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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national 
center of excellence in advanced technology applications that is dedicated to the reduction of 
earthquake losses nationwide. Headquartered at the University at Buffalo, State University 
of New York, the Center was originally established by the National Science Foundation in 
1986, as the National Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions 
throughout the United States, the Center’s mission is to reduce earthquake losses through 
research and the application of advanced technologies that improve engineering, pre-
earthquake planning and post-earthquake recovery strategies. Toward this end, the Cen-
ter coordinates a nationwide program of multidisciplinary team research, education and 
outreach activities. 

MCEER’s research is conducted under the sponsorship of two major federal agencies: the 
National Science Foundation (NSF) and the Federal Highway Administration (FHWA), 
and the State of New York. Signifi cant support is derived from the Federal Emergency 
Management Agency (FEMA), other state governments, academic institutions, foreign 
governments and private industry.

MCEER’s NSF-sponsored research objectives are twofold: to increase resilience by devel-
oping seismic evaluation and rehabilitation strategies for the post-disaster facilities and 
systems (hospitals, electrical and water lifelines, and bridges and highways) that society 
expects to be operational following an earthquake; and to further enhance resilience by 
developing improved emergency management capabilities to ensure an effective response 
and recovery following the earthquake (see the fi gure below).
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A cross-program activity focuses on the establishment of an effective experimental and 
analytical network to facilitate the exchange of  information between researchers located 
in various institutions across the country. These are complemented by, and integrated 
with, other MCEER activities in education, outreach, technology transfer, and industry 
partnerships.

This study presents a new methodology to assess the performance of structural/nonstructural sys-
tems subjected to multiple hazards during their lifetime, and to identify an optimal strategy from 
a collection of design alternatives. The methodology is probabilistic in nature since the intensity 
and arrival time of different hazards such as earthquakes and hurricanes, the loads acting on the 
system due to a hazard event such as ground accelerations and wind velocities, and some system 
characteristics, are generally uncertain. Consequently, probabilistic models are developed to char-
acterize the natural hazards that could occur at a given site at single/multiple points. These models 
specify the random arrival times of individual events at a site during a reference time, the random 
properties of the hazards under considerations at these times, and the random loads acting on the 
system due to each event. The models are implemented in computer programs and the life-cycle risk 
analysis methodology is illustrated through numerical examples. In the fi rst example, the MCEER 
West Coast Demonstration Hospital is analyzed to identify an optimal rehabilitation strategy using 
the concepts of seismic activity matrix and fragility surfaces. It is shown that proposed retrofi tting 
alternatives do not change the mean value of the life-cycle costs signifi cantly, however, the probability 
of exceeding large costs is lower for the retrofi tted systems. The second example discusses the case 
of a typical offshore platform under earthquake and hurricane hazards. This example demonstrates 
how different hazards can be dominant at different reliability levels. The last example presents a 
method for selecting an optimal maintenance policy for a deteriorating system by minimizing the 
total life-cycle cost so that system reliability at any given time is greater than a specifi ed level. 



ABSTRACT

Natural hazards such as earthquakes, tropical and extratropical storms, tornadoes, floods and
droughts are known for their destructive impacts on life, economy and environment. Although it is
not possible to completely avoid damage due to such disasters, it may be possible to minimize their
devastating effects by enhancing resilience in communities, that is, by reducing failure probability
of infrastructural systems, consequences of system failures, and time to recovery. System failure
probability and recovery time can be reduced by increased system performance through retrofitting
and rehabilitation. However, due to limited resources and budget constraints, it is important to
identify the most critical systems and prioritize their mitigation with the objective of minimizing
the expected losses due to natural hazards. These decisions are based on performance level
for a service and cost estimates. In addition to current hazard-specific vulnerability methods, a
multihazard approach is necessary for assessing the long-term impact of mitigation strategies on
system vulnerability, ensuring that strategies implemented to mitigate one hazard do not amplify
the vulnerability to another hazard, and evaluating the relative importance of various hazards.

This study presents a new methodology for (1) assessing performance of structural/nonstructural
systems subjected to multiple hazards during their lifetime and (2) identifying a strategy from a
collection of design alternatives that is optimal in some sense. System performance is measured
by the total lifetime losses and the system fragility, that is, the probability that a system response
exceeds a critical value subjected to a hazard event specified by its intensity and other parameters.
Accordingly, fragility is a surface with support the defining parameters of a hazard. The
methodology is based on site hazard analysis, system fragility analysis and capacity and cost
estimation.

The proposed methodology is probabilistic in nature since (1) the intensity and arrival time of
different hazards, such as earthquakes and hurricanes, (2) the loads acting on the system due to
a hazard event, such as, ground accelerations and wind velocities, and (3) some of the system
characteristics, are generally uncertain. Consequently, probabilistic models are developed for
characterizing natural hazards occurring at a given site at single/multiple points. These models
specify (1) the random arrival times of individual events at a site during a reference time, (2) the
random properties of the hazards under considerations at these times, and (3) the random loads
acting on the system due to each event. For a system in a multihazard environment the occurrence
of both individual and coincidental hazard events are considered. We present two methods for
estimating system fragility, crossing theory of stochastic processes and Monte Carlo simulation.

The proposed models are implemented in computer programs and the life-cycle risk analysis
methodology is illustrated through numerical examples. In the first example MCEER West Coast
Demonstration Hospital is analyzed to identify an optimal rehabilitation strategy with respect
to total life-cycle losses using the concepts of seismic activity matrix and fragility surfaces. It
is shown that proposed retrofitting alternatives do not change the mean value of the life-cycle
costs significantly, however, the probability of exceeding large costs is lower for the retrofitted
systems. The second example discusses the case of a typical offshore platform under earthquake and
hurricane hazards. This example demonstrates how different hazards can be dominant at different
reliability levels. The last example presents a method for selecting an optimal maintenance policy
for a deteriorating system by minimizing the total life-cycle cost such that system reliability at any
given time is greater than a specified level.
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SECTION 1

INTRODUCTION

1.1 Overview

Natural hazards of geological origin such as earthquakes and volcanic eruptions or of
meteorological origin such as hurricanes, tornadoes, floods and droughts are known for their
destructive impacts on human life, economy and environment. The four principal natural disasters
in terms of losses, earthquakes, windstorms, floods and droughts, have claimed almost two million
lives since 1900 (Degg and Chester, 2005). The financial cost of all global disasters in 1980’s
was estimated to be $120 billion in 1990 US dollars (Degg and Chester, 2005). Developing
countries are more vulnerable to natural disasters due to poverty, illiteracy and lack of infrastructure
development. Although it is not possible to completely avoid damage due to such disasters, it is
however possible to minimize their devastating effects by enhancing resilience in communities,
that is, by reducing (1) system (such as hospitals, lifelines) failure probabilities, (2) consequences
of system failures, and (3) time to recovery (Bruneauet al., 2003). Earthquakes and hurricanes
have been given high priority in efforts to enhance community disaster resistance because of their
potential for producing high losses and extensive community disruption. Accordingly, earthquakes
and wind and wave hazards caused by hurricanes are considered in this study.

Earthquakes can have devastating effects on poorly constructed superstructures and infrastructures
resulting in very high life and economic losses. The 1999 Armenia Earthquake resulted in 1,200
life losses, 200,000 people without shelter and $500 million in damage (Thouret, 1999). The
1999 Turkey earthquakes resulted in more than 17,000 life losses, 250,000 people without shelter,
approximately 214,000 residential and 30,000 business units with structural damage (USGS, 2000;
Thouret, 1999), and economic losses of $16 billion (Tang, 2000). The 1999 Chi-Chi Earthquake
in Taiwan claimed 23,000 lives, resulted in 100,000 people without shelter and caused economic
losses of $16 billion (Thouret, 1999). Thousands of structures were damaged or destroyed by
the 1994 Northridge Earthquake, and total direct losses were estimated at more than $20 billion
(Tang, 2000). In the 1995 Kobe Earthquake more than 6,000 people were killed and the total losses
exceeded $16 billion (Thouret, 1999).

Earthquakes have also the potential to disrupt lifeline systems. For example, electrical power
outages were reported during the 1999 Taiwan, the 1999 Turkey, the 1995 Kobe, and the 1994
Northridge earthquakes (Kranz, 1999; Tang, 2000; Rashed, 1998; Lauet al., 1995). Extensive
damage to transportation routes and gas distribution systems was also reported after the Kobe
and Northridge earthquakes, respectively (Dawkins, 1995; Lauet al., 1995). Lifeline damage can
have detrimental effects on emergency response activities. For example, loss of water delayed
emergency response to (1) several of the gas-caused fires following the Northridge Earthquake
(CAO, 1994) and (2) earthquake-triggered hazardous material releases following the Turkey
earthquakes (Steinberg and Cruz, 2004).

Extreme winds resulting from, for example, tropical and extratropical storms, tornadoes and severe
thunderstorms, can also cause very high life and economic losses due to their devastating effects on
poorly constructed buildings and other infrastructure, as well as on offshore structures (J.-P.et al.,
2004; Holmes, 1996; Chiu, 1996; Sarpkaya and Isaacson, 1981). In this study we focus on extreme
winds caused by tropical storms, that is, storms that originate, generally, within latitudes 5 and 20
(hence the name tropical) deriving their energy from the heat released by the condensation of water
vapor. Hurricanes, typhoons and tropical cyclones are types of tropical storms with wind speeds
exceeding a certain threshold, and named according to their geographical locations, respectively,
America, Far East and Australia and Indian Ocean. In the United States hurricanes represent a
major threat to the communities in the east coast and the Gulf of Mexico. The average economic
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losses caused by hurricanes in the U.S. have been estimated tobe approximately $2 billion a year
(Simiu and Scanlan, 1986). Hurricane Katrina mostly impacting Louisiana and Mississippi in 2005
was considered to be one of the most deadly and costly disasters in U.S. history resulting in 1,836
life losses and over $81 billion total damage (Knabbet al., 2006). Hurricane Andrew impacting
Florida and Louisiana in 1992 caused economic losses in the order of $30 billion (Jarrellet al.,
2001). Hurricanes also bring torrential rain which often causes severe flooding problems. For
instance the November 12, 1970 cyclone that hit Bangladesh killed almost half a million people,
mostly washed into the sea by surges and water waves (Liu, 1991).

Strong waves and surges of the sea due to tropical storms also pose severe threat to offshore
structures and lives and property in low areas along coastlines. Offshore structures can be
subjected to extremely hostile environmental conditions caused by strong winds and waves. In 2005
Hurricane Katrina damaged or destroyed 30 oil platforms and caused the closure of nine refineries
(Johnson, 2006). Also, in 1980 the structural failure of the mobile ring Alexander Kielland in
the Ekofisk field in the North Sea resulted in 123 life losses and in 1961 the collapse of Texas
Tower No.4 off the New Jersey coast took 28 lives (Sarpkaya and Isaacson, 1981). Furthermore,
the suction of the low-pressure centers of the hurricanes can cause storm surges of less than one
meter in height. When the direction of the strong winds of hurricanes are onshore they can result in
larger surges. This phenomenon is called a wind tide. A wind tide coinciding with a normal tide at
a particular location can create very large surges, reaching as high as seven meters.

Engineering communities contribute to natural hazard mitigation by setting codes and standards for
the design and rehabilitation of infrastructural systems and also by constructing them according
to such codes and standards. The adoption of appropriate codes for designing new structures
and retrofitting the older ones can help minimize loss of life and property during natural hazards.
In earthquake engineering field code/stantard development activities have mostly centered around
impacts on buildings and lifeline systems (Heaneyet al., 2000). In the United States adoption and
enforcement of seismic building codes is left to the discretion of each state, with the exception
of some seismic requirements for federal buildings. The state of California, for example, has
adopted the Uniform Building Code (ICBO, 1997), which requires designing buildings for the
1 in 475-year earthquake event. However, some local communities in the state may choose to
following stricter codes, such as the International Building Code (ICC, 2000), which requires the
design of new buildings for the 1 in 2475-year event. Each state has adopted various seismic
construction standards for new buildings, however, the problem remains for older structures.
For the lifeline systems in the U.S., the Technical Council on Lifeline Earthquake Engineering
develops guidelines and standards for the seismic design and construction of lifelines. For example,
lifeline vulnerability functions and estimates of time required to restore damaged facilities are
provided in the ATC-25 report “Seismic Vulnerability and Impact of Disruption of Lifelines in
the Conterminous United States” (ATC 25, 1991). Engineering design codes also exist to insure
that buildings and structures are constructed to withstand particular wind speeds depending on the
climatic characteristics of each region. The design wind speeds have been updated over the years,
and in general the new codes require the use of higher design wind speeds (Cruzet al., 2001). In the
United States, for example, American Society of Civil Engineers (ASCE) provides the guidelines
for the design and calculation of wind loads in the design standard ASCE 7 “Minimum Design
Loads for Buildings and Other Structure” (ASCE 7-98, 1998).

The need to move beyond the current hazard-specific vulnerability assessment methods toward a
broader approach that considers the collective impact of different hazards on urban areas is being
repeatedly called for (Cruz, 2005; Rashed, 2006; Heaneyet al., 2000; Ellingwoodet al., 2007).
Multihazard risk analysis of a system deals with the assessment of the system performance under
multiple random loads caused by natural and/or man-made hazards, some of which may occur
simultaneously. A multiple-hazard approach is necessary for (1) assessing the long-term impact
of mitigation strategies on community vulnerability and (2) ensuring that strategies implemented
to mitigate one hazard do not amplify the vulnerability to another hazard. A formal multihazard
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evaluation methodology can also help assess the relative importance of the various hazards, for
example, earthquake and wind (Heaneyet al., 2000). In the U.S. the Multihazard Mitigation
Council, established by the National Institute of Building Sciences, works to reduce direct and
indirect losses resulting from natural and other hazards by promoting improved multihazard risk
mitigation strategies, guidelines, and practices. The Federal Emergency Management Agency under
contract with the National Institute of Building Sciences has recently developed HAZUS-MH,
a nationally applicable standardized methodology and software program that estimates potential
losses from earthquakes, floods, and hurricane winds.

Accordingly, in this study, we focus on the effects of seismic and hurricane hazards, in addition to
their combined effect, on the performance of structural/nonstructural systems.

1.2 Objectives of the study

The main goals of this study are (1) developing a methodology for assessing performance
of structural/nonstructural systems subjected to multiple hazards during their lifetimes and (2)
identifying a rational strategy from a collection of design alternatives for increasing the resilience
of these systems. System performance is measured by the total losses incurred during system’s
lifetime and by system fragility, that is, the probability that a system response exceeds a critical
value subjected to a hazard event of known intensity. The methodology is based on (i) site hazard
analysis, (ii) system fragility analysis and (iii) capacity and cost estimation. The methodology
is probabilistic in its nature since (1) the intensity and arrival time of different hazards, such as
earthquakes and hurricanes, (2) the loads acting on the system due to a hazard event, such as,
seismic ground accelerations and wind velocities, and (3) some of the system characteristics, are
generally uncertain.

Figure 1-1 shows a schematic chart summarizing the life-cycle loss estimation methodology. For
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FIGURE 1-1 General methodology.

a given infrastructural system we first characterize relevant hazards at the system site. Next, we
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assess the performance of the system by fragility analysis, delivering the probabilities that the
system enters different damage states, for example, low, moderate or extensive, under a hazard
event of given intensity. Finally, estimates of costs, referred to as life cycle costs, are derived
using fragility information and financial models. The results from a life-cycle loss analysis
can be used for capital allocation decision making, such as, identifying an optimal retrofitting
technique for structural/nonstructural systems from a collection of design alternatives (Kafali and
Grigoriu, 2005a; Filiatraultet al., 2006; Bruneauet al., 2003; Bruneau and Reinhorn, 2007), or for
determining the relative importance of different hazards (Bhartia and Vanmarcke, 1988).

Probabilistic lifetime hazard models are used to specify the random arrival times of individual
hazard events at a site during a reference time and the random properties of the hazards under
considerations. The loads acting on a structure for a given hazard event are generally time varying.
However, the structural response to these time varying loads may be static or dynamic depending on
the frequency content of the load and the dynamic characteristics of the resisting structural system.
To characterize the loads on a structure due to natural hazards and the structural response to these
loads the following steps are needed: (1) establishing the natural hazard activity in the vicinity
of the structure from available information, (2) estimating the loads on the structure due to the
possible hazards, and (3) calculating system response. A deterministic or a stochastic approach can
be followed for the above procedure. In this study a stochastic approach is used to characterize
the probability law of the load processes acting on a structure. A natural hazard event at a
site, such as seismic ground acceleration or wind velocity, is characterized by a random process
with a probability law derived from measurements and/or analytical models. System fragility,
the probability that the system is in an undesired damage state, is plotted against the parameters
characterizing natural hazards which completely define the probability law of the hazard at the
system site.

1.3 Outline

The three main parts of the methodology described above, namely, hazard, system fragility and
life-cycle loss analyses, are addressed in Chapters 2, 3 and 4, respectively. The following briefly
summarizes the content of each chapter.

Chapter 2 defines the natural hazards addressed in this study, presents probabilistic models
characterizing these random events and their random occurrences in time, discusses Monte Carlo
algorithms for generating samples of such hazards, and provides an approach for characterizing
multiple hazards at a given site.

Chapter 3 focuses on the relationship between the random load acting on a system due to a given
hazard event and the response of this system. More specifically, the main objective of this chapter
is to calculate system fragility, that is, the probability that the system response leaves a safe set in
a given time if subjected to a natural hazard event of specified intensity. If a safe set of the system
response is associated with a system damage state, fragility becomes a function that describes
the probability of exceedance of this damage state, given a hazard intensity. The damage state
corresponding to a safe set can represent, for example, slight, moderate, extensive damage of the
system.

Chapter 4 covers three examples focusing on the life-cycle performance and loss estimation.
The first example presents the overall life-cycle loss estimation methodology using a realistic
hospital system under seismic hazard. Seismic fragilities for structural and nonstructural systems
and estimates of losses and recovery times are obtained corresponding to different rehabilitation
alternatives. In the second example a methodology is presented for assessing performance of a
system under multihazard environment. The methodology is illustrated by examining a simple
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model of an offshore structure subjected to seismic and hurricane hazards. The last example
provides a probabilistic model for selecting an optimal maintenance strategy for deteriorating
systems using reliability constraints. In this example the overall objective is to develop an optimal
maintenance policy such that the probability of total life-cycle cost exceeding a critical value is
minimized given the system functions at the required performance level during its lifetime.

Finally, Chapter 5 outlines conclusions of the study and proposes possible future areas of research.
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SECTION 2

HAZARD DEFINITIONS AND MODELS

In this chapter earthquakes, tropical storms and ocean waves are defined and their causes and
mechanisms are discussed in Section 2.1, probabilistic models characterizing these random events
are presented in Section 2.2, probabilistic models for their random occurrences in time are presented
in Section 2.3, Monte Carlo algorithms for generating samples of such hazards are discussed in
Section 2.4, numerical example are provided in Section 2.5, and a multihazard approach at a given
site is discussed in Section 2.6.

2.1 Hazard definitions

This section briefly describes the seismic, wind and wave hazards and their causes and mechanisms.

2.1.1 Seismic hazard

The word earthquake describes ground shaking events and ruptures at the Earth’s surface.
Earthquakes are caused by a sudden energy release in the Earth’s crust creating seismic waves.
Earthquakes may occur naturally, for example, due to the movement of tectonic plates or the
movement of magma in volcanoes, or as a result of human activities, for example, due to nuclear
tests. Most earthquakes occurring naturally are related to the Earth’s tectonic nature. The earth’s
surface is broken into seven large and many small moving plates (USGS, 1999). These plates, each
about 50 miles thick, move relative to one another an average of a few inches a year. Three types of
movement are recognized at the boundaries between plates: convergent, divergent and transform-
fault (USGS, 1999). At convergent boundaries, plates move toward each other and collide. Where
an oceanic plate collides with a continental plate, the oceanic plate tips down and slides beneath
the continental plate forming a deep ocean trench. An example of this type of movement, called
subduction, occurs at the boundary between the oceanic Nazca Plate and the continental South
American Plate. Where continental plates collide, they form major mountain systems such as the
Himalayas. At divergent boundaries, plates move away from each other such as at the Mid-Atlantic
Ridge. Where plates diverge, hot, molten rock rises and cools adding new material to the edges of
the oceanic plates. This process is known as sea-floor spreading. At transform-fault boundaries,
plates move horizontally past each other. The San Andreas Fault zone is an example of this type
of boundary where the Pacific Plate on which Los Angeles sits is moving slowly northwestward
relative to the North American Plate on which San Francisco sits. The slow motion of the plates
is caused by the heat in the Earth’s mantle and planetary core. The heat causes the rock under the
earth to become liquid magma, on which the plates are able to move. Plate boundaries grind past
each other, creating frictional stress. When the frictional stress exceeds a critical value, called local
strength, a sudden failure occurs. The boundary of tectonic plates along which failure occurs is
called the fault plane. When the failure at the fault plane results in a violent displacement of the
Earth’s crust, the energy is released and seismic waves are radiated, thus causing an earthquake.
The majority of tectonic earthquakes originate at depths not exceeding tens of miles. In subduction
zones, where older and colder oceanic crust descends beneath another tectonic plate, earthquakes
may occur at much greater depths, up to five hundred miles. Deep focus earthquakes are another
phenomenon associated with a subducting slab. These are earthquakes that occur at a depth at which
the subducted lithosphere should no longer be brittle, due to the high temperature and pressure.
Earthquakes may also occur in volcanic regions and are caused by the movement of magma in
volcanoes. Such earthquakes can be an early warning of volcanic eruptions.
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When an earthquake fault ruptures, it causes two types of deformation, static and dynamic. Static
deformation is the permanent displacement of the ground due to the event. The two general
types of vibrations produced by earthquakes are surface waves, which travel along the Earth’s
surface, and body waves, which travel through the Earth (USGS, 1997). Body waves are of two
types, compressional and shear. Both types pass through the Earth’s interior from the focus of
an earthquake to distant points on the surface, but only compressional waves travel through the
Earth’s molten core. Because compressional waves travel at great speeds, at speeds between 1.5
and 8 kilometers per second in the Earth’s crust, and ordinarily reach the surface first, they are often
called primary waves or simply P waves. Shear waves do not travel as rapidly through the Earth’s
crust and mantle as do compressional waves, usually at 60% to 70% of the speed of P waves, and
because they ordinarily reach the surface later, they are called secondary or S waves. P waves shake
the ground in the direction they are propagating, while S waves shake perpendicularly or transverse
to the direction of propagation. Surface waves usually have the strongest vibrations and probably
cause most of the damage done by earthquakes.

An earthquake’s underground point of initial ground rupture is called its focus or hypocenter.
The better-known term epicenter means the point at ground level directly above this. Earthquake
magnitude is a logarithmic measure of earthquake size. In simple terms, this means that at the
same distance from the earthquake, the shaking will be 10 times as large during a magnitude
5 earthquake as during a magnitude 4 earthquake. A common magnitude measure is called the
moment magnitude, which is based on the moment of the earthquake, which is equal to the rigidity
of the earth times the average amount of slip on the fault times the amount of fault area that slipped.
The intensity, as expressed by the Modified Mercalli Scale, is a subjective measure that describes
how strong a shock was felt at a particular location. Specific local geological, geomorphological,
and geostructural features can induce high levels of shaking on the ground surface even from low-
intensity earthquakes. This effect is called site or local amplification. It is principally due to the
transfer of the seismic motion from hard deep soils to soft superficial soils and to effects of seismic
energy focalization owing to typical geometrical setting of the deposits.

An earthquake’s destructiveness depends on many factors. In addition to magnitude and the local
geologic conditions, these factors include the focal depth, the distance from the epicenter, and the
design of buildings and other structures. The extent of damage also depends on the density of
population and construction in the area shaken by the quake.

2.1.2 Wind hazard

Hurricanes, typhoons, cyclones, and so on are different names for the same type of severe storm
occurring in different geographical regions. Those occurring in the North Atlantic, the Caribbean
Sea, the Gulf of Mexico, and the Western part of the South Pacific are called hurricanes. Those
encountered in the Far East, more specifically in the South Sea and Pacific Northwest are called
typhoons. Those in the Indian Ocean, Arabian Sea and the Bay of Bengal are called cyclones. In
the following discussion they will all be referred to as hurricanes.

A hurricane is a large funnel-shaped storm with a wide top of the order of 1,000 km in diameter and
a narrow bottom of the order of 300 to 500 km in diameter (Liu, 1991). The height of the storm is
of the order of 10 to 15 km. The center part of a hurricane with a diameter around 30 km is called
the eye, the boundary of the eye is called the wall. The eye region is absent of rain and strong
winds, while the wall is a region packed with high winds and intense rain. Due to the Coriolis
force generated by the Earth’s rotation, hurricanes in the Northern Hemisphere always rotate in the
counterclockwise direction. In contrast, hurricanes in the Southern Hemisphere rotate clockwise.
Hurricanes are generated by low-pressure centers above the ocean at low latitudes and move away
from the equatorial regions toward higher latitudes. They derive their energy from the latent heat
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released by the condensation of water vapor contained in hurricanes. As the moisture in a hurricane
is lost through the rain, new moisture is fed into the hurricane due to intense evaporation from the
ocean caused by the low pressure and high wind in the hurricane. This mechanism perpetuates
and strengthens hurricanes over the ocean. However, as soon as a hurricane has reached land,
it dies down due to the lack of moisture and increased surface resistance to wind. Therefore,
hurricane winds are strong only over the ocean and in adjacent coastal areas, within approximately
100 kilometers of coastlines. The lifespan of a hurricane is of the order of one to three weeks,
averaging about 10 days (Liu, 1991). The air outside a hurricane eye circles around the eye and
spirals inward at low heights with increasing speed toward the eye. Upon reaching the wall, the air
rushes upward to large heights. The it spirals outward from the upper region of the hurricane. The
wind speed in a hurricane reaches a maximum at the wall. The speed decreases rapidly and linearly
from the wall to the center of the eye. It decreases more gradually outward from the wall. The
maximum wind speeds of hurricanes have been grossly overestimated in the past. Based on severe
damage caused by hurricanes many meteorologists and engineers used to think that hurricanes
could have surface winds speeds higher than 100 m/sec (224 mph). However, it is now widely
accepted that hurricane surface wind speed may never exceed 90 m/sec (200 mph). The storm,
or translational, speed of a hurricane is the speed at which the center of a hurricane moves. This
should not be confused with the wind speed in the hurricane. The wind speed is often much higher
than the storm speed. Normally, the storm speed is between 5 to 50 km/hr.

As in the case of most other types of winds the wind speed in a hurricane decreases with decreasing
height, reaching zero velocity at ground level to satisfy the no-slip condition of fluid mechanics.
What is normally referred to as the surface wind is the wind speed not at the surface but rather near
the surface, measured by anemometers mounted normally at a height of 10 m above ground. Except
for very tall structures the surface wind speed is what is encountered by structures.

Hurricanes occur most frequently in the late summer when the ocean water temperature has reached
a maximum. The winter is almost entirely absent of hurricanes.

2.1.3 Wave hazard

Ocean waves are produced by the wind. The faster the wind, the longer the wind blows, and the
bigger the area over which the wind blows, the bigger the waves. If the wind suddenly begins to
blow steadily over a smooth sea three different physical processes begin. First, the turbulence in
the wind produces random pressure fluctuations at the sea surface, which produces small waves
with wavelengths of a few centimeters. Next, the wind acts on the small waves, causing them
to become larger. Wind blowing over the wave produces pressure differences along the wave
profile causing the wave to grow. The process is unstable because, as the wave gets bigger, the
pressure differences get bigger, and the wave grows faster. The instability causes the wave to grow
exponentially. Finally, the waves begin to interact among themselves to produce longer waves
(Stewart, 2007).

2.2 Event models

Probabilistic models, referred to as event models, are developed for seismic, wind and wave
events occurring at single/multiple points at a given site. A natural hazard event at a site, such
as seismic ground acceleration or wind or wave velocity, is characterized by a random process with
a probability law derived from measurements and/or analytical models.

Monte Carlo algorithms presented in Sections 2.4.1 and 2.4.2 can be used for generating samples
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of ground accelerations, wind and wave velocities at single/multiple points at a given site, based on
their probability laws presented in this section. Numerical examples are provided in Section 2.5.1.

2.2.1 Seismic hazard

The earthquake strong motion at a site can be modeled by a kinematic or a stochastic method
(Halldorssonet al., 2002). The kinematic method is used to obtain ground motions at the site
due to an earthquake from a fault with specific dimensions and orientation in a known geologic
setting (Halldorssonet al., 2002). In this method a slip function on a fault plane is used to
represent the rupture process and empirical Green’s functions are used to model propagation
effects (Haddon, 1996b; Trifunac, 1971; Bouchon, 1981; Danet al., 1990; Katagiri and Izutani,
1992). The elastodynamic representation theorem (Aki and Richards, 1980) is used to compute
the earthquake strong motion at the site. Accordingly, this approach is useful for site specific
simulations. In the stochastic method, earthquake motion at the site is modeled as a random process
with a spectrum that is either empirical, for example, band-limited white-noise (Cornell, 1964;
Shinozuka and Sato, 1967), Kanai-Tajimi type of spectrum (Kanai, 1961; Tajimi, 1960), or Clough-
Penzien type of spectrum (Clough and Penzien, 1975); or a spectrum that is based on a physical
model, for example, single corner frequency model (Brune, 1970, 1971), two corner frequency
model (Atkinson and Boore, 1995), or the specific barrier model (Papageorgiou and Aki, 1983a,b;
Papageorgiou, 1988). The intent of the stochastic method to strong motion simulation is to capture
the essential characteristics of high-frequency motion at an average site at a distancer from an
average earthquake event of a specified magnitudem. In other words, the accelerograms artificially
generated using the stochastic method do not represent any specific earthquake but embody certain
average properties of past earthquakes of a given magnitude. Seismological models are generally
used in the stochastic method to estimate the seismic motion at a site as a function of source
strength, attenuation of seismic waves due to propagation path between the source and the site, and
wave amplification due to site effects (Hanks and McGuire, 1981; Boore, 1983; Herrmann, 1985;
Atkinson and Boore, 1995; Sokolovet al., 2000, 2001; Safak, 1988; Ou and Herrmann, 1990; Toro
and McGuire, 1987; Queket al., 1990; Boore, 2003). However, other stochastic models are also
available, for example, empirical models (Housner and Jennings, 1964; O’Connor and Ellingwood,
1992; Safaket al., 1988), time series models (O’Connor and Ellingwood, 1992; Ellis and Cakmak,
1987; Conteet al., 1992; Dargahi-Noubary, 1992; Kawakami and De Jesus Bidon, 1997), and
models delivering response spectrum compatible ground motions (Gasparini and Vanmarcke, 1976;
Pfaffinger, 1983; Park, 1995; Unruh and Kana, 1981, 1985; Kjell, 2002; Somervilleet al., 1997;
FEMA 350, 2000).

To investigate the seismic response of spatially distributed systems, such as bridges and pipelines,
ground motion models for multiple points at a site are required. The earthquake strong motion at
multiple points can be modeled using the methods developed for single point modeling together
with spatial correlation models. A stationary model has been developed for seismic waves,
which are stochastic in time and space, propagating in a homogeneous two dimensional medium
by Shinozuka and Deodatis (Shinozuka and Deodatis, 1991). Developments in (Shinozuka and
Deodatis, 1991) have been extended in (Shinozukaet al., 1999) to model the near field ground
motions due to a seismic source to include stochastic waves propagating through a 3D layered half
space with lateral non-homogeneities. A nonstationary stochastic vector process with evolutionary
power spectral densities was considered in (Deodatis, 1996; Haoet al., 1989) to model correlated
ground accelerations at a collection of sites. A simulation algorithm for a stationary Gaussian
random process model representing seismic ground accelerations at multiple points was introduced
by Zerva (Zerva, 1992). Several spatial variability models (Harichandran and Vanmarcke, 1986;
Loh, 1985; Loh and Yeh, 1988; Loh and Lin, 1990; Haoet al., 1989; Oliveiraet al., 1991;
Abrahamsonet al., 1990) and simulation schemes were examined in (Zerva and V., 2002). A
method for generating time series, representing nonstationary seismic ground acceleration at
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multiple points compatible with the observed wave propagation properties, can be found in (Oliveira
et al., 1991).

We characterize seismic ground acceleration at a site as a random process with a probability law
derived from a seismological model based on the source model developed by Papageorgiou and
Aki (Papageorgiou and Aki, 1983a,b; Papageorgiou, 1988), namely the specific barrier model, and
measurements of actual ground motions records. The specific barrier model is selected for the
quantitative description of heterogenous rupture because it (i) is free of ambiguities caused by the
stress parameter in the commonly used simple single frequency model, (ii) is fully consistent with
the important (salient) features of the more complex theoretical models of rupture and observed
source spectra, (iii) provides the most complete description for the faulting processes that are
responsible for the generation of the high frequencies and also clearly describes how to distribute
the seismic moment on the fault plane, and (iv) is applicable to both near-fault and far-field
regions, which allows consistent ground motion simulations over the entire frequency range and
for all distances of engineering interest, (Papageorgiou, 1988, 1997, 2003). The specific barrier
model has been recently calibrated for (i) shallow crustal earthquakes in active regions (interplate
earthquakes, for example, those of California), (ii) earthquakes of regions characterized by active
tectonic extension, for example, Basin and Range Province, and (iii) for earthquakes of intraplate
regions, for example, eastern North America (Halldorsson, 2004; Halldorsson and Papageorgiou,
2005). More explanations on the specific barrier model, and other source models are provided in
Appendix A.

In this section Gaussian and non-Gaussian ground acceleration models for single/multiple points at
a given site are introduced.

2.2.1.1 Single point models

The seismic ground acceleration at a single point at a given site, generated by a seismic event
with moment magnitudem and source-to-site distancer, is modeled by a zero-mean nonstationary
processX(t) of the form

X(t) = e(t)Y (t), 0 ≤ t ≤ τ, (2-1)

where τ is the total duration of the seismic event defined by the specific barrier model
(Papageorgiou and Aki, 1983a,b; Papageorgiou, 1988; Halldorsson and Papageorgiou, 2005),e(t)
is a deterministic modulation function given by (Saragoni and Hart, 1974; Halldorssonet al., 2002)

e(t) = e1 te2 exp(−e3t), 0 ≤ t ≤ τ, (2-2)

with e2 = 1.2531, e1 = (13.5914/τ)e2 , ande3 = 5 e2/τ , andY (t) is a zero-mean stationary
Gaussian/non-Gaussian process with a prescribed probability law based on the specific barrier
model and statistical properties of recorded free field ground acceleration time histories.

2.2.1.1.1 Gaussian model:

A zero-mean nonstationary Gaussian model for the seismic ground acceleration can be defined by
Equation 2-1 in whichY (t) is a zero-mean stationary Gaussian process with one-sided spectral
density function

gY Y (ω) =











1

2πτ
|a(ω;m, r)|2 , 0 ≤ ω ≤ ω̄

0 , ω > ω̄

(2-3)
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where ω is the frequency in rad/sec,̄ω is a cut-off frequency that is selected such that
∫ ω̄
0 gY Y (ω)dω ≃

∫∞
0 gY Y (ω)dω, and

|a(ω;m, r)| = k q(ω,m)d(ω, r)p(ω)b(ω), 0 ≤ ω ≤ ω̄, (2-4)

is the Fourier amplitude spectrum of the ground acceleration at the site, in which,k is a scaling
factor,q(ω,m) is the acceleration source spectrum modeled by the specific barrier model,d(ω, r)
is the attenuation function,p(ω) is the high frequency cut-off filter, andb(ω) is a function which
defines local soil effects (Papageorgiou and Aki, 1983a,b; Papageorgiou, 1988; Halldorsson and
Papageorgiou, 2005; Halldorssonet al., 2002). The frequency content ofX(t) in Equation 2-1
does not change in time since its spectral density is time invariant. The modulation function in
Equation 2-2 and the spectral density function in Equation 2-3 completely define the probability
law of the seismic ground acceleration processX(t) at a site, and is a function of the earthquake
moment magnitudem, the source-to-site distancer, and the site soil type.

Figure 2-1 shows the spectral density function ofY (t) at a site in California on generic soil (NEHRP

0 20 40 60 80 100
0

1

2

3

x 10
−6

ω (rad/sec)

g Y
Y

(ω
)

(g
2
/
ω

u
n
it
s)

 

 

m = 5, r = 25 km

m = 8, r = 200 km

FIGURE 2-1 Spectral density ofY (t) for different (m, r).

site class D, (FEMA 273, 1997)), for (m = 5, r = 25 km) and (m = 8, r = 200 km). The plots
in Figure 2-1 show that the frequency content of the seismic ground acceleration depends strongly
on the values ofm andr. Figure 2-2 shows the spectral densities for two sites in California, one
on generic soil and the other one on generic hard rock, corresponding to NEHRP site classes D
and A (FEMA 273, 1997), respectively, for an earthquake with (m = 6, r = 100 km). Figure 2-2
shows that a site with a softer soil will have a larger spectral density compared to a site located on a
stiffer soil or rock. This increase in the spectral densities is a result of the frequency dependent site
amplification functionb(ω) in Equation 2-4.

2.2.1.1.2 Non-Gaussian translation model:

This section extends the model for the seismic ground acceleration at single point presented in
Section 2.2.1.1.1 to account for the non-Gaussian character of actual seismic acceleration records.

Statistics of the actual ground acceleration records show that the strong ground motion part
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FIGURE 2-2 Spectral density ofY (t) for different soil classes.

of the seismic ground acceleration records has kurtosis coefficient in the range(4.0, 6.5) (see
Appendix B). Figure 2-3 shows the dependence of the kurtosis coefficient on soil conditions
(the relationship between the USGS (PEER, 2003) and NEHRP (FEMA 273, 1997) site classes is
provided in Table B-4 in Appendix B). These statistics suggest that the marginal probability density
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FIGURE 2-3 Change in the kurtosis coefficient with USGS soil class.

function of the seismic ground acceleration have heavier tails than normal density and therefore
seismic ground acceleration can not be modeled as a Gaussian process, which has kurtosis 3.
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The student-t density is proposed to model the marginal density of the stationary non-Gaussian
ground acceleration process. Accordingly,Y (t) in Equation 2-1 is a translation process with one-
sided spectral density function given by Equation 2-3 and marginal density function

f(x) =
Γ
(

c+1
2

)

b
√

πc Γ
(

c
2

)

[

1 +
(x

b )2

c

]− c+1

2

, x ∈ R, (2-5)

where b, c > 0 are some constants; constantc is also called the degree of freedom of the
distribution. Student-t is not the only density that can be used but it is consistent with the available
information. This density is very flexible and can cover a broad range of values for variance and
kurtosis coefficient. Figure 2-4 shows the marginal density function in Equation 2-5 for (a)c = 5
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FIGURE 2-4 Student-t density.

and two values ofb, 1 and 3, and (b)b = 1 and two values ofc, 6 and 1. The kurtosis coefficient
corresponding to the marginal density in Equation 2-5 is

γ4 = 3

[

(c − 2)2Γ( c
2 − 2)

4Γ( c
2 )

]

(2-6)

and can match virtually any values. Figure 2-5 shows the kurtosis coefficient as a function of the
parameterc of the marginal density in Equation 2-5.

The memoryless transformation model proposed forY (t) has the form

Y (t) = F−1 ◦ Φ(G(t)), (2-7)

where (i) F (y) =
∫ y
−∞ f(x)dx, in which f(x) is the marginal density in Equation 2-5,(ii)

G(t) is the Gaussian image ofY (t) with mean zero and spectral density function approximated
by gY Y (ω)/σ2

Y , in which gY Y (ω) is the spectral density function ofY (t) in Equation 2-3 and
σ2

Y =
∫∞
0 gY Y (ω)dω is the variance ofY (t), and(iii) Φ(· ) is the cumulative distribution function

of a standard normal random variable. The transformation is called memoryless because the non-
Gaussian processY (t) at an arbitrary instantt depends only on the value of its Gaussian image
G(t). We note that the translation processY (t) has the marginal distributionF sinceF andΦ are
monotonic functions with no atoms so that

P (Y (t) ≤ y) = P (F−1 ◦ Φ(G(t)) ≤ y) = P (G(t) ≤ Φ−1(F (y))) = F (y) (2-8)
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for all values ofy, thereforeY (t) can follow an arbitrary marginal distribution. The approximation
of the density function ofG(t) in Equation 2-7 bygY Y (ω)/σ2

Y is based on the observation
that the difference between the scaled covariance function in the non-Gaussian space,ζ(τ) =
EY (t+τ)Y (t)/EY (t)2, and the corresponding one in the Gaussian space,ρ(τ) = EG(t+τ)G(t),
are not significant for a broad range of values of the covariance function ofY (t) so that the
scaled target spectral density functiongY Y (ω)/σ2

Y can be used as a first order approximation of
the spectral density function ofG(t) ((Grigoriu, 1995), Section 3.1).

Calibration of the stationary non-Gaussian ground acceleration processY (t) is performed as
follows. First, the kurtosis coefficient ofY (t) in Equation 2-1 is determined from the soil condition
at the site of interest using Figure 2-3. Then, the degree of freedomc of the marginal density of
Y (t) in Equation 2-5 delivering the targeted kurtosis coefficient is obtained using Equation 2-6
(Figure 2-5). Finally, the parameterb of the marginal density ofY (t) in Equation 2-5 is obtained
by matching the variance ofY (t) obtained from its spectral density function in Equation 2-3.

Nonstationarity can be introduced by modulating the non-Gaussian signalY (t) using the envelop
function defined in Equation 2-2. The nonstationary non-Gaussian ground acceleration is given by
the Equation 2-1 withY (t) in Equation 2-7.

2.2.1.2 Multiple point models

The seismic ground acceleration atn points at a given site, located far from a seismic source (see
illustration in Figure 2-6) and generated by a seismic event with moment magnitudem and source-
to-site distancer, is modeled by a zero-meanRn-valued stochastic process of the form

X(t) = (. . . ,Xi(t) = e(t)Yi(t), . . .), i = 1, . . . , n, 0 ≤ t ≤ τ, (2-9)

where (i) τ is the total duration of the seismic event defined in Equation 2-1,(ii) e(t) is a
deterministic modulation function given by Equation 2-2, and(iii) Y (t) = (. . . , Yi(t), . . .), i =
1, . . . , n, is a zero-mean stationary Gaussian/non-Gaussian vector process with a prescribed
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probability law based on the specific barrier model and statistical properties of recorded free field
ground acceleration time histories. We note that the modulating functione(t) does not depend on
the local soil conditions hence it is the same for all points at the site in the far field.

2.2.1.2.1 Gaussian model:

A zero-mean nonstationary Gaussian model for the seismic ground accelerations atn points at
a site located far from a seismic source (Figure 2-6) can be defined by Equation 2-9 in which
Y (t) = (. . . , Yi(t), . . .), i = 1, . . . , n, is anR

n-valued zero-mean stationary Gaussian process
with prescribed second-moment characteristics. Besides the (auto) spectral density functions at
individual points given by Equation 2-3, cross spectral density functions are required to completely
characterize Gaussian vector processY (t). Complex valued cross spectral density function
between pointsi andj is given by

gYiYj
(ω) = γ(ω, ~ξij)

√

gYiYi
(ω)gYjYj

(ω), 0 ≤ ω ≤ ω̄, (2-10)

in which gYiYi
(ω) andgYjYj

(ω) are the one-sided spectral density functions (Equation 2-3) of the
stationary ground acceleration processesYi(t) andYj(t) at pointsi andj, respectively, andγ(ω, ~ξij)
is a frequency dependent function quantifying the spatial variability between the two points, that
is, a coherency function, where~ξij is the separation vector between pointsi andj, as illustrated in
Figure 2-6.

The coherency function in (Harichandran and Vanmarcke, 1986) is used in this study. Accordingly,

γ(ω, ~ξij) = ρ(ω, ~ξij) e−
√
−1ωd, 0 ≤ ω ≤ ω̄, (2-11)
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in which

ρ(ω, ~ξij) = A exp

(

−2|~ξij|(1 − A + aA)

aθ(ω)

)

(2-12)

+ (1 − A) exp

(

−2|~ξij |(1 − A + aA)

θ(ω)

)

,

θ(ω) = k

(

1 +

( |ω |
2πf0

)b
)(−1/2)

, (2-13)

d =
~V . ~ξij

| ~V | 2
, (2-14)

where ~V is the apparent velocity vector whose direction coincides with the direction of the
site from the source, and parametersA, a, k, f0, b are estimated using event 20 of SMART-I
seismograph array located in Lotung, Taiwan (Harichandran and Vanmarcke, 1986). The spatial
correlation functionρ(ω, ~ξij) in Equation 2-11 given by Equations 2-12 and 2-13 models the decay
of coherency (incoherence) between ground motions at two points located along a straight line in a
particular direction. The parameters inρ(ω, ~ξij) were obtained by aligning (shifting) actual ground
motions records relative to one another. Note thatρ(ω, ~ξij) = ρ(−ω, ~ξij) andρ(ω, ~ξij) = ρ(ω, ~ξji).
Dependence ofρ(ω, ~ξij) on the separation distance only, and not on the actual location, implies
the homogeneity of the random field. The phase componente−

√
−1ωd was added to the model to

obtain the true (unaligned) motions at the points which are generally related to the approximately
constant apparent velocity of propagation the seismic waves. This coherency function describes a
homogeneous, non-isotropic, space-time random field. More explanations on the coherence model
in Equation 2-11 and other models are provided in Appendix C.

The modulation function in Equation 2-2, the spectral density function in Equation 2-3 and the
coherency function in Equation 2-11 completely define the probability law of the seismic ground
acceleration processX(t) at multiple points at a site located far from a seismic source, and is a
function of the earthquake moment magnitudem, the source-to-site distancer, and the local soil
types. We note that the modulating functione(t) in Equation 2-2 does not depend on the local soil
conditions hence it is the same for all points at the site in the far field.

2.2.1.2.2 Non-Gaussian translation model:

The Gaussian model for seismic ground accelerations at multiple points proposed in
Section 2.2.1.2.1 is extended to account for the non-Gaussian character of these time series
presented in Section 2.2.1.1.2.

A memoryless transformation model for the seismic ground accelerations atn points at a site
located far from a seismic source can be defined by Equation 2-9 in which

Yi(t) = F−1
i ◦ Φ(Gi(t)), i = 1, . . . , n, (2-15)

where(i) Fi(y) =
∫ y
−∞ fi(x)dx, in whichfi(x) is the marginal density given in Equation 2-5,(ii)

Gi(t) is the Gaussian image ofYi(t) with mean zero and spectral density functiongYiYi
(ω)/σ2

Yi
, in
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whichgYiYi
(ω) is the spectral density function ofYi(t) in Equation 2-3 andσ2

Yi
=
∫∞
0 gYiYi

(ω)dω
is the variance ofYi(t), (iii) andΦ(· ) is the cumulative distribution function of a standard normal
random variable. The componentsGi(t), i = 1, . . . , n, in Equation 2-15 have marginal distributions
Fi and correlation functions

ζij(τ) = EGi(t + τ)Gj(t) =

∫ ∞

−∞

∫ ∞

−∞
fi(u)fj(v)φ(u, v; ρij(τ))dudv, (2-16)

wherei, j = 1, . . . , n andφ(· , · ; ρij) denotes the density of a two dimensional normal variable
with mean zero, variance one and correlation coefficientρij, which can be obtained from the
cross spectral density given in Equation 2-10 using the Wiener-Khintchine formulas ((Soong and
Grigoriu, 1993), Section 2.4.2).

The translation process

Y (t) = F−1 ◦ Φ(G(t)), (2-17)

with components in Equation 2-15,(i) is stationary if the underlying Gaussian processG(t) =
(. . . , Gi(t), . . .), i = 1, . . . , n, is stationary,(ii) can follow any marginal distributions, and(iii) its
correlation functionsζij are completely defined by the distributionsFi and the covariance functions
ρij(τ), i, j = 1, . . . , n. The functionsζij andFi cannot be selected arbitrarily, they must be such
that the solutionsρij of Equation 2-16 are covariance functions (Grigoriu, 1995). The non-Gaussian
vector processY (t) is defined by the second-moment characteristics ofG(t), and the mapping
F−1 ◦ Φ(·).

Calibration of the stationary non-Gaussian ground acceleration vector processY (t) is performed
as in Section 2.2.1.1.2 for each of its componentsYi(t), i = 1, . . . , n.

Nonstationarity can be introduced as in Section 2.2.1.2.1, by modulating the non-Gaussian signals
Y (t) using the envelop function defined in Equation 2-2. The nonstationary non-Gaussian ground
acceleration is given by the Equation 2-9 withY (t) in Equation 2-17.

2.2.2 Wind hazard

The following longitudinal wind velocity model is based on horizontally homogeneous flows over a
sufficiently large horizontal site of uniform roughness. The derivations are based on the assumption
that the flow in the free atmosphere is geostrophic, that is, the wind flow is a steady horizontal
motion of air along straight, parallel contours in an unchanging contour field, and also means that
there is no friction and that the flow is straight with no curvature. These assumptions do not hold
in the region of highest winds of a mature hurricane ((Simiu and Scanlan, 1986), Section 2.4.3).
However, it was shown that the mean wind profiles differ only insignificantly from the logarithmic
profile that is used in the below-derivations for elevations from around 10 to 400 m ((Simiu and
Scanlan, 1986), Section 2.4.3), and accordingly the American National Standard A58.1 (ANSI,
1982) does not differentiate between profiles of tropical storms such as hurricanes, cyclones, and
extratropical storms.

Most winds are produced by severe storms such as hurricanes, tornadoes, thunderstorms,
downbursts and so on. We will focus on hurricanes only in this study. However, other type of
extreme winds can be modeled in a similar way.
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2.2.2.1 Single point model

The (longitudinal) wind velocity at a point above the ground surface in a given direction is generally
resolved into a temporal mean value over a certain duration, that is, a mean wind speed, and a
stationary fluctuating part parallel to the direction of the mean wind. It follows from the definition
of the mean value that the mean wind speed depends on the averaging time. As the length of the
averaging time decreases the maximum mean speed corresponding to that length increases. The
averaging time for determining the wind loads on structures ranges from seconds to an hour (Liu,
1991). A relationship between the wind speeds averaged over different time intervals is provided in
((Simiu and Scanlan, 1986), Section 2.3.6). For example, wind speeds averaged over one minute at
10 m above ground over open terrain near a coastline can be converted to mean hourly wind speeds
via multiplication of the original data by the factor 1/1.24 (NIST, 2007). The fluctuating part of the
wind is mainly caused by the turbulence of the wind flow and generally modeled by a zero-mean
stationary Gaussian process with a prescribed spectral density function (Simiu and Scanlan, 1986).

The wind velocity in direction̄θ at a point 10 m above surface on an open terrain has the form

V ∗(t) = v̄ + V (t), 0 ≤ t ≤ τ, (2-18)

whereτ is the total duration of strong winds in a typical storm ranging between 10 minutes to
1 hour ((Simiu and Scanlan, 1986), Section 2.3.3) and assumed to be 1 hour in this study,v̄ is
the hourly mean wind velocity at this point along the directionθ̄, and V (t) is the fluctuating
component modeled by a zero-mean stationary Gaussian process with one-sided spectral density
function (Simiu and Scanlan, 1986; Kaimalet al., 1972)

gV V (ω) =















200κxv̄2

ω(1 + 50x)5/3
, , 0 ≤ ω ≤ ω̄

0 , ω > ω̄,

(2-19)

in which ω = 2πf , f is the frequency in Hertz,̄ω is a cut-off frequency as defined in Equation 2-
3, x = 10ω/(2πv̄) is the Monin coordinate, andκ = k/ ln(10/z0) is called the surface drag
coefficient, in which,z0 is the roughness length andk is called von Kármán’s constant which
is generally assumed to be 0.4 (Simiu and Scanlan, 1986). For an open terrainz0 = 0.035 m
deliveringκ ≃ 0.005. The spectral density function in Equation 2-19 assumes that the variation of
the wind speed with height follows the logarithmic law ((Simiu and Scanlan, 1986), Section 2.3.3).

Figure 2-7 shows the one-sided spectral density function in Equation 2-19 ofV (t) for two values
of v̄, 20 and 40 m/sec, over an open terrain. For wind flow over water surface the surface drag
coefficientκ is a function of the mean wind speedv̄ with the form (Simiu and Scanlan, 1986)

κ = 0.0015

[

1 + exp

(

− v̄ − 12.5

1.56

)]−1

+ 0.00104. (2-20)

The logarithmic profile overestimates the wind speeds below three wave heights; above three
wave heights, the influence of waves on the wind profile is negligible ((Simiu and Scanlan, 1986)
Section 2.2.3).

The spectral density given in Equation 2-19 is a very good representation of wind velocity spectra in
the high frequency range and may be conservatively assumed to be valid forx > 0.2, moreover, the
response of most of land-based structures and non-compliant offshore structures does not depend
significantly on the shape of the spectrum in the lower frequency range ((Simiu and Scanlan, 1986),
Section 2.3.3). Accordingly, the spectral density function in Equation 2-19 can be used in the
analysis of such structures. On the other hand, for a structure with a low fundamental frequency of
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FIGURE 2-7 One-sided spectral density ofV (t).

vibration, such as a compliant offshore platform, Equation 2-19 may result in an overestimation of
structural response and should be used with caution.

Consider two sites each with uniform surface roughness and let the roughness lengths for the two
terrains bez0,1 andz0,2, and the shear velocities beu∗,1 andu∗,2. Denote bȳv1 andv̄2 the mean
wind speeds at a certain hight at these sites. The mean wind speed will be lower over the rougher
site ((Simiu and Scanlan, 1986), Section 2.3.5). Suppose that we have measurements of mean
wind speeds̄v1 at one site and we need respective values ofv̄2 at the other site. A similarity
model provides a relationship between the wind speeds in different surface roughness regimes.
Accordingly, the shear velocitiesu∗,1, u∗,2 and roughness lengthsz0,1, z0,2 satisfy ((Simiu and
Scanlan, 1986), Section 2.3.5)

u∗,1
u∗,2

=

(

z0,1

z0,2

)0.0706

. (2-21)

For example, suppose that we have measurements of mean hourly speed in meters per second at 10
m above ground over open terrain near a coastline and we need corresponding mean wind speeds
at 10 m above water surface. The roughness lengths for open terrain and water surface arez0,1 =
0.035 m andz0,2 = 10/ exp(0.4/

√
κ) with κ in Equation 2-20, respectively. The logarithmic law

can be used to relate the shear velocityu∗,i to the mean speed̄vi by v̄i = 2.5u∗,i ln(10/z0,i), for
i = 1, 2, corresponding to wind flow over open terrain and water surface, respectively. Given
the mean wind speed over open terrainv̄1 we first obtainu∗,1 using the logarithmic law and
z0,1 = 0.035 m, then using the similarity model in Equation 2-21 we solve forv̄2 satisfying
Equation 2-20 and the logarithmic law simultaneously. Figure 2-8 shows the relationship between
mean wind speed̄v1 over open terrain, and̄v2 over water at 10 m above the surface. The mean
speed is larger over water surface.

Although Equation 2-18 gives the wind velocity at 10 m above the ground surface, for high wind
speeds such as are assumed in structural design (of the order of 20 m/sec or more), it is reasonable
to apply Equation 2-19 throughout the height range of interest ((Simiu and Scanlan, 1986), Section
2.3.3), which is the case in this study.
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2.2.2.2 Multiple point model

An R
n-valued zero-mean stationary Gaussian vector process can be used to model the wind

velocities atn points at a site. Besides the (auto) spectral density functions at individual points
given by Equation 2-19, cross spectral density functions are required to completely characterize
the Gaussian vector process. A coherency function can be used to define the cross spectral density
function between pointsi andj, i, j = 1, . . . , n, as in Section 2.2.1.2.1.

A coherency function between the (longitudinal) wind velocity fluctuations at two pointsi andj
can be assumed to be (Davenport, 1968)

γ(ω) = exp

(

− ω

2π

[

c2
z(zi − zj)

2 + c2
y(yi − yj)

2)
]1/2

[v̄i − v̄j ] /2

)

, 0 ≤ ω ≤ ω̄, (2-22)

wherecz andcy are exponential decay coefficients in the verticalz and horizontaly directions,
respectively, and(yi, zi) and(yj, zj) are the coordinates of pointsi andj, andv̄i and v̄j are the
mean wind speeds at pointsi and j, respectively. This model assumes that the line connecting
the two points is perpendicular to the direction of the mean wind. It has been suggested that it is
reasonable to assumecz = 10 andcy = 16 from a structural design viewpoint (Kristensen and
Jensen, 1979; Kristensenet al., 1981).

2.2.3 Wave hazard

It is commonly assumed that the temporal variation of the water surface elevation at a particular
location, caused by wind flow over the surface, can be modeled by a stationary Gaussian random
process (Sarpkaya and Isaacson, 1981). The Pierson-Moskowitz spectrum (Pierson and Moskowitz,
1964) is commonly used at present (Sarpkaya and Isaacson, 1981) to characterize the water surface
elevation, and depends on the mean wind speedv̄ at that location.
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2.2.3.1 Single point model

A wave theory can be used to relate the kinematics of water particles below the sea surface to the
water surface elevation. Stochastic description of water particle kinematics are generally limited to
the linear wave theory (Bhartia and Vanmarcke, 1988), although several other theories with various
degrees of refinement are also available.

Consider two dimensional water waves propagating over a smooth undisturbed depthd and a
Cartesian coordinate system(x, s) with x measured in the direction of wave propagation ands
measured upwards from the sea bed (see illustration in Figure 2-9). It is assumed that waves
propagate in the positivex direction with water particles moving up and down ins direction, there
is no underlying current and the free surface is uncontaminated. Water is taken to be incompressible
and inviscid and the flow to be irrotational. Figure 2-9 indicates the general form of such a wave

d 

z 

H(t)

l 

wave propagation 

η(x,t)

s 

x 

FIGURE 2-9 Progressive wave train.

train at timet with wave heightH(t) which is the vertical distance from trough to crest, wave length
l which is the distance between successive crests, wave periodT which is the time interval between
successive crests passing a particular point, wave angular frequencyω = 2π/T and wave number
k = 2π/l. Accordingly, the free surface elevationη(x, t) at locationx measured from still water
levelz = 0, or s = d, is (Sarpkaya and Isaacson, 1981)

η(x, t) =
H(t)

2
cos(kx − ωt), 0 ≤ t ≤ τ, (2-23)

whereτ is the total duration of strong winds inducing the waves given in Equation 2-18. This
theory gives the water particle velocityU(x, s, t) at timet at a point with coordinates(x, s) and the
linear dispersion relationship as follows

U(x, s, t) = ω η(x, t)
cosh(ks)

sinh(kd)
, (2-24)

ω2 = kg tanh(kd), (2-25)

whereη(x, t) is given by Equation 2-23.

The free surface elevationη(x, t) in Equation 2-23 is commonly modeled by a zero-mean stationary
Gaussian process with one-sided spectral density function given by the Pierson-Moskowitz
spectrum (Pierson and Moskowitz, 1964). In the development of the Pierson-Moskowitz spectrum
it was assumed that if the wind blew steadily for a long time over a large area, the waves would
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come into equilibrium with the wind. This is the concept of a fully developed sea. Measurements
of water surface elevation over large areas of the North Atlantic were used to obtain a spectrum
of a fully developed sea. First, wave data corresponding to steady wind were selected. Then, the
wave spectra for various wind speeds were calculated and it was found that the spectra of the water
surface elevationη(x, t) were of the form

gηη(ω) =















αg2

ω5
exp

(

− βg4

v̄4ω4

)

, 0 ≤ ω ≤ ω̄

0 , ω > ω̄,

(2-26)

whereω = 2πf , f is the wave frequency in Hertz,ω̄ is a cut-off frequency as defined in Equation 2-
3, g is the acceleration of gravity in m/sec,α = 0.0081, β = 0.74, andv̄ is the mean wind speed at
a height of 10 m above the sea surface. In the original work in (Pierson and Moskowitz, 1964) the
wave spectrum in Equation 2-26 is a function of the mean wind speed at a height of 19.5 m above
the sea surface (measurements were obtained from anemometers located at that elevation on the
weather ships). However, for air flow over water, wind speeds do not increase as much with height
as they do on land because of low surface roughness, so that the mean wind speeds at a height of
10 and 19.5 m above the sea surface can be assumed equal (Stewart, 2007).

The spectral density function of water particle velocityU(t) at the water surfacez = 0 in deep
waters is obtained from Equations 2-23, 2-24 and 2-26 as

gUU (ω) =















αg2

ω3
exp

(

− βg4

v̄4ω4

)

, 0 ≤ ω ≤ ω̄

0 , ω > ω̄

(2-27)

noting thatsinh(kd) ≃ cosh(kd) for deep water so that Equations 2-23 and 2-24 yieldU(t) =
U(x, d, t) = ωη(x, t) cosh(kd)/ sinh(kd) = ωη(x, t) for s = d, hencegUU (ω) = ω2gηη(ω).
Figure 2-10 shows the one-sided spectral density function ofU(t) for two values of̄v, 20 and 40
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FIGURE 2-10 One-sided spectral density ofU(t).
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m/sec, obtained using Equation 2-27. In general, the spectral density function of the horizontal
velocity in Equation 2-24 of a water particle at a distances from the sea bed has the form

gUU (ω; s) = ω2 cosh2(ks)

sinh2(kd)
gηη(ω), (2-28)

with gηη(ω) andk in Equations 2-26 and 2-25, respectively.

The spectral density function in Equation 2-27, for the water particle velocityU(t) at a given point,
is along the direction̄θ of the mean wind speed̄v. However, in general, the free surface elevation
in a random sea is caused by waves with different frequenciesω, wave numbersk and directions
θ. Accordingly, the spectrum of the free surface elevation is a function of argumentsω, k andθ.
A three dimensional spectrum is redundant to a certain extent since it may be possible to exploit
the linear dispersion relationship betweenk andω to effect a reduction from three arguments to
two. This reduction is only an approximation, particularly for the higher frequencies, on account
of nonlinear interactions between various wave components (Sarpkaya and Isaacson, 1981). The
spectrum depending onω andθ is referred to as a directional spectrum. In general a directional
spectrum̃gηη(ω, θ) of the free surface elevation is separated in two parts

g̃ηη(ω, θ) = gηη(ω)h(ω, θ), 0 ≤ ω ≤ ω̄, (2-29)

wheregηη(ω) is a unidirectional spectrum such as the one given in Equation 2-26 andh(ω, θ)
is directional spreading function, which is not necessarily independent ofω. In the special case
of unidirectional random waves propagation in the principal wave directionθ̄, the directional
spreading function is given in terms of the Dirac delta functionδ(·) ash(θ) = δ(θ − θ̄)/(2π).
Various expressions forh(ω, θ) are provided in the literature and outlined in ((Sarpkaya and
Isaacson, 1981), Section 7.3.4). A commonly used directional spreading function is

h(θ) =
1

2
√

π

Γ(s + 1)

Γ(s + 1/2)
cos2q((θ − θ̄)/2), −π ≤ θ ≤ π, (2-30)

whereq is a parameter controlling the degree of spread andΓ(·) is the Gamma function. Figure 2-
11 shows the directional spreading functionh(θ) in Equation 2-30 forq = 1 andq = 10. In case
where the directional spreading function is taken to be independent of frequency and the principal
wave direction is a constant independent of frequency, the principal force direction will be equal to
the principal wave direction.

Wind flow over the water surface also generates a current in the principal wind directionθ̄ with
velocity (Bhartia and Vanmarcke, 1988)

u0(s) = c
s

d
v̄, (2-31)

whereu0(s) is the velocity of the current at a distances from the bottom of the sea (Figure 2-9),
c ∈ [0.01, 0.05] is a constant and̄v is the mean wind speed at a height ofz = 10 m above the sea
surface. Hence, the total water particle velocity at a point of coordinates(x, s) is given by

U∗(x, s, t) = u0(s) + U(x, s, t), 0 ≤ t ≤ τ, (2-32)

with u0(s) in Equation 2-31,U(x, s, t) in Equation 2-24, andτ in Equation 2-18.

2.2.3.2 Multiple point model

An R
n-valued zero-mean stationary Gaussian vector process can be used to model the water particle

velocities atn points on a submerged structure. Besides the (auto) spectral density functions at
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FIGURE 2-11 Directional spreading functionh(θ).

individual points given by Equation 2-27, cross spectral density functions are required to completely
characterize the Gaussian vector process.

The one-sided cross spectrum between wave velocitiesUi(t) and Uj(t) at pointsi and j with
coordinates(xi, si) and(xj , sj), respectively, in the direction of wave propagation, can be assumed
to be (Sigbjorusson and Morch, 1982)

gUiUj
(ω) = ω2gV V (ω)λ(ω, si, sj) exp

[

−
√
−1k(xi − xj)

]

, 0 ≤ ω ≤ ω̄, (2-33)

in whichgV V (ω) is the one-sided spectral density of wind velocity defined in Equation 2-19,k is
the wave number which can be determined from the linear dispersion relationship in Equation 2-25,
k = ω2/g in deep waters, and

λ(ω, si, sj) =
cosh(ksi) cosh(ksj)

sinh2(kd)
, (2-34)

whered is the water depth.

2.3 Lifetime models

Probabilistic models, referred to as lifetime models, are developed for the single point natural
hazards at a given site discussed in Sections 2.2.1.1, 2.2.2.1 and 2.2.3.1. The lifetime model of
a natural hazard specifies (1) the random arrival times,T1, T2, . . ., of individual events at a site
during a reference timeτ , and (2) the random properties of the hazards under considerations at
T1, T2, . . .. A lifetime probabilistic model of a natural hazard is defined by (1) activity matrix at
the site (defined below), (2) probability law of the individual events, such as the ones discussed in
Sections 2.2.1.1, 2.2.2.1 and 2.2.3.1, for earthquake, wind and wave events, respectively, and (3) a
reference timeτ .

Monte Carlo algorithms presented in Section 2.4.3 can be used for generating samples of lifetime
seismic, wind and wave hazards at a given site during a reference timeτ . A lifetime hazard sample
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consists of the arrival times of individual events and the properties defining their probability law.
Numerical examples are provided in Section 2.5.1.

2.3.1 Activity matrix

An activity matrix of a natural hazard at a given site delivers the annual rate of occurrence for events
of this hazard corresponding to various properties. We plot activity matrices against the properties
which completely define the probability law of the hazard at the site.

Consider a hazard at a site with defining properties quantified by a set of parameters(Φ1, . . . ,Φd),
d ≥ 1. For example, the seismic hazard at a site is completely defined byd = 2 parameters,
Φ1 = earthquake moment magnitudeM , andΦ2 = source-to-site distanceR (Section 2.2.1), and
the plot of mean annul rate of occurrence of earthquakes for all(M,R) at the site is called the
site seismic activity matrix (Kafali and Grigoriu, 2005a). Similarly, the wind and wind-induced
wave hazards at a site are completely defined byΦ1 = mean wind velocitȳV , andΦ2 = principal
wind directionΘ̄, that is, the direction of the predominant winds in a storm (Sections 2.2.2 and
2.2.3). Consider a partition in bins of the possible values of(Φ1, . . . ,Φd), and letνi1...id

denote
the yearly rate of occurrence of events with parameters(Φ1, . . . ,Φd) in bins i1, . . . , id denoted
by {Φ1 ∈ bin-i1, . . . ,Φd ∈ bin-id}, respectively. The activity matrix delivers the annual rate of
occurrenceνi1...id

for events with properties(φ1,i1 , . . . , φd,id
), in which φk,l is the mid-value of

bin-l for parameterk.

2.3.2 Event arrivals

The average number of events per year irrespective of the values of(Φ1, . . . ,Φd) is

ν =
∑

i1,...,id

νi1...id
. (2-35)

We assume that the events occur in time according to a homogeneous Poisson counting process
{N(τ), τ ≥ 0} of intensityν so that

P (N(τ) = n) =
(ντ)n

n!
exp(−ντ), n = 0, 1, 2, . . . . (2-36)

We note several properties of homogeneous Poisson counting process{N(τ), τ ≥ 0}. First, the
inter-arrival timesTk − Tk−1, k = 1, . . . ,N(τ), T0 = 0, are independent exponential random
variables with rateν sinceP (T > τ) = P (N(τ) = 0) = exp(−ντ). Second, conditional on
N(τ) = n, the unordered Poisson events{s1, s2, . . . , sn} occurring in(0, τ) have the probability
density function1/τn. Therefore, the unordered Poisson events are independent and uniformly
distributed on(0, τ) conditional onN(τ) = n. Accordingly, there are two ways of generating
samples of{Tk}, k = 1, . . . ,N(τ). The first method is based on the first property above. Samples
of inter-arrival times are generated consecutively using their conditional distributions as long as
the generated Poison events remain in(0, τ) ((Grigoriu, 1995), Section 4.6). The second method
uses the second property. In this case we first generate a samplen of the Poisson counting process
{N(τ), τ ≥ 0}, then we generaten independent samples of uniform distribution on(0, τ) which
correspond to the Poisson events in(0, τ) ((Grigoriu, 1995), Section 4.6).

Figure 2-12 illustrates a sample of a natural hazard consisting of eventsEi with arrival timesTi,
i = 1, . . . ,N(τ), at a site in time(0, τ).
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FIGURE 2-12 A sample of lifetime hazard.

Although the Poisson model, by its time-independent event-occurrence assumption, is not
necessarily the best model for random occurrence of rare natural hazards, for example, hurricanes
occur most frequently in the late summer when the ocean water temperature has reached a
maximum, the winter is almost entirely absent of hurricanes (Liu, 1991; Landsea, 1993), it is still
widely used for many natural-hazard assessments (Ellingwoodet al., 2007; Wen, 1977) and can be
used as a benchmark for comparisons with other more sophisticated models. Accordingly, in this
study, it is assumed that the Hurricane can only occur between August 1st and October 31st in a
given year, on the other hand, earthquakes can occur at any given time.

2.3.3 Event properties

Properties of each eventEi in Figure 2-12,i = 1, . . . ,N(τ), characterizing its probability law, are
assigned using the joint probability density function of the parameters(Φ1, . . . ,Φd) defining them,
which can be approximated in discrete form by

P [Φ1 ∈ bin-i1, . . . ,Φd ∈ bin-id] = νi1...id
/ν, (2-37)

where P [Φ1 ∈ bin-i1, . . . ,Φd ∈ bin-id] is the probability of an event having parameters
(φ1,i1 , . . . , φd,id

), in which φk,l is the mid-value of bin-l for parameterk, νi1...id
is the annual

rate of occurrence of an event with parameters(φ1,i1 , . . . , φd,id
) delivered by the activity matrix

at the site (Section 2.3.1), andν in given by Equation 2-35. The eventsEi, i = 1, . . . ,N(τ), are
independent identically distributed random variables with the probability density function given in
Equation 2-37, and the total number of eventsN(τ) in (0, τ) follows a Poisson distribution with
constant annual rateν.

2.3.4 Seismic hazard

The seismic hazard at a site is completely defined by earthquake moment magnitudem, and source-
to-site distancer (Section 2.2.1). The United States Geological Survey (USGS) provides realizable
values of earthquake moment magnitudem and source-to-site distancer at each zip code in the
United States, and mean yearly rates,νij of earthquakes with moment magnitudemi and source-
to-site distancerj (USGS, 2006b). Details on the calculations of mean yearly rates for all possible
(m, r) at a given site can be found in (USGS, 2006a). Figure 2-13 shows the seismic activity matrix
for Los Angeles, California, normalized byν =

∑

i,j νij = 0.95, that is, the joint probability
density function of(Φ1 = M,Φ2 = R) in Equation 2-37. Given that an earthquake occurs at a site,
the probability that it has parameters (mi, rj) is νij/ν.
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FIGURE 2-13 Normalized seismic activity matrix for Los Angeles.

2.3.5 Wind and wave hazards

Wind effects on structures and components depend not only on the magnitude of the wind speeds,
but on the associated wind directions as well. A joint probability distribution of extreme wind
speeds and directions is required to completely define the wind forces on structures, however, so far
no credible models for such distributions have been proposed in the literature ((Simiu and Scanlan,
1986), section 3.4). In the absence of such models wind effects and their probability distributions
may be estimated from the available recorded data or simulated results. In hurricane-prone regions
such estimates can be obtained from wind speed data generated by Monte Carlo simulation on
the basis of climatological information on hurricane storms for each of the 16 principal compass
directions ((Simiu and Scanlan, 1986), Section 3.3).

The National Institute of Standards and Technology (NIST) provides (i) hurricane wind speed
data generated by Monte Carlo simulation for each 16 compass directions and (ii) estimated mean
annual rate of occurrence of hurricanes, at 56 mileposts located at distances of 50 nautical miles
along the Gulf and Atlantic coasts of the United States (NIST, 2007). Figure 2-14 shows the
location of mileposts in NIST database. For a given milepost, the data consists of(i) estimated
annual rate of occurrence of hurricanes at this milepost and(ii) 1-minute wind speeds in knots
at 10 m above open terrain near the coastline in 16 specified directions, beginning with North-
Northeast and moving clockwise to North, for a total of 999 simulated hurricanes. The respective
mean hourly wind speeds in meters per second at 10 m above ground over open terrain near the
coastline can be obtained via multiplication by the factor 0.4146 (Section 2.2.2.1). Figure 2-15
shows the mean hourly wind speeds and corresponding directions for the first simulated hurricane
at milepost-150.

The procedure followed by NIST to obtain extreme wind speeds in hurricane prone regions is
based on a comprehensive and effective approach to the modeling of extreme wind probabilities
at a site on the basis of information on typical hurricane characteristics developed in (Russell,
1971). This approach was subsequently applied in (Battset al., 1980), where extreme wind speeds
associated with hurricanes were estimated on the basis of the climatological and physical models
described in (Simiu and Scanlan, 1986). Some important details of these models relevant to this
study are provided here. Estimates of the probabilities of occurrence of hurricane wind speeds were
obtained in (Battset al., 1980) by assuming each of the area adjoining 56 mileposts to be hit by
1000 hurricanes. The hurricane frequency of occurrence was modeled by a Poisson process with a
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FIGURE 2-14 Milepost locations (Simiu and Scanlan, 1986).
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FIGURE 2-15 Wind speeds and directions for hurricane-1 at milepost-150.

constant rate. The climatological characteristics of the hurricanes were determined by Monte Carlo
simulation from the respective probabilistic models as fitted to historical data. The maximum wind
speed at a site for a given hurricane is obtained as follows. First, the hurricane track, that is the
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footprint of the eye of the hurricane, and the characteristics defining the intensity of the hurricane
along its track are generated at a sufficiently large number of positions (locations) along its track.
For each position of the hurricane the climatological characteristics used in conjunction with the
physical models to define a wind field so that the wind speed at the site of interest is calculated.
The largest among these speeds is the maximum wind speed caused by the hurricane at the site.

For simplicity, in this study, we assume that a hurricane can be represented by the maximum hourly
mean wind speed̄v in any direction and a corresponding principal, or predominant, wind direction
θ̄. The principal wind direction̄θ is defined here as a weighted average of the wind directions
corresponding to non-zero wind speeds. We use an average direction rather than the direction
corresponding to the maximum wind speed to account for the directions with non-zero wind speeds.
Our assumption that a hurricane can be represented by (v̄,θ̄) can be justified by the data in (NIST,
2007), which shows that the directions corresponding to non-zero wind speeds are similar for most
of the simulated hurricanes in all mileposts (see, for example, Figure 2-15). The mean wind speed
v̄ and its direction̄θ for each simulated hurricane at a given milepost are obtained using the NIST
database (NIST, 2007) as follows.

Let v be anR
16-valued vector whose coordinates{vi}, i = 1, . . . , 16, denote wind speeds in 16

directions of a hurricane at a site (milepost). The corresponding wind directions are at angles
θi = 22.50(i− 1), i = 1, . . . , 16, whereθ1 corresponds to North. The NIST database (NIST, 2007)
consists of 999 such vectors for each of the 56 mileposts. Denote by(ṽ1, . . . , ṽn), n ≤ 16, the
non-zero readings extracted from(v1, . . . , v16). For example,v1 is not included in(ṽ1, . . . , ṽn) if
0 andṽ1 = v1 if v1 6= 0. Denote by(θ̃1, . . . , θ̃n) the directions corresponding to(ṽ1, . . . , ṽn). The
hurricane wind speed̄v and its direction̄θ are

v̄ = max(ṽ1, . . . , ṽn), (2-38)

θ̄ = arctan

(

x

y

)

+ φ, (2-39)

wherex =
∑n

j=1 wj sin(θ̃j), y =
∑n

j=1 wj cos(θ̃j), in whichwj = ṽ2
j /
∑n

k=1 ṽ2
k, j = 1, . . . , n,

are some weights assigned to each directionθ̃j, andφ equals 0, 180, 360 and 180 degrees for
(x > 0, y > 0), (x < 0, y < 0), (x ≥ 0, y < 0) and(x ≤ 0, y > 0), respectively. The weightswj,
j = 1, . . . , n are assigned such that (i) they are proportional to the square of the wind speed since
the wind force acting on a structure is proportional to the square of the wind speed as well (Simiu
and Scanlan, 1986), (ii) wj > 0 for j = 1, . . . , n, and (iii)

∑n
j=1 wj = 1. For example, for the

hurricane shown in Figure 2-15̄v = 13.0793 m/sec and̄θ = 289.54130 (shown with the arrow on
the plot). Hence, 999 pairs of(v̄, θ̄) can be obtained, corresponding to 999 simulated hurricanes, at
each milepost.

The wind activity matrix at a site (milepost) can be constructed from (i) a histogram of(V̄ , Θ̄)
obtained from 999 pairs of(v̄, θ̄) calculated following the above procedure, and (ii) the estimated
mean annual rate of occurrence of hurricanes at the site provided in the NIST database (NIST,
2007). Figure 2-16 shows the wind activity matrix for milepost-150, normalized byν =

∑

i,j νij =

0.325, that is, the joint probability density function of(Φ1 = V̄ ,Φ2 = Θ̄) in Equation 2-37. Given
that a hurricane occurs at a site, the probability that it has parameters(v̄i, θ̄j) is νij/ν.

As in the seismic hazard model in Section 2.3.4, the hurricane events are independent identically
distributed random variables with the probability density function given in Equation 2-37, and the
total number of eventsN(τ) in (0, τ) follows a Poisson distribution with constant annual rateν.
However, unlike the seismic hazard model in which earthquakes may occur at any given time in a
year, hurricanes occur most frequently in the late summer when the ocean water temperature has
reached a maximum, the winter is almost entirely absent of hurricanes (Liu, 1991). For simplicity
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FIGURE 2-16 Normalized wind activity matrix for milepost-150.

we assume that hurricanes in the Atlantic basin only occur from August 1st trough October 31st at
a constant mean rate. Our assumption that the hurricanes only occur from August trough October
in the Atlantic is based on the fact that the Atlantic basin shows a very peaked season from August
through October, with 78% of the tropical storm days, 87% of the minor (Saffir-Simpson Scale
(Simpson, 1974) categories 1 and 2) hurricane days, and 96% of the major (Saffir-Simpson Scale
categories 3, 4 and 5) hurricane days occurring in this time period (Landsea, 1993).

The lifetime model presented for hurricane wind hazard is also used for ocean waves since, in
this study, we are also interested in wave hazard on structures and human life induced by tropical
storms. The wind activity matrix in Section 2.3.5 provides realizable values of(v̄, θ̄) at a site near
the coastline over an open terrain. The respective mean wind speeds over water surface at the system
site can be calculated using the similarity model in Section 2.2.2.1 providing a relationship between
wind speeds in different surface roughness regimes. Figure 2-8 shows the relationship between the
hourly mean wind speeds over open terrain and water surface, at 10 m above the surface.

Hence, the wind activity matrix at an offshore site, characterizing completely the wave hazard to
the system at the site, can be obtained directly from that of a nearby onshore site by adjusting the
mean wind speeds according to Figure 2-8.

2.4 Monte Carlo simulation

Monte Carlo algorithms are presented for generating samples of (1) single/multiple point events due
to seismic, wind and wave hazards with respective probabilistic models discussed in Sections 2.2.1,
2.2.2 and 2.2.3, and (2) lifetime natural hazard scenarios, using the probabilistic models discussed
in Section 2.3.
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2.4.1 Single point events

Monte Carlo algorithms are presented for generating samples of a hazard event at a single point
modeled by stationary/nonstationary Gaussian and non-Gaussian processes. First, realizations
of the stationary Gaussian process are obtained using its parametric representation. This
representation consists of superpositions of harmonics that have random amplitudes and
deterministic phases. For the non-Gaussian model, first realizations of its Gaussian image are
generated using the same procedure, then these realizations are translated using a memoryless
transformation (Grigoriu, 1995). Nonstationarity is introduced by modulating the Gaussian/non-
Gaussian signals using an appropriate envelop function.

2.4.1.1 Gaussian model

Let G(t) be a zero-mean, real-valued, stationary Gaussian process with a spectral density function
gGG(ω) defined on the frequency interval(0, ω̄), such as the ones in Equations 2-3, 2-19 and 2-27,
for seismic ground acceleration, wind velocity and wave particle velocity, respectively. The process
G(t) has the spectral representation

G(t) =

∫ ω̄

0
[cos(ωt) dU(ω) + sin(ωt) dV (ω)], (2-40)

whereU(ω) andV (ω) are zero-mean, real-valued, independent Gaussian processes with orthogonal
increments and increment variancesE[dU2(ω)] = E[dV 2(ω)] = gGG(ω)dω.

An approximate spectral representation ofG(t) can be obtained discretizing its spectral density.
Let (αr−1, αr), r = 1, . . . , q, with α0 = 0 andαq = ω̄, be a partition of the frequency band(0, ω̄)
in q non-overlapping intervals of length∆ωr = αr − αr−1 and denote by{ωr}, r = 1, . . . , q, the
midpoints of these frequency intervals. Define a discrete approximation of orderq of G(t) as

G(q)(t) =

q
∑

r=1

σr (Ar cos ωrt + Br sin ωrt) (2-41)

where Ar and Br, r = 1, . . . , q are independent zero-mean, unit-variance Gaussian random
variables and

σ2
r =

∫ αr

αr−1

gGG(ω) dω ≃ gGG(ωr)∆ωr. (2-42)

It can be shown thatG(q)(t) approaches toG(t) in the mean square sense asq → ∞; and that the
covariance function ofG(q)(t) converges to that ofG(t). The modelG(q)(t) is periodic with period
π/ω1 hence samples longer thanπ/ω1 provide same information as samples with lengthπ/ω1.

Nonstationarity can be introduced by modulating the stationary record using an appropriate envelop
function, such as the one given in Equation 2-2 for seismic ground motions.

2.4.1.2 Non-Gaussian translation model

First the underlying Gaussian imageG(q)(t) of the non-Gaussian processZ(q)(t) is generated
following Section 2.4.1.1. Then the Gaussian recordG(q)(t) is translated to the non-Gaussian
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space by

Z(q)(t) = F−1 ◦ Φ
(

G(q)(t)
)

. (2-43)

The parameters of the student-t distributionF are selected to match the target statistics from
the data. The inversion of the student-t distribution is performed numerically using MATLAB.
Nonstationarity can be introduced by modulating the stationary record using an appropriate envelop
function.

2.4.2 Multiple point events

Monte Carlo algorithms are presented for generating samples of a hazard event at multiple points
modeled by stationary/nonstationary Gaussian and non-Gaussian vector processes. The algorithm
is similar to the single point case presented in Section 2.4.1.

2.4.2.1 Gaussian model

Let G(t) be ann-dimensional, wide-sense stationary vector process with real-valued components
of mean zero and covariance functions;cGkGl

(τ) = E[Gk(t)Gl(t + τ)], k, l = 1, . . . , n. The
spectral density functionssGkGl

(ω) of G(t) and the covariance functionscGkGl
(τ) are related by

the Wiener-Khintchine relationships,

skl(ω) =
1

2π

∫ ∞

−∞
e−jωτckl(τ) dτ , (2-44)

ckl(τ) =

∫ ∞

−∞
ejωτ skl(ω)dω, (2-45)

wherek, l = 1, . . . , n and j =
√
−1. G(t) can be represented by the spectral representation

method as

G(t) =

∫ ∞

0
[cos ωt dU (ω) + sin ωt dV (ω)], (2-46)

whereU (ω) andV (ω) are processes with zero-mean and orthogonal increments satisfying the
conditions

E[Uk(ω)] = E[Vk(ω
′)] = 0, (2-47)

E[dUk(ω)dUl(ω
′)] = E[dVk(ω)dVl(ω

′)] = δ(ω − ω′) bkl(ω) dω,

E[dUk(ω)dVl(ν)] = −E[dVk(ω)dUl(ω
′)] = δ(ω − ω′)hkl(ω) dω,

wherebkl(ω) = skl(ω) + skl(−ω), hkl(ω) = −
√
−1 [skl(ω) − skl(−ω)], andk, l = 1, . . . , n. For

a Gaussian process, the processesU(ω) andV (ω) are Gaussian.

A discrete approximation of orderq, G(q)(t), of G(t) can be obtained using the spectral
representation method as follows: Let(0, ω̄k) be the bandwidth of the componentGk(t), k=1,. . . ,n.
The bandwidth ofG(t) is (0, ω̄), in which ω̄ = max1≤k≤n{ω̄k}. If a componentGk(t) has
power over the entire frequency range, a cutoff frequencyω̄k < ∞ can be selected such that
∫ ω̄k

−ω̄k
skk(ω) ≃

∫∞
−∞ skk(ω). Let (αr−1, αr), r = 1, . . . , q, with α0 = 0 andαq = ω̄, be a partition
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of the frequency band(0, ω̄) in q non-overlapping intervals of length∆ωr = αr −αr−1 and denote
by {ωr}, r = 1, . . . , q, the midpoints of these frequency intervals. DefineG(q)(t) as

G(q)(t) =

q
∑

r=1

(Ar cos ωrt + Br sin ωrt) (2-48)

which is a discrete approximation of orderq of G(t). The zero mean Gaussian vector{Ar,Br},
r = 1, . . . , q, has the covariances

E[Ar,kAp,l] = E[Br,kBp,l] = δrp

∫ αr

αr−1

bkl(ω) dω ≃ δrp bkl(ωr)∆ωr, (2-49)

E[Ar,kBp,l] = −E[Br,kAp,l] = δrp

∫ αr

αr−1

hkl(ω) dω ≃ δrp hkl(ωr)∆ωr,

in which δrp is 1 if r = p, and 0 otherwise,bkl and hkl are defined by Equation 2-47, and
k, l = 1, . . . , n andr, p = 1, . . . , q.

It can be shown thatG(q)(t) approaches toG(t) in the mean square sense asq → ∞; and that
the covariance functions ofG(q)(t) converge to those ofG(t) assuming thatG(t) has a bounded
frequency band[0, ω̄]. HenceG(q)(t) has nearly the same second-moment properties asG(t) for
sufficiently largeq.

Samples of the nonstationarity Gaussian vector process may be obtained from the samples of
the corresponding stationary process by modulating each of its component by an appropriate
modulation function, such as the one in Equation 2-2 for seismic ground motions.

2.4.2.2 Non-Gaussian translation model

Similar to the non-Gaussian model for single point case, first the Gaussian imageG(q)(t) of the
non-Gaussian vector processZ(q)(t) is generated following Sections 2.4.2.1 and then it’s translated
by

Z(q)(t) = (. . . , Z
(q)
i (t) = F−1

i ◦ Φ
(

G
(q)
i (t)

)

, . . .), i = 1, . . . , n. (2-50)

The parameters of the student-t distributionF are selected to match the target statistics from the
data. Nonstationarity can be introduced by modulating the stationary record using an appropriate
envelop function.

2.4.3 Lifetime hazard

Samples of the lifetime seismic hazard at a site can be generated directly following the procedure
outlined below. However, in order to generate samples of the lifetime wind and/or wave hazards at
a site caused by a hurricane the procedure outlined below should be slightly modified to account
for the fact that hurricanes only occur in summer. This issue is addressed at the end of this section.

Consider a natural hazard at a site during a reference timeτ . The lifetime model developed in
Section 2.3.2 specifies (1) the random arrival timesTk, k = 1, . . . ,N(τ), of eventsEk at this site in
(0, τ) (see Figure 2-12), and (2) the random properties of each eventEk, k = 1, . . . ,N(τ). In our

34



model{N(τ), τ ≥ 0} is a homogeneous Poisson counting process during the time interval(0, τ)
with a mean yearly arrival rateν.

There exists several methods for generating samples of{Tk,N(τ)} ((Grigoriu, 1995), Section 4.6).
The method used here is based on the property that the unordered homogeneous Poisson events in
a time interval(0, τ), conditional onN(t), are independent and have a uniform distribution

F (u) =



















0.0, u ≤ 0

u/τ, 0 ≤ u ≤ τ

1.0, u ≤ τ ,

(2-51)

on (0, τ). The simulation method based on this property has two steps. First, a samplen of
the Poisson counting process{N(τ), τ ≥ 0} has to be generated. The inverse transform method
((Grigoriu, 1995), Section 4.1) and the probability in Equation 2-36 can be used to obtain this
sample of the Poisson counting process. Second, we need to generaten independent samples of
distributionF defined by Equation 2-51. The resultingn samples constitute a realization of the
Poisson events{Tk} in (0, τ).

Properties of each eventEk, that is, independent samples of(Φ1, . . . ,Φd), k = 1, . . . ,N(τ),
are assigned using the joint probability density function in Equation 2-37 of the parameters
(Φ1, . . . ,Φd) defining them. The activity matrix of the hazard at site, normalized by the mean
annual rateν, is a discrete approximation to the joint probability density function and is used here
to assign the parameters(Φ1, . . . ,Φd) of each eventEk, k = 1, . . . ,N(τ), in a hazard sample (see
Figure 2-12).

In Section 2.3.5 it was assumed that hurricanes in the Atlantic basin only occur from August
trough October with a constant mean rate, that is, they occur during 1/4 of a year. Accordingly,
the above procedure is modified for generating samples of hurricane hazard at a site. The first
step above, that is, generating a samplen of the Poisson counting process{N(τ), τ ≥ 0} with
mean annual rateν, remains the same. In the next step, we generaten independent samples of a
uniform distribution over(0, τ/4). The resultingn samples constitute a realization of the Poisson
events{T̃k}, k = 1, . . . , n, in (0, τ/4). The final step is to obtain the arrival timeTk of eventEk,
k = 1, . . . , n, corresponding tõTk. The mapping fromT̃k to Tk, k = 1, . . . , n, as illustrated in
Figure 2-17, isTk = [4T̃k]+ 7/12+ δ, in which,[4T̃k] is the integer part of4T̃k, δ = T̃k − [4T̃k]/4,
andk = 1, . . . ,N(τ).

2.5 Examples

Samples of lifetime natural hazard scenarios, specifying the random arrival times of individual
events at a site during a reference timeτ and the random properties of the events under
considerations, are generated using the probabilistic models in Section 2.3 and Monte Carlo
algorithms in Section 2.4.3, for seismic, wind and wave hazards. Also, time history records of
ground accelerations and wind/wave velocities are generated at single/multiple points for a given
event in a sample of the lifetime natural hazard scenario using the respective probabilistic models
in Section 2.2 and Monte Carlo algorithms in Sections 2.4.1 and 2.4.2, for seismic, wind and wave
hazards.
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FIGURE 2-17 Generation of hurricane arrival times.

2.5.1 Seismic hazard

Samples of lifetime seismic hazard at a site can be generated using Monte Carlo algorithms
presented in Section 2.4.3. For example, Figure 2-18 shows part of a sample of seismic hazard
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FIGURE 2-18 A hypothetical sample of the seismic hazard for Los Angeles.

scenario for Los Angeles, California over a lifetime of 50 years. The actual sample has 51 events,
but just for presentation purposes only the earthquakes withm ≥ 6.0 are shown in Figure 2-18.

Gaussian and non-Gaussian ground acceleration time histories at single/mutliple points in Los
Angeles can be generated for each event in Figure 2-18 using Monte Carlo algorithms presented
in Section 2.4. For example, the samples of the ground acceleration processes below correspond
to event-2 in Figure 2-18 with moment magnitude,m = 7.2 and source to site distance,r = 55
km, resulting in a ground motion duration of20.63 sec and one-sided spectral density function in
Figure 2-19.
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FIGURE 2-19 Spectral density of ground acceleration from event-2.

2.5.1.1 Single point

Gaussian and non-Gaussian ground acceleration time histories are generated at a single point
at the site Figure 2-18 following the Monte Carlo algorithm presented in Section 2.4.1. First,
stationary ground acceleration samples are generated and then corresponding nonstationary samples
are calculated using the modulation function given by Equation 2-2 for both Gaussian and non-
Gaussian models. Figures 2-20 and 2-21 show the stationary/nonstationary Gaussian ground
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FIGURE 2-20 Gaussian ground accelerations on USGS class-A soil.

accelerations on USGS class A and C soils, representing hard rock and generic soil, respectively.
Ground accelerations are higher for USGS class-C soil, since spectral densities for softer soil
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FIGURE 2-21 Gaussian ground accelerations on USGS class-C soil.

are larger than those for stiffer soil or rock (Figure 2-2). Figures 2-22 and 2-23 show
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FIGURE 2-22 Non-Gaussian ground accelerations on USGS class-A soil (γ4=6.26).

the stationary/nonstationary non-Gaussian ground accelerations on USGS class-A and C soils,
respectively. Table 2-1 shows the parameters of the student-t density function in Equation 2-5 for
the selected soil types and earthquake. Again, ground accelerations are higher for USGS class-C
soil, since spectral density for class-C soil is larger than that of class-A soil.
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FIGURE 2-23 Non-Gaussian ground accelerations on USGS class-C soil (γ4=5.58).

TABLE 2-1 Student-t parameters.

Parameters

Soil type b c

USGS class-A 0.0131 5.8405

USGS class-C 0.0214 6.3256

2.5.1.2 Multiple points

Monte Carlo algorithms presented in Section 2.4.2 are used to generate samples of stationary
Gaussian ground accelerations at multiple points at the site in Figure 2-18. Corresponding non-
Gaussian samples are then calculated using Equation 2-17. Nonstationarity is introduced to
Gaussian and non-Gaussian samples by Equation 2-9 using the modulation function in Equation 2-
2.

Seismic strong ground accelerations are generated at points selected at 50 m in both directions in a
500x500 m2 area. The coherence function is given by Equation 2-11 with parametersA = 0.736,
a = 0.147, k = 5120 m, f0 = 1.09 Hz, b = 2.78 (Harichandran and Vanmarcke, 1986). The
apparent velocity vector~V in Equation 2-14 has magnitude|~V | = 500 m/sec and its directionθ
coincides with the direction of the site from the source as shown in Figure 2-24 (a). We chose
θ = 0 for this example. Figures 2-25 and 2-26 show the Gaussian ground accelerations att = 5
sec for homogeneous soil (USGS class-C) and for inhomogeneous soil (USGS classes A and C,
see Figure 2-24-b), respectively. Again, ground accelerations are higher for USGS class-C soil.
Figures 2-27 and 2-28 show the non-Gaussian ground accelerations att = 5 sec on a homogeneous
soil (USGS class-C) and for inhomogeneous soil (USGS classes A and C), respectively.
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FIGURE 2-24 Illustration of the site.
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FIGURE 2-25 Gaussian ground accelerations att = 5 sec on homogeneous soil (USGS class-
C).

2.5.1.3 Comparison of Gaussian and non-Gaussian ground motions

Differences between the Gaussian and non-Gaussian ground acceleration samples can be assessed
by Figures 2-20 and 2-22, Figures 2-21 and 2-23, Figures 2-25 and 2-27, and Figures 2-26
and 2-28. The samples in these pairs of figures correspond to processes with the same second-
moment properties. Since non-Gaussian ground accelerations have higher kurtosis coefficients the
peak ground accelerations (PGA) are higher compared to those obtained using Gaussian models.
Figures 2-29 and 2-30 show the tails of thePGA’s obtained using Gaussian and non-Gaussian
models, for class-A and class-C soils, respectively. The parameters of the student-t density function
for the selected soil types and earthquake are shown in Table 2-1. Figures 2-31 and 2-32 show the
normalized histograms ofPGA’s for the same cases. The figures show that the Gaussian models
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FIGURE 2-26 Gaussian ground accelerations att = 5 sec on inhomogeneous soil (USGS
classes A and C).
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FIGURE 2-27 Non-Gaussian ground accelerations att = 5 sec on homogeneous soil (USGS
class-C,γ4=5.58).

can underpredict thePGA and other ground acceleration characteristics.
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FIGURE 2-28 Non-Gaussian ground accelerations att = 5 sec on inhomogeneous soil (USGS
class-A withγ4=6.26 and USGS class-C withγ4=5.58).
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FIGURE 2-29 Tails of Gaussian and non-Gaussian ground accelerations on USGS class-A
soil (γ4=6.26).
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FIGURE 2-30 Tails of Gaussian and non-Gaussian ground accelerations on USGS class-C
soil (γ4=5.58).
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FIGURE 2-31 Histograms ofPGA’s for Gaussian and non-Gaussian ground accelerations on
USGS class-A soil (γ4=6.26).
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2.5.2 Wind and wave hazards

Samples of lifetime hurricane hazard at a site can be generated using Monte Carlo algorithms
presented in Section 2.4.3. For example, Figure 2-33 shows part of a sample of wind hazard
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FIGURE 2-33 A hypothetical sample of the wind hazard for milepost-150.

scenario in milepost-150 over a lifetime of 50 years. The actual sample has 18 events, but just
for presentation purposes only the winds withv̄ ≥ 20.0 m/sec are shown in Figure 2-33.

Wind and wave velocity time histories at an offshore site located near milepost 150 can be generated
for each hurricane event in Figure 2-33 at single/mutliple points using Monte Carlo algorithms
presented in Section 2.4. For example, the samples of the wind and wave velocity processes below
correspond to event-6 in Figure 2-33 with mean wind speed,v̄ = 32.8 m/sec and principal direction,
θ̄ = 202.5 degrees, assuming a total duration of 1 hr (Section 2.2.2.1).

Figure 2-34 shows the one-sided spectral density function in Equation 2-19 of the fluctuating
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FIGURE 2-34 Spectral density of wind velocity (for event-6).

component of the wind velocityV (t) in Equation 2-18. Figure 2-35 shows a sample of the wind
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FIGURE 2-35 A sample of wind velocity (for event-6).

velocityV ∗(t) given by Equation 2-18 with the spectral density function in Figure 2-34.

Figure 2-36 shows the one-sided spectral density function in Equation 2-27 of water particle
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FIGURE 2-36 Spectral density of wave velocity (for event-6).

velocity U(t) in Equation 2-24. Figure 2-37 shows a sample of the water particle velocityU(t)
in Equation 2-24 with the spectral density function in Figure 2-36.
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FIGURE 2-37 A sample of wave velocity (for event-6).

2.6 Multihazard

The overall system risk under a multihazard environment depends on the occurrence of individual
hazard events as well as the occurrence of coincidental hazard events. For example, in the case of
two independent intermittent hazards, such as seismic and hurricane hazards at a site, there exists
three types of events, two individual hazard events and one coincidental hazard event. Figure 2-38
illustrates a sample of two independent hazards occurring at a site in time(0, τ).

time

intensity

0 τ 

event type 1
event type 2

FIGURE 2-38 A sample of lifetime multihazard.

The multihazard characteristics at a site is evaluated considering a simple case of two independent
hazardsH1, H2 with random durationsD1, D2, respectively. We assume that the events of hazards
H1(t) andH2(t) occur in time according to homogeneous Poisson counting processes of intensities
ν1 andν2, respectively. It can be shown that the occurrence in time of the coincidental hazard event
can be also approximated by a homogeneous Poisson process with intensity (Wen, 1977)

ν12 ≃ ν1ν2(µD1
+ µD2

), (2-52)

whereµD1
andµD2

are the expected value of the event durationsD1 andD2, respectively. The
approximation in Equation 2-52 is good whenν1D2 andν2D1 are small, orν1D1 (or ν2D2) goes
to zero (Wen, 1990). The mean coincidence duration is given by

µD12
= µD1

µD2
/(µD1

+ µD2
), (2-53)
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using Equation 2-52 and the fact that the probability that thecoincidence process ison at a given
time, µD12

ν12, coincides with the probability that both processes areon at that time, which is
µD1

ν1µD2
ν2 because of independence. The probabilities that at any time instant there is no event;

a single event of hazardHi, i = 1, 2; and a coincidental event arep0 = (1 + ν1µD1
)(1 + ν2µD2

);
pi = νiµDi

/p0, i = 1, 2; andp12 = (ν1µD1
)(ν2µD2

)/p0, respectively (Shinozukaet al., 1984).

Now, consider a simple system located at this site. We can evaluate the performance of this system
in (0, τ) under the hazardsH1 andH2 from its fragility, that is, the probability of system failure
under the hazardsH1 andH2 in (0, τ). Failure is defined here as the intensity of a hazard event
exceeding a critical valuex. An approximation to the system fragilityPf (x) in (0, τ) under the
hazardsH1 andH2 is (Wen, 1977)

Pf (x) = 1 − exp [−ν1τ (1 − F1(x)) − ν2τ (1 − F2(x)) − ν12τ (1 − F12(x))] , (2-54)

in which F1(x), F2(x) andF12(x) are the probability distributions of intensity of hazardH1, H2

and the combined hazardH1 + H2, respectively, andν12 is given by Equation 2-52. We note that
some events are counted twice in Equation 2-54, however, the number of such events is small for
hazards with short durations and the approximation to the system fragility in Equation 2-54 is very
good in this case (Wen, 1977). To examine the significance of the second-order term in Equation 2-
54, that is, the significance of hazard concurrence, letν1 = ν2 = 2/year,µD1

= µD2
= 0.001

year,τ = 50 years andF1(x) = F2(x) be normal distributions with mean 1 and variance 0.09.
Note that is this caseF12(x) is a normal distribution with mean 2 and variance 0.18. Figure 2-39
shows the system fragility in Equation 2-54 as a function of hazard intensityx, with and without
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FIGURE 2-39 System fragility under 2 hazards.

hazard concurrence (the second-order term). As expected, the second-order term in Equation 2-54
becomes dominant for large values ofx, that is, for highly reliable systems.

For the case of three independent intermittent hazardsHi, i = 1, 2, 3, with mean durationsµDi

and mean occurrence rateνi, the simultaneous occurrence of the three hazard events has the mean
occurrence rate

ν123 ≃ ν1ν2ν3(µD1
µD3

+ µD2
µD3

+ µD1
µD2

), (2-55)

which can be obtained similar to Equation 2-52 noting that the coincidence of events 1 and 2 is
a Poisson process with mean rate in Equation 2-52 and mean duration in Equation 2-53. The
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approximation in Equation 2-55 to the mean occurrence of three simultaneous hazard event is very
good under similar conditions given for Equation 2-52. As in the case of two hazards we can obtain
the probabilities that at any time instant there is no event, a single event of hazardHi, i = 1, 2, 3,
and coincidental event of the three hazards. For example, the probability that at any time instant
the structure is subjected to all three hazard events isp123 = (ν1µD1

)(ν2µD2
)(ν3µD3

)/p0, in which
p0 = (1 + ν1µD1

)(1 + ν2µD2
)(1 + ν3µD3

) is the probability that at any time instant there is no
event.

49





SECTION 3

SYSTEM FRAGILITY ANALYSIS

Consider a dynamic system subjected to a natural hazard event resulting in am-dimensional forcing
function F (t), t ≥ 0, acting onm system points. Denote byZ(t), 0 ≤ t ≤ τ , a relevant
n-dimensional system response process, whereτ is a reference time. Figure 3-1 illustrates the

        SYSTEM F(t) Z(t) 
input output 

FIGURE 3-1 Input-output relationship.

relationship between the inputF (t) and outputZ(t). Our objective is to find system fragility,
that is, the probability that the system responseZ(t) leaves a safe setD ⊆ R

n in 0 ≤ t ≤ τ if
subjected to a natural hazard event of specified intensity. If the safe setD of the system response is
associated with a system damage state, fragility becomes a function that describes the probability
of exceedance of this damage state, given a hazard intensity (HAZUS-MH, 2006). The damage
state corresponding to the setD can represent, for example, slight, moderate, extensive damage of
the system.

Several methods are available to obtain system fragility information. For example, Monte Carlo
simulation (Kafali and Grigoriu, 2007b; Shinozukaet al., 2003, 2000; Garcia and Soong, 2003a,b;
Song and Ellingwood, 1999a,b; Ellingwood, 2001; Hwang and Huo, 1994; Dumova-Jovanoska,
2000; Dimova and Elenas, 2002; Kafali and Grigoriu, 2003), reliability analysis (Kafali and
Grigoriu, 2007b; Chaudhuri and Chakraborty, 2004; Shinozukaet al., 1984; Gardoniet al., 2002a,
2003, 2002b; Singhal and Kiremidjian, 1996, 1998; Kafali and Grigoriu, 2004; Kafaliet al., 2006;
Kafali and Grigoriu, 2003) or a combination of the two (Hwang and Jaw, 1990; Choiet al., 2004;
Choi, 2003) can be used for obtaining structural/nonstructural components and systems fragilities.
System fragility can also be based on experimental results (Badillo-Almaraz, 2003) or expert
opinions (Hwanget al., 1997). Also, lognormal (HAZUS-MH, 2006; Shinozukaet al., 2003, 2000)
and extreme type distributions (O’Connor and Ellingwood, 1987; Anget al., 1996) have been used
for structural/nonstructural component fragilities.

We plot system fragility against the parametersφ = (φ1, . . . , φd) characterizing natural hazards
(Section 2.3.1), which completely define the probability law of the hazard at the system site so that
fragility becomes ad-dimensional surface defined over the set of parametersφ. Accordingly, we
denote the probability that the system responseZ(t) leaves the safe setD duringτ when subjected
to an event with parametersφ, that is, the system fragility, by

Pf (D;φ) = 1 − P [Z(t) ∈ D, 0 ≤ t ≤ τ | Φ = φ]. (3-1)

For example, seismic fragility of a system is plotted against the earthquake moment magnitude
m and the distancer from the seismic source to the system site and referred to as fragility
surfaces (Kafali and Grigoriu, 2007b, 2004, 2005a; Kafaliet al., 2006; Kafali and Grigoriu, 2003).
According to our model in Section 2.2.1(m, r) completely characterizes the ground acceleration
process at system site. Similarly, wind and wave fragilities of a system are plotted against the
mean wind velocitȳv and principal wind direction̄θ at system site which completely characterize
these hazards at the site (Sections 2.2.2 and 2.2.3). The complement of fragility in Equation 3-1,
1 − Pf (D;φ) is a measure of system reliability.
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The application of Equation 3-1 to calculate system fragility Pf (D;φ) is generally not practical
since the complete probability law of the response processZ(t) is required. We present two
methods for approximating the system fragility, (1) crossing theory of stochastic processes and
(2) Monte Carlo simulation. The method based on the crossing theory in Section 3.1 can be
used for calculating the fragility of linear single and multi degree of freedom systems under
stationary/nonstationary Gaussian input. The Monte Carlo method presented in Section 3.2 can
be applied to any system and/or input. We use artificial records(i) reduce the uncertainty in the
estimated fragility, that can be significant when dealing with actual records because the available
sample size is usually small, and(ii) ensure that all records considered in the analysis belong to the
same population of known probability law.

3.1 Fragility by crossing theory

The system fragility in Equation 3-1, that is, the probability that the system responseZ(t) leaves
the safe setD duringτ (Figure 3-2) when subjected to an event with parametersφ, coincides with

a sample of Z(t)

D-outcrossing 

D = safe set 

ı �ℝ n

FIGURE 3-2 D-outcrossing of response processZ(t).

the probability
Pf (D;φ) = 1 − P [(Z(0) ∈ D) ∩ (ND(τ) = 0)] (3-2)

that the initial responseZ(0) is in the safe sateD and that the number ofD-outcrossing ofZ(t) in
(0, τ), ND(τ) = 0, is zero. The fragility in Equation 3-2 can be approximated by

P̂f,ct(D;φ) = 1 − P [(Z(0) ∈ D)]P [(ND(τ) = 0)], (3-3)

assuming that the events{Z(0) ∈ D} and{ND(τ) = 0} are independent. In general, it is assumed
that the system is at rest so thatP [(Z(0) ∈ D)] = 1. If we further assume that theD-outcrossings
of Z(t) follow an inhomogeneous Poisson process with intensityνD(t) at time t Equation 3-3
becomes

P̂f,ct(D;φ) = 1 − exp

(

−
∫ τ

0
νD(t) dt

)

. (3-4)

If Z(t) is stationary with meanD-outcrossing rateνD, then Equation 3-4 becomes

P̂f,ct(D;φ) = 1 − exp(−νDτ). (3-5)

The meanD-outcrossings rate ofZ(t) at timet in Equation 3-4 is equal to

νD(t) = lim
∆t→0

E[ND(t + ∆t)] − E[ND(t)]

∆t
, (3-6)
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whereE[ND(t)] is the mean number ofD-outcrossings ofZ(t) in (0, t). The meanD-outcrossing
rate in Equation 3-5, whenZ(t) is a stationary process, is time invariant and equal to

νD =
E[ND(τ)]

τ
. (3-7)

The crossing theory provides a good approximation to the failure probability when the boundary of
D is far enough fromE[Z(t)], so thatD-outcrossings ofZ(t) become nearly independent ((Soong
and Grigoriu, 1993), Section 7.2).

For a real-valued, nonstationary, zero-mean, mean-square differentiable Gaussian processZ(t) the
meanD = [−z, z], z > 0, outcrossing rate in Equation 3-6 is given by (Soong and Grigoriu, 1993)

νD(t) = 2 σ̂(t)

[

φ

(

m̂(t)

σ̂(t)

)

+
m̂(t)

σ̂(t)
Φ

(

m̂(t)

σ̂(t)

)]

φ

(

z

σ(t)

)

1

σ(t)
, z > 0, (3-8)

whereσ2(t) is the variance ofZ(t), φ(·) andΦ(·) are the density and distribution functions of the
standard normal variable, respectively, and the mean and the variance of the conditional Gaussian
variableŻ(t)|Z(t) = z, in whichŻ(t) = dZ(t)/dt, are

m̂(t) = ṁ(t) +

(

∂ΓZZ(t, s)

∂t

∣

∣

∣

∣

t=s

1

σ2(t)

)

z, (3-9)

σ̂2(t) =
∂2ΓZZ(t, s)

∂t∂s

∣

∣

∣

∣

t=s

−
(

∂ΓZZ(t, s)

∂t

∣

∣

∣

∣

t=s

)2 1

σ2(t)
, (3-10)

respectively, withṁ(t) = E[Ż(t)] = 0 andΓZZ(t, s) = E[Z(t)Z(s)]. SinceZ(t) is mean-square
differentiable we have ((Soong and Grigoriu, 1993), Section 4.4.2, Theorem 4.9)

∂ΓZZ(t, s)

∂t
= E[Ż(t)Z(s)] ⇒ ∂ΓZZ(t, s)

∂t

∣

∣

∣

∣

t=s

= E[Ż(t)Z(t)], (3-11)

∂2ΓZZ(t, s)

∂t∂s
= E[Ż(t)Ż(s)] ⇒ ∂2ΓZZ(t, s)

∂t∂s

∣

∣

∣

∣

t=s

= E[Ż2(t)], (3-12)

hence Equations 3-9 and 3-10 become

m̂(t) = z
E[Ż(t)Z(t)]

σ2(t)
, (3-13)

σ̂2(t) = E[Ż2(t)] − (E[Ż(t)Z(t)])2

σ2(t)
. (3-14)

The fragility of a system with nonstationary Gaussian responseZ(t) can be approximated using
Equation 3-4 withνD(t) in Equation 3-8, withm̂(t) and σ̂2(t) in Equations 3-13 and 3-14,
respectively, andσ2(t) = E[Z2(t)].

For a real-valued, stationary, zero-mean, mean-square differentiable Gaussian processZ(t) with
one-sided spectral density functiongZZ(ω) the meanD = [−z, z], z > 0, outcrossing rate in
Equation 3-8 becomes (Soong and Grigoriu, 1993)

νD =
1

π

σ̇

σ
exp(− z2

2σ2
), (3-15)
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where

σ2 =

∫ ∞

0
gZZ(ω)dω, (3-16)

σ̇2 =

∫ ∞

0
ω2 gZZ(ω)dω, (3-17)

are the variances ofZ(t) and Ż(t) = dZ(t)/dt, respectively. The fragility of a system with
stationary Gaussian responseZ(t) can be approximated using Equation 3-5 withνD in Equation 3-
15.

3.2 Fragility by Monte Carlo simulation

The system fragility in Equation 3-1, that is, the probability that the system responseZ(t) leaves
the safe setD in (0, τ) when subjected to an event with parametersφ = (φ1, . . . , φd) can also be
approximated using Monte Carlo simulation method. The method involves three steps:

1. Generatens independent samples{f i(t)}, i = 1, . . . , ns, of the input processF (t) in
Figure 3-1 for each realizable value ofφ delivered by the activity matrix of the natural hazard
in Section 2.3.1, using the corresponding probability law in Section 2.2 and the simulation
algorithm in Section 2.4.

2. Calculate the system responsezi(t) to each samplef i(t), i = 1, . . . , ns, of F (t) in the
previous step, using a linear/nonlinear dynamic analysis.

3. Approximate the system fragility in Equation 3-1 for eachφ by

P̂f,mc(D;φ) =
# {zi(t) leavesD in (0, τ)}

ns
, (3-18)

whereτ is generally taken as the duration off i(t).

We note that the above algorithm can be modified by using in step 1 actual rather than synthetic
records, and process these records according to steps 2 and 3. As expected, the accuracy of the
resulting fragility depends on the number of available records. If this number is small, the collection
of actual records can be augmented with synthetic records.

3.3 Seismic fragility

Seismic fragility is the probability that a response of a structural, nonstructural, or geotechnical
system exceeds a critical level if subjected to seismic ground motions of specified intensities. We
base the intensity of the seismic ground motions on the parameters defining its probability law so
that φ in Equation 3-1 hasd = 2 components,φ1 = the earthquake moment magnitudem, and
φ2 = the distancer from the seismic source to the site. The seismic activity matrix in Section 2.3.4
provides realizable values of(m, r) at the system site.

The seismic ground acceleration at system site, generated by a seismic event with moment
magnitudem and source-to-site distancer, is modeled following Section 2.2.1 as

X(t) = e(t)Y (t), 0 ≤ t ≤ τ, (3-19)
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whereτ is the total duration of the seismic event in Equation 2-1,e(t) is a deterministic modulation
function in Equation 2-2 andY (t) is a zero-mean stationary Gaussian/non-Gaussian process with
probability law defined in Sections 2.2.1.1.1 and 2.2.1.1.2, respectively.

Table 3-1 summarizes methods used in this study for calculating fragility information for

TABLE 3-1 Seismic fragility analysis.

System

Input X(t) linear nonlinear

Gaussian crossing theory Monte Carlo

non-Gaussian Monte Carlo Monte Carlo

linear/nonlinear systems under Gaussian/non-Gaussian ground motions. For linear systems
subjected to non-Gaussian input we can also use a method based on the sampling theorem (Grigoriu
and Kafali, 2007) for calculating their fragility, this method is discussed in detail in Section 3.4.2.

3.3.1 Linear systems with Gaussian input

Methods based on crossing theory of stochastic processes presented in Section 3.1 are used for
calculating fragility surfaces for single and multi degree of freedom linear systems subjected
Gaussian seismic ground accelerations in Section 2.2.1.1.1, and numerical examples are provided.

3.3.1.1 Single degree of freedom systems

Let Z(t) be the relative displacement of a linear single degree of freedom oscillator with natural
frequencyω0 and damping ratioζ under the ground accelerationX(t) in Equation 3-19, in which
the probability law ofY (t) is defined in Section 2.2.1.1.1. The displacement processZ(t) satisfies
the equation

Z̈(t) + 2ζω0Ż(t) + ω2
0Z(t) = −X(t) = −e(t)Y (t), (3-20)

with initial conditionsZ(0) = Ż(0) = 0, whereŻ(t) = dZ(t)/dt andZ̈(t) = d2Z(t)/dt2. Let

Zτ = max
0≤t≤τ

(|Z(t)|) (3-21)

be the maximum of the absolute value of the relative displacement in[0, τ ], with τ in Equation 3-
19. The response and the limit state in our analysis are the maximum relative displacementZτ in
Equation 3-21 and a critical displacementz, respectively.

Denote by

Pf (z;m, r) = P (Zτ > z |m, r), (3-22)

the probability thatZτ exceeds a limit statez if the oscillator is subjected to a seismic ground
accelerationX(t) with parameters(m, r).

55



3.3.1.1.1 Stationary case:

Supposee(t) = 1, t ≥ 0 in Equation 3-20 and consider the steady-state responseZss(t). The
system probability in Equation 3-22 can be approximated by Equation 3-5 with meanD-outcrossing
rate in Equation 3-15 and safe setD = [−z, z]. Following Equation 3-15 the meanD = [−z, z]
outcrossing rate ofZss(t) is

νD =
1

π

σ̇Zss

σZss

exp(− z2

2σ2
Zss

), (3-23)

whereσ2
Zss

=
∫∞
0 gZssZss

(ω)dω andσ̇2
Zss

=
∫∞
0 ω2 gZssZss

(ω)dω are the variances ofZss(t) and
Żss(t) = dZss(t)/dt, respectively, andgZssZss

(ω) is the one-sided spectral density function of
Zss(t),

gZssZss
(ω) = |hZss

(ω)|2 gY Y (ω;m, r), (3-24)

where

|hZss
(ω)| =

1/ω2
0

[

(1 − (ω/ω0)2)
2 + (2ζω/ω0)2

]1/2
(3-25)

is the transfer function betweenX(t) andZss(t) (Soong and Grigoriu, 1993).

The numerical example considers steady-state relative displacement of linear oscillators with
duration τ = 10 seconds to strong ground accelerations representing independent samples of
stationary Gaussian ground acceleration processX(t) with one-sided spectral density function
in Equation 2-3. We note that the specific barrier model delivers the duration of ground motion
(Halldorssonet al., 2002), but we set somewhat arbitrary,τ = 10 seconds irrespective of(m, r).
Figures 3-3 and 3-4 show fragility surfaces for two linear oscillators located at a site in California
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FIGURE 3-3 Fragility for linear oscillator with low damping ( ζ = 2%).

on stiff soil (NEHRP site class D, (FEMA 273, 1997)) for the displacement limit statez = 3 cm.
Both oscillators haveω0 = 5.97 rad/sec but their damping ratios areζ = 2% andζ = 15%. The
seismic activity matrix in Figure 2-13 provides realizable values of(m, r) at the system site. As
expected the system with higher damping ratio yields lower failure probabilities as its response will
be smaller compared to that of the system with lower damping ratio.
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FIGURE 3-4 Fragility for linear oscillator with high damping (ζ = 15%).

3.3.1.1.2 Nonstationary case:

The system probability in Equation 3-22 can be approximated by Equation 3-4 with meanD-
outcrossing rate in Equation 3-8 and safe setD = [−z, z]. The meanD-outcrossing rate in
Equation 3-8 is a function of̂m(t) and σ̂2(t) in Equations 3-13 and 3-14, respectively, and
σ2(t) = E[Z2(t)]. Accordingly, E[Z2(t)], E[Ż2(t)] and E[Ż(t)Z(t)] need to be obtained to
calculate system fragility in Equation 3-4.

The state space version of Equation 3-20 is

[

Ż1(t)

Ż2(t)

]

=

[

0 1

−ω2
0 −2ζ0ω0

] [

Z1(t)

Z2(t)

]

+

[

0

−1

]

X(t), (3-26)

in which Z1(t) = Z(t) andZ2(t) = Ż(t) andX(t) is defined in Section 3.3.1.1. LetZ(t) =
[Z1(t), Z2(t)]

T , then the evolution of the system and excitation states can be represented by

Ż(t) = a Z(t) + g X(t), (3-27)

whereg = [0,−1]T and

a =

[

0 1

−ω2
0 −2ζ0ω0

]

. (3-28)

The solution has the form

Z(t) =

∫ t

0
Φ(t − τ)g X(s)ds, (3-29)

where

Φ(t) = e−ζω0t

[

cos(βt) + ζω0

β sin(βt) 1
β sin(βt)

−ω0
2

β sin(βt) cos(βt) − ζω0

β sin(βt)

]

(3-30)
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with β = ω0
2
√

1 − ζ2. The correlation function ofZ(t) can be expressed by ((Soong and Grigoriu,
1993), Section 5.2.1, Example 5.5)

Γ(t, s) = E[Z(t)Z(s)T ], t ≥ s (3-31)

= E

[
∫ t

0
Φ(t − u)g X(u)du

∫ s

0
X(v)gT

Φ
T (s − v)dv

]

=

∫ t

0
du

∫ s

0
dv Φ(t − u)g E[X(u)X(v)]gT

Φ
T (s − v)

=

∫ t

0
du

∫ s

0
dv Φ(t − u)ggT

Φ
T (s − v) e(u)e(v)E[Y (u)Y (v)]

=

∫ t

0
du

∫ s

0
dv

∫ ∞

0
dω
[

Φ(t − u)ggT
Φ

T (s − v)e(u)e(v)

× exp(jω(v − u))gY Y (ω)] ,

sinceX(t) = e(t)Y (t) andE[Y (u)Y (v)] =
∫∞
0 exp(jω(v − u))gY Y (ω)dω, with j =

√
−1 and

gY Y (ω) given by Equation 2-3.

It is difficult to numerically integrate Equation 3-31 to obtainE[Z2(t)], E[Ż2(t)] andE[Ż(t)Z(t)],
which are required to calculate the meanD-crossing rate ofZ(t). Instead we adopt the following
method.

The seismic ground acceleration processX(t) in Equation 3-19 is approximated by

X̂(t) = σY e(t)Q̈(t), (3-32)

wheree(t) is the modulation function in Equation 2-2,σ2
Y =

∫∞
0 gY Y (ω)dω is the variance of the

zero-mean stationary Gaussian processY (t) with one-sided spectral density functiongY Y (ω) in
Equation 2-3, and̈Q(t) is a zero-mean, unit-variance stationary Gaussian process with one-sided
spectral density function of the form (Clough and Penzien, 1975)

gQ̈Q̈(ω) = g0 |h1(ω)|2 |h2(ω)|2, (3-33)

with

|h1(ω)|2 =
1 + (2ζ1ω/ω1)

2

(1 − (ω/ω1)2)
2 + (2ζ1ω/ω1)2

, (3-34)

|h2(ω)|2 =
1 + (2ζ2ω/ω2)

2

(1 − (ω/ω2)2)
2 + (2ζ2ω/ω2)2

. (3-35)

It is assumed that the correlation functions ofQ̈(t) andY (t)/σY nearly coincide, so thatgQ̈Q̈(ω) ≃
gY Y (ω)/σ2

Y , and the variance of̈Q(t) is 1. The assumption is adequate for some types of correlation
functions ((Grigoriu, 1995), Figure 3.1, page 48).

The parameters defininggQ̈Q̈(ω), namely,g0, ω1, ζ1, ω2 andζ2, are obtained by minimizing the
objective function

minimize
g0,ω1,ζ1,ω2,ζ2

∫ ∞

0
(gQ̈Q̈(ω) − gY Y (ω)/σ2

Y )w(ω) dω, (3-36)
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subject to the constraintsg0, ω1, ω2 > 0, and 0 < ζ1, ζ2 < 1. In Equation 3-36,w(ω) =
gY Y (ω)/maxω(gY Y (ω)) is a weighting function. Figure 3-5 shows the spectral density functions
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FIGURE 3-5 Spectral density functions ofQ̈(t) and Y (t)/σY .

of Q̈(t) andY (t)/σY for an earthquake with parameters(m = 8, r = 25 km). The parameters
defininggQ̈Q̈(ω) areg0 = 3.4, ω1 = 2.4, ω2 = 10, ζ1 = 0.4, ζ2 = 0.99. Note that the parameters
g0, ω1, ω2, ζ1, ζ2 in gQ̈Q̈(ω), ande(t) are defined by the moment magnitude of the earthquakem
and the source-to-site distancer.

Consider a linear single degree of freedom oscillator with natural frequencyω0 and damping ratio
ζ0 subjected strong seismic ground acceleration processX̂(t) given by Equation 3-32. The equation
of motion of the oscillator is

Z̈(t) + 2ζω0Ż(t) + ω2
0Z(t) = −X̂(t) = −σY e(t)Q̈(t), (3-37)

with initial conditionsZ(0) = Ż(0) = 0. The one-sided spectral density function ofQ̈(t) is
given by Equation 3-33. The form of the spectral density is selected so thatQ̈(t) can be obtained
by filtering a Gaussian white noise processW (t) with intensityg0 twice, using two linear single
degree of freedom systems with parametersω1, ζ1 andω2, ζ2, respectively. Accordingly,

P̈ (t) + 2ζ1ω1Ṗ (t) + ω2
1P (t) = W (t), (3-38)

Q̈(t) + 2ζ2ω2Q̇(t) + ω2
2Q(t) = P̈ (t) − W (t). (3-39)

Denote byh1(ω) the transfer function betweenW (t) andP̈ (t) − W (t) and byh2(ω) the transfer
function between̈P (t) − W (t) andQ̈(t), so that

gP̈−W,P̈−W (ω) = |h1(ω)|2 gWW (ω), (3-40)

gQ̈Q̈(ω) = |h2(ω)|2, gP̈−W,P̈−W (ω) = g0 |h1(ω)|2 |h2(ω)|2, (3-41)

sincegWW (ω) = g0. Note that Equations 3-33 and 3-41 are the same.
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Let Z(t) = [Z1(t), Z2(t), Z3(t), Z4(t), Z5(t), Z6(t)]
T , with Z1(t) = Z(t), Z2(t) = Ż(t),

Z3(t) = Q(t), Z4(t) = Q̇(t), Z5(t) = P (t), Z6(t) = Ṗ (t), and denoteB(t) the standard
Weiner process with independent incrementsdB(t) having zero mean and variancedt. From
Equations 3-37-3-39 the augmented state of the oscillator with the excitation satisfies the Itô
differential equations

dZ(t) = a(t)Z(t) dt + g dB(t), (3-42)

in whichdZ(t) is the increment ofZ(t) in dt, g = [0, 0, 0, 0, 0,
√

πg0]
T , and

a(t) =





















0 1 0 0 0 0

−ω2
0 −2ζ0ω0 ω2

2σY e(t) 2ζ2ω2σY e(t) ω2
1σY e(t) 2ζ1ω1σY e(t)

0 0 0 1 0 0

0 0 −ω2
2 −2ζ2ω2 −ω2

1 −2ζ1ω1

0 0 0 0 0 1

0 0 0 0 −ω2
1 −2ζ1ω1





















, (3-43)

so thatZ(t) is a diffusion process with time dependent linear drift and constant diffusion.

Denote the correlation function ofZ(t) by

Γ(t, s) = E[Z(t)Z(s)T ], t ≥ s. (3-44)

The correlation matrixΓ(t, s), t ≥ s of the linear system defined in Equation 3-43 driven with the
white noise can be obtained by solving ((Soong and Grigoriu, 1993), Section 5.2.1 Equations 5.58
and 5.59)

∂

∂t
Γ(t, s) = a(t)Γ(t, s), t ≥ s, Γ(s, s) = Γ(s) (3-45)

and
d

dt
Γ(t) = a(t)Γ(t) + Γ(t)a(t)T + ggT , t ≥ 0, Γ(0) = Γ0. (3-46)

The initial conditions are deterministic and henceΓ0 = 0.

We solve Equation 3-46 by numerical integration. Denote the(k, l) component ofdΓ(t)/dt at
time stepi by γ̇kl,i, and assumėγkl,i ≃ (γkl,i+1 − γkl,i)/∆t, so thatΓ̇i ≃ (Γi+1 − Γi)/∆t,
whereΓi = Γ(t) andΓ̇i = dΓ(t)/dt at time stepi and∆t is the length of the time step. Hence
Equation 3-46 becomes

Γi+1 = Γi + ∆t (ai Γi + Γi ai
T + ggT ), Γ0 = 0, i = 0, 1, . . . , (3-47)

Figure 3-6 shows the nonstationary correlation functionsE[Z2(t)], E[Ż(t)Z(t)] andE[Ż2(t)],
corresponding to (1,1), (1,2) and (2,2) components ofΓ(t), respectively, of the response of a linear
oscillator with natural frequencyω0 = 5.97 rad/sec and damping ratioζ = 0.02, subjected to an
earthquake with parameters(m = 8, r = 25 km), using a time step∆t = 0.001 sec.

We recall that mean[−z, z]-outcrossing rate ofZ(t) in Equation 3-8 is a function of̂m(t) andσ̂2(t)
in Equations 3-13 and 3-14, respectively, andσ2(t), which can be calculated based onE[Z2(t)],
E[Ż(t)Z(t)] andE[Ż2(t)], and the system fragility can be approximated using Equation 3-4 with
νD(t) in Equation 3-8.

Figure 3-7 shows the mean[−z, z]-outcrossing rate in Equation 3-8, forz = 1.5 cm, of the relative
displacement responseZ(t) of a linear oscillator with natural frequencyω0 = 5.97 rad/sec and
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FIGURE 3-6 Nonstationary correlation functions of the responseZ(t).
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FIGURE 3-7 Mean crossing rate ofZ(t).

damping ratioζ = 0.02, subjected to an earthquake with parameters(m = 8, r = 25 km). The
stationary mean[−z, z]-outcrossing rate in Equation 3-23 of the steady-state relative displacement
response is 1.8072. Note that this value is consistent with the results shown in Figure 3-7.

Figures 3-8 and 3-9 show fragility surfaces for the two linear oscillators in Figures 3-3 and 3-4
for the same displacement limit statez = 3 cm. We note that the fragilities obtained using the
stationary mean crossing rate in Equation 3-23 and those calculated using the nonstationary mean
crossing rate in Equation 3-8 are similar and somewhat different for the linear oscillator with high
and low damping, respectively. For the system with high damping the response reaches stationarity
at τ = 10 sec sinceτ exceeds 3 periods,3(2π/ω0) = 3.16 sec ((Soong and Grigoriu, 1993),
Example 5.5), so that fragilities based on stationary and nonstationary crossing rates, Figures 3-4
and 3-9, respectively, are similar. On the other hand, for the system with low damping the response
never reaches stationarity sinceτ = 10 sec is smaller than 20 periods,20(2π/ω0) = 21.05 sec,
accordingly, nonstationary crossing rates are smaller than the stationary ones so that fragilities
based on nonstationary crossing rates are smaller (Figures 3-3 and 3-8).
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FIGURE 3-8 Fragility for linear oscillator with low damping ( ζ = 2%).
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FIGURE 3-9 Fragility for linear oscillator with high damping (ζ = 15%).

We note that Equation 3-45 can be solved by numerical integration. We can approximate
∂Γ(t, s)/∂t by (Γ(t + ∆t, s) − Γ(t, s))/∆t, hence using Equation 3-45 we haveΓ(t + ∆t, s) =
Γ(t, s)+∆t a(t)Γ(t, s), t ≥ s. We can then fix a value fors and obtainΓ(t+∆t, s) using the initial
conditionΓ(s, s) = Γ(s) obtained from Equation 3-47. This numerical integration scheme requires
very high computer memory for∆t = 0.001. However,Γ(t, s) is not required for calculating the
crossing rate ofZ(t). Crossing rate calculations are based only on∂Γ(t, s)/∂t and∂2

Γ(t, s)/∂t∂s
at t = s.
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3.3.1.2 Multi degree of freedom systems

Consider a multi degree of freedom system representing a building structure and single degree of
freedom systems attached to it at different points representing nonstructural components. Suppose
that the supporting structure and the attached nonstructural components are linear and that the
seismic ground acceleration at system site is modeled by a zero-mean, stationary Gaussian process
X(t) (Section 2.2.1.1.1), that is,e(t) = 1, t ≥ 0 in Equation 3-20 and consider the steady-
state response of the structural and nonstructural systems. In this section we present a method
based on crossing theory for calculating fragility surfaces of such nonstructural systems. First,
we obtain probability law of the structural system response to ground motions at the points where
the nonstructural components are attached. Second, we obtain probability law of the nonstructural
system response to floor motions, that is, to structural response at the attachment points. Finally,
we calculate nonstructural system fragility by the crossing theory approach.

A simplified mathematical model is developed for a hospital building constructed in 1970’s and
located in Southern California, referred to as the MCEER Demonstration Hospital Project, WC70.
An illustration of the WC70 model with a nonstructural system (NS) consisting of two components
C1 andC2 attached to it is shown in Figure 3-10. It is assumed that the structure(i) is linear elastic

joint k

joint l 5

10

19

24

x

C2

C1

1

FIGURE 3-10 Illustration of the system.

and does not fail,(ii) has a proportional damping, and that(iii) translation in the weak,x, and the
strong,y directions are decoupled,(iv) cascade analysis applies, that is, the nonstructural system
does not affect the dynamics of the supporting structure, and(v) the direction of seismic ground
motion coincides with the weak direction of the structure. The first 12 mode shapesφi, modal
frequencies̄ωi, modal participation factorsΓx,i andΓy,i in x andy directions, respectively, are
calculated using a three dimensional model of the structure. Modal properties of the structure
are shown in Table 3-2. It is assumed that all modes have the same damping ratio ofζ̄i = 3%,
i = 1, . . . , 12. The non-zero modal participation factors in thex andy directions correspond to
modes (1, 4, 7, 10) and modes (2, 5, 9, 12), respectively.

The nonstructural systemNS consists of two componentsC1 andC2, a water tank and a power
generator located at the roof (joint-24) and at the first floor (joint-5), respectively (Figure 3-10). It
is assumed that(i) the components are not interacting,(ii) C1 is drift sensitive andC2 is velocity
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TABLE 3-2 Modal properties of WC70.

Mode ω̄i Γx,i Γy,i φi

1 7.22 15.83 0.00 translation -x

2 7.68 0.00 15.85 translation -y

3 8.01 0.00 0.00 rotation

4 20.98 -6.00 0.00 translation -x

5 23.03 0.00 5.97 translation -y

6 23.06 0.00 0.00 rotation

7 37.41 3.47 0.00 translation -x

8 39.95 0.00 0.00 rotation

9 41.17 0.00 -3.49 translation -y

10 56.81 2.09 0.00 translation -x

11 58.96 0.00 0.00 rotation

12 62.34 0.00 2.03 translation -x

sensitive, and(iii) the nonstructural system fails if one or its components fails. The components
C1 andC2 are modeled as linear single degree of freedom systems with natural frequencyω0,i and
the damping ratioζi, i = 1, 2. Properties of the nonstructural components and the limit statesd1

andd2 defined for their relative displacement responseR1(t) and relative velocity responsėR2(t)
for componentsC1 andC2, respectively, are summarized in Table 3-3.

TABLE 3-3 Limit states and properties of the components.

Component Frequencyω0,i (rad/sec) Damping ratioζi Limit statedi

1 8.0 0.02 15 cm (disp.)

2 20.0 0.03 30 cm/sec (vel.)

3.3.1.2.1 Structural response at attachment points:

Following the cascade analysis assumption, the equation of motion of a multi degree of freedom
structural system subjected to seismic ground accelerationX(t) is given by

mZ̈(t) + cŻ(t) + kZ(t) = −m1X(t), 0 ≤ t ≤ τ, (3-48)

with initial conditionsZ(0) = Ż(0) = 0, whereZ(t) is the relative displacement response inx
direction,1 = [1, . . . , 1]T , τ is the duration of the ground motion in Equation 3-19, andm, c andk

are the mass, stiffness and the damping matrices of the structural system, respectively. The relative
displacement response of the system can be written as

Z(t) = ΦY(t), (3-49)
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whereΦ is a matrix containing the mode shapes as columns andY(t) is a vector containing modal
responses. Using the orthogonality of the mode shapes we can write the equation of motion in
modal coordinates as,

Ÿi(t) + 2ζ̄iω̄iẎi(t) + ω̄2
i Yi(t) = −ΓiX(t), i = 1, . . . , n, (3-50)

wheren = 12 is the number of modes,Yi(t) is the relative displacement response of modei, and
ω̄i, ζ̄i andΓi (the subscriptx is dropped since the analysis is in thex direction only) are the natural
frequency, damping ratio and the modal participation factor of modei in Table 3-2, respectively.
Solution of Equation 3-50 is given by the Duhamel’s Integral,

Yi(t) = −Γi

∫ ∞

−∞
hi(τ)X(t − τ)dτ , (3-51)

wherehi(τ) = (1/ω̄d,i) exp (−ζ̄iω̄iτ) sin (ω̄d,iτ), in which ω̄d,i = ω̄i

√

1 − ζ̄2
i . Denote thekth

coordinate of thejth mode byφj(k). The relative displacement response of jointk can be written
as

Zk(t) =

n
∑

j=1

φj(k)Yj(t) = −
n
∑

j=1

φj(k)Γx,j

∫ ∞

−∞
hj(τ)F (t − τ)dτ . (3-52)

The steady-state responseZ(t) is a stationary Gaussian vevtor process since it is assumed that the
structural system is linear andX(t) is a Gaussian process. The mean responseE[Z(t)] is zero since
E[X(t)] = 0. The correlation function between the responses at jointsk andl is

rZkZl
(t, s) = E[Zk(t)Zl(s)] =

n
∑

i,j=1

φi(k)φj(l)E[Yi(t)Yj(s)] (3-53)

=
n
∑

i,j=1

φi(k)φj(l)ΓiΓj

∫ ∞

−∞

∫ ∞

−∞
hi(u)hj(v)E[X(t − u)X(s − v)]dudv,

and depends only onτ = t − s sincerXX(t − u, s − v) = E[X(t − u)X(s − v)] is equal to
rXX(t− u, s− v) = rXX(t− u− (s− v)) = rXX(τ − u + v) by the stationarity ofX(t). Hence,
the correlation between the displacementsZk(t) andZl(t + τ) at jointsk andl becomes

rZkZl
(τ) =

n
∑

i,j=1

φi(k)φj(l)ΓiΓj

∫ ∞

−∞

∫ ∞

−∞
hi(u)hj(v)rXX (τ − u + v)dudv. (3-54)

Spectral density between displacements at jointsk andl is (Soong and Grigoriu, 1993)

sZkZl
(ω) =

1

2π

∫ ∞

−∞
e−hωτrZkZl

(τ)dτ , h =
√
−1. (3-55)

Replacing Equation 3-54 in Equation 3-55 we get

sZkZl
(ω) = sXX(ω)

n
∑

i,j=1

φi(k)φj(l)ΓiΓj

∫ ∞

−∞

∫ ∞

−∞
hi(u)hj(v)e−hω(u−v)dudv

= sXX(ω)

n
∑

i,j=1

φi(k)φj(l)ΓiΓjHi(ω)H∗
j (ω), (3-56)
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wheresXX(ω) is the Fourier transform ofrXX(τ),

Hi(ω) =
1

ω̄2
i − ω2 + 2hζ̄iω̄iω

, h =
√
−1, (3-57)

is the transfer function between the base accelerationX(t) and the relative displacement response
Yi(t) of mode i, and H∗

j (ω) is the complex conjugate ofHj(ω). Spectral densities of the
relative velocity and acceleration responses are given bysŻkŻl

(ω) = ω2sZkZl
(ω) andsZ̈kZ̈l

(ω) =

ω4sZkZl
(ω), respectively.

The spectral density between the absolute acceleration responsesGk(t) andGl(s) at jointsk andl
can be written as

sGkGl
(ω) = αkαlsXX(ω) − sXX(ω)

n
∑

i=1

Γi[αkφi(l)H̃
∗
i (ω) + αlφi(k)H̃i(ω)]

+ sXX(ω)

n
∑

i,j=1

φi(k)φj(l)ΓiΓjH̃i(ω)H̃∗
j (ω) , (3-58)

whereαk = 1 −
∑n

j=1 φj(k)Γj ,

H̃i(ω) =

(

ζ̄2
i ω̄2

i − ω̄2
d,i +

2ζ̄iω̄iω̄
2
d,i

ζ̄iω̄i + hω

)

Hi(ω) − 2ζ̄iω̄i

ζ̄iω̄i + hω
(3-59)

with Hi(ω) in Equation 3-57 andh =
√
−1.

Means and correlations, namely the second moment properties, define the relative displacement and
absolute acceleration response processes completely.

3.3.1.2.2 Fragility of nonstructural systems:

Equation of motion for componentCi is

R̈i(t) + 2ζiω0,iṘi(t) + ω2
0,iRi(t) = −Gk(t), (3-60)

where Ri(t) is the relative displacement response ofCi for i = 1, 2, Gk(t) is the absolute
acceleration response of the structural system at jointk, andk is 24 and 5 fori equals1 and2,
representing the roof and the first floor, respectively. Properties of the nonstructural components
and the limit states defined for their relative displacement responseR1(t) and relative velocity
responseṘ2(t) for componentsC1 andC2, respectively, are summarized in Table 3-3.

Nonstructural system fragility can be estimated using the mean crossing rate of the system response
following Section 3.1. Mean crossing rate can be calculated in closed form for stationary Gaussian
responses and rectangular safe sets. For a system consisting of linear components an upper bound
for the mean crossing rate of the system can be obtained using the mean crossing rates of its
components. The fragility of the nonstructural system, that is, the probability that the (stationary)
system response processR(t) = [R1(t) Ṙ2(t)]

T leaves the safe setD = (−d1, d1) × (−d2, d2) in
time interval of lengthτ (Figure 3-11), is given by,

P [NS fails] = 1 − P [NS survives] = 1 − P [C1 survives, C2 survives]

= 1 − P [R(t) ∈ D, t ∈ [0, τ ]] = 1 − P [R(0) ∈ D]P [ND(τ) = 0]

≃ 1 − exp (−νD τ), (3-61)
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FIGURE 3-11 D-outcrossing of response processR(t).

assuming that the system is at rest att = 0 so thatP [R(0) ∈ D] = 1, whereτ is the duration of
ground motion in Equation 3-48,ND(τ) is the number ofD-outcrossings ofR(t) in τ andνD is
the mean outcrossing rate ofR(t) with respect toD.

Denote byνD1
the mean rate at which the stationary Gaussian processR1(t) passes out of the safe

setD1 = (−d1, d1). Following Section 3.1 the mean crossing rate ofR1(t) is given by

νD1
=

1

π

σ̇1

σ1
exp

(

− d2
1

2σ2
1

)

, (3-62)

whereσ2
1 =

∫∞
0 gR1R1

(ω)dω andσ̇2
1 =

∫∞
0 ω2 gR1R1

(ω)dω are the variances ofR1(t) andṘ1(t),
respectively, andgR1R1

(ω) is the one-sided spectral density function ofR1(t),

gR1R1
(ω) = |hR1

(ω)|2 gGkGk
(ω), (3-63)

in which

|hR1
(ω)| =

1/ω2
0,1

[

(1 − (ω/ω0,1)2)
2 + (2ζ1ω/ω0,1)2

]1/2
(3-64)

is the transfer function betweenR1(t) andGk for k = 24. (Soong and Grigoriu, 1993). The mean
crossing rate ofṘ2(t) can be obtained in a similar way. Accordingly,

νD2
=

1

π

σ̈2

σ̇2
exp

(

− d2
2

2σ̇2
2

)

, (3-65)

where σ̇2
2 =

∫∞
0 ω2 gR2R2

(ω)dω and σ̈2
2 =

∫∞
0 ω4 gR2R2

(ω)dω are the variances oḟR2(t) and
R̈2(t), respectively andgR2R2

(ω) is the one-sided spectral density function ofR2(t),

gR2R2
(ω) = |hR2

(ω)|2 gGkGk
(ω), (3-66)

in which

|hR2
(ω)| =

1/ω2
0,2

[

(1 − (ω/ω0,2)2)
2 + (2ζ2ω/ω0,2)2

]1/2
(3-67)

is the transfer function betweenR2(t) andGk for k = 5.
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The fragility ofCi can be approximated by (see Section 3.1)

P [Ci fails] ≃ 1 − exp (−νDi
τ), (3-68)

with τ in Equation 3-48 andνDi
in Equation 3-65 and 3-65, forC1 andC2, respectively.

It can be shown that the meanD-outcrossing rateνD of R(t) can be bounded by (Venezianoet al.,
1977)

ν̂D = νD1
+ νD2

≥ νD. (3-69)

and the fragility of the nonstructural systemNS is can be approximated by Equation 3-61 withν̂D

in Equation 3-69 andτ in Equation 3-48.

The calculation of fragility surfaces by the crossing theory involves five steps:

- Select earthquake moment magnitude and source-to-cite distance(m, r) and compute
spectral density of ground acceleration at the site using Equation 2-3. The seismic activity
matrix at the system site delivers the realizable values of(m, r).

- Calculate spectral densities of the absolute acceleration responses at the attachment points
(joints 5 and 24) using Equation 3-58.

- Calculate the spectral densities of the linear responses of nonstructural components using the
transfer functions in Equations 3-64 and 3-67.

- Calculate the mean crossing rate of the nonstructural components using Equations 3-65 and 3-
65, and use the upper bound on the mean crossing rate in Equation 3-69 for the nonstructural
system.

- Estimate the fragility of the components and the overall system using Equations 3-68 and
3-61, respectively.

The numerical example considers steady-state responses of the components with durationτ = 10
seconds to strong ground accelerations representing independent samples of stationary Gaussian
ground acceleration processX(t) with one-sided spectral density function in Equation 2-3. We
note that the specific barrier model delivers the duration of ground motion (Halldorssonet al.,
2002), but we set somewhat arbitrary,τ = 10 seconds irrespective of(m, r). Figures 3-12, 3-13
and 3-14 shows the fragilities of the componentsC1 andC2 and an upper bound for the system
fragility for the nonstructural systemNS defined previously, respectively. The supporting structure,
that is, the WC70 system in Figure 3-10, is located at the site in Figure 3-3, and the seismic activity
matrix in Figure 2-13 provides realizable values of(m, r) at this site.

3.3.2 General systems and input

Methods based on Monte Carlo simulation presented in Section 3.2 are used for calculating fragility
surfaces for single and multi degree of freedom linear/nonlinear systems subjected Gaussian/non-
Gaussian seismic ground accelerations in Section 2.2.1, and numerical examples are provided.

3.3.2.1 Single degree of freedom systems.

Let Z(t) be the relative displacement of a nonlinear single degree of freedom oscillator under the
Gaussian ground accelerationX(t) in Equation 3-19, in which the probability law ofY (t) is defined
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FIGURE 3-12 Fragility for linear C1.
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FIGURE 3-13 Fragility for linear C2.

in Section 2.2.1.1.1. The displacement processZ(t) satisfies the equations

Duffing: Z̈(t) + 2ζω0Ż(t) + ω2
0(Z(t) + εZ(t)3) = −X(t), (3-70)

Bouc-Wen: Z̈(t) + 2ζω0Ż(t) + ω2
0(ρZ(t) + (1 − ρ)W (t)) = −X(t) (3-71)

Ẇ (t) = γ Ż(t) − α |Ż(t)| |W (t)|n−1 W (t) − β Ż(t) |W (t)|n,

for the Duffing and Bouc-Wen oscillators, whereω0 andζ are the natural frequency in rad/sec and
the damping ratio of the underlying linear oscillator, that is, Duffing oscillator withε = 0 and
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FIGURE 3-14 Fragility for linear NS.

Bouc-Wen oscillator withρ = 1, W (t) is the hysteretic displacement defined by the Bouc-Wen
model (Wen, 1976), andε, ρ, α, β, γ andn are constants. Numerical results are forω0 = 5.97
rad/sec,ζ = 2%, ε = −0.0015/cm2, ρ = 0.1, γ = 1, α = β = 0.5/cmn andn = 1 (Wen, 1976;
Soong and Grigoriu, 1993). Suppose that the oscillators are located at the site in Figure 3-3.

Let
Zτ = max

0≤t≤τ
(|Z(t)|) (3-72)

be the maximum of the absolute value of the relative displacement in[0, τ ], with τ in Equation 3-19.

Calculation of fragility surfaces by Monte Carlo simulation, for the Duffing and Bouc-Wen
oscillators involves three steps:

1. Generatens independent samples{xi(t)}, i = 1, . . . , ns, of the ground acceleration process
X(t) for each realizable value of(m, r) delivered by the seismic activity matrix in Figure 2-
13, using the corresponding expressions ofe(t) and gY Y (ω) in Equations 2-2 and 2-3,
respectively, and the method described in Section 2.4.1.

2. Calculate the system responsezi(t) to each samplexi(t) of X(t) in the previous step, using
a nonlinear dynamic analysis (solving Equations 3-70 or 3-71).

3. ApproximatePf (z;m, r) in Equation 3-22 for each(m, r) by

P̂f,mc(z;m, r) =
# {zτ,i > z}

ns
, (3-73)

wherez is the displacement limit state andzτ,i = max0≤t≤τ (|zi(t)|), i = 1, . . . , ns.

Figures 3-15 and 3-16 show results as in Figure 3-3 for nonlinear Duffing and Bouc-Wen
oscillators, respectively, with parameters given following Equations 3-70 and 3-71. The results
are obtained by Monte Carlo method usingns = 100 samples for each(m, r).
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FIGURE 3-15 Fragility for Duffing oscillator.
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FIGURE 3-16 Fragility for Bouc-Wen oscillator.
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3.3.2.1.1 Effect of analysis method on results:

We can compare results obtained by the two methods, that is, based on crossing theory and Monte
Carlo simulation, using linear systems. Figures 3-17 and 3-18 show fragility surfaces for the
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FIGURE 3-17 Fragility for linear oscillator with low damping (ζ = 2%).
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FIGURE 3-18 Fragility for linear oscillator with high dampin g (ζ = 15%).

two linear oscillators in Figures 3-8 and 3-9, obtained by Monte Carlo simulation method for the
displacement limit statez = 3 cm. As expected, fragilities by Monte Carlo method (Figures 3-17
and 3-18) and crossing theory (Figures 3-8 and 3-9) are similar and somehow different for values
of (m, r) corresponding to low and high failure probabilities, respectively. For example, Table 3-4
gives failure probabilities of the linear oscillator in Figure 3-8 forz = 3 cm and three values of
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TABLE 3-4 Comparison of fragilities from Monte Carlo method and crossing theory.

Failure probability

Earthquake Monte Carlo Crossing theory Distancezσ

(m=7, r=100 km) 0.0018 0.0019 3.99

(m=6, r=25 km) 0.0120 0.0123 3.18

(m=7, r=25 km) 0.8660 0.9998 1.12

(m, r). Table 3-4 also gives the scaled distanceszσ = (z − E [Z(t)])/std[Z(t)], whereE [Z(t)]
and std[Z(t)] are the mean and standard deviation ofZ(t) corresponding to the strong motion part
of the ground accelerations, for the selected values ofz and(m, r). We note that crossing theory
provides a conservative approximation of failure probability for values of(m, r) corresponding to
low values ofzσ. Accordingly, the mean annual probability of failure based on crossing theory will
also be conservative.

3.3.2.1.2 Effect of system characteristics on results:

Considering that the nonlinear models in Equations 3-70 and 3-71 represent simple oscillators with
dampers, we can assess the performance of these dampers comparing their fragilities in Figures 3-
15 and 3-16 by the fragility of the underlying linear model in Figure 3-17. For instance the
Duffing model does not provide any beneficial effects since the fragilities in Figures 3-15 and
3-17 are almost identical. On the other hand, the Bouc-Wen model, system with hysteresis which is
relevant in earthquake engineering, provides significant benefits since the fragility of the Bouc-Wen
oscillator in Figure 3-16 is considerably lower than that in Figure 3-17.

3.3.2.1.3 Effect of input characteristics on results:

We can also compare fragilities obtained by Gaussian and non-Gaussian ground accelerations.
Suppose that the linear oscillator in Figure 3-18 is located at a site in California on generic
rock (NEHRP site class B, (FEMA 273, 1997)) and subjected to Gaussian and non-Gaussian
ground accelerations in Sections 2.2.1.1.1 and 2.2.1.1.2, respectively. Samples of Gaussian/non-
Gaussian ground accelerations at system site can be generated following Section 2.4.1. Figure 3-19
gives failure probabilities of this oscillator as a function of the limit statez, subjected to 10,000
independent samples of nonstationary Gaussian/non-Gaussian ground accelerations with the same
second-moment properties corresponding to an earthquake with (m = 7, r = 25 km). Since non-
Gaussian ground accelerations have higher kurtosis coefficient (Section 2.2.1.1.2), for instance the
kurtosis coefficient is 6.26 for the site in this example, the fragilities are higher compared to those
obtained using Gaussian ground motions.

We note that fragility surfaces for linear systems subjected to non-Gaussian ground accelerations
can be calculated efficiently using a Monte Carlo algorithm based on the sampling theorem
(Grigoriu and Kafali, 2007). The use of this method for fragility calculations is explained in detail
in Section 3.4.2.

3.3.2.2 Multi degree of freedom systems

Consider the structural/nonstructural systems described in Section 3.3.1.2. The seismic ground
acceleration at system site is modeled by a zero-mean, stationary Gaussian processX(t)
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FIGURE 3-19 Fragility for linear oscillator with high dampin g (ζ = 15%) against limit state.

(Section 2.2.1.1.1), that is,e(t) = 1, t ≥ 0 in Equation 3-20 and only the steady-state responses of
the structural and nonstructural systems are considered (same as in Section 3.3.1.2).

Nonlinear models for the nonstructural componentsC1 and C2 in Figure 3-10 are obtained
by adding a hysteretic element representing a damper attached between the structure and the
nonstructural component. Bouc-Wen model (Wen, 1976) is used to represent the hysteretic element.
Accordingly, equation of motion for componentCi, i = 1, 2, is

R̈i(t) + 2ζiω0,iṘi(t) + ω2
0,i(ρiRi(t) + (1 − ρi)Wi(t)) = −Gk(t), (3-74)

with
Ẇi(t) = γi Ṙi(t) − αi |Ṙi(t)| |Wi(t)|ni−1 Wi(t) − βi Ṙi(t) |Wi(t)|ni , (3-75)

whereRi(t), ζi, ω0,i and Gk(t) are in Equation 3-60 andρi, αi, βi, γi and ni are constants.
Numerical results are forω0,i andζi, i = 1, 2, in Table 3-3 andρi = 0.7, γi = 1, αi = βi =
0.5/cmni andni = 1, i = 1, 2, (Wen, 1976; Soong and Grigoriu, 1993). The limit statesd1 and
d2 defined for the relative displacement responseR1(t) and relative velocity responsėR2(t) for
componentsC1 andC2, respectively, are summarized in Table 3-3.

Using a Monte Carlo method fragility of the nonstructural systemNS, that is, the probability
that the (stationary) system response processR(t) = [R1(t) Ṙ2(t)]

T leaves the safe setD =
(−d1, d1) × (−d2, d2) in time interval of lengthτ , can be calculated directly, rather than from the
fragility of its components as we have seen in Section 3.3.1.2. The Monte Carlo method also allows
the use of linear and nonlinear models for components. The dependence between the component
responses is also considered.

Let

R1,τ = max
0≤t≤τ

(|R1(t)|), (3-76)

Ṙ2,τ = max
0≤t≤τ

(|Ṙ2(t)|), (3-77)
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be the maximum of the absolute value of the relative displacement responseR1(t) and relative
velocity responsėR2(t) for componentsC1 andC2, respectively, in[0, τ ], with τ in Equation 3-19.

The Monte Carlo method for calculating fragility surfaces involves five steps:

- Select earthquake moment magnitude and source-to-cite distance(m, r) and compute
spectral density of ground acceleration at the site using Equation 2-3. The seismic activity
matrix at the system site delivers the realizable values of(m, r).

- Calculate spectral densities of the absolute acceleration responses at the attachment points
(joints 5 and 24) using Equation 3-58.

- Generatens samples of the correlated absolute acceleration processes at the attachment
points using the spectral densities in Equation 3-58 and the method in Section 2.4.2.

- For each sample of the correlated absolute acceleration process generated in the previous
step calculate the response ofCi, i = 1, 2, using a nonlinear dynamic analysis (solving
Equation 3-74) and determine the state of each component.

- Approximate the nonstructural system fragility for(m, r) by

P̂f,mc(D;m, r) =
# {R1,τ ≥ d1 or Ṙ2,τ ≥ d2}

ns
, (3-78)

with R1,τ andṘ2,τ in Equations 3-76 and 3-77, respectively.

Fragility surfaces for the componentsC1 andC2 can be obtained by the same procedure. For
example, fragility forC1 can be estimated byPf,1(d1;m, r) ≃ nf,1/ns, wherenf,1 is the number
of times the event{R1,τ ≥ d1} is observed.

Similar to Section 3.3.1.2 numerical examples in this section considers steady-state responses of the
nonstructural components with durationτ = 10 seconds to strong ground accelerations. We note
that the specific barrier model delivers the duration of ground motion (Halldorssonet al., 2002),
but we set somewhat arbitrary,τ = 10 seconds irrespective of(m, r). Figures 3-20, 3-21 and
3-22 show the fragilities of the componentsC1 andC2 and the system fragility for the nonlinear
nonstructural system defined previously, respectively. The fragilities for the nonlinear components
in Figures 3-20 and 3-21 are lower than those for the linear components in Figures 3-12 and 3-
13, showing that dampers located between the nonstructural components and the structure have a
beneficial effect. For the nonlinear case the componentC1 is much more fragile thanC2, and, since
the components are connected in series, the fragility of the nonstructural system is nearly equal to
the fragility ofC1.

Figures 3-23, 3-24 and 3-25 show the fragilities as in Figures 3-12, 3-13 and 3-14, for linearC1,
C2 andNS defined in Section 3.3.1.2, respectively, based on the Monte Carlo method using 100
ground motions records for each(m, r). The fragilities estimated by crossing theory in Figures 3-
12, 3-13 and 3-14 are higher compared to the fragility surfaces obtained by Monte Carlo simulation.
This is an expected result since we have used the upper bound in Equation 3-69 to calculate the
system fragility in Equation 3-61. The mean crossing method provides a good approximation for
the system fragility in the present example. The computational time needed to estimate the fragility
of the system using mean crossing rates is much lower than the time needed for Monte Carlo
simulation. It takes about 30 hours to generate fragility surfaces using Monte Carlo simulations on
a regular PC and only a few minutes to estimate these surfaces by the crossing theory.
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FIGURE 3-20 Fragility for nonlinear C1.
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FIGURE 3-21 Fragility for nonlinear C2.
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FIGURE 3-22 Fragility for nonlinear NS.
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FIGURE 3-23 Fragility for linear C1.
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FIGURE 3-24 Fragility for linear C2.
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FIGURE 3-25 Fragility for linear NS.
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3.3.3 Traditional fragility analysis

Seismic fragility of a structural, nonstructural, or geotechnical system is generally indexed by
a scalar measure of ground motion intensity, hence the relationship between the system failure
probability and ground motion intensity is called fragility curve. Several metrics have been
considered for ground motion intensity. Traditionally, the peak ground acceleration (PGA) has
been used and continued to be used as an intensity measure (Hwang and Huo, 1994; Hwang and
Jaw, 1990; Hwanget al., 1997; Anget al., 1996; Choiet al., 2004; Garcia and Soong, 2003b;
Shinozukaet al., 2000; Basözet al., 1999). Simplicity is the main feature ofPGA. Unfortunately,
PGA provides an unsatisfactory measure for structural response (Hanks and McGuire, 1981;
DiPasquale and Cakmak, 1987; Elenas, 2000; Kafali and Grigoriu, 2004). Recent methods for
assessing the seismic performance of structural systems measure seismic ground motion intensity
by pseudo-spectral accelerationPSa(ω0, ζ), that is, the maximum absolute value of the relative
displacement response of a linear oscillator with natural frequencyω0 and damping ratioζ
multiplied byω2

0 (Schotanuset al., 2004; Song and Ellingwood, 1999b; Ellingwood, 2001; Gardoni
et al., 2003; Shomeet al., 1998). For linear/nonlinear multi degree of freedom systems the oscillator
frequencyω0 coincides with the fundamental frequency of the structural system in its linear range.
The correlation between the maximum response of such systems and a vector-valued ground motion
intensity measure consisting ofPSa(ω0, ζ) and some additional parameters related to the shape of
the response spectrum has been also investigated (Baker and Cornell, 2005, 2004; Lucoet al.,
2005).

A four-step algorithm is commonly used to construct fragility curves defined by, for example,
the probability that maximum structural response exceeds a critical levelz (Hwang and Huo,
1994; Garcia and Soong, 2003b; Schotanuset al., 2004; Song and Ellingwood, 1999b; Somerville
et al., 1997; O’Connor and Ellingwood, 1992):(i) select a suite of actual and/or synthetic ground
acceleration records{xi(t)} representing the seismicity at the system site,(ii) scale each record by
its PGA or PSa(ω0, ζ) and denote the scaled records by{x̃i(t)}, (iii) calculate maximum system
response to{ξx̃i(t)} for a collection of constants,ξ > 0, and (iv) estimate the system fragility at
eachξ by the ratio of the number of times the maximum response exceedsz to the total number of
records.

Our objective in this section is to illustrate potential limitations of scalar seismic intensity measures
currently used for fragility analysis. The analysis considers linear, Duffing (Lin, 1967), and
Bouc-Wen (Wen, 1976) single degree of freedom systems, and artificial ground motion records
representing independent samples of a Gaussian process whose probability law is defined by the
specific barrier model (Papageorgiou and Aki, 1983a,b; Papageorgiou, 1988; Halldorsson and
Papageorgiou, 2005). We use artificial ground motions to(i) reduce the uncertainty in the estimated
fragility, that can be significant when dealing with actual records because the available sample size
is usually small, and(ii) ensure that all records considered in the analysis belong to the same
population of known probability law.

It is shown thatPSa(ω0, ζ) representation of ground motion intensity provides satisfactory
estimates for the maximum relative displacement of Duffing oscillators. On the other hand,
estimates of the maximum relative displacement for Bouc-Wen oscillators are inaccurate if based
on PSa(ω0, ζ). Accordingly, fragility curves indexed byPSa(ω0, ζ) are adequate and inadequate
for the Duffing and the Bouc-Wen oscillators, respectively.

3.3.3.1 Seismic intensity measures for response characterization

The seismic ground acceleration at system site, generated by a seismic event with moment
magnitudem and source-to-site distancer, is modeled following Section 2.2.1 asX(t) = e(t)Y (t),
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0 ≤ t ≤ τ , whereτ is the total duration of the seismic event in Equation 2-1,e(t) is a deterministic
modulation function in Equation 2-2 andY (t) is a zero-mean stationary Gaussian process with
probability law defined in Sections 2.2.1.1.1. Figure 3-26 (a) and (b) show the spectral density

0 25 50 75 100
0

2.5

5

7.5
x 10

−9

ω (rad/sec)

g Y
Y

(ω
)

(g
2

u
n
it

s)

 

 

m=5, r=200 km

(a)

0 25 50 75 100
0

0.5

1

1.5
x 10

−4

ω (rad/sec)

g Y
Y

(ω
)

(g
2

u
n
it

s)

 

 

m=8, r=25 km

(b)

FIGURE 3-26 Spectral density function ofY (t).

function ofY (t) at a site in California on stiff soil (NEHRP site class D, (FEMA 273, 1997)), for
(m = 5, r = 200 km) and (m = 8, r = 25 km), respectively. The plots in Figure 3-26 show that
the frequency content of the seismic ground acceleration depends strongly on the values ofm and
r.

Samples of ground accelerationX(t) at a site due to an earthquake with moment magnitudem
and the source-to-site distancer can be obtained by scaling samples ofY (t) with the modulation
function in Equation 2-2. We use the spectral representation method presented in Section 2.4 to
generate samples ofY (t). Figure 3-27 shows samples of the ground acceleration processX(t) for
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FIGURE 3-27 Samples ofX(t).

the site and earthquakes in Figure 3-26.

The seismic activity matrix defined in Section 2.3.4 provides realizable values of(m, r) at each
zip code in the United States, and mean yearly rates,νij of earthquakes with moment magnitude
mi and source-to-site distancerj. Figure 2-13 shows the seismic activity matrix for Los Angeles,
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California, normalized byν =
∑

i,j νij . Given that an earthquake occurs at a site, the probability
that it has parameters (mi, rj) is νij/ν.

The analysis in the following sections considers the relative displacement of linear and nonlinear
oscillators to ground accelerations representing independent samples ofX(t) in Equation 3-19 with
the modulation function in Equation 2-2 and the spectral density function in Equation 2-3.

3.3.3.1.1 Scaled ground accelerations:

Letx(t) be a sample of the ground acceleration processX(t) defined in Section 3.3.3.1, andz(t) the
relative displacement response of a linear single degree of freedom oscillator tox(t). The response
z(t) satisfies the differential equation

z̈(t) + 2ζω0ż(t) + ω2
0z(t) = −x(t), t ≥ 0, (3-79)

whereω0 is the natural frequency of the oscillator in rad/sec andζ is the damping ratio. Ifx(t) is
scaled by a constantc > 0, that is, if we consider ground acceleration input byx̃(t) = x(t)/c, then
z̃(t) = z(t)/c satisfies

¨̃z(t) + 2ζω0
˙̃z(t) + ω2

0 z̃(t) = −x̃(t), t ≥ 0. (3-80)

Two scaling constants are commonly used (Hwang and Huo, 1994; Garcia and Soong, 2003b;
Schotanuset al., 2004; Song and Ellingwood, 1999b; Somervilleet al., 1997; O’Connor and
Ellingwood, 1992):

(i) I = PGA = max
0≤t≤τ

(|x(t)|), (3-81)

(ii) I = PSa(ω0, ζ) = ω2
0 max

0≤t≤τ
(|z(t)|), (3-82)

wherePGA denotes the peak ground acceleration,PSa(ω0, ζ) is the pseudo-spectral acceleration
at the natural frequencyω0 with dampingζ, andτ is the total duration of the seismic event given
by Equation 2-1.

Our objective is to assess the validity of the the hypothesis thatPSa(ω0, ζ) is a ground acceleration
measure capable of predicting maximum structural response. If this hypothesis is valid, the
particular values of(m, r) will be irrelevant, that is, a maximum structural response, for example,
the maximum relative displacement commonly used in seismic analysis (Garcia and Soong, 2003b;
Song and Ellingwood, 1999b; Ellingwood, 2001; Shomeet al., 1998), can be approximated
accurately fromPSa(ω0, ζ) irrespective of the particular values of(m, r). We consider two values
of (m, r) that according to Figure 2-13 are realizable. If the stated hypothesis is valid, maximum
structural responses for the two values of(m, r) will be similar. The validation of the above
hypothesis considers single degree of freedom linear, Duffing (Lin, 1967) and Bouc-Wen (Wen,
1976) oscillators.

3.3.3.1.2 Response of linear/nonlinear simple oscillators:

Let Z(t) be the relative displacement of a single degree of freedom oscillator under ground
accelerationX(t) defined in Section 3.3.3.1. The displacement processZ(t) satisfies the
Equations 3-20, 3-70 and 3-71 for the linear, Duffing and Bouc-Wen oscillators. Numerical results
are for ω0 = 5.97 rad/sec, two values of damping ratio,ζ = 2% and ζ = 15%, for linear
systems, corresponding to low and high damping, respectively,ζ = 2% for nonlinear systems,

81



ε = −0.0015/cm2, ρ = 0.1, γ = 1, α = β = 0.5/cmn andn = 1 (Wen, 1976; Soong and
Grigoriu, 1993).

Let
Zτ = max

0≤t≤τ
(|Z(t)|) (3-83)

be the maximum of the absolute value of the relative displacement in[0, τ ], with τ in Equation 2-1.
The validation procedure involves five steps:

1. Generate 1,000 ground accelerations, that is 1,000 independent samples{xi(t)}, i =
1, . . . , 1000, of X(t) for a given(m, r).

2. Scale each recordxi(t) by the pseudo-spectral acceleration

PSa,i(ω0, ζ) = ω2
0 max

0≤t≤τ
(|zi(t)|),

wherezi(t) is the relative displacement of the underlying linear oscillator toxi(t), that is, the
solution of Equation 3-20, Equation 3-70 forε = 0, or Equation 3-71 forρ = 1.

3. Multiply each scaled record byξ > 0 so that all records have the same pseudo-spectral
acceleration levelξ.

4. Calculate the responsẽzi(t; ξ) of the linear, Duffing and Bouc-Wen oscillators to the
scaled ground acceleratioñxi(t) = ξ xi(t)/PSa,i(ω0, ζ), ξ > 0, i = 1, . . . , 1000, using
Equations 3-20, 3-70 and 3-71, respectively.

5. Calculate the maximum relative displacement for each ground motion and oscillator from

z̃τ,i(ξ) = max
0≤t≤τ

(|z̃i(t; ξ)|), i = 1, . . . , 1000, (3-84)

for the selected values of(m, r) andξ.

For the linear oscillator in Equation 3-20 with parametersω0 and ζ the maximum relative
displacement in Equation 3-84 is always equal toξ/ω2

0 irrespective of the ground acceleration
samples in step 1, since

z̃τ,i(ξ) = max
0≤t≤τ

(|z̃i(t; ξ)|) = max
0≤t≤τ

(|zi(t) ξ/PSa,i(ω0, ζ)|),

= ξ max
0≤t≤τ

(|zi(t)|)/PSa,i(ω0, ζ) = ξ/ω2
0 , (3-85)

for i = 1, . . . , 1000. This shows that the hypothesis thatPSa(ω0, ζ) can predict accurately response
maxima irrespective of the particular values of(m, r) holds for the linear oscillator in Equation 3-
20.

Table 3-5 gives estimates of the mean and coefficient of variation (c.o.v.) of the maximum relative
displacements,{z̃τ,i(ξ)}, i = 1, . . . , 1000, for the Duffing and the Bouc-Wen oscillators for scaled
ground motions with(m = 5, r = 200 km), (m = 8, r = 25 km), and increasing values ofξ. If
the hypothesis thatPSa(ω0, ζ) can predict accurately maximum relative displacement irrespective
of the particular values of(m, r) holds, thenz̃τ,i(ξ) should depend only onξ, and have similar
values for(m = 5, r = 200 km) and (m = 8, r = 25 km). Estimates of the mean and c.o.v.
of Z̃τ (ξ) obtained from{z̃τ,i(ξ)} are similar and slightly different, respectively, for the Duffing
oscillator for (m = 5, r = 200 km) and (m = 8, r = 25 km). The corresponding estimates
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TABLE 3-5 Mean and c.o.v. of maximum relative displacement versus ξ.

Duffing system Bouc-Wen system

(m=5, r=200) (m=8, r=25) (m=5, r=200) (m=8, r=25)

ξ mean c.o.v. mean c.o.v. mean c.o.v. mean c.o.v.

(g) (cm) (cm) (cm) (cm)

0.10 2.7552 0.0090 2.7607 0.0112 1.8001 0.2485 1.9047 0.2840

0.15 4.1424 0.0199 4.1590 0.0248 2.5570 0.2717 2.9809 0.3377

0.20 5.5434 0.0351 5.5847 0.0449 3.3085 0.2864 4.2030 0.3765

0.25 6.9720 0.0542 7.0683 0.0728 4.0654 0.3001 5.5930 0.4067

0.30 8.4500 0.0778 8.6510 0.1133 4.8388 0.3111 7.1234 0.4280

0.35 9.9969 0.1070 10.3602 0.1620 5.6260 0.3206 8.8079 0.4424
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FIGURE 3-28 Histogram of maximum relative displacement for Duffing system: (a)ξ =
0.10g, (b) ξ = 0.35g.

for the Bouc-Wen oscillator differ. The differences between maximum relative displacement for
(m = 5, r = 200 km) and (m = 8, r = 25 km) increase withξ and are nearly 60% and 40%
for the mean and c.o.v, respectively, forξ = 0.35g. Figure 3-28 and 3-29 show the normalized
histograms of the maximum relative displacements,{z̃τ,i(ξ)}, i = 1, . . . , 1000, of the Duffing and
Bouc-Wen oscillators in Table 3-5, respectively, for (m = 5, r = 200 km) and (m = 8, r = 25 km)
at (a)ξ = 0.10g and (b)ξ = 0.35g.

We conclude that the maximum relative displacement can be calculated exactly fromPSa(ω0, ζ)
for linear single degree of freedom systems. However,PSa(ω0, ζ) fails to characterize uniquely
the maximum relative displacement for a class of nonlinear oscillators. For nonlinear Duffing
and Bouc-Wen oscillators,PSa(ω0, ζ) characterizes satisfactorily and unsatisfactorily the relative
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FIGURE 3-29 Histogram of maximum relative displacement for Bouc-Wen system: (a)
ξ = 0.10g, (b) ξ = 0.35g.

displacement response maxima, respectively.

3.3.3.2 Fragility curves

Fragility of a structural system is the probability that a system response exceeds a limit state when
subjected to an earthquake of specified intensity. The response and the limit state in our analysis are
the maximum relative displacementZτ in Equation 3-83 and a critical displacementz, respectively.
Fragility curves has been plotted against thePGA (Hwang and Huo, 1994; Hwang and Jaw, 1990;
Hwanget al., 1997; Anget al., 1996; Choiet al., 2004; Garcia and Soong, 2003b; Shinozukaet al.,
2000; Basözet al., 1999) orPSa(ω0, ζ) (Schotanuset al., 2004; Song and Ellingwood, 1999b;
Ellingwood, 2001; Gardoniet al., 2003).

Let Z(t) be the relative displacement of a linear/nonlinear oscillator in Equations 3-20, 3-70 or
3-71, andZτ its extreme value in Equation 3-83. Denote by

Pf (z; ξ) = P (Zτ > z | ξ), (3-86)

the probability thatZτ exceeds a limit statez if the oscillator is subjected to a seismic ground
accelerationX(t) with intensity ξ. Fragility curves are plots of estimates ofPf (z; ξ) versusξ,
whereξ relates to eitherPGA or PSa(ω0, ζ). By abuse of notation, we show these curves as
functions ofPGA andPSa(ω0, ζ) for ξ related toPGA andPSa(ω0, ζ), respectively.

We outline a six-step Monte Carlo algorithm for constructing fragility curves, that follows the
traditional approach in earthquake engineering.

1. Generatens independent samples{xi(t)}, i = 1, . . . , ns, of X(t) based on the site seismic
activity matrix and the specific barrier model. First, generatens values of(m, r) from the
seismic activity matrix in Figure 2-13. Second, generate a sample ofX(t) for each generated
(m, r) value.
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2. Scale the records{xi(t)} such that they have the desired intensity levelI = ξ, ξ > 0. The
scaled version ofxi(t) is x̃i(t) = xi(t)(ξ/Ii), whereIi is given by Equations 3-81 and 3-82
with I for xi(t).

3. Calculate the responsẽzi(t) of the system to the scaled ground accelerationsx̃i(t) =
xi(t)(ξ/Ii), i = 1, . . . , ns, using a linear/nonlinear dynamic analysis.

4. Calculate the maximum relative displacement for each ground motion and oscillator from

z̃τ,i(ξ) = max
0≤t≤τ

(|z̃i(t; ξ)|), i = 1, . . . , ns. (3-87)

5. ApproximatePf (z; I) in Equation 3-86 forI = ξ by

P̂f (z; ξ) =
# {z̃τ,i(ξ) > z}

ns
(3-88)

wherez is the displacement limit state.

6. Repeat steps 3-5 by changing the intensity levelξ in step 2 to obtain fragility curve for the
system.

The above Monte Carlo algorithm was used to construct fragility curves for linear and nonlinear
single degree of freedom oscillators by usingns = 1, 000 independent samples ofX(t) for three
types of ground motions corresponding to (i) the relative frequencies of various (m, r) values in the
seismic activity matrix at the system site, (ii) the seismic event with (m = 5, r = 200 km), and (ii)
the seismic event with (m = 8, r = 25 km).

Fragility curves for linear systems plotted againstξ corresponding to the scaling̃xi(t) =
xi(t)(ξ/PSa(ω0, ζ)) are independent of the particular value of (m, r), and are equal toPf (z; ξ) =
1(ξ ≥ z ω2

0). However, these curves depends strongly on (m, r) if ξ corresponds to the scaling
x̃i(t) = xi(t)(ξ/PGA), as illustrated in Figures 3-30 and 3-31, for limit statez = 3 cm. Hence,
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FIGURE 3-30 Fragility against the PGA for linear system with ζ = 2%.
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FIGURE 3-31 Fragility against the PGA for linear system with ζ = 15%.

PGA is not an adequate intensity measure for fragility analysis.

We have seen thatPSa(ω0, ζ) characterizesZτ approximately for nonlinear systems, and the
accuracy of the resulting approximation ofZτ depends on the type of nonlinearity. Figures 3-
32 and 3-33 show the fragility curves for the Duffing oscillator plotted againstI = PSa(ω0, ζ),
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FIGURE 3-32 Fragility against the PSa(ω0, ζ) for Duffing system for z = 3 cm.

for two limit states,z = 3 cm andz = 8 cm, respectively, and the three types of ground motions
described above, and the fragility curve for the associated linear system (ε = 0). For a yield
displacement of 6.67 cm the displacement ductilities for the limit statesz = 3 andz = 8 cm are
0.45 and 1.20, respectively. We can conclude thatPSa(ω0, ζ) is an adequate intensity measure for
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FIGURE 3-33 Fragility against the PSa(ω0, ζ) for Duffing system for z = 8 cm.

fragility analysis of the Duffing system.

Figures 3-34 and 3-35 show fragility curves as in Figures 3-32 and 3-33 for the Bouc-Wen
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FIGURE 3-34 Fragility against the PSa(ω0, ζ) for Bouc-Wen system forz = 3 cm.

oscillator, and the associated linear system (ρ = 1). The displacement ductilities for the limit
statesz = 3 and z = 8 cm are 2.94 and 7.84, respectively, for a yield displacement of 1.02
cm. The ductility values are in a range that is relevant to earthquake engineering practice (Shome
et al., 1998). Fragility curves calculated using ground motions from (m = 5, r = 200 km),
(m = 8, r = 25 km) and the seismic activity matrix differ significantly. Hence,PSa(ω0, ζ) is
not an adequate intensity measure for fragility analysis of the Bouc-Wen oscillator. The inadequacy
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FIGURE 3-35 Fragility against the PSa(ω0, ζ) for Bouc-Wen system forz = 8 cm.

of thePSa(ω0, ζ) as a ground motion intensity measure for fragility assessment of some nonlinear
systems has been also reported elsewhere (Shinozukaet al., 2003).

3.3.3.3 Conclusions

Seismic fragility of a system is the probability that a system response to seismic ground motions
of specified intensities exceeds a critical value. Fragility curve is a relationship between this
exceedance probability and a scalar measure of ground motion intensity. Peak ground acceleration
and pseudo-spectral acceleration have been widely used as scalar measures of seismic intensity for
fragility analysis. Recent studies recommend the use of pseudo-spectral acceleration as a measure
for ground motion intensity.

This simulation-based study showed that pseudo-spectral acceleration characterizes completely the
maximum relative displacement for linear single degree of freedom systems, but fails to do so for
arbitrary nonlinear oscillators. The pseudo-spectral acceleration can be used to approximate the
maximum relative displacement of the Duffing oscillator, so that fragility curves as functions of
pseudo-spectral acceleration are adequate for this system. On the other hand, the pseudo-spectral
acceleration cannot be used to approximate the maximum relative displacement of the Bouc-Wen
oscillator. Hence, it is not possible to construct fragility curves depending on pseudo-spectral
acceleration for the Bouc-Wen oscillator.

Fragility surfaces, which are probabilities of system failure as a function of earthquake moment
magnitude and distance from the seismic source to the system site, are proposed for assessing
seismic performance of this oscillator, that is, a nonlinear system with hysteresis which is relevant
in earthquake engineering. Fragility surfaces for the linear, Duffing and Bouc-Wen oscillators based
on crossing theory and Monte Carlo simulation have been calculated and presented. Crossing theory
provides accurate results for highly reliable systems. We note that fragility surfaces can be used in
the same way as fragility curves to select an optimal design from a collection of design alternatives,
for realistic single and multi degree of freedom structural/nonstructural systems, via life cycle cost-

88



benefit analysis (Kafali and Grigoriu, 2004, 2005a).

3.4 Wind fragility

Wind fragility is the probability that a response of a structural, nonstructural, or geotechnical system
exceeds a critical level if subjected to wind loads resulting from high winds of specified intensities.
We base the intensity of the wind loads on the parameters defining the probability law of the wind
velocity so thatφ in Equation 3-1 hasd = 2 components,φ1 = the mean wind velocity at system
site v̄, andφ2 = the principal wind direction̄θ. The wind activity matrix in Section 2.3.5 provides
realizable values of(v̄, θ̄) at the system site.

Consider a simple linear structure as shown in Figure 3-36 with massm, stiffnessk and dampingc,

b 

h 
c 

wind 

l 

θ 

North 

FIGURE 3-36 Simple system.

subjected to high winds caused by a hurricane with mean wind speedv̄ blowing in directionθ̄. The
wind drag force, that is, the wind force along the principal wind directionθ̄, acting on this structure
may be expressed as

F (t) =
1

2
ρacda(θ̄)V ∗(t)2, 0 ≤ t ≤ τ, (3-89)

whereτ is given in Equation 2-18,ρa is the density of air,a(θ̄) is the exposed area perpendicular
to the principal wind direction̄θ, V ∗(t) is the wind velocity in Equation 2-18 with probability law
defined in Section 2.2.2.1, andcd is the wind drag coefficient, which depends, in general, on the
structural shape, the frequency content of the wind velocity and the principal wind direction ((Simiu
and Scanlan, 1986), Section 4.7). The wind drag coefficientcd can be obtained by wind tunnel tests
for the selected structure ((Simiu and Scanlan, 1986), Section 4.5-4.7), however, in the absence of
such data following assumptions are generally made, (1) it is independent of the frequency content
of the wind velocity (Bhartia and Vanmarcke, 1988), and (2) its variation with wind direction can
be related to known cases, for example, using a relationship similar to the one shown in ((Simiu
and Scanlan, 1986), Section 4.6, Figure 4.6.3).

The wind model in this section uses a constant wind drag coefficient and considers only along-wind
response of the system to the loads due to turbulence. The model does not consider other aeroelastic
phenomena such as across-wind galloping, vortex-shedding, and flutter (for definitions see (Simiu
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and Scanlan, 1986)). These assumptions are admittedly questionable but are invariably made for
purposes of developing a practical approach. Some of these assumptions are relaxed in Chapter 4,
in which a more realistic example is considered.

The system in Figure 3-36 is modeled by a linear single degree of freedom system and its along-
wind displacement responseZ(t) satisfies the differential equation

mZ̈(t) + cŻ(t) + kZ(t) = F (t), 0 ≤ t ≤ τ, (3-90)

with initial conditionsZ(0) = Ż(0) = 0, whereŻ(t) = dZ(t)/dt, Z̈(t) = d2Z(t)/dt2 and
F (t) is given by Equation 3-89. In generalZ(t) is a non-Gaussian random process, sinceF (t) in
Equation 3-89 is a quadratic form of Gaussian processV ∗(t), with stationary characteristics during
the steady-state part of oscillations.

Denote by
Pf (z; v̄, θ̄) = P (Zτ > z | v̄, θ̄), (3-91)

the probability that the maximum responseZτ = max0≤t≤τ (|Z(t)|), with τ in Equation 2-18,
exceeds a limit statez if the oscillator is subjected to high winds with parameters(v̄, θ̄). We estimate
the system fragility in Equation 3-91 by the method based on the crossing theory of stochastic
processes presented in Section 3.1, and compare our results with the “exact" solutions obtained by
Monte Carlo simulation method presented in Section 3.1.

In this section we provide (1) an analytical expression for the mean crossing rate of the quasi-
static response of the linear oscillator in Figure 3-36 to wind loadF (t) in Equation 3-89, which is a
quadratic form of the stationary Gaussian processV (t), and (2) an estimation for the mean crossing
rate of the dynamic response of the same linear oscillator to wind loadF (t) in Equation 3-89 based
on the sampling theorem and Monte Carlo algorithm. The method based on the sampling theorem
can also be extended to linear multi degree of freedom system (Grigoriu and Kafali, 2007). For
nonlinear systems subjected to wind loads methods based on the classical Monte Carlo algorithm
can be used to calculate the system fragility (see Section 3.2).

3.4.1 Quasi-static response

Consider the simple oscillator in Equation 3-90 with natural frequencyω0 =
√

k/m much larger
that the frequencies of the excitation, that is,ω0 ≫ ω̄, in which ω̄ is the cut-off frequency of the
spectral density function in Equation 2-19 of fluctuating wind speedV (t) in Equation 2-18. The
response of the oscillator is practically proportional to the excitation and is referred to as quasi-
static response. In this section we examine the quasi-static steady-state response of simple linear
oscillators to the wind loads modeled as quadratic form of stationary Gaussian processes.

The displacement response of the oscillator to the wind forceF (t) in Equation 3-89 is

Z(t) =
1

k
F (t) =

ρacda(θ̄)

2k
(v̄ + V (t))2 = α(v̄ + V (t))2, (3-92)

with the notation in Equation 3-89 andα = ρacda(θ̄)/(2k) > 0.

The meanz-upcrossing rate ofZ(t) for z > 0, that is, the mean rate at whichZ(t) crosses from
below a displacement levelz, is equal to the mean(−

√

z/α − v̄,
√

z/α − v̄)-outcrossing rate of
the zero-mean Gaussian processV (t), and is given by,

ν+(z) = ν+
V (
√

z/α − v̄) + ν−
V (−

√

z/α − v̄) , (3-93)
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where

ν+
V (
√

z/α − v̄) =
1

2π

σV̇

σV
exp

(

−(
√

z/α − v̄)2/(2σ2
V )
)

and

ν−
V (−

√

z/α − v̄) =
1

2π

σV̇

σV
exp

(

−(−
√

z/α − v̄)2/(2σ2
V )
)

, (3-94)

are, respectively, the mean(
√

z/α − v̄)-upcrossing and(−
√

z/α − v̄)-downcrossing rates of
the zero-mean Gaussian processV (t)((Soong and Grigoriu, 1993), Section 7.3), in whichσV =
∫ ω̄
0 gV V (ω)dω andσ2

V̇
=
∫ ω̄
0 ω2gV V (ω)dω are the variances ofV (t) and andV̇ (t) = dV (t)/dt,

with the spectral density functiongV V (ω) of V (t) given in Equation 2-19. We note thatν+(z) = 0
for z ≤ 0 since the quasi static responseZ(t) in Equation 3-92 is always positive. The meanz-
upcrossing rate ofZ(t) in Equation 3-93 can also be obtained from the joint characteristic function
of {Z(t), Ż(t)} or noting thatZ(t) is a quadratic form of a Gaussian process. These methods are
presented in Appendix D.

Consider the oscillator in Figure 3-36 withb = c = h = 5 m, l = 10 m, natural frequencyω0 = 15
rad/sec and massm = 5000 kg, subjected to the wind drag forceF (t) in Equation 3-89 with
ρa = 1.2 kg/m3, a constant drag coefficientcd = 2 ((Simiu and Scanlan, 1986), Section 4.5,
Table 4.5.1). Figure 2-7 in Section 2.2.2.1 shows the one-sided spectral density function in
Equation 2-19 of the fluctuating wind velocityV (t). We note that the natural frequency of the
systemω0 is much larger that the frequencies of the excitation so that the responseZ(t) of the
oscillator in Equation 3-90 will be quasi-static and equal toZ(t) = F (t)/k, whereF (t) is in
Equation 3-89 andk = ω2

0m is the system stiffness.

The system fragility in Equation 3-91, that is, the probability that the maximum quasi-static
response exceeds a limit statez ≥ µZ , whereµZ = E[Z(t)] = ασ2

V + αv̄2, if the oscillator
is subjected to high winds with specified parameters, can be approximated by Equation 3-5 with
meanD = [−z, z]-outcrossing rate from Equation 3-93 andτ from Equation 2-18. Note that the
meanD = [−z, z]-outcrossing rateνD = ν+(z) + ν(−−z) in Equation 3-5 is equal toν+(z)
in Equation 3-93 since the quasi-static responseZ(t) in Equation 3-92 is always non-negative, so
that ν−(−z) = 0 for z ≥ µZ ≥ 0. If the limit statez is less than the mean responseµZ then
P [(Z(0) ∈ D)] in Equation 3-3 becomes zero so that system fragility in Equation 3-5 becomes 1.

Figure 3-37 shows fragility surface for the linear oscillator in Figure 3-36 located in milepost-150
for the displacement limit statez = 20 cm. The wind activity matrix in Figure 2-16 provides
realizable values of(v̄, θ̄) at the system site. As expected system fragility increases with increasing
wind speed. The periodic change in fragility along theθ̄-axis results from the assumed shape of the
structure (Figure 3-36). The exposed areaa(θ̄) in Equation 3-89 becomes largest at 45, 135, 225
and 315 degrees, resulting in higher loading, hence increased fragility.

3.4.2 Dynamic response

Consider the same oscillator in Section 3.4.1, but this time with a natural frequencyω0 such that its
response to wind loadF (t) in Equation 3-89 is dynamic. The equation of motion for the oscillator
in Equation 3-90 can alternatively be given by

Z̈(t) + 2ζω0Ż(t) + ω2
0Z(t) =

F (t)

m
, 0 ≤ t ≤ τ, (3-95)

whereω2
0 = k/m, ζ = c/(2mω0) andτ in Equation 2-18.
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FIGURE 3-37 Fragility for linear oscillator with ω0 = 15 rad/sec.

Method presented in (Grigoriu and Kafali, 2007), based on representations of the input process
obtained from a Shanon’s sampling theorem and Monte Carlo simulation, is used for calculating
statistics of the state of the linear system in Equation 3-95 subjected to stationary bandlimited non-
Gaussian processF (t) in Equation 3-89. The bandwidth[0, ω̄] of F (t) is defined by the cut-off
frequency of the spectral density function of the fluctuating wind velocityV (t) in Equation 2-19.
The system output at a timet is approximated by a finite sum of deterministic functions oft with
random coefficients given by equally spaced values of the input process over a window of finite
width centered ont. The number of terms in the sum depends on both input and system memory.
Results obtained by the sampling theorem are compared with the exact results obtained by classical
Monte Carlo simulation.

3.4.2.1 Method based on the classical Monte Carlo simulation:

The simulation method involves three phases:

Step-1. Realization of the stationary Gaussian wind velocityV (t) are generated for a storm
of durationτ in Equation 2-18 from its spectral density function in Equation 2-19 following
the methods in Section 2.4.1.

Step-2. Deterministic dynamic analyses are performed to determine the response in(0, τ)
to the samples ofF (t) in Equation 3-89 obtained from the samples in step-1. The analyses
involve time-domain integrations using Newmark’s method ((Chopra, 2000), Chapter 5).

Step-3. The calculated response samples are used to calculate means and variances of the
response process and mean upcrossing rates.
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3.4.2.2 Method based on the sampling theorem:

Consider the following approximation toF (t) in Equation 3-89 obtained by the sampling theorem

Fn(t) =

nt+n+1
∑

k=nt−n

F (k t∗)αk(t; t∗), t ∈ [nt t∗, (nt + 1) t∗], (3-96)

in which t∗ = π/ω̄ with ω̄ in Equation 2-19,

αk(t; t
∗) =

sin(π (t/t∗ − k))

π (t/t∗ − k)
, (3-97)

wherent = [t/t∗] is the largest integer smaller thant/t∗ andn ≥ 1 is an integer defining the size
of a window centered on cell[nt t∗, (nt + 1) t∗] containing the current timet. The points of the set
{k t∗, k ∈ Z} are referred to as nodes, and the spacingt∗ between nodes is called Nyquist sampling
rate or just sampling rate. The functionαk is one ift/t∗ = k, is zero ift/t∗ is an integer different
from k, and decreases to zero as|t/t∗ − k| increases. We note thatFn(t) in Equation 3-96 depends
linearly on the values ofF at2 (n + 1) nodes centered on the cell containingt, and coincides with
F at t = (nt − n) t∗, . . . , (nt + n + 1) t∗, and is referred to as a local representation.

The displacement response of the oscillatorZ(t) is the solution of Equation 3-95 so that

Z(t) = Z(0) cos (ω0,d t) +
Ż(0) + ζ ω0 Z(0)

ω0,d
sin (ω0,d t) +

∫ t

0
φ(t − s)F (s) ds, (3-98)

whereω0,d = ω0 (1− ζ2)1/2, φ(u) = exp (− ζ ω0 u) sin (ω0,d u)/ω0,d for u ≥ 0, andφ(u) = 0 for
u < 0. The approximate system stateZn,m(t) at timet corresponding toFn(t) in Equation 3-96
has the expression

Zn,m(t) =

nt−1
∑

k=nt−nm

k+n+1
∑

i=k−n

[

∫ 0∨(k+1) t∗

0∨k t∗
φ(t − s)αi(s; t

∗) ds] F (i t∗)

+

nt+n+1
∑

i=nt−n

[

∫ t

nt t∗
φ(t − s)αi(s; t

∗) ds] F (i t∗) (3-99)

for zero initial conditions, wherenm t∗ is such that the system state at a timet depends weakly on
the input prior to timet − nm t∗. The time lagnm t∗, referred to as system memory, depends only
on system properties, and is expressed here int∗-units for convenience.

The formula in Equation 3-99 shows that the approximate state at timet has the representation

Zn,m(t) = β(t)F n,m, (3-100)

whereβ(t) is a deterministic matrix with time-dependent entries assembled from the integrals

∫ 0∨(k+1) t∗

0∨k t∗
φ(t, s)αi(s; t

∗) ds and

∫ t

nt t∗
φ(t, s)αi(s; t

∗) ds

in Equation 3-99 andF n,m = (F ((nt − nm − n) t∗), . . . , F ((nt + n + 1) t∗)) is a random vector
with 2 (n + 1) + nm coordinates consisting of values ofX spaced equally att∗. SinceF (t) is
assumed to be stationary, the joint distribution ofF n,m is invariant to a time shift, that is, the
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statistics ofF n,m do not depend on the particular value ofnt. The definition of the system state
in Equation 3-100 suggests the following two-step algorithm for generating output samples. First,
samples of the2 (n + 1) + nm-dimensional input vectorXn,m need to be generated. Second,
system state samples can be obtained by matrix multiplication fromZn,m(t, ω) = β(t)F n,m(ω)
according to Equation 3-100. We note that the matrixβ(t) depends only on system properties
and input bandwidth. Onceβ(t) has been calculated for a system and an input bandwidth, it can be
used to characterize the system state to input processes with arbitrary probability law and bandwidth
similar to that used to constructβ(t). If t < nm t∗, the matrixβ(t) needs to be recalculated at each
new value oft. On the other hand, ift ≥ nm t∗, thenβ(t) has the same expression at timest
in intervals defined by distinct pairs of consecutive nodes, that is, intervals[k t∗, (k + 1) t∗] and
[l t∗, (l + 1) t∗] for k 6= l andk ∧ l ≥ nm. This is a particularly useful feature in fatigue studies
requiring long stationary state samples.

The mean(−z, z)-outcrossing rate of the steady-state responseZ(t) can be approximated by an
estimateν̂n,m(z) of the mean(−z, z)-outcrossing rate ofZn,m(t). This estimate is based onns

independent samples ofZn,m(t) and has the form

ν̂n,m(z) = ν̂−
n,m(−z) + ν̂+

n,m(z), with, (3-101)

ν̂−
n,m(−z) =

1

ns ∆t

ns
∑

i=1

1(Zn,m(t, ωi) ≥ −z, Zn,m(t + ∆t, ωi) < −z) (3-102)

ν̂+
n,m(z) =

1

ns ∆t

ns
∑

i=1

1(Zn,m(t, ωi) ≤ z, Zn,m(t + ∆t, ωi) > z) (3-103)

where∆t > 0 is a small time interval andZn,m(t, ωi) represents output samplei of Zn,m(t, ωi).
The selection of∆t > 0 has to account for the frequency content ofZn,m(t) to obtain reliable
results, a common requirement in simulation. We also note that (1) theZn,m(t, ωi) andZn,m(t +
∆t, ωi) are on the same output sample and (2) the variance,E[ν̂n,m(az)] (1 − E[ν̂n,m(z)])/ns, of
ν̂n,m(z) vanishes asns → ∞, whereE[ν̂n,m(z)] = P (|Zn,m(t)| ≤ z, |Zn,m(t + ∆t)| > z)/∆t.

Numerical examples in (Grigoriu and Kafali, 2007) show that the local representation in Equation 3-
96 is accurate for windows of half sizen = 10 and even smaller. This observation can be used
to develop an efficient Monte Carlo algorithm for generating samples of random function with
bandlimited spectral densities. Suppose that a sampleFn(·, ω) of Fn has been generated up to a
time t = (nt + 1) t∗. The extension of this sample in the next cell[(nt + 1) t∗, (nt + 2) t∗] requires
to generate a sample of the conditional random variable

F ((nt + n + 2) t∗) | [F ((nt + n + 1) t∗) = F ((nt + n + 1) t∗, ω),

F ((nt + n) t∗) = F ((nt + n) t∗, ω), . . .] (3-104)

accounting for the entire past history. The use of this conditional variable is impractical since its
properties have to be recalculated at each new node and depend on a vector of increasing length as
time progresses. It is proposed to approximate the conditional random variable in Equation 3-104
by the conditional variable

F̂ ((nt + n + 2) t∗)

= F ((nt + n + 2) t∗) | [F ((nt + n + 1) t∗) = F ((nt + n + 1) t∗, ω), . . .

. . . , F ((nt − n + 1) t∗) = F ((nt − n + 1) t∗, ω)] (3-105)
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considering only the most recent past history. IfF is stationary, the probability law of̂F ((nt + n +
2) t∗) does not change in time so that it has to be calculated once. IfF is a Gaussian process, then
F̂ ((nt + n + 2) t∗) is a Gaussian variable with known mean and variance.

The generation of state samples by classical Monte Carlo algorithms involves the generation of
input samplesF (s, ω), s ∈ [0, t], and the calculation of corresponding output samplesZ(s, ω),
s ∈ [0, t], by numerical integration. Both the generation of input time histories and the mapping
of input into output samples can be time consuming. In contrast to the proposed method delivering
state samples at a specified timet, classical Monte Carlo algorithms deliver entire output time
histories.

3.4.2.3 Numerical example:

Numerical results have been obtained for the linear oscillator in Figure 3-36 withω0 = 8 rad/sec,
ζ = 0.3, b = c = h = 5 m, l = 10 m, andm = 5000 kg, subjected to the wind drag forceF (t)
in Equation 3-89 withρa = 1.2 kg/m3, cd = 2, caused by high winds with mean wind velocity
v̄ = 20 m/sec and principal direction̄θ = 0. Figure 2-7 in Section 2.2.2.1 shows the one-sided
spectral density function in Equation 2-19 of the fluctuating wind velocityV (t) with frequency
band[0, 10] rad/sec so that̄ω = 10 rad/sec. A timet = 15 seconds is selected for calculations.
We note that the responseZ(t) is approximately stationary att = 15 sincet exceeds 3 periods,
3(2π/ω0) ≃ 2.5 seconds, of the oscillator ((Soong and Grigoriu, 1993), Example 5.5).

Figure 3-38 shows histograms of (a)Zn,m(t) for a sampling ratet∗ = 0.3142 seconds,n = 10,
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FIGURE 3-38 Histogram of Z(t) at t = 15: (a) sampling theorem, (b) classical Monte Carlo
simulation.

andnm = [10 (2π/ω0)/t
∗] = 40 calculated fromns = 100, 000 independent samples of this

random variable, and (b)Z(t) obtained by classical Monte Carlo simulation based on 100,000
independent samples of the input processF (t) and numerical integration of Equation 3-95 to get
samples ofZ(t), for t = 15 seconds. The estimated mean, variance, skewness, and kurtosis of
Zn,m(t) areµ̂ = 0.0392, σ̂2 = 1.73 × 10−4, γ̂3 = 0.4908, andγ̂4 = 3.3085. Figure 3-39 shows
time histories of the estimated mean, variance, skewness, and kurtosis ofZ(t) obtained by classical
Monte Carlo simulation based on 100,000 samples. Att = 15 seconds the response reaches its
steady-state as expected, and its estimated mean, variance, skewness, and kurtosis areµ̂ = 0.0385,
σ̂2 = 1.75 × 10−4, γ̂3 = 0.5073, andγ̂4 = 3.3340, in agreement with the above results obtained
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FIGURE 3-39 Response moments by classical Monte Carlo simulation.

using the sampling theorem. The computation time for generating 100,000 samples ofZn,m(t)
and constructing the histogram in Figure 3-38 (a) was 16 seconds on a DELL-GX320 computer
with 3GHz CPU and 2GB RAM. On the other hand, the computation time for generating 100,000
samples ofF (t) and calculating corresponding samples ofZ(t) through numerical integration for
constructing the histogram in Figure 3-38 (b) was 7,975 seconds on the same computer, which is,
almost 500 times more compared to that from sampling theorem.

Figure 3-40 shows with solid line the estimateν̂+
n,m(z) of the meanz-upcrossing rate ofZn,m(t),
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FIGURE 3-40 Estimates of meanz-upcrossing rates of Z(t) by sampling theorem and
classical Monte Carlo simulation.
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for z ≥ E[Z(t)], obtained by Equation 3-103 using the values oft, t∗, n, nm andns in Figure 3-
38 (a). The mean responseE[Z(t)] can be approximated by an estimate of the meanµn,m of
Zn,m(t), µ̂n,m = 1/ns

∑ns

i=1 Zn,m(t, ωi). Figure 3-40 also shows with dotted line estimate of the
meanz-upcrossing rates ofZ(t) obtained by classical Monte Carlo simulation from the samples in
Figure 3-38 (b). The computation times for calculating mean crossing rates in Figure 3-40 are 52
and 7,975 seconds using the sampling theorem and classical Monte Carlo simulation, respectively,
on a DELL-GX320 computer with 3GHz CPU and 2GB RAM.

The system fragility in Equation 3-91 can be approximated by Equation 3-5 with meanD =
[−z, z]-outcrossing rate in Equation 3-101 andτ in Equation 2-18. Figure 3-41 shows fragility
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FIGURE 3-41 Fragility for linear oscillator with ω0 = 8 rad/sec.

surface for the linear oscillator in Figure 3-40 located in milepost-150 for the displacement limit
statez = 20 cm. The wind activity matrix in Figure 2-16 provides realizable values of(v̄, θ̄) at
the system site. The change in fragility with respect to the mean wind speed and the principal
wind direction is as in Figure 3-37. The failure probabilities of the system withω0 = 8 rad/sec
in Figure 3-41 are higher than those of the system withω0 = 15 rad/sec in Figure 3-37 because
the response of the system withω0 = 15 rad/sec is quasi-static (see Section 3.4.1) whereas the
response of the system withω0 = 8 rad/sec is dynamic in nature so that they are larger due to
dynamic amplifications.

We note that the method presented in this section for characterizing response of linear oscillators to
stationary bandlimited processes, based on the sampling theorem and Monte Carlo simulation, can
be extended to linear multi degree of freedom system subjected (Grigoriu and Kafali, 2007).

3.5 Wind and wave fragility

Consider the simple structure in Figure 3-36 and suppose that it is a model of an hypothetical
offshore platform in deep waters, for example, a jacket platform, consisting of a deck with
dimensionb, c and h and a circular column of lengthl and diameterdc attaching the deck to
the sea-bed so that the submerged length of the column equals the water depthd. Assume that the
system is located at a site with possible hurricane activity causing wind loads acting on the deck
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and wind-induced wave loads acting on the submerged part of the column. In Section 2.2.3 it was
shown that the wave hazard at the system site is completely characterized by the mean wind velocity
v̄, and the principal wind direction̄θ at the site. Accordingly, fragility of the system is based on
these two parameters completely defining the probability law of all the loads on the system.

The wind activity matrix in Section 2.3.5 provides realizable values of(v̄, θ̄) at a site near the
coastline over an open terrain. The respective mean wind speeds over water surface at the system
site can be calculated using the similarity model in Section 2.2.2.1 providing a relationship between
wind speeds in different surface roughness regimes. Figure 2-8 shows the relationship between
hourly mean wind speeds̄v1 over open terrain, and̄v2 over water, at 10 m above the surface. The
mean speed is larger over water surface. Hence, the wind activity matrix in Section 2.3.5 can be
used for a site over water surface by adjusting the mean wind speeds. In this sectionv̄ denotes the
mean hourly speed in meters per second at 10 m above the mean water level.

Wind drag force acting on the deck structure is expressed by Equation 3-89. We represent the
total wave force acting on the actual column of the platform by an equivalent force acting on a
circular column of unit length with a modified diameterdc. This assumption is made for purposes
of presenting the proposed approach and will be relaxed in Chapter 4. Wave forces acting on the
circular column can be modeled by various forms of the Morison equation (Morisonet al., 1950)
that disregard or account for flow-structure interaction. Accordingly, the force acting on a section
of a pile due to wave motion is made up of a drag force, analogous to the drag force on a body
subjected to a steady state of a real fluid associated with wake formation behind the body; and an
inertia force, analogous to that on a body subjected to a uniformly accelerated flow of an ideal fluid.
The Morison equation carries the implicit assumption that the body size is small relative to the wave
length. The noninteractive Morison equation for a cylindrical member of unit length, located near
the water surface in deep waters, has the form

X(t) =
1

2
c′dρw dc U∗(t)|U∗(t)| + cmρw

πd2
c

4
U̇∗(t) (3-106)

in which the first term on the right hand side is the drag force, the second term is the inertia
force, ρw is the density of water,dc is the diameter of the cylinder,c′d andcm are the drag and
inertia coefficients, andU∗(t) = u0 + U(t) is the total water particle velocity at the water surface
obtained from Equation 2-32 usings = d (Figure 2-9), in whichu0 is in Equation 2-31 andU(t)
is in Equation 2-24 fors = d. U(t) is a stationary Gaussian process with mean zero and one-
sided spectral density function in Equation 2-27. The drag and inertia coefficientsc′d andcm, in
Equations 3-106 and 3-107, generally depend on time, Reynolds number, relative displacement of
the fluid and some other parameters, and takes on values in the ranges(0.6, 1.0) and (1.5, 2.0),
respectively (Institute, 1977). In this study, although questionable, we use constant values for the
drag and inertia coefficients,c′d = 1 andcm = 2, for purposes of illustrating the proposed approach.

The interactive forms of the Morison equation involve time derivativesŻ(t) and Z̈(t) of the
structural displacement processZ(t). For example, according to the relative velocity model, the
wave force for cylindrical members of unit length is

X(t) =
1

2
c′dρw dc [U∗(t) − Ż(t)]|U∗(t) − Ż(t)|

+ cmρw
πd2

c

4

[

U̇∗(t) − (1 − 1/cm)Z̈(t)
]

. (3-107)

Since the structure’s motion is expected to be small compared with the water particle motion for
a non-compliant platform, such as the jacket platform model used in this study, the dependence of
wave forceX(t) on structure motionZ(t) is ignored, and the noninteractive form of the Morison
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equation in Equation 3-106 is used for analysis. For compliant platforms, which are designed
to withstand environmental loads by their ability to deflect from their equilibrium position, the
interactive form of the Morison equation in Equation 3-107 should be used for analysis. However,
in this case it should be noted that the spectral density of fluctuating wind velocity in Equation 2-19
may result in an overestimation of structural response as it is not suggested for a structure with a
low fundamental frequency of vibration, such as a compliant offshore platform ((Simiu and Scanlan,
1986), Section 2.3.3).

The system in Figure 3-36 is modeled by a linear single degree of freedom system whose along-
wind displacement responseZ(t) to wind and wave loads resulted from a hurricane with mean wind
speed̄v blowing in a direction̄θ satisfies the differential equation

mZ̈(t) + cŻ(t) + kZ(t) = X(t) + F (t), 0 ≤ t ≤ τ, (3-108)

with initial conditionsZ(0) = Ż(0) = 0, X(t) in Equation 3-106,F (t) in Equation 3-89, andτ
in Equation 2-18. In generalZ(t) is a non-Gaussian random process with stationary characteristics
during the steady-state part of oscillations, sinceF (t) and X(t) are stationary non-Gaussian
processes. We note that for wind flow over water surface the spectral density function of fluctuating
wind velocityV (t), in Equation 2-19, is a function of the surface drag coefficientκ in Equation 2-
20.

System fragility, that is, the probability that the maximum responseZτ = max0≤t≤τ (|Z(t)|)
exceeds a limit statez if the oscillator is subjected to high winds with parameters(v̄, θ̄) is given by
Equation 3-91. We estimate the fragility in Equation 3-91 by crossing theory of stochastic processes
presented in Section 3.1, and provide (1) an analytical expression for the mean crossing rate of the
quasi-static response of the linear oscillator in Figure 3-36 to wave loadX(t) in Equation 3-106 and
wind loadF (t) in Equation 3-89, and (2) an estimation for the mean crossing rate of the dynamic
response of the same linear oscillator to the loadsX(t) andF (t) based on the sampling theorem
and Monte Carlo algorithm, as in Section 3.4.2. For nonlinear systems subjected to wind and wave
loads methods based on the classical Monte Carlo algorithm can be used to calculate the system
fragility (see Section 3.2).

3.5.1 Quasi-static response

Consider the simple linear oscillator in Equation 3-108 with natural frequencyω0 =
√

k/m much
larger that the frequencies of the excitation, that is,ω0 ≫ ω̄, in which ω̄ = max(ω̄1, ω̄2), where
ω̄1 is the cut-off frequency of the spectral density function in Equation 2-19 of fluctuating wind
velocity V (t) in Equation 2-18 and̄ω2 is the cut-off frequency of the spectral density function in
Equation 2-27 of fluctuating wave particle velocityU(t) in Equation 2-24. The response of the
oscillator is practically proportional to the excitation and is referred to as quasi-static response.
In this section we examine the quasi-static response of a simple offshore structure consisting of a
cylindrical member of unit submerged depth to the noninteractive form of the Morison equation
X(t) in Equation 3-106 and the wind loadF (t) in Equation 3-89.

The quasi-static displacement response of the oscillator toX(t) in Equation 3-106 andF (t) in
Equation 3-89 is

Z(t) =
1

k
(X(t) + F (t)) =

1

k

[

a1(u0 + U(t))|u0 + U(t)| + a2U̇(t) + a3(v̄ + V (t))2
]

, (3-109)

wherek is the structural stiffness,a1 = (1/2)c′dρwdc, a2 = cmρv(πd2
c)/4, a3 = (1/2)ρacda(θ̄),

u0 is the current in Equation 2-31, andV (t) andU(t) are stationary Gaussian processes with mean
zero and one-sided spectral density functions in Equations 2-19 and 2-27, respectively.
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The meanz-upcrossing rate ofZ(t), that is, the mean rate at whichZ(t) crosses from below a
displacement levelz, can be obtained from the mean outcrossing rate at which the vector process
Y (t) = {Y1(t), Y2(t), Y3(t)} leaves the safe domainD = {(y1, y2, y3) : y1+y2+y3 < y, y3 ≥ 0},
in which

Y1(t) = (u0 + U(t))|u0 + U(t)|,

Y2(t) = aU̇(t),

Y3(t) = β(v̄ + V (t))2, (3-110)

y = kz/a1, a = a2/a1 andβ = a3/a1 . The mean D-outcrossing rate ofY (t) is (Soong and
Grigoriu, 1993)

ν(z)+ =

∫

L
dyE[Ẏn(t) + |Y (t) = y] fY (y), (3-111)

in whichy = (y1, y2, y3), fY (y) is the first order density ofY (t) and

E[Ẏn(t) + |Y (t) = y] =

∫ ∞

0
ẏnfẎn |Y (ẏn |y)dẏn (3-112)

is the expectation of the positive tail of the projection ofẎ (t) on the exterior normaln =
(1/

√
3, 1/

√
3, 1/

√
3) to the limit stateL = {(y1, y2, y3) : y1 + y2 + y3 = y, y3 ≥ 0} given

thatY (t) = y onL. The conditional densityfẎn |Y (ẏn |y) in Equation 3-112 can be obtained by
differentiating the conditional probability

FẎn |Y (ẏn |y) = P [Ẏn(t) < ẏn |Y1(t) = y1, Y2(t) = y2, Y3(t) = y3] (3-113)

with respect toẏn. In Equation 3-113

Ẏn(t) =
1√
3
[Ẏ1(t) + Ẏ2(t) + Ẏ3(t)], (3-114)

in which

Ẏ1(t) = 2|u0 + U(t)|U̇ (t),

Ẏ2(t) = aÜ(t),

Ẏ3(t) = 2βV̇ (t)(v̄ + V (t)), (3-115)

are the time derivatives of the processesY1(t), Y2(t) andY3(t) in Equation 3-110, anḋYn(t) is the
time derivative ofYn(t) = [Y1(t) + Y2(t) + Y2(t)]/

√
3. From Equations 3-110, 3-113 and 3-114

FẎn |Y (ẏn |y) = P [Ẏ1(t) + Ẏ2(t) + Ẏ3(t) < ẏn

√
3 | (u0 + U(t))|u0 + U(t)| = y1,

U̇(t) = y2/a, (v̄ + V (t))2 = y3/β]. (3-116)

Noting that the first condition implies|u0 + U(t)| =
√

|y1| and using the second condition
we haveẎ1(t) = 2

√

|y1|y2/a, also, the third condition implies̄v + V (t) =
√

y3/β so that
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Ẏ3(t) = 2βV̇ (t)
√

y3/β, hence Equation 3-116 becomes

FẎn |Y (ẏn |y) = P [2
√

|y1|y2/a + aÜ(t) + 2βV̇ (t)
√

y3/β < ẏn

√
3 |

|u0 + U(t)| =
√

|y1|, U̇(t) = y2/a, v̄ + V (t) =
√

y3/β ]

= P [Ü(t) +
2
√

βy3

a
V̇ (t) <

a
√

3ẏn − 2
√

|y1|y2

a2
|

|u0 + U(t)| =
√

|y1|, U̇(t) = y2/a, v̄ + V (t) =
√

y3/β ]

= P [Ü(t) +
2
√

βy3

a
V̇ (t) <

a
√

3ẏn − 2
√

|y1|y2

a2
|

|u0 + U(t)| =
√

|y1| ]. (3-117)

The last step follows sinceU andV are independent processes and a stationary Gaussian process
and its time derivative at a given time are independent of each other. Note that

|u0 + U(t)| =
√

|y1| ⇒ u0 + U(t) =
y1
√

|y1|
⇒ U(t) =

y1
√

|y1|
− u0

⇒ U(t) = sgn(y1)
√

|y1| − u0, (3-118)

hence Equation 3-117 becomes

FẎn |Y (ẏn |y) = P [Ü(t) +
2
√

βy3

a
V̇ (t) <

a
√

3ẏn − 2
√

|y1|y2

a2
|

U(t) = sgn(y1)
√

|y1| − u0 ]. (3-119)

SinceU(t) andV (t) are independent of each other we have

FẎn |Y (ẏn |y) =

∫ ∞

−∞
P [Ü(t) <

a
√

3ẏn − 2
√

|y1|y2

a2
− 2

√
βy3

a
ξ |

U(t) = sgn(y1)
√

|y1| − u0 ]fV̇ (ξ)dξ, (3-120)

wherefV̇ (ξ) is the first order density oḟV ∼ N(0, σ2
V̇

) with σ2
V̇

=
∫ ω̄
0 ω2gV V (ω)dω in which

gV V (ω) is given by Equation 2-19, so thatfV̇ (ξ) = φ(ξ/σV̇ ) with φ(·) = density function of
standard normal random variable.

Denote byc(τ) the covariance function of the zero-mean stationary processU(t) so thatc(τ) =

E[U(t)U(t + τ)], c′(τ) = E[U(t)U̇ (t + τ)] = E[U̇ (t)U(t − τ)] andc′′(τ) = −E[U̇(t)U̇ (t − τ)].
Note thatc′′(0) = −E[U̇2(t)] = −σ2

U̇
. From c′(τ) = E[U(t)U̇ (t + τ)] we can also write
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c′′(τ) = E[U(t)Ü (t + τ)] so thatE[U(t)Ü (t)] = c′′(0) = −σ2
U̇

. Then,







U(t)

U̇(t)

Ü(t)






= N






0,







σ2
U 0 −σ2

U̇

0 σ2
U̇

0

−σ2
U̇

0 σ2
Ü













⇒
[

Ü(t)

U(t)

]

= N

(

0,

[

σ2
Ü

−σ2
U̇

−σ2
U̇

σ2
U

])

, (3-121)

henceÜ |U = u ∼ N
(

−(σ2
U̇
/σ2

U )u, σ2
Ü
− (−σ2

U̇
)2/σ2

U

)

, whereσ2
U =

∫ ω̄
0 gUU (ω)dω, σ2

U̇
=

∫ ω̄
0 ω2gUU (ω)dω andσ2

Ü
=
∫ ω̄
0 ω4gUU (ω)dω are the variances ofU , U̇ andÜ , respectively, and

gUU (ω) is given by Equation 2-27. As a result,

P [Ü(t) <
a
√

3ẏn − 2
√

|y1|y2 − 2aξ
√

βy3

a2
|U(t) = sgn(y1)

√

|y1| − u0 ],

in Equation 3-120, becomesΦ
(

(a
√

3ẏn − b)/c
)

for

b(ξ) = 2
√

|y1|y2 + 2aξ
√

βy3 − a2(σ2
U̇
/σ2

U )(sgn(y1)
√

|y1| − u0),

c = a2
(

σ2
Ü
− σ4

U̇
/σ2

U

)1/2
, (3-122)

so that

FẎn |Y (ẏn |y) =

∫ ∞

−∞
Φ

(

a
√

3ẏn − b(ξ)

c

)

φ

(

ξ

σV̇

)

dξ, (3-123)

with b(ξ) andc in Equation 3-122. Then

fẎn |Y (ẏn |y) =
d

dẏn
FẎn |Y (ẏn |y)

=
a
√

3

c

∫ ∞

−∞
φ

(

a
√

3ẏn − b(ξ)

c

)

φ

(

ξ

σV̇

)

dξ, (3-124)

and Equation 3-112 becomes

E[Ẏ (t) + |Y (t) = y] =
a
√

3

c

∫ ∞

0
ẏn

∫ ∞

−∞
φ

(

a
√

3ẏn − b(ξ)

c

)

φ

(

ξ

σV̇

)

dξdẏn. (3-125)

Forq = a
√

3ẏn Equation 3-125 becomes

E[Ẏ (t) + |Y (t) = y] =
1

a
√

3

∫ ∞

−∞

(
∫ ∞

0

q

c
φ

(

q − b(ξ)

c

)

dq

)

φ

(

ξ

σV̇

)

dξ, (3-126)
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in which

∫ ∞

0

q

c
φ

(

q − b(ξ)

c

)

dq =

∫ ∞

0
q

1√
2πc

exp

(

−(q − b(ξ))2

2c2

)

dq

=

[∫ ∞

0

(q − b(ξ))√
2πc

exp

(

−(q − b(ξ))2

2c2

)

dq +

∫ ∞

0

b(ξ)√
2πc

exp

(

−(q − b(ξ))2

2c2

)

dq

]

=

[

−c
1√
2π

exp

(

−(q − b(ξ))2

2c2

)∣

∣

∣

∣

∞

0

+ b(ξ)

∫ ∞

0
φ

(

q − b(ξ)

c

)

dq

]

=

[

−cφ

(

q − b(ξ)

c

)∣

∣

∣

∣

∞

0

+ b(ξ)

(∫ ∞

−∞
φ

(

q − b(ξ)

c

)

dq −
∫ 0

−∞
φ

(

q − b(ξ)

c

)

dq

)]

= ( − c [φ(∞) − φ(−b(ξ)/c)] + b(ξ) [1 − Φ(−b(ξ)/c)] )

=

[

cφ

(

b(ξ)

c

)

+ b(ξ)Φ

(

b(ξ)

c

)]

, (3-127)

so that Equation 3-127 becomes

E[Ẏ (t) + |Y (t) = y] =
1

a
√

3

∫ ∞

−∞

[

cφ

(

b(ξ)

c

)

+ b(ξ)Φ

(

b(ξ)

c

)]

φ

(

ξ

σV̇

)

dξ, (3-128)

with b(ξ) andc in Equation 3-122.

The first order densityfY (y) of Y (t), in the mean crossing rate expression given by Equation 3-
111, is obtained by differentiating the first order probability

FY (y) = P [Y (t) < y] = P [Y1(t) < y1, Y2(t) < y2, Y3(t) < y3]

= P [Y1(t) < y1]P [Y2(t) < y2]P [Y3(t) < y3] (3-129)

with respect toy1, y2 andy3. The last step in Equation 3-129 follows since the random variables
Y1(t), Y2(t) andY3(t) in Equation 3-110 are independent of each other at timet. Accordingly,

fY (y) =
∂3FY (y)

∂y1∂y2∂y3
= fY1

(y1)fY2
(y2)fY3

(y3), (3-130)
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where the first order density function ofY1(t) is

fY1
(y1) =

d

dy1
P [Y1(t) < y1] =

d

dy1
P [U∗(t)|U∗(t)| < y1]

=
d

dy1
P [U∗(t) < sgn(y1)

√

|y1|] =
d

dy1
P [U(t) < sgn(y1)

√

|y1| − u0]

=
d

dy1
Φ

(

sgn(y1)
√

|y1| − u0

σU

)

=
d

dy1

(

sgn(y1)
√

|y1|
σU

)

1√
2π

exp



−1

2

(

sgn(y1)
√

|y1| − u0

σU

)2




=



























d
√

y1

dy1

1

σU

√
2π

exp (. . .) =
1

2
√

y1σU

√
2π

exp (. . .) ; y1 > 0,

d(−√−y1)

dy1

1

σU

√
2π

exp (. . .) =
1

2
√−y1σU

√
2π

exp (. . .) ; y1 < 0,

=
1

2σU

√

2π|y1|
exp



−1

2

(

sgn(y1)
√

|y1| − u0

σU

)2


 , (3-131)

the first order density function ofY2(t) is

fY2
(y2) =

d

dy2
P [Y2(t) < y2] =

d

dy2
P [aU̇(t) < y2] =

d

dy2
Φ

(

y2/a

σU̇

)

=
1

aσU̇

φ

(

y2

aσU̇

)

, (3-132)

and the first order density function ofY3(t) is (Section 3.4.1)

fY3
(y3) =

d

dy3
P [Y3(t) < y3] =

d

dy3
P [β(v̄ + V (t))2 < y3]

=
1

βσ2
V

f(y3/(βσ2
V ), 1, v̄2/σ2

V ) (3-133)

in which f(η,m, λ) is the noncentral chi-square density with degree of freedomm and non-
centrality parameterλ.

The meanz-upcrossing rate ofZ(t) in Equation 3-111 can now be written as, using Equation 3-128
and Equation 3-130,

ν(z)+ =
1

a
√

3

∫

L
dsfY1

(y1)fY2
(y2)fY3

(y3)

{
∫ ∞

−∞

[

cφ

(

b(ξ)

c

)

+ b(ξ)Φ

(

b(ξ)

c

)]

φ

(

ξ

σV̇

)

dξ}, (3-134)
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whereds is an area element on the plane defined byL = {(y1, y2, y3) : y1 + y2 + y3 = y, y3 ≥ 0}.
Note that for a continuous functionh(y1, y2, y3) on the planeL in Equation 3-134, we have

∫

L
h(y1, y2, y3)ds =

√
3

∫ ∞

−∞
dy1

∫ ∞

0
dy3 h(y1, y − y1 − y3, y3), (3-135)

=
√

3

∫ ∞

−∞
dy2

∫ ∞

0
dy3 h(y − y2 − y3, y2, y3), (3-136)

=
√

3

∫ ∞

−∞
dy1

∫ y−y1

−∞
dy2 h(y1, y2, y − y1 − y2). (3-137)

We can integrate the right-hand sides of Equations 3-135-3-137 numerically to obtain
∫

L h(y1, y2, y3)ds. We use Equation 3-135 for numerical integration as it provides more accurate
results with shorter computational times for the functionh(y1, y2, y3) and domainL used in this
problem. Accordingly, Equation 3-134 becomes

ν(z)+ =
1

a

∫ ∞

−∞
dy1fY1

(y1)

∫ ∞

0
dy3fY3

(y3)fY2
(y − y1 − y3)

{
∫ ∞

−∞

[

cφ

(

b(ξ)

c

)

+ b(ξ)Φ

(

b(ξ)

c

)]

φ

(

ξ

σV̇

)

dξ}, (3-138)

with b, c in Equation 3-122 fory2 = y− y1 − y3, fY1
(y1), fY2

(y2) andfY3
(y3) in Equations 3-131-

3-133, andσV̇ =
∫∞
0 ω2gV V (ω)dω, in whichgV V (ω) is given by Equation 2-19. Equation 3-138

is used to calculate the meanz-upcrossing rate ofZ(t) in Equation 3-111.

Consider the system in Figure 3-36 consisting of a deck located at 10 m above the water surface
with massm = 1000 kg andb = c = h = 2 m, and a circular column of unit length with diameter
dc = 0.5 m. The natural frequency of the system isω0 = 15 rad/sec. Suppose that high winds with
mean wind velocitȳv = 20 m/sec and principal direction̄θ = 0 prevail at the system site resulting
in wind and wave drag forcesF (t) andX(t) in Equations 3-89 and 3-106 withρa = 1.2 kg/m3,
cd = 2, ρw = 1000 kg/m3, c′d = 1, cm = 2, and current velocityu0 = 0.025v̄. Figure 3-42 shows
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FIGURE 3-42 Spectral density functions of (a)V (t), (b) U(t).

the one-sided spectral density functions in Equations 2-19 and 2-27 of (a) the fluctuating wind
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velocityV (t) and (b) the water particle velocityU(t). We note that the spectral density of the wind
velocity is based onκ in Equation 2-20 for wind flow over water surface. The natural frequency
of the systemω0 = 15 rad/sec is much larger that the frequencies of the excitation so that the
responseZ(t) of the oscillator in Equation 3-108 will be quasi-static and given by Equation 3-109,
wherek = ω2

0m is the system stiffness. Figure 3-43 shows the marginal density functionsfY1
(y1),
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FIGURE 3-43 Marginal densities ofY1, Y2 and Y3.

fY2
(y2) andfY3

(y3), of Y1, Y2 andY3 in Equations 3-131-3-133, respectively, and histograms of
these random variables calculated fromns = 100, 000 independent samples ofV (t) andU(t)
and Equation 3-110. Samples ofV (t) and U(t) are obtained following the method presented
in Section 2.4.1 using their spectral density functions in Equations 2-19 and 2-27, respectively.
Figure 3-44 shows the meanz-upcrossing rate of the responseZ(t) obtained by Equation 3-138
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FIGURE 3-44 Mean upcrossing rate of quasi-static response.

and estimated by Monte Carlo simulation using Equation 3-109 andns = 100, 000 independent
samples ofV (t) andU(t) with dt = 0.1. Figure 3-44 also shows the meanz-upcrossing rate of
the responseZ(t) if subjected to wind loadF (t) only, and to wave loadX(t) only, which can
be calculated from Equations 3-93 and following the procedure in Section 3.5.1 fora3 = 0 in
Equation 3-109, respectively.
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An approximation for the mean crossing rate from the statistical linearization method

The method has been applied extensively to analyze complex dynamic systems, particularly for the
estimation of the second-moment descriptors of the response, for example, the mean and variance
(Shinozuka, 1972; Soong, 1973). Accordingly, the meanz-upcrossing rate Equation 3-138 can be
approximated from a linearized representation of the quasi-static displacement responseZ(t) in
Equation 3-109 of the oscillator, for example,

ZL(t) =
1

k

[

a1duU∗(t) + a2U̇
∗(t) + a3dvV

∗(t)
]

, (3-139)

in whichU∗(t) = u0 + U(t), U̇∗(t) = U̇(t), V ∗(t) = v̄ + V (t), anddu anddv are linearized wave
and wind drag factors, respectively, calculated by means of equivalent linearization techniques
(Benjamin and Cornell, 1970). In the case of wave drag the nonlinear termU∗(t)|U∗(t)| in
Equation 3-109 is replaced with a linear termduU∗(t) such that the linearized drag factordu

minimizes the mean squared errorE[(duU∗(t) − U∗(t)|U∗(t)|)2], which yields,

du =
E[(U∗(t))2|U∗(t)|]

E[(U∗(t))2]
. (3-140)

SinceU∗(t) = u0 + U(t) is a Gaussian process with meanu0 and varianceσ2
U we can obtain

E[(U∗(t))2|U∗(t)|] = (4σ3
U + 2σUu2

0)φ(u0/σU ) + (3σ2
Uu0 + u3

0)(2Φ(u0/σU ) − 1). Hence
Equation 3-140 becomes

du =

(

4σ3
U + 2σUu2

0

)

φ
(

u0

σU

)

+
(

3σ2
Uu0 + u3

0

)

[

2Φ
(

u0

σU

)

− 1
]

σ2
U + u2

0

. (3-141)

Similarly, we can obtaindv by minimizing the mean squared errorE[(dvV
∗(t)− (V ∗(t))2], which

yields,

dv =
3σ2

V v̄ + v̄3

σ2
V + v̄2

. (3-142)

SinceU(t) andV (t) are stationary Gaussian processes,ZL(t) is also a stationary Gaussian process
with meanz-upcrossing rate

ν(L)(z)+ =
σŻL

σZL

1√
2π

φ

(

z − µZL

σZL

)

=
1

2π

σŻL

σZL

exp

(

−(z − µZL
)2

2σ2
ZL

)

, (3-143)

in which the mean and variance ofZL(t), and the variance oḟZL(t), respectively, are

µZL
= E[ZL(t)] =

1

k
(a1duu0 + a3dv v̄),

σ2
ZL

= V ar[ZL(t)] =
1

k2
((a1duσU )2 + (a2σU̇ )2 + (a3dvσV )2),

σ2
ŻL

= V ar[ŻL(t)] =
1

k2
((a1duσU̇ )2 + (a2σÜ )2 + (a3dvσV̇ )2), (3-144)

with du anddv in Equations 3-141 and 3-142, andσ2
U , σ2

U̇
andσ2

V are the variances ofU , U̇
andV , respectively, and can be calculated from their respective spectral density functions. We
note that (1)E[U(t)V (t)] = E[U(t)]E[V (t)] = 0 sinceU(t) andV (t) are zero-mean processes
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that are independent of each other, and (2)E[U(t)U̇ (t)] = E[U(t)]E[U̇ (t)] andE[U̇ (t)Ü(t)] =

E[U̇ (t)]E[Ü (t)] since a stationary Gaussian process and its time derivative are independent of each
other at a given time (Soong and Grigoriu, 1993).

The meanz-upcrossing rate in Equation 3-143 of the linearized responseZL(t) can be used to
approximate the meanz-upcrossing rate in Equation 3-138 ofZ(t) in Equation 3-109. Figure 3-45
shows the ratio of meanz-upcrossing rate in Equation 3-138 of the responseZ(t) in Equation 3-109
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FIGURE 3-45 Ratio of the exact to approximate mean crossing rates.

to that of the linearized responseZL(t) given by Equation 3-143. The ratio of the mean crossing
rates show that the linear approximation can underestimate significantly the peak response. The
standardized threshold̃z in Figure 3-45 is measured in standard deviation units from the mean and
is given by

z̃ =
z − µZ

σZ
, (3-145)

wherez is the specified crossing level for the displacement responseZ(t) in Equation 3-109, and
mean and variance ofZ(t) are

µZ = E[Z(t)] = E
[a1

k
(Y1(t) + Y2(t) + Y3(t))

]

=
a1

k
(µY1

+ µY3
)

σ2
Z = V ar[Z(t)] =

(a1

k

)2 (
σ2

Y1
+ σ2

Y2
+ σ2

Y3

)

, (3-146)

respectively. In Equation 3-146µYi
and σ2

Yi
are the mean and variance ofYi(t), i = 1, 2, 3,

respectively, and can be calculated in closed form using the corresponding marginal density
function fYi

(yi) in Equations 3-131, 3-132, 3-132, fori = 1, 2, 3. Accordingly,µY1
= (σ2

U +
u2

0) [2Φ (u0/σU ) − 1]+2σUu0φ (u0/σU ), σ2
Y1

= (3σ4
U +6σ2

Uu2
0+u4

0)−µ2
Y1

, µY2
= 0, σ2

Y2
= a2σ2

U̇
,

µY3
= βσ2

V (1 + v̄2/σ2
V ) andσ2

Y3
= 2(βσ2

V )2(1 + 2v̄2/σ2
V ). Figure 3-45 shows that the difference

between the mean crossing ratesν(z)+ and νL(z)+ increases with the threshold and can be
significant for large values of the threshold. Thus statistical linearization method should not be
applied to estimate the peak response. The large errors in statistical linearization are primarily
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caused by the implicit assumption in this method that the response is a Gaussian process. A possible
use of the method could be in fatigue studies involving exceedings of relatively low thresholds.

The system fragility in Equation 3-91, that is, the probability that the maximum quasi-static
response exceeds a limit statez ≥ µZ if the oscillator is subjected to high winds and wind-induced
waves with specified parameters, can be approximated by Equation 3-5 withτ from Equation 2-
18 and meanD = [−z, z]-outcrossing rateνD = ν(z)+ + ν(−z)−, in which ν(z)+ is given
by Equation 3-93 andν(−z)− can be simply obtained by replacingy with −y in Equation 3-
93 and changingb(ξ) accordingly. If the limit statez is less than the mean responseµZ then
P [(Z(0) ∈ D)] in Equation 3-3 becomes zero so that system fragility in Equation 3-5 becomes 1.

Figure 3-46 shows fragility surface for the linear oscillator in Figure 3-44 located near milepost-
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FIGURE 3-46 Fragility for linear oscillator with ω0 = 15 rad/sec.

150 for the displacement limit statez = 20 cm. The wind activity matrix in Figure 2-16 provides
realizable values of(v̄, θ̄) at the milepost. We calculate corresponding values ofv̄ over the sea
surface using Figure 2-8. As expected system fragility increases with increasing wind speed.
The periodic change in fragility along thēθ-axis results from the assumed shape of the structure
(Figure 3-36). The exposed areaa(θ̄) in Equation 3-89 becomes largest at 45, 135, 225 and 315
degrees, resulting in higher wind loading, hence increased fragility. The wind direction has no
effect on the wave loads acting on this structure since the column attaching the deck to sea-bed has
a circular cross-section.

3.5.2 Dynamic response

Consider the same oscillator in Section 3.5.1, but this time with a natural frequencyω0 such that its
response toX(t)+F (t), with X(t) in Equation 3-106 andF (t) in Equation 3-89, is dynamic. The
equation of motion for the oscillator in Equation 3-108 can alternatively be given by

Z̈(t) + 2ζω0Ż(t) + ω2
0Z(t) =

1

m
(F (t) + X(t)) , 0 ≤ t ≤ τ, (3-147)

whereω2
0 = k/m, ζ = c/(2mω0) andτ in Equation 2-18.
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This section develops probabilistic characteristics of thesteady-state responseZ(t) calculated by
the sampling theorem and Monte Carlo simulation presented in Section 3.4.2. Results obtained by
the sampling theorem are compared with (1) the exact results obtained by classical Monte Carlo
simulation, and (2) approximate results based on the statistical linearization of the load processes.

3.5.2.1 Method based on the classical Monte Carlo simulation:

The classical Monte Carlo simulation method presented in Section 3.4.2.1 is used here for
characterizing the response process. We note that the first step in Section 3.4.2.1 should also involve
generation of realization ofU(t) andU̇(t) from

U(t) =

n
∑

i=1

σi [Ai cos(ωit) + Bi sin(ωit)] (3-148)

U̇(t) =
n
∑

i=1

ωiσi [−Ai sin(ωit) + Bi cos(ωit)] , (3-149)

respectively, whereAi andBi are independent zero-mean, unit variance Gaussian variables and
σ2

i is the variance associated with the frequencyωi, i = 1, . . . , n, obtained from the spectral
density function ofU(t) given by Equation 2-27 (Section 2.4.1). In the second step, we perform
deterministic dynamic analyses to determine the response in(0, τ) to the samples ofF (t) in
Equation 3-89 andX(t) in Equation 3-106 obtained from the samples in step-1. The last step
involves the estimation of mean, variance and mean upcrossing rates of the response process from
the calculated response samples.

3.5.2.2 Method based on the sampling theorem:

The sampling theorem method (Grigoriu and Kafali, 2007) presented in Section 3.4.2.2 is used
here for calculating statistics of the state of the linear system in Equation 3-147 subjected to
stationary bandlimited non-Gaussian processF (t) + X(t), with X(t) in Equation 3-106 andF (t)
in Equation 3-89. The bandwidth[0, ω̄] of F (t) + X(t) is defined byω̄ = max(ω̄1, ω̄2), where
ω̄1 is the cut-off frequency of the spectral density function in Equation 2-19 of fluctuating wind
velocity V (t) in Equation 2-18 and̄ω2 is the cut-off frequency of the spectral density function in
Equation 2-27 of fluctuating wave particle velocityU(t) in Equation 2-24. The system output at
a timet is approximated by a finite sum of deterministic functions oft with random coefficients
given by equally spaced values of the input process over a window of finite width centered ont.
The number of terms in the sum depends on both input and system memory.

Consider the following approximation toF (t) + X(t) in Equation 3-147 obtained by the sampling
theorem (Grigoriu and Kafali, 2007)

(F (t) + X(t))n =

nt+n+1
∑

k=nt−n

(F (k t∗) + X(k t∗))αk(t; t∗), t ∈ [nt t∗, (nt + 1) t∗], (3-150)

with the notation in Equation 3-96. The approximate system stateZn,m(t) at timet corresponding
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to (F (t) + X(t))n in Equation 3-150 has the expression

Zn,m(t) =

nt−1
∑

k=nt−nm

k+n+1
∑

i=k−n

[

∫ 0∨(k+1) t∗

0∨k t∗
φ(t − s)αi(s; t

∗) ds] (F (i t∗) + X(i t∗))

+

nt+n+1
∑

i=nt−n

[

∫ t

nt t∗
φ(t − s)αi(s; t

∗) ds] (F (i t∗) + X(i t∗)) (3-151)

with the notation in Equation 3-99. The mean(−z, z)-outcrossing rate of the steady-state response
Z(t) in Equation 3-147 can be approximated by an estimateν̂n,m(z) of the mean(−z, z)-
outcrossing rate ofZn,m(t) in Equation 3-99, which has the form in Equation 3-101.

3.5.2.3 Method based on the statistical linearization:

The statistical linearization method presented in Section 3.5.1 can be used to obtain a linearized
representation of the dynamic responseZ(t) in Equation 3-109 of the oscillator, for example,

Z̈L(t) + 2ζω0ŻL(t) + ω2
0ZL(t) =

1

m

[

a1duU∗(t) + a2U̇
∗(t) + a3dvV

∗(t)
]

, (3-152)

in which U∗(t) = u0 + U(t), V ∗(t) = v̄ + V (t), anddu anddv are linearized wave and wind
drag factors given by Equations 3-141 and 3-142, respectively. SinceZL(t) is a linear function of
the stationary Gaussian processesU(t) andV (t), the approximate steady-state response is also a
stationary Gaussian process with meanµZL

= (a1duu0 + a3dv v̄)/m and spectral density function

gZLZL
(ω) = |h(ω)|2 1

m2

[

(a1du)2gUU (ω) + a2
2gU̇ U̇ (ω) + (a3dv)

2gV V (ω)
]

, (3-153)

wheregUU (ω) andgV V (ω) are the one-sided spectral density functions in Equations 2-27 and 2-
19 of the fluctuating wave and wind velocitiesU(t) andV (t), respectively,gU̇ U̇ (ω) = ω2gUU (ω)

is the spectral density function oḟU(t), andh(ω) is the transfer function between the linearized
input and the displacement response such that|h(ω)|2 = 1/[(ω2 − ω2

0)
2 + (2ζωω0)

2]. We note the
following property of weakly stationary processes which is required for obtaining Equation 3-153.
For a weakly stationary processU(t), the spectral density function ofU(t) + U̇(t) is the sum of
the spectral density functions ofU(t) andU̇(t), since the cross correlation functions betweenU(t)

andU̇(t) have the propertyrUU̇ (τ) = −rU̇U (τ).

The meanz-upcrossing rate of the steady-state linearized responseZL(t) can be calculated using
Equation 3-143 forµZL

= (a1duu0 + a3dv v̄)/m, σ2
ZL

=
∫∞
0 gZLZL

(ω)dω and σ2
ŻLŻL

=
∫∞
0 ω2gZLZL

(ω)dω with gZLZL
(ω) in Equation 3-153, and can be used to approximate the mean

z-upcrossing rate ofZ(t) in Equation 3-147.

3.5.2.4 Numerical example:

Numerical results have been obtained for the system in Figure 3-36 consisting of a deck located
at 10 m above the water surface with massm = 1000 kg andb = c = h = 2 m, and a circular
column of unit length with diameterdc = 0.5 m. The natural frequency and the damping ratio of
the system areω0 = 8 rad/sec andζ = 0.10, respectively. Suppose that high winds with mean wind
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velocity v̄ = 15 m/sec and principal direction̄θ = 0 prevail at the system site resulting in wind
and wave drag forcesF (t) andX(t) in Equations 3-89 and 3-106 withρa = 1.2 kg/m3, cd = 2,
ρw = 1000 kg/m3, c′d = 1, cm = 2, and current velocityu0 = 0.025v̄. Figure 3-42 shows the
one-sided spectral density functions in Equations 2-19 and 2-27 of (a) the fluctuating wind velocity
V (t) and (b) the water particle velocityU(t), with frequency band[0, 10] rad/sec so that̄ω = 10
rad/sec. We note that the spectral density of the wind velocity is based onκ in Equation 2-20 for
wind flow over water surface. A timet = 15 seconds is selected for calculations. We note that the
responseZ(t) is approximately stationary att = 15 sincet exceeds 3 periods,3(2π/ω0) ≃ 2.5
seconds, of the oscillator ((Soong and Grigoriu, 1993), Example 5.5).

Figure 3-47 shows histograms of (a)Zn,m(t) for a sampling ratet∗/2 = 0.1571 seconds,n = 20,
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FIGURE 3-47 Histogram of Z(t) at t = 15: (a) sampling theorem, (b) classical Monte Carlo
simulation.

andnm = [15 (2π/ω0)/(t
∗/2)] = 120 calculated fromns = 100, 000 independent samples of

this random variable, and (b)Z(t) obtained by classical Monte Carlo simulation based on 100,000
independent samples of the input processF (t) + X(t) and numerical integration of Equation 3-
147 to get samples ofZ(t), for t = 15 seconds. The estimated mean, variance, skewness, and
kurtosis ofZn,m(t) areµ̂ = 0.0352, σ̂2 = 5.23 × 10−4, γ̂3 = 0.2242, andγ̂4 = 3.5550. Figure 3-
48 shows time histories of the estimated mean, variance, skewness, and kurtosis ofZ(t) obtained
by classical Monte Carlo simulation based on 100,000 samples. We note that att = 15 seconds
the response reaches its steady-state as expected, and its estimated mean, variance, skewness, and
kurtosis areµ̂ = 0.0345, σ̂2 = 5.19 × 10−4, γ̂3 = 0.2478, and γ̂4 = 3.7503, in agreement
with the above results obtained using the sampling theorem. The computation time for generating
100,000 samples ofZn,m(t) and constructing the histogram in Figure 3-38 (a) was 52 seconds on a
DELL-GX320 computer with 3GHz CPU and 2GB RAM. On the other hand, the computation time
for generating 100,000 samples ofF (t) and calculating corresponding samples ofZ(t) through
numerical integration for constructing the histogram in Figure 3-38 (b) was 29,233 seconds on the
same computer, which is, more than 550 times more compared to that from sampling theorem.

Figure 3-49 shows with solid line the estimateν̂+
n,m(z) of the meanz-upcrossing rate ofZn,m(t),

for z ≥ E[Z(t)], obtained by Equation 3-103 using the values oft, t∗, n, nm andns in Figure 3-
47 (a). The mean responseE[Z(t)] can be approximated by an estimate of the meanµn,m of
Zn,m(t), µ̂n,m = 1/ns

∑ns

i=1 Zn,m(t, ωi). Figure 3-49 also shows with dotted line estimate of the
meanz-upcrossing rates ofZ(t) obtained by classical Monte Carlo simulation from the samples in
Figure 3-47 (b). The computation times for calculating mean crossing rates in Figure 3-40 using the
sampling theorem and classical Monte Carlo simulation are, respectively, 104 and 29,233 seconds,
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FIGURE 3-48 Response moments by classical Monte Carlo simulation.
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FIGURE 3-49 Estimates of meanz-upcrossing rates of Z(t) by sampling theorem and
classical Monte Carlo simulation.

on a DELL-GX320 computer with 3GHz CPU and 2GB RAM.

The system fragility in Equation 3-91 can be approximated by Equation 3-5 with meanD =
[−z, z]-outcrossing rate in Equation 3-101 andτ in Equation 2-18. Figure 3-50 shows fragility
surface for the linear oscillator in Figure 3-49 located in milepost-150 for the displacement limit
statez = 20 cm. The wind activity matrix in Figure 2-16 provides realizable values of(v̄, θ̄) at
the milepost. We calculate corresponding values ofv̄ over the sea surface using Figure 2-8. The
change in fragility with respect to the mean wind speed and the principal wind direction is as in
Figure 3-37. The failure probabilities of the system withω0 = 8 rad/sec in Figure 3-50 are higher
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FIGURE 3-50 Fragility for linear oscillator with ω0 = 8 rad/sec.

than those of the system withω0 = 15 rad/sec in Figure 3-46 because the response of the system
with ω0 = 15 rad/sec is quasi-static (see Section 3.4.1) whereas the response of the system with
ω0 = 8 rad/sec is dynamic in nature so that they are larger due to dynamic amplifications.
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SECTION 4

LIFE-CYCLE ANALYSIS

Life-cycle risk analysis of infrastructural systems is concerned with the performance of these
systems subjected to natural and/or man-made hazards during their lifetime. The results from
a life-cycle risk analysis can be used to (1) identify an optimal retrofitting technique for
structural/nonstructural systems from a collection of design alternatives (Kafali and Grigoriu,
2005a; Filiatraultet al., 2006; Bruneauet al., 2003; Bruneau and Reinhorn, 2007), or (2) determine
the relative importance of different hazards (Bhartia and Vanmarcke, 1988).

In Section 4.1 a methodology is presented for calculating the seismic performance of
structural/nonstructural systems and developing rational strategies for increasing the seismic
resilience of these systems. The seismic performance is measured by fragility surfaces, that is,
the probability of system failure as a function of moment magnitude and site-to-source distance,
consequences of system damage and failure, and system recovery time following seismic events.
The input to the analysis consists of seismic hazard, geotechnical and structural/nonstructural
systems properties, performance criteria, rehabilitation strategies, and a reference time. Estimates
of losses and recovery times, referred to as life-cycle losses and recovery times, can be derived using
fragility information and financial models. MCEER West Coast Demonstration Hospital is used to
demonstrate the methodology. Fragilities are obtained for structural/nonstructural components and
systems for several limit states. Also, statistics are obtained for lifetime losses and recovery times
corresponding to different rehabilitation alternatives. The proposed loss estimation methodology is
based on (i) seismic hazard analysis, (ii) fragility analysis and (iii) capacity and cost estimation.
Figure 4-1 shows a schematic chart summarizing the loss estimation methodology. Although in the
current example the decision support methodology considers only seismic hazards, the extension to
systems under multiple hazards is simple, as discussed briefly at the end of this section.

In Section 4.1 a methodology is presented for assessing performance of a system under multihazard
environment. The methodology is illustrated by examining a simple model of an offshore structure
subjected to seismic and hurricane hazards. The lifetime system performance is assessed based on
(i) seismic and hurricane hazard analyses, (ii) fragility analysis and (iii) lifetime probabilities of
failure.

In Section 4.3 a probabilistic model is presented for selecting an optimal maintenance strategy
for deteriorating systems using reliability constraints. Consider a structural system designed for a
lifetime τ > 0. The overall objective is the development of an optimal maintenance policy such
that the probability that the total life-cycle cost exceeds a critical value is minimized under the
constraint that the system functions at the required performance level in[0, τ ]. The total life-
cycle cost includes repair/replacement costs due to system damage following a seismic event,
and maintenance related costs. The maintenance policy is defined by the number of inspections,
inspection times, and inspection quality. Probabilistic models are used for the seismic activities and
seismic ground accelerations at the site where the system is located. Fragility surfaces for several
damage levels, that is the probabilities that the system enters various damage levels as a function of
moment magnitude and site-to-source distance, are used to assess system’s seismic performance.
It is assumed that the system fragility increases in time due to deterioration, and the system is
brought back to its original state after each earthquake/maintenance related repair. The input to the
analysis consists of (1) site seismic activity matrix delivering the mean annual rates of earthquakes
for different magnitudes and source-to-site distances, (2) system fragility surfaces for each damage
level, (3) probability laws of system deterioration rates, (4) required performance level, (5) costs of
maintenance, repair and replacement, and (6) a lifetimeτ . We note that items 1 and 6 are required
for the seismic hazard analysis, 2-4 are related to the fragility analysis and 5 is a part of the life-cycle
cost analysis illustrated in Figure 4-1. The probability law of the total life-cycle cost is obtained
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FIGURE 4-1 Loss estimation methodology.

using Monte Carlo simulation. First, random samples of the seismic hazard at the system’s site
during a given lifetimeτ are generated using site’s seismic activity matrix. Second, the system
damage level is simulated for each event in a seismic hazard sample using the fragility surfaces at
the time of the events. Third, the total life-cycle cost for a sample is obtained by discounting and
summing the maintenance costs and costs of repair and replacement due to the seismic events in that
sample. Finally, optimal number of inspections and inspection times are obtained by minimizing the
probability that the total life-cycle cost exceeds a critical value. A numerical example is presented
to demonstrate the methodology.

4.1 Rehabilitation decision analysis: MCEER Demonstration Hospital

Capital allocation decisions for a health care facility include, for example, opening a new unit,
extending or closing some existing units, buying new equipment, and relocating the hospital
building. These decisions are based on life cycle capacity, viewed as the level of performance
defined for a service, and cost estimates. Existing geotechnical, structural/nonstructural systems can
be left as they are or can be retrofitted using one of the available rehabilitation alternatives. Leaving
a system as it is seems to be reasonable for short-term decisions but retrofitting the system, despite
its initial costs, might be beneficial in the long run. A probabilistic methodology is required to make
a rehabilitation decision since seismic hazard and system performance are uncertain. Figure 4-
2 shows a chart illustrating the principal elements of a fragility-based capital allocation decision
support system.
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The main objective of this section is the development of a methodology for evaluating the seismic
performance and development of optimal rehabilitation strategies of individual health care facilities
during a specified time interval. The seismic performance is measured by fragility surfaces, that
is, the probability of system failure as a function of moment magnitude and site-to-source distance,
consequences of system damage and failure, and system recovery time following seismic events.
The input to the analysis consists of seismic hazard, geotechnical and structural/nonstructural
systems properties, performance criteria, rehabilitation strategies, and a reference time. Estimates
of losses and recovery times, referred to as life-cycle losses and recovery times, can be derived
using fragility information and financial models. Life-cycle costs consist of (1) initial cost related
to the rehabilitation of the system, (2) repair/replacement costs for bringing the damaged systems
back to their original states, (3) cost of life, and (4) indirect costs related to the loss of capacity
of the hospital. MCEER West Coast Demonstration Hospital, from this point forward referred to
as MCEER Hospital, is used to demonstrate the method. Statistics are obtained for lifetime losses
and recovery times corresponding to different rehabilitation strategies and an optimal rehabilitation
strategy is selected using these statistics.

The MCEER Hospital is an inpatient facility in the Northridge Hospital Medical Center. The
facility was constructed in the early 1970’s to meet the seismic requirements of of the 1970 Uniform
Building Code. The seismic risk of the MCEER Hospital is assessed based on the performance of
its structural system and three nonstructural systems attached to the structural systems at different
locations, namely, the Heat-Ventilation-Air Conditioning (HVAC) system consisting of two water
chillers, piping system and partition walls. Figure 4-3 illustrates a two-dimensional model of the
4-storey structural system and the three nonstructural systems. The architectural drawings of the
MCEER Hospital show that there are 93 beds in the building. Table 4-1 shows the number of beds
in each floor. The net revenue per bed per day (per patient day) is $1,500 (Kafali and Grigoriu,
2007a).

4.1.1 Loss estimation method

Some of the current loss estimation methods are briefly examined and a method based on seismic
hazard analysis, fragility analysis and life-cycle capacity/cost estimation, is proposed.
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TABLE 4-1 Number of beds in the MCEER Hospital.

Floor Number of beds

1 No patient rooms

2 43 beds

3 50 beds

4 No patient rooms

4.1.1.1 Current loss estimation methods

Most of the existing earthquake loss estimation methodologies usually calculate life-cycle losses
based on the maximum credible earthquake during the projected lifetime of the system. The ATC-
13 (ATC 13, 1985) methodology provides damage and loss estimates, based on expert-opinion,
for industrial, commercial, residential, utility and transportation facilities. Although the ATC-
13 methodology is most applicable for a large number of structures and should not be applied
to individual facilities (ATC 13, 1985), in current practice it is used to estimate the probable
maximum loss of individual structures for insurance and investment decisions. HAZUS (HAZUS
97, 1997) estimates potential losses on a regional basis and these estimates are essential to decision-
making at all levels of government, providing a basis for developing mitigation policy, emergency
preparedness, and response and recovery planning. Both methods were developed to estimate losses
for a large number of structures in a specified region using the maximum credible earthquake and
should not be applied to an individual facility.

Losses estimated by using the maximum credible earthquake may not be accurate. Here is an
example. LetN(τ) be the number of earthquake events occurring during the lifetimeτ of a
system and assume thatN(t), t > 0, is a Poisson process of intensityλ > 0. Denote byTk

andXk, k = 1, . . . ,N(τ), the arrival time and the intensity of eventk, respectively. Assume that
Xk, k = 1, . . . ,N(τ) are independent identically distributed random variables with distribution
functionF of support[0,∞). Let g : [0,∞) → [0,∞) be an increasing function representing the
cost due to a seismic event,i.e., g(X1) is the cost caused by a seismic event of intensityX1. Denote
by C(τ) the total cost in time[0, τ ], that is, the life-cycle cost. First model, referred as model-A,

118



uses the maximum credible earthquake in[0, t] to calculate the losses. Accordingly,

C(τ) = g(Xmax) , (4-1)

whereXmax = max1≤k≤N(τ){Xk}. The mean and the variance of the total cost can be calculated
asE[C(τ)] = E[g(Xmax)] andV ar[C(τ)] = E[g(Xmax)

2] − (E[g(Xmax)])2, respectively. In the
second model, referred as model-B, the total cost is calculated by

C(τ) =

N(τ)
∑

k=1

g(Xk) . (4-2)

The mean and the variance ofC(τ) areE[C(τ)] = ν E[g(X1)] andV ar[C(τ)] = ν E[g(X1)
2],

respectively, whereν = λ τ is the average number of seismic events inτ years.

Two cases are considered. In the first caseX1 has a uniform distribution in[a, b], 0 < a < b, in the
second caseX1 has an exponential distribution with parameterρ shifted toc > 0. In both cases the
cost function has the formg(x) = x2. Figure 4-4 shows the (a) mean and (b) variance ofC(t) per
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FIGURE 4-4 Mean and variance ofC̃(t).

year, that is,C̃(τ) = C(τ)/τ , given by,E[C̃(τ)] = E[C(τ)]/τ andV ar[C̃(τ)] = V ar[C(τ)]/τ2,
respectively, calculated using modelsA andB for τ = 1, a = 1, b = 3, ρ = 1, c = 1, and
ν = 1, 5, 10, 20, 30, 40, 50. The differences between the means and variances of the total cost
under modelsA andB are relatively small and very large, respectively. Decisions based on the two
models may differ significantly.

4.1.1.2 Loss estimation method

The proposed method is based on (i) seismic hazard analysis, (ii) fragility analysis and (iii) lifetime
capacity/cost estimation (Kafali and Grigoriu, 2005a). The method (i) considers a realistic seismic
hazard model rather than using the maximum credible earthquake, (ii) includes all components of
costs, that is, the costs related to the structural failure and downtime, retrofitting, repair, loss of
capacity in services, and loss of life, and (iii) is designed for individual facilities rather than a large
population of them. The method is based on Monte Carlo simulation, probabilistic seismic hazard,
fragility and capacity/cost analyses. Figure 4-5 shows a chart summarizing the loss estimation
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FIGURE 4-5 Loss estimation method.

method for a system with projected lifeτ . The probabilistic seismic hazard models presented in
Sections 2.3.4 and 2.2.1.1 are used to characterize (1) the moment magnitudeMi, source-to-site
distanceRi and the arrival timeTi of the seismic eventi, (2) the ground accelerations at the system
site resulting from seismic eventi characterized by(Mi, Ri), and (3) the total number of seismic
eventsN(τ) in τ . The seismic fragility analysis presented in Section 3.3.1.1 is used to characterize
the damage in the structural/nonstructural systems. For example, letDi be a discrete random
variable characterizing the damage state of a nonstructural system after seismic eventi with moment
magnitudemi and source-to-site distanceri, i = 1, . . . ,N(τ). Assume that a nonstructural system
enters damage statedk, with probabilitypk,i for k = 1, . . . , n, wheren is the number of damage
states. The probabilitiespk,i can be obtained from the fragility information of the nonstructural
system and are functions of the limit state defining the damage statedk and(mi, ri). Similarly, we
can define random variables characterizing the damage in the structural system and components of
the selected nonstructural systems.

In Figure 4-5

Tp =

N(τ)
∑

i=1

Tpi (4-3)

is the total time the system operates belowp% capacity inτ , in whichTpi is the time the system
operates belowp% capacity after eventi and

TC = ic +

N(τ)
∑

i=1

Ci

(1 + d)Ti
(4-4)

is the total cost inτ in present value, in whichic is the initial cost related to the rehabilitation,d is
the discount rate, andCi is the cost related to eventi including costs of repair/replacement, capacity
losses and life losses due to the damage in structural and nonstructural systems. It is expected that
with an increasing initial costic in Equation 4-4, the costCi due to eventi will decrease and for
some rehabilitation alternative we will have the optimum solution. The numerical results in the
following sections are forp = 90 andd = 0.05.
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The resilience metrics, that is, the decision variables usedfor selecting the optimal rehabilitation
alternative are the total timeTp the system operates belowp% capacity, and the total costTC in τ ,
given by Equations 4-3 and 4-4, respectively. Estimates of the distributions ofTp andTC can be
obtained using Monte Carlo simulation. First, a seismic hazard sample at the site during lifetimeτ is
generated using the Monte Carlo algorithms developed in Section 2.4. The seismic hazard sample is
defined by the number of earthquakes during the timeτ , and magnitude and source-to-site distance
and arrival time of each of them. For each event in the seismic hazard sample damages states of
structural/nonstructural systems are simulated from their fragility information, and corresponding
capacity losses and costs are calculated. The total time the system operates belowp% capacity and
the total cost in[0, τ ] corresponding to the seismic hazard sample are simply obtained by adding
contributions from each event in the seismic hazard sample, that is, using Equations 4-3 and 4-4,
respectively. Repeating the above analysis forns independent samples, we obtainns samples ofTp
andTC. Hence histograms and other cost statistics ofTp andTC depending on user’s objectives
can be calculated from the seismic hazard samples.

4.1.2 Seismic hazard information and dynamic analysis

The MCEER West Coast Demonstration Hospital is in Northridge, California with coordinates
(118.518o West,34.237o North) (Wanitkorkul and Filiatrault, 2005). The life time isτ = 50 years.
Figure 2-13 shows the seismic activity matrix at the system site, providing the mean annual arrival
rate of earthquakes with different moment magnitudem, and source-to-site distancer. The hospital
is located on stiff soil (NEHRP site class D, (FEMA 273, 1997)).

The cascade approach is used for the dynamic analysis of the structural and nonstructural systems.
The stationary response with duration 10 seconds to strong ground motion is used in seismic
performance analysis. We note that the specific barrier model delivers the duration of ground
motion (Section 2.2.1.1), but we set somewhat arbitrary, 10 seconds irrespective of(m, r). Methods
based on crossing theory of stochastic processes presented in Section 3.1 are used for calculating
fragility surfaces for structural/nonstuctural linear systems subjected Gaussian seismic ground
accelerations in Section 2.2.1.1.1. It is assumed that all the systems are brought the their original
states after each seismic event.

4.1.3 Structural system information

Several mathematical models of the MCEER West Coast Demonstration Hospital are available in
(Yuan and Whittaker, 2002). The model used in this study corresponds to WC70 model in (Yuan
and Whittaker, 2002). A two-dimensional inelastic model of WC70 was considered in (Filiatrault,
2006). One-dimensional equivalent linear versions of the two-dimensional inelastic models are
used in this study for seismic risk analysis (Kafali and Grigoriu, 2007a).

4.1.3.1 Models

• Existing system: A simplified version of the model described in (Filiatrault, 2006), and
referred to as the WC70 model, is used. Following assumptions are made for seismic analysis.

– Damping matrix remains constant.

– First storey of WC70 behaves linearly between limit states (Figure 4-6), all other storeys
remain linear. In Figure 4-6K = 351 kN/mm,ε = 0.03 (Kafali and Grigoriu, 2007a).
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FIGURE 4-6 Force-displacement model for the 1st storey.

– For small earthquakes initial stiffnessK of the first storey is used for calculating the
system stiffness matrix. For large earthquakes the bilinear force-displacement curve
in Figure 4-6 is replaced by an equivalent linear curve with slope 0.0726K (Kafali and
Grigoriu, 2007a) and system stiffness matrix is calculated accordingly. Table 4-2 (a) and
(b) show the dynamic characteristics of the initial linear and equivalent linear models,
respectively.

TABLE 4-2 Modal parameters of the (a) initial linear and (b) equivalent linear models.

(a) (b)

Linear model

ωi ζi

Mode (rad/sec) (%) Γi

1 8.83 2.00 1.38

2 26.56 1.62 -0.43

3 40.49 2.00 -0.20

4 49.75 2.31 0.04

Equivalent Linear model
ωi ζi

Mode (rad/sec) (%) Γi

1 8.19 8.77 1.40
2 25.07 2.97 -0.38
3 39.48 2.00 -0.14
4 49.68 1.68 0.02

• Rehabilitated systems: Three alternative designs, with (1) the same stiffness as the existing
system and (2) linear viscous dampers with damping constants shown in Table 4-3, and
inserted in the central bay in each storey of the exterior moment-resisting frame of the WC70
model (see Figure 4-7), are considered. There are 8 dampers in total. Table 4-4 shows the
modal damping ratios for the three rehabilitation alternatives.

4.1.3.2 Damage states and fragilities

Maximum inter-storey drift is used to assess the structural performance. Table 4-5, from (FEMA
356, 2000), defines structural damage and limit states based on maximum inter-storey drift ratios.
Fragilities are calculated from (i) model, (ii) response (using Equation 3-56) and (iii) damage
states. Figure 4-8 shows the probability that the maximum inter-storey displacement ratio exceeds
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TABLE 4-3 Damping coefficient for a viscous damper.

Damping coefficients (kN-sec/mm)

Rehab. alt. 1 Rehab. alt. 2 Rehab. alt. 3

Storey 20% damping 25% damping 30% damping

1 18.3 22.8 27.4

2 17.8 22.3 26.8

3 15.9 19.9 23.8

4 12.0 15.0 18.0

FIGURE 4-7 Damper locations (in exterior frames only).

2.5% for (a) the base system and (b-d) the three rehabilitation alternatives in Table 4-4. As expected,
system fragility gets smaller from (a) to (d) as more damping is added to the system as a result of
different levels of rehabilitation.

4.1.3.3 Cost estimates

• Repair and replacement: Table 4-6 gives repair/replacement costs corresponding to the
damage states described in Table 4-5. The repair and replacement costs do not include
disruption losses.

• Rehabilitation: The costs for the rehabilitation alternatives defined in Table 4-3 are given in
Table 4-7. The costs include all the dampers used in the rehabilitation of the whole structure.
Since the dampers are proposed to be placed only in the external moment resisting frames,
there will be no disruption of hospital function, hence no business interruption losses.

• Capacity loss: Table 4-8 shows the consequences of the damages states defined in Table 4-5.

• Life loss: Life loss is considered only for the collapse damage state. It is assumed that there
are 150 people in the building at the time of earthquake and the probability of death is 0.1.
The value of life is $2,200,000 (Eidinger and Goettel, 1998).

More explanations on building cost estimates are provided in Appendix E.
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TABLE 4-4 Modal damping ratios.

Damping ratios (%)

Mode Rehab. alt. 1 Rehab. alt. 2 Rehab. alt. 3

1 20.00 25.00 30.00

2 5.20 6.19 7.19

3 2.00 2.00 2.00

4 0.60 0.12 0.00

TABLE 4-5 Structural system damage states and correspondingmax inter-storey drift ratios.

Limit state

Damage state Description (drift, %)

Immediate occupancy Minor local yielding at few places.

No fractures. Minor buckling. < 0.7

Minor observable permanent distortion.

Life safety Hinges form. Local buckling in some beams.

Severe joint distortion.

Isolated moment connection fractures. [0.7, 2.5)

Few elements with partial fracture.

Shear connections remain intact.

Collapse prevention Extensive distortion in beams and columns.

Many fractures at moment connections [2.5, 5.0)

Shear connections remain intact.

Collapse ≥ 5.0

4.1.4 Nonstructural systems information

The seismic performances of three nonstructural systems illustrated in Figure 4-3, namely, HVAC
system, partition walls and piping system, are examined. It is assumed that the nonstructural
systems are not interacting, that is, the responses of these systems are independent of each other.

4.1.4.1 HVAC system

It is assumed that the HVAC system consists of two identical water chillers attached to the roof of
the building.
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FIGURE 4-8 Structural system fragility: (a) base system, (b) rehab. alt. 1, (c) rehab. alt. 2,
(d) rehab. alt. 3.

TABLE 4-6 Structural system repair/replacement costs.

Damage state Repair/replacement cost ($)

Immediate occupancy 280,000

Life safety 1,512,000

Collapse prevention 67,500,000

Collapse 67,500,000

4.1.4.1.1 Models:

• Existing system: A three dimensional nonlinear model of the HVAC equipment is used
(Fathali and Filiatrault, 2007), which delivers relative acceleration response of the center
of mass of the HVAC equipment in the longitudinal, transverse and vertical directions. The
response in only the transverse (short) direction of HVAC is used for seismic performance
analysis.

• Rehabilitated systems: None
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TABLE 4-7 Structural system rehabilitation costs.

Rehab. alt. Rehabilitation cost ($)

1 109,000

2 133,000

3 180,000

TABLE 4-8 Structural system damage states and correspondingconsequences.

Damage state Consequences/disruption Cost ($)

Immediate occupancy Minor structural repair may be needed.

Hospital is 100% operational. 0

Life safety Structural strengthening required.

2 years for repair (5% capacity loss). 4,380,000

Collapse prevention Complete loss. 4 years for reconstruction.203,670,000

Collapse Complete loss. 4 years for reconstruction.203,670,000

4.1.4.1.2 Damage states and fragilities:

HVAC equipment is an acceleration sensitive nonstructural system. Table 4-9, from (ASHRAE,
2003), defines the damage and limit states. Fragilities are calculated from (i) model, (ii) response

TABLE 4-9 HVAC equipment damage states and corresponding accelerations.

Limit state

Damage state Description (acceleration,g units)

None < 2.0

Moderate Control panel relays jump.

System shuts down. [2.0, 4.0)

Extensive Chiller has permanent damage.

System has to be replaced. ≥ 4.0

(excitation at attachment points, using Equation 3-58) and (iii) damage states. Figure 4-9 (a) and
(b) show the probability that the maximum acceleration response of a HVAC equipment exceeds 2.0
g and 4.0g, respectively, assuming that the equipment is attached to the existing structural system
(no rehabilitation). As expected, fragility is lower for the larger limit state.

4.1.4.1.3 Cost estimates:

• Repair and replacement: The repair/replacement costs are given in Table 4-10 for the damage
states described in Table 4-9. The repair and replacement costs do not include disruption
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FIGURE 4-9 HVAC equipment fragility: (a) acc ≥ 2.0g, (b) acc≥ 4.0g.

losses.

TABLE 4-10 HVAC equipment repair/replacement costs.

Damage state Repair/replacemet cost per HVAC ($)

None 0

Moderate 90,000

Extensive 500,000

• Capacity loss: Table 4-11 shows the consequences of the damages states defined in Table 4-9.

TABLE 4-11 HVAC equipment damage states and corresponding consequences.

Damage state Consequences/disruption per HVAC Cost/HVAC ($)

None 0

Moderate 50% of the beds are lost for 2 days 139,500

Extensive 50% of the beds are lost for 20 days 1,395,000

More explanations on cost estimates are provided in AppendixE.

4.1.4.2 Partition walls

Table 4-12 shows the number of partition walls in each floor of the MCEER Hospital (estimated
using its architectural drawings).
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TABLE 4-12 Number of partition walls and their effects on bed capacity.

Floor Partition walls Effects on bed capacity

1 80 No patient rooms

2 80 43 beds on the 2nd floor

- 14 walls effecting 1 bed

- 18 walls effecting 2 beds

- 7 walls effecting 3 beds

- 6 walls effecting 4 beds

- 1 wall effecting 5 beds

- 1 wall effecting 6 beds

3 60 50 beds on the 3rd floor

- 2 walls effecting 1 bed

- 28 walls effecting 2 beds

- 2 walls effecting 3 beds

- 8 walls effecting 4 beds

4 80 No patient rooms

4.1.4.2.1 Models:

Seismic performance of gypsum drywalls is reported in (McMullin and Merrick, 2002). It is
assumed that the partition walls in MCEER Hospital are of the types reported in (McMullin and
Merrick, 2002). Partition wall damage was given as a function of the inter-storey drift in (McMullin
and Merrick, 2002). Hence no wall model is required for fragility analysis and loss estimation.

• Existing system: A typical setup (tests 1, 2, 5 and 6 in (McMullin and Merrick, 2002), page
50) is considered to represent the existing partition wall type.

• Rehabilitated systems: None.

4.1.4.2.2 Damage states and fragilities:

Partition walls are drift sensitive nonstructural components. Fragility curves for minor, moderate,
extensive damage states and complete failure are shown in Figure 4-10. Fragility surfaces are
calculated from (i) model, (ii) response (using Equation 3-56) and (iii) damage states. Figure 4-11
shows the probability that a partition wall, located on the (a) 1st, (b) 2nd, (c) 3rd or (d) 4th floor, has
extensive damage or completely failed, assuming that the wall is attached to the existing structural
system (no rehabilitation).

4.1.4.2.3 Cost estimates:

• Repair and replacement: The repair/replacement costs are given in Table 4-13 for the damage
states in Figure 4-10 ((McMullin and Merrick, 2002), Figures 128, 129 and 130). The repair
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FIGURE 4-10 Fragility curves for partition walls (after (McM ullin and Merrick, 2002)).

and replacements costs do not include disruption losses.

TABLE 4-13 Partition wall repair/replacement costs.

Damage state Repair/replacement cost per wall ($)

None 0

Minor 230

Moderate 460

Extensive 690

Complete failure 920

• Capacity loss: Table 4-14 shows the consequences of the damages states in Figure 4-10.

TABLE 4-14 Partition wall damage states and corresponding consequences.

Damage state Consequences/disruption per wall

None

Minor effected beds are unavailable for 1 day

Moderate effected beds are unavailable for 2 days

Extensive effected beds are unavailable for 3 days

Complete failure effected beds are unavailable for 3 days

More explanations on cost estimates are provided in AppendixE.
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FIGURE 4-11 Partition wall fragility: (a) 1st floor, (b) 2nd floor, (c) 3rd floor, (d) 4th floor.

4.1.4.3 Piping system

It is assumed that the piping system tested at University of Nevada at Reno (Goodwin, 2004) [REF
Robert Corbin’s MS thesis] can be used to describe limit/damage states of the existing piping system
at the demonstration hospital. The experimental results were acquired for a steel/threaded piping
system with unbraced and braced alternatives. The number of different elements in the sanitary
piping system at each floor of the MCEER Hospital are estimated using its architectural drawings,
and considering only the pipes with diameter greater than or equal to 1 inch (see Table 4-15). The
number of hangers are estimated assuming a spacing of 10 feet.

TABLE 4-15 Number of elements of the piping system.

Floor Length (ft) Elbow-connect. T-connect. Valves Hangers

1 330 30 15 15 33

2 510 65 50 40 51

3 510 65 50 40 51

4 270 30 30 25 27
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4.1.4.3.1 Models:

Piping system damage is assumed to be a function of the inter-storey drift. Hence, no pipe model
is required for fragility analysis and loss estimation.

• Existing system: The unbraced system is considered as the existing system.

• Rehabilitated system: The braced system is used as the rehabilitated alternative. It is assumed
that the pipes are braced at every second hanger location with a clevis support and bracing
cables (J. Lewis).

4.1.4.3.2 Damage states and fragilities:

Piping systems are considered to be drift sensitive nonstructural components. Table 4-16 defines
the damage and limit states. Fragility surfaces are calculated from (i) model, (ii) response (using

TABLE 4-16 Damage state descriptions for steel/threaded system.

Damage Limit state (drift, %)

state Description Existing sys. Rehab. sys.

Slight < 1.1 < 2.2

Moderate The piping joints contained

manageable leaks. [1.1, 2.2) [2.2, 5.0)

Extensive The piping connections contained

permanent damage. ≥ 2.2 ≥ 5.0

Equation 3-56) and (iii) damage states. Figure 4-12 shows the probability that existing (unbraced)
piping system attached to the structural system with no rehabilitation, located on the (a) 1st, (b)
2nd, (c) 3rd or (d) 4th floor, has extensive damage.

4.1.4.3.3 Cost estimates:

• Repair and replacement: The repair/replacement costs are given in Table 4-17 for each floor,
for the damage states described in Table 4-16.

TABLE 4-17 Piping system repair/replacement costs per floor.

Repair/replacement cost per floor ($)

Damage state 1 2 3 4

Slight 1,100 1,690 1,690 900

Moderate 1,720 4,380 4,380 2,290

Extensive 1,860 4,950 4,950 2,290
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FIGURE 4-12 Piping system fragility: (a) 1st floor, (b) 2nd floor, (c) 3rd floor, (d) 4th floor.

• Rehabilitation: The rehabilitation cost for the piping system is $120,000. The rehabilitation
costs do not include business interruption losses.

• Capacity loss: Table 4-18 shows proposed consequences and disruption for the damage states
given in Table 4-16.

TABLE 4-18 Piping system damage states and corresponding consequences per floor.

Damage Cost per floor ($)

state Consequences/disruption 1 2 3 4

None No capacity loss. 0 0 0 0

Moderate System shut down, short period of time.

10% of the beds are lost for one week. 0 45,150 52,500 0

Extensive System shut down, indefinitely.

25% of the beds are lost for one month.0 483,750 562,500 0
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More explanations on cost estimates are provided in AppendixE.

4.1.5 Loss estimation algorithm and the RDAT

The Monte Carlo based algorithm for calculating the decision variables (1) the total timeTp the
system operates belowp% capacity, and (2) the total costTC, in τ , which are used for selecting
the optimal rehabilitation alternative is outlined in Figure 4-13. First, for a given event in a
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FIGURE 4-13 Monte Carlo algorithm for loss estimation.

lifetime seismic hazard sample damage state probabilities for the structural/nonstructural systems
are obtained from their corresponding fragility surfaces (Section 4.1.1.2). We then generate samples
of damage states for the structural/nonstructural systems. Next, recovery time and total event
cost (consisting of repair, replacement, capacity loss and life losses due to structural/nonstrutural
damage) for this event, are obtained from the available consequence/financial information
(Sections 4.1.3 and 4.1.3). Recovery times and total event costs from all events in a hazard sample
are added to obtain a sample ofTp andTC. The probability laws ofTp andTC are estimated by
generating many samples of lifetime seismic hazards and obtaining corresponding values forTp
andTC.

The algorithm in Figure 4-13 is implemented in Rehabilitation Decision Analysis Toolbox (RDAT),
a MATLAB based program for calculating the seismic resilience of structural/nonstructural systems
in a health care facility (Kafali and Grigoriu, 2005b). Using the RDAT it is possible to (i)
compare the effectiveness of different rehabilitation alternatives for structural and nonstructural
systems using the estimates of life cycle losses, and (ii) develop rational rehabilitation alternatives
for increasing the seismic resilience of these systems. RDAT version 1 is limited to linear
single degree of freedom structural/nonstructural systems and is available on the MCEER Users
Networks (MCEER, 2004). RDAT version 2 extends to linear multi degree of freedom systems
and is presented in detail in (Kafali and Grigoriu, 2005b). The final version of the RDAT with
an application to the MCEER West Coast Demonstration hospital will be made available to the
MCEER Users Networks by Fall 2007. Appendix E provides some excerpts from the final version
RDAT software.
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4.1.6 Results

Figure 4-14 (a) and (b) show the marginal probability density functions of the (a) total timeTp the
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FIGURE 4-14 Probability density functions: (a) Tp, (b) TC.

system operates belowp = 90% capacity inτ = 50 years, and (b) total costTC in τ = 50 years, for
the base system and the three rehabilitation alternatives, calculated by Monte Carlo simulation using
1000 samples. Figure 4-15 shows estimates of the joint probability density function of(Tp, TC)
in τ = 50 years for the (a) base system, (b) rehab. alt. 1, (c) rehab. alt. 2, and (d) rehab. alt. 3
calculated by Monte Carlo simulation using 1000 samples.

Figure 4-16 (a) and (b) showP (Tp > t) andP (TC > c). A possible measure for comparing
the effectiveness of different rehabilitation alternatives can be the probability that the total time
Tp the system operates below 90% capacity exceeds a leveltcr (or similarly, the probability that
the total costTC exceeds a levelccr). Accordingly, the optimal solution is the one with the
lowestP (Tp > tcr) (or P (TC > ccr)) and depends on the selected value oftcr (or ccr). For
example, Figure 4-16 (a) shows that the optimal solutions are rehabilitation alternatives 1, 2 and 3
for tcr = 30 days, or Figure 4-16 (b) shows that the optimal solution is the rehabilitation alternative
3 for ccr = $20 million. If both Tp andTC are considered for selecting an optimal solution, then
the alternative resulting in the highestP (Tp ≤ tcr, TC ≤ ccr) is the optimal solution. Figure 4-
17 shows that fortcr = 30 days andccr = $20 million, the optimal solution is the rehabilitation
alternative 3.

The extension of the presented loss estimation method to systems under multiple hazards is
immediate. For example, in the case of two independent intermittent hazards, such as seismic
and hurricane hazards at a site, the lifetime hazard sample may include three types of events,
two individual hazard events and one coincidental hazard event (Section 2.6). For the individual
hazard events presented loss estimation method can be directly applied provided that the fragility
information of the system for these hazards are readily available (Sections 3.3-3.5). For the
coincidental hazard event system fragility under the combined hazards is required. Following
section presents an example in which fragility of a simple offshore structure is obtained under
coincidental earthquake and sea-storm events. Once the system fragility is calculated lifetime loss
estimation can be performed following the presented algorithm.
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FIGURE 4-15 Probability density function of (Tp, TC): (a) base system, (b) rehab. alt. 1, (c)
rehab. alt. 2, (d) rehab. alt. 3.
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FIGURE 4-16 Decision based on (a)Tp or (b) TC.
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4.2 Multihazard risk analysis: Simple offshore structure

Multihazard risk analysis of a system deals with the assessment of the system performance under
multiple random loads caused by natural and/or man-made hazards, some of which may occur
simultaneously. The main objectives of this section are (1) the development of a methodology
for evaluating the performance of a system subjected to several types of natural hazards during a
specified time interval and (2) to determine the relative importance of loads caused by these hazards
in the system performance. The system performance is measured by fragility surfaces, that is, the
probability of system failure as a function of the parameters which completely define the probability
law of the hazards at the system site. Failure occurs when a system response reaches a limit state.
The input to the analysis consists of system properties, hazard information, performance criteria
and a reference time.

The methodology is presented using a simple offshore platform exposed to seismic and hurricane
hazards. System failure probability during its lifetime, namely, life-cycle probability of failure, is
calculated for two limit states based on the relative displacement and the total acceleration responses
of the deck of the platform. The relative displacement response can be used for assessing the
performance of the oil platform, on the other hand, the total acceleration response can be used for
the safety analysis of acceleration sensitive secondary systems attached to the deck of the platform.

4.2.1 System information

Figure 4-18 illustrates a simple offshore platform consisting of a deck and three legs. The deck has
a rectangular shape with heighth = 5 m, width b = 50 m and lengthc = 50 m. The legs have
circular cross sections with diameterdc = 3.7 m and lengthl = 60 m, and are rigidly attached to
the sea-bed. The distance from the sea-bed to the mean water surface level isd = 50 m.

The platform is modeled as a linear single degree of freedom system with only horizontal motion
along the principal (predominant) wind directionθ̄. The rotational motion and vertical drop of the
deck are neglected. The modal mass ismp = 5.44 × 106 kg, natural frequency isω0 = 5 rad/sec,
and damping ratio isζ = 0.04.

4.2.2 Lifetime environmental loads

It is assumed that the offshore platform is located near the shores of Charleston, South Carolina
and that the projected lifetime of the system isτ = 50 years. Loads from earthquakes, winds and
wind-induced waves due to hurricanes are considered in this study. Lifetime seismic and hurricane
hazards, specifying the random arrival times of individual events at the system site during the
projected lifetimeτ and the random properties of the events under considerations, are characterized
by the probabilistic models in Section 2.3. The random loads resulting from each seismic or
hurricane event are defined by the probabilistic event models developed in Section 2.2.

4.2.2.1 Earthquake load

The earthquake load applied to the system due to a seismic event of moment magnitudem and
source-to-site distancer is

F1(t;m, r) = −mpX(t;m, r), 0 ≤ t ≤ τe, (4-5)
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wheremp is the modal mass of the offshore platform,X(t;m, r) is the seismic ground acceleration
process due to the earthquake with(m, r) given by Equation 2-1 withe(t) = 1, t ≥ 0, and one
sided spectral density functiongY Y (ω) in Equation 2-3, andτe is set to 20 sec arbitrarily. We
note that the response of the system toF1(t;m, r) is approximately stationary atτe = 20 seconds
sinceτe exceeds 7 periods2π/ω0 = 2.8431 seconds of the oscillator ((Soong and Grigoriu, 1993),
Example 5.5). Accordingly,F1(t;m, r) is a zero-mean stationary Gaussian process with one-sided
spectral density function

gF1F1
(ω;m, r) = m2

p gY Y (ω;m, r). (4-6)

The seismic hazard at the system site during the projected lifetimeτ of the system is characterized
by the probabilistic lifetime model presented in Section 2.3.4. The model delivers probability laws
of the (1) number of seismic events in[0, τ ], (2) temporal distributions of seismic events in[0, τ ],
and (3) magnitudeM and source-to-site distanceR of each of them. The input to the seismic
hazard model consists of seismic activity matrix for the site, the projected lifeτ of the system, and
soil properties at the site. The seismic activity matrix for the site gives the mean annual rate of
earthquakes for different(M,R). An estimate of the joint probability density functionfM,R(m, r)
of (M,R) can be obtained from the normalized seismic activity matrix (Section 2.3.4, Equation 2-
37). Figure 4-19 shows the seismic activity matrix for Charleston, South Carolina, normalized by
ν =

∑

i,j νij = 0.137, that is, the joint probability density function of(Φ1 = M,Φ2 = R) in
Equation 2-37. Given that an earthquake occurs at a site, the probability that it has parameters
(mi, rj) is νij/ν.
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FIGURE 4-19 Normalized seismic activity matrix for Charleston.

4.2.2.2 Wind load

The wind drag force, that is, the wind force along the principal wind directionθ̄, acting on the deck
of the platform due to a hurricane is

F2(t; v̄, θ̄) =
1

2
ρacd(θ̄)ad(θ̄)(v̄ + V (t; v̄))2, 0 ≤ t ≤ τ2, (4-7)

wherev̄ is the hurricane mean wind speed in Equation 2-18,τ2 = 1 hour (see Equation 2-18),
ρa = 1.2 kg/m3 is the density of air,cd(θ̄) is the wind drag coefficient given in Figure 4-21,ad(θ̄)
is the exposed area perpendicular to the principal wind directionθ̄ as illustrated in Figure 4-20, and
V (t; v̄) is the fluctuating wind velocity in Equation 2-18 with one sided spectral density function
gV V (ω; v̄) in Equation 2-19. Although the mean wind speed in Equation 4-8 is the wind speed at
10 m above the water surface, it is applied throughout the height range of the deck ((Simiu and
Scanlan, 1986), Section 2.3.3).

A linearized version of the wind drag force is used in multihazard risk analysis to demonstrate
the methodology, although in Section 3.5.1 it was shown that the linear approximation can
underestimate significantly the peak response. The linearized wind drag force is

F̂2(t; v̄, θ̄) = α(θ̄)dv(v̄)[v̄ + V (t; v̄)]. (4-8)

whereα(θ̄) = [1/2ρacd(θ̄)ad(θ̄)] anddv(v̄) is the linearized wind drag factor in Equation 3-142
obtained by statistical linearization method,dv(v̄) = (3σ2

V (v̄)v̄ + v̄3)/(σ2
V (v̄) + v̄2), in which

σ2
V (v̄) =

∫∞
0 gV V (ω; v̄)dω. Accordingly,F̂2(t; v̄, θ̄) is a stationary Gaussian process with mean

µF̂2
(v̄, θ̄) = E[F2,d(t; v̄, θ̄)] = α(θ̄)dv(v̄)v̄, (4-9)

and one-sided spectral density function

gF̂2F̂2
(ω; v̄, θ̄) = α2(θ̄)d2

v(v̄)gV V (ω; v̄). (4-10)

In general, the wind acting on the deck of the platform results in two types of forces, the drag force
in Equation 4-7 acting along the wind direction, and a lift force acting perpendicular to the wind
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direction, neglecting the rotational and upward forces, other aeroelastic phenomena such as across-
wind galloping, vortex-shedding, and flutter. The lift force has a similar form to the drag force
in Equation 4-7 withcd(θ̄) andad(θ̄) replaced by the wind lift coefficientcl(θ̄) and the exposed
areaal(θ̄) perpendicular to the direction of the lift force, respectively. Figure 4-20 illustrates the
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FIGURE 4-20 Wind drag and lift.

direction of wind drag and lift forces and the corresponding exposed areas. The wind drag and lift
coefficients,cd(θ̄) andcl(θ̄), depend, in general, on the structural shape, the frequency content of
the wind velocity and the principal wind direction (Simiu and Scanlan, 1986) and can be obtained
by wind tunnel tests for the selected structure. For example, Figure 4-21 shows the drag and lift
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FIGURE 4-21 Wind drag and lift coefficients (after (Simiu and Scanlan, 1986)).

coefficientscd andcl as functions of the principal wind direction̄θ for the offshore platform in
((Simiu and Scanlan, 1986), Section 14.1.2), which has a similar geometry to the platform under
consideration in Figure 4-18. It is observed that the drag coefficientcd is much larger than the lift
coefficientcl for all directions. It is also noted thatad(θ̄) = al(θ̄) for all θ̄ sinceb = c in Figure 4-
20. Based on these observations the wind lift force is neglected in the following analysis. The wind
drag coefficientcd in Equation 4-8 is given by Figure 4-21.
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The hurricane hazard at the system site during the projected life τ of the system is characterized by
the probabilistic lifetime model presented in Section 2.3.5. The model delivers probability laws of
the (1) number of events in[0, τ ], (2) temporal distributions of events in[0, τ ], and (3) mean wind
speed̄V and principal direction̄Θ of each of them. The input to the hurricane hazard model consists
of the hurricane activity matrix for the site and the projected lifeτ of the system. The hurricane
activity matrix for the site gives the mean annual rate of hurricanes for different(V̄ , Θ̄). The joint
probability density functionfV̄ ,Θ̄(v̄, θ̄) of (V̄ , Θ̄) can be obtained directly from the normalized
hurricane activity matrix (Section 2-16, Equation 2-37). Figure 4-22 shows the wind activity matrix
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FIGURE 4-22 Normalized wind activity matrix for Charleston.

for Charleston, South Carolina, normalized byν =
∑

i,j νij = 0.580, that is, the joint probability
density function of(Φ1 = V̄ ,Φ2 = Θ̄) in Equation 2-37. Given that a hurricane occurs at a site,
the probability that it has parameters(v̄i, θ̄j) is νij/ν.

4.2.2.3 Wave load

The wind-induced wave force acting on a unit section of a leg at an elevations from the sea-bed is
given by the noninteractive Morison equation

Fu(t; v̄) =
1

2
c′dρwdc[u0(s; v̄) + U(t, s; v̄)]|u0(s; v̄) + U(t, s; v̄)|

+ cmρw
πd2

c

4
U̇(t, s; v̄), 0 ≤ t ≤ τ2,

wherev̄ andτ2 are given in Equation 4-7,ρw = 1000 kg/m3 is the density of water,c′d = 1, cm = 2
are drag and inertia coefficients,dc is the diameter of the leg, andu0(s; v̄) andU(t, s; v̄) are the
current and the fluctuating wave particle velocities at an elevations from the sea-bed, given by
Equations 2-31 and 2-24, respectively.

As in the wind load model, a linearized version of the wave force in Equation 4-11 is used in
multihazard risk analysis to demonstrate the methodology, although in Section 3.5.1 it was shown
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that the linear approximation can underestimate significantly the peak response. The linearized
wave force acting on a unit section of a leg is

F̂u(t; v̄) = a1du(s)[u0(s; v̄) + U(t, s; v̄)] + a2U̇(t, s; v̄), (4-11)

wherea1 = (1/2)c′dρwdc, a2 = cmρv(πd2
c)/4 anddu(s; v̄) is the linearized wave drag factor in

Equation 3-140 obtained by statistical linearization method. We note that sinceU is a zero-mean,
stationary, mean-square differentiable process the cross correlation function of betweenU andU̇

have the propertyrUU̇ (τ) = −rU̇U (τ) so that the spectral density function ofF̂u can be calculated
from

gF̂uF̂u
(ω, s; v̄) = (a1du(s))2gUU (ω, s; v̄) + a2

2gU̇ U̇ (ω, s; v̄), (4-12)

in which the spectral density function of the fluctuating wave particle velocitygUU (ω, s; v̄) is
obtained from that of the free surface elevationgηη(ω; v̄) using

gUU (ω, s; v̄) = ω2 cosh2(ks)

sinh2(kd)
gηη(ω; v̄) (4-13)

based on the linear wave theory in Equations 2-24 and 2-25, andgU̇ U̇ (ω, s; v̄) = ω2gUU (ω, s; v̄).
The mean ofF̂u is given by

µFu
(v̄) = E[Fu(t; v̄)] = a1du(s; v̄)u0(s; v̄) (4-14)

The total linearized wind-induced wave force acting on the three legs is obtained by integrating
Equation 4-11 along the submerged length

F̂3(t; v̄) = 3[a1

∫ d

0
du(s)[u0(s; v̄) + U(t, s; v̄)]ds + a2

∫ d

0
U̇(t, s; v̄)ds]. (4-15)

The mean ofF3(t; v̄) is

µF̂3
(v̄) = E[F3(t; v̄)] = 3a1

∫ d

0
du(s; v̄)u0(s; v̄)ds = 3a1

cv̄

d

∫ d

0
sdu(s; v̄)ds,

in which c is defined in Equation 2-31 and assumed to be 0.03, and its correlation function is

rF̂3F̂3
(τ ; v̄) = E[F̂3(t; v̄)F̂3(t + τ ; v̄)]

= 9E[

∫ d

0
a1du(s)[u0(s; v̄) + U(t, s; v̄)] + a2U̇(t, s; v̄)ds

×
∫ d

0
a1du(r)[u0(r; v̄) + U(t + τ, r; v̄)] + a2U̇(t + τ, r; v̄)dr], (4-16)

in which k is the wave number given by the linear wave theory in Equation 2-25. The one-
sided spectral density function of̂F3(t; v̄) can be obtained by taking the Fourier transform of its
correlation function in Equation 4-16. However, althoughU(t, s; v̄) andU̇(t, s; v̄) are independent
of each other at a given time (asU is a stationary Gaussian process),U(t, s; v̄) andU̇(t + τ, s; v̄),
as well asU̇(t, s; v̄) andU(t + τ, s; v̄), are correlated. Accordingly, calculation of the one-sided
spectral density function of̂F3(t; v̄) from its correlation function in Equation 4-16 becomes very
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difficult. An approximation of the one-sided spectral density function of F̂3(t; v̄) can be obtained
from Equations 4-12 and 4-13 assuming that the linearized wave forces in Equation 4-11 acting
on different unit sections on a leg are independent of each other, and is given by ((Sarpkaya and
Isaacson, 1981), Section 7.6)

gF̂3F̂3
(ω, v̄) = 9gηη(ω; v̄){ ω2a2

1

sinh2(kd)
[

∫ d

0
du(s; v̄) cosh(ks)ds]2 +

ω4a2
2

k2
}.

SinceU is a Gaussian process (Section 2.2.3.1), so isF̂3(t; v̄) and its second moment properties
completely define its probability law.

The wave loads are induced by hurricane winds so that the lifetime model for wave hazard is
completely defined by the hurricane hazard at the system site given in the previous section.

4.2.3 Fragility analysis

The system fragility under seismic and/or sea-storm activities is calculated for two limit states based
on the relative displacement and the total acceleration responses of the deck of the platform. The
structural resistances, and accordingly the system limit states, are assumed to be deterministic in
this study.

The relative displacement responseZ(t) of the simple linear oscillator in Section 4.2.1 representing
the platform to earthquake and/or wind and wave loads in Section 4.2.2.1, 4.2.2.2 and 4.2.2.3,
respectively, satisfies the differential equation

Z̈(t) + 2ζω0Ż(t) + ω2
0Z(t) =

1

mp
Y (t), 0 ≤ t ≤ τ, (4-17)

with initial conditions Z(0) = Ż(0) = 0 and mp, ω0 and ζ given in Section 4.2.1. For
three loading cases, namely,(i) earthquake only,(ii) sea-storm only (wind and wave), and(iii)
earthquake and sea-storm,Y (t) andτ in Equation 4-17 are, respectively,(i) Y (t) = F1(t;m, r)

and τ = τe with F1(t;m, r) and τe in Equation 4-5,(ii) Y (t) = F̂2(t; v̄, θ̄) + F̂3(t; v̄) and
τ = τ2 with F̂2(t; v̄, θ̄) andτ2 in Equation 4-8 and̂F3(t; v̄) in Equation 4-15, and(iii) Y (t) =

F1(t;m, r) + F̂2(t; v̄, θ̄) + F̂3(t; v̄) andτ = τ2. We note that the third load case assumes that
earthquake loads are in the same direction as the wind/wave loads, which yields in conservative
results.

The fragility of the linear system in Section 4.2.1 under the earthquake load in Section 4.2.2.1
or combined wind and wave loads in Sections 4.2.2.2 and 4.2.2.3 resulting from a sea-storm is
calculated following the methods described in Section 3.1 based on the crossing-theory. Figures 4-
23 shows system fragility for displacement limit stated = 0.25 m under (a) earthquake and (b)
sea-storm loads. Similarly, Figure 4-24 shows system fragility for acceleration limit statea = 1.25
m/sec2.

The system fragility under the coincidental load (earthquake and sea-storm) is calculated based on
the following observations and assumptions: (1) earthquake and sea-storm events are independent
of each other, (2) the probability law of the coincidental event is completely characterized by four
parameters, earthquake moment magnitudeM , the distanceR from the seismic source to the site,
sea-storm mean wind speed̄V and directionΘ̄ and (3) the duration of the coincidental event is
equal to the duration of the earthquake event. Accordingly, the system fragility can be calculated
following the methods described in Section 3.1 based on the crossing-theory and becomes a 4
dimensional surface.
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FIGURE 4-23 Fragility surfaces for displacement limit stated = 0.25 m: (a) Earthquake
only, (b) Sea-storm only.
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FIGURE 4-24 Fragility surfaces for acceleration limit statea = 1.25 m/sec2: (a) Earthquake
only, (b) Sea-storm only.

The conditional probability that the system response leaves a safe setD, for example,D = [−d, d]
for displacement response andD = [−a, a] for acceleration response, given that a hazard event
occurs is calculated by convolving the system fragility with the probability law of the parameters
defining the event so that

Pf,event =

∫

φ
Pf (D;φ)fΦ(φ)dφ, (4-18)

whereΦ is a vector containing the random parameters defining the probability law of the hazard
event,fΦ(φ) is the joint probability density function ofΦ, andPf (D;φ) is the system fragility,
that is, the probability that the system response leaves the safe setD when subjected to an event
with parametersφ. For a seismic event the joint probability density function ofΦ = (M,R) is
approximated by the normalized seismic activity matrix in Figure 4-19. Similarly, the normalized
wind activity matrix in Figure 4-22 can be used to approximate the joint probability density
function of Φ = (V̄ , Θ̄). Accordingly, for earthquake only and sea-storm only events the
conditional probability in Equation 4-18 is obtained by convolving fragility surfaces, for example,
in Figure 4-23 (a) and (b) with corresponding normalized activity matrices in Figures 4-19 and
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4-22, respectively.

For a coincidental event the joint probability density function ofΦ = (M,R, V̄ , Θ̄) is obtained
by multiplying those ofΦ = (M,R) andΦ = (V̄ , Θ̄) since earthquake and sea-storm events
are assumed to be independent of each other. The conditional probability in Equation 4-18 for a
coincidental load is obtained by convolving the 4 dimensional fragility surface described previously
with the joint probability density function ofΦ = (M,R, V̄ , Θ̄). However, it is important to
note that the duration of a sea-storm is considerably longer than that of an earthquake, 1 hour
versus 20 seconds in our example. Consequently, in case of a coincidental event, in addition to
the coincidental load we should also consider the period in which the sea-storm load continues to
act alone (Bhartia and Vanmarcke, 1988). Accordingly, for a coincidental event, the conditional
probability that the system response leaves the safe setD given that an event occurs becomes

Pf,coevent = 1 −
(

1 −
∫

m,r,v̄,θ̄
Pf (D;m, r, v̄, θ̄)fM,R,V̄ ,Θ̄(m, r, v̄, θ̄)dmdrdv̄dθ̄

)

×
(

1 −
∫

v̄,θ̄
Pf (D; v̄, θ̄)fV̄ ,Θ̄(v̄, θ̄)dv̄dθ̄

)

, (4-19)

wherePf (D;m, r, v̄, θ̄) andPf (D; v̄, θ̄) are the fragilities under the coincidental loads and sea-
storm loads only, respectively, andfM,R,V̄ ,Θ̄(m, r, v̄, θ̄) andfV̄ ,Θ̄(v̄, θ̄) are the joint probability
density function of(M,R, V̄ , Θ̄) and(V̄ , Θ̄), respectively.

Figures 4-25 and 4-26 show the conditional probability of failure given that an event occurs
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FIGURE 4-25 Conditional probability of failure per event for displacement limit state.

(earthquake only, sea-storm only, earthquake and sea-strom) against the displacement and
acceleration limit statesd anda, respectively. Figure 4-25 indicates that when the displacement
response is considered different actions can be significant at different reliability levels. IfPf,event >
10−3 then the sea-storm loads are dominant, ifPf,event < 10−4 then the earthquake loads are
dominant, in between the coincidental loads are relevant. On the other hand, when the acceleration
response is considered, Figure 4-26 shows that the combined load effect is dominant for all relevant
reliability levels.
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FIGURE 4-26 Conditional probability of failure per event for acceleration limit state.

4.2.4 Lifetime risk analysis

The lifetime failure probability, that is, the probability that a system responseR does not exceed a
critical levelr during its projected lifetimeτ ≥ 0 due to a single intermittent load event occurring
in time according to a homogeneous Poisson counting processN(τ) of intensityν is given by

Pf,τ = 1 − Ps,τ , (4-20)

wherePs,τ is the probability that the system does not fail in(0, τ) and equals

Ps,τ = P

(

max
i=1,...,N(τ)

{Ri} ≤ r

)

=

∞
∑

n=0

P

(

max
i=1,...,n

{Ri} ≤ r|N(τ) = n

)

P (N(τ) = n)

=
∞
∑

n=0

P

(

n
⋂

i=1

(Ri ≤ r)

)

(ντ)n

n!
e−ντ = e−ντ

∞
∑

n=0

P (R1 ≤ r)n
(ντ)n

n!

= e−ντ
∞
∑

n=0

(ντP (R1 ≤ r))n

n!
= e−ντeντP (R1≤r)

= e−ντ [1−P (R1≤r)], (4-21)

since the events{maxi=1,...,n{Ri} ≤ r} and{N(τ) = n} are independent of each other, andRi,
i = 1, . . . , n, are independent and identically distributed. Hence, the lifetime failure probability in
Equation 4-20 becomes

Pf,τ = 1 − e−ντPf,event , (4-22)
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in whichPf,event = P (R1 > r) is the conditional probability that the system responseR1 exceeds
r given that an event occurs and is given by Equation 4-18.

The lifetime failure probability in Equation 4-20 for two independent intermittent loads, occurring
in time according to homogeneous Poisson counting processes of intensitiesν1 and ν2, can be
approximated by (Section 2.6)

Pf,τ = 1 − exp [ − (ν1Pf,event−1 + ν2Pf,event−2 + ν12Pf,coevent)τ ], (4-23)

in which ν12 is given by Equation 2-52,Pf,event−i is given by Equation 4-18 for eventi, and
Pf,coevent is given by Equation 4-19.

Figure 4-27 shows lifetime failure probabilities based on displacement limit state for four different
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FIGURE 4-27 Lifetime probability of failure for displacemen t limit state.

load cases, namely, earthquake only, sea-storm only, and earthquake and sea-storm loads with and
without coincidence, forτ = 30 years. We observe that (1) the sea-storm load governs the design at
low reliability levels and the earthquake load governs at high reliability levels, and (2) the effect of
coincidental load on the overall risk is negligible. Figure 4-28 shows similar results for acceleration
limit state. In this case only the earthquake load is relevant at all reliability levels.
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4.3 Selecting the optimal maintenance strategy for deteriorating systems

An optimal maintenance policy is developed for a deteriorating system under seismic hazard
designed for a given lifetime such that (1) the probability that total life-cycle cost exceeds a critical
value is minimal, and (2) the system functions at the required performance level during its lifetime.
The total life-cycle cost includes costs of replacement and repair due to damage in the system
following a seismic event and maintenance related inspection and repair costs. The maintenance
policy is defined by the number of inspections, inspection times and inspection quality.

The optimal maintenance policy is obtained by minimizing the total life-cycle cost such that system
reliability at any given timet in (0, τ) is greater than a specified level. A two-step analysis
is performed to establish an optimal maintenance policy. The input to the analysis consists of
(1) seismic activity matrix for the site giving the mean annual rate of earthquakes for different
magnitudes and source-to-site distances, (2) system fragility surfaces, that is the probabilities that
the system enters various damage levels as a function of moment magnitude and site-to-source
distance, (3) probability laws of system deterioration rates, (4) required performance level, (5)
costs of maintenance, repair and replacement, and (6) a lifetimeτ > 0. The first step of the
Monte Carlo simulation is used to estimate the total life-cycle cost distribution and system failure
probability for a specified number of inspections and inspection times. The second step delivers
optimal inspection times under a reliability constraint for a specified number of inspections. The
optimal maintenance policy, that is, the optimal number of inspections and inspection times, results
by running the second step for several values of the number of inspections.

4.3.1 Seismic hazard

The input to the seismic hazard model consists of site seismic activity matrix, the projected lifeτ
of the system, and soil properties at the site. The site seismic activity matrix delivers the mean
annual rate of earthquakes for different magnitudes and source-to-site distances, and it can be
constructed directly from the data available from the USGS (see Section 2.3.4 for details). The
ground acceleration at the system site for an earthquake with moment magnitudem and source-
to-site distancer is modeled by a stationary Gaussian process whose spectral density function
is given by the specific barrier model (Section 2.2.1.1, Equation 2-1 withe(t) = 1, t ≥ 0).
Monte Carlo algorithms developed in Section 2.4 are used for generating (i) random samples of
the seismic hazard at the site during lifetimeτ using the using the probabilistic models discussed
in Section 2.3, and (ii) seismic ground acceleration samples for these seismic hazard samples using
the probabilistic models discussed in Section 2.2.1.1. Each seismic hazard sample is defined by the
number of earthquakesN(τ) during the lifetimeτ , and arrival timeT , magnitudeM and source-
to-siteR distance of each earthquake event. Figure 4-29 shows the seismic activity matrix for New
York City. Figure 4-30 shows a sample of seismic hazard scenario in New York City forτ = 50
years.

4.3.2 Seismic fragility

Fragility information is used to characterize the damage in the system. Seismic fragility of a system
is defined in Section 3.3, where the probability that a system response enters a damage state viewed
as a function of the seismic moment magnitudeM and the distance from the seismic source to
system siteR is called system fragility surface. Calculation of fragility surfaces using Monte
Carlo simulation and crossing theory of stochastic processes are also presented in Section 3.3.
It is assumed that the system fragility increases in time due to deterioration.
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FIGURE 4-29 Seismic activity matrix for New York City.
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Suppose that the seismic performance of the system is measured by its peak displacement response
X in time t. The probability that the peak displacement exceeds a critical value given a seismic
event characterized by(M,R) is increasing in time due to system deterioration. We assume that
system fragility at a timet > 0, for limit statexi, can obtained using

P (i)(t) = P (X > xi|M = m,R = r; t) = min{P (i)
0 L(t), 1}, (4-24)

whereP
(i)
0 is the seismic fragility at timet = 0 for limit statexi, L(t) is a deterioration function

defined below, andxi, i = 1, . . . ,m, are the limit states for the peak responseX. It is assumed that
a damaged system is brought to its original state after each seismic event so that system fragility
for limit statexi right after an event is given byP (i)

0 .

In this study we consider a very simple deterioration model to demonstrate our methodology,
although complex damage/deterioration models exists in the literature (Thoft-Christensen, 2002;
Das, 1997). The deterioration is related to a crack growth. The crack length at a timet > 0 is

A(t) = A0 exp(Λt), t > 0, (4-25)
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whereA0 denotes the initial crack length andΛ is the rate at which the crack length increases
in time. The parametersA0 and Λ are assumed to be random variables independent of each
other and uniformly distributed in some intervals(a0,1, a0,2) and (λ1, λ2), respectively, where
0 < a0,1 < a0,2 and0 < λ1 < λ2. These properties ofA0 andΛ are denoted byA0 ∼ U(a0,1, a0,2)
andΛ ∼ U(λ1, λ2). It is assumed that the deterioration functionL(t) in Equation 4-24 has the
form

L(t) = A(t)/A0 = exp(Λt), t > 0. (4-26)

Figure 4-31 shows fragility surfaces of a linear single degree of freedom system with a natural
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FIGURE 4-31 Seismic fragility surfaces at (a)t = 0 and (b) t = 15 years.

frequency of 5 rad/sec and a damping ratio of 5% at times (a)t = 0 and (b)t = 15 years, for
Λ ∼ U(0.1, 0.3) andx = 1 cm. The fragility surface fort = 0 are estimated using the mean
crossing rate of the system response (see Section 3.3.1.1 for details). The fragility surface for
t = 15 years is obtained using Equation 4-24. LetDk be a discrete random variable characterizing
the damage state of the system after seismic eventk arriving at timet = Tk and characterized by
(Mk, Rk), k = 1, . . . ,N(τ), whereN(τ) is the number of seismic events in[0, τ ]. The damage
state of the system following eventk is

Dk =



































































d1, with probability 1 − P (1)(Tk)

d2, with probability P (1)(Tk) − P (2)(Tk)

. . . , . . .

dm, with probability P (m−1)(Tk) − P (m)(Tk)

dm+1, with probability P (m)(Tk)

, (4-27)

in whichP (i)(Tk), i = 1, . . . ,m, is calculated using Equation 4-24.

4.3.3 Probability model for the total life-cycle cost

The following assumptions/constraints define system performance and maintenance policy.
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• Cracks of length larger and smaller thana1 > 0 are and are not detected, respectively, that is,
we use a unit step probability of detection. Detected cracks are repaired and brought to their
initial random length.

• Cracks of length exceeding a critical valuea2 > 0 are deemed unsafe, and the system is said
to fail with probabilityP (A(t) > a2). System with cracks exceedinga2 is replaced with a
nominally identical one, so that its initial state is given by a crack of a random length with
the same distribution asA0 in Equation 4-25 but independent ofA0.

• Peak seismic responses smaller and larger thanx1 > 0 cause no damage and moderate
damage, respectively. Damaged system is repaired and brought back to its original state
after the seismic event.

• If the peak seismic response exceeds a critical valuex2 > 0, the system has extensive
damage. An extensively damaged system is replaced with a nominally identical one.

• System probability of failureP (A(t) > a2) remains below a critical valuepcr ∈ (0, 1) at all
times during the design life[0, τ ].

• Connection between the peak system responseX and the crack lengthA(t) is not explicitly
defined in this model, rather, it is implicit through Equation 4-24, where the probability law
of X is given as a function of the deterioration functionL(t), which is in turn a function of
the crack lengthA(t).

Some of these assumptions can be relaxed. For example, complex damage or deterioration models
can be used in place of Equations 4-25 and 4-26 (Thoft-Christensen, 2002; Das, 1997), the binary
detection function considered here can be replaced with some probability of detection curves, and
system response can be explicitly related to the crack length.

Figure 4-32 illustrates the proposed algorithm for total life-cycle cost calculation forn = 2
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FIGURE 4-32 Inspection and maintenance policy.

inspection timest1 andt2 such that0 < t1 < t2 = τ , and a seismic hazard sample with a single
event with magnitudeM1, source-to-site distanceR1 and arrival timeT1, such thatt1 < T1 < τ .
The second inspection att = t2 = τ is required to ensure that the reliability constraint is not
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violated atτ , that is, the system probability of failureP (A(τ) > a2) atτ remains below the critical
valuepcr. Accordingly, no repair/replacement is required after the last inspection.

• At time t = t1: The crack length at the first inspection timet = t1 is the random variable
A(t1) = A0 exp(Λt1). The system fails and survives at timet = t1 with probabilities
P (A(t1) > a2) and1 − P (A(t1) > a2), respectively. If the system fails, that is, the event
A(t1) > a2 is observed, it is replaced with a new system characterized by an initial crack
of random length with the same distribution asA0 in Equation 4-25 but independent ofA0.
Accordingly, the original cycle beginning at timet = 0 is restarted at timet = t1, and this
fact is illustrated in Figure 4-32 by the dotted lines. Similarly, the dotted linest = T1 indicate
initiation of a damage cycle resembling the original cycle but starting at timet = T1. If the
system survives, that is, under the eventA(t1) ≤ a2, the crack may or may not be detected
depending on its length. IfA(t1) ≤ a1, the crack is not detected so that it will continue
to grow reaching the lengthA(T1) = A0 exp(ΛT1) at the occurrence of the seismic event
at t = T1. If the crack is detected, it is repaired and brought to its initial random state, so
that its length isA′

0 following repair andA′
0 exp(Λ′(T1 − t1)) at T1, whereA′

0 andΛ′ are
independent copies ofA0 andΛ , respectively. Irrespective of the system damage state there
is a costci associated with the inspection performed at timet = t1. The inspection cost may
or may not be augmented depending on the crack length and an associated repair/replacement
cost. IfA(t1) > a2, the system needs to be replaced by a nominally identical system so that
total cost at timet = t1 is ci + cf . If A(t1) ≤ a2, the system survives. Under the surviving
event, there are two possibilities. IfA(t1) > a1, damage is detected and repaired, so that the
total cost at timet = t1 is ci + cr,m. If A(t1) ≤ a1, damage is not detected, so that no action
is taken and the total cost at timet = t1 is ci.

• At time t = T1: An unscheduled inspection is done following the seismic event occurring at
time t = T1. The failure or survival of the system depends of the crack length at timet = T−

1 ,
that is, prior to the seismic event, as well as the damage caused by the seismic event occurring
att = T1. The crack length at timet = T−

1 is the random variableA(T−
1 ) = A0 exp(ΛT−

1 ) or
A′

0 exp(Λ′(T−
1 − t1)) with probabilitiesP (A(T−

1 ) ≤ a1) andP (A(T−
1 ) > a1), respectively.

The damage state of the system at timet = T+
1 , that is, right after the seismic event, is the

discrete random variableD1 taking valuesd1, d2, andd3 with probabilities1 − P (1)(T+
1 ),

P (1)(T+
1 )− P (2)(T+

1 ), andP (2)(T+
1 ), respectively, (Equations 4-24 and 4-27). The damage

statesd1, d2, andd3 corresponds to no damage, moderate damage and extensive damage,
respectively. Again, the inspection cost may or may not be augmented depending on the
crack length and the damage state of the system. IfA(T−

1 ) > a2 or D1 = d3, the system
needs to be replaced by a nominally identical system so that total cost at timet = T1 is
ci + cf . If A(T−

1 ) ≤ a2 andD1 6= d3, the system survives. Under the surviving event, there
are four possibilities. IfA(T−

1 ) > a1 andD1 = d1, only damage due to deterioration is
detected and repaired, so that the total cost at timet = T1 is ci + cr,m. If A(T−

1 ) ≤ a1 and
D1 = d2, only damage due to the earthquake is detected and repaired, so that the total cost
at timet = T1 is ci + cr,e. If A(T−

1 ) > a1 andD1 = d2, both damages are detected and
repaired, so that the total cost at timet = T1 is ci + cr,m + cr,e. If A(T−

1 ) ≤ a1 andD1 = d1

damage is not detected, so that no action is taken and the total cost at timet = T1 is the
inspection costci. This approach assumes that the crack length is not affected by a seismic
event, but system damage due to a seismic event depends on the crack length at the time of
the event. This assumption is admittedly questionable but is invariably made for purposes of
developing a practical approach.

• At time t = t2 = τ : No repair/replacement is required at the last inspection time. The only
cost considered at timet = τ is the inspection costci.
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Similar considerations can be used to complete the cost analysis for any number of inspection times
and seismic events. The model presented here can be used to calculate the distribution of life-cycle
cost and the evolution of failure probability in time.

Estimates of the total cost distribution at timeτ and of the time evolution of system failure
probability can be obtained using Monte Carlo simulation. The algorithm is based on the following
considerations. LetA0(ω) andΛ(ω) be samples of the initial crack lengthA0 and crack growth rate
Λ. Depending on the values ofA0(ω), Λ(ω), the numbern of inspections and the inspection times
(t1, . . . , tn), and the number of seismic events, the system will evolve along one of the possible
distinct damage paths. Figure 4-32 shows these paths forn = 2 inspections andN(τ) = 1 seismic
event. LetTC(ω) denote the discounted total life-cycle cost collected over the sampleω. Repeating
the above analysis forns independent samples, we obtainns cost samplesTC(ω), ω = 1, . . . , ns.
Hence cost histograms and other cost statistics depending on user’s objectives can be calculated
from the cost samples. Also, estimates for the evolution of system failure probabilityP (A(t) > a2)
in the time interval[0, τ ] can be calculated. SinceP (A(t) > a2) is an increasing function of time
between consecutive inspection times, we only need the values of these probabilities at inspection
times, that is, the probabilitiesP (A(tk) > a2), k = 1, . . . , n, for the optimization algorithm in the
following section.

Consider a system located in New York City designed for a lifetimeτ = 50 years. The system is
a linear oscillator with a natural frequency = 5 rad/sec and a damping ratio = 5%. The limit states
on the maximum displacement response arex1 = 1, x2 = 4 cm. Suppose that the maintenance
policy consists of 4 inspections taking place at the times(t1 = 5, t2 = 20, t3 = 35, t4 = 50) years.
Detectable and critical crack lengths area1 = 2 anda2 = 6, respectively, and the damage model in
Equation 4-25 has the parameters(a0,1 = 0, a0,2 = 1) and(λ1 = 0.1, λ2 = 0.3). The inspection,
maintenance and earthquake related repair and replacement costs areci = 2, cr,m = 10, cr,e = 30,
andcf = 100, respectively. The discount rate is 5%. Figure 4-33 shows the histogram of the total
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FIGURE 4-33 Histogram of the total life-cycle costTC.

life-cycle costTC obtained usingns = 1000 samples. System failure probability in[0, t1], that is,
the probability that the crack length exceedsa2 in this time interval, can be estimated by

P̂f (t) =

∑ns

ω=1 1 (A(t, ω) > a2)

ns
, t ∈ [0, t1], (4-28)

154



where1(B) = 1 or 1(B) = 0 if the eventB or the complement ofB occurs, respectively.
Similar calculations can be used to estimate the system failure probabilityPf (t) at any time
in [0, τ ]. Figure 4-34 shows the time evolution of an estimateP̂f (t) of the failure probability
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FIGURE 4-34 Evolution of probability of failure in time.

Pf (t) = P (A(t) > a2) calculated for the same parameters as in Figure 4-33. The probabilities
P̂f (t) have negative jumps at inspection times and are increasing functions between consecutive
inspection times. Estimates of the system failure probability, that is the probability that the
crack length exceedsa2, at the inspection timest1, t2, t3, and t4 are P (A(t1) > a2) = 0,
P (A(t2) > a2) = 0.105, P (A(t3) > a2) = 0.128 andP (A(t4) > a2) = 0.123, respectively.

4.3.4 Optimization problem

Suppose that the time interval[0, τ ] and the number of inspectionsn in this interval are fixed.
Let c∗ > 0 andpcr ∈ (0, 1) denote a critical cost and a target failure probability, respectively. The
probabilityqn(c; t1, . . . , tn) that the total life-cycle cost inτ exceeds a valuec > 0 under inspection
times(t1, . . . , tn = τ) can be obtained from the cost histograms developed in the previous section,
for example, Figure 4-33.

Our main objective is the selection of optimal inspection times, that is, inspection times that
minimize cost in some sense under the condition that system reliability does not fall below an
acceptable level, for given number of inspectionsn. This objective can be achieved by solving
a constraint optimization problem requiring to minimize the objective functionqn(c; t1, . . . , tn)
under the constraint that the system failure probability remains smaller thanpcr during the time
interval[0, τ ], that is, the problem

minimize
t1,...,tn

{qn(c∗; t1, . . . , tn)}, with (4-29)

t0 = 0 < t1 < t2 < . . . < tn = τ, and

P (A(tk) > a2) < pcr, k = 0, 1, . . . , n.
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As previously stated, it is sufficient to impose the conditionthat the system failure probability
is smaller thanpcr only at inspection times since this probability increases with time between
consecutive inspection times, see Figure 4-34.

The objective functionqn(c∗; t1, . . . , tn) in Equation 4-29 can be replaced with other functions. For
example, we may minimize cost expectation, variance, or some higher order moments of cost. The
assumption that the number of inspectionsn is specified simplifies calculations significantly, but is
restrictive. To circumvent this restriction, the above algorithm needs to be applied for increasing
values ofn to identify the optimal number of inspectionsnopt and the corresponding optimal
inspection times(topt

1 , . . . , topt
n ). The resulting optimal number of inspections and corresponding

optimal inspection times minimizeqn(c∗; t1, . . . , tn) under the constraintP (A(topt
k ) > a2) < pcr,

k = 0, 1, . . . , n, for n = nopt.

Figure 4-35 (a) shows the feasible region in the(t1, t2) space for the case in which two inspections
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FIGURE 4-35 Optimal inspection number and inspection times.

are scheduled in(0, τ) and one inspection is scheduled fort = τ . The feasible region is defined
by the constraints on the system failure probabilityP (A(t) > a2) in Equation 4-29. The figure
also shows the optimal inspection times(topt

1 , topt
2 ). Results are for no seismic activity,n = 3,

c∗ = 75, pcr = 0.10, τ = 50, a1 = 5, a2 = 300, (a0,1 = 0, a0,2 = 1), (λ1 = 0.1, λ2 = 0.3),
ci = 5, cr,m = 40, cf = 500, and are based onns = 10, 000 samples. Figure 4-35 (b) shows
the dependence of the optimal values ofqn(c∗; t1, . . . , tn) on the number of inspections for the
parameters in Figure 4-35 (a), except for the value ofn. There is no solution forn = 1 since
the constraintsP (A(t1) > a2) < pcr cannot be satisfied. The optimal inspection strategy for this
example is two inspections performed at(topt

1 = 13.55, topt
2 = 27.54) and last inspection performed

at t = τ = 50.
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SECTION 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The main objectives of this study were (1) developing a methodology for assessing performance
of structural/nonstructural systems subjected to multiple hazards during their lifetimes and (2)
identifying a rational strategy from a collection of design alternatives for increasing the resilience of
these systems. System performance was measured by (i) lifetime total losses, that is, rehabilitation
and repair/replacement costs and capacity and life losses, caused by hazard events, and (ii) system
fragility, that is, the probability that a system response exceeds a critical value subjected to a hazard
event of known intensity. The methodology was based on site hazard analysis, system fragility
analysis and capacity/cost estimation. Estimates of losses, referred to as life cycle losses, were
derived from hazard characteristics of the system site, system fragility information and financial
models.

Probabilistic lifetime hazard models were used to specify (i) the random arrival times of individual
hazard events, such as earthquakes and hurricanes, at the system site during its lifetime, and (ii)
the random properties, for example, magnitude and source-to-site distance for an earthquake, or,
mean wind velocity and predominant wind direction for an hurricane, of the individual hazard
events under considerations. Probabilistic event models were used for characterizing the probability
law of the load processes acting on the system due to an individual or combined hazard event.
Accordingly, a natural hazard event at a site, such as seismic ground acceleration or wind velocity,
was characterized by a random process with a probability law derived from measurements and/or
analytical models. Also, Monte Carlo algorithms were developed for generating samples of these
natural hazards. For a system in a multihazard environment the occurrence of both individual and
coincidental hazard events were considered.

We have presented two methods for estimating system fragility, crossing theory of stochastic
processes and Monte Carlo simulation. We have shown that fragility information of a simple linear
system under stationary band-limited loads can be efficiently calculated by the sampling theorem.
Also, we have shown that the current approach of plotting system fragility against a single hazard
intensity parameter can be inadequate for some systems.

The proposed models were implemented in computer programs and the life-cycle risk analysis
methodology was illustrated through numerical examples. In the first example MCEER West Coast
Demonstration Hospital was analyzed to identify an optimal rehabilitation strategy with respect
to total life-cycle losses using the concepts of seismic activity matrix and fragility surfaces. It
was shown that proposed retrofitting alternatives do not change the mean value of the life-cycle
costs significantly, however, the probability of exceeding large costs was lower for the retrofitted
systems. The life-cycle loss estimation methodology for a hospital system under seismic hazard was
implemented in Rehabilitation Decision Analysis Toolbox (RDAT), a MATLAB based program for
calculating the seismic resilience of structural/nonstructural systems in a health care facility. Using
the RDAT it is possible to (i) compare the effectiveness of different rehabilitation alternatives
for structural and nonstructural systems using the estimates of life cycle losses, and (ii) develop
rational rehabilitation alternatives for increasing the seismic resilience of these systems. The second
example discussed the case of a typical offshore platform under earthquake and hurricane hazards.
This example demonstrated how different hazards can be dominant at different reliability levels
and . The last example presented a method for selecting an optimal maintenance policy for a
deteriorating system by minimizing the total life-cycle cost such that system reliability at any given
time is greater than a specified level.
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5.2 Suggested future work

Following is a brief list of the suggested future studies:

1. The sampling theorem method presented in this study for estimating statistics of the state of
a simple linear system can be extended to nonlinear systems. It has been shown here that the
sampling theorem provides a much more efficient method for fragility analysis compared to
methods based on the classical Monte Carlo algorithm.

2. The proposed life-cycle risk analysis methodology has been demonstrated using a simple
system under the seismic and hurricane hazards. The methodology can be extended to more
realistic systems under other types of natural and man-made hazards, such as, floods, wild
fires and terrorist attacks, with little modifications.

3. The financial model used in life-cycle loss estimation methodology can incorporate insurance
policy conditions so that the results can be directly used for insurance pricing.
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APPENDIX A

Specific Barrier Model

The seismic source model is the essential ingredient for the ground acceleration models in this
study. The model quantifies the radiated seismic energy from a source, that is, the acceleration
source spectrums(f), giving the seismic energy as a function of the frequencyf . Current seismic
source models include:

1. Single corner frequency model (Brune, 1970, 1971):

s(f) = (2πf)2
m0

1 +
(

f
fc

)2 (A-1)

wherem0 is the seismic moment andfc is the corner frequency given by

fc = 4.9 106 β

(

∆σ

m0

)1/3

(A-2)

with ∆σ being the stress drop of the seismic event.

2. Two corner frequency model (Atkinson and Boore, 1995):

s(f) = (2πf)2m0

[

1 − ε

1 + (f/fa)2
+

ε

1 + (f/fb)2

]

(A-3)

where, form0 ≥ 4:

log ε = 2.52 − 0.637m0

log fa = 2.41 − 0.533m0

log fb = 1.43 − 0.188m0

and whenm0 < 4:

ε = 1

log fa = 2.678 − 0.5m0

log fb = 2.678 − 0.5m0

3. Another Two corner frequency model (Haddon, 1996a):

s(f) = (2πf)2m0

[

1

(1 + (f/fa)8)
1/8

+
1

(1 + (f/fb)8)
1/8

]

(A-4)

where

log fa = 2.3 − 0.5m0

log fb = 3.4 − 0.5m0
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FIGURE A-1 Illustration of the fault plane according to SBM.

4. Specific barrier model (Papageorgiou and Aki, 1983a,b; Papageorgiou, 1988): According to
the specific barrier model (SBM), a rectangular fault, with dimensionsw andl, is assumed to
consist of uniformly distributed, equal-size circular regions separated by unbroken barriers
that can rupture and release energy. Strong ground motions result when a relatively large
collection of circular areas rupture consecutively in a small time interval. Subevents are
represented by circular cracks, the ruptures of which start randomly and independently at the
center and spread out radially with a constant rupture velocity. The healing phase is initiated
after the rupture front arrives at the barrier of the circular region. A wave front (healing
front) starts propagating inwards, towards the center. Rupture at a given point in the cracking
region stops when the healing front reaches to that point. According to SBM acceleration
source spectrum is,

s(f) = (2π)2

√

√

√

√N

[

1 + (N − 1)

(

sin(πfT )

πfT

)2
]

f2m̃oi
(f), (A-5)

whereT is the source duration,N is the number of circular subevents comprising the main
event, andf2m̃oi

(f) is the source spectrum of the acceleration for an individual subevent,
which is defined as

f2m̃oi
(f) =

moi
f2
2

1 +
(

f2

f

)2 , (A-6)

wheremoi
is the seismic moment andf2 is the corner frequency of the subevent.

A single site located very far from a fault is illustrated in Figure A-2. The Fourier amplitude
spectrum of the strong ground motion at the site is given by

|a(f, r)| = c s(f)d(f, r)p(f)z(f)l(f), (A-7)

wheref is the frequency in Hertz,r is the source-to-site distance,c is a scaling factor,s(f) is the
acceleration source spectrum,d(f, r) is the attenuation function,p(f) is the high frequency cut-off
filter, z(f) is a function which defines local soil effects at the site andl(f) is a function used to get
the desired output (acceleration, velocity or displacement site spectrum). Detailed definitions forc,
s(f), d(f, r), p(f), z(f) andl(f) are provided in (Halldorssonet al., 2002).

The one-sided spectral density function of the strong ground motion process at the site is given by
(Wirschinget al., 1995)

g(ω, r) =
1

2πtw
|a(ω, r)| 2, (A-8)
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FIGURE A-2 Illustration of a single site.

in which tw is the duration of motion given by SBM and|a(ω, r)| is given by Equation A-7 for
ω = 2πf .
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APPENDIX B

Ground Motion Statistics

First four moments are calculated for the strong motion part of the free field ground acceleration
time histories from Western United States on Pacific Earthquake Engineering Research Center
(PEER) Strong Ground Motion Database (PEER, 2003). It is assumed that the strong ground
acceleration records are samples from stationary ergodic series with finite moments. Let
X1, . . . ,Xn denote the strong motion part of a ground acceleration record. The estimates of the
mean, variance, skewness and kurtosis are

µ̂ =
1

n

n
∑

i=1

Xi, (B-1)

σ̂2 =
1

n

n
∑

i=1

(Xi − µ̂)2, (B-2)

γ̂3 =

[

1

n

n
∑

i=1

(Xi − µ̂)3

]

/σ̂3, (B-3)

γ̂4 =

[

1

n

n
∑

i=1

(Xi − µ̂)4

]

/σ̂4. (B-4)

If the sequenceX1, . . . ,Xn is Gaussian, thenγ3 = 0 andγ4 = 3. Notable differences from these
values would indicate thatX1, . . . ,Xn is a non-Gaussian series.

The strong motion part of the ground acceleration records is obtained by Husid’s plot (Husid, 1969)
using the Arias intensity

e(t) =
π

2g

∫ tf

0
a2(t)dt, 0 ≤ t ≤ tf , (B-5)

wherea(t) is the ground acceleration time history,tf is the total duration of the accelerogram and
g is the acceleration due to gravity. The time interval of the strong part of the seismic ground
acceleration,(t1, t2), is defined by the conditions

e(t1) = 0.05 e(tf ) (B-6)

e(t2) = 0.95 e(tf ),

following (Trifunac and Brady, 1971; Dobryet al., 1978).

Soil conditions are essential establishing site amplification functions. Current classifications of
soil conditions are discussed in this section. The PEER Strong Ground Motion Database uses
Unites States Geological Survey (USGS) soil classes to characterize the site (PEER, 2003). A
more recent and widely used classification is given by National Earthquake Hazard Reduction
Program (NEHRP) (FEMA 222A/223A, 1994; Martin and Dobry, 1994). The NEHRP and USGS
site classifications are based on the average shear wave speedv in the upper 30 meters of a
soil profile beneath the site. These two site classifications were developed using strong ground
acceleration data recorded in California. Tables B-1 and B-2 show the USGS and NEHRP site
classifications, respectively. Frankelet al. (Frankelet al., 1996) and Boore and Joyner (Boore and
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TABLE B-1 USGS classification.

Class v (m/s)

A v > 750

B 360 < v < 750

C 180 < v < 360

D v < 180

TABLE B-2 NEHRP classification.

Class v (m/s) Soil type

A v > 1500 hard rock

B 760 < v < 1500 rock

C 360 < v < 760 very dense soil

D 180 < v < 360 stiff soil

E v < 180 soft soil

F - special soil requiring site

specific evaluation

Joyner, 1997) have calculated site amplification functions based on the average of shear wave speed
over depth. Halldorssonet al. (Halldorssonet al., 2002) defined alternative soil classes based on
the developments in (Frankelet al., 1996) and (Boore and Joyner, 1997). Table B-3 shows the

TABLE B-3 SBM classification.

Class v (m/s) Soil type

1 620 generic rock

2 520 very dense soil

3 310 generic soil

4 255 stiff soil

5 2900 generic very hard rock

6 760 rock/hard rock

site classification defined by Halldorssonet al. (Halldorssonet al., 2002) and used in the specific
barrier model (SBM). This classification is used in this study to calculate the frequency dependent
site amplification functions. Table B-4 presents the relationship between the three classifications.

Strong ground acceleration records from PEER database (PEER, 2003) are divided into four groups
according to USGS site classification (Table B-1). Ten records were used in each class, with
the exception of class-D for which only four free field acceleration records were available in the
database. Tables B-5, B-6, B-7, and B-8 give estimates of mean, skewness and kurtosis coefficients
defined in Eq. B-1 for USGS class-A, B, C and D soils, respectively. The means and skewness
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TABLE B-4 Site classifications.

SBM NEHRP USGS

1 C B

2 C B

3 D C

4 D C

5 A A

6 B-C boundary A-B boundary

TABLE B-5 Statistics for records on USGS class-A soil.

Earthquake Date µ̂ γ̂3 γ̂4

Anza (Horse Cany) 1980/02/25 -3.2E-04 -0.01 5.08

Anza (Horse Cany) 1980/02/25 -1.5E-04 -0.04 4.32

Cape Mendocino 1992/04/25 1.0E-03 2.53 17.23

Coyote Lake 1979/08/06 -1.0E-04 0.25 5.02

Morgan Hill 1984/04/24 1.1E-04 -0.27 3.61

Hollister 1974/11/28 -1.2E-04 0.49 4.86

Landers 1992/06/28 -9.5E-05 0.14 3.65

Loma Prieta 1989/10/18 1.1E-04 -0.54 6.78

Loma Prieta 1989/10/18 1.7E-04 0.64 6.06

Loma Prieta 1989/10/18 5.0E-06 -0.69 6.01

coefficients are nearly zero suggesting that the marginal density of the ground acceleration process
is an even function. Figure B-1 shows the dependence ofγ4 on soil conditions. The average kurtosis
coefficients for classes A, B, C and D are 6.26, 5.67, 5.58 and 4.06, respectively. Hence, the ground
acceleration records cannot be modeled by Gaussian processes for whichγ4 is 3.
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TABLE B-6 Statistics for records on USGS class-B soil.

Earthquake Date µ̂ γ̂3 γ̂4

Anza (Horse Cany) 1980/02/25 6.4E-05 0.61 6.18

Cape Mendocino 1992/04/25 -1.6E-04 -0.75 6.59

Cape Mendocino 1992/04/25 8.5E-05 0.12 5.14

Cape Mendocino 1992/04/25 -2.2E-05 0.15 6.69

Coyote Lake 1979/08/06 1.0E-04 -0.49 6.02

Loma Prieta 1989/10/18 -5.3E-04 0.10 4.90

Loma Prieta 1989/10/18 6.3E-04 0.07 5.10

Hollister 1986/01/26 1.7E-04 -0.12 5.11

Landers 1992/06/28 2.3E-05 -0.13 4.34

Landers 1992/06/28 1.1E-04 0.31 6.62

TABLE B-7 Statistics for records on USGS class-C soil.

Earthquake Date µ̂ γ̂3 γ̂4

Borrego Mtn 1968/04/09 -5.0E-06 0.24 3.97

Cape Mendocino 1992/04/25 1.5E-03 0.10 7.96

Coalinga 1983/05/02 -3.6E-05 -0.25 5.09

Coalinga 1983/05/02 -5.0E-04 -0.24 3.69

Coyote Lake 1979/08/06 1.8E-04 -0.03 5.75

Coyote Lake 1979/08/06 -2.7E-05 -0.77 7.68

Coyote Lake 1979/08/06 9.0E-06 0.06 7.94

Imperial Valley 1979/10/15 4.3E-05 0.03 2.96

Imperial Valley 1979/10/15 8.6E-04 0.04 4.48

Imperial Valley 1979/10/15 5.2E-04 0.56 6.23

TABLE B-8 Statistics for records on USGS class-D soil.

Earthquake Date µ̂ γ̂3 γ̂4

Loma Prieta 1989/10/18 -1.3E-03 0.29 3.82

Loma Prieta 1989/10/18 -7.8E-05 0.03 3.56

Morgan Hill 1984/04/24 6.8E-04 -0.29 5.09

Morgan Hill 1984/04/24 -5.0E-06 -0.19 3.78
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FIGURE B-1 Change in the kurtosis coefficient with USGS site class.
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APPENDIX C

Spatial Variability Of Seismic Motions

There are four different causes of spatial variability of earthquake induced ground motions. The first
one is the loss of coherency, a frequency domain measure of spatial variation, due to scattering in
the heterogeneous medium as well as the due to the differential superpositioning of seismic waves
coming from an extended source, this is referred as the incoherence effect. The second one is called
wave passage effect, which is due to the difference in arrival times of seismic waves at separate
stations. Third effect is due to the geometric spreading of waves and the energy dissipation in the
ground medium, which is called the attenuation effect. Attenuation effect has a little influence
on the spatial variability (Der Kiureghian, 1996). The last one is the effect of spatially varying
soil profile. These effects are characterized by the coherency function, which is a complex valued
function defined by

γjk(ω) =
gjk(ω)

√

gjj(ω)gkk(ω)
(C-1)

wheregjj(ω) andgkk(ω) are the power spectral densities of the sitesj andk respectively, and
gjk(ω) is the cross power spectral density between the sites. The coherency,γjk(ω), is commonly
written as

γjk(ω) = |γjk(ω)| exp [ i θjk(ω)] (C-2)

with

θjk(ω) = tan−1

(

I[gjk(ω)]

R[gjk(ω)]

)

(C-3)

where |γjk(ω)| is referred as the lagged coherency, which removes the directional dependance
representing the wave passage effect andθjk(ω) is the phase spectrum in whichI[gjk(ω)] and
R[gjk(ω)] are the imaginary and the real parts of the cross spectral density functiongjk(ω). Recent
empirical studies using data from SMART-I array in Taiwan have shown the effects of incoherence
and wave passage on the coherency. Most of the models assume that the random field is isotropic,
in addition being homogeneous. As a consequence, the lagged coherency becomes a function of
separation distanceξ and frequencyω only and not the direction. Table C-1 shows several lagged
coherency models. Table C-2 shows models that take into account the directional dependence
(anisotropy) of the spatial variation of the seismic ground accelerations.

Harichandran and Vanmarcke’s model (Harichandran and Vanmarcke, 1986) is used to define
spatial coherency function in this study. The decay of coherency along a particular direction
(the incoherence effect) is modeled byρ( ~ξij, ω) part. Note thatρ( ~ξij, ω) = ρ( ~ξij ,−ω) and
ρ( ~ξij , ω) = ρ( ~ξji, ω). Dependence ofρ( ~ξij , ω) on the separation distance only, and not on the actual
location, implies the homogeneity of the random field. In order to model the observed, unaligned,
motions (the apparent propagation, or the wave passage, effect) the phase component,e−iωd, is
added. According to this model alignment changes only the phases, and not the absolute values
of coherency, for any pair of accelerogram. This coherency function describes a homogeneous,
non-isotropic, space-time random field.
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TABLE C-1 Isotropic coherency models.

Reference Coherency function

(Loh, 1985)
| γ(ξ, ω) | = exp (−a(ω) | ξ |) (C-4)

wherea(ω) is a function determined from data of Event 5.

(Loh and Yeh,
1988) | γ(ξ, ω) | = exp

(

−a
ω | ξ |
2πc

)

(C-5)

where parametera is estimated using data of Events 39 and 40.

(Loh and Lin,
1990)

| γ(ξ, ω) | = exp (−a ξ2) (C-6)

| γ(ξ, ω) | = exp ((−a − b ω2) | ξ |) (C-7)

| γ(ξ, ω) | = exp (−a − b ω) | ξ |c) (C-8)

in which parametersa, b andc estimated using SMART-I array data.

(Hao et al., 1989)
and (Oliveira
et al., 1991)

| γ(ξl, ξt, ω) | = exp (−β1| ξl | − β2| ξt |)

× exp

[

−(α1(ω)
√

|ξl| + α2(ω)
√

|ξt|)
( ω

2π

)2
]

(C-9)

in which ξl andξt are the projected separation distances along and normal
to the direction of propagation of the motions respectively,αi(ω) =
2πai/ω + biω/(2π) + ci, for i = 1, 2, and parametersβi, ai andbi are
estimated using SMART-I array data.
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TABLE C-2 Anisotropic coherency models.

Reference Coherency function

(Loh and Lin,
1990)

| γ(ξ, ω) | = exp [(−a1 − b1ω
2) |ξ cos θ| ]

× exp [(−a2 − b2ω
2) |ξ sin θ| ] (C-10)

θ is the angle between the direction of the propagation of the waves and
the station separation, parametersai andbi for i = 1, 2 are estimated using
SMART-I array data.

(Abrahamson
et al., 1990)

tanh−1[ | γ(ξ, ω) | ] = (2.54 − 0.012 ξ)

[ exp (−0.115 − 0.00084ξ)ω +
ω−0.878

3
] + 0.35 (C-11)

parameters estimated using data from LSST array and are valid for
separation distances less than 100 m.

(Harichandran
and Vanmarcke,
1986)

γ ( ~ξij, ω) = ρ ( ~ξij , ω) e−iωd, where (C-12)

d =
~V . ~ξij

| ~V | 2
, (C-13)

ρ( ~ξij, ω) = A exp

(

B

aθ(ω)

)

+ (1 − A) exp

(

B

θ(ω)

)

, (C-14)

B = −2| ~ξij |(1 − A + aA), θ(ω) = k

(

1 +

( |ω |
2πf0

)b
)−1/2

(C-15)

~ξij is the separation vector between sitesi andj, ~V is the apparent velocity
vector whose direction coincides with the direction of the site from the
source, and parametersA, a, k, f0, b are estimated using Event 20 of
SMART-I array.
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APPENDIX D

Crossing Rate Of A Quadratic Form Of Gaussian Process

The meanz-upcrossing rate of the displacement response

Z(t) = α(v̄ + V (t))2, (D-1)

of the oscillator in Section 3.4.1 with the notation in Equation 3-92 can be obtained from ((Grigoriu,
1995), Appendix E, Equation E.25)

ν(z)+ = − 1

(2π)2

∫ ∞

−∞
du exp(−iuz)

∫ ∞

−∞
dv

1

v

∂ϕ(u, v)

∂v
, z > 0, (D-2)

whereϕ(u, v) = E[exp{i(uZ(t) + vŻ(t))}] is the joint characteristic function of{Z(t), Ż(t)}
given by

ϕ(u, v) = E
[

E
[

exp{i(uZ(t) + vŻ(t))}|V (t)
]]

= E
[

exp{i(uZ(t)}E
[

exp{ivŻ(t)}|V (t)
]]

= E
[

exp{V 2(t)(iuα − 2v2σ2
V̇

α2) + Y (t)(iu − 2v2σ2
V̇

α)2αv̄ + iuαv̄2

−0.5v2σ2
V̇

(2αv̄)2}
]

=

∫ ∞

−∞
exp

[

ξ2(iuα − 2v2σ2
V̇

α2) + ξ(iu − 2v2σ2
V̇

α)2αv̄ + iuαv̄2

−0.5v2σ2
V̇

(2αv̄)2
]

fV (ξ)dξ, (D-3)

in which fV (ξ) = 1/(
√

2πσV ) exp(−ξ2/(2σ2
V )) is the density of the Gaussian random variable

V (t), andσV =
∫ ω̄
0 gV V (ω)dω andσ2

V̇
=
∫ ω̄
0 ω2gV V (ω)dω are the variances ofV (t) and and

V̇ (t) = dV (t)/dt, with the spectral density functiongV V (ω) of V (t) given in Equation 2-19. From
Equations D-2 and D-3 the meanz-upcrossing rate ofZ(t) in Equation D-2 becomes

ν(z)+ = − α

2π2

σV̇

σV

∫ ∞

−∞
du exp(−iuz)

∫ ∞

−∞
(ξ + v̄) exp(iuα(ξ + v̄)2) exp(−ξ2/(2σ2

V ))dξ.

(D-4)
The double integral in Equation D-4 needs to be evaluated numerically to obtainν(z)+.

A simpler approach can be followed to obtain the meanz-upcrossing rate ofZ(t) noting that:
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1. the second moment properties ofZ(t) are

µZ = E[Z(t)] = ασ2
V + αv̄2

σ2
Z = E[(Z(t) − µZ)2] = 2α2σ4

V + 4α2σ2
V v̄2

cZZ(τ) = E[(Z(t) − µZ)(Z(t + τ) − µZ)]

= 2α2rV V (τ)2 + 4α2v̄2rV V (τ), (D-5)

whererV V (τ) = E[V (t)V (t + τ)] =
∫∞
0 gV V (ω) cos(ωτ)dω is the correlation function of

V (t),

2. Ż(t) = 2αV̇ (t)(v̄ + V (t)), so thatŻ(t)|V (t) = v is a zero-mean Gaussian variable with
varianceE[Ż2(t)|V (t) = v] = 4α2σ2

V̇
(v̄ + v)2, andŻ(t)|Z(t) = z is a zero-mean Gaussian

variable with varianceE[Ż2(t)|Z(t) = z] = 4ασ2
V̇

z,

3. the joint density of{Z(t), Ż(t)} is

f(z, ξ) =
1

ασ2
V

fZ(z/(ασ2
V ), 1, v̄2/σ2

V )
1

2
√

αzσV̇

φ

(

ξ

2
√

αzσV̇

)

(D-6)

where

fZ(η,m, λ) =
1

2
exp [−(η + λ)/2]

(η

λ

)(m−2)/4
Im/2−1

(

√

λη
)

(D-7)

is the noncentral chi-square density with degree of freedomm > 0 and non-centrality
parameterλ > 0, in which Iµ is the modified Bessel function of the first kind of order
µ.

The meanz-upcrossing rate ofZ(t) can be obtained using the Rice formula

ν(z)+ =

∫ ∞

0
ξf(z, ξ)dξ, (D-8)

in whichf(z, ξ) is given by Equation D-6, and becomes

ν(z)+ = σŻ

√

z/(ασ2
V )

2π
(

1 + v̄2/σ2
V

) fZ(z/(ασ2
V ), 1, v̄2/σ2

V ), (D-9)

whereσ2
Ż

= E[(Ż(t) − E[Ż(t)])2] = E[4αV̇ 2(t)Z(t)] = 4α2σ2
V̇

(σ2
V + v̄2) andfZ(η,m, λ) is

given by Equation D-7. We note thatν(z)+ = 0 for z ≤ 0 since the quasi static responseZ(t) in
Equation 3-92 is always positive.
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APPENDIX E

MCEER Demonstration Hospital

This section provides some details on the seismic risk analysis of the MCEER Demonstration
Hospital presented in Section 4.1. Figure E-1 shows the organizations and institutions involved

Damage States 

- Structural system (FEMA ) 

- Nonstructural systems 
    . Ceiling (UB) 
    . HVAC (ASHRAE) 
    . Piping (UNR) 
    . Partition walls (CUREE) 

System Properties 

- Structural system (NHMC , UB, Cornell) 

- Nonstructural systems 
    . Ceiling (UB) 
    . HVAC (UB, York Int’l. ) 
    . Piping (UNR, UB, Cornell) 
    . Partition walls (CUREE, UB, Cornell) 

Seismic Hazard 

- Activity matrix (USGS, Cornell) 

- Ground motion model (UB, Cornell) 

Capacity/Cost Estimates 

- Structural system (NHMC ,KPFF, USC, Taylor Dev.) 

- Nonstructural systems 
    . Ceiling (Terra Firm ) 
    . HVAC (York Int’l. ) 
    . Piping (UNR, Terra Firm , Degenkolb, Clark , ISAT )
    . Partition walls (CUREE, NHMC ) 

SYSTEM 
RESILIENCE

FIGURE E-1 Benchmark problem collaboration.

in this study. We would like to acknowledge A. Bansal (Degenkolb), F. Case (Clark), Dr. A.
Filiatrault (University at Buffalo), J. Lewis (Terra Firm), R.J. Love (Degenkolb), Dr. M. Maragakis
(University of Nevada, Reno), P. Marks (York International), J. Massey (ISAT), J. Mitchell (York
International), R. Omens (NHMC, CWU), R. Rozanski (NHMC, CWU), A. Taylor (KPFF), D.P.
Taylor (Taylor Devices) and Dr. D. von Winterfeldt (University of Southern California) for their
invaluable contributions and critical reviews.

Building repair/replacement costs

The repair costs in Table 4-6 are obtained using the following information. The number of plastic
hinges in an interior and an exterior moment resisting frame in the IFL facility are obtained by
a nonlinear push-over analysis, for a given drift level (Filiatrault, 2006). For drift equals 0.7%
Figure E-2 shows the number and location of plastic hinges. There are 2 column and 2 beam hinges
in the exterior moment resisting frame and 2 column and 8 beam hinges in the interior moment
resisting frame. The IFL facility has two interior and two exterior moment resisting frames resulting
in 28 hinges in total. For interstory drift equals 2.5% Figure E-3 shows the number and location of
plastic hinges. There are 6 column and 15 beam hinges in the exterior moment resisting frame and
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Exterior Frame Interior Frame 

FIGURE E-2 Plastic hinge locations for 0.7% drift.

Exterior Frame Interior Frame 

FIGURE E-3 Plastic hinge locations for 2.5% drift.

4 column and 17 beam hinges in the interior moment resisting frame, resulting in 84 hinges in total.

Considering material, labor and unforseen conditions and unexpected delays the total cost per
beam/column joint is assumed to be $10,000 and $18,000 for immediate occupancy and life
safety levels, respectively. Accordingly, the building repair costs are $280,000 and $1,512,000
for immediate occupancy and life safety levels, respectively.

The building replacement cost consists of structural system replacement ($53 million) and
nonstructural system replacement ($14 million) resulting in $67 million in total.

Building rehabilitation

The damping coefficients provided in Table 4-3 are for a single fluid viscous damper. The dampers
are inserted in the central bay (there are three bays) in each story (there are four stories) of the
exterior moment resisting frames (there are four moment resisting frames). Accordingly the total
number of dampers = (1 bay)x(4 storeys)x(2 frames) = 8.
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For the benchmark building the design earthquake forces per the 1976 UBC code are 483, 436,
296 and 158 kips, and the floor weights are 2110, 2530, 2530 and 2610, for floors 4, 3, 2 and
1, respectively (Yuan and Whittaker, 2002). Hence the floor accelerations are 483/2110=0.229g,
436/2530=0.172g, 296/2530=0.117g, and 158/2610=0.060g floors 4, 3, 2 and 1, respectively. The
fundamental frequency is 7.222 rad/sec (Yuan and Whittaker, 2002). The maximum expected
velocities for the floors are given in Table E-1. Four damper sizes are used for all rehabilitation

TABLE E-1 Spectral velocities.

Floor Spectral velocity (in/sec)

1 0.060*g/7.222 = 3.209

2 0.117*g/7.222 = 6.257

3 0.172*g/7.222 = 9.198

4 0.229*g/7.222 =12.247

alternatives, 980 KN, 1335 KN, 1960 KN, and 2500 KN. The sizes picked for an individual case are
dependent on the damping coefficients given in Table 4-3 and spectral velocities given in Table E-
1. All costs include the dampers and the estimated brace extender and attachment clevises and
attachment pins required for the installation. All the contractor must do is weld/bolt the attachments
to the building and hoist the damper in place so the clevis pins can be inserted. Installation costs
have been estimated on this basis. Diagonal brace mounting is also assumed. Costing is as follows:

• 20% case: 2pc 980 KN, 4pc 1335 KN, 2pc 1960 KN dampers, braces, attachments are
$89,000. Install estimated at $10,000.

• 25% case: 2pc 1335 KN, 6pc 1960 KN dampers, braces, and attachments are $105,000.
Install estimated at $14,000.

• 30% case: 4pc 1960 KN, 4pc 2500 KN dampers, braces, and attachments are $144,000.
Install estimated at $18,000.

To include the usual contractor management and supervisor charges, install costs are doubled.

The costs given in Table 4-7 include the cost of dampers, braces, attachments, installation and usual
contractor management and supervisor charges. They do not include business interruption losses.
However, in general, during the retrofit the hospital remains in service during the installation,
working on one/two rooms at a time if a damper was located there.

HVAC system

Following items are noted for the HVAC system:

• Excitation is applied in the transverse direction of the HVAC system, this direction is assumed
to be weaker.

• It is assumed that the chiller is filled with water, which is assumed to cause larger responses.
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• Replacement cost of an existing water cooled centrifugal chiller is about $400,000. The cost
may be $100,000 to $200,000 more depending on the complexity involved in the replacement.
Repair cost of an existing chiller is difficult to estimate without the diagnosis of the condition
of the chiller. An upper bound for repair cost of a moderately damaged equipment could be
$90,000. The repair for moderate damage could be around one day to diagnose and another
day to repair (assuming the required parts are in stock). For extensive damage repair could
take 2 weeks or more.

Partition walls

Gypsum drywall is widely accepted in residential, commercial, industrial and institutional
constructions (McMullin and Merrick, 2002). The walls researched in (McMullin and Merrick,
2002) were standard construction according to the 1997 Uniform Building Code (ICBO, 1997)
and were all 8 ft. by 16 ft. In ((McMullin and Merrick, 2002), page 33) it is noted that the
damage observed in cyclic tests was less severe than that seen for compatible drifts in shake table
experiments of a full scale house, which results in conservative estimates for seismic performance
of drywalls.

Piping system

Following items are noted for the piping system:

• An estimate is used for the material cost based on the assumed number of (additional) braces
used for rehabilitation. Disruption during rehabilitation is not included (no information
available).

• The limit states in Table 4-16 can have large uncertainties.

• The limit states can be misleading since there are no constraints in the lab experiment and
pipes are free to swing. In reality there are other piping systems or obstructions in very close
distances, which may cause reaching a damage states before the inter-storey drift reaches the
value obtained in the lab. However, it was noted that no damage related to the proximity of
the pipes to the walls or other obstacles in previous earthquakes were experienced in previous
earthquakes.

The piping system tested at University of Nevada at Reno (UNR) (Goodwin, 2004) [REF Robert
Corbin’s MS thesis] is used to estimate repair/replacement and rehabilitation costs for the existing
piping system in the IFL facility. Table E-2 summarizes the ranges of both the repair and
replacement costs in relationship to its accessibility for the UNR system. Whether it is easily
accessible or not, the cost to repair slight damages refers to the repairing of a single brace while the
cost of repairing moderate damages involves the repair of a single joint and the amount to fix any
extensive damage that might have occurred involves the repairing of a single connection. Table E-3
shows the installation costs of different retrofitting equipment used in the rehabilitation of the UNR
system. Downtime for both the piping system and hospital are not included since the piping systems
can remain fully operational during the installation of the braces.

Repair costs in Table 4-17 for the existing piping system are calculated by (1) averaging the values
in Table E-2, (2) using a 90% increase in the cost (for selective demolition and patching by other
trades to gain access to the piping), and (3) considering the total number of braces, joints and
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TABLE E-2 Piping system repair and replacement costs.

Repair/replacement cost ($)

Easily Downtime Not easily Downtime

Damage state accessible (hrs.) accessible (hrs.)

Slight damage $134.75 None $226.65 None

Moderate damage $120.00 3 $257.86 6

Extensive damage $146.20 3 $284.06 6

TABLE E-3 Piping retrofitting equipment costs.

Rehabilitation cost ($)

Material type Easily accessible Not easily accessible

Longitudinal brace $133.47 $219.42

Transverse brace $134.10 $220.05

Clevis support $136.67 $222.62

connections in the UNR systems and IFL facility. There are 11 hangers, 10 joints and 7 connections
in the UNR system. Corresponding values for the existing system can be obtained from Table 4-15.

Rehabilitation cost for the existing piping system in the IFL facility is calculated as follows. It is
assumed that either a longitudinal of a transverse brace, and a clevis support is used. From Table E-
3 an average value for a brace is((133.47 + 219.42)/2 + (134.10 + 220.05)/2)/2 ≃ $177 and for
a clevis support is(136.67 + 222.62)/2 ≃ $180. Hence rehabilitation of a hanger rod costs $357.
There are 33+51+51+27=162 hanger roads in total, hence the total cost is 162*357=$57834. Use a
15% increase in the cost following F. Case’s first comment and another 75% increase following his
second comment. Hence the total rehabilitation cost becomes57834 ∗ 1.15 ∗ 1.75 = 116, 390 ≃
$120, 000.

RDAT software

Figures E-4-E-9 show excerpts from the RDAT software.
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HVAC-2 HVAC-1 

FIGURE E-4 RDAT: System information.
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FIGURE E-5 RDAT: Seismic hazard information.
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FIGURE E-6 RDAT: Fragility information.
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FIGURE E-7 RDAT: Recovery and financial information.
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FIGURE E-8 RDAT: Simulation results.

196

,I»]

Plo. hls'-og, .n.
Plo. (rp • 0

REHASLITATlON DECISION
AIW.YSIS Too~BoX

1.... '_4.0)

u.lULATION RE

CIIIR'ily
lp Iml b lwll.", pI> ",pmlr

c.po"lr I , pN 9J

CQIt
Ie 1<t.I ...I" i~lm.



prob. = 0.771 

prob. = 0.939 

prob. = 0.946 

prob. = 0.947 

   Optimal Strategy = rehab. alt.  3 

Optimal Strategy
= rehab. alt. 1, 2, 3

Optimal Strategy 
= rehab. alt. 3

FIGURE E-9 RDAT: Rehabilitation decision.

197





 

 199

MCEER Technical Reports 
 

MCEER publishes technical reports on a variety of subjects written by authors funded through MCEER.  These reports are 
available from both MCEER Publications and the National Technical Information Service (NTIS).  Requests for reports should 
be directed to MCEER Publications, MCEER, University at Buffalo, State University of New York, Red Jacket Quadrangle, 
Buffalo, New York 14261.  Reports can also be requested through NTIS, 5285 Port Royal Road, Springfield, Virginia 22161.  
NTIS accession numbers are shown in parenthesis, if available. 
 
NCEER-87-0001 "First-Year Program in Research, Education and Technology Transfer," 3/5/87, (PB88-134275, A04, MF-

A01). 
 
NCEER-87-0002 "Experimental Evaluation of Instantaneous Optimal Algorithms for Structural Control," by R.C. Lin, T.T. 

Soong and A.M. Reinhorn, 4/20/87, (PB88-134341, A04, MF-A01). 
 
NCEER-87-0003 "Experimentation Using the Earthquake Simulation Facilities at University at Buffalo," by A.M. Reinhorn 

and R.L. Ketter, to be published. 
 
NCEER-87-0004 "The System Characteristics and Performance of a Shaking Table," by J.S. Hwang, K.C. Chang and G.C. 

Lee, 6/1/87, (PB88-134259, A03, MF-A01).  This report is available only through NTIS (see address given 
above). 

 
NCEER-87-0005 "A Finite Element Formulation for Nonlinear Viscoplastic Material Using a Q Model," by O. Gyebi and G. 

Dasgupta, 11/2/87, (PB88-213764, A08, MF-A01). 
 
NCEER-87-0006 "Symbolic Manipulation Program (SMP) - Algebraic Codes for Two and Three Dimensional Finite Element 

Formulations," by X. Lee and G. Dasgupta, 11/9/87, (PB88-218522, A05, MF-A01). 
 
NCEER-87-0007 "Instantaneous Optimal Control Laws for Tall Buildings Under Seismic Excitations," by J.N. Yang, A. 

Akbarpour and P. Ghaemmaghami, 6/10/87, (PB88-134333, A06, MF-A01). This report is only available 
through NTIS (see address given above). 

 
NCEER-87-0008 "IDARC: Inelastic Damage Analysis of Reinforced Concrete Frame - Shear-Wall Structures," by Y.J. Park, 

A.M. Reinhorn and S.K. Kunnath, 7/20/87, (PB88-134325, A09, MF-A01). This report is only available 
through NTIS (see address given above). 

 
NCEER-87-0009 "Liquefaction Potential for New York State: A Preliminary Report on Sites in Manhattan and Buffalo," by 

M. Budhu, V. Vijayakumar, R.F. Giese and L. Baumgras, 8/31/87, (PB88-163704, A03, MF-A01).  This 
report is available only through NTIS (see address given above). 

 
NCEER-87-0010 "Vertical and Torsional Vibration of Foundations in Inhomogeneous Media," by A.S. Veletsos and K.W. 

Dotson, 6/1/87, (PB88-134291, A03, MF-A01). This report is only available through NTIS (see address 
given above). 

 
NCEER-87-0011 "Seismic Probabilistic Risk Assessment and Seismic Margins Studies for Nuclear Power Plants," by Howard 

H.M. Hwang, 6/15/87, (PB88-134267, A03, MF-A01). This report is only available through NTIS (see 
address given above). 

 
NCEER-87-0012 "Parametric Studies of Frequency Response of Secondary Systems Under Ground-Acceleration Excitations," 

by Y. Yong and Y.K. Lin, 6/10/87, (PB88-134309, A03, MF-A01). This report is only available through 
NTIS (see address given above). 

 
NCEER-87-0013 "Frequency Response of Secondary Systems Under Seismic Excitation," by J.A. HoLung, J. Cai and Y.K. 

Lin, 7/31/87, (PB88-134317, A05, MF-A01). This report is only available through NTIS (see address given 
above). 

 
NCEER-87-0014 "Modelling Earthquake Ground Motions in Seismically Active Regions Using Parametric Time Series 

Methods," by G.W. Ellis and A.S. Cakmak, 8/25/87, (PB88-134283, A08, MF-A01). This report is only 
available through NTIS (see address given above). 

 
NCEER-87-0015 "Detection and Assessment of Seismic Structural Damage," by E. DiPasquale and A.S. Cakmak, 8/25/87, 

(PB88-163712, A05, MF-A01). This report is only available through NTIS (see address given above). 



 

 200

 
NCEER-87-0016 "Pipeline Experiment at Parkfield, California," by J. Isenberg and E. Richardson, 9/15/87, (PB88-163720, 

A03, MF-A01). This report is available only through NTIS (see address given above). 
 
NCEER-87-0017 "Digital Simulation of Seismic Ground Motion," by M. Shinozuka, G. Deodatis and T. Harada, 8/31/87, 

(PB88-155197, A04, MF-A01).  This report is available only through NTIS (see address given above). 
 
NCEER-87-0018 "Practical Considerations for Structural Control: System Uncertainty, System Time Delay and Truncation of 

Small Control Forces," J.N. Yang and A. Akbarpour, 8/10/87, (PB88-163738, A08, MF-A01). This report is 
only available through NTIS (see address given above). 

 
NCEER-87-0019 "Modal Analysis of Nonclassically Damped Structural Systems Using Canonical Transformation," by J.N. 

Yang, S. Sarkani and F.X. Long, 9/27/87, (PB88-187851, A04, MF-A01). 
 
NCEER-87-0020 "A Nonstationary Solution in Random Vibration Theory," by J.R. Red-Horse and P.D. Spanos, 11/3/87, 

(PB88-163746, A03, MF-A01). 
 
NCEER-87-0021 "Horizontal Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by A.S. Veletsos and K.W. 

Dotson, 10/15/87, (PB88-150859, A04, MF-A01). 
 
NCEER-87-0022 "Seismic Damage Assessment of Reinforced Concrete Members," by Y.S. Chung, C. Meyer and M. 

Shinozuka, 10/9/87, (PB88-150867, A05, MF-A01).  This report is available only through NTIS (see address 
given above). 

 
NCEER-87-0023 "Active Structural Control in Civil Engineering," by T.T. Soong, 11/11/87, (PB88-187778, A03, MF-A01). 
 
NCEER-87-0024 "Vertical and Torsional Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by K.W. Dotson 

and A.S. Veletsos, 12/87, (PB88-187786, A03, MF-A01). 
 
NCEER-87-0025 "Proceedings from the Symposium on Seismic Hazards, Ground Motions, Soil-Liquefaction and Engineering 

Practice in Eastern North America," October 20-22, 1987, edited by K.H. Jacob, 12/87, (PB88-188115, A23, 
MF-A01). This report is available only through NTIS (see address given above). 

 
NCEER-87-0026 "Report on the Whittier-Narrows, California, Earthquake of October 1, 1987," by J. Pantelic and A. 

Reinhorn, 11/87, (PB88-187752, A03, MF-A01).  This report is available only through NTIS (see address 
given above). 

 
NCEER-87-0027 "Design of a Modular Program for Transient Nonlinear Analysis of Large 3-D Building Structures," by S. 

Srivastav and J.F. Abel, 12/30/87, (PB88-187950, A05, MF-A01). This report is only available through NTIS 
(see address given above). 

 
NCEER-87-0028 "Second-Year Program in Research, Education and Technology Transfer," 3/8/88, (PB88-219480, A04, MF-

A01). 
 
NCEER-88-0001 "Workshop on Seismic Computer Analysis and Design of Buildings With Interactive Graphics," by W. 

McGuire, J.F. Abel and C.H. Conley, 1/18/88, (PB88-187760, A03, MF-A01). This report is only available 
through NTIS (see address given above). 

 
NCEER-88-0002 "Optimal Control of Nonlinear Flexible Structures," by J.N. Yang, F.X. Long and D. Wong, 1/22/88, (PB88-

213772, A06, MF-A01). 
 
NCEER-88-0003 "Substructuring Techniques in the Time Domain for Primary-Secondary Structural Systems," by G.D. 

Manolis and G. Juhn, 2/10/88, (PB88-213780, A04, MF-A01). 
 
NCEER-88-0004 "Iterative Seismic Analysis of Primary-Secondary Systems," by A. Singhal, L.D. Lutes and P.D. Spanos, 

2/23/88, (PB88-213798, A04, MF-A01). 
 
NCEER-88-0005 "Stochastic Finite Element Expansion for Random Media," by P.D. Spanos and R. Ghanem, 3/14/88, (PB88-

213806, A03, MF-A01). 
 



 

 201

NCEER-88-0006 "Combining Structural Optimization and Structural Control," by F.Y. Cheng and C.P. Pantelides, 1/10/88, 
(PB88-213814, A05, MF-A01). 

 
NCEER-88-0007 "Seismic Performance Assessment of Code-Designed Structures," by H.H-M. Hwang, J-W. Jaw and H-J. 

Shau, 3/20/88, (PB88-219423, A04, MF-A01). This report is only available through NTIS (see address given 
above). 

 
NCEER-88-0008 "Reliability Analysis of Code-Designed Structures Under Natural Hazards," by H.H-M. Hwang, H. Ushiba 

and M. Shinozuka, 2/29/88, (PB88-229471, A07, MF-A01). This report is only available through NTIS (see 
address given above). 

 
NCEER-88-0009 "Seismic Fragility Analysis of Shear Wall Structures," by J-W Jaw and H.H-M. Hwang, 4/30/88, (PB89-

102867, A04, MF-A01). 
 
NCEER-88-0010 "Base Isolation of a Multi-Story Building Under a Harmonic Ground Motion - A Comparison of 

Performances of Various Systems," by F-G Fan, G. Ahmadi and I.G. Tadjbakhsh, 5/18/88, (PB89-122238, 
A06, MF-A01). This report is only available through NTIS (see address given above). 

 
NCEER-88-0011 "Seismic Floor Response Spectra for a Combined System by Green's Functions," by F.M. Lavelle, L.A. 

Bergman and P.D. Spanos, 5/1/88, (PB89-102875, A03, MF-A01). 
 
NCEER-88-0012 "A New Solution Technique for Randomly Excited Hysteretic Structures," by G.Q. Cai and Y.K. Lin, 

5/16/88, (PB89-102883, A03, MF-A01). 
 
NCEER-88-0013 "A Study of Radiation Damping and Soil-Structure Interaction Effects in the Centrifuge," by K. Weissman, 

supervised by J.H. Prevost, 5/24/88, (PB89-144703, A06, MF-A01). 
 
NCEER-88-0014 "Parameter Identification and Implementation of a Kinematic Plasticity Model for Frictional Soils," by J.H. 

Prevost and D.V. Griffiths, to be published. 
 
NCEER-88-0015 "Two- and Three- Dimensional Dynamic Finite Element Analyses of the Long Valley Dam," by D.V. 

Griffiths and J.H. Prevost, 6/17/88, (PB89-144711, A04, MF-A01). 
 
NCEER-88-0016 "Damage Assessment of Reinforced Concrete Structures in Eastern United States," by A.M. Reinhorn, M.J. 

Seidel, S.K. Kunnath and Y.J. Park, 6/15/88, (PB89-122220, A04, MF-A01). This report is only available 
through NTIS (see address given above). 

 
NCEER-88-0017 "Dynamic Compliance of Vertically Loaded Strip Foundations in Multilayered Viscoelastic Soils," by S. 

Ahmad and A.S.M. Israil, 6/17/88, (PB89-102891, A04, MF-A01). 
 
NCEER-88-0018 "An Experimental Study of Seismic Structural Response With Added Viscoelastic Dampers," by R.C. Lin, Z. 

Liang, T.T. Soong and R.H. Zhang, 6/30/88, (PB89-122212, A05, MF-A01).  This report is available only 
through NTIS (see address given above). 

 
NCEER-88-0019 "Experimental Investigation of Primary - Secondary System Interaction," by G.D. Manolis, G. Juhn and 

A.M. Reinhorn, 5/27/88, (PB89-122204, A04, MF-A01). 
 
NCEER-88-0020 "A Response Spectrum Approach For Analysis of Nonclassically Damped Structures," by J.N. Yang, S. 

Sarkani and F.X. Long, 4/22/88, (PB89-102909, A04, MF-A01). 
 
NCEER-88-0021 "Seismic Interaction of Structures and Soils: Stochastic Approach," by A.S. Veletsos and A.M. Prasad, 

7/21/88, (PB89-122196, A04, MF-A01). This report is only available through NTIS (see address given 
above). 

 
NCEER-88-0022 "Identification of the Serviceability Limit State and Detection of Seismic Structural Damage," by E. 

DiPasquale and A.S. Cakmak, 6/15/88, (PB89-122188, A05, MF-A01).  This report is available only through 
NTIS (see address given above). 

 
NCEER-88-0023 "Multi-Hazard Risk Analysis: Case of a Simple Offshore Structure," by B.K. Bhartia and E.H. Vanmarcke, 

7/21/88, (PB89-145213, A05, MF-A01). 
 



 

 202

NCEER-88-0024 "Automated Seismic Design of Reinforced Concrete Buildings," by Y.S. Chung, C. Meyer and M. 
Shinozuka, 7/5/88, (PB89-122170, A06, MF-A01).  This report is available only through NTIS (see address 
given above). 

 
NCEER-88-0025 "Experimental Study of Active Control of MDOF Structures Under Seismic Excitations," by L.L. Chung, 

R.C. Lin, T.T. Soong and A.M. Reinhorn, 7/10/88, (PB89-122600, A04, MF-A01). 
 
NCEER-88-0026 "Earthquake Simulation Tests of a Low-Rise Metal Structure," by J.S. Hwang, K.C. Chang, G.C. Lee and 

R.L. Ketter, 8/1/88, (PB89-102917, A04, MF-A01). 
 
NCEER-88-0027 "Systems Study of Urban Response and Reconstruction Due to Catastrophic Earthquakes," by F. Kozin and 

H.K. Zhou, 9/22/88, (PB90-162348, A04, MF-A01). 
 
NCEER-88-0028 "Seismic Fragility Analysis of Plane Frame Structures," by H.H-M. Hwang and Y.K. Low, 7/31/88, (PB89-

131445, A06, MF-A01). 
 
NCEER-88-0029 "Response Analysis of Stochastic Structures," by A. Kardara, C. Bucher and M. Shinozuka, 9/22/88, (PB89-

174429, A04, MF-A01). 
 
NCEER-88-0030 "Nonnormal Accelerations Due to Yielding in a Primary Structure," by D.C.K. Chen and L.D. Lutes, 

9/19/88, (PB89-131437, A04, MF-A01). 
 
NCEER-88-0031 "Design Approaches for Soil-Structure Interaction," by A.S. Veletsos, A.M. Prasad and Y. Tang, 12/30/88, 

(PB89-174437, A03, MF-A01).  This report is available only through NTIS (see address given above). 
 
NCEER-88-0032 "A Re-evaluation of Design Spectra for Seismic Damage Control," by C.J. Turkstra and A.G. Tallin, 11/7/88, 

(PB89-145221, A05, MF-A01). 
 
NCEER-88-0033 "The Behavior and Design of Noncontact Lap Splices Subjected to Repeated Inelastic Tensile Loading," by 

V.E. Sagan, P. Gergely and R.N. White, 12/8/88, (PB89-163737, A08, MF-A01). 
 
NCEER-88-0034 "Seismic Response of Pile Foundations," by S.M. Mamoon, P.K. Banerjee and S. Ahmad, 11/1/88, (PB89-

145239, A04, MF-A01). 
 
NCEER-88-0035 "Modeling of R/C Building Structures With Flexible Floor Diaphragms (IDARC2)," by A.M. Reinhorn, S.K. 

Kunnath and N. Panahshahi, 9/7/88, (PB89-207153, A07, MF-A01). 
 
NCEER-88-0036 "Solution of the Dam-Reservoir Interaction Problem Using a Combination of FEM, BEM with Particular 

Integrals, Modal Analysis, and Substructuring," by C-S. Tsai, G.C. Lee and R.L. Ketter, 12/31/88, (PB89-
207146, A04, MF-A01). 

 
NCEER-88-0037 "Optimal Placement of Actuators for Structural Control," by F.Y. Cheng and C.P. Pantelides, 8/15/88, 

(PB89-162846, A05, MF-A01).  
 
NCEER-88-0038 "Teflon Bearings in Aseismic Base Isolation: Experimental Studies and Mathematical Modeling," by A. 

Mokha, M.C. Constantinou and A.M. Reinhorn, 12/5/88, (PB89-218457, A10, MF-A01). This report is 
available only through NTIS (see address given above). 

 
NCEER-88-0039 "Seismic Behavior of Flat Slab High-Rise Buildings in the New York City Area," by P. Weidlinger and M. 

Ettouney, 10/15/88, (PB90-145681, A04, MF-A01). 
 
NCEER-88-0040 "Evaluation of the Earthquake Resistance of Existing Buildings in New York City," by P. Weidlinger and M. 

Ettouney, 10/15/88, to be published. 
 
NCEER-88-0041 "Small-Scale Modeling Techniques for Reinforced Concrete Structures Subjected to Seismic Loads," by W. 

Kim, A. El-Attar and R.N. White, 11/22/88, (PB89-189625, A05, MF-A01). 
 
NCEER-88-0042 "Modeling Strong Ground Motion from Multiple Event Earthquakes," by G.W. Ellis and A.S. Cakmak, 

10/15/88, (PB89-174445, A03, MF-A01). 
 



 

 203

NCEER-88-0043 "Nonstationary Models of Seismic Ground Acceleration," by M. Grigoriu, S.E. Ruiz and E. Rosenblueth, 
7/15/88, (PB89-189617, A04, MF-A01). 

 
NCEER-88-0044 "SARCF User's Guide: Seismic Analysis of Reinforced Concrete Frames," by Y.S. Chung, C. Meyer and M. 

Shinozuka, 11/9/88, (PB89-174452, A08, MF-A01). 
 
NCEER-88-0045 "First Expert Panel Meeting on Disaster Research and Planning," edited by J. Pantelic and J. Stoyle, 9/15/88, 

(PB89-174460, A05, MF-A01).  
 
NCEER-88-0046 "Preliminary Studies of the Effect of Degrading Infill Walls on the Nonlinear Seismic Response of Steel 

Frames," by C.Z. Chrysostomou, P. Gergely and J.F. Abel, 12/19/88, (PB89-208383, A05, MF-A01). 
 
NCEER-88-0047 "Reinforced Concrete Frame Component Testing Facility - Design, Construction, Instrumentation and 

Operation," by S.P. Pessiki, C. Conley, T. Bond, P. Gergely and R.N. White, 12/16/88, (PB89-174478, A04, 
MF-A01). 

 
NCEER-89-0001 "Effects of Protective Cushion and Soil Compliancy on the Response of Equipment Within a Seismically 

Excited Building," by J.A. HoLung, 2/16/89, (PB89-207179, A04, MF-A01). 
 
NCEER-89-0002 "Statistical Evaluation of Response Modification Factors for Reinforced Concrete Structures," by H.H-M. 

Hwang and J-W. Jaw, 2/17/89, (PB89-207187, A05, MF-A01). 
 
NCEER-89-0003 "Hysteretic Columns Under Random Excitation," by G-Q. Cai and Y.K. Lin, 1/9/89, (PB89-196513, A03, 

MF-A01).  
 
NCEER-89-0004 "Experimental Study of `Elephant Foot Bulge' Instability of Thin-Walled Metal Tanks," by Z-H. Jia and R.L. 

Ketter, 2/22/89, (PB89-207195, A03, MF-A01). 
 
NCEER-89-0005 "Experiment on Performance of Buried Pipelines Across San Andreas Fault," by J. Isenberg, E. Richardson 

and T.D. O'Rourke, 3/10/89, (PB89-218440, A04, MF-A01). This report is available only through NTIS (see 
address given above). 

 
NCEER-89-0006 "A Knowledge-Based Approach to Structural Design of Earthquake-Resistant Buildings," by M. Subramani, 

P. Gergely, C.H. Conley, J.F. Abel and A.H. Zaghw, 1/15/89, (PB89-218465, A06, MF-A01). 
 
NCEER-89-0007 "Liquefaction Hazards and Their Effects on Buried Pipelines," by T.D. O'Rourke and P.A. Lane, 2/1/89, 

(PB89-218481, A09, MF-A01). 
 
NCEER-89-0008 "Fundamentals of System Identification in Structural Dynamics," by H. Imai, C-B. Yun, O. Maruyama and 

M. Shinozuka, 1/26/89, (PB89-207211, A04, MF-A01). 
 
NCEER-89-0009 "Effects of the 1985 Michoacan Earthquake on Water Systems and Other Buried Lifelines in Mexico," by 

A.G. Ayala and M.J. O'Rourke, 3/8/89, (PB89-207229, A06, MF-A01). 
 
NCEER-89-R010 "NCEER Bibliography of Earthquake Education Materials," by K.E.K. Ross, Second Revision, 9/1/89, 

(PB90-125352, A05, MF-A01). This report is replaced by NCEER-92-0018. 
 
NCEER-89-0011 "Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-3D), 

Part I - Modeling," by S.K. Kunnath and A.M. Reinhorn, 4/17/89, (PB90-114612, A07, MF-A01). This 
report is available only through NTIS (see address given above). 

 
NCEER-89-0012 "Recommended Modifications to ATC-14," by C.D. Poland and J.O. Malley, 4/12/89, (PB90-108648, A15, 

MF-A01). 
 
NCEER-89-0013 "Repair and Strengthening of Beam-to-Column Connections Subjected to Earthquake Loading," by M. 

Corazao and A.J. Durrani, 2/28/89, (PB90-109885, A06, MF-A01). 
 
NCEER-89-0014 "Program EXKAL2 for Identification of Structural Dynamic Systems," by O. Maruyama, C-B. Yun, M. 

Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877, A09, MF-A01). 
 



 

 204

NCEER-89-0015 "Response of Frames With Bolted Semi-Rigid Connections, Part I - Experimental Study and Analytical 
Predictions," by P.J. DiCorso, A.M. Reinhorn, J.R. Dickerson, J.B. Radziminski and W.L. Harper, 6/1/89, to 
be published. 

 
NCEER-89-0016 "ARMA Monte Carlo Simulation in Probabilistic Structural Analysis," by P.D. Spanos and M.P. Mignolet, 

7/10/89, (PB90-109893, A03, MF-A01). 
 
NCEER-89-P017 "Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake 

Education in Our Schools," Edited by K.E.K. Ross, 6/23/89, (PB90-108606, A03, MF-A01). 
 
NCEER-89-0017 "Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Our 

Schools," Edited by K.E.K. Ross, 12/31/89, (PB90-207895, A012, MF-A02). This report is available only 
through NTIS (see address given above). 

 
NCEER-89-0018 "Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory Energy 

Absorbing Devices, by E.J. Graesser and F.A. Cozzarelli, 6/7/89, (PB90-164146, A04, MF-A01). 
 
NCEER-89-0019 "Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D-BASIS)," by S. 

Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 8/3/89, (PB90-161936, A06, MF-A01).  This report has 
been replaced by NCEER-93-0011. 

 
NCEER-89-0020 "Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints," by F.Y. Cheng 

and C.P. Pantelides, 8/3/89, (PB90-120445, A04, MF-A01). 
 
NCEER-89-0021 "Subsurface Conditions of Memphis and Shelby County," by K.W. Ng, T-S. Chang and H-H.M. Hwang, 

7/26/89, (PB90-120437, A03, MF-A01). 
 
NCEER-89-0022 "Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines," by K. Elhmadi and M.J. O'Rourke, 

8/24/89, (PB90-162322, A10, MF-A02). 
 
NCEER-89-0023 "Workshop on Serviceability Analysis of Water Delivery Systems," edited by M. Grigoriu, 3/6/89, (PB90-

127424, A03, MF-A01). 
 
NCEER-89-0024 "Shaking Table Study of a 1/5 Scale Steel Frame Composed of Tapered Members," by K.C. Chang, J.S. 

Hwang and G.C. Lee, 9/18/89, (PB90-160169, A04, MF-A01). 
 
NCEER-89-0025 "DYNA1D: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical 

Documentation," by Jean H. Prevost, 9/14/89, (PB90-161944, A07, MF-A01).  This report is available only 
through NTIS (see address given above). 

 
NCEER-89-0026 "1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protection," by 

A.M. Reinhorn, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89, (PB90-173246, 
A10, MF-A02). This report is available only through NTIS (see address given above). 

 
NCEER-89-0027 "Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary Element 

Methods," by P.K. Hadley, A. Askar  and A.S. Cakmak, 6/15/89, (PB90-145699, A07, MF-A01). 
 
NCEER-89-0028 "Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures," by H.H.M. 

Hwang, J-W. Jaw and A.L. Ch'ng, 8/31/89, (PB90-164633, A05, MF-A01). 
 
NCEER-89-0029 "Bedrock Accelerations in Memphis Area Due to Large New Madrid Earthquakes," by H.H.M. Hwang, 

C.H.S. Chen and G. Yu, 11/7/89, (PB90-162330, A04, MF-A01). 
 
NCEER-89-0030 "Seismic Behavior and Response Sensitivity of Secondary Structural Systems," by Y.Q. Chen and T.T. 

Soong, 10/23/89, (PB90-164658, A08, MF-A01). 
 
NCEER-89-0031 "Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems," by Y. Ibrahim, M. 

Grigoriu and T.T. Soong, 11/10/89, (PB90-161951, A04, MF-A01). 
 



 

 205

NCEER-89-0032 "Proceedings from the Second U.S. - Japan Workshop on Liquefaction, Large Ground Deformation and 
Their Effects on Lifelines, September 26-29, 1989," Edited by T.D. O'Rourke and M. Hamada, 12/1/89, 
(PB90-209388, A22, MF-A03). 

 
NCEER-89-0033 "Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures," by J.M. Bracci, 

A.M. Reinhorn, J.B. Mander and S.K. Kunnath, 9/27/89, (PB91-108803, A06, MF-A01). 
 
NCEER-89-0034 "On the Relation Between Local and Global Damage Indices," by E. DiPasquale and A.S. Cakmak, 8/15/89, 

(PB90-173865, A05, MF-A01). 
 
NCEER-89-0035 "Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts," by A.J. Walker and H.E. Stewart, 

7/26/89, (PB90-183518, A10, MF-A01). 
 
NCEER-89-0036 "Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York," by M. Budhu, R. Giese and 

L. Baumgrass, 1/17/89, (PB90-208455, A04, MF-A01). 
 
NCEER-89-0037 "A Deterministic Assessment of Effects of Ground Motion Incoherence," by A.S. Veletsos and Y. Tang, 

7/15/89, (PB90-164294, A03, MF-A01). 
 
NCEER-89-0038 "Workshop on Ground Motion Parameters for Seismic Hazard Mapping," July 17-18, 1989, edited by R.V. 

Whitman, 12/1/89, (PB90-173923, A04, MF-A01). 
 
NCEER-89-0039 "Seismic Effects on Elevated Transit Lines of the New York City Transit Authority," by C.J. Costantino, 

C.A. Miller and E. Heymsfield, 12/26/89, (PB90-207887, A06, MF-A01). 
 
NCEER-89-0040 "Centrifugal Modeling of Dynamic Soil-Structure Interaction," by K. Weissman, Supervised by J.H. Prevost, 

5/10/89, (PB90-207879, A07, MF-A01). 
 
NCEER-89-0041 "Linearized Identification of Buildings With Cores for Seismic Vulnerability Assessment," by I-K. Ho and 

A.E. Aktan, 11/1/89, (PB90-251943, A07, MF-A01). 
 
NCEER-90-0001 "Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco," by 

T.D. O'Rourke, H.E. Stewart, F.T. Blackburn and T.S. Dickerman, 1/90, (PB90-208596, A05, MF-A01). 
 
NCEER-90-0002 "Nonnormal Secondary Response Due to Yielding in a Primary Structure," by D.C.K. Chen and L.D. Lutes, 

2/28/90, (PB90-251976, A07, MF-A01). 
 
NCEER-90-0003 "Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/16/90, (PB91-251984, A05, MF-

A05). This report has been replaced by NCEER-92-0018. 
 
NCEER-90-0004 "Catalog of Strong Motion Stations in Eastern North America," by R.W. Busby, 4/3/90, (PB90-251984, A05, 

MF-A01). 
 
NCEER-90-0005 "NCEER Strong-Motion Data Base: A User Manual for the GeoBase Release (Version 1.0 for the Sun3)," by 

P. Friberg and K. Jacob, 3/31/90 (PB90-258062, A04, MF-A01). 
 
NCEER-90-0006 "Seismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid Earthquake," 

by H.H.M. Hwang and C-H.S. Chen, 4/16/90, (PB90-258054, A04, MF-A01). 
 
NCEER-90-0007 "Site-Specific Response Spectra for Memphis Sheahan Pumping Station," by H.H.M. Hwang and C.S. Lee, 

5/15/90, (PB91-108811, A05, MF-A01). 
 
NCEER-90-0008 "Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems," by T. Ariman, R. Dobry, M. 

Grigoriu, F. Kozin, M. O'Rourke, T. O'Rourke and M. Shinozuka, 5/25/90, (PB91-108837, A06, MF-A01). 
 
NCEER-90-0009 "A Program to Generate Site Dependent Time Histories: EQGEN," by G.W. Ellis, M. Srinivasan and A.S. 

Cakmak, 1/30/90, (PB91-108829, A04, MF-A01). 
 
NCEER-90-0010 "Active Isolation for Seismic Protection of Operating Rooms," by M.E. Talbott, Supervised by M. 

Shinozuka, 6/8/9, (PB91-110205, A05, MF-A01). 
 



 

 206

NCEER-90-0011 "Program LINEARID for Identification of Linear Structural Dynamic Systems," by C-B. Yun and M. 
Shinozuka, 6/25/90, (PB91-110312, A08, MF-A01). 

 
NCEER-90-0012 "Two-Dimensional Two-Phase Elasto-Plastic Seismic Response of Earth Dams," by A.N. Yiagos, Supervised 

by J.H. Prevost, 6/20/90, (PB91-110197, A13, MF-A02). 
 
NCEER-90-0013 "Secondary Systems in Base-Isolated Structures: Experimental Investigation, Stochastic Response and 

Stochastic Sensitivity," by G.D. Manolis, G. Juhn, M.C. Constantinou and A.M. Reinhorn, 7/1/90, (PB91-
110320, A08, MF-A01). 

 
NCEER-90-0014 "Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details," by S.P. 

Pessiki, C.H. Conley, P. Gergely and R.N. White, 8/22/90, (PB91-108795, A11, MF-A02). 
 
NCEER-90-0015 "Two Hybrid Control Systems for Building Structures Under Strong Earthquakes," by J.N. Yang and A. 

Danielians, 6/29/90, (PB91-125393, A04, MF-A01). 
 
NCEER-90-0016 "Instantaneous Optimal Control with Acceleration and Velocity Feedback," by J.N. Yang and Z. Li, 6/29/90, 

(PB91-125401, A03, MF-A01). 
 
NCEER-90-0017 "Reconnaissance Report on the Northern Iran Earthquake of June 21, 1990," by M. Mehrain, 10/4/90, (PB91-

125377, A03, MF-A01). 
 
NCEER-90-0018 "Evaluation of Liquefaction Potential in Memphis and Shelby County," by T.S. Chang, P.S. Tang, C.S. Lee 

and H. Hwang, 8/10/90, (PB91-125427, A09, MF-A01). 
 
NCEER-90-0019 "Experimental and Analytical Study of a Combined Sliding Disc Bearing and Helical Steel Spring Isolation 

System," by M.C. Constantinou, A.S. Mokha and A.M. Reinhorn, 10/4/90, (PB91-125385, A06, MF-A01). 
This report is available only through NTIS (see address given above). 

 
NCEER-90-0020 "Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System with a 

Spherical Surface," by A.S. Mokha, M.C. Constantinou and A.M. Reinhorn, 10/11/90, (PB91-125419, A05, 
MF-A01). 

 
NCEER-90-0021 "Dynamic Interaction Factors for Floating Pile Groups," by G. Gazetas, K. Fan, A. Kaynia and E. Kausel, 

9/10/90, (PB91-170381, A05, MF-A01). 
 
NCEER-90-0022 "Evaluation of Seismic Damage Indices for Reinforced Concrete Structures," by S. Rodriguez-Gomez and 

A.S. Cakmak, 9/30/90, PB91-171322, A06, MF-A01). 
 
NCEER-90-0023 "Study of Site Response at a Selected Memphis Site," by H. Desai, S. Ahmad, E.S. Gazetas and M.R. Oh, 

10/11/90, (PB91-196857, A03, MF-A01). 
 
NCEER-90-0024 "A User's Guide to Strongmo: Version 1.0 of NCEER's Strong-Motion Data Access Tool for PCs and 

Terminals," by P.A. Friberg and C.A.T. Susch, 11/15/90, (PB91-171272, A03, MF-A01). 
 
NCEER-90-0025 "A Three-Dimensional Analytical Study of Spatial Variability of Seismic Ground Motions," by L-L. Hong 

and A.H.-S. Ang, 10/30/90, (PB91-170399, A09, MF-A01). 
 
NCEER-90-0026 "MUMOID User's Guide - A Program for the Identification of  Modal Parameters,"  by S. Rodriguez-Gomez 

and E. DiPasquale, 9/30/90, (PB91-171298, A04, MF-A01). 
 
NCEER-90-0027 "SARCF-II User's Guide - Seismic Analysis of Reinforced Concrete Frames," by S. Rodriguez-Gomez, Y.S. 

Chung and C. Meyer, 9/30/90, (PB91-171280, A05, MF-A01). 
 
NCEER-90-0028 "Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation," by N. Makris 

and M.C. Constantinou, 12/20/90 (PB91-190561, A06, MF-A01). 
 
NCEER-90-0029 "Soil Effects on Earthquake Ground Motions in the Memphis Area," by H. Hwang, C.S. Lee, K.W. Ng and 

T.S. Chang, 8/2/90, (PB91-190751, A05, MF-A01). 
 



 

 207

NCEER-91-0001 "Proceedings from the Third Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and 
Countermeasures for Soil Liquefaction, December 17-19, 1990," edited by T.D. O'Rourke and M. Hamada, 
2/1/91, (PB91-179259, A99, MF-A04). 

 
NCEER-91-0002 "Physical Space Solutions of Non-Proportionally Damped Systems," by M. Tong, Z. Liang and G.C. Lee, 

1/15/91, (PB91-179242, A04, MF-A01). 
 
NCEER-91-0003 "Seismic Response of Single Piles and Pile Groups," by K. Fan and G. Gazetas, 1/10/91, (PB92-174994, 

A04, MF-A01). 
 
NCEER-91-0004 "Damping of Structures: Part 1 - Theory of Complex Damping," by Z. Liang and G. Lee, 10/10/91, (PB92-

197235, A12, MF-A03). 
 
NCEER-91-0005 "3D-BASIS - Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures: Part II," by S. 

Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 2/28/91, (PB91-190553, A07, MF-A01). This report 
has been replaced by NCEER-93-0011. 

 
NCEER-91-0006 "A Multidimensional Hysteretic Model for Plasticity Deforming Metals in Energy Absorbing Devices," by 

E.J. Graesser and F.A. Cozzarelli, 4/9/91, (PB92-108364, A04, MF-A01). 
 
NCEER-91-0007 "A Framework for Customizable Knowledge-Based Expert Systems with an Application to a KBES for 

Evaluating the Seismic Resistance of Existing Buildings," by E.G. Ibarra-Anaya and S.J. Fenves, 4/9/91, 
(PB91-210930, A08, MF-A01). 

 
NCEER-91-0008 "Nonlinear Analysis of Steel Frames with Semi-Rigid Connections Using the Capacity Spectrum Method," 

by G.G. Deierlein, S-H. Hsieh, Y-J. Shen and J.F. Abel, 7/2/91, (PB92-113828, A05, MF-A01). 
 
NCEER-91-0009 "Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/30/91, (PB91-212142, A06, MF-

A01). This report has been replaced by NCEER-92-0018. 
 
NCEER-91-0010 "Phase Wave Velocities and Displacement Phase Differences in a Harmonically Oscillating Pile," by N. 

Makris and G. Gazetas, 7/8/91, (PB92-108356, A04, MF-A01). 
 
NCEER-91-0011 "Dynamic Characteristics of a Full-Size Five-Story Steel Structure and a 2/5 Scale Model," by K.C. Chang, 

G.C. Yao, G.C. Lee, D.S. Hao and Y.C. Yeh," 7/2/91, (PB93-116648, A06, MF-A02). 
 
NCEER-91-0012 "Seismic Response of a 2/5 Scale Steel Structure with Added Viscoelastic Dampers," by K.C. Chang, T.T. 

Soong, S-T. Oh and M.L. Lai, 5/17/91, (PB92-110816, A05, MF-A01). 
 
NCEER-91-0013 "Earthquake Response of Retaining Walls; Full-Scale Testing and Computational Modeling," by S. 

Alampalli and A-W.M. Elgamal, 6/20/91, to be published. 
 
NCEER-91-0014 "3D-BASIS-M: Nonlinear Dynamic Analysis of Multiple Building Base Isolated Structures," by P.C. 

Tsopelas, S. Nagarajaiah, M.C. Constantinou and A.M. Reinhorn, 5/28/91, (PB92-113885, A09, MF-A02). 
 
NCEER-91-0015 "Evaluation of SEAOC Design Requirements for Sliding Isolated Structures," by D. Theodossiou and M.C. 

Constantinou, 6/10/91, (PB92-114602, A11, MF-A03). 
 
NCEER-91-0016 "Closed-Loop Modal Testing of a 27-Story Reinforced Concrete Flat Plate-Core Building," by H.R. 

Somaprasad, T. Toksoy, H. Yoshiyuki and A.E. Aktan, 7/15/91, (PB92-129980, A07, MF-A02). 
 
NCEER-91-0017 "Shake Table Test of a 1/6 Scale Two-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, R.N. 

White and P. Gergely, 2/28/91, (PB92-222447, A06, MF-A02). 
 
NCEER-91-0018 "Shake Table Test of a 1/8 Scale Three-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, R.N. 

White and P. Gergely, 2/28/91, (PB93-116630, A08, MF-A02). 
 
NCEER-91-0019 "Transfer Functions for Rigid Rectangular Foundations," by A.S. Veletsos, A.M. Prasad and W.H. Wu, 

7/31/91, to be published. 
 



 

 208

NCEER-91-0020 "Hybrid Control of Seismic-Excited Nonlinear and Inelastic Structural Systems," by J.N. Yang, Z. Li and A. 
Danielians, 8/1/91, (PB92-143171, A06, MF-A02). 

 
NCEER-91-0021 "The NCEER-91 Earthquake Catalog: Improved Intensity-Based Magnitudes and Recurrence Relations for 

U.S. Earthquakes  East of New Madrid," by L. Seeber and J.G. Armbruster, 8/28/91, (PB92-176742, A06, 
MF-A02). 

 
NCEER-91-0022 "Proceedings from the Implementation of Earthquake Planning and Education in Schools: The Need for 

Change - The Roles of the Changemakers," by K.E.K. Ross and F. Winslow, 7/23/91, (PB92-129998, A12, 
MF-A03). 

 
NCEER-91-0023 "A Study of Reliability-Based Criteria for Seismic Design of Reinforced Concrete Frame Buildings," by 

H.H.M. Hwang and H-M. Hsu, 8/10/91, (PB92-140235, A09, MF-A02). 
 
NCEER-91-0024 "Experimental Verification of a Number of Structural System Identification Algorithms," by R.G. Ghanem, 

H. Gavin and M. Shinozuka, 9/18/91, (PB92-176577, A18, MF-A04). 
 
NCEER-91-0025 "Probabilistic Evaluation of Liquefaction Potential," by H.H.M. Hwang and C.S. Lee," 11/25/91, (PB92-

143429, A05, MF-A01). 
 
NCEER-91-0026 "Instantaneous Optimal Control for Linear, Nonlinear and Hysteretic Structures - Stable Controllers," by J.N. 

Yang and Z. Li, 11/15/91, (PB92-163807, A04, MF-A01). 
 
NCEER-91-0027 "Experimental and Theoretical Study of a Sliding Isolation System for Bridges," by M.C. Constantinou, A. 

Kartoum, A.M. Reinhorn and P. Bradford, 11/15/91, (PB92-176973, A10, MF-A03). 
 
NCEER-92-0001 "Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 1: Japanese Case 

Studies," Edited by M. Hamada and T. O'Rourke, 2/17/92, (PB92-197243, A18, MF-A04). 
 
NCEER-92-0002 "Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 2: United States 

Case Studies," Edited by T. O'Rourke and M. Hamada, 2/17/92, (PB92-197250, A20, MF-A04). 
 
NCEER-92-0003 "Issues in Earthquake Education," Edited by K. Ross, 2/3/92, (PB92-222389, A07, MF-A02). 
 
NCEER-92-0004 "Proceedings from the First U.S. - Japan Workshop on Earthquake Protective Systems for Bridges," Edited 

by I.G. Buckle, 2/4/92, (PB94-142239, A99, MF-A06). 
 
NCEER-92-0005 "Seismic Ground Motion from a Haskell-Type Source in a Multiple-Layered Half-Space," A.P. Theoharis, G. 

Deodatis and M. Shinozuka, 1/2/92, to be published. 
 
NCEER-92-0006 "Proceedings from the Site Effects Workshop," Edited by R. Whitman, 2/29/92, (PB92-197201, A04, MF-

A01). 
 
NCEER-92-0007 "Engineering Evaluation of Permanent Ground Deformations Due to Seismically-Induced Liquefaction," by 

M.H. Baziar, R. Dobry and A-W.M. Elgamal, 3/24/92, (PB92-222421, A13, MF-A03). 
 
NCEER-92-0008 "A Procedure for the Seismic Evaluation of Buildings in the Central and Eastern United States," by C.D. 

Poland and J.O. Malley, 4/2/92, (PB92-222439, A20, MF-A04). 
 
NCEER-92-0009 "Experimental and Analytical Study of a Hybrid Isolation System Using Friction Controllable Sliding 

Bearings," by M.Q. Feng, S. Fujii and M. Shinozuka, 5/15/92, (PB93-150282, A06, MF-A02). 
 
NCEER-92-0010 "Seismic Resistance of Slab-Column Connections in Existing Non-Ductile Flat-Plate Buildings," by A.J. 

Durrani and Y. Du, 5/18/92, (PB93-116812, A06, MF-A02). 
 
NCEER-92-0011 "The Hysteretic and Dynamic Behavior of Brick Masonry Walls Upgraded by Ferrocement Coatings Under 

Cyclic Loading and Strong Simulated Ground Motion," by H. Lee and S.P. Prawel, 5/11/92, to be published. 
 
NCEER-92-0012 "Study of Wire Rope Systems for Seismic Protection of Equipment in Buildings," by G.F. Demetriades, 

M.C. Constantinou and A.M. Reinhorn, 5/20/92, (PB93-116655, A08, MF-A02). 
 



 

 209

NCEER-92-0013 "Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing," by P.R. Witting and 
F.A. Cozzarelli, 5/26/92, (PB93-116663, A05, MF-A01). 

 
NCEER-92-0014 "Longitudinal Permanent Ground Deformation Effects on Buried Continuous Pipelines," by M.J. O'Rourke, 

and C. Nordberg, 6/15/92, (PB93-116671, A08, MF-A02). 
 
NCEER-92-0015 "A Simulation Method for Stationary Gaussian Random Functions Based on the Sampling Theorem," by M. 

Grigoriu and S. Balopoulou, 6/11/92, (PB93-127496, A05, MF-A01). 
 
NCEER-92-0016 "Gravity-Load-Designed Reinforced Concrete Buildings: Seismic Evaluation of Existing Construction and 

Detailing Strategies for Improved Seismic Resistance," by G.W. Hoffmann, S.K. Kunnath, A.M. Reinhorn 
and J.B. Mander, 7/15/92, (PB94-142007, A08, MF-A02). 

 
NCEER-92-0017 "Observations on Water System and Pipeline Performance in the Limón Area of Costa Rica Due to the April 

22, 1991 Earthquake," by M. O'Rourke and D. Ballantyne, 6/30/92, (PB93-126811, A06, MF-A02). 
 
NCEER-92-0018 "Fourth Edition of Earthquake Education Materials for Grades K-12," Edited by K.E.K. Ross, 8/10/92, 

(PB93-114023, A07, MF-A02). 
 
NCEER-92-0019 "Proceedings from the Fourth Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities 

and Countermeasures for Soil Liquefaction," Edited by M. Hamada and T.D. O'Rourke, 8/12/92, (PB93-
163939, A99, MF-E11). 

 
NCEER-92-0020 "Active Bracing System: A Full Scale Implementation of Active Control," by A.M. Reinhorn, T.T. Soong, 

R.C. Lin, M.A. Riley, Y.P. Wang, S. Aizawa and M. Higashino, 8/14/92, (PB93-127512, A06, MF-A02). 
 
NCEER-92-0021 "Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-Induced Lateral 

Spreads," by S.F. Bartlett and T.L. Youd, 8/17/92, (PB93-188241, A06, MF-A02). 
 
NCEER-92-0022 "IDARC Version 3.0: Inelastic Damage Analysis of Reinforced Concrete Structures," by S.K. Kunnath, A.M. 

Reinhorn and R.F. Lobo, 8/31/92, (PB93-227502, A07, MF-A02). 
 
NCEER-92-0023 "A Semi-Empirical Analysis of Strong-Motion Peaks in Terms of Seismic Source, Propagation Path and 

Local Site Conditions, by M. Kamiyama, M.J. O'Rourke and R. Flores-Berrones, 9/9/92, (PB93-150266, 
A08, MF-A02). 

 
NCEER-92-0024 "Seismic Behavior of Reinforced Concrete Frame Structures with Nonductile Details, Part I: Summary of 

Experimental Findings of Full Scale Beam-Column Joint Tests," by A. Beres, R.N. White and P. Gergely, 
9/30/92, (PB93-227783, A05, MF-A01). 

 
NCEER-92-0025 "Experimental Results of Repaired and Retrofitted Beam-Column Joint Tests in Lightly Reinforced Concrete 

Frame Buildings," by A. Beres, S. El-Borgi, R.N. White and P. Gergely, 10/29/92, (PB93-227791, A05, MF-
A01). 

 
NCEER-92-0026 "A Generalization of Optimal Control Theory: Linear and Nonlinear Structures," by J.N. Yang, Z. Li and S. 

Vongchavalitkul, 11/2/92, (PB93-188621, A05, MF-A01). 
 
NCEER-92-0027 "Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part I -

Design and Properties of a One-Third Scale Model Structure," by J.M. Bracci, A.M. Reinhorn and J.B. 
Mander, 12/1/92, (PB94-104502, A08, MF-A02). 

 
NCEER-92-0028 "Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part II -

Experimental Performance of Subassemblages," by L.E. Aycardi, J.B. Mander and A.M. Reinhorn, 12/1/92, 
(PB94-104510, A08, MF-A02). 

 
NCEER-92-0029 "Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part III - 

Experimental Performance and Analytical Study of a Structural Model," by J.M. Bracci, A.M. Reinhorn and 
J.B. Mander, 12/1/92, (PB93-227528, A09, MF-A01). 

 



 

 210

NCEER-92-0030 "Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures: Part I - Experimental Performance 
of Retrofitted Subassemblages," by D. Choudhuri, J.B. Mander and A.M. Reinhorn, 12/8/92, (PB93-198307, 
A07, MF-A02). 

 
NCEER-92-0031 "Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures: Part II - Experimental 

Performance and Analytical Study of a Retrofitted Structural Model," by J.M. Bracci, A.M. Reinhorn and 
J.B. Mander, 12/8/92, (PB93-198315, A09, MF-A03). 

 
NCEER-92-0032 "Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid 

Viscous Dampers," by M.C. Constantinou and M.D. Symans, 12/21/92, (PB93-191435, A10, MF-A03). This 
report is available only through NTIS (see address given above). 

 
NCEER-92-0033 "Reconnaissance Report on the Cairo, Egypt Earthquake of October 12, 1992," by M. Khater, 12/23/92, 

(PB93-188621, A03, MF-A01). 
 
NCEER-92-0034 "Low-Level Dynamic Characteristics of Four Tall Flat-Plate Buildings in New York City," by H. Gavin, S. 

Yuan, J. Grossman, E. Pekelis and K. Jacob, 12/28/92, (PB93-188217, A07, MF-A02). 
 
NCEER-93-0001 "An Experimental Study on the Seismic Performance of Brick-Infilled Steel Frames With and Without 

Retrofit," by J.B. Mander, B. Nair, K. Wojtkowski and J. Ma, 1/29/93, (PB93-227510, A07, MF-A02). 
 
NCEER-93-0002 "Social Accounting for Disaster Preparedness and Recovery Planning," by S. Cole, E. Pantoja and V. Razak, 

2/22/93, (PB94-142114, A12, MF-A03). 
 
NCEER-93-0003 "Assessment of 1991 NEHRP Provisions for Nonstructural Components and Recommended Revisions," by 

T.T. Soong, G. Chen, Z. Wu, R-H. Zhang and M. Grigoriu, 3/1/93, (PB93-188639, A06, MF-A02). 
 
NCEER-93-0004 "Evaluation of Static and Response Spectrum Analysis Procedures of SEAOC/UBC for Seismic Isolated 

Structures," by C.W. Winters and M.C. Constantinou, 3/23/93, (PB93-198299, A10, MF-A03). 
 
NCEER-93-0005 "Earthquakes in the Northeast - Are We Ignoring the Hazard? A Workshop on Earthquake Science and 

Safety for Educators," edited by K.E.K. Ross, 4/2/93, (PB94-103066, A09, MF-A02). 
 
NCEER-93-0006 "Inelastic Response of Reinforced Concrete Structures with Viscoelastic Braces," by R.F. Lobo, J.M. Bracci, 

K.L. Shen, A.M. Reinhorn and T.T. Soong, 4/5/93, (PB93-227486, A05, MF-A02). 
 
NCEER-93-0007 "Seismic Testing of Installation Methods for Computers and Data Processing Equipment," by K. Kosar, T.T. 

Soong, K.L. Shen, J.A. HoLung and Y.K. Lin, 4/12/93, (PB93-198299, A07, MF-A02). 
 
NCEER-93-0008 "Retrofit of Reinforced Concrete Frames Using Added Dampers," by A. Reinhorn, M. Constantinou and C. 

Li, to be published. 
 
NCEER-93-0009 "Seismic Behavior and Design Guidelines for Steel Frame Structures with Added Viscoelastic Dampers," by 

K.C. Chang, M.L. Lai, T.T. Soong, D.S. Hao and Y.C. Yeh, 5/1/93, (PB94-141959, A07, MF-A02). 
 
NCEER-93-0010 "Seismic Performance of Shear-Critical Reinforced Concrete Bridge Piers," by J.B. Mander, S.M. Waheed, 

M.T.A. Chaudhary and S.S. Chen, 5/12/93, (PB93-227494, A08, MF-A02). 
 
NCEER-93-0011 "3D-BASIS-TABS: Computer Program for Nonlinear Dynamic Analysis of Three Dimensional Base Isolated 

Structures," by S. Nagarajaiah, C. Li, A.M. Reinhorn and M.C. Constantinou, 8/2/93, (PB94-141819, A09, 
MF-A02). 

 
NCEER-93-0012 "Effects of Hydrocarbon Spills from an Oil Pipeline Break on Ground Water," by O.J. Helweg and H.H.M. 

Hwang, 8/3/93, (PB94-141942, A06, MF-A02). 
 
NCEER-93-0013 "Simplified Procedures for Seismic Design of Nonstructural Components and Assessment of Current Code 

Provisions," by M.P. Singh, L.E. Suarez, E.E. Matheu and G.O. Maldonado, 8/4/93, (PB94-141827, A09, 
MF-A02). 

 
NCEER-93-0014 "An Energy Approach to Seismic Analysis and Design of Secondary Systems," by G. Chen and T.T. Soong, 

8/6/93, (PB94-142767, A11, MF-A03). 



 

 211

 
NCEER-93-0015 "Proceedings from School Sites: Becoming Prepared for Earthquakes - Commemorating the Third 

Anniversary of the Loma Prieta Earthquake," Edited by F.E. Winslow and K.E.K. Ross, 8/16/93, (PB94-
154275, A16, MF-A02). 

 
NCEER-93-0016 "Reconnaissance Report of Damage to Historic Monuments in Cairo, Egypt Following the October 12, 1992 

Dahshur Earthquake," by D. Sykora, D. Look, G. Croci, E. Karaesmen and E. Karaesmen, 8/19/93, (PB94-
142221, A08, MF-A02). 

 
NCEER-93-0017 "The Island of Guam Earthquake of August 8, 1993," by S.W. Swan and S.K. Harris, 9/30/93, (PB94-

141843, A04, MF-A01). 
 
NCEER-93-0018 "Engineering Aspects of the October 12, 1992 Egyptian Earthquake," by A.W. Elgamal, M. Amer, K. 

Adalier and A. Abul-Fadl, 10/7/93, (PB94-141983, A05, MF-A01). 
 
NCEER-93-0019 "Development of an Earthquake Motion Simulator and its Application in Dynamic Centrifuge Testing," by I. 

Krstelj, Supervised by J.H. Prevost, 10/23/93, (PB94-181773, A-10, MF-A03). 
 
NCEER-93-0020 "NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges: 

Experimental and Analytical Study of a Friction Pendulum System (FPS)," by M.C. Constantinou, P. 
Tsopelas, Y-S. Kim and S. Okamoto, 11/1/93, (PB94-142775, A08, MF-A02). 

 
NCEER-93-0021 "Finite Element Modeling of Elastomeric Seismic Isolation Bearings," by L.J. Billings, Supervised by R. 

Shepherd, 11/8/93, to be published. 
 
NCEER-93-0022 "Seismic Vulnerability of Equipment in Critical Facilities: Life-Safety and Operational Consequences," by 

K. Porter, G.S. Johnson, M.M. Zadeh, C. Scawthorn and S. Eder, 11/24/93, (PB94-181765, A16, MF-A03). 
 
NCEER-93-0023 "Hokkaido Nansei-oki, Japan Earthquake of July 12, 1993, by P.I. Yanev and C.R. Scawthorn, 12/23/93, 

(PB94-181500, A07, MF-A01). 
 
NCEER-94-0001 "An Evaluation of Seismic Serviceability of Water Supply Networks with Application to the San Francisco 

Auxiliary Water Supply System," by I. Markov, Supervised by M. Grigoriu and T. O'Rourke, 1/21/94, 
(PB94-204013, A07, MF-A02). 

 
NCEER-94-0002 "NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges: 

Experimental and Analytical Study of Systems Consisting of Sliding Bearings, Rubber Restoring Force 
Devices and Fluid Dampers," Volumes I and II, by P. Tsopelas, S. Okamoto, M.C. Constantinou, D. Ozaki 
and S. Fujii, 2/4/94, (PB94-181740, A09, MF-A02 and PB94-181757, A12, MF-A03). 

 
NCEER-94-0003 "A Markov Model for Local and Global Damage Indices in Seismic Analysis," by S. Rahman and M. 

Grigoriu, 2/18/94, (PB94-206000, A12, MF-A03). 
 
NCEER-94-0004 "Proceedings from the NCEER Workshop on Seismic Response of Masonry Infills," edited by D.P. Abrams, 

3/1/94, (PB94-180783, A07, MF-A02). 
 
NCEER-94-0005 "The Northridge, California Earthquake of January 17, 1994: General Reconnaissance Report," edited by 

J.D. Goltz, 3/11/94, (PB94-193943, A10, MF-A03). 
 
NCEER-94-0006 "Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part I - Evaluation of Seismic 

Capacity," by G.A. Chang and J.B. Mander, 3/14/94, (PB94-219185, A11, MF-A03). 
 
NCEER-94-0007 "Seismic Isolation of Multi-Story Frame Structures Using Spherical Sliding Isolation Systems," by T.M. Al-

Hussaini, V.A. Zayas and M.C. Constantinou, 3/17/94, (PB94-193745, A09, MF-A02). 
 
NCEER-94-0008 "The Northridge, California Earthquake of January 17, 1994: Performance of Highway Bridges," edited by 

I.G. Buckle, 3/24/94, (PB94-193851, A06, MF-A02). 
 
NCEER-94-0009 "Proceedings of the Third U.S.-Japan Workshop on Earthquake Protective Systems for Bridges," edited by 

I.G. Buckle and I. Friedland, 3/31/94, (PB94-195815, A99, MF-A06). 
 



 

 212

NCEER-94-0010 "3D-BASIS-ME: Computer Program for Nonlinear Dynamic Analysis of Seismically Isolated Single and 
Multiple Structures and Liquid Storage Tanks," by P.C. Tsopelas, M.C. Constantinou and A.M. Reinhorn, 
4/12/94, (PB94-204922, A09, MF-A02). 

 
NCEER-94-0011 "The Northridge, California Earthquake of January 17, 1994: Performance of Gas Transmission Pipelines," 

by T.D. O'Rourke and M.C. Palmer, 5/16/94, (PB94-204989, A05, MF-A01). 
 
NCEER-94-0012 "Feasibility Study of Replacement Procedures and Earthquake Performance Related to Gas Transmission 

Pipelines," by T.D. O'Rourke and M.C. Palmer, 5/25/94, (PB94-206638, A09, MF-A02). 
 
NCEER-94-0013 "Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part II - Evaluation of Seismic 

Demand," by G.A. Chang and J.B. Mander, 6/1/94, (PB95-18106, A08, MF-A02). 
 
NCEER-94-0014 "NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges: 

Experimental and Analytical Study of a System Consisting of Sliding Bearings and Fluid Restoring 
Force/Damping Devices," by P. Tsopelas and M.C. Constantinou, 6/13/94, (PB94-219144, A10, MF-A03). 

 
NCEER-94-0015 "Generation of Hazard-Consistent Fragility Curves for Seismic Loss Estimation Studies," by H. Hwang and 

J-R. Huo, 6/14/94, (PB95-181996, A09, MF-A02). 
 
NCEER-94-0016 "Seismic Study of Building Frames with Added Energy-Absorbing Devices," by W.S. Pong, C.S. Tsai and 

G.C. Lee, 6/20/94, (PB94-219136, A10, A03). 
 
NCEER-94-0017 "Sliding Mode Control for Seismic-Excited Linear and Nonlinear Civil Engineering Structures," by J. Yang, 

J. Wu, A. Agrawal and Z. Li, 6/21/94, (PB95-138483, A06, MF-A02). 
 
NCEER-94-0018 "3D-BASIS-TABS Version 2.0: Computer Program for Nonlinear Dynamic Analysis of Three Dimensional 

Base Isolated Structures," by A.M. Reinhorn, S. Nagarajaiah, M.C. Constantinou, P. Tsopelas and R. Li, 
6/22/94, (PB95-182176, A08, MF-A02). 

 
NCEER-94-0019 "Proceedings of the International Workshop on Civil Infrastructure Systems: Application of Intelligent 

Systems and Advanced Materials on Bridge Systems," Edited by G.C. Lee and K.C. Chang, 7/18/94, (PB95-
252474, A20, MF-A04). 

 
NCEER-94-0020 "Study of Seismic Isolation Systems for Computer Floors," by V. Lambrou and M.C. Constantinou, 7/19/94, 

(PB95-138533, A10, MF-A03). 
 
NCEER-94-0021 "Proceedings of the U.S.-Italian Workshop on Guidelines for Seismic Evaluation and Rehabilitation of 

Unreinforced Masonry Buildings," Edited by D.P. Abrams and G.M. Calvi, 7/20/94, (PB95-138749, A13, 
MF-A03). 

 
NCEER-94-0022 "NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges: 

Experimental and Analytical Study of a System Consisting of Lubricated PTFE Sliding Bearings and Mild 
Steel Dampers," by P. Tsopelas and M.C. Constantinou, 7/22/94, (PB95-182184, A08, MF-A02). 

 
NCEER-94-0023 “Development of Reliability-Based Design Criteria for Buildings Under Seismic Load,” by Y.K. Wen, H. 

Hwang and M. Shinozuka, 8/1/94, (PB95-211934, A08, MF-A02). 
 
NCEER-94-0024 “Experimental Verification of Acceleration Feedback Control Strategies for an Active Tendon System,” by 

S.J. Dyke, B.F. Spencer, Jr., P. Quast, M.K. Sain, D.C. Kaspari, Jr. and T.T. Soong, 8/29/94, (PB95-212320, 
A05, MF-A01). 

 
NCEER-94-0025 “Seismic Retrofitting Manual for Highway Bridges,” Edited by I.G. Buckle and I.F. Friedland, published by 

the Federal Highway Administration (PB95-212676, A15, MF-A03). 
 
NCEER-94-0026 “Proceedings from the Fifth U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and 

Countermeasures Against Soil Liquefaction,” Edited by T.D. O’Rourke and M. Hamada, 11/7/94, (PB95-
220802, A99, MF-E08). 

 



 

 213

NCEER-95-0001 “Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping: 
Part 1 - Fluid Viscous Damping Devices,” by A.M. Reinhorn, C. Li and M.C. Constantinou, 1/3/95, (PB95-
266599, A09, MF-A02). 

 
NCEER-95-0002 “Experimental and Analytical Study of Low-Cycle Fatigue Behavior of Semi-Rigid Top-And-Seat Angle 

Connections,” by G. Pekcan, J.B. Mander and S.S. Chen, 1/5/95, (PB95-220042, A07, MF-A02). 
 
NCEER-95-0003 “NCEER-ATC Joint Study on Fragility of Buildings,” by T. Anagnos, C. Rojahn and A.S. Kiremidjian, 

1/20/95, (PB95-220026, A06, MF-A02). 
 
NCEER-95-0004 “Nonlinear Control Algorithms for Peak Response Reduction,” by Z. Wu, T.T. Soong, V. Gattulli and R.C. 

Lin, 2/16/95, (PB95-220349, A05, MF-A01). 
 
NCEER-95-0005 “Pipeline Replacement Feasibility Study: A Methodology for Minimizing Seismic and Corrosion Risks to 

Underground Natural Gas Pipelines,” by R.T. Eguchi, H.A. Seligson and D.G. Honegger, 3/2/95, (PB95-
252326, A06, MF-A02). 

 
NCEER-95-0006 “Evaluation of Seismic Performance of an 11-Story Frame Building During the 1994 Northridge 

Earthquake,” by F. Naeim, R. DiSulio, K. Benuska, A. Reinhorn and C. Li, to be published. 
 
NCEER-95-0007 “Prioritization of Bridges for Seismic Retrofitting,” by N. Basöz and A.S. Kiremidjian, 4/24/95, (PB95-

252300, A08, MF-A02). 
 
NCEER-95-0008 “Method for Developing Motion Damage Relationships for Reinforced Concrete Frames,” by A. Singhal and 

A.S. Kiremidjian, 5/11/95, (PB95-266607, A06, MF-A02). 
 
NCEER-95-0009 “Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping: 

Part II - Friction Devices,” by C. Li and A.M. Reinhorn, 7/6/95, (PB96-128087, A11, MF-A03). 
 
NCEER-95-0010 “Experimental Performance and Analytical Study of a Non-Ductile Reinforced Concrete Frame Structure 

Retrofitted with Elastomeric Spring Dampers,” by G. Pekcan, J.B. Mander and S.S. Chen, 7/14/95, (PB96-
137161, A08, MF-A02). 

 
NCEER-95-0011 “Development and Experimental Study of Semi-Active Fluid Damping Devices for Seismic Protection of 

Structures,” by M.D. Symans and M.C. Constantinou, 8/3/95, (PB96-136940, A23, MF-A04). 
 
NCEER-95-0012 “Real-Time Structural Parameter Modification (RSPM): Development of Innervated Structures,” by Z. 

Liang, M. Tong and G.C. Lee, 4/11/95, (PB96-137153, A06, MF-A01). 
 
NCEER-95-0013 “Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping: 

Part III - Viscous Damping Walls,” by A.M. Reinhorn and C. Li, 10/1/95, (PB96-176409, A11, MF-A03). 
 
NCEER-95-0014 “Seismic Fragility Analysis of Equipment and Structures in a Memphis Electric Substation,” by J-R. Huo and 

H.H.M. Hwang, 8/10/95, (PB96-128087, A09, MF-A02). 
 
NCEER-95-0015 “The Hanshin-Awaji Earthquake of January 17, 1995: Performance of Lifelines,” Edited by M. Shinozuka, 

11/3/95, (PB96-176383, A15, MF-A03). 
 
NCEER-95-0016 “Highway Culvert Performance During Earthquakes,” by T.L. Youd and C.J. Beckman, available as 

NCEER-96-0015. 
 
NCEER-95-0017 “The Hanshin-Awaji Earthquake of January 17, 1995: Performance of Highway Bridges,” Edited by I.G. 

Buckle, 12/1/95, to be published. 
 
NCEER-95-0018 “Modeling of Masonry Infill Panels for Structural Analysis,” by A.M. Reinhorn, A. Madan, R.E. Valles, Y. 

Reichmann and J.B. Mander, 12/8/95, (PB97-110886, MF-A01, A06). 
 
NCEER-95-0019 “Optimal Polynomial Control for Linear and Nonlinear Structures,” by A.K. Agrawal and J.N. Yang, 

12/11/95, (PB96-168737, A07, MF-A02). 
 



 

 214

NCEER-95-0020 “Retrofit of Non-Ductile Reinforced Concrete Frames Using Friction Dampers,” by R.S. Rao, P. Gergely and 
R.N. White, 12/22/95, (PB97-133508, A10, MF-A02). 

 
NCEER-95-0021 “Parametric Results for Seismic Response of Pile-Supported Bridge Bents,” by G. Mylonakis, A. Nikolaou 

and G. Gazetas, 12/22/95, (PB97-100242, A12, MF-A03). 
 
NCEER-95-0022 “Kinematic Bending Moments in Seismically Stressed Piles,” by A. Nikolaou, G. Mylonakis and G. Gazetas, 

12/23/95, (PB97-113914, MF-A03, A13). 
 
NCEER-96-0001 “Dynamic Response of Unreinforced Masonry Buildings with Flexible Diaphragms,” by A.C. Costley and 

D.P. Abrams,” 10/10/96, (PB97-133573, MF-A03, A15). 
 
NCEER-96-0002 “State of the Art Review: Foundations and Retaining Structures,” by I. Po Lam, to be published. 
 
NCEER-96-0003 “Ductility of Rectangular Reinforced Concrete Bridge Columns with Moderate Confinement,” by N. Wehbe, 

M. Saiidi, D. Sanders and B. Douglas, 11/7/96, (PB97-133557, A06, MF-A02). 
 
NCEER-96-0004 “Proceedings of the Long-Span Bridge Seismic Research Workshop,” edited by I.G. Buckle and I.M. 

Friedland, to be published. 
 
NCEER-96-0005 “Establish Representative Pier Types for Comprehensive Study: Eastern United States,” by J. Kulicki and Z. 

Prucz, 5/28/96, (PB98-119217, A07, MF-A02). 
 
NCEER-96-0006 “Establish Representative Pier Types for Comprehensive Study: Western United States,” by R. Imbsen, R.A. 

Schamber and T.A. Osterkamp, 5/28/96, (PB98-118607, A07, MF-A02). 
 
NCEER-96-0007 “Nonlinear Control Techniques for Dynamical Systems with Uncertain Parameters,” by R.G. Ghanem and 

M.I. Bujakov, 5/27/96, (PB97-100259, A17, MF-A03). 
 
NCEER-96-0008 “Seismic Evaluation of a 30-Year Old Non-Ductile Highway Bridge Pier and Its Retrofit,” by J.B. Mander, 

B. Mahmoodzadegan, S. Bhadra and S.S. Chen, 5/31/96, (PB97-110902, MF-A03, A10). 
 
NCEER-96-0009 “Seismic Performance of a Model Reinforced Concrete Bridge Pier Before and After Retrofit,” by J.B. 

Mander, J.H. Kim and C.A. Ligozio, 5/31/96, (PB97-110910, MF-A02, A10). 
 
NCEER-96-0010 “IDARC2D Version 4.0: A Computer Program for the Inelastic Damage Analysis of Buildings,” by R.E. 

Valles, A.M. Reinhorn, S.K. Kunnath, C. Li and A. Madan, 6/3/96, (PB97-100234, A17, MF-A03). 
 
NCEER-96-0011 “Estimation of the Economic Impact of Multiple Lifeline Disruption: Memphis Light, Gas and Water 

Division Case Study,” by S.E. Chang, H.A. Seligson and R.T. Eguchi, 8/16/96, (PB97-133490, A11, MF-
A03). 

 
NCEER-96-0012 “Proceedings from the Sixth Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and 

Countermeasures Against Soil Liquefaction, Edited by M. Hamada and T. O’Rourke, 9/11/96, (PB97-
133581, A99, MF-A06). 

 
NCEER-96-0013 “Chemical Hazards, Mitigation and Preparedness in Areas of High Seismic Risk: A Methodology for 

Estimating the Risk of Post-Earthquake Hazardous Materials Release,” by H.A. Seligson, R.T. Eguchi, K.J. 
Tierney and K. Richmond, 11/7/96, (PB97-133565, MF-A02, A08). 

 
NCEER-96-0014 “Response of Steel Bridge Bearings to Reversed Cyclic Loading,” by J.B. Mander, D-K. Kim, S.S. Chen and 

G.J. Premus, 11/13/96, (PB97-140735, A12, MF-A03). 
 
NCEER-96-0015 “Highway Culvert Performance During Past Earthquakes,” by T.L. Youd and C.J. Beckman, 11/25/96, 

(PB97-133532, A06, MF-A01). 
 
NCEER-97-0001 “Evaluation, Prevention and Mitigation of Pounding Effects in Building Structures,” by R.E. Valles and 

A.M. Reinhorn, 2/20/97, (PB97-159552, A14, MF-A03). 
 
NCEER-97-0002 “Seismic Design Criteria for Bridges and Other Highway Structures,” by C. Rojahn, R. Mayes, D.G. 

Anderson, J. Clark, J.H. Hom, R.V. Nutt and M.J. O’Rourke, 4/30/97, (PB97-194658, A06, MF-A03). 



 

 215

 
NCEER-97-0003 “Proceedings of the U.S.-Italian Workshop on Seismic Evaluation and Retrofit,” Edited by D.P. Abrams and 

G.M. Calvi, 3/19/97, (PB97-194666, A13, MF-A03). 
 
NCEER-97-0004 "Investigation of Seismic Response of Buildings with Linear and Nonlinear Fluid Viscous Dampers," by 

A.A. Seleemah and M.C. Constantinou, 5/21/97, (PB98-109002, A15, MF-A03). 
 
NCEER-97-0005 "Proceedings of the Workshop on Earthquake Engineering Frontiers in Transportation Facilities," edited by 

G.C. Lee and I.M. Friedland, 8/29/97, (PB98-128911, A25, MR-A04). 
 
NCEER-97-0006 "Cumulative Seismic Damage of Reinforced Concrete Bridge Piers," by S.K. Kunnath, A. El-Bahy, A. 

Taylor and W. Stone, 9/2/97, (PB98-108814, A11, MF-A03). 
 
NCEER-97-0007 "Structural Details to Accommodate Seismic Movements of Highway Bridges and Retaining Walls," by R.A. 

Imbsen, R.A. Schamber, E. Thorkildsen, A. Kartoum, B.T. Martin, T.N. Rosser and J.M. Kulicki, 9/3/97, 
(PB98-108996, A09, MF-A02). 

 
NCEER-97-0008 "A Method for Earthquake Motion-Damage Relationships with Application to Reinforced Concrete Frames," 

by A. Singhal and A.S. Kiremidjian, 9/10/97, (PB98-108988, A13, MF-A03). 
 
NCEER-97-0009 "Seismic Analysis and Design of Bridge Abutments Considering Sliding and Rotation," by K. Fishman and 

R. Richards, Jr., 9/15/97, (PB98-108897, A06, MF-A02). 
 
NCEER-97-0010 "Proceedings of the FHWA/NCEER Workshop on the National Representation of Seismic Ground Motion 

for New and Existing Highway Facilities," edited by I.M. Friedland, M.S. Power and R.L. Mayes, 9/22/97, 
(PB98-128903, A21, MF-A04). 

 
NCEER-97-0011 "Seismic Analysis for Design or Retrofit of Gravity Bridge Abutments," by K.L. Fishman, R. Richards, Jr. 

and R.C. Divito, 10/2/97, (PB98-128937, A08, MF-A02). 
 
NCEER-97-0012 "Evaluation of Simplified Methods of Analysis for Yielding Structures," by P. Tsopelas, M.C. Constantinou, 

C.A. Kircher and A.S. Whittaker, 10/31/97, (PB98-128929, A10, MF-A03). 
 
NCEER-97-0013 "Seismic Design of Bridge Columns Based on Control and Repairability of Damage," by C-T. Cheng and 

J.B. Mander, 12/8/97, (PB98-144249, A11, MF-A03). 
 
NCEER-97-0014 "Seismic Resistance of Bridge Piers Based on Damage Avoidance Design," by J.B. Mander and C-T. Cheng, 

12/10/97, (PB98-144223, A09, MF-A02). 
 
NCEER-97-0015 “Seismic Response of Nominally Symmetric Systems with Strength Uncertainty,” by S. Balopoulou and M. 

Grigoriu, 12/23/97, (PB98-153422, A11, MF-A03). 
 
NCEER-97-0016 “Evaluation of Seismic Retrofit Methods for Reinforced Concrete Bridge Columns,” by T.J. Wipf, F.W. 

Klaiber and F.M. Russo, 12/28/97, (PB98-144215, A12, MF-A03). 
 
NCEER-97-0017 “Seismic Fragility of Existing Conventional Reinforced Concrete Highway Bridges,” by C.L. Mullen and 

A.S. Cakmak, 12/30/97, (PB98-153406, A08, MF-A02). 
 
NCEER-97-0018 “Loss Asssessment of Memphis Buildings,” edited by D.P. Abrams and M. Shinozuka, 12/31/97, (PB98-

144231, A13, MF-A03). 
 
NCEER-97-0019 “Seismic Evaluation of Frames with Infill Walls Using Quasi-static Experiments,” by K.M. Mosalam, R.N. 

White and P. Gergely, 12/31/97, (PB98-153455, A07, MF-A02). 
 
NCEER-97-0020 “Seismic Evaluation of Frames with Infill Walls Using Pseudo-dynamic Experiments,” by K.M. Mosalam, 

R.N. White and P. Gergely, 12/31/97, (PB98-153430, A07, MF-A02). 
 
NCEER-97-0021 “Computational Strategies for Frames with Infill Walls: Discrete and Smeared Crack Analyses and Seismic 

Fragility,” by K.M. Mosalam, R.N. White and P. Gergely, 12/31/97, (PB98-153414, A10, MF-A02). 
 



 

 216

NCEER-97-0022 “Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils,” edited by T.L. 
Youd and I.M. Idriss, 12/31/97, (PB98-155617, A15, MF-A03). 

 
MCEER-98-0001 “Extraction of Nonlinear Hysteretic Properties of Seismically Isolated Bridges from Quick-Release Field 

Tests,” by Q. Chen, B.M. Douglas, E.M. Maragakis and I.G. Buckle, 5/26/98, (PB99-118838, A06, MF- 
A01). 

 
MCEER-98-0002 “Methodologies for Evaluating the Importance of Highway Bridges,” by A. Thomas, S. Eshenaur and J. 

Kulicki, 5/29/98, (PB99-118846, A10, MF-A02). 
 
MCEER-98-0003 “Capacity Design of Bridge Piers and the Analysis of Overstrength,” by J.B. Mander, A. Dutta and P. Goel, 

6/1/98, (PB99-118853, A09, MF-A02). 
 
MCEER-98-0004 “Evaluation of Bridge Damage Data from the Loma Prieta and Northridge, California Earthquakes,” by N. 

Basoz and A. Kiremidjian, 6/2/98, (PB99-118861, A15, MF-A03). 
 
MCEER-98-0005 “Screening Guide for Rapid Assessment of Liquefaction Hazard at Highway Bridge Sites,” by T. L. Youd, 

6/16/98, (PB99-118879, A06, not available on microfiche). 
 
MCEER-98-0006 “Structural Steel and Steel/Concrete Interface Details for Bridges,” by P. Ritchie, N. Kauhl and J. Kulicki, 

7/13/98, (PB99-118945, A06, MF-A01). 
 
MCEER-98-0007 “Capacity Design and Fatigue Analysis of Confined Concrete Columns,” by A. Dutta and J.B. Mander, 

7/14/98, (PB99-118960, A14, MF-A03). 
 
MCEER-98-0008 “Proceedings of the Workshop on Performance Criteria for Telecommunication Services Under Earthquake 

Conditions,” edited by A.J. Schiff, 7/15/98, (PB99-118952, A08, MF-A02). 
 
MCEER-98-0009 “Fatigue Analysis of Unconfined Concrete Columns,” by J.B. Mander, A. Dutta and J.H. Kim, 9/12/98, 

(PB99-123655, A10, MF-A02). 
 
MCEER-98-0010 “Centrifuge Modeling of Cyclic Lateral Response of Pile-Cap Systems and Seat-Type Abutments in Dry 

Sands,” by A.D. Gadre and R. Dobry, 10/2/98, (PB99-123606, A13, MF-A03). 
 
MCEER-98-0011 “IDARC-BRIDGE: A Computational Platform for Seismic Damage Assessment of Bridge Structures,” by 

A.M. Reinhorn, V. Simeonov, G. Mylonakis and Y. Reichman, 10/2/98, (PB99-162919, A15, MF-A03). 
 
MCEER-98-0012 “Experimental Investigation of the Dynamic Response of Two Bridges Before and After Retrofitting with 

Elastomeric Bearings,” by D.A. Wendichansky, S.S. Chen and J.B. Mander, 10/2/98, (PB99-162927, A15, 
MF-A03). 

 
MCEER-98-0013 “Design Procedures for Hinge Restrainers and Hinge Sear Width for Multiple-Frame Bridges,” by R. Des 

Roches and G.L. Fenves, 11/3/98, (PB99-140477, A13, MF-A03). 
 
MCEER-98-0014 “Response Modification Factors for Seismically Isolated Bridges,” by M.C. Constantinou and J.K. Quarshie, 

11/3/98, (PB99-140485, A14, MF-A03). 
 
MCEER-98-0015 “Proceedings of the U.S.-Italy Workshop on Seismic Protective Systems for Bridges,” edited by I.M. Friedland 

and M.C. Constantinou, 11/3/98, (PB2000-101711, A22, MF-A04). 
 
MCEER-98-0016 “Appropriate Seismic Reliability for Critical Equipment Systems: Recommendations Based on Regional 

Analysis of Financial and Life Loss,” by K. Porter, C. Scawthorn, C. Taylor and N. Blais, 11/10/98, (PB99-
157265, A08, MF-A02). 

 
MCEER-98-0017 “Proceedings of the U.S. Japan Joint Seminar on Civil Infrastructure Systems Research,” edited by M. 

Shinozuka and A. Rose, 11/12/98, (PB99-156713, A16, MF-A03). 
 
MCEER-98-0018 “Modeling of Pile Footings and Drilled Shafts for Seismic Design,” by I. PoLam, M. Kapuskar and D. 

Chaudhuri, 12/21/98, (PB99-157257, A09, MF-A02). 
 



 

 217

MCEER-99-0001 "Seismic Evaluation of a Masonry Infilled Reinforced Concrete Frame by Pseudodynamic Testing," by S.G. 
Buonopane and R.N. White, 2/16/99, (PB99-162851, A09, MF-A02). 

 
MCEER-99-0002 "Response History Analysis of Structures with Seismic Isolation and Energy Dissipation Systems: 

Verification Examples for Program SAP2000," by J. Scheller and M.C. Constantinou, 2/22/99, (PB99-
162869, A08, MF-A02). 

 
MCEER-99-0003 "Experimental Study on the Seismic Design and Retrofit of Bridge Columns Including Axial Load Effects," 

by A. Dutta, T. Kokorina and J.B. Mander, 2/22/99, (PB99-162877, A09, MF-A02). 
 
MCEER-99-0004 "Experimental Study of Bridge Elastomeric and Other Isolation and Energy Dissipation Systems with 

Emphasis on Uplift Prevention and High Velocity Near-source Seismic Excitation," by A. Kasalanati and M. 
C. Constantinou, 2/26/99, (PB99-162885, A12, MF-A03). 

 
MCEER-99-0005 "Truss Modeling of Reinforced Concrete Shear-flexure Behavior," by J.H. Kim and J.B. Mander, 3/8/99, 

(PB99-163693, A12, MF-A03). 
 
MCEER-99-0006 "Experimental Investigation and Computational Modeling of Seismic Response of a 1:4 Scale Model Steel 

Structure with a Load Balancing Supplemental Damping System," by G. Pekcan, J.B. Mander and S.S. Chen, 
4/2/99, (PB99-162893, A11, MF-A03). 

 
MCEER-99-0007 "Effect of Vertical Ground Motions on the Structural Response of Highway Bridges," by M.R. Button, C.J. 

Cronin and R.L. Mayes, 4/10/99, (PB2000-101411, A10, MF-A03). 
 
MCEER-99-0008 "Seismic Reliability Assessment of Critical Facilities: A Handbook, Supporting Documentation, and Model 

Code Provisions," by G.S. Johnson, R.E. Sheppard, M.D. Quilici, S.J. Eder and C.R. Scawthorn, 4/12/99, 
(PB2000-101701, A18, MF-A04). 

 
MCEER-99-0009 "Impact Assessment of Selected MCEER Highway Project Research on the Seismic Design of Highway 

Structures," by C. Rojahn, R. Mayes, D.G. Anderson, J.H. Clark, D'Appolonia Engineering, S. Gloyd and 
R.V. Nutt, 4/14/99, (PB99-162901, A10, MF-A02). 

 
MCEER-99-0010 "Site Factors and Site Categories in Seismic Codes," by R. Dobry, R. Ramos and M.S. Power, 7/19/99, 

(PB2000-101705, A08, MF-A02). 
 
MCEER-99-0011 "Restrainer Design Procedures for Multi-Span Simply-Supported Bridges," by M.J. Randall, M. Saiidi, E. 

Maragakis and T. Isakovic, 7/20/99, (PB2000-101702, A10, MF-A02). 
 
MCEER-99-0012 "Property Modification Factors for Seismic Isolation Bearings," by M.C. Constantinou, P. Tsopelas, A. 

Kasalanati and E. Wolff, 7/20/99, (PB2000-103387, A11, MF-A03). 
 
MCEER-99-0013 "Critical Seismic Issues for Existing Steel Bridges," by P. Ritchie, N. Kauhl and J. Kulicki, 7/20/99, 

(PB2000-101697, A09, MF-A02). 
 
MCEER-99-0014 "Nonstructural Damage Database," by A. Kao, T.T. Soong and A. Vender, 7/24/99, (PB2000-101407, A06, 

MF-A01). 
 
MCEER-99-0015 "Guide to Remedial Measures for Liquefaction Mitigation at Existing Highway Bridge Sites," by H.G. 

Cooke and J. K. Mitchell, 7/26/99, (PB2000-101703, A11, MF-A03). 
 
MCEER-99-0016 "Proceedings of the MCEER Workshop on Ground Motion Methodologies for the Eastern United States," 

edited by N. Abrahamson and A. Becker, 8/11/99, (PB2000-103385, A07, MF-A02).  
 
MCEER-99-0017 "Quindío, Colombia Earthquake of January 25, 1999: Reconnaissance Report," by A.P. Asfura and P.J. 

Flores, 10/4/99, (PB2000-106893, A06, MF-A01). 
 
MCEER-99-0018 "Hysteretic Models for Cyclic Behavior of Deteriorating Inelastic Structures," by M.V. Sivaselvan and A.M. 

Reinhorn, 11/5/99, (PB2000-103386, A08, MF-A02). 
 



 

 218

MCEER-99-0019 "Proceedings of the 7th U.S.- Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and 
Countermeasures Against Soil Liquefaction," edited by T.D. O'Rourke, J.P. Bardet and M. Hamada, 
11/19/99, (PB2000-103354, A99, MF-A06). 

 
MCEER-99-0020 "Development of Measurement Capability for Micro-Vibration Evaluations with Application to Chip 

Fabrication Facilities," by G.C. Lee, Z. Liang, J.W. Song, J.D. Shen and W.C. Liu, 12/1/99, (PB2000-
105993, A08, MF-A02). 

 
MCEER-99-0021 "Design and Retrofit Methodology for Building Structures with Supplemental Energy Dissipating Systems," 

by G. Pekcan, J.B. Mander and S.S. Chen, 12/31/99, (PB2000-105994, A11, MF-A03). 
 
MCEER-00-0001 "The Marmara, Turkey Earthquake of August 17, 1999: Reconnaissance Report," edited by C. Scawthorn; 

with major contributions by M. Bruneau, R. Eguchi, T. Holzer, G. Johnson, J. Mander, J. Mitchell, W. 
Mitchell, A. Papageorgiou, C. Scaethorn, and G. Webb, 3/23/00, (PB2000-106200, A11, MF-A03). 

 
MCEER-00-0002 "Proceedings of the MCEER Workshop for Seismic Hazard Mitigation of Health Care Facilities," edited by 

G.C. Lee, M. Ettouney, M. Grigoriu, J. Hauer and J. Nigg, 3/29/00, (PB2000-106892, A08, MF-A02). 
 
MCEER-00-0003 "The Chi-Chi, Taiwan Earthquake of September 21, 1999: Reconnaissance Report," edited by G.C. Lee and 

C.H. Loh, with major contributions by G.C. Lee, M. Bruneau, I.G. Buckle, S.E. Chang, P.J. Flores, T.D. 
O'Rourke, M. Shinozuka, T.T. Soong, C-H. Loh, K-C. Chang, Z-J. Chen, J-S. Hwang, M-L. Lin, G-Y. Liu, 
K-C. Tsai, G.C. Yao and C-L. Yen, 4/30/00, (PB2001-100980, A10, MF-A02). 

 
MCEER-00-0004 "Seismic Retrofit of End-Sway Frames of Steel Deck-Truss Bridges with a Supplemental Tendon System: 

Experimental and Analytical Investigation," by G. Pekcan, J.B. Mander and S.S. Chen, 7/1/00, (PB2001-
100982, A10, MF-A02). 

 
MCEER-00-0005 "Sliding Fragility of Unrestrained Equipment in Critical Facilities," by W.H. Chong and T.T. Soong, 7/5/00, 

(PB2001-100983, A08, MF-A02). 
 
MCEER-00-0006 "Seismic Response of Reinforced Concrete Bridge Pier Walls in the Weak Direction," by N. Abo-Shadi, M. 

Saiidi and D. Sanders, 7/17/00, (PB2001-100981, A17, MF-A03). 
 
MCEER-00-0007 "Low-Cycle Fatigue Behavior of Longitudinal Reinforcement in Reinforced Concrete Bridge Columns," by 

J. Brown and S.K. Kunnath, 7/23/00, (PB2001-104392, A08, MF-A02). 
 
MCEER-00-0008 "Soil Structure Interaction of Bridges for Seismic Analysis," I. PoLam and H. Law, 9/25/00, (PB2001-

105397, A08, MF-A02). 
 
MCEER-00-0009 "Proceedings of the First MCEER Workshop on Mitigation of Earthquake Disaster by Advanced 

Technologies (MEDAT-1), edited by M. Shinozuka, D.J. Inman and T.D. O'Rourke, 11/10/00, (PB2001-
105399, A14, MF-A03). 

 
MCEER-00-0010 "Development and Evaluation of Simplified Procedures for Analysis and Design of Buildings with Passive 

Energy Dissipation Systems, Revision 01," by O.M. Ramirez, M.C. Constantinou, C.A. Kircher, A.S. 
Whittaker, M.W. Johnson, J.D. Gomez and C. Chrysostomou, 11/16/01, (PB2001-105523, A23, MF-A04). 

 
MCEER-00-0011 "Dynamic Soil-Foundation-Structure Interaction Analyses of Large Caissons," by C-Y. Chang, C-M. Mok, 

Z-L. Wang, R. Settgast, F. Waggoner, M.A. Ketchum, H.M. Gonnermann and C-C. Chin, 12/30/00, 
(PB2001-104373, A07, MF-A02). 

 
MCEER-00-0012 "Experimental Evaluation of Seismic Performance of Bridge Restrainers," by A.G. Vlassis, E.M. Maragakis 

and M. Saiid Saiidi, 12/30/00, (PB2001-104354, A09, MF-A02). 
 
MCEER-00-0013 "Effect of Spatial Variation of Ground Motion on Highway Structures," by M. Shinozuka, V. Saxena and G. 

Deodatis, 12/31/00, (PB2001-108755, A13, MF-A03). 
 
MCEER-00-0014 "A Risk-Based Methodology for Assessing the Seismic Performance of Highway Systems," by S.D. Werner, 

C.E. Taylor, J.E. Moore, II, J.S. Walton and S. Cho, 12/31/00, (PB2001-108756, A14, MF-A03). 
 



 

 219

MCEER-01-0001 “Experimental Investigation of P-Delta Effects to Collapse During Earthquakes,” by D. Vian and M. 
Bruneau, 6/25/01, (PB2002-100534, A17, MF-A03). 

 
MCEER-01-0002 “Proceedings of the Second MCEER Workshop on Mitigation of Earthquake Disaster by Advanced 

Technologies (MEDAT-2),” edited by M. Bruneau and D.J. Inman, 7/23/01, (PB2002-100434, A16, MF-
A03). 

 
MCEER-01-0003 “Sensitivity Analysis of Dynamic Systems Subjected to Seismic Loads,” by C. Roth and M. Grigoriu, 

9/18/01, (PB2003-100884, A12, MF-A03). 
 
MCEER-01-0004 “Overcoming Obstacles to Implementing Earthquake Hazard Mitigation Policies: Stage 1 Report,” by D.J. 

Alesch and W.J. Petak, 12/17/01, (PB2002-107949, A07, MF-A02). 
 
MCEER-01-0005 “Updating Real-Time Earthquake Loss Estimates: Methods, Problems and Insights,” by C.E. Taylor, S.E. 

Chang and R.T. Eguchi, 12/17/01, (PB2002-107948, A05, MF-A01). 
 
MCEER-01-0006 “Experimental Investigation and Retrofit of Steel Pile Foundations and Pile Bents Under Cyclic Lateral 

Loadings,” by A. Shama, J. Mander, B. Blabac and S. Chen, 12/31/01, (PB2002-107950, A13, MF-A03). 
 
MCEER-02-0001 “Assessment of Performance of Bolu Viaduct in the 1999 Duzce Earthquake in Turkey” by P.C. Roussis, 

M.C. Constantinou, M. Erdik, E. Durukal and M. Dicleli, 5/8/02, (PB2003-100883, A08, MF-A02). 
 
MCEER-02-0002 “Seismic Behavior of Rail Counterweight Systems of Elevators in Buildings,” by M.P. Singh, Rildova and 

L.E. Suarez, 5/27/02. (PB2003-100882, A11, MF-A03). 
 
MCEER-02-0003 “Development of Analysis and Design Procedures for Spread Footings,” by G. Mylonakis, G. Gazetas, S. 

Nikolaou and A. Chauncey, 10/02/02, (PB2004-101636, A13, MF-A03, CD-A13). 
 
MCEER-02-0004 “Bare-Earth Algorithms for Use with SAR and LIDAR Digital Elevation Models,” by C.K. Huyck, R.T. 

Eguchi and B. Houshmand, 10/16/02, (PB2004-101637, A07, CD-A07). 
 
MCEER-02-0005 “Review of Energy Dissipation of Compression Members in Concentrically Braced Frames,” by K.Lee and 

M. Bruneau, 10/18/02, (PB2004-101638, A10, CD-A10). 
 
MCEER-03-0001 “Experimental Investigation of Light-Gauge Steel Plate Shear Walls for the Seismic Retrofit of Buildings” 

by J. Berman and M. Bruneau, 5/2/03, (PB2004-101622, A10, MF-A03, CD-A10). 

MCEER-03-0002 “Statistical Analysis of Fragility Curves,” by M. Shinozuka, M.Q. Feng, H. Kim, T. Uzawa and T. Ueda, 
6/16/03, (PB2004-101849, A09, CD-A09). 

 
MCEER-03-0003 “Proceedings of the Eighth U.S.-Japan Workshop on Earthquake Resistant Design f Lifeline Facilities and 

Countermeasures Against Liquefaction,” edited by M. Hamada, J.P. Bardet and T.D. O’Rourke, 6/30/03, 
(PB2004-104386, A99, CD-A99). 

 
MCEER-03-0004 “Proceedings of the PRC-US Workshop on Seismic Analysis and Design of Special Bridges,” edited by L.C. 

Fan and G.C. Lee, 7/15/03, (PB2004-104387, A14, CD-A14). 
 
MCEER-03-0005 “Urban Disaster Recovery: A Framework and Simulation Model,” by S.B. Miles and S.E. Chang, 7/25/03, 

(PB2004-104388, A07, CD-A07). 
 
MCEER-03-0006 “Behavior of Underground Piping Joints Due to Static and Dynamic Loading,” by R.D. Meis, M. Maragakis 

and R. Siddharthan, 11/17/03, (PB2005-102194, A13, MF-A03, CD-A00). 
 
MCEER-03-0007 “Seismic Vulnerability of Timber Bridges and Timber Substructures,” by A.A. Shama, J.B. Mander, I.M. 

Friedland and D.R. Allicock, 12/15/03. 
 
MCEER-04-0001 “Experimental Study of Seismic Isolation Systems with Emphasis on Secondary System Response and 

Verification of Accuracy of Dynamic Response History Analysis Methods,” by E. Wolff and M. 
Constantinou, 1/16/04 (PB2005-102195, A99, MF-E08, CD-A00). 

 



 

 220

MCEER-04-0002 “Tension, Compression and Cyclic Testing of Engineered Cementitious Composite Materials,” by K. Kesner 
and S.L. Billington, 3/1/04, (PB2005-102196, A08, CD-A08). 

 
MCEER-04-0003 “Cyclic Testing of Braces Laterally Restrained by Steel Studs to Enhance Performance During Earthquakes,” 

by O.C. Celik, J.W. Berman and M. Bruneau, 3/16/04, (PB2005-102197, A13, MF-A03, CD-A00). 
 
MCEER-04-0004 “Methodologies for Post Earthquake Building Damage Detection Using SAR and Optical Remote Sensing: 

Application to the August 17, 1999 Marmara, Turkey Earthquake,” by C.K. Huyck, B.J. Adams, S. Cho, 
R.T. Eguchi, B. Mansouri and B. Houshmand, 6/15/04, (PB2005-104888, A10, CD-A00). 

 
MCEER-04-0005 “Nonlinear Structural Analysis Towards Collapse Simulation: A Dynamical Systems Approach,” by M.V. 

Sivaselvan and A.M. Reinhorn, 6/16/04, (PB2005-104889, A11, MF-A03, CD-A00). 
 
MCEER-04-0006 “Proceedings of the Second PRC-US Workshop on Seismic Analysis and Design of Special Bridges,” edited 

by G.C. Lee and L.C. Fan, 6/25/04, (PB2005-104890, A16,  CD-A00). 
 
MCEER-04-0007 “Seismic Vulnerability Evaluation of Axially Loaded Steel Built-up Laced Members,” by K. Lee and M. 

Bruneau, 6/30/04, (PB2005-104891, A16, CD-A00). 
 
MCEER-04-0008 “Evaluation of Accuracy of Simplified Methods of Analysis and Design of Buildings with Damping Systems 

for Near-Fault and for Soft-Soil Seismic Motions,” by E.A. Pavlou and M.C. Constantinou, 8/16/04, 
(PB2005-104892, A08, MF-A02, CD-A00). 

 
MCEER-04-0009 “Assessment of Geotechnical Issues in Acute Care Facilities in California,” by M. Lew, T.D. O’Rourke, R. 

Dobry and M. Koch, 9/15/04, (PB2005-104893, A08, CD-A00). 
 
MCEER-04-0010 “Scissor-Jack-Damper Energy Dissipation System,” by A.N. Sigaher-Boyle and M.C. Constantinou, 12/1/04 

(PB2005-108221). 
 
MCEER-04-0011 “Seismic Retrofit of Bridge Steel Truss Piers Using a Controlled Rocking Approach,” by M. Pollino and M. 

Bruneau, 12/20/04 (PB2006-105795). 
 
MCEER-05-0001 “Experimental and Analytical Studies of Structures Seismically Isolated with an Uplift-Restraint Isolation 

System,” by P.C. Roussis and M.C. Constantinou, 1/10/05 (PB2005-108222). 
 
MCEER-05-0002 “A Versatile Experimentation Model for Study of Structures Near Collapse Applied to Seismic Evaluation of 

Irregular Structures,” by D. Kusumastuti, A.M. Reinhorn and A. Rutenberg, 3/31/05 (PB2006-101523). 
 
MCEER-05-0003 “Proceedings of the Third PRC-US Workshop on Seismic Analysis and Design of Special Bridges,” edited 

by L.C. Fan and G.C. Lee, 4/20/05, (PB2006-105796). 
 
MCEER-05-0004 “Approaches for the Seismic Retrofit of Braced Steel Bridge Piers and Proof-of-Concept Testing of an 

Eccentrically Braced Frame with Tubular Link,” by J.W. Berman and M. Bruneau, 4/21/05 (PB2006-
101524). 

 
MCEER-05-0005 “Simulation of Strong Ground Motions for Seismic Fragility Evaluation of Nonstructural Components in 

Hospitals,” by A. Wanitkorkul and A. Filiatrault, 5/26/05 (PB2006-500027). 
 
MCEER-05-0006 “Seismic Safety in California Hospitals: Assessing an Attempt to Accelerate the Replacement or Seismic 

Retrofit of Older Hospital Facilities,” by D.J. Alesch, L.A. Arendt and W.J. Petak, 6/6/05 (PB2006-105794). 
 
MCEER-05-0007 “Development of Seismic Strengthening and Retrofit Strategies for Critical Facilities Using Engineered 

Cementitious Composite Materials,” by K. Kesner and S.L. Billington, 8/29/05 (PB2006-111701). 
 
MCEER-05-0008 “Experimental and Analytical Studies of Base Isolation Systems for Seismic Protection of Power 

Transformers,” by N. Murota, M.Q. Feng and G-Y. Liu, 9/30/05 (PB2006-111702). 
 
MCEER-05-0009 “3D-BASIS-ME-MB: Computer Program for Nonlinear Dynamic Analysis of Seismically Isolated 

Structures,” by P.C. Tsopelas, P.C. Roussis, M.C. Constantinou, R. Buchanan and A.M. Reinhorn, 10/3/05 
(PB2006-111703). 

 



 

 221

MCEER-05-0010 “Steel Plate Shear Walls for Seismic Design and Retrofit of Building Structures,” by D. Vian and M. 
Bruneau, 12/15/05 (PB2006-111704). 

 
MCEER-05-0011 “The Performance-Based Design Paradigm,” by M.J. Astrella and A. Whittaker, 12/15/05 (PB2006-111705). 
 
MCEER-06-0001 “Seismic Fragility of Suspended Ceiling Systems,” H. Badillo-Almaraz, A.S. Whittaker, A.M. Reinhorn and 

G.P. Cimellaro, 2/4/06 (PB2006-111706). 
 
MCEER-06-0002 “Multi-Dimensional Fragility of Structures,” by G.P. Cimellaro, A.M. Reinhorn and M. Bruneau, 3/1/06 

(PB2007-106974, A09, MF-A02, CD A00). 
 
MCEER-06-0003 “Built-Up Shear Links as Energy Dissipators for Seismic Protection of Bridges,” by P. Dusicka, A.M. Itani 

and I.G. Buckle, 3/15/06 (PB2006-111708). 
 
MCEER-06-0004 “Analytical Investigation of the Structural Fuse Concept,” by R.E. Vargas and M. Bruneau, 3/16/06 

(PB2006-111709). 
 
MCEER-06-0005 “Experimental Investigation of the Structural Fuse Concept,” by R.E. Vargas and M. Bruneau, 3/17/06 

(PB2006-111710). 
 
MCEER-06-0006 “Further Development of Tubular Eccentrically Braced Frame Links for the Seismic Retrofit of Braced Steel 

Truss Bridge Piers,” by J.W. Berman and M. Bruneau, 3/27/06 (PB2007-105147). 
 
MCEER-06-0007 “REDARS Validation Report,” by S. Cho, C.K. Huyck, S. Ghosh and R.T. Eguchi, 8/8/06 (PB2007-106983). 
 
MCEER-06-0008 “Review of Current NDE Technologies for Post-Earthquake Assessment of Retrofitted Bridge Columns,” by 

J.W. Song, Z. Liang and G.C. Lee, 8/21/06 06 (PB2007-106984). 
 
MCEER-06-0009 “Liquefaction Remediation in Silty Soils Using Dynamic Compaction and Stone Columns,” by S. 

Thevanayagam, G.R. Martin, R. Nashed, T. Shenthan, T. Kanagalingam and N. Ecemis, 8/28/06 06 
(PB2007-106985). 

 
MCEER-06-0010 “Conceptual Design and Experimental Investigation of Polymer Matrix Composite Infill Panels for Seismic 

Retrofitting,” by W. Jung, M. Chiewanichakorn and A.J. Aref, 9/21/06 (PB2007-106986). 
 
MCEER-06-0011 “A Study of the Coupled Horizontal-Vertical Behavior of Elastomeric and Lead-Rubber Seismic Isolation 

Bearings,” by G.P. Warn and A.S. Whittaker, 9/22/06 (PB2007-108679). 
 
MCEER-06-0012 “Proceedings of the Fourth PRC-US Workshop on Seismic Analysis and Design of Special Bridges: 

Advancing Bridge Technologies in Research, Design, Construction and Preservation,” Edited by L.C. Fan, 
G.C. Lee and L. Ziang, 10/12/06 (PB2007-109042). 

 
MCEER-06-0013 “Cyclic Response and Low Cycle Fatigue Characteristics of Plate Steels,” by P. Dusicka, A.M. Itani and I.G. 

Buckle, 11/1/06 06 (PB2007-106987). 
 
MCEER-06-0014 “Proceedings of the Second US-Taiwan Bridge Engineering Workshop,” edited by W.P. Yen, J. Shen, J-Y. 

Chen and M. Wang, 11/15/06.  
 
MCEER-06-0015 “User Manual and Technical Documentation for the REDARSTM Import Wizard,” by S. Cho, S. Ghosh, C.K. 

Huyck and S.D. Werner, 11/30/06 (PB2007-114766). 
 
MCEER-06-0016 “Hazard Mitigation Strategy and Monitoring Technologies for Urban and Infrastructure Public Buildings: 

Proceedings of the China-US Workshops,” edited by X.Y. Zhou, A.L. Zhang, G.C. Lee and M. Tong, 
12/12/06 (PB2008-500018). 

 
MCEER-07-0001 “Static and Kinetic Coefficients of Friction for Rigid Blocks,” by C. Kafali, S. Fathali, M. Grigoriu and A.S. 

Whittaker, 3/20/07 (PB2007-114767). 
 
MCEER-07-0002 “Hazard Mitigation Investment Decision Making: Organizational Response to Legislative Mandate,” by L.A. 

Arendt, D.J. Alesch and W.J. Petak, 4/9/07 (PB2007-114768). 
 



 

 222

MCEER-07-0003 “Seismic Behavior of Bidirectional-Resistant Ductile End Diaphragms with Unbonded Braces in Straight or 
Skewed Steel Bridges,” by O. Celik and M. Bruneau, 4/11/07 (PB2008-105141). 

 
MCEER-07-0004 “Modeling Pile Behavior in Large Pile Groups Under Lateral Loading,” by A.M. Dodds and G.R. Martin, 

4/16/07(PB2008-105142). 
 
MCEER-07-0005 “Experimental Investigation of Blast Performance of Seismically Resistant Concrete-Filled Steel Tube 

Bridge Piers,” by S. Fujikura, M. Bruneau and D. Lopez-Garcia, 4/20/07 (PB2008-105143). 
 
MCEER-07-0006 “Seismic Analysis of Conventional and Isolated Liquefied Natural Gas Tanks Using Mechanical Analogs,” 

by I.P. Christovasilis and A.S. Whittaker, 5/1/07. 
 
MCEER-07-0007 “Experimental Seismic Performance Evaluation of Isolation/Restraint Systems for Mechanical Equipment – 

Part 1: Heavy Equipment Study,” by S. Fathali and A. Filiatrault, 6/6/07 (PB2008-105144). 
 
MCEER-07-0008 “Seismic Vulnerability of Timber Bridges and Timber Substructures,” by A.A. Sharma, J.B. Mander, I.M. 

Friedland and D.R. Allicock, 6/7/07 (PB2008-105145). 
 
MCEER-07-0009 “Experimental and Analytical Study of the XY-Friction Pendulum (XY-FP) Bearing for Bridge 

Applications,” by C.C. Marin-Artieda, A.S. Whittaker and M.C. Constantinou, 6/7/07 (PB2008-105191). 
 
MCEER-07-0010 “Proceedings of the PRC-US Earthquake Engineering Forum for Young Researchers,” Edited by G.C. Lee 

and X.Z. Qi, 6/8/07. 
 
MCEER-07-0011 “Design Recommendations for Perforated Steel Plate Shear Walls,” by R. Purba and M. Bruneau, 6/18/07, 

(PB2008-105192). 
 
MCEER-07-0012 “Performance of Seismic Isolation Hardware Under Service and Seismic Loading,” by M.C. Constantinou, 

A.S. Whittaker, Y. Kalpakidis, D.M. Fenz and G.P. Warn, 8/27/07, (PB2008-105193). 
 
MCEER-07-0013 “Experimental Evaluation of the Seismic Performance of Hospital Piping Subassemblies,” by E.R. Goodwin, 

E. Maragakis and A.M. Itani, 9/4/07, (PB2008-105194). 
 
MCEER-07-0014 “A Simulation Model of Urban Disaster Recovery and Resilience: Implementation for the 1994 Northridge 

Earthquake,” by S. Miles and S.E. Chang, 9/7/07, (PB2008-106426). 
 
MCEER-07-0015 “Statistical and Mechanistic Fragility Analysis of Concrete Bridges,” by M. Shinozuka, S. Banerjee and S-H. 

Kim, 9/10/07, (PB2008-106427). 
 
MCEER-07-0016 “Three-Dimensional Modeling of Inelastic Buckling in Frame Structures,” by M. Schachter and AM. 

Reinhorn, 9/13/07, (PB2008-108125). 
 
MCEER-07-0017 “Modeling of Seismic Wave Scattering on Pile Groups and Caissons,” by I. Po Lam, H. Law and C.T. Yang, 

9/17/07. 
 
MCEER-07-0018 “Bridge Foundations: Modeling Large Pile Groups and Caissons for Seismic Design,” by I. Po Lam, H. Law 

and G.R. Martin (Coordinating Author), 12/1/07. 
 
MCEER-07-0019 “Principles and Performance of Roller Seismic Isolation Bearings for Highway Bridges,” by G.C. Lee, Y.C. 

Ou, Z. Liang, T.C. Niu and J. Song, 12/10/07. 
 
MCEER-07-0020 “Centrifuge Modeling of Permeability and Pinning Reinforcement Effects on Pile Response to Lateral 

Spreading,” by L.L Gonzalez-Lagos, T. Abdoun and R. Dobry, 12/10/07. 
 
MCEER-07-0021 “Damage to the Highway System from the Pisco, Perú Earthquake of August 15, 2007,” by J.S. O’Connor, 

L. Mesa and M. Nykamp, 12/10/07, (PB2008-108126). 
 
MCEER-07-0022 “Experimental Seismic Performance Evaluation of Isolation/Restraint Systems for Mechanical Equipment – 

Part 2: Light Equipment Study,” by S. Fathali and A. Filiatrault, 12/13/07. 
 



 

 223

MCEER-07-0023 “Fragility Considerations in Highway Bridge Design,” by M. Shinozuka, S. Banerjee and S.H. Kim, 
12/14/07. 

 
MCEER-07-0024 “Performance Estimates for Seismically Isolated Bridges,” by G.P. Warn and A.S. Whittaker, 12/30/07. 
 
MCEER-08-0001 “Seismic Performance of Steel Girder Bridge Superstructures with Conventional Cross Frames,” by L.P. 

Carden, A.M. Itani and I.G. Buckle, 1/7/08. 
 
MCEER-08-0002 “Seismic Performance of Steel Girder Bridge Superstructures with Ductile End Cross Frames with Seismic 

Isolators,” by L.P. Carden, A.M. Itani and I.G. Buckle, 1/7/08. 
 
MCEER-08-0003 “Analytical and Experimental Investigation of a Controlled Rocking Approach for Seismic Protection of 

Bridge Steel Truss Piers,” by M. Pollino and M. Bruneau, 1/21/08. 
 
MCEER-08-0004 “Linking Lifeline Infrastructure Performance and Community Disaster Resilience: Models and Multi-

Stakeholder Processes,” by S.E. Chang, C. Pasion, K. Tatebe and R. Ahmad, 3/3/08. 
 
MCEER-08-0005 “Modal Analysis of Generally Damped Linear Structures Subjected to Seismic Excitations,” by J. Song, Y-L. 

Chu, Z. Liang and G.C. Lee, 3/4/08. 
 
MCEER-08-0006 “System Performance Under Multi-Hazard Environments,” by C. Kafali and M. Grigoriu, 3/4/08. 



 

  





ISSN 1520-295X 

University at Buffalo The State University of New York




