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DISCLAIMER

Considerable effort and time has been put in the development and testing of the computer program
IDARC. Whenever possible, analytical results have been validated with experimental data. All modules and
routines in the program have been carefully tested with examples. Nevertheless, the authors do not take any
responsibility due to inadequate analysis results derived from flaws in the modeling techniques or in the
program. The user is responsible to verify the results from the analysis. The program incorporates current
knowledge in the field of nonlinear structural dynamic analysis. The user should be knowledgeable in this
area to understand the assumptions in the program, adequately use it, and to verify and correctly interpret the
results. The following DISCLAIMER OF WARRANTY applies to the user of the computer program IDARC
and its associated subroutines.

DISCLAIMER OF WARRANTY

The program IDARC, the associated subroutines, and the data files, are provided “AS-IS” without warranty
of any kind. The authors and the sponsoring institutions make no warranties, express or implied, that the
program is free of error or is consistent with any particular standard of merchantability, or that the program
will meet your requirements for any particular application. The program should not be relied on for solving
a problem whose incorrect solution could result in injury to a person or loss of property. If you do use the
program in such a manner, it is at your own risk. The authors and the sponsoring institutions disclaim all
liability for direct or consequential damages resulting from your use of the program.

The ownership of the program remains with the developers. The program should not be resold or
redistributed in whole or in part for direct profit. Neither the whole program nor routines of the program
shall be incorporated into the source code or the executable binary code of other programs without prior
written permission from the authors. Programs containing IDARC routines must acknowledge acceptance of
the above DISCLAIMER OF WARRANTY and of the fact that no business relationship is created between the
program’s users and the authors of IDARC or the sponsoring institutions. The name of the authors and the
name of sponsoring institutions should not be used to promote products derived from this program without
specific prior written permission from the authors.

NOTICE

This report was prepared by the University at Buffalo, State University of New York as a result of research
sponsored by MCEER through a grant from the Earthquake Engineering Research Centers Program of the
National Science Foundation under NSF award number EEC-9701471 and other sponsors. Neither MCEER,
associates of MCEER, its sponsors, the University at Buffalo, State University of New York, nor any person
acting on their behalf:

a. makes any warranty, express or implied, with respect to the use of any information, apparatus, method,
or process disclosed in this report or that such use may not infringe upon privately owned rights; or

b. assumes any liabilities of whatsoever kind with respect to the use of, or the damage resulting from the
use of, any information, apparatus, method, or process disclosed in this report.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the
author(s) and do not necessarily reflect the views of MCEER, the National Science Foundation, or other
sponsors.
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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national
center of excellencein advanced technology applications thatis dedicated to the reduction of
earthquakelosses nationwide. Headquartered at the University at Buffalo, State University
of New York, the Center was originally established by the National Science Foundation in
1986, as the National Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions
throughout the United States, the Center’s mission is to reduce earthquake losses through
research and the application of advanced technologies that improve engineering, pre-
earthquake planning and post-earthquake recovery strategies. Toward this end, the Cen-
ter coordinates a nationwide program of multidisciplinary team research, education and
outreach activities.

MCEER'’s research is conducted under the sponsorship of two major federal agencies: the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA),
and the State of New York. Significant support is derived from the Federal Emergency
Management Agency (FEMA), other state governments, academic institutions, foreign
governments and private industry.

MCEER’s NSF-sponsored research objectives are twofold: to increase resilience by devel-
oping seismic evaluation and rehabilitation strategies for the post-disaster facilities and
systems (hospitals, electrical and water lifelines, and bridges and highways) that society
expects to be operational following an earthquake; and to further enhance resilience by
developing improved emergency management capabilities to ensure an effective response
and recovery following the earthquake (see the figure below).
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A cross-program activity focuses on the establishment of an effective experimental and
analytical network to facilitate the exchange of information between researchers located
in various institutions across the country. These are complemented by, and integrated
with, other MCEER activities in education, outreach, technology transfer, and industry
partnerships.

This report summarizes the enhanced modeling and analysis capabilities of the IDARC program
series for analysis, design and support of experimental studies. The analytical models described
include frame structures with rigid or semi-rigid connections made of beams, columns, shear walls,
connecting beams, edge elements, infill masonry panels, inelastic discrete springs (connectors), and
damping braces (viscoelastic, viscous, friction and hysteretic). Hysteretic models with improved
degradation parameters can trace sections to complete collapse. The nonlinear characteristics of the
analytical models are based on a flexibility formulation and an improved distributed plasticity with
yield penetration model. Properties of members are calculated by fiber models or by formulations
based on mechanics. The analysis techniques include improved nonlinear static analysis (with mono-
tonic and cyclic loadings), nonlinear dynamic analysis with multi-component ground motions and
gravity loads, and quasi-static analysis of the type required by laboratory experiments. The analyses
include enhanced evaluation of inelastic response through damage analysis of members and the
global structure, using methods based on energy, stiffness and ductility including monitored dam-
age progression. Finally, new case studies are included as examples of use of inelastic analyses.
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ABSTRACT

This report summarizes the modeling of inelastic structures and enhancements to
the program series IDARC developed for analysis, design and support of experimental
studies. It includes a synthesis of all the material presented in previous reports NCEER-
87-0008, NCEER-92-0022, and NCEER-96-0010 (and in other related reports). The
report also presents new developments regarding modeling of inelastic elements and

structures with supplemental damping devices, infill panels, etc.

The analytical models described herein include frame structures with rigid or semi-
rigid connections made of beams, columns, shear walls, connecting beams, edge elements,
infill masonry panels, inelastic discrete springs (connectors), and damping braces
(viscoelastic, fluid viscous, friction, hysteretic). The formulations are based on
macromodels in which most structural members are represented by a single-

comprehensive element with nonlinear characteristics.

The nonlinear characteristics of the basic macromodels are based on a flexibility
formulation and a distributed plasticity with yield penetration. Properties of members are
calculated by fiber models or by formulations based on mechanics. The solutions are
obtained using step-by-step integration of equations of motion using the Newmark beta
method. One-step correction and iterative computations are performed to satisfy
equilibrium. The nonlinear dampers are treated as time dependent Maxwell models,
Kelvin Models or hysteretic models. Their solution is obtained by simultaneously solving

their individual equations using a semi-implicit Runge-Kutta solution.

This report presents several analyses types which can be performed by the
computer program, i.e., monotonic inelastic static analysis (push-over), time-history
analysis with multi-components of ground motion and gravity loads, and quasi-static
analyses of the type required by laboratory experiments. The analyses include evaluation
of inelastic response through damage analysis of members and the global structure.
Several damage indices formulations are presented (Park et al., Reinhorn & Valles,
Cakmak et al.) based on energy, stiffness and ductility including monitored damage

progression.

The previous report emphasized the improvements to this analytical platform

which include: (i) improved plasticity and yield penetration model; (ii) new masonry



infill panels; (iii) new braces with damping; (iv) new hysteretic model and solution; (v)
new global damping formulation; (vi) new “push-over” analyses including adaptable
technique; (vii) new damage indicators, (viil) improved information on damage
progression through snapshots; (ix) improved efficiency through reprogramming of
stiffness formulations; and (x) new case studies presented as examples of use of inelastic

analyses.

In addition to these previous improvements, the current report summarizes
improvements made from version 4.0 to latest version 7.0 of this analytical platform,
which include: (i) added uniform flexibility formulation; (ii) added concentrated
plasticity model; (iii) improved vertex oriented hysteretic model; (iv) developed smooth
hysteretic model; (v) developed nonlinear elastic-cyclic model; (vi) developed deep beam
and deep column elements; (vii) added new rocking column model; (viii) added shear
failure state in output files; (ix) added story velocity in story output files; and (x) two new
case studies, as examples of the use of deep beam & column elements and rocking
(constrained double hinged) columns characterized with the nonlinear elastic-cyclic

behavior for used weakened structures.

For the sake of completion, this report includes all background from previous

reports as well as the latest improvements.

The computer program has a user’s manual which is presented in Appendix A and
is distributed to members of the IDARC Users Group:
http://civil.eng.buffalo.edu/idarc/

http://civil.eng.buffalo.edu/users_ntwk idarc (computational platform)

Additional information is posted on the Internet site (see Introduction).
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SECTION 1
INTRODUCTION

Significant research has been carried out in an effort to understand the behavior of
building structures subjected to earthquake motions. Due to the inherent complexities that
buildings have, often, research has focused on understanding element behavior through
component testing. The conclusions and models derived from these studies must later be
integrated so that the response of the whole structure may be captured. The well known
computer program DRAIN-2D (Kaanan and Powell, 1973) was introduced in 1973 with
the state of the art knowledge at that time in an attempt to capture the structural response.
The program has recently been updated and the new version is called DRAIN-2DX
(Allahabadi and Powell, 1988).

A number of programs for the nonlinear dynamic analysis of building structures
have been introduced since then. Among them, SARCF (Chung et al., 1988; Gomez et al.,
1990), IDARC (Park et al., 1987; Kunnath et al., 1992) and ANSR (Oughourlian and
Powell, 1982) became widely used by the research community. The computer program
IDARC has been conceived, since its first release, as a platform for nonlinear structural
analysis in which various aspects of concrete behavior could be modeled, tested and
improved upon. Throughout the various releases of IDARC, program developments and
enhancements have been based primarily on the need to link experimental research and
analytical developments.

Structural design engineers have been aware of the inherent limitations that widely
used elastic analysis have when trying to calculate the response of a building designed to
respond inelastically. However, due to the computational effort required to perform a
nonlinear analysis, the fact that building codes are mostly concerned with elastic analysis,
the need for a more precise characterization of the input motion, etc., have forced
structural engineers to continue using elastic analysis programs.

The introduction of new protective systems, such as base isolators and damper
elements, require the use of nonlinear dynamic analysis programs for their design. To
bridge this gap, commercial software for elastic analysis, such as ETABS (Habibullah,
1995) and SAP (Wilson, 1995), have incorporated nonlinear elements to model the
behavior of such devices, allowing design engineers already familiar with those programs
to easily incorporate the protective devices in the response of the structure. However, the
structure itself is still modeled in the elastic range, therefore, not able to capture the
inelastic response of structures. This drawback may not be significant for new buildings,
however, retrofitted structures may considerably deviate from an elastic response.

The new release of IDARC incorporates the results from recent experimental
testing on reinforced concrete components and structures, as well as structural steel
structures, that have lead to enhancements in modeling using macromodels with new
distributed plasticity models, new hysteretic models, and modifications to the combined
model for shear-flexure capacity of members. IDARC is now enhanced to capture with
greater accuracy the response of reinforced concrete and structural steel elements.



Furthermore, in parallel with an experimental program to study the response of
buildings with damper elements for seismic protection, new mathematical models for
such elements were incorporated and verified in the program. IDARC is now capable of
accurately predicting the response of inelastic multistory buildings with viscoelastic,
friction and hysteretic damper elements.

Moreover, combined with an experimental program, and a loss assessment program
in a metropolitan area in the vicinity of the New Madrid zone, a model for infill panel
elements was incorporated and tested. This model may be used to study the response of
masonry buildings, commonly used as low to medium rise structures in metropolitan
areas. IDARC is now capable of modeling buildings with masonry walls, or other type of
infill panels.

In addition, the new method for seismic evaluation originally proposed in the ATC-
33 (1995) using the results from lateral pushover analysis, was already incorporated in
previous versions of the program. However, in conjunction with an analytical program to
estimate the inelastic response of structures, an extended and more realistic set of options
to carry out the pushover analysis have been incorporated. Furthermore, the need to better
characterize the structural performance of a building during a seismic event lead to an
analytical investigation to develop a damage model from basic physical considerations.
The new model, referred to as fatigue based damage model, developed by Reinhorn and
Valles (1995) was also incorporated in the program, along with a global damage model,
and the model by Park and Ang (1984) that was introduced in the first release of IDARC,
and is now a benchmark damage quantification index. IDARC now offers a broader range
of pushover and damage indices derived from strong physical considerations.

Finally, most of the program routines, internal variables and program structure
have been checked and optimized to improve the performance, and considerably reduce
execution time. In addition, the users manual was revised and restructured to facilitate the
input data preparation. IDARC is now more efficient and user friendly.

This report summarizes the program modeling techniques used, and provides
references for each of the broad topics considered. Appendix A has the user’s manual for
the program. Appendix B includes the sample input files described in Section 9.
Appendix C summaries the maximum default numbers limited in the new version. The
default numbers can be increased by User in the source file (iddefn.for). Appendix D
addresses all variables used in the hysteretic rules.



SECTION 2
THEORY AND BACKGROUND

2.1 Nonlinear Structural Analysis Software

Building structures are often designed using results from elastic analyses, although
inelastic behavior is expected during earthquakes. To estimate the actual response of
structures when some of the elements behave inelastically, nonlinear structural analysis
programs have been introduced. The well known computer program DRAIN-2D (Kaanan
and Powell, 1973) was introduced in the early 1970’s. The program included the state of
the art knowledge at the time. Since then the program was not considerably modified in
its structure, untii DRAIN-2DX (Allahabadi and Powell, 1995) was introduced.
Nevertheless, the new program has some limitations regarding the plasticity and
flexibility rules.

Since then, a number of programs for nonlinear analysis of structures have been
introduced. Among them SARCF (Chung et al., 1988; Gomez et al., 1990), IDARC (Park
et al., 1987; Kunnath et al., 1992, Valles et al., 1996), ANSR (Oughourlian and Powell,
1982), DRAIN-3DX (Prakash et al., 1994), PERFORM3D (Computers and Structures,
Inc., Ver. 4.0.3, 2007), OpenSees (Mazzoni et al., Ver. 2.0, 2008), and INDYAS
(Elnashai et al., 2000) became widely used by the research community.

2.2 IDARC Computer Program Series

The computer program IDARC was conceived as a platform for nonlinear
structural analysis in which various aspects of concrete behavior can be modeled, tested
and improved upon. Program development and enhancements have been primarily to link
experimental research and analytical developments.

The computer program IDARC was introduced in 1987 as a two-dimensional
analysis program to study the non-linear response of multistory reinforced concrete
buildings. The original program released included the following structural element types:

a) Column Elements

b) Beam Elements

c¢) Shear Wall Elements

d) Edge Column Elements

e) Transverse Beam Elements

Column elements were modeled considering macromodels with inelastic flexural
deformations, and elastic shear and axial deformations. Beam elements were modeled
using a nonlinear flexural stiffness model with linear elastic shear deformations
considered. Shear wall included inelastic shear and bending deformations, with an
uncoupled elastic axial component. Edge column elements were introduced considering
only inelastic axial deformations. Transverse beam elements, that have an effect on the
rotational deformation of the shear walls or beams to which they are connected, in an



attempt to consider 3D interactions, were modeled using elastic linear and rotational
springs.

One of the significant features incorporated in the program, used to implement
inelastic behavior in the macromodels, is the distributed flexibility model that replaced
the commonly used hinge model developed for steel frames. The hinge model is not
suitable for reinforced concrete elements and many other structural materials since the
inelastic deformation is distributed along the member rather than being concentrated at
critical sections (Park et al., 1987). To trace the hysteretic response of a section, a three
parameter model was developed. Through the combination of three basic parameters and
a trilinear polygonal skeleton, stiffness degradation, strength deterioration and pinching
response can be modeled.

The original version of the program included the damage model developed by Park
and Ang (1984) to provide a measure of the accumulated damage sustained by the
components of the structure, by each story level, and the entire building. This damage
index included the ratio of the maximum to ultimate deformations, as well as the ratio of
the maximum hysteretic energy dissipated to the maximum monotonic energy, therefore
capturing both components of damage.

The original release of the program consisted of three parts (Park et al., 1987):

a) System identification: static analysis to determine component properties, the
ultimate failure mode of the building, and the initial stresses due to gravity loads
before dynamic analysis.

b) Dynamic response analysis: step by step inelastic dynamic analysis.

c) Substructure analysis and damage analysis: analysis of selected substructures,
and comprehensive damage evaluation.

Later versions of the program included:
a) The addition of a fiber model routine to automatically calculate the envelope
curve of column, beam, and shear wall elements.
b) A quasi-static, or quasi-dynamic, analysis module for comparisons with
experimental tests.
¢) Addition of P-Delta effects in the static and dynamic analysis.

The program version 4.0 provided a number of enhancements including:
a) Viscoelastic, friction, and hysteretic damper macro elements.
b) Macro model for infill panel elements.

c) Spread plasticity and yield penetration
d) New Hysteresis modules.

e) New Damage indicators.

f) New “Pushover” options.

g) Response snapshots during analysis.

h) Proportional damping options.

1) Reprogrammed for improved efficiency.
j) New case studies for program validation.



The major highlights of each improvement are briefly described below.

a) Viscoelastic, friction and hysteretic damper macro elements

Three main types of supplemental damper elements were included in the program.
Damper elements are linked to the relative motion of two adjacent floors in the structure.
Viscoelastic damper elements are modeled using either a Kelvin-Voight or a Maxwell
model, depending on the characteristics of the dampers. Friction and hysteretic dampers
are included using the Sivaselvan and Reinhorn’s (similar to Bouc-Wen) smooth
hysteretic model. All models are capable of capturing the response of the dampers during
dynamic and quasi-static analyses.

An equivalent dynamic stiffness is used for the viscoelastic elements during
quasistatic and pushover analysis, while the Sivaselvan and Reinhorn (1999) model was
reformulated in terms of deformation increments to remove the time dependency in the
original formulation. Furthermore, the instantaneous apparent dynamic stiffness of the
damper elements is included in the global building stiffness matrix before the eigenvalue
analysis takes place. Therefore, the eigenvalue analysis automatically incorporates the
actual instantaneous contribution from the damper elements, which is often only
accounted for using a user specified equivalent constant stiffness for these elements in
other nonlinear analysis programs.

These new element types in the program allow the user to study the response of
nonlinear structures with a wide variety of supplemental damping devices. Commercially
available programs such as ETABS Version 6 (Habibullah, 1995) and SAP2000
(Computer and Strucutres, Inc., Ver. 12, 2008) are capable of capturing the response of
some supplemental damping devices, but are incapable of capturing the nonlinear
response of the building simutaneously. This shortcoming may be unimportant for the
design of new structures that can be proportioned to remain elastic during the design
earthquake. However, when existing buildings are retrofitted using supplemental
damping devices, often the new design will still allow some level of inelastic response in
the structural elements in order to make the retrofit economically viable. Under such
conditions, an analysis considering the inelastic response of in the structural elements
must be performed to estimate the actual response of the retrofitted structure.

b) Macro model for infill panel elements

A new element was introduced in IDARC to capture the contribution of infill
panels to the lateral load resistance of the structure. The hysteretic response of the infill
element is captured using a smooth hysteretic model based on the Sivaselvan and
Reinhorn model. The smooth hysteretic model includes stiffness decay, strength
deterioration, and pinching response. An important improvement of the implemented
model is that strength deterioration is related to a fatigue damage index of the panel
element.

The infill panel element was implemented so that the modeling parameters could
be easily changed to capture different types of hysteretic loops. Masonry infill walls can



be modeled using the infill panel element. Provisions in the program were made so that if
a masonry infill wall is used, the program will automatically calculate the hysteretic
parameters based on geometric and material considerations. Other type of panel elements,
structural or nonstructural, can be modeled using user defined parameters.

¢) Spread plasticity and yield penetration

The spread plasticity model in the original release of the program was reformulated
to enhance numerical precision and computation efficiency. The spread plasticity
formulation includes the effect of shear distortions in the elements. The revised
formulation can now handle flexural or shear failures with the possibility of numerical
overflow eliminated. This effort is part of a larger project to model element collapse
(loss) during analysis.

In addition to the reformulation of the spread plasticity model, yield penetration
rules were introduced to allow for varying plastic length zones. The formulation can
capture the change in the plasticized length under single or double curvature conditions.
The penetration length is updated at each step in the analysis as a function of the
instantaneous moment diagram in the element, but the penetration length is never allowed
to become smaller than the previous maximum.

d) New Hysteresis Models

The original IDARC program used the three parameter model to trace the
hysteretic response of structural elements. The piece-wise linear three parameter model
that included stiffness degradation, strength deterioration and slip was introduced to
model the response of reinforced concrete structural elements. With a variation in the
hysteretic parameters, and in the monotonic characteristic points, the user could simulate
other hysteretic shapes, such as the one observed in steel structures, or other materials
and systems.

A new set of routines were introduced to account for different hysteretic loops:
steel and bilinear hysteresis. The polygonal model was redeveloped to identify branches
and transitions in a clear fashion (Sivaselvan and Reinhorn, 1999). The structure of the
program was modified to facilitate the addition of new hysteretic routines that can be
developed in the future, or by other researchers. A new smooth hysteretic model with
degradation of stiffness, strength and slip was developed (Sivaselvan and Reinhorn,
2000) and introduced in the program.

¢) New Damage indicators

The original release of IDARC incorporated damage qualifications for the building,
the building stories, and the structural elements based on the damage index proposed by
Park et al. (1984). Since then, the Park and Ang damage model has become a benchmark
damage qualification model. A new damage index has been developed (Reinhorn and
Valles, 1995) based on basic principles and low cycle fatigue considerations.

The new damage quantification index, fatigue based damage index, was
incorporated in the newer releases of IDARC. The original Park and Ang damage model



can be derived after simplifications of the fatigue based damage model. In addition,
provisions in the program were made so that the user can request printing of the variation
of the fundamental period of the structure as the analysis progresses.

The new fatigue based damage index, the Park and Ang damage model, and the
history of the variation of the fundamental frequency of the structure provides the user
with a more accurate description of the building performance for damage quantification.
The extended damage index options provide three scope levels for quantification:
building, story and element damage.

f) New “Pushover” options

“Pushover” (nonlinear inelastic) analyses are used to determine the force-
deformation response characteristics of a structure. Using the results from this analysis,
the actual nonlinear dynamic response of the structure can be estimated with suitable
initial conditions and specific parameters of a problem (Valles et al., 1996). Furthermore,
a new set of dynamic evaluation procedures (Reinhorn, 1997), as suggested also in the
ATC-33 (1995), utilize the results obtained with pushover analyses.

A number of different options for the pushover analysis were added to the
program: displacement control, user defined force control distribution, a generalized
power distribution, and a modal adaptive lateral force distribution. These options allow a
more realistic force distribution to be used in the pushover analysis. The generalized
power distribution is also suggested in the ATC-33 (1995) to determine the load
distribution as a function of the fundamental period of the structure. The modal adaptive
force distribution (developed by Reinhorn, 1997) is able to capture the changes in the
lateral load distribution as the building responds in the inelastic range.

g) Response snapshots during analysis

One of the new features of the program is that the user can request a series of
response snapshots during the analysis. The response snapshots provide the user with
displacement profile, element stress ratios, collapse states, damage index states, and
dynamic characteristics (eigenvalues and eigenvectors) of the building at an instant
during the analysis.

The instant where response snapshots are taken can be specified in terms of a
desired threshold in overall shear or drift levels. By default, the program can report
snapshots at the end of the analysis, and when a column, beam or shear wall cracks,
yields or fails. Response snapshots provide the user with the instantaneous building state,
which is also required by the ATC-33 recommendations for seismic evaluation of
existing buildings.

h) Proportional damping options

In the new version of IDARC, the damping matrix can be specified to be either
Rayleigh or simply stiffness proportional, besides the mass proportional option available
in the earlier versions of the program. Proportionality coefficients are calculated



internally by the program using the first mode, or the first two modes in the case of
Rayleigh damping.

i) Reprogrammed for improved efficiency

Most of the solution routines, including the eigenvalue routine, the shear
calculation, the spread plasticity and yield penetration routines, and the matrix
condensation routines were revised and reprogrammed to improve computational
efficiency in the analysis. With these modifications, the program can readily be executed
in a personal computer.

j) New case studies for program validation

Verification examples have been included to highlight the program capabilities and
features, as well as to validate whenever possible, numerical models with experimental
results. The case studies will also help new users of the program to get familiar with
IDARC capabilities and input formats.

The program version 4.5 to version 5.5 enhanced through developing as following:

a) Concentrated plasticity models.

b) Uniform flexibility distribution.

c) New Hysteretic modules for improved vertex oriented model.
d) New Hysteretic modules for smooth hysteretic model.

2.3 Program Enhancements

For the latest release of the program, Versions 6.0 to 7.0, a number of additional
enhancements are provided:

a) New Deep Beam and Column Elements.

b) New Rocking Column Model.

c) New Nonlinear-Elastic-Cyclic Model.

d) New “Case Studies” for program validation.
e) User group and internet site support.

Several features such as multi-infill panels modeling, sign convention of brace systems,
and nonlinear spring model from the previous version were corrected. The major
highlights of each improvement are briefly described below.

a) New Deep Beam & Column Elements

The deep elements were developed by adding shear stiffness and hysteretic effect
into the conventional beam and column elements. When the elements are reached to
ultimate shear strength or strain, the elements are failed. The response snapshots of the
shear failure state is shown in out-file during analysis. This development can be used to
simulate a perforated shear wall with regular and irregular openings.



b) New Rocking Column Model

The rocking column is similar to a double-hinged column and does not develop a
tensile resistance at the connection. However, the column provides a lateral resisting
depending on an external axial load. The rocking column is used for weakening structures
which reduce its story or global strength, to obtain better global behavior.

¢) New Nonlinear-Elastic-Cyclic Model (NECM)

When structural element returns to the original position without loosing strength
and stiffness capacities even after its plastic behavior, the Nonlinear-Elastic-Cyclic
Model (NECM) is used to simulate the structural element behavior. This model can be
used for beam, column, and shear wall elements also.

d) New case studies for program validation

Two case studies have been introduced: 1) Verification example of “deep” elements
and ii) Use of rocking columns for weakened structures. The case studies will help new
users of the program to become familiar with IDARC capabilities and input formats.

e) Mail user group and internet site
Started in 1995, the user group for the program has been reorganized to allow for
questions, suggestions or comments related to the program. The E-mail address is:
idarc@eng.buffalo.edu
A world-wide web site in the internet has been created where news, updates, comments
and current developments are posted. The world-wide web address is:
http://civil.eng.buffalo.edu/idarc/







SECTION 3
FORMULATIONS OF STRUCTURAL ELEMENT MODELS

3.1 Introduction

The program was developed assuming that floor diaphragms behave as rigid
horizontal links, therefore, only one horizontal degree of freedom is required per floor.
This approach greatly reduces the total computational effort. Therefore, the building is
modeled as a series of plane frames linked by a rigid horizontal diaphragm. Each frame is
in the same vertical plane, and no torsional effects are considered. Since the floors are
considered infinitely rigid, identical frames can be simply lumped together, and the
stiffness contributions of each typical frame factored by the number of duplicate equal
frames. Input is only required for each of the typical frames.

The computer program IDARC integrates different structural element models in the
global stiffness matrix of the system, or treats them as loads in a pseudo-force
formulation. Such arrangement allows for new element modules to be easily added to the
global structure of the program.

Version 7.0 of IDARC includes the following types of structural elements:

a) Column elements

b) Beam elements

c¢) Deep beam and column elements
d) Rocking column elements

e) Shear wall elements

f) Edge column elements

g) Transverse beam elements

h) Rotational spring elements

1) Visco-elastic damper elements
j) Friction damper elements

k) Hysteretic damper elements

1) Infill panel elements

m) Element moment releases

Figure 3.1 schematically shows a building with some of the element types available in
IDARC Version 7.0. Each of the element types are discussed below.

3.2 Stiffness Formulation for Common Structural Elements

Most structural elements, i.e. columns, beams and shear walls, are modeled using
the same basic macro formulation based on a flexibility method. Flexural, shear and axial
deformations can be considered in the general structural macro element, although axial
deformations are neglected in the beam elements. Figures 3.2 show a typical structural
element with rigid zones. Flexural and shear components in the deformation are coupled
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in a “spread plasticity” formulation, as discussed in Section 3.4, and any of the following
hysteretic models can be used for both the flexural and shear springs:

a) Trilinear model.

b) Bilinear model.

c¢) Vertex oriented model.

d) Nonlinear elastic-cyclic model
e) Smooth hysteretic model.

Axial deformations are modeled using a linear elastic spring element uncoupled to the
flexural and shear spring elements.

Rotations and moments at the face of the element are related by the basic element
stiffness matrix, according to:

M; =K’ 6; 3.1
{M;}‘[ ]{9,;} G-

where M’ and M, are the moments at the face of the structural element; 6 and 6,
are the rotations at the face of the element; and [K'] is the basic stiffness matrix of the

element based on a flexibility formulation including shear and flexural deformations,
calculated using the spread or concentrated plasticity models described in Sections 3.4
and 3.5:

k, k
[K']{ “ “b} (3.2)

kba kbb
where:

_12EI,ELEI,

aa ~ DetLy
_ —12EI,El El,

“ DL
_12EIEIEI,

DL

(f,,'bGAZL'z+ 12EIOE]aEI,,) ———————————— (a)

k, =k, (f,,GA.L®+12ELELEI,) ———————~ (b))  (3.3)

(foGAL®+12ELELEL) ~—------———~ ©

bb

with EI, being the elastic rotational stiffness; E/, and EI, the tangent rotational
stiffness at the ends of the element; GA, the shear stiffness; L' the length of the

member; and the rest of the parameters declared from the flexibility method are described
in Section 3.4.
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Fig. 3.2 Typical structural element with rigid zones

Column and beam elements can include a rigid length zone to simulate the
increased stiffness of the element at the joint, or in the connections with shear walls. The
effect of the rigid length zone is negligible in typical shear wall elements. The user can
specify the length of the rigid length zones depending on the dimensions of the
connecting elements. From geometry, the relationship between rotations and moments at

the face of the element, and these quantities at the nodes is expressed by the following
transformation:

715 {AZ\/II} ——————————— @ o)

R ®

~ 1 -4, A
Li=——M a 35
[ ] l—ﬂa—ﬂb[ A, l—ﬂa} (3-5)

where A, and A, are the proportions of rigid zone in the element, as shown in Fig. 3.2.

where:

Combining the equations, the basic equation relating moments and rotations at the
element nodes is:

lf 1o o
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where:

[K,]=[L][K][L] (3.7)

Considering force equilibrium of all the forces perpendicular to the axis of the element:

Xa
M, M,
X, =[Re]{Mb} ——————————————— (a) (3.8)
Mb
ua
9{1 4 Ha
{6,b}=[Re] B i — (b)
9/;

where X, and X, are the shear forces at ends “a” and “b ”, respectively; and:

/L 1/L
o

[R]=1_1)0 _i2 (3.9)
0 1

where L is the length of the member including rigid zone. Using Eqgs. 3.8 and 3.9,
Equation 3.6 can also be rewritten as:

Xa ua
Ml ik )% (3.10)
X, u,
Mb eb
where:
[K.]=[R[K][R,] (3.11)

is the element stiffness matrix relating displacements and forces at the element joints,
while [K,]| is the stiffness matrix relating rotations and moments at the element flexible

ends, as given by Eq. 3.7.
Bending moments and axial forces are considered uncoupled in the formulation,

hence, the force deformation relation for the resulting elastic axial stiffness is considered
as follows:
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Y, I -1}{v
o\ _£d ¢ (3.12)
Y, L'|[-1 1]|v,
where Y, and Y, are the axial forces in the element at ends “a” and “b 7, respectively;

v, and v, are the vertical displacements at ends “a” and “b ™ of the structural element,
respectively; and. EA/ L' is the axial stiffness of the element.

The element basic stiffness matrix [K'| is constantly varied throughout the

analysis according to the formulation for the spread plasticity model presented in Section
3.4, and the hysteretic model selected. Depending on the hysteretic model considered,
some characteristic values for the response of the element are required, namely moment-
curvature or shear-shear distortion. For reinforced concrete elements, the user may select
to specify the section dimensions and reinforcement, and use the fiber model to calculate
the properties.

3.3 Fiber Model for Common Structural Elements

The moment curvature envelope describes the changes in the force capacity with
deformation during a nonlinear analysis. Therefore, the moment-curvature envelopes for
columns, beams and shear walls form an essential part of the analysis. The program
IDARC now provides an option for users to input their own cross-section properties
directly, and the moment-curvature is computed internally based on a fiber model. Figure
3.3 shows a typical rectangular section subjected to a combination of axial load and
moment. The procedure outlined below is applicable to all types of cross-sections: T-
beams, shear walls, columns sections, etc. Some simplifying assumptions are made in the
analysis and summarized here:

a) Plane sections remain plain after bending

b) Tensile strength of concrete is ignored beyond the tensile cracking capacity
c¢) The effect of bond-slip between reinforcement and concrete is ignored

d) The difference in properties between confined core and cover is ignored

e) Stress strain properties for concrete and steel are shown in Figs. 3.4 and 3.5
f) The axial force applied to the section is constant.

The procedure outlined below works with only a few iterations required to obtain
convergence. The program IDARC uses this procedure to set up moment-curvature
envelopes for columns (rectangular or circular), beams (rectangular or T-sections) and
shear walls (with or without edge columns). Shear walls may be irregular and include
“U” or “L” shaped core walls.
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3.3.1 Moment-Curvature Envelope Computation

The fiber element procedure used was outlined by Kunnath et al. (1992a), adapted
from Mander (1984). The moment-curvature analysis is carried out on the cross-section
by dividing the concrete area into a number of strips or fibers. The section is subjected to
increments of curvature and the strain distribution is obtained from compatibility and
equilibrium considerations. Steel areas and their respective locations are identified
separately. The strain at any section is given by (see Fig. 3.3 and 3.6):

Shear Wall

f— Edge Column

| R 1 b \Q\\:
IR ixam: SR
A‘t_ l | I Xi \I\ ‘i"“] JA
' ; —— |
d. | X2 ..}} ;
: c/2 _! E
[ ;1 =d/2 ' !
]
I
!
|
|
SVIEW A-A
TOP OF WALL

Fig. 3.6 Fiber model analysis for a shear wall
E(z)=¢€,+z¢ (3.13)

where ¢, is the centroidal strain, z is the distance from the reference axis, and ¢ is
the curvature of the cross-section. The resulting axial load and moment in the cross

section can be computed from:
N=[Eedd ————————————— (a) (3.14)
M =[Ezedd ———————————— (b)

where N is the axial force; M the flexural moment; E is the elastic modulus of the
corresponding concrete or steel fiber; € 1is the strain in the fiber; and z is the distance
to the fiber from the reference axis. The axial load N should be equal to the applied
load N, at all cases. This dictates a certain distribution of the axial strains &(z). Since
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the stress-strain relation is nonlinear and the axial strain increment d& cannot be
computed directly for a given value of the axial load and moment, it is necessary to
develop an iterative procedure for the moment-curvature analysis. This is done through
an iterative fiber analysis as follows.

Substituting Eq. 3.13 into Eq. 3.14 and replacing the integral by a finite
summation over the discretized fibers, the following expression is obtained for any
incremental step & of strain at neutral axis Ag, and curvature A¢

{AN} REACYR R Ay {Ago} (3.15)

AM ], |k (&ut) ke (&0000)), (A0],

where:
k, (go,k’¢k ) = Z E, (go,k’ O )Aci + ZEsj (Eo,ka & )Asj _____________ (a)
A B SR O VIERS - YD VI —— (b) (3.16)
kzz(go,k’¢k)=ZEc'i(go,k’¢k) ciZi z ( Ok’¢k) jZ; TT T T T T T T T (c)

where NCC and NSS are the number of concrete strips and steel areas considered in
the section, respectively; E_, and E_ are the concrete and steel section tangent moduli

cl

in the fibers “i” and “ j 7, respectively; and, 4, and A are the areas of the concrete
strip and steel, respectively.

With the above relations, the complete procedure for developing the moment-
curvature envelope is as follows:

1) Apply a small incremental curvature A¢), to a previous known value Ag, ,i.e.

S =9, +A¢

2) In the first step (k£ = 0), the entire axial load is applied. Since the computation assumes
this axial load to be constant, the axial force increment AN, must be zero for the

remaining steps. Based on the previous stiffness matrix (in Eq. 3.15), compute the
incremental centroidal strain as follows, where n is the iteration step number (n >1):

Agl =—kIAg, 1k (3.17)

Note k, and kj, are the stiffness characteristics at the previous step, k—1.
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3) Update the new strains and curvatures:

£ n € n-1 Ag n
2], L2, 0 J,
4) Recompute the terms of the stiffness matrix of Eq. 3.15 using the expressions in Eq.

3.16.

5) Find the unbalanced axial load from:

AN! =K' Ael, +k A, (3.19)

6) If \AN;

procedure by returning to step (2). Otherwise calculate the moment increment:

>& where & is a tolerance limit value, then continue the iteration

AM, =k} Agg, + k. Ag, (3.20)

and update the moment capacity, and continue to search for the moment-curvature
relation by adding another increment Ag,,, to the process and continue to step (1).

In the fiber model analysis, the effect of hoop spacing on the moment-curvature of
columns can also be considered. It is assumed that the capacity of the column remains
unchanged after the concrete cover has spalled:

0.85f.4, = f. .4, (3.21)

where f is the confined compressive strength; A4, is the area of the core concrete;
and A4, is the gross concrete area. An expression relating confined to unconfined

strength of concrete is given by Park and Paulay (1975), and is based on the confining
stress relation of Richart et al. (1928):

Jee = 1. +2.050,f, (3.22)
where p, 1is the volumetric ratio of confinement steel to concrete cover:

o = A,7d,
o sA

cc

(3.23)

and A, is the cross-sectional area of the hoop steel; and s is the spacing of hoops. The
modified compressive stress of concrete is obtained substituting Eq. 3.22 into Eq. 3.21:
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. (fi+205p0,1,) 4,
o 0.854,

(3.24)

3.3.2 Ultimate Deformation Capacity

The ultimate deformation capacity is expressed through the ultimate curvature of
the section as determined from the fiber model analysis of the cross-section. The
incremental curvature that is applied to the section is continued until one of the following
conditions is reached:

a) The specified ultimate compressive strain in the concrete is reached (€ > €, ).

cu

b) The specified ultimate strength of one of the rebar is reached ( £, = . ).

The attained curvature of the section when either of the two conditions is reached is
recorded as the ultimate curvature. This parameter forms an important part of the damage
analysis.

The only factor considered to influence the ultimate deformation capacity of the
section is the degree of confinement. Since confinement does not significantly affect the
maximum compressive stress, the present formulation only considers the effect of
confinement on the downward slope of the concrete stress-strain curve (see Fig. 3.4). The
factor ZF defines the shape of the descending branch. The expression developed by
Kent and Park (1971) is used:

Esou T €50 — &
where:
g, =37 Efe (a) (3.26)
‘£, —1000
b
£, =0.75p, P (b)
h

in which the concrete strength is prescribed in psi; p, is the volumetric ratio of

confinement steel to core concrete; b is the width of the confined core; and s, is the
spacing of hoops. The effect of introducing this parameter is to define additional ductility

to well-confined columns. Improved formulations for stress-strain behavior of confined
concrete can be found in a publication by Paulay and Priestley (1992).
3.4 Spread Plasticity Model

The moment distribution along a member subjected to lateral loads is linear, as
shown in Fig. 3.7. The presence of gravity loads will alter the distribution, and in cases of
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significant gravity load moments the structural elements should be subdivided to capture
this variation. When the member experiences inelastic deformations, cracks tend to
spread form the joint interface resulting in a curvature distribution as shown in Fig. 3.7.
Sections along the element will also exhibit different flexibility characteristics, depending
on the degree of inelasticity observed (see Fig. 3.8). The program IDARC includes a
spread plasticity formulation based on the flexibility method in order to capture the
variation of the section flexibility, and combine them to determine the element stiffness
matrix.

The flexibility distribution in the structural elements is assumed to follow the two
alternative distributions as shown in Fig. 3.8 and Fig. 3.9, where EI, and EI, are the

current flexural stiffness of the sections at end “ A and “B”, respectively; EI, is the
stiffness at the center of the element; G4, is the shear stiffness of the element, assumed
constant throughout the length; «, and ¢, are the yield penetration coefficients; and
L' is the length of the element. The flexural stiffness E/, and EI,, and the shear
stiffness GA4,, are determined from the hysteretic model. The stiffness E/, and the
yield penetration coefficients ¢, and «, are determined as indicated in Section 3.6,
depending on the moment distribution and the previous yield penetration history.

The flexibility matrix, including shear distortions, relating moments and rotations
at the ends of the element is:

{HA}=|:fAA fAB:|{MA} (327)
HB fBA fBB MB

where @, and 6, are the rotations at the ends, M, and M, are the moments at the
ends of the element. The flexibility coefficients are obtained from:

Cem(@m () (), ()
fl.j_jo ) dx+j0 i dx (3.28)

where m;(x) and m;(x) are the moment distributions due to a virtual unit moment at

2 (13 * 9

end “i” or “j7, respectively; v(x) and v, (x) are the corresponding shear

distributions. Note that other influences such as temperature, torsion, and axial can be
included using formulation provided suitable degree of freedoms are included.

Formulations of flexibility and stiffness coefficients for the two alternative
distributions of spread plasticity are given in the following sections.
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3.4.1 Linear Variable Flexibility Distribution

After some algebra using Eq. 3.28, the flexibility coefficients for the linear
flexibility distribution can be written as (Lobo, 1994):

fAA=£ 4L (6, —4a; +ar) )+ Lt ol |+ ! —(a)
12| E1, \ EI, EI, EI, EI, GA, L'
L''-2 (1 1 11 1
=— — — 200 -a))-| ——-——|(2a; - ) |+ -(b)(3.29
T =1 El, (EIA EIO]( i-a) (EI EIOJ( i-a) G e
fou=rts -------————"——-————-"——-————————- (©)
fBB:A 4L (6a3—4a§+0{§)+ L1 o |+ 1 —(d)
12| EI, \ El, EI, EI, EI, GA, L'

In the current release of IDARC, the above formulation was rewritten, and close form
solutions were derived for the element stiffness matrix to avoid numerical instabilities if
close to failure conditions are observed in flexure or shear.

The flexibility coefficients in the program for the linear distribution are:
L' 1

== ’ 44— a
S 12E1,El ,EI, S GA,L' @
L' 1
o L S b 3.30
fAB fBA 12E]0E]AEIB fAB GAZL' ( ) ( )
L , 1
S5 St (c)

T 2ELELEL’" " GA L
where:
fi,=AELEL, +4(El,—El ) ELa,(3-3a,+})
+4(El,~EI)El,c, — —————— (a)
fip =—2EI EI, —(El,—EI,)El, (20}, -t}

(3.31)
~(El,-EI,)EIL, (205 -0)  —————————- (b)
fas =4ELEl, +(EI,—EIl ) El ,o,
+(EL,—EI,)El, (60, —4a; +ay)  —————————— (c)

Note that the total flexibility of the element is the sum of the flexural and shear
contributions.

The element stiffness matrix, including shear deformations, relating moments and
rotations at the element ends can be found by the following relation:
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M, _ ki k|0, —[K'] 0, 332
M, - kpy  kyp | |Op B O, (32

where the elements in the stiffness matrix are:

k= %( f35GA,L*+12ELEL [El ) == ———————~ (a)
et
~12EI,El EI,, , .,
ko =k, = DO L'A £( f15GA,L +12ELEl EI, )= ————— (b) (3.33)
et
12EI,EI EI, ; .,
55 = W( [1.GA,L?+12EL El [El ) -————————~ ()

D, = GA,L™ (Flu iy 3 )+ 2ELELEL (fl,+ fis=21) ~—(@

In the present formulation shear or flexural failures of the element can be incorporated.

3.4.2 Uniform Flexibility Distribution

For uniform flexibility distribution as shown in Fig. 3.9, the flexibility coefficients
and the elements in the stiffness matrix become:

L'l 1 11 11
=— + —~ a,(3-3a,-a’))+ -y | ————- a
S 3{510 (EIA Eloj 1 =) [EIB E]OJ B} @)

vl (1 1), R I
S :_Z{EIO -{EIA _EIOJ% (3_2%){&3 _E_Ioj% (3_2%)} e e

fBA :fAB __________________ (©)

L| 4 11 11
== + - 3-3a,+a;) o, +| ——-—— |a) | -————-— d
S 3{EIO (EIB EIO}( s+ ) (EIA EIOJ A} @

In the current release of IDARC, the formulation above was rewritten, and close form
solutions were derived for the element stiffness matrix to avoid numerical instabilities if
close to failure conditions are observed in flexure or shear.

The flexibility coefficients in the program for the uniform distribution are:
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f1.=4EIEIl, +4(EIl, - El ) ElLa, (3-3a, + ]
+4(El,-El,)El, oy~ —————= (a)
fis ==2EIEl,-2(EI, - EI,)El o, (3-2c,)

(3.35)
~2(El,-El,)ELa; (3-20,) ————————- (b)
fay =4ELEl, +4(El, - El ) El 00,
+4(EL, —EIL)ElLa, (3-3a, +0;) —————————— (©)

The elements in the stiffness matrix are again the same as for the linear flexibility
distribution case.

3.5 Concentrated Plasticity Model

The concentrated plasticity model is called as “lumped plasticity model”. The first
inelastic model known as the “two component model” was proposed by Clough and
Johnston (1966). It consisted of a linear elastic member in parallel with an elastic
perfectly plastic member. The elastic member accounted for the strain hardening
characteristics of the reinforcing steel, while the elastic perfectly plastic member for the
yielding of the reinforcement. The advantage of the two component model is that the end
moments depend on the moments at both ends of the member. Giberson (1969)
introduced the one componenet model which compresed of two nonlinear rotational
springs at the ends of a perfectly elastic member. The advantage of this model is that the
member-end deformation depends solely on the moment acting at the end, so that any
moment-rotation hysteresis model can be assigned to the spring. Al-Haddad and Wight
(1986) modified this model for varying plastic hinge locations at the member ends. This
model accounted for rigid end zones in conjunction with an elastic line element. The
inelastic actions were concentrated at the two plastic hinge locations.

The current IDARC2D uses a modified model from the previous models, which is
shown in Fig. 3.10. The modified model consists of two nonlinear rotational springs at
the ends while the member is considered as an elastic element. Also the model contains
rigid end zones for a joint. Therefore, the plasticity of the member is concentrated into
the rotational springs which represent the nonlinear properties of the member.
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Fig. 3.10 Concentrated plasticity model

3.6 Yield Penetration Model

The yield penetration model establishes length of the nonlinear stress regions,
which is combined with the spread plasticity formulation to capture the variation of the
stiffness in structural elements. The spread and uniform plasticity formulations described
in Sections 3.4 and 3.5 are dependent on the yield penetration parameters ¢, and ¢, ,

and of the flexural stiffness EI, at the center of the element. The rules for the variation
of these parameters as the moment diagram changes in the element are described below.

The yield penetration parameters, ¢, and «,, specify the proportion of the

element where the acting moment is greater than the section cracking moment, M , or

Acr

M .. . These parameters are first calculated for the current moment distribution, and then
: the yield
penetration parameters cannot be smaller than the previous maximum values regardless
of the current moment distribution. Two cases for the moment distribution are identified:

single curvature and double curvature moment diagrams. A set of rules are specified for
each of these cases.

checked with the previous maximum penetration lengths «,  and

max Bmax

a) Single Curvature Moment Diagram (M M, >0).

In the single curvature moment diagram, the moments at the end of the element
have the same sign. Depending on the moment distribution four cases can be identified:
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a.1) End moments smaller than the corresponding cracking moments

(|M)|<|M | and |M| <M, |):
o,=0 but o, 2cx,,  ————————————————— (a)
o, =0 but o, 2y, —————————————————— (b)
2EI , EI
0 = T A40°BO (C)
El ,, +El,,
a.2) Moment at end “A” greater than cracking moment
(|M|>|M,,| and |M;|<|M,,|):
M,-M
o,=—2—2<1] but o, 202, —————————— (a)
M,-M,
o,=0 but o, 20, —————————————————— (b)
2EI EI
e e - ©
El , +El,,
a.3) Moment at end “B” greater than cracking moment
(|M|<|M,,| and |M;|>|M,,]):
o,=0 but o, 20,  ————————————————— (a)
My-M
oy =—"2—22<1 but o, 20, —————————— (b)
My-M,
2EI EI
[ =00 ()
El ,, +El,,
a.4) Moment at both ends greater than cracking moments
(‘M;‘>|MAcr a’nd ‘M;E‘>|MBcr ):
a,=05-——---"-""-"-"-"-"-"-"-"-"-"---" (a)
=05-———-----"-""-"-"- (b)
2BELEL ©
El, +EI,

b) Double Curvature Moment Diagram (M M, <0):

(3.36)

(3.37)

(3.38)

(3.39)

where M, and M,  are the cracking moments of the section corresponding to the

sign of the applied moments; EI/,, and EI,, are the elastic stiffness of the sections at
the ends of the element.

In the double curvature moment diagram, the moments at the end of the element
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have different signs. Depending on the moment distribution four cases can be identified:



b.1) End moments smaller than the corresponding cracking moments

(o <[0. | and | <,
a,=0 but o, 20, ——————————————— (a)
o, =0 but o, 2, ——————————————— (b) (3.40)
2FEI EI
0 = T A40TBO (C)
El , +El,
b.2) Moment at end “A” greater than cracking moment
(0>, | and v |< o,
M,-M
o, =—2—4o<] but o, 200, ———————— (a)
M, -M,
o, =0 but a,2a,,, ——————————————— (b) (3.41)
2EI EI
J= o a0RO ()
El ,, +El,,
b.3) Moment at end “B” greater than cracking moment
(81|18t | and o1 |> o,
a,=0 but o, 2, ——————————————— (a)
MVB -M,
oy =—"——"5<1 but o, 2, —————- b 3.42
B MB _MA B Bmax ( ) ( )
2FEI EI
= a0 (©)

*" El,+EIl,

b.4) Moment at both ends greater than cracking moments
(|M)|>|M ,,|and |M,|>|M,,)):
o = M/Ll _MAc'r
A ' '
M,-M,
M,-M
Ay =—F—0% but @y 20, ————————— (b)
My,-M,
2EI [EI
0= e e (¢)
El ,+El,

but aA 2 aAmax ________ (a)

(3.43)

where M, and M,  are the cracking moments of the section corresponding to the
sign of the applied moments; EI/,, and EI,, are the elastic stiffness of the sections at

the ends of the element.

In the formulation described above, cracking moments are dependent on the sign of
the applied moments. Special provisions are made in the program to adjust the flexibility
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distribution of members where yield penetration has taken place on the whole element,
that is, when:

o, +a,>1 (3.44)

In such cases, the stiffness EI, is modified to capture the actual distribution considering
a new set of yield penetration coefficients that will satisfy «, +a, <1 (see Fig. 3.11).

o,+o, =21 5 o, +ta,=1

fA ____T__T___ fB

Y %
b | |
(b) | — 7 |
o, L' l
. | |
a'ALl I a;;Ll I
a,+o, =21 o, ta, =1

Fig. 3.11 Yield penetration lengths for fully inelastic members: (a) linear flexibility
distribution; (b) uniform flexibility distribution

3.7 Element Moment Releases

A perfect hinge could have been modeled as an end spring with zero stiffness,
however, the implications in the numerical analysis are leading often to singular matrices.
Therefore, a perfect member hinge is modeled by setting the hinge moment to zero and
condensing out the corresponding degree of freedom. If a hinge is assigned at the end
“b” of an element, the relation between moments at the joint “a” and at the face of the
element is given by (see Fig. 3.12):

M, = (%} M, (3.45)
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Fig. 3.12 Modeling of moment releases in structural elements

The element stiffness equation relating moments and rotations is:
{M,}=k]{6,} (3.46)

where k_ 1is a coefficient obtained by condensing the element stiffness matrix:

(Ix,1,,)

k. = [Ks]11 - (3.47)

where [K, ]ij are the coefficients of the element stiffness matrix calculated considering

the spread plasticity model.

The overall equilibrium equation for the entire element becomes:

Xa ua
M, 1Y e,
X, :[qj k{R.HR.,} 0, (3.48)
Mb Hb
where:
-1/L
1
{R.}= VL (3.49)
0

This element can be integrated into the global structural model as a standard
element. In case of a single column structure the degree of freedom “b” is eliminated
from the global stiffness matrix.
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SECTION 4
ELEMENT MODELS LIBRARY

Based on model developed in Section 3, arbitrary models were developed for each
of the elements indicated in Section 3.1. A detail presentation of models is shown below.

4.1 Column Elements

Column elements are modeled considering flexural and axial deformations. A
typical column element with the corresponding degrees of freedom is shown in Fig. 4.1.
Shear component does not contribute to the deformation since shear property is modeled
as a rigid feature. The flexural component of the deformation is modeled using one of the
following hysteretic models described in Section 5:

a) Trilinear model

b) Bilinear model

¢) Vertex oriented model

d) Nonlinear elastic-cyclic model
¢) Smooth hysteretic model.

The axial deformation component is modeled using a linear-elastic spring. The column
elements include a rigid length zone to simulate the increase in stiffness at the joint. The
user can specify the length of the rigid zone depending on the dimensions of the
connecting elements. The stiffness formulation for column elements is described in
Section 3.2.

The element stiffness matrix [K,] is constantly varied throughout the analysis

according to the formulation for the spread plasticity model presented in Section 3.4, and
the hysteretic model selected. Depending on the hysteretic model considered some
characteristic values for the response of the element are required, namely moment-
curvature or shear-shear distortion. For reinforced concrete elements the user may select
to specify the section dimensions and reinforcement, and use the fiber model to calculate
the properties as described in Section 3.3, or provide user supplied values.

Simplified formulations can be used alternatively to determine the moment-curvature
characteristics. For reinforced concrete columns, the following formulas may be used to
estimate the characteristic values of the moment-curvature response of the element (Park
et al., 1984):

a) Cracking moment:
M, =11f 2z +Nd/6 @)

where Je is the concrete strength in ksi; Z is the section modulus in " ; N s the
axial load in kips; and d s the depth to rebar in inches.
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Fig. 4.1 Typical column element with degrees of freedom

b) Yield Curvature (Park and Paulay, 1974):

@, =7 (4.2)

where & is the strain at yield stress of steel; and k is calculated according to:

1/2
k:{(p, +,0,')2 4;2 +(p, +,6’Cp,')ai} (o, +ﬂ;)i

y y y
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Af,

— Acf Y gy d
bdf.

Ty A, =—; p,.=—
bdf. = h

P, o, =

where 4, is the area of the tensile reinforcing bars; A is the area of the compressive

reinforcing bars; &, is the strain at maximum strength of the concrete; and d_ 1is the

cover depth for compression bars. Note that this expression tends to underestimate the
actual curvature since the inelasticity of concrete and the effect of axial loads is not taken
into account. Based on the results on an iterative analysis (Aoyama, 1971) the following
modification is introduced:

0, = [1.05 +(C,-0.05) On((;J(p; (4.3)

where:
C, = 0.45/(0.85 + ,ot)

n,=N/(fbd)

¢) Yield Moment (Park et al., 1984):
M, =0.5fbd”{(1+B.=n)n,+(2-n) p, +(n-28.) .0} (4.4)
0.7
0.75 [ &,
n= -
I+, [6‘0]

@, =(1-4) == f.<10

y

where:

d) Ultimate Moment (Park et al., 1984):

M, =(1.24-0.15p,-0.5n,) M, (4.5)

e) Ultimate Curvature:

For ultimate curvature estimates, the relations suggested by Park and Paulay
(1975) can be used.

More up to date relations of capacity of columns are presented by Mander et al.
(1995), and could be used instead of those suggested.

4.2 Beam Elements
Beam elements are modeled as flexural elements without shear deformations

coupled since shear property is modeled as a rigid feature. A typical beam element with

35



the corresponding degrees of freedom is shown in Fig. 4.2. The flexural component of the
deformation is modeled using one of the following hysteretic models described in Section
S:

a) Trilinear model

b) Bilinear model

c¢) Vertex oriented model

d) Nonlinear elastic-cyclic model
e) Smooth hysteretic model.

Ya Va
’ i Yb Y
M_ 9
a a 6
] My Ot{
Ll

Fig. 4.2 Typical beam element with degrees of freedom

The beam elements include a rigid length zone to simulate the increase in stiffness at the
joint. The user can specify the length of the rigid length depending on the dimensions of
the connecting elements. The stiffness formulation for column elements is described in
Section 3.2.

The element stiffness matrix [K,| is constantly varied throughout the analysis

according to the formulation for the spread plasticity model presented in Section 3.4, and
the hysteretic model selected. Depending on the hysteretic model considered, some
characteristic values for the response of the element are required, namely moment-
curvature or shear-shear distortion. For reinforced concrete elements, the user may select
to specify the section dimensions and reinforcement, and use the fiber model to calculate
the properties as described in Section 3.3, or provide user supplied values.

Simplified formulations can be used alternatively to determine the moment-
curvature characteristics. For reinforced concrete beams, the following formulas may be

used to estimate the characteristic values of the moment-curvature response:

a) Cracking Moments (Park et al., 1984):

M =110 (1,/7) ———————————~ (a) (4.6)
M, =110 f {1, J(h=%)} —— ===~ (b)
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where M and M_ are the positive and negative cracking moments; / . 1s the gross

moment of inertia of the section; X 1is the distance from the base to the centroid of the
section; and /4 s the height of the section.

b) Yield Curvature (Park and Paulay, 1974):

&

- D 4.7
Py = e mmmmm e (b)

T (1-k)d

where:

k_ - 1 ' 1 1/2 ' 1

=(o+n) s +(o+Br)—t ~(p+p)—

Y y Y

SAL AL e d,

“obdf T "t bdfT T g, Y d

and &, is the strain at yield stress of the steel; ¢ is a factor to amplify the curvature

due to inelasticity of the concrete; & is the neutral axis parameter (similar to & ); and
the rest of the variables were defined in Section 3.2.

c¢) Yield Moment (Park et al., 1984):

M} =05£b,d*[(2-n)p,+(n-28,)a.p,| -——————————— (a) (4.8)

! 1\ 2 | |
M;=057b(d) [(2-m)p,+(n -28)a.p, |-—————-———- (b)
where:
0.7 '+ \0.7
0.75 [ &, . 075 [ e
n= — | s n= -
I+a, | & I+, &

E=@d-€,; &.=¢d -¢€,

c

o, =(1-B) - <1.0; & =(1-5) 5~ f <10
€ £,

y y

where M ; and M are the positive and negative yield moments; &, and €, are the

maximum compression and tension strains in the concrete; and all additional parameters
are defined in Fig. 4.3.
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Fig. 4.3 Deformation parameters

d) Ultimate Moment (Park et al., 1984):

M;=(124-015p )M ————————————— (a) (4.9)

M, =(124-0.150 )M, ————————————— (b)

where M, and M, are the positive and negative ultimate moments.

e) Ultimate Curvature:
For the ultimate curvature estimates, the relations suggested by Park and Paulay
(1975) could be used as a rough approximation.

4.3 Deep Beam and Column Elements

Deep elements are modeled as flexural elements including shear deformations
coupled as shown in Fig. 4.4. Flexural and shear components of the deformation are
modeled using one of the following hysteretic models described in Section 5:

a) Trilinear model

b) Bilinear model

c¢) Vertex oriented model

d) Nonlinear elastic-cyclic model
e) Smooth hysteretic model

The axial deformation component is modeled using a linear-elastic spring. The deep
elements are used to consider shear effects which play important role in the hysteretic
behavior of the elements or structures. The deep elements include a rigid length zone to
simulate the increase in stiffness at the joint. The user can specify the length of the rigid
zone depending on the dimensions of the connecting elements. The stiffness formulation
for deep elements is described in Section 3.2.
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Fig. 4.4 Macroscopic model for deep beam & column elements

The element stiffness matrix [K,| is constantly varied throughout the analysis

according to the formulation for the spread plasticity model presented in Section 3.4, and
the hysteretic model selected. Depending on the hysteretic model considered some
characteristic values for the response of the element are required, namely moment-
curvature and shear-shear distortion. For reinforced concrete elements the user may select
to specify the section dimensions and reinforcement, and use the fiber model to calculate
the properties as described in Section 3.3, or provide user supplied values.

Simplified formulations can be used alternatively to determine the moment-
curvature characteristics. For reinforced concrete columns, the prescribed formulas in
Section 3.4 may be used to estimate the characteristic values of the moment-curvature
response of the element.

Deep elements consist of deep beam and deep column elements, and are
characterized by horizontal springs and friction elements representing nonlinear shear and
flexural behaviors as shown in Fig. 4.4. In the figure, K, and K| are the stiffnesses of
shear and flexural components, respectively. The parameters « and S are the ratios of
yield stiffness to initial stiffness for flexural and shear components, respectively. The
parameters f, and f are the friction forces at sliding which are the yielding forces

of shear and flexural components, respectively. The stiffness of friction elements is
infinite until yielding while the stiffness is zero after the yielding state. Therefore, in an

elastic range, the initial stiffnesses of flexural ( (l—a)Kf +aK,=K,) and shear
((1 -0 ) K + BK, =K,) components operate. After yielding, the post yield stiffnesses of
flexural (@K, ) and shear ( BK ) components contribute to the element behavior. In an

elastic range, total stiffness of the element is close to the shear stiffness when the shear
stiffness is relatively small comparing to its flexural stiffness.
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KSKf — Ks

= =K 4.10
K +K, K ’ (410

When the shear stiffness is infinite (conventional elements); only flexural stiffness
contributes to the element behavior.

KK, K
==/ - = L =K, (4.11)
Ks+Kf 7f+1
K‘

Considering an inelastic behavior of the element the total stiffness and force relationship
of deep beam and column elements is,

F= [(1-a) K, sgn(f,) +aK, |[(1- B)K, sgn(£,)+ AK, | u (4.12)
[(1—0{)1(1- sgn(f,) +(1—,6’)KS sgn(fs)]+[0(Kf +,3Ks] )
where:
3 1 for ff < f/y
sgn(ff)—{o for f, > f,
1 for f‘g‘ vay
Sgn(ﬁ)z{o for f;>f;y

Table 4.1 shows the total stiffness depending on the combinations of each sate of the
flexural and shear components. The deep elements can be used to analyze perforated
shear walls. For more realistic results, the rotational model of panel zone where connects
deep beam and deep column may be required if the zone is wide.

Table 4.1 Total stiffness of deep elements at various states

Flexural state Flexural stiffness Shear state Shear stiffness Total stiffness
KK,
Iy <t K, Ii<Jy K, KK,
aK K,
I <ty K, £z 1, akK, :m
frzf BK f.<f, K K:&
S 4 Co ¢ K, +pK,
ey BK, Iz 1y ak, K:%
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4.4 Rocking Column Elements

The rocking columns (constrained double hinged column elements) are modeled
considering flexural and axial deformations. The column elements are called “rocking
column” elements as well. The rocking column element with the corresponding degrees
of freedom is the same as the typical column element shown in Fig. 4.1. The contribution
of shear component to the lateral deformation is very small, hence shear property is
modeled as a constant feature. The flexural component of the deformation is modeled
using the following hysteretic model described in Section 5:

a) Nonlinear elastic-cyclic model

The axial deformation component is modeled using a linear-elastic spring. The column
elements include a rigid length zone to simulate the increase in stiffness at the joint. The
stiffness formulation for column elements is described in Section 3.2.

The element stiffness matrix [K,]| is constantly varied throughout the analysis

according to the formulation for the spread plasticity model presented in Section 3.4, and
the hysteretic model selected.

Simplified formulations can be used alternatively to determine the moment-
curvature characteristics shown in Fig. 4.5. The following formulas may be used to
estimate the characteristic values of the moment-curvature response of the element:

A

Moment

< =%
|

|
¢, Curvature

(2) (b)

Fig. 4.5 Moment-Curvature relationship and edge shapes of rocking columns
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|

|

i
¢cr

a) Effective flexural rigidity:

EI

o = KBl (4.13)
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where EI; is the flexural rigidity at the ends, and &, is an effective stiffness ratio of

the rocking column. The ratio is ranged around 0.5 for reinforced concrete columns
(Mander and Cheng, 1997; Priestley et al., 1996), but it is depended on the ratio of the
axial load to the nominal strength.

b) Cracking moment:

M, =Nd/6 (4.14)
where N isthe axial load; d is the depth of the column.
¢) Yield Moment:
M =N d_d. (4.15)
23 '

where, d_, is contact depth at yielding state and defined as d,, =2N/ f.t. The

d.,=2N/ f.t. The parameter f, is the concrete strength and ¢ is the column
thickness.

d) Yield Curvature:

¢, = y } (4.16)

where 4, is the contact area at yielding state and the corresponding moment of inertia

about the centroid of contact area are represented with 1, =d’ /12.

¢) Rocking Moment:

d-d_
M, =N( : J 4.17)

where d,, are contact depth at rocking point and defined as d,, =d, /2.

f) Rocking Curvature:

9 = ’ (4.18)
|
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where A4, is the contact area at rocking point and the corresponding moment of inertia

about the centroid of contact area are represented with 1, =d> 1/12.

h) Overturning Curvature:

When the rocking columns are reached at the overturning point, the moments at
both ends are zero, which means that the end condition is symmetric. Considering the
symmetric moment-curvature capacity, the curvature at the overturning point can be
computed by using the relationship between moment-curvature and lateral force-
displacement responses of a rocking column as follow.

K(5. -8
4, =9, +¥% (4.19)

3

where FEI, is the tangential slope between “yielding” and “rocking” points in the
moment-curvature envelope, and K, 1is the tangential lateral stiffness at the rocking
point. The parameter ¢, is the maximum lateral displacement which can be estimated

from the geometric configuration and depth of the column ends. If a damage at the edges
of the column end during rocking behavior is small, the maximum displacement is close
to the column depth (0, =d ). If the damage is not ignorable, the maximum

displacement is evaluated with the consideration of the crushing or damage depth. For
concrete rocking columns, the displacement is recommended as d —3d_, for a case of

ax

rectangular edges. When the column behaves cyclically and its edges are rounded or
spherical as shown in Fig. 4.5, the moment-curvature relationship can be evaluated by

replacing d' instead of ¢ and by replacing &, (Z—Ng / NO) instead of x,, which
is a effective stiffness ratio of the column having rectangular edge shapes, where N, is

the nominal strength of the column with spherical edge shapes and », is the nominal

strength of the column with rectangular edge shapes. The maximum displacement may
close to the column depth because a minor damage will be developed at the edges.

More details are presented by Roh (2007) and Roh and Reinhorn (2008, 2009)
except the definitions of base curvature, and could be used instead of those suggested.

4.5 Shear Wall Elements

Shear wall elements are modeled considering flexural, shear and axial
deformations. A typical shear wall element with the corresponding degrees of freedom is
shown in Fig. 4.6. Flexural and shear components of the deformation are modeled using
one of the following hysteretic models described in Section 5:
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a) Trilinear model

b) Bilinear model

c¢) Vertex oriented model

d) Nonlinear elastic-cyclic model
e) Smooth hysteretic model

The axial deformation component is modeled using a linear-elastic spring. The user can
specify the length of the rigid zone depending on the dimensions of the connecting
elements. The stiffness formulation for shear wall elements is described in Section 3.2.
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Fig. 4.6 Typical shear wall element with degrees of freedom

The element stiffness matrix [K,]| is constantly varied throughout the analysis

according to the formulation for the spread plasticity model presented in Section 3.4, and
the hysteretic model selected. Depending on the hysteretic model considered some
characteristic values for the response of the element are required, namely moment-
curvature or shear-shear distortion. For reinforced concrete elements, the user may select
to specify the section dimensions and reinforcement, and use the fiber model to calculate
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the shear wall flexural properties as described in Section 3.3, or provide user supplied
values. Simplified formulations can be used alternatively to determine the moment-
curvature characteristics.

The inelastic shear properties are evaluated based on a regression analysis of a
large number of test data presented by Hirosawa (1975). The cracking and shear strengths,
V. and V are determined from the following empirical relations:

B O.6(fc'+7.11)bL 420
T M/(vL)+r7 et @ (4.20)

0.080,% ( f. +2.56)
= : +0.32./f p +01f b L ————(b
: { MI(L,) 012 e e
where M/ (VLW) is the shear span ratio; 0, 1s the tension steel ratio in percent; p, 1is

the wall reinforcement ratio; f, is the axial stress; b, is the equivalent web thickness;

and L, is the distance between edge columns.

The shear deformation may be determined using the secant stiffness as follows:

0.5M
k =—"k 421
Yoy *21)

w

where k, is the elastic shear stiffness (GA/L,). The above relations which resulted

from the parametric analysis of test data (Hirosawa, 1975) was found to be the most
suitable for defining the shear properties of walls. This formulation is incorporated in the
program IDARC.

4.6 Edge Column Elements

Edge columns are the columns monolithically connected to the shear wall elements.
Their behavior is primarily dependent on the deformation of the shear wall, and therefore
are modeled as one dimensional axial springs. Fig. 4.7 shows a typical pair of edge
column elements with the corresponding degrees of freedom. These elements may also be
used to model other transverse elements, such as secondary shear walls that can be
lumped with the corresponding column element.

The stiffness matrix for the pair of elements is:
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Y, 1 A -1 - 1 -2 -1 A 7(v,
M 2 _ _ 2 _ 2 _ 2 0
o I -7 A R | A e
Y, hl-1 =4 1 A &|-1 A 1 =allly
M, A=A A A A=A -4 2 ]le,

where 4, and A are the cross-sectional areas for the left and right edge column

elements; % is the length of the edge columns; and A is half the distance between the
edge columns. The stiffness matrix is added to the one determined for the shear wall
elements.
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Fig. 4.7 Edge column elements
4.7 Transverse Beam Elements

Although the modeling of the structure is done using 2D (planar) frames, it is
recognized that strong transverse beams may affect the frame behavior. Transverse beams
are elements that connect nodes of different frames to take into account the contribution
of beams perpendicular to the direction of analysis. The transverse beam elements are
modeled by two springs, one to provide resistance to relative vertical motion, and the
second, a rotational spring, to provide resistance to relative angular motions (see Fig. 4.8).
Both springs are considered linear-elastic. The equation relating nodal forces and nodal
displacements is:
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M, -L, L L 0 0 1 0 -1(]]6,
=| k, +k, (4.23)
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Fig. 4.8 Transverse beam elements

where k, is the stiffness to vertical relative distortions; L 1is the offset to the center of
a shear wall; and k, is the torsional stiffness of the transverse beam. When the
transverse beam connects two columns the contribution of the shear stiffness may be
neglected. These beams are assumed to remain elastic at all times, therefore, k£, and £k,
are constants.

4.8 Rotational Inelastic Spring Elements

Discrete inelastic spring elements may be identified and connected to beam or
column element ends, to simulate a flexible or semi-rigid connection in the joint. Figure
4.9 shows four elements framing into a joint with three discrete inelastic springs. In
general, more than one spring may be specified at the same location, however, the
maximum number of springs that can be used in a particular joint must be one less than
the number of elements framing into it. The moment deformation of the spring may be
modeled using any of the following hysteretic models described in Section 5:

a) Trilinear model
b) Bilinear model
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¢) Vertex oriented model
d) Nonlinear elastic-cyclic model

The stiffness of the rotational spring element may be varied from a small quantity
to simulate a hinge, to a large value to simulate a rigid connection. The spring stiffness is
incorporated into the overall structural stiffness matrix as follows:

Mol f1 10 4.24
w5 o @2

[TFEY)
1

where M and M, are the spring and the fixed joint moment, respectively; 6,

si

and @, are the corresponding rotations; and k, is the current tangent stiffness of the

spring element. Spring rotations are expressed as a function of the fixed joint rotation.

Fig. 4.9 Modeling of discrete inelastic springs
4.9 Visco-Elastic Damper Elements

An innovative approach to reduce earthquake hazard was introduced by adding
protective devices to dissipate energy within the structure. Input energy during a seismic
event is transformed into hysteretic, potential, damping and hysteretic energy. The
performance of structures can be improved if the total energy input is reduced, or an
important portion can be dissipated through supplemental damping devices (Reinhorn et
al., 1995).

Supplemental damping devices can be broadly classified as viscous dampers,

friction dampers, and hysteretic dampers. Viscous dampers exhibit an important velocity
dependency. Several types of viscous dampers have been proposed:
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a) Viscoelastic elements
b) Viscous walls
¢) Fluid viscous dampers

All of these devices can be modeled using a Kelvin Model, a Maxwell model, a
Wierchert model, Fractional derivative models, or a convolution model (Reinhorn et al.,
1995). The program IDARC includes routines for the Kelvin and Maxwell models. The
Maxwell model is recommended when the damper exhibits a strong dependency on the
loading frequency.

The above devices are modeled with an axial diagonal element. Forces at the ends
of the elements are calculated according to:

£, =F ! 4.25
{Fb}_ D{—l} (329

where F, is the dynamic stiffness of the element, calculated considering a Kelvin or

Maxwell model, as described in Sections 5.4.1 and 5.4.2. The forces in the damper
elements are considered using a pseudo force approach, that is, the forces in the dampers
are subtracted from the external load vector.

a) Viscoelastic dampers, made of bonded viscoelastic layers (acrylic polymers) have
been developed by 3M Company Inc., and have been used in wind and seismic
applications: World Trade Center in New York (110 stories), Columbia SeeFirst Building
in Seattle (73 stories), the Number Two Union Square Building in Seattle (60 stories),
and the General Service Administration Building in San Jose (13 stories). Fig. 4.10 shows
a typical damper and an installation detail in a steel structure. See Lobo et al. (1993) for a
summary.

b) Viscous Walls, consist of a steel plates moving in highly viscous fluid contained in a
thin steel case (wall), as shown in Fig. 4.11. The viscous walls were developed by
Sumitomo Construction Company Ltd., and the Building Research Institute in Japan. The
devices were investigated by Sumitomo Construction Company (Arima, 1988), and
installed in a 14 story building in Shizuoka city, 150 km west of Tokyo, Japan.
Earthquake simulator tests of a 5 story reduced-scale building, a 4 story full-scale steel
frame have been carried out (Arima, 1988). More recently, a 3 story 1:3 scale reinforced
concrete building has been tested in the Earthquake simulator at the State University of
New York at Buffalo (Reinhorn et al., 1994). The devices exhibit a nonlinear viscous
behavior with stiffening characteristics at high frequencies (Reinhorn et al., 1995).
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Fig. 4.10 Viscoelastic damper installation detail (from Aiken, 1990)
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Fig. 4.11 Viscous walls and hysteresis loops (from Miyazaki, 1992)

¢) Fluid Viscous Dampers, have been extensively used in military applications for many
years because of their efficiency and longevity. This kind of devices operates on the
principle of fluid flow through orifices. The damper was used to reduce recoil forces.
Modern fluid dampers have only recently been used in large scale structural applications.
The device is designed to be insensitive to significant temperature changes, and can be
designed to exhibit linear or nonlinear viscous behavior (Reinhorn et al., 1995). The size
of the device is very compact in comparison to force capacity and stroke. Experimental
studies have been recently performed by Constantinou et al. (1993), and by Reinhorn et al.
(1995).

4.10 Friction Damper Elements
Friction damper elements are one of the types of supplemental energy dissipation
devices that have been introduced to enhance the seismic response of buildings. These

types of devices dissipate input energy through frictional work. Several types of friction
dampers, or friction like devices, have been proposed:
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a) Friction devices
b) Lead extrusion devices
c) Slotted bolted connections

Modeling of these devices is done using a complex self centering model (Reinhorn et al.,
1995) without strength or stiffness degradation. Details of the hysteretic model used in
IDARC are described in Section 5.5.

The friction devices are modeled with an axial diagonal element. Forces at the ends
of the elements are calculated according to:

F"—Fl 4.26
F =P (4.26)

where F, is the dynamic stiffness of the element, calculated considering the hysteretic

model described in Section 5.5. The forces in the damper elements are considered using a
pseudo force approach, that is, the forces in the dampers are subtracted from the external
load vector.

a) Friction devices, have been developed and manufactured for many years by
Sumitomo Metal Ltd. (see Fig. 4.12). The behavior of the devices are nearly unaffected
by amplitude, frequency, temperature, or the number of applied loading cycles (Reinhorn
et al., 1995). The original application was in railway rolling stock bogie trucks, but since
the mid 1980’s the friction dampers were extended to the field of structural and seismic
protection. Friction dampers were suggested as displacement control devices for bridge
structures with sliding supports made of stainless steel-bronze surface (Constantinou et
al., 1991). Recently, friction dampers manufactured by the Tekton company were tested
in the seismic simulation laboratory of the State University of New York at Buffalo
(Reinhorn et al., 1995). This type of friction dampers is manufactured with simple
components to minimize the cost of manufacture. The friction force in the damper can be
adjusted through appropriate torque of the bolts that control the pressure on the friction
surfaces. A detailed evaluation of the dampers is presented by Li et al. (1995).

b) Lead extrusion devices (LED), lead extrusion was identified as an effective
mechanism for energy dissipation in the 1970’s (Robinson and Greenbank, 1976). The
hysteretic behavior is similar to a friction device, and shows stable cycles unaffected by
the number of loading cycles, environmental factors, or aging (Robinson and Cousins,
1987). Lead extrusion devices have been used in a 10-story base isolated building in
Wellington, New Zealand (Charleston et al., 1987), and in seismically isolated bridges
(Skinner et al., 1980). In Japan a 17-story and a 8-story building have lead extrusion
devices connecting the precast concrete wall panels and the structural frame (Oiles Corp.,
1991).
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c) Slotted bolted connections, are bolted connections designed to dissipate energy
through friction steel plates and bolts (Grigorian and Popov, 1993). The development of
slotted bolted connections is to attempt to use simple modifications to standard
construction practice and materials widely available.

(a) Longitudinal Section

— ——— - - |—!. [ S — .-..Ir..-.-—-.-
ll'"':--“n_‘-g'ﬂ‘l!r"’-h ._. * @

inner wadge triction pad
outer wadge
outer cylinder P spring

Fig. 4.12 Sumitomo friction damper and installation detail (from Aiken, 1990)

4.11 Hysteretic Damper Elements

Hysteretic damper devices are energy dissipation devices that reduce the dynamic
response of structures subjected to earthquake loads. Hysteretic dampers dissipate energy
through inelastic yielding of the device components. Several types of hysteretic dampers
have been introduced:
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a) Yielding steel elements
b) Shape memory alloys
c) Eccentrically braced frames

Most of these devices can be modeled using a complex self centering model (Reinhorn et
al., 1995) without strength or stiffness degradation. Details of the hysteretic model used
in IDARC are described in Section 5.5.

The hysteretic dampers are modeled with an axial diagonal element. Forces at the
ends of the elements are calculated according to:

Fol_p )l 427
{Fb}_ D{—l} 2

where £, is the dynamic stiffness of the element, calculated considering the hysteretic

model described in Section 5.5. The forces in the damper elements are considered using a
pseudo force approach, that is, the forces in the dampers are subtracted from the external
load vector.

a) Yielding steel elements, take advantage of the hysteretic behavior of mild steel when
deformed in their post-elastic range. The devices exhibit stable behavior, long term
reliability, and in general good resistance to environmental and temperature factors.
Many of these devices use mild steel plates with triangular or hourglass shapes (Tyler,
1987; Stiemer et al., 1981) so that yielding occurs almost uniformly in the device. One
such device, ADAS, uses X-shaped steel plates (Bergman and Goel, 1987; Whittaker et
al., 1991). ADAS devices have been installed in a non-ductile reinforced concrete
building in San Francisco (Fiero et al., 1993), and in two buildings in Mexico City.

Triangular plate energy dissipators were originally developed and used in base
isolation applications (Boardman et al., 1983). The triangular plate concept was extended
to building dampers in the form of triangular ADAS, or T-ADAS (Tsai and Hong, 1992).
The T-ADAS device does not require rotational restraint at the top of the brace
connection assemblage, and there is no potential for instability of the plate due to
excessive axial load on the devices.

An energy dissipator for cross braced structures using mild steel round bars or flat
plates was developed by Tyler (1985), and used in several industrial warehouses in New
Zealand. Variations on the cross bracing device have been developed in Italy (Ciampi,
1991). A 29-story steel suspension building in Naples utilize tapered steel devices
between the core and the suspended floors. A six-story government building in Wanganui,
New Zealand, uses steel tube energy absorbing devices in precast concrete cross braced
panels (Matthewson and Davey, 1979). The devices were designed to yield axially.
Recent studies have been carried out to study different cladding connection concepts
(Craig et al., 1992).
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A number of mild steel energy dissipation devices have been introduced in Japan
(Kajima Corp., 1991; Kobori et al., 1988). Honeycomb dampers, formed by X-plates
loaded in the plane of the X, have been installed in a 15-story and a 29-story building in
Tokyo. Kajima Corporation developed two types of omni-directional steel dampers: Bell
dampers and Tsudumi dampers (Kobori et al., 1988). The Bell damper is a single tapered
steel tube, and the Tsudumi damper is a double tapered tube intended to deform as an
ADAS X-plate. Bell dampers have been used in the massive 1600 ft long artificial ski
slope structure to allow for differential movement between four dissimilar parts of the
structure under seismic loading. A joint damper between two buildings has also been
developed (Sakurai et al., 1992), using a short lead tube loaded to deform in shear.

b) Shape memory alloys, are capable of yielding repeatedly without sustaining any
permanent deformation because the material undergoes reversible phase transformations
as it deforms rather than intergranular dislocations. Thus, the applied load induces crystal
phase transformations that are reversed when the loads are removed. The devices are
therefore self-centering. Several tests with this type of dampers have been carried out: a
3-story steel model was tested with Nitinol (nickel-titanium) tension devices (Aiken et al.,
1992), and a 5-story steel model was tested with a copper-zinc-aluminum device (Witting
and Cozzarelli, 1992).

¢) Eccentrically braced frames (EBF), have become a well recognized and widely used
structural system for resisting lateral seismic forces. Hysteretic behavior is concentrated
in specially designed regions, shear links, and other structural elements are designed to
remain elastic under all but the most severe excitations. Extensive research has been
devoted to EBF (Roeder et al., 1978; Popov et al., 1987; Whittaker et al., 1987) and the
concept has gained recognition and acceptance by the structural engineering profession
since the inclusion of design rules into seismic code practice.

4.12 Infill Panel Elements

Infill panel elements were included in the program IDARC using a complex self
centering model that connects two stories in the building. Details of the hysteretic model
used can be found in Section 5.5. The proposed analytical formulation assumes that the
contribution of and infill panel can be modeled using compression struts (see Fig 4.13 for
masonry infill element). This assumption is often used in the analysis of Masonry infill
panels (Reinhorn et al., 1995d) and other types of infill panels. The formulation for the
infill panel element is capable of modeling a variety of panel types by changing the
values of the control parameters in the smooth hysteretic model. The masonry infill
panels are described with greater detail below.

4.12.1 Masonry Infill Panels

The program is capable of determining the hysteretic parameters for masonry
infilled frames. The stress-strain relationship for masonry in compression is commonly

idealized using a parabolic function (Reinhorn et al., 1995d) until the peak stress f, is
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reached, then it is assumed to drop linearly with increasing strains to a small fraction of
the peak value, and then remains constant at this value of stress (see Fig. 4.14). The
assumed constitutive model for the masonry struts is shown in Fig. 4.15. The struts are
considered ineffective in tension, however, the combination of both struts provides
resistance in both directions of loading. The lateral force-deformation relationship
assumed for the system of compression struts is shown in Fig. 4.16. The analytical
formulations for the envelope were developed based on the masonry constitutive model
and a recent theoretical model for infilled masonry frames suggested by Saneinejad and
Hobbs (1995). The formulations for masonry infilled frames are briefly summarized
herein.

Considering the masonry infilled frame shown in Fig. 4.13, the maximum lateral
force V,, and the corresponding displacement u, are calculated as (Saneinejad and

Hobbs, 1995):

V <A, f cosO ————————————— (a) (4.28)
< vtl |
(1 —-0.45tan @ )cos@
0.83(MPa)tl
<V e

cos@

in which ¢ is the thickness or out-of-plane dimension of the masonry infill panel; £, is
the masonry prism strength; & is the corresponding strain; v is the basic shear strength

or cohesion of masonry; and 4, and L, are the area and length of the equivalent
diagonal struts obtained from (Saneinejad and Hobbs, 1995):

A, =(1-a)ath e pour 2o SM _______ (a)
J 2 cosd (4.29)
Li=J(l-a)h +I" ——— e (b)

where the quantities & , % , . , T , Ja and fe depend on the geometric and
material properties of the frame and the infill panel. The relations used to calculate these

quantities are presented in Appendix E.
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Fig. 4.15 Strength envelope for masonry infill panel
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Fig. 4.16 Sivaselvan-Reinhorn model for smooth hysteretic response of infill panels

The monotonic lateral force displacement curve is completely defined by the
maximum force V, , the corresponding displacement u, , the initial stiffness K, and

the ratio o of the post-yield to initial stiffness. The initial stiffness K, can be

estimated using the following relation:

K, = Vu (4.30)
The lateral yield force and displacement in the masonry infill can be calculated from
(Reinhorn et al., 1995d):

yo=twoRe, (2) 4.31)

7 -
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-ak,
u, = VozoKg, —____________ (b)
YKy (1-a)
A value of 0.1 is suggested for the post-yield stiffness ratio «. The monotonic force

deformation model described was extended to account for hysteretic behavior due to
loading reversals and strain softening.

A recommended set for the values of the controlling parameters for the hysteretic
model described in Section 5.5 are listed in Appendix E. Other values, however, can be
used to achieve different hysteretic response characteristics. More information on the
solution of hysteretic model with slip is presented in Reinhorn et al. (1995d).
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SECTION 5
HYSTERETIC RULES

5.1 Introduction

Modeling the hysteretic behavior of structural elements is one of the core aspects
of a nonlinear structural analysis program. The release of IDARC includes two types of
complex hysteretic models: the polygonal and smooth hysteretic models.

The Polygonal Hysteretic Model (PHM) refers to models based on piecewise linear
behavior. Such models are most often motivated by actual behavioral stages of an
element or structure, such as initial or elastic behavior, cracking, yielding, stiffness and
strength degrading stages, crack and gap closures etc. One example in this category is the
“three-parameter” model (1987). Sivaselvan and Reinhorn (1999) presented a detailed
description of the more general framework for PHMs.

The Smooth Hysteretic Model (SHM), on the other hand, refers to models with
continuous change of stiffness due to yielding, but sharp changes due to unloading and
deteriorating behavior. The Bouc-Wen model (Bouc, 1967; Wen, 1976) and Ozdemir’s
model (Ozdemir, 1976) are some examples of SHMs. Sivaselvan and Reinhorn (1999,
2000) developed a new versatile smooth hysteretic model based on internal variables,
with stiffness and strength deterioration and with pinching characteristics, that unified
many inelastic constitutive models.

The subsequent descriptions of both models incorporated in IDARC2D are based
on the detailed report on hysteretic models by Sivaselvan and Reinhorn (1999, 2000).

5.2 Polygonal Hysteretic Model (PHM)

Polygonal Hysteretic Models (PHMs) are also referred to as multi-linear models.
The PHM may be embodied in the bilinear model, double bilinear model, origin-oriented
model, peak-oriented model, slip model, etc. The involved parameters can be assigned
explicit physical meanings.

A general framework of points and branches is developed which can represent any
of the aforementioned PHM as a special case, and includes various forms of degradation.
This framework, along with the degradation rules, is discussed in the following
paragraphs. The reformulation of the polygonal model was done such that the model is
controlled by backbone curves specified by the material or structural properties.
Furthermore, the cyclic behavior is represented by points and branches, which are
functions of the backbone parameters and the current instantaneous forces and
deformations. The behavior along a branch and the changes of branches follow a logic
tree.
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5.2.1 Types of PHM

The IDARC includes the following types of polygonal hysteretic response curves
for different structural elements such as columns, beams, shear walls and rotational
springs.

5.2.1.1 Trilinear model

The trilinear hysteretic model was first proposed by Park et al. (1987) as part of the
original release of IDARC. The hysteretic model incorporates stiffness degradation,
strength deterioration, non-symmetric response, slip-lock, and a trilinear monotonic
envelope. The model traces the hysteretic behavior of an element as it changes from one
linear stage to another, depending on the history of deformations. The model is therefore
piece-wise linear. Each linear stage is referred to as a branch. To capture the response of
steel structures, this hysteretic model recommends as no stiffness degradation, strength
deterioration or slip, since it’s intended to capture the loops of structural steel elements.
Fig. 5.1 presents the branches of the hysteretic model and typical hysteretic curves.

5.2.1.2 Bilinear model

The commonly used bilinear hysteretic model was also included as an option for
various structural elements. Fig. 5.2 presents the branches of the hysteretic model and
typical hysteretic curves.

5.2.1.3 Vertex-Oriented model

The vertex-oriented hysteretic model is basically the same as the trilinear hysteretic
model except the direction of the hysteretic loops to its previous peak response. For a
complete description of the hysteretic model, see Sivaselvan and Reinhorn (1999).

5.2.2 Backbone curves and types of Cyclic Behavior

The PHM has been implemented with two types of backbone curves — bilinear and
trilinear, which accommodate cracking models in addition to yielding (Fig. 5.3). With the
trilinear backbone curve, the model could have two types of cyclic behavior — yield-
oriented with slip and vertex-oriented (Fig. 5.4). In Figure 5.5, primed numbers denote
points corresponding to bilinear behavior; double-primed numbers denote points of
vertex-oriented behavior. The yield-oriented model with slip is the default and is denoted
by unprimed points. The model is formulated in such a way that all of the above types of
behavior have the same branch transition rules.
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Fig. 5.5 Points and branches of the Polygonal Hysteretic Model (PHM)

5.2.3 “Points” and “Branches”

The state of the entity whose hysteresis is being modeled is completely defined by
a set of database variables. These database variables are listed in Table D.2 (Appendix).
A number of control points on the hysteresis loop are completely defined by these
database variables and can be calculated given the values of these variables using
functions as shown in Table D.3 (Appendix).

Lines between these points are called branches and represent the path along the
hysteresis loop. Each branch leads to a set of other branches as shown in Table D.4
(Appendix). The end points of the branches are listed in Table D.5 (Appendix). The
transitions between branches are governed by a set of rules (logic tree) as shown in Table
D.6 (Appendix). The model of Reinhorn and Sivaselvan (1999) uses 21 control points
and 25 branches as shown in Fig. 5.5. Consider for example, unloading from branch 10,
as shown in Fig. 5.6(a). In Appendix, the rules of Table D.4 and Table D.6 that govern
this transition are depicted in Fig. 5.6(b)~(c).
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5.2.4 Operation of the Model — Force Vs. Displacement Control (Moment/Curvature
Controlled)

The PHM can be driven in three ways:
Force controlled — An incremental force is applied and the model responds by achieving
that force increment and the corresponding displacement increment.
Quasi-Static force controlled — An incremental slowly varying force is given and the
corresponding displacement increments are calculated using the stiffness of the current
branch. This displacement is applied to the model, and it responds by achieving this
displacement increment and returning the difference between the target force and the
achieved force (capacity force). This method of driving the model is used while
integrating the one-step correction method.
Displacement controlled — An incremental displacement is applied and the model
responds by achieving that displacement increment and the corresponding force
increment.

5.2.5 Degradation

The modeling of stiffness and strength degradation and pinching are discussed
below. The hysteretic energy of PHMs is developed from a yielding moment. Therefore,
the loading and unloading paths between cracking and yielding states should be the same.

5.2.5.1 Stiffness Degradation

Stiffness degradation occurs due to geometric effects. The elastic stiffness degrades
with increasing ductility. It has been found that the phenomenon of stiffness degradation
can be accurately modeled by the pivot rule (Park et al., 1987). According to this rule, the
load-reversal branches are assumed to target a pivot point on the elastic branch at a
distance of M on the opposite side, where is the stiffness degradation parameter. This

is shown in Fig. 5.7. It can be found that the stiffness degradation factor is given by
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where M = current moment, ¢

cur

= current curvature, K, = initial elastic stiffness,

o = stiffness degradation parameter, M =M y* if (M_ ,¢ ) is on the right side of the

elastic branch and M =M if (M, ,d., ) is on the left side of the elastic branch. The
current elastic stiffness is given by
K, =R.K, (5.2)
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Fig. 5.7 Modeling of stiffness degradation for positive excursion (for negative excursion
the “+” sign changes accordingly)

5.2.5.2 Strength Degradation

Strength degradation is modeled by reducing the capacity in the backbone curve as
shown schematically in Fig. 5.8. The strength degradation rule is given by:

1

+/= F
_ _ { H
My = M| 1| e {1——'32 } (5.3)
) -5, Hy,
where M ;/ ~ = positive or negative yield moment, M ;6_ = initial positive or negative
yield moment, ¢);{1é; = maximum positive or negative curvature, ¢, == positive or

negative ultimate curvature, H = hysteretic energy dissipated, H , = hysteretic energy
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dissipated when loaded monotonically to the ultimate curvature without any degradation,
B,= ductility-based strength degradation parameter and [, = energy-based the strength

degradation parameter.
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Fig. 5.8 Schematic representation of strength degradation in the PHM

The second term on the right-hand side of Eq. 5.3 represents strength degradation
due to increased deformation, and the third term represents strength degradation due to
hysteretic energy dissipated. The increment of the hysteretic energy is given by

AH{M+(M+AM)}(A¢_ AM j (5.4)
2 Ry K,

5.2.5.3 Pinching or Slip

Slip or pinching occurs as a result of crack closure, bond slip, bolt slip, etc. Slip is
modeled by defining the target point for the loading branch to be the crack closing point.
The force level corresponding to this point is a fraction of the yield moment given by
Fy=yF, and the deformation level is obtained as a weighed average of the yield and

ultimate deformations as shown in Fig. 5.9. The variable y is the slip parameter.

5.2.5.4 Algorithm and Implementation
The PHM is implemented using a number of subroutines. These and their functions

as well as the algorithms of these subroutines are listed in Figs. D.1~D.4 and Table D.1
(Appendix).
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Fig. 5.9 Modeling of slip

5.2.6 Nonlinear Elastic-Cyclic Model (NECM)

Nonlinear Elastic-Cyclic Model (NECM) assumes that the behavior of the element
follows the same path for both loading and unloading without loss of energy. The
nonlinear elastic model (NECM) is used to simulate the structural elements providing a
nonlinear elastic behavior without noticeable hysteresis and thus very little equivalent
hysteretic damping as compared to a conventional column. A detailed description of a
general framework for the NECM is presented in Roh (2007).

5.2.6.1 Backbone Curves and Types of Cyclic Behavior

The nonlinear elastic-cyclic model is based on the backbone curve of for trilinear
model. This model is governed by branches that occur during the response and rules that
dictate the transitions between various branches. A general framework of points and
branches is developed similar to Sivaselvan and Reinhorn (1999) and added to the
existing framework so it can represent any of the aforementioned NECM. The behavior
along a branch and the changes follow a logic tree. The nonlinear elastic-cyclic model is
added to the polygonal hysteretic model (PHM) which was developed and implemented
by Sivaselvan and Reinhorn (1999). With the trilinear backbone curve, the model could
have two types of cyclic behavior — with “negative stiffness behavior” as shown in Fig.
5.10 and without “negative stiffness behavior” as shown in Fig. 5.11. In the figures, ¢

is the curvature starting “negative stiffness behavior”, ¢ is the ultimate curvature at the
total loss of strength, and M, is the corresponding moment which is an imaginarily

extended moment from yielding point. The “negative stiffness behavior” is as a matter of
strength degradation due to stability reasons such as overturning motion or material
recoverable losses.
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5.2.6.2 NECM with “Negative Stiffness” Behavior

Figure 5.12 shows the tri-linear moment-curvature envelope curve and a schematic
configuration for modeling of the “negative stiffness” range. The model called here the
“stepwise strength reduction” provides a successive reduction of the apparent yielding
moment, when the curvature exceeds the envelope limits. The result is a stepwise
reduction of strength until reaching zero resistance associated with complete “collapse”
or “overturning”. Assuming that A/, is the initial ultimate moment, M , is the reduced

ultimate moment, M, is the initial yield moment, and M , is the reduced yield

moment. The reduced ultimate moment, M ,, is obtained by projecting the envelope at
the ultimate curvature as follows:

M, =M, +(¢,-9,)EL (5.5)

Fig. 5.12 Stepwise strength reduction model in “negative stiffness” range

The strength reduction is given by M , =M —AM . Herein, AM is the gradual

moment reduction. When the yield moment is reduced, the ultimate moment is also
reduced accordingly as shown in Eq. 5.5. The cracking moment M _, does not change.
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In modeling of the “negative stiffness” stage, a curvature-control is adopted because this
value increases consistently. When the curvature at the ends reaches the curvature starting
the “negative stiffness” behavior, the yield moment is reduced by a certain quantity
depending on A¢. The curvature increment after the onset of negative stiffness stage is

¢lt B ¢I’1S

n

A= (5.6)

where n is the total number of steps of “degradation” to be performed from the onset of
negative point to the ultimate point. Assume the incremental curvature step,
N=(¢, -0, /Ap)+1, where N represents the step number (integer), 1< N <n. The

moment reduction AM is calculated as

am = NAP

M, +EL (NAg) (5.7)

u ns

where M, is the moment starting negative behavior, which is defined as
M, +EI (¢m —(/jy). The same moment reduction is also applied to the ultimate state as

shown in Fig. 5.12. Therefore, the envelope curve is changed from A to B. However, after
the reduction of the end moments, the stiffness remains with the same positive value.
This is important since it allows the use of the same solution algorithms in each step. The
procedure using small incremental curvatures is continued until the curvature reaches the
maximum ultimate and the moment resistance becomes zero.

The moment reduces with increased lateral displacement due to strength reduction.
Also, the shear capacity at every story is also reduced. The reduction of story shear can
be obtained using displacement-control or force-control. When displacement-control is
used, the story shear reduction is not considered because the control of the curvature has
a unique moment. However, for force-control, a shear force reduction procedure is
required because of the reduced story shear at the level where the rocking columns have
reacted the negative stiffness stage. The external force must be reduced as much as the
reduced story shears to ensure that the total capacity is not exceeded and to capture the
apparent negative stiffness. In current version of IDARC2D, the external forces, for
concentrated, inverted triangular, uniform, and story height proportional lateral load
distributions in nonlinear incremental static (pushover) analysis and quasi-static cyclic
analysis, are decreased uniformly in all stories above the one in which a story shear
reduction develops. For modal adaptive pushover analysis, the external force is
proportionally decreased depending on the mode shapes considered. For dynamic
analyses, the solution is performed using one step “unbalanced force” correction (Park et
al., 1987; Valles et al., 1996). A detailed description regarding to the unbalanced force
correction is addressed in Roh (2007).
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5.2.6.3 NECM without “Negative Stiffness” Behavior

From Fig. 5.10 which represents the cyclic behavior with “negative stiffness”
behavior, the NECM without negative slope is achieved by extending the points 5 and 6
to the points 7 and 8 as shown in Fig. 5.11. The model is formulated in such a way that
the above type of behavior has the same branch transition rules.

5.2.6.4 “Points” and “Branches”

The cyclic model is defined by a set of branches and rules (Sivaselavan and
Reinhorn, 1999). It uses a database of variables listed in Table D.7 (Appendix). A number
of control points on the loop are completely defined by these database variables. The
control points are calculated using the functions shown in Table D.7 (Appendix). The
points are defined by the circle numbers. The points 3 to 8 in Figs. 5.10~5.11 are
variables. The variation rules of these points are described in Table D.8 (Appendix).
Lines between these points are defined as branches and represent the cyclic loop path.
Several new branches are added to the existing branches, and are defined as 26, 27, 28,
and 29. Each branch leads to a set of other branches as shown in Table D.9 (Appendix).
The end points of the branches are listed in Table D.10 (Appendix). The transitions
between branches are governed by the set of rules as shown in Table D.11 (Appendix).

5.2.6.5 Operation of the Model — Force Vs. Displacement Control
(Moment/Curvature Controlled)

The NECM can be implemented in two ways:

Force-control: An incremental force is applied. The model responds by achieving that
force increment and the corresponding displacement increment are calculated. However,
the applied force should be reduced when the structural elements are experiencing the
strength reduction in the negative stiffness range. Force-control is used in Nonlinear
Incremental Static (Pushover), Quasi-Static Cyclic, and Nonlinear Dynamic analyses.
Displacement-control: An incremental displacement is applied. The model responds by
achieving that displacement increment and the corresponding force increment is
calculated. Displacement-control is applied to Nonlinear Incremental Static (Pushover)
and Quasi-Static Cyclic analyses.

5.2.6.6 Algorithm and Implementation

The Nonlinear Elastic-Cyclic Model (NECM) is implemented using a number of
subroutines which are the same as the Polygonal Hysteretic Model (PHM) listed in Figs.
D.1~D.4 and Table D.1 (Appendix).
5.2.7 Examples

Examples of various types of hysteretic behavior modeled by the PHM including
the NECM are shown in Fig. 5.13.
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5.3 Smooth Hysteretic Model (SHM, Sivaselvan and Reinhorn model)

The IDARC includes the smooth hysteretic response curves for different structural
elements such as columns, beams, shear walls, and rotational springs. The smooth model
discussed by Sivaselvan and Reinhorn (1999) is a comprehensive variation of the model
originally proposed by Bouc (1967) and modified by several others (Wen, 1976; Baber
and Noori, 1985; Casciati, 1991; Reinhorn et al., 1995c; Madan et al., 1997). The
hysteretic energy of SHMs is developed from a yielding moment-curvature behavior.
Therefore, the loading and unloading paths between cracking and yielding states should
be the same.

5.3.1 Plain Hysteretic Behavior without Degradation

Plain hysteretic behavior with post yielding hardening is modeled using two
springs as shown in Fig. 5.14. When a moment is applied to the combination of springs,
the two springs undergo the same deformation curvature. However, the springs share the
applied moment in proportion to their instantaneous stiffness. The portion of the applied

moment shared by the hysteretic spring is denoted by M .
5.3.2 Spring 1: Post-yield Spring

This is a linear elastic spring with the post-yielding stiffness of

K K, (5.8)

post—yield = 4

where K= initial stiffness (elastic) and a = the ratio of post-yielding stiffness to the
initial.

5.3.3 Spring 2: Hysteretic Spring

The hysteric spring is a purely elasto-plastic spring with a smooth transition from
the elastic to the inelastic range. All degradation phenomena occur in this spring and are
described later in this section. The stiffness of this spring when it is non-degrading is
given by
N

[771 sgn(M* ¢)+ 772]

*

Khysteretic = (1 - a)KO 1-

(5.9)
where N is parameter controlling the smoothness of the transition from elastic to

inelastic range, 1 =7 is a parameter controlling the shape of the unloading curve,
*

Po =¢—(M—

My =1-7 , I-a)K, , M " is the portion of the applied moment shared by the
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Fig. 5.13 Examples of hysteretic behavior modeled by the PHM
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Spring 1: Post-yielding Spring
T GKQ
M-M"0
Spring 2: Hysteretic Spring M,0
<>
M,
1
(I-Cl)Ko
M0
M,

Fig. 5.14 Two-spring model for non-degrading hysteretic behavior

hysteretic spring, M, = (l_a)M«V is the yield moment of the hysteretic spring and

sgn(x) s the signum function (= +1 for =1 =_1 for x21) M+ = ' for the model
to be compatible with plasticity.

Asymmetry can be modeled by defining

fw;:U—QHlﬂ%ﬂ@}w;+F£%?@nM“} (5.10)

y

where M ;’ and M, are the positive and negative yield moments respectively. The

combined stiffness is given by,

K = Kpost—yield + Khysterezic (5 1 1)

The SHM is represented by:
M=K¢ (5.12)
5.3.4 Degradation

The stiftness and strength degradation rules for the SHM are the same as those for
the PHM. They have been modified to fit the formulation of the SHM.
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5.3.4.1 Stiffness Degradation

As mentioned earlier, stiffness degradation occurs only in the hysteretic spring.
Thus the pivot rule is applied only to the hysteretic spring and the resulting hysteretic
stiffness is given by

N
M

Khysteretic :(RK - a)KO 1- x| [771 Sgn(M* ¢)+ 772] (5.13)

where R, = stiffness degradation factor given by Eq. 5.1.

5.3.4.2 Strength Degradation

The differential equations governing strength degradation in the SHM can be
obtained by differentiating Eq. 5.3.

H 1 =
[l—fﬂ - } () P |
dM;r/f o 2 ult ﬂ] (¢;/_)ﬁ1
dt = 0 | __(a)
+/1 E] .
¢u (I_IBZ)Hu[t
Writing Eq. 5.4 in the form of a differential equation, we have
. M M K st—yiela +RK steretic
H=M(¢— M j:M¢ 1—( postoet S | (b) (5.14)
RK 0 RKKO

The evolution equations for the maximum positive and negative curvatures can be written
as

¢Lr:rlax =¢U(¢_¢;}ax)U(¢) ———————————————————————————— (¢)
G =9U (0, = 0)(1-U () === —mm oo @

where U (x) is the Heaviside step function (=1 for x>0, = 0 for x<0). The
differential Eqs. 5.14(a)~(d) govern strength degradation in the SHM.
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5.3.4.3 Pinching or Slip
To model this effect, an additional spring called the slip-lock spring (Baber and
Noori, 1985; Reinhorn et al., 1995) is added in series to the hysteretic spring. The

resulting combination is shown in Fig. 5.15. The stiffness of the slip-lock spring can be
written as

* — %\ 2
2 s 1\M -M
K siip-rock = \P —exp| ——| ———— (5.15)
T M, 2 M

where s (slip length) = R, (¢)r;ax —¢r;ax); M ; =oM ;, a measure of the moment

range over which slip occurs; M =AM ; , the mean moment level on either side about

which slip occurs; R,, o and A are parameters of the model and ¢, and ¢,

S
are the maximum curvatures reached on the positive and negative sides respectively
during the response. It is chosen to be a Gaussian type distribution so

)

that, J. K;dM =g, the slip length. Any other convenient distribution fulfilling this
oo M slip—=lock

condition could be chosen for the slip-lock stiffness.

Spring 1: Post-yielding Spring
T aKo .
M-M ,¢
Spring 3: Slip-Lock Spring Spring 2: Hysteretic Spring ’
<>
M, "
f/
1-a)Ki x
8 | e e
My~

Fig. 5.15 Three-spring model for hysteretic behavior with slip
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The stiffness of the combined system is given by

KHysteretic Kslip—lock

K=K (5.16)

e
post—yield
K slip—lock +K Hysteretic

5.3.4.4 Gap Closing Behavior

Often, hysteretic elements exhibit stiffening under higher deformations. This
happens for example in metallic dampers (Soong and Dargush, 1997) when axial
behavior begins to predominate bending behavior and in bridge isolators (Reichman and
Reinhorn, 1995; Priestley and Calvi, 1996) due to closing of the expansion gaps. Such
behavior can be modeled by introducing an additional gap-closing spring in parallel as
shown in Fig. 5.16.

The moment in this spring and the stiffness of this spring are given by

M" = kKN, (|0]=0,,,) " U (|9 =0,,,) === =—=—-—- (a) (5.17)

K aop-ctoing = KRN, (|¢| ~ e )Nw_l U (|¢| =P ) ________ (b)

where M" is the moment in the gap-closing spring, K is the stiffness of the

gap—closing
gap-closing spring, ¢,,, is the gap-closing curvature, U is the Heaviside step function

and k¥ and N, are parameters.
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Spring 1: Post-yielding Spring

aKo

Spring 3: Slip-Lock Spring Spring 2: Hysteretic Spring

*4
My

—
(1-a)Ko

-~

My

Spring 4: Gap-Closing Spring

-Ogap

Fig. 5.16 Gap-closing spring in parallel

5.3.4.5 Solution of the SHM

There are two possible approaches to solving the equations governing the SHM —
(1) The conventional incremental approach and (ii) the State-Space Approach (SSA).
Equations 5.12 and 5.14 can be used directly in the latter solution approach. However,
only the former approach will be discussed here as implemented in the current version of
IDARC2D. For this purpose, Eqs. 5.12 and 5.14 have to be written in time-independent
manner. Also, since the post-yielding and gap-closing springs are algebraic, only the
hysteretic and slip-lock springs are solved and the results added. This results in the
following time-independent differential equations within a global time step:

am ' — Kl-{vstereticKsllp—lock
dp K +K

slip—lock Hysteretic

FOgap
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] -4
{1—%% — L (o) uo-en)u(ag)
01']\/1:,+ — M : ult__ 181(¢u+ )ﬁ' ——(b)
d¢ y 17
+ 1 _ [%Jﬂl _ 162 L:|M* 1 _ 1 Knyteretiz‘Kslipf[ack
¢1:r L 1 - ﬂZ Hult (1 - a)RKKO leip—lock + KHysteretic
H | 1 CNA
{1—%}[— () U (- 0)1-U (89)]
dM;+ s y My I B (Q:)ﬁ' ——© (518)
d¢ g 1
+|1- [@_ﬂjﬂl _LL} M1- 1 K]‘I}’Slé’retic'Kslip—luck
¢u_ L 1 - ﬂ2 Hult (1 - a)RKKO Kslip—lock + KH_Vsteretic
de’ N
o UL U (89) @
dg_ _
e = (g ~0)[1-U(89)] —mm e ©
d_H — M* 1 _ l KHyster‘eticKsllp—lock ________________ ( f)
d¢ (1 - a)RKKO Kslip—lock + KHysteretic

Equation 5.18 can be solved within each global integration step using any method such
as the adaptive RK45 (Runge-Kutta 4/5 ODE solver with variable step size) or the Semi-
implicit Rosenbrock methods (Nagarajaiah et al., 1989; Press et al., 1992).

5.3.5 Examples
Examples of various types of hysteretic behavior modeled by the SHM are shown

in Fig. 5.17. For more comparisons between behavior predicted by the SHM and
experimental results see Sivaselvan and Reinhorn (1999, 2000).
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Nonlinear Unloading
(n=0.1)

. . Ductility-Based Strength Energy Based Strength
Stiffness Degradatlon Degradation Degradation
a =
(@=2) (B=05, 1,=10) (8,=02, 1,=10)

A

Combined Degradation
Slip (a=5, =05, 5,=0.2, Gap Closing
(0=02,» A=0.3,R =0.25) 0=02,+ 1=0.3, (N =2, 9,,,=3, K=2)
R =0.25, u,=10)
Fig. 5.17 Examples of Hysteretic behavior modeled by the SHM

5.4 Visco-Elastic Models

The behavior of Viscous Elastic (VE) dampers can be modeled using a Kelvin or a
Maxwell models (Reinhorn et al., 1995a).

5.4.1 Kelvin Model

The Kelvin model includes the contribution of a stiffness element, and a linear
viscous damper (see Fig. 5.18). The force displacement relation of a Kelvin element is:

F,(t) = Ku(t) + Cu(t) (5.19)
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where u(¢f) and u(z) are the relative displacement and velocity of the damper; K is
the damper storage stiffness; and C is the damping coefficient.

Fd0=CUUﬂ
i

A o / .
/Jm o \_// uu-.-
(a) (&) (c)

c

Fig. 5.18 Kelvin model: a) Damper behavior b) Linear stiffness component c) linear
damping component

Considering the response of a damper element to a harmonic motion, the properties
of the damper can be identified (Constantinou and Symans, 1992). Consider that the
damper is subjected to a harmonic motion:

u(t) = u, sin Q¢ (5.20)
The force in the linear viscous element is:
F () = CuyL2 cos Q¢ (5.21)

Eliminating time, force and displacements are related according to:

F, 2 iz_
[CQMJ U ) (5:22)

that represents an ellipse with amplitude u, and CQu, (see Fig. 5.18(c)). The energy

dissipated by the viscous element is obtained by equating the area in the ellipse:
W, =rCQu, (5.23)

The damping coefficient is therefore:
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W,
Qu,

C= (5.24)

Form the total element force, the following relation between force and displacements is
obtained:

@& W E-EE e

The stiffness coefficient is therefore:
2 1/2
k=To| [ 84 (5.26)
Uy F,

Most damping devices display frequency dependency properties, therefore, the
stiffness and damping characteristics calculated in Eqs. 5.24 and 5.26 are dependent on
the testing frequency € . Frequency dependency of the Kelvin model can be determined
by Fourier transformation of Eq. 5.19:

F,(0)=K(0)u(o)+ioC(o)u(@) ———————————— (a) (5.27)

[K )+iK, ( )] (0)=K" (0)u(®) —————- (b)

where the complex stiffness K (@) has a real component, K, (@), known as the

“storage” stiffness; and an imaginary component, K, (a)) defined as the “loss” stiffness:
K, (v)=wC (o) (5.28)

In the current version of the computer program IDARC, the forces in the
viscoelastic Kelvin elements are determined as:

F,, =ku, +cu, (5.29)

in which &, and ¢, can be obtained for each device using Eqs. 5.24 and 5.26; and u,
and u, are the relative displacements and velocities in the damper “i” that can be

obtained from the global displacement and velocity configurations of the structure. The
force in dampers with identical properties can be modeled as:
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{F,} =[AK{u} +[AC]{u} (5.30)

where [AK]| and [AC] are the changes in the stiffness and damping matrices due to

the addition of dampers. For damping braces with identical properties throughout the
building, these matrices are:

[AK]=&[B]: [AC]=¢/[B] (531)

where k, and ¢, are the properties of the base damper, and matrix [B] is a “location”

matrix indicating the inclination of braces and the number of braces at each location. For
the identical dampers case, this matrix is:

N, cos’ 6, ~N, cos’ 6,
[B]=|-N,cos’6, N, cos’6,+-N,_ cos’8_ —N, cos’0,

—N, cos’ 6
) ) (5.32)
N, cos” 8,+ N, cos 0,

2 2
—N, cos” 6, —N, cos” 6,
N, cos’ 6, + N, cos” 6,

where N, is the number of dampers in brace level “ j” with and angle of incidence of
0..

J

Kelvin elements have a stiffening contribution also for monotonic or quasi-static
loads. The dynamic stiffening contributes to a further reduction of displacements, and an
increase in the base shear. For pushover and quasi-static analyses, the combined influence
of the static and dynamic stiffening provided by the Kelvin element is accounted for
using an equivalent dynamic stiffness defined as (Reinhorn et al., 1995d):

K, =K., +&'C}

leq leq

(5.33)

where K,, and C,, are determined using Egs. 5.24 and 5.26 for a value of @

often taken as the fundamental circular frequency of the structure.
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5.4.2 Maxwell Model

When a damper displays a strong dependency on frequency, the more refined
model using a Maxwell model is recommended. This model was found suitable to
represent fluid viscous dampers with accumulators (Constantinou and Symans, 1992).
The Maxwell model consists of a damper and a spring in series (see Fig. 5.19). The force
in the damper is defined by:

F,(t)+AF,(t) = Cu(t) (5.34)

ult)

Fig. 5.19 Maxwell model for damping devices

in which A is the relaxation time:

a=So (5.35)

where K, is the stiffness at an “infinitely” large frequency; C, is the damping

constant at zero frequency. The Maxwell model can be expressed in the frequency
domain as:

F,(w)=[ K, (w)+iK, (@) ]u(w) (5.36)

where the storage stiffness and the loss stiffness are:

K (0)=C, [’I—Q’ZJ =K, (ML)Z)ZJ ——————— (a) (5.37)

1+(Ao)’ 1+ (Ao
Ko (@) = (@) = oy —mmmmmmmo ®)

The dependence of the normalized damping and stiffness coefficients with frequency is
shown in Fig. 5.20.
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Fig. 5.20 Stiffness and damping versus frequency in Maxwell model

For convenience in the solution procedure, Eq. 5.34 can be expressed as:
: ) 1 C, .
F(t)=f(F,u,u,t)= —EF(t)+7u(t) (5.38)

that can be solved simultaneously with the other time dependent structural components.
In the computer program IDARC, the forces in the viscoelastic Maxwell dampers are
expressed as:

F,=—-—F + oy (5.39)

The solution of which is found using the semi-implicit Runge-Kutta method (Rosenbrook,
1964):

(AF ')=f(F}c’uk’uk)=lek+Rzlk (5.40)

Di

where (AF),), is the increment in force of damper “i” at time step “k”; k, and [,

are determined from (Reinhorn et al., 1995a):
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of (F_,u, ,u,_ - .

k, =[1—a1At ( k laFk 1> Uy 1)} f(Fk—la“k_puk_l)At _________ (@) (5.41)
of (F_ +ck, u,_ u,_ - .

L, :|:l_a2At ( k-1 E1)]:/: k=1> %k 1)} f(F}C_l+b1kk,1/lk_1auk—1)At___(b)

where the constant parameters R, R,, a,, a,, b and ¢, were selected to obtain a
fourth order truncation error (Reinhorn et al, 1994): R, =0.75, R, =0.25,
a,=a,=0.7886751, b =-1.1547005, and ¢, =0.

Maxwell elements have a stiffening contribution in the dynamic response, and
therefore will also have a contribution to the monotonic or quasi-static loads. The
“dynamic stiffening” contributes to a further reduction of displacements, and an increase
in the base shear. For nonlinear incremental static (pushover) and quasi-static analyses
the combined influence of the static and dynamic stiffening provided by the Maxwell
element is accounted for using an equivalent dynamic stiffness defined as (Reinhorn et al.,
1995b):

K, =K}, +oC], (5.42)

where K, and C,, are determined using Eq. 5.37 for a value of @ often taken as

the fundamental circular frequency of the structure. At zero frequency the dynamic
stiffness equals to the static while at large frequencies is governed by the “damping

stiffnes