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ABSTRACT

The structure under consideration -is an‘eIastic‘Cylindrical
Tiguia storage tank attached to a rigid base slab. The tank is filled
to an arbitrary depth with an inviscid, imcompressible Tiquid. A
finite clement analysis 1s presented for the free vibrations of the
counten systoem pevmitting determination of natural frequencies and
assactalted mode shapes. The response of the partially-filled tank to
arviticial earthauake excitation is also determined through use of

finite =2lemsnts, Examples, together with program listing, are offered.






[1]

BACKGROUND

A previous report [1] by these same investigators developed a
finite element approach for determination of small amplitude elastic
responses of an empty slab-supported cylindrical liquid storage tank
subject to arbitrary base excitation. It was assumed that the base
slab supporting the tank is rigid and that the tank‘does not separate
from thé slab during excitation. The present investigation continues
the work presented in [1], but with the significant addition of an
inviscid, incompressible 1liquid filling the tank to an arbitrary depth.
Again, finite elements ére empioyed to represent both the elastic tank
as well as the liquid. Natural frequencies and associated mode shapes
of the coupled liquid-elastic system are found through use of finite
elements. Also, the special case of the natural frequencies and associated
mode shapes of a liquid in a rigid container is investigated. Next,
using modal superposition, a program is developed for determination of
the response of the coupled 11quid-elastfc system to arbitfary base

excitation.
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ANALYSIS

Governing Equations

For the elastic circular cylindrical tank with'a vertical geo-
metric axis under consideration here, we shall empioy‘a series of
ring-shaped finite elements extending from the base slab-to the tank
top, with each ring being bounded by a horizontal plane normal to the
shell axis. Both in-plane as well as out-of-plane disp]aéements and
forces in the shell must be considered. Again, as in [1], the shell |
theory due to J. L. Sander, Jr. [2] is employed to represent the small,
elastic deformations of the cylindrical tank. Let the radius of the
tank be R and its thickness be h. Further, let the quantities r, 8,
and z denote radial, circumferential, and axial coordinates respectively
of a point on the middle surface of the shell. The corresponding dis-
placement components are denoted by w, v, and u, The‘equations of
motion of the elastic tank in terms of w, v, and ﬂ are given in [1].

The Tiquid in the tank is assumed tb be homogeneous, incompressible,
and inviscid. Further, the flow is taken to be irrotationé] and on]y‘
small amﬁ]itude liquid motions are considered. Lastly, it is assumed
that there are no sources, sinks, or cavities anywhere in the liquid.

Under these conditions the motion obeys the Laplace equation

V2p (r, 6, 2z) =0 | (1)

‘where p represents total pressure at any point. The total pressure

is the sum of the static and dynamic pressures, viz:



(3]

P =Pyt Payn

where pSt is the pressure that would exist if there were no motion
and pdyn arises because of motion of the 11QU1d. Since the static
pressure obeys Laplace's equation, obviously the dynamic pressure
does also. Henceforth, the dynamic pressure will be denoted by p
for brevity.

The Bernoulli equation may be expressed in the form:

gz+5%+%f+(1/2)v2+§%=o | (2)
where z is as defined for the shell with origin at the iiquid surface,
g is the gravitational constant, Pr denotes 1iquid density, v the
magnitude of velocity at any point in the liquid, t denotes time,

and ¢ is the velocity potential. Since the liquid is nonviscous, the
motion is 1rrota£iona1, and the oscillations are of small amp]ftude,
the velocity squared term in (2) may be neglected in comparison with
other terms. Also, for z measured positive upward from the liquid

surface we have:

Thus, (2) becomes:

L |
pr ot (4)
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Boundary Conditions

At the liquid free surface, the vertical velocity component is

given by: ‘ .
v, (r, 8, 0) LM LW (5)
. Z
z=0 o
30
= =5 Gt

Where'glis‘the superelevation of the free surface over the undisturbed
surface level. The linearized free surface condition may be expressed

in the form:

2

3 ® a9

Ss+gg, | =0 - (6)
'LtZ BZJ . ‘

Using (4) together with the relation p¢9E = p, this may be expressed

in the form:

) .
1 3% , 9. |
g 2 * 3z 0 ‘ (7).

ot

For the liquid under consideration the velocity vector V may be

written in the form:

v

gr‘ad ) (8)
= ¢

Consequently, the boundary conditions expressing liquid-solid inter-
action along the elastic wall of the cylindrical tank as well as at

the rigid bottom of the tank may be written as:
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BwT
ot in the wetted part of the tank wall

(9)

[O_ at the rigid tank bottom

Here, n is a unit vector normal to the 1iquid-she11 boundary and
H denotes depth of Tiquid in the tank. Thus, along the wetted

elastic tank wall denoted by © we have:
i 00 aw _
[‘a‘?‘ﬁ] "0
r=R

where w is the radial displacement of the tank wall at any point

(R,z,0). Again, using (4), this becomes:

2

W ]

— = 0 (10)
[atz Pf '1

r=R

i

Since the liquid velocity in the z-direction is zero at the tank

bottom, it follows from that:
od
L2 = 9
[3"] (11)
z= -H

In summary, motion of the Tiquid is completely defined by the

Laplace equation (1) together with boundary conditions.
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In a finite element approach to the coupled 1iqufd-e]astic tank
problem, the finite element matrix equation is obtained either from
the governing differential equation by using Galerkin's method, or
from the variational equation by using a minimization technique [3].
Use of fhe Galerkin procedure necessitates knowledge of thé governing -
differential equations bf motion together with selection of a weighting
function which may be chosen to be the same as the element shape
function. Setting the first variation of the resulting integral equal
to zero yields the desired finite element matrix equation. Use of
the Euler-Lagrange method necessitates formulation of the kinetic
.energy (found by integrating over the 1liquid volume), the potential
energy (found by integrating over the free surface); and the work done
on ﬁhe liquid by external effects (such as solid-liquid interface
forces). ‘Minimization of energy then yields the governing equations.
In [3], it is demonstrated that both approaches yield the same finite
element matrix equation provided the same type of element and the same
shape function are employed in both treatments.

In [3], it is shown that an appropriate variational functional

for the liquid is

. R |
1:[2(T-n-mdt (12)
2

where T, T, and W represent the kinetic'energy, the potential -energy

of the liquid, and the work done on the ligquid respectively. These
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are given by [3]

T =(1/2) o J Vo + Vadv
v

i =(1/2)f£(pf gg) ds

where oF denotes liquid densify and & is the deviation of the 1iquid
elevation from the static configuration. The kinetic energy is evaluated
by integration over the liquid volume V, the potential energy by inte-
gration over the free surfaée F, and the work by integration over the
1iquid-tank interface .

In the present investigation, it is most convenient to investigate
the dynamic problem in terms of the liquid dynamic pressure p. Ifl
damping is neglected, this leads to a matrix differential equation
involving only the pressure together with its second derivative with
respect to time. In [3], Eq. 3.9 it is shown that the functional per-
tinent to the governing equation (1) together with boundary conditions

(7) and (10) may be written in the form:

I =(1/2)[ Up + Up dv - s- f(%%)zds - oy fp 3M g4s =
v F I

where the definitions of I;, I,, and I, are evident from (14).
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Finite Element Idealization

The liquid is discretized into annular elements of rectangular
cross;section. These elements may by considered to be formed from
the intersection of concentric annular cylindrical surfaces with a set
of horizontal planes. The intersection of these surfaces with, the

planes gives rise to nodal circles, as shown in Figure 1.

FIGURE 1

This three-dimensional problem can essentially be transformed
into‘a two dimensional one by develéping the pressure p in a Fourier
series in the circumfefentia} direction, viz:

p=1Ip, cos mo (15)

m
The problem of forced motion of the slab supported tank when excited
by horizontal ground accelerations can be reasonably well described

through consideration of only the first harmonic, m = 1 provided that
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one is concerned with obtaining the motions about the neutral equili-
brium configuration. However, for the sake of generality, the following
finite element matrices will be developed for an arbitrary number of

harmonics m in the circumferential direction. Thus, let us set

pm‘(r, z, 6) ='Pm (r, z, 0) cos md (16)

Henceforth, the subscript m will be omitted for brevity.

Thus, the problem has been reduced to a two dimensional one in
the pilane indicated by r, z, & =0 in Figure 1. Henceforth, wé shall
use (x,y) as local coordinates, which origin at the geometric center
of the element, to denote the position of any point in this plane. The
tiquid pressure at any point in this plane is described using the nodal
pressure parameters of the corresponding rectangular element surrounding

it. Thus:

P(x,y) = [N] ®) - (17)

where [N] represents the element shape function and {SP} is the element
nodal pressure vector. The shape function is obtained by assuming a
suitable interpolation function which here is taken to be a linear
variation of liquid pressure in both the x and y directiohs. Thus:

rsp]j

8
P(xy) = g [(a-0)(by) (ab)(b=y) (atx)(bty) (a-x)(biy) | 2
6p3

6p4

(18)
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Figure 2 indicates a typical element of length 2a in the radial (r)

direction, 2b in the z (axial) direction, whose center (0,0} lies

at a distance X0 from the geometric axis of the tank.

y
(-a,b) § 1 ¥ (a,b)
! 'x P(x,y) |
oy -
i ("as'b) ' i (as"b)
1 2
X, j—'
FIGURE 2

Liquid Element

"From (16}, we have:

“EB - §P_ T m . S
vp = on cos(m6)1r t 7 cos(me)1z . sin{mo) P,

2
Vp » Vp = (-a—r;)2 cosz(m6)+ (%2)2 cosz(me)+ 'I:_Z sinz(me) p2

(19)

(20)
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It is now necessary to determine the functional (13). Substi-
tution of the pressure (15) into the integral defining I] and inte-

gration over the liquid volume v yields:

I =(1/2)f vp + Vp dv
v
. 2 .
=(1/2)f [ ( [(g%)z Cos%m6)+ (gg)z cos%m6)+<m§ Sin%m@P2 rdédz dr
r
rzé :

2
- %f M(%f_‘)z + (2—2)2 + L:-E PZ] r dr dz
rz
2,2
i P2 _,3P\2 m-_P
_n (25 ¢ (25 (x, + x} dxdy
I =(1/2){6p}T[Ke] SR | (22)

The element stiffness matrix [Ke] is developed in detail in Appendix A.
The integral defining I, is found by integrating over the 1iguid free

surface F to be:

S I il
Iy = 74 J(at) ds
F
C [ (@2 2
= 74 J J(Bt) cos” (mo) rde dr
r o
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X
oo O PR . .
= 79 {Sp} {N}" IN] {Sp} (xO + x) dx (23)
X
- _— "
= 1/2 {Sp} [Me] {Gp} (24)

The element mass matrix [Me] is found using (18) and is given. in detail
in Appendix A. The integral defining 13 is found by integrating over

the Tiquid-elastic shell interface I to be
. 5
I3 = e¢ fp — ds
L

cosz(me)R dedz

i
©
-
Ty
—
o

= p.mR |P Eili (25)
f 3t |
z

where R is the tank radius and
Mi,e)=w(a Q) cos (m) (26)

The generalized radial displacement of the tank W may be represented
in terms of the finite element generalized coordinates {Su} through

the following:

H(z, 0) = [N.] 16} (27)
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Thus,
T.=omR 6V INTPINT (5 3 Az (28)
3° Pr p w u ‘
Z
) T oo v
= o 18} 5] 18] (29)

From this the force matrix [Se] representing the coupling effect is
determined. This is developed in detail in Appendix A. The_assemb]ed
1iquid mass and stiffness matrices are denoted by [Mf] and [Kf]
respectively, and the coupling force matrix is assembled in [S].

The partial differential equations, in matrix form, governing
Tiquid motion may be found by first realizing that the functional

1 (14) is of the form:

2 . .
= fs_ .6 ,8 ,6 , .. .1)dt 30
I j (5, %p,* S, O, ) (30)

Then, setting the first variation of this equal to zero, viz:

§1=10 (31}

An Euler-Lagrange equation for each independent variable ép.

may be obtained from the expression:
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Substitution of (22), (24}, and (29) into (14) yields:

. Tre s T ; Treq%
T=1/2 {8 P Ik} - 172 (8 3 M08 ) - neldyh [sJis, b (33)

Thus, (32) leads to:

[Kf]{ép} + [Mf]{ép} - p[S]{&u} = {0} ' (34)
Also, the equation of motion of the elastic shell may be written in

the form:

[M1{s,} + K18} = {8} (35)
where {GF} denotes the generalized force vector at (z, 0) which may
be expressed as

{8} = {8} + {8:} - (36)
| F Fo Fp |

where {6Fe} represents external nodal forces including the static
pressure of the liquid and {SF } represents nodal forces exerted on

the 5he11 arﬁsing from osci11agions of the liquid. Also, [M] and [K]
are the shell mass and stiffness matrices corresponding to a prescribed

circumferential harmonic number m,

Free Vibrations of the Coupled System

Since we are interested in the free vibrations of the shell

about the static equilibrium configuration (35) yields:

[M1(s } + [KJ(8,} = {s; } (37)
p .



[15]

The generalized force vector corresponding to the dynamic

pressure p_ on the inner surface of the shell is given by [5]:

{6p 1= - m f[NW]T[N]{ép} dz
P Z
i T
= - [S] {5p}
”~ N T —_
G IS+ [KIs b+ 1317 ) = 0 (38)

Thus, the free vibrations of the coupled liquid-elastic tank
system may be expressed in the form:

M| 0O 5 K| sT 8 0

A LI R I (39)
< § 0

Let us redefine the mass and stiffness matrices of the liquid as:

Me = A M. (40)
-1
Ke = or Ke

Then, division of the second set of equations in (35) by o yields:

' s
M 0 “ui L | K s Oylo= oo
S K s 0
f b | 0 f

(41)
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These system matrices are nonsymmetric and extraction of eigen-
values and modes becomes extremely difficult, particularly when very
large size matrices are concerned. In view of these serious numerical
difficulties, let us adopt the approximation suggested by.Hsiung and
weingérten [3] which consists of neg]ecting‘the free surface boundafy
condition (5). This simplification implies that (a) thé 1iquid mass
matrix‘[Mf] corresponding to the free surface potential energy vani- |
shes, and (b) the free surface pressure is zéro. It is fb be noted
that in the present investigation the free'surfaée condition was
evaluated at the mean liquid level. Thus, the degrees of freédom
corresponding to the free surface are constrained and can be omitted.

Because of (a), we immediately have:

-[s1{8 ) + [Kf]{sp} =0
) 1 .
(6.} = [KeT™ [S3M8 3
Thus:

NG, + K, + 5170 = (0)
(43)
[in1 + 1537tk 17" 16,0 + [KDes 3 = )

This means that the shell mass matrix is augmented by an added mass

matrix:

[ADM] = [S3'[K 7' [S] (44)
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For the case of free vibrations of the system
8} = -’ 18} (45)
u u

where w is the natural frequency of the coupled system and the

equation for eigenvalues is:
~o® [N+ ADMT {8} + [KI{S,} = {0} (46)

The problem of the slab-supported partially-filled liquid
storage container subject to seismic excitation of the base slab will
thus lend itself to the response analysis detailed in [1] for the empty
container provided that the shell mass matrix in [1] is replaced by
the augmented mass matrix defined in (44) and (46). Details of this
will be presented subsequently. '

If one neglects the shell kinetic energy in comparison to the
much Targer kinetic energy of the liquid, the shell mass matrix [M]

drops out and the problem reduces to:
- F A IS e Tk = 0 (47)
i p f2"p

Numerical results obtained using this approach should agree quite _
closely with thoée found for a rigid tank. However, it is simpler
to use a more direct analysis of liquid motion in a rigid tank, in-
stead of employing (47}.

In summary, the response of the coupled liquid-elastic tank
system can be determined through superposition of the motions of the

shell and the liquid found through neglect of free surface conditions, -
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together with oscillation of the liquid in a rigid tank. For the
range of geometries considered, results for natural frequencies of
free vibration obtained on this basis agreed very well with those

found through an entirely analytical (non-finite element) approach [6].

Response of the Coupled System to Base Excitation

The imposition of support displacements i solved for by par-
titioning fhe shell generalized displacement vector {Gu} into components
_{Gub} associated with the known support displacements, with all other
components being associated with the off-base nodes. Thus, the

general equation of motion is written as:

[M + ADMI{s } + [KI(s } = {sFe} o (48)

where {éFe}js the external generalized nodal force vector. It should
be pointed out that the static liquid pressure forces are excluded
from {6F*} as mentioned in the discussion of (37). Also, the Tiquid
dynamic ;ressure forces are excluded since the augmented mass matrix

accounts for them. Thus, for the case of response under base excitations

only, the governing equation (35) yields:

-
T o T 8
M M 8 K K § F
M ‘ M| K ’ 5
I_ b Sut l» b K | ut 0
which is identical with Equation (2} in [1]. Here, {6ubt} and {Subt}

are the known support displacements and accelerations, respectively, and
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{Sut} and {%ut} are the total off-base displacements and accelerations
corresponding to this response analysis.

A1l elements in the top line of Equation (49) pertain to base
node parameters. Thus, Kbb and Mbb denote forces at base nodes dué
fo unit displacements at the base nodes and the superscript T, of
course, denotes matrix transpose. Kb and Mb in the bottom row are
coupiing effects between the base nodes and the other (non-base)
nodes. A1l other elements in the bottom row of Equation (49) pertain
to non-base nodal parameters. Thus, K and M are redefined to represent
stiffness and mass matrices of all non-base nodes.

At any time, the displacement vectors of the non-base nodes can
be considered as a summation of two vectors. The first vector {US}
is a function of the instantanecus ground displacement, thus it can
be called static. The second vector {Ud} is a function of the ground
acceleration history, thus it is termed dynamic.

This approach furnishes a suitable method to reduce the equations

of motion to the familiar form of forced vibrations:

MUy} + [KIEUg} = TF) (50)

Thus,

(8, ) = 0} + Qg (51)
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The eduations of motion are:

T Xl - .
om0 8, PR
t_Mb M ius + Uy k| K lus + U, .

The equations of the off-base elements are

it

Doy ¢ MUY + MU+ T Db+

_ (53)
KUY + [KI{u =0
Now it is attractive to define U, as a displacement vector so
that when it is associated with the ground disptacement vector Ubt
the resulting motion of the structure corresponds to no internail
strain energy. Hereafter, Subt will be denoted by Ubt for brevity.
This condition implies that:
[Kb]{Ubt} + [K]{Us} =0 o (54)

In other words, the vector {US} is developed through rigid body

displacements consistent with {Ubt}. Thus, from (54)
el -

This phenomena has also been demonstrated numerically and the

resulting static displacement US is nothing but a series of Ubt or
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{
Usl Ubt
U52 Ubt
U U :
{US} - ) s3 } - bt (55)
Usn Upt

where N is the total number of elements and {Usi} is the displacement
vector of node i = {Uj,} for all values of i and {U .} is a (4 x 1)
vector representing the axial, tangential, and radial displacements
as well as the rotation of the generator at the base.

Thus, the off-base node equations yield

[MItU4 + TKIU,) = -[M TH0 3 - [MIU)

[M1U3 + TKIC0 ) = -[0M ] - [MICKT 'Lk, 1340, )

[effective mass matrix]-{Ubt}

i

Mgl (Uy4) (56)



o
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It should be pointed out that for most practical tank dimensions
the. driving forces developed due to the mass [M][K][Kb] are much
larger than those developed by [Mb]. This has been demonstrated
numerically.

The ground acceleration vector Ubt will be proved to be equal to:

0
RO
U

9 L 0

where Ug(t) is the ground acceleration amplitude at time t.

Since the base of the tank is excited by a ground displacement
~and acceleration acting in its plane and in the constant direction
9 = 0, no axial acceleration component develops and the ground accel-

eration will be completely defined by its amplitude value Ug(t):

Ug(t) = Peak » f(t) | (57)

The peak -is an acceleration value independent of time and f(t) is a
non-dimensional function of time.

The associated base-node displacement vector U_, is derived by

. bt
use of Fig. 3,‘viz:

u{o,06,t) = 0

-Peak « f(t) « sin o

it

v(o,e,.t)=-Ug(t) . sin g

w(o,8,t) = —Ug(t) » cos § = +Peak » f(t) « cos o

24(0,6,t) = 0.0 (58)
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FIGURE 3

Since the excitation function is described in the previous form
to be associated with m = 1, obviously only the first circumferential
harmonic will be excited, and thus the vibration of the tank can be
prescribed by super-position of certain contributions of different
axial modes corresponding to m = 1 only (see Appendix A, in [1], for
assumed form of loads and displacements).

0
t) = Peak « f(t) * '}
0

Ub(
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lLet

= Peak - [M

Perr) ertl 1 3

" The equations of motion reduce to:
[MIE0g} + [KIU = (P o)+ £(1)

which is the desired form of forced vibration to which the modal analysis

technique will be applied.

Modal Analysis Solutions

_ [M]{Ud} + [K]{Ud} = {Popet ft)

Let
[X]{A}

{Ud}

H

fugh = [XI4A}

. [X] is the rectangular mode matrix formed as a set of

mode vectors (n x k) where

number of degrees of freedom of the non-base elements

n

k

number of modes considered in the analysis

{A}= mode participation factor vector = k x 1
VL IMIDXIAY + [KIIXTEAY = (P} - F(1)
(A} = {A(D)} 5 (A} = (A())

u_(t)
ft) = par
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Premultiply by [X]T; (k x n)
. T N T _ T _
L DATMIDAAT + DX KGR = [P ppd - F(1) =
{GP} - f(t)
Now, use the orthogonality condition:
T -
{Xn} [M]{Xk} =0 k #n

Obviously the resulting matrix [X]T[M][X] = [GM] is a diagonal matrix
since the (generalized k x k mass matrix} nonvanishing terms are only
D JTEMIEX, 1 = GM(n,n).

The same concept holds for [X]T[K][X] = [GS]

1N

diagonal matrix

where 9% is the squared eigenvalue diagonal matrix = [QQJ[GM]:
. 2 —
1
7
w2
2
@71 = 2
(03
wZ
n
L *
k x k

Thus, GM, as well as GS can be considered as vectors,

-
GM(1,1) GM{1,1) m%
gmgg,gg and ) respectively.
GM{K k) M(2,2)  wy

Mlkk) o

_ i
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Thus, k independent equations result:
GM(T,T) - ALT) + w(1) - w(1) - A1) - GM(L,I) = GP(I) - f(t)

where 1 refers to the mode number.

[ X d

AL+ oP(1) - A = gt )

which are the equations of k independent lTumped masses each representing
the participation of the corresponding I-th mode.

Now, A{I) can be found using Duhamel integration to account for
the initial conditions {just before the.instant t), i.e. tovconsider

the whole acceleration record imposed on the structure, viz:

t ‘ ‘
A(T) = GM(I,%’Q)&)(D . [ f(t) » sin w(t-1)dr

0

= PIN(I)
GM{T,1) - (D)

t
where PIN(I) = (f f(t) sin w(t-t}dr) « GP(I)
0

GP(I)

LMD = gy £ - ()

= A(I)

Now from the original equations of motion‘the displacement and

acceleration nodal vectors are determined:

(U}
U}

[xX1{A}
[x]{ﬂ}

1]

The accuracy of the modal analysis approach depends on the number
of modes involved in the superposition. The latter depends on how close

or scarce the natural frequencies of the structure are spaced.
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The accuracy of the method can be examined through the satis-

faction of the original external equilibrium equation:
[M] (U4t + [KD QU y) = (P _ccb o F(1)

For the structure considered, it was found that the superposition
of a few modes offered only a crude approximation since the external
equilibrium equation failed to be satisfied by as much as thirty percent.

Use of ten modes reduced the maximum discrepancy to about ten percent.

Reactions of the Base

From the equations of base vibrations:

T bt T Upt |
(MM ] S+ [K KT i b= {8
ool 15 oo *p )| U T F

Now, {US} and {US} were proved to be equal to:

E 1
I I
{US} = I . ) S .
{Ubt} and {US} = {Ubt}
)} I
. I
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where [I] is a (4*4) identity matrix, N/4 of which form the relating
matrix.between the resulting static non-base node displacements and
the base node imposed displacements. Also N = number of non-base
node degrees of freedom and since Ml contains nonzero elements only

in the first four columns Mg. US can be expressed as:
[M 1 [1]4U, .}
b bt
where [Mg]' is the 4 x & matrix inc]uding the nonzero elements
M, + MTHU ) + [T 00 + DK, + KU TIU b +0K I, = (F )
bb b "2 bt b d bb ~ b bt b d b

L B _
but [Kbb + Kb IJ{Ubt} = (

_ ) o . :
L 8p ) = Dy I MU, + [k T0U o)

Of course, the most significant part of the base force is attributed

to the displacements of the non-base nodes, i.e. [Kb]T{Ud}.
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Liquid Oscillations in a Rigid Cylindrical Container

The fluid dynamic pressure arising due to liquid motion in a
rigid cylindrical tank will be governed by a special case of (34).
Since the rigid container degrees of freedom {éu} are restricted,

{du} can obviously be omitted and the governing equations yield:
[Kf]{ap} + [Mf]{sp} = {0} (61)

Although the fluid "mass" matrix [Mf] is defined to be Nopp X

NDFF’ (where NDFF is the total number of degrees of freedom qf the
1iquid), the nonzero elements are those corresponding to the free
surface generalized pressure vector only. A matrix condensation

approach is employed to minimize the computer storage area as follows:

) IR 22 P,

where the second set of equations corresponds to the free surface
nodes (n2 in number) and the first set corresponds to the remainder
of the liquid nodes (n]). This Teads directly to:

K + K 0

§ §. 0=
11 P 12 Py
(63)

_ -1
(Sp] - '[K'”] [K]Z]{(sz}



[30]

substituting this into the second set of equations (61) yields:

-1

T _
[-Kyp Kyp Kyp * Kppd 8+ M =0 (64)

s
P 227P

[Keond? oy 1t [M.ongl {spz} =0 (65)

where

]

| Tre 11
[Keonad = [Kaal = [Kypl Ty 1TK 1 = g xmp) - (66)

= The condensed stiffness matrix
[Mcond] = My, = (n2 X n2) (67)

The condensed mass matrix

The submatrix K, (n] X n2) also has a significantly smaller nonzero
submatrix = N, X n, and the second matrix of (63) can be efficiently

evaluated by use of this fact as follows:

(1K

T -1

K12 B _ l {% ; ; ;’ ‘ n,

-— 0y —

The direct inversion of [K]]] is avoided and the Tlast (n2 X ”2)
matrix resutting from the multiplication Kn'lK]2 1s the only portion
treated, through the use of Gaussian elimination back substitution [4].
This, in fact, corresponds to the generalized nodal pressure vector
{6p3}of the row immediately below the free surface.

Therefore, in the assembly of the stiffness matrix three sub-

matrices are considered: KH =Ny XNy K12 =Ny xn, (non-zero terms
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are n, x n2), and K22 =Ny X N, In the assembly of the mass matrix

only the M22 = n, xn, matrix is formulated.

The liguid matrices numbering schemes (for a rigid tank) are

given in Figures 4a through 4d.

FIGURE 4a

Liquid Degrees of Freedom numbering scheme pertinent to
the stiffness matrix generated in program RIGID for

symmetric harmonic modes.

¢

MM(THIN) +1 M'ﬁ'L* (M) (NN+1)
, MM(NNET)
X wall
2(NN)+3 3(NN+1)
1
NN+2 2(NN+1)
3=1, w1 23 4 56 MM

* mean water level
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FIGURE 4b

Liquid Degrees of Freedom numbering scheme pertinent to the
condensed mass matrix generated in program RIGID for symmetric
harmonic modes.

~ NN+1

(MM+1)NN
MM (NN )

2NN+ 1

3NN
J=1,MM+] T 2NN

Yanr NN

NN+ 1 —— [ = 1,NN

]
w
=
[®a]

FIGURE 4c

Liquid Degrees of Freedom numbering scheme pertinent to the
stiffness matrix generated in program RIGID for asymmetric
harmonic modes.



[33]

COM = (NN,NN)

FIGURE 4d

Liguid Degrees of Freedom numbering scheme pertinent to
the condensed mass matrix generated in program RIGID for
asymmetric harmonic modes.
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COMPUTER IMPLEMENTATION

Computer Programs

Three separate pfograms were developed in the present work,

The first, pfogram RIGID, determines 1iquid oscillation natural
frequencies and associated mode shapes in a rigid circular cylin-
drical container fixed to a rigid base. In the early stages of this
work this program served as a check on the formulation of the liquid
"mass" and "stiffness" matrices and thus on the validity of the entire
liquid idealization process. This is because in many cases, the |
data obtained were in good agreement with existing work involving
rigid.containers.

The second program, COUPLE, is employed to investigate natural
frequencies and associated mode shapes of the coupfed liquid-elastic
tank system described by Equation (46). To this end the first main
prdgram described in [1] (MAIN) was modified slightly so as to cor-
respond to two sets of ring-shaped finite elements representing the
cylindrical tank. The first set of elements corresponds to the lower
(wetted) surface of the tank and the second set to the portion of the
tank above the liquid level (dry). The program corresponding to this
representation is henceforth termed SHELL. A single run string was
prepared of COUPLE and SHELL so as to be able to investigate the
coupled liquid-elastic tank system. This also serves to retrieve
the "added mass matrix" stored on a disc file by program COUPLE and

to then add its terms to the corresponding shell mass matrix terms.
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Program COUPLE carries out the following operations: a) It
devises a numbering scheme for the liquid finite element mesh. This
is accomplished in subroutine FLGEN which requires as input the
number of Tiquid finite elements NN along the tank radius in a singie
row, the number of Tiquid finite elements MM in a single column,
and the specified number of circumferential harmoniés, m. This is

illustrated in Figures 5a and 5b.

FIGURE ba

Liaquid Degrees of Freedom numbering scheme generated in
program COUPLE for asymmetric harmonics pertinent to the
liquid "stiffness" matrix. {m=1, 3, 5, ....)

¢

MWL * _

1 1 ] — [] S

MU 2MM O 3MM E T =

! NN+HMM | 2

' 2
¢3]

=
=

I =
5 —
1——- [}
|4 2
[(+]

3 =

b — Y-
J=1,MMT - om-1) | 2
- == MM+ =
| &

T MMET 2MMHT (NN=1)MM

—1=1,NN A
| Radius of tank = R (Nﬂle1ement3)
1

* mean water Tevel
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o
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MMHT NN(MM)
Radius of tank = R -
I = 1,NN+1
FIGURE 5b

Liquid Degrees of Freedom numbering scheme generated in
program COUPLE for symmetric harmonics pertinent to the
Tiquid "stiffness" matrix (m= 0, 2, 4, ....)

b) It evaluates a set of different liquid stiffness and coupling
‘element matrices [Ke] and [Se], each corresponding to a column of
elements in the Tiquid idealization scheme. It is asﬁumed that the
1iquid has been discretized into equal rectangular areas. This is
accomplished in subroutines FSTIFF and FFORCE; c) It assembles the
1iquid stiffness matrix [K] in accordance with the numbering scheme
mentioned in (a) above into a half-banded matrix stored in é Tinear
array so as to minimize core allocation. The condensed coupling matrix
is also assembled into an (MM, 2MM) matrix, [S]. d) It evaluates the
Tiquid added mass matrix defined in (44) and stores it on a disc file

to be retrieved by SHELL.
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The third program, RESPONSE, which follows after SHELL in
the run string, accomplishes the following:
e) It evaluates the generalized forces developed at the tank wall
nodes due to a unit ground acceleration in the horizontal direction.
f) It transforms the system properties into modal coordinates. That
is, the generalized mass vector GM and the generalized force vector
GP are evaluated. These operations are performed in thé first
section, PARTI. g) It retrieves in PARTII the ground acceleration
record ACC previously generated utilizing program PSEQGN available
through the National Information Service-Earthquake Engineering -
Computer Program Applications, and which was stored on a disc file
[7]. To improve the accuracy of the response computation the total
time history under consideration is arbitrarily divided into smé]]er
time intervals by "guiding" time stations, the modal velocities {A}
and displacements {A} of which are first determined independently in
subroutine CCNTROL. CONTROL calls subroutine RES at each time station
to evaluate the Duhamel integral of the previous acce]erafion record.
The vectors {A} and {A} are stored in the core array to be used aé
illustrated below:
h) It evaluates the specified nodes generalized displacements and
prints the response history and stores it in disc files to bebre-
trieved for automatic plotting purposes. The responses of the speci-
fied degrees-of-freedom designated as ND1, NDZ2, and ND3 are stored on
tapes number 4, 5, and 6 respectively. These degrees-of-freedom are

explained in detail on page (60) together with Figures 17 and 19.
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Khowing.the response history at any degree-of-freedom, the corresponding

stresses can be found from the program RESP given in [1]. This is with

regard to the internal forces developed, the reactions at the tank base,

~and the force equilibrium check if so desired.

Nature and Size of System Matrices

The original sizes of the system matrices are indicated in

Equation (46) together with the numbering schemes shown in Figures

4 and 5 to be indicated below. For brevity, the following progrémming‘

symbols were employed:

S
u

- )
M and K
MF and KF

S

where
NN

MM

MMT
NDFST

‘NDFF
where

H

1

NDFST x 1
NDFF x 1
NDFST x NDFST
NDFF x NDFF
NDFF x NDFST

number of liquid element in one row along the
tank radius

number of liquid elements in one column along the
tank generator ‘

total number of shell ring elements
total number of shell degrees of freedom
A(MMT + 1)

1.J

NN for asymmetric harmonic modes
(NN + 1) symmetric harmonic modes

MM for the coupled case with zero pressure assumption
at the free surface

(MM + 1) for the fluid oscillation in a rigid cylin-
drical container
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It is evident that these matrices can be Jvasti«i/ly reduced
in size if intelligently partitioned to separate the non-zero sub-
matrices from the zero blocks. This approach is indeed essential
to utilize the computer core storage area most efficiently. It also
obviously validates the employment of finer system idealization schemes
with the évéi1ab1e core allocation.

"The coupling matrix S originally denoted to be (NDFF x NDFST)
contains non-zero terms corresponding to the fluid shell interface
%z only. Moreover, the fluid pressure is not directly affected by the
shell nodal displacements above the water level. The axial and tan-
gential displacements of the shell wetted surface aiso do not contri-
bute to changes in the fluid pressure. Thus, the coupling is attributed

only to the radial displacement w and the slope of the generater éﬂ_

8z
corresponding to the nodes at the wetted surface. This fo]]ows directly
from the derivatﬁon of the coupling matrix as previously discussed.
Therefore, a condensed coupling matrix [S] that contains no
zero blocks is employed, in which the number of rows diminishes from

NDFF in [S] to MM, and the number of columns diminishes from NDFST-to

oMM, [S] and [§]T are shown by the shaded areas in Figure 6.

=

M O[T IBAND = MM+2
l*-'r[s ] 2MM
7N
0 //2MM AN /| 2M
. 2 \‘\ '\\ \\
- v I -
[s") NN
=~ NDFF — NN o| NDFF [aov]
N N
N N
\ \
FIGURE 6 AR N
N
AY N MM
- NDFF e ]
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A numbering scheme is devised in program COUPLE to assemble
the fluid matrices with special care paid to minimize the computation
time as well as the computer storage area. The fluid interface degrees
of freedom were numbered to lie in the end of 5p as shown in Figures

(5a) and (5b) so that an inversion Gaussian elimination back substi-

1

tution technique would yield the desired multiplication K™'S into a

(MM x 2MM) matrix only. The omitted upper portion of the‘resultfng
matrix contains non*zero terms, yet when premultiplied by ST, it
multiplies by a zero block and its contribution drops out.

Thus, the added mass matrix [ADM] developed by carrying out
the previous operations is confined to a [2MM x ZMM] area. This is
represented schematically in Figure 6.

The 1iquid and shell numbering schemes pertinent to [S] are

~given in Figures 7a and 7b respectively. It should be pointed out

that the liguid stiffness matrix is half-banded and is assembled into

a linear array to optimize the storage area implementation.

¢ ¢

! Y | T
MM ' MM-1, MM
5
: 4
3 5.6
P ‘ . 3,4
: |
1
. | o o v v v v e R
FIGURE 7a

Liquid Degrees of Freedom

numbering pertinent to the condensed
coupling matrix [S] for symmetric

or asymmetric harmonics.

FIGURE 7b
Shell Degrees of Freedom numbering
pertinent to the condensed coupling
matrix [S] for symmetric or asymmetric
harmonics.
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EXAMPLES

1. Free Vibrations of Completely Filled Rigid Tank

Let us consider the slab-supported tank discussed in [1]. This
tank is 40 feet high and 60 feet in radius, with rigid wall and slab.
We seek to determine the natural frequencies and associated mode shapes
when the tank is completely filled with water.

The computer program of Appendix B is utilized here. To use
this program, one enters the following data:

CARD 1: DENF = Tliquid density = 0.9345 x 10°% 1b x sec2/in

{(though the result of the free vibration
analysis is independent of pf.}

R = tank radius = 720 inches
WH = depth of water = 480 inches

CARD 2: NN = number of liquid elements in one row along
tank radius = 20

MM = number of liquid elements in one column along
tank height = 20

CARD 3: NSIN = number of circumferential wave patterns that
analyst desires to investigate. If this is
greater than unity, the program indicates the
response for each wave pattern from one wave
through increasing integral values to the
specified number. Here, NSIN = 1.

CARD 4: NMODE = number of axial waves under consideration = 5.
(Printout indicates frequencies and free
surface pressure vector for modes 1, 2, ... 5).

This completes all necessary input to the computer program.
The program output consists of liquid natural frequencies and

free surface mode shapes. These natural frequencies are as follows:
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Axial Mode Frequency (Hz)

0.15
0.27
0.34
0.40
0.46

(S - R R A

Figures 8a through 8e show the liquid free surface corresponding to
the plane 6 = 0° for the first five axial modes whose frequencies
are jndicated above. The grid in these figures does not torrespond to

the finite element representation.

¢ Wall

First Axial Mode

FIGURE 8a

¢ | Wall

TN
\

Second Axial Mode

FIGURE 8b
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Wall

ANEP=
A
da FIGURE 8c .
NN

AN

~ FIGURE 8d |

¢ Wall
'\ Nl /

NS

FIGURE 8e

Third Axial Mode

Fourth Axial Mode

- Fifth Axial Mode
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2. Free Vibrations of Completely Filled Elastic Tank

Let us consider the same tank discussed in the first examp]e;
but now with a steel walloneinch in thickness. We shall treat the
elasticity of the tank wall. The tank céntains,water and we consider
liquid depths of 25 percent, 40 percent, 60 percent, and 80 percent
of fhe tank'height, as well as the completely filled tank. The tank
is cTambed at the‘base aﬁd free at the top. We seek the natural fre-
quencies and associated mode shapes of this system.

The computer program of Appendix C is utilized here. To employ

this program for the case of the complete]y filled tank, one enters

the following data pertinent to the Tiquid:

CARD 1:  DENF

1

liquid density = 0.9345 x 10°% 1b. x sec?/in®
- R = tank radius = 720 inches

WH = depth of water = 480 inches

il

number of 1iquid elements in one row along
tank radius = 20

CARD 2: AN

MM

number of liquid elements in one column along
tank height = 15

CARD 3:  NHR

number of circumferential waves in pattern
under consideration = 1.

Next, one enters the following data pertinent to the élastic tank:

3

CARD 4: UM = o =,density of tank material = 0.733 x 10 "1b x
sec“/in4
El = E = Young's modulus = 30 x 1061b/1‘n2
PX = nu = Poisson's ratic = 0.3



~ CARD 5: R
H

AL

CARD 6:  NSIN

CARD 7: NELEM
CARD 8: NELFS

NELFR

CARD 9: NMODE

CARD 10:  NAT

CARD 11: NBCAS

CARD 12: NBC

[45]

tank radius = 720 inches

tank wall thickness = 1 inch

tank altitude = 480 inches

total number of circumferential wave patterns
that analyst desires to investigate = 1
(Program C does not permit use of NSIN # 1).

number of ring-shaped finite elements rep-
resenting the tank = 15

number of shell finite elements corresponding
to wetted surface = 15 (this must equai MM)

number of shell finite elements corresponding
to dry surface = 0 (obviously NELEM = NELFS +
NELFR)

number of axial waves under consideration = 10

(Printout indicates frequencies and displacements
for modes 1, 2, ... 10).

number of circumferential waves in pattern
under consideration (i.e. "instantaneous"
number of circumferential waves) = 1. This
number specifies which one of those patterns
under NSIN is currently being investigated.

total number of cases involving different sets
of boundary condidtions that analyst desires
to investigate = 1 (The program listed in
Appendix C does not permit use of NBCAS # 1).

denotes boundary conditions at base and top
of tank. First, enter CL if base is clamped,
SM if base is simply supported. Next, enter
CL if top is clamped, or SM if it is simply
supported, FR if it is free. Do not introduce
a space between the designations of these two
boundary conditions.

This completes all necessary input to the computer program.

The program output consists of natural frequencies of the coupled

liquid-elastic tank system together with mode shapes (along a generator).

First, Tet us present results for the case of the tank completely filled

with water. The first four natural frequencies are as follows:
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Axial Mode Frequency (Hz)
1 6.13
2 11.15
3 15.11
4 18.16

| The program output also gives, for each of the above natural
frequencies, the relative (normalized) displacements u, v, and w
together with the sTope dw/dz tabulated in the form of columns (with
these headings) immediately after printing of the natural frequency.
In these displays of displacements and slope, the first (top) line
represents tank displacements and slope at the junction of the tank
with the rigid base slab (base node) and the last}(bottom) Tine rep-
resents the corresponding quantities at the tank top. As an example,
the third (axial) mode values (for the tank completely filled with
water) are found to be: |

Natural Frequency = 0.1511308361E + 02

U Voo W DW/DZ
0.00000000 0.00000000 0.00000000 0.00000000
-0.00009561  -0.00008448 0.01212372 0.00009423
-0.00029760  -0.00012035 0.01345022  -0.00032918
-0.00044688  -0.00009971 0.00600128  -0.00041985
1-0.00047471  -0.00005514  -0.00390791  -0.00031737
-0.00037576  -0.00003085 ~ -0.01262233  -0.00010702
-0.00018602  -0.00006547 - -0.01732715 0.00014151
0.00002988  -0.00017956  -0.01646437 0.00034772
0.00019939  -0.00036897  -0.01029515 0.00044386
0.00026589  -0.00060617  -0.00083018 0.00039842
0.00020741  -0.00084932 0.00883707 0.00022673
0.00004390  -0.00105603 0.01553055  -0.00001645
-0.00016781  -0.00119749 0.01678216  -0.00026764
-0.00034528  -0.00126946 0.01121180  -0.00045008
-0.00041540  -0.00129727 0.00326332  -0.00018410
-0 ~0.00131450  -0.00012743 .00007478

.00041504
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Plots of u, v, w, and dw/dz for the first five axial modes appear in
Figures 9 through 13 inclusive. In the interest of brevity corresponding
plots for water depths other than completely filled are not presented
here. The natural frequencies of the coup]ed'1iqu1dfeTa§t1c tank

systeﬁ are, however, tabuiated in Table 1 for Various‘liQUid depths
ranging from empty to completely filled; Corresponding hqmbers of

finite elements employed are also indicated. These natural frequencies
are also plotted in Figure 14. An example of the use of the program of
Appendix C for a half-filled tank is given as Example 3.

The effect of finite element mesh size on the coupled natural
frequencies {for the case of the completely filled tank only) is
indicated in Figures 15 and 16. Figure 15 shows the effect of varying
the number of elements in the direction of the generator ﬁhi]e holding
the number of elements (NN) in the direction of the tank radius con-
stant and equal to 30. Similarly, Figure 16 shows the effect of
" varying the number of elements in the direction of the tank radius while
holding the number of elements (MM) in the direction of the tank

Qenerator constant and equal to 20.
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3. Free Vibrations of Partially Filled Elastic Tank

Let us consider the same tank discussed in Example 2, but now
only half-filled with water.
Again, the computer program of Appendix C is used. One enters

the following data pertinent to the liquid:

CARD 1: DENF = Tiquid density = 0.9345 x 10™"1b x sec/in"

R = tank radius = 720 inches

1

WH = depth of water = 240 inches

CARD 2: NN = number of Tiquid elements in one row along

tank radius = 30

MM= number of liquid elements in one column
along tank height = 10

CARD 3: NHR

number of circumferential waves in pattern
under consideration = 1

Next, one enters the following data pertinent to the elastic tank:

CARD 4: UM = p =_density of tank material = 0.733 X
| 10-31b x secé/ind
E1 = E = Young's modulus = 30 x 1061b/1'n2

PX = nu = Pgisson's ratio = 0.3

CARD 5: R

i

tank radius = 720 inches
H = tank wall thickness = 1 inch

Al tank altitude = 480 inches

CARD 6:  NSIN

total number of circumferential wave patterns
that analyst desires to investigate = 1 (Program
C does not permit use of NSIN # 1)

CARD 7: NELEM

i

number of ring-shaped finite elements representing
the tank = 15
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CARD 8: NELFS = number of shell finite elements corresponding

to wetted surface = 10. (This must equal MM)

NELFR = number of shell finite elements corresponding
to dry surface = 5. {Obviously NELEM = NELFS +

NELFR)

number of axial waves under consideration = 10.
(Printout indicates frequencies and displace-
ments for modes 1, 2, ... 10)

CARD 9: NMODE

CARD 10:  NAT

number of circumferential waves in pattern
under consideration (i.e. "Instantaneous"
number of circumferential waves) = 1. This
number specifies which one of those patterns
under NSIN is currently being investigated.

CARD 11: NBCAS:

i

total number of cases involving different
sets of boundary conditions that analyst
desires to investigate = 1. (The program of
Appendix C does not permit use of NBCAS # 1)

CARD 12: ~ NBC

denotes boundary conditions at base and top

of tank. First, enter CL if base is clamped
or SM if base is simply supported. Next,
enter CL if top is clamped, or SM if it is
simply supported, or FR if it is free. Do not
introduce a space between the designations of
these two boundary conditions.

This completes all necessary input to the computer program.
The program output consists of natural frequencies of the coupled
liquid-elastic tank system together with mode shapes (along a generator).

For this half-filled tank the first four natural frequencies are:

Axial Mode Frequency (Hz) Frequency (Hz) [6]

1 10.15 9.39
2 17.85 15.90
3 24.35 20.40
4 32.18 ——-
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In the interest of brevity, mode shapes are not presented here. It
is of interest to compare the values 10.15, 17.85 Hz etc. abtained
through the present finite element analysis with those found by an
entirely analytical procedure due to T. Mouzakis [6] which are tabu-

lated in the right hand column.

4. Cylindrical Tank Whose Base

Cy1l | ] lab is Subject to Artificial
Earthquake Excitation.

Again, we consider the same tank discussed in the first example.
Elasticity of the tank wall is considered and two cases are treated:
a) the tank is completely filled with water, and, b) the tank is
half-filled with water. The artificial earthquake accelerogram avail-
able through the National Information Service-Earthquake Engineering-
Computer Program Applications (PSEQGN) [7] was considered to be the
exciting mechanism acting on the rigid base slab in the horizontal
direction along the line 6 = 0°. The response of the 1iquid¥e1astic
tank system is desired. Specifically, for the completely filled tank
(Case a), radial displacements are sought at the tank top, as well as
at third points of the tank height. For the half-filled tank (Case b),
radial displacements are desired at the tank top, at the surface of
the Tiquid, and at half the 1iquid depth. All of these parameters are
to be evaluated at 6 = 0°,

The program of Appendix D is utilized here. The artificial
earthquake record was imposed upon the base slab for 10 seconds and
the coupled liquid-elastic tank system response determined at 0.001
second intervals during the time period t = 0 to t = 10 seconds using

time increments of 0.001 second. In using the artificial earthquake
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record the assigned maximum ground acceleration was taken to be g/2

although the record itself is normalized in terms of a unit value of g.

The input to the rigid base was in terms of acceleration. Data cards

empioyed and values assigned are as follows:

CARD 1:

CARD 2:

CARD 3:

LREC
NREC
NRSTART

NREND

DT

n

PART 1

number of modes used in superposition = 10
(obviously M cannot exceed NMODE.)

PART II

length of record = 100 points
number of intervals in record = 100

sequential number of the starting time
"guide" station under consideration = 1

sequential number of the last time
"guide" station = 99

time increment between two successive time
stations = 0.001 seconds

Case () - Completely filled tank

CARD 4:

Case (b) - Half-filled

CARD 4:

ND1

ND2

ND3

ND1

ND2Z

1i

first desired response according to numbering
scheme shown in Figure 17 = 23-4 = 19

second desired response according to numbering
scheme shown in Figure 17 = 43-4 = 39

third desired response according to numbering
scheme shown in Figure 17 = 63-4 = 59

tank

u

1]

first desired response (radial displacement
at half liquid depth) according to numbering
scheme shown in Figure 19 = 23-4 = 19

second desired response (radial displacement
at liquid surface) according to numbering
scheme shown in Figure 19 = 43-4 = 39
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ND3 = third desired response (radial displacement
at tank top) according to numbering scheme
shown in Figure 19 = 63-4 = 59

The time history of desired radial displaéements during the time
interval t = 0 to 10 seconds appears as indicated in Figure 18 for
Case (a), i.e., the completely filled tank.

The time history of the specified radial displacements during
the time interval t = 0 to 10 seconds appears as indicated in Figure 20
for Case (b), i.e., the half-filled tank. The radial response of the
generator 6 = 0% at time t = 7.15 seconds for the half-filled tank is
indicated below where the value in the top row corresponds to the base
mode and the value in the bottom row corresponds to the top of the tank.
The intermediate values, of course, correspond to the radial displace-
ments at the nodal points indicated in Figure 19. Responses at other

values of time are also avaiiable from the computer output.

W
0
0.3046

0.5261

0.5567 (*) (Node 4)
0.5133

0.4585 (Node 6 - ND1)
0.3935

0.2967

0.1731

0.0741

0.0480

0.0682

0.0814

0.0856

0.0893

0.1001
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It should be remembered that these radial displacements are
all relative to the rigid siab and absolute motions could be obtained
by superposing on the above the ground displacements. The displace-
ment (*) of 0.5567 inches occurs at node number 4 (see Figure 19) and
by inspection is the peak radial displacement of any point along the
generator © = 0° in the time interval fromt = 0 to t = 10 seconds.
The program of Appendix D displays the maximum response at ND1, NDZ,
and ND3 and the corresponding time when each peak occurs during the
interval t = 0 to t = 10 seconds.

The axial, tangential, and in-plane shearing stresses as well
M at 6 = 0° are tabulated below at the time

as moments M, and M,

08’ 0
t = 7.15 seconds where the values in the top row correspond to base

Z!

nodes and values in the bottom row correspond to nodes at the top of

the tank.
STRESSES AT THETA =0.0

Axial F. Tangt. F. In-Plane Sh. Axial Mt. Tangt. Mt. Torsion

-2466. -739.8 0.0 -6078. -1823. 0.0
-378.6 12180. 0.0 1370. 412.4 0.0
-107.3 21130. 0.0 964.5 291.8 0.0
-272.9 22040. 0.0 294.4 90.88 0.0
-315.3 19960. 0.0 55.22 18.89 6.0
-239.9 17490. 0.0 101.5 32.48 0.0
-129.8 14660. 0.0 266.5 81.64 0.0
-98.89 10510. 0.0 283.9 86.39 0.0
-182.9 5234. 0.0 96.12 29.45 0.0
-295.1 990.6 0.0 -313.5 -93.91 0.0
-78.69 472.2 0.0 -338.7 -101.6 0.0
-165.7 787.6 0.0 -230.6 . -69.07 0.0
-464.0 897.8 0.0 ~-186.5 -55.83 0.0
-830.7 808.0 0.0 -156.9 -46.95 0.0
-1211. 709.3 0.0 -195.1 -58.40 0.0
-1304. 1021. 0.0 431.9 129.7 0.0
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Node 16
61, 62, 63, 64 (Tank Top)
FE#15 57, 58, 59, 60
Fe#1d 53, 54, 55, 56.
FE#1S 49, 50, 51, 52
L FE#12 45, 46, 47, 48

FE#11  Node 1114y 45 43, 44 (Tank 1/3 point)

FE#10 37, 38, 39, 40
FE#9 33, 34, 35, 36
FE#8 29, 30, 31, 32
: FE#7 25, 26, 27, 28
FE#6 Node 6121, 22, 23, 24 (Tank 1/3 point)
FE#5 17, 18, 19, 20
Fe#d 13, 14, 15, 16
! FE#3 9, 10, 11, 12
FE#2

FE #1 Node 1 (Tank Base)
RN

FIGURE 17

Shell Degree of Freedom Numbering System for Use in Response
Determination (Program RESPONS)- Completely Filled Tank

*At each node, the numbered degrees of freedom correspond to
u,v.w, and dw/dz respectively. For boundary conditions treated
in this report the base nodes are not employed. Consequently,
for use in Program RESPONS, correct designation of desired
degree of freedom response is obtained by subtracting "4"
from the number indicated in Figure 17.
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FIGURE 18

and *** response at lower

Tank Top for Completely Filled Tank (* indicates response at tank

top, ** response at upper third point,

Time History of Radial Displacements at Third Points as well as at
third point).
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Node 16
Tank Top , 62, 63, 64
FE#15
57, 58, 59, 60
FE£14
53, 54, bh, 56
| FE#13
49, 50, 51, 52
FE#12

45, 46, 47, 48

o FE#IT  Node 11
Liquid Surface =TT $ﬁ 41, 42, 43, 44
37, 38, 39, 40

FE#9 33, 34, 35, 36
: FEAFS 29, 30, 31, 32
FE#7 25, 26, 27, 28
FL46 Node byl o7, 22, 23, 24
FE#5 17, 18, 19, 20
ggzi 13, 14. 15, 16
e 9. 10, 11, 12

5, 6, 7, 8

FE#1 Node 1
Tank Base [ 77 77 7 77

FIGURE 19

Shell Degree of Freedom Numbering System for Use in Response
Determination (Program RESPONS)-Half-Filled Tank
*At each node, the numbered degrees of freedom correspond to
u,v,w, and dw/dz respectively. For boundary conditions
treated in this report, the base nodes are not employed.
Consequently for use in Program RESPONS, correct designation
of desired degree of freedom response is obtained by subtracting
"4" from the number indicated in Figure 19. .



[66]

i
o ST
A
i e et RS L s L R
¥ sk AR A — > ¢
10.0
sec.
s
O 5u+
0.45"

}
xmnm‘fxm fn)\w ‘}

FIGURE 20

Time History of Radial Displacements in Half-Filled Tank

(* indicates response at tank top, ** response at surface
of liquid, and *** response at mid-depth of liquid).
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ABRIDGED METHOD OF COMPUTATION

In an effort to reduce the number of liquid degrees of
freedom to a smaller value than has been employed till now in this
investigation, yet maintain reasonable engineering accuracy, an
1nvestig?tion was made of the "active" volume of the 1iquid in the
elastic fank. It was found that there exists a "liquid core" which
is essentially stationary and thus the coupled system may be économi-
cally analyzed with acceptable accuracy by considering only an outer
annular domain of liquid. The inner boundary of this domain is
essentially a circular cylindrical surface and the dynamic pressure
on it, as well as inside it, its presumably zero. This concept greatly
reduces the liquid degrees of freedom from that previously presehted.

Let us consider again the tank 40 feet high, 60 feet in radius,
and with a one inch thick steel wall. The tank is clamped at the
rigid base, free at the top, and completely filled with water. Various
size "1iquid cores" were postulated ranging from a zero radius (corres-
ponding to the situation on page 44 of this report) to a radius equal
to 5/6 of 60 feet. This "dead zone" radius appears as the abscissa
in Figure 21. Natural frequencies of the coupled system having that
size "dead zone" appear as the ordinates of this plot. Points at 1.00R
on the abscissa correspond to the empty tank case discussed in [1] and
those four points were plotted directly from results in [1].

These results indicate that, at Teast for this particular tank,
the "dead zone" can be taken to be of the order of 80 percent of the
tank radius and satisfactory values of coupled natural frequencies will
~ be obtained through the use of about 20 percent of the original number

of liquid degrees of freedom.



,9U07 pe3(Q, |[B43US) JO 9ZLS JO UOLIDUN B S S3LOUSnbau4 |edniep pai1dtpadd

«SU0Z 40" L

pesady 40 9ZLS edt—

[68]

SPOW LB LXY 35414

PO LeLXY PUOD3S
9POW [eLXY paLyl
SPOW [eLXY Y14no4

1 3dN914
49/4 4e/e W_N:.. e/t 40/t 0

T — ot

4+ ’
\ 0¢
0¢
“WM\\ of
09

ZH



[69]

ACKNOWLEDGMENT

The authors would Tike to express their thanks to
Dr. C. I. Wu and Dr. J. M. Colonell for valuable discussions

and comments offered during the course of this research.



)

[701

REFERENCES

. H. Shaaban, and W. A. Nash, "Response of an Empty Cylindrical
Ground Supported Liquid Storage Tank to Base Excitation,”
University of Massachusetts Report to National Science
Foundation, August, 1975.

. L. Sanders, Jr., "An Improved First Approximation for Thin
"Shells," NASA TR-R24, 1959.

.C.H. Hsiung and V. I. Weingarten, "Dynamic Analysis of Hydro-
elastic Systems Using the Finite Element Method," Department
of Civil Engineering, University of Southern California,
Report USCCE 013, November, 1973.

. H. Luk, "Finite Element Analysis for Liquid Sloshing Problems,"
AFOSR Scientific Report 69-1504TR, May, 1969, Massachusetts
Institute of Technology.

. C. Zienkiewicz, The Finite Element Method in Engineering
Science, McGraw-Hi11 Publishing Co., New York, 1971.

. Mouzakis, "Response of Partially Filled Elastic Cylindrical
Storage Tank Subjected to Arbitrary Lateral Base Excitation,”
Ph.D. Dissertation, University of Massachusetts, Department
of Civil Engineering, 1976.

. Ruiz and J. Penzien, "Artificial Generation of Earthquake
Accelerograms," Program available as PSEQGN from the
National Information Service, Earthquake Engineering,
Computer Program Applications, University of California,
Berkeley, California 94720.



A-1
APPENDIX A

DEVELOPMENT OF MATRICES EMPLOYED IN FINITE ELEMENT ANALYSIS

Complete derivations of the element stiffness and mass

matrices for the elastic tank ave given in [1].

Derivation of the Liquid Element "Stiffness" Matrix [Ke]
This is defined in Equations {21) and (22) together with the

numbering scheme shown in Figures 4 and 5. This may be written as:

2 2 2 ,
T - CLANLLd me 52
Bl K085} = 5 ( J () + Gy) (x +X)2P) (%o + x) dx dy
Xy 0
= [N]{Gp}

5P
a

[%ﬁ{%}

aP _ ol
y %!

where 6p is the generalized pressure of the element nodal circles

[N] 15 the element shape function defined by

[N] = 4ab [(a-x)(b-y) (atx)(b-y) (a+x)(b+y) (a-x)(b+ty)]

car b 2 -
. o AN, TraN aN;Tra
SRS J_aJublEHX] [ + L1y (X:+X)2 [N]l[Ni}xo+x)dxdy
T ag b 2
S L] TR DT e e ex ay
Lal-
= [0k T + [y + [Kg1]
where Ay = [EN»]T[éﬂ
Ay = [31'[2)]
Ay = INI'IND/ (x+0)°
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Thus the determination of [K]] has been reduced to the evaluation of
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Similarly
—(a-X)‘
) = o T L) e e o)
(4abf { (at+x)
(a-x)
| J
[ (2-x)7  (a%-x) (a2-x2)  =(a-x)° ‘
: (a2-x?) (@)% -(am)? -(af-x)
T aan)? | -(@2-d) <am0? (a0? (a2d)
-ex)? -(@8d) @) (e
[ t; oty -ty oty ‘
_ ty o ot -t
(4ab)2 -ty -t t, ts
20 T T

J
Here the evaluation of [K2] again reduces to evaluating three double

integrals as follows:

ra 3
t, (x+x _}dx = ﬂ%—-(Zx +a)
-a
b ca 3
_8a’b
) Jha t, (x+x0)dxdy =y (2x0+a)
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The third additive matrix [A3] is given by
((a-x) (b-y)
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Here again only three different integrals are encountered:
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= (a 'xo)]oge(xo-a

Finally the matrix [K3] will be given by

[K3] = 5

(

2E

T 3

; 2, E

Derivation of the Liguid Element Mass Matrix [M,]

and defined by Equations (23) and (24) may be determined by performing the
following integration about the free surface area, which, as an approximation,

is taken to agree with the mean liquid level.

- T . -
ESRLNICY

The mass matrix corresponding to the free surface potential energy

T 5P\ 2
a0 fx ()" (x+x

F.S.

1l

) - 2a(2a+x.)

) + 2a(2a-x_)

1]
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at p
- a *T *
¥ - + d
(] = 35 | D0TENT 0o o
*
where [N} = [N{x,b)] = §€»[0 0 (atx) {a-x)]
0 0 0 0
. a
[M ] = T J 0 0 G 0 (X+X )dX
e 4alog '-a > 2 2 0
P 0 0 (at+x) (a®-x")
0 0 (a2-x2) (a x)2
( 1
0 0 0 0
x 0 0 0 0
= 3 3
4a2pg 0 0 ﬂ%—(2xo+a) ﬂ%—»xo
3 3
4a 4a
L 00 T iRt

The mass matrix is (4x4). but the non-zero terms are (2x2) given by

vk B a + 2x a
[Me] " 3pg 0 .
_ a a + Zxo

where [ﬁé] is the non-zero element submatrix corresponding to the free
surfacevgenera1ized pressure vector {Gpa} as illustrated below.
8
§p3 4 3

1 2

6p4

2x2 J

The condensed assembled Tiquid mass matrix is thus L x L where L = number
of elements along the radius of one row (for asymmetric modes) and L =

unity plus the number of elements along the radius of any one row (for

symmetric modes).
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Derivation of the Shell-Liquid Coupling Force Matrix [Se]

The coupling force matrix [Se] defined in Equations (28) and (29)

is determined as follows:

T L TroqT -
{ap} [ae]{au} = 7R J {sp} [N] [Nw]{au}dz

)

I L
8,1 = =R J—b [NI'[N 1dy

where - [N] = [N(a,y)] = %E[O (b-y) (bty) 0]

2 3 2 3
[Nw]z[g,o,]_3L+§L,y_§%+f?,0’o’3y_2y .13_’+

<

|

]

™|

L

where L = the shell element height = 2b and [Nw] corresponds to the shell

element generalized nodal vector defined on page C-4 of [1]. The producﬁ

fﬁ][Nw] will be denoted by B

2 3
3,5 = Y1 - 2y e L
By 4 = (b-¥)(y - %3-+ igg)
By ; = (b-y)(%§— - ‘ﬁ‘g)
By g = (b~y)(1%§-+ Xig)
ab
By 5 = (bty)(1 - iﬁ;-+ igg)
By g = (bty)ly - %E-+ XEE)
ab
B3.7 - (b+y)(%§ - %)
Bs.g = (b+y)(§%3+ iig)



Performing the integration over the interface area yields

b b 2 4 ,
B, dy = | (X - Yy = -0.6 b
L 2.3 L, b 3

- ab

F_)b Bp. 79 = rjb (%{)—2 + %)dy = +0.6 b
,?b B2, = J?b (:%E‘- i%g)dy - -3

J?b 53,39 ~ f?b(' %%E'+ i%gﬂdy = -0.4-b
:?b B34y = J?b igﬁdy - 0.1 b3

F[_)b B3,7% F_)b (%%% - ‘ﬁgg)dy - 0.4 b°

I?b B3,8 = J?b (:%E'+ fgﬁ)dy =

These non-zero terms are condensed into a [2x4] matrix relating the
generalized nodal shell forces corresponding to [wi, Wi Wiy w%+]] to the
liquid generalized dynamic pressure at the nodes i, i+1. Here, primes

denote differentiation with respect to z. ‘These are shown below.

8
—
6u3 6u4 6u7 6u8 4 3 675 -
s pd I
Py
S zﬁ——'ab
e 8p4 ! 2 b shell

Liquid element DOF 4 element DOF
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The condensed assembled liquid interaction force matrix is thus:

-

S

Number of shell wetted surface elements

_ S NELEFS = MM
2 * number of shell elements

2 * NELEFS = 2*MM






PRIGRAM RIGTIA{INPUT,OUTPUT)
NIMENSION FSL1(9663),FS12 (214213 ,F321(21421),F527(21421)
DIMENSION FSCU21+21),P{23) +COM{21,21),0(21,22)
DATA LINEAR/Y6Bu/ 4 NND /217 , IBAND 723/, NOFLO 7420/
1 FORMATIZ2S{2H¥%))
11 FORMAT ( 6(E1C.L4y3IX))
12 FORMAT (¢ 7H{EL1C.4.,7X))

REAN 701,4NPROB APPENDIX B
DO 950 IPP=1,NPROR
READ 7O2.DENF 4 RsWH B-1

PRINT 702+ RyWH
READ 731 4NNgMM
PRINT 731 «NN,MM
READ 701 .NHARM
701 FORMATI(101I8%
702 FORMATLAG1T.%)
IBAND=NN+2
NOF1i={MM=1)%NN
D0 870 NHRP=1,NHARM
XM=FLOAT{NHR}
00 5 IzlgNN
DO 5 J=14NN
COMI{IsU)=l.0
FSCI{T,Ji=1.1
FSI.?(I,J):JGD
5 FS221{Tl+4001=0,.10
CALL FLGEN(DENF yRyHHy XM yNNyMM yIBAND s LTINFARSFS11L4F 51245 S22
7 COM, NND)
PRINT 1
DO 17 TI=14NN
00 13 J=14NN
1d FS210J.IV=FS124(T,J}
CALL BINVIFSL1i4FSi24P 4 NDFL1, IBANDsNN,yNNyNNDaNNDY
¥ NOW FSig2= FS11 TNV *FSig
* FS21 * FS11 INV #1rS1z
DO 21 TI=1 NN
DO 2. J=1 4NN
FSC{T4471=0C,0
DO 20 K=1isNN
20 FSSHUI s J)=FSCUILaJ)+FS21 (1K) *FS12(K4+J)
DO 3¢ I=14NN
D0 3G J=1 4NN
33 FSSUIJ)==FSC{T, ) +FS22(T 1}
DO 4L J=1NN
DO &0 T1=1,4
Ly DiIsJ+L3=FSC(I.J?
DO 57 I=1,NN
DO 5: J=1,1
50 0l eJ)=COM{I,J}
* CALL EGN
NNOL=NND+1
PRINT 154 NHR
15 FORMATELHL /710X, *CTRCa HARMONIC NOs M=*,12,7/)
CALL EGN{DsNN,5,0MEGA,P,NMD4NNDL)
BcO CONTINUE
983 CONTINUZ
END
55410 SUBROUTINE EGNI{D,ND,NMOCDE,OMEGA, ¥V25IDIM,ITNIML)
DIMENSION D(IDIML.TOTM1) ,¥2(I0IM)
DIMENSION V1i(124)
PRE-FIGENVALUE CHOLESKY REDUCTIONS
G110  INA=1
NOL=ND+1
13 FORMATIG{LXE1N,4)47)

[



pL L4y
AT 53

79
748

n151
77
81
118
a2
83
g

2 39
1193
85

86
76

0340

£319

al
63610
843
6380
88
87

64273
6430
Al b
93
92
115
94

i21

e577

o6yl

96
b6 33
97

39
98

DO 76 MA=1,4ND B-2
00 76 MAS=MALND
MAl=MA+1
MAS1=MAS+1
GASH=O(MA,MAST)
GISH=D(MAS M)
MASH=1
IFIMA-MASHY 77,77,78
SASH=GCASH=D (MASH,MALY *D(MASH,,MAST)
GISH=GISH=-D{MA,MASH}*D(MAS,MASH)
MASH=MASH+1
57 10 79
IFIMAS=MA) 81,881,119
IF(GISH) 118,82,82
GISH=U.
TF{GASH) 83.84.+84
GASH=G(,
JIAGL=SQRT{GASH)
DIAGZ2=SAORTIGISHY
IF{DIAGL.EQ.De) GO TO 8%
D{MAMASLYI=GASH/DTACL
IF(OTIAG2.EQ.D.) GO TO 86
JIMASWMA)=GISH/NIAGR
CONTINUF
COMTINUE

FORM Urul

D0 87 MA=i,4ND
00 &7 MAS=MAGND
MAS1=MAS+1
GASH=D({MAS, MA)
MASH=MA
MASH=MASH+1
IF(MAS=-MASH} RR,80,R9
GASH=GASH-N(MA,MASH}*U(MASH-1,MAST)
GO0 TO 91
DIMALMASLY)=GASH/DIMAS,,MAS L)
CONTINUE
MULTIPLICATION TO GET (UULE-1¥ULTE~1%UT)
DO 92 MA=1,4ND
DO 92 MAS=MALZND
MAS1=MAS*]
GASH=0.
0 93 MASH=MASY (NN1 :
GASH=GASH+0 (MA,MASHY*D (MAS ,MASH)
CONTINUE
NIMALMASL) =GASH
CONTINUF
MODE=NMODE
PU 1.t IN V1 FROM 1 TO NO AND ITERATIVE
0BG 94 I=14ND
y1eIv=1.
NUMTT=1
ALAM2=],
Do 95 I=1,ND
I1=T#+1
GASH=M,
00 Sh J=1,I
GASH=GASH+Vi{JY*D{(J,I1)
CONTINUE
IF{I-NNY 97,386,938
00 99 J=11,N0
GASH=GASH+#VIi{J)*N(I,J+1)
CONTINUE
V2{T)=GASH



ALAMZ=ALAMZ2+GASH*GASY
95 CONTINUE

ALAMB=SQRT (ALAMZ)Y

SIGSA=0.

6724 0n 181 I=1,.ND
GASH=V2 (I)/A8LAMA
GAS=VL(I)=~GASH
SIGSQA=SIGSQ+GAS*GAS
Vi{I)=GASH

101 CONT INUE
IT=1e/10a"*12
NUMIT=NUMIT+1

o834U IF(SIGSQ=ZT) 102,172,105

153 TEONUMIT=-150) 121.1024102

102 CONT INUE

6834y PRINT 104 ,NUMIT

134 FORMAT(2LX15(2H==),/,* NO« OF ITERATIONS=%*413,/)

TC MULTIPLY (UE-1)*{U*X)
I=ND
149 SASH=V1(I)
J=ND

1G7 IF{J-1I) 1u54105,106

136 GASH=GASH=-V2U0) *D(3,1)

‘ d=d-1

£923 50 10 1467

145 V2{I)=GASH/DIT, 1)

I=1-1

6354 IF{TY 1(8,+1L8,109

18 PRINT 995,INA

995 FIRMAT (/20X ,*AXIAL MODE NQ.=z=%,13,/)

636N PRINT 111,(V21I),1=1,ND)}

65965 INA=INA+1

111 FORMAT{LELG.8)

OMEGA IN RAD./SEC

6980 OMFEGA=SQRTI1./ALAMR)
OMEGA=OMEGA/(Z2.73,14159)
NOW OMEGA IS IN £YOL /SEC

639§ PRINT 112,0MEGA

112 FORMAT (/751D X *NATURPAL FREQUENCY=*%,F16.8,4/)

CHANGING TO NEXYT M(QDE

740 DO 113 I=14ND

7450 DO 1413 J=I,ND
Ji=J+1

113 DI Hd1I=D(T 30 -ALAMB*YYI(TI*VLILY)
MODE=MOOE=-1

7094 TF{MODE)Y 11L,11L,115

114 CONTINUE

7110 RETURN

7120 END

1980 SURROQUTINE MASSF{A,X0,FM,DENF)

1998 DIMENSION FM(4,4)

20464 G=32.2%12.

2610 D3 2¢ I=1,4

2026 00 22 J=1i,4

22 FH(I,J):Uo
C=3.14159/70ENF

2uled  FMA3,3)= 0 *A¥{2,.¥X0+A) /{3,%G)

SLB0 FM({Lyab4)= [ ¥A#(2,.,*X0=A)/(3,%0)

207y FMUZ44)=FM44,3)= G *A*X0/(3.*G)

1 FORMAT{/,10X,25(2H**),/)

2090 RETURN

2140 END

2113 SUBRUUTINE FSTIF (A4ByXOsFLAG,FK4XM,DENF)

2420 NTMENSTNAN At . LY A fL_LY_AT0L. LY _FW lia . 6L1Y



212¢
2123

12
c1l4)
150
2163
cLi7n
€187

<2t
2213
22210
2¢ 34
2244
2254

2262
2276
2283
2290
2292
230
2314y
2320
2331
234y
354

16
2498
2495

511

4894

i5

i6
Lbacy
4934
494§

13
4OR]
43770
L83
£99y

54340
50140

2@

o
W

00 12 I=1,4 B-4

00 12 J=1.4

AL T 3= A2(T 4 J¥=A31T,J0=0,

V1=X0*BsA/6.,

AL {L1,1)=A1422V=04(3,3)¥=A1 (4,0L)}=2,%V1

AL (1 ,23=A1(2,1)=RL{Z+4)=81(4,2)==2,. %V
AL{133)=AL (T 413212 +0)5A1 (4 ,2)==-1,"V1
AL(2,3)=81{3,2)=R1(144¥=A1(4,1)=V1

V2:X0*A/R/6.

A2 (L 41)=0206,4)=(2, =0/X0)*Y2

AZ {1 +3)=A2(341)=A2(2,34)=A2 (4 42)=~VY2
AZ2{2421=R2(3,3)=12,+07XN)Y*Y2

AZ {1 e =R204,1)==-(2.-A/XD)*VY2
A2T2,3)=A213,2)=~12,+A/X0)*V2

A2 1L 32)SA2{2 4L )=A2 LT 404 ) =A2 (44,312

VI=R/A/A/12,.

IF(A JEGs X0V XO=X0+.0(1

E1=(A+XOI* LA+ XCI¥ALOCUUIXO+A) /7 {IXD=-AY )= 2 ¥A X (2. A+ X0 Y*Y 2
E2= ({A=XOY* (R=XO}*A | DG IXO4A)/iIXNDN=AY I+ 2 2A% (2, *A=X(0) ) Y3
E3={((A=XOVP*{AXCI*ALOGU{XO+A) /7 {XO=2) ) %2, *A*X0) *V 3

IF(2 JEQ. X0O) XO0=XD=-.081

AL 41)=A304 44)=2,%E1
A3(2,2¥=A31343)=2.%£2
AZ{1,2¥=A2(241)=A312,4)=A3{L,43)=2,%C2
A3(1,7)=A3(3,11=03(2+4)=A3 (4,2)=E3

A3 (1,4)=A314,1)=E1

A3(243¥=A3(342)=F2
DO 1 I=144
DO 18 J=1,44

FRET Iy =2.164059% (A1{I yJI4A2 (T 43 #4314+ )*XM*XM) /DENF.

RETURN
END

SUBRCUTINE BINVIA 8,0 ,MNsNB,NEQyMM4NEGD,MMD)

DIMENSION A(2),8(MMDZNEND) »C(2)
BDIMENSION D(1aC6)
PRINT 541%
FORMATIL, X425(2H**1
NO=NN=MM

N=1{

N=N+1
NL=(N=1)*NB
TFCARSEAINL+1)) o LTs LTecE~10) AINL+1)=1,0
FORMAT{EX ,£12.5)

IFI(N LLE. NO)Y GO TO 16
NCON=N=-MD
D0 1% IB=14NEQ
BINCON,IBY=RINCON,IT) JA(NL+L)
CONTINUE

IF(N +ENe NN) GC T9 L5

D3 1% K=2,4NA
CK) = ACNL +X)
AINLeKY=A(NL+KI/A{NL+1)

13 7§ L=24NN

I=N¢#L-1

IFINN «LTa TI) GO T 33

J=1

IL=tT-1)*%N8

DO 20 X=L4.NB

J=J+1
A(IL+ =ATIL+J)-CHLLY * A{NL+K)

IFIN +LEs ND)Y GO T2 25
LICGON=TI=ND

D0 2% IB=1,NEN

BIICON, I8)=B{ICON,IR)Y=C(LI*R(NCON,IR)



26 CONTINUE B-5
30 CONTINUE
5050 63 70 5
: N= NO. OF EQU.
L= NGO, OF UNKNOHWN
K= SEQUENTIAL NO. QF UNKNOWN IN THE B8AND
NL+K=LFS «ss LINEAR SEQUENCE
45 Do 109 IB=1,NEQ
DO 7v II=1,MM
73 DAII+ND)=BIIT,IB)
DO 75 II=1,4ND
75 D(IIVY=(.0
N=NN
40 N=N-1
NL={N=1}*NB
IFC N LEQ. U) GO TO 62
DO 50 K=24NB
LaNeK=-1
IFC NNa.LT. L) GO 70 50
DINYI=N(NY~-AINL+K)Y *D L)
50 CONTINUE
G0 TO 40
683 CONTINUE
DO 87 TI=1,MM
B0 B(IIIBY=DIII+NDY
100 CONTINUE
PRINT 511
RETURN
5150 END , |
SURROUTINE FLGEN(DENF sRyHHy XM 4NN MM, TBAND+LINEARLFS11,F512,FS22,
¢ COM, NND)
1464 DIMENSION FM(4,04)FK (Lyd)
14669 DJIMENSION NUL) ‘
DIMENSION FS1i(LINEARYsFS12 {NND,NND) ,FS22(NND,NND) yCOM(NND 4NND)
OX= R/ FLOAT{NN=1)
DY=WH/FLNAT (4M=1)
A=DX*0,5
B=DY*0.5
DO 5 I=1,LINEAR
5 FS11(Iv=y,0
DO 15 I=14NN
DO 135 J=14NN
FS22(I40Y=0.0
COM(TI,Ju¥=0.0
13 FS12(I,4)=0.0
NN{ =NN=1
DO 2000 I=1,NN1
1743 XO={(FLOAT{(I)=-.5)*DX
1745 CALL MASSFU{A4XGC,FH1,DENF)
1753 COM{I,IY=COM(ILIY+FM(4,4)
1755 COM(I+isI+1)=COM{I+1,I1+1)¢FM{3,3)
1762 COM{L.1+1)=COM{I,I+1)+FM(4,3)
1765 COMUI+#1,T)=COM{I+Ll:T)+FM(3,4)
2039 CONTINUE
MM2 =MM=2
*TRANSFORMATION FROM A SQUARE MATRIX TD BANDED MATRIX
* (KLY =K e dJ=l=K+1
* TRANSFORMATION FROM A BAND TO LINEAR ARRAY
¥ LFS=(K-1)*IBAND+)
DO 1308 I=1,NN1L
1590 XO={FLCAT(I)=,5)*DX
1600 CALL FSTIF(A,B4XO,FLAGFK4XM,0ENF)
0O 1.00 J=1,MM2
M={J=1) % {NN=1)+T

* X k%



1553
15640
1574
1580

51
55
L

57
56
1013

N{1)=(J=1} *NN+1I B-6
NEZ2)=(J=-1)*NN&T+1
NE3Y=J¥NN+ T+ 1
NTL) =J*NN+I
DO 55 TI=1.4
KzN{IID)
IPAST=K*IRAND=IBAND
DO 51 Jd=144 :
TFINCJIZ) o LT, N(IIY ) GO TO 51
L=aN{JJ) =K1
LFS=TPAST+L
FSLI(LFSI=FSLIILFS)IFKI{TIT ,J N}
CONTINUF
CONTINUE
CONTINUE
JaMM=-1
DO 151 I=1.NN1
XG=(FLNAT(T)=045) *DX
CALL FSTIF{ASRWADFLAGGFKLXMyDENF)
N{1)Y=MM2%eNN+T
N{ZI=MMZ2*NN+T +1
K22
FS22(14I1)=FS22(L,TY+FKL,yh)
FS22(T41,T+1)V=FS221T+1,T+1) +FK (3,2}
Fo22 Ty T+43=FS22 (T 1+3)+F K14 ,3)

FS22(I+1 1) =FS2201¢1,T)+FK(344)

FSL2(T,TY=FS12 (I, L)+FKI144)
FS1201+1,I+41)=FS.2(L+1,T+1}+FK(2,2)
FS124T+I+#13=FS12{I,1#1)+4FK(1,3)
FS12(TwisI F¥=FS12{(I+1,1 }+FKI(2,4])
00 58 II=1,2 :

K=NI(T1)

IPAST=K*IRAND-IBAND

DO 57 JJd=1,2

IFC N(GJJY LT, NEIIY Y GC TO 57
L=N{JJ) =K+1

LFS=IPAST+L
FSLILULFSY=FS11(LFSI+F¥I(IT, 4N
CONTINUE

CONTINUE

CONTINUE

RETURN

TND



51

™y
[

ro
- .

(V]
= b

78.74
21

78s 74
21

78,74
21

T3.74
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BLL27d X 7o/ 8744« UMASS NUS 419=420

UG-US-C:".LISTG

(7 e05.0 30 ACCOUNT yAL3Y . Cliyo B-8
[0.05.03.C0PYSBF(INPUT ,OUTPUT)
Lus05.04, COPY COMPLETE.

slauba 04 UREMS, 7.749KUNS,
Ci.u5.04,UECP, 0.3435ECS.,
d0+05.04a AESR 1.u” JUNTS,

I0415.407.UCLP, 21, 24112 RLLZ2EJX



TOTALLUM2uuli,T70 7,

FTN(B=COUPLEY
COUPLE
KEWIND(TAPE1)
GET(TAPE3=GASN)
FTN(B=SHELL)
SHELL.
CRETURNI(TAPES)

SAVE (TAPEL=MATHE)
SAVE(TAPEG=MOOHF)
SAVE (TAPE 2N =STRMAT)
RETURNI(TAPF L)
FTN(8=PARTY)
GET(TAPES =MATHF)
GET(TAPEI=MONHF)
PART1,
SAVE(TAPE2=0ATAHF)
RETURN(TAPES)
RETURN(TAPF L)
RETURN(TADF &)Y
GETU{TAPEL=ACE)
REWIND(TAPE?)
REWINN(TAPE3)
FTN(R=PART?)
PARPT2,
SAVE{TAPEL4=WIHF)
SAVE(TAPES=W2HF)
SAVE(TAPES=W3HF)

APPENDIX C

c-1



PROGRAM NOUPLE (INPUT OUTPUT,TAPELsTAPEZ) L2
OIMENSION FS(’i?‘*),P(E‘),SC(31.62),SCTtbaq’l).ADM(64,69)
DaTA MMN/Z31/ , NDFSO/627 , TBAND/32/ o, LINEAR/3171%/
11 FORMATULC(ELU oy 3X))
CARD 1
READ 7023DENF yR,WH
CARD 2
READ 701 oNNgMM
CART 3
READ 701,NHR
PRTNT 701 oNNyMM
PRINT 7Gc sDENF 9R o WH
701 FORMATI(LGIA)
762 FORMATIBG10.4)
INDEX =1
RES =NHR= (NHR/2) %2
IFtef° JEQs U.) INDEX=2
=NQ. OF FLUID FLEMFNTS ALONG THE GENFRATEP
NNzNO. NF FLUTD ELEMENTS ALONG THE RAGIUS
IIAND=MM+2 '
NDFS=MM*2
IFCINNEX .EQe 1) NOFF= (NN)¥MM
IFCINDEX LEQe 2) NOFF=(NN+1)*MM
PRINT 781 ,IBAND,NOFS,NDFF
PRINT 1111
1111 FORMAT(1H1)
XM=FLOAT {NHR)
CALL FLGEN(RENF yRyNH o XMy NN oMM ¢ NOFS 3 IPANT g MMD s NTESN L INEAR,
Q FS S0y INDEXD -
DO 1o I=1,MM
DO 17 J=1,NDFS
17 SCT (JeI1)=SCLT +J)
WRTTE (2)(FS(I),T=1,LINFAR)
REWIND 2
CALL RINVIFS,SC,P,NDFF,TRAND4NDFS,HM,NDFSD, MMD)
NOW SC=FS INV #S5C
PRINT 1 |
PRINT 11, ((SC(T+d) s =1,NOFS),T=1,MM)
SGT * FS INV *SC =AOM :
DO 20 T=1,NDFS
DO 25 J=1,NDFS
ADM(IJ)=C,0
DO 2y K=1 ,MM
20 AMU(T 4 J) =ADM(T4J) +SCT (T 4K *SC (K, J)
PRINT 1
1 FORMATL25 (2H%*))
WRITE (1) C (ADM (L 4J) yJ=1,NDFS) 4121 ,NDFS)
END
SUBROUTINE BINV (A 25,0 o NNy Nd s NEQyMM g NEGD ¢MMO Y
GIMENSION A(Z)yBI‘MuyNEBDl;”(Z)
DIMENSTON DULLOC)
PRINT 511
€41 FORMATILrX,25 (2H**))
ND=NN=MM
Qggu N=
5  N=N+1
NL= {N=1)*NB '
IFCABSEAINL#2)) LT, 1.96-10) AINL*#1)=1.0
522 FOIMATI(SXGELZ o5)
IF(N LF. NO) GO TO 16
NCON=N-ND
00 15 IB=1,NED
15 B(NCON,IB)=BINCON,I8) 74 (NL+1)
16 CONTINUE



x * K ¥

45

74

75

by

140

7
[SES
ATt
w

13

3]

IFIN Q. NN) GO TO 4LF

DO 1D K=2,NR
CICI=A(NL+K)
AINL+K) =A(NL+K) 7A(NL+1)
D3 20 L=2,NB
I=N+L~-1

IFINN LT, TI) GO TO 27

J=7
It={I=-1)%N3
03 73 K=L4NB
JzJ+1

ATIL+J)=ALIL+ ) ~C L) * ACML +K)
IF(N «LE. NI)Y GO TO 26/

ITCON=I=-ND
DO 2% IB=1,NEQ

BIICON,IBI=R{ICON,TR)-C{L)*BINCON,IN)

CONT INUE
COINTINUE
G3 TO 5
N= NO. OF FEQU.
L= NO. OF UNKNOWN

Kz SEQUENTIAL NO. O0F UNKNOWN
NLEK=LFS +os LINELR SEQUENSF

N0 107 IB=1,NEQ

DO 72 IT=1,MM
DETI+NDY=RLITI,,IMN

0O 75 TII1=14ND
D(ITY=0.0

N=NN

N=N«1

ML= {N=1)*NA

IFC M JEQe ¢ GO TO &7
N0 50 K=24NB

L=N+K-1

L[FO NNJLT. L) GO TN 67
DIN)=NIN) ~A(NL*K) *D(L)
CONTINUE

- GO0 TO &3

CONTINUE
D0 82 II=14MM
BITT,I8)=D(TT+ND)
CANTINUE
PRINT 511
RETURN

ZND

SURROUTINE FLGeN{DTNF 3Ry HH o XMy N g MM yNDF S T 3AND 4 MMO, NOFSO,LTMNEAR,

FS4aSCINDEX)
DIMcNSINN FSILINEAR) ,

IN THE BAND

SCHEMMOLNDFSD)

DIMEZNSTON FM{Lgh) JFR (Loh) JFF{2,4)4N(4)

DX=R/FLOATINN]
DY=WH/FLNAT (MMY
A=0X*0.5
B=DY*3,3

Do 46 I=1,LINFAR
FS(T1=0.0

DO 26 I=1,MMD

00 27 J=14NOFSD
SClI,J)i=0.1

x X x x

TRANSFORMATION FRCGM A SQUARE MATRIX TO A BANDFD MATRIX
{KslL) = [Ked) y J=EL-¥K+1

TRANSFORMATION FROM A PRAND TO A LINTAR AFPAY
LES={K-1)*%1IBAND +.]

NNL =NN=1

MM =M Mt



51
85
luidd

61
65
i1y

71
75
1723

76

43

IFCTNDEX oEQs 1) NNX=NN-1 c-4
IFCTNDEX LEQe 2) NNX=NN
DO 1iuh TI=1,NNX
IF(INDEX LEQs 1) XO=FLOAT{I)®DX+A
IFCINDEX +EQe 2) XO0=FLOAT(T-1)*%DX+A
CALL FSTIF{A+RyXOFLAG,FK XM, DENF)
DO 1383 J=1,MM1
N(L)=(I=1)%MMey
N(2)=T*MM+J
N(3)=N(2) +1
NEG) =N(1) +1
DO 55 II=1,4
K=N(II)
LPAST=K*IBAND-IRAND
NO 51 JJd=1s4 :
IFINGJIY LT, N{II) ). GO TO 1
LaNTJJ) =K+
LFS=IPAST+L
FS (LFSI=FS (LFS)+FK(IT,4U)
CONT TNUE
CONTINUE
CONTINUE
D3 1510 I=1,NNX
IFCINDEX JEQe 1) XO=FLOAT(I)*DX+A
IFCINDEX JEQe 2) X3=FLOAT(I-1)*0X+A
CALL FSTIF(A,ByXN FLATFK XMy CENF)
NLL) =T*MM
N(Z)=(I+1)}*MM
00 65 II=1,2
K=N{IT) ,
IPAST=K*IRAND=IBAND
00 61 JJ=1,2
ISINTII) oLT. NOTI) ) GN TO 61
L=N(JJ) =K +1
LFS=IPAST+L
FSILFS) =FSILTSI+FKITT,JJ)
CONTINUE
CONT INUE
CONTINUE
IFCINDEX .EQe 2Y GO TN 76
X0=A
CALL FSTIF{A+BeXD,FLAC,FK4XM,DENF)
N0 1u2d J=l,MM1
N(2y=J
N{3)=J+1
D0 75 11=2,7
K=N{TI)
IPAST=IBAND*K-IBAND
D3 71 4d=2,3
IS(N(JS LT, N(ITY ) GO TO 71
L=N{JJ} =K+1
LFS=IPAST+L
FSELFSY=FSILFSI+FKIIT,J)
CONTINUE
CONTINUE
CONTINUE
J=MM
IPAST=J*IBANN-TBAND
LFS=TIPAST +1
FSILFS) =FSILFSY+FK(2,2)
D0 4> J=1,NOFSD
DO 4" T=1,MMD
SCtIsJ)=C.0
X0={FLOAT INN)=0.5)%nX



[
(]

£13]
2127
2ie2
2123

2140
2154
216C
2171
2i85
2z B¢
2211
VAN
2234
224
22513

Z2eee
2273
226"
2294
2292
230y
<31t
23245
2325
2344
2354

19
24990
2495

CALL FFORCE( RaTyXO,FF) C-5
0D 37s) J=i MM
NI=(J=-1)%2
Nno 205 JJd=1,4
L=NT+JJ
SCUJsL¥=s SCUIJLLI+FF LI
SUd#L 41 SCUU+L LY +FFL24JY)
CuNTINUE
RETUPRPN
END
SUBRDUTINE FFORCFE( Be By XO4FF)
QIMENSION FF (244)
N0 10 I=1,.2
N0 1o J=1.4
FF(I,J)=0,0
V=P I*{XO+AY*B*(,.5
Ry=y* 13
FRIL 1Y =1 .4*V
FRIL42)==043,40/30,0%RY
FFi143Y=0,6*V
FF‘va’ :’1303) /3P .L"HV

FF12,1)=1.6*V
FF{242)=5,1%RY
FFI242)=0.0*V

FE(P 4 4)==742730.L *BY
RETURN

END

SURROUTINE FSTIF (A, ByX0yFLAGFK 9 XMy DENF)
JTMENSTION A1 (L40) 4 A2 (L b} sa3layslb) 4FK{bL,0)

DY) 12 I=144

10 12 J=1.4

AL (I 3J)=AZ(T 4 J)=A30T 4J)=",
V1i=X0*Bs/A/6G.

ALLL 3 1) =AL (242 =01 (347¥=A1 (L ,4) =2 ,%V1
AL U142V =R3 (2,1 ) =AL{344V=AL (4 43)==-2,%V1
AL 1L 43Y=81(341)=A1(2,4)Y=814{4,2)=<1,%V1
ALT2 4302103 42) =AL (1 4)=N1(Ly1) =V
V2=X0*¥A/B/H.

A2{L,1)=A2{4 y4)={2.~A70)%Yy?

AZ (1 43)=A203431)=82{2 4)=A2(4,2)==V2
A2 (2 42V =R2{ 243V =(2., 4 A/ XN )*Yy2

A2 (L 44} =A20byl)=={2.-R/XMY *y?

A2 (2 43)=A2(3,2)==(2, +tA/XOY*V2

AZ (L 42¥=R242 s 1) =A2{3,4)=A2 {4 43)=2V2
VI=R/A/A/712.

IF{A JEQ. X0V XO=X"n+,0[1

El=C(A+XOY *(CAXOI*ALNGUIX0+A) 7 (XO=A))=2, %A% (2, *A+X0) I *y3
E2=((A=XO) *{A=XD)*ALOG((XO+BY/(XO=A) ) +2,*A*{?, ¥A=X0) ) *V 2
E3={(A=-XO ¥ (A+XO)*ALOG({XO+AIZ7{XD=A)) 2, *A%X0) *V3

IF{A L0, X0) XO0=X0=-,001

AZT1+10=A3 4 s4)=ca*21

AZ(242)=A3(34+3)=2.%F2

AZ(1,4,2)=A3(241)=A313,441=A3 (Ly31=24%4F3
A3{1+31=A313451)=A3(244¥=A83(442)=F3

AZ{1+4)=A3{4L,41) = 4

AZ(243)=A3(3,2)=F2

Do 1Ly I=1‘4
DO 1o J=1 44
FRUI9JY =3 016153 % (AL(T 4 1) +A2 (T o J) #0311 4J)*XM=*XM) JDENF

RETURN
TN



s (i393
23

1

7280
10

245,39
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oy O

Q

71
712

1

ORIGAAM SHELL (INPUT, OUTPUT, TAPEL s TAPTE 4 TAPE7 ¢ TAPELU+TAPL T TAPE2 1,
TAPF1)

NIMENSION ADM (62 ,62) C-7

DIMENSION DU124,125)

FORMAT(1018)

FORMATIBGL0 4 )

PRINT 1

FORMAT(L1H1)

CARD &

1.1

772

*
&

162

CARD

771
173
7
Q
CARD
113
CARD
114
CARD

233

CARD
i1

&3

51
0

435
CARD

RZAD 7u2+sUMyE1,PX
PRINT 772
FOIMATIU//410X ,* MATTRIAL PROPERIIFS*,/)
PRINT 70Z4UMyE1,PX
FORMATU/Z ¢5X* DENSITY OF SHELL MATIRYAL=*,G1l.4
o /75X ¥ MODULUS CF FLASTICTITY=%*,613.4
977 +5Xs* POTSSON FATIO=*4Gliaek)
PRINT 771

2
READ TU2 ReH4 AL 4FL
FORMAT{/ /710X *STRUCTURAL GLOMETRY* /)
PRAINT 7+RoHyALFL
FORMAT(ZX 4 ¥R ADIUST* 4 F I, 3 o5 X9 *THICKNESST* 4F e 395X #HFIGHT=*,F 9, 3
s LIXG*FLUID HeIGHT*4F9.% )
b
REAT 701,NSIN
7
ReEAT 701 4NELEM
8
READ FUL4NELFS,NELFR
FRIH4=AL=-FL
NPR=NFLEM+1]
NOFS= (NCELFS) *2
NOF =4
NFREE=NDF*NF
CLN=AL/FLOAT{NELEM)
NIF=NUMBER 0OF NEGREE QOF FREEDOM PER NONE
NBAND=HALF BAND WINTH
NFREE=NUMBER QF REGREES NF FFREEDOM
ELNLI=FLZFLOAT (NELFSY
IFINILFR +EQe. ¢ 3 GO TO 431
EINZ2=FRH/FLODATINELFF)
3
RoAD 701.NMODE
PRINT 434NELEM
FORMAT( /745X * NU, 7F RING ELEMENTS=*,13)
PRINT 51 +NMODEGNSIN
FOIMATL//,5XsI24% AXTAL MODES TO RE CONSIDERED FOR¥*,T2,
* CIRCUMFERENTIAL NNLS*,/)
D0 59 KS1=1i,NSIN
i1

431 READ 7014NAT

453

CARD
5i1l

ANT=NAT

CALL STRMATI{EINLGPHy ANT PX4F1+NELFSoNELFR)

IFINELFR LEQ. w Y G2 7O 501

GALL STRMATUELNZ yReHsANT 9 PX3F 14 NELFSHNELFR)

11
READ 7314NBCAS

PRINT 524NBCAS
FORMAT(//45X,,* NG. OF BOUNDARY CASES CONSINEREN=*,I2)

10 R;8 IPR=1,NBCAS

IFIIPR «GTs 1) GO TO 8461
DALL ASSTRUINZLEMGNELFSoNELFRyHaUMaANT 3 PX Ry TLNL yFLNZ 4y DoF 1Y
NFREZEL=NFREE+1
READ(LYI {LADM T d) « J=1 4 NOFSY L, I=1  NOFS3)Y



BO 147 I=14NOFS,2 c-8
Ig=g*1+1 , :
DO 145 Jzi,1,42
J2=2%Jg+1 \ '
D I2 o J2 3= DU I2 4 J2 ¥+ ADMC T 4, U
N{IZ+1,42 b= BLI2+¢1 .42 ¥+ ADM(T+1i,J
D{IZ2+41,J24¢1)= DLI2¢1L.,d2+2)+ ADM{T+1,041)
IF{I2 «EQ¢ J2) GO TO 141
DE T2 4J241)= D0 I2 LJU2#1)+ ADM( T LJ+1)

140 CUNTINUE
REWIND 1
WRITE (4 INFREF)Y
S70 WRITE(LY((D(Igd)d=s yNFREL )4 I=1,NFREF)
REWIND &
801 CONTINUE
* CARD 12
99¢ READ 911,N0C
9i1 FORMATIAL)
520 CALL BOUNINFREE 4MNAT 4D NO,NBC)
NG1 =NO+1
B53 WRITFAZV((D{IsJ) 4 J=1MUL §,I=1,ND)
REWIND 7
691 DI 91 I=iy124
692 D0 91 J=1,125
91 DUI,sN =0,
750 CALL EGN{D.NO,NMONDz 4 E1,NRC)
808 CONTINUE
59 CIONTINUE
41  CONTINUE
795 END
5500 SUBROUTINE EGN{DND,NMODE,F4NAC)
DIMENSION DU(124y125),VI(124),V2(124)
C PRE=-EIGENVALUE CHOLESKY RFOUCTIONS
6010 INA=1
ND1=ND+1
READ(7ICUID(I4JY »J=14NDLY s I=1,ND)
L6l DO 76 MA=1,ND
635" DO 76 MAS=MALND
' MAL =MA+1
MAS1=MAS+1
GASH=D(MA,MAS1)
GISH=D(MAS,MA)
MASH=1
79 IF{MA=MASH) 77,77,78 .
78 GASH=GASH=D {(MASHMAL) ¥D(MASH.MASL)
GISH=GISH~D(MRE 4 MASHI* D{MAS 4 MASH)
MASH=MASH+1
51530 GO TO 79
77 IF{MAS=MA) 81,881,119
81 IF1GISH) 118,82,82
i18 S5ISH=1,
¥4 IF(GASHY B83,84,84
83 GASH=0.
84 DTIAGL=SNRT (GASH)
OIAG2=SORT(GISH)
£230 IF(DIAGL.EQ.0+) GO TO 85
119 D(MA+MASLI=GASH/OTAGH
85 IF{DIAGZ.EQ.G.) GO TO 86
: D{MASMA) =GISH/DIAG?Z
86 CONTINUE
76 CONTINUE
C FORM U/ZUL
K30y Do 87 MA=1.ND
0310 DO 87 MAS=MALND



91
66l
89
6782
23
87

BL2y
b3

664567

121
o570
bEJJ

398
& 2]
97

EX]
98

95

6721

69248
145

MAS1{i=MAS+1 C-9
GASH=D{MAS 4MA)
MASH=MA

MASH=MASH+1

IF(HAS-MASH) 88,89,79

GASH=GASH=-O(MA,MASHYI*D(MASH=-1 4MAST)

GO 70 91 ‘

D{MA,MASL)=FASH/NIMAS . MASY)

CONTINUE

MULTIPLTICATION 7O GET (U*ULE=-L*ULTE=1¥UT)

GO 92 MA=1,ND

o 92 MAS=MALND
MAS1=MAS+1
GASH=0,

DO 93 MASH=MAS1I,N"1
GASH=GASH+D (MA s MASH)I*D(MAS4MASH)

CONT INUE
D{MALMAS1) =GASH

CONTINUE
MODE=NMODE

oy 1.0 IN V1 FROM 1 TO ND AND ITcRATIVE

00 94 I=1,ND

vi(T) =1,

NUMIT=1

ALAMZ=(.

00 35 Ixiq'\la
Ti=1I+1
GASH=1,

DO 36 J=1,1
GASH=GASH+V1{JY*N{J,T1Y

CONTINUE :

IF(I-NDY 97 ,98,98

20 99 J=Ii,ND
GASH=GASH+V1{J)*D(T,J+1)

CONTINUE

V2{I)=GASH
ALAM2=ALAM2+GASH*GASH

SONTINUE
ALAMB=SORT(ALAM?)
SIGSQ=ir,

DO 171 I=1,ND
GASH=VZ2(I)/4LAMR
GAS=V1i{I)-GASH
SIGSA=SIGIC+GAS*GAS
V1i(I}=06ASH

CONTINUFE
IT=1 /10 ,%%12
NUMIT=NUMIT+1

TE{SIGSQ=ZTY 15041341073

IFINUMIT=-150GY 121,162,102

CONTINUE

PRINT 11

IRINT 106G4NUMIT

FIRMAT(* NO 7F TTERATTIONS=*,13,/)

T MULTIPLY (UE-11*(U*x)
I=nD

GASH=V1 (I}

J=ND

IF(J=T) 10541554176

GASH=GASH=VZ2(J) *D(Js 1Y
J=J=-1

50 70 1407

VZ2OIY=GASH/C(I,, 1)

T=T=1%



69510 IF(I) 1:8,1€8,109 c-10
178 PRINT 995,TNA
WRITE(L1C 93} CINA)
3 FORMAT(6IZ)
c OMEGA IN CYCLE/SES
6987 UMEGA=SNRT{1./ALAMB) /2. /5.1615927
599N PRINT 112,0MEGA
ARITE (L. 1Y (OMEGAY
RES=".0
PRAINT 12
1 FORMAT(4ELlL,. 8)
IF(NBC JNF., 4HCLFFR)Y GO TC 59§
WRITE(A) IND)
WRITE(9) {GMEGA)
WHRITE(I) (V2L(TI ) F=1,ND)
550 IFINBC +EQe¢ &HSMSM)Y G0 TO 4§
IF(NBC .EQ, 4HCLSMY GO TO 38
PRINT 111,RESIRESIRISHRES
WRITE(L1541) (RESYyRIS,RESHRES)
PRINT 1i11,(v2({I},T=1,NM)
WRITE(15023 {UV2{TI)aI=1,ND)Y
IF{NBC .E£Q« 4HCLCLY PRINT 111,RES,RESIRESHRFS
TFINBG «EQs GHCLCL) WRITE{LI,1)(RESHRESSRZSIRES)
GO TO 7040 .
PRINT 111,RES4RESRESWRES
WRITE{lus1)Y{RES,RES,RES,,RESY
NO1=ND=1
PRINT 11i,{v?(I),I=1,ND1)
WRBITE(L 1Y {(V2(T),T=1,ND1})
PRINT 111,RESRESWRISLVZ2IND)
WRITL(1y+1)(PFS,RuSsRFEL,V2{ND))
GO TO 7G4l
40 PRINT 111,RESRESLRESVE(1)
WRITE (LU 21 ) IRESHRESHRES,,V2{ 1))
ND1=ND=1
PRINT 111,(Vv2(I),1I=2,M01)
WRITE(L 13 ({V2{T),TI=2,MN1})
PRINT 111,RESHIRESHRES,HZV2IND)
WRITE(Lus1MIRESHRFESHRES,,VZ{IND))
995  FIRMAT(//+10Xs*AXIAL NO. =*,13)
11 FORMATL// 420X 425 (2H==1) -
12 FORMAT (20X * MODE SHAPE® o/ 315X, *U¥ 4 20X 3 ¥ VX 32, X o ¥W¥ 4, 201X 2y *0OW /D Z™)
111 FORMAT(4{5X,F16.817)
112 FORMAT{//7310GX*NATURAL FRENUENCY=*,E20.10)
2 FORMAT(8E16,8)

(]
(5 )

L CHANGING TO NEXT MODRE
70 4 00 113 I=14ND
7a54 DN 113 J=I4ND
Ji=J+i

113 DT ,Jd1t=D(I,J1)-ALAMB*YI(TI}*Vi())
6965 INA=INA+1L
MOOE=MODE~-1
7394 IF(MONEY 114,114,115
114 CONTINUE
7113 RETURN
7120 END
SUBROUTINE STRMAT (AL yR,H+ANT,P,ENE1,NE2)
DIMENSTION B(8,48),DMI8,8),NBT (64846}
4 FORMATC(///+10Xs*STRESS-DISPLACEMENTS MATRICES*,/)
PRINT &
HPI=1.570795
HAL=AL/2.
CALL DMATX{H4P4DM)
D3 5 I=1456



815
82u
825
8320

55

11
545
1c1
855
86N

12
R75
A81

33

777
950

D0 5 J=1,yF C-11
CMET D =0M{T, Uy #E*H/ 11 =-D*P)
FORMATL{O{SX 46104}

DD Ld3 NN=1,6

TE (NN «LTs 4) THITA=C,T

IF (NN ,Gte 4) THETA=HOT

IFINN LEQ. 1) X=C.7

IFINN L£Q, 2y X=AL

IFENN N, %) X=HAL

TFONN o20Q. 4) X=yg.0

IF(NN JEQ. 5) X=AL

TFINN JEN. BY X=HAL
THETAM=THETA®ANT

CALL BMATX{AL yRyANT4X 42}
COSIN=COSITHETAM)
SINE=SIN{(THETAM)
T- *3

DO 10 J=1,8

B{L,J)1=8(1,4)*COSIN
3{2,4,J)=R{24J)*LOSTN
BL3,J)=813,4)*SINE

B4y J)="1{4,4J) *COSTN
B{5,J3=8(5,J)*COSIN
BlH,JY=B(6,4,J) *SINE
WRITE{(25 )Y (NEL (NE2)

D*7T-*R

D0 2. I=1.86

DO 2¢ J=1,.8

DBT (T +J NNY=D L0

GO 20 K=1,6

DBTUI yJ o NNY=NET (I, ) NNY+OM(T4K)*B(KyJ)
WRITE (20G) (NN}

PRINT 1 4NN

WRITE(Z23)Y (ANBT (L4 JeNNY2J=1,48) ,T1=1,56)
PRINT Z4{{OBT(LyJaNN) sJ=148),4,I1=1,6)
FORMATI//910X9‘NN:‘q169/)
FORMATI(8(EX,CG10.41)

CONTINUE

RETURN

END

SUBROUTINE BOUNINFREFT4NAT,D¢eNO,NRGY
DIMENSION D(12441705)

IF (NBC +EQ. 4HCLFR )} GO TO 1

IF(N3C +EQ. GHCLCLY Go 10 ?

IF(NBC .FQs LHCLSM ) GO TQ 2
IF(NBC «EN. LHSMSM) GN TO 4
FORMAT(1H1)
PRIMNT 55
PRINT 11

FIRMAT (/7 4*NATURAL MODES AND FREN. FOR A CL=FREE CYL¥)
PRINT 101,NAT
FORMAT (/4 ¥ FOP CIRCUMFERENTIAL HARNMe Mz%,T2,7)
ND=NFREL =4
G2 TN 37
PRIMT 55
PRINT 12
FORMAT L/ /4 *NATURAL MODES AND FREN. FOR A CL=GCL CYL.*)
PRINT 181,NAT
NO=NFREE=8
D0 777 I=14NO
NOt =NO+1
DO 777 J=1,N01
DT+ ) =N T+t yJd+i)
RETURN



13
915
928

a3g
112
111
L5
954
113
967

965

14
984
985

995
221
222
16180
1u15
223
i£25

1830
1635

1175

10

43

PRINT 55
PRINT 13 C-12
FORMAT{/ /. *NATURAL MODES AND FREQ, FOR A ClL=STMPLE CYL.*)
PRINT 101.NAT
NO=NFRtE=7
NO1=NO-1
D0 111 I=1.N0O3
DO 112 J=1,NO
MT s JY=DUI44,J4+0)
U(L4NO#1)=D{I+44NFREF+])
T=NO
D3 113 J=14NC
DITsJ) =NINFREEgJ+3)
DINQJNO+1)=D{NFRFfc MFREZ +1)
DINOSNO) =DINFREE 4 NFRE)
RETURN
PRINT 56
PRINT 14
FORMAT{/Z7+*NATURAL MODBES AND FREQ., FOR A SIMPLE SIMPLFE CVYL.*)
PRINT L014MNAT
NO=NFREE=H
NOZ =ND=-1
DO 222 T=1,N0?
DI 221 J=1.NO
DIT J)=D(I+3,J+3)
DEIsNO+LI=DIT*#3yNFRFE+1)
I=NO
DO 223 J=14NO
Iy J)=0I{NFREE 4 J+3)
DINOSND+LI =D INFRIEGNFREE+L)
NINDyNOY=DINFREEL y NFREE)
RETURN :
END

- SUBROUTINE ASSTRINELEMyNFLFSyNTLFRaHaUMsANT sPX4ReELNL LELN2,04E)

OIMENSION D(1244+125)

DIMENSION AMAS(8,8) ,ST(8,8)
CALL STIFF(H,ELNL14ANTsPX4R,ST)
FORMAT{B{EX G104
DO 40 I=1,8
D0 44 J=1,8
ST(IsJI=STU(I4J)¥E

- CALL MASS{UM4ReELNL;H,AMAS)

24

ey
| SRSV
< 03

53

DB 124 I=14NELFS
IN=(I-1)%4

D0 26 II=1,.8

DO 28 Jd=1,II
K=IN+IT
L=IN+ M)
DUKsL)=D (K L) +AMASIIT 44
Do 3° Jd=1.8
Do 30 II=1,JJ
K=IN+II
L=IN+JJ+1
DIKL)=DUKyL) #STLIT,,J.D)
CONTINUE
IFINELFR -EQs 0 Y RETURM
GALL MASS{UMyRHsELNZ24H,AMAS)
CALL STIFF{HsFLNZANT,PX,R,ST)
DO 55 I=1,8
D0 57 J=1,8 .
ST‘I!J’=ST(I9J)*E :
NELFSI=NELFS+1
DO 250 I=NELFS1,NFLFM
IN={I-10%4



00 67 I7=1,8 C-13
DO 6 JJ=1,11
K=TN+1IT
L=IN+JJ
60 DK LY=D(K, L) +AMAS(IT o JY
DO 7. JJ=1,8
DO 77 II=14+JJ
K=IN+II
L=INe¢JI+1
70 UMK L) =N(KyLP+3T{ITI.JN)
240 CONTINUE
1440 RFTURN
14590 END
Z8610 SUBROUTINE MASSIFHI 3Ry AL 4H 4 A)
2870 DIMENSION A (8,8)
' INITIALIZE MASS MATPIX
289§ 0N 116 J=1,7%
29410 no 1i6 I=1,4
29311 BT Jd)=00
116 CONTINUE
C SOMSTRUCT MASS MATRIX
PI=3,14L15%927
2950 CONST=R*¥DI*RHO*H
A1) =A802+2)=081{5 451D 6B 48)=CONST*AL/3,
AlSy1)=A L sB)=A(6432)=A12,46) =CONST*AL /b
AlZa3)=A(7+7)=CONST*L S *¥AL/75,
2994 B(4y3)=A13,4)=CONST*LLi.*AL**2/210C,
3nod BE7 48)=R{B,7)==A{4,432)
All 4)=A18,B8)=CONST*AL**3/115,
A7 4+43)=p3,7)=C0ONST*aL*9, /70,
N30 Alsy ) =A(T 4 ) =CONST* LT *AL*AL/L2T .
A{B23)=0{J,8)==CONST*1I *AL**27420,
ATB gLy =AL4 48)Y==CONST*AL**3/14],

S FORMAT(// 410X y*==mmmeomenn e s wmmmmmeend,/)
3068 RETURN
END

F1ul SURROUTINE STIFF{H,ALsAM,P,R,5UM)
311d  GLIMENSTON X{23)H{20),OM(848),88(8,8),DB(8,%),8D(8,8)
X sSUMI3,8)

3143 READ(5Y NI
2154 DO 21 I=14NT

21 READ(B) X(TI) 4W(I)

RENIND %

317¢ A=D. % B=AL
3183 D73 12 I=14N1
3139y X(I)=(B=A}/72.*X (DY + (B+A) /2,

12 WII)=(RB=A) /2. %W (T
321 DO 13 I=1,8
3ezu D0 12 J=1,8
3230 SUMI(I,J¥=0.

13 GCONTINUE
3255 CALL OMATX{H,P,OM
3268 DO 23 T=14NI
3272 CDALL BMATX(ALyn AM,XTI),B88)
3283 COALL MBTMI{DOM,BU,00B,5,6,R)
3298 SALL M3TTM(BBs+0OB+BD84648)
334 D0 22 J4=1,8
3310 Do 22 K=1,8

22 SUMUJ s KI=SUMCUyKY+HIT)*BD (J4K)

23 CONTINUE
3344  CONST=R*3,1415927*H/{1,~F*P)
3254y Do 1 I=1,8
33610 00 1 J=1,8

1 SUMAT s J)=SUM(T 4+J)*CONST



54
2440
3410
3431
440
345§
460
3474y
3481

25
3500
5510

3531
384y
3551
3564
38743
3584

26
2600
3610

3635
3640
3654
2660

27
3687
3695
3700
3714
3724
3739
3740
3796
I8(D

3820
3830
3843
3853
3863
7870
3883
3899
3909
3940
3921

29
3940
3950
1960
397y
3984
3994
4697
6510
4020
46 34
4048
LC50
LL 64

FIE S s |

FjQﬁAT(/,ZGX,% z::::i:::::z::::::::::::z:*s//)
RETURN : .
END |
SUBROUTINE MBTM(D;DR:08sLgMeNy
JIMENSION D(8,8)4R{IALR) ,DB{8B,48)

DO 25 J=1.N

Do 25 I=1,L

031I,J)=1,

DO 25 K=1,4M

DALI, D) =0BII,J)+0(0I,K)*R{K,sJ)
RETURN

END

SUBROUTINE MBTTM(3,2,0B4LsMaN)
DIMENSTON D{(848)43(3,8),0B18,58)
DO 26 J=1.N

00 ¢6 I=1,L

B3{I+J)=0.

DO 26 K=14M
DBAILJI=DB{T +J) +D{K,I)*RIKJ)

" RETURN ‘

END

SUBROUTINE DMATXTIH,P DM
OBIMENSION DMI(8,8)

DO 27 1=146

DO 27 J=1.+6

MMA{Isd)=0.

He2=H*H
Od(1le1¥V=0OM(2,2)=1,

DML ,2)=0M(2,1) =P
3“(3,3‘:(10-9’/2o

DML 44)Y=DML5,5)=HZ2/12.
OM (5 ,L)=DM{L,5)=P¥*H2/12,
DM (6,6 )=H2*%(1.=P)F24,
RETURN

END

SUBROUTINE BMATX({ALR+AM; X4 R)
DIMENSION RB(8,8}

X2=X**2

X3=xX**32

AL2=AL¥%2

ALT=AL**3

AMZ2=AM¥¥2

R2=R**2

DO 29 T=1.6

D0 29 J=14+8

B{IsJd)=0,

CONTINUE

BU1,1)=8B(3,2V=~1,/AL
BlLl.5)=R(3,0)=1./AL
B(2,2)Y=4M¥{1.-X/AL) /R

BUl243Y= {130 *XI/AL242 %X 5/AL3) /R
B2 4)=X*{1le=2 . *XFTAL#XE/AL2)Y /R
B2+6)zAM®PX/R/AL
BI2s7)=X2¥ (3. /AL2-2 ¥X/AL3Y /R
Bl248)=X2* (=1, /7ALEX/AL2Y/R
B{341)==8{2,2)

B{34+51==B{2,06}
BlGy3)z=(be=~12¥XJAL) ZALS
BlbhyL)=(L,=04¥X/7AL) /AL

Bli a7 )iz==R1{4 43}

& 10 [ I S Y Id LV 3 T T



LuBu Blg,2y=3(2,2)}/R €-15

L€ 90 Bi5431=BI2,Z)%AMZ/R

iy BS54 =8B(2,L4F%AM2/R

Lltu Bi5,56)=8{2,6}) /R

4120 3{5,7)=B(2,7)%AM2/R

L4130 BiS,8)1=812,8)*am2/P

Giby Blo,LY=AM®E{1,=-X/ALY /2. /R2

4187 BlE 21 ==34/2./F /AL

4160 BlHy3)==12, ¥AM*X*11 ,=X/AL)/R/ALD
L1710 BUB 4 ) =2 *AM (L a=b o *X/AL+Z,*X2/AL2) /R
Lian BG5S I=AMXX /2, /F2/7AL

4190 BUB4b)Y=3./2/R/GL

4240 B{f47)1==316,3}

4212 BB yR) =2  ¥AMPX (2, =7, *X/AL) /R/DL
L2237 RETURN

4230 END
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PRIGRAM PARTI{(INPUT,OUTPUT, TAPIZ,TAPEI,TAPES ,TAPER)
DIMENSION D{(6L4,05)

DIMENSION SMASSIE. 461) 4BMASSIO0.4) yBACCLLY qUDIH LY 4 PEFFIRT)
DIMENSION X{bUs14},,6PL17),OMELLL) 4 XM{B0,10)

DIMENSTION U680

DIMENSICON GMiiu,10)

EQUIVALENCFID{1),SMASS{1))

READ 1ul M
1J7 FORMATIL0TA) APPENDIX D
NATA M/10/ D-1

REQD(5)(NFREE)
NFREEA=NFREE+1
READIS) ((D(TsJd) s J=LNFREEL) yI=1,NFREF)
REWIND 5
DO 1f TI=1,.NFREE
DO 17 J=1,1
10 Q(JQI)-——DiIaJ)
* WRITE MB
WRITE(B)IUIDUL vJ) 4 J=1,58Y 125 4NFRER)
* WRITE M
HRITE(BIU(DII 4 J) v J=54NFREECY sI=5,NFRER)
BACC (LY =BACCI{L4Y =y 1
BACC(2)==1,0
BACC(3)=+1.0
NO=NFREE=-4
PRINT 1 yMyNFREE 4NO
FORMATU//4,618,7/)
FORMATL/Z,30(E40.442XY)
REWIND b
REASISI {IBMASS{L yJ) o d=144),T1=1,ND)
RFEFAD(BY L (SMASS{TI+JY s =1 4ND} sTI=L 4, ND)
NN=ND /4
D0 225 I=14NN
IS={I-1)*4
UDLIS+11=BACC (1)
UDLTIS+2¥=RACC (2}
UD‘IS+3}=BQCC(3}
UDLIS+4)=BACC(Y)
23 CONTINUE
. MPUN=PEFF {NDyNOY®*IND,1Y={(ND,1)
DO 35 T=1.ND
PEFF(TI)Y=(,
U0 35 J=1,ND
3 PEFFUIY=PEFF{TI)+SMASS(I N®*UDIYH
* M3 * 3ACC =U (NDysY* (4413 =(NDy1)
NO 4 T=14ND
UtIy=0.9
00 40 J=2,43
L3 ULIY=ULI) #8MASSH{TI 1) #RACC (I
DO 57 I=1.ND
50 PFFFU{II=PEFF{TI)~U(I)
DO 55 J=1,M
PEAD{3Y (ND}
READI3I) {OMEC(I))
READIZYI (X (Ted)eI=1,ND)
55 CONTINUE
* GP=XT *PEFF=(MyNDI*{ND,1¥={M,1)}
DO 67 I=1,.M
GP{IY=2.,0
DO 67 J=1,4ND
60 GPIII=GPLIY+X U, I)*PEFF{J)
PEAK=3284.0
DN 70 I=1.,M
780 GP{IY=GPII}Y*PEAK

ny =



* GM=XT * M * X D-2

75

DO 75 I=41,4,ND

00 79 J=1,M

XMUT,)=G.0

D3 75 K=1,ND

AMUI IV = XMUI 3 J) +SMASS (I 4K I®X Ky ))
DO 80 I=1,4M

D0 A7 J=1,M

GMIT W J¥=2,0

DO 82 K=1,ND

GMUT I} =6M(I, JYEX Ky Y *#XM(K,J}
WRITE(2){M}

WRITE (2 IGMIT ¢I) Izt M
WRITE(2YI(GP{T Yy I=14M)
WRITE(2Y(OMETLI)4I=1,M)

DRINT 24 (GMIT I} ,I=1,M)

PRINT 24,(6P(I)yI=1sM)

PRINT 241(COME(IY yI=14M)

END
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PRUGRAM PARTLI (INPUI,QUIPUT yTAPEL o TAPE2 ,TAFe 3, TAPEL,TAPES , TACFR)
DIMENSION ACC{1C () '
DIMENSION X1(103,X2(103,4X3(10) D-4
DIMENSION U(12D)

DIMENSION X (L) sGMILT ) sGPULG) $OMECLI) $ALL.) 4 Y (LT) 4V (1D)
DIMENSION YOU400 ,17) 4,VO(L 041 M)

OIMENSTON XARRAY (£3.) ,YARPAY (5(0)

EQUIVALENCE (YOU(L1) ,XARPAY (1) 4(VO(1) ,YARRAY (1))

* CARD 2 ' |
READ 100 +LRECINRECNRSTART,NREND

= CARD 3 ¥ ' \

READ 200,07

* CARD 4
READ 14T 4ND1,ND24ND3

* RESPONSc OF D.O.F NO. ND1 IS TO BE SAVSD ON TAPZ NO. &

* RESPONSE OF De0«F NO. ND2 IS TO BE SAVED ON TAPT N, S

* RESPONSE OF D.0F NO, NN3 IS TO BE SAVED ON TAPE NO. 6
OIS”H.:C-G
DISM2=0.0

10U FORMAT(L01IS8)

200 FORMAT(F10.4)
REWIND 1
READ{2) (NMONES)
M=NMNDES
PRINT 554,NMODES

55 FORMAT(I1Q)
READ(2Y (GMII) ,I=1,M)
READ(2) (GP(T) 4I=1,M) o

* GP HERE 1S THE PEAK GENCFALTZFUD FORCE VECTOR
' READU?) (OMELI) ,I=1,M)

REWIND 2
Do 37 J=14.M
READ {3 (ND)
READ(3) (OMECJIY
READ(3I(ULI) o I=1,ND)
X1(J) =UIND1)
X2(J)=U(ND2)
X3(J)=U(ND3)

23 CONTINUE
PRINT 554NN

2 FORMAT(1H1)

* OME IN CYC/SFCQ

DO 35  J=1,M
35 OME(J)=0ME(J) *2,%*3,14159

¥OME IN RAD/SEC

REWIND 3 :
CALL - GCONTROL(NRICZLREC My DT 4 YDy VO LACT sOME 4GP yGMA LY 4V
DO 47 J=1,4M
Y(J)=C.0
40 VIEJY=0,0
REWIND 1
NR1=NRSTART-1
88 FORMAT(LiELOD.4)

¥ DO 5 TREAD=1,NR1

* 5 READ{148BR){ACC(TI)4yI=1,LREC)

* DO 1330 IREC=NRSTART,NREND
DO 1346 IREC=1,NREC
D0 16 J=14M
Y (J)Y=YOU{IREC )

10 V(J)=VO({IREC, N
READ(1,88) (ACC(I) I=1,LRFCH
N0 Su ITIME=1,LREC
TIME=FLOAT{ITIME) ¥DT
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CatLL INTUACC s TIME oDT9LPEC s My OME yGP 3 GM4A ,Y 5V ITIMED
* INSERT HERE DISPLACHFMENTS o STRPESSES LAND e XTERNAL FQUI.

Wi=WZ2=W3=C.0
N0 2. J=1,M
WLI=W1+X1(JY*D ()
WZ2=WZ+X20J)*A )
W3I=W3I+X 3 {J)*A LI
CONTINUE
IFT DISML1 6T, W1) GU TO 101
DISM1=W1
TIMML=TIME
IF{ OISMZ «GT. W2) GO TO 202
DISM2=W2
TIMMZ=TIME

IFT DISM3 «GT. W3) R0 TO 303
DISM3=W3

TIMMI=TIME
CONTINUE
WRITE{L,11) (W1)
WRITEL(S,11){W2)
WRITE(D411Y (W 3Z)
FORMAT(ELC.4)
CONTINUFE
CONTINUE
PERAIND 4
REWIMND 5
REAIND &

PRINT 2
FORMAT(// 425X 4% EESPNNSE OF DeQaFs N0 *¥,I2)}
FORMAT(/4(2X10(E17.442X)))
PRINT 2001,ND1
DO 2004 III =14NRE
TREG=FLOAT({TII-41)*LRECY*DT
PRINT 19G,TREC
READ(4+ L1V I{XARRAY (I} 4 I=1,4LRED)
PRINT 12 +({XARRAY({I),1=1,.LREC)
CONTINUE
FORMAT(/ 415X *TIME=*,FAL. Ly *SEC*)
PRINT 2Ju2s0DISML (TIMML
PRINT 2

PRINT Z2LJ1sND2
DO 2Ny III=14NREC
TREC=FLOGAT((III-1)*LRPEC)*OT
PRINT 199,TREC
READIS,L1)I{XARRAY (I} I=1,LREC)

PRINT 12 4{XARRAY(I)+I=14LREDY
CONTINUE '
PRINY 2502,DI8M2 ,TIMM?
PRINT 2
PRINT 200614ND3

DO 4Tu0 III=1,NREC
TREC=FLOATUIIII-1)*LPEC)*DT
PRINT 199,TREC
READ(Bs11){XARRAY{I) »I=1,LRED)

PRINT 12 4{XARRAY (I}, ,I=1,LREG)
CONTINUE
PRAINT 2902+0DISM3 4 TIMMZ

FORMATL// 41X 4* MAX, EESPONSE =+,F1(.3, *AT TIME=

END

¥’Figlh‘)

D-5

SUBRDUTINE GONTROLINREC ,LRECyMyDT Y0 4VO43ACC sGME 3GPyGM oA Y 4V)

DIMENSIGN YOLDOL®)

ODIMENSION ACCYILRECY,YOUNRECsM) VO (NREC,M)
DIMENSION Y{MI4V (MY A(M),GP (M) ,GM(M) LOME(M)
IREC=1



lu‘
20

32

40

i5

0O 17 J=1.M D-6

YO(14d)=VO(L4d)=0 )

Y{J)=VEJ)=( .0

COINTINUE

ITIMS=LREC-1

TIME=ITIME®DT
REAN(1,88)(AGCC(I) I=1,LREC)
FORMATULOFLO.4)

CALL INT(ACC s TIMEsDT 9 LRECIMaOME 4GP s OM A oY 4V, ITIME)Y

00 37 J=1,M
YOLD(D) =A(S)

ITIME=LREC
TIME=LREC*DT

CALL INTCACCsTIMF yBT9LRFCaMaOME 9GP s GM A oY 4V . ITIME)

IREC=IRECH]
DN 4 J=1,M
Y{JYy=A0H)
VIJY={A(J)=YOLD(I /DT
YOCIREC,J)=Y{ N
VYO(IRECyJ¥=V LN

IF(IREC.LE. NRECY GO T0 28
RETURN

END : R
SUBRQUTINE INTLACC,TIME,0T4LRPECsMsOME,GPsGM4A,Y sV, ITIME)
DIMENSION ACCILRECH :
DIMENSION OME (M) ,GMIM)  JGP{M) A{MI Y (M), VM)
DO 15 J=1i4M ‘
PIN=G,.0
OMFT=0ME (JY *TINE

DO 10 IT=1,ITIME

TA=FLOATULIT) *0T

SINF=SIN(OME (J)*(TIME=TA))

PIN=PIN®ACC (TIT) *SINE
PIN=PIN *GP(J)*DT
A(JY=PINZA(GM(JIY *OMF{II)Y+Y (J)*COSIOMETI+V(JI)*SIN(OME T) /OME (J)
RETURN '

END
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