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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a na-
tional center of excellence in advanced technology applications that is dedicated to the
reduction of earthquake losses nationwide. Headquartered at the University at Buffalo,
State University of New York, the Center was originally established by the National Sci-
ence Foundation in 1986, as the National Center for Earthquake Engineering Research
(NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions
throughout the United States, the Center’s mission is to reduce earthquake losses
through research and the application of advanced technologies that improve engineer-
ing, pre-earthquake planning and post-earthquake recovery strategies. Toward this
end, the Center coordinates a nationwide program of multidisciplinary team research,
education and outreach activities.

MCEER’sresearch is conducted under the sponsorship of two major federal agencies, the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA),
and the State of New York. Significant support is also derived from the Federal Emer-
gency Management Agency (FEMA), other state governments, academic institutions,
foreign governments and private industry.

The Center’s Highway Project develops improved seismic design, evaluation, and
retrofit methodologies and strategies for new and existing bridges and other highway
structures, and for assessing the seismic performance of highway systems. The FHWA
has sponsored three major contracts with MCEER under the Highway Project, two of
which were initiated in 1992 and the third in 1998.

Of the two 1992 studies, one performed a series of tasks intended to improve seismic
design practices for new highway bridges, tunnels, and retaining structures (MCEER
Project 112). The other study focused on methodologies and approaches for assessing
and improving the seismic performance of existing “typical” highway bridges and other
highway system components including tunnels, retaining structures, slopes, culverts,
and pavements (MCEER Project 106). These studies were conducted to:

* assess the seismic vulnerability of highway systems, structures, and components;

e develop concepts for retrofitting vulnerable highway structures and components;

* developimproved designand analysis methodologies for bridges, tunnels, and retain-
ing structures, which include consideration of soil-structure interaction mechanisms
and their influence on structural response; and

* develop,update, and recommend improved seismic design and performance criteria
for new highway systems and structures.
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The 1998 study, “Seismic Vulnerability of the Highway System” (FHWA Contract
DTFH61-98-C-00094; known as MCEER Project 094), was initiated with the objective
of performing studies to improve the seismic performance of bridge types not covered
under Projects 106 or 112, and to provide extensions to system performance assessments
for highway systems. Specific subjects covered under Project 094 include:

* development of formal loss estimation technologies and methodologies for highway
systems;

e analysis, design, detailing, and retrofitting technologies for special bridges, in-
cluding those with flexible superstructures (e.g., trusses), those supported by steel
tower substructures, and cable-supported bridges (e.g., suspension and cable-stayed
bridges);

* seismic response modification device technologies (e.g., hysteretic dampers, isola-
tion bearings); and

* soil behavior, foundation behavior, and ground motion studies for large bridges.

In addition, Project 094 includes a series of special studies, addressing topics that range
from non-destructive assessment of retrofitted bridge components to supporting studies
intended to assist in educating the bridge engineering profession on the implementation
of new seismic design and retrofitting strategies.

This research investigated key assumptions inherent in the equation for calculation of displace-
ments in seismically isolated bridges (Equation 3 of the 1999 AASHTO Guide Specifications),
and the validity of the current testing protocol for full-scale prototype seismic isolators for seis-
mic loading as specified in AASHTO 1999. To facilitate response-history analysis, earthquake
ground motions were collected and organized into eight bins. For each bin, the seismic hazard
was characterized using the mean and median spectrum. Mean and median spectra were used
to calculate the maximum design displacement using the static analysis procedures given in
AASHTO 1999. Nonlinear response-history analysis was performed considering a simple iso-
lated bridge model and twenty combinations of isolator properties subjected to unidirectional
and bidirectional seismic excitation using 77 pairs of earthquake ground motion records. These
properties of the seismic isolators, namely, the characteristic strength normalized by the weight
acting on the isolator and the second slope-period, were varied widely to represent most bridge
isolation systems. The results of the response-history analyses were mined to determine maxi-
mum isolator displacements and energy demands imposed on seismic isolators during maximum
earthquake shaking. Energy demands were quantified using two metrics: (1) the total energy
dissipated by the seismic isolator normalized by the energy dissipated by one fully reversed cycle
to the maximum displacement and (2) the rate-of-energy dissipated.
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ABSTRACT

This report presents an analytical study investigating the performance of an isolated
bridge structure subjected to seismic excitation. Here performance is being assessed using
the following descriptors: maximum horizontal displacements and cumulative energy
dissipated by an individual seismic isolator. Twenty different isolation systems are
considered with varied parameters, namely, characteristic strength (Qs) and second-slope
stiffness ( K4). Unidirectional and bi-directional response-history analysis was performed
considering nonlinear systems and eight bins of earthquake ground motions. Results of
the response-history analysis are being used to: (1) determine the increase in maximum
horizontal displacement of a seismic isolator due to bi-directional seismic excitation
utilizing a coupled plasticity model with a circular yield function to represent the seismic
isolator elements, and (2) review the accuracy of the current AASHTO equation for the
calculation of displacements in isolated bridge structures which assumes unidirectional
seismic excitation and linearly increasing displacements for periods greater that 1-second,
and (3) develop prototype testing requirements for seismic isolators in terms of an
equivalent number of harmonic cycles to the maximum displacement and an equivalent
testing frequency based on the observed energy demand imposed on individual isolators

and isolation systems from numerical simulation of maximum earthquake events.
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SECTION 1

INTRODUCTION

1.1 General

Seismic isolation is employed for new and retrofit bridge construction in many countries,
including the United States, Greece, ltaly, Japan, New Zealand, South Korea, and
Turkey. Isolation systems are used to reduce force demands on bridge substructures to the
point where substructures can be designed to remain elastic in maximum earthquake
shaking. Force demands are reduced through the installation of vertically stiff but
horizontally flexible components (isolators) between the superstructure and the
substructure. Damping is generally an integral part of a bridge seismic isolator and serves
the primary purpose of reducing the isolator displacements.

There are three broad classes of seismic isolator used for bridge construction in the
United States and Japan at this time: the (elastomeric) Lead-Rubber (LR) bearing, the
(sliding) Friction Pendulum (FP) bearing, and the (elastomeric) High-Damping Rubber
(HDR) bearing. The most popular seismic isolation bridge bearings in the United States
are the LR and FP bearings because both types of bearing have large initial stiffness,

which is needed to prevent movement under service (braking) loads.

The current design procedures for seismic isolation systems for bridge structures are
given by the American Association of State Highway and Transportation Officials
(AASHTO) Guide Specification for Seismic Isolation Design (AASHTO, 1999). The
Guide Specifications provide procedures for the analysis of isolation systems, design of
isolation systems and individual seismic isolators, and full-scale testing of seismic
isolators. Many of the procedures presented in the Guide Specification can be traced back
to either the first edition of the Guide Specification (AASHTO, 1991) or the seismic
isolation design provisions included in the 1997 Uniform Building Code (ICBO, 1997)
for building structures.



This report presents new information that will have an impact on two aspects of the
Guide Specification, namely, (1) displacement estimates in seismically isolated bridges,
and (2) prototype testing of seismic isolation bearings. Summary information on each of

these aspects of the Guide Specification is presented in the following two sections.

1.2 Displacements in Seismically Isolated Bridges

The key design variable for seismic isolation systems is displacement over the isolation
interface. Isolator displacement dictates (a) the space around the isolated superstructure to
facilitate unrestricted movement of the superstructure, (b) the shear strain in elastomeric
isolators and isolator stability, (c) the plan geometry of sliding isolators, and (d) forces

transmitted to the bridge substructure (piers and abutments) for given isolator stiffness.

The Uniform Load Method of the Guide Specification presents the basic method for
estimating displacements in seismically isolated bridges. Specifically, equation (3) of the
Guide Specification writes (in Sl units of millimeters) that the isolator displacement d

(or the deck displacement relative to the ground if the substructure is flexible) is equal to

_ 250AS; T
B

d (1.1)

where T is the effective period at maximum displacement (based on the secant stiffness
at the maximum displacement); 250AS; is the 5-percent damped spectral displacement at
1-second, and B is a damping coefficient that modifies the design spectrum for values of
equivalent viscous damping other than 5 percent. The 1-second spectral displacement is a

function of the acceleration coefficient, A, and the site coefficient, S;. Values of A and

Si are given in Division 1-A: Seismic Design of the AASHTO Standard Specifications
for Highway Bridges (AASHTO, 1996). Equation (1.1) assumes that the isolated period
falls in the constant velocity portion of the design spectrum in which spectral

displacements are assumed to increase linearly with period.

Values for the damping coefficient B are presented in Table 7.1 of the Guide
Specification, which is reproduced in Table 1.1 to illustrate the reduction in

displacements afforded by the provision of damping in the isolation system.



Table 1.1. Damping Coefficient B (adopted from AASHTO 1999).
Damping (Percentage of Critical)
<2 5 10 20 30 40 50
B 0.8 1.0 1.2 15 1.7 19 2.0

The procedures for analysis and design of seismically isolated building structures are
similar in part to those used for bridge structures. A benchmark estimate of isolator
displacement is calculated using an equation similar to (1.1). Superstructure and
substructure forces are tied to displacements calculated by alternate means (such as
response-history analysis) that are limited as a percentage of the displacement of (1.1).
Accordingly, it is of significant import to both bridge and building isolation construction
that an estimate of isolator displacement established using the Uniform Load Method (or

the building Equivalent Lateral Force Procedure) is accurate.

Two of the basic assumptions inherent in (1.1) are studied in this report, namely, (1) that
on average, displacements increase linearly in the range of interest for isolated bridges,
and (2) the effect of bi-directional horizontal shaking on the displacement estimate d ,

can be ignored.

1.3 Performance Characterization of Seismic Isolators

The performance of seismic isolators is checked prior to fabrication of production
isolators and their installation in a bridge through prototype testing. Section 13.2 of the
Guide Specification include requirements for prototype testing that include multiple
cycles of seismic testing to the maximum isolator displacement, d . Specifically, the
Guide Specification in Section 13.2 writes that a prototype isolator be subjected to (a)
three fully reversed cycles at the following multiples of the total design displacement:
1.0, 0.25, 0.50, 0.75, 1.0, and 1.25, (b) not less than 10 and not more than 25 fully
reversed cycles of loading at the design displacement, d, and (c) three fully reversed
cycles of loading at the total design displacement. All of the prototype tests are typically

executed at low maximum speeds.



Because isolation prototype testing is intended to judge the performance of the prototype
isolator with respect to the mechanical properties assumed for the analysis and design of
the isolation system, it is legitimate to question the prototype test sequence presented in
the Guide Specifications. One objective of the research work described in this report was
to better understand the energy demands on bridge seismic isolation bearings and to
translate those estimates of energy demand into a recommended protocol for testing

seismic isolation bearings.

1.4 Report Organization

This report contains 7 sections, a list of references, and 6 appendices. Section 2 presents a
brief summary of research related to the modeling and analysis of seismic isolation
systems. Section 3 describes the organization of earthquake ground motions utilized for
response-history analysis and characterization of the seismic hazard using mean and
median response spectrum. Section 4 discusses the simple mathematical model of the
isolated bridge structures assumed for response-history analysis. Displacement estimates
in seismically isolated bridge structures are addressed in Section 5. Energy demands on
seismic isolation bearings and recommended testing protocols for seismic isolation
bearings are described in Section 6. A summary of the research work, key conclusions,
and recommendations for future studies are presented in Section 7. The appendices
present: earthquake records used for response-history analysis (Appendix A), an
investigation of the distribution of spectral acceleration data (Appendix B), verification of
the mathematical model of the isolated bridge structure and a discussion of the numerical
procedures used for response-history analysis (Appendix C), calculation of the maximum
isolator displacement using the AASHTO procedure (Appendix D), maximum isolator
displacement data (Appendix E), and data for the total energy dissipated and rate-of-
energy dissipated by seismic isolators (Appendix F).



SECTION 2

MODELING AND ANALYSIS OF SEISMIC ISOLATION SYSTEMS

2.1 General

Over the past decade there have been significant advances in the understanding of the
behavior of seismic isolators subjected to earthquake loading. Two of the most popular
types of seismic isolation hardware are elastomeric (Lead-Rubber) and sliding (Friction
Pendulum) bearings. These two types of seismic isolators have been and continue to be
implemented in buildings and bridges around the world. For the design and analysis of
seismically isolated structures, it is important to have mathematical models that
accurately capture the behavior of these isolator elements. With sufficiently accurate
models, numerical analysis of simplified isolated structures can be performed to
determine important response quantities such as maximum isolator displacement and
maximum shear force transmitted to the super- and substructure. Mathematical models
such as the coupled-plasticity and Bouc Wen have been used to represent Lead-Rubber
(LR) and Friction Pendulum (FP) isolation bearings and incorporated in computer
routines to enable dynamic analysis of isolated structures subjected to earthquake
loading. Such programs include 3D-BASIS (Nagarajaiah et al., 1989) and SAP2000
(CSI, 2000). The capability of these models to predict the response of seismic isolation
systems subjected to earthquake loading, including prediction of the maximum force and

maximum displacement information has been demonstrated through experimental testing.

A few examples of research related to the modeling, analysis, and behavior of seismic
isolation systems subjected to one or more components of earthquake excitation are
presented in this section. Results of this research have shown that well developed
mathematical models are capable of predicting the behavior of seismically isolated
structures subjected to earthquake excitation accurately. These models have been
calibrated and verified through extensive experimental testing using earthquake
simulators at the State University of New York at Buffalo and the University of

California, Berkeley.



2.2 Mokha, Constantinou, and Reinhorn (1993)

This research study verified a mathematical model of frictional sliding bearings proposed
by Constantinou, Mokha, and Reinhorn (1990) subjected to compressive loads and high
velocity bi-directional motion. The mathematical model accounted for variation in
normal load, bearing pressure, velocity and direction of sliding. Model parameters were
calibrated experimentally by applying unidirectional sinusoidal motion with a specific
amplitude and frequency to a bearing with Teflon and stainless steel contact surfaces.
These materials are typically used for the contact surfaces of Friction Pendulum isolators,
which have been implemented in a large number of buildings and bridges around the

world.

An experimental program was conducted consisting of two sets of bi-directional motions:
(1) harmonic motion with out-of-phase components and (2) random earthquake type
motions. [It is important to note that the authors use the term “out-of-phase” to describe
the two horizontal displacement components with respect to time. However, out-of-phase
in this context does not necessarily results in simultaneous displacement demand in both
horizontal directions. This is demonstrated in Section 4 of this report where a box shape
displacement orbit is investigated.] Results of the experimental program were compared
with the predictions of the mathematical model. This comparison proved qualitatively
that the mathematical model was capable of predicting the response of the bearing
subjected to harmonic and random bi-directional excitation. However, no quantitative
comparison was provided. These results, both analytical and experimental, demonstrated
the importance of bi-directional interaction in sliding isolation systems.

Bi-directional interaction was further investigated by analyzing a model structure
supported by 45 isolators using nine pairs of earthquake ground motions. The isolators
were modeled using the previously mentioned mathematical model considering bi-
directional interaction (circular yield function) and neglecting bi-directional interaction
(square yield function). The ground motions used for the analyses were scaled to have
consistent amplitude and frequency content with a target spectrum over the period range
of interest. Results of this supplemental analytical investigation showed that neglecting
the bi-directional interaction resulted in an overestimation of the lateral forces transmitted



to the super- and substructure and an underestimation of the maximum displacement.
This overestimation of the structural shear and underestimation of the maximum
displacement was observed to be as large as 20 percent. The authors determined that this
was significant and that bi-directional interaction in sliding isolation systems should be

considered.

2.3 Huang, Fenves, Whittaker, and Mahin (2000)

An experimental and analytical investigation of the bi-directional behavior of Lead-
Rubber bearings was conducted. The experimental component of this research used a
rigid-frame supported by 4 Lead-Rubber bearings subjected to four defined displacement
orbits and five pairs of earthquake ground motion records. The displacement orbits were
varied to obtain displacement demand in either of the horizontal directions independently
or in both simultaneously. The earthquake ground motions represented different intensity,
duration, soil type, and source mechanism. For the analytical component, a bi-linear rate-
independent plasticity model was considered. For this model both coupled (circular yield
function) and uncoupled (square yield function) were considered. Further, a 4-parameter

model based on bounding surface theory, was proposed and investigated.

A comparison of the experimental and analytical results for the pre-defined displacement
orbits showed that the bi-linear plasticity model with circular yield function (coupled)
was capable of prediction the force response of the Lead-Rubber bearing with reasonable
accuracy. The bi-linear plasticity model with square yield function (uncoupled) was
unable to accurately reproduce the force response of the Lead-Rubber bearing. A
comparison of the experimental and analytical results using the five pairs of earthquake
ground motions showed that the coupled plasticity model reproduced the force and
displacement response with reasonable accuracy and the uncoupled plasticity model
again was unable to reproduce the force or displacement response when compared to the
experimental results. However, the uncoupled plasticity model was able to predict
maximum isolator displacements with reasonable accuracy for at least one ground motion

pair.



An improved model for Lead-Rubber isolation bearing was proposed. This model uses
strain independent parameters and is based on bounding surface theory. Numerical
simulations were performed using the improved model subjected to a unidirectional
sinusoidal displacement time history with varying displacement amplitudes. Results of
this analysis were compared with experimental results of a Lead-Rubber bearing isolated
structure subjected to the same unidirectional sinusoidal displacement time history with
varying amplitude corresponding to 25, 50, 100, and 150 percent shear strain. This
comparison showed that the improved model was capable of predicting the response of

the Lead-Rubber bearing over a wide range of stain levels.

2.4 Mosqueda, Whittaker, and Fenves (2003)

The behavior of Friction Pendulum bearings subjected to multiple components of
excitation was investigated in this research. Both experimental and numerical simulations
of a rigid-frame model representing a rigid bridge super-structure supported by four
Friction Pendulum bearings were conducted. Results of the experimental simulations

were used to evaluate the efficacy of five mathematical models.

The experimental component utilized both displacement controlled orbits and scaled
earthquake ground motions. Six displacement orbits were used to evaluate the response
of Friction Pendulum bearings subjected to bi-directional motion. Data from the
experimental simulation was used to calibrate the mathematical model, namely, the
coefficient of friction and the threshold velocities for which the coefficient of friction can
be assumed constant. Five pairs of earthquake ground motions were used to evaluate the
response of the isolated bridge model subjected to unidirectional and bi-directional
seismic excitation. Tri-directional tests were also performed to evaluate the effect of
vertical ground motion on the response of the isolated bridge model. Experimental data

was used to evaluate five mathematical models for the Friction Pendulum isolators.

Five mathematical models were used to represent the Friction Pendulum isolators: (1) a
coupled plasticity model with varying axial load; (2) a coupled plasticity model with
constant axial load; (3) an uncoupled plasticity model with varying axial load; (4) an

uncoupled plasticity model with constant axial load; and (5) a linear viscous



representation. The five models were subjected to the pre-defined displacement orbits
and the five pairs of earthquake histories using numerical simulation. Results of the
experimental simulations were used to evaluate the ability of the five mathematical
models to predict the response of the Friction Pendulum isolators subjected to multiple
components of excitation as well as the prediction of maximum isolator displacements
and maximum resisting forces. From this comparison it was determined that the coupled
plasticity model with varying axial load predicted the response of the isolators and
isolation system with the greatest accuracy. However, the coupled plasticity model with
constant axial load was capable of predicting maximum displacement with reasonable
accuracy, however, the maximum restoring force of the system was underestimated. Both
uncoupled plasticity models were observed to underestimate maximum displacements
and overestimate the maximum restoring force. The linear viscous model was unable to

accurately predict maximum isolator displacement or the maximum restoring force.

It was concluded that the coupled plasticity model with varying axial force yields the best
prediction of the response of the Friction Pendulum isolation system subjected to bi-
directional excitation and predicts the maximum isolator displacements and maximum
restoring force within 10 percent accuracy. The linear viscous model was unable to
capture the response of the isolator subjected to bi-directional seismic excitation and
predicted the maximum displacement and maximum restoring force with an unacceptable
level of accuracy. The researchers also concluded that such a model should not be used

to represent Friction Pendulum isolators for dynamic response-history analysis.






SECTION 3

EARTHQUAKE GROUND MOTIONS AND ELASTIC RESPONSE
SPECTRA

3.1 General

This section presents information about the earthquake ground motions used for
response-history analysis performed for this study. A brief explanation regarding the
organization of the ground motions into eight bins is presented. Elastic, 5% damped
response spectrum were generated for each ground motion component. Response spectra
contained in a particular bin were statistically organized to characterize the seismic
hazard. The eight bins of ground motions represent a broad range of seismic demand
such that the results of analyses performed using the bins of ground motions will, on
average, be applicable to the design of isolated bridges throughout the United States.

Presented at the end of this section is an investigation of the spectral regions and
associated transition periods for five of the eight bins of ground motions. Results of this
investigation were used to determine the constant velocity portions of the mean spectra
and to verify the linearly increasing displacements assumed by the AASHTO design

spectrum.

3.2 Ground Motions
3.2.1 General

A total of 77 earthquake ground motion pairs were utilized for this study. Ground
motions were organized into eight bins, five of which were based on moment magnitude
and distance-to-fault. Acceleration time histories were extracted from two sources: the
Pacific Earthquake Engineering Research (PEER) database,
http://peer.berkeley.edu/smcat/ (PEER, 2000); the SAC Steel Project database,
http://eerc.berkeley.edu:8080/index.html/ (SAC, 1997). One pair of soft soil ground

motions was obtained from Miranda (Personal communication, 2002).
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3.2.2 Organization

Ground motions were organized into 8 bins: (1) Near-Field, (2) Large-Magnitude Small-
Distance, (2M) Large-Magnitude Small-Distance, (3) Large-Magnitude Large-Distance,
(4) Small-Magnitude Small-Distance, (5) Small-Magnitude Large-Distance, (6) Near-
Field Soft-Soil, and (7) Large-Magnitude Soft-Soil. Bin descriptions (2) through (5) are
those adopted by Krawinkler (Personal communication, 2001). The bin descriptions
represent parameters such as: distance-to-fault, moment magnitude and soil type, which
were used to organize the ground motions. For instance, large-magnitude describes
events greater than 6.5, while small-magnitude refers to events ranging from 5.2 to 6.6.
Similarly, small-distance ranges from 10 to 30 km and large-distance refers to distances
greater than 30 km. The near-field bin contains ground motions ranging from 6.7 to 7.6

in magnitude and distances-to-fault of less than 10 km.

Each bin contains 20 horizontal ground motion components corresponding to 10
earthquake events with the exception of the near-field bin, which contains 24 ground
motions. Also, Bin 2 was modified to form Bin 2M, replacing five pairs of ground
motion to achieve a mean 1-second spectral acceleration of approximately 0.4g. Lists of
ground motion components by bin are presented in Tables 3.1 through 3.8 including
information such as: event, moment-magnitude, distance-to-fault, peak ground
acceleration, and soil type (SAC, 1997; PEER, 2000). Acceleration time histories for

each ground motion component are presented in Appendix A.

3.2.3 Near-Field Ground Motions

The first twenty ground motion components listed in Table 3.1 were obtained from the
SAC Steel Project database. Of these twenty motions, ten of the motions were recorded
and ten were simulated. For the recorded ground motions, some were originally recorded
on soil conditions corresponding to site class: D, as designated by the National
Earthquake Hazard Reduction Program, and some were modified to represent these soil
conditions (SAC, 1997).

The last four ground motions of Table 3.1: TCUO065N, TCU065W, TCUO75N and
TCUOQ75W, are from the 1999 Chi-Chi (Taiwan) earthquake. These two ground motion
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pairs were extracted from the PEER database and incorporated into Bin 1. Acceleration,
velocity and displacement time histories for each component of TCU065 and TCUQ75
are presented in Figures 3.1 and 3.2, respectively. These motions have been incorporated
into Bin 1 in an effort to increase the diversity of the near-field strong motion data used

for this study.

One of the ground motion pairs selected from the Chi-Chi data set was found to contain
directivity effects. Specifically, forward rupture directivity (FRD) which is typically
found on the fault normal component of strike-slip faulting for near-field ground motions.
The presence of FRD is determined by the alignment of slip and the direction of
propagation of the rupture front (Somerville, 2000). Forward rupture directivity is
characterized by a large, two sided velocity pulse appearing on the fault normal
component of the record. The fault parallel component is usually absent of this pulse
with a velocity time history more commonly found from vibratory earthquake ground
motions. Referring to the components of TCUO75, the North and West components are
approximately aligned in the fault parallel and fault normal direction, respectively. From
the velocity time history traces of record TCUQ75 (see Figure 3.2) a large two sided
velocity pulse is observed on the West component between 26 and 32 seconds with a
maximum velocity of 88 cm/s. The velocity trace of the North component is more
uniform in amplitude over the duration of strong motion with a maximum velocity of 38
cm/s. Based on these observations TCUQ75 was believed to contain directivity effects
and therefore incorporated in the near-field bin used in this study. Elastic response

spectra were generated to further investigate the presence of forward rupture directivity.

3.2.4 Soft-Soil Ground Motions

Ground motion comprising bins 6 and 7 represent soft-soil site conditions. The ground
motions contained in Bin 6 were obtained from the SAC Steel Project database. These
ground motions were simulated using a nonlinear model of a soil column and stiff-soil
ground motions as input at the base of the soil column. The soil column model was
intended to represent soil conditions with: a depth to firm ground of 46 m (150ft) and an
average shear wave velocity of 152 m/s (497 fps) (SAC, 1997). Presented in Table 3.7 is
a list of the near-field soft-soil ground motions and information corresponding to the
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original input ground motions. Bin 7 ground motions were collected from the PEER
database with the exception of the SCT ground motion pair, which was obtained from
Miranda et al. (Personal communication 2002). Table 3.8 presents a list of the large-

magnitude soft-soil ground motions and corresponding information.

3.2.5 Soil Classification

The first twenty motions of the near-field bin were classified with a soil type of D as
designated by the National Earthquake Hazard Reduction Program (FEMA, 2001). Site
class D corresponds to a stiff soil profile with an average shear wave velocity ranging
from 180-360 m/s. Soil conditions for ground motion bins 2-5 have been classified by
United States Geological Survey (USGS) as either type A or type C, corresponding to
rock (average shear wave velocities >750m/s) and stiff soil profiles (average shear wave
velocities ranging from 180-360 m/s), respectively. The ground motions of Bin 6
represent site class, F, using the NEHRP designation (SAC, 1997). Site class information
for the first four ground motion pairs of Bin 7 are based on descriptions of the local soil
conditions (Benuska, 1990; Miranda, 1991). Site class information for the remaining six
pairs of ground motions in Bin 7 is based on the USGS Classification corresponding to C
(average shear wave velocity between 180-360 m/s) and D (average shear wave velocity

<180 m/s). Soil classification information has been included in Tables 3.1 through 3.8.

3.3 Elastic Response Spectra
3.3.1 General

Elastic response spectra were generated for each ground motion component used in this
study. All spectra were generated for 5% critical damping. For brevity, not all spectra are
presented. However, the seismic hazard for each bin has been characterized by two
means: first, as the mean of all spectra contained in a particular bin assuming the spectral
acceleration data follow a normal distribution and second, as the median assuming the

spectral acceleration data follow a lognormal distribution.
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3.3.2 Characterization of the Elastic Response Spectra

Based on an investigation of the probabilistic distribution of spectral acceleration data,
presented in Appendix B, a lognormal characterization of the spectral acceleration data
was determined to be the better of the two models considered. However, because the
normal distribution is commonly used to characterize the dispersion of elastic spectra,

both normal and lognormal characterizations of the elastic design spectrum are presented.

Presented in Figures 3.3 through 3.10 are: mean; mean plus and minus one standard
deviation (mean+1c); and maximum and minimum (max/min) spectra, for Bins 1
through 7. The spectra were determined assuming the spectral acceleration data to be
normally distributed. The mean and standard deviation were calculated as the sample
mean and sample standard deviation of the spectral acceleration data.

Figures 3.11 through 3.18 present: median; 84™ percentile; and 16" percentile spectra, for
Bins 1 through 7. These spectra were determined assuming a lognormal characterization
of the spectral acceleration data. The parameters of the lognormal distribution were
estimated from the spectral acceleration data samples. A more detailed explanation
regarding the characterization of the distribution of spectral acceleration data is presented

in Appendix B.

3.3.3 Directivity of Response Spectrum

The mean spectrum for each bin represent null directivity spectrum with the exceptions
of Bin 1 (Near-Field) and Bin 6 (Near-Field Soft-Soil) where component orientation with
respect to the fault has been preserved in an approximate fault normal and fault parallel
orientation. Plotted in Figures 3.19 through 3.22 are the mean of the first component, the
mean of the second component, and, the mean of all components for each bin. Plotted in
Figure 3.23 are the median of the first component, the median of the second component,
and the median spectra for Bins 1 and 6. Referring to the spectra of Bin 1 shown in
Figure 3.19a, the mean first component spectrum is observed to lie significantly above
the mean spectrum. This is due to the strong directivity effects exhibited by six of the ten
pairs of ground motions in Bin 1. Referring to the spectra of Bin 6, shown in Figure

3.22a, there appears to be some directivity effect contained in the Bin 6 ground motions
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components. This directivity effect is a result of the input ground motions used for the
nonlinear analysis of a soil column previously mentioned. For Bins 2 through 5, the
similarity of the first component, second component and mean spectra can be seen in
Figures 3.19b through 3.21b. These figures suggest that the mean spectrum represents a
null directivity spectrum. Note the vertical axes in Figures 3.19b through 3.21b and 3.22b
are plotted at the same scale for comparison between bins and the scale of the vertical
axis in Figures 3.19a and 3.22a are different. Spectral acceleration data for 0.2 and 1.0
second periods considering mean and median spectrum for Bins 1 through 7 is presented
in Table 3.9. Also presented in Table 3.9 is spectral acceleration data for 0.2 and 1.0
seconds considering the mean and median of the 1st component for Bins 1 and 6.

3.3.4 Effects of Forward Rupture Directivity on Elastic Response Spectrum

Typically, the effect of forward rupture directivity on the elastic response spectrum is to
increase the response of the horizontal fault normal component for periods greater than
0.5 second with the peak response of the fault normal component typically shifted to

longer periods (Somerville, 2000).

Response spectra generated from the North and West components of TCUQ75 further
indicate the presence of forward rupture directivity. An increase in the response of the
West component is evident from the displacement, velocity and acceleration spectra
shown in Figure 3.25. This increase in the fault normal component over the fault parallel
component is observed for periods greater than 1.25 seconds for the displacement and
velocity response spectrum. At a period of 4.0 seconds, a typical upper bound for
isolated structures, the West component is approximately two times larger than the North
component for both the displacement and velocity spectra, clearly indicating that
directivity effects will have a significant effect on an isolated structure located in close
proximity to a major fault and that component orientation relative to the fault must be
considered for the analysis and design of these structures.

3.3.5 Identification of Spectral Regions

An investigation of the spectral regions of the mean spectrum for six of the eight bins of
ground motions is presented. The spectral regions were investigated for two reasons: (1)
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to identify the constant velocity portion of the mean spectrum and to determine whether
this range is consistent with the effective period of plausible isolation systems, and (2) to
facilitate linear regression analysis on the constant velocity portion of the log acceleration
response spectrum to assess the validity of the assumed linearly increasing displacements
assumed by the current AASHTO design spectrum. That is, if the spectral acceleration is
shown to decay at a rate proportional to 1.0/ T, the linearly increasing displacement

assumption is verified.

Estimates of the transition periods, and thus the spectral regions, were determined by
performing an iterative tri-linear regression analysis on the logarithm of the mean
velocity spectrum for each bin considered. Plotted in Figure 3.26 are mean velocity
spectra for each of the six bins considered. Note the velocity spectra are plotted on a
log-log scale. Also included on each plot are the estimates of the transition periods,
namely, Tay the transition period between the acceleration and velocity sensitive regions,
and Typ the transition period between the velocity and displacement sensitive regions.
Estimates of Tay and Typ, were determined to be the intersection of adjacent linear

best-fit lines from the converged tri-linear regression analysis.

Values of Typ for Bins 1, 2, 2M and 3, were determined to be 3.5, 4.75, 5.0, and 3.75
respectively. For Bin 4 and Bin 5, the value of Typ was determined to be 1.0 and 1.15
respectively. However, this discussion will focus on the results from Bins 1, 2, 2M
and 3, as seismic isolation is viable for this level of seismic hazard, and unlikely to be

used to protect against an earthquake hazard represented by bins 4 and 5.

From the results shown in Figures 3.26a and 3.26c, the velocity spectrum of Bin 1 (near-
field) and Bin 3 (far-field) show the transition from the acceleration sensitive to velocity
sensitive region occurs at a much lower period for Bin 3 than Bin 1, 0.25 and 0.75
seconds respectively. Values of the transition period from the velocity sensitive region to
the displacement sensitive region calculated for Bin 1 and Bin 3 yield similar values of
3.5 and 3.75 seconds respectively. The velocity plateau of the far-field motions (Bin 3) is
observed to be much larger than the plateau for the near-field motions (Bin 1). These

results are in agreement with recent research comparing the response of near-field and
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far-field ground motions (Chopra and Chintanapakdee, 2001). To estimate the transition
period, Typ, for the mean spectrum of Bins2 and 2M, the velocity response was
calculated over a period range of approximately 20 seconds. The response was calculated
to a maximum period of 20 seconds to ensure sufficient information in the displacement
sensitive region to facilitate the iterative tri-linear regression analysis. From the results of
the regression analysis, values of Typ for Bins 2 and 2M were determined to be 4.75 and
5, respectively. Estimates of the transition period from the velocity to the displacement
sensitive region, Typ, for ground motion bins 1, 2, 2M, and 3 corresponds to the upper-
limit of the effective period of plausible seismic isolation systems. This observation
indicates that the effective period of feasible isolation systems considered here lie within

constant velocity region of the design spectrum.

Results of the tri-linear regression analysis were utilized to determine an appropriate
period range to facilitate linear regression analysis on the logarithm of the mean
acceleration spectrum. This is discussed in greater detail in the next section. Values of

Tav and Typ and the ratio Tay /Typ are given in Table 3.10 for Bins 1 through 5.

3.3.6 Linear Regression Analysis Performed on the Logarithm of the Mean
Acceleration Spectrum

The current design spectrum for isolated bridge structures assumes the acceleration
response of a single degree-of-freedom system subjected to earthquake excitation decays
at a rate proportional to 1.0/T in the constant-velocity region of the design spectrum
(AASHTO, 1999). To investigate the validity of this assumption the following
relationship was investigated

S1
Sa :T_O“ (31)
where S, is the spectral acceleration; S; is the 1-second spectral acceleration; T is the
period of vibration, and o an exponent greater than or equal to unity. To estimate the
value of o, linear regression analysis was performed on the log of the acceleration data

over a range consistent with the constant-velocity region determined from the
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investigation of the transitions periods. Taking the log of both sides of (3.1) yields the

relationship

log(Sa) =—a.-log(T)+log(S,) 3.2)

where o was determined as the slope of the best-fit line of the transformed acceleration
data. Results of the linear regression analysis are given in Table 3.11. Values of a
shown in this table range from 1.05 to 1.28 for the six bins of ground motions considered.
The results of this investigation suggest that the mean spectrum calculated for the six bins
of ground motions considered match reasonably well the assumed shape of the AASHTO
design spectrum over a period range consistent with the effective period of typical
isolated bridges. Performing this analysis on the mean spectrum and not each individual
spectrum contained in a particular ground motion bin may explain the deviation of the

observed value of a from unity. However no further investigation is provided here.
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Table 3.9. Spectral ordinates S, and S ;.

Normal Characterization

Lognormal Characterization

All Components Ist Components All Components Ist Components
Bin So2 AN So2 AN So2 AN So2 AN
(2 (€9) (€9) (€9) (€9) (€9) (€9) (€9)
1 1.13 1.01 1.09 1.35 1.01 0.83 1.03 1.26
2 0.52 0.20 0.38 0.12
2M 0.78 0.41 0.71 0.36
3 0.43 0.14 0.36 0.09
4 0.25 0.05 0.21 0.04
5 0.18 0.05 0.16 0.04
6 0.50 0.81 0.53 0.98 0.49 0.76 0.54 0.98
7 0.44 0.36 0.37 0.30
Table 3.10. Estimated transition periods for the spectal regions.
. - T av T'vp
B D t Typ/!/T
n escription (seconds) (seconds) Vb oAy
1 Near-field 0.75 3.45 4.6
2 Large-magnitude, small-distance 0.29 4.75 16.3
2M Large-magnitude, small-distance 0.35 5.07 14.6
3 Large-magnitude, large-distance 0.25 3.74 14.96
4 Small-magnitude, small-distance 0.21 1.02 4.86
5 Small-magnitude, large-distance 0.31 1.15 3.71

Table 3.11. Estimated values of the period exponent.

. o o
Bin Description (Tay<T < Typ)
1 Near-field 1.12
2 Large-magnitude, small-distance 1.28
2M Large-magnitude, small-distance 1.26
3 Large-magnitude, large-distance 1.05
4 Small-magnitude, small-distance 1.09
5 Small-magnitude, large-distance 1.21
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Figure 3.1. Acceleration, velocity, and displacement traces for record TCUOG5.
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Figure 3.2. Acceleration, velocity, and displacement tracesfor record TCUOQ75.
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Figure 3.3. Elastic response spectrafor Bin 1 ground motions and 5% critical damping
using a normal characterization.
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Figure 3.4. Elastic response spectrafor Bin 2 ground motions and 5% critical damping
using a normal characterization.
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Figure 3.5. Elastic response spectrafor Bin 2M ground motions and 5% critical damping
using a normal characterization.
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Figure 3.6. Elastic response spectrafor Bin 3 ground motions and 5% critical damping

using a normal characterization.
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Figure 3.7. Elastic response spectrafor Bin 4 ground motions and 5% critical damping

using a normal characterization.
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Figure 3.8. Elastic response spectrafor Bin 5 ground motions and 5% critical damping

using a normal characterization.
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Figure 3.9. Elastic response spectrafor Bin 6 ground motions and 5% critical damping
using a normal characterization.
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Figure 3.10. Elastic response spectrafor Bin 7 ground motionsand 5% critical damping
using a normal characterization.
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Figure 3.12. Elastic response spectrafor Bin 2 ground motionsand 5% critical damping
using a lognor mal characterization.
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Figure 3.13. Elastic response spectrafor Bin 2M ground motions and 5% critical damping
using a lognor mal characterization.
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Figure 3.14. Elastic response spectrafor Bin 3 ground motionsand 5% critical damping
using a lognor mal characterization.
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Figure 3.15. Elastic response spectrafor Bin 4 ground motionsand 5% critical damping
using a lognor mal characterization.
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Figure 3.16. Elastic response spectrafor Bin 5 ground motionsand 5% critical damping
using a lognor mal characterization.
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Figure3.17. Elastic response spectrafor Bin 6 ground motionsand 5% critical damping
using a lognor mal characterization.
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Figure 3.18. Elastic response spectrafor Bin 7 ground motionsand 5% critical damping
using a lognor mal characterization.
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Figure 3.19. Mean elastic response spectrafor 1st, 2nd, and all, ground motion
componentsand 5% critical damping for Bins 1 and 2.
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Figure 3.20. Mean elastic response spectrafor 1st, 2nd, and all, ground motion
componentsand 5% critical damping for Bins2M and 3.
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Figure3.21. Mean elastic response spectrafor 1st, 2nd, and all, ground motion
componentsand 5% critical damping for Bins4 and 5.
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Figure 3.22. Mean elastic response spectrafor 1st, 2nd, and all, ground motion
componentsand 5% critical damping for Bins6 and 7.

50



Acceleration (g)

Acceleration (g)

N

T T
— median of al components
- median of 1st component |
— - median of 2nd component

=
(o]
T

o o o o S
N A OO O RPN OB O
T
1

o
o

0.5 1 15 2 25 3 35 4
Period (sec.)

a. acceleration spectrafor Bin 1.

2 T T T T T T T

— median of al components
- median of 1st component |7

— - median of 2nd component

18

16

o o PP

D 0] = N SN
T T T
1 1 1

o
N

o
)

o

Period (sec.)

b. acceleration spectrafor Bin 6.

Figure 3.23. Median elastic response spectra for 1st, 2nd, and all, ground motion
componentsand 5% critical damping for Bins 1 and 6.
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Figure 3.24. Elastic response spectrafor record TCUO065 and 5% critical damping.
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Figure 3.25. Elastic response spectrafor record TCUQ75 and 5% critical damping.
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SECTION 4

RESPONSE-HISTORY ANALYSIS

4.1 General

Presented in this section is a discussion of the response-history analysis performed using
earthquake ground motion records from Section 3. Both unidirectional and bi-directional
nonlinear response-history analyses were performed. The nonlinear system consisted of a
simple rigid bridge structure supported by four isolator elements. Parameters of each
system were varied widely to ensure that the results of analyses performed for this study
would be broadly applicable to the design of seismic isolation systems in the United
States.

4.2 Nonlinear Response-History Analysis
4.2.1 General

A mathematical model of a simple isolated bridge structure was used for the nonlinear
response-history analysis. This model represents the simplest of isolated bridge structures
and assumes both the superstructure and substructure to be rigid. The simplicity of this
bridge model enables a clear understanding of the effect of bi-directional excitation on
the response of isolation systems.

4.2.2 Simple Bridge Model

A schematic representation of the mathematical model used for the isolated bridge
structure is shown in Figure 4.1. This schematic shows a single span, assumed rigid,
supported by four isolators resting on gravity abutments, also assumed to be rigid.
Properties used for the mathematical model of the bridge structure (i.e., dimensions and
mass) have been adopted from an example bridge set forth by the Applied Technology
Council (ATC, 1986). The single span in the schematic is based on the middle span of

the three span bridge structure proposed in the ATC report. The bridge superstructure
has been assumed to be concrete with density: y.=2403kg/m3. The weight of the

bridge deck was determined to be approximately 9900kN using the following equation
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Wieck =7¢ 9 Adeck - Lspan (4-1)

where vy, is the density of the concrete; g is the gravitational acceleration constant;
Ageck 1S the cross-sectional area of the deck; and Lgyan is the length of the span supported

by the isolators. Values of the geometric parameters are shown in Figure 4.1. The
weight (or vertical load) acting on each seismic isolator was determined to be

w _ Weeo (4.2)

4

The center of mass (denoted C.M.) is assumed to coincide with the center of rigidity of
the isolation system in plan as indicated by Figure 4.1. In elevation the C.M. is shown to
be vertically offset from the center of rigidity of the isolations system by a distance, h.
However, for the purpose of response-history analysis, the value of h was assumed to be
zero. Therefore, the center of mass in both the horizontal and vertical plane coincide
with the center of rigidity, eliminating any torsion or overturning moment due inertial

forces assumed to develop at the center of mass as a result of earthquake excitation.

24.91m
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A, 11407 E 1-,5 CoeeLo T

B T T ]
R )

SECTION A-A'

18.37m

C.M.

oo | e . )
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Figure 4.1. Simple bridge model based on: ATC example bridge.
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4.2.3 Isolation Parameters

The parameters used for the coupled plasticity model are based on a bilinear
characterization of the isolators. This bilinear characterization and defining parameters

are shown in Figure 4.2. Here Qg is the zero-displacement force; F, is the yield force;
K, is the elastic stiffness; Ky is the second-slope stiffness; dyes IS the yield
displacement assumed to be 0.025cm for all isolation systems considered; dmsx IS the

maximum displacement; and EDC is the energy dissipated in one fully reversed cycle to
the maximum displacement. Note this characterization is the same as that assumed by
AASHTO in the Guide Specification for Seismic Isolation Design (AASHTO, 1999).

To ensure the results of this study were broadly applicable to the design of seismically
isolated bridge structures, isolator parameters were varied, specifically Qq and Ty the

zero-displacement force and second-slope period, respectively. The second slope period
can be determined from the second-slope stiffness using the following equation

W

Td =27
Kd-0

(4.3)

where W is the weight acting on an individual isolator defined previously; and g is the
gravitational acceleration constant. Table 4.1 shows the range of values used for T4 and
Qg representing twenty different isolation systems. Note the zero-displacement force

shown in Table 4.1 has been normalized by W , the weight acting on the isolator.

Table 4.1. Isolator parameter matrix

Tq
(seconds)

15 2.0 2.5 3.0 4.0

0.03 | All Al2 Al3 Al4 | Al15
0.06 | A21 A22 A23 A24 A25
0.09 | A3l A32 A33 A34 A35
012 | A4l A42 A43 A44 A45

Qq /W
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Displacement
>

Figure 4.2. Bilinear characterization of an isolation bearing.

4.2.4 Mathematical Model for Isolator Elements

The isolators were modeled using a coupled plasticity formulation. The restoring force of

the seismic isolator subjected to lateral displacements is give by
F=F,+K,-d (4.4)

where F,is the plastic force; d is the isolator displacement; and K, is the second-slope

stiffness previously defined. For the case of bi-directional loading, Equation (4.4) is

expressed in terms of vector components

Fx pr dx
= +Kq - (4.5)

FY pr dy
where F,, is the component of the plastic force acting in the x-direction (which may vary
from 0 to F, due to the coupled behavior of the isolator); F,, is the component of the
plastic force acting in the y-direction; dy is the isolator displacement in the x-direction;
d, is the isolator displacement in the y-direction and K is the second-slope stiffness (or

post elastic stiffness). The components of the plastic force, F, and F, are determined

based on the direction of the full plastic force and an assumed circular yield surface
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(Huang, 2000; Mosqueda, 2003). The relationship between the components of the plastic
force in each direction and the magnitude of the plastic force must satisfy the following

equation
Fo=V(F+F5) (4.6)

where F, is the magnitude of the plastic force corresponding to the radius of the assumed
circular yield surface. For example, with a lead-rubber bearing, the magnitude of the
plastic force is assumed to be equal to the yield strength of the lead core material
multiplied by the cross-sectional area of the lead core, o A_, or with friction pendulum
bearings the plastic force is approximated assuming Coulomb friction, uW , where p is

the dynamic coefficient of friction; and W is the weight acting on the isolator.
Contribution of the plastic force in each horizontal direction depends on the phasing of
the demand placed on the isolator in the x- and y- directions. This is discussed in the

following paragraphs.

Two simple displacement orbits have been selected to demonstrate the response of the
coupled plasticity model. The displacement orbits (Mosqueda, 2003) shown in Figures
4.3a and 4.4a are a box and a hourglass shape, respectively. Force orbits (restoring force)
and force-displacement hysteresis for both the x- and y-directions are also plotted in
Figures 4.3 and 4.4. In both of these figures the displacement orbits have been annotated
with small arrows to indicate the direction of displacement. Also plotted on the
displacement orbits are symbols (referred to in the text using italic font) at various points
in the displacement orbits. These symbols are also plotted on the force orbits and the x-
and y- direction force-displacement hysteresis at coincidental points during the
displacement orbit to facilitate a clear understanding of the coupled response and the
affect on unidirectional isolator properties. The response of the isolator assuming

uncoupled behavior, shown by a dashed-dot line, is also plotted in Figures 4.3 and 4.4.

Presented in Figure 4.3 is the response of the coupled plasticity model subjected to a box
displacement orbit from which two important observations can be ascertained. First,

referring to Figure 4.3b (force orbit) the force response for the coupled and uncoupled
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plasticity models are observed to be significantly different. Focusing on the coupled
response, when the isolator is located at the square the plastic force is aligned in the
y-direction, as the isolator moves from the square to the diamond the plastic force rotates
until it is aligned in the x-direction and remains in this alignment while the isolator moves
to the position denoted by the asterisk. This drop in force in the y-direction is equal to
the magnitude of the plastic force due to the re-alignment of the plastic force from the
y-direction to the x-direction. Referring to Figures 4.3c and 4.3d (x- and y- direction

hysteresis) the unidirectional properties, i.e., Qqand B¢y (the effective damping) are

relatively unaffected due to the box shaped displacement orbit. Since the displacement
demand in the x- and y- directions do not occur simultaneously (or are out of phase) the
full magnitude of the plastic force is always aligned in one or the other direction. This
leads to the second key observation, namely, that the affect of bi-directional displacement
demands on unidirectional isolator properties depends on the phasing of the x- and y-
displacement components. This observation is further verified by investigation of the

response of the isolator subjected to the hourglass displacement orbit.

Referring to Figure 4.4, the hourglass shaped displacement orbit, the affect of
bi-directional displacement demands on unidirectional properties is investigated. Two
important observations are noted. The first observation is shown by Figures 4.4c and 4.4d
where the restoring force from the coupled plasticity model is significantly less than the
restoring force from the uncoupled plasticity model as the isolator is displaced from the
circle to the square. The force response in each direction determined from the coupled
plasticity model is only a portion of the full plastic force magnitude because the full
plastic force is aligned in the direction of incremental displacement. The uncoupled
plasticity model significantly overestimates the force response in each of the x- and y-
directions. For this displacement orbit, the uncoupled plasticity model over estimates the

total plastic force by a factor of V2 along the displacement path from the circle to the
square. One consequence of the reduction of restoring force in a particular direction is a
reduction in the area of the hysteresis loop, which corresponds to a reduction in the
effective damping when the effective damping is defined (AASHTO, 1999) to be
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Area of Hysteresis Loop

4.7
27'C~Keff 'd2 ( )

Beff =

where Ky is the effective stiffness of the isolator defined as the peak-to-peak stiffness;

and d is the isolator displacement. The second point regarding the response of the
coupled plasticity model subjected to the hourglass displacement orbit becomes apparent
as the isolator is displaced from the asterisk to the cross. From Figure 4.4d (y-direction
hysteresis), an increase (or spike) in the force response of the coupled model is observed
as the isolator moves from the asterisk to the cross. This brief increase in the force
response of the coupled model is a result of the re-alignment of the plastic force. As the
isolator move from the diamond to the asterisk the plastic force is aligned in the
x-direction. This observation is supported by the force-displacement response of the
isolator in the x-direction of Figure 4.4c, noting the force response from the diamond to
the asterisk is the same as the uncoupled model. As the isolator is displaced from the
asterisk toward the cross the plastic force rotates from the x-direction to the direction of
incremental displacement. Briefly during this rotation the plastic force is aligned in the
y-direction, and hence the increase in the response of the force in the y-direction shown in
Figure 4.4d. The response of the coupled model to the hourglass orbit clearly shows that
the restoring force in a particular direction depends the alignment of the plastic force,
which depends on the displacement demands in each of the horizontal directions.

When the isolators are represented using a coupled plasticity model, the resulting
reduction in restoring force due to bi-directional input translates to an increase in
horizontal displacements during nonlinear response-history analysis. The magnitude of
the increase in the horizontal displacement of an isolated bridge subjected to
bi-directional seismic excitation depends on the phasing of the horizontal ground motions
components. For ground motion components that are strongly out-of-phase (as with the
box orbit) the increase in displacement may be modest, however, for ground motion
components that are strongly in-phase (as with the hourglass orbit) the resulting increase

in displacement may be substantial.
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4.2.5 The Equation of Motion

The equation of motion for the simple bridge model with two degrees of freedom,
namely, translation in the X- and Y- directions (here capital variables will refer to the
global degrees of freedom and lowercase to the individual isolator degrees of freedom) at
the center of mass can be expressed as

ec 0 x (t O |ux(t Fx (t oc 0 igx (t

5 ool dawllrin) s a o)«
0 Myeck Uy (t) 0 c Uy (t) H (t) 0 Mgeck Ugy (t)

where Mg 1S the mass of the deck defined to be Wee / g; C is the viscous damping

constant defined below; Uxy (t)is the acceleration response of the center of the rigid

deck in the X- and Y- direction, respectively (note, u is used to denote displacement

response while d is used to denote a single displacement value); ux v (t) is the velocity
response of the center of the rigid deck in the X- and Y- direction, respectively; Fx (t)
and F (t) are the restoring forces of the isolation system in the X- and Y- direction
determined to be the sum of the individual isolator restoring force; and Ug (t) and
Ugv (t) are the earthquake ground acceleration in the X- and Y- directions, respectively.

The superstructure is assumed to have viscous damping, c, calculated using the

following expression

c=2- C\/(mdeck : KU ) (49)

where ( is the critical damping ratio of the superstructure assumed to be 0.01; and K, is

the elastic stiffness of the bridge system which was calculated as the sum of the elastic
stiffness of each of the four isolators.

The equation of motion given by Equation (4.8) was integrated numerically using
Newmark’s Method to obtain the horizontal displacement response of the isolated bridge
structure subjected to the earthquake ground motion. A more detailed discussion of this
procedure is presented in Appendix C.
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SECTION 5

DISPLACEMENT ESTIMATES IN SEISMICALLY ISOLATED
BRIDGES

5.1 General

Results of the nonlinear response-history analyses were mined to determine the
maximum displacement of a simple isolated bridge system. Maximum displacement data
is being used to: (1) evaluate the current AASHTO equation for calculating
displacements of the center of rigidity considering unidirectional seismic excitation; (2)
compare the calculated AASHTO displacements with the maximum horizontal
displacements determined from the results of bi-directional nonlinear response-history
analysis; and (3) determine the increase in maximum isolator displacement due to bi-
directional seismic excitation over those calculated considering unidirectional seismic

excitation.

To facilitate comparison between the results of response-history analysis and the
maximum displacement using the static analysis procedures of AASHTO, the 1-second
spectral acceleration from each bin of ground motions was used. Details of this

calculation are presented in the next section.

5.2 Static Analysis Procedure
521 General

Maximum isolator displacements were calculated using the procedure set forth by the
AASHTO Guide Specifications for Seismic Isolation Design, Uniform Load Method
(AASHTO, 1999). Equation 3b from the Guide Specifications has been reproduced here

2505 ATu
B

d (5.1)

where d is the design displacement in mm; S; is a site-soil coefficient; A is an

acceleration coefficient; T is the effective period of the isolation system at the design
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displacement in seconds; and B is a numerical coefficient related to the effective
damping of the isolation system determined using Table 7.1-1 from the AASHTO Guide
Specifications. To facilitate calculation of the design displacement, the 1-second spectral
acceleration determined from either the mean or median acceleration response spectrum

denoted, S;, was utilized. The 1-second spectral acceleration calculated for each ground

motion bin was assumed to be equal to the product S; A in the AASHTO equation.

5.2.2 Results of the Static Analysis Procedure

Results of the AASHTO procedure, namely, displacement (d ), effective period (T ),
and effective damping (Ber ), considering all twenty isolation systems and the mean
spectrum from six bins of ground motions are given in Table 5.1. These results are also
presented in graphical format shown in Figure 5.1. In this figure the resulting
displacements, denoted d, are plotted against the calculated effective period of the
isolation system, T . Because the effective period is a function of the design
displacement the procedure is iterative. Sample calculations and the iterative procedure
for two isolation systems are given in Appendix D. These isolation systems are shown in
Figures 5.1c and 5.1f with vertical and horizontal lines centered behind the corresponding
symbol. The first, an isolation system with Q4 /W =0.06 and T4 =4.0seconds using the
mean 1-second spectral acceleration from ground motion bin 2M and the second, an
isolation system with Qg4 /W =0.03 and T4 = 3.0seconds using the mean seismic hazard

from ground motion bin 7.

The AASHTO procedure was repeated for the same isolation systems using a median
characterization of the seismic hazard and the same six ground motion bins. These
results are shown graphically in Figure 5.2. Resulting design parameters using the
median characterization of the hazard for ground motion bins 1, 2, 2M, 3, 6, and 7 are

presented in Table 5.2.

5.2.3 Design Displacement Considering Directivity of Ground Motion Components

In Section 3 the ground motion components of Bin 1 and Bin 6 were shown to exhibit

directivity effects, namely, the response spectrum generate using the 1st component of
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the ground motion pair is significantly larger than the response spectrum generated using
the 2nd component of the ground motion pair. Therefore, to indirectly account for such
directivity effects, design displacements were calculated using the AASHTO procedure

using the 1-second spectral acceleration determined from the mean (or median) of the 1st

component spectrum from Bins 1 and 6, denoted Si*. Resulting displacements from

these calculations are shown in Figure 5.3. For example, Figures 5.3a and 5.3b show the
results of the AASHTO calculation using the 1-second spectral acceleration determined
from the mean and median of the 1st component spectra from ground motion bin 1,
respectively. Similarly, Figures 5.3c and 5.3d show the resulting displacements using the
1-second spectral acceleration determined from the mean and median of the 1st
component spectra from ground motion bin 6, respectively. Numerical values of the
resulting AASHTO calculation for Bin 1 and 6 using the mean and median
characterizations are given in Tables 5.3 and 5.4.

5.3 Results of Unidirectional Nonlinear Response-History Analysis (URHA)
53.1 General

Maximum isolator displacements were tabulated from the results of unidirectional
response-history analysis. Mean and median statistics were calculated using the
maximum isolator displacements data to facilitate comparison with the results of the
static analysis procedure described previously. For a particular ground motion bin
containing N components, N maximum isolator displacements were obtained for each
isolation system. Median values were calculated assuming the logarithm of the maximum
isolator displacement data follow a normal distribution. Parameters of this distribution
were estimated using the sample mean and sample standard deviation of the transformed
data.

Maximum isolator displacements determined from the results of unidirectional nonlinear
response-history analysis for each isolation system and ground motion are presented in
Appendix E. Also given in Appendix E are sample statistics calculated for each isolation

system. Mean and mean+lc maximum isolator displacements are reproduced and

presented in Table 5.5 for all twenty isolation systems and ground motion bins 1, 2, 2M,
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3, 6 and 7. Median and 84th percentile displacements calculated assuming a lognormal
distribution are presented in Table 5.6.

5.3.2 Comparison of Displacement Results Determined from URHA and Static
Analysis Procedure

A comparison of maximum isolator displacements obtained from unidirectional response-
history analysis, denoted d, with maximum isolator displacements calculated using the
static analysis procedure of AASHTO, denoted d, for six bins of ground motions are
presented in Figures 5.4 and 5.5 using mean and median statistics respectively. In each of
these figures a line with slope 1.0 is plotted for reference. Data points that lie above the
line indicate that the AASHTO calculated displacement underestimate the mean (or
median) maximum displacement determined from response-history analysis. This
discussion will focus on the results obtained using median statistics and ground motion
bins 1, 2M, 6, and 7, shown by Figures 5.5a, 5.5c, 5.5e, and 5.5f, respectively.
Displacement results obtained from unidirectional response-history analysis using ground
motions from Bin 3 are modest. Seismic isolation would not typically be considered a

viable alternative for such modest displacement demand.

As shown in Figure 5.5a, Bin 1, the results of the AASHTO calculation are observed to
agree well with the results obtained from unidirectional response history analysis.
Although the agreement is good, the results of the AASHTO calculation are observed to
underestimate the maximum displacements (lie above the line), specifically for isolation
systems with Q4 /W =0.03 and Q,/W =0.06, shown by a circle and diamond
respectively. From Figure 5.5¢, Bin 2M, the results of the AASHTO calculation are
observed to be conservative (lie below the line) for all twenty isolation systems
considered when compared to the median maximum isolator displacement determined

from unidirectional response-history analysis.

From Figure 5.5e, Bin 6, the AASHTO calculation is observed to underestimate the
maximum displacement for almost all isolation systems. Results shown in Figure 5.5f,
Bin 7, indicate that the AASHTO calculation is observed to underestimated the maximum

displacement for isolation systems with Qu /W =0.03 and Qg /W =0.06. Response
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spectra generated from the soft-soil ground motions components contained in Bins 6 and
7 exhibited amplification in the long period range. This amplification for periods
coincidental with the effective period of the isolation system could explain the large

displacements obtained from response-history analysis for systems with Qu /W =0.03
and Q4 /W =0.06, and the corresponding underestimation of the AASHTO calculated

displacements.

Presented in Figure 5.6 is a comparison of the mean and median maximum isolator
displacements obtained from unidirectional response-history analysis with the calculated
maximum displacements using the AASHTO procedure considering only the first
components of the ground motion pairs from Bins 1 and 6. From Figure 5.6b, Bin 1, the
AASHTO calculated maximum displacements are observed to conservatively estimate
the median maximum isolator displacement determined from unidirectional response-
history analysis for all isolation systems considered. From Figure 5.6d, Bin 6, the
AASHTO calculated maximum isolator displacements agree well with the median
maximum isolator displacements determined from unidirectional response-history
analysis. Although the agreement is good, the maximum displacement calculated using
the AASHTO procedure slightly underestimated the maximum displacement for several

of the isolation systems considered.

5.4 Results of Bi-directional Nonlinear Response-History Analysis (BRHA)
54.1 General

Results of bi-directional nonlinear response-history analysis were mined to determine the
maximum horizontal isolator displacement. Maximum horizontal displacements were
determined from the square-root-sum-of-squares response calculated at each time-step
during the response-history analysis using the displacement components in each
orthogonal direction. Maximum horizontal displacements were determined for each
isolation system and each pair of ground motions considering bins 1, 2, 2M, 3, 6, and 7.
Sample mean and median statistics were calculated from the maximum isolator
displacements data to facilitate comparison with the results of the static analysis

procedure described previously. For a particular ground motion bin containing N
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components, N /2 maximum isolator displacements were obtained for each isolation
system. Median values were calculated assuming the logarithm of the maximum isolator
displacement data follow a normal distribution. Parameters of this distribution were

estimated using the sample mean and sample standard deviation of the transformed data.

Maximum horizontal isolator displacements determined for each isolation system and
ground motion pair using bi-directional response-history analysis are presented in
Appendix E. Mean and median maximum horizontal displacements for the six bins of
ground motions and twenty isolation systems considered were reproduced and presented

in Tables 5.7 and 5.8, respectively.

5.4.2 Comparison of Displacement Results Determined from BRHA and Static
Analysis Procedure

A comparison between maximum horizontal isolator displacements obtained from
bi-directional response-history analysis and maximum isolator displacements calculated
using the Uniform Load Procedure from the AASHTO Guide Specifications for Seismic
Isolation Design is presented. The AASHTO Guide Specifications state that the
displacement obtained using Equation 3 is the “Design Displacement at the center of
rigidity of the isolation system in the direction under consideration”. However no
commentary is provided regarding the combination of displacements obtained from
analysis in each orthogonal direction. If one assumes that the resulting displacements
should be combine using the recommendations for the combination of elastic forces
provided in the AASHTO Standard Specifications For Highway Bridges (1996), Division
IA-Seismic Design, Section 3.8, titled “Determination of Elastic Forces and
Displacements” and calculates the vector sum assuming 100 percent of the design
displacement in one direction and 30 percent of the design displacement in the orthogonal
direction, the result is an increase in the design displacement of approximately 4.4
percent. For comparison of the results in this section, this increase was neglected and the
results of the bi-directional response-history analysis were compared directly with the

design displacements obtained from the procedure discussed in Section 5.2.
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Presented in Figures 5.7 and 5.8 is a comparison of maximum horizontal isolator
displacements calculated from the results of bi-directional response-history analysis,

denoted d,,, with maximum isolator displacements calculated using the static analysis

procedure of AASHTO, denoted d, for six bins of ground motions using mean and
median statistics respectively. Referring to Figure 5.8, a comparison of the median
maximum horizontal isolator displacements and displacements calculated using the
AASHTO procedure and a median characterization of the hazard, it is observed that the
AASHTO calculation (represented by the horizontal axis) underestimate the maximum
bi-directional displacement for Bins 1, 2M, 6, and 7, shown by Figures 5.8a, 5.8c, 5.8e,
and 5.8f, respectively. From these figures it is clear that the maximum displacements
obtained from bi-directional response-history analysis are significantly larger than those
calculated using the AASHTO procedure. To quantify the increase in displacement due
to bi-directional seismic excitation, the ratio of the maximum displacement determined
from bi-directional response-history analysis to the maximum displacement determined
from unidirectional response-history analysis was calculated for each isolation system
and ground motion pair. The details and results of this calculation are presented in the

next section.

5.5 Unidirectional Displacement Multiplier
55.1 General

The increase in displacement due to bi-directional excitation was quantified as the ratio
of the maximum isolator displacement determined from bi-directional response-history
analysis to the maximum displacement determined from unidirectional response-history
analysis for each isolation system and ground motion pair. Two factors contribute to the
increase in maximum isolator displacement: (1) the contribution of earthquake demand in
the orthogonal direction which varies depending on the phasing of the two orthogonal
ground motion components and (2) the affect of bi-directional demand on the

unidirectional response of the isolator, namely, the characteristic strength (Qq) and
effective damping (Ber ), Which is a result of the coupled behavior of the isolator and

varies depending on the phasing of the two orthogonal ground motion components. This
effect was demonstrated in Section 4.
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The unidirectional displacement multiplier, o, , was defined as the median of the ratios

of maximum horizontal and maximum unidirectional displacement calculated for a given

isolation system and each pair of ground motions in a given bin. This definition is shown

by

. 1 i dN/Z
ocxy:medlan{dly d_uydri/z} (5.2)

where dj, is maximum horizontal isolator displacement determined from bi-directional

response-history analysis using the i"" ground motion pair; and d} is the maximum
isolator displacement determined from unidirectional response-history analysis using the
1st component of the i ground motion pair. For ground motion bins 1 and 6, where
directivity effects are significant, the unidirectional displacement multiplier using the
definition above represents the increase in displacement over the larger of the two
components. However, this definition must be modified to represent the increase in
displacement for the case of average directivity. To account for this, an alternative
definition of the displacement multiplier was employed, namely

1

oy, = median Ay dy dy” (5.3)
Y (dx+dj)/2 (dy+d)) /2" (dV? +d)"?) /2 '

where d,, is maximum horizontal isolator displacement determined from bi-directional
response-history analysis using the i™ ground motion pair; d} is the maximum isolator
displacement determined from unidirectional displacement using the 1st component of
the i"™ ground motion pair; and dy is the maximum isolator displacement determined

from unidirectional displacement using the 2nd component of the i ground motion pair.
This alternative definition uses an average of the maximum isolator displacements
obtained from independent unidirectional response-history analysis using the 1st and 2nd

components of a ground motion pair.

Results for the unidirectional displacement multiplier (o ) for each isolation system and

ground motion bins 1, 2, 2M, 3, 6, and 7 are presented in Table 5.9. These results are also
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plotted in Figure 5.9 where the unidirectional displacement multiplier has been plotted

for each value of Q4 /W and as a function of the second-slope stiffness (Ty). Results of
the modified unidirectional displacement multiplier (a% ) for each isolation system

considering and ground motion bins 1 and 6 are presented in Table 5.10. These results are
also plotted in Figure 5.10 using the same format as o, . Values of the unidirectional
displacement multiplier and modified unidirectional displacement multiplier shown in
Figures 5.9¢, 5.10a, and 5.10b, corresponding to Bins 2M, 1, and 6, represent an increase
in displacement assuming average (Bins 1 and 6) or null (Bin 2M) directivity of the
ground motion components respectively. Values of o, and o}, are observed to range
from approximately 1.5 to 2.0 for these cases. These results suggest that the median
maximum displacement of an isolation systems subjected to bi-directional seismic
excitation could be up to two times larger than the calculated design displacement based

on unidirectional excitation.

The values of the unidirectional displacement multiplier calculated considering the first
ground motion components from Bins 1 and 6 are shown in Figures 5.9a and 5.9e, with

maximum values of 1.17 and 1.36 respectively. Values of o, calculated in this manner

are smaller because the first ground motion component is significantly larger than the
second and result in a displacement that is close to the maximum horizontal
displacement. Therefore, for the design of an isolation system in close proximity to a
fault, the increase in displacement due to bi-directional seismic excitation may not be

significant, if the fault normal spectrum is used as the design spectrum.

5.5.2 Estimates of the Maximum Horizontal Displacement

Maximum isolator displacements obtained using the AASHTO procedure described in
Section 5.2 were multiplied by the corresponding unidirectional displacement multiplier
and compared to the maximum horizontal displacements determined from bi-directional

response-history analysis.

This comparison is presented in Figure 5.11 for ground motion bins 1, 2, 2M, 3, 6, and 7.
For Figures 5.11d, 5.11c, 5.11d, and 5.11f, the x-axes are the multiplied AASHTO
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displacement, o, -d, and the y-axes are the median maximum displacement determined
from bi-directional response-history analysis, d,,. For Figures 5.11a and 5.11e, Bins 1
and 6, the x-axes represent the modified unidirectional displacement multiplier times the
AASHTO displacement, o}, -d, the y-axes are the same as the other plots. From these

figures it is observed that the modified AASHTO displacement (multiplied by the
unidirectional displacement multiplier) still underestimate the median maximum
displacements obtained from bi-directional response-history analysis. However the
resulting displacements, although unconservative, lead to improved estimates of the
maximum horizontal displacement of an isolated bridge structure subjected to bi-
directional seismic excitation. This improvement is realized when the results shown in

Figure 5.11 are contrasted with the results shown in Figure 5.8.

Figure 5.12 shows the results of the AASHTO displacement determined assuming a
lognormal characterization of the hazard considering the first components of the ground
motion pairs multiplied by the unidirectional displacement multiplier o, -d compared
with the median maximum displacements obtained from bi-directional response-history
analysis. From Figure 5.12a, Bin 1, the modified AASHTO displacements are observed
to conservatively estimate the maximum horizontal displacement for all but one
isolations system. For Bin 6, Figure 5.12b, the modified AASHTO displacements

underestimate the maximum horizontal displacement for all isolation system.

5.6 Conclusions

Based on the results of this investigation the following conclusions are made.

(1) The maximum isolator displacements calculated using the AASHTO procedure
estimated the mean or median maximum displacement determined from
unidirectional response-history analysis reasonably well for the case of stiff-soil site
conditions, namely, Bin 1 and Bin 2M. The AASHTO displacements
underestimated the maximum displacement determined from unidirectional
response-history analysis for most isolation systems for soft-soil site conditions, Bin
6 and Bin 7. This underestimation is likely due to the frequency content of the

74



ground motion components with periods similar to the effective periods of many of

the isolated bridge structures considered for this study.

(2) The maximum isolator displacements calculated using the AASHTO procedure
underestimate median maximum horizontal displacements obtained from bi-
directional response-history analysis. Two factors contribute to this
underestimation, the first, the addition of a second ground motion component and

the second, the coupled behavior of the isolator elements.

(3) Values of the unidirectional displacement multiplier calculated for Bins 1, 2M, and
6 considering average or null directivity range from 1.5 to 2.0. If directivity of the
ground motion components is considered and the larger component is used to
calculate the maximum displacements, the value of the unidirectional displacement
multiplier is observed to be smaller. Use of the unidirectional displacement
multiplier lead to improved estimates of the maximum displacement although in
many cases the modified AASHTO displacement underestimated the median

maximum horizontal isolator displacement.
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Figure5.1. Maximum isolator displacements calculated using Equation 3b from the
AASHTO Guide Specifications and the mean 1-second spectral acceleration.
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Figure5.2. Maximum isolator displacements calculated using Equation 3b from the
AASHTO Guide Specifications and the median 1-second spectral acceleration.
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Figure 5.3. Maximum isolator displacements calculated using Equation 3b from the AASHTO

Guide Specifications using the 1-second spectral acceleration from timeean
and median first component spectrum for Bins 1 and 6.
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response-history analysis with the results of the AASHTO procedure using a mean
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response-history analysis with the results of the AASHTO procedure using a median
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SECTION 6

ENERGY DEMANDS IMPOSED ON SEISMIC ISOLATORS
SUBJECTED TO EARTHQUAKE EXCITATION

6.1 General

This section presents the results of an investigation of the energy demands imposed on
individual isolators and isolation systems subjected to severe earthquake shaking. Two
metrics have been employed to characterize the energy demands imposed on seismic
isolators: (1) the total cumulative hysteretic energy dissipated by an individual seismic
isolator and (2) the rate-of-energy dissipated by an isolator during earthquake excitation.
Data from nonlinear dynamic response-history analysis have been mined to quantify the
energy-related demands on seismic isolators during earthquake shaking. Results for the
total energy dissipated and rate-of-energy dissipated are presented for six of the eight
bins of ground motions used in this research program. Results of the total energy
dissipated and rate-of-energy dissipated were used to evaluate current prototype testing
requirements for seismic isolators. Finally conclusion and recommendations regarding

the prototype testing of seismic isolators is presented.

6.2 Energy Demands on Seismic Isolators
6.2.1 General

Force-displacement response data determined from unidirectional and bi-directional
nonlinear response-history analysis considering a simple isolated bridge model was
mined to determine the energy dissipated by an individual seismic isolator and the rate-
of-energy dissipated when subjected to earthquake excitation. The cumulative energy
absorbed was determined by numerically integrating the force-displacement response of

an individual seismic isolator. An expression for the cumulative energy absorbed is given

by

Er=[F-dU (6.1)
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where Fis the restoring force of the seismic isolator and dU is an incremental
displacement. Plotted in Figure 6.1 are two sample cumulative energy histories calculated
from the results of unidirectional response-history analysis using a ground motion record
from the 1992 Cape Mendocino Earthquake, Petrolia Station, considering two different
sets of isolator parameters. Ground motion record, nf08, is part of ground motion bin 1.
Figure 6.1a presents both the absorbed energy history (shown by a solid line) calculated
using Equation (6.1) and the dissipated energy history (shown by the dashed line) for an

isolation system with isolator properties Q4 /W =0.03 and T, =2.5 seconds. The

difference between the absorbed and dissipated energy is the energy recovered due to the
un-loading of the isolator. However, the absorbed and dissipated energies converge as
the displacement response of the isolation system diminished. This is shown in Figure
6.1la where the absorbed and dissipated energy histories between approximately
12 seconds and 60 seconds (corresponding to the end of the energy history) coincide.
Therefore, the total energy dissipated was taken to be the final value of the absorbed
energy history calculated using Equation (6.1). For isolators with larger characteristic
strengths (i.e., Qs /W =0.12) and moderate displacement demands, the difference
between the absorbed and dissipated energy is insignificant. This is shown by Figure
6.1b for the energy history calculated using ground motion record nfO8 and isolator
properties: Q4 /W =0.12 and Ty =4.0seconds. Again the absorbed and dissipated
energies are shown by a solid and dashed line, respectively. Noting that the dissipated,
and not the absorbed energy histories were used for the calculation of the rate-of-energy

dissipated.

6.2.2 Normalized Energy Dissipated
6.2.2.1 General

The total cumulative energy dissipated by an individual seismic isolator, determined from
response-history analysis, was normalized by the energy dissipated in one fully reversed
cycle to the maximum displacement, where the maximum displacement was calculated

by response-history analysis.
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The energy dissipated in one fully reversed cycle to the maximum displacement, denoted
EDC, by a bilinear isolator (see Figure 4.2) was calculated using Equation (6.2) and has
been adopted from the AASHTO Guide Specifications (1999).

EDC = 4Qd (dmax - dyield) (62)

where Qq is the characteristic strength of the isolator; dn. IS the maximum displacement
of the isolator determined from response-history analysis; and dyeq iS the vyield

displacement that is assumed herein to be negligible. An expression for the normalized

energy dissipated, abbreviated NED , is presented in Equation (6.3).

J'F -du
NED =
EDC

(6.3)

Normalizing the total energy dissipated by the EDC allows the results of this study to be
generally applicable to isolators and isolation systems idealized using a bilinear
force-displacement characteristics and represents the number of harmonic cycles to the
maximum displacement to dissipate an amount of energy equivalent to the energy

dissipated in a severe earthquake.

6.2.2.2 Unidirectional Seismic Excitation

Normalized energy dissipated (NED ) data determined from the results of unidirectional
response-history analysis has been presented for ground motion bins 1, 2, 2M, 3, 6, and 7.
The NED was calculated for each isolation system and each ground motion record
within a particular bin. This data is presented in Appendix F, including sample mean,
sample standard deviation, mean plus one standard deviation, and coefficient of variation
information calculated for each isolation system, denoted mean, o, mean + lc and
COV, respectively. Mean and mean + 16 NED statistics for the six bins of ground
motions and twenty isolation systems considered are presented in Table 6.1. Mean NED
information is plotted for each isolation system and bin of ground motions in Figures 6.2a
through 6.7a. For example, shown in Figure 6.2a is mean NED data calculated from the

results of unidirectional response-history analysis using Bin 1 ground motions plotted as
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a function of the normalized strength of the isolator, Q4 /W , for each of the five values
of the second slope-period, T4, considered for this study. This figure indicates a
decreasing trend in NED with increasing isolator strength Qg /W suggesting that

isolators with larger characteristic strengths require fewer harmonic cycles to dissipate an

equivalent amount of energy. Figure 6.2a also shows a decreasing trend in NED with
increasing second-slope period, Ty, (or decreasing second-slope stiffness). For typical
isolator properties, Qs /W =0.06 and T4 =2.5seconds, the mean value for NED is

approximately 2.5. Similar trends were observed for Bins 2, 2M, 3, 6 and 7 and are
shown in Figures 6.3a, 6.4a, 6.5a, 6.6a and 6.7a, respectively. Mean NED including
standard deviation information is also presented in Figures 6.2 through 6.7 for each
isolation system considered. Sample standard deviation information has been included to

indicate the dispersion of NED data about the mean.

6.2.2.3 Bi-directional Seismic Excitation

The cumulative energy dissipated by an individual seismic isolator due to bi-directional
excitation was calculated as the sum of the energy dissipated in the x- and y- directions at
each time step during the response-history analysis. The equation for the cumulative
energy dissipated for bi-directional excitation is the same as that for unidirectional

excitation, namely Equation (6.1), however the restoring force F has been re-defined as

F=[F F] (6.4)

where F, and F, are components of the restoring force in the x- and y- direction

respectively. Similarly the incremental displacement dU has been re-expressed as

du =[dU, dU,] (6.5)

where dU, and dU, are the components of the incremental displacement in the x- and y-

direction respectively. Substituting Equations (6.4) and (6.5) into Equation (6.1) and

performing the dot product, the following expression is obtained

Er = [F-dU, +[F, -dU, (6.6)
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showing that the total energy dissipated due to bi-directional seismic excitation can be
determined as the sum of the energy dissipated in the x- and y- directions.

The total cumulative energy dissipated by an individual seismic isolator due to
bi-directional seismic excitation was calculated for each isolation system and normalized
by the EDC , shown by Equation (6.2). However, for the case of bi-directional excitation,
the maximum displacement, dma, used to calculate the EDC was determined as the
maximum of the square-root-sum-of-squares response calculated from the displacement

response in the x- and y- directions for each time step of the response-history analysis.

Normalized energy dissipated data calculated from the results of bi-directional nonlinear
response-history analysis for each set of isolation parameters and each ground motion
pair is presented in Appendix F, including sample mean, sample standard deviation,
mean plus one standard deviation, and coefficient of variation information. Mean and
mean + 16 NED statistics calculated from the results of bi-directional response-history
analysis for the six bins of ground motions and twenty isolation systems considered are
presented in Table 6.2. Mean NED information is plotted, including standard deviation
information, in Figures 6.8 through 6.13. This presentation is the same as that utilized for
NED calculated from the results of unidirectional nonlinear response-history analysis.
Mean NED calculated using the results of bi-directional nonlinear response-history
analysis show similar trends to those observed considering unidirectional response-
history analysis data.

A comparison of the mean NED calculated from the results of unidirectional and bi-
directional nonlinear response-history analysis for each ground motion bin and set of
isolator parameters is presented in Figures 6.14a through 6.16a. These figures show the
mean NED calculated from bi-directional response-history analysis is greater than the
mean NED calculated from unidirectional response-history analysis. However, the
difference between NED calculated from bi-directional and unidirectional excitation

tends to decrease with increasing strength (Qq/W ) and increasing second-slope period

(Tq). This trend is observed for all six bins of ground motions. Mean plus one standard

deviation NED data are plotted using the same format in Figures 6.17 through 6.19.
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6.2.3 Rate-of-Energy Dissipated
6.2.3.1 General

The rate-of-energy dissipated by an individual seismic isolator during seismic excitation
was investigated utilizing the force-displacement data determined from unidirectional and

bi-directional response-history analysis.

Shown in Figure 6.20 are sample energy histories calculated for each of the twenty
isolation systems using a ground motion record from the 1992, Cape Mendocino
earthquake, Rio Dell Over Pass station (RIO360), which is included in ground motion bin
2M. The total energy dissipated (Er) is observed to increase with increasing isolator
strength (Qq /W) and decrease with increasing second-slope period (Ty) for this
particular ground motion record. Figure 6.20 also suggests that the rate of energy
dissipated varies for different isolator properties. For this ground motion record, systems

with large Qg /W (see Figure 6.20d) dissipate the total energy in less time than systems
with small Qq /W (see Figure 6.20a).

Two definitions to quantify the rate-of-energy dissipated by isolators (or power demands
placed on seismic isolators) during seismic excitation have been employed. The first,
referred to herein as Definition 1, is similar to a definition utilized by Mosqueda (2002)
and is given by

_ 0.95Er -0.05E;

R = 6.7
- tos — s ©.1

where 0.95E; represents ninety-five percent of the total energy dissipated; 0.05Er
represents five percent of the total energy dissipated; ts is the time instant during the
response-history coinciding with five percent of the total energy dissipated; and tgs is the

time coinciding with ninety-five percent of the total energy dissipated. The second

definition employed, referred to herein as Definition 2, is given by

t75 - t25
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where 0.75Er represents seventy-five percent of the total energy dissipated; 0.25Er

represents twenty-five percent of the total energy dissipated; ts is the time instant during
the response-history coinciding with twenty-five percent of the total energy dissipated,

and tss is the time coinciding with seventy-five percent of the total energy dissipated.

The energy history calculated using ground motion RIO360 and isolation parameters
Qs /W =0.03 and Ty =2.5seconds shown in Figure 6.20b has been reproduced in
Figure 6.21 to graphically depict the two definitions of the rate-of-energy dissipated
employed for this study. Figure 6.21a shows Definition 1 (RZ’) which is observed to
significantly underestimate the maximum rate-of-energy dissipated for this ground
motion record. This underestimation was greater in isolation systems with low

characteristic strengths (Qq /W ). Because of this underestimation, a second definition

was employed, namely, Definition 2 (R2’) shown by Figure 6.21b. This figure shows the
second definition better estimates the maximum rate-of-energy dissipated for the given
system and ground motion. This observation holds for all isolation systems considered in
this study.

6.2.3.2 Unidirectional Seismic Excitation

Rate-of-energy dissipated data calculated from the results of unidirectional response-
history analysis using Definition 1 and Definition 2, normalized by Ty, is presented in
Appendix F. Also presented in Appendix F are the sample mean, sample standard
deviation, mean plus one standard deviation, and coefficient of variation information,
denoted mean, o, mean+1c and COV, respectively. Mean and mean + lc
normalized rate-of-energy dissipated statistics using Definition 1 and Definition 2 are

presented in Tables 6.3 and 6.4, respectively.

Plotted in Figure 6.22 is mean Re /Ty data calculated using Definition 1 for each isolation
system and each ground motion bin considering unidirectional excitation. Similarly,
mean Reg /Ty data calculated for each isolation system and each ground motion bin using

Definition 2 is plotted in Figure 6.23. The mean rate-of-energy dissipated is observed to
increase with increasing characteristic strength for ground motion bins 1 and 2M,

103



corresponding to near-field and large-magnitude small-distance earthquake events,
respectively with stiff-soil site conditions. However this trend was not observed for bins
6 and 7, corresponding to near-field, soft-soil and large-magnitude, soft-soil events,
respectively. The difference in the results of stiff- and soft-soil conditions may be
attributed to the shift of the peak response into the longer period range for the soft-soil

ground motions components.

6.2.3.3 Bi-directional Seismic Excitation

The rate-of-energy dissipated considering bi-directional seismic excitation was calculated
in a similar fashion as previously described for the case of unidirectional response-history
analysis. However, the total cumulative energy due to bi-directional excitation was
calculated as the sum of the cumulative energy in x- and y-directions at every time step as
described previously using Equation (6.6). The rate-of-energy dissipated was then
calculated using this total cumulative energy dissipated and the two definitions
previously described. Rate-of-energy dissipated data calculated using Definition 1 and
Definition 2 normalized by T, is presented in Appendix F including sample mean,
sample standard deviation, mean plus one standard deviation, and coefficient of variation
information calculated for each isolation system, denoted mean, o, mean + loc and
COV, respectively. Mean and mean + 1o statistics for the normalized rate-of-energy
dissipated using Definition 1 and Definition 2 are presented in Tables 6.5 and 6.6,

respectively.

Rate-of-energy dissipated data determined using Definition 1 and Definition 2 for each of
the six bins of ground motions are plotted in Figures 6.24 and 6.25, respectively. Note
this presentation is identical to that utilized for unidirectional Re (see Figure 6.22 and
6.23). Again an increasing trend in Re is observed with increasing Q4 /W for ground

motion bins 1 and 2M for both Definition 1 and Definition 2.

A comparison of the mean Re/Ty calculated from the results of unidirectional and
bi-directional nonlinear response-history analysis using Definition 1 (RZ’) and

Definition 2 (Rg°) is presented in Figures 6.26, 6.27, and 6.28 for each of the six bins of
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ground motions. For example, Figure 6.26a compares the rate-of-energy dissipated for
ground motion bin 1 considering each definition and both unidirectional and
bi-directional seismic excitation. From Figure 6.26a, it is observed that for both
definitions the rate-of-energy dissipated is larger for bi-directional excitation. Also, in an
average sense, RZ is observed to be larger than R, which is consistent with the results
shown in Figure 6.21. Similar trends were observed for the remaining five ground motion
bins shown by Figure 6.26b through 6.28b. Mean + 16 normalized rate-of-energy
dissipated information is presented in Figures 6.29 through 6.31. This format is the same

as for the mean normalized rate-of-energy dissipated information.

6.2.3.4 Equivalent Harmonic Frequency

A procedure for calculating an equivalent harmonic frequency ( feq) for the prototype
testing of seismic isolators is presented. This equivalent frequency is intended capture the
energy and power demands on an isolator and isolation system subjected to earthquake
excitation. Results of this calculation were used to evaluate the power demands placed on
isolators using the current prototype testing requirements. Considering the NED as an
equivalent number of harmonic cycles to dissipate the total energy, Er, an equivalent

period of the harmonic cycles can be calculated using

ti00
Te = 6.9
"= NED (6.9)

where tioo IS defined as the time required to dissipate the total energy which can be

approximated (assuming the rate-of-energy dissipated is constant) by

Er

. (6.10)

tioo =
where Er is the total hysteretic energy dissipated and Rg is the previously defined rate-
of-energy dissipated (or power) calculated using Equation (6.7) or Equation (6.8).
Further, the total energy dissipated can be expressed as a function of the energy
dissipated per cycle, EDC, and normalized energy dissipated, NED . Substituting this
expression and Equation (6.10) into Equation (6.9) yields
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4Qd d max

Te =
q RE

(6.11)
noting, that the NED in the expression for the total energy dissipated cancels with the
NED in the denominator of Equation (6.9). Inverting the expression shown in Equation
(6.11) results in an equation to calculate an equivalent harmonic frequency as a function

of the observed rate-of-energy dissipated and known isolator design parameters

Re

feq
where fe is the equivalent harmonic frequency; Re is the rate-of-energy dissipated
determined using either of the two definitions employed here; Qq is the characteristic
strength of the isolator; and dn. is the maximum displacement of the isolation system

determined either from the AASHTO Guide Specification for Seismic Isolation Design

(1999) or, as with this study, using nonlinear response-history analysis.

A graphical presentation of the calculated equivalent harmonic frequency using the two

definitions for Re and an energy history calculated for Qg /W =0.06 and
Ts =4.0seconds using ground motion record RIO360 is shown in Figure 6.32. From

Figure 6.32a it is observed that RZ underestimates the maximum power demands placed
on the isolator but provides a reasonable estimate of the duration of time to dissipate the
total energy (ti0). The total energy dissipated is equivalent to 2 fully reversed cycles to
the maximum displacement (i.e., NED ~2.0) therefore the equivalent harmonic
frequency is determined using the EDC and the assumed linear Re . Figure 6.32b shows
R better estimates the maximum power demand placed on the isolator. However,
assuming the rate-of-energy dissipated is equal to the maximum power over the duration
of the energy history underestimated the time duration to dissipate the total energy (tio)

resulting in a conservative (higher) equivalent harmonic frequency.

An equivalent harmonic frequency ( f.) was calculated for several isolation systems

using Equation (6.12) and the results of unidirectional response-history analysis
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considering two ground motion records; RIO360 and CNP196 incorporated into Bin 2M,
are presented in Tables 6.7 and 6.8 respectively. Three values of an equivalent frequency

calculated using two different methods are presented in these tables. The first, f',, was
calculated using Equation (6.12) and R /T, data, the second, f %, was calculated using
Equation (6.12) and R’ /T, data, and the third equivalent frequency, f 3, calculated

using 1/Te . Where T is the effective period of the isolation system at the maximum

displacement, determined from response-history analysis.

From Table 6.7 the calculated equivalent frequency using Definition 1 for the rate-of-

energy dissipated, f'y, is observed to be approximately one half the equivalent

frequency calculated using Definition 2 for the rate-of-energy dissipated, namely, f ?.
This is consistent with the observations from Figure 6.32. The equivalent harmonic
frequency, f 2, better estimates the maximum power demands placed on the isolator
because the total energy (NED) is input to the isolator over a shorter period of time.
Values of the equivalent harmonic frequency calculated using the effective period, f 2,
yield similar results to f %, for this ground motion record. This observation suggests the
calculation of an equivalent harmonic frequency using the effective period conservatively
estimates the maximum power demands placed on the isolator. In some instances, f % is
observed to be greater than f?,. This is a consequence of the assumed constant

rate-of-energy dissipated being equal to the maximum for the entire energy history. In

these instances the difference is observed to be small.

6.3 Conclusions
6.3.1 General

A brief discussion regarding the current prototype testing requirements for seismic
isolation bearings set forth by the American Association of State Highway and
Transportations Officials (AASHTO, 1999) and the Highway Innovative Technology
Evaluation Center (HITEC, 2002) is presented. This discussion is followed by

conclusions regarding current prototype testing requirements for seismic isolators
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subjected to seismic loading based on the results of this investigation. Recommendations
for prototype testing requirements based on the results of this investigation are presented
by specifying a number of harmonic cycles to the maximum displacement and an

equivalent harmonic frequency of the displacement cycles in Hertz.

6.3.2 Current Prototype Testing Requirements

The current prototype testing requirements for seismic isolators subjected to earthquake
loading specified by the AASHTO Guide Specifications for Seismic Isolation Design
(1999) are:

(1) with a vertical load similar to the typical or average dead load the isolator shall be
subjected to three fully reversed cycles of loading at each of the following
multiples of the total design displacement: 1.0, 0.25, 0.50, 0.75, 1.0 and 1.25 in
the respective sequence.

(2) with a vertical load similar to the typical or average dead load the isolator shall be
subjected to 15 S; /B cycles not to exceed 25 but not less than 10 fully reversed
cycles to the design displacement as calculated using the AASHTO Guide
Specifications for Seismic Isolation Design Equation 3 started from a
displacement equal to the offset displacement. Here S; is a numerical coefficient
for site-soil profiles determined from Table 5-1; and B is a numerical coefficient

related to the effective damping of the isolation system determined from Table
7.1-1.

(3) 3 fully reversed cycles of loading at the total design displacement.

Prototype testing requirements for seismic isolators subjected to earthquake loading
specified by the Velocity Characterization Test of HITEC (2002) are:

(1) 3 fully reversed cycles of sinusoidal loading to the maximum displacement at

0.1 Hz with a vertical load equal to the rated compressive load (denoted, RCL).
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(2) 3 fully reversed cycles of sinusoidal loading to the maximum displacement at the

expected fundamental frequency of the isolated bridge or 0.5Hz if the

fundamental frequency has not been determined at the time of testing with a

vertical load equal to the RCL.

6.3.3 Conclusions Regarding the Current Prototype Testing Requirements

Results of the investigation of the energy demands imposed on seismic isolators
subjected to earthquake excitation were used to evaluate the current prototype testing
requirements for seismic isolators. The two metrics used to assess the current
requirements are the total energy dissipated by the isolator during maximum earthquake

shaking (NED ) and the rate-of-energy dissipated ( Re ).

Normalized energy dissipated data represents the number of harmonic cycles to the
maximum displacement to dissipate an equivalent amount of energy as observed from
numerical simulation of maximum earthquake excitation. Therefore, NED determined in
this study can be directly compared to the number of harmonic cycles specified by code
requirements for the prototype testing. Rate-of-energy dissipated data determined in this
study was used to calculate an equivalent harmonic frequency (see Equation (6.12),
Tables 6.7 and 6.8). This equivalent harmonic frequency was then used to evaluate the
power demands placed on prototype seismic isolators by the code specified prototype

testing requirements.

Based on the results of unidirectional nonlinear response-history analysis using six bins

of ground motions and twenty isolation systems the following conclusions were drawn.

(1) The prototype testing requirements specified by the AASHTO Guide Specifications

for Seismic Isolation Design (1999):

(i) significantly over estimate the total energy demands placed on seismic isolators
during maximum earthquake excitation in terms of the number of required
harmonic displacement cycles. The three seismic loading tests specified results
in 31 cycles of displacement to various amplitudes with a minimum of 22 cycles

of displacement with amplitude greater than or equal to the design
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displacement. If an isolator with 20 percent critical damping (corresponding to a
damping coefficient of 1.5) and a site-soil coefficient of 1.0 (corresponding to
site profile type 1) is assumed, the resulting number of cycles for the second
load test specified by the AASHTO procedures is determined to be 10. For
typical application of seismic isolation, namely, large-magnitude, small-distance
(Bin 2M), the mean NED observed for isolation systems with Q4 /W >0.06

and T4 >2.0seconds is 2 or less.

(if) do not specify any criteria regarding a required harmonic frequency for the
displacement cycles. The absence of a specified frequency will likely result in
power demands placed on the isolator during prototype testing that are
inconsistent with the demands observed from numerical simulation of
maximum earthquake excitation. Results of such a prototype test could lead to
erroneous conclusions regarding the performance of the isolator (or isolation

system) during a design or maximum earthquake event.

(2) The prototype testing requirements specified by the Highway Innovative
Technology Evaluation Center (2002):

(i) result in total energy demands (3 fully reversed cycles to the maximum
displacement at each frequency) that are consistent with the results of this study

when considering the mean NED from Bin 1 and Bin 2M, near-field and large-

magnitude, small-distance events respectively, and isolators with Q4 /W >0.06

and T4 > 2.0seconds.

Based on the results of bi-directional nonlinear response-history analysis using six bins

of ground motions and twenty isolation systems the following conclusions were drawn.

(1) The prototype testing requirements specified by the AASHTO Guide Specifications

for Seismic Isolation Design (1999):

(if) over estimate the total energy demands placed on seismic isolators during

maximum earthquake excitation in terms of the number of required harmonic
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cycles; for a seismic hazard represented by the large-magnitude, small-distance
ground motion bin (Bin 2M), the mean NED observed for isolation systems

with Q¢ /W >0.06 and Ty > 2.0 seconds is approximately 3 or less.

(iii) do not specify any a required harmonic frequency for the displacement cycles.

(2) The prototype testing requirements specified by the Highway Innovative
Technology Evaluation Center (2002) do not specify any requirements for an
equivalent number of cycles due to bi-directional excitation under the Velocity

Characterization Test.

6.3.4 Recommendations for the Prototype Testing of Seismic Isolators

Based on the results of this investigation the following recommendations for the
prototype testing requirements of seismic isolators subjected to seismic loading are

presented.
(1) for unidirectional seismic excitation:

3 fully reversed cycles of displacement to an amplitude equal to the maximum
design displacement. Note the mean NED for Bins1l and 6 and mean + 1o
NED for Bins 2M and 7 considering an isolation system with Q4 /W =0.06 and
Tq =2.0seconds (which represent upper bound values of NED for plausible

isolation systems) were determined to be 2.7, 3.0, 2.8 and 3.3, respectively.

at a frequency corresponding to the effective (or fundamental) frequency of the
isolated structure. Although 1/Te leads to a conservative estimate of the power
demand placed on the isolator, demands of this magnitude can be realized as
suggested from the results of numerical simulation of maximum earthquake
excitation. This conservatism is justified given the simplicity of the calculation

and the uncertainty in the magnitude and intensity of ground motion shaking.

111



(2) for bi-directional seismic excitation:

4 fully reversed cycles of displacement to an amplitude equal to the maximum
design displacement. Note the mean NED for Bins1l and 6 and mean + 1o
NED for Bins 2M and 7 considering an isolation system with Q4 /W =0.06 and
Ty =2.0seconds (which represent upper bound values of NED for plausible

isolation systems) were determined to be 3.4, 4.6, 3.7 and 4.96, respectively.

at a frequency corresponding to the effective (or fundamental) frequency of the
isolated structure calculated using the maximum horizontal displacement of the

isolation system.

Given that isolated structures are always subjected to bi-directional excitation, the
rules given in part (2) above [for bi-directional seismic excitation] could replace
the AASHTO Guide Specifications test (1), (2), and (3) given in Section 6.3.2.
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Figure 6.1. Cumulative energy histories calculated from the results of unidirectional response—
history analysis considering two sets of isolator properties and a ground motion record from
the 1992 Cape Mendocino Earthquake, Petrolia Station, (nf08) and included in Bin 1.
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Figure 6.2. Normalized energy dissipated ( NED) based on the results of unidirectional
response-history analysis and Bin 1 ground motions.
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Figure 6.3. Normalized energy dissipated ( NED) based on the results of unidirectional
response-history analysis and Bin 2 ground motions.
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Figure 6.4. Normalized energy dissipated ( NED) based on the results of unidirectional
response-history analysis and Bin 2M ground motions.
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Figure 6.5. Normalized energy dissipated ( NED) based on the results of unidirectional
response-history analysis and Bin 3 ground motions.
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Figure 6.6. Normalized energy dissipated ( NED) based on the results of unidirectional
response-history analysis and Bin 6 ground motions.
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Figure 6.7. Normalized energy dissipated ( NED) based on the results of unidirectional
response-history analysis and Bin 7 ground motions.



NED

NED

NED

10 - : .

@) d =1.5 sec.
8 o AT 4 =2.0 sec. ||
% T q =2.5 sec.
6l « T p i3.0 Sec. | |
o o T p =4.0 sec.
4 % 1
A O
o ¥ A Q
2t ] P % 1
O " " " "
0 0.03 0.06 0.09 0.12
QW
a mean
10
8 L
6 A
4 L
2 L
O " " " "
0 0.03 0.06 0.09 0.12
QW
c. mean + 1o for Td =2.0 sec.
10
8 L
6 L
4t
O " " " "
0 0.03 0.06 0.09 0.12
QW

e. mean + 1o for Td =3.0 sec.

10
8 [0}
6 L
0
> 0]
4 O
2 L
O " " " "
0 0.03 0.06 0.09 0.12
QW
b. mean+ 1o for Td =1.5 sec.
10
8 L
6 L
[a)]
T}
prd
4}
o Jf _
0 " " " "
0 0.03 0.06 0.09 0.12
QW
d. mean £ 1o for Td =2.5 sec.
10
8 L
6 L
a)
T}
Z
4 I i
SIS
O " " " "
0 0.03 0.06 0.09 0.12
Q y W

f. mean = 1o for Td =4.0 sec.

Figure 6.8. Normalized energy dissipated ( NED) based on the results of bi-directional
response-history analysis and Bin 1 ground motions.
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Figure 6.9. Normalized energy dissipated ( NED) based on the results of bi-directional
response-history analysis and Bin 2 ground motions.
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Figure 6.10. Nor malized energy dissipated ( NED) based on the results of bi—directional
response-history analysis and Bin 2M ground motions.
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Figure 6.11. Normalized energy dissipated ( NED) based on the results of bi—directional
response-history analysis and Bin 3 ground motions.
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Figure 6.12. Normalized energy dissipated ( NED) based on the results of bi—directional
response-history analysis and Bin 6 ground motions.
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Figure 6.13. Nor malized energy dissipated ( NED) based on the results of bi—directional
response-history analysis and Bin 7 ground motions.
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Figure 6.20. Sample energy history results from unidirectional response-history analysis
performed using a ground motion record from the Cape Mendocino earthquake,
Rio Dell Over Pass station (RIO360), incoporated into Bin 2M.
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Figure 6.25. Normalized rate—of—energy dissipated calculated usingefinition 2 ( RZO)

and the results of bi—directional response-history analysis.
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SECTION 7

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

7.1  Summary

The design of seismic isolation systems for bridge structures in the United States is
governed by the American Association of State Highway and Transportation Officials
(AASHTO) Guide Specification for Seismic Isolation Design (AASHTO, 1999). The
Guide Specifications provide procedures for the design of individual seismic isolators
and isolation systems, and full-scale testing of seismic isolators. This study investigated
key assumptions inherent in the equation for calculation displacements in seismically
isolated bridges (Equation 3 of the Guide Specifications). Further, the validity of the
current testing protocol for full-scale prototype seismic isolators for seismic loading as

specified by the Guide Specifications was investigated.

To facilitate response-history analysis, earthquake ground motions were collected and
organized into eight bins: Near-Field (Bin 1); Large Magnitude Small Distance (Bin 2);
Modified Large-Magnitude Small Distance (Bin 2M); Large-Magnitude Large Distance
(Bin 3); Small-Magnitude Small-Distance (Bin 4); Small-Magnitude Large-Distance
(Bin 5); Near-Field Soft-Soil (Bin 6); and Large-Magnitude Soft-Soil (Bin 7). For each
bin of ground motions, the seismic hazard was characterized using the mean and median
spectrum. Mean and median spectra were utilized for the calculation of the maximum
design displacement using the static analysis procedures given by AASHTO (1999).
Nonlinear response-history analysis was performed considering a simple isolated bridge
model and twenty combinations of isolator properties subjected to unidirectional and bi-
directional seismic excitation using 77 pairs of earthquake ground motion records. These
properties of the seismic isolators, namely, the characteristic strength normalized by the

weight acting on the isolator (0.03<Qqg/W < 0.12) and the second slope-period
(1.5seconds < Ty <4.0seconds) were varied widely to represent most bridge isolation

systems. The results of the response-history analyses were mined to determine maximum

isolator displacements and energy demands imposed on seismic isolators during
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maximum earthquake shaking. Energy demands were quantified using two metrics: (1)
the total energy dissipated by the seismic isolator normalized by the energy dissipated by
one fully reversed cycle to the maximum displacement and (2) the rate-of-energy

dissipated.

7.2 Conclusions

The key conclusion of this study are:

(1) The mean spectrum used to characterized the seismic hazard for ground motion
bins 1 through 5 shows that displacements increase linearly over the period
range of interest for the design of seismic isolation systems for bridges.

(2) Maximum displacements calculated using the AASHTO procedure match well
the median maximum displacements observed from unidirectional response-
history analysis considering ground motion bins representing rock or stiff-soil
site conditions, namely, Bin 1 and Bin 2M.

(3) As expected, maximum displacements calculated using the AASHTO
procedure underestimate the median maximum displacements observed from
unidirectional response-history analysis considering ground motion bins with
soft-soil characteristics, namely, Bin 6 and Bin 7. This underestimation was

more prevalent in isolation systems with Q4 /W <0.06.

(4) Maximum displacements calculated using the AASHTO procedure
underestimate the median maximum horizontal displacements observed from
bi-directional response-history analysis for all isolation systems considered by a

factor of 2, 1.8, and 3 for ground motion bins 1, 2M, and 7 respectively.

(5) Values of the unidirectional displacement multiplier, o, , indicated that

bi-directional seismic excitation results in maximum horizontal displacements
that are 1.5 to 2 times larger than those calculated considering unidirectional

seismic excitation only. This increase in displacement is a result of two factors,
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namely, displacement demand from the orthogonal component and the coupled
behavior of the isolator element.

(6) The AASHTO procedure for the prototype testing of seismic isolators for
seismic testing impose far greater demands on isolators (in terms of the number
of cycles to the maximum displacement) than were observed from numerical
simulation of maximum earthquake excitation (i.e, NED) considering both

unidirectional and bi-directional earthquake excitation.

(7) The use of 1/Te to determine the testing frequency for prototype testing of

seismic isolators for seismic loading results in conservative, yet appropriate,

power demands on the seismic isolators.

7.3 Recommendations

This sections presents recommendations for future research and recommendations for a

testing protocol for prototype seismic isolators.

7.3.1 Future Research

Results of this study suggest that bi-directional seismic excitation increases maximum
isolator displacements over those calculated assuming unidirectional excitation. It is
therefore important that the displacement calculated using the static analysis procedure
presented in the AASHTO Guide Specifications be sufficiently accurate (conservative).

One possibility is to modify the current displacement equation (Equation 3) as follows

250 AS; Test

d ZOny B

(7.1)

where o, is a displacement multiplier that accounts for: (1) the displacement demand

due to the orthogonal component, (2) the coupled behavior of the isolators, and (3) the
changes in unidirectional properties, namely, B and Tg ; and (250AS;) is the hazard

representation at 1-second.
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In this research study, a modest number of ground motion pairs were included in each
ground motion bin. Therefore results are based on sample statistics with a sample set
containing 10 or 12 data points. It would be of value to increase the number of ground
motion pairs in the ground motion bins, for instance, the Large-Magnitude Small-
Distance (Bin 2M) to 20 or 30 such that a thorough statistical analysis could be

conducted to determine appropriate values of o, for each set of isolator parameters (Qq

and Ty).

7.3.2 Prototype Testing Protocol

Based on the results of the investigation of the energy demands imposed on seismic
isolators the following seismic load testing protocol is recommended. The proposed
seismic testing protocol would replace, not supplement, Prototype Tests: 13.2 (b) (3),
13.2 (b) (4), 13.2 (b) (5), and 13.2 (b) (6) of the AASHTO Guide Specifications (1999):

Four (4) fully reversed cycles of sinusoidal loading to the total maximum

displacement at a frequency equal to 1/T", where T~ is the effective period of the

isolation system at the total design displacement.
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EARTHQUAKE GROUND MOTION RECORDS
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Figure A.1. Ground acceleration time historiesfrom Bin 1.
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Figure A.2. Ground acceleration time historiesfrom Bin 1.
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Figure A.3. Ground acceleration time historiesfrom Bin 1.
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Figure A.4. Ground acceleration time historiesfrom Bin 1.
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Figure A.5. Ground acceleration time historiesfrom Bin 1.
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Figure A.6. Ground acceleration time historiesfrom Bin 1.
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Figure A.7. Ground acceleration time histories from Bin 2.
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Figure A.8. Ground acceleration time histories from Bin 2.

169



Acceleration (g) Acceleration (g) Acceleration (g)

Acceleration (g)

0.5 T T T T T

0.25 o —
OWWVM:.-; . .
-0.25r .
-05 i i i i i
0 10 20 30 40 50 60
a. L09021
0.5 T T T T T
025 -
-0.25r .
-0.5 i i i i i
0 10 20 30 40 50 60
b. L09291
0.5 T T T T T
-05 i i i i i
0 10 20 30 40 50 60
c. G02000
0.5 T T T T T
0.25 |
O -
-0.25 _
-05 i i i i i
0 10 20 30 40 50 60
Time (sec.)
d. G02090

Figure A.9. Ground acceleration time histories from Bin 2.
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Figure A.10. Ground acceleration time historiesfrom Bin 2.
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Figure A.11. Ground acceleration time historiesfrom Bin 2.
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Figure A.12. Ground acceleration time historiesfrom Bin 2M.

173



Acceleration (g) Acceleration (g) Acceleration (g)

Acceleration (g)

-05 i i i i i
0 10 20 30 40 50 60
a. RI0O270
T T
-05 i i i i i
0 10 20 30 40 50 60
b. RIO360
0.5 T T T T T
0.25[ |
o A -
-0.25 —
-05 i i i i i
0 10 20 30 40 50 60
c. JOS000
0.5 T T T T T
0.25[ |
oy |
-0.25F |
-05 i i i i i
0 10 20 30 40 50 60
Time (sec.)
d. JOS090

Figure A.13. Ground acceleration time historiesfrom Bin 2M.
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Figure A.14. Ground acceleration time historiesfrom Bin 2M.

175

60



Acceleration (g) Acceleration (g) Acceleration (g)

Acceleration (g)

0.3
0.2

0.1

‘MNWWMMI T N ) o
R —

-0.1
-0.2

-0.3
0

0.3
0.2

0.3
0.2
0.1

-0.1
-0.2

-0.3
0

© o o
O L N W

[
o o o
w N -

10 20 30 40 50 60
a. CHY000

10 20 30 40 50 60
b. CHY090

10 20 30 40 50 60
c. 29P000

10 20 30 40 50 60
Time (sec.)

d. 29P090

Figure A.15. Ground acceleration time historiesfrom Bin 3.
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Figure A.16. Ground acceleration time historiesfrom Bin 3.
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Figure A.17. Ground acceleration time historiesfrom Bin 3.
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Figure A.18. Ground acceleration time historiesfrom Bin 3.
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Figure A.19. Ground acceleration time historiesfrom Bin 3.
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Figure A.20. Ground acceleration time historiesfrom Bin 4.
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Figure A.21. Ground acceleration time historiesfrom Bin 4.
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Figure A.22. Ground acceleration time historiesfrom Bin 4.
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Figure A.23. Ground acceleration time historiesfrom Bin 4.
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Figure A.24. Ground acceleration time historiesfrom Bin 4.
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Figure A.25. Ground acceleration time historiesfrom Bin 5.
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Figure A.26. Ground acceleration time historiesfrom Bin 5.
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Figure A.27. Ground acceleration time historiesfrom Bin 5.
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Figure A.28. Ground acceleration time historiesfrom Bin 5.
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Figure A.29. Ground acceleration time historiesfrom Bin 5.
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Figure A.30. Ground acceleration time historiesfrom Bin 6.
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Figure A.31. Ground acceleration time historiesfrom Bin 6.
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Figure A.32. Ground acceleration time historiesfrom Bin 6.
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Figure A.33. Ground acceleration time historiesfrom Bin 6.
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Figure A.34. Ground acceleration time historiesfrom Bin 6.
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Figure A.35. Ground acceleration time historiesfrom Bin 7.
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Figure A.36. Ground acceleration time historiesfrom Bin 7.
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Figure A.37. Ground acceleration time historiesfrom Bin 7.
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APPENDIX B

INVESTIGATION OF THE DISTRIBUTION OF SPECTRAL
ACCELERATION DATA

B.1 General

This section presents an investigation of the distribution of four samples of spectral
acceleration data corresponding to four natural periods of vibration. The data samples
were selected from two sets of elastic response spectra generated using ground motions
from Bin 1 and Bin 2: the Near-Field and Large-Magnitude, Small-Distance bins,
respectively. The motivation for the work described in this section is to determine
whether the observed spectral acceleration data follow either of two proposed continuous
probability distribution functions. First, a qualitative comparison is made between the
observed data and two continuous distribution functions to assess which distribution best
characterized the sample data. To facilitate this qualitative analysis, the observed data
was organized into equally spaced intervals from which a frequency diagram was
constructed. Parameters for the two distributions were estimated from the data samples.
The normal and lognormal distributions are plotted with the corresponding frequency
diagrams. Cumulative frequency and cumulative distribution functions were also
calculated and are presented in a graphical format. Finally, a goodness-of-fit test was
conducted on one sample set of spectral acceleration data to quantitatively determine
which distribution is best for the spectral acceleration data. Results of the quantitative

analysis are presented in tabular and graphical format.

B.2 Organization of Spectral Acceleration Data

Four spectral acceleration data sets were selected. The first and second data sets were
taken from the Near-Field (Bin 1) elastic response spectra, the first at a period of 2.0
seconds (constant velocity region) and the second sample at a period of 4.0 seconds
(constant displacement region). These period represent a typical lower and upper bound
for the period of isolated bridge structures. The third and fourth data sets were taken

from the Large-Magnitude, Small-Distance (Bin 2) elastic response spectra at periods of
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0.5 seconds and 2.0 seconds, representing the constant acceleration and constant velocity
regions, respectively. The elastic response spectra for Bin 1 and Bin 2 are plotted in
Figures B.la and B.2.a respectively. To construct the frequency diagrams the data
samples were then organized into k equally spaced intervals where the number of

intervals were determined using the following formula
k=1+3.3-log(n) (B.1)

where 7 is the sample size (Soong, 1981). The sample sizes are 24 and 20 for Bin 1 and
Bin 2 respectively. Equation (B.1) yields the same number of intervals for each sample
when the results obtained from (B.1) are rounded to the next largest integer. Frequency

diagrams for each data sample are shown in Figures B.1b, B.1.c, B.2b, and B.2c.

B.3 Continuous Distribution Functions

The Normal (or Gaussian) and the Lognormal distributions were selected as possible
models for the distribution of spectral acceleration data. Based on the observation that the
lognormal distribution is bounded on one side by zero, makes it a good choice for
characterizing spectral acceleration data. The normal distribution may extend into the
negative range, which is inconsistent with the observed data. Despite this possibility, the
normal distribution has been investigated because it is a popular choice when describing
the distribution of continuous random variables and its parameters are well understood by

engineers.

The parameters for the normal distributions, namely, mean and variance, were estimated

from the data sample and calculated using the following formula

| L5
_|:n izzlx,} (B.2)
o? {Ll (- )2} (B.3)
i=1

202



where m, is the sample mean; »n is the sample number; x; are the sample values taken to

be the spectral data and o2 is sample variance.

The parameters of the lognormal distributions were determined by taking the natural
logarithm of the data samples and then calculating the sample mean and sample variance
of each using the previously described equations (B.2) and (B.3). For instance, if x is

defined to be

x=In(y) (B.4)

where y is the spectral acceleration data assumed to be lognormally distributed, then x

can be assumed to be random variable that follows a normal distribution. The parameters

of the lognormal distribution were then estimated using the following formula
0, =exp(my) (B.5)

Olny =Ox (B6)

where 0, and o1,, are the estimated parameters of the lognormal distributions; m, is
the sample mean of x calculated using Equation (B.2) and o, is the standard deviation
of x calculated as the square-root of the result of Equation (B.3). It is important to note
that 0, and oy,, are not the mean and standard deviation of the lognormal random
variable, y, rather parameters of the distribution that are related to the mean and variance
of y. These estimated parameters were then used to calculate the normal and lognormal

distribution functions plotted in Figures B.1b, B.1c, B.2b and B.2c.

B.4 Qualitative Assessment of the Distribution of Spectral Acceleration Data

To gain an idea of the distribution of the spectral acceleration data, the frequency
diagrams constructed from the binned spectral acceleration data were plotted with both
the normal and lognormal distribution functions whose parameters were established as

described previously.
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Referring to Figures B.2b and B.2c it appears that the lognormal distribution is a
reasonable model for the distribution of the spectral acceleration data for both periods,
0.5 and 2.0 seconds, respectively. The lognormal model has the added benefit of being
bounded by zero, which is characteristic of the spectral acceleration data. A significant
portion of the normal distribution is observed to lie in the negative region as a result of
the small sample means and large sample variances, which makes the normal distribution
assumption less reasonable. Both the lognormal and normal distribution functions were
numerically integrated to determine the cumulative distribution functions and are plotted
in Figures B.2d and B.2e. Also plotted are the cumulative frequency diagrams for each
of the data samples. Again, the assumed lognormal distribution results in a cumulative
distribution function that better characterizes the observed spectral data shown by the
cumulative frequency diagram. Similar trends are observed from the data samples from

Bin 1 spectra, see Figures B.1b, B.1c, B.1d and B.1e.

Although this analysis provides a qualitative assessment of the lognormal and normal
distributions, a quantitative measure of the appropriateness of each of the assumed

models is necessary. This quantitative analysis is presented in the next section.

B.5 Quantitative Analysis of Spectral Acceleration Data

A goodness-of-fit test was conducted to quantitatively determine which distribution better
characterizes the spectral acceleration data. For the goodness-of-fit tests, one spectral
acceleration data sample was selected and tested for the normal and lognormal
distribution. This sample was selected from the spectra of Bin 2 and for a period of 0.5
seconds, see Figures B.2a and B.2b. The Kolmogorov-Smirnov test (or K-S) was selected
to determine the goodness-of-fit of the acceleration data to the normal and lognormal
distributions. The K-S test was selected for three reasons: first the sample size, n, is
small (20) and therefore makes a Chi-squared test an inappropriate choice; second the
K-S test is for use with continuous distribution functions; and third, the results of the test
are not sensitive to the selection of interval number and size as is the case with the

Chi-squared test (Soong, 1981).
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The K-S test is a statistical measure of the difference between the observed cumulative
distribution function and the theoretical cumulative distribution function, either the
normal or the lognormal for this investigation. The significance level of the test, o, is

related to the deviation parameter, D, by the following formula

P(D; >c,,)=0 (B.7)

where ¢, is the threshold value associated with the given significance level, a. The
distribution is accepted if the sample deviation parameter d,, determined by means of
the K-S test, is less than the tabled threshold value c¢,, for the given level of
significance. It should be noted that no special consideration is made by the K-S test for
estimated parameters. Rather it is recommended that the value of the sample deviation
parameter, d,, should be significantly lower than the tabled threshold value c,, when

the parameters of the theoretical distribution are estimated from the sample

(Soong, 1981).

B.6 Results of the Goodness-of -Fit Test

Results of the two tests performed using the same spectral acceleration data sample (Bin
2 spectra at a period of 0.5 seconds) are presented in Tables B.1 and B.2. Table B.1
presents the results of a K-S test for normal distribution and Table B.2 presents the results
of a K-S test for lognormal distribution. The value of, ¢,,, was determined from
standard tables using a sample size of 20 and a significance level of 5%, resulting in a
value of 0.29, see Tables B.1 and B.2. From Table B.1 the result of the K-S test yields a
sample deviation value of 0.182, which is less than the 0.29 and therefore the hypothesis
that the spectral acceleration data follow a normal distribution is accepted at the 5%
significance level. This sample deviation d, can be seen graphically from Figure B.3a
indicated by an arrow and annotation. However, because the parameters of the theoretical
distributions were estimated from the sample, it is questionable whether the observed

value of d, is significantly below ¢, s, as recommended.
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From the second K-S test a sample deviation value of 0.074 was determined, which is
significantly less that 0.29, see Table B.2. Therefore the hypothesis is again accepted and
the data is assumed to follow a lognormal distribution at the 5% significance level. Note,
the value of d, obtained from the lognormal test is significantly lower than that obtained
from the test for the normal distribution. This implies that the lognormal distribution is a
better model for the spectral acceleration data than the normal distribution. Again the
sample deviation value can be seen graphically from Figure B.3b where the maximum

deviation is indicated by the arrow and the annotation.

B.7 Conclusions

The two K-S tests determined both distributions were accepted at the 5% significance
level. However, the lognormal distribution appears to be a better choice for the following

reasons:

1. Qualitatively the cumulative lognormal distribution matches well the
cumulative observed distribution shown in Figure B.3 with the added benefit
that neither the observed data nor the lognormal distribution take on negative

values.

2. The sample deviation, d;, is significantly lower than the sample deviation value
obtained from the K-S test for normal distribution as well as the threshold value

cn,a .
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Table B.1. K-S test for Bin 2 spectra acceleration data assuming a normal

distribution
Observed Theoretical
i | 205y | ¥ | Diswibution | Distibution | FOF® | “rioy [ @ | ens
F(x) Fi(x)
1 0.349 0.020 0.05 0.131 -0.081 0.081 0.182 | 0.29
2 0.356 0.059 0.1 0.158 -0.058 0.058
3 0.931 0.069 0.15 0.165 -0.015 0.015
4 0.738 0.074 0.2 0.168 0.031 0.031
5 0.136 0.128 0.25 0.213 0.036 0.036
6 0.020 0.136 0.3 0.220 0.079 0.079
7 0.556 0.154 0.35 0.237 0.112 0.112
8 1.200 0.154 04 0.237 0.162 0.162
9 0.677 0.186 0.45 0.267 0.182 0.182
10 0.750 0.297 0.5 0.388 0.111 0.111
11 0.128 0.349 0.55 0.449 0.100 0.100
12 0.186 0.357 0.6 0.458 0.141 0.141
13 0.074 0.439 0.65 0.557 0.092 0.092
14 0.069 0.547 0.7 0.681 0.018 0.018
15 0.059 0.556 0.75 0.690 0.059 0.059
16 0.154 0.677 0.8 0.806 -0.006 0.006
17 0.154 0.738 0.85 0.852 -0.002 0.002
18 0.297 0.750 0.9 0.860 0.039 0.039
19 0.547 0.931 0.95 0.9485 0.001 0.001
20 0.439 1.200 1 0.992 0.007 0.007
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Table B.2. K-S test for Bin 2 spectra acceleration data assuming a lognormal
distribution
Observed Theoretical

; Sa x= ) C.um.ulati.ve Cpmglatlive F(y)- | Abs[F(y) d a5

(7=0.5) | In(Sa) Distribution | Distribution | Fy(y) -F(»)] =7

F() F()

1 0.349 | -1.051 | 0.20 0.05 0.0102 0.0397 | 0.0397 | 0.074 | 0.29
2 0.357 | -1.030 | 0.059 0.1 0.0911 0.008 0.008
3 0.931 -0.071 | 0.069 0.15 0.116 0.033 0.033
4 0.738 | -0.304 | 0.074 0.2 0.129 0.071 0.071
5 0.136 | -1.994 | 0.128 0.25 0.266 -0.016 0.016
6 0.020 | -3.887 | 0.136 0.3 0.285 0.014 0.014
7 0.556 | -0.587 | 0.154 0.35 0.325 0.024 0.024
8 1.200 0.182 | 0.154 0.4 0.325 0.074 0.074
9 0.677 | -0.390 | 0.186 0.45 0.390 0.059 0.059
10 | 0.750 | -0.287 | 0.297 0.5 0.562 -0.062 0.062
11| 0.128 | -2.054 | 0.349 0.55 0.620 -0.070 0.070
12 | 0.186 | -1.683 | 0.357 0.6 0.627 -0.027 0.027
13| 0074 | -2.604 | 0.439 0.65 0.697 -0.047 0.047
14| 0.069 | -2.671 | 0.547 0.7 0.764 -0.064 0.064
15| 0.059 | -2.824 | 0.556 0.75 0.768 -0.018 0.018
16 | 0.154 | -1.868 | 0.677 0.8 0.820 -0.020 0.020
17 | 0.154 | -1.869 | 0.738 0.85 0.840 0.009 0.009
18 | 0297 | -1.213 | 0.750 0.9 0.844 0.055 0.055
19 | 0547 | -0.603 | 0.931 0.95 0.887 0.062 0.062
20 | 0439 | -0.823 | 1.20 1.0 0.925 0.074 0.074
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APPENDIX C

NUMERICAL PROCEDURE FOR NONLINEAR RESPONSE-
HISTORY ANALYSIS AND VERIFICATION USING SAP2000

C.1 General

Presented in this appendix is a discussion of the numerical procedures used to solve the
nonlinear equation of motion and verification of the solution using the structural analysis
software package, SAP2000 (CSI, 2000).

C.2 Numerical Procedure

C.2.1 General

A generalized form of the equation of motion is given in Equation (C.1). The simple
bridge model assumed for this study has three degrees-of-freedom: translation in the x-
and y- directions and rotation about the vertical axis, resulting in an equation of motion
with matrix and vector quantities. For simplicity of explanation all quantities shown in

this appendix are presented in scalar form. The scalar equation of motion is

mu + cu + f; = —ml, (C.1)

where m is the system mass; c is the damping coefficient; f, is the nonlinear
force-displacement response; u and U are the relative velocity and relative acceleration

respectively; and Uy is the ground acceleration.

C.2.2 Newmark’s Method

To solve the equation of motion, Newmark’s step-by-step integration procedure was

employed (Newmark, 1959). This procedure is based on the following equations
Ui+1 = l.]i + [(1—'Y)At] Ui + (YAt) Ui+1 (CZ)

Ui = Ui + (At)Ui + [(0.5-B)(At)*] Gi +[ B(AL)?] liia (C.3)
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where ui,;, Ui, and UG,y are the relative displacement, velocity, and acceleration at
time-step i+1; u;,U;, and Gjare the relative displacement, velocity, and acceleration at
time-step i; At is the incremental time-step size; and y and [ are parameters chosen to
be 1/2and 1/4, respectively. This choice of y and 3 correspond to an assumed average
acceleration response over the incremental displacement At. Because Equations (C.2)
and (C.3) include information from the current time step, i, and the future time step,
i+1, the procedure is implicit and therefore has a larger stability region than an explicit

method (Heath, 2002). Choosing y and Pto be 1/2 and 1/4, respectively, yields a

stability limit of infinity, implying the solution procedure is unconditionally stable for all
At (Newmark, 1959). Although the procedure is unconditionally stable, At must be
chosen sufficiently small to yield an accurate solution. A discussion regarding solution
accuracy and time-step size is presented in a subsequent section of this appendix. For
linear systems, the incremental displacement, Au;, and incremental velocity, Au;, can be

determined directly at each time step. However, for nonlinear systems an iterative

procedure is required at each time step.

C.2.3 Coupled-Plasticity Model

The seismic isolator elements were characterized using a rate-independent plasticity
model utilized by Huang et al. (2000). The rate-independent plasticity model is composed
of an assumed yield function, a flow rule, and a hardening rule. The yield function is

given by
F=f, -(-a)f, (C.4)

where o is the ratio of the post-elastic stiffness to the elastic stiffness; f, is the assumed
yield force; (1-a)f, is the plastic force (equivalent to the characteristic strength of an
isolator denoted Qq); and f, represents the hysteretic force. For 2-dimensional analysis,
the yield surface is circular and f, is determined as the Euclidean norm (or 2-norm) of

the two Cartesian components of hysteretic force. The expression shown in Equation
(C.4) determines the state of the restoring force with respect to the yield surface. This is

shown by the logical expression in Equation (C.5).
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F <0 elastic

- (C.5)
F =0 yielding

The incremental plastic deformation is governed by an associative plastic flow rule

shown in Equation (C.6)

oF
Up =y — C.6
p =Y of, (C.6)
where u, is the incremental plastic deformation rate and y is a proportionality factor.

Equation (C.6) was solved incrementally using the Backward Euler Method which is
implicit and unconditionally stable (Heath, 2002).

The restoring force (f;), assuming the system is yielding, is determined from the

following equation
fo=aku+ f, (C.7)

where o has been defined previously as the ratio of the post-elastic stiffness to the elastic
stiffness; k, is the elastic stiffness; u is the displacement composed of an elastic
displacement and plastic displacement; and f, is the plastic force, equal to (1-a)f, for

unidirectional excitation.

Two schematics of the numerical procedure implemented in Matlab are shown in Figure
C.1 and Figure C.2. The step-by-step integration scheme (Newmark’s Method) utilized to
solve the equation of motion with nonlinear restoring force is shown by Figure C.1. This
figure is based on the Newmark procedure found in Chopra (1995). The basic logic and
flow of information (variables) for the numerical procedure is shown. Because the force-

displacement relationship ( fs) is nonlinear, an iterative procedure is required for every

time step. Newton-Raphson was selected for the iterative procedure and is shown in
Figure C.1 by the operation box labeled Newton-Raphson Iteration. Within the Newton-
Raphson Iteration box is a nested operation box labeled Coupled-Plasticity Model. The

transfer of information between these two operations is detailed in Figure C.2. During the
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Newton-Raphson iterations, an updated value of the displacement, u/,, is passed to the
Coupled-Plasticity model which returns a value for the restoring force, fs’, and tangent

stiffness, kr!, the Newton-Raphson iteration then continues until the estimated error is
less than some pre-defined error tolerance, tol . Details of the Coupled-Plasticity Model
have not been presented here, however, information regarding this characterization of
seismic isolators can be found in Huang et al. (2000).

C.2.4 Stability and Accuracy of Solution

Two parameters of the numerical method affect the stability and accuracy of the solution.
As previously mentioned both Newmark’s Method and Backward Euler’s Method are
implicit and unconditionally stable. Therefore only the accuracy of the solution need be
investigated for various values of the solution time-step size, At, and the relative error
tolerance, tol. To facilitate this investigation, nonlinear response-history analysis was
performed to investigate the stability and accuracy of the numerical method utilized for
this study. To facilitate this investigation an isolation system with Q4 /W =0.12 and
Ts =4.0 seconds was selected. The ground motion record used for analyses discussed
here is from the 1992, Northridge Earthquake, Canoga Park Station (denoted, CNP196)
and has been incorporated into ground motion bin 2M. Two values of the yield
displacement, dyiiq, Were assumed for this investigation, 0.01 and 0.linches. A vyield
displacement of 0.01inches is typical of friction pendulum isolators (FPS), which exhibit

large initial stiffness (or “elastic” stiffness).

Figure C.3 shows the solution obtained from response-history analysis performed
considering four values of the time-step size, At, using an error tolerance of 1le—8 and
an assumed yield displacement of 0.01inches. From the top plot of Figure C.3 it appears
that the solution is indeed stable for each value of the time-step considered. The top plot
of Figure C.3 suggest that the solution obtained for each time-step yield are identical.
Referring to the bottom plot of Figure C.3, the changed scale of the vertical axis shows
discrepancies in the solution for each time-step from approximately 13 seconds to 25

seconds, corresponding to the elastic response of the isolator. These differences are
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observed for time-steps: 0.01, 0.004 and 0.003. However, solutions obtained for
time-steps 0.003 and 0.001 are identical, suggesting a time-step of 0.003 is a threshold
for accuracy. Time-step values of 0.004 and 0.003 corresponds to T,/20 and T,/30,
respectively, where T, is the period calculated from the “elastic” stiffness. A time-step
of 0.01 corresponds to the input time-step. For each of the four time-step sizes
considered here, the difference in the maximum displacement and the energy dissipated
by the isolators (two parameters of interest in this study) calculated from each of the
solutions is negligibly small. For the stiffest system considered here, a time step of

T, /20 is sufficient without requiring excessive computation.

For comparative purposes the previous system (Qqs /W =0.12 and T4 = 4.0 seconds ) was
analyzed assuming a yield displacement of 0.linches for three values of At. The
resulting “elastic” stiffness is ten times less than that calculated assuming
dyiea =0.01inches. Results of analyses performed for this system are shown in Figure
C.4. From this figure, it is clear that there is no difference between the solutions obtained
considering time-steps of 0.01, 0.004 and 0.003. Therefore, for systems with moderate
initial stiffness (i.e, lead-rubber bearings) stable and accurate solutions using this

numerical procedure can be obtained even for reasonably large time-steps.

Shown in Figure C.5 are solutions obtained considering various error tolerances, tol , and
a time-step of 0.004. A vyield displacement of 0.0linches and isolator parameters
Qs /W =0.12and T4 =4.0 seconds were assumed. The Newton-Raphson iterations are

terminated when the change in the calculated incremental plastic displacement is
sufficiently small compared to the specified error tolerance, see Figure C2. From Figure
C.5, the solutions obtained for each of the three values of the error tolerance are identical.
Therefore, an error tolerance of le—4, is sufficiently small without requiring excessive

computation.

C.3 Verification using SAP2000

Displacement and force results obtained from unidirectional response-history analysis

performed using the previously mentioned numerical procedure implemented in Matlab
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(MathWorks, 1999) were compared with results obtained from a commercially available
structural analysis software package, SAP2000 Nonlinear (CSI, 2000). Two different
isolation systems were considered for the comparison, the first system with:
Qs /W =0.06 and T4 =3.0 seconds, and the second system with: Q4 /W =0.09 and

Tq =3.0 seconds . A yield displacement of 0.01inches was assumed for both systems.

An identical model of the simple isolated bridge structure assumed in this study was
generated in SAP2000. For the SAP analyses, a rigid superstructure was modeled using
Body constraints. This constraint holds the relative deformations of the assigned nodes to
zero. A lumped mass was placed at the center of rigidity of the superstructure and
included in the Body constraints. The superstructure was supported by four Plasticl
elements. Although this version of SAP2000 offers two elements specific for modeling
seismic isolators; Isolatorl and Isolator2, the Plasticl element was chosen. The Plasticl
element is based on a hysteretic behavior proposed by Wen (CSI, 1997). Using this
element, in SAP2000, the transition between the elastic and plastic regions can be
modified by specifying the value of the parameter, exp. In this case, a value of 20 was
assigned and corresponds to a sharp transition between the elastic stiffness and the
post-elastic stiffness. This sharp transition is in agreement with the coupled-plasticity
model utilized in the Matlab code. Isolator properties used for the Matlab and SAP2000
analyses are presented in Table C.1.

Presented in Figure C.6 is a comparison of displacement and force response results
obtained using the Matlab code and SAP2000 for an isolation system with properties:
Qs /W =0.06and Ty =3.0 seconds. In this figure results obtained using Matlab code and
SAP2000 are shown by a solid gray line and a dotted black line, respectively. The force
and displacement results obtained using Matlab and SAP2000 are in excellent agreement.
Similarly a comparison of the force and displacement results for an isolation system with

parameters Qq /W =0.09 and Ty =3.0 seconds are presented in Figure C.7. Again the

results agree exceptionally well.
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C.4 Conclusion

The numerical procedure implement in Matlab is unconditionally stable and sufficiently
accurate given that (1) the time-step size, At, is taken to be approximately equal to
T, /20 and (2) the relative error tolerance for the Newton-Raphson Iteration is specified
to be le—4 or smaller. Results obtained from the numerical routine implemented in
Matlab were verified using SAP2000.
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Table C.1. Isolator Parameters for Verification Analyses.

Newmark’s Method implement in SAP2000 Nonlinear ver7.4
Matlab
Coupled-Plasticity Model Plasticl
o | | dw | @ | k| K| st | 9| viw | Y0
Ratio
(sec.) (cm) (kN) (kN/em) | (kN/cm) k yield ratio exp
(kN/cm) (kN)

0.06 3.0 0.0254 148.4 5842.5 111 5842.5 148.4 1.89%-3 20
0.09 3.0 0.0254 222.6 8763.8 111 8763.8 222.6 1.26e-3 20
0.09 4.0 0.0254 222.6 8763.8 6.22 - - - -
0.12 4.0 0.0254 296.8 11685 6.22 - - - -
0.12 4.0 0.254 296.8 1168.5 6.22 - - - -
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Input Parameters
U, = uo = fso = 0

At, npts
tol
Ug K., Kq, Qq, dy
e tol
Kl! KZ! Qd| dyield
i1 /
Initial Calculations
p =—mt,
Uo — po —CU, — fso
m
a= im +2C
At
b=2m
Uiy = AU + U 2
AU = —AuU;
. L At
<+ Ui = AU; + U < 4
Aul =—3 Au, +—Ui —2Ui
l..ji+1 = AU. + U. (At) At
i=i+1 A
AU;
) 4 v
Newton-Raphson
i <npts YES AP = Ap; +au; + bi; > Iteration
Coupled-
Plasticity e
Model
NO

Figure C.1. Flow chart for numerical solution procedure using Newmark’s
Method.
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Initialization

Uit = Uy
AR' = Ap, Ui
max _ iter
i=1
\ 4
ke, f. -
or Coupled-Plasticity
Model
k' =k +£c +——m
At (AY)
YES i
Au’ =£
kJ
Aui = ZAUJ
1
: i :
NO UL =) AU +u
1
u|J+l
y

Not Converging
Coupled-Plasticity
Model

K

AfJ = £ — 17+ (K — k! )Au’
AR™ = AR' — Af,!

j=j+1

AU;

Figure C.2. Flow chart for Newton-Raphson Iteration procedure.
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APPENDIX D

SAMPLE CALCULATIONS TO DETERMINE ISOLATOR
DISPLACEMENTS USING THE AASHTO PROCEDURE AND
EQUATION 3B FROM THE GUIDE SPECIFICATIONS.

D.1 Sample calculations considering the 1-second mean spectral acceleration from
Bin 2M and isolator properties: Q4 /W =0.06 and T4 = 4.0 sec. Values of B

determined using Table 7.1-1 of the AASHTO Guide Specifications.
Initial Parameters:

Gravitational Acceleration g =981cm/sec?
Weight Acting on Isolator W =2473 kN
1-Second Spectral Acceleration S;=0.419

Site Coefficient times Acceleration Coefficient

Si-A=0.41g¢g
Second-Slope Period Ts =4.0sec.
Initial Calculations:
Characteristic Strength Qs =0.06-W Qq =148.4 kN
2
Second-Slope Stiffness Ky = %VEV Kg =622 KN/m
d
Initial Estimated Displacement d =10cm
Iteration 1:
Effective Stiffness Ker = %+ Ky Ker =2105.8 KN/m
. . W
Effective Period Tt =27 Tt =2.17 sec.
Kerr -0
. . 2Qq
Effective Damping Beff =————— Ber = 0.449
T Keff . d
Damping Coefficient B=17
Displacement d= 25&% d =13.11cm
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Relative Error

Iteration 2:

Trial Displacement

Effective Stiffness

Effective Period

Effective Damping

Damping Coefficient

Displacement

Relative Error

Iteration 3:

Trial Displacement

Effective Stiffness

Effective Period

Effective Damping

Damping Coefficient

Displacement

Relative Error

Iteration 4:

Trial Displacement

Effective Stiffness

old d new

Error=100-

T
d’* =13.11cm
Kest 2%4' Ky
Teff = 27'C W
Keff : g
_ 2Q
Beff - TC-Keff d
B=1.7
d- 25-Si - A-Tesr
B
old _dnew
Error=100-————
d
d =14.36 cm
Keff =%+ Kd
Tef-f = 27'C w
Keff : g
_ 2
Beff - TE~Keﬁ d
B=1.7
d= 25-S; - A-Tesr
B
old _dnew
Err0r=100-T
d
d° =14.78 cm
Kest 2%4' Kq
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Error=23.7%

Ket =1754.0 KN/m

Ter = 2.38 s€C.
Ber =0.41
d =14.36 cm

Error=8.7%

Ket =1655.1KN/m

Tett = 2.45 sec.
Beff = 0397
d =14.78 cm

Error=2.8%

Ker =1625.7 KN/m



W

Effective Period Ter =27 Ter = 2.47 sec.
Keff . g
Effective Damping Beit _ Qs Ber = 0.39
- Keff * d
Damping Coefficient B=17
Displacement d :w d =14.92cm
old d new|
Relative Error ErrorﬂOOW Error=0.94%
Final Values:
Effective Damping Ber =0.39
Effective Period Ter = 2.47 sec.
Displacement d =14.92cm

D.2 Sample calculations considering the 1-second mean spectral acceleration from
Bin 7 and isolator properties: Q4 /W =0.03and T4 =3.0sec. Values of B
determined using Table 7.1-1 of the AASHTO Guide Specifications.

Initial Parameters:
Gravitational Acceleration g =981cm/sec?
Weight Acting on Isolator W =2473 kN
1-Second Spectral Acceleration S;=0.36¢

Site Coefficient times Acceleration Coefficient

Si-A=0.36¢
Second-Slope Period Tq =3.0sec.
Initial Calculations:
Characteristic Strength Qs =0.03-W Qs =74.2KkN
2
Second-Slope Stiffness Ky = %VEV K¢ =1105.8 KN/m
d
Initial Estimated Displacement d=17cm
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Iteration 1:

Effective Stiffness

Effective Period

Effective Damping

Damping Coefficient

Iteration 1 Continued:

Displacement

Relative Error Estimate

Iteration 2:

Trial Displacement

Effective Stiffness

Effective Period

Effective Damping

Damping Coefficient

Displacement

Relative Error Estimate

Iteration 3:

Trial Displacement

Effective Stiffness

Keff =%+ Kd
Teff = 27'C w
Keff . g
_ 2
Beff - TE~Keff d
B=144
d _ 258. ‘A'Teff
B
dold _dnew
E*=100-— 1
d
d* =15.88cm
Keff =%+ Kd
Teff = 27'C w
Keff : g
__ 2Q
Beff - TC'Keff d
B=1.47
d- 25-S; - A-Test
B
old _dnew
E*=100-
d®¢ =15.43cm
Keff =%+ Kd
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Ker =1542.2 KN/m

Ter = 2.54 sec.

Ber =0.18

d =15.88cm

E*=7.0%

Ket =1573.1kN/m

Ter = 2.51sec.

Ber =0.189

d =15.43cm

E*'=2.9%

Ker =1586.6 KN/m



Effective Period

Effective Damping

Damping Coefficient

Displacement

Relative Error Estimate

Iteration 4:

Trial Displacement

Effective Stiffness

Effective Period

Effective Damping

Damping Coefficient

Displacement

Relative Error Estimate

Final Values:

Effective Damping
Effective Period

Displacement

Teff = 27'C W

Keff : g
_ 2Qq
Beff - TC-Keff d
B=1.48
d= 25-Si - A-Tegr
B
dold _dnew
E*'=100
dnew
d®¢ =15.24 cm
Kest =%+ Kq
Teff = 27'C W
Kert - 0
__ 2Qu
Beff - TE~Keff d
B=1.485
d- 25-Si- A-Teg
B
dold _dnew
EeSt=100-T
d

233

Ter = 2.5 s€ec.

Ber =0.103

d =15.24cm

E*=1.2%

Ket =1592.7 KN/m

T = 2.5 sec.
Ber =0.195
d =15.16 cm
E®*'=0.53%
Bet =0.195
Ter = 2.5 sec.

d =15.16 cm






APPENDIX E

MAXIMUM ISOLATOR DISPLACEMENT DATA
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APPENDIX F

NORMALIZED ENERGY DISSIPATED AND RATE-OF-ENERGY
DISSIPATED DATA
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