
Sponsored by: National Science Foundation
Research Applied to National Needs (RANN)
Division of Advanced Environmental Research

and Technology
Earthquake Engineering Program, Grant GI 39644

FINITE ELEMENT ANALYSIS OF A SEISMICALLY
EXCITED CYLINDRICAL STORAGE TANK,

GROUND SUPPORTED, AND PARTIALLY
FILLED WITH LIQUID

Samia Hafiz Shaaban
Wi 11 i am A. Nash

Any opinions, findings, conclusions or rec­

ommendations expressed in this publica­

tion are those ot the authorfs) and do not

necess2.rily reflect the views of the Nalional
Science Foundation.

Department of Civil Engineering
Uni vers i ty of Massachusetts

Amherst, Massachusetts 01002

July, 1976

I C\"/



L



BIBLIOGRAPHIC DATA 11. Report No.
SHEET NSFjRA-760261
4. Title and Subtitle
Finite Element Analysis of a Seismically Excited Cylindrical
Storage Tank, Ground Supported, and Partially Filled with
Liquid

7. Author(s)

S.H. Shaaban, W.A. Nash
9. Performing Organization Name and Address

University of Massachusetts
~epartment of Civil Engineering
Amherst, Mass 01002

12. Sponsoring Organization Name and Address

Research Applied to National Needs (RANN)
National Science Foundation
Washington, D.C. 20550

1S. Supplementary Notes

3. Recipient's Accession No.

S. Report Date

July 1976
6.

8. Performing Organization Rept.
No.

10. Project/Task/Work Unit No.

11. Contract/Grant No.

GI 39644

13. Type of Report & Period
Covered Technical

July 1974-July 1976
14.

16. Abstracts The structure under consideration is an elastic cylindrical liquid storage tank
attached to a rigid base slab. The tank is filled to an arbitrary depth with an invis­
cid, imcompressible liquid. A finite element analysis is presented for the free vibra­
tions of the coupled system permitting determination of natural frequencies and associ­
ated mode shapes. The response of the partially-filled tank to artificial earthquake
excitation is also determined through use of finite elements. Examples, together with
program listing, are offered.

17. Key Words and Document Analysis. 170. Descriptors

Cylindrical Shells
Storage Tanks
Containers
Numerical Analysis
Shell Theory
Earthquake Resistant Structures

17b. Identifiers/Open-Ended Terms

Liquid Tank-Finite Element
Base Excitation

17c. COSATI Field/Group

18. Availability Statement

NTIS

FORM NTIS-35 IREV. 10·731 ENDORSED BY ANSI AND UNESCOh,

19. Security Class (This
Report)

UNrT A.C;qFTEn
20. Security Class (This

Page
UNCLASSIFIED

THIS FORM MAY BE REPRODUCED

21. No. of Pages

lIJ~

USCOMM·DC 8265· P 74





TABLE OF CONTENTS

ABSTRACT

BACKGROUND

ANALYSIS
Governing Equations
Boundary Conditions
Finite Element Idealization
Free Vibrations of the Coupled System
Response of the Coupled System to Base Excitation
Modal Analysis Solutions
Reactions of the Base
Liquid Oscillations in a Rigid Container

COMPUTER IMPLEMENTATION
Computer Programs
Nature and Size of System Matrices

EXAMPLES
Free Vibrations of Completely Filled Rigid Tank
Free Vibrations of a Completely Filled Elastic Tank
Free Vibrations of a Partially Filled Elastic Tank
Cylindrical Tank Whose Base Slab is Subject to

Artificial Earthquake Excitation

ABRIDGED METHOD OF COMPUTATION

ACKNOWLEDGMENT

REFERENCES

i

1

2

2

4

8

14

18

24

27

29

34

34

38

41

44

57

59

67

69

70

APPENDIX A. DEVELOPMENT OF MATRICES EMPLOYED IN FINITE
ELEMENT ANALYSIS A-l

APPENDIX B. PROGRAM LISTING - FREE VIBRATIONS OF LIQUID
FILLED RIGID TANK B-1

APPENDIX C. PROGRAM LISTING - FREE VIBRATIONS OF LIQUID
FILLED ELASTIC TANK C-l

APPENDIX D. PROGRAM LISTING - RESPONSE OF LIQUID FILLED
TANK TO BASE EXCITATION 0-1





i /'/v

ABSTRACT

The structure under consideration is an elastic cylindrical

liquid storage tank attached to a rigid base slab. The tank is filled

to an is: "itrary depth with an inviscid. imcompressib1e liquid. A

fi;-riU: 2lement i'ma'Iys i sis presented for the free vi brati ons of the

tem p(~r'mitti ng determi nati on of natura 1 frequenci es and

l1.SS0C16;ted rnode shapes. The response of the partia1'ly-fi11ed tank to

n al earthqllake excitation is also determined through use of

finite ,:'!lem2I1ts, Examples, together with program listing, are offered.
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BACKGROUND

A previous report [lJ by these same investigators developed a

finite element approach for determination of small amplitude elastic

responses of an empty slab-supported cylindrical liquid storage tank

subject to arbitrary base excitation. It was assumed that the base

slab supporting the tank is rigid and that the tank does not separate

from the slab during excitation. The present investigation continues

the work presented in [lJ, but with the significant addition of an

inviscid, incompressible liquid filling the tank to an arbitrary depth.

Again, finite elements are employed to represent both the elastic tank

as well as the liquid. Natural frequencies and associated mode shapes

of the coupled liquid-elastic system are found through use of finite

elements. Also, the special case of the natural frequencies and associated

mode shapes of a liquid in a rigid container is investigated. Next,

using modal superposition, a program is developed for determination of

the response of the coupled liquid-elastic system to arbitrary base

excitation.
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ANALYSIS

Governing EquatiQ~~

For the elastic circular cylindrical tank with a vertical geo­

metric axis under consideration here, we shall employ a series of

ring-shaped finite elements extending from the base slab,to the tank

top, with each ring being bounded by a horizontal plane normal to the

shell axis. Both in-plane as well as out-of-plane displacements and

forces in the shell must be considered. Again, as in [lJ, the shell

theory due to J. L. Sander, Jr. [2] is employed to represent the small.

elastic deformations of the cylindrical tank. Let the radius of the

tank be R and its thickness be h. Further, let the quantities r, e,

andz denote radial, ci rcumferenti a1, and axi a1 coordinates respecti ve ly

of a point on the middle surface of the shell. The corresponding dis­

placement components are denoted by w, v, and u. The equations of

motion of the elastic tank in terms of w, v, and u are given in [1].

The liquid in the tank is assumed to be homogeneous, incompressible,

and inviscid. Further, the flow is taken to be irrotational and only

small amplitude liquid motions are considered. Lastly, it is assumed

that there are no sources, sinks, or cavities anywhere in the liquid.

Under these conditions the motion obeys the Laplace equation

(1)

where p represents total pressure at any point. The total pressure

is the sum of the static and dynamic pressures, viz:
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where Pst is the pressure that would exist if there were no Illotion

and Pdyn arises because of motion of the liquid. Since the static

pressure obeys Laplace's equation, obviously the dynamic pressure

does also. Henceforth, the dynamic pressure will be denoted by p

for brevity.

The Bernoulli equation may be expressed in the form:

(2)

where z is as defined for the shell with 'origin at the liquid surface,

g is the gravitational constant, Pf denotes liquid density, v the

magnitude of velocity at any point in the liquid, t denotes time,

and ¢ is the velocity potential. Since the liquid is nonviscous, the

motion is irrotational, and the oscillations are of small amplitude,

the velocity squared term in (2) may be neglected in comparison with

other terms. Also, for z measured positive upward from the liquid

surface we have:

Pst agz +-=
Pf

Thus, ( 2) becomes:

l + a¢ = a
Pf at

( 3)

(4 )
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Boundary Conditions

At the liquid free surface, the vertical velocity component is

given by:

(5)

where t; is the superelevation of the free surface over the undisturbed

surface level. The linearized free surface condition may be expressed

in the form:

(6)

Using (4) together with the relation Pfgt; = p, this may be expressed

in the form:

(7)

For the liquid under consideration the velocity vector Vmay be

written in the form:

v = grad <l>

= 'leI>

(8)

Consequently, the boundary conditions expressing liquid-solid inter­

action along the elastic wall of the cylindrical tank as well as at

the rigid bottom of the tank may be written as:
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_ J[:f] in the wetted part of the tank wall
V •

n =l[0iR
(9)

at the rigid tank bottom
-H

Here, n is a unit vector normal to the liquid-shell boundary and

H denotes depth of liquid in the tank. Thus, along the wetted

elastic tank wall denoted by L we have:

D~ -:fJ = 0

r=R

where w is the radial displacement of the tank wall at any point

(R,z,e). Again, using (4), this becomes:

(10)

Since the liquid velocity in the z-direction is zero at the tank

bottom, it follows from that:

[;~J = 0

Z= -H
(11 )

In summary, motion of the liquid is completely defined by the

Laplace equation (1) together with boundary conditions.
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In a finite element approach to the coupled liquid-elastic tank

prob lem, the fi ni te el ement matri x equation is obtai ned either from

the governing differential equation by using Galerkin's method, or

from the variational equation by using a minimization technique [3J.

Use of the Galerkin procedure necessitates knowledge of the governing

differential equations of motion together with selection of a weighting

function which may be chosen to be the same as the element shape

function. Setting the first variation of the resulting integral equal

to zero yields the desired finite element matrix equation. Use of

the Euler-Lagrange method necessitates formulation of the kinetic

energy (found by integrating over the liquid volume), the potential

energy (found by integrating over the free surface), and the work done

on the 1i qui d by external effects (s uch as soli d-l i qui d interface

forces). Minimization of energy then yields the governing equations.

In [3J, it is demonstrated that both approaches yield the same finite

element matrix equation provided the same type of element and the same

shape function are employed in both treatments.

In [3J, it is shown that an appropriate variational functional

for the liquid is

I -- ft2
(T - II - W)dt

t l

(12)

where T, II, and Wrepresent the kinetic energy, the potential energy

of the liquid, and the work done on the liquid respectively. These
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are given by [3J

T =(1/2)Pf I 17<D· l7<Ddv
v

II =(1/2)I~(Pf g~) ds
F

w= I Pf (~~) <Dds
z

( 13)

where Pf denotes liquid density and ~ is the deviation of the liquid

elevation from the static configuration. The kinetic energy is evaluated

by integration over the liquid volume V, the potential energy by inte-

gration over the free surface F, and the work by integration over the

liquid-tank interface ~.

In the present investigation, it is most convenient to investigate

the dynamic problem in terms of the liquid dynamic pressure p. If

damping is neglected, this leads to a matrix differential equation

involving only the pressure together with its second derivative with

respect to time. In [3J, Eq. 3.9 it is shown that the functional per­

tinent to the governing equation (1) together with boundary conditions

(7) and (10) may be written in the form:

where the definitions of 11,1 2, and 13 are evident from (14).
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Finite Element Idealization

The liquid is discretized into annular elements of rectangular

cross-section. These elements may by considered to be formed from

the intersection of concentric annular cylindrical surfaces with a set

of horizontal planes. The intersection of these surfaces with,the

planes gives rise to nodal circles, as shown in Figure 1.

z

8=0

FI GURE 1

This three-dimensional problem can essentially be transformed

into a two dimensional one by developing the pressure p in a Fourier

series in the circumferential direction, viz:

p = ~ Pm cos me (15)

The problem of forced motion of the slab supported tank when excited

by horizontal ground accelerations can be reasonably well described

through consideration of only the first harmonic, m = 1 provided that
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one is concerned with obtaining the motions about the neutral equili-

brium configuration. However, for the sake of generality, the following

finite element matrices will be developed for an arbitrary number of

harmonics m in the circumferential direction. Thus, let us set

Pm (r, z, e) = Pm (r, z, 0) cos me (16 )

Henceforth, the subscript mwill be omitted for brevity.

Thus, the problem has been reduced to a two dimensional one in

the plane indicated by r, z, e = 0 in Figure 1. Henceforth, we shall

use (x,y) as local coordinates, which origin at the geometric center

of the element, to denote the position of any point in this plane. The

liquid pressure at any point in this plane is described using the nodal

pressure parameters of the corresponding rectangular element surrounding

it. Thus:

.( 17)

where [NJ represents the element shape function and {8 } is the elementp

nodal pressure vector. The shape function is obtained by assuming a

suitable interpolation function which here is taken to be a linear

variation of liquid pressure in both the x and y directions. Thus:

1P(x,y) = 4ab [(a-x)(b-y) (a+x)(b-y) (a+x) (b+y) (a-x)(b+y)

( 18)
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Figure 2 indicates a typical element of length 2a in the radial (r)

direction, 2b in the z (axial) direction, whose center (0,0) lies

at a distance Xo from the geometric axis of the tank.

y

(-a

(-a,

j

,b) 4 3 (a,b
I x P(x,y)

-fk-
I

-b) (a,-
1 2

x

b)

From (16), we have:

FIGURE 2
Liqui d Element

vp = ~~ cos{me)'r + ~~ cos(me)lz - ~ sin(me) PTe (19)

vp • vp = (~~)2 cos 2(me)+ (~~)2 cos 2(me)+ m~ Sin2(me)p 2 (20)
r
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It is now necessary to determine the functional (13). Substi­

tution of the pressure (15) into the integral defining 11 and inte­

gration over the liquid volume v yields:

11 =(1/2)! Vp • Vp dv
v

·f f f ( 8P 2 Z 8P2 2 01
2

. 2 2)= (1 /2) l ("8r) cos \018) + (az) cos (m8) + r2 s1 n(mEr rd8dz dr
r z 8

=~ r f((~}2 + (~}2 + 01
2

p2] r dr dz
2 J 8r 8z r2

r z

(xO+x}dxdy
( 21)

( 22)

The element stiffness matrix [Ke] is developed in detail in Appendix A.

The integral defining 12 is found by integrating over the liquid free

surface F to be:

= ig J f(~~}2 cos 2(m8)rd8 dr
r 8
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= ~ I(~~)2 (xO + x) dx
x

( 23)

(24)

The element mass matrix [Me] is found using (18) and is given. in detail

in AppendixA. The integral defining 13 is found by integrating over

the liquid-elastic shell interface E to be

1 - J o2w
Pf p -2 ds3 -

°tI:

J J a
2
w 2 dedz= Pf P~ cos (me) R

e

J a
2
w= Pf7TR P -2 dz

atz

where R is the tank radius and

w(z, e) = w(z, 0) cos (me)

(25)

( 26)

The generalized radial displacement of the 'tank Wmay be represented

in terms of the finite element generalized coordinates {QuI through

the following:

( 27)
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Thus,

13 Pf~R f{Op}T [NJ
T

[NwJ {au} dz
z

( 28)

(29 )

( 30)

From this the force matrix [5 eJ representing the coupling effect is

determined. This is developed in detail in Appendix A. The assembled

liquid mass and stiffness matrices are denoted by [MfJ and [KfJ

respectively, and the coupling force matrix is assembled in [5J.

The partial differential equations, in matrix form, governing

liquid motion may be found by first realizing that the functional

I (14) is of the form:
t 2

I = f f( 0p , 0p , 0p1' 0P2' . . . t) dt
t 1 2
1

Then, setting the first variation of this equal to zero, viz:

°I = a

An Euler-Lagrange equation for each independent variable 0
Pi

may be obtained from the expression:

( 31)

of
oop.

1

( 32)
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Substitution of (22), (24), and (29) into (14) yields:

T .~

P
f

{6 } [SJ{8 }
P u

( 33)

Th us, (32) 1eads to:

.. ..
[KfJ{op} + [Mf]{op} - p[S]{ou} = {OJ

Also, the equation of motion of the elastic shell may be written in

the form:
..

[M]{ou} + [K]{ou} = {oF}

where {oF} denotes the generalized force vector at (z, 0) which may

be expressed as

( 34)

(35)

( 36)

where {oF} represents external nodal forces including the static
e

pressure of the liquid and {oF} represents nodal forces exerted on
. p

the shell arising from oscillations of the liquid. Also, [M] and [K]

are the shell mass and stiffness matrices corresponding to a prescribed

circumferential harmonic number m.

Free Vibrations of the Coupled System

Since we are interested in the free vibrations of the shell

about the static equilibrium configuration (35) yields:

( 37)
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The generalized force vector corresponding to the dynamic

pressure Pm on the inner surface of the shell is given by [5J:

{o F } - - nR J[NWJT[N]{Op} dz
p z

- - [SJT{op}

..
[S JT{Op}~ [MJ{o } + [KJ{o } + = 0 ( 38)(I,

u u

Thus, the free vibrations of the coupled liquid-elastic tank

system may be expressed in the form:

Let us redefine the mass and stiffness matrices of the liquid as:

M = 1 Mf (40)-
f Of

K = 1 Kf
-

f Of

Then, division of the s_econd set of equations in (35) by Of yields:

r*l tJ + l*l {:;} = {+} (41)
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These system matrices are nonsymmetric and extraction of eigen-

values and modes becomes extremely difficult. particularly when very

large size matrices are concerned. In view of these serious numerical

difficulties. let us adopt the approximation suggested by Hsiung and

Weingarten [3] which consists of neglecting the free surface boundary

condition (5). This simplification implies that (a) the liquid mass

matrix [Mf ] corresponding to the free surface potential energy vani­

shes. and (b) the free surface pressure is zero. It is to be noted

that in the present investigation the free surface condition was

evaluated at the mean liquid level. Thus. the degrees of freedom

corresponding to the free surface are constrained and can be omitted.

Because of (a). we immediately have:

D

Thus:

..
- [S] {au} + [Kf]{op} = a

{op} = [K
f
]-1[S]{6

u
}

( 42)

(43)

This means that the shell mass matrix is augmented by an added mass

matrix:

(44)
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For the case of free vibrations of the system

2{a } = -w {a}. u u (45)

where w is the natural frequency of the coupled system and the

equation for eigenvalues is:

(46)

The problem of the slab-supported partially-filled liquid

storage container subject to seismic excitation of the base slab will

thus lend itself to the response analysis detailed in [1] for the empty

contai ner provi ded that the shell mass matri x in [1] is rep1 aced by

the augmented mass matrix defined in (44) and (46). Details of this

will be presented subsequently.

If one neglects the shell kinetic energy in comparison to the

much larger kinetic energy of the liquid, the shell mass matrix [M]

drops out and the problem reduces to:

(47)

Numerical results obtained using this approach should agree quite

closely with those found for a rigid tank. However, it is simpler

to use a more direct analysis of liquid motion in a rigid tank, in-

stead of employing (47).

In summary, the response of the coupled liquid-elastic tank

system can be determined through superposition of the motions of the

shell and the liquid found through neglect of free surface conditions.
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together with oscillation of the liquid in a rigid tank. For the

range of geometries considered, results for natural frequencies of

free vibration obtained on this basis agreed very well with those

found through an entirely analytical (non-finite element) approach [6J.

Response of the Coupled System to Base Excitation

The imposition of support displacements is solved for by par­

titioning the shell generalized displacement vector {au} into components

{o b} associated with the known support displacements, with all other. u

components being associated with the off-base nodes. Thus, the

general equation of motion is written as:

.,.
[M + ADMJ{o } + [K]{o } = {oF }

u u e
( 48)

where {oF} is the external generalized nodal force vector. It should
e

be pointed out that the static liquid pressure forces are excluded

from {oF} as mentioned in the discussion of (37). Also, the liquid
e

dynamic pressure forces are excluded since the augmented mass matrix

accounts for them. Thus, for the case of response under base excitations

only, the governing equation (35) yields:

r~b
--,

r~bMT
°Ubt

KT
°Ubt

of
b b b (49)+ =

1Mb M
Out lKb K Out 0

which is identical with Equation (2) in [1]. Here, {oubt} and {o ubt}

are the known support displ acements and accelerations, respecti vely, and
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{8 t} and {6 t} are the total off-base displacenEnts and accelerationsu . u

corresponding to this response analysis.

All elements in the top line of Equation (49) pertain to base

node parameters. Thus, Kbb and Mbb denote forces at base nodes due

to unit displacements at the base nodes and the superscript T, of

course, denotes matrix transpose. Kb and Mb in the bottom row are

coupling effects between the base nodes and the other (non-base)

nodes. All other elements in the bottom row of Equation (49) pertain

to non-base nodal parameters. Thus, K and Mare redefined to represent

stiffness and mass matrices of all non-base nodes.

At any time, the displacement vectors of the non-base nodes can

be considered as a summation of two vectors. The first vector {Us}

is a function of the instantaneous ground displacement, thus it can

be called static. The second vector {Ud} is a function of the ground

acceleration history, thus it is termed dynamic.

This approach furnishes a suitable method to reduce the equations

of motion to the familiar form of forced vibrations:

(50 )

Thus,

( 51)
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The equations of motion are:

The equations of the off-base elements are
.. .. ..

[Mb]{8ubt} + [M]{Us} + [M]{Ud} + [Kb]{&ubt} +

( 52)

( 53)

Now it is attractive to define Us as a displacement vector so

that when it is associated with the ground displacement vector Ubt
the resulting motion of the structure corresponds to no internal

strain energy. Hereafter, 8ubt will be denoted by Ubt for brevity.

This condition implies that:

(54)

In other words, the vector {Us} is developed through rigid body

displacements consistent with {Ubt}. Thus, from (54)

This phenomena has also been demonstrated numerically and the

resulting static displacement Us is nothing but a series of Ubt or
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== ( 55)

where N is the total number of elements and {Usi} is the displacement

vector of node i == {Ubt} for all values of i and {Ubt} is a (4 x 1)

vector representing the axial, tangential, and radial displacements

as well as the rotation of the generator at the base.

Thus, the off-base node equations yield

[M]{Ud} + [K]{Ud} == -[Mb]{Ubt} - [M]{Us}

[M]{Ud} + [K]{Ud} =-[[Mb] - [M][KT 1[Kb]]{Ubt}

= [effective mass matrix] {Ubt}

(56 )
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It should be pointed out that for most practical tank dimensions

the· driving forces developed due to the mass [M][K][KbJ are much

larger than those developed by [Mb]. This has been demonstrated

numeri cally.

The ground acceleration vector Ubt will be proved to be equal to:

f -fj
l a J

..
where Ug(t) is the ground acceleration amplitude at time t.

Since the base of the tank is excited by a ground displacement

and acceleration acting in its plane and in the constant direction

e = 0, no axial acceleration component develops and the ground accel-
..

eration will be completely defined by its amplitude value Ug(t):
..
Ug(t) = Peak· f(t) ( 57)

The peak is an acceleration value independent of time and f(t) is a

non-dimensional function of time.

The associated base-node displacement vector Ubt is derived by

use of Fig. 3, viz:

u(o,e,t) = a
v(o,e,t) =-Ug(t) • sin e = -Peak f(t) • sin e

w(o,e,t) =-Ug(t) . cos e = +Peak f( t) cos e

~~(o,e,t) = 0.0 ( 58)
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FIGURE 3

Since the excitation function is described in the previous form

to be associated with m ~ 1. obviously only the first circumferential

harmonic will be extited. and thus the vibration of the tank can be

prescribed by super-position of certain contributions of different

axial modes corresponding to m ~ 1 only (see Appendix A. in [lJ, for

assumed form of loads and displacements).

Ub(t) Peak· f(t)· {-I}
(69)
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Let

{Peff} = Peak • [Meffl • { -I}

The equations of motion reduce to:

..
[M]{Ud} + [K]{Ud} = {Peff} • f(t)

which is the desired form of forced vibration to which the modal analysis

technique will be applied.

Modal Analysis Solutions

Let
.. ,;

{Ud} = [X]{A}

{U
d

} = [X]{A}

[X] is the rectangular mode matrix formed as a set of

mode vectors (n x k) where

n = number of degrees of freedom of the non-base el ements

k = number of modes considered in the analysis

{A}= mode participation factor vector = k x
..

[M][X]{A} + [K][X]{A} = {Peff} • f(t)
.. ..

{A} ={A(t)}; {A} ={A(t)}

f(t) = Ug(t)
Peak
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Premultiply by [X]T; (k x n)

•• [X]T[M][X]{A} + [X]T[K][X]{A} [X]T{Peff}· f(t) =

{GP} • f( t)

Now, use the orthogonality condition:

k f n

GM( 1 ,1) 2
wl

and 2 respecti vely.
GM(2,2) w2

GM(k,k) 2wn

Obviously the resulting matrix [X]T[M][X] = [GM] is a diagonal matrix

since the (generalized k x k mass matrix) nonvanishing terms are only

[Xn]T[MJ[~nJ = GM(n,n).

The same concept holds for [X]T[K][X] = [GS] =diagonal matrix

where n2 is the squared eigenvalue diagonal matrix = [n2][GM]:

k x k

Thus, GM, as well as GS can be considered as vectors,
- I

GM(l,l)JGM(2,2)
GM(3,3)

_m~(k,k)
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Thus, k independent equations result:

"

GM(I,I) • A(I) + 00(1) • 00(1) • A(I) • GM(I,I) = GP(I) • f(t)

where I refers to the mode number.

•• 2. _ GP (I)
A(I) + 00 (I) A(I) - GM(I,I) • f(t)

which are the equations of k independent lumped masses each representing

the participation of the corresponding I-th mode.

Now, A(I) can be found using Duhamel integration to account for

the initial conditions (just before the instant t), i.e. to consider

the whole acceleration record imposed on the structure, viz:

A(O = GPO)
GM(I ,I) • oo{I)

_ PIN(I)
- GM{I, I) • oo{I)

o

t

where PIN(I) = (J f(T) sin oo(t-T)dT) • GP(I)
o

.. GP( I) 2
A(I) = GM(I,IT f(t) - (00(1)) • A(I)

Now from the original equations of motion the displacement and

acceleration nodal vectors are determined:

{Ud} = [X]{A}
.. -

{Ud} = [X]{A}

The accuracy of the modal analysis approach depends on the number

of modes involved in the superposition. The latter depends on how close

or scarce the natural frequencies of the structure are spaced.
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The accuracy of the method can be examined through the satis-

faction of the original external equilibrium equation:

For the structure considered, it was found that the superposition

of a few modes offered only a crude approximation since the external

equilibrium equation failed to be satisfied by as much as thirty percent.

Use of ten modes reduced the maximum di screpancy to about ten percent.

Reactions of the Base

From the equations of base vibrations:

Now, {Us} and {Us} were proved to be equal to:

I I

I I

{Us} I I
{Ubt} and {Us} = {U

bt
}

I I

I

l~
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where [I] is a (4x4) identity matrix, N/4 of which form the relating

matrix between the resulting static non-base node displacements and

the base node imposed displacE~ments. Also N = number of non-base

node degrees of freedom and s'ince M~ contains nonzero elements only

in the first four columns M~. Us can be expressed as:

T . ..
[Mb] I [I ]{Ubt}

where [MT], is the 4 x 4 matrix including the nonzero elements
b

Of course, the most significant part of the base force is attributed

Tto the displacements of the non-base nodes, i.e. [Kb] {Udl.



[29J

Liquid Oscillations i!!.~. Rigid ~indrical Container

The fluid dynamic pressure arising due to liquid motion in a

rigid cylindrical tank will be governed by a special case of (34).

Since the rigid container degrees of freedom {au} are restricted,

{au} can obviously be omitted and the governing equations yield:

(61)

Although the fluid "mass " matrix [MfJ is defined to be NOFF x

NOFF ' (where NOFF is the total number of degrees of freedom of the

liquid), the nonzero elements are those corresponding to the free

surface generalized pressure vector only. A matrix condensation

approach is employed to minimize the computer storage area as follows:

+ =

o

o
(62)

where the second set of equations corresponds to the free surface

nodes (n 2 in number) and the first set corresponds to the remainder

of the liquid nodes (n l ). This leads directly to:

Kll 0 + K12 ° = 0
Pl P2

(63)
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substituting this into the second set of equations (61) yields:

(64)

o (65)

where

[KcondJ = [K 22] - [K12]T[KllJ-l[K12J = (n2 x n2) (66)

= The condensed stiffness matrix
[Mcond] = M22 = (n2 x n2) (67)

= The condensed mass matrix

The submatrix K12 (n l x n2) also has a significantly smaller nonzero

submatrix =n2 x n2 and the second matrix of (63) can be efficiently

evaluated by use of this fact as follows:
n

I"'
n1 - n2 . 2 I>r .. - 1

[ 0 Jllj -r 0
\.... "V T

-*" Kll
nl

K12 -l In2

~nl ~

The direct inversion of [KllJ is avoided and the last (n2 x n2)

matrix resulting from the multiplication Kll-1K12 is the only portion

treated, through the use of Gaussian elimination back substitution [4J.

This, in fact, corresponds to the generalized nodal pressure vector

{OP3} of the row immediately below the free surface.

Therefore, in the assembly of the stiffness matrix three sub­

matrices are considered: Kll = nl x nl ; K12 = nl x n2 (non-zero terms
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are n2 x n2), and K22 = n2 x n2. In the assembly of the mass matrix

only the M22 = n2 x n2 matrix is formulated.

The liquid matrices numbering schemes (for a rigid tank) are

given in Figures 4a through 4d.

FI GURE 4a

Liquid Degrees of Freedom numbering scheme pertinent to

the stiffness matrix generated in program RIGID for
symmetric harmonic modes.

t
~~~1( l+NN )+1

2(NN)+3

NN+2

I ..
I 1

I

I

I

U1~1+1) (NN+l )

MM(NN+l)

wa 11

3( NN+ 1)

2(NN+1)

J=1, M~·1+1 1 2 3 4 5 6 NN+ 1
------~..... I = 1, NN+l

* mean water level
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FI GURE 4b

Liquid Degrees of Freedom numbering scheme pertinent to the
condensed mass matrix generated in program RIGID for symmetric
harmoni c modes.

4 M.l~. L.

f
NN+1

2NN + 1

--...,..... = 1,NN

J= 1 ,M~'1+1

1
NN + 1

4­
I

"~

J
/1 2 3 4 5

(MM+ 1)NN

MM(NN)

3NN

2NN

NN

FI GURE 4c

Liquid Degrees of Freedom numbering scheme pertinent to the
stiffness matrix generated in program RIGID for asymmetric
harmoni c modes.
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<l
I

2 3 4 5 NN

COM - (NN,NN)

FIGURE 4d

Liquid Degrees of Freedom numbering scheme pertinent to
the condensed mass matrix generated in program RIGID for
asymmetric harmonic modes.
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COMPUTER IMPLEMENTATION

Computer Programs

Three separate programs were developed in the present work.

The first, program RIGID, determines liquid oscillation natural

frequencies and associated mode shapes in a rigid circular cylin­

drical container fixed to a rigid base. In the early stages of this

work this program served as a check on the formulation of the liquid

II mass ll and II s tiffness ll matrices and thus on the validity of the entire

liquid idealization process. This is because in many cases, the

data obtained were in good agreement with existing work involving

rigid containers.

The second program, COUPLE, is employed to investigate natural

frequencies and associated mode shapes of the coupled liquid-elastic

tank system described by Equation (46). To this end the first main

program described in [lJ (MAIN) was modified slightly so as to cor­

respond to two sets of ring-shaped finite elements representing the

cylindrical tank. The first set of elements corresponds to the lower

(wetted) surface of the tank and the second set to the portion of the

tank above the liquid level (dry). The program corresponding to this

representation is henceforth termed SHELL. A single run string was

prepared of COUPLE and SHELL so as to be able to investigate the

coupled Hquid-elastic tank system. This also serves to retrieve

the II added mass rna tri XII stored on a di sc fi 1e by program COUPLE and

to then add its terms to the corresponding shell mass matrix terms.
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Program COUPLE carries out the following operations: a) It

devises a numbering scheme for the liquid finite element mesh. This

is accomplished in subroutine FLGEN which requires as input the

number of liquid finite elements NN along the tank radius in a single

row, the number of liquid finite elements MM in a single column,

and the specified number of circumferential harmonics, m. This is

illustrated in Figures 5a and 5b.

FIGURE 5a

Liquid Degrees of Freedom numbering scheme generated in
program COUPLE for asymmetric harmonics pertinent to the
liquid "stiffness" matrix. (m = 1, 3, 5, .... )

J=l ,M~'1 t

M.W.L.*
I t I - I

M~1 2MM 3MM
·v.

I I
.. I

I

I-

5
I

t~~
I

1-0_1

NN+MM

(NN-l)
MM+l

Vl
+J
s::
0)

E
0)
r-
0)

:a:
~

:r:
:;::

II

s­
O)
+J
ttl
3:
4­
o

.s::::.
+J
0­
0)

"'0

MM+ 1 2MM+ 1 (NN-l) MM
---+-1=l,NN

~adius of tank = R (~elementS)

* mean water level
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:c
3

"So-
OJ
+-l
<0
3:

4­
o

..s::::
+-l
0­
OJ
-0

(NN+l)
MM

NN(MM)

·1Radius of tank = R

2 MM MM NN(MM

I

I

MM+I I

4

3

2

1

I-

MM

J=l,MM

I = 1,NN+l

FIGURE 5b

Liquid Degrees of Freedom numbering scheme generated in
program COUPLE for symmetric harmonics pertinent to the
liquid "stiffness" matrix (m= 0,2,4, .... )

b) It evaluates a set of different liquid stiffness and coupling

element matrices [Ke] and [Se]' each corresponding to a column of

elements in the liquid idealization scheme. It is assumed that the

1iqui d has been di screti zed into equal rectangul ar areas. This is

accomplished in subrouti nes FSTI FF and FFORCE. c) It assembles the

liquid stiffness matrix [K] in accordance with the numbering scheme

mentioned in (a) above into a half-banded matrix stored in a linear

array so as to minimize core allocation. The condensed coupling matrix

is also assembled into an (MM, 2MM) matrix, [5]. d) It evaluates the

liquid added mass matrix defined in (44) and stores it on a disc file

to be retrieved by SHELL.
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The third program, RESPONSE, which follows after SHEll in

the run string, accomplishes the following:

e) It evaluates the generalized forces developed at the tank wall

nodes due to a unit ground acceleration in the horizontal direction.

f) It transforms the system properties into modal coordinates. That

is, the generalized mass vector GM and the generalized force vector

GP are evaluated. These operations are performed in the first

section, PARTI. g) It retrieves in PARTII the ground acceleration

record ACC previously generated utilizing program PSEQGN available

through the National Information Service-Earthquake Engineering ­

Computer Program Applications, and which was stored on a disc fire

[7]. To improve the accuracy of the response computation the total

time history under consideration is arbitrarily divided into smaller

time intervals by "guiding" time stations, the modal velocities {A}

and displacements {A} of which are first determined independently in

subroutine CeNTROl. CONTROL calls subroutine RES at each time station

to evaluate the Duhamel integral of the previous acceleration record.

The vectors {A} and {A} are stored in the core array to be used as

illustrated below:

h) It evaluates the specified nodes generalized displacements and

prints the response history and stores it in disc files to be re­

trieved for automatic plotting purposes. The responses of the speci­

fied degrees-of-freedom designated as ND1, ND2, and ND3 are stored on

tapes number 4, 5, and 6 respectively. These degrees-af-freedom are

explained in detail on page (60) together with Figures 17 and 19.
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Knowing the response history at any degree-of-freedom, the corresponding

stresses can be found from the program RESP given in [lJ. This is with

regard to the internal forces developed, the reactions at the tank base,

and the force equilibrium check if so desired.

Nature and Size of System Matrices

The original sizes of the system matrices are indicated in

Equation (46) together with the numbering schemes shown in Figures

4 and 5 to be indicated below. For brevity, the following programming

symbols were employed:

0 = NDFST x 1u
0 = NDFF x 1

P
Mand K = NDFST x NDFST

MF and KF = NDFF x NDFF
S = NDFF x NDFST

where
NN = number of liquid element in one row along the

tank radi us

~1M = number of liquid elements in one column along the
tank generator

MMT = total number of she11 ri ng elements
NDFST = total number of shell degrees of freedom

= 4(MMT + 1)
NDFF = I.J

where
I = NN for asymmetric harmonic modes

= (NN + 1) symmetri c ha rmoni c modes
J = MM for the coupled case with zero pressure assumption

at the free surface
= (MM + 1) for the fluid oscillation in a rigid cylin­

drical container
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It is evident that these matrices can be dl'<I::ti"il/!y reduced

in size H intelligently partitioned to separate the non-zero sub-

matrices from the zero blocks. This approach is indeed essential

to utilize the computer core storage area most efficiently. It also

obviously validates the employment of finer system idealization schemes

with the available core allocation.

The coupling matrix S originally denoted to be (NDFF x NDFST)

contai ns non-zero terms correspondi ng to the fl ui d she11 interface

l: only. Moreover, the fluid pressure is not directly affected by the

shell nodal displacements above the water level. The axial and tan-

gential displacements of the shell wetted surface also do not contri-

bute to changes in the fluid pressure. Thus, the coupling is attributed

only to the radial displacement wand the slope of the generater ~~

corresponding to the nodes at the wetted surface. This follows directly

from the derivation of the coupling matrix as previously discussed.

Therefore, a condensed coupling matrix [5J that contains no

zero blocks is employed, in which the number of rows diminishes from

NDFF in [SJ to MM, and the number of columns diminishes from NDFST to

2MM. [SJ and [5JT are shown by the shaded areas in Figure 6.

a

FIGURE 6

~1M

H"'-
2~1M [5]
S

MM [5TJ IBAND = MM+2

~
J-.!-. I

T' ,
2MM "" ""

:::==:::::::::====~i " "... 1sT] "" ",,~
NDFF --... "~- "

" "" "" "" "" "'---- ,.;.1 ""

NDFF --..........,,...

o

1
NOFF

2MM

~2MM,
[A00J
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A numbering scheme is devised in program COUPLE to assemble

the fluid matrices with special care paid to minimize the computation

time as well as the computer storage area. The fluid interface degrees

of freedom were numbered to 1i e in the end of 0p as shown in Fi gures

(5a) and (5b) so that an inversion Gaussian elimination back substi­

tution technique would yield the desired multiplication K-1S into a

(MM x2MM) matrix only. The omitted upper portion of the resulting

matrix contains non·zero terms, yet when premultiplied by ST, it

multiplies by a zero block and its contribution drops out.

Thus, the added mass matrix [ADMJ developed by carrying out

the previous operations is confined to a [2MM x 2MMJ area. This is

represented schematically in Figure 6.

The liquid and shell numbering schemes pertinent to [SJ are

given in Figures 7a and 7b respectively. It should be pointed out

that the liquid stiffness matrix is half~banded and is assembled into

a linear array to optimize the storage area implementation.

Liquid Degrees of Freedom
numbering pertine~t to the condensed
coupling matrix [SJ for symmetric
or asymmetric harmonics.

FIGURE 7b
Shell Degrees of Freedom numbering
pertinen! to the condensed coupling
matrix [SJ for symmetric or asymmetric
harmonics.
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EXAMPLES

1. Free Vibrations of Completely Filled Rigid Tank

Let us consider the slab-supported tank discussed in [lJ. This

tank is 40 feet high and 60 feet in radius, with rigid wall and slab.

We seek to determine the natural frequencies and associated mode shapes

when the tank is completely filled with water.

The computer program of Appendix B is utilized here. To use

this program, one enters the following data:

DENF = liquid density = 0.9345 x 10-4 lb x sec2/in4
(though the result of the free vibration
analysis is independent of Of')

R = tank radi us = 720 inches

WH = depth of water = 480 inches

CARD 2: NN = number of liquid elements in one row along
tank radi us = 20

MM = number of liquid elements in one column along
tank height = 20

CARD 3: NSIN = number of ci rcumferenti al wave patterns that
analyst desires to investigate. If this is
greater than unity, the program indicates the
response for each wave pattern from one wave
through increasing integral values to the
specified number. Here, NSIN = 1.

CARD 4: NMODE = number of axial waves under consideration = 5.
(Printout indicates frequencies and free
surface pressure vector for modes 1, 2, ... 5).

This completes all necessary input to the computer program.

The program output consists of liquid natural frequencies and

free surface mode shapes. These natural frequencies are as follows:
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Axi al Mode Frequency (H"z)

1 0.15

2 0.27

3 0.34

4 0.40

5 0.46

Figures 8a through 8e show the liquid free surface corresponding to

the plane e = 0° for the first five axial modes whose frequencies

are i ndi cated above. The gri din these fi gures does not correspond to

the finite element representation.

Wall

----- First Axial Mode

FIGURE Sa

Second Axial Mode

FIGURE 8b
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Wall

v ~ /*"

"~"

FIGURE 8e

Wall

/'~ / ~
'-V ,
FI GURE 8d

FIGURE 8e

Third Axial Mode

Fourth Axial Mode

Fifth Axi a1 Mode



[44J

2. Free Vibrations of Completely Filled Elastic Tank

Let us consider the same tank discussed in the first example,

but now with a steel wall one inch in thickness. We shall treat the

elasticity of the tank wall. The tank contains water and we consider

liquid depths of 25 percent, 40 percent, 60 percent, and 80 percent

of the tank height, as well as the completely filled tank. The tank

is clamped at the base and free at the top. We seek the natural fre-

quencies and associated mode shapes of this system.

The computer program of Appendix C is utilized here. To employ

this program for the case of the completely filled tank, one enters

the following data pertinent to the liquid:

CARD 1:

CARD 2:

CARD 3:

DENF = liquid density = 0.9345 x 10-4 lb. x sec2/in4

R = tank radius ~ 720 inches

WH = depth of water = 480 inches

NN = number of liquid elements in one row along
tank radi us = 20

MM = number of liquid elements in one column along
tank height = 15

NHR = number of circumferential waves in pattern
under consideration = 1.

Next, one enters the following data pertinent to the elastic tank:

CARD 4: UM = p =2denSity of tank material = 0.733 x 10-3lb x
sec /in4

El = E = Young's modulus = 30 x 106lb/ in2

PX = nu = Poisson's ratio = 0.3
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R = tank radius = 720 inches

H = tank wall thickness = 1 inch

AL = tank altitude = 480 inches

CARD 6: NSIN = total number of circumferential wave patterns
that analyst desires to investigate = 1
(Program C does not permit use of NSIN 1 1).

CARD 7: NELEM = number of ring-shaped finite elements rep­
resenting the tank = 15

CARD 8: NELFS = number of shell finite elements corresponding
to wetted surface = 15 (this must equal MM)

NELFR = number of shell finite elements corresponding
to dry surface = 0 (obviously NELEM = NELFS +
NELFR)

CARD 9: NMODE = number of axial waves under consideration = 10
(Printout indicates frequencies and displacements
for modes 1, 2, ... 10).

CARD 10: NAT = number of circumferential waves in pattern
under consideration (i.e. "instantaneous"
number of circumferential waves) = 1. This
number specifies which one of those patterns
under NSIN is currently being investi'gated.

CARD 11: NBCAS = total number of cases involving different sets
of boundary condidtions that analyst desires
to investigate = 1 (The program listed in
Appendix C does not permit use of NBCAS 1 1).

CARD 12: NBC = denotes boundary conditions at base and top
of tank. First, enter CL if base is clamped,
SM if base is simply supported. Next~ enter
CL if top is clamped, or SM if it is simply
supported, FR if it is free. Do not introduce
a space between the designations of these two
boundary conditions.

This completes all necessary input to the computer program.

The program output consists of natural frequencies of the coupled

liquid-elastic tank system together with mode shapes (along a generator).

First, let us present results for the case of the tank completely filled

with water. The first four natural frequencies are as follows:
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Axi al Mode Frequency (H z)

1 6.13

2 11. 15

3 15.11

4 18.16

The program output also gives, for each of the above natural

frequencies, the relative (normalized) displacements u, v, and w

togeth~r with the slope dw/dz tabulated in the form of columns (with

these headings) immediately after printing of the natural frequency.

In these displays of displacements and slope, the first (top) line

represents tank displacements and slope at the junction of the tank

with the rigid base slab (base node) and the last (bottom) line rep-

resents the corresponding quantities at the tank top. As an example,

the third (axial) mode values (for the tank completely filled with

wa ter) are found to be:

Natural Frequency = 0.1511308361E + 02

u V W DW/DZ
0.00000000 0.00000000 0.00000000 0.00000000

-0.00009561 -0.00008448 0.01212372 0.00009423
-0.00029760 -0.00012035 0.01345022 -0.00032918
-0.00044688 -0.00009971 0.00600128 -0.00041985
-0.00047471 -0.00005514 -0.00390791 -0.00031737
-0.00037576 -0.00003085 -0.01262239 -0.00010702
-0.00018602 -0.00006547 -0.01732715 0.00014151
0.00002988 -0.00017956 -0.01646437 0.00034772
0.00019939 -0.00036897 -0.01029515 0.00044386
0.00026589 -0.00060617 -0.00083018 0.00039842
0.00020741 -0.00084932 0.00883707 0.00022673
0.00004390 -0.00105603 0.01553055 -0.00001645

-0.00016781 -0.00119749 0.01678216 -0.00026764
-0.00034528 -0.00126946 0.01121180 -0.00045008
-0.00041540 -0.00129727 0.00326332 -0.00018410
-0.00041504 -0.00131450 -0.00012743 -0.00007478
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Plots of u, v, w, and dw/dz for the first five axial modes appear in

Figures 9 through 13 inclusive. In the interest of brevity corresponding

plots for water depths other than completely filled are not presented

here. The natural frequencies of the coupled liquid-elastic tank

system are, however, tabulated in Table 1 for various liquid depths

ranging from empty to completely filled. Corresponding numbers of

finite elements employed are also indicated. These natural frequencies

are also plotted in Figure 14. An example of the use of the program of

Appendix C for a half-filled tank is given as Example 3.

The effect of finite element mesh size on the coupled natural

frequencies (for the case of the completely filled tank only) is

indicated in Figures 15 and 16. Figure 15 shows the effect of varying

the number of elements in the direction of the generator while holding

the number of elements (NN) in the direction of the tank radius con­

stant and equal to 30. Similarly, Figure 16 shows the effect of

varying the number of elements in the direction of the tank radius while

holding the number of elements (MM) in the direction of the tank

generator constant and equal to 20.
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Let us cons i der the same tank di scussed in Example 2, but now

only half-filled with water.

Again, the computer program of Appendix C is used. One enters

the following data pertinent to the liquid:

DENF = liquid density = 0.9345 x 10-4lb x sec/in4

R = tank radius = 720 inches

CARD 2:

CARD 3:

Next, one enters

CARD 4:

CARD 5:

WH = depth of water = 240 inches

NN = number of liquid elements in one row along
tank radius = 30

MM= number of liquid elements in one column
along tank height = 10

NHR = number of circumferential waves in pattern
under consideration = 1

the following data pertinent to the elastic tank:

UM = p = density of tank material = 0.733 x
10-31b x sec2/in4

El = E = Young's modulus = 30 x 1061b/ in2

PX = nu = Poisson's ratio = O.J

R = tank radius = 720 inches

H = tank wall thickness = 1 inch

AL = tank altitude = 480 inches

CARD 6: NSIN = total number of ci rcumferential wave patterns
that analyst desires to investigate = 1 (Program
C does not permit use of NSIN f 1)

CARD 7: NELEM = number of ring-shaped finite elements representing
the tank = 15
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CARD 8: NELFS = number of shell finite elements corresponding
to wetted surface = 10. (This must equal MM)

NELFR = number of shell finite elements corresponding
to dry surface = 5. (Obviously NELEM = NElFS +
NELFR)

CARD 9: NMODE = number of axial waves under consideration = 10.
(Printout indicates frequencies and disp1ace~
ments for modes 1, 2, ... 10)

CARD 10: NAT = number of circumferential waves in pattern
under consideration (i.e. IIInstantaneous ll

number of circumferential waves) = 1. This
number specifies which one of those patterns
under NSIN is currently being investigated.

CARD 11: NBCAS = total number of cases involving different
sets of boundary conditions that analyst
desires to investigate = 1. (The program of
Appendix C does not permit use of NBCAS r 1)

CARD 12: NBC = denotes boundary conditions at base and top
of tank. First, enter CL if base is clamped
or SM if base is simply supported. Next,
enter CL if top is clamped, or SM if it is
simply supported, or FR if it is free. Do not
introduce a space between the designations of
these two boundary conditions.

This completes all necessary input to the computer program.

The program output consists of natural frequencies of the coupled

liquid-elastic tank system together with mode shapes (along a generator).

For this half-filled tank the first four natural frequencies are:

Axi a1 r10de

1

2

3

4

Frequency (Hz)

10.15
17.85
24.35
32.18

Frequency (Hz) [6J

9.39
15.90
20.40
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In the interest of brevity, mode shapes are not presented here. It

is of interest to compare the values 10.15, 17.85 Hz etc. obtained

through the present finite element analysis with those found by an

entirely analytical procedure due to T. Mouzakis [6] which are tabu-

lated in the right hand column.

4. Cylindrical Tank Whose Base Slab is Subject to Artificial
Earthquake EXCltatlOn:" -- -- - -----

Again, we consider the same tank discussed in the first example.

Elasticity of the tank wall is considered and two cases are treated:

a) the tank is completely filled with water, and, b) the tank is

half-filled with water. The artificial earthquake accelerogram avail­

able through the National Information Service-Earthquake Engineering­

Computer Program Applications (PSEQGN) [7] was considered to be the

exciting mechanism acting on the rigid base slab in the horizontal

direction along the line 8 = 0°. The response of the liquid-elastic

tank system is desired. Specifically, for the completely filled tank

(Case a), radial displacements are sought at the tank top, as well as

at third points of the tank height. For the half-filled tank (Case b),

radial displacements are desired at the tank top, at the surface of

the liquid, and at half the liquid depth. All of these parameters are

to be evaluated at 8 = 0°.

The program of Appendix D is utilized here. The artificial

earthquake record was imposed upon the base slab for 10 seconds and

the coupled liquid-elastic tank system response determined at 0.001

second intervals during the time period t = a to t = 10 seconds using

time increments of 0.001 second. In using the artificial earthquake
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record the assigned maximum ground acceleration was taken to be g/2

although the record itself is normalized in terms of a unit value of g.

The input to the rigid base was in terms of acceleration. Data cards

employed and values assigned are as follows:

PART 1

CARD 1:

CARD 2:

CARD 3:

M= number of modes used in superposition = 10
(obviously Mcannot exceed NMODE.)

PART II

LREC = length of record = 100 points

NREC = number of intervals in record = 100

NRSTART = sequential number of the starting time
"guide" station under consideration = 1

NREND = sequential number of the last time
"gu ide" station = 99

DT = time increment between two successive time
stations = 0.001 seconds

Case (aJ - Completely filled tank

CARD 4: ND1 = first desired response according to numbering
scheme shown in Figure 17 = 23-4 = 19

ND2 = second desired response according to numbering
scheme shown in Figure 17 = 43-4 = 39

ND3 = third desired response according to numbering
scheme shown in Figure 17 = 63-4 = 59

Case (bJ - Half-fiZZed tank

CARD 4: ND1 = first desired response (radial displacement
at half liquid depth) according to numbering
scheme shown in Figure 19 = 23-4 = 19

ND2 = second desired response (radial displacement
at liquid surface) according to numbering
scheme shown in Figure 19 = 43-4 = 39
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ND3 = third desired response (radial displacement
at tank top) according to numbering scheme
shown in Figure 19 = 63-4 = 59

The time history of desired radial displacements during the time

interval t = 0 to 10 seconds appears as indicated in Figure 18 for

Case (a), i.e., the completely filled tank.

The time history of the specified radial displacements during

the time interval t = 0 to 10 seconds appears as indicated in Figure 20

for Case (b), i.e., the half-filled tank. The radial response of the

generator e = 0° at time t = 7.15 seconds for the half-filled tank is

indicated below where the value in the top row corresponds to the base

mode and the value in the bottom row corresponds to the top of the tank.

The intermediate values, of course, correspond to the radial displace-

ments at the nodal points indicated in Figure 19. Responses at other

values of time are also available from the computer output.

w

o
0.3046

0.5261
0.5567 (*) (Node 4)

0.5133

0.4585 (Node 6 - ND1)

0.3935
0.2967

0.1731

0.0741
0.0480

0.0682

0.0814

0.0856

0.0893

0.1001
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It should be remembered that these radial displacements are

all relative to the rigid slab and absolute motions could be obtained

by superposing on the above the ground displacements. The displace­

ment (*) of 0.5567 inches occurs at node number 4 (see Figure 19) and

by inspection is the peak radial displacement of any point along the

generator e = 0° in the time interval from t = 0 to t = 10 seconds.

The program of Appendix D displays the maximum response at ND1, ND2,

and ND3 and the corresponding time when each peak occurs during the

interval t = 0 to t = 10 seconds.

The axial, tangential, and in-plane shearing stresses as well

as moments Mzz ' Mee , and Mze at e = 0° are tabulated below at the time

t = 7.15 seconds where the values in the top row correspond to base

nodes and values in the bottom row correspond to nodes at the top of

the tank.
STRESSES AT THETA =0.0

Axial F.
-2466.
-378.6
-107.3
-272.9
-315.3
-239.9
-129.8
-98.89
-182.9
-295.1
-78.69
-165.7
-464.0
-830.7
-1211.
-1304.

Tangt. F.

-739.8
12180.
21130.
22040.
19960.
17490.
14660.
10510.
5234.
990.6
472.2
787.6
897.8
808.0
709.3
1021.

In-Plane Sh.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Axial Mt.

-6078.
1370.
964.5
294.4
55.22
101.5
266.5
283.9
96.12

-313.5
-338.7
-230.6
-186.5
-156.9
-195.1
431.9

Tangt. Mt.
-1823.
412.4
291. 8
90.88
18.89
32.48
81.64
86.39
29.45

-93.91
-101. 6
-69.07
-55.83
-46.95
-58.40
129.7

Tors i on

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
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5, 6, 7, 8*

(Tank Base)

62, 63, 64 (Tank Top)

58, 59, 60

54, 55, 56·

50, 51 , 52

46, 47, 48

42, 43, 44 (Tank 1/3 point)

38, 39, 40
34, 35, 36
30, 31, 32

26, 27, 28

22, 23, 24 (Tank 1/3 point)

18, 19, 20

25,

21 ,

17,

13, 14, 15, 16

9,10,11,12

49,

57,

53,

45,

41 ,

37,
33,
29,

61 ,
Node 16

FE#15

FE#14

FE#13

FE#12

FE#ll Node 11

FE#lO
FE#9
FE#8

I FE#7

FE#6 Node 6

FE#5

FE#4

I FE#3

FE#2

FE#l Node 1
11111111/111

FIGURE 17

Shell Degree of Freedom Numbering System for Use in Response
Determination (Program RESPONS)- Completely Filled Tank

*At each node, the numbered degrees of freedom correspond to

u,v,w, and dw/dz respectively. For boundary conditions treated

in this report the base nodes are not employed. Consequently,

for use in Program RESPONS, correct designation of desired

degree of freedom response is obtained by s ubtracti ng "4 11

from the number indicated in Figure 17.
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0.25 11

-0.25"

\

10.0
~,

t *

-0.5"

0.5"

T
0.43"

1
-0.5"

- - - - - - - - - ---

FI GURE 18

***

Time History of Radial Displacements at Third Points as well as at
Tank Top for Completely Filled Tank (* indicates response at tank
top, ** response at upper third point, and *** response at lower
th i rd poi nt) .
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Tank Top

Liquid Surface

Tank Base

Node 16~

FE#15

FE#14

I FE#13

FE#12

FE#ll Node ll',a
FE#lO

FE#9

I FE#8

FE#7
FE#6 Node 6'l11l

FE#5
FE#4
FE#3
FE#2
FE#l Node 1"

IIIIII 1//11/

61 , 62, 63, 64

57, 58, 59, 60

53, 54, 55, 56

49, 50, 51 , 52

45, 46, 47, 48

41 , 42, 43, 44
37, 38, 39, 40
33, 34, 35, 36

29, 30, 31 , 32
25, 26, 27, 28
21 , 22, 23, 24
17, 18, 19, 20
13, 14, 15, 16
9, 10, 11, 12
5, 6, 7, 8

FI GURE 19

Shell Degree of Freedom Numbering System for Use in Response

Determination (Program RESPONS)-Half-Filled Tank

*At each node, the numbered degrees of freedom correspond to

u,v,w, and dw/dz respectively. For boundary conditions

treated in this report, the base nodes are not employed.

Consequently for use in Program RESPONS, correct designation

of desired degree of freedom response is obtained by subtracting

"4" from the number indicated in Figure 19.
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J

;;. t *

;f'.

0.5" +-t- ---- --
0.45"

L

FIGURE 20

Time History of Radial Displacements in Half-Filled Tank
(* indicates response at tank top, ** response at surface

of liquid, and *** response at mid-depth of liquid).

--)- t **
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ABRIDGED METHOD OF COMPUTATION

In an effort to reduce the number of liquid degrees of

freedom to a smaller value than has been employed till now in this

investigation, yet maintain reasonable engineering accuracy, an

investigation was made of the "ac tive" volume of the liquid in the
)

elastic tank. It was found that there exists a "liquid core" which

is essentially stationary and thus the coupled system may be economi-

cally analyzed with acceptable accuracy by considering only an outer

annular domain of liquid. The inner boundary of this domain is

essentially a circular cylindrical surface and the dynamic pressure

on it, as well as inside it, is presumably zero. This concept greatly

reduces the liquid degrees of freedom from that previously presented.

Let us consider again the tank 40 feet high, 60 feet in radius,

and with a one inch thick steel wall. The tank is clamped at the

rigid base, free at the top, and completely filled with water. Various

size "liquid cores" were postulated ranging from a zero radius (corres-

ponding to the situation on page 44 of this report) to a radius equal

to 5/6 of 60 feet. This "dead zone" radius appears as the abscissa

in Figure 21. Natural frequencies of the coupled system having that

size "dead zone" appear as the ordinates of this plot. Points at 1.00R

on the abscissa correspond to the empty tank case discussed in [lJ and

those four points were plotted directly from results in [lJ.

These results indicate that, at least for this particular tank,

the II dead zone" can be taken to be of the order of 80 percent of the

tank radius and satisfactory values of coupled natural frequencies will

be obtained through the use of about 20 percent of the original number

of liquid degrees of freedom.
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APPENDI X A

DEVELOPMENT OF MATRICES EMPLOYED IN FINITE ELEMENT ANALYSIS

Complete derivations of the element stiffness and mass

matrices for the elastic tank are given in [lJ.

Derivation of the Liquid Element IIStiffness ll Matrix [Ke]

This is defined in Equations (21) and (22) together with the

numbering scheme shown in Figures 4 and 5. This may be written as:
222

{op}T[KeJ{op} = 'pIT ,( f ((~!) + (~) + m 2 p2) (xo + x) dx dy
, ax ~ (xo+x)
x Y

aP _ aN
~x - [-J {o }
a ax p

QE. = [~] {O }
ay ay p

where 0p is the generalized pressure of the element nodal circles

[N] is the element shape function defined by

[N] = 4~b [(a-x}(b-y) (a+x)(b-y) (a+x)(b+y) (a-x)(b+y)J

[K ] = 2!:. j. aJ
o

b~l!i]T[}!!] + [lfiJT[Eli] + m
2

[NJT[N~ +)d d
e P -a _b~ax ax ay ay (x +x)2 ~xo x x y

o

= ~ JaJ b [[Al ] + [A2J + m2A3] (xo+x) dx dy
-a -b

= ~ [[Kl ] + [K2] + [K3]]

where Al = [lfi]T[lfi]
ax ax

A = [.£I1]T[.£li]
2 ay ay

A3 = [N]T[N]/(Xo+x)2



] _ 1
[Al - (4ab)2

- (b-y)

(b-y)

(b+y)

-(b+y)

A-2

[-(b-y) (b-y) (b+y) -(b+y)]

(b_y)2 2 _(b2_y2) (b2...y2)-(b-y) 9,1 - 9,1 - £3 9,3
2 (b-y) 2 (b2_y2) _(b2_y2)-(b-y) - £1 £1 £3 -£3_ 1

_(b2_y2) (b2_y2) (b+y)2 _(b+y)2
_ 1

- (4ab)2 - (4ab)2 -£3 9,3 £2 -9,2
2 2 222 (b+y)2+(b -y) -(b -y ) -(b+y) £3 - £3 - £2 £2

Thus the determination of [K1J has been reduced to the evaluation of

three double integrations as follows:

I
b

£ dy = J? b3
-b 1 3

Jb Q, dy = J1 b3
-b 2 3

Jb £ dy = .1. b3
-b 3 3

2 -2 -1 1
x b -2 2 1 -1[K ] = ~1 6a -1 1 2 -2

1 -1 -2 2



A-3

Similarly

-(a-x)

_ 1 -(a+x)
[AZJ

- (4abf
[-(a-x) -(a+x) (a+x) (a-x)]

(a+x)

(a-x)

(a_x)2 (a2_x2) 2 2 2-(a -x ) -(a-x)

1
(a2_x2) (a+x)2 _(a+x)2 _(a2_i)

= (4ab)2 _(a 2_x2) _(a+x)2 2 (a2_x2)(a+x)

2 2 2 (i-i) (a_x)2-(a-x) -(a -x )

t l t 3 -t3 -t l

1
t 3 t 2 -tz -t3=

(4ab)2 -t3 -t2 t 2 t 3

-t l -t3 t 3 t l

Here the evaluation of [K2J again reduces to evaluating three double

integrals as follows:



A-4

b a

J-J-a t 3
Sa 3

(x+x )dxdy = --3-- bxa a

(2 - ~) 1 -1 -(2 - ~)xo Xo
ax 1 (2 + ~) -(2 + ~) -1

. [K]-O Xo Xo··2-61)
-(2 + ~) (2 + ~)-1

Xo Xo
- (2 - ~) -1 (2 - ~)

Xo Xo

The third additive matrix [A3] is given by

(a-x )(b-y)

~ _ 1 1 (a+x)(b-y)
2 - 2 2

(x+xo) (x+xo) (4ab) (a+x) (b+y)

(a-x) (b+y)

[(a-x)(b-y)(a+x)(b-y)(a+x)(b+y)

(a-x) (b+y)]

2 2(4ab) (x+xo)

(a_x)2(b_y)2 (a2_x 2)(b_y)2 (a2_x2)(b2_y2)

(a2_x 2)(b_y)2 (a+x)2{b_y)2 (a+x)2(b2_y2)

(a2_x 2) (b2_y2) (a+x)2(b2_y2) (a+x)2(b+y)2

(a-i)( b2_y2) (a2_x2)( b2_y2) (a 2_x2)( b+y) 2

222(a-x) (b -y )

(a 2_i) (b2_y2)

(/ -i )(b+Y)2

(a_x)2(b+y)2

2(a-x)2 2(a2_x2) (a 2_x2) (a-x)2

b 3 2 2 2(a+x)2 (a_x)2 (a 2_x2)2(a -x )
(x+xo)f A3dy = 1 (~)

(4ab)L(x+xo) 3 (a2_x2) (a+x)2 2(a+x)2 2(a2_x2)-b

(a-x)2 (/_x2) 2(a2_x2) 2(a-x)2
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2e l 2e 3 e3 el

b 2e3 2e2 e2 e3

Ua2 e3 e2 2e2 2e 3

l e1 e3 2e 3 2e1

Here again only three different integrals are encountered:

J:a
2 x +a

- 2a(2a+x )el dx = (a+xo) lOge(xO-a) = El0
0

r e2 dx =
2 xo+a

+ 2a(2a-x ) E2(a-xo) loge(x -a) =
0

-a 0

r e3 dx =
2 2 xo+a

+ 2ax E3(a -xo)loge(x -a) =
0

-a 0

Fina 11y the matrix [K3] wi 11 be given by

2E1 2E3 E3 El

[K
3

]
_ m2b 2E3 2E2 E2 E3
- 12a2 E3 E2 2E2 2E3

E1 E3 2E3 2E l

Derivation of the Liquid Element Mass Matrix Ukl
The mass matrix corresponding to the free surface potential energy

and defined by Equations (23) and (24) may be determined by performing the

following integration about the free surface area, which, as an approximation,

is taken to agree with the mean liquid level.

{8p}T[MeJ{6p} = ;p Ix (~~)2(x+Xo)dX

F.S.
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11:= *
[N] ~t {op}. . at

J:a

* *[1\1 ] = 2!:- [N]T[N](X+xo)dXe gp

* [N(x,b)] = 1a [0 (a-x)]where [N] = 0 (a+x)

0 0 0 0

[Me]
7f

J:a
0 0 0 0 (x+xo)dx= 2 2 (a2_i)4a pg 0 0 (a+x)

a a (i-x2 ) (a_x)2

a a a a

0 0 0 07f
4a3 4a3= 24a pg a 0 -3-(2xo+a) -3- Xo

4a 3 4a3
0 0 -3- Xo -3-(2xo+a)

The mass matrix is (4x4) . but the non-zero terms are (2x2) given by

- ] 7fa [" a + 2x a][Me = 3pg 0
a a + 2xo

where [Me] is the non-zero element submatrix corresponding to the free

surface generalized pressure vector JOP31 as illustrated below.
8P3 8P4 loP4

8P3 4

0
3

1 2

2x2

The condensed assembled liquid mass matrix is thus L x L where L = number

of e-Iements along the radius of one row (for asymmetric modes) and L =

unity plus the number of elements along the radius of anyone row (for

symmetric modes).
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Derivation of the Shell-Liquid Coupling Force Matrix ~l

The coupling force matrix [Se J defined in Equations (28) and (29)

is determined as follows:

where

rb - T
[oeJ = rrR j nfJ [NwJdy

-b
- 1

[N] = [N(a,y)J = 2b[0 (b-y) (b+y) oJ

where L = the shell element height = 2b and [NwJ corresponds to the shell

element generalized nodal vector defined on page C-4 of [lJ. The product

[NJ[NwJ will be denoted by B
2 3

B2 ,3 = (b-y)(l - lr.. + L-)
4b2 4b3

y2 y3
82,4 = (b-y)(y - ~ + 4b2)

3 y2 3
82,7 = (b-y)(- - - L-)

4 b2 4b3

2 3
82,8 = (b-Y)(-~b + ~)

4b
2 3

B3,3 = (b+y)(l - ~ + L-)
4b2 4b3

2 3
83,4 = (b+y)(y - l- + ~)

b 4b2

2 3
B3,7 (b+y)(3Y

2 - y 3)
4b 4b

::.r y3
B3 ,8 = (b+Y)(2b + ---2)

4b
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Performing the integration over the interface area yields

b b

J 82 3dy ::: J
-b' -b

-3 2 y4 . 2
(~ - ---)dy ::: -0.6 b

4b 4b 3

aU3 aU4 aU 7 auS 4 3

aP2 Dse aP3 2

Li qui d element OOF

J
b fb 2 4 -43 3

-b
82,4dy = (-2y - ~)dY =~ b

-b 4b

J:
b

B2,7dy = J:
b

(t12
+ ~:3)dY = +0.6 b

2

fb B2,Sdy = .Jb (_~2 - y42)dY = - 1~ b3

-b -b 4b

b b 2 4
f_

b
83,3dy = J (- ~b + y 3)dy = -0.4 b

2

-b 4b

f
b . fb 4 3

83 4dy ::: y 2 dy ::: 0.1 b
-b' -b 4b

J
b B

3
,7dy ::: Jb (1 y2 - ~)dY ::: 0.4 b2

-b -b 4 b 4b3

fb Jb - 2 y4 -7 3
J

B3,sdy = (~ + ---)dy =-- b
-b -b 2 4b2 30

These non-zero terms are condensed into a [2x4] matrix relating the

generalized nodal shell forces corresponding to [wi' wi, wi +l ' wi+l] to the

liquid generalized dynamic pressure at the nodes i, i+l. Here, primes

denote differentiation with respect to z. These are shown below.

~t5 'f

~T:-
2.;t,t,- shell
~ element OOF
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The condensed assembled liquid interaction force matrix is thus:

s
Number of shell wetted surface elements

NELEFS = MM
2 * number of shell elements

2 * NELEFS = 2*MM
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APPENDIX 8

P~JGRAM RIGTJ(INPUT,OUTPUTt
DIMENSION FSll(9b6J) ,FS12 (21,21) ,FS21(21,2U,FS2?(ZJ.,21l
DIMENSION FSC(21,21l ,P(23) ,COM(21,21>,Of21.,22)
DATA LINEAR/~6bv/, NNO 121/ , IBANO 123/, NJF10 142CI

1 FO~~AT(25{2H·¥»

11 FORMAT ( 6(El0.4,3X»
12 FOR"1AT ( 7(E1C.4,3Xl)

REAn 701,NPROB
DO g~O IPP=1,NPROn
R~AO 7QZ,OENF,R,WH
PRINT 702, R,WH
REAn 7!Jl,NN,MM
PRINT 7Jl,NN,MM
PEAD 701,NHARM

701 FORMA H 10 18'
702 FORMATI8G10.4)

I 8A ND=NN+2
N OF 1 = (M t<1- 1) .. N N

DO ~~C NHP=1,NHAP~

XM=FLOATfNHR)
DO 5 I=l,NN
DO 5 J=l,NN

COM(!,J)=O.O
FS C{I , J» =0 .0

FSL2<I,.j)=O.O
5 FS22<I,J)=O.G

CAll FLGEN(DENF,R,WH,XM,NN,MM,IBANO,lINFA~,FS11,F~12,FS22,

() COM, NNO)
PRINT 1
DO 10 I=1,NN
DO 1] J=1,NN

1u FS21£J,Il=FS1ZlT,J)
CALL BINV(FS11,FS1?,P,NOF1,IBAND,NN,NN,NNG,NNOl
NOW FS12= FS11 INV ¥FS12
FS21 • FS11 INV 4"FS12
00 2L I=l,NN
DO 2", J=1,NN
FSC<I,J)=C.O
00 2C K=1,NN

20 FS~(I,J)=FSC(I,JJ+FS21(1,K)·FS12(K,J)

00 3 J ! =1 ,NN
00 30 J::1,NN

30 FS~(I,J)=-~SC(I,J)+~S22(I,J)

00 4C J=i,NN
DO 40 !=1,J

40 0{I9Jtl~=FSC(I,J)

00 5C !=l,NN
00 50 J=l,I

50 OCI,J)=COMCI,J)
If CALL EGN

NN01= NN 0+1
PRINT 15, NHR

15 FORMAT(1H1,11,1GX,.CIRC. HARMONIC NO. M=·,I2,11)
CALL EGN(0,NN,5,OMEr,A,P,N~IO,NN01)

8CO CONTINUE
900 CONTINUE

END
5SDD SUBQOUTINE EGNCO,NO,NMODE,OMEGA, V2,rOIM,rnIM1)

DI\iENSION OnOIM,IDIM1) ,V2(IOIM)
DIMENSION Vl(124)
P~E-EIGENVALUE CHOLfSKY REDUCTIONS

601D INA=1
N01=NO+1

18 FORMATC9C4X,E1De4),/)

+



7g
7d

0150
77
R'....

118
82
83
tilt

62311
119

85

86
76

r
63GO
~31Q

q1
6~6D

89
6380

88
87

C
6423
6430

6£+6,)

93

92

C
115

9£+

121
6573

b6DO

96
6630

97

99
98

bl4J 00 76 MA=l,NO B-2
6CSJ 00 76 MAS=MA,NO

MA1=MA+l
MAS1=MAS+l
GASH=O(MA,MAS1)
GISH=O(MAS,MA)
MASH= 1

IF(MA-MASHl 77,77,7B
~ASH=GA~H-O(MAs~,Mn:'·O(MASH,~AS1)

GISH=GISH-O(MA,MASH)·O(MAS,MASHJ
MASH=Ml\SH+l

G,) TO 79
IF(MAS-MA) 81,81,119
IF(GISH) 118,82,82
GIS H= (j.

IFCGASH) 83,84,8~

GASH=O.
JIAG1=SQRTCGASH)

OIAG2=SQRTfGISH'
IFfDIAG1.E.Q.O.) GO TO BS
O(MA,MAS1J=GASH/OIAGl
IFCOIAG2.EQ.O.) GO TO 86

OCMAS,MA)=GISH/OIAG2
CONTINUE

CO"ITI~UE
FOR"" U/UL

DO 87 NA=l,ND
DO 87 MAS=MA,NO

MAS 1=1'1 A S+1
GASH=001AS,MA)
MASH=Ml\

MASH=MASH+l
IF(MAS-MASH) R8,8g,R9
GA~H=GASH-n(MA,MASH)·L(MASH-l,MAS1)

Ga TO 9 1
ofMA,MASll=GASH/O(MAS,MAS1)

CONTINUE
~ULTIPLICATION TO GET fU·ULE-l.ULTE-l.UT)
no 92 MA=l,NO
00 92 MAS=MA,ND

MAS1=MASt-l
GASH=!].

nn 93 MASH=MAS1,Nnl
GASH=GASH+OfMA,Ml\SH)·O(MAS,MASHt

CONTINUE
n (MA,MAS1) =GASH

CaNT INUF
MOOE=NMOOE

~U 1.G IN Vi FROM 1 TO NO AND ITERATIVE
DO 9£+ !=l,Nn
\fltH=1.

NUMIT=1
AlAM2=O.
Of) 95 I=1,NO

I1=!+1
GASH=f"I.

DO 96 J=l,I
GASH=GASH+V1CJ'·O(J,I1l

CONTINUE
IF(I-Nn) 97,98,98
00 99 J=I1,NO

GASH=GASH+VlfJ)·O(I,J+1)
CONTINUE

IJ2f I) =GASH
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NO. OF ITERATIONS=·,I3,/)

67?lJ

101

b800
lD3
102

683J
104

c

109

107
106

692J
lu5

69Sf.l
108
995

696D
6965

111
C

6980

6990
i 12

C
7[ 40
70 SO

113

7090
114

7110
7120
1980
1990
20uu
2[;10
2020

22

2u40
2C 60
2070

1
2090
21\;0
2110
?1 ?11

ALAM2=ALAM2+GASH.f.GASY
CONTINUE

ALAMB=SQ~T(ALAM2l

SIGSQ=O.
Or) 101 I=i,NO

GASH=V2CI)/ALAM8
GAS=\li (II -GAS~l

SIGSQ=SIGSQ+GAS¥GAS
VllI)=GASH

CONTINUE
ZT=1./1U • .lH 12
NUMIT=NUMIT+l

IFCSIGSQ-ZT) 102,lC2,lD3
IFCNUMIT-1S n ) 121,102,102

CONTINUE
fJRINT lC4,NUMIT

FOR"1AT(2CX,15(2H--) ,I,.
TO MULTIPLY (UE-l)-CU·X)

I=NO·
GASH=Vl(I)

J=ND
IFeJ-I) hS,105,106
GASH=GASH-V2CJ)¥O(J,I)

J=J-l
GO TO 107
V2CI)=GASH/OfI,I)

1=1-1
IFf I) 108,108,1G9

PRINT 99S,INA
FJRMATCI,21X,¥-AXIAL MODE NO.=¥,IJ,/l
PRI"JT 111,(V2(T) ,I=l,ND)
INA=INA+l

FOR MAT( 4£ 16 .8)
OMEGA IN RAD./SEC
OMEGA=SQRTfl./ALAM8)

OMEGA=OMEGA/C2.¥3.141S9)
NOW OMEGA IS IN CYCL ISEC

PRINT 112,OMEGA
FORMATC/I,10X,·NATUPAL FREQUENCY=¥-,F16.8,/)

CHANGING TO NEXT ~ODE

DO 113 I=1,NO
00 113 J=I,NO

J1=J+1
~(I,J1l=DCI,J~)-ALAMR·V1CI.·Vl(J.

MODE.=MODE-1
IF{MO.DEl 114,114,115
CONTINUE

RETURN
END
SU9~OUTINE MASSF{A,XO,FM,DENF)
DIMENSION FM(4,4)
G=~2.2¥-12..
00 22 1=1,4
DO 22 J= 1, 4
F"1CI,Jl=O.

C=3.14159tOENF
PH 3 ,3 ) = C·A¥-« ? .... X0+A) /( 3. ¥G)
FM(4,4)= C ·A¥-C2.-XO-A)/(3.·Gl
FM(3,4)=FM{4,3)= C .A.XO/(3 •• Gl
FOR~AT(/,lLX,2?(2H.f.·' ,/'
RETURN
END
SUBRUUTINE FSrIF CA,B,XO,FLAG,FK,XM,DENF)
n T M ~ N c::: T n III Ii 1 t i.. _ i.. 1 _ /I ? (L.. _ L.. , _ Ii ~ , I. _ I • • _ .:- V 'i.. _ I. \
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~11

522

48 go
5

23GJ
2310
2320
233')
234d
235J

DO 12 1=1,4
00 12 J=1,4
Ai CI ,J)=A2 <I,J) =A3 (I ,JJ=C.
Vl=XO·B/A/o.
A1 C1 ,1) =A1 ( 2 ,2) -= Ai( 3 ,3) =A1 (4,4) =2. • Vi
0.1 (1,2)=0.1 (2,1) =A1L3,l.d=1\1 (4,3'=-2."V1
A1 ( i ,3) =A1 ( '3 ,1) =A1 ( 2 ,4) :: A1 C4 ,2) =-.l. ... V1
A1 (2 ,3 ) =A1 (3 , 2 ) :::: A1 ( 1 , 4) =- A1 (4 ,1 ) :::: V1
V2=XO"A/B/o.
A~(1,1)=A2(4,4l::::(?-A/XOl"V2

A2 ( 1 ,3 )= A2 ( 3 ,1 )= A2 ( (' , '+ ) .= A2 f 4 ,2 ) = - V2
A2(2,Z)=A2(3,3l=fZ.+c.IXfJ)·VZ
AZC1,4'=A2(4,1)=-(Z.-A/XO)·V2
A2(?,3)=A2f3,2)=-{?+A/XO)"V2
A2(1,2)=A2(2,1l=A2(~,4)=A2(4,3)=V2

V3=R/A/A/12.
1F(A .EG. XO} XO=XQ+. (1
El = C(A + X0) .. ( A+XC) .. ALOr., ( ( XO +A ) I (X 0 - A) ) - 2 ... A" C2. Jf> A +X0) p'V ;.
i::2=«A-XO)Jf>(/'l-XO)·flLOG«XO+A)/(XO-A»+2."A+CZ.·A-XO».V3
E3={(A-XO)"(A.XO''''ALOG(CXO+A)/(XO-~))+2.·A.XO)Jf>V3
IF(A .EO. XO) XO=XQ-.DGl
A~(1,1)=A3(4,~)=2."El

A3CZ,Z)=A3(3,J)=2."'E2
A3Cl,Z'=A3C2,1)=A3C3,4)=A3C4,3)=2.·~3

A3 C1 , ~ ) = A3 ( 3 ,1) =0.3 ( 2 ,4 l =0.3 (4 ,2) =E 3
A3Cl,4)=A3f4,1)=El
A3(Z,3)=A3C3,2'=fZ

DO 1·) I =1,4
00 lC J=1,4

10 Fl{(I,J)=3.14159"'CA1CI,J)+AZCI,J)+A3(I,J)-XM"'XMJ/DENF
2490 ;~ETURN

2495 END
SUBROUTINE RINV(A,B,C,NN,NB,NEQ,MM,~EQD,MMO)

DIMENSION AC?) ,BCMMO,NEnO) ,CCZ)
OIMENSION DelJOO)
PRINT 5i1
~OPMnT(lux,2?(2H"'·))

NO=NN-MM
N=O
N=N+l

NL=(N-l)·NB
IFCAnSCACNL+l».LT. l.GE-10} A(NLtl)=1.0
FOR"'1AHt;X ,E12 .5)

IFCN .LE. NO) GO TO 16
NCO N= N-"JO
00 1S IB=1,NEQ
8C~CON,I8)=R(NCON,Il)/A{NL+l)

CONTINUE
IF CN • EO. NN) GO Tl 45
OJ 1 D K=2 ,N R

C(i()=ACt\lltK)
A(~L+K)=ACNL+KJ/ACt\lL+i)

OJ ~O L=2,Nll
I=r-'Hl-l
I~CNN .LT. I) GO TO 30
J=!J

It=CI-U"'N8
DO 20 K=L,NB
J=J+ 1

20 ACIL+J)=A(Il+J)-CCll·A(NLtK)
I ~ 0: • LE. NO l GOTn 26

ICClN=I-NO
DO 2 S I B= 1 t NEel

25 BCICJN,IB'=BCICON,IR)-CCL)·RCNCON,IR)

soon
S01n

15
io

492 ;j

4930
4940

10
4gr:.O
4970
4g 80
... 990

2122
2123

12
214J
215~

2160
2170

. 218'
2

22fJ
221J
2220
223J
2241,)
22:5 ()

3
2202
22 7 0
2250
2290
2292
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174J
1745
1750
1755
1760
1765
21" 00

4'

26 CONTINUE
30 CONTINUE

5[;50 GJ TO 5
N= NO. OF EQU.
L= NO. OF UNKNOWN
K= SEQUENTIAL NO. OF UNKNOWN IN THE BAND
NL+K=LFS ••• LINEAR SEqUENCE

45 00 100 IB=1,NEQ
00 7'~ II=1,HM

70 O(II+NO)=8(II,IB)
00 75 II=i,ND

75 0 (I I ) =0 .0
N=NN

40 N=N-i
NL=(N-i'·NB
IF( N .EQ. 0) GO TO 60
00 50 K=2,NB
L=N+K-1
IFf NN.LT. U GO TO SO
O(N)=n(N)-A(NL+K)·O{L)

50 CONTINUE
GO TO 40

60 CONTINUE
DO 8" II=1,MM

80 BCII,IB)=OIII+NO)
10 0 CON TI NU E

PRINT 511
RETURN

5150 END
SUnROUTINE FLGEN(OENF,R,WH,XM,NN,MM,IBANO,LJNEAR,FS11,FS12,FS22,

o COM, NNO)
1464 OTMENSION FM(4,4),FK(4,4)
1469 DIMENSION Nf4'

DIMENSION FS11(lINEAR',FS12(NND,NNO) ,FS22(NNO,NND),COM(NNO,NNO)
oX= R/ FLOAT(NN-1)
OY=W4/FL0AT(MM-l)
A-=DX"O.5
B=OY"'O.5
DO 5 I=1,LINEAR

5 FS11CIl=l.l.O
DO 1J I=1,NN
DO 1.] J=1,NN
FS22fI,J)=l).O
COM{l,J'=O.O

10 FS12CI,J)=O.O
NN1 =NN-l
00 21..00 I=l,NNl

XO = (FL OA T( It -. S ) ..,. OX
CAll MASSF(A,XO,FM,DfNFt
COM{I,I)=COM(I,I,+FM(4,4'
COM ( I"l , I +1) =C 0MfI +1 , I ..1 ) .. FM(3 , 3)
COM(I,I+l)=COM(I,I+1)+FM(4,3)
COM(I+1,I)=COH(I+l,I)+FMC3,4)
CONTINUE

MM2=MM-2
"TRANSFO~MATION FROM A SQUARE MATRIX TO BANDED MATRIX
.. (K,l)=K,Jl ,J=L-K+1
.. TRANSFORMATION FROM A BAND TO LINEAR ARRAY
• LFS=(K-1)·IBANO+J

DO 1000 I=l,NNl
1590 XO=(FLOATC!)-.51 4 0X
1600 CALL FSTIF(A,B,XO,FlAG,FK,XM,OENF)

00 L"OO J=1,MM2
M=(J-ll·(NN-lt+!



155J
1560
157.;
1580

51
55

1000

51
56

lela

N(1)={J-l)·NN+I 8-6
N{Z)={J-lt·NN+l+l
N(3)=J+NN+l+l
N{ 4) :J4NN+I

DO 55 11=1,,4
I(=NCI!l
IPAST=K¥IRANO-IBANO
DO 51 JJ=1,4
IFCN(JJ) • LT. NCIll ) GO TO 51
l~N(JJ)-I("'l

L!="S=IPAST+L
FSlICLFS)=FS11(LFS)+FK1II,JJ)
CONTINUE
CONTINUE
CONTINUE
J=MM-l
DO L1u 1=1,NNl
X0 =CF U) AT ( I ) - 0 • :;;) ... OX
CALL FSTIFCA,P,XO,FlAG,FK,XM,DENF)
N(1 ) =t-.1M 2· NN + I
N(Z)=MMZ"'NN+I+l
K22
FS22(I,I)=FS22(I,I.+FKf4,4)
FS22<T+l,I+l) =FS22(I+1,I+l) +FK (,3,3)
FS22CI,I+l)=FS22CJ,I+l)+FK{4,3)
FS22 C1+1,1) =F522 (1+1 ,T) +1="1« 3,41
FS12(I,!)=FS12(I,1)+I="Kf1,4l
FS12CI+l,I+l)=FS~2(I+l,I+l)+FK{2,3l

FS12CI,I+l'=FS12(I,I+l)+I="K{1,3)
FSlzerll-l,I '=FS120+1,1 )+FKC2,4)
DO ?h 11=1,2
K=~ <I Il
IPAST=K"'I8AND-IBANO
00 57 JJ=1,2
IFC N(JJ) .LT. NCII) ) GO TO 57
L=N (JJ) -K+1
LFS=IPAST+L
FSI1CLFS)=FS11(LFS)+FKCII,JJ)
CONTINUF
CONTINUE
CONTlt\lUF
RETURN
C:ND
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uC.u5.C3.lIST.
G1.05.Q3.ACCOUNT,A43V:CO,. B-8
[Q.C5.03.COPVSBF(INPUT,OUTPUT)
C~.C5.J4. GOPY COMPLETE.
0U.J5.04.UEMS, 1.749~UNS.

CG.~5.04.UECP, O.343SECS.
JO.J5.04.AESR, 1.u"JUNTS.
OD.15.G7.UCLP, 21, 2.112 8442EJX



TOTAL,CM2JJ~Oj,T7r0.

F TN CB=C'1UPL El
COUPLe.
Kt-WINO( TAPED
GET CTAPE5=GASN)
FTN C8=SrlElL)
SHfLL.
RETURN (a pc-51
SAV~CTAPE~=MATHF)

SAVF(TAPE9=MODHF)
SAVECTAPE2C=STRMAT)
RFTURNCTI\PF4'
FTNC3=PART1}
GETCTAPE5=MATHF)
GET(TAPE3=MODHF)
PART1.
SI\VE(TAPE2=OATAHF'
RET URN ( TA pc- 5)
RlTURNCTADF4)
RET URN (TA PFo'
G[T CT APE 1 =ACe)
REWINOCTA D t::"2.
REWINf) (TAPI:::3)

FTN(9=PART?'
PA P T2.
SAVE(TAPE4=wlHF)
SAV[CTAPES=W2HF)
SAVUTAPE6=W3HFl

APPENDIX C

C-1



•

PROGRAM rOUPlE (INPUT,OUTPUT,TAPE1,TAPE2)
or MEN SION F S ( "l! 17 i 7) , P C33) , SC( 31 ,62) , SCT «(, 2 , 31 ) , AOM Cb 2 , e; 2 )
DATA MMO/31t , NDF~J/62t , IBANJ/33/ , lINEAR/31713/

11 FORMAT(lC(EI0.4,3X»
oll. CARD 1

REAn 702,OENF,R,WH
If CARD Z

READ 701 ,NN,M"1
" CARr:J 3

REAr) 701,NHR
PRINT lOl,NN,MM
PQINT 70i,DENF,R,WH

7-31 FORMfl.T(10IR)
7D2 FORMAT(8Gl0.4)

INDEX=1
RES=NHR-CNHR/2}·2
IFCRES .EO. J.) INDEX=2

MH=NO. OF FLUID FLFMFNTS ALONG THE GE~ERATrp

NN=NO. OF FLUIO ~LEMFNTS ALONG THE RADIUS
r8ANO=MM+2
NOFS=MM"2
IFCINOEX .EO. 1) NDFF=(NN)·MM
IF(INOEX .EO. 2) NnFF=(NN+1l·MM
PRINT 7Gl,IBANO,NOFS,NOFF
PRINT 1111

1111 F OR ~H\ T C1 H1)

XM=FlOATfNHR)
CALL FlGENCDF.NF,R,WH,XM,NN,MM,NDFS,IoAN1,MMD,NrFSn,LINEAR,

Q FS,SC,INDEXl
OJ lJ I=l,MM
DO 1" J=l,NfJFS

1'] SCT(J,I)=SC<I,Jl
WRITE(2)(FS(I',I=1,lINEAR)
REWIND 2
CALL RINV{FS,SC,P,NDFF,IRAND,NDFS,MM,NOFSn,MMO)
NOW ~C=FS INV "SC
PRINT 1
PRI NT 11, ( ( SC<I , J , , J =1, NDFS ) , 1=1, MM}
SCT • FS INV .SC =AOM
00 2C I=l,NDFS
00 20 J=1,ND F S
ADMCI,J)=(.O
00 2u K=l,MM

20 AOMCI,J)=ADMCI,J} +SCT CI,K'·SC(K,J)
PRINT 1

1 FORMAH25C2H"'·)
WRITF.(1) «AOMCI,J) ,j=l,NDFSl ,I=l,NDFS'
END
SUBROUTINE 3INVCA,8,C,NN,Nd,NEQ,MM,NEQO,MMDl
DIMENSION A(2),8{~MD,NEODl,~(2)

DIMENSION O(lLOGl
PRINT 511

~ll FORMATClfX,25(2H··)
ND=NN-MM

489... N=J
5 N=N+l

Nl= CN-U"NB
IF{ABSCAINL ..... »).LT. i.DF-10) A(NL"1)=1.0

522 FO~MAT(5X,E12.5)

IF(N .LF. NO) GO TO 16
NCON=N-ND
00 15 I B= 1 , NE (")

15 B(NCON,IB)=B(NCON,I8) /ACNL+l)
16 CONTINUE



5C .... O
S L ilJ

C-3

30

IF(N .~Q. NN) GO TO 4 C

DO 10 1(=2,N~

C (i( l =A( NL'+1()
iu A{NL+K)=A(NL+1()/AINL+1)

f):) 30 L=2,NB
I=N+L-1
It:"(NN .LT. Il GO TO ~~:r;

J='1
IL=(I-1)·NB

OJ ? J 1(= L, N8
J=-I+1

20 AClL+JI=A(!L"J)-CILl-¥-APIL+1(1
I~(N .LE. NO) GO TO 26

ICON=I-NO
no zc I8=1,NEQ

25 8<ICON,IB)=Q(ICON,rrn -C<L)·O(NCON,I'3)
26 CONTINUE

eel NT IN UE
GO Tn 5

N= NO. OF EQU.
L= NO. OF UNKNOWN
K= S~qUENTIAL NO. O~ UNKNOWN IN THE BAND
NL+1(=LFS ••• LINEtP SEOUEN~F

45 QO 100 I8=1,NEQ
00 ?: II=l,M~

700<II+ND)=fHII,I8l
00 75 II=l,NO

75 D( I I I =0 • r:
N=NN

4C N=N-l
NL=(N-U¥N8
I F ( ~! • EQ. u ) GO TO ~"

no 50 K=2,NB
L=~4-I(-l

IFI NN.LT. U GO TO 51
O{N)=O(N)-A(NLt'KI ·OIL)

sa CON TI NUE
GO TO l.tD

63 CONTINUE
00 R2 II=l,MM

R~ B(II,IB)=O(II+NO)
C1NTINUE
PRINT 51.1
RET UR N

'::N 1)

SU8~nUTINE ~LGcN(DCNF,R,WH,XM,NN,M~,NDFS,r8ANJ,MMO,NOFSO,lTNFAR,

n FS,SC,INOEXI
OHkNS1IJN FS( LINElI~) , :iC C1MO,NOI='SO)
DIMeNSION FM(4,4) ,FI«(4,4) ,F~(2,4),NC4)

!)X=R/FlOAT(NN I
oy=WHI~ U1 AT ( M1'1 l
A=oX"O.5
B=DY"'Q.5
no 1", I=l,LINFAR

1G FSCIl=J.(i
00 2C I=l,MMn
00 2: J=l,NOFS'J

20 SC{I,J)=O.O
TRANSFORMATION FRGM A SQUARF MATRIX TO A RANOFQ MATRIX
(K,Ll = CI(,Jl , J=L-K+l
TRINSFORMATION FROM A nAND TO A LINEAR A~PAY

LFS=(K-1)-IRANo +J
NN1=NN-i
MMi ="1 "'1-1

5150

496r:
4970
498'1
'+991

..920
4930
4940

5(53

'"

..

......

.....



C-4IF(TNDEX .EQ. 1l NNX=NN-l
IFCINDE:X .EQ. 2) NNX=NN
DO bvO I=1,NNX
IFCINOEX .EQ. 1) XO=FLOATCI).OX+A
I Fe INOE X .EQ. 2) Xo= FLOA T(! -1) "OX+A
CALL FSTIFCA,R,XO,FLAG,FK,XM,OENFI
DO 1JOO J=1,MM1
N (1) =(I-l) "'MM+J
N(2)=I+MM+J
N(3)=N(2)+1
N(4)::cNC1)+1
DO 55 11=1,4
K=\j(1U
IPnST=K"IBANo-!9ANJ
no 51 JJ=1,4
IFtNfJJ) .LT. N(IIl ) GO TO ~1

L=N (JJ) -K +1
LFS=IPAST+L
FS (lFS)=FS CLFS)+FKCII,JJ)
CONTINUE
CONTINUE

CONTINUE
00 U10 1=1,NNX
IFCINOEX .EQ. 1) XO=FLOATCI)+DX+A
IF(INDEX .EQ. 2) XO=FLOAT(!-1)·nX+A
CALL FSTIFCA,B,xn,FLA~,FK,XM,OENF)

N(i} =I"MM
N(2)=(l+U"'MM
00 65 11=1,2
K=N(IIl
IPAST=K"'IQANO-IBANo
00 61 JJ=1,2

It:" (NUJ) .LT. NCTI) ) GO TO 61
L=N CJJ) -K+l
LFS=IPAST+L
FSCLFS)=FS(lrS)+FKCII,JJl
CONTINUE
CONTINUE
CONTINUE
1F(!NOEX .EQ. 2) GO Tn 76
Xo= A
CALL FSTIFtA,B,XO,FLAG,FK,XM,DENF)
no 1J 2J J=l,MMl
NCZ)=J
N(3)=J+1
00 75 11=2,<:
K=N (I H
IPAST=IBANo·K-IBAND
DO 71 JJ=2,3

Ic:'(N(JJ) .IT. Ncr1) ) GO TO 71
L=N(JJ}-K+1
LFS=IPAST+L
FS(LFS)=FStLFS)+FKCI1,JJ)
CONTINUE
CONTINUE
CONTINUE
J=MM
IP~ST=J"IBANn-IBANO

LFS=IPAST+1
FSCLFS)=FSfLFS)+FKCZ,2)

76 DO 4J J=1.NOFSo
DO 4" I=1,HMO

40 SC(I,J)=G.O
XO=(FLOATtNN)-O~5)"nx

51
55

1u J J

71
75

1120

61
65

1010



2 1 5
38..,0

."
.i..U

21:.J
212]
2122
2123

2141

216G
2178
2180

2
220J
221 i)

2228
223J
Z2~O

2253
3

2262
2273
228:';
229J
2292
23 r: U
231C
232(;
2330
234J
235J

10
2490
2495

CALL FFORCE( r,,'1,XO,FF) C-5
DC! 3r.~J J=1,MM1
NI=(J-U"2
00 2CS JJ=1,4
L=~I+JJ

SC(J,L)= SCtJ,L)+FF(1,JJ'
SO:; (J+l,Ll= SC(J+'1.,U +FFtZ,JJ)

CuN TI NUE
RETURN
END
SUg~OUTINE FFO~Cf( A,E,XO,FF)
OIM~NSION FF(Z,4)
PI=3.l!+lS9
no L 1=1,2
00 L .. J=1,4

FFtI,J)=O.O
V=PI·(Xo+n)-s·u.5
111/= V'" 8
FF( 1,1) =1.4"'V
FF(1,2)=-43.u/~0.:·RV

FFf 1, 3)=Q .0·V
FF(1,4) =-1:3.0 13 r • -BV

FF (2,1) =1 .6·V
FF(Z,2)::·,,;.1·8V
FF( 2,3) =0 .4"V
FF(?,4) =-7.,;/30.( "'RII
Rt:TURN
END
SUR~OUTINE FSTIFtA,D,XO,FLAG,FK,XM,OENF'
J1MENSION At (4,4) ,A2 (4,4),A3(i+,4) ,FK(4,4l
01 1.2 !=1,4
OJ 12 J= 1,4
Al fI ,J)=A2<I ,J)=A3( I ,J)=n.
Vl =x O· 81 A/6.
A1{1,l)=Al(2,2)=Al(3.~)=Alt4,4)::2.·V1

A1(1,2)=Al(Z,1)=A1(3,4'=Al(4,3)=-2.-V1
A1 ( 1 ,3 l :: A1 ( 3 ,1 ) =. A1 ( 2 .4) =A1 (4 ,2) =-1. • V1
A1 ( ? ,3) = A1 ( S ,2) =A1 ( 1 ,4) = fl.1 ( 4 , 1 ) =V 1
V2::XO·A/B/6.
A2(1,1)=A2(4,4)::(Z.-A/XO)-V2
A2 (1 , 3 ) = A2. (3 ,1) =t. 2 ( '2 • '+ )= A2 (4 , 2 ) =- V2
A2(2,Zl=AZ(3i3)=(Z.tA/XO)·V2
AZ(1,4)=A2(4,1)=-(Z.-A/XOl·V2
AZ (? ,,))=A2(3 ,2) =-(2. +A/XO) "V2
A2(1,2)=A2(2,ll=A2(,,4)=A2(4,~)=V2

V3 =11 IA/A/12.
IF(A .EQ. XOl XO=Xn +.r.Cl

E1 = ( (A .. X 0) .. ( A.. X0) ·A LOG ( (X 0 +A ) I (X 0 - A ) ) - 2 • - A" ( 2 A +X 0) ) • V '3
=:2 =( (A - X0) • ( A- X0 ) • A L OG ( ( XO + A) I ( X 0 - A) ) .. 2. • A'" ( 2 A - XO) ) "'v '3
E3=( (A-XO)·( A+XO).f.ALOG( (XO+A)/(XO-At) .. 2 .... A·xm .V3
IF(A .EO. XO) XO=XO-.081
A3(1,ll=A3(4,4)=~.·cl

A3 (2,2)=A3(J,.3)=2."~2

A3(1,Z)=A3(Z,1)=A3f3,4)=A3(4,1}=2.·E3
A3(1,3)=A3(3,l)=A3(2,4)=A3C4,2)=F3
A3 (1,4) =A3(4,1) =ll
A3 (?,3)=A3 (3,2}=,:2

DO 1"" 1=1,4
00 h J=1,4
F K( I , J) :: 3 .1415 3" ( J.< 1 ( I , J) +A2 ( I , J) +A3 ( r , J ) - XM• XM) /0 EN F

RE TURN
~NO



1

72Q.D
10
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C-7

PRJG~AM S~ELLCINPUT,OUTPUT,TADE4,TAD[~~TAPE7,TAPE1u~Tnp~g,TAPE2J,

Q TAPE1l
nIMENSION AOMC62,62)
DIMENSION OC124,125)

7 .. 1 FORfI1ATC10I8)
7'2 FJR~AT{8Gl0.4)

PRI"JT 1
1 FORMAH1H1)

'" CARr) 4
lii R~AO 7u2,UM,El,PX

PRINT 77'2
772 FO~MQTCII,10X,· MAT~~IAL PPOPlRflrS·,/)

PRINT ?r:3,UH,El,PX
7"3 Fa~MATCII,5X,~ DENSITY OF SHELL MAT~RTAL=·,G1C.4

·,11,5X,· MODULUS CF ~LASTICITy=~,r,10.~

·,11,5X,· POISSON RATIO=·,r,10.4)
162 PRINT 771

If CARn 5
READ 7G2,R,H,Al,Fl

771 FQRMATC/I/,1CX,·STRUCTURAL GEOMETRY.,/)
170 PRINT 7,R,H,AL,Fl

7 FJRMATC2X,.PADIUS:.,FQ.3,5X,·THICKNESS=·,Fb.3,5X,.HFIGHT=-,Fg.3
Q ,10X,·FlUID H~IGHT',F9.~ )

If CARD 6
113 REQ1 7C1,NSIN

• CARD 7
114 R~Af) 701,NElEM

"" CARD 8
REAJ 701,NELFS,NELFP
FRY=AL-FL
NP=N1=LEM+l
NOFS=(NC:LFS)·2
NDF=4

230

c
C

NFREE=NOF·NF
~LN=Al/FLOAT(NEL~M)

NJF=NUMBEP OF n£f,RFE OF FRE£OOM PER NonE
N8AND=HAlF RANU WIlTH
NFREE=NUM8EK OF rEG~fES nF FFRrEOOH

ELN1=FlfFlOATCNELFSl
IFCN?LFR .EQ. 0 ) GO TO 401
ElN2=FRH/FLOAT(NELFP)

... CARO 9
4Gl Rc~O 701,NMOOE

PRINT Lt3,NELEM
43 FOR~ATCII,5X,. NO. ~F RING ELEMENTS=.,I3'

P~INT 51,NMOOE,NSIN
51 FO~MAT{II,5X,I2,· AXT~L MODES TO q[ CONSIDEREO FOR.,T2,

O· CIRCUMFERENTIAL NO.S·,/)
43J 00 Sg KS1=1,NSIN

• CARD 10
431 RE~O 101,NAT
450 ANT=NAT

CALL STRMAT(ELN1,R,H,ANT,PX,Fl,NElFS,NElFR)
IF(NFLFR .EO. u , GJ TO 501
GALL STKMATCELN2,K,H,ANT,PX,fl,NELFS,NElFRl

+ CARD 11
SOl READ 7Jl,NBCAS

PRr NT :5 2, N8CA S
52 FORMAT(/f,5X,· NO. OF BOUNDARY CASES CONSIDERE1=.,I2)

?u2 00 ~J8 IPR=1,NBCAS
5L4 IF(lPR .GT. 1) GO TO ~n1

520 CALL ASSTR(NClEM,NEL~S,NELFR,H,UM,ANT,~X,R,ELN1,FLN2,D,F1'

NFR::El=N~REE+l

REAr)(ll CCADMCI.J' ,J=1,NDFS) ,I=l.NOFS)



ADM( I ,J+1)

ADM( I , J ,
AOM(T+1,J'
ADM(I+1,J+!)

C-8

o( I? , J2 ) +
D<IZ+1,J2 ,+
O( 12+1 ,J2+l) +
GO TO 14C
D( 12 ,J?+1l"

79
78

86
76

F,230
119

85

6150
77
81

118
82
83
84

6040
6051"

691
692

91
70a
808

59
41

7gQ
5S00

C
631:U
6310

DO 140 1=1,NDFS,2
12=2"1+1
DO 14J J=1,I,2
J2=Z"'J+l

DC 12 , J2 ) =
[HI2+1,J2 t=
O<I2+1 ,J2"'1) =

IF(12 .EQ. J2l
DC 12 ,J2+U=

140 CONTINUE
REWIND 1
wR1 T[ ( 4) «NF RE ~,

570 W~ITE(4) «OCI,J) ,J= ... ,NFRE.El l,I=1,NfREE)
REl-IINO 4

801 CONTINUE
.. CARD 12

99Q READ 911,N'C
911 FO~MAT(A4)

620 CALL BOUNfNFREE,NAT,O,NO,NBCl
NOi=NO+l

653 WRIT!=" ( 7 H ( D( 1, J) , J = 1 , f'.' U1) , 1= 1, NO)
REW pm 7

OJ 91 1=1,124
DO 91 J=1,125
D(I,.)=O.
CALL EGNCO,NO,NMonc,El,NRC)
CONTINUE
CJNTINUE
CONTINUE
END
SUBROUTINE EGN(D,NO,NMOOE,E,NRC)

DIMENSION D(124,~25},V1(124),V2(124)

C PRE-EIGENVALUE CHOLESKY PEOUCTIONS
6010 INA=1

NOt =ND+1
READ(?) «D(I,J),J=l,NDU,I=l,NO)

DO 76 ~A=l,ND

DO 7& MAS=MA,ND
MAl =MA+ 1
MAS1=HAS+1
GASH=OCMA,MAS1}
GISH=O(MAS,l"A)
MASH=1

IF(MA-MASH) 17,77,78
GASH=GASH-D(MASH,MA1)"D(M~SH,MAS1)

GI SH=GI SH- 0 (M~ , MA SHJ" 0 CMA S, MA SH)
MASH=MASH+l

GO TO 79
IF(MAS-MA} 81,b1,11g
IFtGISH) 118,82,82
JrSH=3.
IF(GASH) 83,84,84
GASH=O.
() I AG1 =SQRT (GA SH)

DIAG2=SQRT(GISH)
IF(DIAG1.EQ.O.} GO TO 85
DCMA,MASll=GASH/DIAG1
rF(OIAG2.EQ.O.l GO TO 86

O(MAS,MA)=GISH/CIAG2
CONTINUE

CONTINUE
FO"'M U/UL
DO 87MA=1,ND
DO 87 MAS=MA,ND



91
6360

89
6~ 80

88
87

C
642J
(43)

6461

g3

92

C
115

9£+

121
oS70

66JJ

96
6630

97

99
98

95

6720

101

6800
103
102

683U
104

C

le9

lU 7
10n

6920
lD5

MAS1=MlI S+1 C-9
GAS H=0 CMA S , 1'1 A)
MASH=MA

HA~H=MASH+l

IF(MAS-MASH) 88,89,Q9
GASH=GASY-OCMA,MASHl·O(MASH-l,MAS1)
GO TO 91
OCMA,MAS1)=r,ASH/Q(MAS,MAS1)

CONTINUE
~ULTIPLTCATION TO GET CU·ULi-l·ULTE-l·UT)
DO 92 MA=l,NO
no 92 ~1t\S=MAtN[l

NAS1=MAS+l
GASH=O.

00 93 MASH=MAS1,N~1

GASH=GASH+O(MA,MASH)·O(MAS,MASH)
CONTINUE

O(MlI,M1\SU=GASH
CONTINUE

MOOE=NMOOE
0U l.e IN Vl FROM 1 TO NO AND ITeRATIVE
DO g£+ 1=1, NO
V1 ( I) =1.

NUM1T=l
ALlIM2=O.
00 95 I=l,ND

11=1+1
GI\SH=D.

DO 96 J=1,I
GASH=GASH+Vl (J) .f1(J ,Itl

CONTINUE
IF(l-NO> 97,98,98
DO 99 J=Il,NO

GASH=GASH+V1(J)·O(T,J+l>
CONTINUE

V2(I)=GASH
AlAM2=ALAM2+GASH·GASY

:;ONT1NUE
AlAM8=SQRTCAlA M2)
SIGSQ=ij.

DO 1']1 I=l,NO
GASH=V2CI)/ALAMR
GAS=Vl(!)-GASH
SIGSQ=S1GSO+GAS·GAS
\J1<H=GASY

CONTINUE
ZT=1./1C.··12
NUMIT=NUM1T+1

TF(S1GSQ-ZTl lC2,lJ~,103

IF(NUM1T-15G9 121,lD2,102
CONTINUE
PRINT 11

:3RINT 104,NUMIT
FJRMATl· NO rF ITERATIONS=·,I3,!)

TO MULTIPLY (U[-U·<lP'X)
I=NO

Gl\SH=Vl <Il
J=Nn

IF(J-I) 1C~,lG5,1~n

GASH=GASH-V2(J)~D(J,I'

J=J-l
';0 TO 107
V2(I)=GASH/O(I,I)

1=1-1



C-10

lC9J
114

7110
7120

6981
69qn

6950 IF(I) 108,lC8,lLg
108 P~INT 995,INA

1"r{ITEUO,3) (INA)
3 FORMAT(613)

O~EGA IN CYCLE/SEC
OMEGA=SORT(1./AlAM8)/Z./3.141j927
PRINT 112,OMEGA

W~ITF(l:",1) (OMEGA)
Ri.::S="'.O
P~INT 12

1 FO~MAT(,+El!+.8)

IF(N8C .NF. 4HCL!="q GO TO 1):'8
WRITF.(9) (NO)
WRI TE ( g» (OM EGA)
WRITE(9) (V2(H ,I=l,'J[)

500 IF(NBC .EQ. 4HSMSM) GO TO 40
IF(NBC .EQ. 4HCLSMl GO TO 30
PRINT 111,RES,RES,RES,RFS
WRI TE C1a, 1) (R FS ,RE~ ,R ES ,RES)
PRINT 111,(V2 (I) ,I=1,NO}
WRITfC1J,1l «V2(I),I=1,NOH
IF(NBC .EO. 4HCLCL) PRINT 111,RES,RES,RES,RFS
IF(NBC .EQ. 4HCLCU WRITE<1S,1) CRFS,RES,Ri:S,t<FS)
GO TO 7040

30 PRI~T 111,RES,RES,RES,RfS
WRITE{1u,l} (RES,R~S,RFS,RES)

N01 =ND-l
PRINT 111,(V?(Il,I=1,N01)
WRITEf1i.l,l) «V2tI) ,I=1,NOll)
Pr{INT 111,RES,RES,R~S,V2{NO'

WRITE(1J,1)(PFS,RES,RES,V2(NO»
GO TO 7040

40 PRINT 111,RES,RES,RES,V2(1)
WRITE(10 ,1) (RES,RES,RFS,V"(l)'

N01=NO-l
PRINT 111,(V2(!),I=2,N01)
WRITEUJ,1l «V2fI) ,I=2,~'OU)

PRINT 111,RES,RES,R~S,V2(NO)

WRITE(l>i~ll (RES,RFS,RES,V2(NO»
9gS FJRMATCII,10X,·AXIAL NO. =·,13)

11 FORMATfll,2DX,2S(2H--l)
12 FO~MAT (~GX,. MOOF SHAoF·,1,15X,.U·,2GX,·V·,20X,·W.,2DX,.OW/OZ.)

111 FORMAT(~f5X,F16.8»)

112 FORMAT(/1,1GX,.NATURAL FREnUENCY=4,E20.1Gl
2 FORMAT(8F16.~)

CHANGING TO NEXT ~OCE

00 113 I=1,ND
00 113 J=I,ND

Jl=J+l
113 0 <I ,Jll =0 (I ,J1> -AUP1P"VH Il ·Vi( J)

6965 I~A=INA+1

"100[="100£-1
IF(MOOEl 114,114,115
CONTINUE
~ETURN

END
SUBROUTINE STRMATCAL,R,H,ANT,P,E,NE1,NE21
DIMENSION B(8,8) ,Di'H8,8) ,OBTf6,8,o)

4 FORMATCIII,10X,·STRESS-OTSPLACEMENTS MATRICES.,/}
PRINT 4
HPI=1.C;70 795
HAL=AL/2.
CALL OMATX(H,P,DM)
DO 5 1=1,6

G
7C 4J
7050

c



00 5 J=l,f C-11
5 OM(I,J'=DM(I,J)4E4K'fl.- P ·P)
3 FORMAT(o(5X,G10.4»

DO lJQ NN=1,6
I~(NN .LT. 41 THrTA=C.r
IF(NN .Gt.e 4) IHl:TA=HDI

IF<NN .EO. 1) X=C.1
IFtNN .EO. 2\ X=AL
IF( ~N • FO. 3) X=HilL
TF(NN .cO. 4) X=G.O
IF(NN .EO. 5) X=AL
IF(NN .F.fl. 61 X=HAL
THFTnM=THFTA·ANT
CAL L RM ATX( AL ,R , 1\ NT, X , B)
COSIN=COS(THETAM)
SI~E=SINnHETIlM)

T- • 8
00 1C J=1,R
B(l,J)=B(l,J)·COSIN
f3{2,J)=8(2,J) "'eOSIN
8<3 ,J)=13f3,J) "'SINF
n(4 , J ) =~f 4 • J} ... COS Hl
8(5,J)=9(S,J)·COSIN

108(o,J)=8{6,J)·SINE
WRITEPu) (Nfl ,N(2)

+ 0"'T--8
DO 2.: 1=1,6
DO 2", J=l,~

OBT (T,J, NN) =0.0
00 20 K=1,6

20 0 PT ( I , J , NN ) =n 8T ( I ,J, NN) +0 M( I, K) ... 8 ( K, J)
WRlr[(2Gl (NNl
PRINT 1,NN
WRITE (20) «f'lBT<I,J,NN) ,J=1,8) ,1=1,6)
POINT 2, «D8T(I,J,NN) ,J=1,8) ,1=1,6)

1 FORMATl/I,10X,.NN=·,16,/)
2 FO~MAT(8(5X,G10.4)l

lUG CONTINUe:
RET URN
END

BGO SU8 Q OUTINE 80UN(NFRE~,NAT,O,NO,N8C)

DI"1ENSION O{124,125)
diS IF(NBG .EO. 4HClFR ) GO TO 1
820 It:'" {N3C .EO. 4HCLCU GO D 2
825 IF (NBC • EO. 4HCLSM l GO TO ~

830 It:'" (NBC .[0. 4HSMSM) Gf") TO 4
55 FO~MAT(lHl)

1 °RI~H 55
PRINT 11

11 F~RMAT(II,·NATURAl MOD~S AND FREQ. FOR A Ct-F~EE CYL.)
845 PRINT lDl,NAT
1[1 FORMAT(/,· FOP CIRCUMFER~NTIAL HARM. M:-,I3,/l
855 NO:NFREi::.-4
860 GJ TO 3~

2 PRINT 55
PRINT 12

12 FOPMAT(fl,-NATURAL MODES AND FREO. FO~ A CL-CL CYL •• )
R75 P~INT lD1,NAT
880 NO=NFREE-8
~3 DO 777 1=l,NO

NOt=NO+l
00 777 J=1,N01

777 OCI,Jl=O(I+4,J+4)
9JO RETURN



C-12

14
gaCl
985

°30
112
111
g45
95.;
113
960

13
915
920

9q5
221
222

1010
lu15

22J
1025

3 PRINT 55
PRINT 13

FORMATCII,+NATUPAL MODFS AND F~EQe FO~ ~ Cl-STMPLt CYLc+)
PRINT 101,NI\T
NCJ=NFREE-7

N01=NO-l
00 111 I=l,NOl

O() 112 J=l,NO
OCI,J'=O(I+4,J+4'
OCI,NO+1)=0(I+4,NFRF'+1)
!=NO
OJ 113 J=1,NO
O(T,J)=DCNFREE,J+~)

OCNO,NO+1)=Q(NFRE£,NFREE+1'
O(~O,NO)=D(NFR£E,NFOiE)

965 RE TURN
... PRINT 55

PRINT 14
FORMAT(I/,+NATURAl MODES AND F~EQ. FOR A SIMPLE SIMPLE CVl.+)
PRINT 101,NAT
NO=NFREE-6

NOZ =NO-l
DO 222 I=1,N02

OJ 221 J=l,NO
OCT,J)=D(I+3,J+3l
OfI,NO+l'=DCI+3,NFREE+1)
1=NO
00 223 J=l,NO
OfI,J)=DCNFPEE,J+3)
OCNO,NO+l)=OCNFRFE,NFREE+1)

OCNO,NO)=OtNFREE,NFREE)
1030 RETURN
1035 END

SUBROUTINE ASSTRrNELEM,NFLFS,NFLFR,H,UM,ANT,PX,R,ElNl,ELN2,D,E)
DIMENSION O(12~,125)

1175 DIMENSION AMASC8,8) ,STf8,8)
CAll STIFFCH,ElN1,ANT,PX,R,ST'

10 FORMAT(8C5X,G10.4})
00 4D 1=1,8
00 4; J=1,8

40 STCI,J)=STCI,J)·E
CALL MASSCUM,R,ELN1,H,AMAS)
DO 12J T=l,NELFS
IN=C!-1)+4

00 20 I 1=1,8
00 2(1 JJ=l,Ir

K=I N+ II
l=IN+JJ

200IK,L)=OCK,L)+AHASCIT,JJ)
DO 3" JJ=l,8
DO 30 rr=1,JJ
K=I N+I!
L=IN+JJ+1

3D OCK,l)=iHK,U +ST<I!,J,J)
130 CONTINUE

IFINELFR .EQ. 0 , R~TURN

CALL MASSCUM,R,ElN2,H,AMAS)
CALL STIFFtH,FLN2,ANT,PX,R,ST)
DO 5G 1=1,8
DO 5: J=1,8

SO ST«r,J)=STII,J)+E
NELFS1=NElFS+1
00 2uO I=NELFS1,NfLFM
IN= (I-1) "'4



... 440
1450
2 R60
2870

C
2890
29 L n
2910

116

C-13DO be 1T::01,8
no 6 JJ::01.I1
K=I'HII
L=IN+JJ

60 U(K,L)=O(K,L)+AMA~(IT.JJ.

no 7. JJ=1,8
00 r II=1,JJ
K=IN+II
L=TN+JJ+l
O(I(,u=n(K,U +ST(lI,JJ)
CONTINUF
'~FTURN

EN Il
SU8ROUTINE HASS(~HJ,R,AL,H,A)

DIMENSION A(8,8)
INITIALIZE MASS MATRIX
on 116 J=1,8
00 116 1=1,8
lHI,J)=(i.
CONTINUE
~ONSTRucr MASS MATRIX

PI=3.1415927
CO NS T= R"oP"P HO'" H

'" ( 1 , 1 t =A( 2 , 2 l ":: A (5 , 5 ) = A«I:) , 6 ) == CON ST "" AL13 •
A(S,1)=A(1,5)=A(6,2)=AC2,6)=CONsr""AL/b.
A C3 ,3) =A ( 7 , 7) =C ON ST"'l ,5 AL I '3 c; •

A(4,3)=A(3,4)=CONST ... 11.·AL 2/210.
Af7,8)=A{8,7)=-A{4,3)

A(4,4l=A(8,8)=CONST ...Al· ... 3/1J5.
A(7,3) ::oA(3,7)::oCON<:::TJi'ALlI-9.172.

A(~,7)=A(7,4)=CONST·13.... AL+Al/423.
A(B,3)=AC3,8)=-C0Nsr"'13.""AL··2'42D.
AC8,4'=A(~,0)=-CONST·AL"'·3/14J.

FJRMAT(II,lDX,·----------------------------- ... ,/)
RE TURN

END
SJ8ROUTINF STIFF(H,AL,AM,P,R,SUM)
iJ I M:: NS ION X( 20 ) , y! ( 2 C ) , fl"1 ( 8 , 8 ) , 88 ( .~ , 8 ) , 08 ( 8 , !~ l , 80 (8, 8 )
,SUM18,Rl
REAOCS' NI

00 21 I=l,NT
RE A0 C:;) XCI), W(I )

REWIND 5
l\ =o. $ R= AL
80 12 I=l,N1
'to CI ) = (8- A) 12 • .. X fI' .. (B" A) /2.
WCI)=(R-A)/2 .... W(H

DO 13 1=1,8
00 13 J =1, <~

SU"'lCI,J)=O.
~I)NTINUE

Cl\Ll OMATX(H,P,O~)

DO 23 I=l,NI
CALL !3MATX(AL,k.,AM,XtI) ,813)

Cl\LL M8TM(OM,BB,08,6,6,Rl
~ALL MBTTM(BB,OB,80,8,6,8)
DO 22 .)=1,8
DO 22 K=1,8
SUM (J , K) =SUM (J , Iq +WfI ) '" 80 (J , K)
::;ONTINUE

CONST=RlI-3.1415927"'H/(1.-P·Pl
00 1 1=1,8
DO 1 J=1,8
SUM(I,J)=SUM(I,J)"'CONST

2950

X
3140
3150

21

3[: 30

2990
3DGC

54
3D68

::;luO
311u

3170
-:sun
3190

12
321u
3220
32.30

13
3250
3260
3270
32 P,J
:3290
3300
3310

22
23

3340
335J
3360

1

C



54
34",0
3410
3430
3440
3450
3460
347v
34811

25
35UO
,,510

C
::5530
3540
3550
356J
3c:; 7:3
3580

26
3f-UO
3610

C
3630
3640
3650
3660

27
368D
3690
370u
371\01
3720
3730
3740
3790
38CQ

C
3820
3830
3843
) 85,)
386J
3870
388J
3890
39(1)
3910
3920

Zg
3940
3950
3960
397U
398u
3990
4UJ1J
4\,) iO
402;)
403J
4040
4050
4G 60

C-14
FJ~MAT(/,2GX,· ==========================.,/1)

RETURN
END
SURROUTINE MBTM(O,B,D8,l,M,Nl
JIMENSION 018,8) ,P{A,R) ,0818,8)
00 25 J=l,N
DO 25 I=l,L
08fI,J)=O.
DO 25 K=l,M
D~fI,J)=OB(ItJ)+O(I,K)·~IK,J)

RETURN
EN[1

SUBROUTINE MBTTM(O,D,On,L,M,N)
OIMEN~ION 0 (8,8),3(8,8) ,DOl8,A)
00 26 J=l,N
DO 26 I=l,L
08CI,J)=O.
00 26 K=l,M
D8(I,J'=OB(!,JJ+DIK,I)·R(K,J)
RETURN
END

SUB~OUTINE OMATXfH,P,OM)
OIMENSION 01'1(8,8)

00 27 1=1,6
DO 27 J=1,6

OM(I,J)=O.
H2=H"H

D1'I ( 1 ,1l = OM (2 ,2) =1.
OMll,2)=OM(2,l)=P
DM(3,3)=(1.-Pl/2.
OM(4,4}=DM(S,S)=H2/12.
OM(?,4)=OM(4,S»=P·H2/12.
D~(6,6»=H2·(1.-P)'24.

~ ETURN
END

SUBROUTINE OMATX(Al,R,AM,X,R)
DIMENSION 8(8,8)
X2=X"·2
X3=X··3
AL ?=A L·-"'2
AL3=AL ... ·3
AMZ =AM.lI"2
R2=R ..... 2
DO 29 !=1,6
00 29 J=1,8
8(I,)=0.
CONTINUE
B(1,l'=B(3,2)=-1./Al
3(1,S)=B(3,6l=1./Al
B(Z,Z)=AM.lI(1.-X/AU IR
B(Z,3)={1.-3 .... Xi/AL2+2.·X3/AL3)/R
9(Z,4)=X"'(1.-2.·X/AL+X2/AL2)/R
B(2,6)=AM·X/R/AL
BfZ,7)=X2"'(3./AL2-2.·X/AL3)/R
8(Z,8'=X2"'(-1./AL+X/ALZ)/R
8(3,1)=-8(2,2)
13(3,5)=-8(2,6)
8(4,3)=(6.-12 .... X/AL)/AL2
BC4,4)={4.-6.·XtAl)/Al
B C4,7 »=-B (4 ,3)

i~ t': .." ('\ n I i. l~' _I ...,. ,..:w v ~ j\ I .. I" I



4 u 80
4[ gO
i.¢>lJJ

411"
4120
4130
414u
'+15 ,.,

4160
4170
4180
4190
!+2uO
4210
422J
4230

B( 5 ,2 ) =3 ( 2 , 2) I R C- 15
gC5.3)=B(2,3)¥AM2/R
SCS,4)=R{2,4)~AM2/~

B<5,6)=B(Z,6)/R
3 ( S , 7) =R (2,7). AMZIP

gCS,8)=B{Z,8)¥AMZ/P
8 (6,1) :.:AM~ (1e -X/AL' Ii.. ./R2
8<~,2)=-3./2./F/AL

B(6,3)=-12.¥AM~X·(1.-X/ALl/R/AL2

B(6,4)=2.·AM~(1.-4.·X/AL+~.·X2/Al2)/R

B(6,S)=AM·X/2./FZ/AL
B(6,6)=3./Z./R/Al
B(~.n=-8(6,3)

B(6,3)=-2.·AM·X·(2.-~.·X/Al)/R/~L

RET URN
END



r.OQu132 3~DDOOOG.~ 0.3 C-16
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15
11
10
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APPENDIX 0
0-1

c

P~ClG~AM PA~TI <INPUT, OUTPUT, TAPFZ, TAPE3. T/lPlc., Tl\PEf:.)
DIMENSION 0(64,65)
OI'1ENSION SMASS(L ,n1) ,8MASSt6f],~) ,RACC(L..} ,UOC6G) ,PEFF(6f")
DIMENSION X(ol;,1L) ,GPC1") ,OMEll.) ,X'H60,1Cl
OI"1ENSION U(601
DIMENSION GM(1~,1r)

EQUIVALENCflO(1) ,SMASS(i»)
REI\D l.jC,M

lJ!) FOR'1t\H10r~)

!)l\TA M/111/
RE!\D(5) (NFREE)
NFREE1=NFREE+1
RE l\ 0 ( 5) ( l 0 II , J) ,J:: 1, NF~ EE1) ,I =1 , NFRE E )
REWIND Cj

DO if I=1,NFPEE
DO 1'] J=l,I

10 fHJ,I)=DtI,J)
WRITE MB
WRITE(E))(O(I,J) ,J=1,4) ,I=5,NFREF)

WRITE M
WRITE (6) l (olI ,J) ,J=5, NFREC) ,1=5 ,NFREn
BACCC1'=BAee(4)=~.J

Bl\CC(2)=-1.0
Bl~CC(3)=+1.0

ND="..JFREE-4
PRINT 1,M,NFREE,NC

1 FO~MATl//,6I8,//)

2 FORHATl/,iOlE10.4,2X) I
R EW IN D 6
~ El\ 0 f (,) ( CBM ASS CI , J) ,J=1 , 4 I , 1=1 , NO I
RFl\OCo) «S1'1ASStI.J),J=l,NO) ,I=l,NDl
NN=NO /4
00 2'; I=1,NN
1S=(I-1)·4
UO( IS+1) =BAec (1)

UOlIS+2)=IlACC(2)
UO( IS+3) =BACC (3)

U') ( IS +4 )= RAce ( 4)
20 CONTINUE

M+UO=PEFF lNOtNO)·CNO,1)~(NO,1)

00 3D I=l,ND
P EF F f T) =0 • 0
00 3S J=1,NO

3C PEFFlI)=PEFFlII+SMASSCI,J)·UOCJ)
MS • gACe =u (ND,~l·C4,1}=CNO,1)

00 1.+[ I=l,ND
UCI)=O.o
00 4C J=2,3

40 U(I)=UlI)+BMASS(I,J)·PACC(J)
00 5C I=1,NO

50 PFFF(I.=PEFFlII-UCIl
00 55 J=1,M
RE~O(3) (NOl
RE~O(3) (OME(J»)
READ(3) (XtI,J)yI=l,~W)

55 CONTINUE
GP=XT ·PEFF=(M,NO}¥(NO,11=(M,1)

00 60 !=1,1'1
GP(Il=J.O
DO 6Q J=1,NO

60 GP(I)=GP(!)+X(J,I)·PEFF(J)
PEAK=384.0
00 7C I=1,M

70 GPCI)=GP(!)·PEAK



GM=XT .. M ... x 0- 2
00 7S I=l,ND
00 75 J=l,M
X~fI,J)=O.O

00 75 K=l,ND
75 X"'1(I,J)=XMfI,J)+SMA~<::(I,KI"'X(K,JI

00 80 I=l,M
00 8l'! J=l,M
GMfI,J)=D.O
DO 82 K=l,NO

80 GMfI,J)=GM(I,J).X(K,r''''XM(K,J)
WRITE(Z)(Ml
WRlrr- (2) <GM<I,Il ,1=1 ,M'
WRITE(Z) (GP(Il,I=1,Ml
WRITE(Z) (OMEfI),I=l,M)
PRINT 2,(GMfI,I),I=1,M'
PRINT 2,(GP(II,I=1,M)
PRINT 2,fOME(l) ,I=l,M)
END



0-3



0-4

IS TO BE SAVEn ON TAP~ NO. 4
IS TO 8E SAVEO ON TAPF NO.5
IS TO BE SAVED ON TAPE NO.6

P R. UG 0{ AMP AR T1 I (I NP U r , 0 U I PUI , T AP E1 , TAP E Z , T AFt. 3 , TAPF. 4 , TAP ES, TA 0 F f, ,

OI~E~SION ACC(iCOl
DIMENSION X1<10J ,X2(lCt ,X3{10'
DIMENSION U(120)
DI"1ENSION X{lU ,GM{!,') ,GP(lGJ ,OME(1j) ,A(L) ,V (10) ,V (1t>
DIMENSION VOliDa ,1") ,VOCl n ,it"
DIMENSION XARRAY(S3~),VARPAY(500t

EQUIVAlENCE(YOU) ,XARPAV(U), (VOU' ,YARRAY(1)'
.. CARD 2

READ 10C.LREC,NREC.NRSTART,NREND
.. CARD 3

RE~ 0 20 a, DT
"- CARD 4

READ lJC,N01,N02,ND3
.. RESPONSe OF O.O.F NO. N01
.. RESPONSE OF D.O.F NO. ND2
.. RESPONSE OF O.O.F NO. ND3

0151'11=0.0
DISM2=O.O
OISM3=O.O

lOll FORMATUQI8)
2uu FORMAT(Fl0.4)

REWIND 1
RE~O(2l (NMOGES,
M=NMOOES
PRINT 55,NMODES

55 FORMnHI10)
READ(2'CGM{!) ,I=1.M)
REAO(Z) CGP(I) ,I=l,M)

.. G~ HERE IS THE PEAK GENERALTZFD FORCE V~CTOR

REAO(') (OMEU).,I=l,M'
REW IND 2
00 30 J=1'M
REAO(3' (NDl
REAo(3J (OMECJ))
REA 0 ( 3' (U (1 ) , I =1 ,N 0'
X1CJ'=UCNDU
XZ(J)=U(NOZ)
X3C J) =U (ND3)

30 CONTINUE
PRINT 55,NO

2 FORMAT{lHl)
.. OMf IN GYC/SFC

DO 35 J=1,M
350HE(J'=OMECJ)·Z."-3.1415Y

"-OME IN RAo/S~C

REWIND 3
CALL CONTROL(NRr~,LREc,M,oT,YO,VO,AGC,OME,GP,GM,A.Y,V)

DO 4J ' J=1,M
Y(J)=O.O

40 VfJ)=O.O
REWIND 1
NR1=NRSTART-i

88 FORMAT(lJE10.4)
DO 5 IREAD=1,NR1

5 RF.~0(lt8A) (ACG(!) ,I=1,LREC}
DO 13)0 IREC=NRSTART,NREND
00 lQuO IREC=l,NREC

00 10 J=l,M
Y(J)=VO<IREC,J)

10 V(J)=VO(IREC,J)
REI40Cl,88) CAGCn) d=1,LR!="C)
00 5~ ITIME=i,LREC
TIME=FLOAT(ITIME}¥OT



CBLL IN1{ACC,TIMf,OT,LPEC,H,OHE,GP,GM,A,Y,V,ITIMEl ~5

INSERT HERE OISPLACFM=-NTS , STRESSES ,AND [XTrKNAL fQUI.
W1=W2=W3=0.0
DO 2J j=1,"1
Wl=W1+XUJ)·A (J)

W2=W2+X2(J)1f.AfJ)
W3=W3+X3(JI1f.AfJl

2) CONTINUE
1Ft oIS"1l .GT. Wi) GO Tn 101
OIS"11=Wl
TI"1M1=TIME

1J1 IFl DISM2 .GT. WZ) GO TO 202
OISM2=W2
TIMM2=TIME

2U2 1Ft DISM3 .GT. W3) r;o TO 303
OISM3 =W 3
TIMM3=TIME

3£:3 CONTINUE
WRITfI4,11) (Wi)
WRI TE (5 ,11 I ( W2 I
WRI TE (6,1 it (W 3)

11 FORMAHE10.Ltl
50 CONTINUE

1[:]0 CONTINUE
0Ef4 IND 1+
REWPW 5
REWIND 6

DR IN T 2
2COl FORMAT(II,25X,. RESPONSE OF O.O.F. NO •• ,12)

12 FOR MAHI, (2 X, 10 ( E1 [) • 4 ,2 Xl) )
PRINT 2001,NOl
00 2000 III =l,NREC
TREC=FlOAT(CIII-l)·LREC)·OT
PRINT 199,TREC
REL\OP.,11 l (XARRAY (1) ,I=l,LREC)
PRINT 12 ,(XARRAY(l),I=l,LRECI

20,.;0 CONTINUE
199 FORMATf/,15X,·TIMF=1f.,F1C.4,.SfC.·)

PRINT 2Ju2,OISMl ,TIMM1
PRINT 2

PRINT 20J1,N02
00 3rOu III=l,NREC
TREC=FLOATC(III-1)·LREC)·OT
PRINT 199,TREC
REAOC5,11)(XARRAYC!),I=1,LRrC)
P~INT 12,(XARRAYtI) ,I=l,LRECl

3L JO CONTINUE
PRINT 2002,DISM2 ,TIMM2
PRINT 2
PRINT ?OOl,ND3
DO 4~uO III=l,NREC
TREC=FLOAT«III-1)·LREC)·DT
PRINT 199,TREC
REI10(6,11l (XARRAYfI) ,I=l~LREC)

PRINT 12,(XARRAY(Il ,I=l,LREC)
4.1;,;0 CONTINUE

PRINT 20C2,OISM3 ,TIMM3
2002 FORMAT(II,lryX,· MAX. RESPONSE =·,Fl0.J, ·AT TIME= .,F10.4)

END
SUBROUTINE CONTROL{NRfC,LREC~M,OT,YO,VO,ACC~OME,GP,GM,A,Y~V)

Ot~ENSION YOLO(10)
DIMENSION AGCfLREC),YO{N~EC~M)~VO(NREC,M)

OIM~NSION Y(M)tVfMl.AfM),GP(M)~GM(M) ,OME(M'
I REC= 1



00 1 -:- J =1 • M 0-6
YO(l,J)=VO(l.J)=L.J

1~ Y(J)=VlJ)=l.1)
2D CONTINUE

I TP1F=LR£ C-l
TIME=ITIME"DT
REA D( 1, 8~ ) ( ACG( I ) , 1= 1,LREC)

88 FORMAT(luFl0.4)
CftlL INT(AC~,TIME,oT,LREC,M,O~E,GP.GM,A",V,!TIHEl

00 3C J=1,M
3D YOLD(J) =A(J)

ITTME=LREC
TIM E= LR EC·oT

CALL INT(ACG,TTMF,oT,LREC,M,OME,GP,GM,A,Y,V,ITIMEl
IR~C=lREC+l

00 itJ J=l,M
Y{J)=A(J)
V(J)=(A(J)-YOlo(J')/DT
YO( IREC ,J,=Y (J)

40 VOtIREC,J)=V(J)
IF(IREC.U:'. NREC) GO TO 20
RET URN
END
SUSqOUTINE INT(ACC,TIME,DT,LREC,M,OMF,GP,GM,A,Y~V,ITIHE)

OIMENSION ACCfLREC'
DIMENSION OME(Ml,GMlM) ,GP(Ml,A(M},Y(MJ,V(M)
DO 15 J=l,M
PIN =(j .0
OMET=OME (J) ·TIME

DO 10 IT=1,ITIME
TA=FLOATnTt "OT
SINE=SIN(OME(J)·(TIME-TA»

10 PIN=PIN+ACC(IT)·SINE
PIN=PIN ·GP(J)·oT

15 A(J) =PIN/fGM( J. "'OMF (J» +y (~J) "COS (Q·ME.T) +V (J)"'5 HHOME 1) lOME (J)
RETURN
END
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