3-23a) and (3-23b), respectively; gives:

36



Fp =ty NI+ B RﬁU s+, [N+ g1 |F|)sen(0, lsgn(Ux) (3-24a)
L y
ny = 'Uhy|N| + Hige RﬁUx + (/lhx N| + U, E )sgn(Ux }sgn(Uy) (3-24b)

Equations (3-23a) and (3-23b) show bi-directional interaction between the shear force in one
direction and the friction force in the other direction during bi-directional sliding. The top part of
Figure 3-8 illustrates how when the connector slides in the x-direction, the shear force F, results

in an additional friction force in the y-direction onto one side of the upper rail. When the upper
rail of the bearing slides in the y-direction, the shear force F), results in an additional friction

force in the x-direction on one side of the lower rail.

Per Roussis (2004), the bi-directional interaction between the shear force (Fy or F)) in one
direction with the friction force (Fj or F) in the other direction is small. The terms g, 1 ,LX|N

b

Mo ,uhy|N | and 4, E| are higher-order terms and can be neglected, and (N/R,)U, is less than
0.2N since the FP bearing are typically designed for displacement U <0.2R. The additional

N|, with the maximum value reached only at the

friction force is always less than0.2x

maximum displacement.

For instructive purposes, the effect of the orthogonal coupling of the shear and friction forces is
numerically illustrated by assuming u, =4, =, R, =R, , the XY-FP bearing reaching the

maximum displacements of U =0.2R in both orthogonal directions at the same time, and
sgn(U i) is positive at the maximum displacement. For this case, the approximate maximum

friction (F,, i=x, y) and shear forces (F;, i=x, y) in each principal direction of the XY-FP

bearing are:
Fyy = p|N|+ g0.2N + N[+ £0.2N + | N]| (3-25)

F,=02N+F, (3-26)

These maximum friction and shear forces in each orthogonal direction of the bearing are
normalized by the maximum uncoupled friction ( ,u|N|) and shear(UN/Ri,u|N|) forces,

respectively. During compression on the bearing, the normalized maximum friction and shear
forces in each orthogonal direction are:

RCF :i:12+12,u+/12 (3-27)
I N
2 3
RCF = F, :O.2+1.2ﬂ+1.2ﬂ + U (3-28)
0.2N + uN 0.2+ u
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During tension on the bearing, the normalized maximum friction and shear forces in each
orthogonal direction of the bearing are:

F, ,LH-‘— 024+ u* + |- O.2+ﬂ”
HN| !

RTF, = (3-29)

-0.2 -0. >+ u’-0.
RTF - F _ +ﬂ+‘ 024+ + 1’| 02+,u”
" —02N+u|N| —0.2+ 4

(3-30)

Figure 3-9 shows the variation of the normalized maximum forces of (3-27) through (3-30) for
different coefficients of friction. During compression, the normalized maximum forces increase
as the coefficient of friction decreases. During tension, the normalized maximum forces decrease
as the coefficient of friction increases. For example, for a coefficient of friction of 7%, the
normalized maximum friction force during compression and tension are 1.28 and 1.12,
respectively; and the normalized maximum shear forces during compression and tension are 1.07
and 0.93, respectively. These quantities may suggest some significance of the horizontal
coupling of the shear and the friction forces; although, the effects of the horizontal coupling of
friction forces on the magnitudes of the shear force might be negligible in XY-FP bearings under
earthquake excitations because these numerical calculations assumed that the bearings reach the
maximum displacements in both orthogonal directions at the same time and that the velocities
are positive at the peak displacements in both directions: conditions that are difficult to achieve
during earthquake shaking. Although, the effect of bi-directional interaction of friction and shear
forces on the magnitude of forces can be negligible, the bi-directional interaction of the
orthogonal forces might affect slightly the shapes of the force-displacement loops of the
bearings. Section 3.4.4 illustrates the effect of the orthogonal coupling of shear and friction
forces on the shapes of the force-displacement loops of XY-FP bearings.

The orthogonal coupling of shear and the friction forces is neglected hereafter, that is, the force-
displacement relationship in each principal direction of a sliding XY-FP bearing is:

N .
F\v_ppy = R_Ux T Uy N| sgnU, (3-31a)

X

N .
Fxy-rpy = R_Uy + luhy|N| sgnU, (3-31b)

b4

To include the stick-slip condition in the force-displacement relationships of the XY-FP
bearings, Bouc’s (1971) equation (Park et al. 1986, Wen 1976) is adopted for the friction forces
in the XY-FP bearings:

N N
F. = R—UX +1,NZ,, F, = R—U}, + 11, |N|Z, (3-32)

x )

where Z, and Z,, replace the signum function in (3-31) and are used to account for the stick-slip
conditions, similarly to (3-11). Z, and Z,, are hysteretic dimensionless quantities governed by the
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following uncoupled differential equation:

2y, (40, [Z(ysen(U,z,)+ B) 0 . 3-33
zy,[ |av, [ 0 Z(rsen(v,2,)+ )| |0, o

where A, f, and y are dimensionless quantities that control the shape of the hysteresis loop,
defined in (3-11) and (3-12), and Y, and Y, are the yield displacements for each sliding direction.
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Figure 3-9 Variation of force ratios with coefficients of friction due to bi-directional interaction

between shear and friction forces

Similar to (3-9), the coefficient of frictions 4, and 4, can be computed using the friction-

velocity relationship developed by Constantinou et al. (1990):

/’lhx = fhxmax - (fhxmax - fhxmin )eiahx‘Ux‘ (3'343)
—ap,|U
iy = Foymas = Sy = i)™ (3-34b)

The parameters presented in (3-34a) and (3-34b) for each sliding direction have the same
meaning as those defined for (3-9). Herein, the subscripts 4, x, and y stand for horizontal, x-
direction, and y-direction, respectively. Equation (3-10) can be used to account for the pressure
dependence of the coefficient of frictions at a large sliding velocity in (3-34a) and (3-34b).

Equation (3-35) presents the magnitude of the resultant force at each time instant for an XY-FP

bearing. Equation (3-36) presents the magnitude of the resultant force assuming the same
coefficient of friction and radius of curvature for both directions of the XY-FP bearing:
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Frirorm =AFrryin )+ Fry ) =N U R E @, + WU, R £ 1,) (339

=Rﬁ\/(u2 +2u,RU, +U, )+ 2u,’R’) (3-36)

XV(XY-FP)
Neglecting the restoring force components in (3-35), that is, U, /R, =U y / R, =0 and assuming

the same coefficient of friction w4, in each direction of the XY-FP bearing, the resultant force

magnitude of an XY-FP bearing undergoing bi-directional sliding is z, N \J2 : the resultant force
an XY-FP bearing with a infinite radius of curvature in each direction.

3.3.2 An XY-FP bearing in tension

The pendulum motion and the friction mechanism are similar during both compression and
tension in the XY-FP bearing. Figure 3-10 shows the free body diagrams of the rails of the XY-
FP bearing in tension (P). The only difference between the free body diagrams of the bearing in
compression (Figure 3-8) and those of the bearing in tension is the direction of the vertical
forces; the horizontal components are of the same nature during both types of loading. The force-
displacement relationships of the bearing in tension are given in (3-32), where the force N is
negative.

R,

|
|
\a |
|
|

Figure 3-10  Free body diagrams of the rails of the XY-FP bearing in tension

In the XY-FP bearing, the difference between contact areas of the bearing in compression and in
tension can lead to different coefficients of friction in tension and in compression.

3.33 Rotation about the vertical axis of the XY-FP bearings

Figure 3-4 showed the connection detail of the rails of the XY-FP bearing. The rotation capacity
of one rail with respect to the other, about the vertical axis, depends on the internal construction
of the connector and the tolerances used in its construction. Figure 3-11 shows the moment-
rotation diagram about the vertical axis of the XY-FP bearing. The distance a-b in this figure
represents the total free rotation capacity of the XY-FP bearing. When the rotation about the
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vertical axis of the bearings is larger than the free rotation limit, the connector locks and transfers
moments between the rails. The analyses presented herein consider an idealized XY-FP bearing,
wherein sufficient rotation capacity is provided to avoid transfer of moments between rails, that
is, the rotational degree of freedom is neglected in the modeling of XY-FP bearings. The
inclusion of a rotational degree of freedom in a numerical model is likely of limited value
because the moment-rotation relationship of Figure 3-11 would have to be calibrated using
bearing-specific prototype test data.

3.3.4 The effect on energy dissipation of idealized uncoupled horizontal response of the
rails of the XY-FP bearings

The following presentation illustrates the differences in energy dissipation between the XY-FP
and the FP bearing undergoing bi-directional (horizontal) sliding but does not consider either the

variation of the coefficients of friction with velocity or the variation of bearing axial load.

AM

Figure 3-11  Proposed moment-rotation diagram about the vertical axis of an XY-FP bearing

Equation (3-37) presents the uncoupled friction components of the shear forces of the XY-FP
bearing (3-31). Equation (3-38) presents the coupled friction components of the shear forces of
the FP bearing (3-15).

F, =p,|N|sgnU, F, =, |N|sgnU, (3-37)

F = uN cos® Fg =uNsiné (3-38)

At each time instant, both the magnitude and sign of the friction force components (in the x and y
directions) in the FP bearing change with the orientation of the instantaneous velocity (angle 6)
per (3-38). In an XY-FP bearing, the velocity in each direction identifies the sign of the
corresponding friction force; the magnitudes of the friction forces are independent of the
instantaneous velocity per (3-37). Figure 3-12 shows the friction force interaction diagram (£
vs. Fg) of the FP bearing (3-38) and the XY-FP bearing (3-37) assuming that both the coefficient
of friction and the normal force are constant.
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Per (3-38), the FP bearing has a constant (radial) resultant friction force with magnitude uN. Per

(3-37), the resultant friction force in the XY-FP bearing can lie between 4N and uN V2 if the
coefficient of friction &« is identical in the x and y directions. If the XY-FP bearing is sliding

in either the x or y direction only (points 4 and B on Figure 3-12), the resultant friction force in
the bearing is uN. If the XY-FP bearing slides along the two orthogonal directions (e.g., point

Cxy.rpyon Figure 3-12), the resultant friction force in the bearing is #N \/5 .

XY-FP bearing (u,<t,)
Fy /

l_._.: LN Cé@p_P_)l
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Figure 3-12 Friction-force interaction diagrams of the FP bearing and the XY-FP bearing

The following presentation illustrates graphically and numerically the manner in which the
friction forces develop in a XY-FP and FP bearing using a simple three-step trajectory.

Figure 3-13a shows the displacement sequence of a FP bearing for the three-step example. The
sequence for the FP bearings is defined by the displacements d4, dp, and d¢ of the slider from the
origin in steps 4, B and C, respectively. Figure 3-13b shows the displacement sequence of an
XY-FP bearing. The sequence is defined as follows: the connector in step 4 slides along the
lower rail (x-direction) so the upper rail is displaced d in the x-direction; in step B, the upper rail
slides distance dj (y-direction) and the connector stays at dy4; in step C, the connector slides along
the lower rail a distance dxc -d4 in the x-direction so the upper rail is displaced that distance in
the x-direction and the upper rail slides the distance dyc-dp in the y-direction.
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No displaced Step A: ijsz, Uy1:0 Step B: UQ:dA ,U‘,z:dg Step C: Ux3: d)(c, Uy3:dYC
a. FP bearing

No displaced Step A: Uy;=d,, U,;=0 Step B: U,=d, ,U,»=dp Step C: Uys= dyc, Uy3=dyc

b. XY-FP bearing

Figure 3-13  Displacement sequences of the bearings in the three-step example

Figure 3-14 and Table 3-1 show the friction forces in the three steps of the example. In step 4,
the resultant friction force in both types of bearings is ¢N acting in the x-direction. In step B, the
resultant friction force in both types of bearings is #N acting in the -y-direction. In step C, the
resultant friction force in the FP bearing is 4N, oriented at angle € =26.56° in the example, and

the resultant friction force in the XY-FP bearing is uN V2 oriented at 45°,

UY Uy
C dyc C
i
B / ¢ B dXC
Fiad g Fixg
Z ds Fpe
dp
Fy |0 U Frea {0 U,
dA A x d4 A
Frp Frys
a. FP bearing b. XY-FP bearing

Figure 3-14 Displacements and friction forces for both FP bearings in the three-step example
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Table 3-1 Friction forces for both types of bearings in the three-step example

) Friction forces
Displacement - -
Step FP bearing XY-FP bearing
U, U, Fpx Fyy | Fu(resultant)’ | Fp | Fy | Fp(resultant)'
0-A dy 0 -UN 0 -UN(x) -UN 0 -UN(x)
A-B dy dp 0 -UN -UN() 0 -UN -UN()
C | dyc | dyc |-uNcos | -uNsin@| — -uN(@ UN | -uN | - uN~2 (45°)
1. F} 1s the resultant friction force acting in the direction presented in parenthesis (orientation)

3.4 FP and XY-FP bearings response to displacement orbits

As a consequence of the uncoupled friction forces in both sliding directions in the XY-FP
bearing, the energy dissipation in the XY-FP bearing is greater than that of the FP bearing when
the bearings undergo bi-directional sliding. The uncoupled friction forces of the two orthogonal
directions create larger enclosed areas within the force-displacement loops in each direction,
implying greater energy dissipation. The increase in energy dissipation can result in a reduction
of displacement response in bi-directional sliding.

34.1 Introduction

The responses of the FP and the XY-FP bearings subjected to bi-directional displacement
histories (orbits) are compared to illustrate the differences between the resultant forces and the
energy dissipation in both FP bearings.

The displacement orbits are obtained by applying sinusoidal displacement histories in the two
orthogonal directions as follows:

U.=Asin@t+¢,), U,=4,sinl@+9,) (3-39)

where 4,, @,, and ¢, are the amplitude, frequency and phase-angle, in direction i ( i=x or i=y ),
respectively.

The structural system considered in these analyses consists of a rigid mass supported by either
one XY-FP bearing or one FP bearing. The rails of the XY-FP bearing are oriented in the x and y
directions. The FP and the XY-FP (in both directions) bearings are assumed to have the same
coefficient of friction and radius of curvature. The isolation system is assumed to have a constant
compressive normal load and a constant coefficient of friction. The calculations consider only
the sliding phase; the stick condition of the isolator is neglected. Equation (3-40) is the force-
displacement relationship of a FP bearing undergoing unidirectional motion oriented at an angle
o to the x-axis. Equation (3-41) is the force-displacement relationship of either a FP or an XY-FP
bearing in bi-directional excitation:

F, :%Ua tF, (3-40)
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/4 w

Fo=— U *F, F,==—U, +F, (3-41)

where F; is the horizontal force of the bearings (3-16 or 3.31) in i direction (i=¢; x ory ), U, is
the unidirectional relative displacement in i direction, and F; is the friction force in i direction.

The numerical examples of this section consider W=106.8 kN (24 kips), R=991 mm (39 in.) and
1=0.10 when not specified otherwise.

3.4.2 Unidirectional motion oriented at angle « to the x-axis

Equation (3-42) presents the ratio of the resultant forces in the XY-FP and the FP bearings for
the same unidirectional motion oriented at angle a to the x-axis. This force ratio depends on the
displacements, the coefficient of friction, the radius of curvature, and the orientation of the
unidirectional motion. Figure 3-15 shows results of analysis using (3-42) for different
coefficients of friction, radii of curvature and orientations.

e = Facrm _ JU? £2uRU (cos ot +sin @)+ 24° R’

(3-42)

“ F U+ uR

xy

1.5

force-ratio (XY-FP/FP)
force-ratio (XY -FP/FF)
force-ratio (XY -FP/FF)

1 ; ; 1 ; ; 1 ; |
0 100 200 300 0 100 200 300 0 100 200 300
displacement [mm] displacement [mum] displacement [mm]
a. variation with y b. variation with R c. variation with o
o=45°; R=1016 mm. 1=0.05; a=45° 4#=0.05; R=1016 mm.

Figure 3-15  Force ratio variation in unidirectional motion

The force ratio increases for increases in both R and . The ratio decreases for an increase in U
and a decrease in . The maximum and minimum force ratios are v2 and 1, respectively. For

small displacements under bi-directional sliding, the force ratios are nearly +/2 . For small ¢, the

force ratios are nearly 1. When the XY-FP bearing is sliding in either the x or y direction only,
the force ratio is equal to 1.

The difference in energy dissipation on both types of bearings is evaluated by comparing the
areas of the friction-force-displacement loops. Figure 3-16 presents the friction force-
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displacement loops for both orthogonal directions in unidirectional motion. Equation (3-43)
presents the ratio of the friction force-displacement areas of the XY-FP and the FP bearings.

»7 FP
i ————— XY-FP Fy,
,,,,,,,,,,,,, pNeo R
cos & UNsin o
U.=Ucos o U,=Usin o

Figure 3-16  Friction force-displacement loops in unidirectional motion

Ar = Ay iyt Ay ) (4uNU )cosa +sin )

‘ A ppy + Ayp B (4,LLNU)(cos2 o +sin’

)= cosa+sina (3-43)

where A,y ) and A, . are the areas of the friction force-displacement loops of the XY-
FP bearing in the x and y directions, respectively; and A, ., and 4., are the areas of the

friction force-displacement loops of the FP bearing in the x and y directions, respectively. The

area ratio varies from a maximum value of \/5 when o is 45° to a minimum value of 1 when
is either 0° or 90° (the case of only one sliding direction in the XY-FP bearing).

Figure 3-17 shows the responses of both FP bearings to two sinusoidal displacement histories (x,
y) with identical characteristics imposed to achieve motion along a line oriented at an angle of
45° to the x-axis. This figure shows the displacement and force histories, the displacements and
force trajectories, the force-displacement loops in the x and y directions, and the loops of the
resultant forces and resultant displacements along the axis of motion. In this example, for a
maximum resultant displacement of 101 mm (4 in.), the maximum resultant force of the XY-FP
bearing is 21% greater than that of the FP bearing. If the maximum displacement is increased to
203 mm (8 in.), the force ratio is reduced to 1.14. Figures 3-17c and 3-17d show the force
trajectories with the friction force components marked with an asterisk (*). The ratio of the areas

contained within the force-displacement loops is v/2 per (3-43).

Figure 3-18 shows the displacement and force histories, the displacement and force trajectories,
and the force-displacement loops in the x and y directions for the FP and XY-FP bearings when
two sinusoidal displacement histories are imposed to achieve motion along a line oriented at an
angle of 30° to the x-axis. In this example, for a maximum resultant displacement of 101 mm (4
in.), the maximum resultant force of the XY-FP bearing is 20% greater than that of the FP
bearing. The force ratio is reduced to 1.13 if the maximum displacement is increased to 203 mm
(8 in.). Figures 3-18c and 3-18d show the force trajectories with the friction force components
marked with an asterisk (*). The ratio of the areas contained within the force-displacement loops
is 1/c0s30 and 1/sin 30, in the x and y directions, respectively.
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Figure 3-18  Unidirectional motion oriented 30° to the x-axis
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343 Bi-directional (horizontal) motion

The responses of the FP and the XY-FP bearings subjected to four bi-directional displacement
histories (orbits) are compared to illustrate the differences between the resultant forces and the
energy dissipation of both types of bearings in bi-directional excitation.

The displacements orbits are a circular shape, a figure-8 shape, a C shape, and a S shape. With
these shapes, it is possible to show the effects of the uncoupled and coupled behavior of the
friction forces on both the force orbits and the shapes of the force- displacement loops.

Figures 3-19 through 3-22 show the various shapes formed using sinusoidal displacement
histories. For both FP bearings, each figure shows the displacement histories, the displacement
orbit, the force orbits, the friction force interaction diagram, and the force-displacement loops.
Table 3-2 presents the maximum resultant forces and the total energy dissipated in each
displacement orbit.

Figure 3-23 shows the variation of the force ratio with the amplitude of the sinusoidal
displacement histories in the different displacement orbits. The force ratio decreases significantly
for an increase in the displacement amplitude.

Analysis of Figures 3-17 though 3-23 and of Table 3-2 leads to the followings observations:

1. The shapes and areas of the force-displacement loops in the FP bearing are path-
dependent, that is, dependent of the instantaneous velocity. This dependence is evident by
comparing the force-displacement loops in the circular orbit to those of the unidirectional motion
oriented at an angle of 45° to the x-axis; these two orbits have identical characteristics but
different phase angles. The area of the force-displacement loops of the FP bearing in the circular
orbit is 11% larger than that in the motion oriented at an angle of 45° to the x-axis. Further, the
loops in the circular orbits have elliptical shape, in contrast to the rectangular shape of the loops
in the unidirectional motion oriented 45° to the x-axis.

2. The shapes and areas of the force-displacement loops in the XY-FP bearing are path-
independent, that is, independent of the instantaneous velocity. If an XY-FP bearing is subjected
to two displacement obits that have identical characteristics but different phase angles, both the
shapes and areas of the force-displacement loops will be identical.

3. The path-independent friction forces in the XY-FP bearing lead to greater energy
dissipation per cycle under bi-directional excitation. The energy dissipation on the XY-FP and
FP bearings under bi-directional excitation can be significantly different. In the examples of this
section, the energy dissipated per cycle in the XY-FP bearing is between 23% and 41% larger
than that of the traditional FP bearing.

A general conclusion from the examples of section 3.4 is that the differences in terms of force
responses and dissipation of energy between XY-FP and FP bearings are path-dependent. This
dependence is the result of the bi-directional coupling of friction forces in FP bearings.
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Figure 3-23  Force-ratio variation with the amplitude of the sinusoidal displacement histories

3.4.4 Effects of bi-directional interaction between shear and friction forces during bi-
directional sliding on the force-displacements loops of a XY-FP bearing

Section 3.3.1 demonstrated that the effects of the horizontal coupling of friction forces in the
shear-force magnitudes can be negligible in XY-FP bearings under earthquake excitation; for
instructive purposes, this section illustrates the effect of the bi-directional interaction between
shear and friction forces of the XY-FP bearing under bi-directional excitation on the shapes of
the force-displacement loops of the isolators. The response of the XY-FP bearings to bi-
directional displacement histories (orbits) assuming orthogonal coupling of shear and friction
forces as presented in section 3.3.1 are compared with those calculated assuming orthogonal
uncoupling in section 3.4.1.

The structural system considered in these analyses is the same that the one used in section 3.4.1:
a rigid mass of weight #=106.8 kN (24 kips) and XY-FP bearings with R, =R, =991 mm (39

in.) and u, =u,, = U, =0.1 (according to the notation of (3-23)). The isolation system is

assumed to have a constant compressive normal load and a constant coefficient of friction. The
calculations consider only the sliding phase; the stick condition of the isolator is neglected.

The responses of a XY-FP bearings assuming bi-directional interaction between the shear forces
in one direction with the friction force in the other direction during bi-directional sliding are
calculated using in a similar way that those in section 3.4.1. The shear forces are calculated using
(3-22). Numerical iterations are used to find the convergence of the friction forces of (3-23), the
first numerical iteration assumed F; = ,u|N | sgnU, .
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Figures 3-24 and 3-25 show the comparison of responses of the XY-FP bearing by assuming
both orthogonal uncoupling (Equation 3-31) and coupling (Equation 3-15) of shear and friction
forces to two sinusoidal displacement histories (x, ) imposed to achieve motion along a line
oriented at an angle of 45° and 30° to the x-axis, respectively. These figures show force-
displacements loops of the response assuming bi-directional interaction between the shear forces
in one direction with the friction force in the other direction having fictional and restoring forces
larger than those that assume orthogonal uncoupled shear and friction forces.

Figure 3-26 shows the comparison of responses of the XY-FP bearing by assuming orthogonal
uncoupling and coupling of shear and friction forces to two sinusoidal displacement histories
imposed to achieve motion with a circular trajectory. This figure shows force trajectories rotated
with respect to the vertical axis when the shears and friction forces are assumed coupled. Further,
the force-displacement loops of the response assuming orthogonal coupling show discontinuous
restoring stiffness.

The orthogonal coupling of shear and friction forces in a XY-FP bearing can lead to variations in
the friction and restoring forces of the force-displacement loops. These variations are path
dependent.

3.5 FP and XY-FP bearing responses to input acceleration orbits

The numerical response of a rigid mass supported on a FP and an XY-FP bearings and subjected
to five bi-directional acceleration histories (acceleration orbits) are compared to show the
differences between the displacement and force responses of the coupled and the uncoupled
behavior of the FP and the XY-FP bearings, respectively. The numerical examples assume the
following: W=106.8 kN (24 kips), R=991 mm (39 in.), fmax=0.100, fin=0.065, and a =12 s/m
(0.30 s/in).

The acceleration orbits have the same shapes as those of the displacement orbits considered in
section 3.4. The numerical analyses are performed using 3D-BASIS-ME (Tsopelas et al., 1994;
Roussis, 2004) assuming a constant normal load. Figures 3-27 through 3-32 show the
acceleration orbits and the displacement and force responses. Table 3-3 presents the maximum
responses of both types of bearings to the acceleration orbits.

Figure 3-27 presents the responses of both FP bearings to acceleration histories oriented at 45° to
the x-axis. The larger energy dissipation in the XY-FP bearing undergoing bi-directional sliding
is observed through smaller calculated displacements, whereas the maximum resultant force in
each bearing is identical. The maximum displacement in the XY- FP bearing is 20% smaller than
that in the FP bearing.

Figure 3-27c presents the force-response histories of both isolators having fluctuations just after
every peak-value is reached. These fluctuations are usually found in analytical and numerical
solutions of sliding system with superstructures having low-viscous damping and in sliding
systems considering constant coefficients of friction (i.e., Coulomb friction). The fluctuations are
created in the solution of the state of motion at the points of zero velocity. Figures 3-27¢ and 3-
271 present the superimposed response histories of the XY-FP bearing and the conventional FP
bearing, respectively. These two figures show the association of the force fluctuation with the
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points of zero velocity. The intensity of these fluctuations depends on the inertial properties,
viscous damping, coefficients of friction, and restoring forces. Makris (1991a and 1991b)
reported on the effect of viscous damping and constant friction coefficients on these fluctuations.
In the examples of this section, the absence of viscous damping of the rigid block assumed in the
analysis led to force responses having these oscillations, however these oscillations are
diminished by the assumption of coefficients of friction varying with velocity.

Figures 3-28 and 3-29 present the total and the steady-state responses of the isolation systems to
the circular acceleration orbit, respectively. The total response is presented only for the circular
orbit; for the Figure 8-shaped, C-shaped, and S-shaped acceleration orbits, the steady-state part
of the solutions are presented to show clearly the effects of energy dissipation on the responses.

Figure 3-29, which shows the steady-state responses of the isolation systems to an acceleration
orbit of circular shape, is the only case considered in which both the maximum resultant
displacement and force are larger in the XY-FP bearing than in the FP bearing. The resultant
maximum displacement in the XY-FP bearing is 16% greater than that in the FP bearing. The
maximum resultant force in the FP bearing is 14% smaller than the maximum resultant force in
the XY-FP bearing.

Figure 3-30 presents the steady-state responses of the isolation systems for the Figure 8-shaped
acceleration orbit. The resultant maximum displacements and forces in the XY-FP bearing are
15% and 6% smaller than those in the FP bearing, respectively. Figure 3-31 presents the steady-
state responses of the isolation systems for the C-shaped acceleration orbit. The resultant
maximum displacements and forces in the XY-FP bearing are 20% and 6% smaller than those in
the FP bearing, respectively. Figure 3-32 presents the steady-state responses of the isolation
systems for the S-shaped acceleration orbit. The resultant maximum displacements and forces in
the XY-FP bearing are 19% and 6% smaller than those in the FP bearing, respectively.

Analysis of Figures 3-27 though 3-32 and of Table 3-3 leads to the followings observations:

1 The responses to all acceleration orbits, except for the circular orbit, show the benefits of
the higher energy dissipation in the XY-FP bearing undergoing bi-directional excitation, namely,
smaller displacements and forces.

2 Under bi-directional harmonic excitation, the displacement and force responses of a system
equipped with XY-FP bearings will likely be smaller than those of a system equipped with
comparable FP bearings.

3.6 FP and XY-FP bearing responses to earthquake excitations

Numerical responses of the rigid mass supported on a FP and an XY-FP bearings and subjected
to different earthquake histories are compared to show the differences between the peak
responses of the coupled and the uncoupled behavior of the FP and the XY-FP bearings,
respectively. The FP and the XY-FP (in both directions) bearings are assumed to have the same
coefficient of friction and radius of curvature. The numerical examples assumed the following:
W=106.8 kN (24 kips), R=991 mm (39 in.), and fiax= fmin=0.06.
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The numerical analyses were performed using 3D-BASIS-ME (Tsopelas et al. 1994, and
Roussis, 2004). The isolation system is assumed to have a constant compressive normal load and
a constant coefficient of friction. Five earthquake histories were used in the numerical analyses
and are listed in Table 3-4. The near-field earthquake histories were obtained from the PEER
strong ground motion database (http://peer.berkeley.edu/smcat) and the far-field earthquake
histories were obtained from ground motions developed during the FEMA/SAC steel project.
The numerical response of the XY-FP and FP bearings were evaluated for different scale factors
of the accelerations of the earthquake histories.

Table 3-4 Earthquake histories used for numerical analysis of FP and XY-FP bearings

Earthquake history Magnitlude Distance> | PGA” [g] | puration *
M, [km] E-W | N-S [sec.]
(near-lf?f?lfl,lic?}:)lz E)f‘zv/la?dszﬁifczivity) 6.9 34 0.60 | 0.82 48
(near—ﬁle?cz,gﬁlﬁasl(s),ﬂ:ri’gfvsv;ztz?ectivity) 74 1.2 0.84 | 0.85 33
2o Nortnids Newm s sion |3 1oy | 050 | oss |
lggffacr?ﬁljl’d%lfﬁis;f)mn 8.0 42 0.56 | 0.54 | 100
1985 héj? lgglilts%ff ;Tﬂ;ta“on 8.1 385 0.17 | 0.10 135

Moment magnitude

Closest distance to rupture

North-south and east-west component

Time between the first and last acceleration peak exceeding 0.05g
Longitudinal and transversal component

(U, TN S VS I O I

Figure 3-33 presents the maximum response of the XY-FP bearing normalized by the maximum
response of the FP bearing to the earthquake histories of Table 3-4 for different acceleration
scale factors. Figure 3-33a shows that in most of the cases, the maximum displacements in the
XY-FP bearings are smaller than those in the conventional FP bearing. The displacement
response of the XY-FP bearing to 80% 1985 Chile, Llolleo and to 200%, 150% and 100% 1985
Mexico City, SCT earthquake histories are larger than those of the FP bearing. The normalized
displacements range between 0.62 and 1.13. Figure 3-33b shows that in most of the cases, the
maximum shear forces in the XY-FP bearings are larger than those in the conventional FP
bearing. The force response of the XY-FP bearing to 200% 1994 Northridge, Newhall Fire
station and to 200%, 150%, 100% and 80% 1978 Tabas earthquake histories are smaller than
those of the FP bearing. The normalized forces range between 0.86 and 1.34.

Under bi-directional earthquake excitation, the displacement response of a system equipped with
XY-FP bearings will likely be slightly smaller than those of a system equipped with comparable
FP bearings and the force response of a XY-FP isolation system will likely be slightly larger than
those of a comparable FP isolation system.
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3.7 Summary remarks

This section introduced the XY-FP bearing as a modified FP bearing and included a literature
review of numerical models used for FP bearings and XY-FP bearings. The XY-FP bearing is
modeled as two uncoupled unidirectional FP bearings oriented along the two orthogonal
directions (rails) of the XY-FP bearing. The orthogonal uncoupled behavior of the rails of the
XY-FP bearing leads to higher energy dissipation when the bearing is subjected to bi-directional
excitation. The uncoupled behavior of the rails of the XY-FP bearings leads to path-independent
force-displacement loops, whereas the coupled behavior of the FP bearings leads to path-
dependent force-displacement loops. Numerical examples showed several differences between
the responses of the bearings under bi-directional earthquake excitation, namely, the
displacement response of an isolation system equipped with XY-FP bearings will likely be
slightly smaller than those equipped with a comparable FP bearings, and the force response of a
XY-FP isolation system will likely be slightly larger than those of a comparable FP isolation
system.
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SECTION 4
XY-FP BEARING TESTING PROGRAMS
4.1 Introduction

The main objectives of the experimental component of this project were: 1) to provide data on
the behavior of bridges isolated using XY-FP bearings, 2) to introduce new knowledge on
responses of XY-FP isolated systems under bi-directional and three-directional excitation, 3) to
verify the effectiveness of the new isolator as an uplift-prevention isolation system, and 4) to
evaluate the accuracy of the mathematical idealization of XY-FP bearings during three-
dimensional excitation.

The experimental work was carried out in the Structural Engineering and Earthquake Simulation
Laboratory (SEESL) at UB using a pair of earthquake simulators. The experimental work was
conducted using one 1/4-length-scale truss-bridge model (Warn, 2006).

This section provides a description of the overall test plan that includes the test setup, loading,
measurement systems and test procedures. The details of both the truss-bridge model and the
XY-FP bearings are presented in Section 4.2. Section 4.3 describes the test setup and the
instrumentation. Sections 4.4 and 4.5 present the test procedures for two and three-directional
harmonic and earthquake excitations.

4.2 Truss-bridge model and set of bearings

The model is a single-span 1/4-length-scale steel truss superstructure of a bridge with a clear
span of 10.67 m (35 feet), width of 1.22 m (4 feet), height of 1.52 m (5 feet), and a total weight
of 398 kN (89.5 kips). The total weight includes self-weight, steel plates and lead bricks. Figure
4-1 presents the construction details of the truss-bridge model, the configuration of both the steel
plates and lead bricks on the truss bridge, and the general dimensions of the model. Table 4-1
presents the scale factors for the truss-bridge-model design.

The bridge model simulates a single-span truss bridge isolated with four XY-FP bearings on
rigid supports. The geometry of the truss-bridge model and the dynamic excitations were
selected to produce tensile forces in the XY-FP bearings.

The truss-bridge model was supported on one set of four bearings that had identical radii of
curvature in both principal directions of the bearings. The radius of curvature was 991 mm (39
in.) for a sliding period in each principal direction of the bearing of 2 seconds at the model scale
(4 seconds at the prototype scale). This set of bearings was designed for a maximum
displacement capacity of 203 mm (8 in.) in each direction of the bearing. Figure 4-2a presents
the construction details of the set of bearings. Figure 4-2b is a photograph of one of the bearings
in the test fixture.
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Table 4-1 Scale factors for the truss-bridge model

Dimension Scale factor'
Linear dimension, / L A 4
Elastic modulus, £ FL? A 1
Force, O F dp AP 16
Pressure, p FL? g 1
Acceleration, a LT? a 1
Gravitational acceleration, g LT? Ag 1
Velocity, v LT M 2
Time, ¢ T i 2
Displacement, ¢ L A 4
Period, T T e 2
Frequency, o T A 1/2
Stress, o FL? AE 1
Strain, ¢ - 1 1
Poisson ratio, v - 1 1
Energy FL g Al 64

A: Prototype property/scale-model property
4.3 Earthquake simulator test fixture

The isolated truss-bridge model was supported by load cells mounted on the platform extensions
of the two earthquake simulators. The truss-bridge model was isolated using four XY-FP
bearings with the lower beam (rail) of the bearing (concave surface facing upwards) oriented in
the y (north-south) direction; that is, the fixed rail oriented in the y direction and the upper rail
sliding in the x (east-west) direction.

Figure 4-2b shows the installation detail of one XY-FP bearing in the test fixture. Predrilled steel
plates connected the upper rail to the truss-bridge model and the lower rail to the load cell. Holes
were predrilled to speed the erection of the model. Some rotation capacity of the connectors was
consumed in the bearings installation because the holes in the pairs of plates did not align
perfectly. (In hindsight, the steel plates should have been leveled, the isolators installed and then
all holes drilled.)

Figures 4-3 and 4-4 present a general view and photographs of the test setup, respectively. The
test instrumentation included four types of transducers: 26 string potentiometers, 45
accelerometers, four load cells, and a Krypton K600 Portable CMM System. The potentiometers
measured absolute displacements on the extensions of the earthquake simulators, the bearings
and the truss-bridge model. The accelerometers were placed on the steel plates of the model, on
the extension of the earthquake simulators to obtain the actual accelerations that are applied to
the model, and on XY-FP bearings (as an indirect check of the displacement measurements). The
load cells, which were calibrated for prior testing (Warn, 2006), measured the reactions on the
bearings. The Krypton K600 measured displacements for bearing 1 and provided a redundant
measurement of displacements for bearing 2, for the west-sideearthquake simulator extension,
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Figure 4-2  XY-FP bearings
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and for the upper and lower chords of the truss bridge. All tests were recorded by a Studio DVR
900 video system.

Table 4-2 lists the channels, instrument notation, instrument type, instrument orientation and
location of each transducer. Figures 4-5 and 4-6 show the locations of the transducers and the
coordinate system in plan and sectional views. In these figures, the number in parenthesis for
each transducer corresponds to the channel number listed in Table 4-2. Figure 4-7 presents some
photographs of the instrumentation. Figure 4-8 defines the notation used for the instrumentation
list of Table 4-2.

4.4 Bi-directional (horizontal) excitation tests: acceleration-orbits

To study the force-displacement characteristics of the XY-FP isolated system under simple
excitations, unidirectional and bi-directional sinusoidal accelerations histories (hereafter
acceleration-orbit excitations) were applied to the isolated truss-bridge model.

The responses of the isolated truss-bridge model were predicted prior testing by numerical
analyses using 3D-BASIS-ME (Roussis et al., 2004) and selected acceleration orbits. These
analyses used the coefficients of friction obtained from the displacement-controlled tests of
Roussis (2004), vertical load variation and variation of the coefficient of friction with velocity.
The numerical analyses included a mass eccentricity of 1% of the plan dimensions of the truss-
bridge model to account for the likely accidental mass eccentricity in the test fixture. The yield
displacement of the XY-FP bearings was assumed to be 0.5 mm (0.02 in.) based on the
mechanical properties of the sliding interfaces of FP bearings (Tsopelas et al., 1994b). The
model assumed that the mass of the truss-bridge model was lumped at the top and bottom chords
of the truss-bridge. These analyses were used to select trial amplitudes of different acceleration-
orbit histories.

The acceleration-orbit excitations were obtained by applying sinusoidal accelerations histories in
the two orthogonal directions. These orbits were applied to the isolated truss-bridge model by the
earthquake simulator in a displacement-control mode as follows:

U = A snCrire), U, = sinloai ) @

where 4; , f; and ¢; are the amplitude, frequency and phase-angle, in direction i ( i=x, y),
respectively. Table 4-3 presents the test sequence, test notation and variables of the different
acceleration-orbit excitations. These variables were selected, so as not to exceed either the
physical limitations of the earthquake simulators or the displacement, compressive, and tensile
capacity of the isolators. Figure 4-9 presents the shapes of the orbits.
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Table 4-2 Instrumentation list

Channel Notation | Transducer Respopse Orientation Transducer location Level
quantity

1 Time - time - -

2 AXTWLO accelerometer acceleration X E.S. extension-west 0
3 AYTWLO accelerometer acceleration y E.S. extension-west 0
4 AZTWLO accelerometer acceleration z E.S. extension-west 0
5 AXTELO accelerometer acceleration X E.S. extension-east 0
6 AYTELO accelerometer acceleration y E.S. extension-east 0
7 AZTELO accelerometer acceleration z E.S. extension-east 0
8 AXTWLI accelerometer acceleration X E.S. extension-west (center) 1
9 AYTWLI1 accelerometer acceleration y E.S. extension-west (center) 1
10 AZTWLI1 accelerometer acceleration z E.S. extension-west (center) 1
11 AXTEL1 accelerometer acceleration X E.S. extension-east (center) 1
12 AYTELI1 accelerometer acceleration y E.S. extension-east (center) 1
13 AZTELI1 accelerometer acceleration z E.S. extension-east (center) 1
14 AYTWLIa* accelerometer acceleration y E.S. extension-west 1
15 AZTWLI1a% | accelerometer acceleration z E.S. extension-west 1
16 AXTELla’ accelerometer acceleration X E.S. extension-east 1
17 AYTELIa* accelerometer acceleration y E.S. extension-east 1
18 AZTELla* accelerometer acceleration z E.S. extension-east 1
19 AXTWLIb* accelerometer acceleration X E.S. extension-west 1
20 AYTWLIb' accelerometer acceleration y E.S. extension-west 1
21 AZTWLIb accelerometer acceleration z E.S. extension-west 1
22 AXTEL1b? accelerometer acceleration X E.S. extension-east 1
23 AYTEL1b? accelerometer acceleration y E.S. extension-east 1
24 AZTELI1b* accelerometer acceleration z E.S. extension-east 1
25 DXBIL1 potentiometer displacement X plate of load cell (bearing 1) 1
26 DXB2L1 potentiometer displacement X plate of load cell (bearing 2) 1
27 DYB2L1 potentiometer displacement y (north) plate of load cell (bearing 2) 1
28 DXB3L1 potentiometer displacement X plate of load cell (bearing 3) 1
29 DYB3L1 potentiometer displacement y (north) plate of load cell (bearing 3) 1
30 DXB4L1 potentiometer displacement X plate of load cell (bearing 4) 1
31 DYB4L1 potentiometer displacement v (south) plate of load cell (bearing 4) 1
32 SXBI1L2 load cell shear force X bearing 1 2
33 SYBI1L2 load cell shear force y bearing 1 2
34 MXBI1L2 load cell moment X bearing 1 2
35 MYBI1L2 load cell moment y bearing 1 2
36 NZBI1L2 load cell axial force z bearing 1 2
37 SXB2L2 load cell shear force X bearing 2 2
38 SYB2L2 load cell shear force y bearing 2 2
39 MXB2L2 load cell moment X bearing 2 2
40 MYB2L2 load cell moment y bearing 2 2
41 NZB2L2 load cell axial force z bearing 2 2
42 SXB3L2 load cell shear force X bearing 3 2
43 SYB3L2 load cell shear force y bearing 3 2
44 MXB3L2 load cell moment X bearing 3 2
45 MYB3L2 load cell moment y bearing 3 2
46 NZB3L2 load cell axial force z bearing 3 2
47 SXB4L2 load cell shear force X bearing 4 2
48 SYBA4L2 load cell shear force y bearing 4 2
49 MXB4L2 load cell moment X bearing 4 2
50 MYB4L2 load cell moment y bearing 4 2
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Table 4-2 Instrumentation list (cont.)

Channel | Notation ' Transducer Resp onse Orientation Transducer location 2 Level *
quantity
51 NZB4L2 load cell axial force z bearing 4 2
52 AXBI1L2 accelerometer acceleration X bearing 1 2
53 AYBI1L2 accelerometer acceleration y bearing 1 2
54 AZB1L2 accelerometer acceleration z bearing 1 2
55 AXB2L.2 accelerometer acceleration X bearing 2 2
56 AYB2L2 accelerometer acceleration y bearing 2 2
57 AZB21.2 accelerometer acceleration z bearing 2 2
58 AXB3L2 accelerometer acceleration X bearing 3 2
59 AYB3L2 accelerometer acceleration y bearing 3 2
60 AZB3L2 accelerometer acceleration z bearing 3 2
61 AXB4L2 accelerometer acceleration X bearing 4 2
62 AYBA4L2 accelerometer acceleration y bearing 4 2
63 AZBA4L2 accelerometer acceleration z bearing 4 2
64 DXBIL2 potentiometer displacement X bearing 1 2
65 DXB2L2 potentiometer displacement X bearing 2 2
66 DYB2L2 potentiometer displacement y (north) bearing 2 2
67 DXB3L2 potentiometer displacement X bearing 3 2
68 DYB3L2 potentiometer displacement y (north) bearing 3 2
69 DXB4L2 potentiometer displacement X bearing 4 2
70 DYB4L2 potentiometer displacement y (south) bearing 4 2
71 DXBIL3 potentiometer displacement X lower truss chord (bearing 1) 3
72 DXB2L3 potentiometer displacement X lower truss chord (bearing 2) 3
73 DYB2L3 potentiometer displacement y mounting beam-west (bearing 2) 3
74 DXB3L3 potentiometer displacement X lower truss chord (bearing 3) 3
75 DYB3L3 potentiometer displacement y mounting beam-cast (bearing 3) 3
76 DXB4L3 potentiometer displacement X lower truss chord (bearing 4) 3
77 DYBA4L3 potentiometer displacement y mounting beam-east (bearing 4) 3
78 AXSWL4 accelerometer acceleration X steel plate-west 4
79 AYSWLA4 accelerometer acceleration y steel plate-west 4
80 AZSWLA4 accelerometer acceleration z steel plate-west 4
81 AXSCL4 accelerometer acceleration X steel plate-central 4
82 AYSCL4 accelerometer acceleration y steel plate- central 4
83 AZSCL4 accelerometer acceleration z steel plate- central 4
84 AXSEL4 accelerometer acceleration X steel plate-east 4
85 AYSEL4 accelerometer acceleration y steel plate-east 4
86 AZSEL4 accelerometer acceleration z steel plate-east 4
87 DXSWL4 potentiometer displacement X steel plates-west 4
88 DXSEL4 potentiometer displacement X steel plates-east 4
89 DYSWL4 potentiometer displacement y steel plates -west 4
90 DYSCL4 potentiometer displacement y steel plates -central 4
91 DYSEL4 potentiometer displacement y steel plates -east 4
92 AZTELla" accelerometer acceleration z E.S. extension-east (center) 1
93 KXBIL1 Krypton-K600 displacement X Load cell plate (bearing 1) 1
94 KYBIL1 Krypton-K600 displacement y Load cell plate (bearing 1) 1
95 KZBIL1 Krypton-K600 displacement z Load cell plate (bearing 1) 1
96 KXBI1Lla Krypton-K600 displacement X Load cell plate (bearing 1) 1
97 KYBIL1la Krypton-K600 displacement y Load cell plate (bearing 1) 1
98 KZBI1Lla Krypton-K600 displacement z Load cell plate (bearing 1) 1
99 KXB2L1 Krypton-K600 displacement X Load cell plate (bearing 2) 1
100 KYB2L1 Krypton-K600 displacement y Load cell plate (bearing 2) 1
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Table 4-2 Instrumentation list (cont.)

Channel | Notation ' Transducer Resp onse Orientation Transducer location 2 Level *
quantity
101 KZB2L1 Krypton-K600 displacement z Load cell plate (bearing 2) 1
102 KXB2L1a Krypton-K600 displacement X Load cell plate (bearing 2) 1
103 KYB2L1a Krypton-K600 displacement y Load cell plate (bearing 2) 1
104 KZB2L1a Krypton-K600 displacement z Load cell plate (bearing 2) 1
105 KXB1L2 Krypton-K600 displacement X Bearing 1-upper beam 2
106 KYBI1L2 Krypton-K600 displacement y Bearing 1-upper beam 2
107 KZB1L2 Krypton-K600 displacement z Bearing 1-upper beam 2
108 KXBI1L2a Krypton-K600 displacement X Bearing 1-slider 2
109 KYBI1L2a Krypton-K600 displacement y Bearing 1-slider 2
110 KZBI1L2a Krypton-K600 displacement z Bearing 1-slider 2
111 KXB2L2 Krypton-K600 displacement X Bearing 2-upper beam 2
112 KYBIL2 Krypton-K600 displacement y Bearing 2-upper beam 2
113 KZB2L2 Krypton-K600 displacement z Bearing 2-upper beam 2
114 KXBI1L2a Krypton-K600 displacement X Bearing 2-slider 2
115 KYBI1L2a Krypton-K600 displacement y Bearing 2-slider 2
116 KZBI1L2a Krypton-K600 displacement z Bearing 2-slider 2
117 KXBI1L3 Krypton-K600 displacement X Lower chord (bearing 1) 3
118 KYBIL3 Krypton-K600 displacement y Lower chord (bearing 1) 3
119 KZBI1L3 Krypton-K600 displacement z Lower chord (bearing 1) 3
120 KXBI1L3a Krypton-K600 displacement X Mounting beam (bearing 1) 3
121 KYBI1L3a Krypton-K600 displacement y Mounting beam (bearing 1) 3
122 KZB1L3a Krypton-K600 displacement z Mounting beam (bearing 1) 3
123 KXB2L3 Krypton-K600 displacement X Lower chord (bearing 2) 3
124 KYB2L3 Krypton-K600 displacement y Lower chord (bearing 2) 3
125 KZB2L3 Krypton-K600 displacement z Lower chord (bearing 2) 3
126 KXB2L3a Krypton-K600 displacement X Mounting beam (bearing 2) 3
127 KYB2L3a Krypton-K600 displacement y Mounting beam (bearing 2) 3
128 KZB2L3a Krypton-K600 displacement z Mounting beam (bearing 2) 3

—

(98]

See notation of instrumentation in Figure 4-8
Earthquake simulator (E.S.)
Level 0 and 1: E.S. and extensions of E.S., level 2: bearings, level 3: lower chord and mounting

beam of the truss bridge, and level 4: steel plates.

See locations of accelerometers on Figures 4-5 and 4-6

00
D: displacement J L|J

orientation

]

level

A: acceleration
M: moment

N: normal load
S: shear force

K: Krypton

Figure 4-8

B1: Bearing 1
B2: Bearing 2
B3: Bearing 3
B4: Bearing 4

TE: east simulator
SW: west steel plate
SE: east steel plate
SC: central steel plate

TW: west simulator

Instrumentation notation
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4.5  Earthquake-simulator tests
4.5.1 Introduction

A series of numerical analyses of the isolated truss-bridge model subjected to a set of near-field
earthquakes motions were undertaken to develop the earthquake-simulator testing program. A
group of qualitatively diverse ground motions were scaled so as not to exceed either the physical
limitations of the earthquake simulators or the displacement and tensile and compressive force
capacities of the XY-FP bearings.

The near-field earthquake histories were selected from earthquakes with different source
parameters, soils conditions, intensities and durations. Earthquake histories were first studied and
classified according to their characteristics. The earthquake histories were obtained from the
PEER strong ground motion database (http://peer.berkeley.edu/smcat). Five sets of near-field
earthquake histories were selected based mainly on the shapes of their elastic and nonlinear
response spectra.

Near-field earthquake motions can be significantly affected by rupture directivity. Sites
experience forward directivity effects when the rupture front propagates toward the site and
when the direction of slip on the fault is aligned with the site (Somerville, 2002). The forward
directivity effect is primarily characterized by a double-sided velocity pulse of relatively long
period in the fault-normal direction and by a single-sided velocity pulse (permanent displacement
of the ground) in the fault-parallel direction.

A near-field site can be classified after an earthquake as exhibiting forward, backward, or neutral
directivity effects. Sites experience backward directivity when the site is located behind the
rupture front. Ground motions containing backward directivity effects generally have longer
durations and lower amplitudes than the ground motions containing forward directivity, similar
to the characteristics of far-field ground motions. Four of the five selected ground motions of
Table 4-4 contain forward directivity effects. For each ground motion, the peak acceleration,
velocity, and displacement are listed for a length scale factor of 4.

Figures 4-10 through 4-14 present the elastic and the nonlinear displacement and acceleration
response spectra of the horizontal components of the group of earthquake motions for a length
scale factor of 4. The elastic spectral ordinates were calculated for different values of viscous
damping; the elastic spectral acceleration presented in these figures is the pseudo-acceleration
spectra. The nonlinear response spectra were obtained by numerical analyses using 3D-BASIS-
ME (Roussis, 2004) assuming a rigid mass (without viscous damping) supported on one XY-FP
bearing with differing radii of curvature. The development of the nonlinear spectra assumed an
isolation system with a constant compressive normal load and a coefficient of sliding friction of
0.07.

The effect of ground motion intensity on nonlinear response spectra is illustrated in Figures 4-15
and 4-16. These figures present the nonlinear response spectra for different intensities of two of
the selected ground motions (1978 Tabas and 1995 Kobe JMA). These figures show that spectral
displacements of an isolated system to acceleration histories of actual earthquakes at a period of
4 seconds can be larger, smaller or equal to the spectral displacements at 2 seconds.

86



oumn [e20] 12/60/6661 'S
‘OIS [[em 100
¥ 30
10]08J 9[BOS-YISUI] B UM PIeIs san[eA 93] (D) uewadedsip punoisd syead ‘(ADJ) £1100[0A punois yead ‘(yDHJ) uoneIa[oooe punoid yead ‘¢
‘uonegedoid axmydni Jo uonoaIIp o) 03 S19J01 ANANAILJ T
(TIHAN) weidord uononpay spiezey axenbyirey [euoneN oYL ‘(SOSN) A2AING [8o130[09D) 'S’ ']
66'v | 8I'LE | 090 06 [eJUOZLIOH @) 69110
'y | S90v | ¢80 00 [ejuoZLIoH plemioq 90 69 diys oius SOSN 290 VINLA
LST | 9T'61 | v€0 [eO1 A
¢S0l | 000€ | SE0 081 [eIuoZLIoOH o) Z1/11/6661
06CL | SL'IY | #S°0 0LC 1e3U0ZLIOH [eNNaN '8 'L drys oy1ns SOsN Aoy, 99zng
S8 | 01T | 9€°0 [eSIA 9%zhd
06'SL | I6Ly | 150 S-N [BIUOZLIOH
- - - . . ) <02/60/6661
OL°¢€l | 86'CK | 0€°0 | M-H [eUOZLIOYH pIemlIoq 400! 9L 9SI9AI SOSN uemie], yTOTAHD
v6'y | 00%1 | L1°O [EOIIDA ‘yO-1yD
e | DD | S50 St (@ 91/60/8L61
996 | 888y | ¥80 [eurpmyISuog plemIoq [ VL 9SI9AI JUHAN | uer ‘seqey Seqel
oIy | 1TCC | 690 [eSIDA
99l | I6¥S | ¥70 0€¢C [eIUOZLIOH o) S1/01/6L61 o Keary
689 | €¥CE | 10 O [e3u0ZLIOH plemIoq 01 ¢9 drys oy1ns Aaqrep
. . SDSN d onusay 14
SP9 | 9¥'8T | 99T [EONIOA [PHIAH]
[uny] eamydnx A
[wo] -} [s/wio] (2] juouodwo)) ANADDAI( | ¥[Nef 03 1SASO[) | OPNIIUTEJA | WISIUBYISA ﬁsomwv:g oyenbyyeyg | uonels
(abd | ADd | (VOd souesiq JUSWOIN ns

SUOJOW PUNOIg PRY-ILdU PIJIIIS JO SINSLIANIRIRY)) - dqeL

87



Displacement Sd [cm]

Response-acceleration Sa [g]

12 : . ; , . 30 : . ; , .
— elastic (=5% : — elastic (=5%
—— elastic {=15% —— elastic {=15%
—-— elastie (=30% —-— elastie (=30%
10 - elastic {=50% 25 - elastic {=50%
—— elastic (=60% —— elastic (=60%
=== ponlinear (T=2n(R/g)"") === ponlinear (T=2n(R/g)"")
'_‘20 e P e -
)
=
]
g 15
&
oy
a
10
5
0 . i L | | | 0 ’ i L i | |
0 0.3 1 1.5 2 2.3 3 0 0.3 1 1.5 2 2.3 3
Period [sec.] Period [sec.]
a. Horizontal (140) displacement spectra b. Horizontal (230) displacement spectra
1 : : : : 0.8 . !
D[ elastic =5% clastic (=3% :
—— elastic (=15% elastic (F15%
0.9 —— elastic (=30% ) o7k} elast!c =30% | i
N elastic (=50% elastgc =50%
ogll..... ‘ woief —— elastic (=60% i elast.lc Q=60/_o o
;| = nenlinear (T=2'n(R/g)D'5) 0.6 nonlinear (T=22(R/g) ) | 4
0.7 —_
o0
0‘3 o5 Lo UL TN SO
0.6 ]
8
g
0.5 < 0.4
o
=
0.4 2
' 03
&
o
0.3 1
0.2
02+ :
o 0.1
' 1=0.07 g
0 1 0 i I i | 1
0 0.3 1 1.5 2 2.3 3 0 0.3 1 1.5 2 2.3 3
Period [sec.] Period [sec.]
¢. Horizontal (140) acceleration spectra d. Horizontal (230) acceleration spectra

Figure 4-10  Elastic and nonlinear response spectra for 70% Imperial Valley 1979,
El Centro array #6
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Figure 4-16 Nonlinear response spectra for different intensities of 1995 Kobe, KJIMA station
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4.5.2 Earthquake-history testing program

Numerical analyses of the isolated truss-bridge model subjected to the selected near-field
earthquakes motions were undertaken to select the amplitudes of different acceleration histories.
The selected ground motions were scaled so as not to exceed either the physical limitations of the
earthquake simulators or the capacity of the XY-FP bearings. Table 4-5 presents the earthquake
testing program, test notation, test sequence and scale factors.
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Table 4-5 Earthquake testing program

Station Earthquake Test Excitation components ' Scale Test notation
sequence factor
1 V(z)+H1(x)+H2(y) 45 EC45%xyz
2 H1(x)+H2(y) 45 EC45%xy
El Cenro Imperial 3 H1(x)+H2(y) 55 EC55%xy
A 46 Valley
Iray 1979/10/15 4 HI(x) 45 EC45%x
5 H2(y) 45 EC45%y
6 V(z) 45 EC45%z
7 V(z)+H1(x)+H2(y) 40 TB40%xyz
8 H1(x)+H2(y) 40 TB40%xy
9 H1(x) 40 TB40%x
Tabas, Iran o
Tabas 1978/09/16 10 H2(y) 40 TB40%y
11 V(z) 40 TB40%z
12 V(z)+H1(y)+H2(x) 40 TB40%yxz
13 H1(y)+H2(x) 40 TB40%yx
El Centro Imperial
Arrav 46 Valley 14 V(z)+H1(x)+H2(») 45 EC45%xyzr *
4 1979/10/15
15 V(z)+H1(x)+H2(y) 80 DZ80%xyz
Duzce, 16 H1(x)+H2(y) 80 DZ80%xy
Duzce Turkey
1999/11/12 17 V(z)+H1(y)+H2(x) 80 DZ80%yxz
18 H1(y)+H2(x) 80 DZ80%yx
Chi-Chi, 19 V(z)+H1(x)+H2 60 C-C60%xyz
CHY101 Taiwan ey HIGH26) il
1999/09/20 20 H1(x)+H2(y) 60 C-C60%xy
KIMA Kobe 21 V(z)+H1(x)+H2(y) 80 KIM80%xyz
01/16/95 2 HI1()+H2(y) 80 KIMB80%xy
El Centro Imperial
Array #6 Valley 23 V(z)+H1(x)+H2(y) 45 EC45%xyzrr >
y 1979/10/15

H1 and H2 are the horizontal components of the earthquake history applied in either the x or y
direction of the truss bridge model, and V is the vertical component of the earthquake history

applied in the vertical ( z ) direction

“r” at the end of the test notation denotes repetition
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SECTION 5
EFFECT OF RELATIVE ROTATION OF PARTS OF FP AND XY-FP BEARINGS
5.1 Introduction

The force-displacement relationships of the FP and XY-FP bearings of Section 3 assume that the
top and bottom parts of the isolator are always parallel and level. Rotation of the top part of
either a FP bearing (e.g., housing plate) or an XY-FP bearing (e.g., upper rail) with respect to the
bottom part (e.g., concave plate or bottom rail) can result from 1) out-of-level installation of
bearings, 2) installation of bearings atop flexible substructures, and 3) rotation of the isolation
system about a vertical axis because these bearings increase their height when displaced laterally.

This section presents the effects of rotation of parts of FP and XY-FP bearings on isolator force-
displacement relationships.

5.2 Relative rotation of parts of a FP isolator

Figures 5-1 through 5-4 show three different cases in which a FP isolation system experiences
rotation of its parts. Figures 5-1 and 5-2 show the rotation of the bottom part of the FP isolation
system due to out-of-level installation and substructure rotation, respectively. In part a of these
two figures, the spherical surface is installed facing up and rotated with respect to the housing
plate. In part b, the spherical surface is installed facing down and the housing plate has rotated
from the horizontal.

e

a. spher‘ical surfac_e fac-ing u;)ward b. sphe;ical surface fac?ing downward

Figure 5-1 Rotation of the bottom part of a FP bearing installed out-of-level

a. spherical surface facing upward b. spherical surface facing downward

Figure 5-2 Rotation of the bottom part of a FP bearing installed atop flexible substructures
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Figure 5-3. Plan view of a FP isolated system translated and rotated (rotation not to scale)
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a. spherical surface facing upward b. spherical surface facing downward
Figure 5-4 Rotation of the top part of a FP isolation system due to differential relative
displacement of the bearings. Longitudinal sections of Figure 5-3 (rotation not to
scale)

Figure 5-3 is a plan view of a FP isolated structure translated and rotated about the vertical axis.
An isolated structure can rotate about a vertical axis due to eccentricities in either the
superstructure or the isolation system and/or by different inputs to the bearings in the isolation
system. In this figure, the difference in bearing displacements in the transverse direction of the
structure is due to rotation.

Figure 5-4 shows the longitudinal sections of Figure 5-3. This figure shows the rotation of the
top part of the isolation system by differential displacement of the bearings. In part a of this
figure, the housing plate is rotated with respect the spherical surface that is installed facing up;
and in part b, the spherical surface is installed facing down and rotated with respect to the
housing plate.

The connection between the articulated slider and housing plate in the conventional FP bearing
permits relative rotation without moment transfer. FP bearings are free to rotate up to a
geometric limit associated with closure of the gap between the concave dish and housing plate.
The rotation of the spherical surface with respect to the housing plate of a FP bearing can affect
its force-displacement relationships since the resisting shear force is modified as a result of the
rotation.

5.2.1 Force-displacement relationship for FP bearings installed out-of-level and atop
flexible substructures

Mosqueda et al. (2004) illustrated the effects on the force-displacement relationship of rotations
in an individual FP bearing installed out-of-level and atop flexible substructures. This section
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includes some of Mosqueda’s derivations. A FP bearing installed out-of-level has a constant
rotation that does not depend on the response of the structural system. Rotations of a FP bearing
by installation atop of flexible substructures vary with the substructure response.

Figure 5-5 shows the free body diagram of a FP bearing with the spherical surface rotated with
respect to the housing plate in a counterclockwise rotation (r) about the center point of the
spherical surface (Co). The following derivation is valid for both individual bearings and a set of
bearings with identical rotations.

0
R

Original position

Figure 5-5 Free body diagram of a rotated spherical surface in a FP bearing

The rotated spherical surface relocates the equilibrium position of the bearing because slider
tends towards the surface tangent to the horizontal. Figure 5-5 shows the shifted static
equilibrium position of the bearings Co to C a distance U, =—Rsin7. Here, U is the
displacement of the slider relative to the center of the spherical surface Co, and R is the radius of
curvature. The friction force (F7) and normal force (N ) are assumed to be oriented tangent and
normal to the rotated spherical surface, respectively.

Per Figure 5-5, in an FP bearing installed out-of-level, the effects of rotation of the spherical
surface of the FP bearing is to either increase or decrease the effective displacement of the
bearing (U —U, ), that is, the distance from the slider to the surface point tangent to the

horizontal. At any instant, the angle 8, satisfies the relationship:
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sinf, = v-u, (5-1)
R

The force-displacement relationship for a rotated spherical surface of the FP bearings can be
derived from the moment equilibrium:

D> M,, =0— FRcos6, =WRsin6, + F,R (5-2)

Inserting (5-1) into (5-2) gives:

wU-U,) F,
F= + (5-3)
Rcos@  cos6,

Assuming small displacements, the force-displacement relationship of the rotated FP bearing is:

N (U-U,)
F = — +F, (5-4)

Figure 5-6a shows the force-displacement loop of a rotated FP bearing shifted vertically a
distance Nt for a counterclockwise constant rotation of 7 (in radian). The second slope stiffness
does not change for an out-of-level rotation of a FP bearing.

,—ﬂ;ated/ __,_——”/— € rotated
unrotated

unrotated
a. out-of-level installation b. substructure rotation
Figure 5-6 Force-displacement loops of rotated FP bearings

For a FP bearing installed with the spherical surface atop a flexible substructure, the rotation (7)
varies with the response of the substructure. If the substructure can be modeled as a cantilever,
the shear force at the cantilever tip, imposed by the FP bearing will displace and rotate the
cantilever tip. The rotation will be a function of the shear force. Assuming that the substructure
responds elastically and the rotation at the top of the substructure is proportional to the bearing
resisting force (F) such that 7 = —AF':
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U, =—Rsin(—AF) = RAF (5-5)

The negative 7 implies that a positive F' will generate a negative rotation in the counterclockwise
direction. Substituting (5-5) into (5-4) gives:
NU F,
F= +
(1+NAR (1+NA)

(5-6)

The rotation decreases both the restoring stiffness and the friction force for positive 4 if the
rotation of the substructure is proportional to the shear force. By replacing F, = Nu sgn(U ) in

(5-6) and during sliding:

N

_ % ; )
F= i N/i)(R +,usgn(U)j (5-7)

Equation (5-7) illustrates the reduction of both the restoring stiffness and the width of the force-
displacement loop by (1+NA) for positive 4. Figure 5-6b shows the force-displacement loop of a
rotated FP bearing installed atop a flexible substructure.

Figure 5-7 shows the rotated equilibrium position of a FP bearing for a rotated housing plate.
The equilibrium position of the bearing rotates with respect to the height (#) of the bearing,
which is the vertical distance between the bottom part of the housing plate and the tangent point
of the spherical surface in contact with the slider. A rotated housing plate will have a relatively
small effect on the force-displacement relationship of the FP bearing because the rotation is with
respect to 4, which is much less than for R for the case of a rotated concave surface. For a rotated
housing plate, the effective bearing displacement will be modified by U, = hsin7 instead of

Rsint for a rotated concave surface.

housi 1
unrotated housing plate rotated housing plate
“‘
“

Figure 5-7 Rotated equilibrium position for a rotated housing plate in a FP bearing
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5.2.2 Force-displacement relationship of rotated FP bearings due to rotation of the
isolation system about a vertical axis

The rotation of the top part of a FP bearing with respect to the bottom part can result from
rotation of the isolation system about a vertical axis because these bearings increase their height
when displaced laterally. An isolated structure can rotate about its vertical axis due to
eccentricities in either the superstructure or the isolation system (variations in material properties
and contact pressures, and installation of bearings atop of flexible substructures), and due to
differential input excitations. Per (5-7), non-parallel parts (spherical surfaces and housing plates)
of the FP bearings can lead to eccentricities in the isolation system: isolators with rotated parts
will have different force-displacement relationships to those with parallel parts.

Differences in the bearing displacements due to rotations about a vertical axis of an FP isolated
superstructure depend on the geometry of the isolated superstructure. Minor rotation about a
vertical axis of an isolated superstructure with a large length-to-width ratio will lead to
significant differences in the bearing displacements. For example, in FP bearings on a
superstructure of length L initially translated a positive displacement d, a rotation 6, about the

vertical axis will cause a difference of O.SL/ tan”' (6,) (diO.SL/tan_1 (8,)) between the

displacements of the bearings on one edge of the superstructure and those on the other edge (see
Figure 5-3). Because these bearings increase in height when displaced laterally, the differences
in bearings displacements will lead to non-parallel parts in the FP isolation system. Figure 5-4
shows rotations of the top part of a FP isolation system due to rotation of the superstructure
about a vertical axis. These rotations depend on the global response of the isolation system.

A general expression for the force-displacement relationship of FP bearings with rotated
spherical surfaces due to rotation of the isolation system about a vertical axis is derived based on
(5-4). Here, U, is function of the rotation of the global isolation system about a vertical axis (6,
see Figure 5-3).

N (U-U,0),
R

F, (5-8)

Similar to (5-7) and because the rotation (r) depends on the response of the global isolation
system (i.e., U, varies with ), the force-displacement relationship of a FP bearing with a rotated
spherical surface due to rotation of the isolation system about a vertical axis can lead to force-
displacement relationships that are different from those of a FP bearing with parallel and level
parts.

Consider a FP bearing that follows a sinusoidal unidirectional trajectory with the concave surface
rotated from the horizontal due to rotation of the superstructure about a vertical axis. The force
response is calculated using (5-8), assuming U, to be a sinusoidal history with the same
frequency of the bearing displacement history. The amplitude of U, was calculated assuming a
maximum bearing displacement of U=0.2R and the vertical displacement calculated per Figure
3-6, R(1-cos8,), to calculate the rotation of the concave surface with respect to the horizontal.
The sample superstructure has a length (L) of 1067 cm (the length of the truss-bridge model).
The force responses are calculated assuming a coefficient of friction of 5% and four radii of
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curvature. The FP isolator is assumed to have a constant compressive normal load and a constant
coefficient of friction. The calculations consider only the sliding phase; the stick condition of the
isolator is neglected.

Figure 5-8 shows the force-displacement loops of four different FP bearings with rotated
concave surfaces due to rotation of the superstructure about a vertical axis calculated using (5-8).
This figure shows little reduction of the restoring force in the rotated bearings, this reduction
increases with the radius of curvature of the FP bearing. The effect of rotated concave surfaces
due to rotation of the superstructure about a vertical axis on the force-displacements loops of FP
bearings, for displacements up to 0.2R, is negligible.
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c. FP bearing with R=3987 mm, i.e., 7=4 seconds,
rotation 6,=0.0076 degrees

d. FP bearing with R=6198 mm, i.e., 7=5 seconds,
rotation 8,=0.0117 degrees

Figure 5-8 Force-displacement loops of a rotated concave surface of FP due to rotations about
the vertical axis.
5.3 Rotation of rails of an XY-FP isolator

The rotation of the rails of an XY-FP bearing can have a more significant effect on the force-
displacements relationships than similar rotations in FP bearings. The connector of the rails of an
XY-FP bearing resists tensile forces, slides to accommodate translation along the rails, and
provides the free rotation capacity through the gaps between connector elements (see section
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3.3.3). The construction of the connector might permit moments about the vertical axis to be
transmitted from the upper (lower) rail to the lower (upper) rail when the rails of the bearings are
neither parallel nor level or when the free rotation capacity of the connector is exceeded.

Figures 5-9 through 5-11 show three different cases in which the rails of XY-FP bearings
experience rotation. Figures 5-9 and 5-10 show rotations of the bottom parts of the XY-FP
bearings installed out-of-level and atop flexible substructures, respectively. Figure 5-11a shows a
plan view of an XY-FP isolated structure translated and rotated about the vertical axis. Figure 5-
11b shows rotation of the top part of the isolation system by differential displacements of the
bearings; this figure is the longitudinal section of Figure 5-11a.

A rotated rail of the XY-FP isolation system not only relocates the equilibrium position of the
isolator because of the rotated concave surface, but also permits moments about the vertical axis
to be transmitted from the upper (lower) rail to the lower (upper) rail because of the construction
detail of the small-scale connector of the XY-FP bearing. Similarly to FP bearings, rotated parts
of XY-PF bearings can lead to force-displacement relationships that are different from those of
an XY-FP bearing with parallel and level rails.

Figures 5-9 through 5-11 show two likely type of rail rotation: the rotated concave surface and
the rotated transverse section of the rails. From Figures 5-9b and 5-10b, a rotated transverse
section of the lower rail will have a relatively small effect on the force-displacements
relationship because the sliding concave surface of the rail is not rotated. However, moments
about the vertical axis can be transmitted from the upper rail to the lower rail because of the
rotation.

% % Lower rall ' __: ':_ ; - :;,- _. S _: %

a. rotated rail b. rotated transverse section of rail

Figure 5-9 Rotation of the bottom part of an XY-FP isolator due to out-of-level installation

a. rotated rail b. rotated transverse section of rail

Figure 5-10 Rotation of the bottom part of an XY-FP isolator due to installation atop flexible
substructures
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Rotated isolation system

Figure 5-11

l&— XY-FP bearing

a. Plan view of an XY-FP isolated system translated and rotated

:
<

b. Longitudinal section

Rotation of the top part of an XY-FP isolation system due to rotation of the isolation

system about a vertical axis (rotation not to scale)

Misalignment of an XY-FP bearing will reduce its free rotation capacity. Figure 3-11 showed the
moment-rotation diagram of an XY-FP bearing assuming perfect alignment. Figure 5-12 shows
the moment-rotation diagram of an XY-FP bearing after the center of rotation has been relocated

due to errors in either bearing construction or installation.

Figure 5-12

M

rotation
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A general conclusion of this section is that the rotation of parts of either FP or XY-FP bearings
can lead to force-displacement relationships that are different from those of bearings with
parallel and level parts or when the free rotation capacity of the bearings is exceeded. The
rotations of rails of an XY-FP bearing can lead to greater differences in the force-displacement
relationships than similar rotations in FP bearings. In XY-FP bearings, the construction detail of
the small-scale connector might permit moments about either a horizontal or a vertical axis to be
transmitted from the upper (lower) rail to the lower (upper) rail when the rails of the bearings are
neither parallel nor level or when the free rotation capacity of the connector is exceeded. In
contrast, the connection between the articulated slider and the housing plate in FP bearings
permits relative rotation without moment transfer. In FP bearings, the effects of rotation can be
minimized by attaching the housing plates to that part of the structure likely to experience the
largest rotation. In XY-FP bearings, the effects of rail rotation about a horizontal axis can be
minimized by placing the bearings in such way that the transverse section of the rails would be
the part of the XY-FP bearing those likely experiences the rotation. To avoid torsional response
of an XY-FP isolation system the rails of the bearings should be carefully aligned during
installation.
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SECTION 6
RESULTS AND ANALYSIS OF HARMONIC AND EARTHQUAKE SIMULATIONS
6.1 Introduction

Results and observations on harmonic and earthquake-simulation tests of the XY-FP isolated
truss-bridge model are described in this section. Section 6.2 characterizes the performance of the
earthquake simulators. Section 6.3 describes the response of the XY-FP isolators. Sections 6.4
and 6.5 present key observations from the harmonic and earthquake excitation tests, respectively.

6.2 Correlation of input excitations of the two earthquake simulators
6.2.1 Introduction

Harmonic and near-field earthquake histories were applied to the XY-FP isolated truss-bridge
model through the pair of earthquake simulators in the Structural Engineering and Earthquake
Simulation Laboratory (SEESL) at the University at Buffalo. The correlation of the input
excitations to the model was characterized by comparing the 5% damped elastic response spectra
generated using acceleration histories of the two earthquake simulators. The following
subsections present results of the correlations studies.

6.2.2 Correlation of excitations of the two simulators in the bi-directional (horizontal)
acceleration-orbit excitation tests

The correlation of the accelerations of the two simulators is illustrated using the elastic response
spectra for selected acceleration-orbit excitation tests. The selected tests used a sinusoidal
displacement history of 70 mm amplitude at a period of 2.5 seconds in unidirectional and bi-
directional (horizontal) excitation. Each sinusoidal history had a transitional half cycle of small
amplitude excitation at its beginning and its end (see Figure 4-9).

Figure 6-1 presents the displacement histories of the two simulators for the bi-directional
excitation (test L451xy). Figures 6-2, 6-3 and 6-4 present acceleration and displacement spectra
for the two simulators for the bi-directional excitation (x, y) and for the unidirectional excitations
in the x and y directions (tests L451xy, L451x, and L451y, respectively). The test notation is
presented in Table 4-3.

Figures 6-1a and 6-2a show that the x-direction displacements and spectra are identical for the
bi-directional excitation. Figure 6-2c shows a strong correlation of the y spectra for the two
simulators: the peak spectral displacement in the y-direction of the east simulator is up to 8%
larger than that in the west simulator for the bi-directional input.

Figures 6-3a and 6-4c show near-perfect correlation for the unidirectional excitations, x or y. For
the directions without primary excitation, Figures 6-3c, 6-3e, 6-4a and 6-4c show some
differences in the spectra of the two simulators, although the spectral ordinates are at least one
order of magnitude smaller than those in the direction of the unidirectional excitation.
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Figure 6-1 Displacement histories of the simulators in bi-directional excitation, test L451xy
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Figure 6-4 Response spectra generated using acceleration histories of the two earthquake
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6.2.3 Correlation of excitations of the two simulators in the earthquake histories tests

Figure 6-5 throughout 6.9 present the acceleration and displacement response spectra for
different tests using the Imperial Valley 1979, El Centro Array #6 earthquake histories. Figure 6-
5 presents the response spectra for the simulators when the three components of the earthquake
history were applied to the truss-bridge model through the simulators (test EC45%xyz). Figure 6-
6 presents the response spectra for the simulators when the truss-bridge model was subjected to
bi-directional (horizontal) excitation (test EC45%xy). Figures 6-7, 6-8, and 6-9 present the
response spectra for the simulators when the truss-bridge model was subjected to unidirectional
excitation in the x, y and z directions, respectively (tests EC45%x, EC45%y, EC45%z). The test
notation is presented in Table 4-5.

Figure 6-5 shows very similar response spectra of the two simulators in the three-directional
excitation test. The x spectra show near-perfect correlation and the y and z spectra show strong
correlation of the motion of the two simulators. The correlation of the response spectra of the
two simulators in the horizontal directions in bi-directional excitation test is most similar to that
in the three-directional excitation test. The spectra of Figures 6-7, 6-8 and 6-9 show strong
correlation of the excitation of the two simulators along the axis in which the unidirectional
excitation was applied.

In summary, the simulators were able to deliver near synchronous inputs to the two simulators.

6.3 Response of the XY-FP isolated truss-bridge model
6.3.1 Introduction

In sections 3 and 4, the XY-FP bearings are modeled as two uncoupled FP bearings with
resistance to tensile axial loads. The uncoupled horizontal response of the rails of the XY-FP
bearings offers some advantages for bridge applications such as greater energy dissipation and
the ability to have different isolation properties along the principal directions of the isolators.
However, it was not known prior to this study whether the small-scale XY-FP bearing connector
would permit uncoupled horizontal response’.

The test results show clear evidence of the coupled horizontal response of the XY-FP bearings
under unidirectional, bi-directional, and three-directional excitation. Furthermore, the small-scale
connectors of the XY-FP bearings transferred moments between the rails of the bearings when
the isolation system experienced small rotations about a vertical axis, leading to the torsional
response of the isolation system. During testing, some of the minor differences between the
excitation of the two simulators induced small rotations about a vertical axis, on the truss-bridge
XY-FP isolated model. Since the small-scale connector and minor misalignment of the isolators
in the test fixture (leading to a loss of free rotation capacity in the bearing) did not permit fully
uncoupled orthogonal responses, the force-displacement relationships for the XY-FP bearings
presented in section 3 cannot be compared directly with most of the test results.

' The small-scale connector constructed for the model XY-FP bearings might not be representative of prototype
connectors because of the relatively small axial loads (pressures) on the bearings, the scale-dependant free rotation
capacity and the tolerances used in its construction.
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The small rotations about a vertical axis of truss-bridge model during testing led to significant
differences in the bearing displacements. Due to the large length-to-width ratio of the truss-
bridge model, a minor rotation about a vertical axis of the isolated structure led to significant
differences in the bearing displacements. For example, for the XY-FP bearings on the truss-
bridge model initially translated a positive displacement d, a rotation of one degree (m/180
radian) will cause a difference of 93 mm (d + 93 mm) between the displacements of the bearings
on the west simulator (1 and 2) and those of the bearings on the east simulator (3 and 4).

Figure 6-10a shows the plan view of a non-rotated XY-FP isolated truss-bridge undergoing
unidirectional excitation. Assuming a symmetric superstructure, a symmetric isolation system,
uncoupled horizontal response of the rails of the XY-FP bearings, parallel and level rails of the
XY-FP bearings, identical input excitations, and neglecting the pressure dependency of friction
forces, the XY-FP isolated structure will neither experience rotation about a vertical axis nor
have eccentricities between the center of stiffness and the center of mass because the centers
of lateral stiffness and friction resistance match the center of mass of the structure.

Figure 6-10b shows the plan view of a XY-FP isolated truss-bridge model translated and rotated
(rotation not to scale) under unidirectional excitation. When the rotation about the vertical axis
is larger than the free rotation capacity of the isolators, the connector locks about the
vertical axis and transfers torsional moments from rail to rail. The lateral-torsional coupling of
the XY-FP isolated structure led to shear forces (S;, S,, S;and S4in Figure 6-10b) being
developed in the direction perpendicular to the unidirectional excitation in order to keep the
connector aligned with the lower rail.

The shear forces that developed in the direction perpendicular to the excitation are the result of
non-uniform contact of the lateral surfaces of the small-scale connector’s guides with the lateral
surfaces of the rails. After testing, the lateral guides of the connector showed wear on the
connectors’ low-friction composite resulting from the connector trying to accommodate rotation.

6.3.2 Bi-directional response of the isolated structure under unidirectional harmonic
excitation

Lateral-torsional coupling of the response of the truss-bridge XY-FP isolation system was
evident because bi-directional response resulted from unidirectional excitation. Due to the large
length-to-width ratio of the truss-bridge model, the lateral-torsional coupling effects were more
evident when the unidirectional excitation was imposed in the transverse direction of the truss-
bridge model.

Figures 6-11 through 6-16 present the responses of the truss-bridge model to a displacement

sinusoidal history of 70 mm amplitude at a period of 2.5 seconds for unidirectional excitation in
the y-direction (test L451y, Table 4-3).
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Figure 6-11a shows the history of rotation about the vertical axis of the truss-bridge model.
Rotations were calculated using the relative y displacements of the west and east steel plates on
the top of the truss-bridge model (potentiometer 89 and potentiometer 91, locations shown in
Figures 4-4 and 4-5) and the horizontal distance (766 cm) between the potentiometers. The
rotations were very small; the maximum rotation was about 0.0016 degrees. However, because
of the truss bridge geometry, the rotation led to significant differences between bearing

displacements on the west simulator (1 and 2) with those on the east simulator (bearings 3 and
4).

Figure 6-11Db illustrates the difference in displacements in the y-direction of the west and east
simulator, bearings 2 and 3, and the west and east steel plates on the top of the truss bridge
model (potentiometers: 27 and 29, 66 and 68, 89 and 91, respectively, locations shown in Figures
4-5 and 4-6). The maximum relative displacements were 12 mm for the west and east steel plates
on the top of the truss-bridge model and 17 mm between bearings 2 and 3. The difference in
displacement of the two simulators was negligible.

Figure 6-12 shows the resisting shear forces of the XY-FP bearings in the x and y direction when
a sinusoidal displacement history was applied in the y-direction. Although there was no
excitation in the x-direction, the magnitude of the x-direction shear forces in the bearings is
comparable to that in the y-direction.

Figure 6-13 illustrates the effect of lateral-torsional coupling of the isolation system on the
restoring stiffness of the XY-FP isolation system. This figure shows the global force-
displacement loop in the y-direction of the isolation system undergoing unidirectional excitation
in the y-direction. Hereafter, the global responses are the base shear (the sum of the resisting
forces in the four bearings) and the average of displacements of the four bearings; some of the
results present the base shear normalized by the total weight of the truss-bridge model of 398 kN
(89.5 kips).

The sliding period of the idealized XY-FP isolation system is 2 seconds in both horizontal
directions. On the basis of the data presented in Figure 6-13 (test L451y), the isolated period of
the truss-bridge in the y-direction is about 2.6 seconds, calculated from the second slope stiffness
of the global force-displacement loop.

The global force-displacement relationship of the XY-FP isolation system of Figure 6-13 shows
some small fluctuations of the force during the reversal of motion (where the displacement is
maximum) associated with the stick phase of response. This behavior was observed only in the
harmonic test at a frequency of 0.4 Hz. These fluctuations are referred by Mokha et al. (1988)
and Constantinou et al. (1999) as stick-slip motions that are manifested as motions with stops.
Constantinou et al. (1999) explained this phenomenon in detail. Similar fluctuations were found
in the numerical analyses for the XY-FP isolation system in section 3.5.

Figure 6-14 shows the displacement histories of the XY-FP bearings in the y-direction. The
rotation of the truss-bridge model about the vertical axis led to significant displacement
differences that are most evident in the first four cycles of excitation; the displacements of
bearings 1 and 2 are up to 100% larger than those of bearings 3 and 4. As a result of the first
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peak rotation of the isolation system about the vertical axis, after about 3 seconds, the
displacement histories of bearings 1 and 2 were out-of-phase with those of bearings 3 and 4, the
phase referred herein described the bearing displacements with time.

Figure 6-15 shows the normalized force-displacements loops in the y-direction of the XY-FP
bearings. The shear forces of the bearings in the y-direction are normalized by the instantaneous
axial force in each bearing. Sample normal (axial) loads and widths of the loops are identified in
the figures. Each force-displacement loop shows a different restoring stiffness and width. The
irregular shapes of the force-displacements loops in the four bearings are the result of the bi-
directional interaction between the shear forces in the two orthogonal directions. As explained in
section 3.4, any degree of orthogonal coupling of the shear forces of the XY-FP bearing can lead
to a force-displacement relationship of an isolator that is different from the idealized one (see
Figures 3-22, 3-23, and 3-24). The shape of the force-displacement loops in the sliding directions
of a XY-FP bearing experiencing orthogonal coupled responses of the rails depends on the
characteristics of the excitations. Hereafter, the irregular shapes of the force-displacements loops
of the XY-FP bearings test responses are the result of the coupled orthogonal response of the
rails of the XY-FP bearings.

Figure 6-16 shows the axial load history in each bearing for test L451y. The axial forces on the
bearings during the acceleration-orbit excitation tests changed continuously over the course of
the displacement histories due primarily to overturning moments and bearing displacements.
Figure 6-17 shows how the bearing displacements lead to small variations in axial load: a
bearing displacement of 5 cm redistributes the gravity load so that to 46% of the total gravity
load is carried on two bearings and the 56% is carried by the other two bearings.

Coupled response similar to that of the truss-bridge model under y-unidirectional excitation,
albeit smaller in magnitude, was observed for the isolated truss-bridge model subjected to
unidirectional excitation in the x-direction.

6.3.3 Bi-directional response of the isolated structure under unidirectional earthquake
excitation

The bi-directional response of the XY-FP isolated truss-bridge model under unidirectional
earthquake excitation in the y-direction is illustrated in Figures 6-18 throughout 6-21. These
figures present the response of the truss-bridge model to one horizontal component of the
Imperial Valley 1979, El Centro Array #6 earthquake histories applied in the y-direction (test
EC45%y, Table 4-5).

Figure 6-18 illustrates the level of rotation about a vertical axis of the truss-bridge model using
the histories of relative y displacement of the west and east simulators, bearings 2 and 3, and
west and east steel plates on the top of the truss-bridge model. The magnitude of the relative
displacements is similar to that of Figure 6-11b. The maximum difference in displacement occurs
at the end of the double-sided pulse of approximately 12 mm on the top of the truss-bridge model
and 17 mm in the bearings.
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Figure 6-17  Variation of axial forces on the XY-FP bearings due to overturning moments and
bearing displacements

Figure 6-19 shows the displacement histories of XY-FP bearings in the y-direction. There is a
significant difference between the magnitude of displacements of bearings 1 and 2 and those of
bearings 3 and 4; the displacements of bearings 1 and 2 are up to 2.1 times larger than those of
bearings 3 and 4. Further, there is a significant difference in the residual displacements of the
bearings on each simulator.

Figure 6-20 shows the normalized force-displacements loops in the y-direction of the XY-FP
bearings. The lateral-torsional coupling led to significant differences in the restoring stiffness of
the four bearings.

Figure 6-21 shows the resisting shear forces of the XY-FP bearings in the x and y direction when
the horizontal component of the earthquake history set was applied in the y-direction. Similar to
Figure 6-12, the lateral-torsional coupling is evident by the significant shear forces in the x-
direction, although there was no excitation in the x-direction.
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6.4 Other observations from the harmonic excitation tests
6.4.1 Coefficients of friction of the XY-FP bearings and the frequencies of excitation

Figure 6-22 shows the normalized global force-displacement loops of the XY-FP isolation
system for four different bi-directional (x, y) harmonic excitations with different frequencies.
Figure 6-22a shows the response to a sinusoidal displacement history of 70 mm amplitude at a
frequency of 0.4 Hz in the x and y directions (test L451xy, Table 4-3). Figure 6-22b shows the
response to an x-sinusoidal displacement history of 70 mm amplitude at a frequency of 0.4 Hz,
and to a y-sinusoidal displacement history of 25 mm amplitude at a frequency of 0.8 Hz (test
F81xy). Figure 6-22¢c shows the response to a sinusoidal displacement history of 12.8 mm
amplitude at a frequency of 1.2 Hz in the x and y directions (test L452xy). Figure 6-22d shows
the response to a sinusoidal displacement history of 12.8 mm amplitude at a frequency of 1.6 Hz
in the x and y directions (test C1xy).

The bi-directional interaction between the shear forces in the two orthogonal directions of the
XY-FP bearings led to global force-displacement loops for the different tests having different
restoring stiffness. From each loop in Figure 6-22, an initial and a final dynamic coefficient of
friction can be identified. Herein, the initial dynamic coefficient of friction is defined with
reference to Figure 6-23. The initial dynamic coefficient of friction is computed at the first peak
velocity (ud1 in Figure 6-23). The value of the sliding coefficient of friction reduces with

repeated cycling. Mokha et al. (1988) associated the change in the coefficient of friction with
friction heating that increases the temperature at the sliding surface.

The difference between the initial and final dynamic coefficient of friction varies with the
frequency of excitation. For the lowest excitation frequency (Figure 6-22a), the difference
between the initial and final coefficients of friction is very small, this difference increases with
the excitation frequency (Figures 6-22b, 6-22c, 6-22d).

Figure 6-24 shows the variation of the initial and final coefficients of friction with the frequency
of excitation. The data of this figure was extracted from the global force-displacement loops for
different tests using the harmonic excitation at different frequencies. The initial dynamic
coefficient of friction presented in these figure was calculated as the average of the coefficient of
friction at the first peak velocity (ud1) and the coefficient of friction at the second peak velocity

(ud?2 in Figure 6-23). This figure shows very similar initial and final coefficients of friction for

excitations at a frequency of 0.4 Hz, and significant differences between the initial and final
coefficient of friction for excitations at frequencies of 1.2 Hz and 1.6 Hz.

Per Constantinou et al. (1999), the temperature rise at the sliding contact surface depends on 1)
the heat flux generated at the contact surface, 2) the heat flux partitioning between the contact
surfaces, 3) the duration of the heat flux, and the 4) time between intermittent heat fluxes.
Furthermore, under sinusoidal excitations the heat flux is directly proportional to the frequency
of excitation and during small amplitude excitations (during testing, the amplitude of the
sinusoidal excitations were smaller as the frequencies increase, 70 mm for 0.4 Hz, 25.4 mm for
0.8 Hz, 12.8 mm for 1.2 Hz and 11.4 mm for 1.6 Hz , see Table 4-3) the condition of continuous
(uninterrupted) heat flux prevail; in contrast, for large periodic motion the heat flux exhibits
periodic intermittent histories. Consequently, the harmonic excitation with higher frequencies
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used during testing increased 1) and 3) and decreased 4) on the interface leading to a higher
temperature rise at the contact surface than under low frequency excitations, which explains the
differences between the initial and final coefficients of friction increasing with the number of
cycles per second. Because the heat flux at the sliding interface is inversely proportional to the
size of the contact area, that is, directly proportional to the pressure on the bearing, and the
dependency of the coefficient of friction with pressure, the coefficients of friction of the small-
scale XY-FP bearings obtained from the test result might not be representative of the coefficients
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of friction of the prototype XY-FP bearings.

Figure 6-25 shows the variation of the initial and final coefficients of friction with the frequency
of excitation for each XY-FP bearing. The data presented in this figure are extracted from the
normalized force-displacement loops of the XY-FP bearings as discussed previously. Similar to
Figure 6-24, this figure shows differences between the initial and final coefficients of friction
increasing with the frequency of excitation. Furthermore, this figure shows significant
differences between the coefficients of friction of the four bearings in each direction. In the x-
direction, bearings 1 and 3 have a larger coefficient of friction than in bearings 2 and 4. In the y-
direction, bearing 3 has the largest coefficient of friction; the coefficients of friction for bearings
1, 2 and 4 are similar.

6.4.2 Unidirectional and bi-directional harmonic excitation test responses

Harmonic displacement histories were applied to the truss-bridge model as unidirectional
excitation in the x and y directions and as bi-directional (x, y) excitation. This section compares
the response of the isolation system for the application of identical displacement histories in
unidirectional and bi-directional (horizontal) excitation.

Figures 6-26 through 6-28 show the responses of the XY-FP isolation system to sinusoidal
displacement histories of 70 mm amplitude at a period of 2.5 seconds for unidirectional (tests
L451x and L451y ) and bi-directional (test L451xy) excitation.

Figure 6-26 shows the acceleration response spectra for 5% damping for the input acceleration
on the simulators for tests L451x, L451y and L451xy. This figure shows minor differences in the
response spectra for the unidirectional and the bi-directional excitation. There are differences up
to 5% in the peak spectral accelerations and minor differences in the periods associated with the
peaks in the spectra.

Figure 6-27 presents the rotation of the truss-bridge model about a vertical axis in the
unidirectional and bi-directional tests computed using the relative displacements in the y-
direction of the west and east steel plates on the top of the truss bridge. Because the level of
rotation of the truss-bridge model about the vertical axis in the x-unidirectional excitation is
smaller than that in the y-unidirectional excitation, the bi-directional interaction between the
shear forces in the two orthogonal directions of the XY-FP bearings is larger for the y-
unidirectional excitation than that in the x-unidirectional excitation. The level of rotation of the
truss-bridge model is similar in both the y-unidirectional and the bi-directional excitations.

Figure 6-28 shows the global force-displacement loops of the XY-FP isolation system under
unidirectional and bi-directional excitation. Due to the significant bi-directional interaction
between shear forces of the orthogonal directions in the bi-directional excitation test L451xy, the
restoring stiffness of the x-force-displacement loop for this test is larger than that in the x-
unidirectional excitation test L451x. The base shear in the x-direction in the bi-directional
excitation test is up 15% larger than that in the x-unidirectional test.
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Figure 6-28  Global force-displacement loops of the XY-FP isolation system in tests L451x, L451y
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The y-force-displacement loops in the y-unidirectional and bi-directional excitations have a
similar restoring stiffness because the level of horizontal coupling of the isolation system is
similar in both tests. The differences in the periods associated with the spectral peaks of Figure
6-26 for the inputs in unidirectional and bi-directional excitation led to larger maximum
displacement in the y-unidirectional excitation than in the bi-directional excitation. The
predominant period of the y-unidirectional excitation is close to the period of the isolation system
in that direction: the sliding period of the XY-FP isolation system in the y-direction is 2.6
seconds (per Figure 6-13) and the predominant period of the y-unidirectional excitation is 2.55
seconds (per Figure 6-26).
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6.4.3 Variation of bearings axial-load and the effect on the response of the XY-FP
bearings under bi-directional excitation

The responses of an XY-FP isolation system under unidirectional and bi-directional excitation
can differ due to the magnitude and sign in the axial load on the bearings. This section illustrates
differences between the isolators response during unidirectional and bi-directional excitation due
to the axial load.

The friction and restoring forces of an XY-FP isolator depends directly on the co-existing axial
load, which changes continuously over the course of an earthquake history by overturning
moment, bearing displacement, and vertical acceleration. Due to the large length-to-width ratio
of the truss-bridge model, the overturning moments acting in the transverse direction dominated
the magnitude and sign of axial load in the bearing. During bi-directional excitation, the
orthogonal responses of the XY-FP bearings are related by the variation in axial load.

The global force-displacements loops in the x-direction of the XY-FP isolation system for the
tests L451x, L451xy and F81xy are re-assembled in Figure 6-29. These figures were presented
previously in Figures 6-28 and 6-22b. The panels in Figure 6-29 show that for an identical
sinusoidal displacement history applied to the truss-bridge model in the x-direction, the shapes of
the loop are different: for test F81xy, the loop shape is significantly different from the loops for
tests L451x and L451xy. The effect of the variation of bearing axial load at the frequency of
excitation in the y-direction is evident on the shape of the x-force-displacement loop for the
F81xy test: the variation of bearing axial load at 0.8 Hz led to fluctuations in the force-
displacement loop of the rail in the x-direction moving at a frequency of 0.4 Hz.

Figure 6-30 shows the global force-displacements loop in the y-direction of the XY-FP isolation
system for tests F81y and F81xy. In these two tests, an identical sinusoidal displacement history
at a frequency of 0.8 Hz was applied to the truss-bridge model in the y-direction. Since the
overturning moments in the transverse direction control the magnitude and sign in bearing axial
load and because both tests F81y and F81xy have a similar variation in axial load, the shapes of
the loops of these two tests are similar. The loop for test F81xy show slight force fluctuations
due to the contribution of the longitudinal overturning moments to the bearing axial load.

Figure 6-31 and 6.33 illustrate how for bi-directional harmonic excitation, the shape of the force-
displacement loop can be significant affected by the axial load when the horizontal excitations
have different frequencies. Figure 6-31 and 6.33 show the response of the XY-FP isolation
system to an x-displacement history with 25.4 mm amplitude, a period of 1.25 seconds, and
phase of m/2; and a y-displacement history of 70 mm amplitude, a period of 2.5 seconds and
phase of 3m/2. These displacement histories were applied to the model in unidirectional and bi-
directional excitation (tests FC1x, FCly, and FClxy).

As a result of different frequencies of excitation in the two horizontal directions, the global
force-displacement trajectory in the x-direction for the bi-directional test FC1xy includes two
distinct loop shapes. Every two cycles, the force-displacement trajectory followed a trajectory
forming two different loop shapes. In one cycle the loop does not close and a second loop
horizontally and vertically translated with respect to the first one is formed in the second cycle.
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Hereafter, these two different loop shapes are referred as double-shaped loops.

The fluctuations in the global force-displacement loops in the y-direction of the bi-directional
excitation test FC1xy are due to the contribution of the longitudinal overturning moments to the
axial load. The frequency of the axial load histories is the frequency of the sinusoidal excitation
applied in the y-direction. However, overturning moments in the x-direction (about the y-axis)
produced force fluctuations in the axial load histories at the frequency of excitation in the x-
direction and thus fluctuations in the force-displacement loop.

The double-shaped loops and the force fluctuations in the isolators’ force-displacement loops due
to changes in axial load can also be illustrated by analysis of the response histories. Figure 6-32
presents the average bearing displacements and base shear histories for tests FC1x, FCly and
FClxy.

The positive side of both average x displacements and x base shear for the bi-directional test
FClxy show how the peak values of both average x displacements and x base shear in the bi-
direction excitation test are slightly affected by the frequency of excitation in the y-direction,
leading to the double-shaped force-displacement loops.

The effect of overturning moments in the x-direction on the axial force can be observed in the y
base shear history of the bi-directional excitation test FC1xy.The shear force history shows
fluctuations at the frequency of excitation in the x-direction.

6.4.4 Summary remarks

Analysis of the response of the XY-FP isolation system to unidirectional and bi-directional
harmonic excitation tests led to the followings observations:

1. The orthogonal horizontal responses of the individual isolators in the small-scale XY-
FP isolation system were coupled (not independent) due to both the construction of the small-
scale connector that joined the rails of the XY-FP bearing and minor misalignment of the rails of
the isolators, which consumed part of the free rotation capacity of the isolators.

2. The lateral-torsional coupling under unidirectional excitation was evident by bi-
directional response of the isolated structure: rotation about a vertical axis on the truss-bridge
model, resisting shear forces in both horizontal directions, and significant differences in the
force-displacement relationships of the XY-FP bearings.

3. The responses of a XY-FP isolation bearing along each axis are related by the
magnitude and sign in the axial load during bi-directional excitation.

4. The force-displacement loops of the XY-FP bearings under unidirectional and bi-
directional excitation will differ due to magnitude and sign in axial load on the bearings.

5. In XY-FP isolated superstructures having a large length-to-width ratio such as the
bridge superstructures, the bearing axial load might be controlled by the overturning moments
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acting in the transverse direction. The influence of the longitudinal overturning moments on the
axial load might slightly affect the shape of the force displacement loops.

6. An initial and a final dynamic coefficient of friction were identified from the global
force-displacement loops for harmonic excitation with different frequencies. The difference
between the initial and final dynamic coefficient of friction varies with the frequency of
excitation. For low frequencies, the difference is small but the difference increases with the
excitation frequency.

7. The response of the XY-FP isolation system to some harmonic excitations captured the
force fluctuations during the reversal of motion (at maximum displacement) associated with the
stick phase of response.

6.5  Others observation from the earthquake excitation tests
6.5.1 Introduction

This section presents the results and analysis of the response of the XY-FP isolated system to
selected earthquake histories. The sequence of earthquake histories tests are listed on Table 4-5.
The experimental program validated the XY-FP bearings as an uplift-prevention isolation system
and provided information about the effects of the different components of the earthquake
histories on the response of the XY-FP isolation system.

6.5.2 Typical response of the XY-FP isolation system to the horizontal components of
earthquake histories

Figures 6-33 and 6-34 show the response of the four XY-FP bearings to the horizontal
components of the 80% 1999 Duzce Turkey, Duzce station. These two figures presents the force-
displacement loops of the XY-FP bearings in the x and y directions, respectively.

The loop width for bearing 4 in the x-direction illustrates the relatively small coefficient of
friction of this bearing in that direction. The loops in the x-direction show the effect of the
overturning moments acting in the y-direction. For bearings 2 and 3, located on the positive y-
side of the truss bridge (Figure 4-5), the maximum axial load on the bearings increases the shear
force in the maximum positive x displacement. In contrast, on the negative y-side of the truss
bridge (bearings 1 and 4) the minimum axial load reduced the bearing shear force for the
maximum positive x displacement.

The force-displacement loops in the y-direction show the effect of the rotation of the isolation
system about the vertical axis by the differences in the bearing displacements. The maximum
displacements in bearings 1 and 2 are 90% larger than those in bearings 3 and 4. The maximum
displacement in bearings 1 and 2 occurs at 11.3 seconds and the maximum displacement on
bearings 3 and 4 occurs at 6.1 seconds. In this test, the truss-bridge model recentered at the end
of the earthquake history.
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Figure 6-33  Force-displacement loops of the XY-FP bearings in the x-direction for the three
components of the 80% 1999 Duzce, Turkey, Duzce station, test DZ80%yx
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6.5.3 Tension resistance and the effectiveness of the XY-FP isolation system

The effectiveness of XY-FP bearings resisting tensile axial loads during three-directional
shaking was evident during testing. The XY-FP isolated truss-bridge model was subjected to
earthquake shaking that induced overturning moments and vertical accelerations capable of
overcoming the compressive loads, generating tensile axial loads in some of the XY-FP bearings.
The vertical components of the earthquake history led to tensile loads on the isolators in three of
the five earthquake histories used in testing. Bearing 1 and bearing 3 experienced tensile loads.
Table 6-1 presents the maximum responses of the XY-FP isolation system to the earthquake
excitations; Table 6-2 presents the maximum responses of individual XY-FP bearings.

The level of shear force transmitted from the superstructure to the load cells under earthquake
excitations is a useful, albeit indirect measure of the effectiveness of the isolation system.
Herein, the effectiveness of the XY-FP bearings was determined by comparing the maximum
acceleration reached at the earthquake simulator to the base shear of the isolation system
normalized by the total weight of the truss-bridge model.

During three-directional testing, the largest peak horizontal accelerations on the simulators were
obtained for the 80% Kobe KIJMA station earthquake histories. The maximum accelerations of
the earthquake simulator were 0.6 g, 0.47 g and 0.27 g, in the x, y and z directions, respectively,
and the corresponding base shear of the isolation system in both horizontal directions was 7%
of the total weight. For this test, the maximum compressive load on one of the bearings
(bearing 2) was 198 kN and the maximum tensile axial load on bearing 3 was -4 kN.

The lowest peak horizontal accelerations on the simulators were obtained for the 45% Imperial
Valley 1979, El Centro Array #6 earthquake histories. The acceleration on the earthquake
simulator were 0.13 g, 0.17 g and 0.58 g, in the x, y and z directions, respectively, for a base
shear on the isolation system in both horizontal directions of 5% of the total weight. For this test,
the maximum compressive and tensile loads were reached in bearing 3: 206 kN and -32 kN,
respectively. The XY-FP bearings simultaneously resist tensile loads and function as seismic
isolation.

6.5.4 Effect of vertical ground motion on the response of the XY-FP isolation system

Figures 6-35 through 6-37 present the response of the XY-FP bearings to 80% of the Kobe
KJMA station earthquake histories. These figures present the tri- and bi-directional (x, y) isolator
responses. Figures 6-35 and 6-36 present the force-displacement loops of the bearings in the x
and y directions, respectively. Figure 6-37 shows the axial load histories of the bearings.

The loops of Figures 6-35 and 6-36 show displacements in the three-directional earthquake
excitation that are similar to those recorded for bi-directional shaking only. The shear forces on
the bearings in the three-directional earthquake excitation fluctuated with the vertical
accelerations and led to differences in the peak shear forces in the tri- and bi-directional
excitations. The maximum force difference is observed in bearing 4; the x-peak shear force in the
three directional excitation tests is 18% larger than that in the bi-directional excitation.
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The test results confirmed the early observations of Tsopelas et al. (1994c) and Mosqueda et al.
(2004) regarding the minor effect of vertical components of ground motion on the global
horizontal response of sliding isolation systems. However, the peak shear forces of bearings can
be increased by vertical component of the earthquake history.

Figure 6-37 show the important contribution of the vertical components of the earthquake history
on the bearing axial force histories. The vertical component of the earthquake history led to
significant variation in axial loads leading to tensile loads in bearing 3.

6.5.5 Unidirectional and bi-directional earthquake excitations

Several earthquake histories were applied to the truss-bridge model as unidirectional excitation
in the x and y directions and as bi-directional (x, y) excitation. This section compares the
response of the isolation system for these excitations.

Figures 6-38 and 6-39 show the responses of the XY-FP isolation system to the 40% 1978 Tabas,
Iran earthquake components for unidirectional (tests T40%x and T40%y ) and bi-directional (test
T40%xy) excitations.

Figure 6-38 shows the acceleration and displacement response spectra for 5 % damping for
unidirectional and bi-directional excitation of the simulators. This figure shows differences in the
displacement spectra for the unidirectional and the bi-directional excitation in the period range of
the isolation system, namely, 2.2 and 2.6 seconds, in the x and y-directions, respectively. For
example, the spectral displacements for the y- unidirectional excitation are up to 17% larger than
those in the bi-directional (x, y) excitation at a period of about 2.4 seconds.

Figure 6-39 shows the global force-displacement loops of the XY-FP isolation system for the
unidirectional and bi-directional (x, y) earthquake histories. The global shape of the force-
displacement loops in the x and y directions for both unidirectional and bi-directional excitations
are most similar. The force-displacement loops in the x-direction for the bi-directional excitation
show minor fluctuations due to the axial loads (see Figure 7-12).

6.5.6 Variation of isolation-system response with test repetition

Since the XY-FP bearings in the truss-bridge model were subjected to many different excitations,
several benchmark tests were repeated during the test series to assess the change in properties of
the bearings with repeated testing. Figure 6-40 presents the global response of the isolation
system to the benchmark earthquake test: three components of the Imperial Valley 1979, El
Centro Array #6 earthquake history (tests EC45%xyzr and EC45%xyzrr, Table 4-5). The tests
presented in this figure (EC45%xyzr and EC45%xyzrr) are the 16™ and 23" tests in the
sequence.

The similarity of the loops of Figure 6-40 indicates that the friction properties of the interface of
the XY-FP bearings changed little with repeated testing.
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After testing, significant scoring of the friction interfaces in the connector was observed with
particles of the low friction composite material being ejected from the connector surfaces.

6.5.7 Summary remarks

Analysis of the response of the XY-FP isolation system to earthquake shaking led to the
followings observations:

1. The test results showed the effectiveness of the XY-FP bearings as an uplift-prevention
isolation system. During testing, some of the XY-FP bearings were subjected to significant

tensile loads. The bearings simultaneously resisted the tensile loads and functioned as an
isolation system.
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2. Prior observations regarding the minor effect of vertical components of ground motion on
the global horizontal response of sliding isolation systems were confirmed. However, the peak
shear force in a sliding bearing can be increased by the vertical component of the earthquake
history.

3. Vertical components of earthquake shaking can produce significant tensile loads in the
bearings.
4. The friction properties of the interface of the XY-FP bearings changed little with repeated

cycling, although composite material was lost over the course of the testing program.
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SECTION 7

NUMERICAL RESPONSE OF THE TRUSS-BRIDGE MODEL FOR THE TEST
EXCITATIONS

7.1 Introduction

Results from and observations on numerical analyses of the XY-FP isolated truss-bridge model
subjected to some of the test excitations are described in this section. The numerical analyses
assumed uncoupled response of the rails of the XY-FP bearings. Since the test results presented
in section 6 demonstrated that the small-scale connector of the XY-FP bearings and
misalignment of the rails of the isolators did not permit fully uncoupled orthogonal responses,
the numerical responses presented herein cannot be compared directly with most of the test
results. However, selected experimental responses are compared with numerical responses in this
section, to validate of the mathematical idealization of both the stick-slip phase of the response
of the XY-FP bearings and the effect of the axial load on the shape of the force-displacement
loops of XY-FP bearings.

7.2 Properties of the truss-bridge model and XY-FP bearings

The numerical responses were calculated using 3D-BASIS-ME (Roussis, 2004). The input
accelerations used in the analysis of the XY-FP isolated truss-bridge model were the averaged
accelerations of the two simulators. These analyses took into account the variation of bearing
axial load and the variation in the coefficients of friction with velocity. The numerical analyses
considered the characteristics of both the truss-bridge model and the XY-FP bearings presented
in Figures 4-1 and 4-2, respectively.

These analyses assumed maximum coefficients of friction in the x and y directions of 4.1% and
3.8%, respectively. These coefficients of friction are the average value of the coefficients of
friction calculated from the normalized isolator global force-displacement loops from the series
of tests using the harmonic excitation at a frequency of 0.4 Hz. The minimum coefficient of
friction is assumed to be 2% in both directions (Mokha et al., 1988). The variation of fictional
forces for friction heating was neglected in these analyses.

The axial forces assumed on the bearings were the values at the beginning of test L451y (91 kN,
112 kN, 92kN, and 104 kN, for bearings 1 through 4, respectively). These values varied slightly
after each test due to the residual displacements; Figure 6-17 showed how the bearing
displacements lead to small variations in axial load. The numerical analyses assumed a mass
eccentricity of 9 cm and 1.3 cm in the longitudinal and transverse direction, respectively; to
account for the mass eccentricity in the test setup. The yield displacement of the XY-FP bearings
was assumed to be 0.5 mm (0.02 in.) based on the mechanical properties of the sliding interfaces
of FP-type bearings (Tsopelas et al., 1994b).
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7.3 Global response of the XY-FP isolation system to harmonic excitations

Figure 7-1a shows the global numerical response of the isolated truss bridge model to the
harmonic inputs excitation of the bi-directional test L451xy. In this example, because the
frequency of excitation (0.4 Hz) is relative close to the frequency of the isolation system (0.5
Hz), the relatively small difference between the maximum coefficients of friction of the XY-FP
isolation system in the x and y directions led to significant differences in the isolator
displacements in both directions. The peak displacement in the y-direction is 43% larger than
that in the x-direction. (Section 8 studies the sensitivity of the response of a XY-FP isolation
system under earthquake excitations with small variations in the coefficients of friction.) Figure
7-1b shows the global experimental response of the isolated truss bridge model for the bi-
directional test L451xy.
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Figure 7-1  Global force-displacement loop of the XY-FP isolation system for bi-directional
excitation in test L451xy
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Figure 7-2  Global numerical response of the XY-FP isolation system for the bi-directional
excitation, inputs from test L451xy

Each loop on Figure 7-1a has minor force fluctuations during the reversal of motion (where the
displacement a maximum) due to sticking of the interfaces. Figure 7-2 superimposes the global
responses of the isolation system to illustrate the association of the force fluctuation with the
peak displacements and points of zero velocity.

As explained in section 3.5, the fluctuations are created in the solution of the state of motion at
the points of zero velocity. The intensity of these fluctuations depends on the inertial properties,
viscous damping, coefficients of friction and restoring forces. These fluctuations were only
found in the response to harmonic input excitation at a frequency of 0.4 Hz.

Figures 6-13, 6-15 and 6-28 showed force fluctuations during the tests using 0.4 Hz harmonic
excitations. Figure 7-1b shows the force fluctuations on the experimental force-displacement
loops of the XY-FP isolation system for the bi-directional test L451xy due to the stick-slip phase
of the response. The experimental displacements and force responses cannot be compared
directly with the numerical responses because the assumed uncoupled response of rails was not
realized during testing. These numerical analyses and the test results validated the idealization of
the stick-slip motion using the Bouc’s (1971) equation (Park et al. 1986, Wen 1976), (Equation
(3-33) is implemented in 3D-BASIS-ME (Roussis, 2004) to account for stick-slip motion).

Figure 7-3 shows the global numerical response of the isolated truss bridge model to the bi-
directional input-test-excitations at frequencies of 0.4 Hz and 0.8 Hz in each orthogonal
direction. The force fluctuations are observed in the force-displacement loops in the direction in
which the harmonic excitation has a frequency of 0.4 Hz, that is, in the x-direction for test F18xy
and in the y-direction for test FC1xy.

The loop of Figure 7-3a shows accentuated force fluctuations because the axial load varies at a
different frequency than the bearing displacement in the x-direction. The axial load varies at a

159



frequency of 0.8 Hz, that is, the input excitation in the y-direction; the frequency of the input
excitation in the x-direction is 0.4 Hz.

Figures 7-3b and 7-3c illustrate the uncoupled response of the XY-FP bearings during bi-
directional (horizontal) excitation through the path-independent shapes of the force-displacement
loops along each axis of the XY-FP isolated systems. The shapes of the force-displacement loops
in one principal direction do not depend on the responses of the bearings in the perpendicular
direction. These figures show nearly identical global response in the y and x directions for the
inputs excitations for test F81xy and FC1xy, respectively.
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Figure 7-3  Global numerical responses of the XY-FP isolation system for bi-directional
excitation, inputs from tests F81xy and FCl1xy

160



7.4  Effect of overturning moments on the shapes of force-displacement loops of the XY-
FP bearing under harmonic excitations

This section illustrates how the responses of an XY-FP isolation system under unidirectional and
bi-directional excitation can differ because of the variation in axial load of the bearings.

The friction and restoring forces of an XY-FP isolator depends directly on the axial load, which
changes continuously over the course of a harmonic displacement history due to overturning
moments. Due to the large length-to-width ratio of the truss-bridge model, the overturning
moments acting in the transverse direction controlled the variation of axial load in the bearings.
The variation of bearing axial load can be significantly different for x-unidirectional excitation
than for either bi-directional (x, y) or y-unidirectional excitation.

Figures 7-4 and 7-5 present the displacement history of the isolated system, the force-
displacement loops for the isolated system and the force-displacement loops for the four bearings
in the x and y directions under bi-directional excitation for the input excitation of test F81xy. The
frequencies of the input excitation are 0.4 Hz and 0.8 Hz in the x and y direction, respectively:
the bearing axial loads vary at a frequency of 0.8 Hz. The force-displacement loops in the x and y
directions show the effect of the overturning moments in the y-direction controlling the bearings
axial loads. For bearings 2 and 3, located on the positive y-side of the truss bridge (Figure 4-5),
the maximum axial load on the bearings increases the shear force in the maximum positive x and
v displacements. In contrast, in bearings 1 and 4 located on the negative y-side of the truss
bridge, the minimum axial load reduces the bearing shear force for the maximum positive x and y
displacement.

To illustrate the effect of overturning moments on the bearing responses under unidirectional and
bi-directional harmonic excitation, Figures 7-6 though 7-11 present different responses of the
truss-bridge model to the input excitations for tests FC1x, FCly, and FClxy.

Figures 7-6 and 7-7 present the responses in the x and y directions for bearing 1 under
unidirectional excitation in the x and y directions (see Figure 4-5 for location): the displacement,
shear force and axial load histories, the force-displacement loops of the bearing and the force-
displacement loops of the bearing normalized by the instantaneous axial load. The axial load
history of Figure 7-6 indicates little variation of axial force under unidirectional harmonic
excitation in the x-direction. The maximum and minimum axial loads are 97 kN and 91 kN,
respectively. The axial load varies at a frequency of 0.8 Hz. The lack of variation in the axial
load is evident by the similarity of the shapes of the force-displacement and normalized force-
displacement loops. The axial load history of Figure 7-7 indicates significant variation of axial
force under unidirectional harmonic excitation in the y-direction. The maximum and minimum
axial loads are 118 kN and 70 kN, respectively. The axial load varies at a frequency of 0.4 Hz.
The axial load variation is clearly seen by the differences of the shapes of the force-displacement
and the normalized-force-displacement loops.
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Figures 7-8 and 7-9 present the displacement history of the isolation system, the force-
displacement loops for the isolation system and the force-displacement loops for the four
bearings in the x and y directions under bi-directional excitation using the input excitation of test
FClxy. These figures illustrate how the shape of the force-displacement loops can be significant
affected by the variation in axial load when the horizontal bi-directional excitations have
different frequencies.

The force-displacement loops in the x-direction for each bearing on Figure 7-8 have irregular
shapes caused by the variation in axial load. As a result of the different frequencies of excitation
in the horizontal directions, the force-displacement loops of each bearing in the x-direction
consist of two different shaped loops. Every two cycles, the force-displacement trajectory
followed the same path forming two different loops. In the first cycle of the two, the loop does
not close and a second loop forms in the second cycle that is horizontally and vertically
translated with respect to the first. This effect is best explained by examining one of the bearings
(bearing 1); see Figure 7-10. The peak values of both x displacement and x shear force are
affected by the frequency of excitation in the y-direction, leading to the double-shaped force-
displacement loops. The axial force history shows fluctuations at a frequency of the x excitation.
The frequency of the axial load history is that of the sinusoidal excitation applied in the y-
direction. However, the longitudinal overturning moments led to fluctuations in the axial load
histories at the frequency of the x-excitation.

The irregular shapes of the force-displacement loops of the XY-FP bearing under harmonic
excitations as a result of the variation in axial load were also observed seen in the test results of
Section 6 (see section 6.4.4). The similarity of the axial load under y-unidirectional and bi-
directional excitations, led to nearly identical y-responses of bearing 1 under bi-directional (see
Figure 7-11) and y-unidirectional (see Figure 7-7) excitations.

Figure 7-12 re-assemble the numerical and experimental force-displacement loops for bearings 2
and 3 for the bi-directional harmonic excitation FC1xy to illustrate how both the experimental
and numerical responses of the XY-FP bearings showed the effect on the axial load on the shape
of the force-displacement loops. Figures 7-12a and 7-12b show the doubled shaped force-
displacement loops in the x direction for the numerical and experimental responses, respectively.

7.5  Effect of overturning moments on the shapes of force-displacement loops of the XY-
FP bearing under earthquake excitations

To illustrate the effect of overturning moments on the bearing responses under unidirectional and
bi-directional earthquake excitation, Figures 7-13 and 7-14 present different responses of the
truss-bridge model to the input excitations for the 45% Tabas earthquake using tests T45%xy,
T45%x, and T45%y. In these figures, the force-displacement loops of the XY-FP bearings under
bi-directional excitation are superimposed on the force-displacement loops under unidirectional
excitation.
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Figure 7-12 XY-FP bearings responses in the x-direction for bi-directional excitation FC1xy

Similar to the responses to harmonic excitations, the force-displacement loops in the x-directions
show some differences of the x-unidirectional and the bi-directional force-displacement loops.
Figure 7-13 shows that the peak shear forces for the x-unidirectional excitation are up to 30%
larger than those on the bi-directional excitation because of differences in the axial load. Due to
the similarity of the axial load under y-unidirectional and bi-directional excitation, the force-
displacement loops in the y-direction in unidirectional and bi-directional excitation of figure 7-14
are nearly identical.

In summary, both the numerical analyses of this section and some of the test results of section 6
validated the idealization of stick-slip motion using the Bouc’s (1971) equation (Park et al. 1986,
Wen 1976) because minor force fluctuations during the reversal of motion associated with the
stick phase of response were found in both the numerical and experimental responses of the XY-
FP isolation system to some harmonic excitation. However, these fluctuations had no significant
impact on the global response of the isolation system. Furthermore, the numerical and
experimental responses of the XY-FP isolation system demonstrated that the bearing axial load
slightly affect the shapes of the force-displacements loops of the XY-FP bearings.
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SECTION 8
NUMERICAL ANALYSIS OF A BRIDGE ISOLATED WITH XY-FP BEARINGS
8.1 Introduction

This section presents the results from and observations on numerical analyses of a bridge isolated
with several sets of XY-FP bearings and subjected to near- and far-field earthquake histories.
The main purpose of these analyses is to identify the differences in response of the bridge
isolated with XY-FP bearings with different radii of curvature in the principal directions. Section
8.2 describes the earthquake histories used in the analyses and the properties of both the sample
bridge and the sets of XY-FP bearings. Section 8.3 presents the results and observations of
responses of the isolated bridge for the different sets of XY-FP bearings. Section 8.4 presents
results and observation of numerical analyses carried out to study the sensitivity of the response
of the bridge isolated with bearings with different coefficients of friction.

8.2 Earthquake histories and properties of the bridge and XY-FP bearings

Two groups of earthquake motions that would represent a near- and a far-field sites were used in
the numerical analyses. These sets of ground motions were classified and scaled by Huang et al.
(2006). Tables 8-1 and 8-2 list the sets of ground motions.

The ground motions were scaled using the geometric mean scaling of pairs of ground motions
(Somerville et al., 1997) that involves amplitude scaling of a pair of ground motions by a single
factor that minimizes the sum of the squared errors between target spectral values and the
geometric mean of the spectral ordinates for the pair at selected periods (in this case, at periods
of 0.3, 0.6, 1, 2 and 4 seconds). This procedure preserves the spectral shape and the correlation
between the components in the pair of motions. Figure 8-1 shows the 5% damped target spectra
and the median, mean, 16™ and 84™ percentiles of elastic acceleration spectra for the two sets of
ground motions (Huang et al., 2006). Figures 8-2 and 8-3 show the variations of the median
elastic spectra of the two set of ground motions for different damping ratios.

The numerical analyses of this section consider an isolated bridge with a rigid substructure and a
rigid superstructure. Figure 8-4 shows the geometry of the bridge, which is a single span bridge
supported on four XY-FP bearings, which are in turn supported on abutments. The properties of
the bridge were adapted from a sample bridge developed by the Applied Technology Council
(ATC, 1986). The single span is the middle span of that three-span bridge structure. The total
weight of the concrete superstructure was 9900 kN (2225 kips).

The numerical analyses assumed 1) uncoupled response of the rails of the XY-FP bearings, and
2) that the rails of the XY-FP bearings were able to rotate about the vertical axis without moment
transfer. The responses were calculated using a modified version of 3D-BASIS-ME (Roussis,
2004). 3D-BASIS-ME was modified for these analyses to include the option to have different
radii of curvature of the rails of the bearings.
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Table 8-1 Near-field ground motions (Huang et al., 2006)

No. | Designation Ground motion Station M! r ?a ccatli)er
1 NF1, NF2 Kobe 1995 69 | 34 1.0
2 NF3, NF4 Loma Prieta 1989 7.0 3.5 1.0
3 NF5, NF6 Northridge 1994 6.7 7.5 1.0
4 NF7, NF8 Northridge 1994 6.7 | 64 1.0
5 NF9, NF10 Tabas 1974 7.4 1.2 1.0

SAC 2/50 for Los Angeles
6 NF11,NF12 | Elysian Park 1 (simulated) 7.1 17.5 1.0
7 NF13,NF14 | Elysian Park 2 (simulated) 7.1 | 10.7 1.0
8 NF15,NF16 | Elysian Park 3 (simulated) 7.1 11.2 1.0
9 NF17,NF18 | Palos Verdes 1 (simulated) 7.1 1.5 1.0
10 NF19, NF20 | Palos Verdes 2 (simulated) 7.1 1.5 1.0
11 NF21, NF22 | Cape Mendocino 04/25/92 89156 Petrolia 7.1 9.5 1.2
12 | NF23,NF24 Chi-Chi 09/20/99 TCUO053 76 | 6.7 3.8
13 NF25, NF26 Chi-Chi 09/20/99 TCUO056 7.6 | 11.1 4.5
14 | NF27,NF28 Chi-Chi 09/20/99 TCU068 7.6 1.1 1.5
15 NF29, NF30 Chi-Chi 09/20/99 TCU101 7.6 | 11.1 3.1
16 | NF31,NF32 Chi-Chi 09/20/99 TCUWGK 7.6 | 11.1 2.0
17 | NF33,NF34 Duzce 11/12/99 Duzce 7.1 8.2 1.6
18 NF35, NF36 Erzinkan 03/13/92 17:19 95 Erzinkan 69 | 2.0 1.5
19 NF37, NF38 Imperial Valley 10/15/79 5057 El Centro Array #3 6.5 9.3 3.6
20 NF39, NF40 Imperial Valley 10/15/79 952 El Centro Array #5 6.5 1 1.9
21 NF41, NF42 Imperial Valley 10/15/79 942 El Centro Array #6 6.5 1 2.0
22 | NF43, NF44 Kobe 01/16/95 20:46 Takarazu 6.9 1.2 1.3
23 NF45, NF46 Morgan Hill 04/24/84 57191 Halls Valley 6.2 34 34
24 | NF47,NF48 Northridge 1/17/94 24279 Newhall 6.7 | 7.1 0.9
25 NF49, NF50 Northridge 1/17/94 0637 Sepulveda VA 6.7 8.9 1.1

2.

Moment magnitude

Distance closest to fault rupture [km]
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Table 8-2 Far-field ground motions (Huang et al., 2006)

No. | Designation Ground motion Station M! r 21 C;i)er
1 FF1, FF2 Cape Mendocino 04/25/92 89509 Eureka—Myrtle & West | 7.1 44.6 3.8
2 FF3, FF4 Cape Mendocino 04/25/92 89486 Fortuna—Fortuna Blvd 7.1 23.6 5.1
3 FF5, FF6 Coalinga 1983/05/02 36410 Parkfield—Cholame 3W 6.4 43.9 7.1
4 FF7, FF8 Coalinga 1983/05/02 36444 Parkfield—Fault Zone 10 | 6.4 30.4 4.5
5 FF9, FF10 Coalinga 1983/05/02 36408 Parkfield—Fault Zone 3 6.4 36.4 2.8
6 FF11, FF12 Coalinga 1983/05/02 36439 Parkfield—Gold Hill 3E | 6.4 29.2 6.0
7 FF13, FF14 Imperial Valley 10/15/79 5052 Plaster City 6.5 31.7 13.9
8 FF15, FF16 Imperial Valley 10/15/79 724 Niland Fire Station 6.5 359 59
9 FF17, FF18 Imperial Valley 10/15/79 6605 Delta 6.5 43.6 2.1
10 FF19, FF20 Imperial Valley 10/15/79 5066 Coachella Canal #4 6.5 493 4.1
11 FF21, FF22 Landers 06/28/92 22074Yermo Fire Station 7.3 24.9 2.8
12 FF23, FF24 Landers 06/28/92 12025 Palm Springs Airport 7.3 37.5 5.4
13 FF25, FF26 Landers 06/28/92 12149 Desert Hot Springs 7.3 23.2 3.6
14 FF27, FF28 Loma Prieta 10/18/89 47524 Hollister—South & Pine 6.9 28.8 1.8
15 FF29, FF30 Loma Prieta 10/18/89 47179 Salinas—John &Work 6.9 32.6 7.1
16 FF31, FF32 Loma Prieta 10/18/89 1002 APEEL 2—Redwood City | 6.9 47.9 1.7
17 FF33, FF34 Northridge 01/17/94 14368 Downey—Co Maint Bldg | 6.7 47.6 2.8
18 FF35, FF36 Northridge 01/17/94 24271 Lake Hughes #1 6.7 36.3 53
19 FF37, FF38 Northridge 01/17/94 14403 LA—116th St School 6.7 41.9 4.7

20 FF39, FF40 San Fernando 02/09/71 125 Lake Hughes #1 6.6 25.8 4.7
21 FF41, FF42 San Fernando 02/09/71 262 Palmdale Fire Station 6.6 254 4.9
22 FF43, FF44 San Fernando 02/09/71 289 Whittier Narrows Dam 6.6 45.1 7.9
23 FF45, FF46 San Fernando 02/09/71 135 LA—Hollywood Stor Lot 6.6 21.2 3.6
24 FF47, FFA8 | Superstition Hills (A) 11/24/87 5210Wildlife Liquef. Array 6.3 24.7 5.6
25 FF49, FF50 | Superstition Hills (B) 11/24/87 5210Wildlife Liquef. Array 6.7 24.4 2.8

1. Moment magnitude
2. Distance closest to fault rupture [km]
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Table 8-3 Friction properties of the XY-FP bearings '

Designation fonax Fnin a [s/m] (s/in) Pressure p [MPa] (ksi)
FA 0.10 0.04 22 (0.55) 13.8 (2.00)
FB 0.05 0.02 28 (0.70) 44.9 (6-50)
FC* 0.08 0.04 22 (0.55) 13.8 (2.00)
FD’ 0.07 0.02 28 (0.70) 44.9 (6-50)
FE * 0.03 0.02 28 (0.70) 44.9 (6-50)

1. These properties are applied to both principal directions of the XY-FP bearings. f..« is the coefficient
of friction at a large sliding velocity, fui, is the coefficient of friction at a low sliding velocity, and a is
a constant that depends on both the contact pressure and the interface condition (see equation 3.9).

2. Variations on properties FA and FB used in section 8.4.
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Figure 8-5 Friction properties FA and FB (Mokha el al., 1988)

These analyses took into account the variation of bearing axial load and the variation in the
coefficients of friction with velocity and pressure. The friction properties of the sets of XY-FP
bearings for two pressure levels were used in the analyses. The friction properties were extracted
from Mokha et al. (1988) for a PTFE-type composite and are presented in Table 8-3 and Figure
8-5. The yield displacement of the XY-FP bearings was assumed to be 0.5 mm (0.02 in.) based
on the mechanical properties of the sliding interfaces of FP-type bearings (Tsopelas et al.,
1994b).

8.3  Bridge responses using different sliding properties on the XY-FP bearings

The XY-FP bearing is defined herein as an orthotropic sliding isolation system since the
idealized decoupled bi-directional (horizontal) operation of the isolator allows it to have different
mechanical properties (restoring force and friction force) in each of its principal directions.
Friction forces and restoring forces can be varied through the choice of the friction interfaces and
radii of curvature in each principal direction of the bearings, respectively.
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To investigate the response changes in the XY-FP isolated superstructure for different radii of
curvature in each principal direction of the isolated system, numerical analyses of the bridge
isolated in different configurations using XY-FP bearings with different radii of curvature were
undertaken. Table 8-4 lists the different bearing configurations: the sets of bearings with
identical radii of curvature in each principal direction are termed isotropic sets of bearings, and
the sets of bearings with different radii of curvature in the principal directions, that is, different
isolation periods in the two principal directions, are termed orthotropic sets of bearings.

Table 8-4 Properties of the XY-FP bearings

Configuration Period [sec.] Curlj:tdui:: [(r)rfm] Friction property '

Isotropic 11 ; 28 gggg FA, FB

Isotropic 12 i gg ggjg FA

Isotropic I3 ; ;2 1223 FA,FB
Orthotropic O1 ; ig 2;‘3‘ FA, FB
Orthotropic O2 ; ;2 %2431 FA, FB
Orthotropic O3 ; gg E(Z)gi FA
Orthotropic O4 i ;2 234212 FA
Orthotropic O5 ; §§ ;(5)451: FA
Orthotropic O6 ; gg i’ggi FA

1 Friction properties listed in Table 8-3.

Figure 8-6 shows the average maximum responses to the near-field set of ground motions for the
isotropic configurations I1, 12 and I3 using the friction property FA on all bearings (see Table 8-
3). Tables 8-5 through 8-9 present the maximum responses of the isolated bridge and the
maximum and minimum axial load on the bearings for the isotropic and orthotropic
configurations using the friction property FA and the near-field set of ground motions.

Figure 8-6 presents the variations of the average maximum response for the three different
periods of isolation of the bridge: significant smaller displacements (the average displacement in
I3 is up to 27% smaller than in I1) and larger shear forces (the average shear force in 13 is up to
111% larger than in I1) in the isolation configurations with smaller isolation periods.

Figures 8-7 through 8-12 present the maximum responses of the orthotropic configurations O1,
02, 03, 04, OS5 and O6, normalized by the maximum responses of the isotropic configurations
I1 and 12, to the near-field set of ground motions using the friction property FA. The numbers in
the horizontal axis of these figures are associated with the ground motion number of Table 8-1.
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Figure 8-6 Average maximum response for the isotropic configurations (I1, 12 and 13) and

friction property FA to the near-field set of ground motions
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Figure 8-7 Maximum response of the orthotropic configuration O1 normalized by the

maximum response of the isotropic configuration I1 (O1/11) for the near-field set of ground motions
and friction property FA
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Figure 8-8 Maximum response of the orthotropic configuration O2 normalized by the

maximum response of the isotropic configuration I1 (02/11) for the near-field set of ground motions
and friction property FA
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Figure 8-9 Maximum response of the orthotropic configuration O3 normalized by the

maximum response of the isotropic configuration I1 (O3/11) for the near-field set of ground motions
and friction property FA

-
15 : ; g 15 :
g — : 3 _ N :
; = ;
3 N L = = _ o
2 1 _ g 1 _ _ :
[ : M M
g : |1 & L
s £
- [ E L
& 05 I 205 i
| ooz |
g 1" 3 |
Z 8] 1 g o] I I 1
0 5 10 15 20 25 = 0 5 10 15 20 25
a. Normalized maximum y-displacement b. Normalized maximum resultant displacement
2.5 5 % 2 T
3 M = -~ ; ;
- . . PRp— .
- A e N o E 15 b |- R E ey et O e
& . - . ‘ ‘ @ - Blm . - _
° N ' — " b3 . . T 1 - - =
..a 15}-- e B _____ __ll' g | - - _ _-ll
= . e N __ o = 1 — M-
B = H 5 |
8 | 5 |
.E L] -
g o5 | I % 0.5 | |
=]
Z | I
0 | E 0 |
0 5 10 15 20 25 0 5 10 15 20 25
¢. Normalized maximum y-shear force d. Normalized maximum resultant shear force

Figure 8-10 Maximum response of the orthotropic configuration O4 normalized by the
maximum response of the isotropic configuration I1 (O4/I1) for the near-field set of ground motions
and friction property FA
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Figure 8-11  Maximum response of the orthotropic configuration OS5 normalized by the
maximum response of the isotropic configuration 12 (O5/12) for the near-field set of ground motions
and friction property FA
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Figure 8-12  Maximum response of the orthotropic configuration O6 normalized by the
maximum response of the isotropic configuration 12 (06/12) for the near-field set of ground motions
and friction property FA
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The last and dashed bar in each figure is the normalized average of the maximum responses for
the set of ground motions.

Figures 8-7 through 8-12 and Tables 8-5 through 8-9 show that in most cases, the displacements
in the direction with the smaller sliding period in the orthotropic configurations are significant
smaller than those in the isotropic configuration. However, the shear forces in the direction with
the smaller sliding period are significant larger than those in the isotropic set of bearings. For
example, Figure 8-7 shows that the x-displacement across the bearings in the orthotropic
configuration O1 with isolation periods of 2.5 and 5 seconds in the x and y directions,
respectively, are, in most cases, significant smaller than those of the isotropic configuration 11
with an isolation period of 5 seconds. The average maximum displacement in the orthotropic
configuration is 27% smaller than in the isotropic configuration. The average resultant
displacement of the orthotropic configuration is 8% smaller than the isotropic configuration. The
average maximum x-shear force in the orthotropic configuration (isolation period of 2.5 seconds)
is 1.89 times that of the isotropic configuration. These responses illustrate the effectiveness of
the orthotropic XY-FP bearings at limiting displacements in either the longitudinal or transverse
direction of the bridge and directing seismic forces according to the sliding period of each axis of
the isolated bridge.

Tables 8-10 through 8-14 present the maximum responses and maximum and minimum bearings
axial load of the isolated bridge for the isotropic and orthotropic configurations using the friction
property FA and the far-field set of ground motions. Figure 8-13 shows the average maximum
response to the far-field set of ground motions for the isotropic configurations I1, 12 and I3 using
the friction property FA on all bearings.

Figure 8-13 and Tables 8-10 and 8-11 show marginally smaller average displacements (up to
4%) and larger average shear forces (up to 71%) in the isolation configurations with smaller
isolation period.

Figures 8-14 through 8-19 present the maximum responses of the orthotropic configurations O1,
02, 03, 04, OS5 and 06, normalized by the maximum responses of the isotropic systems 11 and
12, to the far-field set of ground motions using friction property FA. The numbers in the
horizontal axis of these figures are associated with the ground motion number of Table 8-2.
These figures show a small variation in the maximum displacement across the bearings in the
orthotropic configurations with a smaller sliding period in one of the principal directions. The
changes in shear force are significant for the different sliding periods. For example, Figure 8-15
shows that the y-displacements across the bearings of the orthotropic configuration O2 with
isolation periods of 5 and 2.5 seconds in the x and y directions, respectively, are, in most cases,
slightly smaller than those in the isotropic configuration with isolation periods of 5 seconds. The
average maximum displacement in the orthotropic configuration is 4% smaller than in the
isotropic configuration. The average of resultant displacements for the orthotropic configuration
is 5% smaller than that of the isotropic configuration. The average maximum x shear force of the
orthotropic configuration is 1.71 times that of the isotropic configuration, and the average
maximum resultant shear force is 1.44 times of that in the isotropic configuration. These results
indicate that the orthotropic property of the XY-FP bearing is more effective at controlling
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Figure 8-14  Maximum response of the orthotropic configuration O1 normalized by the
maximum response of the isotropic configuration I1 (O1/I1) and friction property FA for the far-
field set of ground motions
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Figure 8-15  Maximum response of the orthotropic configuration O2 normalized by the
maximum response of the isotropic configuration I1 (O2/I1) and friction property FA for the far-
field set of ground motions
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Figure 8-16  Maximum response of the orthotropic configuration O3 normalized by the
maximum response of the isotropic configuration I1 (O3/I1) and friction property FA for the far-
field set of ground motions
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Figure 8-17  Maximum response of the orthotropic configuration O4 normalized by the
maximum response of the isotropic configuration I1 (O4/I1) and friction property FA for the far-
field set of ground motions
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Figure 8-18  Maximum response of the orthotropic configuration OS normalized by the
maximum response of the isotropic configuration 12 (O5/12) and friction property FA for the far-
field set of ground motions
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Figure 8-19  Maximum response of the orthotropic configuration O6 normalized by the
maximum response of the isotropic configuration 12 (06/12) and friction property FA for the far-
field set of ground motions
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displacements in isolation systems subjected to near-field type ground motions than to far-field
type ground motion.

Tables 8-5 through 8-17 present the maximum responses and maximum and minimum bearings
axial load of the isolated bridge for the isotropic and orthotropic configurations using the friction
property FB and the near-field set of ground motions. Figure 8-20 presents average maximum
response to the near-field set of ground motions for the isotropic configurations I1, 12 and 13
using the friction property FB on all bearings. Similar to Figure 8-6, Figure 8-20 show
significantly smaller average displacements (up to 28%) and larger average shear forces (up to
156%) in the isolation configurations with a sliding period of 2.5 seconds than those with a
sliding period of 5.0 seconds.

Figures 8-21 and 8-22 present the maximum responses of the orthotropic configurations O1 and
02 normalized by the maximum responses of the isotropic configuration I1 to the near-field set
of ground motions using the friction property FB. In most cases, the displacements across the
bearings in the direction with the sliding period of 2.5 seconds of the orthotropic configurations
are smaller than those with the sliding period of 5.0 seconds in the isotropic configuration. The
shear forces in the direction with the smaller sliding period in the orthotropic bearings are
significantly larger than those in the isotropic bearings. For example, Figure 8-21 shows that the
x-displacement across the bearings of the orthotropic configuration O1 with isolation periods of
2.5 and 5 seconds in the x and y directions, respectively, are, in most cases, substantially smaller
than those in the isotropic configuration with isolation periods of 5 seconds. The average
maximum displacement of the orthotropic configuration is 27% smaller than in the isotropic
configuration. The average resultant displacement in the orthotropic configuration is 8% smaller
than in the isotropic configuration. The average maximum x-shear force on the orthotropic
configuration is 2.39 times that of the isotropic configuration, and the average maximum
resultant shear force is 1.63 times of that in the isotropic configuration.

Tables 8-18 through 8-20 present the maximum responses and maximum and minimum bearings
axial load of the isolated bridge for the isotropic and orthotropic configurations using the friction
property FB and the far-field set of ground motions. Figure 8-23 shows the average maximum
response to the far-field set of ground motions for the isotropic configurations 11, 12 and I3 using
the friction property FB on all bearings.

The right hand panels of Figure 8-23 show significantly larger shear forces in the isolation
systems with smaller isolation period; the average maximum shear forces in the isotropic
configuration I3 is up to 2.62 times that of the isotropic configuration I1. In most cases, the
average displacement across the bearings in the isolation configurations with smaller isolation
period is slightly larger than in those with larger isolation periods. For example, Figures 8-23a
and 8-23c show the average maximum displacement for isolation configuration with a sliding
period of 2.5 seconds (configuration 13) is about 10% greater than that for the isolation
configuration with sliding period of 5 seconds (configuration I1).
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Figure 8-20  Average maximum response for the isotropic configurations (I1, 12 and 13) and
friction property FB to the near-field set of ground motions
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Figure 8-21  Maximum response of the orthotropic configuration O1 normalized by the
maximum response of the isotropic configuration I1 (O1/I1) and friction property FB for the near-
field set of ground motions
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Figure 8-22 Maximum response of the orthotropic configuration O2 normalized by the maximum
response of the isotropic configuration I1 (02/11) and friction property FB for the near-field set of
ground motions
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Figure 8-23  Average maximum response for the isotropic configurations (I1, I2 and I3) and

friction property FB to the far-field set of ground motions
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Figures 8-24 and 8-25 present the maximum responses in the orthotropic configurations O1 and
02 normalized by the maximum responses of the isotropic configuration I1 to the far-field set of
ground motions using the friction property FB. In most cases, the displacements across the
bearings in the orthotropic configuration in the direction with the smaller sliding period are
slightly smaller than those of the isotropic configuration. However, the average maximum
displacements of each bin of ground motions are larger in the orthotropic configuration than in
the isotropic configuration because for some ground motions, the maximum displacements
in the orthotropic configurations are significant larger than in the comparable isotropic
configurations and rise the average value.

Analysis of the data presented in Tables 8-5 through 8-20 and Figures 8-6 through 8-25 lead to
the following observations:

1 The orthotropic property of the XY-FP bearing was most effective at controlling
displacements in isolation systems subjected to near-field type ground motions. The reduction of
the displacement response for smaller isolation periods in one principal direction of the
orthotropic XY-FP isolation system to the near-field set of ground motions was significant. Little
variation of the displacement response for different sliding isolation periods was observed for the
far-field set of ground motions. The reduction of the shear forces in the XY-FP isolation system
for larger isolation periods was significant in all cases.

2 The FP-type bearings can be more effective at limiting displacements in either the
longitudinal or transverse direction of the bridge for near-field type ground motions than for the
far-field type ground motions.

8.4 Response sensitivity of the XY-FP isolated bridge to small variation of the
coefficient of friction in one of the bearings

Numerical analysis of the sample isolated bridge was undertaken to investigate the sensitivity of
the response of a XY-FP (and FP) isolated superstructure to differences in the coefficients of
friction of the bearings. Differences in the coefficients of friction of bearings in an XY-FP
isolation system might be caused by a) natural variability in the composite material, b) non-
uniform corrosion of the stainless steel rails and contamination on sliding surface of the bearings,
and c) replacement of one or more bearings in the year(s) following construction.

Figure 8-26 presents drawings of the isolated superstructure with coefficients of friction for the
bearings for eight isolation systems assumed for the analyses.

The isolation system of Figure 8-26a, a bridge deck supported by four FP isolators, each with a
target coefficient of sliding friction at high speed of 0.05, represents the benchmark case; the
coefficient of friction of 0.05 is a typical value for bridge and building applications. Assume that
property modification factors have been established per the AASHTO Guide Specification for
Seismic Isolation Design (AASHTO, 1999) that provide upper and lower bounds on the
coefficient of friction of 0.10 and 0.03, respectively. Further, assume that bounding analysis is
performed for these coefficients of friction to compute maximum and minimum shear forces and
isolator displacements. Typically, isolator properties for a given isolation system will change
uniformly, namely, if the coefficient of friction changes from 0.05 to 0.08 in one isolator, the
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change will likely occur in all isolators. However, there might be cases where uniform changes
in mechanical properties do not occur, for instance, when an isolator is replaced due to non-
earthquake-related damage.

The maximum responses for the uniform friction target (T) and upper bound friction (U) systems
were presented in Tables 8-5, 8-6, 8-15 and 8-16. Table 8-21 presents the maximum responses
for the lower bound friction system (L). Tables 8-22 through 8-26 present the maximum
responses of the non-uniform friction systems F1 through F5.

Table 8-27 presents the maximum force and displacement responses for the two bounding values
of friction: U (10%) and L (3%). Tables 8-28 through 8-32 present normalized response ratios
computed by dividing the maximum responses of the non-uniform friction systems F1 through
F5 (Tables 8-22 through 8-26) by the bounded responses (Table 8-27). The shaded cells in these
tables illustrate the cases in which the maximum response of the non-uniform friction system is
larger than the bounded responses of Table 8-27.

The ratios of Tables 8-28 through 8-32 show that for some ground motions, the maximum
responses of the non-uniform friction systems F1 through F5 are larger than the maximum
bounded responses. The maximum displacement and shear force in the non-uniform friction
system F5 (an extreme case wherein friction values increase and decrease from the target value)
are up to 29% and 37% larger, respectively, than the bounded responses. For the other four non-
uniform friction systems F1 through F4, for a few ground motions, the maximum responses of
the non-uniform friction system are up to 10% larger than the bounded responses. However, in
an average sense, the maximum bounded responses exceed the maximum responses of the non-
uniform friction systems.

The following observations can be derived from Tables 8-21 through 8-32:

1 For some near-field ground motions, differences in the coefficients of friction of the
bearings of the isolation system can lead to significant changes in the maximum bearing
responses. However, in an average sense, the changes in maximum responses were small.

2 Bounding analysis that uses the lower and upper estimates of mechanical properties and
uniform changes in all isolators will generally provide conservative estimates of displacements
and shear forces for isolation systems with non-uniform isolator properties that lie within the
bounding analysis.
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SECTION 9
SUMMARY, CONCLUSIONS AND RECOMENDATIONS
9.1 Summary

A coordinated experimental and analytical research project was carried out to study the response
of XY-FP isolated systems under three-directional excitation and applications of XY-FP bearings
to bridges. Two of the key features of the XY-FP bearing for the seismic isolation of bridges are
their resistance to tensile axial loads and the capability of these bearings to provide a different
period of isolation in each principal direction of the bridge. Two different periods of isolation
permits the engineer to both limit displacements in either the longitudinal or transverse direction
of the bridge and direct seismic forces to the principal direction of the substructure(s) that is (are)
most capable to resist them.

An XY-FP bearing is a modified Friction Pendulum™ (FP) bearing that consists of two
perpendicular steel rails and a mechanical unit that connects the rails (the connector). The
connector resists tensile forces and slides to accommodate translation along the rails. The XY-FP
bearing is modeled as two uncoupled unidirectional FP bearings oriented along the two
orthogonal directions (rails) of the XY-FP bearing. The uncoupling of friction forces in both
orthogonal sliding directions in a XY-FP bearing creates a larger enclosed areas within the force-
displacement loops in each direction of the XY-FP bearing, providing somewhat greater energy
dissipation per cycle for a given displacement trajectory than that of the corresponding FP
bearing. Numerical analyses on FP and XY-FP bearings demonstrated that the displacement
response of an isolation system equipped with XY-FP bearings will likely be slightly smaller
than those equipped with comparable FP bearings, and the force response of a XY-FP isolation
system will likely be slightly larger than that of a comparable FP isolation system. The
differences in force and dissipation responses between XY-FP and FP bearings are path
dependent. This dependence is the result of the bi-directional coupling of friction forces in FP
bearings.

The experimental component of this project was conducted using one 1/4-length-scale truss
bridge model supported on one set of XY-FP bearings. The truss bridge model was a steel-truss
superstructure with a clear span of 10.67 m (35 feet) and a total weight of 399 kN (90 kips). The
set of bearings was similar to the bearings studied by Roussis (2004). The XY-FP isolated
system on two earthquake simulators was subjected to unidirectional, bi-directional, and three-
directional near-field earthquake-shaking. The experimental results demonstrated the
effectiveness of the XY-FP bearings as an uplift-prevention isolation system. The XY-FP
bearings simultaneously resisted significant tensile loads and functioned as a seismic isolator.
The XY-FP isolated truss-bridge model was subjected to unidirectional and bi-directional
(horizontal) harmonic excitations to assess both the bi-directional interaction and the force-
displacement characteristics of the XY-FP bearings.

The bi-directional response of the small-scale XY-FP isolation system was coupled due to both
the construction of the small-scale connectors that joined the two rails of each XY-FP bearing
and the reduction of the free rotation capacity of the XY-FP bearings due to misalignment of the
isolators during installation. The small-scale connectors transferred moments between the rails of
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the bearings when the isolation system experienced small rotations about a vertical axis, leading
to torsion on the isolation system. The lateral-torsional coupling of the XY-FP isolation system
under unidirectional excitation was evident by bi-directional response of the isolated structure:
shear forces in both horizontal directions and significant differences in the force-displacement
relationships of the XY-FP bearings. Since the small-scale connector constructed for the model
XY-FP bearings might not be representative of prototype connectors because of the relatively
small axial loads (pressures) on the bearings, the scale-dependant free rotation capacity and the
tolerances used in its construction, prototype testing is required to validate the uncoupled
orthogonal response of XY-FP bearings.

Prior observations regarding an initial and a final dynamic coefficient of friction identified from
the force-displacement loops of sliding bearing for harmonic excitation with different
frequencies were confirmed in the experimental responses of the XY-FP isolated truss-bridge
model. The difference between the initial and final dynamic coefficient of friction varied with
the frequency of excitation. For low frequencies, the difference was small but the difference
increased with the excitation frequency. The friction properties of the interfaces of the XY-FP
bearings changed little with repeated cycling; although composite material was lost over the
course of the testing program.

During the earthquake-simulator tests, the measured responses of the XY-FP isolated truss-
bridge model also confirmed prior observa tions regarding the minor effect of vertical
components of ground motion on the horizontal displacement response of sliding isolation
systems. The peak shear force in these sliding bearing was significantly increased by the vertical
component of selected earthquake histories.

Analytical studies demonstrated that rotation about a horizontal axis of parts of either FP or XY-
FP bearings can lead to force-displacement relationships that are different from those of bearings
with parallel and level parts. Rotation of the top part of either a FP bearing (e.g., housing plate)
or an XY-FP bearing (e.g., upper rail) with respect to the bottom part (e.g., concave plate or
bottom rail) can result from out-of-level installation of bearings, installation of bearings atop
flexible substructures, and rotation of the isolation system about a vertical axis because these
bearings increase their height when displaced laterally. Rotations of rails of an XY-FP bearing
can lead to greater differences in the force-displacement relationships than similar rotations in FP
bearings. In XY-FP bearings, the construction detail of the small-scale connector might permit
moments about the vertical axis to be transmitted from the upper (lower) rail to the lower (upper)
rail if the rails of the bearings are neither parallel nor level. In contrast, the connection between
the articulated slider and the housing plate in FP bearings permits relative rotation without
moment transfer. In FP bearings, the effects of rotation can be minimized by attaching the
housing plates to that part of the structure likely to experience the largest rotation. In XY-FP
bearings, the effects of rail rotation can be minimized by placing the bearings in such way that
the transverse section of the rails would be the part of the XY-FP bearing that likely experiences
the rotation.

Numerical analyses of the truss-bridge model subjected to the test excitations and some of the
test results validated the idealization of stick-slip motion using the Bouc’s (1971) equation (Park
et al. 1986, Wen 1976) because minor force fluctuations during the reversal of motion associated
with the stick phase of response were found in both the numerical and experimental responses of
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the XY-FP isolation system to some harmonic excitation. However, these fluctuations had no
significant impact on the global response of the isolation system.

Experimental and numerical responses of the truss-bridge model also demonstrated the variation
of the XY-FP isolated system responses with changes in the bearing axial load. The friction and
restoring forces of an XY-FP isolator depends directly on the co-existing axial load, which
changes continuously over the course of an earthquake history by overturning moment, bearing
displacement, and vertical acceleration. During bi-directional (horizontal) excitation, the axial
loads on the bearings link the orthogonal responses of the XY-FP isolation system. In XY-FP
isolated superstructures having a large length-to-width ratio, such as the bridge superstructures,
the bearing axial load might be controlled by the overturning moments acting in the transverse
direction and the influence of the longitudinal overturning moments on the axial loads might
slightly affect the shape of the force-displacement loops. The force-displacement loops of the
XY-FP bearings under unidirectional and bi-directional excitation will differ due to the
magnitude and sign of the axial load on the bearings.

The variation in response of the XY-FP isolated superstructure for different radii of curvature in
each principal direction of XY-FP isolated system was studied by numerical analysis. A sample
bridge was isolated in different configurations using XY-FP bearings and evaluated using near-
and far-field sets of ground motions. The sets of bearings with identical radii of curvature in each
principal direction were termed isotropic sets of bearings; the sets of bearings with different radii
of curvature in the principal directions, that is, different isolation periods in the principal
directions, were termed orthotropic sets of bearings. These analyses demonstrated that the
orthotropic property of the XY-FP bearing was more effective at limiting displacements in
isolation systems subjected to near-field type ground motions than in far-field type ground
motion. The reduction of the shear forces in the XY-FP isolation systems with larger isolation
periods was significant in all cases.

Finally, numerical analyses of a sample isolated bridge were conducted to investigate the
sensitivity of the response of a XY-FP isolated superstructure to differences in the coefficients of
friction of the bearings. The responses indicated that for some near-field ground motions, minor
differences in one of the coefficients of friction can lead to significant differences in the
maximum responses of the isolation system. However, the differences in the average maximum
responses for each bin of ground motions were small. These analyses also illustrated that for
some near-field ground motions, the maximum responses of the non-uniform friction systems are
larger than the maximum bounded responses that uses lower and upper response estimates based
on a uniform increase (decrease) in the coefficients of friction of the bearings. However, in an
average sense the differences between the maximum responses of the non-uniform friction
systems and those obtained from the bounding analysis are negligible. These responses indicated
that bounding analysis that uses the lower and upper estimates of mechanical properties and
uniform changes in all isolators will generally provide conservative estimates of displacements
and shear forces for isolation systems with non-uniform isolator properties that lie within the
bounding analysis.
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9.2 Conclusions
The principal conclusions of the study reported in this study are:

1 During bi-directional (horizontal) excitation and due to the uncoupling of friction forces
in both orthogonal sliding directions in the idealized XY-FP bearing, the displacement response
of an isolation system equipped with XY-FP bearings will likely be slightly smaller than those
equipped with comparable FP bearings, and the force response of a XY-FP isolation system will
likely be slightly larger than that of a comparable FP isolation system. The differences in the
force and dissipation responses are path dependent.

2 The experimental results demonstrated the effectiveness of the XY-FP bearings as an
uplift-prevention isolation system: the XY-FP bearings simultaneously resisted significant tensile
loads and functioned as seismic isolators.

3 Prior observations regarding the minor effect of vertical components of ground motion on
the global horizontal response of sliding isolation system were confirmed by the earthquake-
simulator tests. The peak shear force in a sliding bearing can be significantly increase by the
vertical component of the earthquake history.

4 Prior observations regarding an initial and a final dynamic coefficient of friction
identified from the force-displacement loops of sliding bearing for harmonic excitation with
different frequencies were confirmed by the experimental responses of the XY-FP isolated truss-
bridge model.

5 In XY-FP isolated superstructures having a large length-to-width ratio, such as a bridge
superstructure, the bearing axial load might be controlled by the overturning moments acting in
the transverse direction and the influence of the longitudinal overturning moments on the axial
loads might slightly affect the shape of the force-displacement loops. The force-displacement
loops of the XY-FP bearings under unidirectional and bi-directional excitation will differ due to
the magnitude and sign of the axial load on the bearings.

6 Rotation about a horizontal axis of parts of either FP or XY-FP bearings can lead to
force-displacement relationships that are different from those of bearings with parallel and level
parts. The rotations of rails of an XY-FP bearing can lead to greater differences in the force-
displacement relationships than similar rotations in FP bearings.

7 Numerical and experimental responses of the truss-bridge model subjected to harmonic
excitations validated the idealization of stick-slip motion using the Bouc-Wen model.

8 The XY-FP bearings were effective at directing seismic forces to the principal direction
of the models according to sliding properties of each axis of the isolated bridge in all cases.

9 The XY-FP bearings were more effective at limiting displacements in either the
longitudinal or transverse direction of the bridge for near-field type ground motions than for the
far-field type ground motions.
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10 For some near-field ground motions, differences in the coefficients of friction of the
bearings of the isolation system can lead to significant changes in the maximum bearing
responses. However, in an average sense, the changes in maximum responses were small.

11 Bounding analysis that uses the lower and upper estimates of mechanical properties and
uniform changes in all isolators will generally provide conservative estimates of displacements
and shear forces for isolation systems with non-uniform isolator properties that lie within the
bounding analysis.

9.3 Recommendations for future research

On the basis of the studies reported herein, the following are recommendations for future study
of the XY-FP bearings:

1. Experimental validation of both the free rotation capacity and the uncoupled orthogonal
response of the rails of prototype XY-FP bearings is required. The sensitivity of the rotation
capacity of an XY-FP isolation system to minor misalignment of the rails of the bearings can be
critical in bridges since a bridge is subjected to a multitude of misalignment during construction
and service.

2. A rotational degree of freedom could be added to the mathematical idealization of the
XY-FP bearings to study the numerically sensitivity of the global response of XY-FP isolation
systems to variations in the rotation capacity of individual XY-FP bearings. The mathematical
model might include the moment-rotation relationships of sections 3.3.3 and 5.3.

3. Experimental studies on prototype XY-FP bearings should be undertaken to study the

sensitivity of isolation-system responses for perfectly aligned and intentionally misaligned XY-
FP bearings.
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