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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a na-
tional center of excellence in advanced technology applications that is dedicated to the 
reduction of earthquake losses nationwide. Headquartered at the University at Buffalo, 
State University of New York, the Center was originally established by the National Sci-
ence Foundation in 1986, as the National Center for Earthquake Engineering Research 
(NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions 
throughout the United States, the Center’s mission is to reduce earthquake losses 
through research and the application of advanced technologies that improve engineer-
ing, pre-earthquake planning and post-earthquake recovery strategies. Toward this 
end, the Center coordinates a nationwide program of multidisciplinary team research, 
education and outreach activities. 

MCEER’s research is conducted under the sponsorship of two major federal agencies, the 
National Science Foundation (NSF) and the Federal Highway Administration (FHWA), 
and the State of New York. Signifi cant support is also derived from the Federal Emer-
gency Management Agency (FEMA), other state governments, academic institutions, 
foreign governments and private industry.

The Center’s Highway Project develops improved seismic design, evaluation, and 
retrofi t methodologies and strategies for new and existing bridges and other highway 
structures, and for assessing the seismic performance of highway systems.  The FHWA 
has sponsored three major contracts with MCEER under the Highway Project, two of 
which were initiated in 1992 and the third in 1998.  

Of the two 1992 studies, one performed a series of tasks intended to improve seismic 
design practices for new highway bridges, tunnels, and retaining structures (MCEER 
Project 112).  The other study focused on methodologies and approaches for assessing 
and improving the seismic performance of existing “typical” highway bridges and other 
highway system components including tunnels, retaining structures, slopes, culverts, 
and pavements (MCEER Project 106).  These studies were conducted to:

• assess the seismic vulnerability of highway systems, structures, and components;
• develop concepts for retrofi tting vulnerable highway structures and components;
• develop improved design and analysis methodologies for bridges, tunnels, and retain-

ing structures, which include consideration of soil-structure interaction mechanisms 
and their infl uence on structural response; and

• develop, update, and recommend improved seismic design and performance criteria 
for new highway systems and structures.
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The 1998 study, “Seismic Vulnerability of the Highway System” (FHWA Contract 
DTFH61-98-C-00094; known as MCEER Project 094), was initiated with the objective 
of performing studies to improve the seismic performance of bridge types not covered 
under Projects 106 or 112, and to provide extensions to system performance assessments 
for highway systems.  Specifi c subjects covered under Project 094 include:

• development of formal loss estimation technologies and methodologies for highway 
systems;

• analysis, design, detailing, and retrofi tting technologies for special bridges, in-
cluding those with fl exible superstructures (e.g., trusses), those supported by steel 
tower substructures, and cable-supported bridges (e.g., suspension and cable-stayed 
bridges);

• seismic response modifi cation device technologies (e.g., hysteretic dampers, isola-
tion bearings); and

• soil behavior, foundation behavior, and ground motion studies for large bridges.

In addition, Project 094 includes a series of special studies, addressing topics that range 
from non-destructive assessment of retrofi tted bridge components to supporting studies 
intended to assist in educating the bridge engineering profession on the implementation 
of new seismic design and retrofi tting strategies.

Motivated by the need for a systematic approach for seismic evaluation and design of structures 
with supplemental damping, a general modal analysis method considering over-damped modes 
is developed and described in this report. The method deals with a unifi ed formulation used to 
evaluate most structural response quantities of interest, such as displacements, velocity, inter-
story drifts, story shear, damping forces and absolute accelerations, etc. In addition, a novel 
general real-valued transformation matrix is established, which can be used to decouple the equa-
tions of motion of a generally damped structure in terms of real-valued modal coordinates. The 
properties related to this transformation are discussed in detail to explain the dynamic nature of 
the generally damped structural system. Also, on the basis of the general modal response history 
analysis, two general modal combination rules for the response spectrum analysis, GCQC and 
GSRSS, are formulated. To enable the new rules to be applicable to the practicing earthquake 
engineering community, a conversion procedure to construct an over-damped mode response 
spectrum compatible with the given 5% standard design response spectrum is established. The 
adequacy of this conversion procedure is also validated. Examples are given to demonstrate the 
application of the modal analysis method, assess the accuracy of the new modal combination 
rules, and show that over-damped modes may develop in structures with supplemental damping, 
which can provide signifi cant response contributions to certain response parameters.
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ABSTRACT 

Motivated by the need for a systematic approach for seismic evaluation and design of 

civil engineering structures with supplemental damping, a general modal analysis method, 

in which over-damped modes are taken into account, is developed and described in this 

report.  

 

This general modal analysis method deals with a unified formulation used to evaluate 

most structural response quantities of interest, such as displacements, velocity, inter-story 

drifts, story shear, damping forces and absolute accelerations etc. In addition, a novel 

general real-valued transformation matrix is established, which can be utilized to 

decouple the equations of motion of a generally damped structure in terms of real-valued 

modal coordinates. Non-singularity of this matrix and other properties related to this 

transformation, such as modal responses to initial conditions, modal energy distribution, 

modal effective masses and modal truncation etc., are discussed in details to explain the 

dynamic nature of the generally damped structural system. 

 

Furthermore, on the basis of the general modal response history analysis and the white 

noise input assumption as well as the theory of random vibration, two general modal 

combination rules for the response spectrum analysis, GCQC and GSRSS are formulated 

to handle non-classical damping and over-damped modes. To enable the new rules 

applicable to the practical earthquake engineering, a conversion procedure to construct an 

over-damped mode response spectrum compatible with the given 5% standard design 

response spectrum is established. The adequacy of this conversion procedure is also 

validated.  

 

Examples are given to demonstrate the application of the modal analysis method, to 

assess the accuracy of the new modal combination rules, and to show that over-damped 

modes may develop in structures with supplemental damping which can provide 

significant response contributions to certain response parameters. 



 

  



vii 

ACKNOWLEDGEMENT 

 

This study is originally motivated by the need for a more comprehensive and 

systematic approach for the design of structure with added earthquake response control 

devices, especially for large, unusual and complex bridges and buildings. The authors 

greatly acknowledge the support of the Federal Highway Administration (Contract 

Number: DTFH61-98-C-00094) and the National Science Foundation through MCEER 

(CMS 97-01471) for the development of a modal analysis approach for generally damped 

linear MDOF system reported herein. This fundamental study will be further developed 

for the design of seismic response modification devices and systems for highway bridges 

and other structures under the sponsorship of FHWA. 



 



 ix

TABLE OF CONTENTS 
 

Chapter  Title                  Page 
 
1  Introduction .................................................................................................................... 1 

1.1 Overview .............................................................................................................. 1 
1.2 Research Objectives ............................................................................................. 5 
1.3 Scope of Work ..................................................................................................... 6 
1.4 Organization of the Report................................................................................... 7 

 
2  Equation of Motion and Eigen Analysis ........................................................................ 9 

2.1 Introduction .......................................................................................................... 9 
2.2 Equation of Motion .............................................................................................. 9 
2.3 Eigen Analysis ................................................................................................... 10 
2.4 Orthogonality ..................................................................................................... 13 
2.5 Modal Decomposition and Superposition of Modal Responses ........................ 16 
2.6 Expansion of System Matrices in terms of Modal Parameters .......................... 17 

2.6.1 A Special Property of System Modal Shapes ......................................... 17 
2.6.2 Expansion of the Mass Matrix M  and Its Inverse   ............................. 18 
2.6.3 Expansion of the Damping Matrix C  .................................................... 19 
2.6.4 Expansion of the Stiffness Matrix K  and Flexibility Matrix 1−K  ....... 20 
2.6.5 Expansion of the Total Mass of the System MΣ  ................................... 21 

2.7 Reduction to Classically-Damped System ......................................................... 22 
 
3  General Modal Response History Analysis ................................................................. 25 

3.1 Introduction ........................................................................................................ 25 
3.2 Analytical Formulation ...................................................................................... 25 

3.2.1 Laplace Transform Operation ................................................................. 25 
3.2.2 Frequency Response Functions ............................................................... 31 
3.2.3 Response Solutions to Displacement, Velocity and Absolute  

Acceleration ............................................................................................ 32 
3.2.3.1 Displacement Response Vector ............................................... 32 
3.2.3.2 Velocity Response Vector ........................................................ 33 
3.2.3.3 Absolute Response Vector ...................................................... 35 

3.3 A Unified Form for Structural Responses ......................................................... 37 
3.3.1 Inter-Story Drift ...................................................................................... 38 



 x

TABLE OF CONTENTS (CONT’D) 
 

Chapter  Title                  Page 
 

3.3.2 Inter-Story Shear ..................................................................................... 38 
3.3.3 General Inter-Story Shear ....................................................................... 38 
3.3.4 Inter-Story Moment ................................................................................ 39 
3.3.5 General Inter-Story Moment ................................................................... 39 
3.3.6 Damper Forces ........................................................................................ 40 
3.3.7 Generalization ......................................................................................... 40 

3.4 Reduction to Classically Damped Systems ....................................................... 41 
 
4 General Modal Coordinate Transformation and Modal Energy .................................... 45 

4.1 Introduction ........................................................................................................ 45 
4.2 General Modal Transformation Matrix .............................................................. 45 
4.3 Proof of Modal Decoupling ............................................................................... 47 
4.4 Non-Singularity Analysis for General Transformation Matrix ......................... 56 
4.5 Numerical Example for General Modal Responses ........................................... 59 
4.6 General Modal Responses to Initial Conditions ................................................ 68 
4.7 General Modal Energy ....................................................................................... 77 

4.7.1 Energy Integral for Arbitrary Ground Motion Excitation ........................ 77 
4.7.2 Energy Integral for Sinusoidal Ground Motion Excitation ...................... 81 

4.8 Reduction to Classically Damped System ......................................................... 86 
4.8.1 Reduction of Modal Transformation Matrix ........................................... 86 
4.8.2 Reduction of Modal Responses to Initial Conditions ............................. 90 
4.8.3 Reduction of Energy Integral .................................................................. 91 

4.9 Dual Modal Space Approach and Structural DOFs Reduction ........................ 93 
4.9.1 Formulas Development ........................................................................... 93 
4.9.2 Numerical Example ................................................................................ 99 

 
5  Truncation of Modes .................................................................................................. 105 

5.1 Introduction ...................................................................................................... 105 
5.2 Effective Modal Mass for Classically Damped Systems w/o Over-Damped 

Modes .............................................................................................................. 105 
5.3 Effective Modal Mass for Generally Damped Systems ................................... 109 
5.4 Example ........................................................................................................... 117 



 xi

TABLE OF CONTENTS (CONT’D) 
 

Chapter  Title                  Page 
 
6  Response Spectrum Method ...................................................................................... 119 

6.1 Introduction ...................................................................................................... 119 
6.2 Analytical Formulation .................................................................................... 119 

6.2.1 Definition of Vector Operation Symbols .............................................. 120 
6.2.2 Covariance of Responses to Stationary Excitation ............................... 120 
6.2.3 Development of Response Spectrum Method ....................................... 127 
6.2.4 Investigation of the Correlation Factors ............................................... 128 
6.2.5 Reduction to Classically under-Damped Structures ............................. 129 

6.3 Over-Damped Mode Response Spectrum ........................................................ 131 
6.3.1 The Concept .......................................................................................... 132 
6.3.2 Construction of Over-Damped Mode Response Spectrum Consistent  

with 5% Displacement Response Spectrum ......................................... 133 

6.3.2.1 Response Spectrum Consistent PSD 
g
( )xG ω  ...................... 134 

6.3.2.2 Procedures ............................................................................. 134 
6.3.2.3 η  Factor Determination ....................................................... 135 

6.3.3 Validation of the Over-Damped  Mode Response Spectrum .............. 136 
 
7  Analysis Application Examples ................................................................................. 149 

7.1 Introduction ...................................................................................................... 149 
7.2 Example Building Frames ............................................................................... 149 
7.3 Response History Analysis using Modal Superposition Method .................... 151 

7.3.1 Ground Motions .................................................................................... 152 
7.3.2 Comparison of the Analysis Results ..................................................... 152 

7.4 Response Spectrum Analysis ........................................................................... 153 
7.4.1 Ground Motions .................................................................................... 154 
7.4.2 Comparison of the Analysis Results ..................................................... 154 

 
8  Summary, Conclusions and Future Research ............................................................ 165 

8.1 Summary .......................................................................................................... 165 
8.2 Conclusions ...................................................................................................... 166 
8.3 Future Research ............................................................................................... 168 



 xii

TABLE OF CONTENTS (CONT’D) 
 

Chapter  Title                  Page 
 
9  REFERENCES .......................................................................................................... 171 
 
APPENDIX A  Non-singularity of Matrices A , B , â  and b̂  .................................. 175 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Modal analysis to a linear structural system may be explained as a method for 

decoupling the equations of motion by means of modal coordinate transformation matrix 

as well as evaluating modal responses and further combined modal responses to estimate 

the structural responses. By the aid of modal analysis, the structural solutions, especially 

to a complicated structure with large degrees of freedom (DOFs), can be significantly 

simplified and the computation efforts can be largely reduced. Meanwhile, the resulting 

analysis accuracy can still be ensured within the range that is reasonable or acceptable in 

engineering applications. In addition, using this method, certain of the structural inherent 

properties may be much easier to be exposed. 

The decoupling coordinate transformation can be determined by the solution of an 

algebraic eigenvalue problem of the system. In earthquake engineering, the classical 

modal analysis method is considered as a powerful approach to analyze the seismic 

responses of classical damped linear structures. Two approaches of this method are: the 

modal response history analysis, which gives the complete response history of the 

structures, and the response spectrum analysis. When the structures satisfy the criterion 

specified by Caughey and O’Kelly (1965), the modes of the structure are real-valued and 

are identical to those of the associated undamped systems. This linear vibrating structure 

is said to be classically damped and possesses normal modes as well as can be decoupled 

by the same modal transformation that decouples the associated undamped structures. 

Those structures that do not satisfy the Caughey and O’Kelly criterion are said to be non-

classically damped; consequently, their equations of motion cannot be decoupled by the 

classical modal transformation. In principle, the coupling arises from the damping term. 

Typical examples include the structures with added damping devices and base-isolated 

structures as well as primary-secondary systems. 
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Basically, responses of the non-classically damped systems may be evaluated by 

using the decoupled method suggested by Foss (1958). However, it is generally believed 

that, concurrent with the classical damping assumption, the structural responses 

calculated by the classical modal superposition method are acceptable. For example, 

current methods for seismic design of structures enhanced with damping devices are 

developed based on the classical damping assumption (BSSC 2003). This may not always 

be true due to the uncertainty of the nature and magnitude of the damping in structures. 

This phenomenon can be further magnified when the structure is irregularly shaped. 

There are instances that the structures can be highly non-classically damped (Warburton 

and Soni 1977) and, in some occasions, develop over-damped modes (Inman and Andry 

1980), which in turn result in a chance of the inaccuracy of the response estimations. For 

example, Takewaki (2004) has demonstrated that the structural energy transfer function 

and displacement transfer function will be underestimated if the over-damped modes are 

neglected. 

To advance the applications of the classical modal analysis to the non-classically 

damped systems, a number of researchers have conducted extensive studies on 

developing complex modal superposition methods for systems not satisfying the classical 

damping condition. Igusa et al. (1984) studied the stationary response of multi-degrees-

of-freedom (MDOF) non-classically damped linear systems subjected to stationary input 

excitations. Veletsos and Ventura (1986) presented a critical review of the modal 

superposition method of evaluating the dynamic response of non-classically damped 

structures. Singh and Ghafory-Ashtiany (1986) studied the modal time-history analysis 

approach for non-classically damped structures subjected to seismic forces. Yang et al. 

(1987 and 1988) used real-valued canonical transformation approach to decouple non-

classically damped system from a set of second order differential equations to a set of 

first order ones, and then performed the time history analysis as well as response 

spectrum analysis. Zhou et al. (2004) provided a refined complex mode superposition 

algorithm to evaluate the seismic responses of non-classically damped systems. All the 

above are important contributions but none addressed the over-damped modes. 
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In addition, in earthquake engineering, the response spectrum method is commonly 

used as an alternative approach to response history analysis for determining the 

maximum values of the seismic responses of classically damped structures. In this 

method, the modal peak responses are obtained using the prescribed response spectrum. 

These modal maxima are then appropriately combined to estimate the peak values of the 

responses of interest. There are several combination rules proposed by various 

researchers. Among which, the simplest is the square-root-of-sum-of-squares (SRSS) 

modal combination rule (Rosenblueth 1951). This rule ignores the correlations between 

vibration modes and can provide excellent estimates for structures with well-separated 

modal frequencies. To further consider the correlations between each vibration mode, Der 

Kiureghian (1980 and 1981) proposed a rational rule, known as complete quadratic 

combination (CQC) rule, in which the correlations among modes are connected by 

correlation coefficients. Both rules deal with classically damped structures. 

The conventional response spectrum method is ideal to structures satisfying classical 

damping condition. For structures that are strongly non-classically damped, the accuracy 

of SRSS or CQC rule becomes questionable (Clough and Mojtahedi 1976, Warburton and 

Soni 1977 and Veletsos and Ventura 1986). For this reason, several modal combination 

rules accounting for the effect of the non-classical damping are developed. Singh (1980) 

formed a modified conventional SRSS approach where nonproportional damping effects 

can be included properly. Igusa et al. (1984) described the responses in terms of spectral 

moments and provided the formulations of correlation coefficients among modes using 

filtered white noise process as inputs. Ventura (1985) stated that the peak modal 

responses can be obtained by taking square roots of the sum of squares of the individual 

modal maxima contributing from displacement and velocity responses, assuming 

harmonic excitations. Gupta and Jaw (1986) developed the response spectrum 

combination rules for non-classically damped systems by using the displacement and 

velocity response spectrum. Villaverde (1988) improved Rosenblueth’s rule (1951) by 

including the effect of modal velocity responses. Maldonado and Singh (1991) proposed 

an improved response spectrum method for non-classically damped systems. It reduces 

the error associated with the truncation of the high frequency modes without explicitly 

using them in the analysis. Zhou et al. (2004) generalized the CQC rule for its application 
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to non-classically damped systems. However, all above-mentioned combination rules did 

not incorporate the over-damped modes in the formulation and the response quantities 

considered in these rules are limited to deformation-related response quantities. 

In general, when using modal superposition method, the response contributions of 

all modes should be included to obtain the exact results. At the same time, it is observed 

that limited amount of modes can usually give sufficiently accurate results. The number 

of modes required is well-defined in the classical damping cases through the use of the 

cumulative effective modal mass. The corresponding criteria, however, for the non-

classically damped structures with or without over-damped modes are not well addressed. 

To address this issue, an appropriate expression of the effective modal mass for non-

classical damping structures is formulated. 

Initially motivated by the need for a systematic approach for the design of structures 

with added damping devices, a general modal response history analysis method is 

developed and presented in this report. The method advances the complex modal analysis 

to be applicable to structure with over-damped modes. In addition, a unified form that is 

able to express any response quantities of the systems, including the velocities and 

absolute accelerations, is established. This unified form is made possible by several novel 

modal properties found in this study. Also, on the basis of the general modal response 

history analysis and the white noise input assumption as well as the theory of random 

vibration, a general modal combination rule for response spectrum method is formulated 

to deal with the non-classical damping and over-damped modes. This general modal 

combination rule is referred to as “General-Complete-Quadratic-Combination” (GCQC) 

rule in this report. To enable the new rules applicable to the practical earthquake 

engineering, an over-damped modal response spectrum, following a similar definition as 

the conventional response spectrum, is introduced to account for the peak modal 

responses of the over-damped modes. A conversion procedure to construct an over-

damped mode response spectrum compatible with the given 5% standard design response 

spectrum is established. The adequacy of this conversion procedure is also validated. In 

addition to the displacement correlation coefficient given in the CQC rule, new 

correlation coefficients to account for the cross correlations between modal displacement, 
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modal velocity and over-damped modal responses are also provided. It is shown that this 

rule is also suitable to estimate the velocity-related and absolute acceleration-related 

response quantities. For example, the absolute acceleration of a single-degree-of-freedom 

system can be approximated more accurately by this rule instead of using the 

corresponding pseudo-acceleration values. The applicability of the general modal 

response history analysis method is demonstrated by two numerical examples. Also, the 

errors in structural response estimations arising from the classical damping assumption 

are identified, and the effect of the over-damped modes on certain response quantities is 

observed. The accuracy of the GCQC rule is also evaluated through the two examples by 

comparing it to the mean response history results. For engineering applications, a 

procedure to convert the given 5% design spectrum to the over-damped mode response 

spectrum is given. Its accuracy is also verified. In addition, a general real-valued modal 

coordinate transformation matrix which can decouple the equations of motion of 

generally damped structures is derived in the process of theoretical formulation. A 

rigorous proof of the modal decoupling by using this general modal coordinate 

transformation is given. Further, based on this transformation matrix, the formulation of 

the general modal responses subjected to structural initial conditions and the formulation 

of the general modal energy for arbitrary ground motion are established. Finally, a dual 

modal space approach to reduce the scale of the modeling and computation burden is 

proposed. 

1.2 Research Objectives 

The primary objectives of this research are: 

(1) To explore the modal properties of the non-classically damped systems with 

over-damped modes and to further expand/complement current linear 

structural modal analysis theory. 

(2) To improve the present modal analysis procedure to accurately evaluate the 

peak seismic responses of damped linear structures with over-damped modes. 



 6

(3) To extend the present response spectrum method to be applicable to the non-

classically damped systems with over-damped modes and to establish a solid 

foundation for structural damping design. 

(4) To propose an easy and reasonable criterion to determine the number of 

modes required to be included in the modal analysis of non-classically 

damped systems with over-damped modes to achieve an acceptable level of 

accuracy. 

1.3 Scope of Work 

The work has proceeded as follows: 

(1) Examine the theory presently being used for analyzing the non-classically 

damped linear systems.  

(2) Formulate the equation of motion of a MDOF system by means of the state 

space method, as well as perform an eigen analysis and explore the modal 

properties. All the formulations are presented in the form of matrix. 

(3) Clarify the modal energy distributions of non-classically damped linear 

MDOF structures. 

(4) Formulate the response history analysis procedure in the manner of modal 

superposition and offer interpretation of the physical meaning in the 

formulation. Main effort focuses on the analytical formulation about the over-

damped modes. 

(5) Formulation for the response history analysis procedure is extended for the 

use of response spectrum method. Much of this effort focuses on the treatment 

of the over-damped modes. 

(6) Review the criterion that is used to determine the number of modes required 

for the classically damped structures and develop a corresponding criterion for 

the generally damped linear MDOF structures. 
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1.4 Organization of the Report 

Chapter 2 details the eigen-analysis of a generally damped linear system, stressing 

on the treatment of the over-damped modes. Several fundamental modal properties are 

explored and presented. 

Chapter 3 presents the formulation of the modal analysis procedures for the 

generally damped linear MDOF systems with highlight on the treatment of the over-

damped modes. This chapter also presents a unified form suitable for any response 

quantities, which is obtained based on the modal properties found in Chapter 2. It should 

be noted that Laplace transform approach is utilized in this Chapter, which simplifies the 

process of the formulation with certain level and may make it possible that new attractive 

formulas can be developed. 

Chapter 4 describes a general modal coordinate transformation resulted from the 

unified formulation obtained in Chapter 3. Based on this transformation matrix, the 

structural modal responses subjected to structural initial conditions are given. A 

simplified numerical example model with 4-DOFs is provided to further clarify some 

properties related to modal transformation matrix, over-damped modes and modal 

responses. Also, the general modal energy for structural initial conditions, sinusoidal 

excitations and seismic excitations is derived, leading to a deep physical insight of the 

formulation work. A dual modal space approach to reduce the scale of the modeling and 

computation effort is also given. 

Chapter 5 proposes a criterion on determining the number of modes that should be 

included in the modal analysis for the generally damped linear MDOF system. 

Chapter 6 shows the rigorous formulation of the response spectrum method for the 

analysis of the generally damped linear MDOF system with over-damped modes. This 

chapter focuses on the development of a manner to handle the over-damped when using 

the prescribed site response spectra. 

Chapter 7 demonstrates the use of the proposed modal analysis method and response 

spectrum method through three example buildings. The results obtained by using the 
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classical damping assumption and the exact solutions are compared. The effect of the 

over-damped modes on the peak response estimation is examined and discussed. 

Finally, Chapter 8 presents the summary as well as conclusions, and provides some 

suggestions for future research needs. 
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CHAPTER 2 

EQUATION OF MOTION AND EIGEN ANALYSIS 

2.1 Introduction 

This chapter presents the mathematical modeling of a generally damped planar 

linear MDOF structure subjected to a dynamic loading. Corresponding eigen analysis of 

the system is performed and its modal properties are explored, in which the case with 

real-valued eigenvalues is also addressed. The real-valued eigenvalues correspond to the 

presence of over-damped modes are usually assumed to be unlikely to occur in the 

engineering practice. However, this may not be always true for systems with added 

earthquake protective systems. Also, the orthogonality of the modal vectors is examined 

and the system mass, damping and stiffness matrices are expanded in terms of modal 

parameters. The results shown in this chapter are shown to be useful for the analytical 

formulations in the subsequent chapters. 

2.2 Equation of Motion 

For a linear, discrete, generally damped planar structure with N  degree-of-freedom 

(DOF) subjected to a dynamic loading ( )tf , which has N  dimensional real field vector, 

i.e., ( ) Nt ∈f R , the equation of motion can be described as 

 ( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx f  (2.1) 

in which ( ) Nt ∈x R , ( ) Nt ∈x R and ( ) Nt ∈x R  are the relative structural nodal 

displacement, velocity and acceleration vectors, respectively. N N×∈M R , N N×∈C R  and 
N N×∈K R  are N N×  real and symmetric mass, viscous damping and stiffness matrix, 

respectively. M  and K  are positive-definite matrices when the structure is completely 

constrained, while C  is a semi-positive definite matrix. It is noted that no further 

restriction is imposed on the form of the damping matrix. 
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2.3 Eigen Analysis 

In general, when the structure is non-classically damped, the formulation in the 2N  

dimensional state space is essential for solving the equation of motion via the modal 

analysis approach. In turn, Equation (2.1) can be reduced to a set of first-order 2N  

dimensional equations as 

 S( ) ( ) ( )t t t+ =Ay By f  (2.2) 

where  

 
( ) ( )

{ } { }
2 2 2 2

2 2
S

,   

( )( ) ,   ( )( ) ( )

N N N N

N Ntt tt t

× ×−= ∈ = ∈

= ∈ = ∈

0 M M 0A BM C 0 K

0xy fx f

R R

R R
 (2.3) 

It can be proved that A  and B  are non-singular, implying that both 1−A  and 1−B  

exist. The proof is given in Appendix A. The associated eigen-equation with Equation 

(2.2) is given by 

 ( )A B ψ 0λ + =  (2.4) 

The solution to the above eigenvalue problem leads to a set of total 2N eigenvalues 

(also known as eigen-roots or characteristic roots) iλ ∈C  (belong to complex field) and 

2N complex eigenvectors 2N
i ∈ψ C . For a conventional structure or a structure enhanced 

with passive damping devices, a stable system is expected. In other words, the 

eigenvalues are either complex-valued with negative real parts or negative real-valued.  

When the eigenvalues are complex-valued, the corresponding modes are under-

damped and the eigenvalues and eigenvectors appear in complex-conjugated pairs, which 

can be easily proved as follows. 

Supposing iλ  and iψ  are the ith complex eigenvalue and corresponding eigenvector, 

respectively, iλ  and iψ  therefore satisfy Equation (2.4). That is, 
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 ( )i iA B ψ 0λ + =  (2.5) 

Taking conjugate operation to both sides of Equation (2.5) and noting that A  and B  

are both real-valued matrices, *=A A  and *=B B  (the superscript * denotes a conjugate 

operation), we have 

 ( )* *
i iA B ψ 0λ + =  (2.6) 

which means that *
iλ  and *

iψ  also satisfy Equation (2.4) and they are one pair of eigen-

solution of Equation (2.4). Now assuming that there are CN  pairs, the corresponding 

eigenvalues and eigenvectors can be expressed as 

 *
d C, j    ( 1, 2,3 )i i i i i i Nλ λ ξ ω ω= − ± =  (2.7) 

 { } * *
*

*,  i i i i
i i

i i

λ λ⎧ ⎫= = ⎨ ⎬
⎩ ⎭

ψ ψϕ ϕ
ϕ ϕ

 (2.8) 

where * or N N
i i∈ ∈ϕ ϕC C  is the ith complex modal shape;  and i iω ξ∈ ∈R R  are called 

the ith modal circular frequency and ith damping ratio, respectively, and 

2
d 1i i iω ξ ω= − ∈R  is called the ith damped modal circular frequency. 

When the eigenvalues are real-valued, the corresponding modes are the properties of 

the over-damped first order subsystems which are no longer second-order oscillatory 

subsystems. For the sake of simplicity, all related variables, such as periods, modal shape 

and modal responses, to the over-damped subsystems are denoted by superscript or 

subscript “P” (“O” may be a better choice, but it is easily confused with “0”) is to 

distinguish them from the variables associated with complex modes. 

Mathematically speaking, over-damped modes appear in pairs. However, based on 

the control theory, each over-damped mode must be considered as an independent basic 

unit.  There are no functional relationships among all over-damped modes, 

mathematically or physically. Thus it would not be necessary to group them in pairs in 
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the analytical formulation process. In this report all over-damped modes are handled 

individually. Assuming that there are [ ]P C2( )N N N= −  real negative-valued eigenvalues:  

 P P
P  ( 1, 2, 3 )i i i Nλ ω= − ∈ =R  (2.9) 

where P 0iω > , which has dimension “rad/sec”, is defined as ith over-damped modal 

circular natural frequency. Each real eigenvalue P
iλ , the corresponding eigenvector P

iψ  

must be a real-valued vector, that is, imaginary part of P
iψ , PIm( ) 0i =ψ , which can be 

easily derived after substituting P
iλ  and P

iψ  into Equation (2.4) and taking imaginary 

parts operation for both sides of the consequent equation. Thus, P 2
P( 1,2 )N

i i N∈ =ψ R  

and  

 
P P

P 2
P

Ni i
i

i

λ⎧ ⎫= ∈⎨ ⎬
⎩ ⎭

ψ Rϕ
ϕ

 (2.10) 

where P N
i ∈ϕ R  is the ith “over-damped modal shape”. 

The eigenvalue matrix, which is the assembly of all eigenvalues, is a diagonal matrix 

and is denoted as 

 ( )C C P

* * * P P P 2 2
1 2 1 2 1 2diag , , , , , N N

N N Nλ λ λ λ λ λ λ λ λ ×= ∈Λ C  (2.11) 

The eigenvector matrix, which is the assembly of all eigenvectors, is denoted as 

 
( )
( )

C P

* * * P P P
1 2 1 2 1 2

2 2

, , , , , 
CN N N

N N×

=

= ∈

ψ ψ ψ ψ ψ ψ ψ ψ ψ
Λ

Ψ

Φ
Φ C

 (2.12) 

in which ( )C P

* * * P P P 2
1 2 1 2 1 2, , , , , 

C

N N
N N N

×∈CΦ = ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ  is the eigenvector 

matrix associated with the displacement vector (modal shape matrix) and ΦΛ  is the 

eigenvector matrix associated with the velocity vector. 



13 

2.4 Orthogonality 

The eigenvectors corresponding to different eigenvalues can be shown to satisfy the 

following orthogonality conditions, in which no repeated eigenvalues condition is 

assumed. For simplicity of the proof of the orthogonality, denote ( , )r rλ ψ ( 1, 2 )r N=  

or ( , )s sλ ψ ( 1, 2 )s N=  to express all general eigen-pairs. Thus, ( , )r rλ ψ  and 

( , )s sλ ψ  satisfy the following two equations, respectively: 

 ( ) 2   N
r rA B ψ 0λ + = ∈C  (2.13) 

 ( ) 2   N
s sA B ψ 0λ + = ∈C  (2.14) 

Pre-multiplying T
sψ  and T

rψ  to both sides of Equations (2.13) and (2.14), respectively, 

gives 

 ( )T 0   s r rψ A B ψλ + = ∈C  (2.15) 

 ( )T 0   r s sψ A B ψλ + = ∈C  (2.16) 

Since A and B are symmetric matrices, T T
s r r sψ Aψ ψ Aψ=  and T T

s r r sψ Bψ ψ Bψ= . 

Further, subtracting (2.15) from (2.16) gives 

 ( ) T 0s r r sψ Aψλ λ− =  (2.17) 

Assume that there are no repeated eigenvalues in the structural system, that is, if 

r s= , r sλ λ≠ . Thus 

 T T 0,  ifr s r s r sψ Aψ ψ Bψ= = ≠  (2.18) 

When r s= , the following relationships exist 

  T    r r raψ Aψ = ∈C  (2.19) 

 T    r r r r rb aψ Bψ λ= =− ∈C  (2.20) 
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Equations (2.18) to (2.20) show that all eigenvectors are orthogonal with respect to 

the matrices A  and B , respectively, under the conditions that no repeated eigenvalues 

exist. Note that a complex mode as denoted with subscript i as previously defined is 

composed of two eigen-pairs which are conjugated with each other. However, they 

actually belong to different eigen-pairs because their eigenvalues are unequal and their 

eigenvectors are orthogonal each other. 

Combining Equations (2.18) to (2.20) and expanding the consequent equations with 

the help of Equation (2.3) as well as rewriting Equation (2.8) for r and s, respectively, as 

 { } 2   Nr r
r

r

λ= ∈ψ Cϕ
ϕ  (2.21) 

and  { } 2   Ns s
s

s

λ= ∈ψ Cϕ
ϕ  (2.22) 

we can have 

 ( )T T T
   if 

0    if 

r

r s r s r s r s

a r s

r s
λ λ

=⎧⎪= + + = ⎨
≠⎪⎩

ψ Aψ M Cϕ ϕ ϕ ϕ  (2.23) 

 T T T
=    if 

0                 if 

r r r

r s r s r s r s

b a r s

r s

λ
λ λ

− =⎧⎪= − + = ⎨
≠⎪⎩

ψ Bψ M Kϕ ϕ ϕ ϕ  (2.24) 

  ( ), 1, 2, 3r s N=  

Supposing that r and s express the same complex mode (the ith order), that 

is, *
r sλ λ= , *

r sϕ = ϕ , and noting that ( )* 2i i i iλ λ ξ ω+ = −  and * 2
i i iλ λ ω=  C ( 1, 2,3 )i N= , 

from Equations (2.23) and (2.24), we can obtain two useful formulas for calculating 

modal natural frequency iω  and modal damping ratio iξ  of the system, respectively: 

 
H

H
i i

i
i i

ω = ∈K
M

ϕ ϕ
ϕ ϕ

R  (2.25) 

and 
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( ) ( ) ( )

H H

H H H2 2
i i i i

i
i i i i i i i

ξ
ω

= = ∈C C
M M K

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

R  (2.26) 

  C ( 1, 2,3 )i N=  

where superscript “H” denotes Hermitian transpose, which is equivalent to conjugate and 

transpose operation. Note that since M  and K are assumed positive-definite matrices and 

the structure is completely constrained, ( )H 0i i ≠Mϕ ϕ , ( )H 0i i ≠Kϕ ϕ  and 0iω ≠ . 

Considering the orthogonality shown in Equations (2.23) and (2.24), the general 

orthogonal property can be re-expressed as 

 ( )C C P

T * * * P P P 2 2
1 2 1 2 1 2ˆ diag , , , , , N N

N N Na a a a a a a a a ×= = ∈a AΨ Ψ C  (2.27) 

 ( )C C P

T * * * P P P 2 2
1 2 1 2 1 2

ˆ diag , , , , , N N
N N Nb b b b b b b b b ×= = ∈b BΨ Ψ C  (2.28) 

where 

 ( )T T 2i i i i i ia λ= = + ∈ψ Aψ M Cϕ ϕ C  (2.29) 

 ( )T T 2
i i i i i i i ib aλ λ= = − + = − ∈ψ Bψ M Kϕ ϕ C  (2.30) 

  C( 1, 2,3  for complex modes)i N=  

and 

 ( )P P T P P T P P( ) ( ) 2i i i i i ia λ= = + ∈ψ Aψ M Cϕ ϕ R  (2.31) 

 P P T P P T P 2 P P P( ) ( ) ( )i i i i i i i ib aλ λ⎡ ⎤= = − + = − ∈⎣ ⎦ψ Bψ M K Rϕ ϕ  (2.32) 

  P( 1, 2,3  for pseudo modes)i N=  

In Appendix A, the non-singular properties of â  and b̂  have been proven, which 

means that each element ( ia , *
ia , ib , *

ib P
ia  and P

ib ) in diagonal matrices â  and b̂  is 

non-zero parameter. 
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2.5 Modal Decomposition and Superposition of Modal Responses 

Equation (2.1) can be decoupled into 2N  independent modal equations, after taking 

congruent transformation to coefficient matrices in Equation (2.1) based on the 

orthogonality property shown in the previous section. Let  

 { } 2( )( ) ( )   ( )
Ntt tt= = ∈xy zx RΨ  (2.33) 

in which  

C C P

T* * * P P P 2
1 2 1 2 1 2( ) ( ),  ( ), ( ),  ( ),  ( ) ( ),  ( ),  ( ) ( ) N

N N Nt z t z t z t z t z t z t z t z t z t⎡ ⎤= ∈⎣ ⎦z C  (2.34) 

is the complex-valued modal coordinate vector in time domain. 

Substituting Equation (2.33) into Equation (2.1) and pre-multiplying TΨ  to both 

sides of the resulting equation as well as making use of Equations (2.29) to (2.32), the 

following equations can be obtained 

 T
C( ) ( ) ( )      ( 1, 2... )i i i i ia z t b z t t i N+ = ∈ =fϕ C  (2.35) 

 * * * * H
C( ) ( ) ( )      ( 1, 2... )i i i i ia z t b z t t i N+ = ∈ =fϕ C  (2.36) 

and P P P P P T
P( ) ( ) ( ) ( )      ( 1,2 )i i i i ia z t b z t t i N+ = ∈ =fϕ R  (2.37) 

Equations (2.35) to (2.37) are all first-order complex numbered differential 

equations that can be readily solved using the standard digital algorithms. The solutions 

of (2.35) to (2.37) can be expressed as (Hart and Wong 1999) 

 ( ) T

0

1( ) e ( )d    i
t t

i i
i

z t t
a

λ τ τ−= ∈∫ f Cϕ  (2.37a) 

 
* ( )* H

* 0

1( ) e ( )d    i
t t

i i
i

z t t
a

λ τ τ−= ∈∫ f Cϕ  (2.37b) 

 ( )P T( )P P
P 0

1( ) e ( )d    i
t t

i i
i

z t t
a

λ τ τ−= ∈∫ f Rϕ  (2.37c) 
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Obviously, only one of Equations (2.37a) and (2.37b) is independent and needs to be 
solved. 

After the modal responses are solved, the total responses are back-calculated by the 

superposition of the modal responses. Considering Equation (2.12) in Equation (2.33) 

gives the following two expressions: 

 
C P

* * P P

1 1

( ) ( ) ( ) ( )   
N N

N
i i i i i i

i i
t z t z t z t

= =

⎡ ⎤= + + ∈⎣ ⎦∑ ∑x Rϕ ϕ ϕ  (2.38) 

 
C P

* * * P P P

1 1

( ) ( ) ( ) ( )   
N N

N
i i i i i i i i i

i i
t z t z t z tλ λ λ

= =

⎡ ⎤= + + ∈⎣ ⎦∑ ∑x Rϕ ϕ ϕ  (2.39) 

2.6 Expansion of System Matrices in terms of Modal Parameters  

2.6.1 A Special Property of System Modal Shapes 

Taking the time derivative of Equation (2.38) gives 

  
C P

* * P P

1 1

( ) ( ) ( ) ( )
N N

i i i i i i
i i

t z t z t z t
= =

⎡ ⎤= + +⎣ ⎦∑ ∑x ϕ ϕ ϕ  (2.40) 

Substituting Equations (2.35) to (2.37) into Equation (2.40) accordingly leads to 

 
C PT * H P P T

* * * P P P
* P

1 1

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
N N

i i i i i i
i i i i i i i i i

i ii i i

t t tt z t z t z t
a a a

λ λ λ
= =

⎡ ⎤ ⎡ ⎤
= + + + + +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑f f fx ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ  

  (2.41) 

After comparing Equations (2.39) and (2.41), it can be observed that 

 
C PT * H P P T

* P
1 1

( )( ) ( )
N N

Ni i i i i i

i ii i i

t t
a a a= =

⎡ ⎤ ⎡ ⎤
+ + = ∈⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑f f 0 Rϕ ϕ ϕ ϕ ϕ ϕ  (2.42) 

As ( )tf  is an arbitrary excitation force vector, it implies that 

 
C PT * H P P T

* P
1 1

( )N N
N Ni i i i i i

i ii i ia a a
×

= =

⎡ ⎤ ⎡ ⎤
+ + = ∈⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑ 0 Rϕ ϕ ϕ ϕ ϕ ϕ  (2.43) 
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which can be assembled in a simple matrix form as 

 1 Tˆ − =a 0Φ Φ  (2.44) 

Actually, Equations (2.42) and (2.44) are the result of the summation of the system 

residual matrix, which will be defined in details in the next chapter. This property is a key 

element in the derivation of other modal properties. 

2.6.2 Expansion of the Mass Matrix M  and Its Inverse 1−M  

Substituting Equation (2.12) into Equation (2.28) yields 

 
T

T T T ˆ ˆ
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − + = = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Λ M 0 Λ
B Λ M Λ K b aΛ

0 K
Φ Φ

Ψ Ψ Φ Φ Φ Φ
Φ Φ

 (2.45) 

that is, T T ˆ− =Λ M Λ K aΛΦ Φ Φ Φ  (2.46) 

Pre-multiplying 1ˆ −aΦ  and post-multiplying 1 Τˆ −a Φ to both sides of Equation (2.46) 

leads to 

 ( ) ( ) ( ) ( ) ( )1 T 1 T 1 T 1 T 1 Τˆ ˆ ˆ ˆ ˆ− − − − −− =a Λ M a Λ a K a ΛaΦ Φ Φ Φ Φ Φ Φ Φ Φ Φ  (2.47) 

Substituting Equation (2.44) into Equation (2.47), it can be simplified as 

 ( ) ( ) ( )1 T 1 T 1 Τˆ ˆ ˆ− − −=a Λ M Λa ΛaΦ Φ Φ Φ Φ Φ  (2.48) 

Thus, ( ) 11 Tˆ
−−=M a ΛΦ Φ  (2.49) 

and 

 

C P

C P

T * * H P P P T
1 1 T

* P
1 1

T P P P T

P
1 1

( )ˆ

( )2 Re

N N
i i i i i i i i i

i ii i i

N N
i i i i i i

i ii i

a a a

a a

λ λ λ

λ λ

− −

= =

= =

⎛ ⎞
= = + +⎜ ⎟

⎝ ⎠
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

M a Λ ϕ ϕ ϕ ϕ ϕ ϕΦ Φ

ϕ ϕ ϕ ϕ
 (2.50) 
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2.6.3 Expansion of the Damping Matrix C  

Substituting Equation (2.12) into Equation (2.27) yields 

 

T
T

T T T ˆ

⎛ ⎞ ⎛ ⎞⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

= +

Λ 0 M Λ
A

M C

M Λ Λ M C a

Φ Φ
Ψ Ψ

Φ Φ

Φ Φ Φ Φ + Φ Φ =

 (2.51) 

that is, T T T ˆ+ =M Λ Λ M C aΦ Φ Φ Φ + Φ Φ  (2.52) 

Post-multiplying 1 Tˆ −Λa Φ  to both sides of Equation (2.52) leads to 

 T 2 1 T T 1 T T 1 T Tˆ ˆ ˆ− − −+ =M Λ a Λ M Λa C Λa ΛΦ Φ Φ Φ Φ Φ + Φ Φ Φ Φ  (2.53) 

Using Equation (2.50), Equation (2.53) becomes 

 T 2 1 T T T 1 Tˆ − −+ =M Λ a Λ CM ΛΦ Φ Φ Φ + Φ Φ  (2.54) 

That is, 

 ( )T 2 1 T 1ˆ − −+ =M Λ a CM 0Φ Φ Φ  (2.55) 

Since 2N N×∈CΦ  and Τdet[ ] ≠ 0Φ Φ , we have 

 2 1 T 1ˆ − −+ =M Λ a CM 0Φ Φ  (2.56) 

The damping matrix C  therefore can be expressed as 

 2 1 Tˆ −= −C M Λ a MΦ Φ  (2.57) 

Equation (2.57) can be further expanded as 

 
C P2 T * 2 * H P 2 P P T

* P
1 1

( ( )N N
i i i i i i i i i

i ii i ia a a
λ λ λ

= =

⎡ ⎤ ⎡ ⎤
= − + −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑M M M M M MC ϕ ϕ ) ϕ ϕ ) ϕ (ϕ  (2.58) 
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2.6.4 Expansion of the Stiffness Matrix K  and Flexibility Matrix 1−K  

To obtain the expansion of K , we assemble the eigen-equation shown in Equation 

(2.4) as 

 2 + + =M Λ C Λ K 0Φ Φ Φ  (2.59) 

Substituting the expansion of C  shown in Equation (2.57) into Equation (2.59) 

gives 

 ( )
2 2 1 T

2 1 T

ˆ

ˆ

−

−

− +

= − +

=

M Λ M Λ a M Λ K

M Λ I a M Λ K

0

Φ Φ Φ Φ Φ

Φ Φ Φ Φ  (2.60) 

where I is a 2 2N N×  identity matrix. Post-multiplying 1 Tˆ −Λa Φ  to both sides of Equation 

(2.60) and using Equation (2.49) give 

 

( )
( )

2 1 T 1 Τ 1 Τ

2 1 T 1 Τ 1

ˆ ˆ ˆ

ˆ ˆ

− − −

− − −

− +

= − +

=

M Λ I a M Λ Λa K Λa

M Λ I a M Λ Λa KM

0

Φ Φ Φ Φ Φ Φ

Φ Φ Φ Φ  (2.61) 

As a result, the stiffness matrix K  can be expanded as 

 ( )2 1 T 1 Τˆ ˆ− −= − −K M Λ I a M Λ Λa MΦ Φ Φ Φ  (2.62) 

To obtain the expansion of the structural 1−K , pre-multiplying 1 1ˆ − −a ΛΦ  to both 

sides of Equation (2.46) leads to 

 ( ) ( )1 1 T 1 1 T 1 1ˆ ˆ ˆ ˆ− − − − − −− =a Λ Λ M Λ a Λ K Λ a aΛΦ Φ Φ Φ Φ Φ Φ  (2.63) 

Using the residual matrix 1 Tˆ − =a 0Φ Φ  shown in Equation (2.44), Equation (2.63) 

becomes 

 1 1 Tˆ − −− =a Λ KΦ Φ Φ Φ  (2.64) 
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Post-multiplying 1 Tˆ −Λa Φ  to both sides of Equation (2.64) and using Equation (2.50), 

we have 

 1 1 T 1 1ˆ − − − −− =a Λ KM MΦ Φ  (2.65) 

Thus, 1 1 1 Tˆ− − −= −K a ΛΦ Φ  (2.66) 

Equation (2.66) can be further expanded as  

 
C PT * H P P T

1 1 1 T
* * P P

1 1

( )ˆ
N N

i i i i i i

i ii i i i i ia a aλ λ λ
− − −

= =

⎛ ⎞
= − = − + −⎜ ⎟

⎝ ⎠
∑ ∑K a Λ ϕ ϕ ϕ ϕ ϕ ϕΦ Φ  (2.67) 

2.6.5 Expansion of the Total Mass of the System MΣ  

For a planar lumped-mass building system which may or may not have rotation 

moment of inertia, the total translational mass (or the total mass in the direction of 

seismic excitation) of the system is denoted as MΣ , which can be represented by the 

following form. 

 TMΣ = ∈J MJ R  (2.68) 

in which, J is the ground motion influence vector. Note that when the system is a shear 

frame structure, J is a N-dimensional ones vector (all N elements are unitary) while for a 

general planar structure, the elements corresponding to the rotation DOFs in J are zero 

because in most cases rotation excitations from ground motion are ignored. The 

expansion of the total mass MΣ  can be shown in the following manner. 

 

( ) ( )

T

T 1

T 1

MΣ
−

−

=

=

=

J M J

J M M M J

M J M M J

 (2.69) 

Substituting the inverse of the mass matrix 1−M  shown in Equation (2.50) into Equation 

(2.69) gives the expansion as 
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( ) ( )

( ) ( )

C P

C P

T TT P P P T

P
1 1

2 2T P P T

P
1 1

( )
2 Re

( )
2 Re

N N
i i i i i i

i ii i

N N
i i i i

i ii i

M
a a

a a

λ λ

λ λ

Σ
= =

= =

⎛ ⎞
= +⎜ ⎟

⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

M J M J M J M J

M J M J

ϕ ϕ ϕ ϕ

ϕ ϕ
 (2.70) 

2.7 Reduction to Classically-Damped System 

When a structure satisfies the Caughey criterion 1 1− −=CM K KM C  (Caughey and 

O’Kelly 1965), all system mode shapes are real-valued and are consistent with those of 

an undamped system. In Appendix B, Caughey criterion has been extended to be used as 

the criterion for a system with over-damped subsystems. Thus, the modal shape 

proportional factors ia  for real modes C( 1,2 )i N=  expressed by Equation (2.29) can 

be simplified as 

 ( ) ( )T
d2 2 j2i i i i i i i i i ia m mλ λ ξ ω ω= + = + =M Cϕ ϕ  (2.71a) 

where T
i i im = Mϕ ϕ  is the ith real modal mass while P( 1,2 )P

ia i N=  remains the same 

format. Substituting Equation (2.71a) into Equations (2.50), (2.58), (2.62), (2.67) and 

(2.70) we have 

 
C PT P P P T

1
P

1 1

( )N N
i i i i i

i ii im a
ω−

= =

= −∑ ∑M ϕ ϕ ϕ ϕ  (2.71b) 

 ( )C PT P 2 P P T

P
1 1

2 ( )N N
i i i i i i i

i ii im a
ξ ω ω

= =

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
∑ ∑

M M M MC
ϕ ϕ ) ϕ (ϕ  (2.71c) 

 
C P2 T P P P T

P
1 1

( )N N
i i i i i i

i ii im a
ω ω

= =

= +∑ ∑M M M MK ϕ ϕ ϕ ϕ  (2.71d) 

 
C PT P P T

1
2 P P

1 1

( )N N
i i i i

i ii i i im aω ω
−

= =

= +∑ ∑K ϕ ϕ ϕ ϕ  (2.71e) 
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( ) ( )C P

2 2T P P T

P
1 1

( )N N
i i i

i ii i

M
m a

ω
Σ

= =

= −∑ ∑
M J M Jϕ ϕ

 (2.71f) 

If there are no over-damped modes existing in the system ( P 0N =  and CN N= ), the 

Equations (2.71a) to (2.71f) can be further simplified as 

 
C T

1

1

N
i i

i im
−

=

=∑M ϕ ϕ  (2.71g) 

 ( )C T

1

2N
i i i i

i im
ξ ω

=

=∑
M M

C
ϕ ϕ

 (2.71h) 

 
C 2 T

1

N
i i i

i im
ω

=

=∑ M MK ϕ ϕ  (2.71i) 

 

C T
1

2
1

N
i i

i i imω
−

=

=∑K ϕ ϕ

 (2.71j)
  

 

( )C
2T

1

N
i

i i

M
mΣ

=

=∑
M Jϕ

 (2.71k) 

In Equation (2.71), ( )2T /i imM Jϕ  is the ith modal participation mass (Wilson 2004). 
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CHAPTER 3 

GENERAL MODAL RESPONSE HISTORY ANALYSIS 

3.1 Introduction 

In Chapter 2, the dynamic response of a generally damped linear MDOF structure 

has been expressed by means of the superposition of its modal responses. However, it is 

expressed in complex-valued form without physical meaning. An improved general 

solution, completely expressed in real-valued form, for calculating seismic response 

history of the MDOF structure, is deduced in this chapter and the physical explanation of 

each resulting terms are given. In this formulation, the Laplace transformation approach 

is employed, by which the system original differential equations in time domain can be 

converted to algebraic equations in Laplacian domain, to show the intrinsic relationship 

among the system’s parameters.  

3.2 Analytical Formulation 

A solution to the problem of obtaining the dynamic response of generally damped 

linear MDOF systems via the modal analysis approach is presented in this section. This 

formulation takes into consideration the presence of the over-damped modes (i.e., the 

eigenvalues associated with these modes are real-valued rather than complex-valued). 

3.2.1 Laplace Transform Operation 

To simplify further development, the Laplace transformation (Greenberg 1998) is 

employed first to transform the differential equations to the linear algebraic equations in 

Laplacian domain, by which the system response in Laplace domain can be easily 

expressed as the combination of the complete orders of the modal subsystems (composed 

by the corresponding modal parameters). The responses in the time domain for the 

complete system and all sub-systems are easily retrieved through the inverse-Laplace 

transform. 

Applying Laplace transform to Equations (2.33) and (2.35) to (2.37) under zero 

initial conditions, respectively, yields 
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 { } { } 2 2( )( )( ) ( )( )( )
N Ns sss sss

×= = = ∈XXY ZXX Ψ C  (3.1) 

 T
C( ) ( ) ( )   ( 1,2 )i i i ia s b Z s s i N+ = ∈ =F Cϕ  (3.2) 

 * * * H
C( ) ( ) ( )      ( 1, 2 )i i i ia s b Z s s i N+ = ∈ =Fϕ C  (3.3) 

and P P P P T
P( ) ( ) ( ) ( )      ( 1, 2 )i i i ia s b Z s s i N+ = ∈ =Fϕ C  (3.4) 

where s  is the Laplace parameter and  

 
C C P

T* * * P P P
1 2 1 2 1 2( ) ( ),  ( ) ( ),  ( ),  Z ( ) ( ),  ( ),  Z ( ) ( )N N Ns Z s Z s Z s Z s s Z s Z s s Z s⎡ ⎤= ⎣ ⎦Z (3.5) 

is the modal coordinates vector expressed in Laplace domain and 2 2( ) N Ns ×∈Z C . ( )sX  is 

the Laplace transformation of the displacement vector ( )tx , ( )sX  is the Laplace 

transformation of the velocity vector ( )tx  and ( )sF  is the Laplace transformation of the 

force vector ( )tf . 

Solving ( )iZ s , *( )iZ s  and P
iZ  from Equations (3.2) to (3.4), respectively, and 

substituting the resulting solutions into Equation (3.1) as well as using Equations (2.30) 

and (2.32) result in 

 

C P

C P

T * H P P T

* * P P
1 1

* P

* P
1 1

( )( ) ( )
( ) ( ) ( )

( )

N N
i i i i i i

i ii i i i i i

N N
i i i N

i ii i i

s s
a s a s a s

s
s s s

λ λ λ

λ λ λ

= =

= =

⎧ ⎫⎡ ⎤⎪ ⎪= + +⎨ ⎬⎢ ⎥− − −⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤⎛ ⎞+ += ∈⎢ ⎥⎜ ⎟− − −⎝ ⎠⎣ ⎦

∑ ∑

∑ ∑

X F

R R R
F

ϕ ϕ ϕ ϕ ϕ ϕ

C
 (3.6) 

and 

C P

PC

T * * H P P P T

* * P P
1 1

P P* *

P*
11

( )( ) ( ) ( )
( ) ( ) ( )

( )

N N
i i i i i i i i i

i ii i i i i i

NN
Ni ii i i i

ii ii i

s s s s
a s a s a s

s
ss s

λ λ λ
λ λ λ

λλ λ
λλ λ

= =

==

⎧ ⎫⎡ ⎤⎪ ⎪= = + +⎨ ⎬⎢ ⎥− − −⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤⎛ ⎞= ++ ∈⎢ ⎥⎜ ⎟ −− −⎝ ⎠⎣ ⎦

∑ ∑

∑∑

X X F

RR R F

ϕ ϕ ϕ ϕ ϕ ϕ

C
 (3.7) 
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where 

 
T

R I
Cj ( 1, 2 )N Ni i

i i i
i

i N
a

×= + = ∈ =R R R ϕ ϕ C  (3.8) 

 
* H

* R I
C*j ( 1, 2 )N Ni i

i i i
i

i N
a

×= − = ∈ =R R R ϕ ϕ C  (3.9) 

 
P P T

P
PP

( ) ( 1, 2 )N Ni i
i

i

i N
a

×= ∈ =R ϕ ϕ R  (3.10) 

iR , *
iR  and P

iR  are the system residual matrices corresponding to the eigenvalues 

* P,  and i i iλ λ λ , respectively. Note that all residual matrices are intrinsic and invariant to a 

linear structural system, although modal shapes may be varied along with the 

corresponding changes of modal normalized factors (proportional multipliers) 
* P,  or i i ia a a . In addition, referring to Equations (2.43) or (2.44), it has been proved that 

the summation for all residual matrixes is a zero matrix, that is, 

 
C P

* P

1 1

N N
N N

i i i
i i

×

= =

⎡ ⎤+ + = ∈⎣ ⎦∑ ∑R R R 0 R  (3.10a) 

or 
C P

R P

1 1
2

N N
N N

i i
i i

×

= =

+ = ∈∑ ∑R R 0 R  (3.10b) 

Now suppose that the structure is excited by the earthquake ground motion 

acceleration g ( )x t , the force vector ( )sF  can be described as 

 g( ) ( ) Ns X s= − ∈F MJ C  (3.11) 
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in which N∈J R  is the influence vector which couples the ground motion to the DOF of 

the systems and g ( )X s ∈C  is the Laplace transformation of the ground acceleration 

g ( )x t . As mentioned in Chapter 2 when the system is considered as a shear frame 

building, J  will be a column vector of unity. Substituting Equation (3.11) into Equation 

(3.6), the following equation can be obtained 

 

C P

C P

* P

g* P
1 1

P

1 1

( ) ( )

( ) ( )

N N
i i i

i ii i i

N N

i i
i i

s X s
s s s

s s

λ λ λ= =

= =

⎡ ⎤⎛ ⎞
= − + +⎢ ⎥⎜ ⎟− − −⎝ ⎠⎣ ⎦

= +

∑ ∑

∑ ∑

R R R MJX MJ

X X

 (3.12) 

where 

 
*

g*( ) ( ) Ni i
i

i i

s X s
s sλ λ

⎛ ⎞
= − + ∈⎜ ⎟− −⎝ ⎠

R RX MJ C  (3.13) 

is the ith complex modal structural response vector in Laplace domain  and 

 
P

P
gP( ) ( ) Ni

i
i

s X s
s λ

= − ∈
−

R MJX C  (3.14) 

is the ith over-damped modal structural response vector in Laplacian form. Considering 

the complex-valued eigenvalues and the residual matrices shown in Equations (2.7), (3.8) 

and (3.9), respectively, Equation (3.13) becomes 

 
( ) ( )

R I R I

g
d d

D D
g C2 2 2 2

j j( ) ( )
j j

( )    ( 1, 2,3 )
2 2

i i i i
i

i i i i i i

i i

i i i i i i

s X s
s s

s
X s i N

s s s s

ξ ω ω ξ ω ω

ξ ω ω ξ ω ω

⎡ ⎤+ −= − +⎢ ⎥− − + − − −⎣ ⎦
⎛ ⎞

= − + =⎜ ⎟+ + + +⎝ ⎠

R R R RX MJ

A B
 (3.15) 

where  

 R
D 2 N

i i= ∈A R MJ R  (3.16) 
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 ( )R 2 I
D 2 1 N

i i i i i iω ξ ξ= − − ∈B R R MJ R  (3.17) 

Substituting Equations (2.9) and (3.10) into Equation (3.14) yields 

 
P

P D
g PP( ) ( )    ( 1, 2, 3 )i

i
i

s X s i N
s ω

= − =
+
AX  (3.18) 

in which P P
D

N
i i= ∈A R MJ R  (3.19) 

Furthermore, denoting 

 g v V g( ) ( ) ( )      and     ( ) ( ) ( )i i i iQ s H s X s Q s H s X s= ∈ = ∈C C  (3.20) 

where 

 2 2

1( )
2i

i i i

H s
s sξ ω ω

= − ∈
+ +

C  (3.21) 

 V 2 2( ) ( )
2i i

i i i

sH s sH s
s sξ ω ω

= = − ∈
+ +

C  (3.22) 

are the displacement and velocity transfer function of a SDOF system with the ith 

complex modal damping ratio iξ  and natural frequency iω  and excited by input g ( )X s . 

In fact, Equation (3.20) can be considered as the resulting Laplace transformation of the 

following SDOF differential equation expressed in time domain 

 2
g( ) 2 ( ) ( ) ( )i i i i i iq t q t q t x tξ ω ω+ + = −  (3.23) 

where [ ] [ ]1 1
V( ) L ( )      and    ( ) L ( )  i i i iq t Q s q t Q s− −= ∈ = ∈R R  (3.24) 

in Equation (3.24), 1L− stands for the inverse Laplace transformation operator. Taking the 

inverse Laplace transform of Equation (3.21) leads to 

 [ ]1( ) L ( )i ih t H s−= ∈R  (3.25) 

 [ ]1
V V( ) L ( )i ih t H s−= = ∈R  (3.25a) 
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where ( )ih t  and V ( )ih t  are the unit impulse response functions for displacement and 

velocity responses, respectively, of a SDOF system. It can be shown that  

 d
d

1( ) e sin( )i it
i i

i

h t tξ ω ω
ω

−= − ∈R  (3.25b) 

Thus, the ith modal displacement response ( )iq t  can be written as  

 
[ ]1 1

g g0

( )
d g0

d

( ) L ( ) L ( ) ( ) ( ) ( )d
1 e sin ( ) ( )di i

t

i i i i

t t
i

i

q t Q s H s X s h t x

t xξ ω τ

τ τ τ

ω τ τ τ
ω

− −

− −

⎡ ⎤= = = −⎣ ⎦

= − −

∫
∫

 (3.26) 

For the case of over-damped modes, denoting 

 P P
g( ) ( ) ( )i iQ s H s X s= ∈C  (3.27) 

in which P
P

1( )i
i

H s
s ω

= − ∈
+

C  (3.28) 

Similar to the transforming procedure of the complex mode case, Equation (3.27) is 

the Laplace transformation of the following first-order differential equation 

 P P P
g( ) ( ) ( )i i iq t q t x tω+ = −  (3.29) 

where  P 1 P( ) L ( )i iq t Q s− ⎡ ⎤= ∈⎣ ⎦ R  (3.30) 

is the ith over-damped modal response. Note that P ( )iq t has the dimension of velocity. 

The inverse Laplace transformation of P ( )iH s  is given by 

 
PP ( ) e i t

ih t ω−= − ∈R  (3.31) 
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As a result, the ith over-damped modal response can be written as 

 
P

P 1 P 1 P P
g g0

( )
g0

( ) L ( ) L ( ) ( ) ( ) ( )d

( )di

t

i i i i

t t

q t Q s H s X s h t x

e xω τ

τ τ τ

τ τ

− −

− −

⎡ ⎤⎡ ⎤= = = −⎣ ⎦ ⎣ ⎦

= −

∫
∫

 (3.32) 

3.2.2 Frequency Response Functions 

Letting js ω=  in Equations (3.21), (3.22) and (3.28), these transfer functions in 

Laplace domain are transformed to their corresponding Frequency Response Functions 

(FRF) in the frequency domain, which also can be considered as the resulting equations 

by taking Fourier transformation of ( )ih t , V ( )ih t  and P( )ih t , respectively. That is, 

 j
2 2

1(j ) ( )
j2

t
i i

i i i

H h t e ωω
ω ξ ω ω ω

+∞ −

−∞
= = −

− + +∫  (3.33) 

 j
V V 2 2

j(j ) ( )
j2

t
i i

i i i

H h t e ω ωω
ω ξ ω ω ω

+∞ −

−∞
= = −

− + +∫  (3.34) 

 P P j
P

1(j ) ( )
j

t
i i

i

H h t e ωω
ω ω

+∞ −

−∞
= = −

+∫  (3.35) 

Figure 3.1 shows the modulus of displacement FRF via Equation (3.33) considering 

natural periods equal 0.2s, 0.4s, 0.6,s 0.8s, 1.0s, 2.0s, 3.0s and 5.0s for damping ratio 

selected to be 5%. These natural periods are representative of the periods that are usually 

encountered in civil engineering structures. The 5% damping is often assumed in 

conventional structures as appropriate. Figure 3.2 presents the modulus of displacement 

FRF via Equation (3.33) using the damping ratios equal 2%, 5%, 10%, 20%, 50% and 

80% while the period is 1 sec. These damping ratios are representatives of the modal 

damping ratios when structures are enhanced with damping devices. Similarly, the 

modulus of over-damped modal response via Equation (3.35) is presented in Figure 3.3 

with respect to different over-damped modal periods, which are selected to be the same as 

those used in Figure 3.1. From Figure 3.1 to Figure 3.3, it may be observed that the order 

of the magnitude of the over-damped modal response FRF is at the same level as those of 
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the displacement modal response. This implies that the over-damped modes may be 

important for structural systems in which the over-damped modes exist. 

3.2.3 Response Solutions to Displacement, Velocity and Absolute Acceleration 

The displacement ( )tx , velocity ( )tx  and absolute acceleration A ( )tx  vectors in the 

time domain can be obtained as follows. 

3.2.3.1 Displacement Response Vector ( )tx  

Applying inverse Laplace transform to Equations (3.15) and (3.18) and using 

Equations (3.24) and (3.30), the ith modal structural displacement response history vector 

for the complex modes and the ith modal structural response history vector for the over-

damped modes can be derived as 

 D D C( ) ( ) ( )      ( 1, 2,3 )N
i i i i it q t q t i N= + ∈ =x A B R  (3.36) 

 P P P
D P( ) ( )                 ( 1, 2, 3 )N

i i it q t i N= ∈ =x A R  (3.37) 

Therefore, the complete structural displacement response history vector can be 

obtained by the modal superposition method via Equation (3.12) as 

 
C P

P P
D D D

1 1
( ) ( ) ( ) + ( )   

N N
N

i i i i i i
i i

t q t q t q t
= =

⎡ ⎤= + ∈⎣ ⎦∑ ∑x A B A R  (3.38) 

If all modes of the structure are under-damped C P( . .,  and 0)i e N N  N= = , the over-

damped modal terms associated with P( )iq t  disappear and Equation (3.38) can be reduced 

to 

 D D
1

( ) ( ) ( )
N

i i i i
i

t q t q t
=

⎡ ⎤= +⎣ ⎦∑x A B  (3.39) 
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3.2.3.2 Velocity Response Vector ( )tx   

Intuitively, the structural velocity response vector can be obtained directly by taking 

the derivative of Equation (3.38) with respect to the time variable t, and it is given as  

 
C P

P P
D D D

1 1

( ) ( ) ( ) + ( )   
N N

N
i i i i i i

i i
t q t q t q t

= =

⎡ ⎤= + ∈⎣ ⎦∑ ∑x A B A R  (3.40) 

This approach seems to be simple and has been used by other researchers such as 

Takewaki (2004). However, this formulation requires the incorporation of two additional 

responses ( )iq t  and P ( )iq t . A different approach to derive the expression of the relative 

velocity vector is given as follows. 

Substituting Equations (2.7), (2.9) and (3.8) to (3.11) into Equation (3.7) and 

simplifying the resulting equation, the following expression can be obtained 

 
C P P

V gV V
g2 2 2 2 P

1 1

( )
( ) ( )

2 2

N N
ii i

i ii i i i i i i

X sss X s
s s s s sξ ω ω ξ ω ω ω= =

⎛ ⎞
= − + −⎜ ⎟+ + + + +⎝ ⎠
∑ ∑

AA BX  (3.41) 

where 

 
( )R 2 I

V

2 R
V

P P P
V

2 1

2

N
i i i i i i

N
i i i

N
i i i

ω ξ ξ

ω
ω

= − + − ∈

= − ∈

= − ∈

A R R MJ

B R MJ

A R MJ

R
R
R

 (3.42) 

Applying inverse Laplace transform to Equation (3.41) and considering Equations 

(3.24) and(3.30), the structural velocity response vector ( )tx  can be expressed as 

 [ ]
C P

P P
V V V

1 1

( ) ( ) ( ) + ( )   
N N

N
i i i i i i

i i
t q t q t q t

= =

= + ∈∑ ∑x A B A R  (3.43) 

Equation (3.43) indicates that the structural relative velocity vector can also be 

expressed as a summation of all modal general responses. Noted that Equations (3.40) 

and (3.43) are equivalent. This is assured by the modal property which is introduced in 
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the following. However, Equation (3.43) is preferred in this study since the two 

additional modal responses ( )iq t  and P ( )iq t  are not needed in the expression. 

Post-multiplying MJ to both sides of Equation (3.10b) and further utilizing the 

relationships (3.16), (3.17) and (3.19), we have 

 
C P

R P

1 1
2

N N
N

i i
i i= =

+ = ∈∑ ∑R MJ R MJ 0 R  (3.43a) 

 
and 

 
C P

P
D D

1 1

N N
N

i i
i i= =

+ = ∈∑ ∑A A 0 R  (3.43b) 

 

Equation (3.43b) shows that the summation of coefficient vectors DiA  and P
DiA for 

all modes equals to a zero vector. Representing Equations (3.23) and (3.29), respectively, 

as 

 2
g( ) 2 ( ) ( ) ( )i i i i i iq t q t q t x tξ ω ω= − − − ∈R  (3.44) 

 P P P
g( ) ( ) ( )i i iq t q t x tω= − − ∈R  (3.45) 

and substituting them into Equation (3.40), ( )tx  can be expressed as 

 
{ }C P

C P

P P2 P
D D D D

1 1

P
gD D

1 1

( )2 ( ) ( ) +( )

( )

N N

i ii i i i i i i i i
i i

N N

i i
i i

q tq t q tt

x t

ωξ ω ω
= =

= =

−⎡ ⎤ ⎡ ⎤− −= ⎣ ⎦ ⎣ ⎦

⎡ ⎤− +⎢ ⎥
⎣ ⎦

∑ ∑

∑ ∑

B A A Ax

A A
 (3.46) 

Utilizing Equations (3.42) and (3.43b), Equation (3.46) becomes 

 [ ]
C P

P P
V V V

1 1

( ) ( ) ( ) + ( )
N N

i i i i i i
i i

t q t q t q t
= =

= +∑ ∑x A B A  (3.47) 

which is exactly same as Equation (3.43).  
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3.2.3.3 Absolute Acceleration Response Vector A ( )tx  

In the following, the expression for the absolute acceleration response is established 

in the general modal responses superposition form, which is similar to those obtained for 

the relative displacement and velocity responses.  

Taking derivative to both sides of Equation (3.43) yields 

 [ ]
C P

P P
V V V

1 1

( ) ( ) ( ) ( )
N N

N
i i i i i i

i i
t q t q t q t

= =

= + + ∈∑ ∑x A B A R  (3.48) 

Substituting Equations (3.44) and (3.45) into Equation (3.48) leads to 

 
C CP P

P P P
A A A V V g

1 1 1 1

( ) ( ) ( ) ( ) ( )
N NN N

i i i i i i i i
i i i i

t q t q t q t x t
= = = =

⎡ ⎤
⎡ ⎤= + + − +⎢ ⎥⎣ ⎦

⎣ ⎦
∑ ∑ ∑ ∑x A B A A A  (3.49) 

where 

 

( )
( )

2 2 R 2 I
A

3 R 2 I
A

P P 2 P
A

2 2 1 2 1

2 1

( )

N
i i i i i i i

N
i i i i i i

N
i i i

ω ξ ξ ξ

ω ξ ξ

ω

⎡ ⎤= − + − ∈
⎣ ⎦

= + − ∈

= ∈

A R R MJ

B R R MJ

A R MJ

R

R

R

 (3.50) 

Post-multiplying MJ  to the both sides of the Equation (2.50) results in 

 
C PT P P P T

P
1 1

( )N N
i i i i i i

i ii ia a
λ λ

= =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑MJ MJJ ϕ ϕ ϕ ϕ  (3.51) 

Equation (3.51) indicates another important property of the structural system. Using 

the definitions of system modal residual matrices in Equations (3.8) to (3.9), the modal 

property expressed in (3.51) can be rewritten as 

 
( )

( )

C P

C P

* * P P

1 1

R I P P
d

1 1

2

N N

i i i i i
i i

N N

i i i i i i i
i i

λ λ λ

ξ ω ω ω

= =

= =

= + +

= − + −

∑ ∑

∑ ∑

iJ R MJ R MJ R MJ

R R MJ R MJ
 (3.51a) 
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Further considering the notations for ViA  and P
ViA  defined in Equation (3.42), Equation 

(3.51a) can be simplified as 

 
C P

P
V V

1 1

N N
N

i i
i i= =

+ = ∈∑ ∑A A J R  (3.51b) 

which indicates that the summation of coefficient vectors ViA  and P
ViA for all modes 

equals to the ground motion influence vector. Thus 

 
C P

P
V V g g

1 1

( ) ( )
N N

i i
i i

x t x t
= =

⎡ ⎤
+ =⎢ ⎥

⎣ ⎦
∑ ∑A A J  (3.52) 

Substituting Equation (3.52) into Equation (3.49) and denoting the structural absolute 

acceleration vector as A ( ) Nt ∈x R , which can be expressed as A g( ) ( ) ( )t t x t= +x x J  for a 

planar structure, Equation (3.49) becomes 

 
C P

P P
A A A A

1 1

( ) ( ) ( ) + ( )
N N

i i i i i i
i i

t q t q t q t
= =

⎡ ⎤= +⎣ ⎦∑ ∑x A B A  (3.53) 

Note that in practical earthquake engineering application, the rotations effect of an 

earthquake ground motion are always ignored (Wilson 2004), thus the absolute 

acceleration for a structural rotation DOF always equals to the relative acceleration for 

the same DOF. The Equation (3.53) can be applied to either shear-frame type or non 

shear-frame type plane structure excited by single direction seismic acceleration. The 

difference lies on the ground motion influence vector J. For the former, all elements in J 

are “1”; while for the latter, the elements in J may be “1” or may be “0”, which 

corresponds to translation DOFs and rotation DOFs, respectively. 

By comparing the expressions of ( )tx , ( )tx  and A ( )tx  derived above, it is found 

that these formulations are consistent and simple and computations of the modal 

responses ( )iq t , ( )iq t  and P( )iq t  are only required. These modal responses can be 

evaluated in the time domain for the specific ground motions using well-established 
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numerical methods. Note that the modal relative acceleration ( )iq t  and the ground 

acceleration g ( )x t  are not involved in the computation of the absolute acceleration. 

3.3 A Unified Form for Structural Responses 

In addition to the displacement, velocity and absolute acceleration vectors, a number 

of other response quantities are also important from the view point of seismic design. In 

this section, a unified form describing several response quantities of a shear planar 

building enhanced with damping devices is given. This form only incorporates the modal 

responses ( )iq t , ( )iq t  and P ( )iq t . For illustrative purpose, the response quantities 

discussed include (1) inter-story drift, (2) inter-story shear, (3) general inter-story shear 

(including the damping forces as appropriate), (4) inter-story moments, (5) general inter-

story moment (including the moment caused by the damper forces as appropriate), and (6) 

damper forces. 

To develop the unified form of dynamic responses, three transformation matrices 

established in the global structural coordinates are defined as follows 

 

1

2 2

D 3 3

1 / 0 0 ... ... 0
1 / 1 / 0 ... ... 0
0 1 / 1 / ... ... 0
... ... ... ... ... ...
0 0 0 ... 1 / 1 /

N N

N N

h
h h

h h

h h

×

⎛ ⎞
−⎜ ⎟
⎜ ⎟= ∈−
⎜ ⎟
⎜ ⎟−⎝ ⎠

T R  (3.54) 

 S

1 1 1 ... ... 1
0 1 1 ... ... 1
0 0 1 ... ... 1
... ... ... ... ... ...
0 0 0 ... 0 1

N N×

⎛ ⎞
⎜ ⎟

= ∈⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

T R  (3.55) 

 

1 2 3

2 3

M 3

... ...
0 ... ...
0 0 ... ...
... ... ... ... ... ...
0 0 0 ... 0

N

N N N
N

N

h h h h
h h h

h h

h

×

⎛ ⎞
⎜ ⎟
⎜ ⎟= ∈
⎜ ⎟
⎜ ⎟
⎝ ⎠

T R  (3.56) 
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in which ( 1, 2,3 )ih i N=  is the ith story height. These three matrices will be used in 

transforming ( )tx , ( )tx  and A ( )tx  to the corresponding response quantities of interest. 

3.3.1 Inter-Story Drift 

The inter-story drift is denoted by ID( ) Nt ∈D R , which can be derived by multiplying 

DT  with ( )tx  as 

 

C P

C P

P P
D D D D D DID D

1 1

P P
ID ID ID

1 1

( ) ( ) + ( )( ) ( )

( ) ( ) + ( )

N N

i i i i i i
i i

N N
N

i i i i i i
i i

q t q t q tt t

q t q t q t

= =

= =

⎡ ⎤= += ⎣ ⎦

⎡ ⎤= + ∈⎣ ⎦

∑ ∑

∑ ∑

T A T B T AD T x

A B A R
 (3.57) 

where P P
ID D D ID D D ID D D,  and N N N

i i i i i i= ∈ = ∈ = ∈A T A B T B A T AR R R .  

3.3.2 Inter-story shear 

The inter-story shear is denoted by IS ( )tF  , which can be derived by 

 
C P

P P
IS S IS IS IS

1 1

( ) ( ) ( ) ( ) + ( )
N N

N
i i i i i i

i i
t t q t q t q t

= =

⎡ ⎤= = + ∈⎣ ⎦∑ ∑F T Kx A B A R  (3.58) 

where P P
IS S D IS S D IS S D,  and N N N

i i i i i i= ∈ = ∈ = ∈A T KA B T KB A T KAR R R . 

Supposing that the second floor is designated as the first DOF of the shear building, 

the first element of IS ( )tF  represents the base shear, which is the primary concern in 

design. 

3.3.3 General Inter-Story Shear 

The general inter-story shear vector is defined as the inter-story shear forces adding 

the elastic restoring forces and damping forces, termed as GS( )tF . 

 [ ]
C P

P P
GS GS GSGS S

1 1

( ) ( ) + ( )( ) ( ) ( )
N N

N
i i i i i i

i i
q t q t q tt t t

= =

⎡ ⎤= += + ∈⎣ ⎦∑ ∑A B AF T Cx Κx R (3.59) 
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where GS S V D( ) N
i i i= + ∈A T CA KA R , GS S V D( ) N

i i i= + ∈B T CB KB R  and 

P P P
GS S V D( ) N

i i i= + ∈A T CA KA R . 

Similar to the inter-story shear, the first element of GS( )tF  is the general base shear, 

which can be called foundation shear (Lin and Chopra 2003). If the structure is lightly 

damped, GS IS( ) ( ).t t≈F F  

3.3.4 Inter-Story Moment 

The inter-story moment vector is defined as the resulting moment caused by elastic 

restoring forces, defined as IM ( )tM . 

 
C P

P P
IM IMIM M S IM

1 1

( ) ( )( ) ( ) + ( )
N N

N
i i i i i i

i i

q t q tt t q t
= =

+⎡ ⎤= = ∈⎣ ⎦∑ ∑A BM T T Kx A R  (3.60)

where P P
IM M S D IM M S D IM M S D,  and N N N

i i i i i i= ∈ = ∈ = ∈A T T KA B T T KB A T T KAR R R . 

Note that the first element of IM ( )tM  is the base turning moment, which is also a critical 

quantity in design. 

3.3.5 General Inter-Story Moment 

Similar to the general inter-story shear, the general inter-story moment is defined as 

the story moments with contributions from both elastic restoring forces and damping 

forces, denoted as GM ( )tM .  

[ ]
C P

P P
GM GM GMGM M S

1 1

( ) ( ) + ( )( ) ( ) ( )
N N

N
i i i i i i

i i
q t q t q tt t t

= =

⎡ ⎤= += + ∈⎣ ⎦∑ ∑A B AM T T Cx Kx R  (3.61) 
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where ( )GM M S V D
N

i i i= + ∈A T T CA KA R , ( )GM M S V D
N

i i i= + ∈B T T CB KB R  and 

( )P P P
GM M S V D

N
i i i= + ∈A T T CA KA R . 

3.3.6 Damper Forces 

The damper forces DR ( )tF  are defined as the force of each damper installed (the 

structural inherent damping is assumed to be very small, say, less than 5%, and can be 

ignored, i.e., damping matrix C is formed completely by the supplemental dampers). A 

second transformation matrix, DCT , was introduced here to obtain the damper forces. 

This matrix represents the damper installation configuration in a shear building. It 

depends on the locations and the installation configurations of the dampers. The common 

damper configurations are given by Figure 7.2 in Ramirez et al. (2000). The DCT  can be 

determined accordingly. As a result, 

 
C P

P P
DR DR DRDR DC S

1 1

( ) ( ) + ( )( ) ( )
N N

N
i i i i i i

i i
q t q t q tt t

= =

⎡ ⎤+= = ∈⎣ ⎦∑ ∑A B AF T T Cx R  (3.62) 

where P P
DR DC S V DR DC S V DR DC S V,  and N N N

i i i i i i= ∈ = ∈ = ∈A T T CA B T T CB A T T CAR R R . 

3.3.7 Generalization 

From above derivations, it is noted that all the response quantities can be expressed 

as the combination of modal responses ( )iq t , ( )iq t  and P( )iq t . They only differ in the 

coefficients vectors in front of each modal response. That is, these response quantities can 

be expressed in a similar manner as follows.  

 [ ]
C P

P P
0 0 0 0

1 1

( ) ( ) ( ) + ( )
N N

N
i i i i i i

i i
t q t q t q t

= =

= + ∈∑ ∑x A B A R  (3.63) 

in which 0( )tx  represents any response quantity discussed in this report and 0
N

i ∈A R , 

0
N

i ∈B R  and P
0

N
i ∈A R  are the coefficient vectors corresponding to different response 

quantities. This unified response form is a suitable platform for developing the modal 

combination rule for the response spectrum method presented in a later chapter. In 
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addition, it is worthwhile to note that when using Equation (3.63), if the DOFs of the 

structures are very large, there is in general no need to consider all modal responses in the 

modal superposition because higher order modes may contribute very little to the 

corresponding total structural responses. This leads to the issue of modal truncation for a 

generally damped linear structure, which will be discussed in a later chapter. For now, it 

is simply assumed that the first 
C

'N  complex modes and first 
P

'N  over-damped modes are 

reserved ( )C P

' 'N N N⎡ ⎤+⎣ ⎦ ; consequently, Equation (3.63) can then be rewritten as  

 [ ]
' '
C P

P P
0 0 0 0

1 1

( ) ( ) ( ) + ( )
N N

i i i i i i
i i

t q t q t q t
= =

≅ +∑ ∑x A B A  (3.64) 

3.4 Reduction to Classically Damped Systems 

The formulation above is applicable to all linear 2D structures regardless of the 

damping distribution. To partly verify the above formulation, a classical damping 

condition was imposed on the formulation and the general response form can be reduced 

to the case of the well-established modal analysis solution for classically damped 

structures. 

When a system satisfies the Caughey criterion 1 1− −=CM K KM C  (Caughey and O’Kelly 

1965), its mode shapes iϕ  are real-valued and are consistent with those of an undamped 

system. Further, the equation of motion of the systems can be decoupled into PCN N+  

independent equations of motion in terms of modal displacement coordinates only. The 

associated eigenvalues for complex modes are still equal to Equations (2.7) and (2.9). 

Utilizing Equation (2.71a) and revisiting Equation (3.8), the residual matrices become 

 
T T T

R I

d

Re     and    Im
2

N N N Ni i i i i i
i i

i i i ia a m ω
× ×⎛ ⎞ ⎛ ⎞

= = ∈ = = − ∈⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

R 0 Rϕ ϕ ϕ ϕ ϕ ϕR R  (3.65) 



42 

Substituting Equation (3.65) into the displacement coefficient vectors shown in 

Equations (3.16) and (3.17), respectively, gives 

 D
N

i = ∈A 0 R  (3.66) 

 
T

I
D C2 ( 1,2, )Ni i

i di i i i
i

i N
m

ω Γ= − = = ∈ =MJB R MJ Rϕ ϕ ϕ  (3.67) 

where 
T
i

i
im

Γ = ∈MJϕ R  is the ith modal participation factor defined for the classically 

damped structures and T( )i i im = ∈Mϕ ϕ R  is the ith modal mass. Also the over-damped 

modes may exist even in classically damped structures. When this situation takes place, 

both P
iR  and P

DiA  remain the same as Equations (3.10) and (3.19), respectively. As a 

result, substituting Equations (3.66) and (3.67) in Equation (3.38), the displacement 

response vector ( )tx  reduces to 

 
C P

P P P

1 1

( ) ( ) + ( )
N N

i i i i i i
i i

t q t q tΓ Γ
= =

= ∑ ∑x ϕ ϕ  (3.68) 

where 

 
P T

P
PP

( ) ( 1, 2, )i
i

i

i N
m

Γ = ∈ =MJ Rϕ  (3.68a) 

and 

 ( )P P T P P( ) 2i i i im ω= − + ∈M Cϕ ϕ R  (3.68b) 
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are the ith over-damped modal participation factor and the ith over-damped modal mass, 

respectively. If the classically damped structure is under-damped C P(  and 0)N N  N= = , 

the over-damped mode terms associated with P( )iq t  can be eliminated and Equation (3.68) 

can be further reduced to 

 
1

( ) ( )
N

i i i
i

t q tΓ
=

= ∑x ϕ  (3.69) 

Equation (3.69) is identical to the well-known displacement modal response solution 

for the classically damped structures (Chopra 2001 and Clough and Penzien 1993). With 

the same conditions and approaches used for obtaining Equation (3.69), the structural 

velocity and absolute acceleration vectors can be written as  

 
1

( ) ( )
N

i i i
i

t q tΓ
=

= ∑x ϕ  (3.70) 

 

2
A

1

A
1

( ) 2 ( ) ( )

( )

N

i i i i i i i
i

N

i i i
i

t q t q t

q t

ξ ω ω Γ

Γ
=

=

⎡ ⎤= − +⎣ ⎦

=

∑

∑

x ϕ

ϕ
 (3.71) 

It may be observed from Equation (3.71) that the structural absolute acceleration 

vector of a classically under-damped structure is the summation of the absolute 

acceleration response of a series of SDOF systems 
2

A g( ) ( ) ( ) 2 ( ) ( )i i i i i i iq t q t x t q t q tξ ω ω= + = − −  in combination with the corresponding 

modal participation factors and mode shapes. 
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Figure 3.1 FRF of modal displacement 
response (periods equal to 0.2s, 0.4s, 0.6s, 
0.8s, 1.0s, 2.0s, 3.0s and 5.0s; damping 
ratio=5%) 
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Figure 3.2 FRF of modal displacement 
response (damping ratios equal to 2%, 
5%, 10%, 20%, 50% and 80%; period=1 
sec) 
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Figure 3.3 FRF of over-damped modal displacement response (over-damped modal 
periods equal to 0.2s, 0.4s, 0.6s, 0.8s, 1.0s, 2.0s, 3.0s and 5.0s) 
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CHAPTER 4 

GENERAL MODAL COORDINATE TRANSFORMATION AND 

MODAL ENERGY 

4.1 Introduction 

In Chapter 3, a unified formulation for seismic responses formulated by 

superposition of its modal responses for a generally damped linear MDOF system has 

been developed. The displacement response vector and velocity response vector 

expressed in Equations (3.38) and (3.43) can be assembled into the state vector format in 

terms of the original physical coordinates and the general modal coordinates. Between the 

coordinates, a general real-valued transformation matrix can be established, which 

possesses a number of special properties that will be discussed in detail in this chapter. 

4.2 General Modal Transformation Matrix 

From the formulation in Chapter 3, the response state vector ( )ty  can be expressed 

as 

 { } T
( )( ) ( )( )
tt tt= =xy A ux  (4.1) 

where 

 2

P

( )
( ) ( )

( )

N

t
t t

t

⎧ ⎫
⎪ ⎪= ∈⎨ ⎬
⎪ ⎪⎩ ⎭

q
u q

q
R  (4.2) 

is defined as the general modal coordinate vector in which 
C

T

1 2( ) ( ), ( ) ( )Nt q t q t q t⎡ ⎤= ⎣ ⎦q  

CN∈R  and P

P

P P P P
1 2( ) ( ), ( ) ( ) N

Nt q t q t q t⎡ ⎤= ∈⎣ ⎦q R , and 

 
P

2 2V V V
T P

D D D

N N×⎛ ⎞
= ∈⎜ ⎟
⎝ ⎠

A B A
A

A B A
R  (4.3) 
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Equation (4.3) is termed as the general modal coordinate transformation matrix, in 

which 

 

( )
( )
( )
( )
( )
( )

C

C

C

C

C

C

C

C

P

P

P

P

V V1 V2 V

V V1 V2 V

D D1 D2 D

D D1 D2 D

P P P P
V V1 V2 V

P P P P
D D1 D2 D

,

,

,

,

,

,

N N
N

N N
N

N N
N

N N
N

N N
N

N N
N

×

×

×

×

×

×

= ∈

= ∈

= ∈

= ∈

= ∈

= ∈

A A A A

B B B B

A A A A

B B B B

A A A A

A A A A

R
R
R

R
R
R

 (4.4) 

and 

 ( )
T * H

*
D *   Ni i i i

i i i
i ia a

⎛ ⎞
= + = + ∈⎜ ⎟

⎝ ⎠
A R MJ R MJ MJ Rϕ ϕ ϕ ϕ  (4.5) 

 ( )
* T * H

* *
D *    Ni i i i i i

i i i i i
i ia a

λ λλ λ
⎛ ⎞

= − + = − + ∈⎜ ⎟
⎝ ⎠

B R MJ R MJ MJϕ ϕ ϕ ϕ R  (4.6) 

 
P P T

P P P
D P

( )    Ni i
i i i

ia
= = ∈MJA R D Rϕ ϕ  (4.7) 

 ( )
T * * H

* *
V *    Ni i i i i i

i i i i i
i ia a

λ λλ λ
⎛ ⎞

= + = + ∈⎜ ⎟
⎝ ⎠

A R MJ R MJ MJ Rϕ ϕ ϕ ϕ  (4.8) 

 ( )
T * H

* * *
V *    Ni i i i

i i i i i i i
i ia a

λ λ λ λ
⎛ ⎞

= − + = − + ∈⎜ ⎟
⎝ ⎠

B R MJ R MJ MJ Rϕ ϕ ϕ ϕ  (4.9) 

 
P P P T

P P P
V P

( )
   i i i N

i i i
ia

λ
λ= = ∈

MJ
A R MJ Rϕ ϕ

 (4.10) 

From Equations (4.4) to (4.10), it can be seen that all elements of TA  are real 

numbers and are only specified by structural system’s parameters, including modal 

parameters, mass matrix M and ground motion influence vector J; and are independent 

from the loading type of the excitation and how the mode shapes are normalized. J is a 
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time-invariable vector and is related to the spatial distribution of the excitation load 

caused by the ground motion. When a structural system and the type of external loading 

are determined, J is also determined and can be considered as a system parameter vector. 

Equation (4.1) gives the modal expansion of the response vector ( )ty  in terms of the 

real-valued modal coordinate vector ( )tu . Intuitively, using Equation (4.1), the coupled 

equations defined by Equation (2.2) can be transformed into a set of uncoupled equations 

expressed in terms of real-valued quantities. This hypothesis is proved mathematically in 

the next section, where some intermediary formulas are used and discussed to further 

expose characteristics of the general transformation matrix. 

4.3 Proof of Modal Decoupling 

For the sake of simplicity for decoupling proof, we reset the arrangement of the 

vectors in the matrix TA  and the elements in the modal coordinate vector without 

interference to the transformation results. Denote  

 2
ST S( ) ( )   Nt t= ∈y A u R  (4.11) 

where ( )TT T 2, N= ∈y x x R  remains the same as the definition in Equation (4.1); and  

 C C P

C C P

P P P

V1 V1 V2 V2 V V V1 V2 V

P P P

D1 D1 D2 D2 D D D1 D2 D

2 2
S T

N N N

N N N

N N×⎛ ⎞
= ∈⎜ ⎟⎜ ⎟
⎝ ⎠

A B A B A B A A A

A B A B A B A A A
A R (4.12) 

 
C C 1 P

TP P P

1 1 2 2 2

2
S ( ), ( ), ( ), ( ) ( ), ( ), ( ), ( )( ) N N N

Nq t q t q t q t q t q t q t q q tt = ∈⎡ ⎤⎣ ⎦u R     (4.13) 

For each column in Equation (4.12), 
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( )

T * * H T

* * *
V

* HT * H
D

**

T

* 2

H

*

,    

i i i i i i i

i i i i i i i i

i i i ii i i i

ii i

i

i N
i i

i

i

a a a

aa a

a

a

λ λ
λ λ

⎧ ⎫⎛ ⎞ ⎧ ⎫+⎪ ⎪⎜ ⎟ ⎪ ⎪⎧ ⎫ ⎛ ⎞⎝ ⎠⎪ ⎪⎪ ⎪ ⎪ ⎪⎜ ⎟= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎛ ⎞ ⎝ ⎠⎩ ⎭ +⎪ ⎜ ⎟ ⎪ ⎪ ⎪
⎩ ⎭⎝ ⎠⎩ ⎭

⎧ ⎫
⎪ ⎪
⎪ ⎪= ∈⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

MJMJ
A

A MJ
MJ

MJ

ψ ψ
MJ

ϕ ϕ ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ ϕϕ ϕ ϕ ϕ

ϕ

ϕ
R

 (4.14) 

 

( )

T * H
*

*
V

* T * H
D

*

* T * T

* *

* 2

* H H

* *

,   

i i i i
i i

i i i

i i i i i i i

i i

i i i i

i i i i i i N
i i

i i i i i i

i i

a a

a a

a a

a a

λ λ

λ λ

λ λ
λ λ

λ λ

⎧ ⎫⎛ ⎞
+⎪ ⎪⎜ ⎟

⎧ ⎫ ⎝ ⎠⎪ ⎪⎪ ⎪ = −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎛ ⎞⎩ ⎭ +⎪⎜ ⎟ ⎪

⎝ ⎠⎩ ⎭
⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟= − = − ∈⎨ ⎬ ⎨ ⎬⎜ ⎟⎪ ⎪ ⎪ ⎪⎝ ⎠
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

MJ
B

B
MJ

MJ MJ

ψ ψ
MJ MJ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ ϕ
R

 (4.15) 

 

P P P T

P P PP P T P TV
P 2

P PP P P T P
D

P

( )

( ) ( )

( )

i i i

i i ii i Ni
i

i ii i i i

i

a

a a

a

λ
λ

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎡ ⎤⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎣ ⎦= = = ∈⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎢ ⎥

⎣ ⎦⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭ ⎪ ⎪
⎩ ⎭

MJ
A MJ MJψ
A MJ

ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ
R  (4.16) 

Thus S TA  can be rewritten as 

 S S
S T S

S

⎧ ⎫
= = ⎨ ⎬

⎩ ⎭

Λ
A ψ Γ Γ

Φ
Φ

 (4.17) 

where 

 ( )C C P

* * * P P P 2
S 1 1 2 2 1 2, , , , , , N N

N N N
×= ∈CΦ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ  (4.18) 

 ( )C C P

* * * P P P 2 2
S 1 1 2 2 1 2diag , , , , , , N N

N N Nλ λ λ λ λ λ λ λ λ ×Λ = ∈C  (4.18a) 



49 

 ( )C C P

* * * P P P 2 2
S 1 1 2 2 1 2, , , , , , N N

N N N
×= ∈ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ C  (4.19) 

 C

P

C1

C2

2 2
C

P
1

P

N N
N

N

Γ

Γ

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ∈⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Γ
Γ 0

ΓΓ

0

C  (4.20) 

 

T * T

2 2
C

H H

* *

i i i

i i

i

i i i

i i

a a

a a

λ

λ
×

⎛ ⎞
−⎜ ⎟

⎜ ⎟= ∈⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

MJ MJ

Γ
MJ MJ

C

ϕ ϕ

ϕ ϕ
 (4.21) 

 P P T
P

1 ( )i i
i

Γ
a

⎡ ⎤= ∈⎣ ⎦MJ Rϕ  (4.22) 

Analogous to the formula defined for classically damped systems (Clough and 

Penzien 1993 and Chopra 2001), CiΓ  and P
iΓ  can be termed as ith modal participation 

factor matrix and over-damped modal participation factor, respectively. 

According to the orthogonality of eigen-matrix proved in Chapter 2, Equations (2.27) 

and (2.28) can be rewritten as 

 ( )C C P

T * * * P P P 2 2
s S S 1 1 2 2 1 2ˆ diag , , , , , , N N

N N Na a a a a a a a a ×= = ∈a ψ Aψ C  (4.23) 

 ( )C C P

T * * * P P P 2 2
s S S 1 1 2 2 1 2

ˆ diag , , , , , , N N
N N Nb b b b b b b b b ×= = ∈b ψ Bψ C  (4.24) 

For simplicity, the equation of motion of the structure represented in the state space 

form shown in Equation (2.2) is revisited here 

 S( ) ( ) ( )t t t+ =Ay By f  (4.25) 
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Substituting Equation (4.11) into Equation (4.25) and pre-multiplying T
S T( )A  to the 

resulting equation yields 

 T T T
ST ST ST ST ST S( ) ( ) ( )t t t+ =A AA u A BA u A f  (4.26) 

in which 

( ) ( )

( )

( )

C

C C

C

P P

1

C1 C1
*

1

2

C 2 C 2
*

2

C C
*

P

1 1

T

T

T

2P

2P P

T T T 2 2
ST ST S S

0

0
0

0

0

0

Γ

Γ

  

N

N N

N

N N

N N

a

a
a

a

a

a

a

a

×= ∈

⎛ ⎛ ⎞ ⎞
⎜ ⎜ ⎟ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎜ ⎟=

⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Γ Γ

Γ Γ 0

Γ Γ

0

A AA Γ ψ Aψ Γ R

 

  (4.27) 

( ) ( )

( )

( )

C

C C

C

P P

1

C1 C1
*

1

2

C 2 C 2
*

2

C C
*

1 1

T

T

T

2P P

2P P

T T T 2 2
ST ST S S

0

0
0

0

0

0

Γ

Γ

  

N

N N

N

N N

N N

b

b
b

b

b

b

b

b

×= ∈

⎛ ⎛ ⎞ ⎞
⎜ ⎜ ⎟ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎜ ⎟=

⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Γ Γ

Γ Γ 0

Γ Γ

0

A BA Γ ψ Bψ Γ R

 

  (4.28) 
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and 

{ } ( ) ( )

( )

( )

( )

( )

( )

( )

C

C

C C

22 2 TT T

1 2

1 2

2 2 2* T * T * T

1 1 2 2

1 2

T T T 2 1
ST S S g

T T

2 Re2 Re 2 Re

,

2 Re Re 2 Re

( )   ( )( )

N

N

N N

N

aa a

a a a

t x tt

λ λ λ

×

=

− − −

= = − ∈

⎡ ⎤⎧ ⎡ ⎤ ⎫ ⎧ ⎡ ⎤ ⎫
⎢ ⎥⎪ ⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪
⎢ ⎥⎪ ⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪

⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

MJMJ MJ

MJ MJ MJ

0A f Γ MJf

ϕϕ ϕ

ϕ ϕ ϕ

Φ R

( ) ( ) ( )

C

P

P

22 2 PP P

1 2

P P P

1 2

g

T

T

,

, ( )                                        

N

N

Na a a
x t

⎛ ⎧ ⎫
⎜ ⎪ ⎪
⎜ ⎪ ⎪⎪ ⎪⎜

⎨ ⎬⎜
⎪ ⎪⎡ ⎤⎜
⎪ ⎪⎢ ⎥⎜⎜ ⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦⎝

⎞
⎟ ⎡ ⎤−⎣ ⎦⎟
⎠

MJMJ MJ ϕϕ ϕ

 (4.29) 

After substituting Equations (4.27) to (4.29) back into Equation (4.26), the 

corresponding ith block element for the complex mode and over-damped mode for the 

both sides of the resulting equation can be further manipulated as 

 

( )

( )

2

T T

C C C C
* * 2*

T

g
T

C

2 Re
0 0

0 0
2 Re

( )

( 1,2 )

i

ii ii i

i i i i

i ii i i i

i

aa bq q

q qa b

a

x t

i N

λ
+ =

⎧ ⎡ ⎤ ⎫
⎪ ⎢ ⎥ ⎪
⎪ ⎢ ⎥ ⎪⎛ ⎞ ⎛ ⎞⎧ ⎫ ⎧ ⎫ ⎣ ⎦⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎡ ⎤−⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎣ ⎦⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎡ ⎤⎩ ⎭ ⎩ ⎭⎝ ⎠ ⎝ ⎠
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

=

MJ

Γ Γ Γ Γ
MJ

ϕ

ϕ
 (4.30) 

 ( ) ( ) ( )P

P

2

g

2P P P P P

P

( )

( 1, 2 )

i

i

i i i i i a
x ta Γ q q

i N

ω ⎡ ⎤+ = −⎣ ⎦
=

MJϕ
 (4.31) 
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In Equation (4.30), 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

T H T * T

*

T
C C* ** T H H H

* *

T * T

T H

* T H H

0 0

0 0

i i i i i

i ii i i i

i i

i ii i i i i i i

i ii i

i i i

i i i i

i i i i i

a aa a a a

a a

a aa a

a a

λ

λ λ λ

λ

λ λ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟− − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

−
⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

MJ MJ MJ MJ

Γ Γ
MJ MJ MJ MJ

MJ MJ

MJ MJ

MJ MJ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

− ϕ ϕ ϕ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
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H

* *

2 2 2 2T H * T H

* *

2 2 2 2 22* T H * T H
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2 2T * T

2* T

Re Re

2

Re

i i

i i

i i i i i i

i ii i

i i i i i i i i

i ii i

i i i

i i

i i

i

a a

a aa a

a aa a

a a

a

λ

λ λ

λ λ λ λ

λ

λ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟+ − −
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟− − +⎜ ⎟
⎝ ⎠

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

=
⎡
⎢−
⎢
⎣

MJ MJ

MJ MJ MJ MJ

MJ MJ MJ MJ

MJ MJ

MJ

ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ( ) ( )
2 2

2 2* T

Re i i

ia
λ

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

∈⎜ ⎟
⎜ ⎟⎤ ⎡ ⎤
⎜ ⎟⎥ ⎢ ⎥
⎜ ⎟⎥ ⎢ ⎥⎜ ⎟⎦ ⎣ ⎦⎝ ⎠

MJϕ
R  (4.32) 
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and 
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*

* ** T H H H
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0 0

0

0
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i ii i i i i i i
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b a
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=
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* *

2 2 2 2 22* T * H * T * H
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i i i i i i i i i i
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i i i i i i i i i i i i
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λ
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⎛ ⎞
⎜ ⎟−
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⎜
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⎜
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⎝

MJ MJ
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ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
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2
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2
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2
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i i i i i i
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i
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i i i
i i

i

a a

a a
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a

λ λ λ
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λ
ω

λ
ω ω

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥−
⎜ ⎟⎢ ⎥ ⎢ ⎥
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⎡ ⎤ ⎡ ⎤⎜ ⎟
⎢ ⎥ ⎢ ⎥⎜ ⎟−
⎢ ⎥ ⎢ ⎥⎜ ⎟
⎣ ⎦ ⎣ ⎦⎝ ⎠

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

=
⎡ ⎤
⎢ ⎥ −
⎢ ⎥
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MJ MJ

MJ MJ

MJ MJ

MJ MJ

ϕ ϕ
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2 2

ia

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

∈⎜ ⎟
⎡ ⎤⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎣ ⎦⎝ ⎠

R

 (4.33) 
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Substituting Equations (4.32) and (4.33) into the left side of Equation (4.30) leads to: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2 2 2 2T H * T H

* *

2 2 2 2 22* T H * T H
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i ii i
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i
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a
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⎛ ⎞
⎜ ⎟+ − −
⎜ ⎟⎧ ⎫⎪ ⎪⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎩ ⎭⎜ ⎟− − +⎜ ⎟
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+

+

MJ MJ MJ MJ

MJ MJ MJ MJ
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ϕ ϕ ϕ ϕ
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2
g
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i

i
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i

i
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i

q

q

aa a

a
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a
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λ

⎛ ⎞
⎜ ⎟
⎜ ⎟ ⎧ ⎫⎪ ⎪⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎩ ⎭⎜ ⎟− −⎜ ⎟
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⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥

⎣ ⎦⎪ ⎪⎪ ⎪ ⎡ ⎤= − ∈⎨ ⎬ ⎣ ⎦
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⎪ ⎪⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

J MJ MJ

MJ

MJ
R

ϕ ϕ

ϕ

ϕ

 (4.34) 

It is easy to be seen that Equation (4.34) corresponds to two equations, the first one 

is that 
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a aa a

a a

λ λ λ λ

λ λ λ λ
λ λ ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ + − − − −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎡ ⎤− + = + + − − +⎣ ⎦⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= +

MJ MJ MJ MJ MJ MJ

MJ MJ MJ MJ

MJ MJ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ( )2T
2

g2 2Re ( )
i

i i i i i i
i

q q q x t
a

ξ ω ω
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤+ + = − ∈⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

MJ
R

ϕ
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while the second one is expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2 22* T H * T H * T * H

* * *

2 2 2 2 22* T * H * T H
2

* * 2

i i i i i i i i i i i i i i
i i

i i i i i i

i i i i i i i i i i
i i i i i i

i i i i

q q
a a a a a a

q q q q
a a a a

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ
ξ ω ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − + + + +
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎡ ⎤+ + = − + + +⎣ ⎦⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= −

MJ MJ MJ MJ MJ MJ

MJ MJ MJ MJ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

( )2* T

g2 Re ( )i i

i

x t
a

λ⎡ ⎤
⎢ ⎥ ⎡ ⎤− ∈⎣ ⎦⎢ ⎥
⎣ ⎦

MJ
R

ϕ

 

After simplifying the above two equations, the ith complex modal equations are: 

 
( ) ( )2 2T T

2
g

2 2
Re 2 Re ( )i i

i i i i i i
i i

q q q x t
a a

ξ ω ω
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤+ + = −⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

MJ MJϕ ϕ
 (4.35) 

 
( ) ( )2 2* T * T

2
g

2 2
Re 2 Re ( )i i i i

i i i i i
i i

q q q x t
a a

λ λ
ξ ω ω

⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤+ + = − −⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

MJ MJϕ ϕ
 (4.36) 

Comparing Equation (4.35) and (4.36), it can be easily found that these two 

equations are identical to modal responses no mater ( )T 0i ≠MJϕ . When ( )T 0i ≠MJϕ , 

either Equation (4.35) or (4.36) can be simplified as a second order governing motion 

differential equation for a pure SDOF system with the ith modal frequency and damping 

ratio: 

                               2
Cg2 ( 1,2, )( )i i i i i iq q q i Nx tξ ω ω+ + = − ∈ =R  (4.36a) 

It is found that Equation (4.36a) is exactly same as Equation (3.23). 

For the over-damped modes, substituting Equation (4.22) into Equation (4.31), we 

have 

 ( )2 2P T P P P P T
gP P

1 1( ) ( ) ( )i i i i i
i i

q q x t
a a

ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ = − ∈⎣ ⎦⎣ ⎦ ⎣ ⎦MJ MJϕ ϕ R  (4.37) 
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If P T( ) 0i⎡ ⎤ ≠⎣ ⎦MJϕ , Equation (4.37) can be further simplified as a pure, first-order 

differential equation for an over-damped mode 

   P P P
g P( ) ( 1, 2 )i i iq q x t i Nω+ = − ∈ =R      (4.38) 

which is exactly the same as Equation (3.29). Now, we have shown that the general 

transformation matrix TA  can decouple the original MDOF structural motion differential 

equation.  

After the original motion equation is decoupled, the computational burden for 

response solutions of a structure with a large number of DOFs can be considerably 

reduced by applying the modal truncation techniques, which will be discussed in the next 

chapter. In the unified formula for structural responses of interest for seismic analysis and 

structural design shown in the Chapter 3, the velocity responses ( )iq t  for complex modes 

are required. However, mathematically speaking, both ( )iq t  and ( )iq t  are the complete 

solution set of the Equation (4.36a), and the computation demand is comparable to the 

one required for the classically damped cases. The only additional effort is in solving the 

eigenvalue problem shown in Equation (2.4) whose size is doubled compared to the size 

in the classically damped cases. However, this demand is minimal beyond the 

computation for classically damped cases.  

Furthermore, it can be predicted that the general coordinate transformation matrix 

TA  established in this study has significant values in many respects, such as the seismic 

structural analysis and design, structural response analysis to initial conditions, 

supplemental damping design, reserved modal order determination (modal truncation), 

modal energy transfer analysis and structural active/semi-active control based on 

independent modal space approach (IMSC) as well as the physical interpretations of the 

complex modal analysis. 

4.4 Non-Singularity Analysis for General Transformation Matrix 

Taking determinant operation for both sides of Equation (4.27) and considering 

Equations (4.17) and (4.23), we have 
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( ) ( ) ( )
( ) ( ) ( ) ( )

2T T T
ST ST ST S S

2 2T
S S s

det det .det det
ˆdet det det det

⎡ ⎤⎡ ⎤ = =⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦
= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

A AA A A Γ ψ Aψ Γ

Γ ψ Aψ Γ a
 (4.39) 

In Appendix A, it has been proved that ( )det 0≠A  and ( ) ( )sˆ ˆdet  det 0⎡= ⎤ ≠⎣ ⎦a a . 

Thus Equation (4.39) becomes 

 ( ) ( )
( ) ( )2 2s

ST

ˆdet
det det

det
= ∈⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

a
A Γ

A
R  (4.40) 

Using the relationships (4.20) to (4. 22), ( )det Γ  can be expressed as  

 

( )

( ) ( )

C

P

C P

C1

C2

C
P
1

P

P
C

1 1

det det
Γ

Γ

det . det Γ

N

N

N N

i i
i i= =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= ∈∏ ∏

Γ
Γ 0

ΓΓ

0

Γ C
 (4.41) 

in which 

( ) ( )

T * T

2 2T T
*

C d
H H

* *

det det j2

i i i

i i i i
i i i i

i ii i i

i i

a a

a a

a a

λ

λ λ ω
λ

⎛ ⎞
−⎜ ⎟

⎜ ⎟= = − = −⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

MJ MJ

MJ MJΓ
MJ MJ

ϕ ϕ

ϕ ϕ

ϕ ϕ

 (4.42) 

 ( )P P T
P

1det ( )i i
i

Γ
a

⎡ ⎤= ⎣ ⎦MJϕ  (4.43) 
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From Equations (4.40) to (4.43), it can be easily concluded that whether or not 

( )S Tdet 0=A  only depends on the term ( )det Γ  and further depends on T
i⎡ ⎤⎣ ⎦MJϕ  for all 

complex modes and P T( )i⎡ ⎤⎣ ⎦MJϕ  for all over-damped modes. If 

 T 0i⎡ ⎤ ≠⎣ ⎦MJϕ ( )C1,  2i N=  (4.43a) 

and 

 P T( ) 0i⎡ ⎤ ≠⎣ ⎦MJϕ  ( )P1,  2i N=  (4.43b) 

, we can have ( )S Tdet 0≠A , that is, the general modal transformation matrix S TA  is non-

singular. On the other hand, if ( )S Tdet 0=A , there is at least one mode in the system that 

causes T 0i⎡ ⎤ =⎣ ⎦MJϕ  or P T( ) 0i⎡ ⎤ =⎣ ⎦MJϕ . 

Theoretically speaking, for an arbitrary linear structure with complete constraints 

(without zero and repeated eigenvalues), there is no guarantee that the conditions (4.43a) 

and (4.43b) are satisfied. 

From mathematical point of view, T 0i⎡ ⎤ =⎣ ⎦MJϕ  and/or P T( ) 0i⎡ ⎤ =⎣ ⎦MJϕ  implies that 

the vector iϕ  or P
iϕ  is orthogonal to the vector MJ  and that the corresponding modes 

do not have contributions to the structural responses, which may happen to a symmetric 

structure. In earthquake engineering, especially for the tower type of building structures 

(the cantilever type of structures), a few number of lower modes, say 20 modes, dominate 

the structural dynamic behaviors, and further for these lower order modes of the 

structures, the conditions (4.43a) and (4.43b) for all modes may be satisfied, which 

should be examined after the system’s eigen-solutions are obtained.  

Assuming that when modal order ( )0 1 2 C 0 C,   1 and 1nr r r r N r N n= ≥ ≥ ≥ ≥ , 

T 0
ir

⎡ ⎤ =⎣ ⎦MJϕ  and/or when over-damped modal order 
P

P P P P
0 1 2,  nr r r r= ( P

P 0 1N r≥ ≥  and 

)P P 1N n≥ ≥ , P
P T( ) 0
ir

⎡ ⎤ =⎣ ⎦MJϕ , the terms and vectors concerning these modes should be 

removed from the modal superposition expressions for varied types of structural 
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responses and from the general modal transformation matrix TA , respectively. Referring 

to the unified structural response form expressed in Equation (3.63), we have 

 [ ]
C P

P0 0

P P
0 0 0 0

1 1

( ) ( ) ( ) + ( )
N N

i i i i i i
i i
i r i r

t q t q t q t
= =
≠ ≠

= +∑ ∑x A B A  (4.44) 

The TA  expressed in Equation (4.3), as the consequence, which is denoted as T′A , 

will no longer be a square matrix. Instead, it becomes a matrix with 

P(2 ) (2 2 )N N n n× − −  dimension, that is, P(2 ) (2 2 )
T

N N n n× − −′ ∈A R . However, the vectors in 

T′A  are kept linear independent with respect to each other, which can still be used to 

decouple the system original differential equation. The difference lies on that only 

P( )N n n− −  independent pure modal equations are available. 

4.5 Numerical Example for General Modal Responses 

Figure 4.1 shows a simple symmetric structural example model with four lumped 

masses (4 DOFs). The structural mass, stiffness and damping matrices are 

2
2 0

,  ,  
2 0

2

m k k c
m k k k

m k k k
m k k c

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

M K C  
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k k k k k

m m m m

cc

2x
3x 4x

( )gx t

Figure 4.1  4-DOFs symmetric Structural Model 

m=2000(Kg), k=2.00E05(N/m), c=5.20E04(N.Sec/m)

1

2 3
4

x1 

 

 

 

According to Caughey criterion, it is found that 

 1 1

 1.04E7   0     0        0 1.04E7      0            0
-5.20E6   0     0        0     0           0          0  
     0       0     0   -5.20E6
     0       0     0    1.04E7

-5.20E6

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟= ≠ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

CM K KM C
          0

    0           0          0            0
   0           0       1.04E7-5.20E6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Thus this structure is a non-classically damped system. From M, K and C, we can 

further obtain system state coefficient matrix AS, which is defined in Equation (A.4) of 

Appendix A: 

 

1 1

S

/ 0   0  0 2 / / 0 0
0 0 0 0 / 2 / / 0
0 0 0 0 0 / 2 / /
0 0 0 / 0 0 / 2 /
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

c m k m k m
k m k m k m

k m k m k m
c m k m k m

− −⎛ ⎞− −
= ⎜ ⎟
⎝ ⎠

− −⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟− −⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M C M K
A

I 0

 

Substituting values of m, k and c listed in Figure 4.1 and then calculating eigen-

solutions of the matrix SA , we found that there are three complex modes and two over-
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damped modes for this structure under current parameter assumption. The modal 

frequencies, periods and damping ratios for all modes are listed in Table 4.1, while the 

modal shape matrix and their plots are shown in Equation (4.45) and Figure 4.2(a) and (b), 

respectively. 

 

1.0000    0.5664-0.3461j    1.0000+1.0000j   1.0000   -0.1536+ 0.2737j
0.6724   1.0000+1.0000j    0.1811+0.2564j   0.3276   -1.0000- 1.0000j
0.6724   1.0000+1.0000j   -0.1811- 0.2564j   0.3276    1.00

=Φ
00+ 1.0000j

1.0000   0.5664- 0.3461j   -1.0000- 1.0000j   1.0000     0.1536- 0.2737j

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

(4.45) 

Note that each modal shape has normalized based on the following relationships for 

complex modes and over-damped modes, respectively: 

 ( )
1,2

(1 j)
max

Ni
i

lil N=

+′ = ∈Cϕϕ
ϕ

 (4.46) 

 ( ) ( )
P

P
P

1,2
max

Ni
i

lil N=

′ = ∈Rϕϕ
ϕ

 (4.47) 

in which liϕ  and P
liϕ are the lth (l=1, 2… N) element in the ith complex and over-damped 

modal shape vector, respectively. For the complex modes, only those corresponding to 

complex eigenvalues with positive imagine parts are shown in Equation (4.45) and Figure 

4.2. 

Table 4.1  Modal Frequency, Period and Damping Ratio 

 

From the modal shape data in Φ  and Figure 4.2(a) and (b), it can be observed that 

the 1st complex modal shapes, both real parts and imaginary parts, are symmetric with 

Mode 
Order Mode Type Frequency 

(Hz) 
Period 
(Sec.) 

Damping Ratio 
(100%) 

1 1st over-damped 1.1109 0.9002 N/A 
2 1st Complex 1.5915 0.6283 23.4669 
3 2nd Complex 2.0320 0.4921 97.0430 
4 2nd over-damped 2.2801 0.4386 N/A 
5 3rd Complex  2.7875 0.3587 3.4852 
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respect to the structural symmetric line, while those of 2nd and 3rd complex modes are 

anti-symmetric to the structural symmetric line and two over-damped modal shapes are 

symmetric with respect to the structural symmetric line. Thus the 2nd and 3rd complex 

modes will not contribute to the structural responses. In this instance, the structural 

displacement and velocity vector can be expressed as 

 ( ) [ ]T P P P P
1 2 3 4 D1 1 D1 1 D1 1 D2 2( ) , , , ( ) ( ) + ( ) ( )t x x x x q t q t q t q t⎡ ⎤ ⎡ ⎤= = + +⎣ ⎦ ⎣ ⎦x A B A A   (4.48) 

 ( ) [ ]T P P P P
1 2 3 4 V1 1 V1 1 V1 1 V2 2( ) , , , ( ) ( ) + ( ) ( )t x x x x q t q t q t q t⎡ ⎤ ⎡ ⎤= = + +⎣ ⎦ ⎣ ⎦x A B A A   (4.49) 

and the general modal transformation relationships are 

 

P P
8 8V1 V1 V1 V2

T P P
D1 D1 D1 D2

×⎛ ⎞
= ∈⎜ ⎟
⎝ ⎠

A B 0 0 0 0 A A
A

A B 0 0 0 0 A A
R

 (4.50) 

 

P P
8 4V1 V1 V1 V2

T P P
D1 D1 D1 D2

×⎛ ⎞
′ = ∈⎜ ⎟

⎝ ⎠

A B A A
A

A B A A
R

 (4.51) 

 ( )TP P 4
1 1 1 2( ) ( ), ( ), ( ), ( )t q t q t q t q t′ = ∈u R

 (4.52) 

Utilizing Equations (3.16), (3.17) (3.19) and (3.42), we can calculate the values of 

matrix T′A : 

 T

 -0.2825    6.0193   -0.3844    1.1248
  1.2825   12.0386   -0.2585    0.3685
  1.2825   12.0386   -0.2585    0.3685
 -0.2825    6.0193   -0.3844    1.1248
 -0.0602   -0.5650    0.0551   -0.0785
 -0.12

′ =A 8 4

04    0.7175    0.0370   -0.0257
 -0.1204    0.7175    0.0370   -0.0257
 -0.0602   -0.5650    0.0551   -0.0785

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟∈⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

R  (4.53) 
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Similar to Equations (4.48) and (4.49), the structural absolute acceleration can also 

be expressed as  

( ) [ ]T P P P P
A A1 A2 A3 A4 A1 1 A1 1 A1 1 A2 2( ) , , , ( ) ( ) + ( ) ( )t x x x x q t q t q t q t⎡ ⎤ ⎡ ⎤= = + +⎣ ⎦ ⎣ ⎦x A B A A  (4.54) 

Figure 4.2  Modal Shapes 

(a) Complex Modal Shapes 

Real Parts 

Imagine Parts 

1st Complex Mode 
2nd Complex Mode 
3rd Complex Mode 

Symmetric Line 

(b) over-damped Modal Shapes 

2nd over-damped Mode 
1st over-damped Mode 
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Now the El Centro earthquake ground motion acceleration with peak value of 0.2g 

(0.2g PGA) is assumed applying to the example model. The acceleration history plot is 

shown in Figure 4.3.  Utilizing Equations (4.36a) and (4.38), we can solve the general 

modal responses for three effective modes (the modes that satisfied conditions (4.43a) 

and (4.43b)). 

 

 

 

 

 

 

 

 

 
Figure 4.3  EL Centro Earthquake Acceleration Time History 
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Figure 4.4  General Modal Responses 
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The corresponding response plots are shown in Figure 4.4 (a) to (b). As similar as 

the definitions in Equation (3.13) and (3.14), each term in square bracket in Equations 

(4.48) and (4.49) is named as the modal structural response, such as: 

1 D1 1 D1 1( ) ( ) ( )t q t q t= +x A B , 1 V1 1 V1 1( ) ( ) ( )t q t q t= +x A B  and A1 A1 1 A1 1( ) ( ) ( )t q t q t= +x A B  

are called as the 1st complex modal structural displacement, velocity and absolute 

acceleration vectors, respectively, while P P P
1 D1 1( ) ( )t q t=x A , P P P

1 V1 1 ( )q t=x A , 

P P P
A1 A1 1 ( )q t=x A , P P P

2 D2 2( ) ( )t q t=x A , P P P
2 V2 2 ( )q t=x A  and P P P

A2 A2 2 ( )q t=x A  are the 1st and 2nd 

over-damped modal structural displacement vector, velocity vector and absolute 

acceleration vector, respectively. Thus, (4.48), (4.49) and (4.54) can be rewritten as: 

 P P
1 1 2( ) ( ) ( ) ( ) Nt t t t= + + ∈x x x x R  (4.55) 

 P P
1 1 2( ) ( ) ( ) ( ) Nt t t t= + + ∈x x x x R  (4.56) 

 P P
A A1 A1 A2( ) ( ) ( ) ( ) Nt t t t= + + ∈x x x x R  (4.56a) 

(a) (b)

(c) (d)

Figure 4-5. Modal Structural Displacement Responses of the 1st DOF 
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Figure 4.6  Modal Structural Velocity Responses of the 1st DOF 
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(c) 
Figure 4.7  Modal Structural Absolute Acceleration Responses of the 1st DOF 
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As an example to illustrate the responses of the structure, the modal structural 

displacement responses for the first DOF of the structure and for the three general modes 

are shown in Figure 4.5 (a) to (c).  Their summation is given in Figure 4.5 (d), while the 

modal structural velocity and absolute acceleration responses and their corresponding 

summation are shown in Figure 4.6 (a) to (d) and Figure 4.7 (a) to (d). 

The Figure 4.8 (a) to (c) also show the structural displacement, velocity and absolute 

acceleration response plots of the 1st DOF, respectively. These three responses are 

calculated directly based on the complete state space equation of the structural system 

that is expressed as the following, other than via modal decoupling approach. 

 
1 1

g 2
( )( ) ( )

( ) ( )
N

x tt t

t t

− − −⎧ ⎫⎛ ⎞− −⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎜ ⎟= + ∈⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠ ⎩ ⎭

Jx xM C M K

x xI 0 0
R  (4.57) 

 ( ) ( )1 1
A ( ) ( ) ( ) Nt t t− −= − − ∈x M C x M K x R  (4.58) 

(a) (b)

Figure 4.8  Structural Displacement and Velocity Responses of the 1st DOF 
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The major purpose of doing so is for comparison of responses obtained from 

different approaches and for further validation of formulas developed in this study. 

Comparing Figures 4.5(d), 4.6(d) and 4.7(d) with Figure 4.8(a), (b) and (c), respectively, 

it can be observed that the corresponding pairs of plots are exactly same. 

4.6 General Modal Responses to Initial Conditions 

If the applied earthquake force to the structure is ( ) Nt = ∈f 0 R , Equations (2.1) and 

(2.2) become, 

 ( ) ( ) ( ) Nt t t+ + = ∈Mx Cx Kx 0 R  (4.59) 

 2( ) ( ) Nt t+ = ∈Ay By 0 R  (4.60) 

However, if at the zero instant ( 0t += ), the structure is subjected to an initial 

displacement vector 0
N∈x R and a velocity vector 0

N∈x R , the structure will oscillate 

around its equilibrium position until the vibration level decays to zero (suppose that 

damping always exists more or less in the structure). The initial conditions can be 

expressed as state vector format, which is 

 { } 20
0

0

N= ∈xy x R  (4.61) 

In the following, the general modal transformation matrix STA  is used to convert the 

initial conditions 0 0 and x x  or 0y in the original coordinates to those in general modal 

coordinates: 

 ( )C C P

TP P 2
S0 01 01 02 02 0 0 01 0, , , , , N

N N Nq q q q q q q q= ∈u R  (4.62) 

According to Equation (4.11), 0y  and S0u  satisfies the following relationship: 

 0 ST S0( ) ( ) t t=y A u  (4.63) 
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Pre-multiplying T
STA B  to both sides of Equation (4.63) brings out 

 ( )T T 2
ST 0 ST ST S0

N= ∈A By A BA u R
 (4.64) 

The left hand side of Equation (4.64) can be expanded as 

 
( ){ } { }T T T T0 0

ST 0 ST
0 0

T T T
S S 0 S 0

−−= =

⎡ ⎤= −Λ +⎣ ⎦

x MxM 0A By A Γ0 K x Kx

Γ Mx Kx

Ψ

Φ Φ
 (4.65) 

Based on Equation (4.28), the right side of Equation (4.64) becomes 

 ( ) ( )T T 2
ST ST S0 S S0

ˆ N= ∈A BA u Γ b Γ u R  (4.66) 

Thus  

 

1

S0
T T 1 -1 T T T T
ST ST ST 0 S S S 0 S 0

1 -1 T T 1 -1 T -1 T
S S S 0 S 0 S S 0 S S 0

ˆ

ˆ ˆ

− − −

− −

= ⎡ ⎤⎡ ⎤ = −Λ +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= −Λ + = − Λ⎣ ⎦ ⎣ ⎦

u BA A A By Γ b Γ Γ Mx Kx

Γ b Mx Kx Γ a Mx Kx

Φ Φ

Φ Φ Φ Φ
 (4.67) 

in which 

 

( ) ( )

( ) ( )

*

T H

d
1 -1 2 2

T HS

P T

1diag
j2 1 1

ˆ

1diag 
( )

i i

i i

i
N N

i i

i

λ λ

ω
− ×

⎛ ⎞⎡ ⎤⎛ ⎞
−⎜ ⎟⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥⎜ ⎟−= ∈⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎜ ⎟
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

MJ MJ
0

Γ a
MJ MJ

0
MJ

ϕ ϕ

ϕ ϕ

ϕ

C  (4.68) 
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Substituting Equation (4.68) into (4.67) leads to 

 

T * H T H

0 0 0T H T H
d

T T

0 0T T
d d

1
j2

1 1Im Im

i i i i i i
i

i i i i i

i i i

i i i i

q λ λ
ω

λ
ω ω

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞
= − ∈⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

M M K Kx x
MJ MJ MJ MJ

M Kx x
MJ MJ

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ

R
 (4.69) 

 

T H T H

0 0 0T H T * H
d

T T

0 0T T
d d

1
j2

1 1Im Im

i i i i
i

i i i i i i i

i i

i i i i i

q
ω λ λ

ω ω λ

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞
= − ∈⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

M M K Kx x
MJ MJ MJ MJ

M Kx x
MJ MJ

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ

R
 (4.70) 

 
P T P T

P
0 0 0P T P P T

( ) ( )
( ) ( )

i i
i

i i i

q
ω

= + ∈M Kx x
MJ MJ

ϕ ϕ
ϕ ϕ

R  (4.71) 

Note that if conditions (4.43a) and (4.43b) for certain modes cannot be satisfied, 

similar to that described in the Section 4.4, the modal coordinate transformation for initial 

conditions expressed in Equation (4.63) must be changed as  

 0 ST S0( ) ( ) t t′=y A u  (4.72) 

in which S T′A  is the same as S TA  except that it excludes modes 0 1 2,  nr r r r=  and/or 

P

P P P P
0 1 2,  nr r r r= . It is easy to predict that if we follow the procedure for formulation from 

(4.63) to (4.71), the final formulas for the initial conditions expressed in terms of general 

modal coordinates are same as those in (4.63) to (4.71), except 0i r≠  for complex modes 

and/or  P
0i r≠  for over-damped modes. This means that no assignments of initial 

conditions to these modes are needed. In other words, these modes do not have 

contributions to the structural initial conditions expressed in the structural original 

coordinates. In the following, we only focus on the discussion for Equations (4.63) to 

(4.71). For the cases that 0i r=  and/or P
0i r= , the analysis and the conclusions are similar. 

From Equations (4.69) and (4.70), supposing that only initial structural displacement 0x  
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exists or only initial structural velocity 0x  exists, we have following two sets of 

simplified equations, respectively, 

 
T

0 0T
d

1 Im i
i

i i

q
ω

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

K x
MJ

ϕ
ϕ

 (4.73) 

and 

 
T

0 0T
d

1 Im i
i

i i i

q
ω λ

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

K x
MJ

ϕ
ϕ

 (4.74) 

or 

 
T

0 0T
d

1 Im i i
i

i i

q λ
ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

M x
MJ

ϕ
ϕ

 (4.75) 

and 

 
T

0 0T
d

1 Im i
i

i i

q
ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

M x
MJ

ϕ
ϕ

 (4.76) 

from which, we can see that sole 0x  or sole 0x  will cause both complex modal initial 

displacement and velocity simultaneously for most cases. This is a special characteristic 

brought out from complex modes. From (4.71), we can notice that either 0x  or 0x  or 

their combination will only lead over-damped modal displacement, which is due to the 

first order differential equation for the over-damped modes. 

Now let us recall the earthquake loading expression g( ) ( )f t x t= −MJ  and further 

suppose g ( )x t α⎡ ⎤− =⎣ ⎦ ( α ∈R and 0α ≠ ), which leads 0f α= MJ and 0f  can be 

considered as general static force vector due to constant ground motion acceleration. If 

0x  is the structural initial displacement vector that is caused by applying 0f  to the 

structure, we can express 0x  as 

 1
0 α −=x K MJ  (4.77) 
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Substituting Equation (4.77) into Equations (4.73), (4.74) and (4.71), we have 

 
T 1

0 T
d

Im 0i
i

i i

q α
ω

−⎛ ⎞
= − =⎜ ⎟

⎝ ⎠

KK MJ
MJ

ϕ
ϕ

 (4.78) 

and 

 
T 1

0 T 2
d d

1Im Imi
i

i i i i i i

q α α α
ω λ ω λ ω

−⎛ ⎞ ⎛ ⎞
= − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

KK MJ
MJ

ϕ
ϕ

 (4.79) 

 
P T 1

P
0 P P T P

( )
( )

i
i

i i i

q α α
ω ω

−

= =KK MJ
MJ

ϕ
ϕ

 (4.80) 

Equations (4.78) and (4.79) show that when the structure has only initial 

displacement 0x  and 0x  satisfies Equation (4.77), only initial displacement for a complex 

mode can be obtained through the coordinate transformation proposed in this study. In 

addition, from Equation (4.79), we can notice that the term 21 / iω  and its reciprocal 2
iω  

act as flexibility and stiffness, respectively, of a SDOF system with a unit mass, which is 

governed by Equation (4.36a). 

On the other hand, if supposing that the ground suddenly generates a velocity 

( )β− (m/sec.) at 0t = , the structure will be subjected to a relative initial velocity vector 

 0 β=x J  (4.81) 

Substituting Equation (4.81) into Equations (4.75), (4.76) and (4.71), we have 

 
T

0 T
d

Im i i
i

i i

q β λ β
ω

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

MJ
MJ

ϕ
ϕ

 (4.82) 

and 

 
T

0 T
d

Im 0i
i

i i

q β
ω

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

MJ
MJ

ϕ
ϕ

 (4.83) 
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and 

 
P T

P
0 P T

( )
( )

i
i

i

q β β= =MJ
MJ

ϕ
ϕ

 (4.84) 

If 1
0 α −=x K MJ  and 0 β=x J  exist simultaneously, the following relationships can 

be easily derived:  

 0iq β=  (4.85) 

 
0 2i

i

q α
ω

=
 (4.86) 

and 

 P
0 Pi

i

q α β
ω

= +  (4.87) 

Subjected to initial conditions, after 0t > , each complex mode responds in a free 

decay vibration of an under-damped SDOF system, which is the solution of the 

homogeneous format of Equation (4.36a) and can be represented by following formulas 

(Clough and Penzien 1993): 

 0 0
0 d d

d

( ) cos( ) sin( )i i t i i i i
i i i i

i

q qq t e q t tξ ω ξ ωω ω
ω

− ⎡ ⎤+= +⎢ ⎥
⎣ ⎦

 (4.88) 

 

( )0 0
0 d d2

( ) cos( ) sin( )
1

i i i i i it
i i i i

i

q q
q t e q t tξ ω ξ ω

ω ω
ξ

−
⎡ ⎤+

= −⎢ ⎥
⎢ ⎥−⎣ ⎦  (4.89) 

Substituting Equations (4.85) and (4.86) into the above two expressions yields 

 ( )2
d d

2 2

1 cos( ) sin( )
( )

1
i ii i i i i t

i

i i

t t
q t e ξ ωα ξ ω αξ βω ω

ξ ω
−− + +

=
−

 (4.90) 
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( )d d d

d

cos( ) sin( )
( ) i ii i i i i t

i
i

t t
q t e ξ ωβω ω α βξ ω ω

ω
−− +

=
 (4.91) 

Following the same procedure for over-damped modes as that for the complex 

modes, we have the solution of the homogeneous format of Equation (4.38), which are 

 
PP P

0( ) i t
i iq t q e ω−=  (4.92) 

and 

 
( ) P

P
P

P( ) i
i t

i
i

q t e ωα βω
ω

−
+

=  (4.93) 

Notice that sinusoidal and co-sinusoidal terms in Equations (4.92) and (4.93) do not 

exist, which implies that the free motion response of an over-damped mode to the initial 

conditions is a non-oscillatory motion. From the physical viewpoint, in an over-damped 

(or first order) subsystem, only one energy storage element exists, which differs from a 

second-order subsystem (consistence with an under-damped SDOF system). The latter 

has two different types of energy storage elements, i.e., mass (for kinematical energy) and 

stiffness (for potential energy) and these two types of energy are mutually transformable 

internally during vibrations. However, this internal energy transformation mechanism 

does not exist in a first order subsystem. Figure 4.9 shows four typical examples of first 

order subsystem composed of both mechanical and electric components. Note that the so-

called “over-damped modal period” here is in correspondence with the term “time 

constant” in the control theory.  

Take the structural model shown in Figure 4.1 as a numerical example again and 

suppose 0.1gα =  and 0.4 (m/s)β =  for structural initial conditions expressed in 

Equations (4.77) and (4.81).  
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Using Equations (4.90) to (4.93), we can obtain the free responses to the initial 

conditions for each mode. The response plots are shown in Figure 4.10. Figure 4.11 

shows structural displacement and velocity responses of the 1st and 2nd DOFs, while 

Figure 4.12 shows structural displacement and velocity responses of the 1st and 2nd DOFs 

which are combined results for all modes based on Equations (4.55) and (4.56). 

Figure 4.9  Four Typical Examples of First Order Subsystem 

Input: Excitation Force 0( )f t  

Output: Displacement ( )q t  

Governing Equation: 0( ) ( ) ( )Cq t Kq t f t+ =  

Over-Damped Modal Period: /  (Sec.)T C K=  

C 
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0u
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Conducting 
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Ru  0u

Spring 
Damper 

( )q t  

0 ( )f t  

C 
K 

Input: Ground Acceleration g ( )x t  

Output: Relative Velocity ( )q t  

Governing Equation: g( ) ( ) ( )M q t Cq t x t+ = −  

Over-Damped Modal Period: /  (Sec.)T M C=  

Input: Voltage 0 ( )u t  

Output: Voltage of Capacitor C ( )u t  

Governing Equation: ( ) C C 0( ) ( ) ( )RC u t u t u t+ =  

Over-Damped Modal Period: (Sec.)T RC=  

Input: Voltage 0 ( )u t  

Output: Voltage of Resistor R ( )u t  

Governing Equation: ( ) R R 0/ ( ) ( ) ( )L R u t u t u t+ =  

Over-Damped Modal Period: /  (Sec.)T L R=  
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(a) (b)

Figure 4.10  Modal Responses to Modal Initial Conditions 
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Figure 4.11  Structural Displacement and Velocity Responses of the 1st and 2nd DOFs 
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4.7 General Modal Energy 

4.7.1 Energy Integral for Arbitrary Ground Motion Excitation 

For convenience, the governing differential motion Equation (2.1) for a linear 

structure is rewritten here again:  

 ( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx f  (4.94) 

For earthquake ground motion excitation, let g( ) ( )t x t= −f MJ  and substitute it into 

the above equation, we have 

 g( ) ( ) ( ) ( )t t t x t+ + = −Mx Cx Kx MJ  (4.95) 

Pre-multiplying vector T( ) dtx  to the both sides of Equation (4.95) and taking 

integral operation with respect to time from zero to t results in the following system 

energy integration equation: 

 ( ) ( ) ( ) ( )T T T T
g0 0 0 0

d d d ( )d
t t t t

t t t x t t+ + = − ∈∫ ∫ ∫ ∫x Mx x Cx x Kx x MJ R  (4.96) 

(a) (b)

Figure 4.12  Structural Displacement and Velocity Responses of the 1st and 2nd DOFs 
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that is  

 ( )T T T T
g0 0 0 0

d d d d
t t t t

t t t x t+ + = −∫ ∫ ∫ ∫x M x x Cx x K x x MJ  (4.97) 

Supplementing an identical equation  

 T T

0 0
d d 0

t t
t t− = ∈∫ ∫x M x x M x R  (4.98) 

where ( )T T

0 0
d d

t t
t =∫ ∫x M x x M x  is work done by structural inertia force and combining 

the above two equations 

 
( )

( ) ( )

T T

0

TT T T
g0 0

d 0

d ( ) d

t

t t

t

t t x t

⎧ − =⎪⎪
⎨
⎪ + + = −⎪⎩

∫

∫ ∫

x M x x M x

x M x x Cx x K x MJ x
 (4.99) 

 ( ) ( )
T T T

g0 0
d d

t t
t x t

⎡ ⎤ ⎛ ⎞⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪− ⎜ ⎟⎢ ⎥+ = −⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎝ ⎠
∫ ∫

x x x x x 00 M M 0
M C 0 Kx x x x x MJ

 (4.100) 

Notice that 

 

( ) ( )

( ) ( )

T T

T T T T T, ,

⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⎢ ⎥+⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= + + −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

x x x x0 M M 0
M C 0 Kx x x x

x x
x M x M x C x M x K

x x

 

 
T T T T T

T T T

= + + − +

= + +

x Mx x M x x Cx x M x x K x

x Mx x Cx x K x
 (4.101) 
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and 

 ( )
T

T
⎛ ⎞⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎜ ⎟ =⎨ ⎬ ⎨ ⎬⎜ ⎟⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠

x 0
x MJ

x MJ
 (4.102) 

Thus, Equations (4.97) and (4.100) are completely identical. 

Utilizing Equations (2.3) and (4.11), Equation (4.100) becomes 

 ( ) ( )T T T T
S ST ST S S ST ST S S ST g0 0

d d

 

t t
t x t

⎛ ⎞⎧ ⎫⎪ ⎪⎡ ⎤ ⎜ ⎟+ = ⎨ ⎬⎣ ⎦ ⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠
∫ ∫

0
u A AA u u A BA u u A

MJ  (4.103) 

Substituting Equations (4.27) to (4.29) and simplifying the consequent expressions, 

we have following results: 

 
P P

In In
C P C P

1 1 1 1
 

C CN NN N

i i i i
i i i i

E E E E
= = = =

+ = + ∈∑ ∑ ∑ ∑ R  (4.103a) 

where CiE  and PiE  denote the distributed energy to the ith complex mode and ith over-
damped mode, respectively, while In

CiE  and In
PiE  are the work done by general modal 

forces input to the ith complex mode and by the ith over-damped mode, respectively. 

For each complex mode, 

 ( ) ( )

( )

T T

T T
C C C C C0 * *

2T
2

0

2* T

0 0
d

0 0

2
Re 2 d

2
Re

i ii i i it

i i i i i

i i i ii i

ti
i i i i i i i

i

i i

i

a bq q q q
E t

q q q qa b

q q q q t
a

a

ξ ω ω

λ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎜ ⎟ ⎜ ⎟= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤
⎢ ⎥= + +
⎢ ⎥
⎣ ⎦

⎡ ⎤−
⎢+
⎢
⎣ ⎦

∫

∫

Γ Γ Γ Γ

MJ

MJ

ϕ

ϕ ( )2

0
2 d

t

i i i i i i iq q q q tξ ω ω⎥ + +
⎥ ∫

 ( ) ( ) ( )2 2T * T
2

0

2 2
2 Re Re d

t i i i
i i i i i i i i

i i

q q q q q t
a a

λ
ξ ω ω

⎛ ⎞⎡ ⎤ ⎡ ⎤−⎜ ⎟⎢ ⎥ ⎢ ⎥= + + +
⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠
∫

MJ MJϕ ϕ
 (4.104) 
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( ) ( )

TT 2 2T * T
2In

C g0
2 Re , Re d

it i i
i

i ii

q
E x t

a aq

λ⎛ ⎞⎡ ⎤ ⎡ ⎤⎧ ⎫⎪ ⎪ ⎜ ⎟⎢ ⎥ ⎢ ⎥= − −⎨ ⎬ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎣ ⎦⎝ ⎠
∫

MJ MJϕ ϕ
 

 
( ) ( )2 2T * T

g g0 0

2 2
Re d Re d

t ti i i
i i

i i

x q t x q t
a a

λ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= − −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫ ∫
MJ MJϕ ϕ

 (4.105) 

For each ith over-damped mode, 

 
( ) ( )

P

P

2

P P P P
P 0

di

i

t

i i i i iE q q q t
a

ω= +∫
MJϕ

 (4.106)

 
( )P

P

2

g
In P
P 0

( )di

i

t

i ia
x tE q t= −∫

MJϕ
 (4.107) 

Substituting (4.36a) and (4.38) into (4.104) and (4.106), and comparing the resulting 

equations with (4.105) and (4.107), respectively, it can be observed that 

 In
C Ci iE E=  (4.108) 

and In
P Pi iE E=  (4.109) 

Actually, the identities shown in Equations (4.108) and (4.109) are obvious if we refer to 

the decoupled modal Equations (4.35), (4.36) and (4.37), which indicate that the work 

done by input ground motion excitation for each mode for initial instant to time t equals 

to the energy possessed (accumulated and dissipated) by the equivalent SDOF systems. 

For a complex mode, from Equation (4.105), we can see that the first term corresponds to 

Equation (4.35), while the second one corresponds to (4.36). The latter one can be 

expressed as (with zero initial conditions) 

 
( ) ( ) ( )

2 2* T * T
2

g0 0

2 2
Re d Re 2 d

t ti i i i
i i i i i i i i

i i

x q t q q q q t
a a

λ λ
ξ ω ω

⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥− = + +
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫ ∫
MJ MJϕ ϕ
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( )2* T

2 2 2 2

0

2 1 1Re 2 d
2 2

ti i
i i i i i i

i

q q t q
a

λ
ξ ω ω

⎡ ⎤− ⎡ ⎤⎢ ⎥= + +⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
∫

MJϕ
 (4.110) 

has clear physical meaning, that is, the work done by the input to a pure SDOF system 

with mass 
( )2* T2

Re i i

ia
λ⎡ ⎤−

⎢ ⎥
⎢ ⎥
⎣ ⎦

MJϕ
 equals to summation of current instant kinetic and 

potential energy and dissipated energy in the time period zero to t. However, it is difficult 

to provide a clear physical interpretation for the first term of (4.105) other than the fact is 

certainly caused by the phenomena of complex modes.  

Regarding to an over-damped mode with zero over-damped modal initial conditions, 

from Equation (4.106), we further have 

 
( ) ( ) ( ) ( )P

2 2P P
2 2P P P

P P 0

1d
2 i

ti i
i i i i

i

E q t q
a a

ω= +∫
MJ MJϕ ϕ

 (4.111) 

in which, the first term is dissipated energy by the system energy dissipation unit, while 

the second is the energy accumulated by energy storage unit of the system in the instant t. 

4.7.2 Energy Integral for Sinusoidal Ground Motion Excitation 

In order to further uncover the nature of general modal energy distribution, transfer 

and dissipation within a generally damped linear system, it is assumed that the system is 

excited by sinusoidal ground motion acceleration, which can be expressed as 

 g sin( )x G tω= −  (4.112) 

where G is the amplitude of sinusoidal wave and ω  is circular excitation frequency (rad/s) 

When gx  applies to equations (4.35) or (4.36) and (4.39), the following steady modal 

responses can be derived. For complex modes, 

 ( )sini i iq Q tω α= +  (4.113) 
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 ( )cosi i iq Q tω ω α= +  (4.114) 

 ( )2 sini i iq Q tω ω α= − +  (4.115) 

where iQ  and iα  are the amplitude and phase difference of steady complex modal 

displacement response, respectively. For over-damped modes 

 ( )P P Psini i iq Q tω α= +
 (4.116) 

 ( )P P Pcosi i iq Q tω ω α= +
 (4.117) 

where P
iQ  and P

iα  are the amplitude and phase difference of steady over-damped modal 

displacement response, respectively. According to linear system vibration theory (Chopra 

2001), the expressions for iQ  iα , P
iQ  and P

iα  are 

 
( ) ( )2 22 2 2

i

i i i

GQ
ω ω ξ ω ω

=
− +

 (4.118) 

 

1
2 2

2tan i i
i

i

ξ ω ωα
ω ω

−=
−  (4.119) 

 ( )
P

22 P
i

i

GQ
ω ω

=
+

 (4.120) 

 

( )P 1
Ptani
i

ω
α

ω
− −

=
 (4.121) 
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Substituting Equations (4.114) and (4.115) into (4.105) brings up 

 

( ) ( ) ( )

( ) ( ) ( )

2T
In 2
C 0

2* T

0

2
Re sin sin d

2
Re cos sin d

ti
i i i

i

ti i
i i

i

E Q G t t t
a

Q G t t t
a

ω ω α ω

λ
ω ω α ω

⎡ ⎤
⎢ ⎥= +
⎢ ⎥
⎣ ⎦

⎡ ⎤−
⎢ ⎥− +
⎢ ⎥
⎣ ⎦

∫

∫

MJ

MJ

ϕ

ϕ
 (4.122) 

in which 

 
0

cos( ) sin( ) 1sin( )sin( )d sin(2 )
2 4 4

t i i
i it t t t tα αω α ω ω α

ω ω
⎡ ⎤+ = + − +⎢ ⎥⎣ ⎦∫  (4.123) 

and 

 
0

sin( ) cos( ) 1cos( )sin( )d cos(2 )
2 4 4

t i i
i it t t t tα αω α ω ω α

ω ω
⎡ ⎤+ = − + − +⎢ ⎥⎣ ⎦∫  (4.124) 

After substituting Equations (4.123) and (4.124) into (4.122), (4.122) becomes 

( )

( )

2T
In 2
C

2* T

2 cos( ) sin( ) 1Re sin(2 )
2 4 4

2 sin( ) cos( ) 1Re cos(2 )
2 4 4

i i i
i i i

i

i i i i
i i

i

E Q G t t
a

Q G t t
a

α αω ω α
ω ω

λ α αω ω α
ω ω

⎡ ⎤ ⎧ ⎫⎡ ⎤⎢ ⎥= + − +⎨ ⎬⎢ ⎥⎢ ⎥ ⎣ ⎦⎩ ⎭⎣ ⎦

⎡ ⎤− ⎧ ⎫⎡ ⎤⎢ ⎥− − + − +⎨ ⎬⎢ ⎥⎢ ⎥ ⎣ ⎦⎩ ⎭⎣ ⎦

MJ

MJ

ϕ

ϕ
 (4.125) 
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When 2πt T
ω

= = , that is, the interval of energy integral is in a complete oscillation cycle 

with the excitation frequency of ω , Equation (4.125) can be simplified as 

 

( ) ( )

( ) ( )

2 2T * T
In
C

2 2T * T

2 2
π Re cos( ) π Re sin( )

2 2
π Re cos( ) Re sin( )

i i i
i i i i i

i i

i i i
i i i

i i

E Q G Q G
a a

Q G
a a

λ
ω α α

λ
ω α α

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤ ⎡ ⎤−⎪ ⎪⎢ ⎥ ⎢ ⎥= +⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

MJ MJ

MJ MJ

ϕ ϕ

ϕ ϕ
 (4.126) 

Since 0iω >  and 0ω> , and after further using (4.119), we have 

 ( )
( ) ( )

2

2 22 2 2 22 2

22 2sin( ) 1
2

i ii i i i
i

ii
i i i

ξ ω ωξ ω ω ξ ω ωα
ω ωω ω ω ω ξ ω ω

⎛ ⎞ ⎛ ⎞
⎜ ⎟= + =⎜ ⎟⎜ ⎟ −− ⎝ ⎠ − +⎝ ⎠

 (4.127) 

 ( ) ( )
( ) ( )

2 2 2
2 2

2 2 2 22 2

2cos( ) sign 1
2

ii i
i i

i
i i i

ω ωξ ω ωα ω ω
ω ω ω ω ξ ω ω

−⎛ ⎞
= − + =⎜ ⎟−⎝ ⎠ − +

 (4.128) 

Substituting (4.118), (4.127) and (4.128) into (4.126) leads 

( ) ( )
( ) ( ) ( ) ( )2 2T * T2

In 2 2

C 2 22 2

2 2π
Re 2 Re

2

i i i

i i i i

i ii i i

G
E

a a

λ
ω ω ω ξ ω ω

ω ω ξ ω ω

−
= − +

− +

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪
⎢ ⎥ ⎢ ⎥⎨ ⎬
⎢ ⎥ ⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦ ⎣ ⎦

MJ MJϕ ϕ
 

  (4.129) 
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Furthermore, if iω ω= , the first term in the notation “{}” equals to zero, which 

indicates that under current circumstance, the summarized amount of energy introduced 

by Equation (4.35) does not restore or dissipate any energy in one complete oscillation 

cycle. This part of energy is gained from the input and completely returned back to the 

input. The second term in Equation (4.129), which corresponds to Equation (4.36), can be 

simplified as  

 
( ) ( )2 2* T * T2

In
C 2

2 2π Re π Re
2

i i i i
i i

i i i i

GE Q G
a a

λ λ
ξ ω

⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

MJ MJϕ ϕ
 

 
( )2* T

2 2
2

2π Re i i
i i i

i

Q
a

λ
ξ ω

⎡ ⎤−
⎢ ⎥=
⎢ ⎥
⎣ ⎦

MJϕ
 (4.130) 

Equation (4.130) is exactly same as the result of energy integral for a pure SDOF 

system with same excitation condition and with same system parameters (such as natural 

frequency, damping ratio and mass) as the ith complex mode, which indicates that the 

work done by the input in one cycle are totally dissipated by system damping (Chopra 

2001). Notice that the term, 
( )2* T2

Re i i

ia
λ⎡ ⎤−

⎢ ⎥
⎢ ⎥
⎣ ⎦

MJϕ
has mass dimension and is determined 

only by the system’s modal parameters, mass and its distribution, which has been shown 

to have an important role as an equivalent complex modal mass in several places in this 

report. Its other physical interpretation and application for modal truncation will be 

further detailed in the next section. 

For an over-damped mode, substituting Equations (4.116) and (4.117) into (4.111) 

and letting 2πt T
ω

= = , 

 
( ) ( ) ( ) ( )

2P
2P 2 2 P P 2 P

P P 0 2π

1cos d sin
2

ti
i i i i i

ti

E Q t t t
a

ω

ω ω α ω ω α
=

⎧ ⎫= + + +⎨ ⎬
⎩ ⎭∫

MJϕ
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( ) ( ) ( ) ( ) ( ) ( ){ }

2P
2P P P P P 2 P

P

1 2 sin cos sin
2

i
i i i i i i

i

Q
a

ω π α α α ω α⎡ ⎤= + + +⎣ ⎦
MJϕ

 (4.131) 

Based on Equation (4.121), we have 

 ( )
( )

P

22 P
sin i

i

ωα
ω ω

−=
+

 (4.132) 

and 

 ( )
( )
P

P

22 P
cos i

i

i

ωα
ω ω

=
+

 (4.133) 

Thus, Equation (4.131) becomes 

 
( ) ( ) ( )

P

P

2
2P P

P
1 2
2

i

i

i i iE Q
a

π α ω= +
MJϕ

 (4.134) 

If P
iω ω= , P

4i
πα = −  and Equation (4.134) is simplified as  

 
( ) ( )

P

P

2P 2P
P

7
8

i

i

i
i iE Q

a
πω=

MJϕ
 (4.135) 

4.8 Reduction to Classically Damped System  

As mentioned in Chapter 3, when a system satisfies the Caughey Criterion, its modal 

shapes are real-valued and the system is a special case of generally damped system. As a 

consequence, corresponding expressions developed in this section can be reduced and 

simplified, which will be introduced in the followings.   

4.8.1 Reduction of Modal Transformation Matrix 

Since Equations (2.71a) and (3.63) exist, it can be shown that Di =A 0  and 

Di i iΓ=B ϕ  (referred to Equations (3.64) and (3.65)). However, due to the nature of over-
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damped modes, both P
iR  and P

DiA  remain the same format. Furthermore, after 

substituting Equations (2.71a) into (3.42), we have 

 V
N

i i iΓ= ∈A ϕ R  (4.136) 

 V
N

i = ∈B 0 R  (4.137) 

 P P P P PP
V D

N
i i i i iiω ωΓ= − − ∈=A Aϕ R  (4.138) 

Substituting Equations (3.64), (3.65) and (4.136) to (4.138) into Equation (4.3), we 

have 

 
P

2 2V V
T P

D D

N N×⎛ ⎞
= ∈⎜ ⎟
⎝ ⎠

A 0 A
A

0 B A
R  (4.139) 

The above equation implies that the modal velocity terms and displacement terms in 

TA  for all complex modes are decoupled, that is, 

 
C P

P P P

1 1

( ) ( ) + ( )
N N

i i i i i i
i i

t q t q tΓ Γ
= =

= ∑ ∑x ϕ ϕ  (4.140) 

 
( )

C P
P P P P

1 1

( ) ( )+ ( )
N N

ii i i i i i
i i

t q t q tωΓ Γ
= =

−=∑ ∑x ϕ ϕ
 (4.141) 

It is clear that the original differential motion equations can be decoupled into 

Equations (4.35), (4.36) and (4.37) by using the transformation matrix TA  shown in 

(4.139). However, considering the Equation (2.71a), we have 

 
( )2T2

Re 0i

ia

⎡ ⎤
⎢ ⎥ = ∈
⎢ ⎥
⎣ ⎦

MJϕ
R  (4.142) 

 

( ) ( )2 2* T T2
Re i i i

i ia m
λ⎡ ⎤

⎢ ⎥ = ∈
⎢ ⎥
⎣ ⎦

MJ MJϕ ϕ
R

 (4.143) 
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Thus, after the transformation, Equation (4.35) disappears and the Equation (4.36) 

becomes 

 
( ) ( )2 2T T

2
g2 ( )i i

i i i i i
i i

q q q x t
m m

ξ ω ω⎡ ⎤ ⎡ ⎤+ + = −⎣ ⎦⎣ ⎦
MJ MJϕ ϕ

 (4.144) 

or 

 eff 2 eff
g2 ( )i i i i i i im q q q m x tξ ω ω⎡ ⎤ ⎡ ⎤+ + = −⎣ ⎦⎣ ⎦  (4.145) 

where 

 
( )2T

eff 0i
i

i

m
m

= ≥ ∈
MJϕ

R  (4.146) 

is well known as effective real modal mass. Notice that Equation (4.145) differs from 

conventional format in which the modal participation factor is involved (Clough and 

Penzien 1993 and Chopra 2001). It is exactly identical to the governing differential 

equation for a pure SDOF system with mass eff
im  and excited by the ground motion 

acceleration g ( )x t , and the excitation acceleration magnitude to each mode is same. 

Figure (4.13) intuitively shows the physical interpretation for eff
im  (assuming that no 

over-damped modes exist.) 
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In earthquake engineering, eff
im (or effective modal weight eff eff

i iW m g= ) is used by 

many codes for evaluating the significance and importance of each real mode to structural 

base shear estimation (Clough and Penzien 1993, BSSC 2003 and Ramirez et al. 2000). It 

has also been noticed in these literatures that eff
im has mass dimension and the summation 

for all modes (under-damped system without over-damped modes) equals to the total 

structural mass. From Equation (4.145), which is developed based on current general 

coordinate transformation matrix and modal coordinates definition proposed, it is much 

easier to understand the role of eff
im  which is used as a criterion for modal significance. 

eff
im  is not only useful for structural base shear estimation, but is also important to other 

type of structural responses in earthquake engineering. This concept of effective modal 

mass has be studied and applied in other fields for dynamic analysis and design for 

Figure 4.13  Physical Interpretation of Effective Modal Mass 

g ( )x t  

eff 2
1 1 1k m ω=  

( ) eff
1 1 1 12c mξ ω=  

1( )q t  

eff
1m  

eff 2
2 2 2k m ω=  

( ) eff
2 2 2 22c mξ ω=  

2 ( )q t  

eff
2m  

eff 2
N N Nk m ω=  

( )Nq t  

eff
Nm  

…
…

 

( ) eff2N N N Nc mξ ω=  

eff
Sum

1

N

i
i

m M
=

=∑  
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classically damped linear structural systems subjected by base excitations (Sedaghati et al. 

2003 and Girard and Imbert 1991). However, no one has used the approach that is same 

as that proposed in this report to clarify the relationships among coordinates 

transformation, modal response analysis and physical interpretation. 

4.8.2 Reduction of Modal Responses to Initial Conditions 

When the modal shapes are real vectors, the terms in Equations (4.69) and (4.70) can 

be simplified as 

 
T T

dT TIm Ni i i
i

i i

λ ω
⎛ ⎞

= ∈⎜ ⎟
⎝ ⎠

M M
MJ MJ

ϕ ϕ
ϕ ϕ

R  (4.147) 

 
T

TIm Ni

i

⎛ ⎞
= ∈⎜ ⎟

⎝ ⎠

K 0
MJ

ϕ
ϕ

R  (4.148) 

 
T

TIm Ni

i

⎛ ⎞
= ∈⎜ ⎟

⎝ ⎠

M 0
MJ

ϕ
ϕ

R  (4.149) 

 ( )
2 TT

T T

1
Im i i Ni

i i i i

ξ
λ ω

−⎛ ⎞
= − ∈⎜ ⎟

⎝ ⎠

KK
MJ MJ

ϕϕ
ϕ ϕ

R  (4.150) 

Thus, Equations (4.69) and (4.70) become 

 
T

0 0T
i

i
i

q
⎛ ⎞

= ∈⎜ ⎟
⎝ ⎠

M x
MJ

ϕ
ϕ

R  (4.151) 

and 

 ( )
T

0 02 T
i

i
i i

q
ω

⎛ ⎞
⎜ ⎟= ∈
⎜ ⎟
⎝ ⎠

K x
MJ

ϕ
ϕ

R
 (4.152) 

The above results show that, for a real mode, the initial modal velocity only depends 

on 0x  and initial modal displacement only depends on 0x  regardless of the formats of 

initial condition vectors 0x and 0x . Equation (4.71) for calculating the initial over-
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damped modal displacement remains the same. In addition, the formulas for evaluating 

the modal responses subjected to initial modal conditions for each mode remain the same 

as Equations (4.88), (4.89) and (4.92) for real under-damped modes and over-damped 

modes, respectively. If 0x  and 0x are determined by Equations (4.77) and (4.81) for a 

classically-damped system, the formats of Equations (4.85) to (4.87) as well as Equations 

(4.90), (4.91) and (4.93) will also remain the same. 

4.8.3 Reduction of Energy Integral 

Considering Equations (4.142) and (4.143) for classically damped systems, the 

energy integral shown in Equations (4.104) and (4.105) as (with non-zero initial modal 

conditions) 

 
( )eff 2

C 0

eff 2 2 2 2 2 2 2
0 0 0

2 d

1 1 1 1( ) ( ) 2 d
2 2 2 2

t

i i i i i i i i i

t

i i i i i i i i i i

E m q q q q t

m q t q t q q q t

ξ ω ω

ω ω ξ ω

= + +

⎡ ⎤= + − − + ∈⎢ ⎥⎣ ⎦
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∫ R
 (4.153) 
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2 2 2 2

t

i i i

t
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∫
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 (4.154) 

For over-damped modes, Equations (4.106) and (4.107) remain the same format, in 

which, if the initial modal conditions are not zero, 

 
( ) ( ) ( ) ( ) ( )

2 2 2P P P

P P P

2 22P P P P P
P 00

1 1d ( )
2 2

i i i

i i i

t

i i i i i iE q t q t q
a a a

ω ω⎡ ⎤= + − ∈⎣ ⎦∫
MJ MJ MJϕ ϕ ϕ R  

  (4.155) 

In Equation (4.154), the terms eff 21 ( )
2 i im q t , eff 2 21 ( )

2 i i im q tω , eff 2
0

1
2 i im q , eff 2 2

0
1
2 i i im qω  and 

( )eff 2

0
2 d

t

i i i im q t tξ ω ∫  have clear physical meanings. They are real modal instant kinetic 

energy, instant potential energy, initial kinetic energy, initial potential energy and 

dissipated energy in the duration from 0 to t. From these terms, it is observed the 
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individual modal energy of a system can be fully represented by an equivalent SDOF 

system with the effective modal mass eff
im , which justifies the use of effective modal 

mass to determine the contribution of each mode through the energy analysis. The term 

( ) ( )P

2P
2P P

0
1
2 i

i
i iq

a
ω

MJϕ
in Equation (4.155) is initial stored energy in the energy storage unit 

of the first order system. 

If we further assume that there are no over-damped modes in the system, utilizing 

Equations (3.68) and (3.69), we can simplify the expressions for system total instant 

kinetic energy ( )KE t  and potential energy ( )PE t  at time t (that are stored in all structural 

masses and elastic elements) and accumulated energy dissipation ( )DE t  from time 0 to t, 
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 (4.158) 

Equations (4.156) to (4.158) show that for a classically under-damped structural 

system, the total kinetic energy, potential energy and energy dissipated by dampers can 

be decoupled. In other words, the summation of all modal kinetic energy equals to 

structural total kinetic energy; the summation of all modal potential energy equals to 
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structural total potential energy and the summation of all modal dissipated energy by 

equivalent modal damper equals to structural total dissipated energy by the dampers. 

Based on this conclusion, the intuitive physical interpretation shown in Figure 4.13 is 

further enhanced. 

In addition, the following formulas can be easily developed. For initial kinetic 

energy and potential energy, we have 

 T ff 2
0K 0 0 0 0K

1 1

1 1
2 2

N N
e
i i i

i i
E m q E

= =

= = = ∈∑ ∑x M x R  (4.159) 

 T ff 2 2
0P 0 0 0 0P

1 1

1 1
2 2

N N
e
i i i i

i i
E m q Eω

= =

= = = ∈∑ ∑x K x R  (4.160) 

For each mode, 

 ( ) ( ) ( ) eff
K P D 0K 0P 0

d
t

i i i i i i g iE t E t E t E E m x q t+ + − − = − ∈∫ R  (4.161) 

and the summation of energy over all modes can be expressed as 

 

( ) ( ) ( )

( ) ( ) ( )( ) ( )

K P D 0K 0P
1 1 1 1 1

eff T

0 0
1

d d

N N N N N

i i i i i
i i i i i

N t t

i g i g
i

E t E t E t E E

m x t q t t t x t t

= = = = =

=

+ + − −

= − = − ∈

∑ ∑ ∑ ∑ ∑

∑ ∫ ∫ x MJ R

 (4.162) 

4.9 Dual Modal Space Approach and Structural DOFs Reduction 

4.9.1 Formulas Development 

A structural system without supplemental dampers can still dissipate certain amount 

of energy either in a free vibration or in a forced vibration. The dissipated energy is 

commonly treated as or equivalent to linear viscous damping in earthquake engineering 

theoretical analysis and practical applications. In other words, before the structure is 

enhanced with supplemental dampers, it has certain quantity of damping. Based on 

practical engineering experience, 2%≤  critical damping ratio for steel frame structures 
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and 5%≤  critical damping ratios for RC structures are used for structural fundamental 

mode. The modal damping ratios are directly specified for the uncoupled equations of 

motion after real modal decomposition approach is utilized. Following this way, 

evaluating the original structural damping coefficient matrix 0C , which is often very 

difficult to be determined, can be avoided. This directly assigned damping is usually 

termed as Wilson’s damping (Bathe 1995) since which was first proposed and suggested 

by Wilson. 

In damping design of an aseismic structure, we may need to take into consideration 

of Wilson’s damping when calculating the total damping of the structural system in order 

to increase the accuracy of the structural dynamic modeling and simulation accuracy. 

In addition, in damping design for new or existing building/bridge structures we 

usually need to first establish their dynamic models. Some popular commercially 

available finite element programs, such as SAP2000, ETABS and Adina, may be used for 

modeling the original structure without dampers added. These programs can carry out 

eigen-analysis (real modal analysis, ignoring damping) after the system’s mass and 

stiffness matrices are established internally in the programs, and can further output mass 

matrix as well as a limited number of lower orders natural frequencies or periods and 

modal shapes (eigenvectors or Ritz vectors). However, the structural stiffness matrix for a 

complex structure is difficult to be presented and manipulated, because it could be a huge 

matrix for a complex structure with large DOFs. As matter of fact, the dynamic responses 

of a structure subjected earthquake ground motion are dominated by a few lower order 

modes (real, complex or over-damped modes). Thus, directly utilizing a limited number 

of modal analysis results, we may significantly reduce the scale of modeling and 

computation burden for a structure with supplemental damping. 

In the following, a two-steps modal decomposition approach, which can be termed 

as dual modal space approach, is adopted to deal with the aforementioned issues. 

First, ignoring the structural damping in the structure, we can simplify Equation (2.1) 

as  

 ( ) ( ) ( )t t t+ =Mx Kx f  (4.163)  
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Its corresponding eigen-equation is given by 

 0 0 0λ− + =M K 0ϕ ϕ  (4.164) 

where subscript “0” indicates that the eigenvalue 2
0 0( )λ ω= ∈ R  and eigenvector 0

N∈ϕ R  

will be calculated for the non-damped structure. In order to solve Equation (4.164), the 

subspace iteration approach may be implemented for a system with large number of 

DOFs N  (Wilson 2004 and Clough and Penzien 1993). Assuming that 

( )0  and maybe  for large N N N N< pairs of eigen-solutions have been obtained, the 

spectrum matrix 0Λ  and modal shape matrix 0Φ  can be denoted as, respectively, 

 ( ) ( ) 0 0

0 0

2 2 2
0 01 02 0 01 02 0diag diag N N

N N, ,λ λ λ ω ω ω ×= = ∈Λ R  (4.165) 

 0

00 01 02 0
N N

N, ×⎡ ⎤= ∈⎣ ⎦Φ ϕ ϕ ϕ R  (4.166) 

Since the structural mass matrix is easier to be acquired, each modal shape can be 

normalized with respect to its unitary modal mass, that is 

 ( )T
0 0 0 01 1, 2i i im i N= = =ϕ Μ ϕ  (4.167) 

which brings out 

 0 0T
0 0

N N×= ∈IΦ Μ Φ R  (4.168) 

and 

 ( ) 0 0

0

T 2 2 2
0 0 0 01 02 0diag N N

N,ω ω ω ×= = ∈ΛΦ Κ Φ R  (4.169) 
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Denote 0C  as the inherent damping coefficient matrix of the original structure. 0C  

may not be expressed explicitly. However, it must generate small damping ratios that can 

be assumed as classical damping. This means that modal shape matrix 0Φ  can be used to 

decouple 0C . Thus, 

 
( )
( )

0 0 0

0 0

0 0

T
0 0 0 0

01 01 01 02 02 02 0 0 0

01 01 02 02 0 0

diag 2 2 2

diag 2 2 2

N N N

N N
N N

m , m m

,

ξ ω ξ ω ξ ω

ξ ω ξ ω ξ ω ×

=

=

= ∈

C CΦ Φ

R
 (4.170) 

where ( )0 01, 2i i Nξ = is the ith modal damping ratio that the original structure holds 

inherently. As mentioned earlier, the values of ( )0 01, 2i i Nξ =  can be directly specified 

as Wilson’s damping. 

Now supposing supplemental linear viscous dampers are added to the structure, we 

can easily establish the corresponding damping coefficient matrix SC  based on the 

predetermined damper configurations (related to installation locations and angles with 

respect to the DOFs) in the structure. For the sake of simplicity in introducing the 

principle of the proposed theory, no extra DOFs and masses as well as stiffness changes 

are further assumed.  Thus, matrix Μ  and Κ  remain the same, while the complete 

damping matrix is given by 

 0 S= +C C C  (4.171) 

where C  may or may not satisfy the Caughey criterion and may or may not bring out the 

over-damped modes.  

Taking first step of modal coordinates transformation, 

 0( ) ( ) Nt t= ∈x xΦ R  (4.172) 
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where ( )tx  is the modal response vector in the original structural real modal space (the 

first modal space) and 

 ( ) 0

0

T

1 2( ) , N
Nt x x x= ∈x R  (4.173) 

Note that 0Φ  is a 0N N× dimension matrix. Thus Equation (4.172) is an incomplete 

and approximate linear space transformation when 0N N< , which will transform a time-

variable vector from N-dimensions complete physical space to N0-dimensions incomplete 

(truncated) modal sub-space. However, the simulation results carried out by authors 

indicate that, if the value of 0N  is set to a sufficiently large number and make sure that 

the summation of real modal mass ratios for modal orders from one to 0N  is larger than 

99.5%, the final analysis results could be accurate enough for applications from the 

practical point of view in earthquake engineering. The analysis results may include eigen-

solutions, time history responses of interests and peak response estimations based on 

response spectrum analysis. Furthermore, it has been determined by the authors that this 

incomplete real modal transformation can even be used in nonlinear structural systems 

enhanced with non-linear dampers with satisfied results. 

Substituting Equation (4.172) into Equation (2.1) and pre-multiplying T
0Φ  to the 

both sides of the resulting equation, we have  

 0T T T T
0 0 0 0 0 0 0( ) ( ) ( ) ( ) Nt t t t+ + = ∈M x C x K x fΦ Φ Φ Φ Φ Φ Φ R  (4.173) 

Further utilizing Equations (4.168) to (4.171), Equation (4.173) becomes 

 0
0( ) ( ) ( ) ( ) ( ) Nt t t t t+ + = ∈x C x Λ x f R  (4.174) 

where C  is the damping matrix expressed in the first modal space and 

 0 0T
0 0 S 0

N N×= + ∈C C CΦ Φ R  (4.175) 
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( )tf  is a general force vector and T
0( ) ( )t t=f fΦ . If ( )tf  is introduced by seismic motion, 

( )tf  can be rewritten as 

 ( ) 0T
0 g( ) ( ) Nt x t= − ∈f MJΦ R  (4.176) 

From the above formation and Equation (4.174), we can see that the matrices Κ  and 

0C  for the original structure are not directly involved. 

The format of Equations (4.174) and (2.1) are similar with a few differences, such as, 

(a) the scale of Equation (4.174) is reduced. If 0N N , the reduction may be significant; 

(b) the mass and stiffness matrix is normalized as a unitary matrix and a diagonalized 

spectrum matrix, respectively; (c) C , ( )tx , ( )tx , ( )tx and ( )tf  are general damping 

matrix, modal displacement response, velocity response and acceleration response vectors 

as well as general applied force vector, which do not have explicit meaning in the original 

physical space. However, mathematically speaking, for both equations, the consequent 

complex modal (over-damped modes may appear) analysis procedure and related 

formulas that will be used for further dynamic solutions remain the same. For example, in 

parallel to Equations (2.3), the consequent coefficient matrices and vectors in the 

corresponding state space will be 

 0 02 2N N×⎛ ⎞= ∈⎜ ⎟
⎝ ⎠
0 IA I C R  (4.177) 

 ( ) 0 02 2

0

N N×−= ∈I 0B 0 Λ R  (4.178) 

 { } 02( )( ) ( )
Ntt t= ∈xy x R  (4.179) 

 { } 02
S ( ) ( )

Nt t= ∈0f f R  (4.180)  

After solving the corresponding eigen-problem, we have the following second modal 

space transformation 
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 { }( )( ) ( ) ( )( )
tt t tt

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

x Λy z zx
ΦΨ
Φ

 (4.181) 

where 0 02 2N N×∈Ψ C , 0 02N N×∈Φ C , 0 02 2N N×∈Λ C  and 02( ) Nt ∈z C  are complex 

eigenvector matrix, complex modal shape matrix, complex diagonalized spectrum matrix 

and complex modal response vector in the second modal space. Equation (4.181) can be 

used to further decouple the Equation (4.174). As one of the results, we can obtain 

structural relative displacement response vector in original physical space, after ( )tz  has 

been solved and Equations (4.172) and (4.181) are used, 

 0 0( ) ( ) ( ) Nt t t= = ∈x x zΦΦ Φ R  (4.182) 

Note that the complex modal responses in the second modal space can be expressed 

in other format with real numbers, instead of complex numbers, whose method and 

further analysis procedure is exactly the same as what are introduced in Chapter 2 and 

Chapter 3. 

4.9.2 Numerical Example 

Figure 4.14 shows a 10-story planar shear frame structure model (10 DOFs) and 

major structural parameters. For simplicity, the original structural inherent damping is 

assumed as proportional damping instead of directly assigning Wilson’s damping to each 

mode. The inherent damping coefficient matrix is given by 0 0.2002 0.0019= +C M K . 

Based on these structural parameters, the original structural modal parameters can be 

obtained and are listed in Table 4.2 

 
Table 4.2 Original Structural Modal Parameters 

 

Mode # 1 2 3 4 5 6 7 8 9 10 

Period (Sec.) 0.7672 0.2577 0.1569 0.1147 0.0920 0.0782 0.0694 0.0636 0.0600 0.0580
Natural Freq.(Hz) 1.3034 3.8812 6.3723 8.7210 10.875 12.786 14.411 15.715 16.667 17.247 
Damping (100%) 2.0000 2.7272 4.0537 5.3883 6.6378 7.7566 8.7127 9.4816 10.044 10.387 
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Figure 4.14, 10-Story Shear Frame Structure Model (10 DOFs) 

 
 
Main Structural Parameters: 
 
Number of Stories: 10 
Number of Bays:   1 
Story Height:       H = 3 (m) 
Bay Width:         L = 15 (m) 
 
Column: I Beam -- W36X300   
Material: Steel, E=1.999E+11 ( 2m/N ) 
Inertial Moment of Section: I=8.449E-3 ( 4m ) 
 
Lumped Mass for Each Floor: im = 5.0E+05 (Kg) 

Inter-story Stiffness: 3 3
12 242 EI EIk

L L
= = (N/m) 

m10 

15m 

EI EI 

3m 

 

m8 

m9 

c1 
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Now four supplemental linear viscous dampers are added to the structure, as shown 

in Figure 4.14, and the damper parameters are 1 2 3 4c c c c c= = = = , where 2.74E+07c =  

(N.s/m). Considering damper installation configuration, all effective damping coefficients 

for supplemental dampers become 2 -1cos tg ( / ) 0.9615c H L c⎡ ⎤ =⎣ ⎦ . After carrying out eigen-

analysis for structural system supplemented with four dampers, we can obtain complete 

and exact complex modal parameters (without over-damped modes developed), which 

will be compared with those estimated by using dual modal space approach. 

Tables 4.3 lists estimated modal period results and error comparison, while Table 

4.4 lists the results and error comparison for damping ratios. In the tables, reserved modal 

number means that the real lower order modes (calculated only from M and K) less than 

or equal to this number ( 0 10N N≤ = ) are used to establish the first modal space. From 

Table 4.3, we can see that, when 0N  changes from 1 to 10, the period for each complex 

mode, except the mode # 0N  for partial cases ( )0when 3, 4,5,6 8N and=  is estimated 

with good accuracy. Observed from the results listed in Table 4.4, we can find that the 

estimation accuracy for damping ratios is not as good as for periods. However, the results 

for the complex modes with orders much less than 0N  still have acceptable estimation 

accuracy. Preliminary numerical simulation experience learned by the authors shows that 

when using dual modal space approach, if we want to obtain sufficiently accurate 

estimation results for the lower orders of modal parameters, say, the orders up to N ′ , the 

real modal orders have to be satisfy 0 1.5N N ′≥ . Based on this criterion and when we 

further use the estimated modal parameters (including modal shapes either for complex 

modes or over-damped modes) for generally damped system to evaluate the structural 

responses to seismic acceleration excitations, the result accurate may be ensured. The 

issue about how to determine N ′  will be introduced in details in the next chapter. 
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Table 4.3 Modal Periods Estimation Results and Error Comparison 
Reserved Mode 

Number 1 2 3 4 5 

Mode # 
Exact 
Value 
(Sec.) 

Est. 
(Sec.) 

Error 
(100%) 

Est. 
(Sec.) 

Error 
(100%) 

Est. 
(Sec.) 

Error 
(100%) 

Est. 
(Sec.) 

Error 
(100%) 

Est. 
(Sec.) 

Error 
(100%) 

1 0.7653 0.7672 0.2502 0.7657 0.0554 0.7657 0.0514 0.7655 0.0328 0.7654 0.0211 
2 0.2564 

 

0.2582 0.7014 0.2564 0.0295 0.2563 0.0030 0.2564 0.0072 
3 0.1477 

 

0.1580 6.9843 0.1475 0.1447 0.1490 0.9131 
4 0.1101 

    

0.1229 11.640 0.1095 0.5663 
5 0.0965 

 

0.1022 5.9100 
6 0.0749 

 
7 0.0740 
8 0.0642 
9 0.0609 
10 0.0589 

 
 
– Continued 

Reserved Mode 
Number 6 7 8 9 10 

Mode # 
Exact 
Value 
(Sec.) 

Est. 
(Sec.) 

Error 
(100%) 

Est. 
(Sec.) 

Error 
(100%) 

Est. 
(Sec.) 

Error 
(100%) 

Est. 
(Sec.) 

Error 
(100%) 

Est. 
(Sec.) 

Error 
(100%) 

1 0.7653 0.7654 0.0204 0.7654 0.0107 0.7654 0.0091 0.7653 0.0059 0.7653 0.0000 
2 0.2564 0.2563 0.0088 0.2563 0.0034 0.2563 0.0023 0.2563 0.0035 0.2564 0.0000 
3 0.1477 0.1482 0.3620 0.1479 0.1450 0.1481 0.2700 0.1477 0.0328 0.1477 0.0000 
4 0.1101 0.1088 1.1989 0.1103 0.1482 0.1075 2.3260 0.1099 0.1676 0.1101 0.0000 
5 0.0965 0.0922 4.4245 0.0961 0.3614 0.0958 0.6733 0.0958 0.6771 0.0965 0.0000 
6 0.0749 0.0877 17.108 0.0766 2.3165 0.0727 2.8974 0.0743 0.7798 0.0749 0.0000 
7 0.0740 

 

0.0753 1.7572 0.0725 2.0782 0.0708 4.3127 0.0740 0.0000 
8 0.0642 

 
0.0716 11.512 0.0663 3.2440 0.0642 0.0000 

9 0.0609 
 

0.0637 4.5347 0.0609 0.0000 
10 0.0589  0.0589 0.0000 
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Table 4.4 Damping Ratio Estimation Results and Error Comparison 
Reserved Mode 

Number 1 2 3 4 5 

Mode # 
Exact 
Value 

(100%) 

Est. 
(100%) 

Error 
(100%) 

Est. 
(100%) 

Error 
(100%) 

Est. 
(100%) 

Error 
(100%) 

Est. 
(100%) 

Error 
(100%) 

Est. 
(100%) 

Error 
(100%) 

1 6.8781 6.8751 0.0436 6.8773 0.0113 6.8754 0.0389 6.8779 0.0036 6.8770 0.0162 
2 9.6827 

 

9.8737 1.9730 9.8075 1.2893 9.7029 0.2090 9.7138 0.3207 
3 12.1020 

 

16.826 39.032 13.906 14.903 13.095 8.2026 
4 40.0778 

 

29.412 26.613 40.646 1.4167 
5 12.4341 

 

16.747 34.686 
6 10.6576 

 
7 79.2850 
8 10.3708 
9 99.8543 
10 10.4459 

 
 
– Continued 

Reserved Mode 
Number 6 7 8 9 10 

Mode # 
Exact 
Value 

(100%) 

Est. 
(100%) 

Error 
(100%) 

Est. 
(100%) 

Error 
(100%) 

Est. 
(100%) 

Error 
(100%) 

Est. 
(100%) 

Error 
(100%) 

Est. 
(100%) 

Error 
(100%) 

1 6.8781 6.8775 0.0093 6.8779 0.0027 6.8776 0.0082 6.8781 0.0003 6.8781 0.0000 
2 9.6827 9.7049 0.2296 9.6922 0.0986 9.6943 0.1198 9.6880 0.0549 9.6827 0.0000 
3 12.102 13.279 9.7252 12.560 3.7801 12.559 3.7739 12.387 2.3540 12.102 0.0000 
4 40.078 31.118 22.357 38.070 5.0106 38.624 3.6286 38.493 3.9538 40.078 0.0000 
5 12.434 13.883 11.654 13.482 8.4269 14.646 17.790 12.903 3.7693 12.434 0.0000 
6 10.658 49.439 363.88 70.989 566.09 80.217 652.67 10.839 1.7042 10.658 0.0000 
7 79.285 

 

12.326 84.453 12.727 83.948 69.858 11.891 79.285 0.0000 
8 10.371 

 
27.765 167.72 84.753 717.23 10.371 0.0000 

9 99.854 
 

10.406 89.579 99.854 0.0000 
10 10.446  10.446 0.0000 
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CHAPTER 5 

TRUNCATION OF MODES 

5.1 Introduction 

When using the modal superposition method, the response contributions of all modes 

should be included to achieve the exact result. However, experience suggests that a 

limited amount of modes can usually provide sufficiently accurate results. The number of 

modes required is well defined in the case of classical damping using of the cumulative 

effective modal mass. The most common criterion used is the “90% rule for participating 

mass” specified in many design codes (IBC 2003). For the generally damped systems 

with or without over-damped modes, similar criteria have not been well addressed. This 

issue is considered in this chapter. First, the formulation of the effective modal mass and 

its physical interpretation in classically damped systems is briefly reviewed. Then, a 

general effective modal mass is formulated in a manner which has a parallel physical 

interpretation as in the classically damped systems. In addition, examples are given to 

demonstrate the applicability of the newly formulated general effective modal mass for 

the determination of the number of modes required in the modal superposition. 

5.2 Effective Modal Mass for Classically Damped Systems w/o Over-Damped 
Modes 

The definition of the effective modal mass discussed in this section mainly follows the 

work given in Chopra (2001). It is briefly reviewed to facilitate the subsequent 

formulation of the general effective modal mass. The equation of motion governing the 

response of a planar N-DOFs multistory frame as shown in Figure 5.1 due to earthquake 

induced ground motion, g ( )x t , is shown in Equation (4.95). For a classically damped 

system, it possesses normal modes, which are re-denoted as N
i ∈φ R  in order to 

distinguish them from complex modes in the discussion. The spatial distribution of the 

effective earthquake force is defined by =s MJ  and it is loosely referred to as force 

vector although it has a unit of mass or can be considered as force vector produced by 
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unitary ground motion acceleration by letting g ( ) 1x t = . Further, it can be expanded as a 

summation of the modal inertia force distribution is  

 

 
( )gx t

Figure 5.1  A planar N-DOFs multistory frame 
 

 
1 1

N N

i i i
i i

Γ
= =

= = =∑ ∑s MJ s Mφ  (5.1) 

where 

 
T

T
i

i
i i

Γ =
MJ
M

φ
φ φ

 (5.2) 

is the ith modal participation factor defined for classically damped systems. As a result, 

the contribution of the ith mode to the structural displacement vector ( )tx  can be 

expressed by 

 2

( )
( ) i

i i i
i

A t
t Γ

ω
=x φ  (5.3) 
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where ( )iA t  is the over-damped acceleration response of a SDOF system with the ith 

modal damping ratio and the ith circular frequency subjected to g ( )x t . Consequently, the 

ith modal response contribution ( )ir t  to any response quantity ( )r t  can be determined by 

the static analysis of the structure combined with the dynamic response, ( )iA t , of the 

corresponding SDOF. That is, 

 st( ) ( )i i ir t r A t=  (5.4) 

where st
ir  denotes the modal static response due to external force is . This is explained 

schematically in Figure 5.2. The base shear due to the ith mode is obtained by 

specializing Equation (5.4) for biV : 

 st
b b( ) ( )i i iV t V A t=  (5.5) 

in which st
b iV  is the base shear force due to the applied force is  as shown in Figure 5.2 

and it can be expressed as 

 
( )2T

st T
b T

1

N
i

i ji i
j i i

V s
=

= = =∑
MJ

J s
M

φ
φ φ

 (5.6) 

Figure 5.2  Illustration of the static structural response subjected to is  
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where jis  is the jth component of the ith external force is . Equation (5.6) is also 

recognized as the base shear effective modal mass for a classically damped system or, for 

brevity, effective modal mass, which can be re-denoted as  

 
( )2T

eff
T 0i

i
i i

m = ≥ ∈
MJ
M

φ

φ φ
R  (5.6a) 

Equation (5.6a) is exactly identical to Equation (4.146). In Chapter 4, the effective mass 

has been introduced by using modal coordinate transformation approach and its complete 

physical interpretation has also been given in details. 

It can be proved that the sum of all effective modal masses is equal to the total mass of 

the system (Chopra 2001 pp.524 and Clough and Penzien 1993 pp.627).  

As a result, Equation (5.5) can be written as nature 

 eff
b ( ) ( )i i iV t m A t= ∈R  (5.7) 

Equation (5.7) indicates that only the portion eff
im  of the total mass of the system is 

responding to the earthquake in each mode. Therefore, the effective modal mass eff
im  is 

commonly used as a criterion to determine how many modes should be included in the 

modal superposition, e.g. the 90% rule of the participating mass specified in most seismic 

design codes. The preceding formulation states that the effective modal mass for mode i 

is equivalent to the static base shear force due to the external force is . This implies that 

the 90% rule used to determine the number of modes required in the analysis can only 

guarantee the base shear force under static external force is less than 10% error. For other 

response quantity, the error may exceed 10%. In addition, the modal response is also 

affected by the dynamic response term ( )iA t , which means that even a sufficient number 

of modes are included to achieve the 90% of the total static response, the error in the 

dynamic response may exceed 10%. Nevertheless, the effective modal mass is still 

accepted in engineering practice as a reasonable modal truncation index for its simplicity. 

Especially, to improve the response analysis accuracy under the condition that no extra 
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significant computation burden is added, the summation of effective modal mass ratio 

should be reached as high as possible, say, up to 99%. 

5.3 Effective Modal Mass for Generally Damped Systems 

The section presents two manners to derive the effective modal mass for a generally 

damped linear system. Manner 1 follows a similar concept in the derivation of the 

effective modal mass in the classically damped systems. Manner 2 is formulated based on 

the modal expansion of the inverse of the mass matrix, which can be referred to Section 

2.7.1. 

Manner 1 

In light of the preceding explanation, we only consider the portion of the static response 

as a manner to define the effective modal mass. Thus, the central idea here is to expand 

the inertia force distribution =s MJ  in terms of the complex modal shapes possessed by 

the generally damped systems for each mode as represented by is . This expanded is  is 

therefore applied to the structure and the resulting static base shear force will be regarded 

as the effective modal mass of the ith mode. To do so, let us calculate the static 

displacement vector, denoted as 0x , of the systems subjected to the inertia force 

distribution =s MJ . Consequently, the static displacement vector 0x  is 

 1
0

N−= ∈x K MJ R  (5.8) 

Substituting the expansion of 1−K  shown in Equation (2.67) into Equation (5.8) gives 

 
C PT P P T

0 P P
1 1

( )2 Re
N N

i i i i

i ii i i ia aλ λ= =

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ ∑MJ MJx ϕ ϕ ϕ ϕ  (5.9) 

Equation (5.9) states that the static displacement contributed from the ith complex mode 

(including its conjugate part), 0ix , can be written as 
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T

0 2 Re Ni i
i

i iaλ
⎛ ⎞

= − ∈⎜ ⎟
⎝ ⎠

MJx ϕ ϕ R  (5.10) 

Also, the static displacement contributed from the ith over-damped mode, P
0ix , can be 

expressed as 

 
P P T

P
0 P P

( ) Ni i
i

i iaλ
= − ∈MJx ϕ ϕ R  (5.11) 

Therefore, the contribution of the ith complex mode to the vector =s MJ  is 

 
T

0 2 Re Ni i
i i

i iaλ
⎛ ⎞

= = − ∈⎜ ⎟
⎝ ⎠

K MJs Kx ϕ ϕ R  (5.12) 

and the contribution of the ith over-damped mode to the vector =s MJ  is 

 
P P T

P P
0 P P

( ) Ni i
i i

i iaλ
= = − ∈MJs x Κϕ ϕΚ R  (5.13) 

Summation of Equations (5.12) and (5.13) over modes gives the expansion of the =s MJ . 

The concept of this expansion is illustrated schematically in Figure 5.3. As a result, the 

resulting base shear force due to the static inertia force is  is 

 

C
st T

b
1

T T

T T

2 Re

2 Re

N

i ji i
j

i i

i i

i i

i i

V s

a

a

λ

λ

=

= =

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
⎛ ⎞

= − ∈⎜ ⎟
⎝ ⎠

∑ J s

J K MJ

KJ MJ

ϕ ϕ

ϕ ϕ R

 (5.14) 

The resulting base shear force due to the static inertia force P
is  is 
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P
Pst P T P

b
1

T P P T

P P

P T P T

P P

( )

( ) ( )

N

i ji i
j

i i

i i

i i

i i

V s

a

a

λ

λ

=

= =

= −

= − ∈

∑ J s

J MJ

J MJ

Κϕ ϕ

ϕ Κ ϕ R

 (5.15) 

Thus, in parallel to the definition of the effective modal mass defined in the classically 

damped systems, Equation (5.14) is then defined as the general effective modal mass, 
effˆ im , associated with the ith complex mode (including its conjugate counterpart) and 

Equation (5.15) is defined as the general effective modal mass, Peffˆ im , for the ith over-

damped mode. These effective modal masses  effˆ im  and Peffˆ im  are then sequenced in an 

ascending order according to the absolute value of their corresponding eigenvalues ( iλ  

and P
iλ  ). The cumulative mass based on this sequence is used to determine how many 

modes will be required to reach the prescribed participation mass ratio (e.g. the 90% rule). 
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Figure 5.3  Conceptual explanation of the expansion of =s MJ  and the resulting base 
shear forces 

 

Similar to the case of classically damped systems, the sum of all general effective modal 

masses is equal to the total mass of the system by expressing the total mass MΣ  as 

 
C P

eff Peff T

1 1

ˆ ˆ
N N

i i
i i

m m MΣ
= =

+ = = ∈∑ ∑ J MJ R  (5.16) 

Equation (5.16) can be proven by recognizing that eff Tˆ i im = J s  [Equation. (5.14)] and 

Peff T Pˆ i im = J s  [Equation.(5.15)], which implies that the sum of all effective modal mass 

equals to 
C P

T P T

1 1

N N

i i
i i= =

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
∑ ∑J s s J MJ . This gives the desired result.  
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Manner 2 

Alternatively, the inertia force distribution =s MJ  can also be expanded in another 

pattern different from the one derived in manner 1. First, the expansion of the inverse of 

the mass matrix 1−M  shown in Equation (2.50) is repeated here. 

 C P

1 1 T

T P P P T

P
1 1

ˆ

( )2 Re
N N

N Ni i i i i i

i ii ia a
λ λ

− −

×

= =

=

⎛ ⎞
= + ∈⎜ ⎟

⎝ ⎠
∑ ∑

M a ΛΦ Φ

ϕ ϕ ϕ ϕ R  (5.17) 

Post-multiplying by MJ  in Equation (5.17) results in 

 C P

1 T

T P P P T

P
1 1

ˆ

( )2 Re
N N

Ni i i i i i

i ii ia a
λ λ

−

= =

=

⎛ ⎞
= + ∈⎜ ⎟

⎝ ⎠
∑ ∑

J a Λ MJ

MJ MJ

Φ Φ

ϕ ϕ ϕ ϕ R  (5.18) 

Thus the inertia force distribution N= ∈s MJ R  can be expanded as 

 
C CP PT P P P T

P
P

1 1 1 1

( )2 Re
N NN N

i i i i i i
i i

i i i ii ia a
λ λ

= = = =

⎛ ⎞
= = + = +⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑M MJ M MJs MJ s s ϕ ϕ ϕ ϕ  (5.19) 

The concept illustration of this expansion is identical the one addressed in the manner 1 

(see Figure 5.3). Therefore, the contribution of the ith complex mode to the vector 

=s MJ  is 

 
T

2 Re Ni i i
i

ia
λ⎛ ⎞

= ∈⎜ ⎟
⎝ ⎠

M MJs ϕ ϕ R  (5.20) 

and the contribution of the ith over-damped mode to the vector =s MJ  is 

 
P P P T

P
P

( ) Ni i i
i

ia
λ= ∈M MJs ϕ ϕ R  (5.21) 
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The resulting static base shear force due to is  is defined as the ith general effective modal 

mass, effˆ im ,  associated with the ith complex mode (including its conjugate counterpart) . 

That is, 

 

( )

st eff
b

T

1

2Τ

ˆ

2 Re

i i
N

ji i
j

i i

i

V m

s

a
λ

=

=

= =

⎛ ⎞
⎜ ⎟= ∈
⎜ ⎟
⎝ ⎠

∑ J s

MJϕ
R

 (5.22) 

Also, the resulting static base shear force due to P
is  is defined as the ith general effective 

modal mass, Peffˆ im ,  associated with the ith over-damped mode 

 

Pst Peff
b

P T P

1

2P P T

P

ˆ

( )

i i
N

ji i
j

i i

i

V m

s

a
λ

=

=

= =

⎡ ⎤⎣ ⎦= ∈

∑ J s

MJϕ
R

 (5.23) 

Similarly, the sum of all general effective modal masses is equal to the total mass of the 

system by expressing the total mass MΣ  as 

 TMΣ = J MJ  (5.24) 

Substituting Equation (5.19) into Equation (5.24) gives 

 

C P

C P

T T P

1 1

eff Peff

1 1

ˆ ˆ

N N

i i
i i
N N

ii i
i i

M

m m

Σ
= =

= =

= +

= +

∑ ∑

∑ ∑

J s J s
 (5.25) 

This completes the proof. Another alternative to prove this property shown in Equation 

(5.25) is to use the expansion of the total mass shown in Equation (2.70), in which the ith 
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term in the complex mode and the ith term in the over-damped mode are equivalent to the 

definition of the effective modal mass shown in Equation (5.22) and Equation (5.23), 

respectively. This also shows that the sum of the all general effective modal masses is 

equal to the total mass of the system. 

It is noted that the effˆ im  and Peffˆ im  , formulated in manner 1 and manner 2, may be 

positive or negative and are independent of how the mode shapes are normalized.  This 

indicates that the summation of the general effective modal mass over modes may or may 

not be monotonic, although the summation contributed from all modes converges to the 

total mass of the system. In this study, the effective modal mass expressions derived in 

both manners are considered as an indicator to determine the number of modes required 

in the superposition. The participating mass percentage rule used in the classically 

damped systems still applies in the generally damped linear MDOF systems. Moreover, 

manner 2 is preferred and suggested because in manner 2 the structural mass matrix M is 

used, which is much easier to be obtained in engineering practice, rather than the stiffness 

matrix K. Table 5.1 gives a summary of the expressions of the general effective modal 

mass derived by manner 1 and manner 2, including the special case in which classical 

damping is seen. 

Parallel to the definition for classically damped system, we can define effective modal 

mass ratios for generally damped system, miR  and P
miR , and  

 eff
m ˆ /i iR m MΣ=  (5.26) 

 P Peff
m ˆ /i iR m MΣ=  (5.27) 

Based on Equations (5.16) and (5.25), following equation can be easily derived. 

 
C P

P
m m

1 1

1
N N

i i
i i

R R
= =

+ =∑ ∑  (5.28) 
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Table 5.1  Summary of the expressions of the effective modal mass 

Effective 
Modal Mass 

Generally Damped Systems Classically 
Damped 
Systems Manner 1 Manner 2 

effˆ im , 
Complex 

Mode 

( )( )T T

2 Re i i

i iaλ

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

KJ MJϕ ϕ
 

( )2Τ

2 Re i i

ia
λ⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠

MJϕ

( )2T

T
i

i i

φ
φ φ

MJ
M

 
Peffˆ im , 

over-damped 
Mode 

P T P T

P P

( ) ( )i i

i iaλ
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦−

J MJϕ Κ ϕ
 

2P P T

P

( )i i

ia
λ ⎡ ⎤⎣ ⎦MJϕ

 

  When the generally damped system is reduced to classically damped system, all modal 
shapes become real number vector, which can be expressed as N

i r= ∈ϕ φ R and 
P N
j s= ∈ϕ φ R , where C1,2i N=  and P1,2j N=  denoted for under-damped modes 

and over-damped modes, respectively, while r and s are denoted as one of the modes that 
are calculated only based on matrices M and K, , (1, 2 )r s N∈  (referring to Appendix 
B). Considering Equation (2.71a) and regarding to the manner 1, the effective modal 
mass defined in Equation (5.14) can be simplified as 

 

( ) ( )
( )( )

( ) ( )

TT 2 TT
eff

d d

2 2T T

T

ˆ 2 Re 2Re
j j2

0

i r rr r
i

i i i i i i i

r r

i r r

m
a m

m

ω
λ ξ ω ω ω

⎛ ⎞⎛ ⎞
⎜ ⎟= − = −⎜ ⎟⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

= = ≥

M J MJK J MJ

MJ MJ
M

φ φφ φ

φ φ

φ φ

 (5.29) 

For over-damped modes, considering Equations (2.9), (2.31) and (5.15), we have 

 

( ) ( )

( )
( )

TT 2 TT
Peff

P P P P

22 T

P T P

ˆ

0

s s ss s
j

j j j j

s s

j s j s

m
a a

ω
ω ω

ω
ω ω

= =

= ≥
− +

M J MJJ MJ

MJ

M C

φ φΚφ φ

φ

φ φ

 (5.30) 

Regarding to the manner 2, following similar way, we have 
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( )( ) ( )2 2Τ T

deff
T

j
ˆ 2 Re 0i i i r r

i
i r r

m
a

ξ ω ω⎛ ⎞− +
⎜ ⎟= = ≥
⎜ ⎟
⎝ ⎠

MJ MJ
M

φ φ

φ φ
 (5.31) 

and 

 ( )
2P T

Peff
T P

( )
ˆ 0j s

j
s j s

m
ω

ω
⎡ ⎤⎣ ⎦= − ≤

− +

MJ

M C

φ

φ φ
 (5.32) 

It can be easily found that Equations (5.29) and (5.31) for the real modes are identical. 

However, for the over-damped modes, the simplified equations shown by Equation (5.30) 

and (5.32) are different. 

If we further assume that no over-damped modes exist in the system, all effective modal 

masses obtained from two manners are exactly same as those for classically under-

damped system. 

5.4 Example 

To demonstrate the applicability of the newly developed general effective mass either by 

manner 1 or manner 2, the 10-story building example (Figure 4.14, without over-damped 

modes existing) in Section 4.9 is considered. Figure 5.4 shows the cumulative effective 

modal mass ratios calculated by Manner 1 and Manner 2 as well as conventional 

cumulative effective modal mass ratio defined in classical damping cases. It is observed 

that, unlike the conventional cumulative effective modal mass, the newly developed 

general cumulative effective modal mass (either by Manner 1 or Manner 2) does not 

increase monotonically; however, the fluctuation ranges of the curves decrease gradually 

when the modal order increases. It can be predicted that for a structure with large DOFs, 

the fluctuation phenomena caused by using both new methods will fall into a very small 

range and can be ignored, as long as participating lower modal order reaches sufficient 

high number, say, truncated mode order ( )30N N′ = . And it may be also anticipated 

that the higher order modes larger than N ′  have small contributions to the whole 

structural responses. This prediction may be able to be interpreted from mathematical 
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point of view. Regarding to a higher mode, the elements in the modal shape fluctuate 

significantly and, as a result, the vector inner-products ( )T
i KJϕ , ( )T

i MJϕ , ( ) ( )TP
i Jϕ Κ  

and ( ) ( )TP
i Jϕ Μ , which are used to calculate effective modal masses as major terms 

shown in Table 5.1, end up with very small absolute values. 

When all modes are included, all curves will converge to 100% eventually. 
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Figure 5.4 Cumulative effective modal mass 
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CHAPTER 6 

RESPONSE SPECTRUM METHOD 

6.1 Introduction 

This chapter develops a response-spectrum-based analysis procedure for the seismic 

responses of a generally damped linear structure. This development is in parallel with the 

development of the CQC rule with an extension to the consideration of the responses 

resulted from the over-damped modes, in which an over-damped mode response 

spectrum concept is introduced. For the purposes of structural design, a procedure to 

convert the site response spectrum to the corresponding over-damped mode response 

spectrum is established. 

6.2 Analytical Formulation 

The analytical formulation of the general modal combination rule (GCQC) 

considering the effect of non-classical damping and over-damped modes is presented in 

this section. According to the general modal response analysis method formulated in 

Chapter 3, the responses of a generally damped linear structure subjected to single 

directional seismic excitation are expressed as 

 
C P

P P
0 0 0 0

1 1
( ) [ ( ) ( )] [ ( )]

N N
N

i i i i i i
i i

t q t q t q t
= =

= + + ∈∑ ∑x A B A R  (6.1) 

where T
0 01 02 0( ) [ ( ), ( ),..., ( )]Nt x t x t x t=x  represents a response vector for any response 

quantity of interest; ( )iq t , ( )iq t  and P ( )iq t  are the modal displacement, velocity and over-

damped mode responses, respectively. 0
N

i ∈A R , 0
N

i ∈B R  and P
0

N
i ∈A R  are the 

coefficient vectors associated with ( )iq t , ( )iq t  and P ( )iq t , respectively. Note that these 

coefficient vectors are only dependent on the structural modal parameters and they are 

time invariant. The expressions of these coefficient vectors for most response quantities 

are given in Chapter 3. 
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6.2.1 Definition of Vector Operation Symbols 

Before starting the formulation, it is useful to define a number of vector operators 

for convenience. They are: 

i  : Vector multiplication. For example, assuming that a , b  and c  have the same 

dimension, =c a bi  means that each element in vector c  is the product of the 

corresponding element in a  and b . 

1/2{}•  or {}  : Taking the square root of each element in the vector {} individually. 

2{}•  : Taking the square of the element in the vector {} individually. 

max{}  : Representing the peak response of each response history in the vector {}. 

6.2.2 Covariance of Responses to Stationary Excitation 

Consider the input ground acceleration g ( )x t  as a wide-band stationary process. 

Based on the theory of random vibration, the responses of a linear system subjected to a 

stationary process are also stationary and the covariance or mean squares of the response 

0 ( )tx  from Equation (6.1) is in the form of 

 
{ }

C P

C C

2
2 P P

0 0 0 0
1 1

0 0 0 0 0 0
1 1

P P P
0 0 0 0

E ( ) E [ ( ) ( )] [ ( )]

E ( ) ( ) E ( ) ( ) 2 E ( ) ( )

2 E ( ) ( ) E (

N N

i i i i i i
i i

N N

i j i j i j i j i j i j
i j

i j i j i j i

t q t q t q t

q t q t q t q t q t q t

q t q t q

•
•

= =

= =

⎡ ⎤⎧ ⎫
⎡ ⎤ = + +⎢ ⎥⎨ ⎬⎣ ⎦ ⎢ ⎥⎩ ⎭⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤+ +⎣ ⎦

∑ ∑

∑∑

x A B A

A A B B A B

A A B A

i i i

i i{ }

{ }

C P

P P

P

1 1

P P P P
0 0

1 1

) ( )

E ( ) ( )

N N

j
i j

N N
N

i j i j
i j

t q t

q t q t

= =

= =

⎡ ⎤⎣ ⎦

⎡ ⎤+ ∈⎣ ⎦

∑∑

∑∑ A Ai R

 

  (6.2) 
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Equation (6.2) shows that it is necessary to compute the covariance of the response 

produced by two modes (e.g. E ( ) ( )i jq t q t⎡ ⎤⎣ ⎦  ) in order to obtain the variance of 0 ( )tx . 

Before proceeding to calculate the covariance produced by two modes, a number of 

expressions derived in Chapter 3 are required in the following formulation. They are 

repeated as follows. 

 g0
( ) ( ) ( )d

t

i iq t h t xτ τ τ= −∫  (6.3) 

 P P
g0

( ) ( ) ( )d
t

i iq t h t xτ τ τ= −∫  (6.4) 

 -j
2 2

1( j ) ( ) e d
j2

t
i i

i i i

H h t tωω
ω ξ ω ω ω

+∞

−∞
= = − ∈

− + +∫ C  (6.5) 

 V 2 2

j( j )
j2i

i i i

H ωω
ω ξ ω ω ω

= − ∈
− + +

C  (6.6) 

 P
P

1( j )
ji

i

H ω
ω ω

= − ∈
+

C  (6.7) 

The displacement response covariance term E ( ) ( )i jq t q t⎡ ⎤⎣ ⎦  in Equation (6.2) is first 

examined. According to Equation (6.3), this term may be written as 

 1 2 g 1 g 2 1 20 0
E ( ) ( ) ( ) ( ) E ( ) ( ) d d

t t

i j i jq t q t h h x t x tτ τ τ τ τ τ⎡ ⎤ ⎡ ⎤= − − ∈⎣ ⎦ ⎣ ⎦∫ ∫ R  (6.8) 

Knowing that ground excitation g ( )x t  commences from zero at the time instant 

0t =  (i.e. g ( ) 0x t =  when 0t ≤ ), it is reasonable to extend the lower limit of the 

integration in Equation (6.8) to negative infinity as 

 1 2 g 1 g 2 1 2E ( ) ( ) ( ) ( ) E ( ) ( ) d d
t t

i j i jq t q t h h x t x tτ τ τ τ τ τ
−∞ −∞

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∫ ∫  (6.9) 
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Now, suppose that the ground excitation g ( )x t  is further considered a white noise 

process with zero mean, described by a constant power spectral density 0S , it follows that 

the term g 1 g 2E ( ) ( )x t x tτ τ⎡ ⎤− −⎣ ⎦  in Equation (6.9) becomes 

 g 1 g 2 0 1 2E ( ) ( ) 2π ( )x t x t Sτ τ τ τ⎡ ⎤− − = δ −⎣ ⎦  (6.10) 

where ( )τδ  is the Dirac function and is defined as follows. 

 
  0

( )
0 0

τ
τ

τ
+∞ =⎧

δ = ⎨ ≠⎩
 (6.11) 

and ( )d 1τ τ
+∞

−∞
δ =∫  (6.12) 

In light of the inverse of Fourier transform, the Dirac function also can be expressed 

as 

 j1( ) e d
2π

ωττ ω
+∞

−∞
δ = ∫  (6.13) 

or 1 2j ( )
1 2

1( ) e d
2π

ω τ ττ τ ω
+∞ −

−∞
δ − = ∫  (6.14) 

Substituting Equations (6.10) and (6.14) in Equation (6.9) and setting the upper 

integral limit to infinity to retain the steady state response, Equation (6.9) becomes 

 
( )

1 2

1 2

j ( )
0 1 2 1 2

j j
0 1 1 2 2

E ( ) ( ) ( ) ( )e d d d

( )e d ( )e d d

i j i j

i j

q q S h h

S h h

ω τ τ

ωτ ωτ

τ τ τ τ ω

τ τ τ τ ω

+∞ +∞ +∞ −

−∞ −∞ −∞

+∞ +∞ +∞ −

−∞ −∞ −∞

⎡ ⎤+∞ +∞ =⎣ ⎦

=

∫ ∫ ∫

∫ ∫ ∫
 (6.15) 

Making use of Equation (6.5), Equation (6.15) may be written as 

 DD
0E ( ) ( ) ( j ) ( j )di j i j i jR q q S H Hω ω ω

+∞

−∞
⎡ ⎤= +∞ +∞ = −⎣ ⎦ ∫  (6.16) 

Substituting Equation (6.5) into Equation (6.16) and using contour integration in the 

complex plane, it yields 
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 DD DD0π
2i j i j

i j i j i j

SR ρ
ω ω ω ω ξ ξ

=  (6.17) 

where 

3/ 2
DD

C2 2 2 2 2 2

8 ( )
,     ( = ,  , 1, 2,..., )

(1 ) 4 (1 ) 4( )
i j i j i j i j

i j i j i j
i j i j i j i j i j i j

i j N
ξ ξ γ ξ ξ γ

ρ γ ω ω
γ ξ ξ γ γ ξ ξ γ

+
= =

− + + + +
 (6.18) 

is the well-known complex modal displacement correlation coefficient originally derived 

for the CQC rule (Der Kiureghian 1981). Let i j=  in Equation (6.17), the complex 

modal displacement variance can be obtained as 

 DD 0
3

π
2i i

i i

SR
ξ ω

=  (6.19) 

Consequently, Equation (6.17) can be entirely expressed in the complex modal 

displacement variance terms. That is, 

 DD DD DD DD
C,      ( , 1, 2,..., )i j i i j j i jR R R i j Nρ= =  (6.20) 

Following the similar procedures of the derivation of the complex modal 

displacement response covariance DD
i jR , the complex modal velocity response covariance  

VV
i jR  and the covariance of the ith complex modal velocity and the jth complex modal 

displacement VD
i jR  can also be derived as 

 

VV 2
0

VV0

DD DD VV
C

E ( ) ( ) ( j ) ( j )d

π
2

,      ( , 1,2,..., )

i j i j i j

i j
i j i j

i j i i j j i j

R q q S H H

S

R R i j N

ω ω ω ω

ρ
ω ω ξ ξ

ω ω ρ

∞

−∞
⎡ ⎤= +∞ +∞ = −⎣ ⎦

=

= =

∫
 (6.21) 

where  
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3/ 2
VV

C2 2 2 2 2 2

8 ( )
,     ( = ,  , 1, 2,..., )

(1 ) 4 (1 ) 4( )
i j i i j j i j

i j i j i j
i j i j i j i j i j i j

i j N
ξ ξ ξ γ ξ γ

ρ γ ω ω
γ ξ ξ γ γ ξ ξ γ

+
= =

− + + + +
 (6.22) 

is the complex modal velocity correlation coefficient and  

 

VD
0

VD0

DD DD VD

( ) ( ) j ( j ) ( j )d

π
2

,      ( , 1,2,..., )

i j i j i j

i j
j i j i j

i i i j j i j C

R E q q S H H

S

R R i j N

ω ω ω ω

ρ
ω ω ω ξ ξ

ω ρ

+∞

−∞
⎡ ⎤= +∞ +∞ = −⎣ ⎦

=

= =

∫
 (6.23) 

where 

2 1/ 2
VD

C2 2 2 2 2 2

4 (1 )
,     ( = ,  , 1, 2,..., )

(1 ) 4 (1 ) 4( )
i j i j i j

i j i j i j
i j i j i j i j i j i j

i j N
ξ ξ γ γ

ρ γ ω ω
γ ξ ξ γ γ ξ ξ γ

−
= =

− + + + +
 (6.24) 

is the complex modal velocity-displacement correlation coefficient. It is noted that when 

i j= , the variance of the velocity response VV
i iR  and the covariance of the velocity and 

displacement response VD
i jR  becomes 

 VV 2 DD0π
2i i i i i

i i

SR Rω
ω ξ

= =  (6.25) 

and VD 0i iR =  (6.26) 

It should be clear from Equations (6.25) and (6.26) that the velocity variance and the 

displacement variance of a SDOF system is related by the squares of its natural circular 

frequency, and the modal displacement and velocity responses of a SDOF system are 

orthogonal with each other under the white noise excitation assumption. It is also noted 

from Equations (6.21) and (6.23) that the velocity covariance VV
i jR  and the velocity-

displacement covariance VD
i jR  can simply be expressed in terms of the modal 

displacement variances DD
iiR  and DD

jjR . They are connected by the two correlation 
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coefficients VV
i jρ  and VD

i jρ . The presence of VV
i jR  and VD

i jR  is due to the non-classical 

damping effect. 

To examine the covariance terms associated with over-damped modes (i.e. over-

damped mode response), let us consider the over-damped mode response covariance term 
P PE ( ) ( )i jq t q t⎡ ⎤⎣ ⎦  in Equation (6.2). 

 
PP P P

P P
0 P

E ( ) ( )

( j ) ( j )d ,      ( , 1, 2,... )

i i i j

i j

R q t q t

S H H i j Nω ω ω
+∞

−∞

⎡ ⎤= ⎣ ⎦

= − =∫
 (6.27) 

Substitution of Equation (6.7) into Equation (6.27) and manipulation with contour 

integration in the complex plane leads to 

 PP 0
PP P

2π ,      ( , 1, 2,... )i j
i j

SR i j N
ω ω

= =
+

 (6.28) 

Similarly, considering the ith over-damped mode response variance by letting i j=  

leads to 

 PP 0
PP

π ,      ( 1, 2,... )i i
i

SR i N
ω

= =  (6.29) 

Thus, Equation (6.27) can be rewritten as 

 PP PP PP PP
P,      ( , 1, 2,..., )i i ii j j i jR R R i j Nρ= =  (6.30) 

in which 

 
P P

PP
PP P

2
,      ( , 1, 2,..., )i j

i j
i j

i j N
ω ω

ρ
ω ω

= =
+

 (6.31) 

is a newly derived correlation coefficient that accounts for the relationship among all 

over-damped mode responses. 
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Similarly, the complex modal displacement and over-damped mode response 

covariance term PE ( ) ( )i jq t q t⎡ ⎤⎣ ⎦  in Equation (6.2) can be written in the form of 

 

DP P

P
0

0
2 P P 2

DD PP DP
C P

( ) ( )

( j ) ( j )d

2π
2 ( )

,      ( 1,2,... , 1,2,... )

i j i j

i j

i i i j j

i i j j i j

R E q q

S H H

S

R R i N j N

ω ω ω

ω ξ ω ω ω

ρ

+ ∞

−∞

⎡ ⎤= +∞ +∞⎣ ⎦

= −

=
+ +

= = =

∫
 (6.32) 

By analogy, the complex modal velocity and over-damped mode response 

covariance term PE ( ) ( )i jq t q t⎡ ⎤⎣ ⎦  in Equation (6.2) becomes 

 

VP P

P
0 V

P
0

2 P P 2

DD PP P DP
C P

E ( ) ( )

( j ) ( j )d

2π
2 ( )

,      ( 1,2,... , 1,2,... )

i j i j

i j

j

i i i j j

i i j j j i j

R q q

S H H

S

R R i N j N

ω ω ω

ω
ω ξ ω ω ω

ω ρ

+∞

−∞

⎡ ⎤= +∞ +∞⎣ ⎦

= −

=
+ +

= = =

∫
 (6.33) 

where 

 
P

DP
C P2 P P 2

2 2
,      ( 1, 2,... , 1, 2,... )

2 ( )
i i i j

i j
i i i j j

i N j N
ω ξ ω ω

ρ
ω ξ ω ω ω

= = =
+ +

 (6.34) 

is the correlation coefficient which accounts for the correlation between the complex 

modal displacements and the over-damped mode response. Equations (6.27) to (6.34) are 

new relationships established in this study to consider the presence of over-damped 

modes. 

Upon substitution of the above derived covariance given by Equations (6.20), (6.21), 

(6.23), (6.30), (6.32)and (6.33) into Equation (6.2), Equation (6.2) can be written as 
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C C

C P

P P

2 VV DD VD DD DD
0 0 0 0 0 0 0

1 1

DP P P P DD PP
0 0 0 0

1 1

PP P P PP PP
0 0

1 1

E ( ) 2

2

N N

i j i j i j i j i j i j i i j i i j j
i j

N N

i j j i j i j ii j j
i j

N N

i j i j i i j j
i j

t R R

R R

R R

ρ ω ω ρ ρ ω

ρ ω

ρ

= =

= =

= =

⎡ ⎤⎡ ⎤ = + +⎣ ⎦ ⎣ ⎦

⎡ ⎤+ +⎣ ⎦

⎡ ⎤+ ⎣ ⎦

∑∑

∑∑

∑∑

x A A B B A B

A A B A

A A

i i i i

i i

i

(6.35) 

6.2.3 Development of Response Spectrum Method 

It has been shown in (Davenport 1964 and Vanmarcke 1972) that the mean 

maximum modal response of a linear system over a specified duration to a stationary 

excitation is proportional to its root mean square, i.e., 

 DD
Cmax

( ) ( 1, 2 )i i i i iq t S p R i N= = =  (6.36) 

 P P PP
Pmax

( ) ( 1,2 )i i i i iq t S p R i N= = =  (6.37) 

where the iS  is the ordinate of the mean displacement response spectrum and P
iS  is the 

mean over-damped mode response spectrum. The definition of the over-damped mode 

response spectrum will be addressed in a later section. The numerical value of ip , in 

general, does not differ greatly in magnitude from mode to mode. Thus, for practical 

applications, it is reasonable to assign the same value to ip  for each mode, even for the 

combined responses. As a result, the relationship between the maximum response of 

interest and all modal displacement response maxima can be expressed as 

 

C C

C P

P P

DD
0 0 0 0 0 0 max max

1 1

DP P P P P
0 0 0 0 0max max max

1 1

PP P P P P
0 0 max max

1 1

2 ( ) ( )

( ) 2 ( ) ( )

( ) ( )

N N

i j ij i j i j i j ij i i j i j
i j

N N

i j j i j i j i j
i j

N N

i j i j i j
i j

q t q t

t q t q t

q t q t

ρ μ ω ω υ ω

ρ ω

ρ

= =

= =

= =

⎧
⎡ ⎤+ +⎪ ⎣ ⎦

⎪
⎪⎪ ⎡ ⎤= + +⎨ ⎣ ⎦
⎪
⎪

⎡ ⎤+ ⎣ ⎦
⎩

∑∑

∑∑

∑∑

A A B B A B

x A A B A

A A

i i i

i i

i

1/2•
⎫
⎪
⎪
⎪⎪
⎬
⎪
⎪

⎪ ⎪
⎪ ⎪⎭

 

  (6.38) 

where  
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VV

CDD ,      ( , 1, 2,..., )i j i j i j
ij

i j j i i j

i j N
ρ ξ ξ γ

μ
ρ ξ ξ γ

+
= = =

+
 (6.39) 

 
VD 2

CDD

1
,      ( , 1, 2,..., )

2 ( )
i j i j

ij
i j i j j i i j

i j N
ρ γ

υ
ρ γ ξ ξ γ

−
= = =

+
 (6.40) 

Equation (6.38), termed as  the General Complete Quadratic Combination rule (GCQC 

rule), gives the peak response of a generally damped linear structure when the input 

excitations are described in terms of response spectra. 

If the correlations between each mode are ignored; that is, when i j≠  DD 0i jρ = , 

PP 0i jρ =  as well as 0ijυ =  and DP 0i jρ =  for all i and j, Equation (6.38) is further reduced 

to 

 ( ) ( )
C P 2 222 2 2 P P

0 0 0 0max max max
1 1

( ) ( ) ( )
N N

i i i i i i
i i

t q t q tω
•• •

= =

= + +∑ ∑x A B A  (6.41) 

Equation (6.41) is termed as General Square-Root-of-Sum-of-Square combination 

(GSRSS) rule. 

6.2.4 Investigation of the Correlation Factors 

The correlation coefficients DD
i jρ , VV

i jρ , VD
i jρ , DP

i jρ  and PP
i jρ  for responses to the 

white noise input are presented in Figure 6.1 to Figure 6.5, respectively. Each correlation 

coefficient was plotted against the ratio i jω ω  for certain representative damping levels. 

Figure 6.1(a) compares the DD
i jρ  variations for different level of damping, in which the 

complex modal damping ratios of ith and jth mode are the same; whereas Figure 6.1(b) 

compares the DD
i jρ  variations when the ith and jth complex modal damping ratio are not 

equal. It is observed that the DD
i jρ  becomes smaller as the two modal frequencies iω  and 

jω  move apart. This is particularly true for cases of small damping. However, the DD
i jρ  

does not diminish rapidly when one of the modal damping is significantly large. This 



 

 129

implies that heavily damped modes may have strong interaction with other modes. 

Similar results can also be found for the velocity correlation coefficient VV
i jρ  as shown in 

Figure 6.2. Figure 6.3 shows the variations of the velocity-displacement correlation 

coefficient VD
i jρ . It can be seen that the variation of VD

i jρ  is quite different from the 

displacement correlation coefficient DD
i jρ . It has negative values when the ratio i jω ω  is 

greater than unity. This means negative correlations exist between complex modal 

displacement and complex modal velocity. When i jω ω  is equal to unity, VD
i jρ  is zero. 

This result is reasonable as the complex modal displacement and velocity belonging to 

the same mode are independent under the white noise input assumption. The value of 
VD
i jρ  is significant when i jω ω  is less than unity, indicating that the correlation between 

complex modal velocity and displacement may not be neglected. Figure 6.4 shows the 

variation of DP
i jρ  with respect to the ratio P

i jω ω . It is found that the values of DP
i jρ  are 

significant, especially true at large damping levels. Also, DP
i jρ  grows as the ratio P

i jω ω  

approaches two and decreases slowly beyond that value. The variation of PP
i jρ  versus 

P P
i jω ω  is shown in Figure 6.5, from which it is observed that the value of PP

i jρ  remains 

to be a significant component across the range of the ratios of P P
i jω ω  considered. The 

results from Figure 6.4 and Figure 6.5 suggest that over-damped mode may have strong 

contributions to the structural responses and should be considered in the combination rule 

appropriately. 

6.2.5 Reduction to Classically under-Damped Structures 

Consider a classically damped MDOF structure which is under-damped 

C P( , 0)N N N= = , the peak displacement response 
max

( )tx  and the absolute acceleration 

response A max
( )tx  can be estimated from Equation (6.38) as 

 DD
max max max

1 1

( ) ( ) ( )
N N

i j i j i j i j
i j

t q t q tρ Γ Γ
= =

= ∑∑x iϕ ϕ  (6.42) 
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and 

 
}

DD 2 2 2 2
A max

1 1

1/2
2 2

max max

1/2

DD 2 2
max max

1 1

DD

( ) 4

4 ( ) ( )

1 4 4 ( ) ( )

N N

i j i j i j i j i j i j i j i j i j
i j

i j i i j i j i j i j

N N

i j i j i j i j i i j i j i j i j
i j

i j i

t

q t q t

q t q t

ρ ω ω Γ Γ μ ξ ξ ω ω Γ Γ

υ ξ ω ω Γ Γ

ρ μ ξ ξ υ ξ ω ω Γ Γ

ρ σ

= =

•

= =

⎧
⎡= +⎨ ⎣

⎩

⎤+ ⎦

⎧ ⎫
⎡ ⎤= + +⎨ ⎬⎣ ⎦

⎩ ⎭

=

∑∑

∑∑

x

i

i i

i

i

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

1/2

2 2
max max

1 1

( ) ( )
N N

j i j i j i j i j
i j

q t q tω ω Γ Γ
•

= =

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑∑ iϕ ϕ

 

  (6.43) 

where 

 
24 ( ) (2 )

,      ( , 1, 2,..., )
( )

j i j i j i j i j i j i i j
i j

i j j i i j

i j N
ξ γ ξ ξ γ ξ ξ γ ξ γ

σ
γ ξ ξ γ

+ + + −
= =

+
 (6.44) 

In Equation (6.43) iϕ  is the ith undamped mode shape, and T T
i i iiΓ = MJ Mϕ ϕ ϕ  is the ith 

modal participation factor. Note that Equation (6.42) coincides with the conventional 

CQC rule, as expected. Equation (6.43) is a newly established formula to evaluate the 

peak absolute acceleration of classically damped structures using response spectrum 

method. As well known, the pseudo-acceleration spectra PAS  can be written as 

2
PA max

( , ) ( )i i i iS q tω ξ ω= . Thus, Equation (6.43) may be expressed as 

 
1/2

DD
A PA PAmax

( ) ( , ) ( , )
N N

i j i j i j i j i i j j
i j

t S Sρ σ Γ Γ ω ξ ω ξ
•

⎧ ⎫
= ⎨ ⎬
⎩ ⎭
∑∑x iϕ ϕ  (6.45) 

Examining Equation (6.45), it is seen that, when using the pseudo-acceleration 

spectra to estimate the peak absolute acceleration, the results should be modified by the 

factor ijσ  in the combination rule. This important feature offers improved estimates on 

the absolute acceleration of classically damped structures and should be very useful in the 

earthquake engineering applications. Now if the correlations between every mode are 

ignored, Equation (6.45) can be further simplified in the SRSS form as 
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1/2

22 4 2 2
A max max

1

( ) (1 4 )
N

i i i i i
i

t qξ ω Γ
•

=

⎧ ⎫= +⎨ ⎬
⎩ ⎭
∑x ϕ  (6.46) 

Further, if the system is a SDOF system, Equation (6.46) becomes 

 2
A PAmax

( ) 1 4 ( , )nx t Sξ ω ξ= +  (6.47) 

This formulation provides an efficient and reasonable transformation between the 

pseudo-acceleration and peak absolute acceleration. This relationship was also earlier 

derived by (Song et al. 2007). The applicability and accuracy of Equation (6.47) was also 

examined in their study. The results indicated that when the damping ratio is less than, 

say 40%, Equation (6.47) provides excellent estimates. As a matter of fact, Equation 

(6.47) is equivalent to the formula proposed by Tsopelas et al. (1997), which predicts the 

maximum acceleration based on the given pseudo-acceleration. It was developed under 

the assumption that during the cycle of maximum response the SDOF system undergoes a 

harmonic motion with the natural frequency of the SDOF. The equation of this method 

takes the form of 

 A 1 2 PA( 2 ) ( , )nS f f Sξ ω ξ= +  (6.48) 

where 1 1
1 2cos[tan (2 )]  and  sin[tan (2 )]f fξ ξ− −= = . It is further found that Equation (6.48) 

is valid not only for sinusoidal excitation but also for strong phase earthquake excitation 

with white noise assumption (Song et al. 2007). 

6.3 Over-Damped Mode Response Spectrum 

Because the peak over-damped mode responses are not available when performing 

response spectrum analysis in engineering practice, it is necessary to predict the 

associated peak over-damped mode responses from the prescribed 5% pseudo-

acceleration response spectrum. Thus, a new ‘over-damped mode’ response spectrum is 

introduced in this study. The over-damped mode response spectrum follows a similar 

definition as the conventional response spectrum used in earthquake engineering. The 

objective of the over-damped mode response spectrum is to account for the peak over-
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damped mode response of structures that have over-damped modes. The interpretation of 

the over-damped mode response spectrum and an approach that is able to construct an 

over-damped mode response spectrum from the given conventional response spectrum 

are described in this section. Validation of the adequacy of the proposed over-damped 

mode response spectrum construction approach is also given. 

6.3.1 The Concept 

Before discussing the over-damped mode response spectrum, it is helpful to briefly 

review the concept of conventional response spectrum. Consider a SDOF under-damped 

system subjected to a ground motion g ( )x t , the equation of motion can be written as 

 2
g( ) 2 ( ) ( ) ( )n nq t q t q t x tξω ω+ + = −  (6.49) 

where ( )q t , ( )q t  and ( )q t  are the relative displacement, velocity and acceleration, 

respectively; ξ  is the damping ratio and nω  is the natural circular frequency of the SDOF 

system. The conventional response spectrum is constructed by performing a series of 

linear response-history analysis to a SDOF system under a given ground acceleration 

g ( )x t . The response spectrum is a plot of the peak values of a response quantity as a 

function of natural vibration period nT  (or corresponding natural circular frequency nω ). 

Each plot is for a SDOF system having a fixed damping ratio ξ , and a number of such 

plots for different values of ξ  are included to account for the effect of viscous damping 

encountered in real structures (Chopra 2005).  

Recalling the over-damped mode term defined Chapter 3, the response of a over-

damped mode can be characterized by the following linear first order differential 

equation 

 P P P
g( ) ( ) ( )q t q t x tω+ = −  (6.50) 

where P ( )q t  is the over-damped mode response and P ( )q t  is the time derivative of, and 

Pω  is the “over-damped modal natural frequency” (rad/sec ). Similar to the concept of 
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conventional response spectrum, the over-damped mode response spectrum is defined as 

a plot of the peak over-damped mode responses P ( )q t , as a function of the over-damped 

modal frequency Pω  or the over-damped modal period P P2T π ω=  under a given 

ground acceleration via Equation (6.50). Unlike the conventional response spectrum, 

there is only one parameter, Pω , influencing the response. The procedure to construct the 

over-damped mode response spectrum is illustrated in Figure 6.6, and it consists of the 

following three steps: (1) Select the ground motion to be considered (as seen in Figure 

6.6(a)); (2) Determine the peak over-damped mode responses represented by Equation 

(6.50) using the selected ground motion for different over-damped modal frequencies 

(see Figure 6.6(b)); and (3) The peak over-damped mode response obtained offers a point 

on the over-damped mode response spectrum as shown in Figure 6.6(c). 

6.3.2 Construction of Over-Damped Mode Response Spectrum Consistent with 
5% Displacement Response Spectrum 

The construction of over-damped mode response spectrum relies on the availability 

of the ground acceleration history. However, when using the response spectrum approach, 

site design response spectrum specified in design provisions is used rather than the 

ground acceleration histories. Therefore, the over-damped mode response spectrum that 

is compatible with the site design response spectrum cannot be directly generated due to 

the unavailability of ground acceleration records. In this study, an approach based on the 

theory of random vibration is developed to address this issue, by assuming that the 

ground excitation can be considered as a wide-banded stationary Gaussian process. In this 

approach, the input excitation and responses are represented in terms of their respective 

power spectral density (PSD) function. For a linear system, the PSD of a response is the 

product of the response transmittancy function and the PSD of the input process. Further, 

most structural responses can be characterized by their corresponding response PSD 

functions. For example, the standard deviation or root mean square (RMS) of a response 

process is the area under its PSD (Der Kiureghian 1980). In addition, it has been shown 

in (Davenport 1964 and Vanmarcke 1972) that the peak value of a response process can 

be related to its root mean square by a proportional factor. From the above considerations, 
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the following procedure is established. First, the ground motion PSD mapped from given 

5% damping displacement spectrum can be established, which is independent of the 

characteristics of the SDOF systems. Second, this ground motion PSD is used as a base to 

predict the over-damped mode response spectrum. This proposed approach is based on 

the work by (Song et al. 2007) to construct the real velocity spectrum from the given 5% 

response spectrum. 

6.3.2.1 Response Spectrum Consistent PSD 
g
( )xG ω  

A reasonable estimate of ground motion PSD, ( )
gxG ω , consistent with pre-

determined 5% displacement spectrum was proposed by (Song et al. 2007) as follows. 

 ( ) ( )
( )g

2 3
d

2

0.1 ,5%
,5% πx

S
G

ω ω
ω

α ω
=  (6.51) 

where d ( ,5%)S ω  represents the given 5% displacement response spectrum as a function 

of ω . ( ,5%)α ω  is a factor that relates the standard deviation or root mean square (RMS) 

( )σ ω  of its response process to its peak response as 

 d ( ,5%) ( ,5%) ( )S ω α ω σ ω= ×  (6.52) 

Values of ( ,5%)α ω  determined numerically by using a group of artificial white 

noise processes can be found in Song et al. (2007). The applicability of Equation (6.51) 

along with the white-noise-determined ( ,5%)α ω  has been shown to be appropriate when 

used in estimating the real spectral velocities Song et al. (2007). This response spectrum 

consistent PSD ( )
gxG ω  will serve as a foundation to develop the over-damped mode 

response spectrum described next. 

6.3.2.2 Procedures 

From the over-damped mode equation of motion given by Equation (6.50), it is easy 

to obtain the over-damped mode frequency response function, P P( j ) 1 ( j )H ω ω ω= − + . 
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Under the wide-band stationary input process assumption, the PSD, Pq
G , of the over-

damped mode response can be related to ground motion PSD 
g
( )xG ω  via frequency 

response function, P ( )H ω , as 

 P g

2P ( j ) ( )xq
G H Gω ω= ×  (6.53) 

Then, the standard deviation or RMS, Pq
σ , of the over-damped response may be obtained 

through 

 
P P

g

2

0

2P

0

d

( j ) d

q q

x

G

H G

σ ω

ω ω

∞

∞

=

=

∫
∫

 (6.54) 

Further, the peak value of over-damped mode response P ( )q t  can also be related to 

its RMS Pq
σ  by a different proportional factor P( )η ω  

 P
P P P

max
( ) ( ) ( )

q
q t η ω σ ω= ×  (6.55) 

where P( )η ω  is a proportional factor by which the standard deviation must be multiplied 

to account for the expected peak over-damped mode response. The derivation of P( )η ω  

is provided in the following section. 

6.3.2.3 η  Factor Determination 

Based on the definition of η , it may be determined numerically by investigating the 

ratio between the peak value and the RMS of the response solved from Equation (6.50) 

while considering the excitation g ( )x t  as an  artificially generated white noise process for 

every over-damped modal frequency Pω  of interest. The generated white noise has a 

duration of eleven seconds and a 0.005 sec time step. A total of 15,000 response-history 

analyses via Equation (6.50) were performed (corresponding to 150 over-damped modal 

frequencies Pω  logarithmically spaced between 0.1 Hz and 30 Hz and 100 artificially 
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generated white noise inputs). Mean peak over-damped mode response and its RMS were 

obtained for each over-damped modal frequencies Pω . The η  factor was then determined 

based on the ratio of these two values accordingly. The resulting η  factors are tabulated 

in Table 6.1 while Figure 6.7 shows the plot of η  as a function of the over-damped modal 

frequency Pω  and the over-damped modal period PT . The so determined η  factors are 

termed as white-noise-determined η  factors. It should be noted that η  factors are readily 

available in advance of the construction of over-damped mode response spectrum and do 

not favor any ground motion records. Finally, the procedure to construct the over-damped 

mode response spectrum is illustrated schematically in Figure 6.8. 

6.3.3 Validation of the Over-Damped Mode Response Spectrum 

In order to demonstrate the accuracy and applicability of the formulation to 

construct the over-damped mode response spectrum from a given response spectrum, the 

exact mean over-damped mode response spectrum and the estimated over-damped mode 

response spectrum constructed by the proposed procedures were compared via real 

earthquake events. Two far-field ground motion ensembles are used in this study. The 

first, termed ensemble A, is the ensemble used by Vamvatsikos and Cornell (2004). The 

detained information of the records is tabulated in Table 6.2. These records are selected 

to have large magnitudes of 6.5 to 6.9 and moderate distances from the fault recorded on 

firm soil. Near-fault data are excluded. The second, termed ensemble B, is a set 

containing 50 far-field ground motions used by ATC (2007) to study the earthquake 

ground motion records scaling method targeted at performance-based design. The 

detained information of the records of this ensemble is tabulated in Table 6.3. In this 

second set of records, the records are selected based on the magnitudes between 6.3 and 

7.3, distances from the fault between 21Km to 50Km, and site conditions characterized 

by soil C and D. To be consistent with the amount of records used in ensemble A, only 

the first 20 records from ensemble B are used. In this study, all records are scaled to have 

PGA equal to 0.4g. Figure 6.9 shows the mean 5% displacement response spectra for 

both ensembles. The mean exact over-damped modal spectra were constructed by 

performing a series of response-history analysis per over-damped mode equation of 
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motion shown in Equation (6.50) for each record. The over-damped modal period are 

chosen to be identical to those used in the determination of η . The resulting mean peak 

over-damped mode response is plotted against over-damped modal period PT  shown as a 

solid line in Figure 6.10. The construction of the over-damped mode response follows the 

proposed procedures mentioned above. The resulting over-damped mode response 

spectra estimated from the 5% displacement spectra are indicated by the dotted line in 

Figure 6.10. It is observed that the over-damped mode response spectrum constructed by 

the proposed procedures is in close agreement with the exact values. This consistency 

indicates the applicability of the proposed procedures. 
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Table 6.1  White-noise-determined η  factor for over-damped mode response 
Pω  η  Pω  η  Pω  η  Pω  η  Pω  η  Pω  η  Pω  η  

0.63  2.55  1.46  2.81  3.39  3.04  7.86  3.28  18.25 3.41  42.36 3.50  98.33  3.43  
0.65  2.56  1.52  2.82  3.52  3.05  8.17  3.28  18.96 3.41  44.01 3.50  102.1  3.42  
0.68  2.57  1.57  2.83  3.66  3.07  8.49  3.29  19.70 3.42  45.73 3.50  106.1  3.41  
0.70  2.59  1.64  2.84  3.80  3.08  8.82  3.30  20.47 3.43  47.51 3.51  110.2  3.41  
0.73  2.60  1.70  2.85  3.95  3.10  9.16  3.31  21.27 3.43  49.37 3.51  114.6  3.40  
0.76  2.61  1.77  2.86  4.10  3.11  9.52  3.32  22.10 3.44  51.29 3.51  119.0  3.39  
0.79  2.62  1.84  2.87  4.26  3.13  9.89  3.32  22.96 3.44  53.29 3.51  123.7  3.38  
0.82  2.64  1.91  2.88  4.43  3.14  10.28 3.33  23.85 3.44  55.37 3.51  128.5  3.36  
0.85  2.65  1.98  2.89  4.60  3.15  10.68 3.34  24.78 3.44  57.53 3.51  133.5  3.35  
0.89  2.66  2.06  2.90  4.78  3.16  11.09 3.34  25.75 3.44  59.78 3.51  138.7  3.34  
0.92  2.67  2.14  2.91  4.97  3.17  11.53 3.35  26.76 3.45  62.11 3.51  144.1  3.32  
0.96  2.69  2.22  2.92  5.16  3.18  11.98 3.36  27.80 3.45  64.54 3.51  149.8  3.31  
0.99  2.70  2.31  2.93  5.36  3.19  12.44 3.36  28.89 3.46  67.05 3.50  155.6  3.29  
1.03  2.71  2.40  2.94  5.57  3.20  12.93 3.37  30.01 3.46  69.67 3.50  161.7  3.28  
1.07  2.72  2.49  2.95  5.79  3.21  13.43 3.37  31.18 3.47  72.39 3.49  168.0  3.27  
1.12  2.73  2.59  2.96  6.01  3.22  13.96 3.38  32.40 3.47  75.22 3.49  174.6  3.25  
1.16  2.74  2.69  2.97  6.25  3.23  14.50 3.38  33.67 3.47  78.15 3.48  181.4  3.24  
1.20  2.75  2.80  2.99  6.49  3.24  15.07 3.39  34.98 3.48  81.20 3.48  188.5  3.22  
1.25  2.76  2.91  2.99  6.74  3.25  15.66 3.39  36.34 3.48  84.37 3.47    
1.30  2.77  3.02  3.00  7.01  3.25  16.27 3.39  37.76 3.48  87.66 3.46    
1.35  2.78  3.14  3.01  7.28  3.26  16.90 3.40  39.24 3.49  91.08 3.45    
1.40  2.79  3.26  3.03  7.56  3.27  17.56 3.40  40.77 3.49  94.64 3.44    

Pω = over-damped modal frequency (rad/sec) 
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Table 6.2  Far-field ground motions used in ATC-58 
Designation Event Station M 1 r 1 

FF1, FF2 Cape Mendocino 04/25/92 18:06 89509 Eureka—Myrtle & West 7.1 44.6 
FF3, FF4 Cape Mendocino 04/25/92 18:06 89486 Fortuna—Fortuna Blvd 7.1 23.6 
FF5, FF6 Coalinga 1983/05/02 23:42 36410 Parkfield—Cholame 3W 6.4 43.9 
FF7, FF8 Coalinga 1983/05/02 23:42 36444 Parkfield—Fault Zone 10 6.4 30.4 
FF9, FF10 Coalinga 1983/05/02 23:42 36408 Parkfield—Fault Zone 3 6.4 36.4 
FF11, FF12 Coalinga 1983/05/02 23:42 36439 Parkfield—Gold Hill 3E 6.4 29.2 
FF13, FF14 Imperial Valley 10/15/79 23:16 5052 Plaster City 6.5 31.7 
FF15, FF16 Imperial Valley 10/15/79 23:16 724 Niland Fire Station 6.5 35.9 
FF17, FF18 Imperial Valley 10/15/79 23:16 6605 Delta 6.5 43.6 
FF19, FF20 Imperial Valley 10/15/79 23:16 5066 Coachella Canal #4 6.5 49.3 
FF21, FF22 Landers 06/28/92 11:58 22074Yermo Fire Station 7.3 24.9 
FF23, FF24 Landers 06/28/92 11:58 12025 Palm Springs Airport 7.3 37.5 
FF25, FF26 Landers 06/28/92 11:58 12149 Desert Hot Springs 7.3 23.2 
FF27, FF28 Loma Prieta 10/18/89 00:05 47524 Hollister—South & Pine 6.9 28.8 
FF29, FF30 Loma Prieta 10/18/89 00:05 47179 Salinas—John &Work 6.9 32.6 
FF31, FF32 Loma Prieta 10/18/89 00:05 1002 APEEL 2—Redwood City 6.9 47.9 
FF33, FF34 Northridge 01/17/94 12:31 14368 Downey—Co Maint Bldg 6.7 47.6 
FF35, FF36 Northridge 01/17/94 12:31 24271 Lake Hughes #1 6.7 36.3 
FF37, FF38 Northridge 01/17/94 12:31 14403 LA—116th St School 6.7 41.9 
FF39, FF40 San Fernando 02/09/71 14:00 125 Lake Hughes #1 6.6 25.8 
FF41, FF42 San Fernando 02/09/71 14:00 262 Palmdale Fire Station 6.6 25.4 
FF43, FF44 San Fernando 02/09/71 14:00 289 Whittier Narrows Dam 6.6 45.1 
FF45, FF46 San Fernando 02/09/71 14:00 135 LA—Hollywood Stor Lot 6.6 21.2 
FF47, FF48 Superstition Hills (A) 11/24/87 05:14 5210Wildlife Liquef. Array 6.3 24.7 
FF49, FF50 Superstition Hills (B) 11/24/87 13:16 5210Wildlife Liquef. Array 6.7 24.4 

1. M  = moment magnitude; r = closest site-to-fault-rupture distance                   (Courtesy of Y.N.Huang) 
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Table 6.3  Far-field ground motions used by Vamvatsikos and Cornell 2004 
No Event Station φ° 1 

1 Loma Prieta, 1989 Agnews State Hospital 090 
2 Imperial Valley, 1979 Plaster City  135 
3 Loma Prieta, 1989 Hollister Diff. Array 255 
4 Loma Prieta, 1989 Anderson Dam Downstrm 270 
5 Loma Prieta, 1989 Coyote Lake Dam Downstrm 285 
6 Imperial Valley, 1979 Cucapah 085 
7 Loma Prieta, 1989 Sunnyvale Colton Ave 270 
8 Imperial Valley, 1979 El Centro Array #13 140 
9 Imperial Valley, 1979 Westmoreland Fire Station 090 

10 Loma Prieta, 1989 Hollister South & Pine 000 
11 Loma Prieta, 1989 Sunnyvale Colton Ave 360 
12 Superstition Hills, 1987 Wildlife Liquefaction Array 090 
13 Imperial Valley, 1979 Chihuahua 282 
14 Imperial Valley, 1979 El Centro Array #13 230 
15 Imperial Valley, 1979 Westmoreland Fire Station 180 
16 Loma Prieta, 1989 WAHO 000 
17 Superstition Hills, 1987 Wildlife Liquefaction Array 360 
18 Imperial Valley, 1979 Plaster City 045 
19 Loma Prieta, 1989 Hollister Diff. Array 165 
20 Loma Prieta, 1989 WAHO 090 

1. component 
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Figure 6.1  Correlation coefficient DD

i jρ  for responses to white noise excitations 
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Figure 6.2  Correlation coefficient VV

i jρ  for responses to white noise excitations 
 



 

 143

 

0 2 4 6 8 10
-0.8

-0.4

0

0.4

0.8
ξi = ξj = 0.8

ξi = ξj = 0.5

ξi = ξj = 0.2

ξi = ξj = 0.05

0 2 4 6 8 10
-0.4

0

0.4

0.8

ξi = 0.5,   ξj = 0.8

ξi = 0.2,   ξj = 0.5

ξi = 0.2,   ξj = 0.8

ξi = 0.05, ξj = 0.2

ξi = 0.05, ξj = 0.5

ξi = 0.05, ξj = 0.8

 
Figure 6.3  Correlation coefficient VD

i jρ  for responses to white noise excitations 
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Figure 6.4  Correlation coefficient DP

i jρ  for responses to white noise excitations 
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Figure 6.5  Correlation coefficient PP

i jρ  for responses to white noise excitations 
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Figure 6.6  Generation of over-damped mode response spectrum 
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Figure 6.7  Variation of η  factor for over-damped mode response 
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Figure 6.8  over-damped mode response spectrum construction procedures 
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Figure 6.9  Mean 5% damping displacement response spectrum (a) ensemble A (b) 
ensemble B 
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Figure 6.10  Comparisons of exact and estimated over-damped mode response spectrum 
(a) ensemble A (b) ensemble B 
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CHAPTER 7 

ANALYSIS APPLICATION EXAMPLES 

7.1 Introduction 

In Chapters 3 and 6 using the ground motion history and the response spectrum as 

input excitations in the modal analysis procedures is given. In this chapter, we 

demonstrate the applications of these two methods and examine the effects of using the 

classical damping assumption and ignoring the over-damped modes on the analysis 

results. This is achieved by using three example buildings which share the same 

reference frame but with different damper configurations. We first describe the 

configurations of the three example building frames, followed by the evaluations of the 

two analysis procedures. It is noted that the procedure developed in Chapter 5 for the 

response spectrum method is based on the random vibration theory and with the 

assumptions involving the peak proportional factors. The ground motion is assumed to 

have a strong stationary phase with broad frequency content and a duration several 

times longer than the fundamental period of the structure. These assumptions will affect 

the accuracy of the response spectrum method dealing with real earthquakes. 

7.2 Example Building Frames 

Three steel frame buildings used in this study are referred to as examples A, B and C 

(see Figure 7.1). The reference frame for these three examples is adopted from a 5-story 

shear building used in Hanson and Soong (2001), which has a constant story mass for 

each floor given as 408,233 (kg)m =  and a constant story stiffness for all floors given as 
61.75127 10 (N / m)k = × . Each example structure differs in the configuration of damper 

installation. All the dampers used in these examples are assumed to be linear viscous 

dampers. Example A has one linear viscous damper added in the first floor of the 

reference frame, which results in a damping coefficient 7
A 2.4 10 (N sec/m)C = × ⋅ . This 

example is aimed to represent a highly non-classically damped structure. For example B, 

each story of the reference frame was equipped with a linear viscous damper. The 



 150

resulting damping coefficient for each floor is 7
B 1.08 10 N sec/mC = × ⋅ . This example 

represents a classically damped structure but some of its modes are over-damped. For 

example C, the stiffness of the first story was reduced to be 10% of the stiffness of the 

reference frame and a damper with damping coefficient 63 10 N sec/ mCC = × ⋅  is 

equipped in the first floor to represent an isolated-structure. The inherent damping ratios 

for the three examples are assumed to be 2% for the first two modes characterized by 

proportional damping. The resulting mass, damping and stiffness matrices for each 

example are listed as bellow. 

 A B C

1 0 0 0 0
0 1 0 0 0

408233 kg0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎡ ⎤
⎢ ⎥

= = = × ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M M M  (7.1) 

 A B

2 1 0 0 0
1 2 1 0 0

kN175127 0 1 2 1 0 m0 0 1 2 1
0 0 0 1 1

−⎡ ⎤
− −⎢ ⎥

= = × ⎢ ⎥− −
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

K K  (7.2) 

 C

1.1 1 0 0 0
1 2 1 0 0

kN175127 0 1 2 1 0 m0 0 1 2 1
0 0 0 1 1

−⎡ ⎤
− −⎢ ⎥

= × ⎢ ⎥− −
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

K  (7.3) 

 A

24678 -303 0 0 0
-303 678 -303 0 0

kN sec0 -303 678 -303 0 m0 0 -303 678 -303
0 0 0 -303 375

⎡ ⎤
⎢ ⎥

⋅= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C  (7.4) 

 B

22278 -11103 0 0 0
-11103 22278 -11103 0 0

kN sec0 -11103 22278 -11103 0 m0 0 -11103 22278 -11103
0 0 0 -11103 11175

⎡ ⎤
⎢ ⎥

⋅= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C  (7.5) 
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 C

3405 -303 0 0 0
-303 678 -303 0 0

kN sec0 -303 678 -303 0 m0 0 -303 678 -303
0 0 0 -303 375

⎡ ⎤
⎢ ⎥

⋅= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C  (7.6) 

The modal properties of each example are determined by eigenvalue analysis 

programmed in MATLAB by using both forced classical damping assumption and state 

space approach. 

Table 7.1 and Table 7.2 summarize the modal periods and damping ratios for the 

three examples, respectively. The data listed in these two tables are sorted in an 

ascending order in terms of the modal period. Data in Table 7.1 and Table 7.2 show that 

there are two over-damped modes in example A  and four over-damped modes in 

example B even example B is a classically damped structure. For example C, all modes 

are under-damped and it has a long period in its first mode. 

For example A, the damping ratios obtained by using the forced classical damping 

assumption are significantly different from those exact damping ratios determined from 

the state space approach. In particular, using the forced classical damping assumption 

overestimates the damping ratios and the presence of two over-damped modes cannot be 

observed. In example B, the first modal damping ratio obtained under forced classical 

damping assumption is 20.2%, which is a reasonable value used in seismic design of 

structures with added dampers. It should be noted that four modes are over-damped in 

this case. This reveals the possibility that certain modes could be over-damped in 

classically damped structures even when the first mode is not heavily damped. 

7.3 Response History Analysis using Modal Superposition Method 

The three example structures, shown in Figure 7.1, demonstrated the application of 

the proposed general modal response analysis approach presented in Chapter 3. The 

following approaches are used to compare the analytical assumptions from the view point 

of structural responses: (1) Using the general modal analysis of Equation (3.61), (2) 

Using the classical damping assumption while excluding the over-damped modes of 



 152

Equation (3.67) as appropriate, and (3) Ignoring the contribution of over-damped modes 

in the analysis (i.e., considering the first two terms in Equation (3.61) only). 

7.3.1 Ground Motions 

 The ground motion ensemble A used in Section 6.3.3 to verify the accuracy of the 

transformed over-damped mode response spectrum is adopted again. It consists of a total 

of 20 far-field ground motions (Vamvatsikos and Cornell 2004). In this study, all records 

are scaled to have PGA equal to 0.4g and the mean peak responses are presented for 

comparisons. 

7.3.2 Comparison of the Analysis Results 

Peak response quantities were then obtained for each history. Their mean values are 

presented in Table 7.3 to Table 7.5. Five response quantities are included in Table 7.3 to 

Table 7.5, which are: (a) peak inter-story drift, (b) peak inter-story velocity, (c) story-

shear force at maximum drift, (d) maximum general story-shear force (which includes the 

damping forces as appropriate), and (e) peak floor absolute acceleration. The mean 

results obtained from the general modal analysis are considered to be the exact values. 

Figure 7.2 and Figure 7.3 present the mean values of the estimated error arising from the 

classical damping assumption as well as by ignoring the over-damped modes for the five 

response quantities.  

For example A (see Figure 7.2), using the forced classical damping assumption 

results in inaccurate results for all the responses considered. And most results determined 

from the forced classical damping assumption are underestimated and for some response 

quantities, the errors can be as high as 30% to 40%. The error becomes large as the level 

of story increases. In addition, the maximum base shear is underestimated by 

approximately 20%, which may lead to inappropriate design for the foundation systems. 

The source of errors can be attributed to the inaccurate calculation of damping ratios and 

modal periods determined under the classical damping assumption. Further, most 

response quantities are slightly overestimated when over-damped modes are ignored in 

the response calculations. Exceptions are the peak floor acceleration of the first floor was 
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underestimated by 48% while the peak inter story velocity of the first floor was 

overestimated by 40%. This may result in considerable error for the seismic demand 

estimation of nonstructural components. For example B (see Figure 7.3), the results 

obtained from using the forced classical damping assumption and excluding the over-

damped modes are identical since the over-damped modes are also neglected when 

adopting classical damping assumption in this study. Apparently these two methods both 

underestimated the floor acceleration of the first floor and overestimated the floor 

acceleration of the second floor. For the rest of the structural responses, the effect of 

ignoring over-damped modes is not significant in this example. For example C, the 

results from the exact general modal analysis and ignoring over-damped modes effect are 

the same since there is no over-damped modes being present in this case. Similar to 

example A, the using forced classical damping assumption cannot conclude the structural 

responses accurately for those above second story and most of which are underestimated. 

This implies that for a base-isolated structure the structural responses should be carefully 

examined when adopting forced classical damping assumption. 

From the above comparisons, it may be observed that over-damped modes should be 

considered appropriately in order to obtain more accurate structural responses more 

accurately. This is particularly true for structures with non-uniform damper 

configurations (which may result in highly non-classically damped systems as illustrated 

in example A). Further, using the forced classical damping assumption may lead to large 

inaccuracies when the structures are non-classically damped. 

7.4 Response Spectrum Analysis 

Having established the applicability of the proposed general modal response analysis 

procedures, examined the effect of classical damping assumption and illustrated the effect 

of the over-damped modes, we now proceed to assesses the ability of the improved 

response spectrum method (GCQC rule) in predicting the peak responses and examine 

the effect of the classical assumption and over-damped modes when using the response 

spectrum method. The accuracy and applicability of the proposed GCQC rule is 

evaluated by conducting response analyses of the same three examples described earlier 
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numerically. The response quantities calculated are identical to those used in the modal 

response analysis procedure. 

7.4.1 Ground Motions 

The ground motion ensemble used is identical to the one used in the evaluation of 

the modal analysis procedure presented in Section 7.3.1. 

7.4.2  Comparison of the Analysis Results 

Each example building frame was analyzed by using linear response history analysis 

subjected to each ground motion record listed in the ensemble. The mean linear response 

analysis results were then used to examine the accuracy of the GCQC rule, including a 

comparison of the effect of: (1) using the forced classical damping assumption, and (2) 

ignoring the over-damped modes when they are present. Three sets of results are obtained 

and compared with the exact values. These three sets are obtained under the following 

conditions: 

1. Results of the first set are obtained based on the proposed GCQC rule, defined 

by in Equation (6.38). The state space approach was used to derive the mode 

shapes, modal periods and modal damping ratios. These modal properties were 

then used to generate the correlation coefficients and peak modal responses 

required in the GCQC rule. The contributions from over-damped modes are 

considered when they are present. 

2. Results of the second set are based on the modal properties obtained under the 

forced classical damping assumption. Similar to the GCQC rule, these 

properties were used to generate the data required in the modal combination 

rule. The over-damped modes are ignored when they are present. This process 

is conventionally used for the design and analysis of structures with added 

damping devices. This rule is referred to as the forced CDA (forced classical 

damping assumption). 

3. Results of the third set are identical to the GCQC rule except that it does not 

consider the over-damped modes in the modal combination process. This 
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consideration is aimed to examine the effects of over-damped modes in terms 

of response quantities. This rule is referred to as the EOM (exclude over-

damped modes). 

The exact peak modal responses required in each modal combination rule above 

were obtained by performing response history analysis using the respective modal 

properties. Comparisons of the results for each example are given in Table 7.6. As seen, 

the GCQC provides excellent estimates overall. Figure 7.5 shows the estimation errors of 

each combination rule for example A. It is shown that the GCQC provided excellent 

results except it overestimated the first floor acceleration by about 35% where the damper 

is added. The CDA, however, considerably underestimated the peak responses with one 

exception (overestimated the peak inter-story velocity of the first floor by 25%). The 

error increases as the level of story increases. This overestimation is more profound for 

inter-story velocity and floor acceleration. EOM overestimated the inter-story velocity 

while it underestimated the floor acceleration at the first floor. In this case (Example A), 

the EOM provided conservative estimates for the rest of the response quantities. Figure 

7.6 shows the estimation errors for example B. It is found that the results from CDA and 

EOM are the same since the structure is classically damped and the over-damped modes 

are ignored in both cases. Results from these three sets provide acceptable estimates 

except that they slightly overestimated the floor acceleration of the second floor. The 

effect of over-damped modes is not significant in this case. This may be attributed to their 

presence in the higher modes. Figure 7.7 shows the estimation errors for example C, the 

results estimated by GCQC and EOM are the same since all modes are under-damped in 

this example. The GCQC again provided good estimates in this example. The results 

given by CDA are greatly underestimated, particular true for the inter-story velocity. 

In general, these results show that the GCQC, which is able to consider the over-

damped modes, if exist, can estimate the peak responses accurately. It is found that the 

inter-story velocity and floor acceleration, as an instance, are significantly influenced by 

the over-damped modes in these example studies. This is particularly true for the floors at 

which dampers are installed (Example A). The responses estimated by using the forced 

classical damping assumption deviate substantially from the exact values (see Figure 7.5). 
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Most of the responses were underestimated. This is understandable because the modal 

properties calculated by using the forced classical damping assumption are different from 

the exact values computed by the state space approach. This implies that the utility of the 

forced classical damping assumption should be further examined in the design and 

analysis of structures with added damping devices. 
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Table 7.1  Modal periods of example buildings A, B and C 

 

Mode 

Period (sec) 
Example A1,2,3,* Example B Example C 

Bare 
frame 

Damped frame Bare frame Damped frame Bare frame Damped frame 
Exact CDA Exact CDA Exact CDA 

1 1.07 1.00 1.08 1.07 1.09 1.09 2.28 2.32 2.35 
2 0.37 0.46 0.39 0.37 0.44 0.44 0.47 0.47 0.47 
3 0.23 0.31 0.25 0.23 0.46 0.46 0.26 0.26 0.26 
4 0.18 0.20 0.19 0.18 0.32 NA 0.19 0.19 0.19 
5 0.16 0.16 0.16 0.16 0.29 NA 0.16 0.16 0.16 
6 NA 0.15 NA NA 0.11 NA NA NA NA 
7 NA NA NA NA 0.08 NA NA NA NA 

*Bold face corresponds to over-damped modes 
 
 

Table 7.2  Modal damping ratios of example buildings A, B and C 
 

Mode 

Damping ratio (%) 
Example A1,2,3 Example B Example C 

Bare 
frame 

Damped frame Bare frame Damped frame Bare frame Damped frame 
Exact CDA Exact CDA Exact CDA 

1 2.0 12.9 16.4 2.0 20.2 20.2 3.4 24.6 24.4 
2 2.0 NA 37.5 2.0 55.1 55.1 1.8 12.2 12.0 
3 2.7 8.3 41.3 2.7 86.3 86.3 2.5 6.7 6.7 
4 3.3 5.2 28.7 3.3 NA 110.7 3.2 4.8 4.8 
5 3.7 4.1 11.5 3.7 NA 126.2 3.6 4.0 4.0 
6 NA NA NA NA NA NA NA NA NA 
7 NA NA NA NA NA NA NA NA NA 

 
1. NA=Not Available 
2. Exact=2N dimensional eigenvalue analysis 
3. CDA= Classical damping assumption 
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Table 7.6  Comparisons of results by GCQC, CDA and EOM to mean results of response history 
analysis for examples A, B and C 

Response 
Quantity St

or
y Example A Example B Example C 

Exact GCQC CDA EOM Exact GCQC CDA EOM Exact GCQC CDA EOM 

 1 30  30  32  30  29  29  29  29  167  168  167  168  
Story 2 35  36  28  38  26  26  26  26  16  16  14  16  
Drift 3 30  30  23  31  21  21  21  21  13  13  11  13  
(mm) 4 23  23  16  23  15  15  15  15  10  9  7  9  

 5 14  13  9  13  8  8  8  8  6  5  4  5  
 1 173  165  216  230  185  192  192  192  525  461  465  461  

Inter-Story 2 263  280  173  288  160  156  153  153  81  70  41  70  
Velocity 3 233  216  145  200  134  127  130  130  80  73  37  73  
(mm/sec) 4 209  196  108  192  100  94  95  95  73  71  31  71  

 5 187  170  59  170  54  50  49  49  62  59  20  59  
 1 5194  5316  5556  5207  5062  5152  5134  5134  2927  2943  2933  2943  

Story Shear at 2 6160  6222  4937  6632  4494  4494  4517  4517  2827  2721  2413  2721  
Max. Drift 3 5311  5258  4027  5432  3683  3625  3618  3618  2335  2196  1865  2196  

(KN) 4 4093  3968  2871  4029  2629  2559  2557  2557  1734  1613  1283  1613  
 5 2465  2320  1500  2339  1372  1328  1332  1332  969  912  660  912  
 1 6765  6659  7755  7113  5554  5643  5624  5624  3482  3334  3269  3334  

Max. General  2 6194  6255  4940  6683  4903  4864  4875  4875  2897  2778  2658  2778  
Story Shear 3 5335  5281  4022  5465  4035  3920  3924  3924  2377  2236  2032  2236  

(KN) 4 4104  3982  2864  4047  2893  2782  2785  2785  1760  1637  1384  1637  
 5 2466  2326  1495  2347  1513  1449  1451  1451  982  922  707  922  
 1 0.36  0.48  1.44  0.19  0.30  0.30  0.30  0.30  0.22  0.22  0.16  0.22  

Floor 2 0.43  0.47  0.28  0.46  0.28  0.34  0.33  0.33  0.22  0.19  0.17  0.19  
Acceleration 3 0.47  0.49  0.30  0.48  0.30  0.30  0.30  0.30  0.21  0.19  0.17  0.19  

(g) 4 0.50  0.50  0.34  0.50  0.35  0.34  0.34  0.34  0.22  0.20  0.17  0.20  
 5 0.62  0.59  0.37  0.59  0.38  0.36  0.36  0.36  0.25  0.23  0.18  0.23  

 
Exact: mean results from the response-history analysis 
GCQC: General complete quadratic combination rule 
CDA: Complete quadratic combination rule using forced classical damping assumption 
EOM: General complete quadratic combination rule excluding over-damped modes 
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Figure 7.1  Configurations of example building frames A, B and C 
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Figure 7.2  Estimated errors of forced classical damping assumption and exclusion 

of over-damped modes in example A 
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Figure 7.3  Estimated errors of forced classical damping assumption and exclusion of 

over-damped modes in example B 
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Figure 7.4  Estimated errors of forced classical damping assumption and exclusion of 

over-damped modes in example C 
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Figure 7.5  Estimated errors due to GCQC,CDA and EOM in example A 
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Figure 7.6  Estimated errors due to GCQC,CDA and EOM in example B 
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Figure 7.7  Estimated errors due to GCQC,CDA and EOM in example C 
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CHAPTER 8 

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 

8.1 Summary 

A modal analysis approach for generally damped linear MDOF systems is presented, 

in which a new ‘over-damped mode’ term is introduced to handle the real eigenvalues 

and their corresponding eigenvectors when they arise. The central idea to deal with over-

damped mode is to consider the associated eigenvalues and eigenvectors individually as a 

one-order linear system instead of grouping them in pairs. The velocity response vectors 

and absolute acceleration response vectors expressed in a modal superposition form with 

the identical modal response quantities required for nodal displacement vectors are 

derived. These two response vectors are obtained based on the important structural modal 

properties developed in Chapter 2 of the report. In addition, a unified response form, 

which is capable of describing most response quantities with interest, is also established. 

This unified form involves only the modal relative displacement and modal relative 

velocity of a SDOF system as well as the over-damped mode response of a one order 

linear system. Also, a general real-valued transformation matrix is established based on 

the formulations for structural response analysis. This transformation matrix can be used 

to decouple the equations of motion of a generally damped structure in terms of real-

valued modal coordinates, which has been rigorously proved. Furthermore, non-

singularity of this matrix and other properties related to general modal transformation, 

such as modal responses to initial conditions and modal energy distribution, are discussed 

in details in the report to expose the dynamic nature of the generally damped structural 

system. When the structural damping matrix satisfies Caughey criterion, the general 

modal transformation matrix as well as the related formulas and properties can be 

reduced. Especially, the effective modal mass is brought out consequently by the reduced 

modal transformation, whose roles in the governing motion equation of the system, 

structural responses and modal energy distribution are clarified from physical point of 

view. Based on these properties, a criterion on determining the number of modes that 
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should be included in the modal analysis for the generally damped linear MDOF system 

is given in the report 

The modal decomposition based on system eigen-analysis and the modal response 

combination method using design response spectrum to evaluate structural peak response 

values with interests is one of the most commonly adopted approaches. However, when 

damping devices are added, the structures are, in general, heavily non-classically damped 

and some over-damped modes may present. In such circumstances, the conventional 

CQC or SRSS for the response spectrum method, assuming the structures are classically-

damped, is no longer applicable. A new modal combination rule for the response 

spectrum method, denoted as GCQC, is developed in this report to accommodate the 

presence of non-classical damping and over-damped modes. This GCQC rule retains the 

conceptual simplicity of the CQC rule and offers an efficient and accurate estimation of 

the peak responses of structures with added damping devices. In addition, a procedure to 

construct the over-damped mode response spectrum from the given design spectrum is 

also developed. This ensures the applicability of the GCQC rule in engineering practice. 

Examples show that MDOF systems with added dampers should be modeled as non-

classically damped systems and the over-damped modes should be included in the 

analysis to achieve more reliable estimates. 

8.2 Conclusions 

Major conclusions of this research are: 

(1) An ‘over-damped mode’ is introduced to handle the presence of over-damped 

modes. This concept treats the real eigenvalues and real eigenvectors 

individually instead of grouping them in pairs. It can be easily included in 

dynamics analysis and in control theory. 

(2) Most response quantities of interest can be represented by the unified form 

given by Equation (3.63) or Equation (3.63). This unified form involves only 

the three sets of modal responses ( )iq t , ( )iq t  and P ( )iq t . 
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(3) When computing the absolute acceleration A ( )tx , the modal acceleration ( )q t  

and ground acceleration g ( )x t  are not required. This is an attractive feature. 

(4) The modal mass of a classically-damped system brought out by the reduced 

general modal coordinates transformation proposed in this study has clear 

physical meanings, which is not only useful for structural base shear estimation, 

but is also important to other type of structural responses in earthquake 

engineering. 

(5) Two manners to calculate the effective modal mass of generally damped system 

are proposed in this study, providing a reasonable index for the modal 

truncation to save computation burden while the accurate response estimates 

still can be reached. 

(6) When a structural system has a large number of DOFs and Wilson’s damping is 

assumed for the system, the dual modal space approach proposed in the report 

can be adopted to include the inherent damping of the structure and reduce the 

scale of the modeling and computation effort for structural response analysis 

and damping design. 

(7) The conventional combination rules for response spectrum method can be 

expanded for its application to a generally damped linear MDOF system with 

the non-classical damping and over-damped modes, and are termed as GCQC 

and GSRSS. For non-classically damped systems, two additional terms are 

introduced into the conventional CQC rule, in which two correlation 

coefficients, VD
i jρ  and VV

i jρ , are used to consider the correlation between the 

modal displacement and the modal velocity. When the over-damped modes do 

exist, they are considered by the over-damped mode response term. The 

interrelationships between the modal displacement, modal velocity and over-

damped mode response are related by another three correlation coefficients, 
DP
i jρ , VP

i jρ  and PP
i jρ . 

(8) The over-damped mode response spectrum needed in the new combination rule 

can be easily converted directly from the 5% damping pseudo acceleration 
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spectrum, which may vary site by site. This construction process is easy and 

can be well incorporated into the current available analysis programs. 

8.3 Future Research 

It should be noted that the general modal analysis approach presented in this study is 

formulated based on a two dimensional structure subjected to single directional excitation 

and the examples examined are assumed to be a planar shear-type buildings. Neither the 

three-dimensional systems nor the multiple directional excitations have been considered. 

Furthermore, the current response analysis method is basically appropriate to estimate the 

maximum value of a single response quantity along the predefined coordinate system (e.g. 

the peak inter-story velocity along the predefined X-direction). For those response 

quantities which are the combination of the several individual response quantities (e.g. 

the peak damper force or the maximum traveling distance of the isolators in the three 

dimensional space), the direction of the combined vectors along which the response 

reaches its maxima may not coincide with any of the predefined directions of the 

coordinate system. As a matter of fact, the direction is an unknown. For such cases, it is 

desirable to develop a method, either for time history analysis or response spectrum 

analysis, to determine the peak value of the spatially combined responses. Of course, this 

method should be applicable to any generally damped linear MDOF systems, in which 

the uncertainty of the seismic incidence is also considered. The authors are presently 

pursuing the following tasks: 

(1) Formulations presented in this study are extended for the application of any 

three dimensional structures excited by multi-component inputs, including the 

uncertainty of the seismic incident angles. 

(2) Based on the extended formulation work being established in (1), developing a 

response-history-based procedure and a response-spectrum-based procedure to 

predict the peak value of the spatially combined response vector. These 

procedures will consider the uncertainty of the seismic incidence. 
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(3) Development of computer software system which incorporates all the proposed 

procedures to handle the non-classical damping effect and the over-damped 

modes when modal analysis approach is employed. 

(4) Research on the nonlinear behavior of structures which are supplemented with 

nonlinear damping devices and subjected to 3D earthquake excitations. Based 

on this research result, a linear equivalent MDOF model that can more 

accurately represent 3D nonlinear structures for response spectrum analysis will 

be developed.  With this equivalent method, new design principles and 

guidelines based on the developed linear modal analysis for the structure-

damper system may be established. 
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APPENDIX A 

NON-SINGULARITY OF MATRICES A , B , â  AND b̂  

A.1 Non-Singularity of A  and B  

Assuming that the studied structural system is completely constrained and has no 

zero-valued mass for all considered DOFs, it is followed that ( )det 0≠M , ( )det 0≠K  

and no zero eigenvalues exist in the eigen-system expressed by equation (4). 

Heredet ( )• is a determinant operator for a square matrix. Based on these conditions, the 

following results can be deduced. 

 
( )

( )

1

2
1

det det det

det .det ( 1) det 0N

−

−

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞= = − ≠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

0 M 0 I M 0
A

M C I CM 0 M

0 I M 0
M

I CM 0 M

 (A.1) 

and  

 ( ) ( ) ( ) ( )det det ( 1) det . 0N−⎛ ⎞= = − = − ≠⎜ ⎟
⎝ ⎠

M 0
B MK M K

0 K
 (A.2) 

which means that A  and B are non-singular matrices, and further, 1−A B  exists and is 

also a non-singular matrix. 

A.2 Non-Singularity of â  and b̂  

Since 
1 1 1

1
1

− − −
−

−

⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

M C M M
A

M 0
, the following equation can be derived 

 
1 1 1 1 1

1
S1

− − − − −
−

−

−⎛ ⎞ ⎛ ⎞− ⎛ ⎞= = = −⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠ ⎝ ⎠

M 0M C M M M C M K
A B A

0 KM 0 I 0
 (A.3) 

 where  
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1 1

1 2 2
S

N N
− −

− ×⎛ ⎞− −
= − = ∈⎜ ⎟

⎝ ⎠

M C M K
A A B

I 0
R  (A.4) 

is a well-known the state coefficient matrix of a linear vibratory system. 

From Equation (A.4), the general eigen-equation associated with it can be changed 

into an equivalent standard eigen-equation: 

 S λ=A ψ ψ  (A.5) 

If there are no repeated eigenvalues in the system, all eigenvector solved from (A.4) 

or (A.5) are independent with respect to each other, implying that the eigenvector matrix 

Ψ  will be a non-singular matrix, that is, 1−Ψ  exists (Wilkinson 1965) and satisfies 

following relationship: 

 1 2 2
S

N N− ×= ∈A Λ CΨ Ψ  (A.6) 

where ( )PC C

* * * P P P
1 2 1 2 1 2diag , , , , ,N N Nλ λ λ λ λ λ λ λ λ=Λ is well known as the system 

spectrum matrix. With the assumption of non-zero eigenvalues, ( )det 0≠Λ  follows. 

According to the orthogonality shown in Equations (2.27) and (2.28), following 

results can be obtained, that are 

 ( ) ( ) ( ) ( ) ( )
C C P

* P T T

1 1 1

ˆdet det det det det 0
N N N

i i i
i i i

a a a
= = =

= = = ⋅ ⋅ ≠∏ ∏ ∏a A AΨ Ψ Ψ Ψ  (A.7) 

 ( ) ( ) ( ) ( ) ( )
C C P

* P T T

1 1 1

ˆdet det det det det 0
N N N

i i i
i i i

b b b
= = =

= = = ⋅ ⋅ ≠∏ ∏ ∏b B BΨ Ψ Ψ Ψ  (A.8) 

Therefore, ˆˆ  and a b  are non-singular and diagonal matrices. And it can be observed 

that 

 ˆ ˆ ˆ= − = −b aΛ Λa  (A.9) 

 1 1ˆ ˆˆ ˆ− −= − = −Λ b a a b  (A.10) 
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APPENDIX B 

PROOF OF CAUGHEY CRITERION 

Theorem : There exists a real matrix which diagonalizes matrices M, C and K 

simultaneously if, and only if, the following condition holds true. 

 1 1 N N− − ×= ∈CM K KM C R  (B.1) 

Proof :  

Let 0
N N×∈Φ R  denote the eigenvector matrix that is solved from eigen-equation 

0 0 0λ− + =M K 0ϕ ϕ  and has been normalized with respect to the mass matrix M and 

2
0 0 0diag( ) diag( ) N N

i iλ ω ×= = ∈Λ R  denote the eigenvalue matrix determined from the 

eigenvalue problem of the associated undamped system. It is well known that  

 T
0 0 =Φ MΦ I  (B.2) 

 T
0 0 0=Φ KΦ Λ  (B.3) 

where I  is an N N×  identity matrix. From Equation (B.2), it can be shown that 

 1 T
0 0

− =M Φ Φ  (B.4) 

Further, using Equation (B.4) in Equation (B.3), it can be shown that 

 1 1
0 0 0

N N− − ×= ∈M K Φ Λ Φ R  (B.5) 

Note that the mass matrix M  and the stiffness matrix K  can be diagonalized by the 

eigenvector matrix 0Φ . Thus one only needs to prove that (1) whether the eigenvector 

matrix  0Φ  can diagonalize the damping matrix C  when 1 1− −=CM K KM C  holds and, 

(2) whether the 1 1− −=CM K KM C  holds when the eigenvector matrix 0Φ  is able to 

diagonalize the damping matrix C. 

(a) When 1 1− −=CM K KM C  holds true 
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Suppose that damping matrix C  meets the criterion shown in Equation (B.1). Let us 

rewrite Equation (B.1) as 

 ( ) ( )T1 1− −=C M K M K C  (B.6) 

Substituting Equation (B.5) into Equation (B.6) leads to 

 ( )T1 1
0 0 0 0 0 0

T T
0 0 0

− −

−

=

=

CΦ Λ Φ Φ Λ Φ C

Φ Λ Φ C
 (B.7) 

Pre-multiply T
0Φ  and post-multiply 0Φ  to both sides of Equation (B.7), we can obtain 

 T T
0 0 0 0 0 0Φ CΦ Λ =Λ Φ CΦ  (B.8) 

Assume that 

 
11 12 1

T 21 22 2
0 0

1 2

...

...
... ... ... ...

...

N
N NN

N N NN

q q q
q q q

q q q

×

⎡ ⎤
⎢ ⎥= = ∈⎢ ⎥
⎢ ⎥⎣ ⎦

Q Φ CΦ R  (B.9) 

Note that Q  is a symmetric matrix. Consequently, Equation (B.8) becomes 

 0 0
N N×∈QΛ = Λ Q R  (B.10) 

Equation (B.10) can also be expressed as 

 
11 1 12 2 1N 11 1 12 1 1 1

21 1 22 2 2N 21 2 22 2 2 2

1 1 2 2 1 2

... ...

... ...
... ... ... ... ... ... ... ...

... ...

N N

N N

N N NN N N N N N NN N

q q q q q q
q q q q q q

q q q q q q

λ λ λ λ λ λ
λ λ λ λ λ λ

λ λ λ λ λ λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (B.11) 

It is known that when two matrices are equal, their corresponding elements must be 

identical. Thus, one has 

 ij j ij iq qλ λ= ∈R  (B.12) 

Equation (B.12) is rearranged as 
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 ( ) 0j i ijqλ λ− = ∈R  (B.13) 

in which i, j=1,2, … N. 

As the aforementioned, we assume that there are no repeated eigenvalues in the studied 

vibration system. Therefore, when i j≠ , i.e., ( ) 0i jλ λ− ≠ , the off-diagonal terms ijq  

must be equal to zero. This means that Q  is a diagonal matrix, showing that the 

eigenvector matrix 0Λ  is able to diagonalize the damping matrix C . 

(b) When 0Φ  diagonalizes C  

Suppose that Φ  is able to diagonalize the damping matrix C  as 

 
1

T 1
0 0

0
ˆ

0 N

c
c

c

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

Φ CΦ C  (B.14) 

Let us rewrite Equation (B.14) in the following form 

 T 1
0 0

ˆ− −=C Φ CΦ  (B.15) 

Assembling Equations (B.5) and (B.15), it can be found that the terms ( )1−C M K  and 

( )T1−M K C  can be represented as 

 
( )1 T 1 1

0 0 0 0 0

T 1
0 0 0

ˆ

ˆ

− − − −

− −

=

=

C M K Φ CΦ Φ Λ Φ

Φ CΛ Φ
 (B.16) 

 

( ) ( )TT1 1 T 1
0 0 0 0

T T T 1
0 0 0 0 0

T 1
0 0 0

ˆ

ˆ

ˆ

− − − −

− − −

− −

=

=

=

M K C Φ Λ Φ Φ CΦ

Φ Λ Φ Φ CΦ

Φ Λ CΦ

 (B.17) 

Note that both 0Λ  and Ĉ  are diagonal matrices. Thus, the following identity holds. 
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 0 0
ˆ ˆ=Λ C CΛ  (B.18) 

Equation (B.18) suggests that the identity 

 ( ) ( )T1 1

1

− −

−

=

=

C M K M K C

KM C
 (B.19) 

holds true.  

It is observed from the proof that there is no specific constraint applied to the form 

of the damping matrix C , implying that a system developing over-damped modes is also 

categorized as a classically damped system as long as it satisfies the Caughey criterion. 

When damping matrix C  satisfies Caughey criterion, let 

 0Φϕ = ϕ  (B.20) 

Substituting Equation (B.20) into the original format of Equation (2.4) for coordinate 

transformation, which is expressed as  

 ( )2 Nλ λ+ + = ∈M C K 0ϕ R  (B.21) 

we have, 

 ( )2
0

Nλ λ+ + = ∈M C K Φ 0ϕ R
 (B.22) 

Pre-multiplying T
0Φ  to the above equations and further using Equations (B.2), (B.3) and 

(B.14) yields 

 ( )2
0

ˆ Nλ λ+ + Λ = ∈I C 0ϕ R  (B.23) 

Since 0
ˆ, and ΛI C are all diagonal matrix, Equation (B.23) can be divided as a N  

decoupled eigen-equations, in which the ith equation is given by 

 ( )2 2
0 0i i icλ λ ω ϕ+ + = ∈R  (B.24) 
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where ( )1,2i i Nϕ =  can be any non zero number and   

 2 2
0 0i icλ λ ω+ + = ∈R  (B.25) 

The eigen-value solved for Equation (B.25) is easily expressed as  

 ( )2 2
0

1 4
2r i i ic cλ ω= − ± − ∈C  (B.26) 

In the following, we will discuss Equation (B.26) for three cases with different damping 

levels. 

(a) When 02i ic ω< , the corresponding mode belongs to a under-damped subsystem and 

Equation (B.26) becomes 

 

( )
( )

2 2 2
0 0 0

C

1 j 4 j 1
2

1,2

r i i i i i i ic c

r N

λ ω ξ ω ξ ω= − ± − = − ± − ∈

=

C

 (B.27) 

where 
T

T
0 0

1
2 2

i i i
r i

i i i i

c
ξ ξ

ω ω
= = = <C

M
ϕ ϕ

ϕ ϕ
 is well known as the rth modal damping ratio. To 

all under-damped modes, the modal properties and responses solution method are exactly 

same as those for classically under-damped modes. Note that Equation (B.27) includes 

two conjugate eigenvalues, corresponding to one real mode with circular natural 

frequency 0r iω ω= . When obtaining the eigen-solutions based on the state space approach, 

any eigen-values for an under-damped real mode always appear in a conjugate pair, even 

for a non-damping mode. And the conjugate pairs of eigenvalues and corresponding 

eigenvectors belong to different eigen-solutions, even though they are considered as one 

mode. Regarding to the modal shape, for simplicity, we can set 1iϕ =  (similar to a 

normalization factor) and further have 0 0
N

r i i iϕ= = ∈ϕ ϕ ϕ R  after considering Equation 

(B.20). 
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(b) When 02i ic ω> , the corresponding mode belongs to a over-damped subsystem and 

Equation (B.26) becomes 

 ( )2
0 0 P1 1,2 / 2r i i i i r Nλ ζ ω ζ ω= − ± − ∈ =R  (B.28) 

that is, 

 P 2
1 0 01 0r i i i iω ζ ω ζ ω= − − > ∈R  (B.29) 

 
P 2
2 0 01 0r i i i iω ζ ω ζ ω= + − > ∈R  (B.30) 

where 
T

T
0 0

1
2 2

i i i
i

i i i i

c
ζ

ω ω
= = >C

M
ϕ ϕ

ϕ ϕ
, and P

1rω  and P
2rω  are two over-damped modal 

circular frequencies. The corresponding over-damped modal shapes are given by 
P P
1 2 0

N
r r i= = ∈ϕ ϕ ϕ R , ( )P1,2 / 2r N=  after letting iϕ =1, which shows that in this case, 

one original mode (a mode without damping involved in eigen-solutions) is divided into 

two over-damped modes. In other words, two over-damped modes share one modal shape. 

Thus, it can be concluded that for a classically damped system, if an over-damped mode 

appears, there must be second over-damped mode in the system that has the same modal 

shape as the first one. Based on this point, the two over-damped modes that have the 

same modal shape may be paired in the analysis. However, this conclusion cannot be 

further extended to non-classically damped system. Therefore, for a general case, all 

over-damped modes should be processed independently one by one.  

(c) When 02i ic ω= , we have a critically damped system. From Equations (B.29) and 

(B.30), we have 
T

T
0 0

1
2 2

i i i
i

i i i i

c
ζ

ω ω
= = =C

M
ϕ ϕ

ϕ ϕ
 and 

 P P
1 2 0r r iω ω ω= = ∈R  (B.31) 

Based on the point of view stemmed from the state space approach, the system has a 

repeated eigenvalue. In this case, special efforts are need to be addressed, such as to 
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establish an extra modal sub-space within the complete modal space for these repeated 

eigenvalues and to further ensure the orthogonal property for all modes. However, these 

related contents are beyond the scope of this report. The readers with interests can find 

detailed discussions about the repeated eigenvalues from references such as Wilkinson 

(1965) and Lancaster (1966). 
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