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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a na-
tional center of excellence in advanced technology applications that is dedicated to the
reduction of earthquake losses nationwide. Headquartered at the University at Buffalo,
State University of New York, the Center was originally established by the National Sci-
ence Foundation in 1986, as the National Center for Earthquake Engineering Research
(NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions
throughout the United States, the Center’s mission is to reduce earthquake losses
through research and the application of advanced technologies that improve engineer-
ing, pre-earthquake planning and post-earthquake recovery strategies. Toward this
end, the Center coordinates a nationwide program of multidisciplinary team research,
education and outreach activities.

MCEER’sresearch is conducted under the sponsorship of two major federal agencies, the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA),
and the State of New York. Significant support is also derived from the Federal Emer-
gency Management Agency (FEMA), other state governments, academic institutions,
foreign governments and private industry.

The Center’s Highway Project develops improved seismic design, evaluation, and
retrofit methodologies and strategies for new and existing bridges and other highway
structures, and for assessing the seismic performance of highway systems. The FHWA
has sponsored three major contracts with MCEER under the Highway Project, two of
which were initiated in 1992 and the third in 1998.

Of the two 1992 studies, one performed a series of tasks intended to improve seismic
design practices for new highway bridges, tunnels, and retaining structures (MCEER
Project 112). The other study focused on methodologies and approaches for assessing
and improving the seismic performance of existing “typical” highway bridges and other
highway system components including tunnels, retaining structures, slopes, culverts,
and pavements (MCEER Project 106). These studies were conducted to:

* assess the seismic vulnerability of highway systems, structures, and components;

e develop concepts for retrofitting vulnerable highway structures and components;

* developimproved designand analysis methodologies for bridges, tunnels, and retain-
ing structures, which include consideration of soil-structure interaction mechanisms
and their influence on structural response; and

* develop,update, and recommend improved seismic design and performance criteria
for new highway systems and structures.
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The 1998 study, “Seismic Vulnerability of the Highway System” (FHWA Contract
DTFH61-98-C-00094; known as MCEER Project 094), was initiated with the objective
of performing studies to improve the seismic performance of bridge types not covered
under Projects 106 or 112, and to provide extensions to system performance assessments
for highway systems. Specific subjects covered under Project 094 include:

* development of formal loss estimation technologies and methodologies for highway
systems;

e analysis, design, detailing, and retrofitting technologies for special bridges, in-
cluding those with flexible superstructures (e.g., trusses), those supported by steel
tower substructures, and cable-supported bridges (e.g., suspension and cable-stayed
bridges);

* seismic response modification device technologies (e.g., hysteretic dampers, isola-
tion bearings); and

* soil behavior, foundation behavior, and ground motion studies for large bridges.

In addition, Project 094 includes a series of special studies, addressing topics that range
from non-destructive assessment of retrofitted bridge components to supporting studies
intended to assist in educating the bridge engineering profession on the implementation
of new seismic design and retrofitting strategies.

This report presents a theoretical framework for the seismic analysis of arbitrarily damped three
dimensional linear structures. A complex 3-D modal analysis-based approach is developed to
estimate the seismic responses to multi-directional excitations, accounting for effects of out-of-
plane coupled motions and over-damped vibration modes. The procedures developed are suitable
for the seismic analysis of structures with complex geometric shapes enhanced with damping
devices introducing non-classical damping. A new modal combination rule, based on the theory
of stationary random vibration and the existence of principal axes of ground motions, is devel-
oped to calculate the peak responses of structures subjected to seismic inputs given in terms of
response spectra. The proposed modal combination considers correlations among perpendicular
excitation components and between vibration modes. Finally, an over-damped mode response
spectrum that accounts for the peak modal response resulting from the over-damped modes is
proposed.
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ABSTRACT

Modal analysis is a powerful approach that is used to analyze the responses of a structure
under dynamic loadings. This approach allows the equation of motion to be decoupled in
the modal coordinate space, and subsequently used to evaluate the dynamic response of a
structure in the modal coordinate system, which significantly simplifies and accelerates
the response calculation. Past research has shown that the modal analysis approach is
applicable in earthquake engineering, resulting in its widespread use. For example, the
seismic design and analysis of structures with added damping devices is based on the
modal analysis concept, in which the motion within a plane and the assumption of
classical damping are usually made. However, three-dimensional (3-D) structures with
complex geometric shapes enhanced with added damping devices may be highly non-
classically damped, possess over-damped modes, and exhibit significant out-of-plane
motions. These uncertainties may affect the accuracy of the modal analysis approach in

practice.

This report presents a theoretical framework for the seismic analysis of arbitrarily
damped 3-D linear structures. First, a complex modal analysis-based approach is
developed to analyze seismic responses to multi-directional excitations. This approach is
formulated in a 3-D manner and allows the eigenvalues to be real, which correspond to
over-damped modes. As a result, the responses resulting from the over-damped modes
and the out-of-plane coupled motions can be properly considered. Several useful modal
properties are identified and their mathematical proofs are provided. Next, a new modal
combination rule is developed to calculate the peak response of arbitrarily damped 3-D
linear structures when the seismic inputs are given in terms of response spectra. This
modal combination rule is based on the theory of stationary random vibration and the
existence of the principal axes of ground motions. In this rule, the correlations among two
perpendicular excitation components and between modes are considered. Finally, an
over-damped mode response spectrum that accounts for the peak modal response

resulting from the over-damped modes is proposed.
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CHAPTER 1
INTRODUCTION

1.1 General

Advancements in modern supplemental damping devices have resulted in their
application as a means to protect structures from natural and man-made hazards (Soong
and Dargush, 1997; Soong and Spencer, 2002). In the context of earthquake engineering,
they have been used to enhance the dynamic performance and resilience of civil
infrastructures against seismic loads. Basically, these devices work by increasing the
overall damping, stiffness and strength of a given structure, which in turn reduces
vibration and alleviates damage in the event of an earthquake. Research and development
in their applications has shown a number of advantages, including: (1) control efficiency,
(2) cost effectiveness, and (3) reliability. Such advantages have made their use promising

in the civil engineering community.

When damping devices are incorporated into structures, the properties of the structure can
significantly change. In general, response history analysis with explicit modeling of the
damping devices is the most accurate and reliable method used to assess seismic
performance. However, professional structural engineers seldom perform response
history analysis, mainly due to its prohibitive computational demand and a lack of
adequate records to represent the site characteristics. Most engineers prefer not to deal
with dynamic analysis and instead use equivalent static loads or, at most, response
spectrum analysis. As a result, many static seismic analysis methods of structures with
damping devices have been developed (Iwan and Gates, 1979a, b; Tsopelas et al., 1997).
These methods have been developed based on a representation of the structural system,
including the added damping devices, by an equivalent linear viscously damped SDOF
system using the modal analysis concept, in which classical damping conditions are
assumed and the frames are limited to a 2-dimensional (2-D) planar frame. These
research products have resulted in several design provisions for structures with
supplemental damping devices since 2000 in the United States (BSSC, 2003; ASCE,
2006).



However, the classical damping assumption is generally not valid for structures with
dampers, because it is difficult to properly size and locate them. In practice, there are
only a few specific locations available for their installation. Therefore, structures with
added dampers may need to be considered as non-classically damped. In the literature,
the treatment of non-classical damping (or non-proportional damping) is well developed
by using the state space method. However, the state space method requires manipulation
in the complex modal space with doubled dimension and lacks thorough physical
explanations; thus, no systematic introduction of the state space method in the earthquake
engineering community has been carried out. Furthermore, as the level of the amount of
added damping increases, the structure may exhibit considerably high modal damping
ratios, from which over-critically damped modes may be present for certain modes. This
situation is likely to occur either in the intermediate iteration results or in the final design
for optimized damper design. Ignoring such over-critically damped modes can result in
notable underestimation of the structural response. However, there is a gap in current
modal analysis knowledge about how to handle these uncertainties properly with a
theoretical basis. In this study, arbitrarily damped three-dimensional (3-D) structures are
used to represent structures with supplemental damping devices, where highly non-

classical damping and over-damped modes can be expected.

Currently, when using modal analysis approaches for structures with added damping
devices subjected to seismic excitation, it is assumed that there is motion within a plane
and that classical damping exists. In other words, traditionally, the 2-D seismic frames
with added earthquake protective systems are assumed to be classically damped. With
these assumptions, neither orthogonal effects between two perpendicular excitation
components, nor the effects of non-classical damping and the over-damped modes are
properly considered. For structures with complex geometric shapes enhanced with
damping devices, these effects may be significant. Ignoring them in the analysis of
arbitrarily damped 3-D structures will result in inadequate designs. In most situations,
the responses calculated using the classical damping assumption are much less than the
exact solutions that consider 3-D behavior and non-classical damping. In current codes,
in order to allow the extra responses resulting from the multiple excitations, a 30% or

40% rule arising from the orthogonal effects is applied. The safety margin of the



percentage rule has not been determined through careful studies. It is used simply
because the required computational effort is rather prohibitive and, at the same time, there
has been a lack of knowledge necessary to formulate a simple, rational approach. As the
complex structural systems become more popular due to advanced innovative technology,
it is necessary to design and analyze the structures using a 3-D model together with
multiple-component earthquake excitations in order to achieve safe designs. Due to these
concerns, the applicability and feasibility of the current classical modal analysis approach
may not be adequate and needs to be further examined. Thus, an improved theoretical
foundation for the modal analysis approach with a sound scientific basis is desirable. This
research is focused on establishing the theoretical base of the modal analysis approach for

3-D arbitrarily damped structures subjected to multiple excitations.

1.2 Literature Review

Modal analysis may be described as a method for decoupling the equations of motion by
means of modal coordinate transformation. It is well known that the decoupling
coordinate transformation can be determined by the solution of an algebraic eigenvalue
problem of the system. In earthquake engineering, the classical modal analysis method is
considered as a powerful approach to analyze the seismic responses of classically damped
linear structures. In this method, the structure may be treated as a series of independent
single-degree-of-freedom (SDOF) systems. Two approaches of this method are: the
modal response history analysis, which gives the complete response history of the
structures, and the response spectrum analysis. When a given structure satisfies the
classical damping criterion proposed by Caughey and O’Kelly (1965), its modes are real-
valued and are identical to those of the associated undamped systems. This linear
vibrating structure is said to be classically damped and possesses normal modes, and can
be decoupled by the same modal transformation that decouples the associated undamped
structures. The structures that do not satisfy the Caughey and O’Kelly criterion are said to
be non-classically damped; consequently, their equations of motion cannot be decoupled
by using the classical modal transformation. In principle, the coupling arises from the

damping term due to variation of the energy dissipation rate from different components of



a system. Typical examples include structures with added damping devices, base-isolated

structures, and primary-secondary systems.

1.2.1 Analysis of Non-classical Damped Structures

Basically, the responses of non-classically damped structures may be evaluated by using
the decoupled method suggested by Foss (1958). However, it is generally believed that,
concurrent with the classical damping assumption, the structural responses calculated by
the classical modal superposition method are acceptable. For example, current methods
for seismic design of structures enhanced with damping devices are developed based on
the classical damping assumption (BSSC, 2003). This may not always be true due to the
uncertainty of the nature and magnitude of the damping in structures. This phenomenon
can be further magnified when the structure is irregularly shaped. There are instances
where the structures can be highly non-classically damped (Warburton and Soni, 1977)
and, in some cases, develop over-damped modes (Inman and Andry, 1980), which in turn
results in the possibility of inaccurate response estimations. For example, Takewaki
(2004) demonstrated that the structural energy transfer function and displacement transfer

function will be underestimated if the over-damped modes are neglected.

A common approach to analyze non-classically damped structures is to assume that they
can be decoupled using classical modal transformation. That is, the off-diagonal terms of
the associated transformed damping matrix can be ignored. It is generally believed that
this decoupling technique will not produce significant errors if the off-diagonal terms of
the transformed damping matrix are small in one order scale compared to the diagonal
terms. However, this decoupling approximation may cause substantial errors, depending
on the characteristics of the excitation and the analyzed structures. Further, the

implications and limitations of this technique are not yet fully understood.

Over the years, in order to advance the application of classical modal analysis to non-
classically damped systems, a number of researchers have conducted extensive studies on
developing complex modal superposition methods for systems that do not satisfy
classical damping conditions. Villaverde and Newmark (1980) developed a deterministic

formulation for non-classically damped systems by using complex frequencies and mode



shapes. They showed that the response associated with each complex mode shape can be
represented based on the modal relative displacement response and the modal relative
velocity response. Igusa et al. (1984) studied the stationary response of multi-degrees-of-
freedom (MDOF) non-classically damped linear systems subjected to stationary input
excitations. Veletsos and Ventura (1986) presented a critical review of the modal
superposition method of evaluating the dynamic response of non-classically damped
structures. Singh and Ghafory-Ashtiany (1986) studied the modal time history analysis
approach for non-classically damped structures subjected to seismic forces. Yang et al.
(1987, 1988) used a real-valued canonical transformation approach to decouple a non-
classically damped system from a set of second order differential equations to a set of
first order ones, and then performed a time history analysis as well as a response
spectrum analysis. Zhou et al. (2004) provided a refined complex mode superposition
algorithm to evaluate the seismic responses of non-classically damped systems. All the
above are important contributions, but none addressed the over-damped modes or
explicitly formulated the analytical solutions in 3-D form to identify the spatial coupling

effect.

1.2.2 Response Spectrum Methods

In addition, in earthquake engineering, the response spectrum method is commonly used
as an alternative approach to response history analysis for determining the maximum
values of the seismic responses of classically damped structures. In this method, the
modal peak responses are obtained using the prescribed response spectrum. These modal
maxima are then appropriately combined to estimate the peak values of the responses of
interest. There are several combination rules proposed by various researchers. Among
these, the simplest is the square-root-of-sum-of-squares (SRSS) modal combination rule
(Rosenblueth, 1951). This rule ignores the correlations between the vibration modes and
provides excellent estimates for structures with well-separated modal frequencies. To
further consider the correlations between each vibration mode, Der Kiureghian (1980,
1981) proposed a rational rule, known as the complete quadratic combination (CQC) rule,
in which the correlations among modes are connected by correlation coefficients. Both

rules deal with classically damped structures.



The conventional response spectrum method is ideal for structures that satisfy classical
damping conditions. For structures that are strongly non-classically damped, the accuracy
of the SRSS or CQC rule becomes questionable (Clough and Mojtahedi, 1976;
Warburton and Soni, 1977; Veletsos and Ventura, 1986). For this reason, several modal
combination rules that account for the effects of non-classical damping were developed.
Singh and Chu (1976) were among the first to develop an alternative approach based on
the stochastic method. Singh (1980) formed a modified conventional SRSS approach
where nonproportional damping effects were properly included. Later, Der Kierighian et
al. (1983) evaluated the responses of light equipment in structures to stochastic
excitations. Igusa et al. (1984) described the responses in terms of spectral moments and
provided the formulations of correlation coefficients among modes using a filtered white
noise process as inputs. Ventura (1985) stated that the peak modal responses could be
obtained by taking the SRSS of the individual modal maxima contributed from the
displacement and velocity responses, assuming harmonic excitations. Gupta and Jaw
(1986) developed the response spectrum combination rules for non-classically damped
systems by using the displacement and velocity response spectrum. Villaverde (1988)
improved Rosenblueth’s rule (1951) by including the effect of modal velocity responses.
Maldonado and Singh (1991) proposed an improved response spectrum method for non-
classically damped systems. The method reduces the errors associated with the truncation
of the high frequency modes without explicitly using them in the analysis. Zhou et al.

(2004) generalized the CQC rule for application to non-classically damped systems.

1.2.3 Applications to 3-D Structures under 3-D Excitations

To address the issue of 3-D structures under 3-D excitations, several research studies
have been performed. Lee and Liang (1998) noted the cross effect among directional
excitations and modes, implying the necessity of using the CQC rule in a three-
dimensional context. To consider the effect among orthogonal excitation components,
Semby and Der Kiureghian (1985) further extended the CQC rule to the CQC3 rule,
followed by a series of discussions and applications of this rule (Hernandez and Lopez,

2002; Lopez and Torres, 1997). However, none of these combination rules incorporated



over-critically damped modes in the formulation and the response quantities are limited

to those that are deformation-related.

To overcome the limitations of these problems, Song et al. (2008) developed a thorough
modal analysis approach for structures with non-classical damping and over-damped
modes subjected to single directional excitation. This research further advances Song et al.

(2008) to include three-dimensional applications.

1.3 Research Objectives

The primary objective of this research is to provide analytical solutions to the potential
problems mentioned above by establishing a solid theoretical foundation for design and
analysis of 3-D linear MDOF structures with dampers using a modal analysis approach.

The specific objectives are:

(1) Explore the modal properties of the 3-D arbitrarily damped MDOF systems with
over-damped modes.

(2) Establish a more realistic and accurate modal analysis approach for a linear
arbitrarily damped MDOF model to best estimate the seismic responses. This
modal analysis approach can handle non-classical damping and over-critically
damped modes as well as orthogonal effects arising from multi-component
earthquake excitations.

(3) Extend the present response spectrum method to be applicable to non-classically
damped systems with over-damped modes.

(4) Introduce a response spectrum method to predict the peak response of a
spatially-combined response vector, which is not a linear combination of the

nodal responses.

1.4 Scope of Work

The work has proceeded as follows:



(1) Examine the theory presently being used for analyzing non-classically damped
linear systems.

(2) Formulate the equation of motion of a 3-D arbitrarily damped MDOF system
using the state space method, as well as perform an eigen analysis and explore
the modal properties. All the formulations are presented in matrix form.

(3) Formulate the response history analysis procedure in the manner of modal
superposition and offer an interpretation of the physical meaning of the
formulation. The main effort focuses on the analytical formulation of the over-
damped modes.

(4) Extend the response history analysis procedure for use by the response spectrum
method. Much of this effort focuses on the treatment of over-damped modes.

(5) Verify that the response spectrum-based approach is applicable to 3-D arbitrarily
damped structures to estimate the peak response of a spatially combined

response vector.

1.5 Organization

Chapter 2 details the eigen analysis of a 3-D arbitrarily damped MDOF linear structure,
concentrating on the treatment of over-damped modes. Several fundamental modal

properties are explored and presented.

Chapter 3 presents the formulation of the modal analysis procedures for the 3-D
arbitrarily damped linear MDOF structures highlighting the treatment of the over-damped
modes. This chapter also presents a unified form suitable for representing any response

quantities.

Chapter 4 shows the rigorous formulation of the response spectrum method for the
analysis of the 3-D arbitrarily damped linear MDOF structure with over-damped modes.
This chapter focuses on the development of a method to handle the over-damped modes

when using the site response spectra specified in design codes.

Chapter 5 introduces a response spectrum approach to estimate the peak response of a

spatially combined response to multi-component seismic excitation.



Chapter 6 demonstrates the use of the proposed modal analysis method and response
spectrum method through a 3-D irregular building arbitrarily installed with linear viscous
dampers between floors. The results obtained by using the classical damping assumption
and the exact solutions are compared. The effect of the over-damped modes on the peak

response estimation is examined and discussed.

Finally, Chapter 7 presents a summary and conclusions, and provides suggestions for

future research.






CHAPTER 2
EIGENVALUE PROBLEM AND MODAL PROPERTIES OF
STRUCTURAL SYSTEMS

2.1 Introduction

In the real world, structures are continuous systems. However, it is well known that
continuous systems can be approximated as lumped-parameter systems by using lumped
masses, springs and the concept of equivalent viscous damping. A discrete structure is
usually characterized by parameters that do not depend on spatial coordinates and have a
finite number of degrees of freedom. This chapter presents the mathematical modeling of
a discrete arbitrarily damped linear structure subjected to a set of dynamic loadings. The
corresponding eigenvalue problem of an arbitrarily damped structure is established and
solutions are presented, including for cases with real-valued eigenvalues. The real-valued
eigenvalues represent the presence of over-damped modes, which are usually ignored in
practical applications. In addition, the orthogonality of modes is shown. Also, one useful
modal property, the sum of the residual matrices, is found and the modal expansion of the
mass and stiffness matrices in terms of modal parameters are presented. The results
shown in this chapter serve as a solid basis for the analytical formulation presented in the

following chapters.

2.2 Equation of Motion

A 3-dimensional (3-D) discrete arbitrarily damped linear structure with N degrees-of-

freedom (DOF) subjected to a three-component dynamic loading f(¢) is considered. It

has a dimension N and belongs to a real field matrix, i.e., f(£)e R" . The motion of the

structure is governed by a matrix ordinary differential equation in the form of
Mii(¢) + Cu(?) + Ku(?) =£(z) (2.1)

in which Me R" | Ce R" and Ke R"™ are the mass, viscous damping and
stiffness matrices with dimension N XN , respectively. M and K are positive definite

matrices when the structure is completely constrained, while C is a positive semi-definite
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matrix. u(¢) = [u. (¢) uz(t) u (¢) ugx (?) u;y (?) ugz (O]' e RY is a Nx1 generalized
displacement vector representing the translational and rotational DOFs for each node.

u(r)e RY and ii(r)e RY are the generalized relative velocity vector and relative

acceleration vector, respectively.

2.3 Eigenvalue Problem

When the structure is arbitrarily damped, it cannot be decoupled in the N dimensional
physical space; as a result, it is necessary to go through the 2N dimensional state space to
perform the eigen analysis. Namely, Equation (2.1) can be cast into a set of first-order

linear equations as (Veletsos and Ventura, 1986; Yang et al., 1987; Zhou et al., 2004)

AV(t)+Bv(t) =£,(¢) (2.2)

where

([0 M 2NX2N (M 0 INX2N
A—(M C)E]R ,B—( 0 K)GR

(2.3)

0=} <R 0=} <R

The coefficient matrices A and B are symmetric but not definite. It can be shown that

A and B are non-singular matrices; that is, both A" and B™' exist (Song et al., 2008).
Let A be an admissible eigenvalue. Associated with each eigenvalue A is an admissible

eigenvector y. The associated eigenvalue problem of Equation (2.2) is given by

(M +B)y=0 (2.4)

From linear algebra theory, the solution to the above eigenvalue problem leads to a set of
2N eigenvalues A € C (complex field) and 2N associated complex eigenvectors y, € C*" .

For a conventional structure or a structure enhanced with passive damping devices, a
stable system is expected. In other words, the eigenvalues are either complex-valued with

negative real parts or negative real-valued.
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When the eigenvalue is complex-valued, the associated eigenvector is also complex-
valued, corresponding to an under-damped vibration mode. And, all the eigenvalues and
eigenvectors must appear in complex-conjugated pairs, since the eigenvalue problem in

Equation (2.4) possesses real-valued coefficients. Assuming that there are N pairs of

complex eigenvalues, the corresponding eigenvalues and eigenvectors can be expressed

as

A Ad=—C¢wtjo, (i=1,2,3---N.) (2.5)
ﬁ.(p} . _|Ae]

= i i s = i *1 26

v, {q)l- v, {% } (2.6)

where @ € C" or @€ C" is the ith complex modal shape, w.€ R and & € R are the ith

modal frequency and modal damping ratio, respectively, and @, =+/1- & we R is the

ith modal damped frequency. The superscript * in the above equations denotes a

conjugate operation. In this situation where @, is complex-valued, it indicates that all

components of the structure vibrate synchronously with identical frequency and at an
identical decay rate. However, phase difference exists between each component. As a
result, the components do not pass through their equilibrium position at the same time

instant. For the special case where @, is real-valued and & does not equal to zero

(classical damping case), the components of the structure are either in or out of phase
relative to each other and they pass through their equilibrium position at the same time

instant.

When the eigenvalues are real-valued, the corresponding modes are over-damped
subsystems which are no longer second-order oscillatory subsystems. For the sake of
simplicity, all related variables are denoted by superscript or subscript “P” for “over-
damped modes,” to differentiate them from the variables associated with complex modes.
Mathematically speaking, over-damped modes also appear in pairs. However, based on
control theory, each over-damped mode can be considered as an independent basic unit.
There are no functional relationships among all over-damped modes, mathematically or

physically. Thus, it would not be necessary to group them in pairs in the analytical

13



formulation process. In this study, all over-damped modes are handled individually. Thus,

assuming that there are N,[=2(N — N,)] real and negative eigenvalues:

Al=-wf eR (i=1,2,3-N,) 2.7)

where @ is larger than zero for a stable system with dimension “rad/sec,” and is defined
as the ith over-damped modal natural circular frequency. Each real eigenvalue A}

corresponds to a real-valued eigenvector y, € R*¥ (i=1,2---N,) and
P P
' ={’1f‘}£’f } e R 2.8)
0,

where @ € R" is the ith “ over-damped mode shape.”

The eigenvalue matrix (or spectral matrix), which is the assembly of all eigenvalues, is a

diagonal matrix and denoted as

A:diag(ﬂl’ﬂz.../’iNC’/'LI*,ﬂz*,../l;C,/LP’ﬂzP,,.ﬂjsp) c QN (29)

The eigenvector matrix, which is the assembly of all eigenvectors, is denoted as

W= (W W WLV LW W)

:(CDA

(2.10)
2NX2N
o ) eC

in which ®=(¢,, @, 0,0, 0,0\ .0, 05} )eC™" is the ecigenvector

matrix associated with the displacement vector and @A is the eigenvector matrix

associated with the velocity vector. Note that for the ith mode shape, ¢, can be

T
represented as @, =[(pix ¢, 0, 0, O, (pigz} , from which it is observed that

the modal motion is not limited to only one global reference direction. This represents the

spatial coupling phenomenon in the physical space.
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2.3.1 Orthogonality of Modes

The eigenvectors corresponding to different eigenvalues can be shown to be orthogonal
to each other with respect to matrices A and B, respectively, in which a “no repeated

eigenvalues” condition is assumed. That is, when i # j,

\yiTA\uj =0 and \|IZ.TB\|Ij =0 (2.11)

The proof of Equation (2.11) is given as follows. The ith eigenvalue A, and its associated

eigenvector ., satisfy Equation (2.4); premultiplying it by \|II gives

AW Ay, =—y By, (2.12)
Similarly, the jth eigenvalue A ; and its associated eigenvector y ; satisfy Equation (2.4);

premultiplying it by y. gives

T T
AW Ay, =—y, By, (2.13)

Taking transpose of both sides of Equation (2.12) gives

AW Ay, =—y/By, (2.14)

Comparing Equations (2.13) and (2.14) together with the assumption A=A ; completes

the proof of orthogonality shown in Equation (2.11). Moreover, the orthogonality

condition leads to the following two diagonal square matrices:
Aa=V'AY = diag(al,a2 -'-aNC,a]*,a; ---a;,C,a]P,ag -~-a,I:,P) e C*"™"  (2.15)
b="F"BY =diag(b,.,b,--by . b, b, by by b} by ) € CVY(2.16)
where
a, =y, Ay, =0/(2AM+C)o, €C (2.17)
b=y By, =¢/(-AM+K)p=-ad, €C (2.18)
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a’ =(y)) Ay; =(9))' (2A'M+C)o] €R (2.19)
B =(w)) By =(0)) [-(A)YM+K]o] =—afA] €R (2.20)

As shown later, these orthogonality properties are useful in the formulation work

presented in Chapter 3.

2.4 Modal Decomposition and Superposition

From the orthogonality of modes, it was determined that Equation (2.2) can be decoupled

into a set of uncoupled 2N independent modal equations. Let

v(t) = { 38 } — P w(r) 2.21)

in which

WD) = [0, wy (1), (0, W (0, Wi () wy (O, W (0), W)l ()] e
(2.22)

is the complex modal coordinate vector in the time domain.
Substituting Equation (2.21) into Equation (2.2) and pre-multiplying ¥" to both sides of

the resulting equation as well as making use of Equations (2.17) to (2.20), Equation (2.2)

can be transformed as (Igusa et al., 1984)

wl.(t)—ﬁl.wl.(t)=m eC (i=12..N,) (2.23)
ai

wj(z)—ﬂjwj(z):m eC (i=12..N.) (2.24)

and Wf(t)—/ifmp(t):w eR (i=1,2---N,) (2.25)
a.

1

In Equation (2.24), the superscript “H” denotes Hermitian transpose, which is equivalent

to a conjugate and transpose operation. Equations (2.23) to (2.25) are all first-order

16



differential equations that can be readily solved by using standard digital algorithms. The
general solution to Equations (2.23) to (2.25) can be written in the form of (Hart and

Wong, 1999)

; T
w, (1) = j 91O o 4y (2.26)
0 ai
Ok *
Wi (1) = j weﬁ'“‘”dr (2.27)
0 ai
t PyT P
W (6)=] —("’f)pf(’) " dr (2.28)
0 ai

After the modal responses w,(¢), w, () and w' () are solved, the total responses are

back-calculated by the superposition of the modal responses. Considering Equation (2.10)

in Equation (2.21) gives the following two expressions:

u@) =@ ) +0w (1) ]+ Y 0! v () (2.29)
()= Y[ 2,00+ 2107w )]+ 2 Ao 0w (1) 230)

Note that the modal responses w.(¢), w; (¢) and w' (¢) are complex-valued and have no

physical interpretations. In addition, the computation efforts for solving Equations (2.23)
to (2.25) are demanding since they are presented in complex-valued form. Thus responses
expressed by the form shown in Equations (2.29) and (2.30) are not preferred. In the
following chapter, a rigorous analytical formulation with all expressions presented in

terms of real-valued quantities is developed.

2.5 Structural Residual Matrices

Taking the derivative of Equation (2.29) with respect to time gives

i(0)= [0+ 0] () ]+ 0! i () (231)
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Substituting Equations (2.23) to (2.25) into Equation (2.31) leads to

i) = Z{W f©, /Ii(piwi(t)+<pi<p;*f( )\ e ;(t)} Z["’ CHRCIPE P(t)}

i

(2.32)

After comparing Equations (2.30) and (2.32),

i=1 i

%[‘pf—"’: }f(t)+2{(p (@) }f(t) 0,, eC™ (2.33)
a

As f(¢) is arbitrary, it implies that

i{(p,(p? } Z[(p (o))" } e (234

i=1 a,

l

which can be assembled in a simple matrix form

®a'd =0, eC™ (2.35)
Further, denoting
R, =R" +jR' = ""f’ eC™ (i=1,2-N,) (2.36)
R =R -jR! = ‘p‘ip eC™ (i=1,2-N,) 2.37)
Rf:M eR™ (i=1,2--N,) (2.38)

R., R; and R are the structural residual matrices corresponding to the eigenvalues

A, A; and A, respectively. Note that all residual matrices only depend on the structural

system parameters and are independent of the normalization manner of the modes.

Consequently, Equation (2.34) can be represented as
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2> RF+> R/ =0 eR™ (2.39)

The modal property shown in Equation (2.39) was first found in Ventura (1985); however,
the proof was interpreted in a physical manner rather than given in a rigorous

mathematical manipulation as shown in this study.

2.6 Expansion of Inverse of the Mass Matrix M

Substituting Equation (2.10) into Equation (2.16) yields

. ®A (-M 0 @A . . .
PTBY = = -AD'MOA +®'KO =b=-aA (2.40)
@)l 0 K)o

that is,

A®MPA - KD =2aA (2.41)

Pre-multiplying ® a' and post-multiplying a"'®" to both sides of Equation (2.41) leads

to
(Pa'A®T )M(@4'AD" ) - (@2 D" )K(®a'D') = (PAG'DT)  (242)
Considering Equation (2.35) in Equation (2.42) becomes
(Pa'AD" )M(DAL'D") =(PAL'D") (2.43)
As aresult,

M =®a'AD" (2.44)

Equation (2.44) can be further expanded as
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Ne T * * H Np 9P Pr P\T
M ' =®a'AD" ZZ[/Ii(pi(pi +/1i(piq)i j_i_zﬂ’i(pig(pi)

i=1 a; i=1 a;

i i i

N T Np 9P Pr PN\T
=2ZRe(ﬁi(pi(pi j+z/1i(|)ig(pi) (2.45)
i=1 a,‘

i=1 a,‘

-2 (R RS 0lR;
i=1 =l

This modal expansion will be used in the development of a unified form the expression of

the nodal velocity shown in Chapter 3.

2.7 Expansion of the Inverse of Stiffness Matrix K™'

Pre-multiplying ® a~'A™" to both sides of Equation (2.41) leads to

(Pa'A"AP)MOA-(@a'ATD")KO=DA A 'AA (2.46)

At the same time, using the structural residual matrices, @ a~'®" =0, in Equation (2.46),

it becomes

—dAAD KD =D (2.47)

Therefore,

T=—@a'A'D" (2.48)
Equation (2.48) can be further expanded as

H

K—l =_¢ "—IA—lq)T — (p (p (p ((p )
! Z( Aa o j Z

i l

- 2;Re[ Tj z"’;f'? (2.49)

i=1

Np

2 & R’
= __22(_51'501‘1{? +wdiR§)+Za)_;)

(e i=1

This modal expansion is used to develop an effective modal mass for arbitrarily damped

structures, as described in Chapter 3.
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CHAPTER 3
GENERAL MODAL RESPONSE HISTORY ANALYSIS

3.1 Introduction

In Chapter 2, the dynamic response of an arbitrarily damped linear MDOF structure was
expressed by means of the superposition of its modal responses. However, it was given in
a complex-valued form without physical meaning. An improved general solution,
completely expressed in real-valued form, for calculating the seismic response history of
an MDOF structure subjected to three orthogonal excitations simultaneously is deduced
in this chapter using linear algebra theory. The physical explanations of each of the
resulting terms are given. In this formulation, the Laplace transformation approach is
employed, by which the original differential equations of the system in the time domain
are converted to algebraic equations in the Laplacian domain, to show the intrinsic
relationship among the system’s parameters. An “over-damped mode” concept is
introduced to account for the presence of over-critically damped modes. It is shown that
all response quantities, including the relative velocities and absolute accelerations, can be
expressed in a unified form, which is a linear combination of modal displacements and
modal velocities as well as modal responses resulting from the over-damped modes. This
unified form is made possible by several modal properties identified in this chapter. In
addition, the expression of the modal static response of an arbitrarily damped structure
subjected to inertia forces is given, from which the general effective modal mass is
defined. This newly-defined effective modal mass can be a good index to determine the
number of modes required in the modal analysis procedure to achieve more reasonable
response estimates. Furthermore, a new real-valued modal transformation relationship to

decouple the arbitrarily damped structures is identified.

3.2 Theoretical Formulation of General Modal Analysis

When the structure, shown in Figure 3.1, is subjected to a three-component ground

motion i, (), Equation (2.1) can be written as
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Mii(r) + Ci(r) + Ku(¢) = -MJTi, (¢) 3.1)

J= [J AN R | (z)} is the influence matrix with dimension N X3, which contains three

resultant displacement vectors of the mass to a static application of a unit ground

displacement along three structure reference axes X, Y and Z, respectively.

U, (1) =iy, (2) ,,(0) iig3(t)]T is the acceleration vector consisting of three orthogonal

components along reference axes 1, 2 and 3, respectively. In most practical situations, the
direction of the third component 3 is assumed to be identical to the vertical structure
reference axes Z. T is a 3x3 transformation matrix to account for the effect as the
horizontal directions of the ground motions, i.e., 1 and 2, do not coincide with the
horizontal structure reference axes, X and Y, respectively. Assuming & to be the angle of
rotation between the two sets of horizontal axes as shown in Figure 3.1, the

transformation matrix T can be written as

cosd -—-sinf O
T=|sinfd cosd O 3.2)
0 0 1

As a result, the complex modal equations shown in Equations (2.23) to (2.25) can be

written as
o () = A w (1) = _(p?M‘fTﬁg O cc (=123 (3.3)
W () =AW (f) = 0. M{Tﬁg(t) eC (i=1,2..N,) (3.4)
and WE(£) = AW (1) = _((pf)TMPJTﬁg(t) eR (i=12-N,) (3.5)

i

To simplify further development, the Laplace transformation is employed to transform
the differential equations to linear algebraic equations in the Laplace domain, by which
the system response in the Laplace domain can be easily expressed as a linear

combination of complete orders of modal subsystems (composed of corresponding modal
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parameters). The responses in the time domain for a complete system and its subsystems

are easily retrieved through inverse Laplace transform.

X, Y, Z = Assumed structures reference axes
1, 2, 3 = Principal directions of ground motion

Figure 3.1 3-D MDOF structure subjected to 3-component ground motion

3.2.1 Structural Displacement

Applying the Laplace transform to Equations (2.29) and (3.3) to (3.5), respectively, yields

) =Y (@) + 0] (5) |+ 20! W (5) = BW(s) (3.6)
OIMITU,(s)
(s—AW (s)=——— €C (i=1,2---N,) (3.7)
(-2 ()= -2 TUG) o ioia,) (3.8)
N @' MITU (s) .
and (s—ANWP(s)=———— "2 €C (i=1,2--N,) (3.9)

i
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respectively, where s is the Laplace parameter and

W(s)=[ (), Wy(s)-- Wy (5), W, (). W5 ()= Wi (), W (s, W () Wk (s) ]|
(3.10)

is the modal coordinates vector expressed in the Laplace domain and W(s)e C*V*",

U(s) is the Laplace transformation of the displacement vector u(z) and ﬁg(S) is the

Laplace transformation of the excitation vector i, (7).

Solving W,(s), W (s) and W'(s) from Equations (3.7) to (3.9), respectively, and

substituting the resulting solutions into Equation (3.6) obtains

_ & 00! 0/ (@) X
()= {Z{ (s — /1) a(S /1 } Z:a T(s—A7 }MJTUg(S)

& R, R; 3, RP (3.11)
__ iy MJTU '
LZ_:‘(S-/II. S—ﬂjj+;S—ﬂi:| ()
Nc Np
=2 U,(s)+2 U/ (s)
i=1 i=1

where R,, R} and R are the structural residual matrices shown in Section 2.5. Thus,

*

Ui(s):—( R, ’*]MJTI“Jg(s) eC” (3.12)

s—A. s—A

i i

Equation (3.12) is the ith complex modal structural response vector represented in

Laplace form and

RP ..
—;P’ MJTU,(s) €C" (3.13)

i

Ul (s)=-

is the ith over-damped modal structural response vector represented in Laplace form.

Substituting the complex-valued eigenvalues shown in Equation (2.5) and the residual

matrices shown in Equations (2.34) and (2.35) into Equation (3.12) gives
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R +jR! R¥ —jR! .
Ui(s):—{ ( ’5 J f )+ ( ’5 L : JMJTUg(s)
s—(-(w+jw,) s—(-fw.—-jw,
i .] di i .] di (314)
Aos . Bu TU () (1=1,2.3N,)
= — S l: , , e
s’+2lws+w] sSS+2lws+o] ¢ ¢
where
A, =2RfMJ eR"™ (3.15)
By, =20 (ER! - \1-E'RI)MJ e R™ (3.16)
Substituting Equations (2.7) and (2.36) into Equation (3.13) yields
AP
Uf(s):—ﬁTUg(s) (i=1,2,3---N,) (3.17)
in which Al =R'MJ eR"™ (3.18)

Moreover, coefficient vectors A, B, and A} shown in Equations (3.15), (3.16) and

(3.18), respectively, can also be expressed as

A

T
ADi=2Re(%)=[Ag‘i) AY AD] eRM™ (3.19)
B, =—2Re| 227 | 2] w, £ Re| 2L |—p 1m| &t =[By BY BY] eR™
A, A, A,
(3.20)
(pPFP
and Agi=#=[Ag§*> AR AN eRM (3.21)
respectively, where
T
i =20M o po po] (3.22)
a

in which
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® — j'i(piTl\/[J(k)
i a.

1

,  ke{x,y, z} (3.23)

Equation (3.22) is the row vector of the complex modal participation factors associated
with the three structure reference axes for mode i and
Af@H)'™MJ
l"lP 27 ((pl 2 — ':
a.

1

e e e (3.24)
in which

P, P\T (k)
rj’“”:“"’f%, kelx,y, z} (3.25)

1

Equation (3.24) is the row vector of the over-damped modal participation factors

associated with the three structure reference axes for mode i.

Furthermore, denoting

Q.(s)=H,(5)U,(s) €C’ and Q,(s)=H,,(s)U,(s) €C’ (3.26)
where
1
H.(s)=- Yy eC (3.27)
and H,(s)=— il eC (3.28)

s +2lws+w!

are the displacement and velocity transfer function of an under-damped SDOF system

with the ith modal damping ratio &

1

and the ith modal natural frequency w,, respectively.

In fact, Equation (3.26) can be considered as the resulting Laplace transformation of the
following differential equation set expressed in the time domain with zero initial

conditions

Qi(t)+2éwiqi(t)+a)izqi(t) = _i'ig(t) (3.29)
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o (1) ;
qi(t):L [Qi(s)]: q2i(t) €eR
g5 (1)

where (3.30)

o 0]
4,(0=L"[Qu(9)]= {g(n) e R
45, (1)

In Equation (3.30), L' stands for inverse Laplace transformation operator. Equation

(3.29) can be further expanded as

qn(t) +2 éa),qll(t) + a)qun(t) = _I;igl(t)
o (1) + 2 £, (1) + 02 (6) = =i (1) (3.31)
Gy () +28m4,, (1) + a)iZQSi(t) =~y (1)

As a matter of fact, either Equation (3.29) or (3.31) describes the equation of motion of
an under-damped SDOF system with ith modal natural frequency @, and damping ratio
& subjected to accelerations tiy, (1) , iy, (¢) and ii,(7) , respectively. This concept is

illustrated schematically in Figure 3.2.

10r
L.igl(t)
q,:(t) -0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40
Time, sec
10r
i (1) JMWMWM»MWW
2 g2 I
S | ===
a)[ -10- ) ) ) ) ) ) ) ,
0 10 20 30 40
Time, sec
F A E T 101
_—
iigk (t) iig3(t) -JWMWWA‘WM—»———
k=1 23 L
-10- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40
Time, sec

Figure 3.2 Under-damped SDOF system subjected to 3-component ground
excitation
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Now, the structural responses have been well presented in the Laplace domain through
Equation (3.11). To obtain the response in the time domain, the inverse Laplace
transformation is employed as follows. Taking the inverse Laplace transform of Equation

(3.27) leads to
h(t)y=L"[H,(s)]= —Le_é’”"t sin(w,;t) € R (3.32)
a)di

where /,(¢) is the unit impulse response function of the SDOF system with a natural
frequency @, and damping ratio & . Thus, the ith modal displacement response vector

q,(?) can be written as

q,(0=L"[Q,9)]=L"[H,(s)U, ()] =] 0 h(t-1)ii, () d7

1 ¢t 3.33
L e 5 sina, (1 - 7, (7)d7 (-33)
a)di 0
Equation (3.33) is the well-known Duhamel’s Integral (Chopra, 2001).
For the case of over-damped modes, denoting
Q' (s)=H/(s)U,(s) €C (3.34)
in which H/(s)=— ! = €C (3.35)
s+,

Similar to the transforming procedure of the complex mode case, Equation (3.34) is the

Laplace transformation of the following first-order differential equation with a zero initial

condition.
q; () +wiq; (1) =-ii,(?) (3.36)
a5, (1)
where ¢ O=L"[Q/() =14} eR’ (3.37)
a3, (1)
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is the ith over-damped modal response vector. Equation (3.36) can also be expressed as

Gy, (1) + ] ¢, (1) = i, (1)
q.gi(t)-l_a)qugi(t):_iigZ(t) (3.38)
G5, (1) + ] g3, (1) = =i 5 (¢)

Note that q; (f) has the dimension of velocity, which is the dimension of q,(¢). The

inverse Laplace transformation of H.(s) is given by

K()=—c“" eR (3.39)

As a result, the over-damped modal response vector can be expressed as

¢ O=L"[QI(0]=L"[#5)0,()]=[ h(~Djii,(0)dz

(3.40)
= 0 i (r)dT
Also, Equations (3.14) and (3.17) can be represented as
U,(s)=—(ApHy () +ByH () TU,(s) (1=1,2,3--N,) (3.41)
U/ () =—ALH (5)TU,(s) (i=1,2,3--N,) (3.42)

Applying the inverse Laplace transform to Equations (3.41) and (3.42) in conjunction
with Equations (3.33), (3.34) and (3.37) gives

u(,0) =3[ A Td,(0+ B, Ta,(0]+3 AL TG () (3.43)

i=1 i=1

The variable € is included in the expression to reveal that the response vector is also
dependent on the seismic incident angle € considered through the transformation matrix
T . Unlike Equation (2.27), it is observed that the displacement responses are expressed
in terms of real-valued quantities. They are a linear combination of the modal
displacements and velocities of a set from an SDOF system as well as the over-damped

modal responses. In Equation (3.43), the terms associated with the modal displacement
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vector q,(f) are used to represent the motion of the structure, assuming all DOFs move

either in phase or out of phase during the vibration process. This assumption only holds
true for classically damped structures. When the structure is not classically damped, all
DOFs no longer vibrate in phase or out of phase. Therefore, the terms associated with the

modal velocity vector q,(¢) are used to modify the response so that the non-classical
damping effect, leading to phase differences between the motions of all DOFs, can be
considered. The terms related to the over-damped modal response vector q; (¢) are used

to compute the modal responses contributed from the over-damped modes when they are

present.

3.2.2 Structural Velocity

Intuitively, the structural velocity response vector can be obtained directly by taking the

derivative of Equation (3.43) with respect to time variable ¢ as

i(60)= [ Ap T, (0+ By T, (0] 43 AL TG (0 (3.44)

i=1 i=1

This approach seems to be simple and has been used by other researchers such as
Takewaki (2004). However, this formulation requires the incorporation of two additional

modal responses §,(z) and ¢} (¢) in the expression. A different approach to derive the

expression of the relative velocity vector is given as follows.

First, Equations (3.29) and (3.36), respectively, are rearranged as

qz’(t) = _2é:iwiqi(t)_a)i2qi(t)_iig(t) e R™ (3.45)
4 () =-w/q; ()i, () eR™ (3.46)

Upon substitution of Equations (3.45) and (3.46) into Equation (3.44),
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Np

u(z,0)= ZC[(BDi - 2§ia)iADi ) Tq; (1)~ a)izADiTqi (t)] + Z (_a)iPAgi ) Tq? (1)

i=1
N Np
{Z Ap+Y. AE,}Tﬁg
i=1 i=1
(3.47)

in which the last term can be expressed as follows after considering Equations (3.15) and

(3.18)

Nec Np Nc Np
{ZADi + ZAPDI}Tiig = [Z 2R} +ZRf}MJTﬁg (3.48)

Furthermore, considering the structural residual matrices shown in Equation (2.39), it is

found that

S A, +> AL =0 e R™ (3.49)

Therefore, the velocity vector u(z,8) can be expressed as

i(,0) = Y [A,Td,(0+ B, Tq, 0]+, AL Ta () (3.50)

i=1 i=1

where

A, =B, -2lmA,, = —Zwi(fin + 1—§ij)MJ eRM
B,, =—@'A,, =20’RMJ € R" (3.51)
Al =-0 A}, = -'R'MJ € R™

Note that Equations (3.44) and (3.50) are equivalent. However, Equation (3.50) is

preferred in this study since the two additional modal responses §,(¢) and ¢ (¢) do not

appear in the expression and is consistent with the displacement vector u(z,8) shown by

Equation (3.43).
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On the other hand, if the coefficient vectors A, By, and A}, shown in Equations (3.19),

(3.20) and (3.21) are adopted in Equation (3.51) with a few rearrangements, the result is

Ay, =2Re(4 i"’/fl—r") e R

1

BVi = _2Re(i,(pi—rlﬂfJ c RV (352)
Ty
Af][ ziqu)jiPz c ]RNX3

1

It is found that the coefficient vectors A,,, B, and A, appearing in the velocity vector
u(z,0) differ from those in the displacement vector u(¢,6) by having an additional
multiplier, 4, or A} in the corresponding coefficient vectors as indicated by the
underscore, which is the associated eigenvalue, in each modal term. This finding can also
be observed by comparing the displacement vector and velocity vector shown in
Equations (2.27) and (2.28), respectively.

3.2.3 Structural Absolute Acceleration

To derive the absolute acceleration vector, the relative acceleration is used as a starting

point, which can be obtained by taking derivative of the velocity vector u(¢,8) with

respect to time. As a result,
Ne Np
i(,0) = [A, T4, (1) + B, Tq,(0)]+ > AL T4 (1) €R" (3.53)
i=1 i=1

Substituting Equations (3.45) and (3.46) into Equation (3.53) leads to

i=1

i(0.0)= 3 [ALTa,(0)+ B Ta, (0] + 3 AL Tq (1)~ {Z A+ fAi,}Tﬁgm
(3.54)

where
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A, =B, -2E0 A, = 2wf[(2§.2 S)RM 428 1-E RIFJMJ e R
B, =—0'Ay, =20](ER +I-E'R)MJ eR™ (3.55)

AL =—0/ Al = (@)YRIMJ € R™

Using the modal expansion of the inverse of the mass M~ shown by Equation (2.45) in

Section 2.6, the last term in Equation (3.54) becomes

Ne Np Nc Np
{ZAW + ZA*;}Tﬁg ()= {—i(é—wiR? +ouR}) =2 0 Rf}MJTﬁg ®
i=1 i=1 =1 =l

=M"'MJTii (1) (3.56)
= JTii (1)

From Equation (3.56), it can be seen that
DAL+ AL =T eRY (3.57)

Substituting Equation (3.56) into Equation (3.54) and denoting the structural absolute

acceleration  vector as i, (:,0)e R" , which can be expressed as
i, (#,0) =(s,0)+ITii, (¢) , Equation (3.54) becomes
Ne Np
ii, (1,0) = Y[ A, Tq,(t)+B, Tq,(t) |+ Y AL Tq (1) (3.58)
i=1 i=1

Note that the modal relative acceleration vector ,(¢) and the ground acceleration vector
ii, (¢) are not explicitly involved in the expression of the absolution acceleration vector

i, (,0).

If Equation (3.52) is adopted in Equation (3.55),
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A, = 2Re(/_1fq’/l‘1—rf) e R¥

B, =2 Re[ifwi—nﬁfj e R¥ (3.59)
Py P
AL = B e R

A,

1

Similar to the expression of the relative velocity vector u(z,8) shown in Equation (3.50),
it is found that the absolute acceleration vector i, (z,0) differs from the displacement
vector u(z,0) by having an additional multiplier as indicated by the underscore in the
corresponding coefficient vectors, which is the square of the associated eigenvalue A’ or
(A7), in each modal term. Note that the relative displacement, relative velocity and

absolute acceleration are related by the associated eigenvalue in each modal term.

3.2.4 Unified Form for Response Expression

Comparing the expressions of relative displacement, relative velocity and absolute
acceleration vectors shown in Equations (3.43), (3.50) and (3.58), respectively, it is found
that the three response quantities are the linear combination of the modal response q, (),
q,(?) and q; (¢). They only differ in their respective coefficient vectors. Thus, it is

convenient to represent the three response vectors in a similar manner as follows.

0, (0)= Y[ AyTa, 0+ B, Ta,(0]+ 3 AL Ta (0 (3.60)

i=1

In Equation (3.60), u,(¢,6) can be u(z,0), u(t,0) or i, (¢,0), and A, B,, and A}, are

the coefficient vectors associated with the response quantities of interest.

In general, most response quantities, denoted as 7,(¢,6), are either deformation-related,

such as bending moments, interstory drifts, shear forces, etc.; velocity-related, such as the
interstory velocity; or absolute acceleration-related, such as the floor acceleration. As a
result, most response quantities within the structure can be expressed by a linear

combination of the response vector u,(z,6) through appropriate transformation. That is,
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7,(t,0)=d"u,(t,0)

Nc Np
=> [d"A,Tq,()+d"B,Tq,(1) |+ > d" A;Tq! (1) (3.61)
i=1 i=1
Nc Np
=2 [ ALTG, () +BTq,(0) ]+ 3 AT Tq; ()
i=1 i=1

: : F_dTA —[AD  A® (3)
where d is a transformation vector, A, =d A, =[A, A, Ay ls

B, =d'B, =[B B B, and A7 =d"AL =[A" Al AIV]. This form
indicates that any structural response quantities are able to be represented in a consistent
form. It is also useful to employ this unified form in the development of a general modal

combination rule for the response spectrum method, as presented in Chapter 4.

3.3 Interpretation of the General Modal Analysis

Basically, the dynamic response of a structure is a process that describes how the
structure would respond to the excitation forces in the 3-D space domain as time
advances. One important feature of the modal analysis is the use of modal coordinate
transformation as shown in Equation (2.21), which separates the space domain and the
time domain in the solution of the modal response. Modal analysis avoids the
manipulation of the coupled equations simultaneously, improves the solution efficiency
both analytically and numerically, and provides a clear physical interpretation. The
response contributed from each mode can be computed individually; then they are
combined together at each time instant to complete the total response history. In the case
of multi-component excitations, the response due to each component can be considered

independently.

Figure 3.3 explains the basic concept of the modal analysis. To be more specific, the

physical interpretation of the formulation of the modal analysis procedure of Equation

Figure 3.4. An N-DOF arbitrarily damped structure is first decoupled into N, sets of an
SDOF system and N, sets of a first-order linear system. Each set of SDOF system and

each first-order linear system is subjected to the three ground accelerations individually

as characterized by Equations (3.31) and (3.38). The responses resulting from each

35



acceleration excitation are superimposed to obtain the contribution of ith mode to the
dynamic responses. Combining all the modal responses with consideration of the seismic
incidence (i.e., the transformation matrix T shown in Equation (3.2)) gives the seismic

response history of the arbitrarily damped structure.

Build
Ground .
. mathematical Responses
accelerations
model
A
v
A, Perform A,0,

eigenanalysis

\ 4 v
Calculate the Calculate the

» response variation vibration pattern in

along time domain space domain

\ 4 v
. P
q,(), 4,(2), g; (1) A, B, Al
Combine the
response variation

and vibration pattern |~
for each mode

\ 4

Combine the modal

response from each
mode

Figure 3.3 Basic concept of the general modal response history analysis
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Figure 3.4 Schematic explanation of the modal response history analysis of a 3-D
MDOF subjected to 3-component ground excitation

3.4 General Modal Coordinate Transformation Matrix

Unlike classical modal analysis, the equation of motion of an arbitrarily damped structure

cannot be decoupled in terms of the N modal coordinates q(¢) established by the

undamped structure using the transformation u(¢) = ® q(¢). However, it is still possible to

find another set of modal coordinates in the physical space to decouple the doubled

dimension equation of motion in state space. This process is shown below.

From the above formulation, the response state vector v(¢) introduced in Chapter 2 can

be expressed as
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V() = {38} = A, T.Q(t)e R

where

0 T

6NX6N

is a general transformation matrix composed of 2N transformation matrix T and

q(7)
Q(t)=1 a(t) (e R"”

q" ()

is defined as the general modal coordinate  vector in
T 3N,
qt) = [C]”(I), q (), q3 (ORE qix. (), 2N, (), s, (t)} e R™¢
T

q" () =] (0. 5. 45, al\, (1). 45y, (.45, ()| € R™™  and

AV BV AS/ 2NxX6N
A= (A B AT eR
D D D

(3.62)

(3.63)

(3.64)

which

and

(3.65)

Equation (3.64) is termed as the general modal coordinate transformation matrix, in

which
A, = (AVI’AVZ Ay, ) e RN
BV = (B\ll’ sz .. 'BVNC ) e RV:3Ne
AD = (ADI’ADz .. .ADN(‘ ) c RV3Ne
BD = (BDI’BDZ .. .BDNC ) e RV3Ne
A= (AL AL AL, ) R
Ag = (APDI’AEZ .. .AE)NP ) c RNX3NP

and
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0.9 (P(P

a. a,

1 1

A, =(RMJ+RMJ)= ( ]MJ e R™® (3.67)

* T * H
BDZ,=—(ﬂjRiMJ+/1iRjMJ):—(ﬂf(p"(pi 1100 JMJ eR™  (3.68)
a. a

i i

_9; ((P ) MJ c RV®

a .

l

Al =R'D; (3.69)

a. a.

1 1

T * * H
:(/liRiMJ+/1ijMJ):[ﬂf(pf(p" REOUK'S jMJ eR™  (3.70)

B,, =44 (RMI+RMJ)=-1 1. [q’q’ 9.9 jMJ eR™  (3.71)

1 1

01 (90) ™™MI
P

Ay, =A'R'MJ = e R™ (3.72)

a

From Equations (3.66) to (3.72), it can be seen that all elements of A, belong to real

numbers and are only specified by the structural system’s parameters, including modal
parameters, mass matrix M and ground motion influence vector J; and are independent
from the loading type and the direction of the excitation and how the mode shapes are
normalized. J is a time-invariant vector and is related to the spatial distribution of the
excitation load caused by ground motion. When a structural system and the type of
external loading are determined, J is also determined and can be considered as a system

parameter vector.

Equation (3.62) gives the modal expansion of the response vector v(¢) in terms of the
real-valued modal coordinate vector Q(z) . Intuitively, using Equation (3.62), the coupled

equations defined by Equation (2.2) can be transformed into a set of uncoupled equations
expressed in terms of real-valued quantities. This hypothesis is proved mathematically in
the next section, where some intermediary formulas are used and discussed to expose

further characteristics and advantages of the general transformation matrix.

39



3.4.1 Proof of Modal Decoupling

To simplify the proof of the modal decoupling, the arrangement of the vectors in matrix

A, and the elements in the modal coordinate vector Q(¢) are reset without interference

from the transformation results. Denote

v(t)= AT, Q. (t) €R*

(3.73)

where v(¢) = (l'lT(t),uT(t))T € R*" remains the same as the definition in Equation (3.62);

and

P

AVV 2Nx6N
" e R¥Y (3.74)

DN,

Qs()=[, (0,4, (0, a,(1), 4, (1) -dy_(ay_ . € O, ()¢, (0] €RY  (3.75)

For each column in Equation (3.74), it can be expanded as

[%(pi(p? L 410.0]

a. a.

1 1

al. ai
¢;MJ
ai
= (‘l’i > ‘Vj )
¢;'MJ

A0, /1?(Pj

{AVZ}
A B T * H
Di ((pi(pi _l_(piq*)i jMJ

(3.76)



a a

' , (3.77)

A9 MJ A9/ MJ

/1i(pi ﬂj(p: 4, a;
= — :_(\Ilﬂ \I’j) eRZNX}
o, 9 )| A0 MJ A0, MJ
@ @
A0/ (@)'™MJ
P P_.P
Al | @ A [eD™MI] Teh ™I
- - P - \I’i P € ]R
Anl | el@)™I o “ “
a’
(3.78)
Thus, A, can be rewritten as
(I)SAS
Asr=wsl'=9 & (T (3.79)
S
where
D =(0,.90 0,050, .0,.0,059 ) eC" (3.80)
Ag=diag(A,, A7, Ay Ao Ay Ays A1y Ab AN ) € V3N (3.81)
Vs = (Wi Wl W W W s e ) e CPN (3.82)
1—‘ICI
r., 0
I= ey, e ¢ (3.83)
ry
0
ry
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oMY Alp!MJ

ai ai
r, - e (3.84)
o'MI "M
p o
- aip[(cp}?)TMJ] e R™ (3.85)

Analogous to the formula defined for classically damped systems (Clough and Penzien,

1993; Chopra, 2001), T, and I'} can be termed as the ith modal participation factor

matrix for a complex mode i and the over-damped modal participation factor matrix for

over-damped mode i, respectively.

According to the orthogonality of the eigen-matrix proven in Chapter 2, Equations (2.15)

and (2.16) can be rewritten as
a = ylAy = diag(al,al*,az,a;---aNc ,a;\,c ,alp,a;---a;l)) e C*VN (3.86)
b, = yiBy = diag(b,,b].b,.b; by by bl by by, ) € CVY (3.87)

For simplicity, the equation of motion of the structure represented in the state space form

shown in Equation (2.2) is revisited here
Av(H)+Bv(t) =1 (?) (3.88)

Substituting Equation (3.73) into Equation (3.88) and pre-multiplying (A, T;)" to the

resulting equation yields

TgAgTAASTTGQS )+ TgAgTBASTTGQS ()= TGTAngs () (3.89)

in which
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and
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P

T
P P
) a,I'y
P 3 e

(3.90)

) brr

N, TN,

(3.91)




AlLf (1) = {f?t)} =—T" (®MJIT)ii (1) (€ R™™)

("M, )(o

TMJT)

2Re|:

al

oMo

|

[ii(JTMtpl
—2Re

al

)@ MJT)

{(JTMqa .
2Re

a.w(

|

(™Mo} )((0)'MJIT) (J'Mo})((@5)"'MIT) (J'Mo}, )(

. Re[ﬂ; (3" ™Mo, )(@ 3 MJIT)

a,

] | _iR{zx

|

)(@3MJIT)

{(JTM(p2
2Re

a,

J'Mo, )(@;MJT)

I

a,

(@' )'MJT

|

(3.92)

P
al

5

P
a,

)JT [-i,0)]

After substituting Equations (3.90) to (3.92) back into Equation (3.89), the corresponding
ith block element for the complex mode and the over-damped mode for both sides of the

resulting equation can be further manipulated as

™ 0 a, 0 T 0\(¢q] (T 0 b, 0 T 0)(q,
r, r. + r. r,
0o T 0 a 0 T)lq 0o T 0 b 0 T)l|q,
(T"I™™o. )¢ ™™MJIT
e (TN, (o, q
ai

[—ii, (1) ]

* TyT T
_2R{/11(T J™Mo, )(@/MJT)
al

|

TTJTMqaf.’)((cpf)TMJT)[_ij 0] (=12--N,)

a.
i

(i=1,2--N.)(3.93)

T' (1) o' T'T (4 +0lq’)= (

(3.94)

In Equation (3.93),
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(T"I"Mo, ) (T"3"Mo; ) (o/MJT)  A;(o/MJIT)

{TT 0] T[a OJ (T oj a a [a OJ a a
. T, =
o ) Lo o) o A(T'™Me,)  A(T'IMe;) (0 4 )| (o!MJIT) A (@!MJT)
a, 4 a a,
(o/MJT)  A;(o/MJT)
[ TI'™™Mg,  T'J'Mg’ ] a, g
(¢

-2, T'I"Me, -4, T"J"Mo,

'MIT) A, (@MJT)

*
a, a;

(T"9™™Me, )(¢/MJT) (T'J"Mg;)(¢!'MJT) 2;(T"I ™™g, )(0/MJIT) A,(T"I"Mg;)(¢!'MJT)
+ : - - :

a; a, a; a,

A, (T"I'Mo, ) (9 MJIT) 2,(T"I"Mg; )(¢!'MJT) (ﬂf)z(TTJTM(p[)((piTMJT) (4,) (T"I"Mo; )(¢!'MJT)
- : + :

a, a, a; a,.
T yT T * TyT T
R{(T J M(p,.)((pl.MJT)] _Re[ﬂi(T J M(p,.)((pl.MJT)}
al. a,.
=2 2 c Rﬁxé
* TyT T * TyT T
_Re[/ii(T J M(pl.)((piMJT)] Re[(/l,.) (173 M(pi)((p,.MJT)]
a, al.
(3.95)
and
(T"3™Mo, ) (T"3"Mo; ) (0/MJT)  2;(/MJT)

(TT 0 J . [bl. OJ [T ()J a, a, (—/1 a 0 J a, a,
e, r. =
o ) o p) "o A(TI™Me,)  A(TIMe;) [\ 0 -4/ ) (¢!'MJIT) A (@!MJT)

a; a; a, a;

_Re[ﬂi(TTJTM(pI.)((piTMJT)_ Re[a)l.z(TTJTM(pi)((piTMJT)

al. (li
=9 - c R%®
Re[wf (T"I M, )(¢}MJT)] _Re[a)f/i,.(TTJTM(pi )((p,.TMJT)]
ai a,.

(3.96)

Substituting Equations (3.95) and (3.96) into the left side of Equation (3.93) leads to:
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Re[wM«)(an)} _Re[ﬂr<TTJTM¢,~><<prMJT>]

4q;

2 _R{/Ij(TTJTM(Pi)((P,TMJT)} R{(ﬂj)z(TTJTD;)((DITMJT)} {:}

a; a;

AT ormar)| [ (1Mo )(ormat)
| | |

4; 4a;

a; a;

0 {q} (3.97)
Re[a)f(TTJTM(pi)((piTMJT)} _Re[a)fﬂf(TTJTM(pi)((p,.TMJT)} q,

a;

2Re[(T J M(p,.)((p,.MJT)}
= [-i ()] €eR°

* TyT T
_ZRelﬁi(T J Mq),.)((p,.MJTq
ai

Equation (3.97) corresponds to two equations. The first one is

T yT T * T yT T TyT T
2Re[(T J M(pi)(<piMJT)]qi_2Re[/1,(T J M(pi)((piMJT)}qi_zRe[/li(T J Mq)[)(quMJT)}qi
ai

a; a,

2 TyT T TyT T
+2Re[w" (T M(p")((p"MJT)} —ZR{(T ! M(pf)((piMJT)][d,-+(—A,.—/1f)('1,~+a)fq,-]

a; a,

}[q‘i +2f0,4, +a)1.2q,.]=2Re[(T ! M(pi)((piMJT)}[—iig(t)] eR’
ai

(3.98)

a;

_ ZR{(TTJTM(pi )(@MJIT)

while the second one is expressed as

4a; a; 4a;

—2Re

4q; 4a;

[ 2 a%(mTyT T #( T g T T
2T M(pi)((piMJT)}qf =—2Re[1[(T . M(Pi)((piMJT)}[d[+(—/1,-—/1f)<’1,-+w?q[]

. lij(TTJTM(pi)((piTMJT) AT I™Mo, (¢ MJIT)
=-2Re

. ][qi +2¢w.4q, +a)fql.] =-2 Re[ . ][—ﬁg (t)] e R’

(3.99)
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Comparing Equations (3.98) and (3.99), it can be easily found that they are identical

whether or not ((pl.TMJ T) is equal to the zero matrix, which can be simplified as a second

order equation of motion for a SDOF system with the ith modal frequency and damping

ratio:

i, +2{w.q, + w]q, =-ii, (1) (3.100)

For the over-damped modes, substituting Equation (3.85) into Equation (3.94), results in

(T"9"Mo] ) (@) MIT) (i +otar)= (T'3"Mo/) (@) MJT)

P
a. a.
i i

[—ii () ] (3.101)

If [((pf)TMJT];tO , Equation (3.101) can be further simplified as a first-order

differential equation for an over-damped mode

q; +o;q; =—ii (1) (3.102)

It has now been successfully shown that the general transformation matrix A, can

decouple the original MDOF structural motion differential equation represented in the

state space form.

3.5 Modal Static Response and Effective Modal Mass

When using the modal superposition method, the response contributions of all modes
should be included to achieve an exact result. However, experience suggests that a
limited amount of modes can usually provide sufficiently accurate results. In general, the
participating mass for a certain mode provides a measure of how important the mode is
for computing the response to seismic loads in each of the three orthogonal directions.
Note that there is no information about the accuracy of the responses subjected to other
loads. The number of modes required is well defined for classical damping using the
cumulative effective modal mass (Wilson, 2004; Clough and Penzien, 1993). The most
common criterion used is the “90% rule for participating mass” specified in many design

codes (IBC, 2003). For 3-D arbitrarily damped systems with over-critically damped
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modes, similar criteria have not been addressed. This issue is considered in this section.
First, the formulation of the effective modal mass and its physical interpretation in
classically damped systems is briefly reviewed. Then, a general effective modal mass is
formulated in a manner which has a parallel physical interpretation as in the classically

damped systems.

3.5.1 Effective Modal Mass for Classically Damped Systems w/o Over-Damped
Modes

The definition of the effective modal mass discussed in this section mainly follows the
work given in Chopra (2001). It is briefly reviewed to facilitate subsequent formulation
of the general effective modal mass. The equation of motion governing the response of a
planar N-DOFs multistory frame (as shown in Figure 3.5) due to earthquake induced

ground motion, X,(7), can be written as

M K(t) + Cx(1) + K x(£) = M I 5, (1) (3.103)

in which I is the unit vector with dimension Nx1 and x(¢#) is a NXI vector
representing the translational DOFs for each node. A classically damped system

possesses normal modes, which are re-denoted as ¢,€ R" in order to distinguish them
from the complex modes @, in the discussion. The spatial distribution of the effective

earthquake force is defined by s=MJ and is loosely referred to as a force vector,
although it has a unit of mass or can be considered as a force vector produced by unitary

ground motion acceleration by letting ¥,(#)=1. Further, it can be expanded as a

summation of the modal inertia force distribution s,

N N
s=MJI=>s,=> Mo, I, (3.104)
i=1 i=1
where
oMJ
r=— (3.105)
o, Mo,
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is the ith modal participation factor defined for classically damped systems. As a result,

the contribution of the ith mode to the nodal displacements x(¢) can be expressed by

4,(t)

Xi(t) = qu)z

(3.106)
w

where A4,(¢) is the pseudo acceleration response of an SDOF system with the ith modal
damping ratio, & , and the ith circular frequency, @,, subjected to X,(¢). Consequently,
the ith modal response contribution 7 (¢) to any response quantity »(¢) can be determined
by the static analysis of the structure combined with the dynamic response, 4.(¢), of the

corresponding SDOF. That is,
r()=r"A4.(1) (3.107)

where 7" denotes the modal static response due to external force s,. This is explained
schematically in Figure 3.6. The base shear due to the ith mode, V},, is obtained by

specializing Equation (3.107) for V:

Vo) =V A,(1) (3.108)
in which ¥} is the base shear force due to the applied force s, as shown in Figure 3.6
and can be expressed as

v (orma)’
Vbsit = zsji = JTsi = (I;TT(I)

J=1

(3.109)

where s, is the jth component of the ith external force s, . Equation (3.109) is also

recognized as the base shear effective modal mass for a classically damped system or, for

brevity, effective modal mass, which can be re-denoted as

(<1>TMJ)2
m"=2"_—' >0 eR (3.110)
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Vi
Figure 3.6 Illustration of the static structural response subjected to s,

It can be proved that the sum of all effective modal masses is equal to the total mass of

the system (Chopra, 2001 pp.524; Clough and Penzien, 1993 pp.627).

As a result, Equation (3.108) can be written as

V.(t)=m"A4.(t) eR (3.111)
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Equation (3.111) indicates that only the portion m;" of the total mass of the system is

responding to the earthquake in the ith mode. Therefore, the effective modal mass m™" is

commonly used as a criterion to determine how many modes should be included in the
modal superposition, e.g. the 90% rule of the participating mass specified in most seismic
design codes. The preceding formulation states that the effective modal mass for mode i

is equivalent to the static base shear force due to the external force s,. This implies that

the 90% rule used to determine the number of modes required in the analysis can only
guarantee that the base shear force under static external force has an error of less than
10%. For other response quantities, the error may exceed 10%. In addition, the modal

response is also affected by the dynamic response term A4,(¢) , which means that even if a

sufficient number of modes are included to achieve 90% of the total static response, the
error in the dynamic response may exceed 10%. Nevertheless, the effective modal mass is

still accepted in engineering practice for its simplicity.

3.5.2 Effective Modal Mass for 3-D Arbitrarily Damped Systems

This section presents two methods to define the effective modal mass for a 3-D arbitrarily
damped linear system. Method 1 follows a similar concept in the derivation of the
effective modal mass in classically damped systems by extending it in a 3-D space.
Method 2 is formulated based on the modal expansion pattern of the inverse of the mass

matrix given in Section 2.6.

Method 1

In light of the preceding explanation, only the portion of the static response is considered

as a way to define the effective modal mass for 3-D arbitrarily damped systems. Thus, the

central idea here is to expand the inertia force distribution s = MJ = M[J B gw g (Z)} in

terms of the complex modal shapes possessed by the arbitrarily damped systems for each

() ¢

mode as represented by s, = [s,. ( s,@] . This expanded s!*’ is therefore applied to the

structure along the & direction and the resulting static base shear force along the k&

direction is regarded as the effective modal mass of the ith mode along the & direction. To
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do so, the static displacement vector, denoted as u\” in which k€ {x,y,z}, of the systems

subjected to the inertia force distribution s’ =MJ™ is calculated. Consequently, the

static displacement vector ul is

u? =K"'MJ® eR" (3.112)

Substituting the expansion of K™ shown in Equation (2.48) into Equation (3.112) gives

Nc T (k) Np PrenP\T (k)
ug” :—22Re((p"(p"MJ J—Z(p"((pil), 1:/” (3.113)
4, i= 14

i=1 i

Equation (3.113) suggests that the static displacement contributed from the ith complex

mode (including its conjugate part), ul’, can be written as

ul) =2 Re(;} eR" (3.114)

Also, the static displacement contributed from the ith over-damped mode, u”", can be

expressed as

P PN\T (k)
ger —_9:(@) MIT oy (3.115)

y
' Ala’

Therefore, the contribution of the ith complex mode to the vector s’ = MJ* is

T (k)
s = Ku®) = 2Re [MJ e RY (3.116)
a

i

and the contribution of the ith over-damped mode to the vector s*) = MJ® is

Ko, (9;)' MJ*®
- Alal

sHP = Ku®F =

1

eR" (3.117)
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Summation of Equations (3.116) and (3.117) gives the complete expansion of

s =MJ™ . As a result, the base shear force due to the static inertia force s\ along the

k direction is

NC
Ot _ N (0 _ (O ()
I/bi - Sji _(J ) si
=

(k)\T T (k)
:—ZRe[(J )ij,-(l)iMJ J (3.118)
.A.

1l

Tor y(k) o T k)
:—2Re{(p"KJ o, MJ )GR

where sﬁ.f.‘) is the jth component of the ith external force s*’. The resulting base shear

(k)P

force due to the static inertia force s;"”" is

Np
(k)Pst __ (k)P _ yT_ (k)P
Vbi - zsji =J si
J=1

JD)' Ko/ (@) MJ®
__U7) 3}(;’) (3.119)
PN\T &) (¢ P\T )
ORI AU R
i ai
where ij.‘)P is the jth component of the ith external force s\"". Thus, in parallel to the

definition of the effective modal mass given for classically damped systems, Equation
(3.118) is then defined as the ith effective modal mass, m"*", associated with the ith
complex mode (including its conjugate counterpart) in the k direction and Equation

(3.119) is defined as the ith effective modal mass, m*™" , in the k direction for the ith

A (k)eff

over-damped mode. These effective modal masses m“*" and m®*"™"

in the k direction
are then sequenced in an ascending order according to the absolute value of their
corresponding eigenvalues (4, and A; ). The cumulative mass in the & direction based

on this sequence is used to determine how many modes will be required to reach the
prescribed participation mass ratio (e.g. the 90% rule). In general, the amount of modes

that can achieve 90% participating masses in all three orthogonal directions is used.
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Similar to the case of classically damped systems, the sum of all general effective modal

masses along the k direction is equal to the total unrestrained mass acting in the &

direction, M =(J*)Y'MJI? . That is,

Ne Np
DT+ m =M eR (3.120)

Equation (3.120) can be proven by recognizing that m®*" = (J*)"s* [Equation (3.118)]

and m™™" = (J*)s"" [Equation (3.119)], which implies that the sum of all effective

i=1 i=1

Ne Np
modal mass equals to (J*)" (Z s+ Zsf")"] =(J"™™MJP,

Method 2

Alternatively, the inertia force distribution s’ = MJ* along the k direction can also be
expanded in another pattern different from the one derived in method 1. First, the

expansion of the inverse of the mass matrix M~ shown in Equation (2.45) is repeated

here.

M =®a'AD'
—2211{’“"‘9 J Zﬂpw"((p )" g (3.121)

Post-multiplying by MJ* in Equation (3.121) results in

JO =@a'Ad'MJ”
K M APaPioPYTVI ) 3.122
_ZZR [/1([)([) MJ } Zﬂ’i(pi((pi) MJ cRY ( )

P
i i=1 ai

Thus, the inertia force distribution s*’ = MJ*’ € R" can be expanded as

p
i=1 i=1 i=1 a; i=1 a

i i

Ne Np Ne T (k) Ny 3P P/ ~P\T (k)
B - MJ® =ZS§“+ZS§")P =22Re(ﬂ"M(p"(p"MJ J_i_zﬁiM(Pi((P,-) MJ

(3.123)
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Therefore, the contribution of the ith complex mode to the vector s/ = MJ™ is

T (k)
sj’”:zRe(/IfM"’fq’fMJ ]E]RN (3.124)

a.

1

and the contribution of the ith over-damped mode to the vector s*) = MJ® is

o _ AMo[ (@) M

P
i a

1

eRY (3.125)

The resulting static base shear force along k direction due to s'* is defined as the ith

effective modal mass, m"*", associated with the ith complex mode (including its

conjugate counterpart). That is,

(k)st _ ~ (k)eff
Vbi =m

N
IR 3126)

Jj=1

T 0y \?
=2Re M cR
a.

1

(k)P

Also, the resulting static base shear force along the & direction due to s;"" is defined as

the ith effective modal mass, n%fk Pell associated with the ith over-damped mode

(k)Pst __ A (k)Peff
Vbi ’ _mi ¢
o k)P N\T (k)P
= s =I9)Ts (3.127)
j=1

| p P\T 72
=/1,»[(<pl~)apMJ ] R

1

Similarly, the sum of all general effective modal masses in the k direction is equal to the

total unrestrained mass acting in the & direction as

MP =Ty MI® (3.128)

55



Substituting Equation (3.123) into Equation (3.128) gives

Nc

M(k) _Z J(k))T (k)+Z(J(k))T (k)P

- - (3.129)

Nc

z (k)eff+z > (kPeff

i=1 i=1

A (k)eff

The proof is shown. Note that the m**" and m®*", formulated in methods 1 and 2,

may be positive or negative and are independent of how the mode shapes are normalized.
This indicates that the summation of the effective modal mass over modes may or may
not be monotonic, although the summation contributed from all modes converges to the
total mass of the system. In this study, the effective modal mass expressions derived in
both methods are considered as indicators to determine the number of modes required in
the superposition. The participating mass percentage rule used in classically damped
systems still applies in the 3-D arbitrarily damped linear MDOF systems. Table 3.1 gives
a summary of the expressions of the effective modal mass acting along the & direction
derived by methods 1 and 2, including the special case where classical damping is

observed.

Table 3.1 Summary of the expressions of the effective modal mass

Effective 3-D Arbitrarily Damped Systems Classically
Modal Damped
Mass Method 1 Method 2 Systems
et ,

1 2 T (k) T (k) T (k)
under | _ypo| (@TKIY)(@/MIV)) | [ 2 (@iMI")

damped A.a, a, . 2
Mode ((PI-MJ ( ))
sy opeft (pTM(p ‘

i s 2 i i
over- | _LOD'KIV][@)'™MI] | 2 (") ™MIV]

damped Alal a’

Mode

In parallel with the definition of classically damped systems, the effective modal mass

ratios for a 3-D arbitrarily damped system, R"") and R""  are defined as follows
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RY) = ® /g0 (3.130)

ROP _ A(k)Peff /M(k) (3.131)

Based on Equations (3.120) and (3.129), the following equation can be easily derived

ZR(") +ZR(")P =1 (3.132)

i=l1

3.6 Reduction to Classically Under-Damped Structures
The formulation above is applicable to all linear systems regardless of the damping
distribution. For a structure satisfying the Caughey criterion CM 'K =KM'C

(Caughey and O’Kelly, 1965) with an under-damped assumption (i.e.,

N.=N and N, =0), its mode shapes @, are real-valued and are consistent with its

respective undamped system. Consequently, Equation (2.17) can be reduced to
a,=@; (2AM+C)o, =2m, (4, +iw,) = j2ma, (3.133)

where m, =@ M@ R is the ith modal mass. Revisiting Equation (2.34), the residual

matrices become

T
R" =Re(%j=06 R™ and R —Im[(p(p j: 0.9, e]RNXN (3.134)
a. a. 2m.@,

1 l

Substituting Equation (3.134) into the displacement coefficient vectors as shown in

Equations (3.15) and (3.16), respectively, gives

A, =0 eR"™ (3.135)
T

B, =—20,RMJ = 2& M _ s (3.136)
m.

l
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where T, =@ MJ /ml.e R"™ is the ith modal participation factor vector defined for

classically damped structures. As a result, the displacement response vector u(z,6)

shown in Equation (3.43) reduces to

u(,0)= 3 0.1 T, (3.137)

With the same conditions and approaches used for deriving Equation (3.137), the

structural velocity u(¢,6) and absolute acceleration vectors u, (¢,6) can be obtained as

i(1,0) =3 9,114, (3.138)
i, (6)= Y 0 1 T[260,4,(0+02q,(0)] (3.139)

It may be observed from Equation (3.139) that the structural absolute acceleration of a
classical under-damped system is the summation of the absolute acceleration response of
a series of SDOF systems multiplied with their corresponding modal participation factors

and mode shapes.

3.7 Response Expressed in Terms of Seismic Incidence &

To show the incident angle & in the expression explicitly, Equation (3.61) is expanded

after considering Equations (3.2), (3.30) and (3.37) as

NC

1 (t,0) = z [A(oli) cosOq,,(¢) + Af)? cos g, (1) — Ag)]i) sinfq,, (1) + AE)? sin0gq,,(¢) + Ag)%i (t)}
pas
Ne

3| BY) cos g, (1) + By cos Oq,, (1)~ BY sin 0, (1) + B sin 6g, (1) + B ¢, (1) |
pr
NP
3 AL cos 0t (1) + AL 05 0%, (1)~ AL sin 0%, (1) + AL sin 0’ 1)+ ALV (1)

i=1

(3.140)

In the following derivation, it is convenient to rewrite Equation (3.140) in the following

form.
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,‘

r,(t,0) =

A(l)qlz (t)+Byq; (l‘)] + Z [Agfl)ql}: (t)] } cos®

M- 1M

+ A(z)qZZ (t) + Bﬁ)f)qh (t)i' I:Agz('Z)qZZ ):I } COS 9

LN

m

3.141
Ay (1)+ B g5, () ] + 2 Mgl (n)] tsin@ (3.141)

A }
ArPgr(t) }sm 0

Ne
+{ A(3)%1 (t)"'Bg)B,)%, (t)] +z Ap(s)%z (t)]}

i=1
N,

f')

+

2
3
=
P

[ [
Y[ AL (0 +Bg, (0] + Z[
[ [

Further, the first term on the right side of Equation (3.141) is defined as 7 (¢)cos@ .
1, () can be interpreted as the response resulting from the ground acceleration i, ()

applied in the X-direction. By analogy, the remaining four terms on the right side of

Equation (3.141) can be defined as r, (f)cos@ , r, (9)sin@, r ()sin€ and r,(7),
respectively. r, (¢) represents the response due to the ground acceleration i, (#) applied
in the Y-direction, r, (¢) represents the response due to the ground acceleration i, (7)
applied in the X-direction and 7 (¢) is the response due to the ground acceleration i, (¢)
applied in the Y-direction while 7, (¢) is the response due to the ground acceleration

Ui, (?) applied in the Z-direction. Hence, Equation (3.141) can also be expressed as

1y (t:0) =| 1, () + 73, (1) [cos O+ 1, (1) =1y, (1) [sin O+ 73, () (3.142)

As shown in Chapter 5, this expression is convenient for determining the peak response
within the entire response history when all possible angle & are considered (Lopez and

Torres, 1997).
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CHAPTER 4
DEVELOPMENT OF THE RESPONSE SPECTRUM METHOD

4.1 Introduction

In general, there is no need to know the complete response history of a structure for
design purposes. Instead, the peak value of the response parameters is the primary
concern. In earthquake engineering, the response spectrum method is commonly used as
an alternative approach to response history analysis for determining the maximum values
of the seismic responses of classically damped structures. In this method, the modal peak
responses are obtained using a prescribed response spectrum. These modal maxima are
then appropriately combined to estimate the peak values of the responses of interest. This
chapter presents a general modal combination rule for the response spectrum method
targeted for 3-D arbitrarily damped linear structures. The derivation is based on the
theory of the general modal response history analysis developed in Chapter 3, relying on
the fact that the strong phase of the ground motion is approximately stationary and a set
of orthogonal axes exist along which the three ground motion components can be
considered as mutually uncorrelated. As noted in Chapter 3, over-critically damped
modes may develop, such as for a building with added seismic response modification
devices. To account for the over-critically damped modes when the seismic inputs are
described in terms of response spectra, a new over-damped mode response spectrum is
introduced. It follows a similar concept as the conventional response spectrum and is able
to describe the peak modal response of the over-damped modes. The mutual
interrelationships between the modal displacement response and the modal velocity
response as well as the over-damped modal response among each mode are considered in
this general modal combination rule. This rule is also applicable to response quantities
other than nodal displacements by taking advantage of the unified form presented in
Chapter 3. In this study, the rule is referred to as the General-Complete-Quadratic-
Combination-3 (GCQC3) rule. In addition, to aid in practical engineering applications, a
transformation procedure to construct an over-damped mode response spectrum
consistent with the given 5% design response spectrum is established. The adequacy of

this transformation procedure is validated.
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4.2 Current Directional Combination Rules for Multi-component
Excitation

Multi-component ground motions should be considered in seismic analysis and design.
Most design codes specify that the contributions from each ground motion component are
combined through percentage rules or Square-Root-of-Sum-of-Squares (SRSS) rule.
AASHTO (2004) and Caltrans (2004) have accepted the 30% rule to be used in
directional combinations, while the SRSS rule and the 40% rule are suggested by other
codes and guidelines (Nutt, 1996; MCEER, 2003). The 2003 edition of the International
Building Code (IBC, 2003) requires the use of the SRSS rule or 30% rule. Another
commonly used rule is the CQC3 rule (Semby and Der Kiureghian, 1985), which
considers the correlations between each ground component. Among these combination
rules, the choice of the critical seismic input direction is not specified and is left to the

designers. These rules are described in the following subsections.

4.2.1 SRSS Rule

The estimate of the peak response R can be calculated by the square-root-of-sum-of-

squares rule as:

_ 2 2 2
R=\/R, +R,+R, (4.1)

where R, is the contribution to the response quantity R from the kth component of
ground motion (k ={X,y,z}). The basic assumption of this rule is the response quantities

R , R, and R, are statistically independent.

4.2.2 Percentage Rule

The percentage rule is considered to have originated from the work of Newmark (1975)
and Rosenblueth and Contreras (1977). The total response R is approximated by the sum
of 100% of the response due to the input in one direction and a certain percentage, ¢, of
the responses to the inputs in the other two directions. As a result, the following three
cases must be considered. The combination that gives the largest value is adopted for

design.
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R=R +aR +aR,
R=aR +R, +aR, 4.2)
R=aR +aR +R,

where o =30% or 40%.

Newmark (1975) used the percentage rule with o =40% as an alternative to the SRSS
rule. He explained that this method would be slightly conservative for most cases
compared to the SRSS rule and would be adequate as its degree of conservatism is
relatively small. Rosenblueth and Contreras (1977) suggested o =30% for regular
structures and o =50% for special structures in order to minimize errors. Note that the

percentage rules have no theoretical basis.

4.2.3 CQC3 Rule

Semby and Der Kiureghian (1985) proposed the CQC3 combination rule to consider the
multi-component excitation effects. The detailed formulation and features of CQC3 are
not addressed in this section as it is a special case of the general modal combination rule

developed in this study, as shown in Section4.4.3.

4.3 Ground Motion Model

Basically, earthquake-induced ground motion is described by a vector process consisting
of three translational orthogonal components. Penzien and Watabe (1975) have shown
that a set of orthogonal axes exist, along which ground motion components can be
considered as uncorrelated, and whose orientation remains reasonably stable during the
strong ground motion phase. These axes are called the principal axes of the ground
motion. It was observed that the major principal axis lies on the horizontal plane and is
directed toward the epicenter, the intermediate axis is perpendicular to the major axis
within the horizontal plane, and the minor axis is nearly vertical. Thus, based on their

study, the transformation, which is a rotation about the vertical axis, between the

components along the principal axes, U, (¢) =i, (¢) ,,(?) iig3(t)]T, and those along

.y [ .y oy T
the structure reference axes, ', (¢) =[u', (¢) ', () u',(¢)] ,canbe expressed as
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ii', (1) = Tii, (¢) (4.3)

T is the coordinate transformation matrix defined in Chapter 2. The correlation matrix

for the components of ground motion along the reference axes of a structure can be

written as
R, , =E[ii' i’ | = TE[i,i, |T' (4.4)
in which
E i, ()i, (¢) ] 0 0
E/ i, (0)ii; (1) | = 0 E iy, (t)ii,, (1) ] 0 (4.5)
0 0 E i (1)ii (1) |

is a diagonal matrix since the three components of ground motion, along with their

respective principal axes, are uncorrelated.

Each element in Equation (4.4), representing the cross correlation between each ground

motion component along the structure reference axes, can be written as

Bli', (0" (1) ] = B[ 1) (1) os” 0+ [ (1), (1) Jsin’ 0

B[,y (0ii'y, (1) | = E iy (0, (1) [ sin® 0+ E i, (0, (1) | cos™ 0

Bt it ()] = {E ity (03, (0) ]~ E i )iy (1) [} sim G050 (40
E [u 'gz (t)ii 'gz (t)] =E [iig3 (t)iig3 (t)}

Bl 0’ (0] = B[l i (0| = B (i o (0] = B[ (i (1) ] = 0

4.4 General Modal Combination Rule for Multi-component Excitation

A general modal combination rule for multidirectional excitation, based on the general
modal response history analysis derived in Chapter 3, is formulated in this section to
estimate the peak response using the response spectrum. Derivation of the modal
combination rule follows the theory of random vibration and Penzien’s ground motion

model.
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4.4.1 Definition of Vector Operation Symbols
Before developing the formulation, it is useful to define a number of vector operators for

convenience. They are:

« . Vector multiplication. For example, assuming that a , b and ¢ have the same
dimension, c¢=aeb means that each element in vector ¢ is the product of the

corresponding element in a and b.

(" or \/5 : Taking the square root of each element in the vector {} individually.

{}* : Taking the square of the element in the vector {} individually.
{}.. - Representing the peak response of each response history in the vector {}.

4.4.2 Modal Response to Stationary Excitation

Consider the input ground acceleration vector i, (#) as a zero-mean wide-band stationary

vector process. Based on the theory of random vibration, the responses of a linear
structure subjected to a stationary process vector are also stationary. For the following

derivations, it is convenient to revisit the following expressions shown in Chapter 3.

4,0 = ;hi(t—r)ijgk (r)dz (4.7)

gh(0)= [ b} (¢~ Dyiiy (r)d7 (4.8)
H(s=jw)= jf:h,,(r)ei“” di=-— +j2§jwiw+wi2 (4.9)
Hw(s:jCO):iji(jCO):_—a)2+j2i;)wia)+a)f (4.10)
H'(s=jw)=— (4.11)

jo+o!
In Equations (4.7) and (4.8), k=1,2,3.
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4.4.2.1 Displacement-Displacement Covariance

The displacement covariance produced by modes i and j subjected to ground acceleration

liy (¢) and ii,(¢) , respectively, are now examined. The covariance can be written as

E[qu (a0, = [ [ h@)h, (@) Eiiy (t-7)iiy (1= 7,) |drdz,  (4.12)

in which &,/ =1,2,3. Knowing that ground excitation i, () or i, () commences from
zero at the time instant /=0 (i.e. iy, (1) =0 or #,(t)=0 when £ <0), it is reasonable to

extend the lower limit of the integration to negative infinity as

E[q,0a,0]=["_[" h@)h @) E[ii,(t-7)ii,(t-7,) |dzdzr,  (4.13)

Now, suppose that the all ground motion components are white noise processes with zero

mean, described by a constant power spectral density S;. It follows that the term

E [ijgk (6 =7y, (1 — TZ)J becomes (Semby and Der Kiureghian, 1985; Zhou et al., 2004)

2nS,8(7, — 7,) k=1

E iy, (t=7,)iiy (t—1,) | ={ . ) (4.14)

where 0(7) is the Dirac function and is defined as follows.
) oo T= O
(1) = {O 720 (4.15)

and [ Td@ydr=1 (4.16)

In light of the inverse of Fourier transform, the Dirac function also can be expressed as

_ 1 e —jotr
8(7) = - j edw (4.17)
1 teo —jo(r,-7,)
or 6(71—72):2—j R ) (4.18)
-
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Substituting Equations (4.14) and (4.18) into Equation (4.13) and setting the upper

integral limit to infinity to retain the steady state response, Equation (4.13) becomes

E[qk[(oo)qu(ooﬂ = {Sojm (J.m h(z)e ™ d(:-l_[m hj (7,)e"" dfz)da) /;;j (4.19)

Making use of Equation (4.9), Equation (4.19) may be written as

S[7HGwH (~jw)dow k=1
RO = [ g, (e)g, (o) = o HG@H (Cjarde (420)
0 k#1
Define o as
Re[ H,(jo)H (-jo)dw
pDD _ —eo (4.21)

l] B Foo . . +oo . .
I G oo 1 GoH iode
Substituting Equation (4.9) into Equation (4.21) and using contour integration in the

complex plane yields

. 8.5 (r 48"
Y A=y Y HAE Ly Ay ) AEHEY

(7,=o,/w,, i,j=1,2,..,N.)
(4.22)

is the well-known displacement correlation coefficient originally derived for the CQC

rule (Der Kiureghian, 1981). As a result, Equation (4.20) can be written as

S
(K)DD i ,O?jD k=1
Rij = 2wiwj11wia)j§.§j (4-23)
0 k#1

Let i = j in Equation (4.23), the ith modal displacement variance can be obtained as

TS,
(kDD _ 0 k=1
R =128 0’ (4.24)
0 k#l
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Consequently, Equation (4.23) can be simplified as

' (kk)DD p(I1)DD DD _
(k)DD R R e k=t
R = o (4.25)
0 k#l (,j=12,..,N.)

4.4.2.2 Velocity-Velocity Covariance

Following similar procedures as the derivation modal displacement response covariance

R{""" | the modal velocity response covariance R{,’*" can also be derived as (Zhou et
al., 2004)
R,('f'l)vv - E[q'ki (=)g, (oo)]
_IS| o H o) H (-jodo k=1
0 k#l
mS, W el (4.26)
=12Jw0é8 "
0 k#l1
(kk) () —
_ |00 [REPRE p k=1 (i,j=1,2,...N,)
0 k#1
where
e Re Lo o’H (jo)H ,(-jw)do

Lo Gon o] o' o oo

_ 8JEE (& +y, )
(=2 +4E Ly, A+ y )+ A EH+ENY

7, =0@;, i,j=1,2,..,N.)
(4.27)

is the modal velocity correlation coefficient. A new parameter 4, is introduced and

defined as
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U _Py _Gtey
g /0,DJD §j+§[}/ij’

(i,j=1,2,..,N.) (4.28)

The modal velocity covariance Rffl YV can now be written as

(kk)DD (ll)DD DD _
RUDV _ {wwﬂ NRSTRT Py k=1 G210, N (4.29)

Y 0 k#l

4.4.2.3 Velocity-Displacement Covariance

Following the same steps as described above, the covariance of response produced by the

ith modal velocity and jth modal displacement is found to be (Zhou et al., 2004)

RIMP = E[ (), (=) ]

{Sj _](()H(_]a))H( jwydeo k=1

k#l1
5 g (4.30)
= a)a)
k#l1
R(kk)DDR(ll)DDpVD k=] ..
) . (j=L2...N
{ ker O &
where
" Rej JoH,(jo)H ,(-jw)dw

- @t o ionoy[” # (oH oo

40EE 0-1r)y? .
2 2 2 b (;/Ij:a)[/a)j) 19]21’2""’NC)
(- v +4E Sy A+ i)+ 4EH+EDY]

(4.31)

is the modal velocity-displacement correlation coefficient. Another new parameter v is

introduced and defined as
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VD

Pi; 1- 731’

v, =55 = ,
Lopy ey

(i,j=1,2,..,N.) (4.32)

Now, Equation (4.30) may be written as

(k6)DD 1p(//)DD DD _
RiPY ={a)ivij\/Rii ORjj Py K=l (=12, N,) (4.33)

k#l

Note that when i=j, the variance of the modal velocity response R'*V and the

covariance of the modal velocity and modal displacement response R'**" becomes
ROV Z TS0 _ 2 ptkio (4.34)
11 2a)l§l 1 11
and RWVP (4.35)

It is clear from Equations (4.34) and (4.35) that for an SDOF system, the velocity
variance and displacement variance are related by the squares of its natural circular
frequency, and the modal displacement and velocity response are orthogonal with each

other under the white noise excitation assumption. It may also be observed from

Equations (4.26) and (4.30) that the velocity covariance R'}”*" and the velocity-
displacement covariance R{/"*” can simply be expressed in terms of the modal
displacement variance R"'°”. They are connected by the two correlation coefficients

p;} and p'”. The presence of R"*" and R{"*" is due to the non-classical damping

effect, where vibration phase differences exist among each DOF.

4.4.2.4 Covariance Among Over-damped Modal Responses

To examine the covariance associated with over-damped modes (i.e., over-damped modal

response), the over-damped modal response covariance term is considered as follows
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R =E| ¢;,(0)g; ()]
I . 436
_Is[TH G0 oo k=1 o,y (4.36)
0 k1

Substitution of Equation (4.11) into Equation (4.36) and manipulation with contour

integration in complex plane leads to

218,

(k1)PP % k=1 ..

R = 0w+ o] . (1, =12,..N,) (4.37)
0 k=l

Similarly, considering the over-damped modal response variance by letting i = j leads to

R(kk)pp TE—S;? k:l .o
O = ] (57 =1,2,..N,) (4.38)
0 k=#I

Thus, Equation (4.37) can be rewritten as

(kk)PP p(II)PP PP _
me:{W Pl k=l 1o (4.39)

Y k#1

in which

Re[ " H!(jo)H] (-jw)de

PP _

pij - oo Foo
P, - P . P, P .
\/j_w H (jo)H! (—Ja))da)\/J._m H' (jo)H' (-jw)do (4.40)
2w w]
:ﬁ’ (i,j=l,2,...,NP)
W+,

is a newly derived correlation coefficient that accounts for the relationship between each

over-damped modal response.
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4.4.2.5 Displacement Over-damped Covariance

Similarly, the modal displacement and over-damped modal response covariance term can

be obtained as

RUPT= [qki («0)qy, (oo)]

_ {Sojf:Hi(jw)Hf(—jw)da} k=1

0 k#1
218, ~ (4.41)
_ 2 p P\2 k=1
- wi+2‘f;wiwj +(a)j)
0 k#1
JRWDD R o gy .
_ IR ; . (i=1,2,..N.,j=12,.N
{ o " ker e/ r)
where
Re[  H(jm)H! (-jw)dw
101.)1.)= —
H too . . +oo . .
I B Gom oo, [ H (o] oy )

20,28 0,0
N2 0, (i=12,..N.,j=12,..N,)

= 2 P PN2 2
w;+28,0.0; + ()

is the correlation coefficient which accounts for the correlation between the modal

displacements and the over-damped modal response.

4.4.2.6 Velocity Over-damped Covariance

By analogy, the modal velocity and over-damped modal response covariance term

E[ g,,()g; (¢) | will be of the form

72



Ri(]/'d)VP =E I:qki (oo)q; (oo):l

_ {So [ Hy(oH (-jo)o k=1

0 k#1
27ta)fS0 bl
=V w+28 0o + (@) B
i [ J
k#l1
RUOPPRUDPE )P pPP | =] . .
= ii i it s i=12,.N.,j=12,..N,
{ 0 Py ( c-J p)

(4.43)

Note that Equations (4.39), (4.41) and (4.43) are new relationships established in this

study to consider the presence of the over-damped modes.

4.4.3 Complete Quadratic Combination of Modal Responses

Consider a response 7, (¢) which has contributions from all N modes as shown by

r(6)=d"u, (1)

Ne . ) T Np Top b (444)
=Z[d A, Tq,()+d BOiTqi(t)]+zd A, Tq; (1)
i=1

i=1

The corresponding covariance or mean square response of 7, (¢) , is then given by

E[ 7 (t) | =E[d"u,()ug (0)d |
X X | A, TE[q,()4] (1) | T" Ay, + B, TE[ q,()a} (1) | T'B;,
= 7| +A,TE[ 4,(0q} (1) | T'B;, + B, TE| q,(1)q] (1) | T" Ay,
v e | A, TE[ q,(0(@)" (1) | T" (A7) + AL TE[ 4] (04,(1) | TTAj,

=d" d
+; JZ‘; +B, TE |:qi )(g;)" (¢t )] T'(Ag,)" +A,TE [qP (g, (¢ )] T'B,,

3> ALTE[q] (@) () ]T"(A} )"

J=1

(4.45)

Now, considering the modal covariance shown in Equations (4.25), (4.29), (4.33), (4.39),
(4.41) and (4.43) into Equation (4.45) leads to a matrix form as
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Ne N Ne N

E[r2()]=d" {ZZ PPPB, TR™ [R™ T'B!, +ZZ PP 0,0 A TR [R® TTAT,

i=l j=1 i=l j=1
Ne Ne

+3°3 pPPv, 0, A, TR /R T'B] +22p?% o B TR R T'A{

i=l j=1 i=1 j=1

+ZZpDPwPA T RDD RPP TT( ) +ZzplDPwPAP T R5P R[DD TTA&

i=l j=1 i=l j=1

+Z(ZPpIDPB T RDD RPP TT( ) +ZZP::0,DPAP T R.l;P R,]')D TTBg

i=l j=1 i=1 j=1

i3S AT JRE JRT TT(Agj)T}d

i=l j=1

(4.46)

In Equation (4.46), R"® = diag[R\"""] and k =1,2,3, and R“"" is variance of the ith
modal displacement response subjected to excitation component k. R} = diag[ R\"'™ ]

and R™"™ is variance of the ith over-damped modal response subjected to excitation

component k.

It has been shown in Davenport (1964) and Vanmarcke (1972) that the maximum modal

response over a specified duration is proportional to its root mean square, i.¢.,

o [ 15 (ki)DD
max S = Pin R
P QP _ (kk)PP
max Si =D \ R;

in which S, is the spectral displacement associated with mode i under kth excitation

|9,(t)
|9,(0)

(4.47)

component and S; is the spectral over-damped response associated with the over-
damped mode i under kth excitation component. The numerical value of p,, in general,

does not differ greatly in magnitude from mode to mode. Thus, in engineering practice, it
is reasonable to assign the same value to p, for each mode and for the combined
responses. This assumption is also assumed to be applicable to the over-damped mode

case. Thus, one can express maximum values of modal response through their

corresponding response spectral values for the specified excitation component. The

diagonal matrices are defined asS, =diag[S,,] and S; =diag[S,], k=1,2,3, and the
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maximum value of the response |r0 (t)|max , denoted as R, can be expressed as in the

following matrix form

R;=d'Zd
(4.48)
:dT(ZDD _I_Zvv +ZVD +ZVP +ZDP +ZPP)d
where
2=7""+7"" +2"° +Z" + 72" +Z" (4.49)
Ne Nc
DD DD TTpT
Z°° =3 p’°B, TS ;S T'B;, (4.50)
i=l j=I
Ne Ne
" = Zzpf[;DﬂuwiijOfT S, S;T'A, (4.51)

i=1 j=1

Ne N
2" =33 00,0 A, TS STT'B; +p v,0 B, TS ST'A} | (452)

i=l j=1

Ne Np
27 =3 > ool | 4TS (S]) T (A) +ATS]SITAL | (453)
=1 =l
Nc Np
2" =330l [BO,T S,(S7) T'(A%,) +ALT SiSiTTTBgl} (4.54)
=1 j=1
NN PP PP (P T (AP )T
7= pTALTS!(S") T (A)) (4.55)

i=1 j=1

Equation (4.48) is referred to as the General Complete Quadratic Combination rule for
three-component excitations, denoted as GCQC3. In addition, in order to express the

incident angle variable 8 explicitly, the transformation matrix T is considered and

DD DD

S, =diag[S,] , S; =diag[S;] , @ =diag[w,] and o’ =diag[w’] . p” =[p;’] ,
p” =[], p"=p] . n=lg,] . v=[v,], B =[BY] , A =[A})] and

AL =[A?M]. Equation (4.48) is rewritten in a different matrix form as
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R}

where

Vi=—> (-1

=[r @), =d"(V,+V,sin’ @+ V,sinfcos0)d =d"Vd

BLS,0”S] (BYY) + AL, 0(nep™)o'S] (A’

+Af)k)Sk(0(l)0 pDD)SZ (ng) )T + Bf)k)sk(ﬂ(lﬂ pDD)SZ (Aék) )T
T T T

+ALS,0°p™ (87) (AX9) + AZOST0 ST (AL)

+B0S,p™ (1) (AIV) +AIVSIp™S] (B}")

_+A0P(k)S,l:pPP (s') (Ab®)

B T AT
BYSp™S] () + ALS o ep™o'S] (A1)

+AS 0(vep™)S] (B)) +B(’S m(vep™)s] (A)")

—D" | +APS,0"p™ (S) (AN + ARVST0p"'ST (AL)'

+BYISp™ (37)" (AL)" + ATsTpPS (B

A (s1) (A7)

BY'S,p™S] (BX)' +BLS,p™s] (B

+ALS, (e p™)0'S] (AP) +APS,o(nep™)o'S] (A)
+AS, 0(vep™)S! (BY) +B'S,m(vep™)s! (AV)'
+A"S, o(vep™)s] (B )T +By’S,0(vep™)S; (A )T
+APS, @p™ (S (AF?) +AVSI0"p™'ST (AP)

+APS, 0™ (ST) (ANV) + AXIS " p ST (A
+BS,p™ (') (A + ALUST ' p""ST (BX)'

VB, p™ (57)' (AT) + ATOSTa’p'S] (B

ALUSIpST(ALY) +AIPSIp™ (ST) (AL”)
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(4.57)

(4.58)

(4.59)



V=V,+V,sin’ 6+ V,sinfcosb (4.60)

Equation (4.56) can be expanded alternatively as

R2 = (fo +R§y)cos2 9+(ij +R]2y)sin2 0+2(R]xy —Rm)sinecosmza; (4.61)
in which

Ne Ne
2 _ DD 1AM MM MM
ka - zzpij |:luijwia)jA0iA0j +B0i BOj +2Uija)iA0i BOj :|Ski Slg
i=l j=1
Nc Np
DP P A (1) A P(D) (1) A P(1) P
233 o [ ADALY +BYAL ]S, S) (4.62)

i=l j=I

NP NP
PP A P(1) A P() QP QP
+zzpij Ag Ay S Sy

i=1 j=1

NC NC

2 _ DD 2)A(2) 2)R2) 2)R?2)

Rky _zzpij [ﬂija)iijOi AOj +B0i BOj +2Uija)iA0i BOj :|Ski Skj
i=1 j=1

NP

o [ AQAL +BOAIO ]S, S° (4.63)
1

Ne
+2)°
i=1

NP NP
PP A P(2) A P(2) QP QP
+zzpij Ao Aoy Sk Sy

i=l j=1

Jj=

Ne Ne
— DD M A (2) MR HR®) QORrM
R, _Zzpij |:luija)ia)jA0i Ay, +By/By; +Uijwi(A0i By, + Ay Boj)j|Ski Sy
i=l j=1
Ne Np
DP P (1) A P(2) (2) A P 1) A P(2) (2) A P P
223 P [0 (AGALY + ADALY )+ BUANY +BYALY |S, S) (4.64)

i=1 j=1

Np Np
PP A P(I) A P(2) oP P
+2. 2P AGALY S Sy
=l j=1

and
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Ne Ne
2 _ DD BG)AB) GRA GCRA
R} =% pPP| .0 ADAS) + BBy +20,0,A50BE) |8, S,
i=1 j=1

J
N~ N,
23S o2 [ ADAT L BOAPO ]SSP 4.65
ZZPf.f W; Ao Ao 0i 3o; |3 93 (4.65)
=1 j=1
NP NP

PP A P(3) A P(3) P oP
+zzpijA0i AOj S3iS3j

i=l j=1

R, and R, are the peak responses when the spectrum S, acts along the structure
reference axes X and Y, respectively. R, is a cross term considering the effect of the
cross relation between responses R, and R,  on the total response. The term-by-term

expression of Equation (4.61) represented in a tabulated format is given in Table 4.1. In
Table 4.1, the sum of Row 1, d"Z""d, represents the responses contributed from the
modal displacements; the sum of Row 2, d"Z"Vd, represents the contributions of modal
velocities; the sum of Row 3, d"Z""d, shows the contribution and the effect of the cross
relation between modal displacement and modal velocity; the sum of Row 4, d'Z""d,
accounts for the effect of the cross relation between modal velocity and over-damped
modal response; the sum of Row 5, d"Z""d , is used for the influence of the cross relation
between modal displacement and over-damped modal response, and the sum of the last

row, d'Z™d, represents the responses contributed from over-damped modal responses.

2
1x

The sum of columns 1 and 4, (R’ cos’ 6’+R12y sin® @), stands for the response resulting

from excitation component 1. The sum of columns 2 and 3, (R, sin26+R22y cos’ 0),

stands for the response resulting from excitation component 2. The sum of column 6, R;,

stands for the response due to excitation component 3. The sum of column 5,

2R

'\ — Ry, )sinfcosd, is used to account for the cross relation between responses due

to excitation components 1 and 2. Thus, it is clear from Table 4.1 that the new GCQC3
not only considers the correlations between modal responses but also the correlations

between excitation components.
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4.4.4 Identical Horizontal Response Spectra

In most design codes, only one response spectrum is specified for a given site while the
direction of the ground motion is not specified. Therefore, it is common in practice to
assume that the two horizontal orthogonal components have identical spectral shapes but

different intensities. This intensity ratio is represented by ¥ as

(0<y<l) (4.66)

Based on this assumption, the following relationships can be established: Rzzy = ;/2R12y,

R} =y’R’.,and R

= ylexy. Using the expressions in Equation (4.61), it is simplified

2xy

as

R = (RL+7°R’)cos’ 0+ (y° R +R})sin’ 6+2(1- y*)R,, sinOcos O+ R; (4.67)

It can be found that when using identical response spectrum in both horizontal directions,

i.e. y=1, the response quantity is independent of the incident angle 6 and the

correlations between excitation components disappear. This finding was also pointed out

in a number of studies (Wilson et al., 1995; Lopez and Torres, 1997).

4.4.5 Uniformly Distributed Incident Angle

In most instances, it is reasonable to assume that the seismic incident angle & is

uniformly distributed among [0, 27z]. Hence, the probability density function of 8, f(8),

is
)=, o<o<2z (4.68)
27
Thus, the mean value of R}, R}, can be determined by

R:=| Oz”Rg £(6)do (4.69)
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If the response R is represented by Equation (4.56), Equation (4.69) becomes

R; :dT(Vl +%V2)d (4.70)
If Equation (4.61) is used to represent the response R;, Equation (4.69) becomes

1
R’ :E(fo +Ry, + R+ R )+ RS (4.71)

Note that the terms, V, and 2(R1xy —szy), which represent the correlation between the

excitation components along the structure reference axes, disappear after the integration

over #. When the two horizontal response spectra are related by an intensity ratio y

shown in Equation (4.66), Equation (4.71) is simplified to

R’ :%(Hyz)(fo +R.)+R;] (4.72)

Equation (4.72) is useful in practical applications since only one response spectrum is
specified in the design codes, and the principal directions of the seismic input is usually
unknown and can be considered as uniformly distributed (Semby and Der Kiureghian,
1985).

4.4.6 GSRSS3

When the frequencies of the contributing modes are well separated, the cross terms in

Equation (4.61) are negligible. Equation (4.61) can still be represented as
|r0 (t)|im = (Rlzx + Rzzy ) cos’ 6+ (R;X + Rlzy )sin2 0+2 (Rlxy -R,, ) sin@cos O+ R;
However, R,fx s R, R, and R32 , respectively, now reduce to

N,

C Np
R =Y [ (ALY +BY) |52+ (AN S!) (4.74)
i=1

i=1
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Nc

R, =[] (AY)) +(BY) ]S, +Z(A§§2) st) (4.75)
i=1
Nc
A(l)A(2) +B(1)B(2) S2+ AP(I)AP(2) 4.76
R, = [} ] Z (si) (476)
Nc Np )
R = Z[a) (ADY +BY) |5+ (A S7) (4.77)

i=1
Equation (4.73) combined with Equations (4.74) to (4.77) is referred to as the General

Square-Root-Sum-of-Squares rule for three-component excitations (GSRSS3).

4.4.7 Investigation of the Correlation Factors

The correlation coefficients o1, o), p,7, p;} and p;; for response to white noise

input are presented in Figures 4.1 to 4.5, respectively. Each correlation coefficient was

plotted against the ratio @, /a)j for certain representatives of damping. Figure 4.1 (a)

compares the piDjD variations for different levels of damping, in which the modal

damping ratios of the ith and jth mode are the same; whereas Figure 4.1 (b) compares the

p?jD variations when the ith and jth modal damping ratios are not equal. It is observed
that ,0 P becomes smaller as the two modal frequencies @, and @, move apart. This is

particular true for small damping values. However, the ,OB.D does not diminish rapidly

when one of the modal damping is significantly large. This implies that heavily damped

modes may have strong interaction with other modes. Similar results can also be found

for the velocity correlation coefficient p?’jv shown in Figure 4.2. Figure 4.3 shows the
variations of the velocity-displacement correlation coefficient ,oxD. It can be seen that the
variation of ,Ol.V].D is quite different from the displacement correlation coefficient p?jD It
has a negative value when the ratio ), / o, 1s greater than unity. This negative correlation
exists between complex modal displacement and complex modal velocity. When @, / o,

is equal to unity, p'°

ij

is zero. This result is reasonable since the complex modal

displacement and velocity belonging to the same mode are independent under the white
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noise input assumption. The value of ,01.\3.1) is significant when ), / o, is less than unity,

indicating that the correlation between modal velocity and displacement should not be

neglected. Figure 4.4 shows the variation of p; with respect to the ratio @, / w; . It is
DP <. . .

found that the values of p;; are significant, especially at large damping levels. Also,

,0?;’ grows as the ratio o, / a)jp approaches two and decreases slowly beyond that value.

Figure 4.5 shows that the variation of pIPJP is not related to the damping ratio and remains

a significant component across the range of the ratio @' / a)f . The results shown in

Figures 4.1 to 4.5 suggest that over-damped modes may have strong contributions to the

structural responses and should be considered in the combination rule.

4.4.8 Reduction to Classically Under-Damped Systems

A MDOF structure that is a classically under-damped system is considered next. Any of

its responses expressed by Equation (4.61) can be simplified as

@] = (R% +R;,)cos” 0+ (R;, + R’ )sin’ +2(R,, — R, )sinOcos 6+ R; (4.78)
in which
2 e DD 1 1
Rk:x = zz ij B(()I)BE)/)Skz Sk] (479)
i=l j=1
N N
: . =2 prPBYBYS, S, (4.80)
i=l j=I
b DD 1 2
, R, =22 P ByB(S, S, (4.81)
i=l j=1
N N
and R =YY pPBUBYS, S, (4.82)
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Figure 4.1 Correlation coefficient o for responses to white noise excitations

84



—— £=£=08
———- E=£=0.5
— — £=£=02
— £=£=005

\\ |
\~
_____ \_\
-———— ______=- ]
8 10
1 , , : :

S e £=05, £=08

— §=02, £=05
08| ;:' \\ ---- £=02, éj: 0.8
: v £,=0.05,£=0.2
! — — £=0058=05

\ \
\ N
- £=0.05,E=08

(b)

Figure 4.2 Correlation coefficient px.v for responses to white noise excitations
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Figure 4.3 Correlation coefficient ,0;’}3 for responses to white noise excitations
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4.4.8.1 Planar Frame subjected to Single Direction Excitation

When a structure is a two-dimensional frame subjected to a single direction excitation,

the peak displacement response vector |u(t)|max , the peak velocity response vector

|1'1(t)|max and the peak absolute acceleration vector |ii A (t)|max can be estimated by

N N
o). =[S 20000 155, s
=1 =1
N N DD
u (@), = \/ZZ'M!’/"OU 0.°0,I'T 00,55, (4.84)
i=1 j=1
N N o o
|uA(t) max :\/ZZO-ijpij Firj(pi.(pjwj a)jS,‘Sj (485)
=1 j=1

where

0, =1+41Llij§i§j +4Uij§i

_ Si¥y 466,76 +§/’yij)+é:i(2_%j)’ (G,j=12,.,N) (4.86)

Vi +87))

@, is the ith undamped mode shape, T, = @/ MJ / @, Mg, is the ith modal participation
factor and S, is the spectral displacement of mode i. Note that Equation (4.83) coincides

with the conventional CQC rule, as expected. Equations (4.84) and (4.85) are newly
established formulae to evaluate the peak velocity and peak absolute acceleration of

classically damped structures, respectively. As is well known, the pseudo velocity S,
and the pseudo acceleration spectra S;,, associated with the ith mode can be written as
Spy; =®,S, and S,,, =w?S,, respectively. Thus, Equations (4.84) and (4.85) may be

expressed as

()

N
ST S, 457)

i=l j=
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i, (1)

N N
max \/ZZo;j,ozD(p[-(ijiFjSpAiSPAj (4.88)

i=l j=1

It is seen that, when using the pseudo velocity spectra to estimate the true peak velocity,

the results should be modified by the factor 4, in the combination rule. Also, when

using the pseudo acceleration spectra to estimate the true peak absolute acceleration, the

results should be modified by the factor o, in the combination rule. These important

features offer improved estimates on the true relative velocity and true absolute
acceleration of classically damped structures and should be very useful in earthquake

engineering applications.

4.4.8.2 Under-damped SDOF System

Further, if the system is an under-damped SDOF system, the estimation of the peak

absolute acceleration, S, , can be approximated by customizing Equation (4.88) as

S, =+1+4£°8,, (4.89)

This formulation provides an efficient and reasonable transformation between the pseudo
acceleration and peak absolute acceleration. This relationship was also earlier derived by
Song et al. (2007a). The applicability and accuracy of Equation (4.89) was also examined
in their study. The result shows that when the damping ratio is less than 40% or so,

Equation (4.89) provides excellent estimates.

Furthermore, Equation (4.89) is equivalent to the formula proposed by Tsopelas et al.
(1997), which predicts the maximum acceleration based on a given pseudo acceleration.
It was developed under the assumption that during the cycle of maximum response, the
SDOF system undergoes a harmonic motion with the natural frequency of the SDOF. The

equation of this method takes the form of

Sy = (f] + 2‘§f2)SPA (4.90)
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where £, =cos[tan”'(2£)] and f, =sin[tan"'(2£)] . The physical meaning of this
equation is defined in Tsopelas et al. (1997). If @ =tan™'(2£), then f; =cos@, f, =sin&

and 2¢ =tan 6. The square of (f; +2£f,) is manipulated as follows.

(f, +2£1,) =(cos O +2&sin B)’
=cos’ @+4&cosOsin @ +4E(1—cos’ 6)

=cos” @ +2tan @ cos@sin O +4E —tan® O cos” O (4.91)
=cos’ @+2sin’ @ +4&° —sin® 0
=1+4¢?

Equation (4.91) shows that Equations (4.89) and (4.90) are identical, while Equation

(4.89) is easier to use in the engineering applications.

4.5 Over-damped Mode Response Spectrum (Song et al., 2008)

Because the peak over-damped modal responses are not available when performing
response spectrum analysis in engineering practice, it is necessary to predict them from
the prescribed 5% pseudo-acceleration response spectrum. Thus, a new ‘over-damped
mode’ response spectrum is introduced in this study. The over-damped mode response
spectrum follows a similar definition as the conventional response spectrum used in
earthquake engineering. The objective of the over-damped mode response spectrum is to
account for the peak over-damped modal response of structures that have over-damped
modes. The interpretation of the over-damped mode response spectrum and an approach
that is able to convert a given conventional response spectrum to an over-damped mode
response spectrum are described in this section. Validation of the adequacy of the

proposed over-damped mode response spectrum conversion approach is also given.

4.5.1 The Concept

Before discussing the over-damped mode response spectrum, it is helpful to briefly
review the concept of the conventional response spectrum. Consider a SDOF under-

damped system subjected to a ground motion X,(¢) . The equation of motion can be

written as
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(1) +280,4(1) + w,q(1) = =%, (1) (4.92)

where ¢(¢), ¢(t) and g(¢) are the relative displacement, velocity and acceleration,
respectively; & is the damping ratio and @, is the natural circular frequency of the SDOF
system. The conventional response spectrum is constructed by performing a series of
linear response history analysis to a SDOF system under a given ground acceleration
X,(t) . The response spectrum is a plot of the peak values of a response quantity as a
function of natural vibration period 7, (or corresponding natural circular frequency @,).
Each plot is for a SDOF system having a fixed damping ratio £, and a number of such
plots for different values of & are included to account for the effect of viscous damping

encountered in real structures (Chopra, 2005).

The response of an over-damped mode is characterized by the following linear first order

differential equation

§"(O+w"q" (1) =-%,(1) (4.93)

where ¢"(¢) is the over-damped modal response and ¢ (¢) is the time derivative of

q"(t), and @" is the “over-damped modal natural frequency” (rad/sec ) corresponding to

the real eigenvalues, solutions of the eigen equation. Similar to the concept of

conventional response spectrum, the over-damped mode response spectrum is defined as

a plot of the peak over-damped mode responses ¢" (), as a function of the over-damped
modal frequency @" or the over-damped modal period T'=27z/@" under a given
ground acceleration via Equation (4.93). Unlike the conventional response spectrum,
there is only one parameter, @’ , influencing the response. The procedure to construct the

over-damped mode response spectrum is illustrated in Figure 4.6, and it consists of the
following three steps: (1) select the ground motion to be considered (as seen in Figure 4.6
(a)); (2) determine the peak over-damped modal responses represented by Equation (4.93)

using the selected ground motion for different over-damped modal frequencies (see
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Figure 4.6 (b)); and (3) the peak over-damped modal response obtained offers a point on

the over-damped mode response spectrum as shown in Figure 4.6 (c).

0.4
o0
%0 — 'O+ a’q" (1) =—%, (1)
-0'4\ L L L L L L L ]
0 10 20 30 40
Time, sec
(@) 10 9.08
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100, ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40
Time, sec
40 o 101
2 | o479 P=2nx10 rad/sec
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é S0t ‘
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E 236 wP=27%x20 rad/sec
wal bty
0 | | | _10\ | | | | | | | )
0 10 20 30 0 10 20 30 40
Over-damped Frequency, Hz Time, sec
(c) (b)

Figure 4.6. Generation of the over-damped mode response spectrum

4.5.2 Construction of Over-damped Mode Response Spectrum Consistent with 5%
Displacement Response Spectrum

The construction of the over-damped mode response spectrum relies on the availability of
the ground acceleration history. However, when using the response spectrum approach,
site response spectrum specified in design provisions is used rather than the ground
acceleration histories. Therefore, the over-damped mode response spectrum cannot be
directly generated due to the unavailability of ground acceleration records. In this study,
an approach based on the theory of random vibration is developed to address this issue,
by assuming that the ground excitation can be considered as a wide-banded stationary
Gaussian process. In this approach, the input excitation and responses are represented in

terms of their respective power spectral density (PSD) functions. For a linear system, the
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PSD of a response is the product of the response transmittance function and the PSD of
the input process. Further, most structural responses can be characterized by their
corresponding response PSD functions. For example, the root mean square (RMS) of a
response process is the area under its PSD (Der Kiureghian, 1980). In addition, it has
been shown in Davenport (1964) and Vanmarcke (1972) that the peak value of a response
process can be related to its root mean square by a proportional factor. From the above
considerations, the following procedure is established. First, the ground motion PSD
mapped from a given 5% damping displacement spectrum can be established, which is
independent of the characteristics of the SDOF systems. Second, this ground motion PSD
is used as a base to predict the over-damped mode response spectrum. This proposed
approach is based on the work by Song et al. (2007a) to construct the real velocity
spectrum from the given 5% response spectrum. The detailed procedures are described in

the following subsections.
4.5.2.1 Response Spectrum Consistent PSD Gxg (w)

A reasonable estimate of ground motion PSD, G, (a)), consistent with a given 5%

displacement spectrum, was proposed by Song et al. (2007a) as follows.

_0.187 (0,5%) @’

4.94
o (0,5%)n (454)

G, (@)

where S, (w,5%) represents the given 5% displacement response spectrum as a function
of w.a(w,5%) is a factor that relates the standard deviation or root mean square (RMS)

o(w) of its response process to its peak response as

S, (0,5%) = a(w,5%)x o(w) (4.95)

Values of a(w,5%) determined numerically by using a group of artificial white noise

processes can be found in Song et al. (2007a). The applicability of Equation (4.94), along

with the white-noise-determined /(w,5%), has been shown to be appropriate when used

to estimate the real spectral velocities (Song et al., 2007a). This response spectrum
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consistent PSD Gx.g(a)) will be used to develop the over-damped mode response

spectrum described in the next subsection.

4.5.2.2 Procedures

From the over-damped mode equation of motion given by Equation (4.93), it is easy to

obtain the over-damped modal frequency response function, H" (a))=—1/ (0"+jw) .

Under the wide-band stationary input process assumption, the PSD, qu , of the over-
damped modal response can be related to ground motion PSD G).ég (w) via the frequency

response function, H' (w), as

G, =|H" (@) xG, () (4.96)

Then, the standard deviation or RMS, O of the over-damped modal response may be

obtained through

O-;P - J.ooo qu (o)dw
. i (4.97)
= j 0 | ()| G, (w)Mdw

Further, the peak value of the over-damped modal response ¢’ (¢) can also be related to

its RMS o by a different proportional factor 7(@")

4" ()| =n@")xo (@) (4.98)

where 7(w") is a proportional factor by which the standard deviation must be multiplied

to account for the expected peak over-damped modal response. The derivation of 7(w")

is provided in the following subsection.
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4.5.2.3 n Factor Determination

Based on the definition of 77, it may be determined numerically by investigating the ratio
between peak value and RMS of the response solved from Equation (4.93) while

considering the excitation X,(¢) as an artificially generated white noise process for each

over-damped modal frequency @" of interest. The generated white noise has a duration

of eleven seconds and a 0.005 sec time increment. A total of 15,000 response history

analyses via Equation (4.93) were performed (corresponding to 150 over-damped modal
frequencies @" logarithmically spaced between 0.1 Hz and 30 Hz and 100 artificially
generated white noise inputs). Mean peak over-damped modal response and its RMS
were obtained for each over-damped modal frequency w". The 7 factor was then
determined based on the ratio of these two values. The resulting # factors are tabulated

in Table 4.3 while Figure 4.7 shows the plot of 7 as a function of the over-damped
modal frequency @" and the over-damped modal period 7" . These 7 factors are termed

as white-noise-determined 7 factors. Note that 77 factors are readily available in advance

of the construction of the over-damped mode response spectrum and do not favor any
ground motion records. Finally, the procedure to construct the over-damped mode

response spectrum is illustrated schematically in Figure 4.8.

20.1 | 1 | 10 | 100 %.01 0.1 1 10
o’/2n, Hz T, sec
(a) Against over-damped frequency (b) Against over-damped period

Figure 4.7. Variation of n factor for the over-damped response
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Table 4.2. White-noise-determined 7 factor for over-damped modal response

P

P

P

w n w n w n w n w n w n w n
063 255 | 146 281 | 339 304 | 786 328 | 1825 341 | 4236 3.50 | 9833 3.43
065 256 | 152 282 | 352 305 | 817 328 | 1896 341 | 4401 350 | 102.1 3.42
068 257 | 157 283 | 3.66 3.07 | 849 329 | 1970 342 | 4573 3.50 | 106.1  3.41
070 259 | 1.64 284 | 380 3.08 | 882 330 | 2047 343 | 4751 351 | 1102 3.41
073 260 | 1.70 285 | 395 3.10 | 9.16 331 | 2127 343 | 4937 351 | 1146 3.40
076 261 | 1.77 286 | 410 3.11 | 952 332 | 2210 344 | 5129 351 | 119.0 3.39
079 262 | 184 287 | 426 3.13 | 989 332 | 2296 344 | 5329 351 | 1237 3.38
082 264 | 191 288 | 443 3.14 | 1028 333 | 2385 344 | 5537 351 | 1285 336
085 265 | 1.98 289 | 460 3.15 | 10.68 3.34 | 2478 344 | 5753 351 | 1335 335
089 266 | 206 290 | 478 3.16 | 11.09 334 | 2575 344 | 5978 351 | 138.7 3.34
092 267 | 214 291 | 497 3.7 | 11.53 335 | 2676 345 | 62.11 351 | 1441 332
096 269 | 222 292 | 516 3.18 | 11.98 336 | 2780 345 | 64.54 351 | 1498 3.31
099 270 | 231 293 | 536 3.19 | 12.44 336 | 2889 346 | 67.05 3.50 | 1556 3.29
1.03 271 | 240 294 | 557 320 | 1293 337 | 3001 346 | 69.67 350 | 161.7 3.28
1.07 272 | 249 295 | 579 321 | 1343 337 | 31.18 347 | 7239 349 | 168.0 3.27
112 273 | 259 296 | 601 322 | 13.96 338 | 3240 347 | 7522 349 | 1746 325
1.16 274 | 269 297 | 625 323 | 1450 338 |33.67 347 | 78.15 348 | 1814 3.24
120 275 | 280 299 | 649 324 | 1507 339 | 3498 348 | 8120 348 | 1885 3.22
125 276 | 291 299 | 674 325 | 1566 339 | 3634 348 | 8437 347

130 277 | 302 3.00 | 7.01 325 | 1627 339 |37.76 3.48 | 87.66 3.46

135 278 | 3.14 301 | 728 326 | 1690 340 | 3924 349 | 91.08 3.45

140 279 | 326 3.03 | 756 327 | 17.56 340 | 40.77 349 | 9464 3.44

w" = over-damped modal frequency (rad/sec)
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Figure 4.8 Over-damped response spectrum conversion procedures
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4.5.3 Validation of the Over-damped Mode Response Spectrum

In order to demonstrate the accuracy and applicability of the proposed approach to
convert the given 5% displacement response spectrum to the over-damped mode response
spectrum, the exact mean over-damped mode response spectrum and the estimated over-
damped mode response spectrum constructed according to the proposed procedures were
compared using real earthquake events. Two far-field ground motion ensembles are used
in this study. The first, ensemble A, is the ensemble used by Vamvatsikos and Cornell
(2004). Detailed information about the records is tabulated in Table 4.3. These records
are selected to have large magnitudes of 6.5 to 6.9 and moderate distances from the fault
recorded on firm soil. Near-fault data are excluded. The second, ensemble B, is a set
containing 50 far-field ground motions used by ATC (2007) to study the earthquake
ground motion records scaling method targeted at performance-based design. Detailed
information about the records in this ensemble is tabulated in Table 4.4. In the second
ensemble, the records are selected based on magnitudes between 6.3 and 7.3, distances
from the fault between 21Km to 50Km, and site conditions characterized by soil type C
and D. To be consistent with the amount of records used in ensemble A, only the first 20
records from ensemble B are used. In this study, all records are scaled to have PGA equal
to 0.4g. Figure 4.9 shows the mean 5% displacement response spectra for both ensembles.
The mean exact over-damped mode spectra were constructed by performing a series of
response history analysis per over-damped mode equation of motion shown in Equation
(4.93) for each record. The over-damped modal period was chosen to be identical to those

used in the determination of 77. The resulting mean peak over-damped modal response
was plotted against the over-damped modal period 7" shown as a solid line in Figure

4.10. The construction of the over-damped modal response follows these proposed
procedures. The resulting over-damped mode response spectra converted from the 5%
displacement spectra are indicated by the dotted line in Figure 4.10. It is observed that the
over-damped mode response spectrum constructed by the proposed procedures is in close
agreement with the exact values for both ensembles. This consistency suggests the

applicability of the proposed procedures.
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Table 4.3 Far-field ground motions used by Vamvatsikos and Cornell (2004)

No Event Station 9°!
1 Loma Prieta, 1989 Agnews State Hospital 090
2 Imperial Valley, 1979 Plaster City 135
3 Loma Prieta, 1989 Hollister Diff. Array 255
4 Loma Prieta, 1989 Anderson Dam Downstrm 270
5 Loma Prieta, 1989 Coyote Lake Dam Downstrm 285
6 Imperial Valley, 1979 Cucapah 085
7 Loma Prieta, 1989 Sunnyvale Colton Ave 270
8 Imperial Valley, 1979 El Centro Array #13 140
9 Imperial Valley, 1979 Westmoreland Fire Station 090
10 Loma Prieta, 1989 Hollister South & Pine 000
11 Loma Prieta, 1989 Sunnyvale Colton Ave 360
12 Superstition Hills, 1987 Wildlife Liquefaction Array 090
13 Imperial Valley, 1979 Chihuahua 282
14 Imperial Valley, 1979 El Centro Array #13 230
15 Imperial Valley, 1979 Westmoreland Fire Station 180
16 Loma Prieta, 1989 WAHO 000
17 Superstition Hills, 1987 Wildlife Liquefaction Array 360
18 Imperial Valley, 1979 Plaster City 045
19 Loma Prieta, 1989 Hollister Diff. Array 165
20 Loma Prieta, 1989 WAHO 090

1. component
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Table 4.4 Far-field ground motions used in ATC-58

1

1

Designation Event Station M r

FF1, FF2 Cape Mendocino 04/25/92 18:06 89509 Eureka—Myrtle & West 7.1 44.6
FF3, FF4 Cape Mendocino 04/25/92 18:06 89486 Fortuna—Fortuna Blvd 7.1 23.6
FFS5, FF6 Coalinga 1983/05/02 23:42 36410 Parkfield—Cholame 3W 6.4 43.9
FF7, FF8 Coalinga 1983/05/02 23:42 36444 Parkfield—Fault Zone 10 6.4 30.4
FF9, FF10 Coalinga 1983/05/02 23:42 36408 Parkfield—Fault Zone 3 6.4 36.4
FF11, FF12 | Coalinga 1983/05/02 23:42 36439 Parkfield—Gold Hill 3E 6.4 29.2
FF13, FF14 | Imperial Valley 10/15/79 23:16 5052 Plaster City 6.5 31.7
FF15, FF16 | Imperial Valley 10/15/79 23:16 724 Niland Fire Station 6.5 359
FF17,FF18 | Imperial Valley 10/15/79 23:16 6605 Delta 6.5 43.6
FF19, FF20 | Imperial Valley 10/15/79 23:16 5066 Coachella Canal #4 6.5 49.3
FF21, FF22 | Landers 06/28/92 11:58 22074Y ermo Fire Station 7.3 24.9
FF23, FF24 | Landers 06/28/92 11:58 12025 Palm Springs Airport 7.3 37.5
FF25, FF26 | Landers 06/28/92 11:58 12149 Desert Hot Springs 7.3 23.2
FF27,FF28 | Loma Prieta 10/18/89 00:05 47524 Hollister—South & Pine 6.9 28.8
FF29, FF30 | Loma Prieta 10/18/89 00:05 47179 Salinas—John &Work 6.9 32.6
FF31, FF32 | Loma Prieta 10/18/89 00:05 1002 APEEL 2—Redwood City 6.9 479
FF33, FF34 | Northridge 01/17/94 12:31 14368 Downey—Co Maint Bldg 6.7 47.6
FF35, FF36 | Northridge 01/17/94 12:31 24271 Lake Hughes #1 6.7 36.3
FF37, FF38 | Northridge 01/17/94 12:31 14403 LA—116th St School 6.7 41.9
FF39, FF40 | San Fernando 02/09/71 14:00 125 Lake Hughes #1 6.6 25.8
FF41, FF42 | San Fernando 02/09/71 14:00 262 Palmdale Fire Station 6.6 25.4
FF43, FF44 | San Fernando 02/09/71 14:00 289 Whittier Narrows Dam 6.6 45.1
FF45, FF46 | San Fernando 02/09/71 14:00 135 LA—Hollywood Stor Lot 6.6 21.2
FF47, FF48 | Superstition Hills (A) 11/24/87 05:14 | 5210Wildlife Liquef. Array 6.3 24.7
FF49, FF50 | Superstition Hills (B) 11/24/87 13:16 | 5210Wildlife Liquef. Array 6.7 24.4
1. M = moment magnitude; r = closest site-to-fault-rupture distance (Courtesy of Y.N.Huang)
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CHAPTERS
SPATIALLY COMBINED RESPONSES TO MULTI-COMPONENT
SEISMIC EXCITATIONS

5.1 Introduction

Spatially combined responses are those whose directions do not coincide with any
specified reference axes of a structure. Examples include the peak resultant base shear
forces seen in foundation systems and the maximum traveling distance of the isolators in
base-isolated structures within the horizontal plane. During an earthquake, the direction
and magnitude of the spatially combined responses temporarily fluctuate in a 3-
dimensional (3-D) space. For these cases, approaches that can determine the critical
responses of the spatially combined responses with a minimum amount of computational
effort are desirable. In earthquake engineering, the seismic responses of a structure are
determined by either the response history analysis method or the response spectrum
method. These two methods have been extended to be suitable for structures with non-
classical damping and over-critically damped modes as shown in the previous two
chapters. They are ideal for estimating the critical response of a single response quantity
specified in a given direction. For spatially combined responses, which are a combination
of at most three orthogonal components, relevant methods to determine the critical
responses have not yet been addressed. In general, the three orthogonal components
contributing to the spatially combined response are correlated and the direction of the
critical combination of the responses may not coincide with any given structure reference
axes. In addition, during an earthquake, the direction and magnitude of the spatially
combined responses fluctuate in the 3-D space as time advances. Traditionally in design
practice, the critical response has been calculated by using the square root of the sum of
the squares of the individual peak responses along the three orthogonal directions. This
approach, in principle, leads to overly conservative results as the responses specified in
the three orthogonal directions are unlikely to reach their respective maxima at the same
time instant. As a result, it is desirable to develop methods to facilitate the identification

of the critical responses of the spatially combined responses in the 3-D physical space
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without examining all possible seismic inclinations and all direction vectors that a

spatially combined response might take in the space domain.

In this chapter, the approaches using the response history analysis and response spectrum
method to determine the critical response of a single response quantity to three-
component excitation are first reviewed. These two approaches and their corresponding
response expressions are then used to develop a method to account for the spatially
combined responses. The development of the response history approach that predicts the
critical spatially combined response is identical to the one established by Song et al.
(2007b). As shown later, it is instructive to review this procedure as it provides insight
into the development of the response spectrum approach and enhances the integrity of
this topic. The mathematical formulation for the response spectrum approach follows
research previously derived by Gupta and Singh (1977) and Menun and Der Kiureghian
(2000), in which an envelope that bounds the response vectors is established. Their work
is introduced in Section 5.3.2 by customizing it to spatially combined responses. In
addition to the mathematical formulations for the development of the two proposed
approaches, the geometrical relationships between the contributing response components
and the resulting spatially combined responses varying in the space with time are
explained in a graphical manner to provide a physical interpretation of the formulations.
It is found that, for the case when the seismic inclination is specified, closed-form
solutions to the critical responses are available. For the case when the seismic inclination
is not available in advance, the closed-form solutions to find the critical spatially
combined response are not available and numerical calculations have to be employed.
However, the computational effort needed to find the solutions numerically is much less
than examining all possible seismic inclinations and all potential directions along which
the responses reach their maxima. The accuracy and application of the response spectrum
approach for arbitrarily damped 3-D structures is evaluated in the application example

given in Chapter 6.
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5.2 Critical Value of Responses Specified in a Given Direction

In this section, the critical response value among all possible seismic inclination angles
for responses specified in a given direction are determined, which are often along one of
the predefined structure reference axes. The results presented in this section form a basis
for the development of the approaches, which are presented in Section 5.3, to determine
the critical response values of the spatially combined responses. Two approaches, in

terms of response history analysis and response spectrum method, are discussed.

Consider a response quantity 7, of an arbitrarily damped linear MDOF structure as
described in Chapter 3. This response 7, can be expressed as a linear combination of the

nodal displacements, velocities or absolute accelerations, depending upon what types of

responses are of interest. It is also seen that the form of any response 7, is unified

regardless of the types of the response quantities by taking advantage of the unified form
presented in Chapter 3. The determination of the critical values of a single response
expression in terms of the response history analysis and response spectrum method are

discussed in Sections 5.2.1 and 5.2.2, respectively.

5.2.1 Excitation Histories as Inputs

When excitation histories are used as input excitations, the response 7,(¢,8) can be

expressed according to Equation (3.142), which is generalized for the case when the
seismic direction of the ground motion inclines in the horizontal plane at an angle 6.

That is,

1y (t.0) =[ 1, () + 73, (1) [eos O+ 1, (1) =1y, (1) [sin O+ 75, (1) (5.1)

The definitions of the terms 7, (¢), 7, (¢), r,,(t) and r, (¢) are given in Section 3.7. The

dependence of the response 7,(¢,8) on @ is shown explicitly in Equation (5.1). The peak
response among the entire oscillation process can be easily determined when the seismic
incident angle € is known in advance. However, in general, this angle is uncertain. In
such cases, designing a structure with the most critical responses is suggested in order to

improve the design safety margin for critical infrastructure. Thus, it is desirable to
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develop an approach to determine the critical responses that avoids computations for all

possible values of 4.

Next, Equation (5.1) is rewritten for a specific time instant, such as ¢, as

7t =7t ) cos@+7; (£ )sin@+r, (¢)

=1,""(t )cos(@+@ )+, (1)
where
() =1, ()41, (5.3)
rOS(t*) = riy(t*)_r'Zx (t*) (54)
* ok 2 s g% 2
FO () = \/[r(; O] +[rmaH] 20 (5.5)
and the phase angle ¢ can be determined for each time instant by solving
tan g’ = _ro—(’) (5.6)
R(t)

It is clear from Equation (5.2) that the variation of the response 7,(¢') with respect to &

at time instant ¢ follows a sinusoidal pattern as shown in Figure 5.1. The bold line in the

figure indicates the variation of the term 7" (¢ )cos(6+¢) and the upper dotted line
represents the variation of 7,(¢) with positive 7, (') and the lower dotted line stands for
the variation of 7,(¢") with negative 7, (¢'). As seen in the figure, the maximum value of

the response 7,(¢",8) , denoted as 7, ('), as @ varies from 0° to 360° can be written as

r ()= () +

() (5.7)

It is easy to find that the value of the seismic incident angle resulting in the maximum

response, 7, (¢'), at time instant ¢, denoted as @, , is independent of the response rSZ(t*)

and is obtained by solving cos(d., +¢") =1. The result is
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-1 ’”os(t*)

0. =—¢ =tan”' L~
K(t)

(5.8)
By carrying out the steps addressed between Equations (5.2) and (5.8) recursively for
each time step, the entire history defining the maximum response at each time step among
all incident angles can be established. As a result, the peak value of this history can be

easily located, which is the critical value of response 7, (¢,68).

ro(t*)

S

RS
'~
Se,
fal T

Figure 5.1 Variation of 7,(+') at time instant ¢ as 6 varies

5.2.2 Response Spectra as Inputs
When the seismic excitations are described in terms of the response spectra, the peak

response |r0 (t)|imx can be determined by Equation (4.56) shown in Chapter 4 as

R =[O, =|d"u, (.0
=d"vd (5.9)
=d' (V1 +V,sin’ 6+V, sianosH)d

The definitions of d, V,, V, and V, are given in Section 4.4.3. When the seismic

incident angle @ is given in advance, Equation (5.9) is ready to be used to obtain the peak
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responses. For the cases in which the @ is not specified, it would be necessary to identify

the peak value as @ varies. The value of €, that maximizes the response |r0 (t, t9)|12naX can

be found by solving
dry(t,0)
d—ﬁm =2d"V,dsinfcosO+d"V.d (0052 6 —sin’ 9) =0
such that
d*|r (1,0 :
|°(—2)mx =2d"V,dcos20-2d"V,dsin26 <0

do

The solution satisfying both Equations (5.10) and (5.11) is

T
tan26, =— dTV3d
d'v,d
or
T T
sin26,, = 4V and cos 20, = _4vd
where

W= [(dTVzd)z + (dTVSd)ZT/z

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

Note that the critical angle is not influenced by the vertical excitation as the response

matrix V,, which contains the responses contributed from the vertical excitation, is not

involved in determining the critical angle €, as shown in Equation (5.12).

Substituting Equation (5.13) into Equation (5.9) gives

T T
Rod[v s Yo, Yed'Vad V'V
2w W
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Equation (5.15) defines the most critical response that could happen among all seismic
incident angle @'s. This is an explicit formula which is convenient for design purposes,

as it avoids computation of the critical angles (Menun and Der Kiureghian, 2000).

5.3 Ciritical Value of the Spatially Combined Responses

Figure 5.2 illustrates the concept of the spatially combined responses. It is seen that the
nodal displacement or velocity of nodes 1 and 2 in the space domain can be fully
described by their three respective orthogonal components. The responses of nodes 1 and
2 varying in the 3-D space are referred to as the spatially combined responses. These
types of responses may be important in certain cases related to the design of structures
with added dampers. For instance, the relative displacement or velocity between nodes 1
and 2 is a critical response that has to be considered when a damper is inserted between
nodes 1 and 2. The approaches described in the previous section are ideal for the
determination of the critical values of the responses specified in a given direction (i.e.,
one of the orthogonal components shown in Figure 5.2). However, due to the complexity
of the structures, the most critical responses may not occur along any of the given
directions of its reference axes. Furthermore, the direction of the spatially combined
response changes temporally over the entire sphere of space. This section presents two
approaches on how to determine the most critical responses of the spatially combined
responses for seismic inputs described in terms of acceleration histories and response

spectra, respectively.

5.3.1 Response History Approach

Let 7, (¢,0), 1,,(¢,0) and r,.(¢,0) represent the components of the response at a certain

location along a set of structure reference axes X, Y and Z, respectively. They can be

expressed in a vector form through Equation (5.2) as follows. Let

r,(,0)=[r,0) 1, (0) 1,.(t,0)]" denote the spatially combined response consisting
of the time-varying responses 7, (¢,0), r,,(¢,0) and r,_(¢,6) at a certain location of the

structure. Consequently, the spatially combined response r,(¢,8) can be written in the

form of a matrix as
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Vop

Figure 5.2 Concept of spatially combined responses

105 (2,60)
r,(t,0)=41,0) =LO (5.16)
1, (£,0)

where L=[L, L, L,] and ®=[cos# sin6 1]' . The three eclements of L are
c c c T S N N T

L, ZI:FOx(t) 75, (1) ”oz(t)] > L, = [rox(t) T, (1) rOZ(t)] and

L, =[r3°zx(t) r (1) r;)zz(t)]T. The norm of the spatially combined response r,(z,6) ,

which is the magnitude of the spatially combined response r,(¢,6), is defined by

Ir,(t,0) =0'L'LO (5.17)

The term L'L is defined as the response process matrix. When the seismic inclination
angle is specified in advance (i.e., ® is known), the peak response of the spatially

combined response r,(¢,8) can be easily obtained. It is evident that the magnitude of the

spatially combined response r,(¢,8) is a function of the seismic incident angle 6. For the
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cases where the seismic inclination angle € is not given, in principle, it is necessary to
consider all possible values that € can take to obtain the most critical response value. In
the following, a rapid transformation approach is established to determine the critical
response when the seismic inclination angle € is not known, which requires only a few

computations instead of performing response analyses for all possible 8's.

For a certain time instant ¢, Equation (5.17) can be expanded as

T L, 1L, 1] cos@
@ .0)| =[cosé sino 1)L, 1, L,| sind (5.18)
31 32 33 1
where [, =L|L, , L,=LL, , L,=LL, , [,=0L,=LL, , [,=0L,=L]L, and
L, =1, =L)L, for the time instant ¢ . The value of & that maximizes the spatially

combined response at time instant ¢~ can be found by solving

" 2
dfrc0) _

26 (1,, —1,,)sin 20+ 21, cos 26 — 21, sin @+ 21,;cos @ =0 (5.19)

Equation (5.19) is a fourth-order polynomial and has no closed-form solution for &
(Song et al., 2007b). Thus, numerical algorithms are required to obtain the solutions.
These four roots are then substituted into Equation (5.18) to determine the corresponding
responses. The maximum response is the peak response. Repeating this procedure for
each time step gives the complete history defining the maximum spatially combined

response at each time step. The peak response of the spatially combined response, r,(z,6)

for uncertain @, can then be determined.

5.3.1.1 Special Case: No Vertical Excitation

When the vertical excitation is not considered, which is commonly assumed in design
practice, a convenient closed-form solution for the critical spatially combined responses

with uncertain @ can be derived. Under this assumption, the norm of the spatially

combined response r, (¢ ,8) shown in Equation (5.18) can be reduced to
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[0 =[cos® sin6]L'L [gfns g} (5.20)

in which the response process matrix L'L is also reduced to

LTL:BH 512} (5.21)

21 22

The value of @ resulting in the maximum r,(¢",6) is obtained by solving

d[r(c.0)
|y 5
Od—ez(l22 —1,,)sin 260+ 21, c0s 260 =0 (5.22)

such that

a2, (2", 0)|
w = _2(122 _111)005 20-41,sin20<0 (5.23)

Substituting the solution satisfying Equations (5.22) and (5.23) into Equation (5.20) gives

the critical response. The result is

1/2

_ @)+, () +[(ln(t*) ;lzz (t*)] W (t*)} (5.24)

Jro(c".0)

2
max 2

Equation (5.24) is a closed-form solution defining the critical response for each time step.
Furthermore, it is the larger eigenvalue of the response matrix L'L . Using Equation
(5.24) for each time step generates the maximum response history, from which the most

critical one can be easily determined.

5.3.2 Response Spectrum Approach (Menun and Der Kiureghian, 2000)

To determine the peak value of the spatially combined responses as the inputs are

described in terms of the response spectra, the spatially combined response r,(¢,8)

shown in Equation (5.16) in another form is expressed as
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r, (t,0)
1, (t,0)=11,(0) =D"u,(z,0) (5.25)

7. (2,0)
where D=[dx d, dz} is a transformation matrix which transforms the system
spatially combined response u,(¢,8) into three individual components at a certain
location referenced to axes X, Y and Z, respectively. That is, r, (¢,0)=d u,(¢,0) ,
1, (t,0)=d u,(t,0) and r,_(t,6) =dlu,(z,0). To obtain the peak value of the response

combined from the three components, the idea is to examine the maximum value of the

spatially combined response r,(¢,6) projected on each possible direction in the space
domain. Consider the projection of the spatially combined response r,(¢,68) onto a unit

vector n in the 3-D space domain

7, (,6)=n"r,(t,0) =n"D"u, (¢,0) (5.26)

n consists of three elements cosa, cosf and cosy , in which &, f and y are the

angles between the unit vector n and the reference axes X, Y and Z, respectively. Note

that the magnitude of the unit vector n is expressed as

[n]| = cos® x +cos® B+cos’ y =1. (5.27)

According to Equation (5.9), it is found that the peak value of the projection of the

spatially combined response r,(t) on the unit vector n, R, =

r0n(1,9)|max, can be

estimated by the response spectrum method as

R} =n'D' (V1 +V, sin” 6+ V, sin @ cos «9) Dn
=n'D'VDn (5.28)

=n'Rn

In Equation (5.28), the following term is introduced

R=D'VD (5.29)
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which is defined as the response spectrum-based response matrix for spatially combined
response I,(¢,0) . It can easily be verified that R is a 3x3 symmetric matrix, which
gives the correlations between the response processes in the spatially combined response
r,(¢,0). To determine the peak value of R, , basically, it is necessary to carry out the
calculation for each possible unit vector n. However, if the seismic incidence 6 is

known in advance, a convenient method can be found to determine the peak response

without carrying out repetitive computations. It is addressed below.

Equation (5.27) indicates that when the unit vector n varies in the 3-D space domain, it is

actually equivalent to a 3-D real vector set with a unit Euclidian norm. The trace of these
unit vectors is a unit sphere. Due to this condition, the peak value of R; can be
determined from the eigenvalues of the response matrix R. Since R is a 3X3 symmetric
matrix, it has three real eigenvalues. Denote the A, ii =1,2,3, as the eigenvalues of the
R ; the corresponding unit vectors are n,, ii =1,2,3. Examining the context of the eigen

analysis, the following relationship must hold.

Rn, = An, (5.30)

(i}

Comparing Equations (5.28) and (5.30), it is found that the peak value of the projection

of R onto n; is

Ry, =m;Rn, =n;An, =1 (5.31)

i 7l

Equation (5.31) shows that the all eigenvalues are non-negative as R(fn“ >0. Among the
three eigenvalues, the largest one gives the peak response of the spatially combined
response I, (¢,0) in the 3-D space within the entire vibration duration and its
corresponding unit vector is the direction along which the magnitude of the spatially
combined response reaches its maximum. Following the preceding procedure, the peak

response of the spatially combined response can be easily obtained using the response

spectrum method when the seismic incidence is specified in advance.
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In the subsequent section, a special case of a two-component spatially combined response
is examined in an attempt to provide physical insight into the above formulation in a
graphical way, in which a closed-form solution can be found.

5.3.2.1 Special Case: Two-component Spatially Combined Response

Consider the case where the spatially combined response r,(¢,80) only consists of two

components. For example,

r,(1,0) = {%ggg} =D"u,(t,0) (5.32)

in which D = [dx dy]. In such a case, the direction of the spatially combined response
r,(¢,0) is confined to the plane X-Y. As a result, the unit vector n becomes

n=[cosa sin Ot]T , in which the « is the angle formed by axis X and vector n. Figure

5.3 shows the geometrical relationship of the spatially combined response and the unit

vector n. The projection of the spatially combined response r,(z,6) on the unit vector n

is also shown in Figure 5.3 and can be written as

r, (5,0)=n"r,(1,0) =[cosax sina]' {: 0x 8 Z;} (5.33)

Note that the magnitude of this projection varies temporally. Based on Equation (5.29),

the response spectrum-based response matrix R reduces to

R=D'VD

_|{divd, divd, (5.34)
“|d)vd, d)vd,

Note that d;Vd, =d Vd, . As a result, Equation (5.28) can be written as

T T
d'vd, dedv}n (5.35)

Rzn = nT |: T T :
0 d'vd, d'vd,
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rOy (tse)

n=[cosa s.inoz]T

r,(t,6)

7, (1,0)

Figure 5.3 Projection of the two-component spatially combined response

Equation (5.35) defines the peak response of the spatially combined response with two
components along the projection direction n. By varying n, an envelope that bounds the

response of the spatially combined response 7,(¢,6) can be established, and this envelope

is in fact an ellipse (Menun and Der Kireghian, 2000). Figure 5.4 illustrates the concept
of the generation of the response elliptical bounding envelope for the two-component

spatially combined response.

Similar to the spatially combined response with three response components, the most
critical case in which the spatially combined response reaches it maximum response can
be obtained by finding the eigenvalues of the response spectrum-based matrix R . There

are two eigenvalues of matrix R. The value of the larger one is denoted as A, and can be

obtained by

1/2
d'vd +d'vd  |(d'vd -d'va Y
A, =— x2 vy ( x x2 ¥ yJ _(dIde)z (5.36)

116



Toy

A n,

n,

> 7,
v °

n,

Figure 5.4 Response elliptical envelope for two-component spatially combined
response

The square root of the A, gives the maximum value of the spatially combined response

within the entire duration when the seismic incidence € is specified.
5.3.2.2 Unknown Seismic Incidence

When @ is unknown, the peak response of the spatially combined response is not only
function of n but also the seismic incidence #. That is, it is necessary to consider all
possible values of 6. For a given direction n, the value of @ resulting in the maximum
value of the magnitude of the spatially combined response can be found by solving

(Menun and Der Kiureghian, 2000)

2
%=inTDTVDn=nTDT(VZ sin26+V, cos20)Dn =0 (5.37)
dg do
such that
d’R;, _ d’

W =——n'D'VDn=n"D"(2V, cos20-2V,sin20)Dn <0 (5.38)
do do
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As a result, the value of @ should satisfy

T T T
sin20 =D Vi i cosng="D VD0 (5.39)
0
where
P 2 1/2
0= [(nTDTV3 Dn) +(n'D'V,Dn) } (5.40)
Substituting Equation (5.39) into Equation (5.28), results in
R; =n'R,n (5.41)
where
TyT TyT
R =D’ {Vﬁ%vz (1ﬂjév%} (5.42)

Equation (5.41) gives the maximum magnitude of the spatially combined response, r,(¢),
along direction n within all possible seismic incidences. Note that Equations (5.28) and

(5.41) are similar. However, the maximum value of R, among all n cannot be
determined by the eigenvalues of the matrix R,. since the matrix R, is a function of n.

Thus, it would be necessary to examine all possible directions that n can take to obtain
the maximum response when the seismic incidence € is not specified. However, in
engineering practice, it is reasonable to assume that the direction of the responses such as
relative deformation or velocity between two nodes is the direction formed by two nodes
as the dimension of the responses is small compared to the dimension of the structure. In
such cases, the direction of the unit vector n is known in advance. As a result, the peak

response can be determined by the larger eigenvalue of the response matrix R ..
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CHAPTER 6
APPLICATION EXAMPLE

6.1 Introduction

In Chapters 3 and 4, seismic response analysis approaches for 3-D arbitrarily damped
linear structures using both the ground motion history and the response spectrum as the
input excitations through modal analysis are given. In this chapter, the applications of
these two methods are demonstrated and the accuracy of the GCQC3 rule developed in
Chapter 4 is assessed by comparing the results to the “exact” results obtained by the
response history analyses for an example 3-D multistory building with added linear
viscous dampers. Also, the effects of using the classical damping assumption and
ignoring the over-damped modes in the analysis results are examined. The accuracy of
the response spectrum method developed in Chapter 5 to predict the peak response of a
spatially combined response is also evaluated by comparing the response envelopes of the
floor accelerations obtained by the developed method to those obtained by the response
history analyses. First, the configurations of the example building frame and the ground
motions considered are described, followed by an evaluation of the two analysis
procedures. Note that the procedure developed in Chapter 4 for the response spectrum
method is based on random vibration theory and assumes that the peak proportional
factors are involved. The ground motion is assumed to have a strong stationary phase
with broad frequency content and a duration several times longer than the fundamental
period of the structure. These assumptions will affect the accuracy of the response
spectrum method when dealing with real earthquakes. The comparison of the estimated
and exact responses is made within a statistical framework. Further, in order to evaluate
the errors caused by the combination rule itself and the classical damping assumption, the
estimated modal maximum responses are replaced by the exact modal maxima. These
exact modal maxima and exact peak responses are determined by the response history

analysis.
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6.2 Description of the Example Building

A mid-rise 6-story asymmetric steel building is considered in the following analyses.

Figure 6.1 shows a typical floor plan of the building. The seismic resistance system
consists of four special steel moment frames, denoted as Frames 1, 2, 3 and 4,
respectively, located on the perimeter of the building as indicated by the bold lines in

Figure 6.1. In accordance with engineering practice, the corner columns are not
considered in the seismic resistance moment frames. Each of the floors is assumed to be
rigid and has three degrees-of-freedom: two horizontal translational (along X-axis and Y-
axis) and one rotational (about Z-axis). Therefore, a total of 18 degrees-of-freedom will
be considered in constructing the equations of motion of this example building. The
eccentricity, caused by the asymmetric configuration, and the rotational degrees-of-
freedom are used to consider the coupling effects among the two orthogonal horizontal
directions. Frames 2, 3 and 4 are adopted from “Example No.5: frame 6S-75” in Ramirez
et al. (2000), which is designed to meet the 1997 NEHRP Recommended Provisions for
Seismic Regular for New Buildings and other Structures (FEMA, 1997), assuming that
the building will be enhanced by viscous dampers and is located at a site with a design

spectrum characterized by parameters S,, =0.6, S, =1.0 and 7T, =0.6sec per NEHRP

(1997). As a result, Frames 2, 3 and 4 are three-bay special moment frames. In order to
meet the dimension along the Frame 1 direction, the above three-bay frame is expanded
to be a five-bay frame while the sections of the additional beams and columns remain
unchanged. All frame beams and columns are oriented such that the strong axes are
perpendicular to the plane of the frame. Each frame is equipped with linear viscous
dampers to improve the seismic performance of the building. Frame 1 has no damper in
the first floor in order to provide open space. The rest of the stories are equipped with
linear viscous dampers. Frames 2 and 3 have three linear viscous dampers concentrated in
the first story, respectively. Frame 4 has linear viscous dampers installed from the first to
the fourth story. This damper distribution is selected because it is representative of
damper distributions that are commonly encountered when performing damper
configuration optimization. This damper distribution results in a highly non-classically
damped structure with certain over-critically damped modes. The inherent damping ratios

of this building are assumed to be 2% for all modes.
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In summary, the beam and column sizes and configurations as well as the damper
properties for Frames 1 to 4 are shown in Figures 6.2 to 6.5, respectively. The reactive
masses of each story are listed in Table 6.1.

Using the mass, stiffness and damping matrices, the modal properties of this building are
determined by eigenvalue analysis programmed in MATLAB by using both the forced
classical damping assumption and the state space approach.

Table 6.2 summarizes the modal periods and damping ratios. The data listed in this table
are sorted in an ascending order according to the modal period. Table 6.2 shows that
there are 14 over-damped modes, marked in bold face. It is observed that the damping
ratios obtained by the forced classical damping assumption are significantly different
from those exact damping ratios determined from the state space approach. In particular,
using the forced damping assumption overestimates the damping ratios and the presence

of the over-damped modes are not identified correctly.

Table 6.1 Reactive mass of the example building

Story Reactive mass (Kg)
1 380,750
2 380,750
3 380,750
4 380,750
5 380,750
6 205,740
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Figure 6.2 Details of Frame 1 of the example building
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Figure 6.3 Details of Frame 2 of the example building

8.23m I

123

8.23m

C21=22.67 kN-s/mm



Frame 3
W16x31

— 2722277777777 777777777777 7777777777 7777 77777777 77 77 7777777 7)

4.30m W14x90

—1 [ 7 7 7 7 2 7 7 7

4.30m W14x90
W21x44
_
4.30m W14x132
_
4.30m W14x132
W21x62
— 7T 777 777 7777 777 7 T 7 7 77 7 2 7 7 7 7 777 77777
4.30m W14x176

W24x62
(7777777777777 77777777 777777777 777777777777 2 277 7777 777 7777 777 77777,

C31=22.67 kKN-s/mm

< N\ X W14x176
Cs1 Cs1 Cai

7777
[ 8.23m | 8.23m | 8.23m |

Figure 6.4 Details of Frame 3 of the example building
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Figure 6.5 Details of Frame 4 of the example building
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Table 6.2. Modal periods and damping ratio of the example building

Period (sec) '’ Damping ratio (%)
Mode | Undamped Dg ;nrﬁ zd Undamped | Damped frame
frame et [ CDA | ™M e [ CDA
1 2.33 3.17 | 2.36 2 NA 17.68
2 1.23 2.20 | 1.31 2 13.65 | 34.24
3 0.89 1.88 | 0.98 2 NA 41.02
4 0.89 1.13 | 0.99 2 12.48 | 44.33
5 0.57 1.04 | 0.74 2 NA 63.81
6 0.47 0.78 | 0.81 2 3430 | 81.17
7 0.45 0.77 | 0.49 2 17.99 | 42.09
8 0.38 0.74 | 0.51 2 NA 67.15
9 0.34 0.60 | NA 2 NA NA
10 0.31 0.50 | NA 2 41.69 NA
11 0.30 046 | NA 2 NA NA
12 0.24 042 | 0.29 2 NA 56.02
13 0.22 041 | NA 2 7.92 NA
14 0.20 0.39 | NA 2 10.51 NA
15 0.17 0.32 | NA 2 12.40 NA
16 0.16 028 | NA 2 97.11 NA
17 0.15 026 | NA 2 8.42 NA
18 0.12 022 | NA 2 2.43 NA
19 NA 0.22 | NA NA NA NA
20 NA 0.10 | NA NA NA NA
21 NA 0.07 | NA NA NA NA
22 NA 0.05 | NA NA NA NA
23 NA 0.04 | NA NA NA NA
24 NA 0.03 | NA NA NA NA
25 NA 0.02 | NA NA NA NA

1. NA=Not Available
2. Exact=2N dimensional eigenvalue analysis
3. CDA= Classical damping assumption

6.3 Ground Motion Records

The ground motion ensemble B (referred to Table 4.4) used in Section 4.3.5 to verify the
accuracy of the transformed over-damped mode response spectrum is used. It consists of
25 pairs of far-field ground motion. For each of these pairs of records, the odd component
is applied along the X-axis while the even component is applied along the Y-axis to

conduct the response analysis. The vertical components of the ground motions are not
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included in the analyses. For response spectrum analysis, in addition to the excitations
applied along the two orthogonal reference axes X and Y, a number of selected
orientations of the principal axes of the ground motion, defined by the angle € ranging
from 0 to 27, are considered to study the effect of the seismic incidences. In this study,
all odd records are scaled to have Peak Ground Acceleration (PGA) equal to 0.4g and the
even records are scaled to have PGA with 0.3g. Mean peak responses resulting from

these 25 pairs of ground motions are presented for comparison.

6.4 Modal Response History Analysis

The application of the proposed general modal response history analysis presented in

Chapter 3 is demonstrated in this section, including an investigation of the effects of

using the forced classical damping assumption and the response contributions from the

over-damped modes. The following three approaches are used to compare the analytical

assumptions from the viewpoint of structural responses:

(1) Using the general modal response history analysis shown in Equation (3.60). This
set is referred to as “Exact”;

(2) Using the forced classical damping assumption while excluding the over-damped
modes. This set is referred to as “CDA” (Classical Damping Assumption);

(3) Ignoring the contribution of the over-damped modes in the analysis, i.e., considering
the first two terms in Equation (3.60) only. This set is referred to as “EOM”
(Exclude Over-damped Mode).

6.4.1 Responses of Each Story

Peak responses of each story, i.e., referenced to the 18 DOFs of the example building, are
obtained for each ground motion pair based on the above three analytical approaches.
Their mean values are presented in Table 6.3, 6.4 and 6.5 for peak displacement, peak
velocity and peak total acceleration, respectively. The mean results obtained from the
first approach are considered to be the “exact” results. The data listed in Table 6.3, 6.4
and 6.5 are also plotted in Figure 6.6, 6.7and 6.8, accordingly for comparisons. In these
three figures, the vertical axis is the result of the mean responses from the response

history analysis and the horizontal axis represents the mean responses calculated by the
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three approaches. The diagonal line in each figure serves as a reference line. The symbols
located below the reference line are conservative results whereas those above it are
underestimated. It is apparent that the results from the first approach lie on the reference
line since the results from this approach are considered to be the “exact” solutions. Figure
6.9 presents the estimation errors arising from the forced classical damping assumption
and ignorring the over-damped modes.

Table 6.3 Results of mean peak displacement responses of defined degree-of-
freedoms of the example building using ground motion records as inputs
Response quantities

Level Displacement along X- Displacement along Y- Rotation about Z-axis
of . 12,3 . 3 d

story axis (mm) axis (mm) (10~ rad)

Exact CDA EOM Exact CDA EOM Exact CDA EOM

1 17 14 15 12 17 11 0.32 0.03 0.40
2 30 26 26 33 31 30 0.30 0.06 0.32
3 52 42 49 66 50 63 0.31 0.09 0.32
4 70 55 67 94 64 92 0.32 0.12 0.32
5 88 68 85 126 77 123 0.51 0.16 0.50
6 95 72 93 139 81 136 0.71 0.17 0.70

Table 6.4 Results of mean peak velocity responses of defined degree-of-freedoms of
the example building using ground motion records as inputs
Response quantities

Level  Velocity along X-axis Velocity along Y-axis Rotational Velocity
of (mm/sec)"* (mm/sec) about Z-axis
story (107 rad/sec)

Exact CDA EOM Exact CDA EOM Exact CDA EOM
116 99 110 63 105 70 2.18 0.11 2.34
204 185 210 222 192 226 2.05 0.18 2.04
358 302 374 433 303 436 2.32 0.31 2.35
482 394 497 579 382 587 1.98 0.42 2.00
606 487 610 748 454 755 2.75 0.56 2.77
660 521 654 844 485 849 437 0.62 4.43

AN DN AW =

Table 6.5 Results of mean peak total acceleration responses of defined degree-of-
freedoms of the example building using ground motion records as inputs

Level Response quantities
of Total acceleration along  Total acceleration along  Rotational acceleration

story X-axis (g)l’z’3 Y-axis (g) about Z-axis (rad/sec?)

Exact CDA EOM Exact CDA EOM Exact CDA EOM

0.35 0.10 0.12 027 0.12 0.04 0.025 0.001 0.026
034 017 023 0.28 0.19 026 0.021 0.001 0.022
036  0.28 037  0.33 0.23 035 0.022 0.002 0.022
040 036 044 035 0.25 035 0.021 0.002 0.021
046 044 046 048 026 048 0.020 0.003 0.020
049 048 049 059 031 0.59 0.037 0.004 0.036

1. Exact=General modal analysis including effects of over-damped modes

2. CDA= Classical damping assumption while over-damped modes excluded

3. EOM= General modal analysis excluding over-damped modes

NN AW =
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6.4.2 Responses of Each Frame

Response estimates of each frame based on the three approaches are presented in Table
6.6 to Table 6.9. Four response quantities are included in the tables, which are (a) peak
interstory drift; (b) peak interstory velocity; (¢) story shear force at the time of maximum
interstory drift; and (d) maximum story shear force (which includes the damping force as
appropriate). Figure 6.10 to Figure 6.13 compare the results obtained from these three
approaches for the four response quantities. The associated estimation errors resulting
from the forced classical damping assumption and ignorring the over-damped modes are

presented in Figure 6.14 to 6.17.

6.4.3 Discussion

By evaluating Table 6.3 to 6.9 and Figure 6.6 to 6.17, it is found that using the forced
classical damping assumption results in inaccurate seismic response estimates for all the
responses considered. Most results determined from the forced classical damping
assumption are underestimated. This phenomenon becomes more significant for floor
acceleration responses. For certain response quantities, the error can be more than 100%.
The source of the errors can be attributed to inaccurate calculation of the modal damping
ratios and modal periods determined under the classical damping assumption. It is also
found that the effect of the over-damped modes is not significant in the response
calculations for this example. The exception is that the floor accelerations in the lower
stories are considerably underestimated. This may result in errors in seismic demand
estimates of nonstructural components.

From the above comparisons, it may be concluded that the over-damped modes should be
considered in order to obtain more accurate structural response estimates. This is
particular true for floor accelerations. Further, using the forced classical damping
assumption may lead to large inaccuracies when a structure is heavily non-classically

damped and has over-critically damped modes.
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Story Drift
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Figure 6.10 Comparisons of interstory drifts per frame by response history
analysis
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Figure 6.11 Comparisons of interstory velocities per frame by response history

analysis
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Story shear at max. drift
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Figure 6.12 Comparisons of story shear forces at max. drifts per frame by
response history analysis
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Figure 6.13 Comparisons of maximum story shear forces per frame by response
history analysis
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6.5 Response Spectrum Analysis

In this section, the accuracy and applicability of the generalized response spectrum
method, i.e., the GCQC3 combination rule, are assessed. As in the modal response
history analyses, the effect of assuming forced classical damping and ignorring the over-
damped modes are also examined. The mean response history results are considered to be
the exact results and are used to examine the accuracy of the GCQC3 rule. As a result,
three sets of results are obtained and compared with the exact results. These three sets of
analysis approaches are described as follows:

(4) Results of the first set are obtained based on the newly developed GCQC3 rule,
defined by Equations (4.48), (4.56) or (4.61). The state space approach is used to
derive the mode shapes, modal periods and modal damping ratios. These modal
properties are then used to generate the correlation coefficients and peak modal
responses required in the GCQC3 rule. The contributions from the over-damped
modes are considered when they are present.

(5) Results of the second set are based on the modal properties obtained under the
forced classical damping assumption. Similar to the GCQC3 rule, these properties
are used to generate the data required in the modal combination rule. The over-
damped modes are not considered. This method is often used for the design and
analysis of structures with added damping devices. This rule is referred to as the
forced CDA (forced Classical Damping Assumption).

(6) Results of the third set are identical to the GCQC3 rule except that it does not
consider the over-damped modes in the modal combination process. This
consideration is aimed to examine the effects of the over-damped modes on the
response estimates. This rule is referred to as the EOM (Exclude Over-damped
Modes).

In addition, the effect of the seismic incidence & and the correlation between the two

orthogonal ground motion components on the response estimates are also investigated.

The procedure proposed in Chapter 5 is also evaluated by examining the floor

acceleration estimates to determine if they can be used to predict the peak value of a

spatially combined response using the response spectrum method.
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6.5.1 Responses of Each Story

In evaluating the results obtained from these three rules, only those from the case with
seismic incidence & =0 are presented for comparison. This is because the purpose of the
comparison is to examine the accuracy of the GCQC3 rule itself and the effect of
classical damping assumption as well as the influence of the over-damped modes.

Peak responses of each story obtained by the three rules are listed in Table 6.10 to 6.12.
Their respective “exact” solutions, obtained from the mean response history analyses, are
also included. Figure 6.18 to 6.20 compare the results obtained by these three rules to the
exact results. It is apparent that CDA underestimates the response values for all response
quantities while GCQC3 significantly reduces the scatter of the data along the diagonal
reference line and provides excellent estimates. The associated estimation errors are

presented in Figure 6.21.

6.5.2 Responses of Each Seismic Frame

Similar to the evaluation of the responses of each story, only the results of seismic
incidence =0 are presented for comparisons. As noted earlier, the peak modal
responses required in each modal combination rule were obtained by performing the
response history analysis using the respective modal properties. The response estimates
obtained using the three rules along with their corresponding exact solutions are tabulated
in Table 6.13 to 6.16 for the four frames, respectively. The response quantities included
are the same as those considered in Section 6.4.2. A comparison of the results obtained
from the three rules to the exact results are presented in Figure 6.22 to 6.25 for the four
response quantities, respectively. Figure 6.26 to 6.29 show the associated estimation

CITors.
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Table 6.13. Results of mean peak responses of frame 1 of the example building using
response spectra as inputs

Frame 1
Response g‘
Quantity o | Exact GCQC3 CDA EOM
22 22 14 22
Story 12 13 12 11
Drift 21 20 16 20
(mm) 16 15 13 16
14 14 12 14
6 5 4 6
155 156 94 153
Interstory 78 76 79 87
Velocity 147 138 106 150
(mm/sec) 124 110 83 107

107 100 83 96
50 47 34 50
4131 4043 2561 4012
2450 2516 2381 2135
2661 2567 2067 2538
2047 1935 1604 2018
1169 1127 1037 1175
480 452 375 490
4131 4043 2561 4012
4377 4193 4231 4228
3447 3280 2592 3347
2753 2527 2023 2561
1882 1738 1517 1703
846 769 583 775

1. Exact=Modal response analysis including effects of over-damped modes

2. GCQC3=General complete quadratic combination rule including over-damped modes
3. CDA= Classical damping assumption while over-damped modes excluded

4. EOM= General modal analysis excluding over-damped modes

Story Shear at
Max. Drift
(KN)

Max. General
Story Shear
(KN)

AN B WD~ WD, WD~ WB A WD~
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Table 6.14. Results of mean peak responses of frame 2 of the example building using
response spectra as inputs

Frame 2
Response g‘
Quantity o | Exact GCQC3 CDA EOM
11 12 18 11
Story 26 27 15 27
Drift 38 38 19 38
(mm) 32 32 14 32
40 37 14 37
17 15 5 15
58 63 106 70
Interstory 201 203 80 205
Velocity 262 241 96 241
(mm/sec) 228 207 75 209

308 277 80 2717
150 130 60 130
1225 1368 1974 1218
3098 3222 1792 3259
2878 2933 1493 2950
2487 2476 1100 2485
1981 1846 677 1851
831 746 248 748
3768 4019 6689 4132
3098 3222 1792 3259
2878 2933 1493 2950
2487 2476 1100 2485
1981 1846 677 1851
831 746 248 748
1. Exact=Modal response analysis including effects of over-damped modes
2. GCQC3=General complete quadratic combination rule including over-damped modes
3. CDA= Classical damping assumption while over-damped modes excluded
4. EOM= General modal analysis excluding over-damped modes

Story Shear at
Max. Drift
(KN)

Max. General
Story Shear
(KN)

AN B WD~ WD, WD~ WB A WD~
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Table 6.15. Results of mean peak responses of frame 3 of the example building using
response spectra as inputs

Frame 3
Response g‘
Quantity o | Exact GCQC3 CDA EOM
11 11 13 7
Story 15 15 12 14
Drift 25 24 16 24
(mm) 21 20 13 20
27 24 13 25
12 11 5 11
76 74 92 70
Interstory 116 123 79 137
Velocity 186 174 109 177
(mm/sec) 156 142 86 141

202 177 87 174
110 95 35 96
1219 1178 1497 755
1860 1826 1408 1703
1880 1843 1244 1864
1596 1545 978 1569
1348 1208 638 1230
622 540 233 550
4864 4629 5745 4191
1860 1826 1408 1703
1880 1843 1244 1864
1596 1545 978 1569
1348 1208 638 1230
622 540 233 550

1. Exact=Modal response analysis including effects of over-damped modes

2. GCQC3=General complete quadratic combination rule including over-damped modes
3. CDA= Classical damping assumption while over-damped modes excluded

4. EOM= General modal analysis excluding over-damped modes
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Story Shear
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Table 6.16. Results of mean peak responses of frame 4 of the example building using
response spectra as inputs

Frame 4
Response g‘

Quantity o | Exact GCQC3 CDA EOM

14 14 14 15

Story 18 19 12 19

Drift 24 25 17 26

(mm) 20 20 13 20

32 29 13 29

15 14 5 14

82 82 90 94

Interstory 125 141 75 149
Velocity 164 170 101 165
(mm/sec) 134 128 80 132

288 254 85 254
168 158 50 158
1504 1599 1581 1661
2159 2244 1473 2309
1847 1897 1283 1970
1504 1516 991 1516
1620 1461 641 1471
763 703 239 705
2796 2883 3074 2901
2791 2924 1776 ~ 3037
2388 2422 1561 2452
1920 1895 1217 1914
1620 1461 641 1471
763 703 239 705

1. Exact=Modal response analysis including effects of over-damped modes

2. GCQC3=General complete quadratic combination rule including over-damped modes
3. CDA= Classical damping assumption while over-damped modes excluded

4. EOM= General modal analysis excluding over-damped modes
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Max. Drift
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Max. General
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Figure 6.22 Comparisons of interstory drifts per frame by response spectrum

method
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Inter-Story velocity
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Story shear at max. drift
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Figure 6.24 Comparisons of story shear forces at max. drifts per frame by
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Figure 6.26 Estimation errors of the story drift per frame by response spectrum
method
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6.5.3 Discussion

By comparing all the response estimates obtained from the three approaches, it is shown
that the GCQC3 rule provides excellent estimates for all response quantities overall.
However, using the classical damping assumption (CDA) considerably underestimates
the peak responses. The errors for some response quantities can be larger than 100%.
Similar to the observation made in the response history analysis, the EOM is not able to
predict the floor acceleration accurately as shown in Figure 6.18 and 6.19.

In general, these results show that the GCQC3 rule, which considers the over-damped
modes, can estimate the peak response accurately. It is found that the peak floor
accelerations are significantly affected by the over-damped modes. The responses
estimated by using the forced classical damping assumption deviate substantially from
the exact values. Most of the responses were underestimated. This is understandable
because the modal properties calculated by the forced classical damping assumption are
significantly different from the exact values computed by the state space approach. This
implies that the utility of the forced classical damping assumption should be further
examined in the design and analysis of structures with added damping devices, especially

for complex and irregular structures.

6.5.4 Effect of Seismic Incidence

In most cases, the seismic incident angle, i.e., the direction of the principal axes of the
ground motion, remains unknown in the design process. It is clear from Equation (4.61)
that the calculated peak responses of the structure change when the incident angle
changes. To be conservative, the structure should be designed using the most critical
value. In the following, the variations of seismic responses with respect to the seismic
incident angle are examined The peak displacement, velocity and total acceleration
responses for each story are plotted against incident angle @ in Figure 6.30 to 6.38. Note
that the value of @ that causes the most critical response depends on the response
quantities being considered. In other words, the values will not be the same for all
response quantities. Therefore, using the critical values in the design causes tremendous
calculations for design engineers and is therefore not preferred. Also, the design will not

be economical in a statistical sense. To consider this issue, it is reasonable to assume that
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the incident angle @ is uniformly distributed among O to 27 and, as a result, the
response can be calculated by Equation (4.71). The responses shown in Figure 6.30 to
Figure 6.38 using a uniform distribution of @ are indicated by the dashed lines. One of
the advantages of using the uniformly distributed & is that the effect between the ground

motion components disappears.

6.5.5 Peak Floor Acceleration Bounding Envelope

In this section, the accuracy of the procedure to predict the peak response of a spatially
combined response developed in Chapter 5 is evaluated. The floor accelerations at each
story are examined. Figure 6.39 compares the response envelopes according to the
procedure proposed in Section 5.3.2.1 to the response envelopes simulated from the
response history analyses. From Figure 6.39, excellent agreement between these two

response envelopes can be observed, suggesting the adequacy of the proposed procedure.
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CHAPTER 7
SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

7.1 Summary

Large, unusual and complex structures with earthquake response control devices may
exhibit highly non-classical damping and may develop over-damped modes. This
phenomenon can be further magnified under multi-directional seismic loadings. However,
there is a gap in current knowledge about how to properly handle these uncertainties. This

study is aimed at dealing with these issues using a modal analysis approach.

In this study, a general modal response history analysis method is developed first. This
method extends complex modal analysis to structures with over-damped modes. A
unified form that is able to express most response quantities of a given system, including
velocities and absolute accelerations, is established. This unified form is obtained by
several modal properties found in this study. Also, on the basis of the general modal
response history analysis and the fundamental concept of stationary random process as
well as the existence of the principal axes of ground motions, two general modal
combination rules for the response spectrum method are formulated to deal with the non-
classical damping and over-critically damped modes. This first rule is referred to as the
‘General-Complete-Quadratic-Combination-3’ (GCQC3) rule in this study while the
second is the ‘General Square-Root-of-Sum-of Squares-3 (GSRSS3), in which the modal
correlations are ignored. Further, an over-damped mode response spectrum is introduced
to account for the peak modal responses of the over-damped modes. In addition to the
displacement correlation coefficient given in the conventional CQC3 rule, new
correlation coefficients to account for the cross correlations between modal displacement,
modal velocity and the over-damped modal responses are also provided. The applicability
of the general modal response history analysis method is demonstrated by a numerical
example. Also, the errors in structural response estimations arising from the classical
damping assumption are identified, and the effect of the over-damped modes on certain
response quantities is observed. The accuracy of the GCQC3 rule is also evaluated

through the example by comparing it to the mean response history results. This GCQC3
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rule retains the conceptual simplicity of the CQC rule and offers an efficient and accurate
estimation of the peak responses of structures with added damping devices. To enable the
new rule to be applicable in earthquake engineering practice, a conversion procedure to
construct an over-damped mode response spectrum compatible with the given 5%
standard design response spectrum is established. Its accuracy is also validated. This
ensures the applicability of the GCQC3 rule in engineering practice. An example
evaluation shows that MDOF systems with added dampers should be modeled as non-
classically damped systems and the over-damped modes should be included in the
analysis to achieve more reliable estimates. In addition, a general real-valued modal
coordinate transformation matrix which can decouple the equations of motion of
arbitrarily damped structures is found during the process of theoretical formulation. A
rigorous proof of the modal decoupling process by using this general modal coordinate

transformation is given.

7.2 Conclusions

In this report, a comprehensive modal analysis approach for seismically excited
arbitrarily damped 3-D structures is developed. The following key conclusions can be

drawn from the theoretical formulation work:

(1) The over-damped modes are allowed in the formulation. Their real eigenvalues

and eigenvectors are treated individually instead of grouped into pairs.

(2) Equation of motion of arbitrarily damped structures can be decoupled in a
physical space using the general modal coordinate transformation matrix

established in this study.

(3) Through the formulation presented in this study, the 3-D coupling and
orthogonal effect as well as the non-synchronization motions between DOFs
and the over-damped modes can be quantified and explained both

mathematically and physically.

(4) Complex algebra operations are only required when solving the eigenvalue

problems.
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)

(6)

(7)

(8)

(1)

A unified form is available to express most response quantities in the modal

analysis approach. This unified form only requires three sets of modal
responses q,(?), q,(t) and q; (¢).

The GCQC3 and GSRSS3 modal combination rules are applicable to estimate
the velocity-related and absolute acceleration-related response quantities due to
the establishment of the unified form. For example, the absolute acceleration of
a single-degree-of-freedom system can be approximated more accurately by

this rule instead of using the corresponding pseudo values.

A conversion procedure to construct an over-damped mode response spectrum
compatible with the 5% design response spectrum is established to enable the
GCQC3/GSRSS3 rule to be applicable for use in earthquake engineering

practice.

From the example demonstration, it is found that the over-damped modes may
have significant influence on the absolute acceleration-related response
quantities. In general, the responses are under estimated if the over-damped

modes are not properly considered.

7.3 Future Research

The formulation and application in this study are limited to linear systems. Further
research should be performed to consider the inelastic behavior of a system. It is believed
that the analysis procedure along with the use of equivalent linear approaches may be a

reasonable approach for nonlinear analysis of systems with added dampers.

Possible future research work and topics are:

Development of a computer software system which incorporates all the
proposed procedures to handle the effect of non-classical damping and the

over-damped modes when the modal analysis approach is employed.
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€)

(4)

()

Principles of modal truncation of large scale arbitrarily damped
systems/structures should be established to minimize the computation effort

without losing the estimation accuracy.

Research the nonlinear behavior of structures that are supplemented with
nonlinear damping devices and subjected to 3-D earthquake excitations. Based
the results of such research, a linear equivalent MDOF model that can more
accurately represent 3-D nonlinear structures may be developed. With this
equivalent method, new design principles and guidelines based on the linear

modal analysis approach for the structure-damper system may be established.

The effectiveness of supplemental dampers installed in real structures has not
been demonstrated under large, very strong earthquakes, particularly when the
structure experiences large deformation. Therefore, full scale experiments on
structures with supplemental dampers should be conducted to validate the
theory and observe the behavior of structure-damper systems that are subjected

to large nonlinear deformations.

Develop design principles, methods and technology transfer materials,
especially based on “equivalent linear approaches,” for structural engineers to

aid in the design of supplemental damping.
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