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ABSTRACT

A method of dynamic analysis for vertical, torsional and

lateral free vibrations of ~;uspension bridges has been developed

that is based on linearized theory and the finite -element approach.

The method involves two distinct steps: (l) specification of the

potential and kinetic energi.es of the vibrating members of the con

tinuous structure, leading::o derivation of the equations of motion

by Hamilton l s Principle, (?) use of the finite -element technique to:

(a) disc retize the structure into equivalent systems of finite

elements, (b) select the di 3placement model most closely approxi

mating the real case, (c) derive eleITlent and asseillblage stiffness

and inertia properties, and finally (d) forill the illatrix equations of

illotion and the resulting e:.genvalue probleills. The stiffness and

inertia properties are evaluated by expressing the potential and

kinetic energies of the elernent (or the asseillblage) in terillS of

nodal displaceillents. Detailed nUillerical exaITlples are presented

to illustrate the applicability and effectivene s s of the analysis and

to investigate the dynaillic characteristics of suspension bridges with

widely different propertie s, This illethod eliillinates the need to

solve transcendental freqUEncy equations, siillplifies the deterillination

of the energy stored in different illeillbers of the bridge, and repre

sents a siillple, fast and accurate tool for calculating the natural

frequencies and illodes of vibration by means of a digital computer.

The illethod is illustrated by calculating the modes and frequencies

of a bridge and comparing theill with the illeasured frequencies.
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DYNAMIC ANALYSES OF SUSPENSION BRIDGE STRUCTURES

Gene ral Introd uction

Throughout the history of suspension bridges, their tendency

to vibrate under different dynamic load s has been a matter of con

cern which, in modern times, has led to several investigations into

their vibrational properties. As a prerequisite to the further inves

tigation of aerodynamic stability, traffic impact, soil-structure

interaction and earthquake resistant design of suspension bridges, it

is necessary to know certain dynamic characteristics such as the

natural frequencies and the possible modes of motion during

vibration.

The natural, free vib rational H).odes of a suspension bridge may

be classified as vertical, t<Jrsional and lateral, as shown in Fig.

A -1. In pure vertical modes of vibration, all points on a given cross

section of the bridge move the same amount in only the vertical

direction, and they remain in phase (see Fig. A-I-a). In pure

torsional modes, each eros s section of the bridge rotates about an

axis which is parallel to the longitudinal axis of the bridge and which

is in the same vertical plane as the centerline of the bridge. Cor

responding points on oppos:.te sides of the centerline of the roadway

attain equal displacements, but in opposite directions, as shown in

Fig. A-I-b. In pure later;:.l motion, each eros s section swings in a

pendular fashion in its own vertical plane, and, therefore, there is
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(a) Vertical

(b) Torsional

(c) Lateral.

, -'-vc",-1'
Suspender

Suspended
Structu re
(Deck)

TYPES OF VIBRATIONAL MOTION
IN SUSPENSION BRIDGES

Fig. A-I
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upward movement of the cables and of the suspended structure

incidental to their lateral movements, as shown in Fig. A-I-c.

Problems in the dynarnic analysis of the free vertical vibration

of suspension bridges have been investigated by many specialists

during the past few decades: the fundamental equations expressing

this type of free vibration were well unde rstood many decades ago.

Much of the development which made these equations and their

solutions versatile in application, however, has taken place in the

wake of the collapse of the Tacoma Narrows Bridge in 1940.

However, there have been few investigations into, and relatively

little work published on, thE dynamic analysis of either torsional

or lateral vibration. Generally, in all past studies of the different

types of vibration, investigators have started with certain more or

less valid assumptions, have made a series of approximations in

varying degrees, and have attempted to develop equations and

formulas that would predict with fair precision the performance of

suspension bridges in free vibration. The relative value of these

equations and formulas lies in their reliability for such prediction

and, also, in their agreeme at with re suIts obtained from expe riments

with models and with full- scale structure s. In this regard, most of

the complex formulas developed so far are not adequate beyond the

first few modes; this is eith~r due to the type of assumptions involved

or to the type of solution techniques adopted.

Current investigations have implied that the problem of the

dynamic analysis of suspension bridges cannot be solved effectively
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by analytical methods, but that the evolution of both the digital

computer and various associated numerical techniques of analysis

have significantly enhanced solution capability. Thus, in spite of

the recognition of the problem and intermittent attempts at its

solution, the state-of-the-art of the study of suspension bridges'

free vibration is, still, not satisfactory.

The following study, in which the modern digital computer and

the finite element method of analysis playa central role, develops

methods to analyze the dynamic problems of suspension bridges.

The finite element method is very useful in that it provides a unified

approach to discretization which can be applied to complex structures

such as suspension bridges; the digital computer makes it possible

to routinely solve the resulting equations of motion. which may

involve even hundreds of degrees of freedom. The methods of

analysis developed here are designed to present general theories

and their applications in order to determine the dynamic character

istics, namely the natural frequencies. the modes of vibration. and

the energy storage capacity. of the different members of a suspension

bridge. In order to simplify the presentation, coupling among vertical,

torsional and lateral motions is neglected, and some conventional

as sumptions are used.

In general, it is believed that the theoretical treatments

presented yield practical solutions with reasonable accuracy and

increase understanding of the general characteristics of vertical,

torsional and lateral vibrations of suspension bridges. Furthermore,
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the formulation of the problem provides a basis for future theoretical

study in two directions: aa.alysis of geonletric-nonlinear free vibra

tions and of earthquake-resistant design.

The study is divided into four chapters, and each chapter is

further divided into several sections and sub-sections. Each chapter,

and nlany of the sections, have individual introductions which give

brief accounts of the historical developnlent of the particular subject

under investigation. The historical infornlation has been collected

fronl nlany sources; in SOIne cases the original works have been

referred to, as in others, where source material is difficult to

obtain, the reader is directed to treatises which list references.

Many references have been included so that the reader nlay easily

obtain a nlore cOnlplete di 3CUS sion of the various phase s of the

total subject.

The first chapter contains analyses of the free vertical vibra

tion of a broad class of suspension bridges. In the first section, a

detailed introduction is presented, and in the second section preli

nlinary considerations and fundanlental as sUnlptions are given. The

third section discusses the different expressions for energy in the

vertically vibrating system and the derivation of the equations of

nlotion by nleans of Hanlilton l s Principle. In the fourth section,

topics which receive attention are: the finite elenlent fornlulation,

the solutions obtained, and detailed numerical examples which exa

nline the effect of the extensibility of the cables and the continuity of

the suspended structure. Jr. the analyses in the third and the fourth

sections, it is assunled either that the cables rest on nests of
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rollers at the tower tops or that the towers are of rocker type with

pin-bearings at their bases. Thereafter, in the fifth and the sixth

sections, it is assumed that the saddles are fixed at the tower tops,

and therefore, the towers offer a certain bending resistance to any

horizontal displacement at their tops. Also, the in-plane free hori

zontal vibration of the towers has been considered. The fifth Sec

tion contains the energy expressions modified due to the rigidity of

the tower, and it also includes the derivation of the equation of

motion for the towers. The sixth section concerns the finite element

solutions of the overall problem (which include s the suspended struc

tures, the cables and the towers). A numerical example, to illus

trate the tower effect, is presented.

The second chapter is concerned with analyses of. free tor

sionally vibrating suspension bridges. Two advancements are made

in this chapter. Firstly, a detailed treatment of a generalized theory

of free torsional vibration for a wide class of suspension bridges

having double lateral systems is developed, taking into account the

warping of the c ros s section of the bridge deck and the effect of

torsional rigidity of the towers. Secondly, a method of dynamic

analysis based on a finite element approach is developed to determine

vibrational properties in torsion. Almost the same procedures which

were followed in the vertical vibration chapter are followed in this

chapter on torsional vibration.

The third chapter contains analyses of the free lateral vibra

tion of suspension bridges. The upward movements of the cables

and of the suspended structure, incidental to their lateral
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movements, are taken into consideration. The first and second

sections contain some theoretical preliminaries and fundamental

concepts. The third section contains the different expressions for

energy in the laterally vib rating suspension bridge and the derivation

of the equations of motion which couple the vibrational movements of

the cables with those of the suspended structure. The fourth sec

tion is concerned with the finite element formulation, the solutions,

and a numerical example which illustrates and augments the analyses

of this chapter.

In the last chapter, vibration studies and experiments with the

Vincent Thomas suspension bridge (between San Pedro and Terminal

Island, California) are pre3ented to illustrate the applicability and

the effectiveness of the analyses under consideration as well as to

investigate the dynamic characteristics of a real bridge. To further

prove the validity and reliability of these analyses, a rigorous com

parison with previous results obtained by other investigators ha s

been made. In addition, thE computed frequencies of this bridge

have been compared with the measured frequencies, and the results

of simple experiments conducted on the bridge are presented.
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CHAPTER I

FREE VERTICAL VIBRATIONS OF SUSPENSION BRIDGES

I-I. Introduction

The Tacoma Narrows Bridge disaster in 1940 profoundly

influenced suspension bridge research by sharply focusing attention

on the related dynamic problems. Prior to that time. the gradual

development of suspension bridge theory. which took place during

the nineteenth century and the first half of the twentieth century. had

led to the construction of progressively more economical and more

slender structures. such as the Tacoma Narrows Bridge. Early

warnings of suspension bridge failures caused by vibration during

high winds then culminated in the warning signs of the major dis

aster that befell Moisseiff's Tacoma Bridge. It was a slender bridge

of 2800 ft. span that showed a marked tendency to vibrate in the wind.

both in flexure (vertically) and torsion. soon after construction, and

finally, after a life of only a few months, it collapsed as a result of

exces sive vibrations in a transverse wind of approximately 40 m. p. h.

This disaster so shocked the engineering world that major

efforts were made to understand the nature of the dynamic problem

of suspension bridges and to learn how to counter it. In accordance

with this. several investigations into the vibrational properties of

suspension bridges were conducted. and, as a result, it was found
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that severe vibrations can t,e largely caused not only by wind but

also by various dynamic loa.ds. such as moving vehicles and earth

quakes.

One approach to this dynamic problem used aerodynamic

theories and the research nlethods of aeronautics. The most

extensive studies using this approach are the model investigations

of Farquharson [8J. von Ka.rman [6J. Frazer [lOJ. Scruton [10].

Steinman [14J and Selberg [16J. and the theoretical work of

Bleich [9J. and others. T1:.us. the aerodynamic stability of sus

pension bridges has been of central interest for bridge designers

and scientists and has been the subject of numerous treatise s.

while there have been compa.ratively few investigations into their

response to other dynamic :.oads or into their general dynamic

characteristics.

However. in the last decade. Hirai and Ito [21 J did lead an

investigation into the practi::ability of railway suspension bridges.

They studied their responsE to moving vehicles. theoretically and

experimentally. and they provided information enabling the creation

of an impact specification for a long-span railway suspension bridge.

The live load intensity on a bridge of this type is. of course. large

compared with that in a highway bridge. and thus the dynamic

effects in the former are gEnerally much more remarkable.

Although significant in the area of railway bridges. their resear'ch

did not address the general problem of traffic loads.
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Design of a major suspension bridge for a region where severe

earthquakes may be expected is a problem which has also received

little study; even though it is a much more demanding problem than

the design of a typical multi-story building frame. Modern

building codes have now been developed to the point where the

basic earthquake requirements to be imposed on a " s tandard"

building are specified adequately, and intelligent consideration of

the se requirements will lead to the design of a safe and economical

structure. A large suspension bridge, however, is a vastly dif

ferent structure than a typical frame building. The fundamental

period of vibration of the suspension bridge may be many times as

great as the longest period of a building (in which the first mode is

primary), and it may be necessary to include a relatively large

number of modes of vibration in order to obtain a reasonable rep

resentation of the total response.

Knowledge of the natural frequencies and possible modes of

vibration of a suspension bridge is necessary to investigate the

response to aerodynamic forces, live loads and earthquake loads.

The earliest relevant investigations of natural frequencies and

modes, concerned the vibrations of a heavy, isolated suspension

cable in a vertical plane. The first known theoretical treatments

of this problem were by Poisson [28J in 1820, and by Rohrs [1] in

1851. The latter examined the symmetrical modes of a nearly

horizontal cable which was assumed to be inextensible and produced

results for the first two natural modes. The same problem was
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examined more generally by Routh [2J in 1868, at which time he gave

an exact solution for the sy::nmetrical vertical vibrations (and

associated longitudinal mobon) of a heterogeneous cable which hung

in a cycloid. Like Rohrs, :1.e also assumed that the cable was inex

tensible. He showed that the result for a cycloidal cable could be .

reduced to Rohrs I solution ::or the uniform cable, when the ratio of

sag to span was small. R011th also obtained an exact solution for

the antisymmetric, vertical vibrations (and associated longitudinal

motion) of the cycloidal cable.

At this point the subjE:ct appears to have been laid to rest until

the aerodynamic failure of the Tacoma Bridge which, as explained

previously, initiated a com)rehensive investigation of the problem

of dynamic vibrations of su"pension bridges. In 1941. Rannie [6J and

von Karman [5, 6J derived results for an inextensible, three-span

cable. In 1945, Vincent [1:, 18J extended Rannie's and von Karman's

analyses to allow for the eHects of cable elasticity in the calculation

of the symmetric vertical TIl0tion of the three-span cable. However,

he did not explore the nature of the solution so obtained and, there

fore, he appears to have been unaware of the substantial effect which

the inclusion of cable elasticity can have.

From 1941 to 1943, Steinman [l4J derived a number of

siITlplified forITlulas for COTIlputing the frequencies and the ITlodes of

both vertical and torsional 'ribrations of suspension bridges. They

have been independently chE;cked for validity and accuracy by

investigators using more cCJITlplex formulas. Steinman's formulas

appear to be the simplest aJld most practical to date, but some of
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the more involved modes predicted by these formulas have not been

found in other solutions.

A semi-empirical theory for the natural frequencies of the

first in-plane (vertical) modes of a uniform suspended cable was

put forward by Pugsley [13J in 1949. He demonstrated the applica

bility of his results by conducting experiments on cables in which

the ratio of sag to span ranged from 1:10 up to approximately 1 :4.

Later, various analytical studies were made to develop

formulas for computing the frequencies and modes of vertical as

well as torsional vibrations of suspension bridges with and without

recognition of the extensibility of the cable. Formulas for most of

the se cases and for other cases as well were developed by Bleich [9J.

He analyzed free vibration by the so-called exact method (i. e., by

solution of the fourth order linearized differential equations of

motion), and he applied this method to various examples. An

approximate method, based on the Rayleigh-Ritz approach and

representing the deformation of the structure by Fourier series

was also developed by Bleich, though this method can be applied

usefully only to the first few modes because of the complexity and

the redundancy of suspension bridges.

In 1952, Pugsley ell J discussed the stiffness of a heavy inex

tensib1e cable in terms of work done by the cable against gravity

when the cable is loaded; he also examined the relationship between

this energy treatment and the conventional "linearized deflection

theory" in common use. The latter is often presented in a form that
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appears to imply that the gj~avity stiffness of a cable is negligible;

this has proved to be misle:tding and results from neglect of a term

in the expre s sion for ze ro extension.

Until the sixties, it was believed that the best formulas for

computing the frequencies cmd the modes of suspension bridge

vibrations were those developed at the University of Washington

by Smith and Vincent [lSJ. The se formulas were derived from the

differential equation of mot'.on in bending (vertical vibration);

unfortunately. the misleadij1g condition of inextensibility of the

cable. which Pugsley has c:ritically examined. was used in some

of these formulas.

As mentioned before, recent studie s have implied that the

problem of the dynamic analysis of suspension bridges cannot be

solved effectively by analytj,cal methods, but that the evolution of

both the digital computer and various associated numerical

techniques of analysis have significantly enhanced solution capability.

Therefore, with the advance made in the computer, it has become

possible to solve even extrEmely complex cases.

The first use of a digital computer in analyzing this problem

achieved significant results. This first trial was made by Clough [1 7J.

as a consultant in earthquake engineering, in an unpublished report,

"Se ismic analysis of the main piers for the Tagus River Bridge. It

The earthquake behavior of the Tagus River Bridge (in Lisbon,

Portugal) was studied in thE late fiftie s and early sixties by Housner.

Converse [17J and Clough. The vibrational analysis of this bridge



-14-

was based on a lumped mass system, which was interconnected by

elements having shearing and bending stiffness representative of

the actual structure. Rotational stiffnes s of the foundation material

was considered also.

In the early 1960 1 s, Konishi, Yamada and Takaoka [191 20J

started an extensive research study to investigate the dynamics of

suspension bridges and their earthquake resistant design. They

simulated a three-span suspensio.n bridge l structurally comprised

of systems of masses and springs. and using linearized theorYI

calculated the periods and modes of free vertical vibration. In this

study, the vibration of the towers was considered as well as the

vibration of the suspended structure and the cables.

In the late 1960 lSI Tezcan and Cherry [23J undertook similar

research concerned with the earthquake analysis of suspension

bridges, in which the effect of large deflections was taken into

account. Their study dealt with an iteration scheme for the non

linear static analysis of suspension bridges by means of tangent

stiffness matrices. The concept of these matrices was then

introduced in the frequency equation governing the free vibration

of the system. The bridge was idealized as a three-dimensional

lumped mass system and was subjected to three orthogonal com

ponents of earthquake ground motion producing horizontal, vertical

and torsional vibrations. As the first nonlinear analysis of a

vibrating suspension bridge l this study provided a foundation for

further nonlinear suspension bridge research.



-15-

The following study develops a method of analyzing the

dynamics of suspension bridges by means of a digital computer.

This method is designed to determine the dynamic characteristics,

namely the natural frequencies, the modes of vertical vibration, and

the energy storage capaciti(~s, of the different members of the

structure. This method is based on the so-called "linearized

deflection theoryll and a finj.te element approach. The method

incorporates certain special simplifying features, and it involve s

two distinct steps which arE summarized as follows:

1. Specification of the different potential and kinetic energies of

the vertically vibratir.g members of the real continuous

structure and then de:~ivation of the equations of motion, and

2. Use of the finite element procedures to: a) discretize the

structure into equivalent systems of finite elements, b) select

the displacement model most closely approximating the real

case, c) derive elemEnt and assemblage stiffness and inertia

properties, and finally d) form the matrix equations of motion

and the resulting eigenvalue problems.

The evaluation of the stiffness and inertia properties of the

idealized structural element and assemblage is based on the expres

sion of the potential and kin~tic energies of the element (or the

assemblage) in terms of nodal displacements. This determines

expressions for the stiffnes s and mass matrices. Hamilton ' s

principle is then used to derive the matrix equations of motion.

This finite-element technique furnishes a system with finite degrees
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of freedom upon which matrix algebra operations can be performed.

It has proved convenient to separate the investigation of the

symmetric modes from that of the antisymmetric modes.

Finally, detailed numerical examples are presented to

illustrate the applicability and the effectiveness of the analysis and

to investigate the dynamic characteristics of a broad class of sus

pension bridges with widely different properties. In these examples,

the effect of cable extensibility. tower stiffness, and suspended

structure continuity are examined and some useful comparisons

are drawn.
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1-2. Preliminary Conside:rations and Fundamental Assumptions

The following section is intended to briefly delineate the

essential structural members of suspension bridges and their func

tions and to discll-s s advantc.ges of the suspension bridge over other

bridge types. An outline of the coordinate systems used in the

following analysis is also presented. Finally, this section contains

the fundamental assumptior!.s involved in the subsequent analysis.

1-2-1. Elucidation of the structural members of suspension

bridges

Suspension bridges consist 'essentially of cables, suspenders,

towers, anchorages, and a suspended structure or bridge deck. The

two cables are the principle carrying members and are fixed at their

ends to anchor blocks which resist the cable pull. The cables are

generally continuous over saddles at the tops of the towers; these

saddles are either bolted to the tops of the towers or are equipped

with rollers as shown in Fig. 1-2-b. In modern suspension bridges

the ratio of the cable sag to the span length ranges generally between

1 / 8 and I / 11.

The tower is usually composed of two parts: the substructure

or pier, and the tower proper extending above the roadway and

supporting the cables. The pier does not involve any special features

differentiating it from ordinary bridge piers. The tower is composed

of a column or tower leg fo:r each suspension system. For lateral

stability, the tower legs ar(~ braced by means of cross-girders and

cross-bracings. The towel' leg may be fixed to the pier or may be
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of rocker type with a pin-bearing at the base. Rocker towers afford

the most economical and scientific design for bridges of longer span;

however, they must be secured against overturning during construc

tion.

The suspended structure consists of two stiffening trusses (or

girders) and one or two lateral wind bracings to counter transverse

wind pressure and lateral forces from moving loads. and to carry

these forces to the piers. Stiffening trusses (or girders) are usually

added to reduce and control the vertical movements due to heavy live

loads and any other dynamic loads. When the required depth of a

stiffening structure of the plate girder type exceeds practical or

economical limitations, an open truss type can provide a solution.

The two stiffening structures are located in the same planes as the

suspenders and cables; they are hung from the suspenders which are

attached to the suspension cables. Be sides carrying the floor, they

act vertically as stiffening trusses (or girders) and horizontally as

chords of the lateral bracing system. The stiffening structures in

each span are restrained at their ends by the towers so as to prevent

horizontal movement of the bridge deck.

The stiffening girder (or truss) is usually very shallow in

comparison with its length, (and the same is usually true of the

lateral bracing). In practical terms. a three-span suspension bridge

may incorporate three different types of stiffening structures in con

nection with the general problem under consideration:
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1. The stiffening structures might be continuous over all

three spans with suspenders throughout those spans. And~

although it is extremE:ly unusual~ they might actually be con

tinuous over two of the spans and non-continuous over the

third span.

2. As a second major al1;ernative~ the stiffening structures

might be continuous over all three spans~ but with no

suspenders in the sid(~ spans. In this case~ the stiffening

structures in the side spans would probably be much shorter

than the full length of the side spans.

3. Finally~ the stiffening structures might be of the two-hinged

type; it is widely usee. and is probably the most efficient.

Also~ it is more economical than the continuous type. In

this case~ the hinges are located in the towers where they

are least objectionable. Actually~ the stiffening structures

might be a three-hinged type, but this is little used because

it lacks rigidity and has other disadvantages arising from the

hinge at mid- span.

Suspension bridges are, in general, very flexible as compared

with other types of bridge structures~ the amplitudes being many

time s as great. It should be noted also that the rigidity of each

member of a suspension bri dge is markedly different from the

rigidity of each of the other members. Furthermore, interaction

occurs among members of the bridge from one end of the cable to

the other, so that consideration of one member involves study of all
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of the members. The stre sse s in some members of the structure 

like the towers, cables and anchorages - are due largely to dead

loads, while the stresses in other members - such as the stiffening

girders (or trusses) and lateral bracings - are due entirely to live

loads, winds, changes of temperature and possibly earthquakes.

Economic utilization of construction materials demands that,

as far as possible, the predominant stresses in any structure should

be those for which the material is best adapted. Because steel is

a very economic material, especially when used in a condition of

tensile stress, the suspension bridge type, which undergoes prima

rily tension rather than compression, provides a superior design for

long spans. To summarize, the superior economy of suspension

bridges as long-span structures is fundamentally due to the following:

a) the very direct stress paths from the point of loading to the point

of support, b) the predominance of tensile stress, and c) the highly

inc reased ultimate resistance of steel in the form of cable wire.

Furthermore, for heavy railway bridge s, the suspension

bridge is more economical than any other type for spans exceeding

about 1500 ft. And, as the live load becomes lighter in proportion

to the dead load, the suspension bridge becomes increasingly more

economical in comparison with other type s. Based on a study of

existing bridges, Thul [22J has compared the center span length to

the total length of three-span continuous girder bridges, of cable

stayed bridges, and of suspension bridges. His re suIts are sum

marized in the following table:
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(
center Span)010

Center Span Total span IC

Three-span continuous girder bridges up to 700 ft.

Cable-stayed bridges 500-1200 ft.

Suspension bridges 1000-4000 ft.

30% - 50%

50%-60%

60%-70%

This table indicates that suspension bridges have a lower economic

limit of approximately 1000 ft., with a ratio of center span to total

span of approximately 600/0.

In addition to the economic advantages, the suspension bridge

has several other points of superiority. It is light, aesthetic, and

graceful; it easily provides a roadway at low elevation, and it has a

low center of wind pressur(~. It is also easily constructed, using

materials that are easily t]>ansported. There is little danger of

failure during erection, and after completion, it is the safest

structure known to bridge E:ngineers. In other structures, the

failure of a single truss or girder member may precipitate a

collapse; in a suspension b:t'idge, the rest of the structure will be

unaffected.

1-2-2. Coordinate systems

The following coordir.ate systems are used for the typical

three-span suspension bridge shown in Fig. 1-1. These coordinate

systems have been chosen because they are appropriate for a wide

class of suspension bridges, including a single suspended span as

well as multiple suspended spans, either continuous or hinged.
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Obviously. any number of spans may be considered.

1. For the cable, the x. -axis of the i th span (i=l, 2,3) is defined
1

as the horizontal line starting from the vertical plane pas sing

through the left support of each span as shown in Fig. I-I,

while the ordinate y. of the i th span is measured downward
1

from the closing chord of each span, i. e., the straight line

connecting the extremities of the cable in the i
th

span. (Note:

in Fig. I-I, the subscript i has been left out for convenience)

2. For the stiffening girder s (or trus se s), the x. -axis of the i th
1

span (i= 1, 2, 3) is defined along the centerline of the span with

the origin located at the left support of that i th span.

3. For the towers, the x' -axis is taken to be the centerline of

the tower column or leg with the top of the column (or leg)

being the origin, as shown in Fig. 1-2-b.

1-2-3. Fundamental assumptions

In a consideration of the different factors affecting the dynamic

analysis of a suspension bridge, the following general assUluptions and

approximations are made:

1. All stresses in the bridge remain within the limits of propor-

tionality and thus follow Hooke's law.

2. The initial dead load is carried by the cable without causing

stress in the stiffening girder (or truss).

This condition is generally desirable since it simplifies con-

struction. However, if the bridge is erected in such a manner
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dy(x)

~Vg+ ,h dx
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S+~dX
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Cable
I

E !, I
II (x') i

w,(x') I

The Tower Equivalent
System

Finite Element
Analysis

(b) DEFINITION DIAGRAM FOR THE TOWER

Fig. 1-2
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that the dead load dces cause certain stresses in the stiffening

structure, this may be compensated for. in the dynamic

problem. by taking into consideration all the initial stresses

involved.

3. The cable is assumed to be of a uniform cross section and of a

parabolic profile under dead load. The assumption of a para

bolic profile require s that the ratio of the sag to the span be

kept relatively small; in other words, the cable slopes are,

and remain. small. For example, the analyse s to be presented

are valid provided that the ratio of sag to span is 1:8 or les s.

so that the weight of the cable may be assumed to be uniformly

distributed along the span rather than along the length of the

cable (see Appendix I-a).

4. The cables are as su:ned to be perfectly flexible. In con

sideration of the sm;:l.ll m.oment of inertia of the cable as

compared with that (If the stiffening structure, this assump

tion is obviously clo:,e to being exact for the purpose of

determining horizontal cable tension and the stresses in the

stiffening structure. The flexural stiffness of the cables

was thoroughly inve::tigated, and it was found that the bending

stresses in the cablE s could be neglected.

5. The vibrational suspender forces, instead of being treated

as concentrated fore es, are considered as distributed loads

in the same manner 3.S if the distance between the suspenders

were very small. th{~ suspenders thus form.ing a continuous

sheet or wall without shearing resistance.
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6. The suspenders or hangers are considered inextensible and

are assumed to remain vertical during the vibration of the

bridge; therefore, the vertical vibrational displacement of

the cable, v (x., t), i = I, 2, 3, and that of the stiffening
c 1

girder (or truss), v .(x., t), i= 1,2,3, are assumed to be
gl 1

identical (see Fig. 1-2-a); i. e.,

v (x., t) = v .(x., t) = v.(x., t)
c 1 - gl 1 1 1

,i=l,2,3, (1. I)

where v.(x., t) represents the generalized vertical displace
1 1

ment of the vibrating system. Consideration of the effect of

the suspender elongation results in a negligible gain in

accuracy (Johnson, Bryan and Turneaure [26J ) at the expense

of a notable complication of the analyses, and it is therefore

not to be recommended. Steinman [3J estimates the contribu-

tion of the deformation of the suspenders to be only a fraction

of one per cent. Selberg [16J indicates that the change of

inclination of the hangers is greatest near the center of a

symmetrical stiffening structure. On the other hand, he

finds that the influence of the hangers' deviation from the

vertical upon the vibration of the bridge is negligible even

for a slender stiffening structure.

7. To stay within the linear theory, small vibrational displace-

ments from the position of the static equilibrium have been

assumed; i. e., in the following analysis, attention will be

restricted to small vibrations in the vertical plane.
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8. The additional horize>ntal component, H(t), of cable tension

caused by the inertia forces is small in comparison with H ,w

the initial horizontal component of cable tension due to dead

loads, i. e. ,

H + H(t) '" H
'f>! - W

(1. 2)

Similarly, the additional axial force P(t) due to inertia forces

at the top of the tower is small compared with that due to dead

loads, P , i. e. ,
w

P +P(t).!::!P
w w

(1. 3)

In studying free vertical vibration, it has been assumed that

there are no live loads on the vibrating bridge, vibration damping

of the structure is neglected, and the total mass of the bridge deck

is assumed to be concentrated along the centerline of the stiffening

girders (or trusses). Furthermore, the initial curvature of the

stiffening structure is considered small in comparison with the cable

curvature, and therefore it can be neglected.

Other assumptions wUl be discussed as they are encountered

in the development of the a1.alysis.
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1-3. Analysis of Suspension Bridges Having Negligible Tower

Stiffness

In order to lay a foundation fro:m which later work is herein

developed. the differential equations of :motion of a typical three-

span suspension bridge and their associated boundary conditions

will be derived by :means of Ha:milton's Principle. Application

of this variational principle requires a knowledge of the different

expressions of energy of the vibrating bridge structure (which will

also be very useful later on). In addition. the use of Ha:milton's

Principle has the advantage of furnishing. auto:matically. the correct

nu:mber of boundary conditions and their correct expressions. There

is no necessity to solve the differential equations of :motion nor the

resulting transcendental frequency equations. since they have both

received considerable attention froITl other investigators.

In the following analyses. the horizontal co:mponents of cable

tension. Hand H(t) due to dead loads and inertia forcesw

respectively. are assu:med to be the sa:me on both sides of the

tower in all spans of the cable. (There is no tower resistance

to displace:ment at the top.) This presupposes that the tower

cable saddles are free to :move horizontally either upon roller

nests under the saddles or via rocker tower bases. The for:mer

construction. however. is now considered obsolete.
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1-3-1. Potential eneJ~gy of the cables

As a re suIt of small, free vibrations about the position of static

equilibrium, the horizontal. component of cable tension, H will
w

change to [H + H(t)], and the differential length of the cable ds.,w 1

in the i th span will inc rea se to (ds. + 6.ds.) • as shown in
1 1

Fig. 1-Z-a. (Note: The subscript i has been left out of Fig. 1-Z-a

for convenience. )

Now, the potential energy of this cable element,

expressed as

ds. , can be
1

{ d3.}
dV (x., t) = [H +~H(t)J d.2:-c 1 W ;{.

1

6.ds.
1

~~

W.v dx.
1 C 1

i=I,2,3 (1. 4)

where 6.ds. is the cable s:.:retch of the differential length ds. ,
1 1

4. is the dead weight of tht cable (w ) per unit length of the i
th

1 c

span plus the dead load of the stiffening girder or trus s (w .) pergl

unit length of that i th span: and v c the vertical vibrational dis-

placement of the cable. The first term in Eq. 1.4 is the strain

energy stored in the element ds. and is equal to the average force
ds. 1

[H +~H(t)J dx
1

times the cable stretch 6.ds.. The factor ~ is
w i 1

needed due to the fact that H(t) increases from zero to its maximum
ds.

value H(t); -d1 is the co::ine of the angle of inclination, <Pi' as
Xi

shown in Fig. 1-2-a. The second term represents the gravity energy,

i. e., the potential energy 1::>s s due to the lowered position of the dead

load.
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It is seen from the geometry of displacement (Fig. 1-2-a) that,

in static equilibrium, the element of length ds. of the cable can be
1

given by

222
ds. = dx. + dy.
111

i = 1, 2, 3 . (1. 5)

When the cable is displaced (in-plane), its' length increases to
au

(ds. + 6ds.), dx. increases to dx. + -ac dx. where u is the
1 1 1 1 X. 1 C

1

horizontal movement of the element, and dy. become s
av 1

dy. + a c dx.. Then, for the vibrational displaced position,
1 x. 1

1

2 aU)2 ( av )2
(ds. + 6ds.) =~dX. + -ac dx. + dy. + a c dx.

1 1 1 X. 1 1 X. 1
1 1

i = I, 2, 3,

or

2 au (au )2
2ds.6ds. + (6ds.) = 2dx. -ac dx. + ~

1 1 1 1 X. 1 ux.
1 1

2 aVe
dx. + 2dy. n- dx.

1 1 ux. 1
1

i = 1. 2, 3 •

In general. u (x., t) is small in comparison with v (x., t); therefore,
c 1 c 1

the increment in the length of the cable element 6ds. , correct to
1

the second order of small quantities, is

au dx. av dy. 1 (aV)2 dx.
6ds ~ --.£ __1 dx + --.£ __1 dx + _ --.£ 1 dx

i ax. ds. i ax. ds. i 2 ax. ds. i '
1 1 1 1 1 1

i = 1, 2. 3 .

(1. 6)

Integrating Eq. 1. 4 over all spans and substituting Eq. 1. 6,

the potential energy V (t) of the cable may be written as
c
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3 i.. a i.. ad

Vc(t) =L{[Hw t f3 H(t)][ [1 a:~ dXi t r
1
(O:~)(d:~)

i= 1 Jo 1 Jo 1 1

dx.
1

(1. 7)

~~ }w. v dx. ,
1 C 1

where £. is the length of th.e i th span.
1

Integration of the second term (in the second set of brackets)

by parts gives

i
li

(OVc)(dYi)
ax. dx.o 1 1

dy. i..
dx. = _!. V 11

1 d}li c 0

2
d y.

1
--2- Vc dXi
dx.

1

i = 1, 2, 3 .

(1. 8)

providing that (:::.) and t: ::~) can be treated as continuous
1 1

functions of x. and that v (x., t) vanishes at the ends x. = 0 and
1 c: 1 1

x. =£ .•
1 1

Appendix I-a gives the parabolic profile of a hanging uniform

cable of the i th span having a load uniformly distributed along the

horizontal span. It also gives the other cable profiles. The parabolic

profile is expressed as

is the sag, 1:, and the
1

i,< 2 2

( ) w!i [~.i_(~.i) ]Yi xi = 2H x. x.
w 1 1

The cable deflection at mid- span (xi =:i)

i = 1, 2, 3 . (1. 9)



-32-

horizontal component of cable tension is

* 2w.i.
H = 11

W 8Ji (1. 10)

With the aid of Eq. 1. 10, Eq. 1. 9 is more conveniently written as

Eqs. 1. 9 and 1. 11 give

i = 1, 2, 3 . (1. 11)

2
d y.

1
-2-
dx.

1

*W.
1= =-II
w

i = 1, 2, 3 . (1. 12)

Now, Eq. 1. 8, with the aid of Eq. 1. 10, becomes

Iii (8V )(dY.) ~. fiic 1 1--dx=- vdx
8x. dx. i H c io 1 1 W 0

i = 1, 2, 3 . (1. 8')

U sing the result of Eq. 1. 8', the potential energy V (t) of thec

cable (Eq. 1. 7) may be written as

3

Vc(t) = L{[ H w + ~H(t)J'
i= 1

U

c
r;=\
x.=O

1

11'i(OV ) 2
+ .6H -.£

:2 wax.
o 1

dx.
1

£'!:l d

[r1(VV)( .. Y.)
+ ~ H(t) J ox~ dX~

o 1 1

(1. 13)

The assumption that there are no movements of the tower tops

or of the anchorages makes it possible to reduce the potential energy,

V (t) , of the cable (Eq. 1. 13) to
c
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1. 0 2£. 0 d

{ HWrl (O:~) dXi + H(t{ r
1
(8:~)(~9J

O
1 J

O
1 1

dx.
1

(1. 14)

In order to put Eq. L 14 in a more convenient form l reference

can be made to the cable equation which relates the stretching of the

cable element to the geometric displacements which it undergoes. A

derivation of this general cable equation can be found in Appendix I-b.

In the present context; the equation reads

H(t)L .
el

E A
c c i£i (OV )(dY.) 1iii (OV )2= --.£ __1 dx. +._ --.£.

ax. dx. :. 2 ax.
o 1 1 0 1

dx. ± Et 6. T. Lt'
1 1 1

(1. 15)

where E is modulus of e:,asticity of the cable material, A is the
c c

effective cross-sectional a:~ea of the cable l E
t

is the coefficient of

thermal expansion. 6. T. i:, the inc remental change in temperature
1

in the i th span (it is assumed uniform along the i th span) and L .
el

and L
ti

are virtual length:; of the cable in the i th span; they are

defined by

£. d 3

i1 ( S.)L = __1

ei dx.
o 1

dx.
1

and iii (dS i )2
d

dx.
x. 1

o 1

i = 11 2, 3 . (1. 16)

The cable equation of :::ompatibility (Eq. 1. 15) can be written for

the whole cable, i. eo, for a suspended cable hanging between two rigid

anchorages and passing over vertical towers, by summation over the
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three spans, as

H(t)L
E

EA
c c

(1. 17)

3

where L E = L
i= 1

L . for the entire length of the cable.
el

Substituting Eq. 1. 17 into Eq. 1. 14, and assuming that the

thermal effect is of minor importance and may consequently be

neglected, then the potential energy of the cable is

[ fi( OVc )2 ] llH
2

(t) • LEJ
Hw J ox. dxi + 2 l E A
Ole c

(1. 18)

It will be recognized that the second term of Eq. 1. 18, which

includes the area, the virtual length and the modulus of elasticity of

the cable, expresses that part of potential energy stored elastically

in the cable, i. e., the strain energy stored in the cable. The first

term contains the constant H and the expression for the change in
w

length of the cable. and actually represents the potential energy

resulting from the elevation of the center of gravity of the entire

structure while the cable is momentarily distorted under the influence

of the inertia forces. These two terms of the potential energy expres-

sion, Eq. 1.18, were adopted by both Vincent [15J and Bleich [9J,

though on different grounds.

To further clarify the two terms of the preceding potential

energy expression (Eq. 1. 18) via a physical interpretatiot4 and to
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examine the relations betw~en the energy treatment and the conven-

tional, commonly used lilin.earized deflection theory,'i! one must con-

sider the strain energy and the strainless or gravitational energy

separately.

The strain energy stored in the cable due to the change in

tension associated with H(:;) is designated by V (t). At any point
ds. ce

in the cable, this change of tension is H(t) dx~ so that the strain
1

energy amounts to:

[
ds ]2

3 £i H(t) dx~
Vce (t) = L f 2]: A .

i= I 0 c c

= ~f£i H
2

(t)
dS i L 2E A

i= 1 0 c c
(

dS. )3__1 dx
dX

i
i

which, upon using the virtual length definition of Eq. 1. 16, will give

(1. 19)

which is exactly the second term of Eq. 1. 18.

Now, to clarify the first term of Eq. 1. 18. assume an inextensible

cable, and consider the char.ge in potential energy of the system arising

from movement within the gravity field. Due to the vibrational dfs-

*placement V , each element of weight w.dx. of the bridge will lose
c 1 1

*potential energy equal to W.v dx. . Thus the total change of potential
1 c 1

energy arising from gravity will be

V (t) =cg

3 p..

)' fl *- L w. v dx..
i= 1 0 1 C 1

(1. 20)
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But, for an inextensible cable, the elastic extension of the
H(t)· L E .

cable due to vibration, E' A ,given by Eq. 1. 17, is zero, and
c c

therefore Eq. 1. 17, with the aid of Eq. 1. 8 ' , is reduced to the inex-

tensibility condition:

,,- H 3 ~i(av)2
;'i Vc dXi = 2

w L fax~ dxi
i=1 0 1

(1. 21)

Thus incorporating the inextensibility condition(Eq. 1. 21), the

change in potential energy arising from gravity can be written as

(1. 22)

which is identical to the first term of the equation for the potential

energy of the cable, Eq. 1. 18. There is thus an effective gravity

stiffness as sociated with the vibration of the cable of the suspension

bridge. This emphasis on gravity stiffness brings to the fore a type

of stiffnes s that is not generally familiar but which helps to present

the problem of the dynamics of suspension bridges in clear physical

terms, in a way that brings out the nature of the nonlinearity pre sent.

It is worthwhile to indicate that the so-called "Linearized

Deflection Theory of Suspension Bridges" in common use, is often

presented in a form that appears to imply that the gravity stiffness

of the cable is negligible; this is obviously misleading and results

from neglect of the higher order term in the cable equation, Eq. 1. 17,

when it is used to obtain the expres sion for zero extension. This first
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approximation, which corresponds to the condition of inextensibility

and which has been used vE:ry commonly, is expressed by the relation

3 1.

,\ f1 V dx. = 0
Lf c 1

i=] 0

Now Eq. 1. 23 sugge~:ts that the change in potential energy

arising from gravity, Eqs. 1. 20, 1.21 and 1.22, approximates zero

for the inextensible cable.

It is seen by compar:.ng Eq s. 1. 21 and 1. 23, that the conventional

approach treats the integrd in Eq. 1. 23 as approximating zero, as

though the gravity stiffnes~: of the cable, given by Eqs. 1. 20 and 1. 22,

were negligible and as thovgh the cable were in a state of neutral

equilibrium! This is obviously paradoxical. Actually, Pugsley [11 ]

was the first one to examirle more critically the use of the expression

for an extensible cable (Eg. 1.21), when he studied the nonlinear

response of a simple cable to a static concentrated load by using an

energy approach. More discussion and alternative vie"o/points on the

inextensibility condition of the cable can be found in Appendix I-c.

1-3-2. Potential enErgy of the suspended structure

The potential energy stored in the stiffening girders (or trusses)

is in the form of strain enErgy due to the effects of bending moments,

shearing forces and normal forces (see Fig. I-2-a).

The total vertical vibrational displacements, v .(x., t) or
gl 1

v. (x., t) , of the i th stiffening structure at a point x .• consists of
1 1 1

two parts, one caused by bending and one by shear, so the slope of
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the deflection curve at the point x. can be written as
1

avo (x., t)
1 1
'.:l == fl· (x., t) + [3. (x., t)ux. 1 1 1 1

1

i == 1, 2, 3 , (1. 24)

where fl. (x., t) is the slope of the deflection curve when the shearing
1 1

force is neglected (i. e., it is rotation due to bending) and [3. (x., t) is
1 1

the angle of shear at the neutral axis in the saIne cross section. As

usual, the linear deflection and the angular deflection are assuIned sInall.

FroIn the eleInentary flexural theory, the relation between the

bending InOInent and the bending deforInation is derived as

ofl. (x., t)
1 1

M. (x., t) ::: E .1 . (x.) -"'"'"8--
1. 1 g1. g1. 1. xi

i == 1, 2, 3 , (1. 25)

where E . is the Inodulus of elasticity of the stiffening structure in
gl

the i th span and I . (x.) is the area InOInent of inertia of the
gl 1

stiffening girder (or truss) about its horizontal axis in the i
th

span.

It is worthwhile to note that, in the case of a stiffening truss

d~
I .(x.) ::: 2A.(x')-4l :::

g1 1 1 1

d~
1

A.(x·)-2
1 1

i == 1,2, 3 , (1. 26)

where A.(x.) is the area of one chord at section x. in the i th
1 1 1

and d. is the depth of the vertical truss in the i th span.
1.

span

The re lation between the shearing force and shearing deforInation

1S given by

S. (x., t) == G . ~ . (x.) [3. (x., t)
1 1 g1. Vl 1 1 1

i == 1,2,3, (1. 27)
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where G. is the shear m~dulus of the i th stiffening structure and
gl

~ . (x.) is the shear resistance coefficient of the vertical web plate
VI 1

(or diagonal and vertical truss members). The value of the shear

resistance coefficient depeads on the effective cross-sectional area

of the web plate (stiffening girder); in the case of a truss, g. depends
VI

on the equivalent solid web section, i. e., on the sectional area of the

diagonal and vertical members in the truss panel. In the latter case

it also depends on the type of truss system used. The shear

resistance coefficients for the different types of trusses which are

commonly used as stiffening trusses can be found in Chapter II.

Because of shear alone, th~ element undergoes distortion but no

rotation.

Now the potential ene rgy due to vertical displacement can be

expre s sed by

3£. Q () 3 P..
1L i1

v7J l xi' tIL i1

V (t) = -2 M. (x., t) J dx. + -2 s. (x., t) [3. (x .• t) dx. ,gv 1 1 X. 1 I 1 . 1 1 1

i= 1 0 1 i= 1 0

(1. 28)

3 £. (Q'Yl (»)2 3 P..1 1 v"ixi,t 1 2
=-2)'J: E . I .(x.)- a dx. +-2)' [G .g.(x.)[3. (x., t)dx..L gl gl 1 X. 1 L gl VIII 1 1

i= 1 0 1 i= 1 0

It is important to nob:: that the first term of this equation

represents the strain ener~;y stored in the flanges (or chords) of

the stiffening structure, while the second term represents the strain

energy stored in the web system of the stiffening structure as a result

of transverse shear deforrnation. The inclusion of shear flexibility in
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the dynamical beam problem is known as the Timoshenko beam

theory, in contrast to the Bernoulli-Euler theory, in which there

is no transverse shear deformation.

The strain energy of the Timoshenko beam, Eq. 1. 28, may be

rewritten, conveniently, as

3 1. !:I 2 3 1. !:I )21 1 uTI·· 1 1 uv.
V (t) = -2 ') IE. I .(---2:...) dx. +-2 ') I G . g .(~ - 1'/. dx.gv L gl gl !:I 1 L gl V1 ux. 1 1

. 1 0 ux. . 1 0 11= 1 1=

(1. 29)

Using Bernoulli-Euler theory, Eq. 1. 24 reduces to

and it follows from Eq. 1. 25 that

2a v.
1

M. = E .1 . --2
1 gl gl AX.

1

i=1,2,3,

i = 1, 2, 3 ,

(1. 30)

(1. 31)

The strain energy of the Bernoulli-Euler beam can now be

written as

3 1. (!:I2 ~2. 1 1 u V.

V (t) = -2 ') IE. I . -2
1

dx.
gv L gl gl a 1

i= 1 0 xi

In general, the shear deformation effect plays an important

(1. 32)

role in the vibration ofhigher frequencies when a vibrating beam is

subdivided by nodal cross sections into comparatively short portions.

In other words, for the purpose of taking into account the effects of

the cross-sectional dimensions on the frequencies, shear deformation



-41-

m.ust be considered. Wher. the cross-sectional dim.ensions of the

beam. are sm.all in com.parison with its length, Bernoulli-Euler

theory can be used with acceptable accuracy.

The expression for the potential (or strain) energy of the

stiffening structure, deforming longitudinally; is

3 1. '=' ( »)2
1 1 uu . x., t

_ ~ 1
V (t) - -2 )'1E . A . (x.) (3 dx.ge L gl gl 1 X. 1

i= 1 0 1

(1. 33)

where u . (x., t) is the longitudinal displacem.ent of the i th span
g1 1

and A .(x.) is the cross-sectional area. In general, the longitudinal
g1 1

vibrational displacem.ent u .(x., t) is very small as compared with the
g1 1

vertical displacem.ent v . b~., t).
g1 1

The following analysi s will consider only the vertical vibrational

displacem.ents of the structure.

1-3-3. Kinetic energy of the vertically vibrating suspension

bridge

In the Tim.oshenko beam. theory, the kinetic energy of the

vertically vibrating bridge is due to translation and rotation and

is expres sed as

_.!. L:3 11i * (OVi(Xi , t»)2 .!.L:3 fli (a1Ji (Xi , t»)2
T (t) - 2 m.. (x.) '='j dx. + 2 J . (x.) at dx. ,v 1 1 u; 1 g1 1 1

i= 1 0 i= 1 0
(1. 34)

*where m..(x.) is the m.ass of the bridge (1. e., cables and stiffening
1 1

structures) per unit length of the i th span, and J . (x.) is the m.ass
g1 1
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moment of inertia per unit length of the i th stiffening structure

about the neutral axis which passes through the center of the girder

(or truss). But J . (x.) . is related to I . (x.) by
~ 1 ~ 1

m . (x.) 2
J . (x. ) =p . I . (x. ) = Agl ( 1) I . (x.) = r. (x.) m . (x. )
gl 1 gl gl l' . x. gIll 1 gl 1

~ 1

i= 1.2.3

(1. 35)

where p . is the mas s density of the i th stiffening structure.
~

is the mass per unit length of the i th stiffening structure and

the radius of gyration about the neutral axis.

m . (x.)
gl 1

r.(x.) is
1 1

When the cross-sectional dimensions are small compared with

the length of span. the rotary inertia effects represented by the

second integral in the kinetic energy expression. Eq. 1. 34. can be

neglected. Therefore. the kinetic energy expression of the vibrating

bridge reduce s to

.....
T (t)

v
(1. 36)

The kinetic energy due to longitudinal deformations will not be .

considered since only vertical vibrational deformations are assumed.

1".3 -4. Variational formulation of the eguations of motion

a. Derivation of the general eguations of motion

For convenience and simplicity, the differential equations of

motion will be derived by Hamilton's principle, without taking into

account the effects of shear deformations and rotary inertia. However.
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Appendix I-e contains the c.erivationofthe governing equations of

m.otion including the effect of transverse shear deform.ations and

rotary inertia.

Ham.ilton's principle is given by the integral form.

t zJ 0 (T - V) dt = 0

t l

(1. 37)

where T is the total kineti.c energy of the vertically vibrating birdge,

V is the total potential energy of the system., including both the strain

energy and the potential energy of any conservative forces, and 0 is a

variational operator taken during the indicated tim.e interval.

The variation of kinetic energy, T (t) , has the form.
v

or (t) =
v

therefore,
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L
3

ft2 iii ,', a2
v.-.' 1= - m.(x.) -2- av. dx. dt

1 1 at 1 1
i= 1 t

1
0

(av.) dtJ dx.
1 1

(1. 38)

Note that the order of integration with respect to x. and t is
1

interchangeable J and the variation and differentiation operators are

commutative,so the integration can be performed by parts. Also, by

definition, aVi (xi' t) is zero at t = t 1 and t = t 2 .

The total potential energy, V(t). of the vertically vibrating

bridge can be expressed, from Eq. 1. 14, after substituting v. for
1

V J and from Eq. 1. 32, as
c

[
i. (0 ) d i. ~ 2 ]1 V. y. 1 1 vv.

+ H(t) i 8x~ (dx~)dxi +zf (ox~) dXi
0 11 0 1

E . I . ( 0

2

v2i )2 dx.}
gl gl ~ 1vx.

1

(1. 39)
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and therefore. the variation of the total potential energy may be

written as

iii <:>2v. (<:>2v .) }
+ E. I . ~21 a _u-z!' dx.

gl gl <:> <:> 1
O

ux. ux.
1 1

=~ 1H ri
aVi

L-J w J ax.
i= 1 0 1

a
~- (av.) dx.
UX. 1 1

1

+ H(t) [t (::) a
ax.

1

-;. (av.) dx.}
ax. 1 1

1

then integrating by parts. if it is necessary. yields

3 1 <:> 1. 1. <:>UV. 1 1 a uv.
aV(t) ="\' .H~ av. I ··f (-<:> (H ~) av. dx.L..J w ux. 1 ux. W vx. 1 1

i= 1 1 0 0 1 1

aZv. ]
-ZI av.dx.

<:> 1 1
UX.

1

<:>2 i. Q2) J..
U vi a 11 a ( U vi 11

+E.I.-Z--Q-(ov.). --Q-E.1.-Z- av.
gl gl Q vx. 1 ux. gl gl Q 1

U~ 1 0 1 U~ 0

1. Z 82 .+[ ~Z (E .I.~~) av. dx.}
Q gl gl a ,. 1 1

O
UX. x.

1 J
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~{ '[(, ) aVo dy;. a
... a V(t) =~ ,Hw + H(t) ax~ + H(t) d: - ax.

. 1 1 1 1
1=

(
E. I . aZvZi )], av. iii

gl gl ax. 1

1 0

Za v.
1

+E.I·-zgl gl '.:I
ux.

1

a £I
i

- (av.)ex. 1

1 0

Z Za v. d y.
__1 +H(t) __l

Z Zex. dx.
1 1

aZ ( aZvi )
-- E I --a Z gi gi a Zx. X.

1 1

(1.40)

Introducing Eqs. 1. 38 and 1. 40 into Eq. 1. 37 after using Eq. 1. lZ.

gives

3 t z

-~~
1
Iii [ Ie aZv. aZ ( azv.) ( ) aZv.

~.(x')-Zl + --Z E. I .(x')-Zl - H +H(t) -Zl
1 1 '.:It '.:I gl gl 1 a w a

O
u vx. x. X.
111

~. ] ' aZv. (av.) iii
+H(t)H

1
av. dx.- E . I . -Zl a ~

1 1 gl gl '.:I vx.
w uXi 1 0

[
a ( aZv. )

+-EI--1

aXi gi gi ax~
1

( )
avo dy. ] 1.li- Hw + H(t) ax~ - H(t) dX~ avi
11 0

dt ==0

(1. 41)

The integral nlUst vanish for any arbitrary values of av. and

(
av. ) 1

a~· • so these variations can be set equal to zero at x. = 0 and
vx. , 1

1

X. =1.. i = 1. Z. 3 and different frolll zero throughout the dOlllains
1 1

O<x.<1. .• i = 1. Z. 3. Therefore. one lllUst have
1 1

Z Z
w a v. '.:IZ ( a v.)'I' 1 v 1
lll.(X·)-z- + -Z E. I .(x.) --Z

1 1 at ax. gl gl 1 ax.
1 1

i = 1. 2. 3 •

( )

aZv. ~.
- Hw + H(t) --t + H 1 H(t) = 0

ax. w
1

(1.4Z)
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where
E A

H(t) =~LE
(1. 43)

Eqs. 1. 42 and 1. 43 a.re the basic differential and integral

equations expressing the vertical vibration of suspension bridges.

The symbol of smnmation in Eq. 1. 43 is applied when the bridge has

suspended side spans. EqB. 1. 42 and 1. 43 are the well-known

equations in the theory of suspension bridges.

Furthermore, becauHe of the arbitrary nature of the variation,

in considering Eq. 1.41, O1.e can write

2a v.
1

E.1 '-2
gl gl ox.

1

and

i = 1, 2, 3 , (1. 44)

2

[
0 ( OVi )- E 1--

oXi gi gi OX~
1

( )
avo dy. ]

- H w +H(t) ox~ - H(t) dX~
1 1

P.li =
Bv.

1
o , i = 1, 2, 3 ,

(1. 45)

which take into account the possibility that either

2a v.
E . I . __1 = 0

gl gl a 2x.
1

and that

or
avo

1 = 0ax.
1

at X. = 0 , x. =1..
1 1 1

i = 1, 2, 3 ,

(1. 46)

2

[~ (E . I . a V2i ) _ (H + H(t)) ~vi _ H(t) ddx
Yi

] = 0
UX. gl gl n W uX. .

1 uX. 1 1
1

(1. 47)

or v. = 0 at X. = 0
1 1

x. =1..
1 1

1 = 1, 2, 3 .
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Eqs. 1. 46 and 1. 47 represent the boundary conditions associated

with the equations of motion for vertically vibrating suspension

bridges. The first part of Eq. 1. 46 implies that the bending moment

at each end vanishes, as in a bridge which has a stiffening structure

with a free end or a simply supported end (hinged end). The second

part of Eq. 1. 46 indicates that the slope of the deflection curve

vanishes at each end, such as when the ends of the stiffening structure

are fixed (built-in ends). The first part of Eq. 1. 47 requires that the

vibrational resisting shear, which is developed by the vibration of the

stiffening structure at the ends of each span, be equal to the vibra-

tional shear which is developed by cable forces. The second part of

Eq. 1. 47 meanS that the vibrational displacement is zero at each

end. Hence, both the natural and geometrical boundary conditions of

the problem are pre sented.

Thus, Hamilton's principle has furnished the fundamental

differential equation of vertical vibration corresponding to the

defined energy, and it furnished conveniently all the most meaning-

ful boundary conditions.

The differential equations including the effects of shear

deformations and rotary inertia, derived in Appendix I-d, are:

,I_ a
2

v. .;:,2 ( a2v.) 2 ~ E. I . )"I' 1 U 1 gl g1m--+-- E 1-- -m r 1+
i at2 ax~ gi gi ax~ gi i G .g .r.2

1 1 glV11

2 2
m .r.+ g1. 1

G .g.
g1. V1.

4
8 v.

1

8t
4

2

( )
a v.

_ H +H(t) __1_

W a 2ux.
1

w.
+ H 1. H(t) = 0

w

4a v.
1

i = 1, 2, 3 ,

(1. 48)
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4a v.
1

shearing deformations is

m2.r~ a4v.)+ g1 1 __1
G .JJ.. Qt4g1 V1 u

E .1 .
g1 g1

G .g.
g1 V1

( m gi

, while the effect of the

represented by the terms

where the effect of rotary j,nertia is represented by the term

4
2 a v.

m .r. _--,,-_1--,,-

g1 1 ax~at2
1

b. Conventicnal linearized theory

The equations of moHon, the cable equation and the boundary

conditions which were derived above, have nonlinear terms:

the term

2a v.
1H(t) -.,a ,.x.

]

(Eqs. 1. 42 and 1. 48)

avo
ii. the term H(t) 3x~

1

(Eq. 1. 47) , and

iii. the term
i.. (Q )21 uV i

- -- dx.2feb:. 1
o 1

(Eq. L 43)

Two useful simplificc,tions are possible as aids in linearizing the

problem:

1. It has been as sumed ';;hat the horizontal component of cable

tension H(t) due to inertia loads is small compared with the

initial tension H w
In this case, Eq s. 1. 42, 1. 47 and 1. 48

can be simplified by i:he omission of H(t)" to read:

2 2
,'. a V. Q2 ( a v.)".' 1 u 1
m.(x·)-2- +-2 E .1 .(x;)-2-

1 1 at ax. gl gl ;, ox.
1 1

2 >.'<a v. w.
H -21 + _1_ H(t) = 0 , i = 1,2,3 ,

W Q H
ux. W

1

(1. 49)
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dy. J
- H(t) dx: = o at x. = 0 , at x. = i..

III

i= 1,2,3, (1. 50)

2 2
-'_ 11 v. ~2 ( 8 v.)
~ 1 u 1

m --+-- E I --
i ot2 8x~ gi gi ox~

1 1

4

( E.1.) a v.

.
1 + gl g.1

2
_-=-_I=-

G ox2.ot2·M·r.
gl VIII

2 2
m .1".

+ gl I

G .g.
gl VI

4o V.
1

ot4 -

2
- m .r.

gl 1

2 *a v. w.
H __1 + _1_

W n 2 Hux. W
1

H(t) = 0 i = 1, 2, 3 ,

(1. 51)

. 2. Since small vibrational displacements have been assumed, the

nonlinear, second order term in the cable equation (Eq. 1. 43)

may be neglected, and the cable equation is reduced to

,....., EA 2:3 [Ii. i ( ov. )(dY.) JH(t) = c c _1 _1 dx.
L E ax. dx. 1

i=l 0 1 1

or (by using Eq. 1. 8 I)

(1. 52-a)

3 ~~ i.
E A '"""' [ W. IiH(t) = ~ c L.J HI

E i=l w 0
v. dx.J

1 1
(1. 52-b)

The basic equations of motion (Eq. 1. 49 or Eq. 1. 51) thus

become linear differential equations. These equations have been

studied at some length by Steinman [14J and by Bleich [9J. The

former concentrated on study of bridges having an inextensible

cable. Bleich's work on this problem, using the full equations of

motion (Eq. 1. 49), allowed for the elastic extensibility of the cable
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and led to expressions for;he frequency equations that are nmch

more complicated and that. therefore. could not be solved

explicitly.

Another way of treating the linearized problem is by means of

energy relations. using tri 50nometrical series for the approximate

representation of the nlOde3 of vertical vibration. This series

method was. as in so many structural problems, first applied by

Timoshenko. Then the application of the Rayleigh-Ritz method in

dynamics leads to a. systenl of linear. homogeneous equations deter

mining the natural frequencies. Bleich [9J used this approximate

technique for the determinc.tion of the first three modes of vertical

vibration (and their natural frequencies) of suspension bridges with

hinged and continuous thre€>span stiffening structures.
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1-4. A Finite Element Approach to Vertical Vibrations

The finite element method~ an effective and commonly used

discretization procedure~ provides a convenient and reliable idealiza

tion of the structure under consideration and is particularly effective

in a digital-computer analysis.

The first step in the finite -element idealization of the structure

involves dividing the suspension bridge into an appropriate number of

segments~ or elements. Their size is arbitrary; they may all be of

the same size or may all be different. Then~ a set of nodal points is

selected along the boundaries of these elements. The displacements

of these nodal points are taken as the degrees of freedom (generalized

coordinates) of the system.

The deflection of the complete structure can now be expressed

in terms of these generalized coordinates by means of an appropriate

set of assumed displacement functions. In this case. however~ the

displacement functions are called interpolation functions because they

define the shape of the displacement curve between the specified nodal

displacements. Furthermore~ as the displacements associated with

any degree of freedom a~e non-zero over only the neighboring finite

elernents~ the mass and stiffness matrices will be very sparse~ and

the degrees of freedom can be ordered so as to arrange the matrices

in banded forrn~ leading to great reductions in the computational effort

and the computer storage required for analysis. However. as is dis

cussed later~ there is a case where evaluation of the interaction among

all elements is necessary in order to formulate the elastic stiffness

matrix. and this necessitates a full matrix.
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The evaluation of the stiffness rnatrices for the finite elements

involves expressing the po1:ential (or strain) energy of the element or

the assemblage in terms of nodal displacernents. which leads to an

expression for the stiffnes:l ll1atrices in terms of the finite element

interpolation functions and various other structural properties.

Except for sa.tisfying the appropriate continuity conditions at inter

elernent boundaries, considerable freedorn exists in selecting the

interpolation functions. The computational effort required in deter

mining the elernent stiffness :matrices, and the accuracy with which

the element represents the stress and deformation state in the

structure, depends on the interpolation functions, i. e., on the order

of the polynomial if interpolating polynomials are being used.

The element consistent rnass lTIatrix can be deterlTIined in a

manner sirnilar to the forrrmlation of the stiffn.ess :matrix. Basically,

the kinetic energy of the el,~Ynent is expressed in terms of the nodal

velocities, leading to an expression for the mass matrix in terms of

the mass density and inte:qiolation functions (which were used in

determining the stiffness rr.atrix).

In this section, the underlying principles of structural

idealization for suspension bridge structures are discus sed. Also,

stiffness and inertia prope:rties are developed for the elements and

for the entire assembled su spension bridge, using the different energy

expressions developed for flUspension bridges in the previous section.

Finally, Hamilton's Principle is used to derive the equations of motion,

froll1 which the natural frequencies and modes of vibration are obtained.
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This formulation has the advantage of dealing only with purely scalar

energy quantities. Several numerical examples are included to

illustrate the effectiveness and the applicability of the analysis under

consideration~ and to investigate the dynamic characteristics of

suspension bridges.

1-4-1. Idealization of the structure and the displacement model
•

By the finite element approach~ the suspension bridge structure

is assumed to be divided into a system of discrete elements which are

interconnected only at a finite number of nodal points. It has been

assumed previously~ in Sec. I-2~ that the suspenders are inextensible

and remain vertical during vibration~and that consequently the vibra-

tional displacements of both the cable and the stiffening structure are

identical; these assumptions lead to the following:

1. The element consists of cable and girder (or truss) elements

connected by two or more rigid suspenders, as shown in

Fig. I-3-b.

2. The elements are connected to each other at common cross

sections or interfaces; this defines the cable nodes as well

as the stiffening girder (or truss) nodes.

3. Since the displacements of each stiffening structure node must

equal the displacements of the corresponding cable node

(j oined by a single suspender)~ it is appropriate to define

only the nodes on the centerline of the stiffening structure,

as shown in Fig. 1-3 -a.
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The two nodal points by which this type of element can be

assembled into the suspended bridge structure are located at its ends.

Obviously any number of elements may be chosen in establishing the

idealized system, depending on the accuracy desired. If only vertical

plane displacements are considered, there are two nodal degrees of

freedom at each node: vertical translation and rotation. The inter-

polation functions as sodated with the two degrees of freedom of the

nodal point, which produce vertical displacements, could be any

arbitrary shapes which satisfy nodal and internal continuity require-

ments, but they are generally assumed to be the shapes which develop

in a uniform beam subjected to these nodal displacements. These are

cubic Hermitian polynomials which are sketched in Fig. 1-3-c, and

may be expres sed as:

-2 .3
1

11
(x) =x _2 ~. + x

L 2'
L

where L is the length of an element in the suspended structure.

(1.53)

With these four interpolation functions, the deflection shape

ve(X, t), of the element can now be expressed in terms of its nodal

displacements as:
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(1. 54)

where e is the subscript iadicating "element. 1/ and q.(t). i = 1.2.3.4
1

are the nodal disp1acementE: for the element. (See Fig. 1-3-b.)

Eq. 1. 54 can be written in CL matrix form as

v (x. t) =[£C~:)} T [q(t)} (1. 55)e e . e

in which [£(x)}T represents the transpose of [£(x)} ; it is the vector
e e

of the polynomials

(1. 56)

and [q(t)} is the vector of nodal displacement for the element.

By introducing the no:~malized coordinate s

and (1. 57)

any point x in the element [0, LJ can be referred to in terms of

the "coordinate functions, II ~ 1(x) and ~2( x) • as new coordinates.

Therefore. Eq. 1. 55 can be written as

(1. 58)

Finally. integration 0:: the polynomial terrns in the normalized

coordinates is conveniently expres sed by the formula

lL ~nl~m2 dx= n!m! L
(n+rn+ 1) !

o
(1. 59)
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where n! is the factorial product n(n-l )(n-2) ... (1) , and O! is

defined as unity. Also, differentiation with respect to x is given

by the formula

i= 1
:X( ~ a;. a (

) = L a;· ar;
1

(1.60)

1-4-2. Evaluation of structural-property matrices

In practice, the finite element approach frequently provides the

most convenient means for evaluating the elastic or stiffness properties

of the complete structure. These properties are found by evaluating

the properties of the individual finite elements and superposing them

appropriately. Thus the problem of defining the stiffness properties

of the structure is reduced basically to evaluating the stiffness of a

typical element.

a. Elastic stiffness matrix of the stiffening girder

(or truss)

The strain energy of the stiffening structure due to bending

only (Bernoulli-Euler beam), Eq. 1.32, may be expressed (with the

aid of the displacement model, Eq. 1. 58), as

where N. is the total num.ber of elements used to present the i th
1

bridge span, and E I is the flexural rigidity of the element; itge ge

is assumed uniform over the entire element. The integrations involved
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in Eq. 1. 61 are performed for the individual elements before the

summation inherent in the a,ssembly process is carried out. Here,

[f"} is the vector of the curvature model; this vector can be
e

accomplished by using Eqs. 1. 58 and 1. 59. The resulting curvature

model vector is

[fll}; = {£H(~l' ~2)};::O ~2 [(6-l2~~, L(4~1-2~2)' (6-12~2)' L(2~1 -4~2)J·

(1.62)

Eq. 1. 61 may be explessed conveniently in terms of the sti£f-

ne s s matrix. as

N

Vgv(t) - 2
1

)' [q}T [k ] [q}
Lege e e

(1. 63)

e=l

is the total number ofN.
1

3

with the understanding that N =L
i= 1

elements used to present the entire as seTIlbled structure. and

L

[k ] = rE .l [f"} [{"}T dX
ge e J ge ge e e

o
(1. 64)

is the element elastic sti£fn'~ss matrix of the stiffening girder (or trus s).

The subscript ge indicates IIgirder elastic, II while the subscript e

alone indicates lIelement. II The integration involved in the evaluation

of [k ] can be accomplif:hed by using Eq. 1. 62 and the integrationge e

property (Eq. 1. 59) of the interpolation function. The resulting

stiffness matrix is
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12 -6L -12 -6L

E I -6L 4L
2 6L 2L

2

[k' ] = ge ge (1. 65)ge e
L

3
-12 6L 12 6L

-6L 2L2 6L 4L
2

It should be noted that these stiffness coefficients are the exact

values for a uniform beam without shear deformation because the

interpolation functions used in Eq. 1. 53 are the true shapes for this

case. For an analysis of the effect of shear deformations on a beam

element. refer to Ref. [27J; this consideration of shear deformation

naturally leads to rather complicated expressions for the interpolation

functions. and consequently the formulation of the elastic stiffness

matrix is complex and is therefore not presented here. The matrix

itself reads:

12 -6L -12 -6L

E I -6L (4+C:> )L2
6L (2-tP )L2

[k ] = ge ge
ge e L3(1+4?) -12 6L 12 6L

-6L (2-~ )L2 6L (4+«P )L2

where

CE I )4> = ge ge

G g L
2

geve

(1. 66)

(1. 67)

in which G M- is the shear rigidity of the element.geve

As mentioned earlier. the process of constructing the equations

for the assemblage from the equations for the individual elements is
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routine. Nodal compatibility is used as the basis for this proces s.

Because the displacements are matched at the nodes. the stiffnesses

are added at these locationH; therefore. the assemblage stiffness

matrix and the nodal displa<~ements can be written as follows

['k Je or
ge

N

[KGEJ =L [kgeJe •
e=l

(1. 68)

and
N

[r}= \' [q}L.-J e
e=l

Now, the total strain energy of the assemblage due to the

(1. 69)

contribution from the stiffening girders (or trusses) can be written

as

Finally, when it is noted that the strain energy stored in a

stable structure during disbrtion must always be positive, it is

evident that

(1. 70)

or

Matrices which satisfy this condition, where [r} is any arbitrary

nonzero vector, are said to be positive definite; positive definite

matrices (and consequently stiffness matrices) are nonsingular and

can be inverted. The stiffnes s matrix is also symmetric and banded.
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b. Consistent gravity-stiffness matrix of the cable

From the strainless or gravitational energy expression of the

cable (Eq. 1. 22), it has been found that this energy depends not only

on the change in the shape of the cable but also on the initial internal

stress, represented by the constant H . A similar situation exists
w

in the buckling problems. In these problems, the geometric-stiffness

property represents the tendency toward buckling induced in a structure

by axially directed load components; thus it depends not only on the con-

figuration of the structure but also on its condition of loading.

The finite-element concept can be used to obtain a higher-order

approximation of gravity stiffnes s by using Hermitian interpolation

functions (Eq. 1. 53) in deriving the gravity- stiffnes s coefficients; the

result is called the consistent gravity-stiffness matrix. Thus the

consistent gravity-stiffness matrix represents rotational as well as

translational degrees of freedom.

Now, the gravitational energy of the cable V (t) (Eq. 1. 22)cg

and the displacement model (Eq. 1. 58), give

(1. 71)

where [I'} is·the vector of the slope of the model displacement and
e

is expressed by

(1. 72)

Eq. 1. 71 may be expressed conveniently in terms of the consistent

gravity-stiffness matrix, as follows
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N

Vcg(t) = ~ L [g}; EkcgJe [g}e

e=l

(1.73)

in which

[k J = H
w
r

cg e J
o

(1. 74)

is the element consistent gravity-stiffness matrix. In the double sub-

script cg. c indicates "cc,ble" and g indicates "gravity."

Substituting Eg. 1. 72 into Eg. 1. 74. and using the integration

property (Eg. 1. 59) in the resulting matrix, the element consistent

gravity-stiffness matrix cail be obtained as

36 -3L -36 -3L

H -3L 4L2 3L _L2

[k J w
(1. 75)= 30Lcg e -36 3L 36 3L

-3L _L2
3L 4L

2

The assemblage grav:.ty-stiffness matrix can be obtained by

merely adding the element3tiffness coefficients appropriately and by

taking the boundary conditions into consideration. it is expressed as

N

:: L [kcgJe
e=l

which has a similar configuration (positions of the non-zero terms)

as the elastic stiffness mat:::·ix [KOEJ .

Now. the potential en(~rgy expression (due to gravity) of the

assemblage may be given a:3-
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(1. 76)

in which [KeG] is a positive definite, symmetric and banded matrix.

c. Elastic stiffness matrix of the cable

U sing the linearized cable equation (Eg. 1. 52-b), the strain

energy of the cable due to the additional cable tension caused by

vibration (Eq. 1. 19) may be written as

(1. 77)

With the aid of the displacement model (Eq. 10 58), the energy

expression (Eq. 1. 77) becomes

3 Ni ;,< L T Ni ~~ L

V (t):=!. (Ec Ac))' [ )' wi IWT[}dX] [ ) wi I [f}T [ } dX ]
ce 2 L L L H e q e L H e q e '

E i:=l e:=l w 0 e:=l w 0 (1,78)

and upon using the assemblage nodal displacement [r} in Eg. 1. 78, it

can be obtained

...
Now, define the vector [f} as the integral

e

L

,., TIT -- [L - L
2

L L
2 J[f} = [f} dX:= -,-,-,-

e e 2 12 2 12 •
o

(I. 80)



-65 -

and

[£}
e

(1. 81)

then Eq. 1. 79 becomes

or equivalently

(1. 82)

(1. 83)

in which [K
CE

] is the ass~mblage elastic stiffness matrix of the

cable; it can be defined as

(1. 84)

This matrix is symm,~tric and is a partially complete matrix

(i. e .• not banded); the arrays are well distributed over the matrix.

A general form for such a rnatrix and for the banded stiffness matrices

[K GE] and [K CG] is shown schematically in Fig. 1-4; only the

hatched blocks are non-zero arrays. These matrices are the

assemblage matrices for the special case of a suspension bridge

with hinged stiffening structures.
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1-4-3. Evaluation of inertia-property ll1atrices

Making use of the finite-elell1ent concept, it is possible to eval-

uate mas s influence coeffic:.ents for each element of the bridge by a

procedure similar to the analyses of element stiffness matrices. The

degrees of freedom of the element are the translation and rotation at

each end, and it is assumed that the displacell1ents within the element

are defined by the same inh~rpolationfunctions used in deriving the

element stiffnesses; the refiult is called the consistent-mass matrix.

Consistent-ma3s matrix

When interpolation di3placell1ent nlOdels are used, Eq. 1. 58

can be inserted into the expres sian for translational kinetic energy

(Eq. 1.36) to obtain,

(1. 85)

,,
-f'

where m
e

is the ll1ass of b.e bridge elell1ent per unit length.

Eq. 1. 85 can also be written as

3 Ni

T(t)=.!.)' ('\' [~}T[m] t e
})

v ZLLqe eqe
i= 1 e= 1

(1. 86)

where [m] is the consisbmt mass ll1atrix of the element which ise

defined as

L

[m] =~ I [f} ufr dxe e e e
o

(1. 87)
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The integration involved in the evaluation of [m ] can bee

accomplished by using Eqs. 1. 58 and 1. 59. The resulting consistent-

mass matrix is

156 -22L 54 13L
-'-

4L
2 _3L2..'

-22L -13Lm L
[rn] e

(1. 88)= 420e 54 -13L 156 22L

13L -3J' 22L 4L
2

The physical meaning of the different coefficients of this matrix
"

is shown in Fig. I-3-c. The mass matrix of the complete element

assemblage can be developed by exactly the same type of super-

position procedure as that described for development of the assemblage

stiffness matrix. The resulting mass matrix will have the same

general configuration (that is, arrangement of non-ze,ro terms) as

the stiffness matrices [K
GE

] and [KeG]' The assemblage con;'

sistent-mass matrix is

N

[M] = L: [fll]e

e=l

and, therefore. the translational kinetic energy can be written as

(1. 89)

(1. 90)

The evaluation of the consistent-mass matrix, when the effects

of both shear deformation and rotary inertia are accounted for, is

very involved (see Ref. 27). However, if the kinetic energy due to

translation and rotation is considered and the shear deformation is
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neglected the resulting consistent-mass matrix takes the form

156 -ZZL 54 13L 36 3L -36 3L
,,-

4L
2 _3LZ Z

4L
2 _LZ....

-22L -J.3L 3L -3LmL m r
[m]

_ e
+ ge e

e - 420
54 -13L 156 Z2L 30L -36 -3L 36 -31

13L _3L2
Z2L 4J 3L -J -3L 4L

Z

(1. 91)
where m is the mass of the stiffening girder (or truss) elementge

per unit length and r is the radius of gyration of the element cross
e

section. The first term in Eq. 1. 91 represents the translational

inertia of the element, i. e., the mass matrix [m] ,while the second
e

term represents the rotatory inertia. A derivation of the general con-

sistent-mass matrix can be found in Ref. 27.

1-4-4. Variational formulation of the matrix equations of motion

To establish the matrix equations of motion, one can make use of

the scalar energy quantities, already obtained. in a variational form.

The most generally applicable variational concept is Hamilton's

Principle (Eq. 1. 37), which leads directly to the equation of motion.

Now. inserting Eqs. J.70, 1. 76, 1. 83 and 1. 90 into Hamilton's

Principle (Eq. 1. 37), one can obtain for the assemblage

= 0
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Applying the variational operator yields

r((or)T[M] [T) - (6r)T[[KGE] + [KCC]+ [KCE] ] (r))dt = 0 . (1. 92)

t l

Integration of the first terlTI by parts with respect to tilTIe gives

(1. 93)

Again, according to HalTIilton I s Principle, the tentative displace-

lTIent configuration must satisfy given conditions at time t l and t
2

.

Hence, [t>r(tl )} = [or(t2 )} = [O}, so the first term on the right hand

side of Eq. 1. 93 vanishes. Substituting the remaining term into

Eq. 1. 92 gives

tf (6r}T [[M](r) + (EKCE] + [K
CG

] + [KCE]) (r) ] dt = 0

t l

Since the variations of the nodal displacelTIent, [6r}, are

arbitrary, the expre s sion in brackets lTIust vanish. Therefore, the

lTIatrix equation of motion for the asselTIblage can be obtained in the

form

(1. 94)

where the tilde indicates that in this matrix equation of motion neither

the shear deforlTIation effect nor the rotatory inertia effect has been

tonsidered. However, if these secondary effects are taken into account,
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Eq. 1.94 becomes

(1. 95)

N
with [MJ = L [mJ

e= 1 e

given by Eq. 1. 68.

[mJe is given by Eq. 1. 91 and [KGEJ is

Eq. 1. 94 (or Eq. 1. 9!;) is the governing matrix equation of the

vertical vibration of suspension bridges. There are two separate

parts of the problem, i. e., two independent eigenvalue problems,

which must be considered. They are:

1. The symmetric eigenvalue problem having the symmetric

modes of vertical vibl~ation,which include additional cable

tension, and in which there are an even number of internal

nodes along the spans, Here, H(t) is not zero and accordingly,

the stiffne ss matrix LKCEJ is not a zero matrix.

2. The anti symmetric ei genvalue problem having the antisymmetric

modes of vertical vibl'ation,which cause no additional cable

tension, and in which there are an odd number of internal nodes

along the spans. Her(~ H(t) is zero, and accordingly the stiff

ness matrix [KCEJ is a null matrix.

Thus, for the symmetric modes:

(1. 96)

and for the antisymmetric nlOdes:

(1. 97)
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Then the matrix equations for the free, vertical-undamped

symmetric and antisy:mmetric vibrations of the suspension bridge

structure are, respectively:

(1. 98-a)

and

By writing the solutions of Eq. 1. 98 in the familiar form

(1. 98-b)

i= vCl (1. 99)

and substituting Eq. 1. 99 into Eq. 1. 98 (leaving out the common factor

e
iwt ), the following equations are obtained

(
2 ) oJ,-w [M] + [K

S
] [~S} = [O}

(_w 2
[M]+ [KASJ ) £i:AS} = [O}

(1. 1 DO-a)

(1. IOO-b)

where [;S} and £;AS} are the vectors of the displacement amplitudes

(which do not change with time) of both symmetric and antisy:mmetric

vibrations, respectively, and w is the natural circular frequency.

Now it can be shown by Cramer's rule that the solutions of

these two sets of simultaneous equations (Eqs. 1. 1 OO-a and b) are

of the form

[; }= to}
s II [KSJ _W

2
[MJ II

£;}= to}
AS II [KASJ _w 2

[MJ II

(1. 101 -a)

(l.IOl-b)
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Hence a nontrivial so lution for each problem is possible only

when the denominator determinant vanishes. In other words, non-

zero amplitude free vibrati,)ns are pos sible only when

and

(1. l02-a)

(1. l02-b)

Eqs. 1. I02-a and b are called the frequency equations of the

symmetric and antisymmet1"ic vertical vibrations, respectively.

Expanding each determinau'; will give an algebraic equation of the

th 2
N degree in the £requenc{ parameter W for a system having N

degrees of freedom.

Because of the posib.ve definitiveness of [M], [KSJ and

2 2 2
[KAS]' the roots WI ' W 2 ' ••• , wN (eigenvalues) of each problem

are real and positive quantHie s; Eq s. 1. lOO-a and b provide non-

~< ~<

zero solution vectors IrS} and [rAS} (eigenvectors) for each

root w2
of the symmetric a.nd anti symmetric problems, respectively.

1-4-5. Illustrative nur.eerical examples

Three examples of suspension bridges with widely different

propertie s are pre sented to demonstrate the applicability of the

analysis developed herein, :tnd to cover the dynamic characteristics

of these suspension bridges. In these exall1ples, the free vertical

vibrations of suspension bridges are analyzed. The natural frequencies

and modes of vibration of the system are cOll1puted, and the distribu-

tion of the energy stored in the various ll1embers of the structure is
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also determined. A knowledge of the energy of vibration of a given

mode of vibration of a suspension bridge is essential if any study of

the damping and exciting forces is to be made. Furthermore, if the

motions and resisting actions of the various members of the structure

are kept clearly in mind, it will not be difficult to anticipate which

are likely to have a significant effect on a given mode.

Also, the influence of both the extensibility of the cable and the

continuity of the stiffening girders (trus se s) upon the vertical vibration

frequencies and modes is considered in these examples.

Lastly, the computation of the eigenvalues w~ and the eigen
1

vectors [;.}, i =1, 2, .•. , N, for both the symmetric and the anti
1

symmetric vibrations, is worked out through a Householder-QR-

Inverse Iteration Solution subroutine. A double precision version is

available from the Ca1tech computer (IBM 370/158 system) program

library and is written for the solution of the problem in the standard

form ([A] - >"[IJ )[x} = [O}, where [A] is a real matrix, >.. is the

eigenvalue, [1J is the unity matrix and [x} is the eigenvector. Con-

sequently, Eqs. 1. 1 OO-a and b must be converted to the standard form

by premultiplying each by the matrix [M] -1. Thus, a matrix inver-

sion subroutine is also needed and the final forms of the eignevalue

and eigenvector problems for both symmetric and antisymmetric

vibration, will be

(1. 103-a)

and

(1. l03-b)
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Finally, for siInplicity of presentation,the effects of shear

deformation and rotatory irertia will be neglected (in all examples),

but if required, they can bE: accounted for without difficulty.

Example 1. (One suspended span)

The suspension bridge shown in Fig. 1-3-a, having one sus-

pended span,has the following properties:

a) stiffening girder (or truss)

1
2

= 1 = 2800 ft.

:::~ ...r...

w2 = W= 2. 85 Kip/ft.

b) cable

f 2 =f = 232 ft.

H
w

= 120040 Kipll.

I 2 = I = 128400 ft~ in~g g

E g2 = E g = 29600 Kip/in~

A = 1. 91. 5 in~
c

E = 26000 Kip/in?
c

The number of eleme1.ts (N2 = N) was taken to be 20 elements;

therefore, the, number of ex)ected modes is (N - I) (i. e., 19 modes

are expected). and the length of each element L is 140 ft.

The two eigenvalue pl'ob1ems (Eqs. 1. 103-a and b) have been

solved by the Caltech digital computer (IBM 370/158) system).

The computed natural periods and frequencies. for different cases.

are presented in Table 1.1, and the mode-shapes of both translational

and rotational displacements are shown in Fig. 1-5.

Bleich [3J calculated the first two symmetric modes for the same

bridge by solving the freque ncy equation (involving trigonometric and
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TABLE I-I

a. Natural Frequencies and Periods of the Symmetric Modes

Effect of the Extensibility of the Cable

(One Suspended Span)

Mode Extensible Cable Inextensib1e Cable

Order Frequency Period Frequency Period
(rad/ sec. ) (sec. ) (rad/ sec. ) (sec. )

I 1. 397460 4.496146 0.481302 13.054559
2 2.704650 2.323105 2.653828 2.367593
3 6. 847194 0.917629 6.841255 0.918426
4 13.118742 0.478947 13.116910 0.479014
5 21. 510308 0.292101 21. 509355 0.292114
6 32.068751 0.195929 32.068340 O. 195931
7 44.883375 0.139989 44.883155 0.139990
8 60.088212 0.104566 60.881410 0.104566
9 77.848210 0.080711 77.848260 0.080711

10 97.978733 0.064128 97.978832 O. 064128

b. Natural Frequencies and Periods of the Antisymmetric Modes

Comparison Between the Finite Element Method and Exact Solution

(One Suspended Span)

Finite Element Method Exact Solution
Mode (Using Eq. 1. 104)
prder Frequency Period Frequency Period

(rad/ sec. ) (sec. ) (rad/ sec. ) (sec.)

1 1. 333049 4.749018 1. 331842 4.717666
2 4.487016 1.400304 4.490103 1.399341
3 9.716318 0.646663 9. 713860 0.646827
4 17.046238 0.368597 17.020489 0.369154
5 26.513585 0.236980 26.412797 0.237884
6 38. 186522 o. 164539 37. 891516 O. 165820
7 52. 176271 O. 120423 49.739350 O. 126322
8 68.640026 0.091538 67.139526 0.093584
9 87.697946 0.071646 82.281857 O. 076362
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ANTI-SYMMETRIC MODE-SHAPES

ISTSYl':HT.MnJE

SYMHETRICMODE-SHAPES
flHITE ELU1EHT HETHOD (H~20 SEGI1f:NTSl

(EXTENSIBLE CFiBLD

6 A AA~ A A 6
= V VI[ \jVV =

SYMMETRIC MClOE-SHAPES
flNITEELEMENT HETHOO (N-20SEc;rn::NTSl

(EXTENSIBLECIllLD

TlI~ 0.19593 SfC.

FINITE ELEMENT HETHOD (N_20SEGHENTS)

v V V
(\ (\ (\ (\

V VV V
AA A A A

V V V V V
1\1\01\1\0crv VlTvV
I\n u f\f\/\/\

VI) v'rQ D\j

1\ f\ 1\ f\ (I, f\ 1\ f\vv 'nrvy \) V
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lTV\} V 'J vyro

RNTI~SYHHETAIC MODE-SHAPES
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T2 _ ~.7~902 SEC.

T~ _ 1.~0030 SEC.

16 _ O.6~666 SEC.

TI0. O.2369B SEC.

T1~- O.12{1~2 SEC.

Tl6- O.0915~ SEC.

T2 : ~.7~902 SEC.

2NDSYIflT.MI'If. = == == n.2.32311SEc.

3ADSy~r. KI:CE

10TH Sn'l1T. MCOf

1\(\1\0/1
V V V V V

~(\f\l\nf\
V'O V \)\) ~

19-0.29211Sfc.

Tl9- O.06~13 sec.

1\ 1\ 1\ 1\ 1\
VVVVV\J

/\ /\ 1\ (\ /\ 1\
VV~ V \T\)~

f'\f\/\ 1\ I\/ln
rV'r\JV\jV~

l\nAnAnAn~vvvvv vvv
n6 ,:,I\AI\G linrrv vyvv 9 Vl

T6 - O.6~666 SEC.

TlO_O.23696SEC.

Fig. 1-5. Symmetric Cl,nd antisymmetric modes of vertical
vibration of a one-span suspension bridge;
(a) translation, (b) rotation.
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hyperbolic functions) resulting from the linearized equation of motion

(Eq. 1. 49) and the linearized cable equation (Eq. 1. 52); he used a

process of trial and error, and he found that:

WI == 1.400 rad/ sec. and W 2 == 2.696 rad/ sec. ,

Then, using the approximate energy method (Rayleigh-Ritz), he arrived

at

WI == 1.402 rad/ sec. and W 2 == 2. 705 rad/ sec.

The method of analysis under investigation gives

andWI == 1. 3975 rad/ sec.

in addition to the higher frequencies.

W
2

== 2. 7046 rad/ sec. ,

For the antisymmetric case, the frequency equation resulting

from the linearized equation of motion (Eq. 1. 49 with H(t) == 0) has

a simple form:

n== 1,2.3, ...

(1. 104)

It is easy, now, to compare the results obtained by the method

of analysis under study and the results obtained by the frequency ex-

pression (Eq. 1. 104). Table I-I-b. and Figs. 1-6 and 1-7-a indicate

a very close agreement between the two solutions. The degree of

accuracy increases as the mode order decreases (i. e, in the higher

modes the finite element solution represents an upper bound to the

exact solution).

To demonstrate the influence of the extensibility of the cable,

calculations of frequencies and modes with cable extensibility and

without are shown in Table I-I -a and in Fig. 1- 8. Inextensibility of
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the cable is mathematically expressed by the equation E A '" 00
c c

H(t)L
E

(i. e. , E A = 0 ); therefore, the second term of Eq. 1. 18, ex-
c c

pressing the strain energy of the cable, equals zero, and accordingly,

the stiffness matrix [KCEJ in Eq. 1. 94 equals the null matrix. In

this context the stiffnes s of the cable is seen to arise largely from

its own weight and from thE dead load upon it, and as indicated before,

the interaction between the cables and the stiffening girders (or

trusses) is regarded as the interplay of the gravity stiffness (essential-

ly nonlinear) of the cable and the elastic stiffness (linear) of the

stiffening structure.

Inspection of Table I-l-a and Fig. 1-8 shows that the effect of

cable stretch on the frequencies is limited to only the first few modes.

This suggests that the actual extension of the cable in the higher

modes is quite small and that eonsequently H(t) is also small.

Figo 1-7-b also shows the magnitude of the cable tension H(t) which

decreases rapidly as the m:.mber of modes of vibration increases. On

the other hand, Fig. 1-8 shows that extension of the cable permits a

mode (the fundamental mode) that is quite different from that which

results with an inextensible cable.

In Fig. 1-9, the varicus energies accumulated in the cables,

the stiffening structure and the system as a whole have been considered

at each of the symmetric and antisymmetric modes. In this figure,

the normalized factor is designated by the total energy of the partic-

ular mode. The relative contribution of the strain energy of the

cable to the total energy storage capacity of the structure is greate st
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MAIN SPAN ~ R SUSPENSIGN BRIDGE

RHT I -SYMMETR I C M~OE SHAPES

iXRCT SClLUT IcrN

fINITE ELEMENT METH~D

lil

o !:'o-==~----!~---!---~------;'-----=-~---;!i---Cs!-'---=-~~1~;---CI"';-'I--~1~:----'--:1~!;-----;:I~

RNT I -SYMHETR I C MOOE SHRPES

Fig. 1-7 -a. COInpa:~ison between frequencies from the finite
elemenl: approach and those from the exact
solution (antisymmetric mode s).

MRIN SPAN CF R SUSPENSI~N BRIDGE

RODITI~NRL HORImNTAL C~HP~NENT ~F CABLE TENSION

F~R DIFFERENT SYMMETRIC HODE-SHAPES

FINITE ELE~ENT METH~D

O!'-o-----!------!------!-------;.';-'----c5;-'-----;6;-'-----t------.l------.l-----.:,b
SYMMETRIC M~DE-SHRPES

Fig. 1-7-b. MagnitHde of the horizontal component of additional
cable t~:nsion, H(t) for various symmetric modes.
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IfIIN 5PRN OF R SUSPENSlClN BRIDGE
ENEIIGY STORAGE CRI'RCITY
OF ONE SUSPENDED SPRN
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in the first two symmetric modes$ while the relative contribution

of the strain energy of the stiffening girder (or truss) builds until

it governs almost all of the potential energy of the structure.

Therefore$ the stiffening structures have a significant role in

determining the modes and frequencies of the higher modes of

vibration; these higher modes with their shorter waves involve

sharper curvature in the stiffening girder and$ therefore$ greater

bending moment. Furthermore$ they reflect accordingly the

influence of the stiffening girders' stiffness to a greater degree

than do the lower modes.

Generally, the results obtained by using this analysis satisfy

the principle of conservation of energy so that for each mode the

total potential energy is equal to the total kinetic energy.

Example 2. (Three suspended spans with hinged stiffening structures)

The properties and dimensions of the second suspe.nsion bridge

are:

a) stiffening girders (or trusses)

- side spans

11 =13 = 1l00ft.

E g1 = E
g3

= 29600 Kip/in~

b) cable

£2 = .F = 232 ft.

E = 26000 Kip/in~
c

A = 191. 5 in~
c

H = 12040 Kips.
w

L . ::: 6080 ft.
el
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The number of elements in each side span. N
l

= N
3

' was

taken to be 1 ~ e Ierne nts. providing 10 mode s pe r side span. Each

element has a length L = 140 ft. ; the number of elements in the

center span N2 • was take 1. to be 28 elements of the same length.

giving 27 possible modes.

Table 1-2 shows the cOlllputed natural periods and frequencies

of vertical vibration for th(;: symmetric and antisymmetric case s

respectively, while Fig. 1-10 shows the modes of vibration.

Again. to illustrate the effectiveness of the analysis under con

sideration. a comparison between the obtained results and Bleich's [3J

results has been made. Bleich's frequency equation (resulting from

the linearized equation of nlotion. Eq. 1. 49. and the linearized cable

equation. Eq. 1.52) for the sym.metric modes gives:

wI = 1. 051 rad/ sec. as compared with wI = 1. 05144 rad/ sec. from

the method under considerdion. Bleich's approximate method

(Rayleigh-Ritz method) givl~s: WI = 1. 055 rad/sec .• ""'2 =2. 255 rad/sec.

and w3 = 2.699 rad/ sec. as cOlTIpared with WI = 1. 055 rad/ sec .•

W 2 = 2.254 rad/ sec. and (t'3 = 2.698 rad/ sec .• for the first three

sylllmetric modes.

As seen from Fig. 1-10. in the lowest three modes the center

span and side spans vibratE) together. but in the higher modes the center

and side spans vibrate sepc!.rately. This illustrates the role played

by the cable during the first few modes of vibration where the cable

creates an interaction between the side spans and the center span.
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The antisynuuetric deflections of the cable and the stiffening

structures cause no additional cable tension H(t) because the down

ward movement on one side of the centerline of the center span tends

to increase the cable length. while at the same time the upward move

ment on the other side of the center span tends to reduce cable length,

and the effects balance each other. In consequence of the lack of

additional cable tension, H(t) , there is no interaction between the

center span and the side spans; i. e., two types of independent vibra

tion are possible. Both types of vibration may occur at one time,

and any mode of one type may be combined with any mode of the other.

The distribution of the energies stored in the various members

of the structure, for both the symmetric and antisymmetric cases, is

demonstrated by Fig. 1-11. From this Figure the significance of the

relative contributions of the cable and the stiffening structure s to the

total energy storage capacity of the bridge structure can easily be

extracted. The lower modes reflect the influence of the strain and

strainless (gravitational) energie s of the cable, while the higher

modes with their relatively shorter waves involve sharper curvature

in the stiffening girder (or truss) and, therefore. involve greater

bending moments. Furthermore, they reflect accordingly the influence

of the stiffening girder to a greater degree than do the lower modes.

It is worthwhile to note that in the antisymmetric modes, all of the

cable energy storage is of this strainless, i. e .• gravitational energy

type.
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Table 1-3 illustrates the effect of the inextensibility of the cable

upon the frequencies of free vertical vibration for the symmetric

modes, while Fig. 1-12 shows a comparison between the modes of

vibration for the extensible cable and those for the inextensible

cable. It is seen that the role played by the extensibility of the

cable is confined to only the first few modes where the interaction

between side and center spans exists. In the first mode, the inex

tensibility effect increases the fundamental period to two times

its value when the cable is extensible, and for the second and third

modes the magnifications are about 13% and 2%, respectively. This,

again, demonstrates the significant contribution at these modes from

the elastic strain energy of the cable.

Another effect of inextensibility is seen in the independent

vibration of both the center and side spans. It is desirable to re

examine more critically. the use of the expression for an inextensible

cable (Eq. 1. 23). This inextensibility expres sian. which is a result

of the conventional deflection theory. requires that the algebraic sum

of the areas between the deflection curve and the line of static

equilibrium be zero. But it has already been shown, by considering

a higher order term in the cable equation (Eq. 1. 17), that the form

of this conventional expression for inextensibility appears to imply

that the gravity stiffness of the cable is negligible. This is seen to

be misleading, because were this gravity stiffness negligible, there

would be no potential energy contribution from the cable at all, and the

only energy contribution would be from the stiffening girders. This is
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certainly contradictory and violates the fundamental assumptions which

say that the cable and the stiffening structure have the same vibra

tional displacement.

Thus, the relation between the inextensibility condition and the

gravity stiffness, heretofol'e virtually ignored, must be considered,

and therefore the general problem of the dynamics of suspension

bridges still involves the interaction of the two major members (the

suspension cables and the ~:tiffening structures), regardless of the

extensibility of the cable.

Example 3. (Three suspended spans with a continuous stiffening

structure)

The properties and di.mensions of Example 2 have also been used

to compute the frequencie s and mode s of vibration of a suspension

bridge having continuous stiffening girders (or trusses). The computed

natural periods and frequencies are presented in Table 1-2, and the

mode-shapes are shown in Fig. 1-13.

m order to judge the effect of continuity upon the frequencies of

both the symmetric and anti symmetric modes, the frequencies of the

suspension bridge with hinged stiffening structures (Example 2) are

shown in the same table. This table suggests that the adoption of

continuous stiffening structures in suspension bridges offers the

advantage of increased stiffness in comparison with the hinged stif

fening structures normally used in suspension bridges. This increased

stiffness has the tendency to increase the value of the frequencies, as

seen from Table 1-2. No remarkable long span suspension bridge
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Fig. 1-13. Mode shapes of a suspension bridge with con
tinuous stiffening structures (Example 3).
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having continuous stiffening structures has been acknowledged in the

literature. However, the effect of a continuous stiffening structure

on the dyna:mic characteristic s of a suspension bridge is an i:mportant

question in a co:mprehensive study of the dyna:mics of suspension

bridges.

Inspection of Table 1··2 reveals that the effect of continuity of

the stiffening structure upon the frequencies of the sy:m:metric :modes

is very s:mall, while the effect upon the frequencie s of the anti

sy:m:metric :modes is considerable.

As a co:mparison, the approxi:mate energy-:method (Rayleigh

Ritz :method) give s WI = 1. 060 rad/ sec. for the first sy:m:metric

:mode and wI = 1. 495 rad/ sec. for the first antisy:m:metric :mode,

as co:mpared with WI = 1. 0549 rad/ sec. for the first sy:m:metric

:mode and wI = 1.4918 rad/sec. for the first antisy:m:metric :mode,

fro:m the analysis under co n.sideration.

Again, it is desirable to co:mpute the a:mount of potential energy

stored elastically in the stiffening structure and in the cable separately

fro:m that due to the change of elevation of the structure, at different

:modes, in order to anticipate which are likely to have a significan t

effect on a given :mode. Also, because the da:mping action differs in

the various :me:mbers of the bridge, the total energy lost per cycle

depends upon the distributbn of the potential energy. Fig. 1-14 shows

the distribution of the ener gy storage capacity in the various :me:mbers

of the structure for both sy:m:metric and antisy:m:metric :modes of

vibration. The relative diHtribution of the energies is seen to have the

sa:me trendas in a suspension bridge having hinged stiffening structures.
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1-5. Effect of Tower Stiffness Upon Free Vertical Vibrations

In the preceding analysis. it was assumed that the tower cable

saddles were free to move h.orizontally either upon roller nests under

the saddles or by means of rockers at the bases of the towers. How

ever, the construction of hinged tower bases is often found impractical

especially in larger bridgeB, and so fixed tower bases are often

resorted to. Fixed saddles provide one of the simplest and safest

constructions, but the fdcb-on forces accompanying this de sign are

so high that the tower tops :nove in unison with the adjacent cables.

A consequence of the fixed tower-base or fixed saddle is that

the horizontal movement of the top of the tower is accompanied by a

horizontal component of the force between the cable and the tower.

Thus the horizontal force in the side spans will differ from that in the

center span, but .u~ually by only small a:mounts if the towers are well

designed. A modification of the analysis for this complication will be

made. Furthermore, the vibration of the entire tower should be con

sidered as the tower is an important member of the suspension bridge.

In general this section will include analysis of the following:

1. The effect of the elasticity of towers on the free vertical

vibration of suspensicn bridges.

2. The in-plane free horLzontal vibration of the towers, 1. e. ,

their vibration in the Longitudinal direction of the bridge.
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1-5-1. Correction for strain energy of the cables

In the entire preceding analysis, it was assumed that the

horizontal component of cable tension, H(t) was the same on both

sides of the tower. However, this is not true if the tower resists

displacement at the top. If, for example, it is deflected toward the

side span as shown in the upper half of Fig. I-IS, the increase in

tension in that span, HI (t) or H 3 (t) , must equal the sum of the

center span increase, HZ(t) , and the elastic resistance of the tower.

This tower resistance can be expressed as the product of the tower

top movement, ul(t) or U3(t) , and the elastic resistance of the

tower, stl or St3. The displacements and forces at the top of

the towers are shown in Fig. I-IS, with their sign conventions.

When the top of each tower moves toward or away from the center

of the bridge the cable tension component

the i th span, and the tension component

span.

H.(t) , i=1,3 acts on
I

Hz (t) acts on the center

Given this new situation, the strain energy of the cable,

Eq. 1.19, should be modified; the linearized part of Eq. 1.19 can

be written as follows

b . E 1.8'or y USIng q.

(1. 105)

~~ 1 [L:3V (t) =-ce Z
i=l

W.
1

Hi(t) II
w

(1. 106)
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Upon recalling the linearized cable equation (from Appendix I-b),

i. e. ,

H.(t)L .
1 el

E A = U c (xi' t)
c c

and noting that:

x.=.R..
1 1

x.=o
1

f£i (dYi)(OVi)+ d a dx.,x. x. 1o 1 1

i = I, Z, 3 ,

(1. 107)

£1

uc(xl,t) I = uc (£l' t) - uc(O, t) = u~(t)

0

.£Z

U c (xZ' t) J = uc(Jl Z' t) - uc(O, t) = - (u~ (t) +u;(t)), (1. 108)

0

and
£3

U c (x3,t) 1 = U c (£3' t) - uc(O, t) = -u;(t) ,

0

where the assumption of fixed anchorages has been made, then the

modified linearized cable equations, applied successively to the side

and center spans, become

H. (t)L .
'(t) = 1 el

U i E A
c c

_iii (dYi) (OVi ) dx.
dx. ax. 1

o 1 1

i = 1,3, (1. 109)

and

(1.110)

For symmetric suspension bridges, the two towers are identical

and, except for the sign, the displacements u/
1 (t) and u; (t) at the top

of the left and right towers, respectively, must be the same. There-
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fore. the linearized cable equation for the entire bridge can be

written by summing Eqs. 1.109 and 1.110 to give

~ Hi (t)Lei _[3 Jii (dYi ) (OVi ) dx. = 0
LEA I dx. ax. 1
i= 1 c c i= :1. 0 1 1

(1. 111)

Considering the equilibrium of the horizontal forces at the top

of the towers, the following is obtained:

(1. lIZ)i = 1, 3 •IHZ (t) - Hi (t)I= s ti u~ (t)

i = 1,3 chara:::terizes the elastic resistance of the i
th

where

tower; this resistance is the force required to deflect the i th tower

by unit deflection, and it can be expre ssed. for uniform Iti • as

i = 1.3. (1.113)

where E
ti

is the modulus ')f elasticity of the i
th

tower material.

I
ti

is the average value of ';he moment of inertia of the i th tower

leg about a horizontal axis perpendicular to the longitudinal axis of the

bridge, and h
ti

is the height of the i th tower leg.

The next step to be taken is to express H. (t), i = I, Z. 3 in
1

terms of the displacement v.. i = 1. 2. 3. For this purpose. the
1

displacements of the tops ll~ (t) and u;(t) have been eliminated

from Eqs. 1. 109 and 1. 11 0,. and Eg. 1. III has been used to give
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(E A )Z [L3fl j
(dY.)(OVo) L Z

St'D1o
(d

Y
')(OV') JH(t)= c c -=.l. ---1. d + e 1 _1 -2:. d

i (E A LE+L ZL ,St') dxo Ox, x j E A dx. Ox. xi'
c c e el 1 j= 1 0 J J c COl 1

i= 1,3. . (1. 114)

When the coefficients cli and c Zi ' i = 1, 3 are defined as

(E A )Z
! C C

(E A LE+L ZL ,St')
C C e e1 1

Eq. 1. 114, can be written as

and i = 1, 3 ,

(1. 115)

Substitution of Eq. 1. 116 into Eq. 1. Ill, yields

i = 1,3 .

(1. 116)

[ I. L.)I~ fi j (dy .)(8Vo) L.fl i (dY..\(OV.) ]
HZ(t) =cli ,1+c Zi L elz L £ O~~ dXj - ZC Zi L elz dx~) ax~ dxi '

e j=1 O· J J e 0 1 1

i = 1 or 3 . (1. 117)

Therefore the modified strain energy of the cable. Eq. 1. 106,

I
with the aid of Eqs. 1. 116. 1. 11 7 and 1. 8 • may be written as

.... 11L
3

V (t) =-ce Z
, i= 1. 3

>I~

W,
.1

H
w

. +~[Cli(l+CZi ~:~)L :~t\ dy 2clic Zi ::tVi dx~rrozvz dxz]}-

(1. 118)
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where the index i. indicated between the second set of brackets. is

either 1 or 3 .

1-5 -2. Potential ene rgy absorbed by the towers

Now. the strain energy due to the bending of the two towers is

given by
3 h t · M2

1)' [I I.

Vtb(t) = "2 L E ~/. dX~
i= 1. 3 < 0 tl tl

(1. 119)

where M ,. is the bending moment of the tower leg at the point
Xl

i = 1. 3 caused by the horh;onta1 force IH
2

(t) - Hi (t) I • i = 1. 3 and

is expressed by

,
X.

1
i= 1.3 . (1. 120)

Substitution of this expression into Eq. 1. 119 and then integra-

tion. yields

3 II /2 2)_ 1 )' (H2 (t)-Hi (t) . h ti
Vtb(t) -"2 L 3E .1 . .

'-1 3 tl tI1-. \

(1.121)

From Eqs. 1. 116 and 1. 117 the force [H
2

(t)-H
i
(t)! can be

obtained as

, i= 1. 3

(1. 122)

Therefore. the strain energy absorbed by the two tower legs.

Eq. 1.119. can be written. with the aid of Eqs. 1.122 and 1. 8'. as
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ht
2.St

2, [L '(L:3 .t, s.Q j )1 1 el ----L d
3E

t
.I

t
, L

E
H V j X j

1 1 j== 1 w 0

Because of the complexity of the resulting equations, it is not

desirable to derive the differential equations of motion which include

the effect of tower rigidity. Instead, the solutions will be obtained by

the finite element approach.

1-5 -3. Equations of motion for the towers

In order to derive the differential equations of motion, each

tower of the suspension bridge is now replaced by the equivalent

system shown in Fig. I-2-b, where the elastic constraint by the

cables at the top of the tower is simulated by a spring of stiffness

k . , i == 1,3 (see Refs. 19 and 20). It has been assumed that the
el

centerline of the tower is allowed only horizontal motion in the

longitudinal direction of the bridge, and the axial and horizontal

forces acting on the top of the tower have been taken into consideration.

The bending-strain energy in the towers may be written as

(1. 124)

where the index i implies the left (i==l) and the right (i==3) towers.

In Fig. 1-2 - b this index has been omitted for simplicity.

In order to calculate the potential energy of the tower due to

the static and dynamic reactions of the cable, the relative displacement
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~hti ' i;,:: It 3 caused by the vertical loads during bending must

first be determined. With l;his in mindt consider an element ds'

of the tower leg in its deflected shape; the infinitesimal relative dis-

placement over the element of the tower leg is

, (au'Y. ,2
, '_ (ds')2 -(dx' (", ax I) (dx)

ds - dx - ds'+ dxl - 2dx'

therefore;

i
hti

1 ihti
(a ')2~hti = (ds~ - dx~) ="2 a~~ dx~

o 0 1:

_1:. (au')2dx,
- 2 ax'

i = It 3 .

(1. 125)

(1.126)

During this disp1acerr.ent t the load P remains constant,
w

while the load P(t) increases gradually. Thereforet the potential

energy of the two loads in the deflected position is:

3

LV
ta

(t) = ( p + ~~ P(t») . ~ht'w I. 1

i= 1, 3

i=1,3,

3

~- ~ L
i= 1, 3

(
a ')2a:r dx~ i = It 3 .

(1.127)

In deriving this relation, assumption no. 8 (Eq. 1. 3) of the fundamental

as sumptions mentioned in s'~ction I-2-3 t has been used.
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The potential energy stored in the equivalent spring is

/2
k . u

l
' (t) ,el

(1. 128)

where k ., i = 1,3 is the stiffness of the equivalent spring at each
el

tower top. Konishi and Yamada [19, 20J have estimated the value of

the spring stiffne s s, k . , to beel

EAc c
L.el

i= 1,3 . (1. 129)

Now, the total potential energy in the towers, Vt(t), is

Vt(t) = Vt (t) + Vt + V (t)e a es
(1. 130)

The kinetic energy for the tower legs can be expre ssed as

1
T (t) =

t 2 mt' (x~)
1 1

(1. 131)

where mt'(x~) is the mass per unit length of the i
th

tower leg.
1 1

Application of Hamilton's Principle, Eq. 1. 37, as before,

enables derivation of the equation of motion of the i th tower leg

in the form:

a2 /U.
/ 1

mt·(x.) -2
1 1 at ~

2 / 2 /
0.2 a u. a u.
v /11

+ - E t · It' (x. ) --2) + p --2 =0 ,at 1110.' Wo.lx.. vx. vx.
111

i= 1,3,

(1. 132)
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and the as sodated boundary conditions are

and

o ( a2u~ )
F""'" Et' It' (x~) -2

1

X. 1 1 1 a I
1 X.

1

au~
+ P 1 = k . u~

w ax~ el 1
1

i = 1,3 , (1.133)

I
E t · It' (x.)

1 1 1

0 2 Iu.
1

--;-;zX.
1

i= 1,3. (1. 134)
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1-6. Finite Element Approach for the Overall Problem

This section contains the finite element solutions for the overall

problem, i. e .• for the suspended structure, the cables and the towers.

Therefore. the stiffness and inertia characteristics of the entire

assembled suspension bridge structure must be determined.

1-6-1. Modification of structural-property matrices

a. The modified elastic stiffnes s matrix of the cable

With the aid of the displacement model. Eq. 1. 58. the modified

energy expression. Eq. 1. 118. becomes

Using the integral of Eq. 1. 80 and the definition of Eq. 1. 81 in this

modified energy expres sion leads to
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or equivalently

(1. 135)

(1.136)

oJ.
where [KCEJ is the modified assemblage elastic stiffness matrix of

the cable; it can be defined as

L. :. ) ( T)Je1 .. 1 '" '"
- 2c Zi L H {f}N. [f}N

eZ W 1 Z

where, again, the index i, indicated between the second set of

parentheses, is either lor 3 .

(1.137)
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b. The elastic stiffness matrix of the towers

corresponding to bending of the towers-by the

cable forces

The strain energy absorbed by the two towers, Eq. 1. 123, due to

their elastic resistance to the movement of their tops, can be expressed

in a matrix form by using the displacement model, Eq. 1. 158, as

follows

N, ", L 2

-t H: i (f}; (q}e <IX] I
e=l 0

Expanding, and using Eqs. 1. 80 and 1. 81, this expression becomes,

3 23*
V (t) = !. [r}T [)' (hti StJ (Lei )' ..":L [f}N

tb 2 L 3Et ,I
t
, L E L H j

"-1 3 1 1 '-1 w1- , J-

(1. 138)

or equivalently

where [KTBJ is the bending stiffness matrix of the towers; it is

defined in Eq. 1. 138.

(1. 139)
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So far, the stiffness a,nd Inass Inatrices have been of order

NXN, where N is the nurnber of degrees of freedoIn of the

suspended structure and th€~ cable, i. e., the nUInber of unknown

nodal displaceInents. The 'Tector of nodal displaceInent for the

assemblage [r}, is of ord(~r N)( 1. Even the bending stiffness

Inatrix of the tower is of order NXN, since it is expressed in terInS

of the nodal displaceInents of the suspended structure and the cable.

1-6 -2. Modification (If the Inatrix eguations of Inotion

To formulate the ovel'all problem, the stiffne ss and inertia

Inatrices of the towers Inust be deterInined. For this, the towers

are divided into sInall elements as shown in Fig. 1-2-b. The top

eleInent of the tower must include the equivalent spring which

simulates the influence of the restraint of the tower by the Inain

cable.

The element elastic stiffness matrix due to flexural rigidity for

the elements of the tower if! the same as that for the elements of the

stiffening structure, Eq. 1.65, excepting the matrix for the uppermost

eleInent which includes the spring effect; the latter is in the forIn

12 -6L' -12 -6L'

E I -6L/ 4L/ 2 6L/ 2L/ 2
[k J. = te te

te el
L

d
-12 6L/ 12+k . 6L/

el

-6L' 2L,2 6L/ 4L/ 2

1 = 1, 3 , (1. 140)
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where Etelte is the flexural rigidity of the individual element; it

is assumed that I
te

is constant along the element. L' is the

element length.

The assemblage bending-stiffness matrix for the two towers

is thus

[k
t

] .)e el
(1. 141)

Here. N.' is the total number of elements in the i th tower leg.
1

The nodal displacements can now be written as

N'

[rt } =L [qt}e

e=l

with N.'
1

(1. 14Z)

The element geometric-stiffness matrix due to the compressive

load P then takes the form
w

r 36 -3L' -36 -3L'

-p -3L' 4L'Z 3L' _L/2

[k ] - w (1.143)tg e - 30U
-36 3L' 36 3L

I

-3L' _L'Z 3L' 4L'Z

The assemblage geometric-stiffness matrix for the two towers is

(1. 144)

The consistent-mass matrix for the element of the tower can

be written as
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156 -22L' 54 13L'

I -22L' 4L,2 -13L' _3L,2
:mteL

[:m ] = (1. 145)
t e 420 54 -13L' 156 22L'

13L' _3L,2 22L' 4L,2

where :mte is the ele:ment distributed :mass per unit length.

The asse:mblage consistent :mass :matrix for the two towers

is

Now, the nodal displacements, that is, the unknowns for the

entire assemblage, :may be written in the following partitional form

(1. 146)

where the subvector {r} in of the order N X I , while the subvector

{r
t
} is of order N{X I ; therefore, the order of {'i:-} is (N+ N')X I .

To for:m the overall stiffness and inertia :matrices :more con-

veniently for both the suspended structures and the cables on one hand,

and the two towers on the o':her hand, one can write each :matrix in a

partitioned for:m. Two exa:nples, one for the suspended structure and

the cable and the other for ':he towers, are presented as follows

(1. 147)

and
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(K J = [JQllh21 ]
TE (oJ :. (KTEJ (N+N')X(N+N')

(1. 148)

Now, performing the same variational procedure as before, the

assemblage (overall) matrix equations of motion for symmetric

vibrations may be written as

= [O}

or more conveniently

(1. 149)

(1. 150)

where [KSJ is a symmetric, full, positive definite matrix, of order

(N+N')X (N+N') ; it is defined through Eq. 1. 149. Eq. 1. 149 (or 1. 150)

is subjected to the constraint

H. (t)L .
I 1 el

q(2N'-1). = ui(t) = E A
1 C C

*w.
1

-"II
w

ri
v. dx.J 1 1

o
i = 1,3 , (1. 151)

which can be written, by the aid of Eqs. 1. 116, 1. 58, as

i = 1,3 , (1. 152)

this is actually the relation between the nodal displacement, q I
(2N -1) ,

at the top of the tower and the nodal displacements [r} of the
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suspended structure.

For the antisymmetric vibrations

a1.d (1. 153)

and the equation of motion (1. 150) reduces to

or

(1. 155)

where [KASJ is a symmetric, banded, positive definite matrix of

order (N+N') X(N+N') ; it iB defined through Eg. 1. 154.

The formulation of th~ eigenvalue problem, for both the sym-

metric and the antisymmetdc vibrations, follows similar procedures

to those which were used in section 1-4.

The following comput3..tion illustrates the application of the

previous analysis to the ovt:rall problem.

1-6 -3. Illustrative numerical example

To clarify the effect of the flexural rigidity of the towers upon

the dynamic characteristic fi of suspension bridge s and to show the

different modes of vibration of the towers, a numerical example has

been worked out for the suspension bridge in Example 2. Additional

information about the towe r s follows:
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Itl = I t3 = 20. 000 ft~ in~

h tl = h t3 = 400 ft.

E tl = E t3 = 29. 600 Kip/in~

wt 1= wt3 = 4. 0 Kip/ft.

F = 10. 000 Kips.
w

The frequencies and modes of vibration have been computed

for the symmetric case of the overall problem. The number of

elements in each tower leg (N.', i= 1,3) • was taken to be 10 elements
l.

and therefore the length of each element L' is equal to 42 ft.

The frequencies of vibration and the mainly vibrating members

corre sponding to each frequency, are shown in Table 1-4. While

Table 1-3 shows that the effect of the flexural rigidity of the towers

upon the frequencies of the vertically vibrating stiffening structure

is comparatively small and is limited to only the first few frequencies.

The vibrational modes of the system. shown in Fig. 1-16, can

be separated into two groups. In one group, the displacements of the

stiffening structures are predominant. and in the other group. the

displacements of the towers are predominant. Therefore. investiga-

Hon of the energy accuml1lated in the different members of the

suspension bridge, may require separation of the energies into two

groups. Fig. I-l7-a represents the energy storage capacity of the
I

cables and the stiffening structures as one group. including that

part of the potential energy absorbed by the towers during vibration

of the suspended structures. The minor (or secondary) role the

towers play in the energy storage capacity of vertically vibrating

bridge is indicated by the dotted line near the horizontal axis. The

correction in the strain energy of the cable (Eq. 1. 118) can be shown
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TABLE 1-4

Natural Periods ani Frequencies of Vertical Vibration

Tb e Overall Problem

(Syrrmetric Mode Shapes)

Mode
Frequency Pedod Frequency Member of Dominant

Order w(rad/ sec.) T (nec.) f (cps) Vibration

1 1. 064821 5.9 1)0698 0.169471 center and side spans
2 2.255588 2. 7:35608 0.358988 center and side spans
3 2.698381 2. 3;~8502 0.429461 center and side spans
4 5.477865 1. 147013 0.871830 towers
5 6.845536 0.917851 1.089501 center span
6 7.081554 O. 8:37261 1. 127064 side spans
7 13.110453 0.4'79250 2.086594 center span
8 15.545536 0.4)4179 2.474151 side spans
9 17.733480 0.354312 2. 822371 towers

10 21. 470668 0.212640 3.417168 center span
11 27.400477 0.2~9309 4.360928 side spans
12 31. 939673 0.116720 5.08336( center span
13 33.794722 0.185922 "5.378600 towers
14 42.697815 0.11:7155 6.795556 side spans
15 44.543139 O. IE 058 7.089282 center span
16 53.246513 0.118002 8.474433 towers
17 59.322982 0.ID5915' 9.441533 center span
18 76.341798 0.082303 12.150225 center span
19 81. 392639 0.077196 12.954039 towers
20 83.968655 0.074828 13.363981 side spans
21 95.686260 O. 0,:'5664 15.229045 center span
22 117.471018 0.053489 18.695433 center span
23 119. 085201 0.052762 18.953034 towers
24 140.643156 0.044675 22.383884 side spans
25 141. 806416 0.01,4308 22.569288 center span
26 165.742317 0.037909 26.378960 towers
27 168. 755532 0.037232 26.858616 center span
28 197.325764 0.031842 31. 405063 center span
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Fig. 1-16. Symmetric mode-shapes of a three-span suspension
bridge (including the towers).
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by a cOIllparison between Fig. I-ll-a and Fig. I-17-a; actually it is

very sIllall. Fig. I-17-b shows the energy storage capacity of the

towers at different Illodes, as the other group (when the Illain

vibrating eleIllents are the towers). The very sIllall contribution

of the negative potential energy of the axial force, p
w

due to

cable reaction is an intere:>ting phenoIllena. Actually, the drop of

the relative kinetic energy in the first two Illodes is caused by that

negative potential energy.

As is seen, there is ao situation in which the towers and the

suspended structure s vibrate siIllultaneously in a COIllmon Illode;

however, the towers vibrate opposite to each other so when their

vibration is significant, thE~ stiffening structure vibration will

increase.

It is iIllportant to note that in all the previous numerical

exaIllples the m.ode shapes obtained by the finite element m.ethod

are distorted in the higher m.odes because they are determ.ined by

connecting the displacem.er..ts at the various nodal points, and these

nodal points, of course, do not describe all points on the curve; in

the lower m.odes, each loop is described by m.ore nodal points,

enabling a sm.oother curve,



-120-

..

'G .....~ •••••••••••

o

o

o

o

•._._._<r------~.----4--.---:-----~--.-.;--.---l. -----:~~.~~.:-::-:~:=.::~:3f-~~:~·~~:-: -..
I (HINGED STIFFENING GIRDERS)

/ EFFECT OF FLEXLI1AL RIGIDITY CIF TOWERS
I UPON FREE VERTICAL VIBRATIONS OF GIRDERS

/ ENERGY STORAGE CAPAC I TVI FOR DIFFERENT SYMMETRIC MODE-SHAPES

,;
/

STRAIN E~AGY 0'" THE. GIRDERS /mTfL ENERGY

(

I ItJt4(TIC ENERGY Of TI£ SrSTEM /TOTR.. ENERGY

~"" STRR)N Et£RGY ~ THE CABLE fTOTAL E.NERGY
GflAVJrATlONR.. EM::RGY Of SYSTEH/TClTFL ENEAGY

POfENflFt.. Et£.RGY RBsmBEO BY TOWERS OLf\JfI(;\. i VIB""TlllNS IlF SUSPEtaD Sf'ANS ITOlf'.. E>l'RGT

"1!\
/ \
i\

j \

•...... ~\\\\:"....\,

'It ""'4,

o a.. ••••.•
.,; L--~-+--t-~>--;t--t---!7~-t8-49~;I~O-~II=:..:..:,ilf:2 =:';1~3':':··c:.· ·c:.·~·lij~·.:.;··c:.··":·I~S-'-'··.:.;··.:.;··~,6'-'·-'-'· '~"'-""~7'~'.~.~.;·t~·=4It!=~~....~..~

SYMMETRIC M~DE-SHRPES ~F THE GIRDERS ~NLY

• 11 11 12 14 18. 17 11

SYMMETRIC M~DE-SHAPES ~F THE BRIDGE
2. 21 2. 2. .. I !

11 ..

Fig.I-17-a. Relative energy storage capacity for the
suspended structures and the cables.

~
o

STRRIN ;NERGy··i--TOTRC-ENER---- __• • m m_-'>. ::==:-= $m ,. m ,.- m_. •

KINETIC ENERGY / fOfRL ENERGY

o

o

TOWER OF R SUSPENSION BRIDGE
ENERGY STORRGE CRPRCITY

FOR DIFFERENT MODE-SHRPES

I I
5 6

M~DE -SHAPES ~F fHE T~~ER ~NLY

. .1
10

..
..... POTENTIAL ENERGY OF fHE AXIAL FORCE DUE TO CRBLE RERCTION/TOTRL ENERGY
"'~

.......... .,.o
o L----~----+----~,,;-----;,l;;-.-------:,:r..====.~3;-:-:--===~2.:-O··~··=_·· _ t;- -·---- .. ·---·3~-···

SYMMETRIC M~DE-SHAPE5 OC THE BRIDGE

Fig. 1- 17 - b. Relative energy storage capacity for the towers.
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1-7. Appendices

Appendix I-a

Cable Profiles of Suspension Bridges and their Associated Properties

A single flexible cable suspended between two fixed points is the

simplest suspension bridgE~. The initial problem in such a case is to

determine the form adopted by the cable when it is loaded solely by its

own weight. and to find the te nsion in the cable at any point along its

length. The solution of this problem provides a starting point for a

consideration of the effect~ upon a suspended cable of extraneous

applied forces. such as thE dead weight of the stiffening structures

of a practical suspension bridge. This appendix is devoted to the

initial problem of determidng the different cable profiles of sus

pension bridges and their associated properties. as well as discover

ing the most usable profile.

1. The Common Catenary

The curve in which a perfectly flexible uniform cable hangs

when freely suspended betvreen two fixed points is called a catenary.

"Perfectly flexible" means that the cable resists applied load by

developing direct stresses only. It follows. therefore. that at any

cross section the resultant cable force is tangential to the cable pro

file at that point and acts through the centroid of the cross section.

"Uniform" indicates that the weight per unit length. W. of the cable

is constant. This defines the classical problem of the common
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catenary which was first solved by James Bernouilli, in 1691; the

earliest published solution was by David Gregory in 1697.

Consider a cable hanging sy:mmetrically between two fixed

points at the same level, as shown in Fig. I-a-i. Let 0 be the

origin for the ordinates x and y. If the cable is treated as inex-

tensible, the vertical equilibrium of the element of the cable shown

in Fig. I-a-ii requires that

(I-a-l)

where T is the tension in the cable, w is the weight of the cable

per unit length of the cable curve and '* is the sine of the angle of

inclination, i. e., sincp.

The horizo.ntal component of cable tension. Hw ' is constant

since there are no acting longitudinal components of load.

constant (I-a-2)

dx
where ds = coscp. Consequently, Eq. I-a-1 is reduced to

_ds
-w-

dx

or

2 2 .1-

H~ = - w [1 +(~) ] 2
w dx2 dx

Since w is constant, the solution of Eq. I-a-3 gives the

Catenary. Integration of Eq. I-a-3 yields

-1 iY w
sinh dx = - H x + c 1

w

(I-a-3 )
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where c l is a constant of integration.

wp.
that c 1 =~ '2 and

w

P.
But at x = '2 ' ~-dx - 0, so

. -1 dv wslnh .::::.L- =--
dx H

w
(~-x). (I-a-4)

Integration again, the following can be obtained

y 0 - : cosh [ H: (~ - x )] + c2

where c
2

is another constant of integration. The cable deflection

at mid-span (x = ~) is the sag, f , and therefore c 2 =f + 1 and

This gives the shape of the curve adopted by the cable. When

required, the length of the catenary is given by

i. 2 .1.

s =f. [1 +(~) J2 dx

o
(I-a-6 )

Substituting ~ , obtained from Eq. I-a-5, in Eq. I-a-6 and integrat

ing yields

s = 2:w Sinh(21i )
w

(I-a-7)

The tension at any point in the cable is given by Eq. I-a-2 or

(I-a-8)

Substituting the value ~ derived from Eq. I-a-5, Eq. I-a-8 is

reduced to
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(I-a-9)

This tension will be :maximum at the ends of the span, where

x = 0 or x = £. , yielding

(I-a-10)

w
II

w

All the above results depend upon a knowledge of the parameter

for their usefulness.

2. The Parabolic Cable

In many practical SUi. pension bridges the total dead weight of the

bridge, instead of being di:.tributed as though uniform along the cables,

is distributed more uniforrnly across the span. Of more practical

importance than the common catenary, therefore, is the case of a

cable suspended between tvro points and so loaded (or with a weight

per unit length such) that the load per unit of span, £., rather than

the curve, is constant. Remarkably enough, although the catenary

was understood at the end of the seventeenth century, this related

yet simpler problem was not solved until one hundred years later. In

1794, a suspension bridge 'Nas proposed across the Neva, near

Leningrad, and it was as a result of considering this proposed bridge

that Nicholas Fus s publishEd his solution that year.

Now, consider the cable, as before, to be perfectly flexible

and inextensible. The vertical load on the element, ds, of the
,..

cable will be ';ds (instead of Vii ds which was for the common
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catenary). Again, the equilibrium of this element of the cable gives

T dx = H = constant
ds w

and

d ( !!Y.) _ >:~
ds T ds - - w

Furthermore, Eqs. I-a-ll and I-a-12 give

(I-a-ll)

(I-a-l2)

2
H 5iJ=

w dx2

>:~ ds
-w-

dx
(I-a-l3)

ds
When Wc dx is constant, the profile of the cable is a parabola (which

is the essence of the discovery made by Fuss).

However. for flat-sag cables of constant weight per unit length.

the slope of the cable profile is everywhere small and, therefore

ds ~ dx

The differential equation of the equilibrium curve is then

accurately specified as

-w (I-a-14)

The solution of this differential equation, for the coordinate

system shown in Fig. I-a-i. is the parabola

>~ 2 [ ]wi. x x 2
y= 2H

w
T -(:r) . (I-a-l5 )

The cable deflection at mid- span (x = ~) is the sag. f, and

the horizontal component of cable tension is
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* Z
H =~

w 8f (I-a-16)

The tension at any po:.nt in the cable is given by Eq. I-a-8, and

its value is

[

"'Z Z
T=H 1+~ i (1

w 4HZ
w

(I-a-17)

The maximum tension in th<~ cable, occuring at either support, will

be

(I-a-18)

With the aid of Eq. I-a-16, Eq. I-a-15 is more conveniently written as

4f
y = - x (i - x)

£Z
(I-a-19)

It is worthwhile to no:e that this equation is also valid for the

parabolic cable shown in Fi g. I-a-iii.

The length of the parabolic cable is given in general by

Eq. I-a-6, and in this particular case the total length is therefore

(I-a-ZO)

It is convenient, and sufficiently accurate, to expand the integrand

of Eq. l-a-ZO in a binomia;. series and then to carry out the integration

term by term. If this is done, it is found that

(I-a-Zl )
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and for small { ratios, it is sufficient to adopt

for most practical purposes.

Similarly, in the more general case when the two ends are not

on the same level, as shown in Fig. I-a-iii, this formula for s still

holds provided that both Yl and the sag 11 are measured from the

closing chord joined the two end supports.

3. Some Other Cases

In the case of the common catenary, Vi was constant measured

~~

along the cable; in the case of the parabolic cable. w was constant

measured along the span (horizontal) of the cable. In addition. there

is the heterogeneous cable in which w is a variable~ whether

measured along the cable or the span. Shortly after solving the

catenary problem. Bernouilli proceeded to solve this more general

problem. inquiring into the law of the variation of w associated with

various possible geometrical forms for the cable. The main result

from this kind of approach concludes that w measured along the

ds *cable must vary so that w dx' corre sponding to w measured along

the span. is a constant. A further result of interest is that when

W(ddxS)3 is constant. the curve is cycloid. Another example of a

possible cable profile is the catenary of uniform strength developed

by Gilbert in 1826. in which the cable's cross sectional area is

proportional to the tension acting upon it. But this approach limits
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the spans of suspension bridge cables, which should be set by con

siderations other than ITlatheITlatical liITlits.

4. COITlparison of Ca.ble Profiles

The cables of suspen::lion bridges are cOITlITlon1y constructed

with a uniforITl cross-sectional area, and thus, if allowed to hang

freely, they would adopt th(~ forITl of the COITlITlon catenary given by

Eq. I-a-5. But in practice they are often constructed at the site on

a teITlporary p1atforITl, and the roadway is hung froITl theITl by vertical

suspension rods so that whIm all is cOITlplete, and the structure is

bearing its own weight, the forITl of the cable s is ITlore nearly

parabolic. The aiITl of this erection procedure is to ensure that the

dead weight of the whole bridge (roughly uniforITl ITleasured along the

span) be carried wholly by the cables and suspension rod without

causing bending actions in any stiffening structure s.

Thus practical intere st naturally settles upon the parabolic

rather than the catenary prJfile of cable, but there is another reason

for this. The profile s of the two curves are very siITlilar in terITlS of

their ratios of span to sag which fall in the range COITlITlon in

suspension bridges (usually 8:1 or ITlore). And since the cable

profiles are alike, the loads in the cable and in any subsidiary

structure of the real bridge will also be siITlilar. In these circuITl

stances it is natural to adopt the parabolic profile, with its greater

siITlplicity and £aITliliarity, as the standard one for suspension bridges,

and this has becoITle the general custOITl.
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Appendix I-b

The Cable Equation (Compatibility Equation)

The cable equation provides a compatibility or closure condi-

tion relating the changes which occur in the cable tension to the

changes in cable geometry when the cable is displaced (in-plane) from

its original equilibrium po sition.

It is seen from the geometry of displacement (Fig. I-2-a), that

for the static position of equilibrium, the element of length dSi in

the i th span of the cable can be given by

2ds.
1

2 2= dx. + dYg
1 1

i = 1, 2, 3 .

When the cable is displaced (in-plane) due to vibration, its length
ou

increases to ds. + 6. ds. , dx. increases to dx.+~ dx. where
1 1 1 1 vx. 1

1

U is the vibrational horizontal movement of the element, and dy.
c ov 1

becomes dy. +dxc dx. where v is the vibrational vertical movement
1 • 1 C

1

of the element. Then for the vibrationally displaced position

or

2 ou (OU)2 2 ov (OV)2 2
2ds. 6.ds. + (6.ds.) = 2dx. °c dx. + <:I C dx. + 2dy.~ dx. + <:I C dx.

1 1 1 1 X. 1 vx. 1 lOX. loX. 1
1 1 1 1

In general u (x., t) is small in comparison with v (x., t) ;
C 1 C 1

therefore the increment in the length of the cable element 6.ds. ,
1

correct to the second order of small quantities, is
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AU dx. ov dy. 1 (OV )2 dx.
6d s ~ -.£. __1 dx + -.£. _1 dx + _ -.£. __1 dx

i ax. ds. i ax. ds. i 2 ax. ds. i
1 1 1] 1 1

i = 1, 2, 3 .

Hooke's Law, applied to the element, requires that

H(t) _ dS i
E A dx. =

c C 1

6ds.
1

ds.
1

i = 1, 2, 3 ,

ds.
where H(t) dX~ is the incrl~ment in tension exerted on the element,

1

E is the modulus of elast:.city of the cable material and A is the
c c

effective cross-sectional area of the cable. Consequently, the cable

equation for the element reads

H(t) (ds.)3 au ov dy. 1 (OV )2
__1 _ -.£. + -.£. __1 + _ -.£. . 1 2 3

E - nod 2 a 1= , , •A dx. ux. x. x. x.
CC 1 1 11 1

The effect of a chang(~ in temperature can readily be accomodated.,

and the cable element equation then is

3 2 2
H(t)

(
dS.) au ov dy. 1 (OV ) (dS. )__1 = -.--£ + -.--£ __1 + _..-£ ± E 6 T __1

E A dx. ax. ax. dx. 2 ax. t i dx.
cc 1 1 11 1 1

i = 1, 2, 3 ,

where E
t

is the coefficient: of thermal expansion and 6 T
i

is the

. 1 h . t . th .thIncrementa c ange In emperature In e 1 span.

The above cable equalion may be integrated, for each span,

to give

H(t)L .
e1

EA
c c

i = 1, 2, 3 ,

where L . and L
t
" are virtual lengths of the cable in the i th span

el 1

which are defined by
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i = I, 2, 3 ,

and it has been assumed that .6. T. is uniform along the i th span.
1

In the case of a suspended cable, hanging between rigid supports,

the above cable equation reduces to

H(t)L. f£i (OV \(dY.) If£i (OV \
2

E Ael = ox~j dX~ dxi + 2: OX~/ dxi ± Et 6. Ti Lti '
cc 0]: 1 0 1

i = I, 2, 3 .

Finally, to evaluate L . , the expression for y. is:
el 1

Jiy. = 4 -2 x. (£. - x. )
1 £. 1 1 1

1

dYi 4 Ii _ 8] xi
dx. = 1. 1 n2

1 1 .{..
1

but

(::~) = [ 1+ (:~)2]3/2

(
ddx

s1

1

·.)3expansion of the series yields

Hence

i = 1, 2, 3 ,
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1 ( )3 i. (d 2 1. .(d )4
Ji ds. 3 Jl y.) 3 Jl y.

dx~ dXi = 1. i + '2 d.x~ dxi + 8" dX~ dXi + ...
o 1 0 1 0 1

1.. 2 1.. 43fl (, fl Ji) 3fl (li Ji )
=£i+'2 0 \4 1j--8 1.~ xi dxi + g 0 4 1i -8 1.~ xi dxi +···

therefore the virtual length L. is defined byel

Similarly. for L
ti

, one cC.n write

[ 16 (Ji)2]
L ti ~ 1. i 1 +:1" -r; .
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Appendix I-c

An Alternative Approach to the Inextensibility Condition

To re-examine more critically the use of the expression (Eq. 1. 23)

(Eq. 1. 23) for an inextensible cable. In the presentations given by

von Karman, Boit and Rannie [5,6J it is noted that the initial total

length of the cable is given by

(I-c-l)

and hence, by replacing y. with (y. +v (x., t)) and expanding in a
1 1 C 1

Taylor series, the variation 6s, for the entire length, is found to

be

dx.
1

(I-c-2)

neglecting higher terms in v. Hence, by integrating by parts, noting
c

that v = 0 at the two limits of the integral, and by neglecting the
c

departure from unity of the denominator of Eq. I-c -2, it is found that

6s = (I-c-3

where

2
d y.

1
--2- =
dx.

1

(see Appendix I-a, Eq. I-a-14).
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Eq. 1. 23 is identical to Eq. I-c-3 when 6s is zero.

From a review of the approximations made in this argument,

it is apparent that [the p(:ra)(~oJl noted has been unaffected by the

replacement of 1 + d~~ 2 in Eq. I-c-2 with unity; the explana-

tion must lie, at least in part, in the neglect of higher-terms in the

Taylor series for s. If further term is included then

6s
3 {£i (dy,)(aV ) lEi (av )2 }=" I __1 _£ dx. + - f __c dx.
~ 0 dXi aXi 1 2 0 aXi 1

(I-c-4)

The second term hen: is, of course, the same as the change in

length, due to v , of a straight member from x. = 0 to x. =1.. •
C III

~< 1.

Again, the substitution of (:i Ii V
c

dX
i

) for the first of

w 0

these two integrals in Eq. I-c-4 depends upon a process of integra-

tion by parts which is stric;ly legitimate only when(::~) and (::~)
1 1

are continuous functions of x. between the limits x. = 0 and x. = f..
1 III

Thus, for an inextensible cable, the further equation

_~ {$i ff.\ clx. _ If£i (avc )2 dX.} = 0
L.J H c 1 2 ax. 1

i= 1 wOO 1

or

3 J\
"
~I

L .'-
1 ~""''.'

w. dXi = 2""1

i= 1 0 i= 1

dx.
1

(I-c -5)

is the inextensibility condiLon for the cable.
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Appendix I-d

Effect of Shear Deformation and Rotary Inertia

The governing equations of motion for the vertical vibration of

suspension bridges, including adjustments for the effect of transverse

shear deformations and rotary inertia, will be derived by Hamilton's

Principle.

The kinetic energy is due to translation and rotation (Eq. 1. 34)

and is expressed by

3 1.

T(t) = ~L:.C
i=l 0

2 3 1. 2
.f_ (ov. \ 1 """' 11 (011 ,)
~i ot

1

) dXi + 2" L...J J gi ot
1

i=l 0

dx.
1

where

J . is
gl

* .thm. is the mass of the bridge per unit length of the 1 span,
1

the mas s moment of inertia per unit length of the i th stiffening

structure about the neutral axis. v. is the total vibrational displace
1

ment and 17. is the angle of rotation due to bending. i. e. ,
1

ov:
1 =ox.
1

17· + [3.
1 1

i = 1,2, 3 ,

with [3. as the angle of distortion due to shear. But J . is related
1 gl

to I . (the moment of inertia of the i th stiffening structure) by
gl

m.
J =p I =~I.=

gi gi gi A. gl
gl

2
r. m .

1 gl

m.
gl

where p. is the mass density of the i th stiffening structure,
gl

is the mas s per unit length of the i th stiffening structure and r. IS
1

the radius of gyration about the neutral axis.
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FurthermoreJ the variation of T(t) can be written as

3 1.

oT(t) =L 11 I~\
i= 1 0

The potential energy of the stiffening structure (Eq. 1. 29) is

3 1.. (3 fl )~: 3 £. (3 )2
V (t) = -2

1
,", [E .1 . n i dx. + -2

1"'11

G .J.L.. n

Vi
-11. dx.gv LJ gl gl ux. 1 L..J gl VI ux. 1 1

i= 1 0 1 i= 1 0 1

where E . I. and G . ~. are the flexural and shear rigiditiesJgl gl gl VI

respectivelYJ of the i th stiffening structure. Hence the variation

of the potential energYJ V J has the formgv

3 P.. 311. (311.6V(t) = '"' [E .1 .~ 6~) dx.gv L....J gl gl ux. ux. 1

i= 1 0 1 1

3.Q. (3 ) (3 )+'" f G . p:. n vi - 11. 0 n vi - 11. dx..L..J gl VI uX. 1 uX. 1 1

i= 1 0 1 1

It is convenient to consider only these two energies T(t) and

V (t) since the potential energy of the cable J V (t) J has been dealt
gv c

with before.

Introducing OT(t) and BV (t) in the variational principle leads
gv

to
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f£.· (av.) (av. ) J }- G. {.r. ~ - 1]. a~ - 1]. dx. dt = 0
gl Vl ux. 1 ux. 1 1

o 1 1

The order of integrations with respect to x. and t is inter
1

changeable and the variation and differentiation operator s are com-

mutative, so one can perform the following integrations by parts:

av. dt
1

t 2

f
2 ,.. (1 v .

..' 1= - TIl. --2- av. dt
1 at 1

t l

because oVi vanishes at t = t l and t = t
2

• In a similar fashion one

can obtain

017. dt
1

On the other hand, integration over the spatial variable yields
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£. a ~a) £. aT]. T]. TJ· ~
1 1 1 v

E . I . - - dx. = E. I . - - 0 . dx.[ gl gl ax. ax. 1 [gl gl Elx. Elx. (771 ) 1
o 1 1 0 1 1

a
£. l' ~ )T]. 1 1 a vT].

= (E .I .-a1) 017. ~ - -~- (E .I .-a1 OT]. dx. ,gl gl X. 1 vx. gl gl X. 1 1
1

0
1 1

£. (" )
1 vv.

IG gi #-Lvi Elx~ - T]i
o 1

(
ElV. ') l£i (ElV. ) 8o~ - T]. dx. = G. ~ . ~ - T]. a- (ov.) dx.vx. 1 1 gl VI vx. 1 ux. 1 1
l' 0 1 1

£. (8 )
- fG . M· Q vi - fl. 077. dx.gl VI ux. 1 1 1

o 1

= [G .M.(~Vi _17.)ll Dv.ji
gl VI ux. 1 J 1

1 0

£. [ (El )J1 8 vi-r -a. G. M . a- - 17· Bv. dx.J X. gl VI ux. 1 1 1
all

£. Q )1 uv.-f G . JJ: • (-a1 - TJ· 077· dx.gl VI X. 1 1 1
o 1

Using the above expression in the variational principle produces

3 t z £. Q2£. Q2 Q l'1 >.'< u V. 1 2 u 17. uTJ· 1

01 ='" f { -I m. -2
1

O·v. dx. -f r. m . -2
1

077· dx. -(E. I . ~)6TJ'L-J 1 Elt 1 1 1 gl Qt 1 1 gl gl uX. 1
i= 1 tOO u 1 0

1

£. Q ~ ~ £1 Q u17. vv. i
u ' 1 1+ - E. I . -- {) . dx. - G. . - - . Bv.1aXi ( g. ", axJ '7, 1 g11"v.(ax. '7.)J •I

a 1 0
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1. [ (a )]1 a UVi+f -a- G. /J!. -a- - T]. Ov. dx.ux. gl VI UX. 1 1 1o 1 1

£. a ) }+fl G ./J! . (a Vi - T]. aT]. dx. dt
gl VI ux. 1 1 1

o 1

L:
3

jt2 [f1i
{ a [ (OV. ) J .', o2

v
.}= -a- G. /J!. ~ - T]. - ~. -2
1

Ov. dx.
ux. gl VI X. 1 1 at 1 1

i=l t . 0 1 1 U

1

f1
i
{ [ EJ ( 8T].) (8V.)] 2 o2T].}+ -8- E . I . -81 + G . ~ . -81 - T]. - r. m . -2

1
aT]. dx.

x. gl gl X. gl VI X. 1 1 gl 8t 1 1o 1 1 1

(
aT]. ) 1\i

- E. I .~ aT]. -
gl gl UX. 1

1 0
[ G . /J! . (~Vi _ T]. )J 011. 1\i ] dt

gl VI uX. 1 1
1 0

The virtual displacements aT]. and Ov. are arbitrary and
1 1

independent, so they can be taken equal to zero at x. = 0 and x. =P..
1 1 1

and arbitrary for 0 < x. < 1. ; therefore, after including the variation
1 1

of the cable I s potential energy from Eq. 1.40, one must have

i = 1, 2, 3 ,

a [ ( 8vi ) J
8x. Ggi f..Lvi 8x. - T]i

1 1

2.', a v.
-,- 1

-m--
i ot2

2

( )
8 v .

+ H
w

+H(t) ----f:
ax.

1

*w.
1

- - H(t) =
H w

o ,

a
ax.

1
(

OT].) (8V.)1 1
E.I.-+G .. --.-gl gl ax. gl f..LVl 8x. T]1

1 1

o , i=1,2,3,

throughout the domain. In addition, one can write
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E . I .~ 077.gl gl ux. 1
1
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i=1,2,3,

~ (
OV. ) ( ) Ov. dy. ]

G . ~ . ~ - 77. + H + H(t) ~ + H(t) -d1gl VI vX. I W uX. X.
III

iii = 0Ov.
1

o
i= 1,2,3.

EliTIlinating 17. from the two resulting equations of motion, a
I

more complete differential equation for the vertically vibrating

suspension bridge can be obtained as follows:

0
2

+--2
ox.

1

<:I;~ )u V.
E I _-2:.

( gi gi ox~
1

2 2
m .r.+ gl I

G .J.L .
gl VI

4o V.
1

ot4

2 ~~

( )
0 V. W.

H +H(t) __1 +_1
W 0 2 Hx. W

I

H(t) = 0 , i = 1, 2, 3 .

In this manner, the effect of rotary inertia is represented by

84

( TIl . r~ Vi), while the effect of shearing deformations is
gl I ox~ot2

1

represented by

4o V.
1

<:I 2 r -

t
2

UX. (I
1

2 2
m .r.

+ gl 1

G .M.gl VI
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CHAPTER II

FREE TORSIONAL VrBRATIONS OF SUSPENSION BRIDGES

II-I. Introduction

Torsional vibration of a suspension bridge may be produced by:

a) unsymmetrical live load:; such as a traffic load on only one side of

the bridge roadway. b) unsymmetrical dead loads created during

erection. c) aerodynamic forces which tend to twist the roadway of

the bridge about a longituditlal axis. and d) earthquake ground motion

perpendicular to the longitudinal centerline of the bridge and trans

mitted through the piers, foundations, and anchorages to the bridge

deck and cables. Each of bese loading conditions produces vibra

tional torque of the bridge cleek about the longitudinal axis of the bridge

together with opposed-phas~vertical vibration of the two cables.

As mentioned in Chapter I, the analysis of vertical, flexural

vibrations of suspension b6.dges has a long history and is well

established. However, tor odonal analyses have been much less

frequently made; there havEl been few investigations into, and

relatively little work published on, the torsional vibrations of sus

pension bridge s. For example, few analytical studie s have been

made to develop formulas for computing the natural frequencies and

mode shapes, and most of those which have been developed are not

precise either due to the assumptions involved or due to the type of
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solution techniques adopted. Standard treatises such as those by

Steinman [13J, Smith, Vincent [llJ and Bleich [3J call attention to

the undeveloped state of torsional analyses, and recent investigations

such as those of Selberg [9J and Irvine [5, 6J imply that the problem

of the torsional vibration of suspension bridges needs to be treated

more effectively by either analytical or approximate methods. Thus,

in spite of the recognition of the problem and intermittent attempts

at its solution, the state-of-the art of free torsional vibration of

suspension bridges is, still, not satisfactory. Nonetheless, in order

to achieve a complete picture of the problem, a brief review of the

literature (in English) seems appropriate.

In 1941, in connection with the spectacular failure of the Tacoma

Narrows bridge, Rannie [8J presented an approximate analysis of the

free torsional vibrations of a three-span bridge which lacked a lower

lateral wind-bracing system; in his study, the torsional stiffness of

the deck was ignored, but the flexural rigidity of the stiffening trusse s

in the vertical planes was considered, and the cables were assumed

inextensible.

In 1948, Smith and Vincent [11] extended Rannie t s analytical

approach by including the extensibility of the cables. They found that

the simplified approach of Rannie did not agree well with the observed

torsional frequencies for the Tacoma Narrows bridge and for its model.

Accordingly, they also modified the analysis to take into account the

tor sional rigidity of the suspended structure. They as sumed a linear

relation between the angle of twist and the torque induced in the
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suspended structureo The torque was represented by a couple con

sisting of two equal and opposite forces acting vertically on the two

stiffening structures; then, when this additional force was added to

the equation of vertical vib:~ation, with rnodified inertia load. the

torsional equation of rnotion was obtained. However, Srnith and

Vincent recognized that in an actual bridge, in order to attain any

substantial tor sional rigidity, both top and bottorn lateral bracing

systerns rnust be used. so that the entire deck systern would act like

a rectangular tube.

In 1950. in a cornprehensive work on the theory of vibrations of

suspension bridges. Bleich [3J. et al.• studied the torsional vibration

of a suspension bridge havin.g a uniforrn four-truss box deck with heavy

chord rnernbers at the corners. In this structure, bending deforrna

tions resulted froll1 the longitudinal strains in the chord ll1ell1bers, and

shear deforrnations re sulte:l frorn strains in the bracing rnell1bers.

They assumed that the torqu.e, due to the inertia forces, produced in

each of the four trusses a tending mornent and a torsional shearing

force, both acting in the plane of the truss. They further assurned

that the longitudinal stresSE~S in each chord were as a result of the

bending of the vertical as well as the horizontal truss in which this

chord participated. These longitudinal stresses were later corrected

by Steinrnan [I3J. Bleich did not obtain the differential equation of

motion in its rnost general [orrn, but used an approxirnate rnethod of

solution involving a FourieJ~ series to evaluate the first few torsional

frequencies and rnodes of nlOtion. This was the first atternpt to deal
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with the torsional vibration of a bridge having a box-shaped deck

system.

Later, in 1957, Sih [10J presented a brief paper analyzing static

torsion in box truss suspension bridges. In his paper, equations were

derived to determine the stresses in the stiffening trusses due to

torsion considering cable interaction, and for the first time, the

effect of warping was considered. Warping i.nvolves the longitudinal

movement of points on a cross section (sometimes it is known as

bending-torsion).

In 1959, Steinman [13J published a paper in which he presented

simplified formulas for the calculation of the natural frequencies and

modes of torsional vibration of suspension bridges. Some of these

formulas were derived by Steinman in 1941-1943 and were subsequently

modified (to include box- shaped decks) and tested for simplicity and

practical usefulness. In his study, he essentially adopted Bleich's

approach. He considered the bending moment contributions of the

vertical and the horizontal trusses to be equal; however. Steinman

concluded that when Bleich added the two contributions, he created a

duplication, identical chords being counted in both the horizontal and

vertical trus se s.

A recent and extensive treatment of torsional vibration is the

one by Selberg [9J. In 1961, he deduced the fundamental equations

of motion of a torsionally vibrating suspension bridge, including

warping effects. He made a significant modification by adopting both

Bleich's approach and Steinman's approximate method of analysis, in
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a very careful and precise way. In fact his work was the first to

provide major refinement (If the previous approache s and was also

the first to treat the problem of torsional vibration of suspension

bridges in as gene ral a manner as possible.

In 1974, Irvine [5, 6J made a detailed analysis of the response

of the boxgirder, single-span suspension bridge to static torsional

loading, and he later developed a linear theory for the free torsional

vibration of this type of bridge. He considered the deck to be a thin

walled box-girder of elliptical cross section and assumed there would

be no warping associated wLth torsion.

In the following analysis, two further advances in the analysis

of torsional vibrations of suspension bridges have been made:

1. A theory of free torsional vibration for a wide class of sus

pension bridges, having double lateral systems, is developed

taking into account the warping of the cross section. Certain

simplifying assumptions are made, and Hamilton's Principle is

used to derive the equations of motion and the associated boundary

conditions. Solutions of the differential equations are obtained.

2. A method of dynamic analysis based on the finite element

approach is developed for calculating the natural frequencies

and modes of free torsional vibration.

In addition to the theoretical analysis, some approximate equa

tions and formulas are derived which help to clarify the torsional

behavior of suspension bridges. Finally, a numerical example is

presented.
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II-2. Preliminary Considerations and Fundamental Assumptions

The main aim of this section is to present a brief desc ription of

the different types of suspended structures (or bridge decks) commonly

used in modern long-span suspension bridges. These suspended

structures have a very significant role in resisting torsional vibrations.

The section is also intended to outline the coordinate systems used,

and it contains the simplifying assumptions involved in the subsequent

analysis.

II-2-1. Types of suspended structures and their torsional

resistance

The old type of suspended structure (bridge deck), consisting of

two stiffening girders (or trusses) and a single lateral wind bracing

system below the floor stringers. had so small a torsional rigidity

that its effect on torsional vibrations could be disregarded [2,8,11.13].

The only restoring forces provided by the deck came from the bending

resistance of the stiffening girders (or trusses). Accordingly, the

principal torsional modes in this case are identical to the cor:cespond

ing vertical modes, except that the two sides of the deck and the two

cables each move in opposite directions, 1. e .• 1800 out of phase.

Certain differences between the frequencies of these two comparable

modes - flexural and torsional- arise, however. from the different

inertial conditions involved. In the flexural mode. the vertical motion

of the deck is uniform across anyone cross-section; in the torsional

mode. one side is rising when the other is going down. and the mid

point of the deck remains stationary.
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Modern long-span suspension bridges frequently have decks

which are comprised of two lateral wind-bracing trusses provided

in the horizontal planes of the top and bottom chords (or flanges) of

the stiffening trusses (or girders). This four-walled bridge deck

repre sents a rectangular tube of high tor sional rigidity which has

a significant effect on torsional vibrations.

Fig. II-I shows two examples of the rectangular deck: one

with stiffening plate-girders and the other with stiffening trusses.

Two lateral bracing systems, of truss type, are in the plane of the

top chord and the plane of the bottOll1 chord. Fig. II-2 shows

commonly used types of stiffening trusses and lateral bracing systems.

II-2-2. Coordinate systems

In this chapter. the dead load ordinate of the cable, measured

from the c losing line to the cable of the i th span, is defined as y; (x.)
C I

to avoid confusion with the Yi -axis of the deck cros s section shown

in Fig. II-3. (Note: In this figure. the subscript i has been left out

f .) Th . f h . th ..d .th thor convenIence. e x. -aXIS 0 tel span cOlncl es WI e1 .

longitudinal axis of the bridge (i. e •• the axis of rotation); this is the

axis along which there is no movement. The coordina.te origin for the

deck is located at the left support of each span, while for the cable it

is located at the left support of the cable whether it is an ancho rage or

a tower top. Be side the x .• y; and z. coordinate system of the
1 I 1

deck in the i th span, an additional coordinate system ;l.. for the i th
1

span is established along the perimeter of the section of the suspended
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(a) Lateral Bracing System (Commonly Used)
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(N-System)
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Fig. II-2. Different types of trusses commonly used for
(a) lateral bracings and (b) stiffening structures.
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This peripheral coordinate j.
1

is measured clockwise along the centerline of the cross-section

walls.

II-2-3. Simplifying assumptions

When a rectangular bridge deck, having One or more cross

sections constrained against warping, is vibrating torsionally, a

complex distribution of longitudinal stresses is developed that

cannot be evaluated using elementary theories of stress analysis.

The assumption that plane sections remain plane during deformation

is no longer valid, and applications of Saint- Venant' s Principle may

lead to serious error. The well-known example of the twist of a

cantilever I-beam that is built-in at one end illustrates the nature

of the problem.

Finding an exact solution of the problem of free torsional

vibration of a suspension bridge having a rectangular deck structure

is not possible. Certain simplifying assumptions must be introduced

in addition to the fundamental assumptions adopted in the analysis of

vertical vibration (Chapter I). Not only is it assumed that the hangers

are vertical and inextensible, the cables parabolic, and only small

deformations allowed, but also the following simplifying assumptions

are introduced:

1. The cross section of the bridge deck is assumed to be symmetric

about the center of the section. This cross section consists of

four horizontal chords (or flanges), and four shear web

systems (either diagonal and vertical truss members or web
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plates). The two chords (or flanges) of each stiffening truss

(or girder) in the i th span have the same effective cross-

sectional area A. , i = 1,2, 3, and the web members of the
1

top and bottom bracing systems are also the same. Accordingly,

y: and z. , i = 1,2,3, are axes of symmetry of the four-walled
1 1

structure shown in Fig. II-3.

2. The four horizontal chords (or flanges) transmit axial forces

only, and the axial stresses in each chord (or flange) are

distributed uniformly over its cross-sectional area A. ,
1

i = 1, 2, 3 .

3. The web systems of the vertical walls (either plates or trusses)

and the horizontal walls (usually trusses) transmit pure shear

(there is no tension or compression in the horizontal or vertical

directions). Also, the shear stress is constant through the web

system. Thus, the shear stresses are in the web systems only,

while the direct stresses are in the corner chords (or flanges).

4. The original shape of every cross-section is unaltered during

vibrational deformation. Thus, the geometric dimensions of

every plane normal to the bridge I s longitudinal axis remain

unchanged, although the section may undergo out-of-plane

deformation (warping). Also, the peripheral bending in the

walls of the section is negligible.

In view of the last assumption regarding rotation and out-of-p1ane

deformation of the cross-section, it follows that the vibrational angle

of twist, e., i = 1, 2, 3, of a cross section in the i th span and the y:
1 1

z. components of the vibrational displacements v. and w. are
111
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functions only of x. and of time t. while the longitudinal vibrational
1

displacement u. is a function of j o. x. and time t.
1 1 1

Other assumptions will be discussed as they are encountered in

the development of the analysis.
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II-3. Analysis of Suspension Bridges Having Negligible Tower

Stiffness

The following analysis assumes either that the cable rests on

nests of rollers at the tower top (i. e., with a movable saddle) or that

the tower is of the rocker type with a pin-bearing at the base. In both

cases, the horizontal components of cable tension, H (due to dead
w

load) and H(t) (due to inertia load), are the same on both sides of the

tower since there is no tower resistance to displacement at the top.

The equations of motion of the torsionally vibrating suspension bridge

and the associated boundary conditions will be derived by means of

Hamilton! s Principle:

t 2 .

f 6 (T - V) dt = 0
t 1

(2. 1)

where T is the total kinetic energy of the torsionally vibrating bridge,

V is the total potential energy of the system, including both the strain

energy and the potential energy of any conservative forces, and 6 is

the variational operator taken during the indicated time interval.

The kinetic energy T consists of two parts: the kinetic energy

T of the two cables vibrating in their vertical planes, 1800 out ofc

phase, and the kinetic energy Ts due to the rotation of the entire cross

section of the suspended structure. Similarly, the potential energy of

vibration V consists of two parts: the potential energy V of the
c

vibrating cables and the potential energy V of the elastic deformation
s

of the torsionally vibrating suspended structure.
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II-3 -1. Potential enE~rgy of the suspended structure

Based on the previous simplifying as sumptions in Section II-2,

the elastic potential energy v , i. e .• the strain e.nergy stored in the
s

deck. can be divided into two parts: V the strain energy due to the
sc

direct longitudinal streSSe!1 in the corner chords (or flanges) and Vsd

the strain energy due to the shearing of the web system of both the

stiffening trusses (or girders) and the lateral bracings.

The total strain ener,5Y Vs of the suspended structure is com

puted by summing the strain energy of each of the individual com-

ponents of the cross section. Thus, V is given by
s

(2. 2)

T . and 1".
Vi Vi

where (j. and €. are the (tirect longitudinal strain and stress due to
1 1

a non-constant rate of twist measured at the cross section of each of

the four corner chords (or J1anges) in the i th span;

are the torsional shear stress and strain in the web system of the two

vertical walls (stiffening tr.lsses or girders) in the i
th

span. and

finally, T hi and 'Y
hi

are the shear stress and strain in the web

system of the two horizontal walls (lateral bracings) in the i th span.

The summations extend over all three spans. In general, the shear

stress and strain in the foul." walls depend on the effective cross-

sectional area of the web plate for a plate girder type. In the case

of a truss they depend on the equivalent solid web section. i. e., on

the sectional area of the die.gonal members or of the truss panel

members.



-160-

The first term in Eg. 2. 2, as indicated above, is the portion of

the strain energy V stored in the four chords (or flanges), i. e. ,
sc

the strain energy associated with warping, while the second and third

terms are the portions of the strain energy V
sd

stored in the web

system of the two vertical and the two horizontal walls, respectively.

In order to further evaluate V • a knowledge of direct ands .

shearing stresses resulting from torsional vibration, in terms of the

vibrational angle of twist. S., i = 1.2, 3, must be specified.
1

1. Stre ss-Strain Relationships

From a consideration of the deformation of an element of length

dx. in both the vertical and horizontal web systems, illustrated in
1

Fig. II-4. the vibrational shear strain due to the warping displacement

u. and the twist S. about point 0 in the vertical system of the cross-
1 1

ti· . th . th b dsec on In e 1 span may e expresse as

T. ov. ou.
Y.. =~= __l+ __l
vi G. ox. oj..

1 1 1

i = 1. 2, 3 (2. 3)

Here G. is the shear modulus of the i th
1

span, v. is the vertical
1

vibrational displacement of the vertical system and u. is the vibra
1

tional axial displacement of the corner chords (or flanges) in the i th

span. This axial displacement is the same (excepting the sign) for

each of the chords in any given cross-section. From Fig. II-4-a, for

the vertical system, it can be seen that

b.
v. (x., t) = 2

1 8. (x., t)
1 1 1 1

i = 1, 2, 3 , (2.4)

where b. is the width of the deck in the i th span.
1
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The shear strain due to warping displacement

vertical system is given by

u. in the
1

au. 2u.
1 1=aJ,. T
1 1

i = 1, 2, 3 , (2. 5)

whe re d. is the depth of the deck in the i th span.
1

The vertical vibrational shear force S . is equal to the product
Vl

of the shear stiffness and the shear strain; i. e. ,

S .(x.,t) = G.~. ')' .(x.• t) • i = 1,2.3.
Vl 1 1 Vl Vl 1

(2. 6)

where j.L • is the shear resistance coefficient of the vertical web
Vl

system and G. j.L • is the shear stiffness of the wall. The value of
1 Vl

the shear resistance coefficient depends on the effective cross-

sectional area of the web plate (plate girder type). In the case of a

truss, fl. depends on the equivalent solid web section. i. e .• on the
Vl

sectional area of the diagonal member or members in a truss panel.

In the latter case fJ . also depends on the type of truss system used.
Vl

Appendix II-a demonstrates the shear resistance coefficient for the

different types of trusses commonly used in stiffening trusses and in

lateral bracing systems. These types are shown in Fig. II-2.

Substitution of Eqs. 2.4. 2.5 and 2.6 into Eq. 2. 3 yields

S.
')' = Vl
vi G.j.L.

1 Vl

b. aB. 2u.
= 1 1 + 1

"2 ax. T
1 1

i = 1, 2, 3 . (2. 7)

Similarly. the vibrational shear strain in the lateral system is

given by
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T
h1

. ow. Ou.
1 1

Yhi =cr- = ax:- + OJ,.
ill

i = 1, 2, 3 . (2. 8)

Here w. is the horizontal vibrational displacement of the lateral
1

system, and can be expreSE ed as

d.
w. (x., t) = 2

1
fl. (x., t)

1 1 1 1
i= 1,2,3. (2. 9)

From Fig. II-4-b, the shear strain due to warping displacement

u. in the horizontal wall can be written as
1

au. 2~.
1 1

oj. = - 1"-
1 1

i = 1, 2, 3 . (2. 10)

The horizontal vibrational nhear force Shi can be expressed as

Sh' (x., t) = G. Ph· 'Xh · (x., t)
1 1 1 1 1 1

i=l,2,3, (2. 11)

with I-L
hi

being the shear r~sistance coefficient of the horizontal web

system.

Substitution of Eqs. 2.9, 2.10 and 2.11 into Eq. 2.8, yields

Sh' d. 08. 2u.
'X= 1 11 1
hi G.I-L

h
. =:f ox. - T

1 1 1 1

i=1,2,3. (2. 12)

Now, the direct axial strain E. and stress (1. due to warping
1 1

in the corner chords (or flanges) of the i th span are

au.
t: = __1

i ox.
1

au.
(1. = E.E. = E __1

1 1 1 i ox.
1

i=l,2,3 (2. 13)

where E. is the modulus of elasticity of the deck in the i th span.
1

The axial force F. acting c.t each chord (or flange) of the i th span
1

as shown in Fig. II-3, is given by
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1F.=E.A·-a-

1 1 1 x.
1
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i = 1, 2, 3 , (2. 14)

where A. is the equivalent cross-sectional area of the corner chord
1

(or flange).

Since the total axial force in the deck structure must equal

zero at any section, the following relation must hold

fJ'\ Ai dA = 0
A

=- .th
-r 1 span (2. 15)

where A is the entire cross-sectional area.

2. Equilibrium Relationships

At a section of the i th span there are two shear forces S .
Vl

that form a couple, and two shear forces Shi that form another

couple, and there are four chord forces F.. The two couples have
1

a resulting twisting moment M ti.

From consideration of the equilibrium of an element of length

dx. , located at the corner chord (or flange) as illustrated in
1

Fig. II-5 -c, it can be seen that

of. S. Shl.
1 Vl

ax. =T-~
1 1 1

i = 1, 2, 3 , (2.16)

and the equilibrium of the torsional moment gives

M
t
· = S . . b. + Shi· d.
1 Vl 1 1

i = I, 2, 3 (2. 17)

Eqs. 2. 16 and 2. 17 express the two equilibrium relationships for

the various vibrational forces.

The next step is to express the forces F., S. and Sh. , and
1 Vl 1

accordingly M ti , in terms of the vibrational angle of twist B
i
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3. Force-displace1l1ent Relationships

Multiplying Eq. 2. 7 by di and Eq. 2. 12 by b
i

and then adding

yields:
as. d. b.

b. d. _<::1_
1 = 1 S. + 1 Shi

1 1 ux. J.L. G. VI J.Lh . G.
1 VIII 1

i = 1, 2, 3 . (2. 18)

Substitution of Eq. 2. 18 into Eq. 2. 16 then gives

2 2of. b. oa. ~ b. J.L .+d. J.Lh .)
_1 = ..2:. J.L G _1_ _ 1 '71 1 1

AX. d. vi i AX. b.d;J..L .u. .
1 1 II!. VI'-hI

or

i = 1, 2, 3 , (2.19)

of. d. as. (b~J.L' t d~J.Lh' )
1 _ _ ..2:.J.L G __1 t --2:. VIII

AX. - b. hi i AX. b.d.J.L .J.Lh.
1 1 1 1 1 VI 1

Introducing the coefficient [3. as
1

b.d.J.L ·/-Lh·
p. = 1 L VI 1
t-'i 2 2

b. /-L • t d. J.Lh .
1 VIII

i = 1, 2, 3 ,

i = 1,2, 3. (2.20)

(2. 21)

into Eqs. 2. 19 and 2.20 gives the following

and

of. b. oa. p.
_1 = ..2:. J.L G __1 VI S
ax. d. vi i ax. - ~,.d. hi

1 1 1 1 1

of. -d. 8(1 i J.L
hi_1=_1J.L G--t--S.ax. b. hi i ax. [3. b. VI

1 1 1 1 1

1 = 1, 2, 3 ,

i = 1, 2, 3 .

(2. 19 ')

(2. 20 ')

Differentiating Eq. 2. 7 twice and Eq. 2. 14 once (w. r • t .x
i
),

c01l1bining the two equation~i, and then substituting Eq. 2. 20' in the

resulting equation obtains:



all. b d1:1 • .13.
1 111

8 . = G.[3. d. -a- - E. A. 2/-L
Vl 1 1 1 Xi 1 1 hi
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3

(
b. a EL 1

1 1

T -:-3 - J.L .G.
vx. Vl 1

1

i = 1, 2, 3 .

(2.22)

A similar expression for 8hi can be obtained by using the same

procedure; it can be written as

ae.
1

8h1· = G. 13· b. -n
1 1 1 vx.

1

a3eb.d.[3. (d. .1 1 1 1 1
- E i Ai 2J.L. T -3-

Vl ax.
1

1
J.L •G.

Vl 1

2
a 8hi )

2 'ax.
1

i = 1, 2, 3 .

(2. 23)

Differentiating Eqs. 2.22 and 2.23 twice and substituting the

resulting expressions for the last term in each equation results in a

final expression for the torsional shearing forces, given in terms of

e..
1

as.
1

8 . = G.13. d. -n--
Vl 1 1 1 vx.

1

as.
1

8hi = G. 13· b. -n- -
1 1 1 vx.

1

(
b.d.13.)2(d.111 1

E i Ai 2J.L. T
Vl

1
G.IJ .

1 Vl

1

G·J.Lh ·1 1

3
b.d.13. (b. 13.b.) a e.EA 111.2:._2...2. __1

i i 2/-L. . 2 J.L. n 3
Vl V1 vX.

1

(
b.d.[3.)2 (b. 13. d .) aSe.

E A 111 .2:._~ 1 +
i i 2J.L

h
. 2 J.L. -n--::s=-
1 Vl vx.

1

3
b.d.13. (d. 13. b. ) a e.E A 1 1 1 .2:. _.2:-.1:.. __1

i i 2/-L. 2 /-L. a 3
Vl V.l X.

1

5e
[3. b.) a i1 1

- /-L
hi

ax~ + ...
1

i= 1,2,3.

(2. 24)

i = 1, 2, 3 .

(2. 25)

The 8aint-Venant shear force s are now given by the first term

of both Eqs. 2.24 and 2.25; i. e., they are proportional to the rate of

twist.

Neglection of terms of higher derivatives than 3 is identical to

the usual neglection of shear deformation of beams. Consequently,
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aa. b.d.~. (b. ~.d.)
8 . = G. ~. d. ~ - E. A. 2 2...!..2:. -21 _.2:.-2:.

Vl 1 1 1 ux. 1 ILL. J.L •
1 .~ VI

i = 1, 2, 3 .

(2. 24')

as. b.c .. ~. (d.
1 1 1 1 1

8hi = G. ~. b. n-- - E. A. -2/1- -2
1 1 1 ux. 1 1 ,....

1 VI

3
~.b.) a a.III

- J.L
h

· -;T
1 ux.

1

i = 1, 2, 3

(2.25 ')

Introducing expressions 2.24 'and 2.25' into Eq. 2.17, M
ti

can be written as

3
as. Ab.d.~. [b. (b. ~.d.) d. (d. ~.b')J a e.M . = 2G.~. b. d. _1 _ E. ~I. 1 1 1 _1_ ....2:. _..2..2. + _1_ ....2:. _..2..2. __1,

tl 1 1 1 1 ax. 1 2 J.Lh . 2 J.L. J.L. 2 J.Lh . a 3
1 l' VI V1 1 ux.

1

The warping displacement

span is given by

i = 1, 2, 3. (2.26)

u. of the cross-section in the i th
1

or

di ( 1 b. as. )u - 8. 1 1
i - 2" J.L •G. VI - 2" ax. '

Vl 1 1

i = 1, 2, 3 ,

i = 1, 2, 3 .

(2. 7')

(2.12')

U sing the expres sions for 8 . and 8
h

. (Eq s. 2. 24' and 2. 25 ') ,
VI 1

Eqs. 2.7' and 2.12' can bE expressed in terms of S. as follows:
1

2 3
d.((3.d. b.)ae. A.b.d.(3.((3.d. b.)ae.

u =....2:. 22 _....2:. __1 + E 1 1 1 1 22 _.2. __1

i 2 J.L. 2 ax. i 4J.L ·J.Lh ·G. J.L. 2 a 3
VI 1 VIII VI ux.

1

or

i = 1, 2, 3 ,

(2. 27)

2
b. (d. (3.b.)ae. ..I\.b.d.(3. (d. (3.b.)

u. =.2. ....2:._..2..2. _1 + E.- 1 1 1 1 ....2:._ 22
1 2 2 J.L h. ax. 1 '~J.L ·J.Lh·G. 2 J.Lhi1 1 VIII

i = 1, 2, 3 .

(2. 28)
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Appendix II-b gives a proof showing that expressions 2.27 and

2. 28, for the longitudinal warping displacement, are identical.

The axial force F. can now be obtained by substituting Eq. 2.27
1

or 2.28 into Eq. 2. 14 to get

d. (f3. b.1 1 1
F. = E.A'-2 ~1 1 1 ,.. .

VI

2 2
b. ) a e. ( )2 b.d. f3._..2:. __1 + EA III

2 '-' 2 i i 4JJ. .JJ.hiG.ux. VI 1
1

4

(
f3.d. b.) a e.1 1 1 1

~-T~
VI ux.

1

i=1,2,3, (2.29)

or

2 2
b. (d. f3.d. ) a e. ( 2 b. d.f3.

F = E A ..2:. ..2:. _ ---!..-.!.. __1 + E A ) 1 1 1
iii 2 2 IJ.h · n 2 i i 4JJ.. JJ.h · G.

1 ux. VIII
1

4

(

d. f3. b. ) a e.
III 1

T - IJ.h · -;4
1 X.

1

i = 1,2, 3, (2.30)

Now, all displacements, strains, stre sses and forces are

expressed in terms of the vibrational angle of twist e ..
1

Neglecting the high derivative terms in the above expressions for

u. • leaves
1

d. (f3.d. b.) ae. ae.III 1 1 _ 1
u "'- ---- -- =u--i - 2 JJ.. 2 ox. i ox.

VIII

or
b. (d. f3. b.) ae. ae.1 1 11 1 _ 1

U "'- - --- --= u--
i - 2 2 JJ.

h
. ax. i ax.
1 1 1

i=1,2.3.

i = I, 2. 3 ,

(2.31)

(2. 32)

where u. is now the warping per unit rate of twist of the i th span.
1

a. Strain energy of the chords (or flanges)

The strain energy V stored in the corner chords (or flanges)
sc

of the cross section, due to direct (torsion-bending) stresses, may be
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expressed as:

(2. 33)

using the linear stress-stra.in law (Hookean elasticity).

Using Eqs. 2.13, 2.:n and 2.32, the direct strain E. and stress
1

(]. due to a non-uniform rate of twist become
1

cr. = E. u.
1 1 1

i=I,2,3. (2. 34)

Therefore, the strain energy associated with warping can be

written, with the aid of Eqfi. 2.31 through 2. 34,as

3 £ - 2 2
1 ,,{ (i [d. ([3.d. b.) 0 e.]

Vsc(t) = zLJ J 2 E i Ai 2
1

J.Ll .1 - 2
1 --Y dxi

. 1 0 - VI OX.
1= 1

or
3 £. 2 2 2 2 2 2

=lL:{i1

[ ~li ([3i
d

i _ bi) bi (di _ [3i
b
i) J(~) JV (t) 2 E. A. 2 II 2 +A. 2 2" 2 dx.,sc 1 1 ,.., . 1 ,.., h' 8 1

i=1 0 VI 1 Xi

(2. 35)

or equivalently

3

Vsc(t) = ~L:
i=l

(2. 36)
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h r · th· f th . . th .thwere . 15. e warp1ng constant 0 e cross sectlon 1n e 1
1

span (sometimes called the torsion-bending constant); it is expressed

by
2 2 2 2

d. (~.d. b.) b. (d. ~.b.)111 1 11 11
ri = Ai T P:-:- - T + Ai T T - /.Lh'

V1 1

i = 1, 2, 3 . (2.37)

The warping constant has units of length to the sixth power. The

product, E. r. , in Eq. 2.36 is called the warping rigidity of the
1 1

ti . th . th Th . f h .cross sec on 1n e 1 span. e express10n or t e warp1ng

constant, r i ' (Eq. 2.37) is the same as the coefficient of

03e.
E i -T in the second term of the vibrational torsional moment

ox.
1

(Eq. 2. 26). Appendix II-c contains a proof of this equality.

b. Strain energy of the web systems

The strain energy Vsd stored in the web system of both the

vertical and the horizontal walls of the cross section, using a linear

stress-strain law, is given by

3

V (t) = .!.'""'sd 2L.J
i=l

or

3 1.. 2 2

_ 1 '""' [ 11

( T vi T
hi ) ]Vsd(t) - zLJ 2 ,/.Lvi (f""" + /.Lhi (f""" dxi

i= 1 0 1 1

Using Eqs. 2.24 I and 2.25 I and noting that

(2. 38)
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Shi
T =--
hi IJhi

(2. 39)

then Eq. 2. 38 can be written as:

1~3 {f£' J.l. [G.~.d. ae. b.d.[3. (b. [3.d.) a
3
e. J2V (t) = _ 2 V1 _1_~ __1 _ E. A. 1 1 1 .-2:. _-2:-.2:. __1 dx.

sd 2 G. IJ· oX. 1 1 21J ·lJh · 2 IJ· 0 3 1. 1 0 1 V 1 1 V1 1 V1 X.
1= 1

f£. IJh' [G.[3. b. ae. b.d.[3. (d. [3. b. ) 03e.]2 }+ 2 __1 1 1 1 _~ _ E A 1 1 1 .-2:. _-2:-.2:. __1 dx
G. IJh . ox. i i 21J .lJh . 2 IJ h' n 3 io 1 1 1 V1 1 1 vXi

(2.40)

Neglecting terms with higher derivatives than the first is

identical to assuming that these shear stre sse s due to twisting are

equal to those in St. Venan;' s theory of torsion. Therefore, the

strain energy, in accordan,::e with St. Venane s theory of uniform

torsion, will take the form

3 {£. [d
2

b
2

] (oe·)2 'l1 .. 2 iii
Vsd(t) = 2~ ~ 2 Gi ~i "vi + "hi aXi dxi J . (2. 41 )

Recalling the definition of the coefficient [3. (Eq. 2.21), the
1

strain energy expression (Eq. 2.41) becomes

Defining the torsion constant J. as
1

J. = 2 [3. b. d.
1 1 1 1

(2.42)

(2.43)
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then Eq. 2.42 can be written in a more convenient form as

(2.44)

Here, G. J. represents the torsional rigidity of the cross section in
1 I

th
.th

e I span.

The torsional strain energy can also be examined within the

framework of St. Venant' s theory of uniform torsion which gives an

alternative way to derive Eq. 2.44. The shear stresses due to

twisting are assumed to be the same as in St. Venant's theory and

the resultant of these shear stresses is a torque which is expressed

by the first term of Eq. 2. 26; i. e. ,

as.
1M

t
. ~ 2 G. 13. b. d. -<:\
III I 1 vx.

1

or
as.

1M tl. = G. J. -<:\
I 1 vx.

1

i = 1, 2, 3 .

(2.45 )

The strain energy for an element of the bridge deck of length dx.
1

is necessarily equal to the work done on the element by the torque

Mti · Therefore, Vsd for the entire bridge deck is

(2.44 ')

which is exactly the same expression obtained previously (Eq. 2.44).

Returning to the derivation of the total strain energy stored in

the torsionally vibrating suspended structure, Eqs. 2. 36 and 2.44 are

summed to give:
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(2.46)

It is worthwhile noting that in the St. Venant type of torsion the

torque is constant along the beam and the sections of the beam are

permitted to warp freely. When the warping is restricted by physical

constraints at the ends of the beam. normal stresses arise in addition

to the shear stresses. and I:hey contribute an additional resistance to

twisting. This same effect is caused by variations in the applied

torque along the beam such as a torque caused by inertia forces

resulting from vibration. The warping effect is completely absent

from beams of circular crc ss section whose normal sections remain

plane during torsion. but it is very important in box-shaped cross

sections.

II-3 -2. Potential ene rgy of the cables

In torsional vibration, corresponding points on the two cables

move equal distances in opposite directions. For small torsional

amplitudes the movement oJ any point is essentially vertical and the

variation of amplitude along the cable is the same as for the corre-

sponding pure vertical vibr3.tional modes. Thus. the two cables vibrate

in their vertical planes in opposite phase with antisymmetric vertical

movements of ±v. • i =1. 2. 3 . The downward movement of the cable
1

tends to increase its length by bending the cable more sharply while

at the same time the upward movement tends to reduce its length by

straightening the cable. The total potential energy, v • of the two
c
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vibrating cables is composed of the potential energy of the depressed

cable, Vd , and the potential energy of the elevated cable, V
e

.

If C H
w
(::) is the tension of the cable n.nder deal load :t

a point along the i th span, and ± H(t)(:~) are the vibrational
1

increments in cable tension for the depressed and elevated cables,

respectively, then the potential energies Vd and V
e

stored in
c c

cable length dx. , are
1

d *~d s. - w. v. dx.
1 1 1 1

i =1, 2, 3,

(2.47)

and

dVe(x., t) ={[H - i H(t)] ddSi }. ~des. +~. v. dx.
c 1 W x. 1 1 1 1

1

i =1, 2, 3 ;

(2.48)

H is the horizontal component of cable tension owing to dead load,
w

H(t) is the vibrational increment in the horizontal component of cable

tension, ~i is the total dead weight of the bridge per unit length

per cable, and ~dds. and ~des. are the vibrational increments in
1 1

the length of the depressed and elevated cables, respectively. Using

the results of the analysis given previously in Chapter I which deals

with vertical vibration, the potential energy Vd stored in the
c

depressed cable can be given in the form

3 P.. a 2

vd(t) = .!.'"""'{H fl(-2) dx.
c 2LJ wax. 1

i=l 0 1

J}, (2. 49)



-175 -

dy
where -dc is the dead load slope in the i th span of the cables.x.

1

The relationship between H(t) and v. (x., t) is expre ssed by
1 1

the cable equation which re:lates the elastic stretching of the cable to

the vertical vibrational displacement. as follows:

H-=(t--=)L...;;.;.;;.E =~ [fi. (_dYe) (_0v i) dx + lfi.(_OVi)2dx ]
E A .L.J \dx. ox. i 2 ax. i

c C i= 1 0 1 1 0 1

(2.50)

Here. E is the modulus of elasticity of the cable. A is the area of
c c

one cable cross section and L
E

is a virtual length of the cable defined

by

After substitution of -v. and -H(t) for v. and H(t) •
1 1

respectively. in Eq. 2.49. an expression for the potential energy

of the elevated cable ye iE obtained as
c

3

Y:(t) = ~L
i=l

The total potential energy. y stored in the two cable s of the
C

torsionally vibrating suspen sion bridge. is obtained by the sum of

yd and ye and is given by
c c

b.
1

By noting that Vi = T Si' Eq. 2. 52 can be rewritten in terms
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of 8. , as
1

Vc(t) ~ it{H,,;b~ Jii(:::JdXi+ H(t) bi[fii(::~)(::i) dxi]}. (2.53)

i= 1 0 1 0 1; 1

It will be noticed that the tern> HitJi(::i)2 dxi ' has been
JO 1

canceled. Also, it will be recognized that the first term of Eq. 2.53

represents the strainless or gravitational energy while the second

term, after neglecting the second order term which appears in the

cable equation (Eq. 2. 50), represents the strain energy stored in the

two cables.

The contributions to the potential energy of the system from the

hanger s are neglected since they are usually too small to be important

II-3-3. Kinetic energy of the torsionally vibrating suspension

bridge

The expression for the kinetic energy of the torsionally vibrating

suspension bridge may also be divided into two parts: one part repre-

sents the vibration of the bridge deck, Ts ' and the other part repre

sents the vibration of the two cable s, T .
c

The kinetic energy, T , of the suspended structure (or the deck),
s

for the entire bridge may be expressed by:

(2. 54)
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where I . is the mass pohr moment of inertia per unit length of thepI

cross section of the i th span. It is equal to m .r
2

. , m. being
S1 S1 S1

the mass of the i th suspended structure per unit length and r . being
, S1

the radius ~of gyration of th~ cross section.

The two cables, havbg the weight w per unit length of the span
c

and vibrating with antisymrnetric vertical displacements ± v. , i =1, 2, 3,
1

have kinetic energy expres3ed by

3 - £. a 2 ]
T (t) =.!.~ w c f 1(--"2.) dx.

c 2 L....J g at 1

i=l - 0

b.
1

but since vi = ""2 6i ' the kinetic energy Tc becomes

(2.55)

3

T (t) =.!. '"'c 2 L..J
i:: 1

(2.56)

g being the acceleration of gravity.

The total kinetic energy of the structure is then given by

The total kinetic energy may also be written in the form

(2.57)

(2. 58)

where
2

(
w b.)I' 1

I mi :: I pi + -g=:- 4"" i::l,2,3, (2. 59)
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and I . is the equivalent mass polar moment of inertia of the
ml

bridge cross section in the i
th

span (including the contribution

of the two cables) per unit length.

II-3-4. Variational formulation of the equations of motion

The variation of the total kinetic energy can be expressed

as

t 2 3

LIiT(t) dt 0~
1

oe.dx.dt] ,
1 1

(2.60)

since, be definition, 0(\ is zero at t = t 1 and t = t
2

.

The total potential energy of the torsionally vibrating suspension

bridge can also be expressed. from Eqs. 2.46 and 2.53, as

[
H b~

+ w 1

2 (2.61)
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The expression in the first set of brackets represents the

potential energy stored in the suspended structure, while that in

the second set of brackets repre sents the potential energy stored

in the two cable s.

Performing the variation with respect to 6. , of Eq. 2.61,
1

and integrating (by parts, where nece ssary), the following equation

is obtained

aV(t) =
3

L
i= 1

E.r.
1 1

(
H b~) 86. (dY.)J I£iG. J. + '; 1 r + H(t) b. ~ 06.

1 1 x. 1 dx 1
. 1 i 0

£. [ 2 ( 0
2

6+1 1

_a E. r. _i.)a 2 1 1 <::> 2
O x. ux.

1 1

06 i )
ox.

1

:lx.
1 (2.62)

Noting that
d 2

Yc
--2- =
dx.

1

.'OJ'

W.
__1_

H
w

where is the dead weight (per
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cable) per unit length, and introducing Eqs. 2.60 and 2.62 into

Hamilton's Principle (Eq. 2. 1) the following is obtained:

L:
3

ft2 fii[ 02e. <:1
2 ( 02e.) <:I ~ oe.) <:I (H b~ oe.)1 u 1 u 1 u W1 1

- I --+-Ef----GJ--- -
mi <:It2 <:I 2 i i a 2 ox. i i ox. ox. 2 ox.

. 1 t 0 u ux. X. 1 1 1 1
1= 1 1 1

oe. Hb~ as. (dY)] Iii
- G. J. ~ - ~ 1 ~ - H(t) b. d c 66.

1 1 X. X. 1 X. 1
1 1 1 0

dt = o. (2. 63)

Because the integral must vanish for any arbitrary values of 6e.oe.) 1

and 6(0 1 , these variations can be set equal to zero at x. = 0 andx. 1
1.

x. =Q., i = 1,2,3 , and equal to values other than zero throughout the
1 1.

domain O(x.(i.. It follows then that the differential equation governing
1 1

the torsional vibration of the i
th

span in the suspension bridge is

02e.
I .(x.) -21.
m1 1 at

02
+--2

ox.
1.

a ( oe.) a (H b~ ae.)___ GJ __1. W1 __1

ax. i i ax. ax. 2 ax.
111 1

....w.b.
+ H(t) ..-2:...2: = 0

H
W

where

i=l,2,3, (2.64)

A E 2-=:3 [:. b· i
ii

H(t) = c c -2:-.2.
L 2H

E i=l W 0

b~Qi(Oe.)2 J
e. dx. + -8

1 i ~ dx.1 1 x.],
o 1

(2. 65)
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Equations 2. 64 and 2. 65 are the basic differential and integral equations

of the torsional vibration of suspension bridges.

In addition, because of the arbitrary nature of the variation, the

last bracketed term and the term preceeding it in Eq. 2.63, vanish,

and thus the following conditions are obtained:

E. f.
1 1

i=1,2,3, (2.66)

and

[
a ( a2ei)

-<:\- E. f. -2- - G. J.
ux. 1 1 a 1 1

1 x.
1

06.
1

ax. 
1

H b~ ae.
w 1 1

2 ax.-
1

£•

o6
i

11 =

o
o ,

i = 1, 2, 3 ,

which take into account the possibility that either

(2.67)

02e. ae.
E. f.

1 0 1 0 at 0 x. =.R.. i= 1, 2, 3-2- = or ax. = x. =
1 1 1 1 1ax. 1

1 (2. 68)

and that

i-(E. f.
a2~i) as. H b~ oe.

H(t) bi (::)- G. J. 1 W 1 1 0
ax~ 2 ax. - ~

X. 1 1 1 1
1 ax. 1 1

1

or 6. = 0 at x. = 0 x. = 1. i = 1,2, 3 (2.69)
1 1 1 1

Equations 2.68 and 2.69 represent the boundary conditions

associated with the differential equations of motion for torsionally

vibrating suspension bridges. The first part of Eq. 2.68 requires

that the direct stress vanish at each end, as in a bridge which has a

deck with a free end or a simply supported end (which are free of

normal stress). The secon:! part of Eq. 2.68 requires that the warping
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be zero at each end of the structure, such as when the ends of the deck

are fixed so that the built-in section can neither twist nor warp. The

first part of Eq. 2.69 requires that the vibrational resisting torque

M
ti

which is developed by the vibration of the deck at the ends of each

span be equal to the vibrational torque M tc which is caused by the

vertical shear forces in the depressed and elevated cables at the ends

of each span. M ti is expre ssed by:

M
t
. (X., t)
1 1

and M
tc

by:

2
as. a ( 8 s.)

=GJ-1 _- Er--1

i i ox. ox. i i 8 2
1 1 X.

1

i = 1, 2, 3 , (2. 70)

HIf (oe.\ (dY)
M tc (xi' t) = ~ 1 8x~/+ H(t) bi dx~

r 1

i=l,2,3. (2.71)

The second part of Eq. 2.69 requires that there be no twist at the ends,

such as when there are fixed or simply supported ends.

Hence, both the natural and geometric boundary conditions of the

problem are presented. The above results are general and provide an

accurate formulation of the problem which will be useful for analytical

study and for understanding the general characteristic s of the vibrations.

Three useful simplifications are possible for the general theory.

In the first, the equations are linearized, in the second (see Appendix

II-d) the solutions are obtained for a simplified case, and, finally in the

third, the equations are verified. These three case s are discussed

below.
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1. Linearization

The problell1 is linearized by neglecting all second-order terll1S

which appear only in the ca)le equation. This require s that the terll1

b~ ii(Oa.)22f _1. dx2 ox. i
o 1.

equation reduce s to A E ~ [ .;. b. fi i ]

H(t) = ~~ L...J 2~ 1. ai dxi .

E i=l w 0

2. Solutions

(2. 65 ')

The chief aill1 of this chapter is to derive the equations of ll1otion

in a general forll1 and to outline the procedure for deterll1ining the

frequencies and ll10des of tc rsionalll1otion by a finite elell1ent approach.

But since solutions of the tcrsional equations of ll1otion are not well

known, they have been derived in order to present a cOll1plete theory

of the free torsional vibrati Jns of suspension bridges. However,

because the solutions are lengthy, they have not been included here

but are presented in Appendix II-d.

The solutions of the linearized differential equations of ll1otion are

given for a three span sYll1metric suspension bridge in which the

stiffening trusses (or girdel's) of each span are sill1ply supported, with

the cables held on top of the towers by roller supports. It is assull1ed

that the ll1ass of the bridge and its elastic properties are uniforll1 along

each span. Both ll10de shapes and natural frequencies for the syll1-

ll1etric and anti sYll1ll1etric nlOde s are obtained.



-184-

3. Verification

In what follows, the reliability and validity of the equations of

motion and their associated boundary conditions will be examined by

considering the dynamic equilibrium of an element dx. of the sus
1

pension bridge. Fig. II-5 shows a free body diagram for the bridge

element dx
i

. The total vibrational torque, M
Ti

, acting at the cross

section is equal to the vibrational torque, M ti ' developed by the deck

plus the vibrational torque, M tc ' caused by the vertical shear forces

in the depressed and elevated cables. As seen from Fig. II-5,

[H + H(t)]~ (y + v.) and [H- H(t)]~ (y -v.) are the verticalw ux. C 1 W ux. C 1
1 1

shear force s in the depressed and elevated cables, respectively. Thus,

the vibrational torque, M
tc

' at the cross section is

b i a b. a
M

t
(x.,t) = -2 [H +H(t)Jn-(Y +v.) - 21 [H -H(t)J-a- (y -v.)c 1 W ux. C 1 W ux. C 1

1 1

i = 1. 2, 3 .
b.

After substituting v. = 21 e. , Eq. 2.27 reduces to
1 1

(2. 72)

ae. dy
1 C-a- + H(t) b. dxx. 1.
1 1

i = 1, 2, 3 , (2. 73)

It may be noted that Eq. 2. 73 is in exactly the same form as

the equation for M tc obtained from the interpretation of the boundary
b. av.

conditions (Eq. 2. 71), and also that the nonlinear terms ± H(t) 21
ax~

1

have canceled each other out.

The torque M ti , which the deck would develop if the cables were

absent, is
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2
aa. <:\ ( a a.)1 urIG. J. - - - E. .--

I 1 aXi aXi 1 1 ax~
1

i= 1,2,3.

(2. 70 ')

The total torque M
Ti

is then given by

2
aa. a ( a a.)

M M+M GJ-1 _-Er--1

Ti = ti tc = i i ax. ax. i i a 2
1 1 X.

1

2
H b. aa. dy:

+ w 1 _1+ H(t) b. -.£.
2 ax. 1 dx.

1 1

i = 1, 2, 3 . (2. 74)

The equations of the torsional motion can readily be derived by

considering the equilibrium of forces acting on the differential segment

of the bridge shown in Fig. II-5.

2

[
aMT·(X.,t)] a ai(xi,t)

MT·(x.,t)+ al
l -MT·(x.,t)=I.(x.) 2

1 1 xi 1 1 ml 1 at

which reduce s to

, i = 1, 2, 3 ,

(2. 75)

oM
T

. (x., t)
1 1a = I . (x.)
x. m1 1

1

2o a. (x., t)
1 1 i = 1, 2, 3 (2. 76)

In view of Eq s. 2. 74 and 2.76

Eq. 2.76 becomes

and the relation

,}-(G.J. ~ai)_ 0
2

2
(E.r. a

2a

2i )
uXi \' 1 1 uXi ax. 1 1 ax.

1 1

H b~
+ W 1

2

2 ~~a a. b.w.
__1 _ H(t)~

2 Hox. W
1

i = 1, 2, 3 ,

which is in precisely the same form as Eq. 2. 64, derived by using

scalar quantitie s in a variational form.
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II-4. A Finite Element Approach to Torsional Vibrations

1-4-1. Idealization of the structure and the displacement model

The finite-element concept. described in Chapter r. will be used

to express the dynamic characteristics of the torsionally vibrating

suspension bridge. This a)proach to the analysis of structural continua

frequently provides a convE~nient and reliable idealization of the system,

and it also provide s the mo st convenient means for evaluating struc-

tural and inertia propertief:; it is particularly effective in a digital-

computer analysiso In this approach. the bridge is assumed to be

divided into the same system of discrete elements which was used in

the analysis of vertical vib:~ation; these elements are interconnected

only at a finite number of nodal points where both rotations and trans-

lations are presented as basic nodal degrees of freedom. Since
b.

v. (x .• t) = 2
1 6. (x.• t) , the vLbrational angle of twist 8. can be

1 1 1 1 1

expressed in terms of the cubic Hermitian polynomials used in

Chapter 1. Thus

e = 1.2•... , N. (2. 77)

where N is the total numh~r of elements and e is an index denoting

an element; (~l' ~2) are the normalized coordinates. The vector of

interpolating functions [£(~l' ~2)} is given by

(2. 78)

where L is the length of ail individual element. and {q (t)} is the
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vector of nodal displacements.

The structural and inertia properties of the complete structure

can now be found by evaluating the properties of the individual finite

elements and superposing them appropriately. However, as mentioned

in Chapter I, there is a case where evaluation of the interaction

between all elements is necessary to formulate the elastic stiffness

matrix of the cable.

II-4-2. Evaluation of structural-property matrices

a. Elastic-stiffness matrix of the chords (or flanges)

The strain energy associated with warping (torsion-bending)

whichis stored in the four chords (or flanges), Eq. 2. 36, may be

expressed conveniently in terms of the stiffness matrix (with the aid

of the displacement model, Eq. 2. 77), as follows:

3 N i L

V (t) =1:..,",["" .i.- (E r (££"}T[ } )T(££"}T[ } )dX]
sc z'~ L...J b2 1 e e e q e e q e

1=1 e=l e 0 (2.79)

Here, N. is the total number of elements used to present the
1

i th span, x is the horizontal axis of the individual element (note:

~1 = 1 - ~ and ~2 = ~ ), and E e re is the warping rigidity for the

element; and is assumed uniform over the entire element.

Eq. 2.79 can be written in a more convenient form as

N

Vsc(t) = -} L [q}: [kscJe [q}e '

e=l

where

(2. 80)
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3
N = L: N. is the total nu.mber of elements used to present the

. 1 11=

entire assembled structure, and

4E r L
[k ] =- e e J: [f"} {{II}T dX (2.81)

sc e b2 e e '
e 0

is the element elastic stiffr.ess matrix associated with warping.

The integration involved in the evaluation of [k ] can besc e

accomplished as de scribed in Chapter 1. The re sulting stiffnes s

matrix is

l.~ -6L -12 -6L

4E r -E,L 4L
2

6L 2L
2

[k ] = e e (2. 82)
sc e

b
2

L
3 -]2 6L 12 6L

e

-E,L 2L
2

6L 4L
2

The assemblage stiffrl.ess matrix and the assemblage nodal

displacements are respecti'rely

and

N

[KSC ] =L: [ks ) e

e=l

1'[

[r}= L: [q}e
e= 1

(2. 83)

(2. 84)

No~ the total strain e:ter gy of the assemblage as sociated with

warping and stored in the chords (or flanges) of the suspended structure

may be expressed by

(2. 85)
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Finally, when it is noted that the strain energy stored in a

stable structure during any distortion mllst always be positive, it is

evident that

Matrices which satisfy this condition, where [r} is any arbitrary

non-zero vector, are said to be positive definite. Positive definite

matrices, and consequently the stiffness matrices, are nonsingular

and can be inverted.

b. Elastic-stiffness matrix of the web system

The strain energy associated with the torsional shear which is

stored in the web system of both the vertical and the lateral walls of

the bridge deck (Eq. 2.44), can now be expressed conveniently, in

terms of the stiffness matrix, as

3 Ni L

V (t) = .!.'" ['" -!..l G J ((£ I } T [ } )T ( U I } T [ } ) dX: ] ' (2. 87)sd 2L.J L.J b2 e e e q e e q e
i=l e=l e 0

where G J is the torsional rigidity of an element. Simplifying thise e

equation, V
sd

can be expressed as

where

N

Vsd(t) = i L [q}; [ksdJ [q}e

e=l

(2. 88)

(2. 89)
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is the element stiffness mc.trix associated with St. Venant's uniform

torsion. For the special case of a uniform deck segment. the stiffness

matrix resulting from Eq. 2. 89. when the interpolation functions of

Eq. 2. 78 are used. may bE: expressed by

36 -3L -36 -3L

2G J -3L 4L
2 3L _L2

[k J = e e
sd e 15 b

2
-36 3L 36 3L

e

-3L -r,2 3L 4L2

Finally. the assemblage stiffness matrix is

N

[KSDJ :: L: [ksdJe
e=l

(2. 90)

(2.91)

and the total strain energy of the assemblage stored in the web system

is given by

(2. 92)

where [KSDJ is a positive definite matrix if one assumes that the

boundary conditions have already been incorporated.

c. Gravity- 3tiffness matrix of the cables

The first term of Eq. 2.53 represents the strainless or gravita-

tional energy of the two cables. The strainless energy.

given by

V (t) iscg

(2. 93)
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Using the displace:ment :model of Eq. 2. 77. V can be
cg

expressed in ter:ms of the gravity stiffness :matrix to obtain

or equivalently

N

Vcg(t) = ~ L:: [q}; [ kcgJe [q}e

e=l

where
L

[k J = 2 H J: ££ '} ££ '}T dX •
cg ewe e

o

(2. 94)

(2. 95)

(2. 96)

is the ele:ment gravity-stiffness :matrix of the cable; it :may also be

expressed as

36 -3L -36 -3L

H
-3L 4L

2
3L _L2

[kcgJe = 15~ -36 3L 36 3L
(2. 97)

-3L -~ 3L 4L
2

[k J
cg

Finally. the asse:mblage gravity stiffness matrix is

N

[KeGJ =L:
e=l

(2. 98)

and the asse:mblage I s potential energy due to gravity (or change of

geo:metry) which is stored in the two cables is given by

(2.99)
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in which [KeG] is a positive definite matrix.

d. Elastic-stiffness matrix of the cables

From the second term of Eq. 2.53, the elastic potential energy

of the two cables is

(2. 100)

where

(2.65 ')

Integrating Eq. 2.100 by parts yields

can be treated as continuous functions

x. = 0
1

(2.101)

8. vanishes at the ends where
1

beca.use

3

Vee (t) =i~ {H(t) hi [(:::) Bi

'88. \
and (8~Jproviding that (::~)

of x. Furthermore,
1

and x. =£.
1 1

and because

.2
c. Yc
~2- -
ex.

1

H w
, Eq. 2.101 may be reduced to

(2. 102)

Substitution of Eq. 2.65 I into Eq. 2. 102, obtains
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(2.103)

It may be noted that the first term in Eg. 2.103 represents the

linear strain energy. while the second term is the contribution from

the nonlinear component of horizontal tension H(t) .

Now. using the linear part of the strain energy expression

(from Eg. 2.103) and the displacement model expression (Eg. 2.77).

one obtains

Use of the assemblage nodal displacement [r} in Eg. 2.104

yields

Vce(t)'"~(Z::~ (r}T~(>: ::J{£}~dXRI: ::J[£)~ dX)] (r) ,

1=1 e=l 0 e=l 0 (2.105)

where w is the total dead weight of the bridge element per unite

length for each cable.

As before. in Chapter I. if the vector ti} is defined as
e

{ i}T = r{£}T dX" = [L L
2

L L
2

]
e J e 2' - IT' 2' IT ·

o
and N.

1

[£}N. =2: [£}e
1 e=l

(2.106)
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then Eq. 2. 105 becomes

2A E 3
v (t)~l £r}T[ cc(,

ce 2 L E L
i=l

or more conveniently

w
e

H
w

w
e

H w
• (2. 107)

(2. 108)

where [KCEJ is the assemblage elastic stiffness matrix of the cable

defined by

(2. 109)

This matrix is symmetric and is a partially complete matrix

(not banded); i. e., the arrE_Ys are well distributed over the entire

matrix. Thus an interaction exists not only between adjacent elements

but also among all element:, of the structure.

II-4-3. Evaluation of the inertia-property matrix

Generalized consistent-mass matrix

The kinetic energy expression (Eg. 2.58), with the aid of the

displacement model (Eg. 2.77), gives:

3 Ni

T(t) = ~L: [L:
i= 1 e= 1

, (2.110)

where I is the equivalent mass polar moment of inertia of the cross
me
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section of an element in the i th span per unit length (including the

contribution of the two cable s).

across the individual element.

In this case I is assumed uniformme

Eq. 2.110 may also be written in the form:

3 Ni

T(t) = ~ L ['E [q.J; [leJe[{de]
i= 1 e=l

(2.111)

where [leJ
e

is the generalized consistant-mass matrix of the bridge

element and is defined by

41me

b
2
e

(2. 112)

Upon carrying out the neces sary vector multiplications and

integrations. this matrix becomes

156 -22L 54 13L

I L -22L 4rf -13L _3L2

CIeJe =
me (2.113)

105 b
2

.
54 -13L 156 22L

e

13L _3L2 22L 4L
2

When the mass coefficients of the elements of the bridge have

been evaluated. the mass matrix of the complete element assemblage

can be developed by using the same superposition procedure as that

described in developing the deck stiffness matrices from the element

stiffnesses. Thus the assemblage generalized consistent-mass matrix

is
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(2. 114)

This resulting mas s ::natrix has the same configuration, that is,

the same arrangement of n')nzero terITls, as the deck stiffness matrices.

The total kinetic energy of the system can now be written as

(2.115)

II-4-4. Variational formulation of the matrix equation of motion

Inserting the different energy expressions, Eqs. 2.85, 2.92,

2. 99, 2.108 and 2. 115, into Hamilton's Principle, Eq. 2. 1 , and

then applying the variational operator and integrating by parts obtains

the followingr[5r}T [ [Ie] [T} +([K
SC

] + [K
SD

]+ [KCG] + [KCE ] ) [r}] dt = 0 .

t 1

Due to the arbitrary nature of the variations in nodal displace

ment, [or}, the expression in brackets must vanish. Therefore the

equations of motion for the assemblage can be obtained in the forITl

These are the governing differential equations of the problem. As in

the vertical vibration analyl>is, there are two separate parts of the

problem which must be conaidered. They are:
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1. The syrnITIetric ITIodes of vibration in which there are an

even nUITIber of internal nodes along the center span. Here

H(t) is not zero, and accordingly the stiffness ITIatrix [KCEJ

is not a zero ITIatrix.

2. The antisyrnITIetric ITIodes of vibration which result in an odd

nUITIber of nodes along the center span. Here H(t) is zero,

and accordingly the stiffness ITIatrix [KCEJ is a null ITIatrix.

Thus, for the syITIITIetric ITIode s:

(2. 117)

and for the antisyrnITletric ITIodes:

(2. 118)

Then, the ITIatrix equations for the free undaITIped syrnITIetric and

antisyrnITIetric vibrations of the suspension bridge structure are,

respectively:

(2. 119-a)

and

(2.119-b)

[ } ~:~} iwt
r AS(t) ::: [rAS e

By writing the solutions of Eq. 2. 119 in the faITIiliar forITI

i :::\I-T .
(2. 120)

and substituting Eq. 2.120 in Eqs. 2.119 (oITIitting the COITIITIon factor

e
iwt

) , the following equations are obtained
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(2.l2l-a)

and

(2. 12l-b)

where {;S} and {;AS} are the vectors of the displacement amplitudes

(which do not change with lime) of both symmetric and antisymmetric

vibrations. respectively. and W is the circular frequency.

Then Eqs. 2. 12I-a and b admit non-trivial solutions if. as is

well known.

11- w
2

[ Ie:l +[KS] II = 0

II-w 2
[Ie: + [KAS ] II = 0

(2.122-a)

(2.I22-b)

Eqs. 2. l22-a and b a:re called the frequency equations of the

symmetric and antisymmet:~icvibrations. respectively. Expanding

each determinant will give an algebraic equation of the Nth degree

in the frequency parameter w2
for a system having N degrees of

freedom.

Because of the positive definitiveness of [Ie] • [K
S

] and

[KAS]' the roots wf . w~ •... , w~ (eigenvalues) of each problem

are real and positive quantities; Eq s. 1. 121-a and b provide non-zero

solution vectors {tS}i and U;AS\ (eigenvectors) for each root w~

of the symmetric and antisymmetric problems. respectively.

II-4-5. Numerical eX3.mple

The numerical example is based on computations for the Vincent-

Thomas suspension bridge located between San Pedro and Terminal
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Island in Los Angeles County, California. An extensive study of this

particular bridge, including a complete description, vibration studies

and test measurements of the structure, will be presented in Chapter

IV; however, the geometry of the bridge and an outline of the structural

properties necessary for a torsional vibration study are given by the

data below.

Although the frictional resistance between the cables and the

saddles of this specific bridge prevents the cables from sliding through

the saddles, movement of the tower tops will not be taken into con-

sideration until the subsequent section.

Center span 12 = I, 500 ft.

Cable sag 12 = 150 ft.

Width (center to center of cables)

Side spans Q1 = 13 = 506. 5 ft.

.{ = ~ = 17. 103 ft.

b = 59. 17 ft.

Depth of stiffening trus s (as sumed distance
between the two lateral systems)

Dead load on suspended structure (both
trusses)

Dead load on cables (both cables)

Total dead load of bridge

Cable force

Cross-sectional area of one cable

Cross-sectional area of one chord of
side span (assumed invariable)

Cross-sectional area of one chord of
center span (assumed invariable)

Cross-sectional area of the diagonals of
the stiffening truss (average value)

d=15.ft.

w = 6.15 Kips/ft.
s

w = 0.85 Kips/ft.
c

2;jJ. = 7.2 Kips /ft.

H = 6,750 Kips/cable.
w

A = 121 in~
c

A 2 = 53. 78 in~

Ad = 16. 9 in~
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Cross-sectional area of the diagonals of
the lateral bracings (average value)

Radius of gyration of the CJ~OSS section

Shear modulus of the stiffe1.ing truss

Modulus of elasticity of the stiffening truss

Modulus of elasticity of the cable

Virtual length of the cable

The number of elements in the side span.

Ad = 16. 58 in~

r = 20.3 ft.s

G = 11. 6 00 K si

E = 29. 000 Ksi

E = 27. 000 Ksi
c

LE = 3.460 ft.

N1 =N3 • was taken

to be 11 elements; the numher of elements in the ce.nter span N2 •

was taken to be 28 elemenbl

The computation of the eigenvalues w~ and the eigenvectors
1

*[r.}. for both the symmetric and the antisymmetric vibrations. is
1

worked out through a Householder method subroutine. A double

precision version is available from the Caltech computer program

library and is written for the solution of the problem in the standard

form ([AJ - A[IJ ) [x} = [oJ where [AJ is a real matrix. A is the

eigenvalue. [IJ is the unity matrix and [x} is the eigenvector

Consequently. equations 2. :.21-a and b must be converted to the

standard form by premultiplying each of them by the matrix [Ie r l
.

Thus. a matrix inversion subroutine is also .needed,and the final

forms of the eigenvalue and eigenvector problem. for both symmetric

and antisymmetric vibrations, will be

and

(2. 121 I_a)

(2.121' -b)
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The two eigenvalue problems have been solved on the Caltech

digital computer (IBM 370/158 system); some of the computed natural

frequencies and periods of symmetric and anti symmetric vibrations

are shown in Tables II-I and II-2 respectively. while Figs. II-6 and

II-7 show the modes of torsional vibration for both cases.

To check the effectiveness and reliability of the method of

analysis under consideration, a comparison between these results

and some previous results is also presented. The first few modes

of torsional motion were predicted and the corresponding natural

frequencies of the bridge were computed by the Bridge Department

of the State of California using the approximate energy method; they

were also recorded in a report by Ernest G. Wiles [16J. The follow-

ing table summarizes this comparison.

Natural Natural
Torsional Frequencies cps Frequencies cps

Mode s of Vibration (Wiles I Report) (Tables II-I & II""Z)

l. Symmetric Modes

first 0.46 cps 0.449419 cps

second 0.66 cps 0.943311 cps

third o. 95 cps 0.949762 cps

2. Antisymmetric Modes

first 0.59 cps 0·.595927 cps

second 1. 33 cps 0.944303 cps

Fig. II-8 shows the modes of torsional vibration given in Wiles' report.
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From this comparison between Wiles' (predicted) modes

(Fig. II-8) and the computed modes (Fig. II-6 and II-7) and from

the preceding table, the following observations may be made.

1. The frequency of the first predicted mode (of both symmetric

and antisymmetric v:.brations) is in very close agreement with

that of the computed one, as is the mode shape. This may be

explained by the simple configuration of this fundamental mode

in both the symmetric and anti symmetric cases.

2. The frequency of the second predicted symmetric mode deviates

considerably from the computed one and the mode shapes also

disagree. This predletedmode, as shown in Fig. II-8, has the

same number of internal nodes along the center span as the third

mode of Fig. II-6. However, the positions of these nodes in the

two cases are not identical. The computed second mode in

Fig. II-6 shows dominant vibration of the side spans with only a

slight contribution from the center span.

3. The frequency of the third predicted symmetric mode seems

close to the computec. one, but at the same time the two mode

shapes differ. In the predicted one, this bimodal shape has no

nodes along the cente r' span while the computed one has two nodes.

4. The frequency of the second predicted antisymmetric mode

agrees with the comp.lted frequency of the third computed mode

(in which f 3 = 1. 3666,) cps), and the two mode shapes are

identical. It would s~:em that the predictions for the anti

symmetric case were confined to the center span, because,
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apparently. no prediction was made for the second computed

mode where the motion of the side spans is dominant.

The distribution of the energy storage capacity in various

members of the structure. for both the symmetric and the anti

symmetric cases, is demonstrated in Fig. II-9. From this figure,

one can easily extract the most significant dynamic characteristics

of the relative contributions of the deck structure and the cables to

the total energy storage capacity of the bridge structure at the

different modes. The following points are of some interest in this

regard:

1. The relative contribution of the strain energy accumulated in

the chords builds until. in the high modes. it governs almost

all of the potential energy of the structure.

2. For the symmetric case. the strain energy accumulated in the

web systems peaks in the second and third modes and then

decays, while for the antisymmetric case it begins very high

(being significant even in the first mode) and then decays at

almost the same rate as for the symmetric case.

3. The relative contribution of the strain energy of the cable to the

total energy storage capacity is greatest in the second and fourth

symmetric modes, while it is almost zero in the third mode

where the positive areas of the deflection curve are canceled by

the negative areas. (Note: The additional cable tension H(t) is

proportional to the algebraic sum of the areas under the deflection

curve. )
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Again, from the symmetric mode s of vibration it is easy to

recognize that any kind of :'ym.metric -torsional vibration, in particular

in the first few modes, caL.ses interaction between the center span and

the side spans.
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SAN PEDRO-TERMINAL ISLAND SUSPENSION BAIDGE

SYMMETRIC MODES OF WRSIONAI VIBRATION

SAN PEDRO- TERM I NAL I Sl ANn SlJSPf NS I ON AA I nroE
SYMMETRIC MODES Of WRSIONAL VIBRATION

(Ml..6LE tRTEM. SYSTEMS)
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~=~I-=----_._._--....I-=~-
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T2 .. 1.059531,\ SEC.

T~ .. 0.988791 SEC.

13 .. 1.05289l1 SEC.

S. HOOE 1

S. J«J)E 3

S. HmlE 2

s. I1llOE S

--Y;\I\!\;\I\A;\I\~vVV V\{V vVV
S. !'lMJE 19 T19" O.Ql.Il,l57Q SEC.

S. I1MIE 6

S. HOOE 7

16 .. 0.\'15396 9fC. S. HOllE 20

T21'" 0.0311307 seC.

SRN PEDRO-TERMINAL ISLAND SUSPENSION BRIDGE

SYMMETRIC MODES OF WRSWNAL VIBRATION

SAN PEDRO-TERMINAL ISLAND SUSPENSION BRIDGE

SYMMETRIC MODES OF TORSIONAL VIBRATION

WroBlE lRTEAI=l. SYSTEHS)
HI THOUT lOWEA EFFECT

T22'" 0.031360 SEC.S. 1"il5DE 22

Til'" 0.129911 SEC.

T12- 0.111676 SEC.

lto.. 0.15119B SEC.

(lXU!l.E lATEfR. SYSTEMS)
HITtIlJr TIlER EFFECT

.~ ",,,-,, V\;
-f\f\f\Afi-
9 r9 .. 0.2146:.!3 Sfr:.

S. MODE 12

S. Ml'lOE

s. ""'"

S. HOOf. to

S.I'!OOEtij

Tl3-" 0.085909 SEC.

TIll'" 0.0115529 SEC.

Fig. II-6. Symmetric modes of torsional vibration of the
San Pedro-Terminal Island suspension bridge.
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SRN PEDRO- TERMINRL ISLRND SUSPEIISION 8RIDGE

RNTI-SYMMETRIC MODES OF TORSIONIIL VI8RRTIllN

SFlN PEORO-TERMINRL ISLf'lNO SUSPENSION BRIDGE

RNTI-SYMMETRIC MODES OF HlRSIllNRL VI8RRTIllN

<OOU8lE LRTEFR. SYSTEMS)

-P:;o±---
A-S. MID: 1 T1 • t.S7805e 9£C.

-lJ\A1\J~
A-S. MroE 6 16 • 0.251510 SEC.

R-S. HID: 15

R-S. ~ 18

R-S. I«lOE 20

A-S. I«lOE 21

(0CUBlf. um:RA.. !"!oTEMS>
WITHOUT TOlER EfFECT

TIS- 0.06031&3 SEC.

SRN PEDRO- TERMINRL ISLRND SUSPENSIllN BRIDGE

RNTI-SYMMETRIC MODES OF TORSIO~RL VIBRRTlON

«()(MJtE UHEFR.. SYSTEMS

I f\WIT~ T~ EF~ (\1
---t:J V VV\tt--

R-S. tnJE I!I Tf! • 0.t78927 SEC .

.. _M ... ,~.« -w
~\t-

R-S. tnJE 10 TlO- 0.129279 SEC.

-fvNM~
R-S. HfIE II Til- O.097'31l1,\ SE:c.

A-S. NtIlE

SRN PEORO-TERMINRL ISLRND SUSPENSION 8RIDGE

RNTI-SYMMETRIC MODES OF TORSIONRL VI8ARTION

(OlUl.E LATEM... SYSTEHS)
WITtB..IT liMA EfFECT

T22- 0.028967 SEC.

123- 0.021702 9£C.

Fig. II-7. Antisymmetric modes of torsional vibration of the
San Ped:w-Terminal Island suspension bridge.
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SYMMETRIC TORSIONAL MODES

I :

I First Mode I IT, =2.17 seci
I I I I
I I I I
I I I,

II~III I . I I

~~~ISecond Mode I :a::::::=::> <:::::> I T2 =1.52 sec,

I I I I
I I

I I I I
I I I I
I I I I
l I I I

ANTI-SYMMETRIC TORSIONAL MODES

I First Mode I
I I
I I
I I
I I
I I
I I

I T1 =1.69secl
I I
I I
I I
I I
I I
I I

PREDICTED TORSIONAL MODES OF THE SAN PEDRO BRIDGE
(State of California Bridge Department Report)

Fig. II-8
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Relative energy storage capacity for the San Pedro
Terminal Island suspension bridge (torsional vibration).
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II-5. Effect of Tor sional Rigidity of the Towers Upon Free

Torsional Vibration

In the preceding analysis, it was assurrled that the cables either

rested on nests of rollers at the tower tops (i. e., on rrlovable saddles)

or that the towers were of a rocker type with pin-bearings at the bases.

On the whole, however, fixed saddles provide one of the sirrlplest and

safest constructions, but the friction forces accorrlpanying the design

are so high that the tower tops rrlove in unison with the cable s. This

results in increrrlents, different in each span, in the horizontal COrrl-

ponent of cable tension. Furtherrrlore, the towers offer a certain bend-

ing and torsional resistance to any horizontal displacerrlent of the top.

The effect of this tower resistance upon the dynarrlic characteristics

of a suspension bridge, and the correction for the potential energy

stored in the cables, will be considered in this part of the study of

torsional vibration.

II-5-1. Correction for strain energy of the cables

To cOrrlpensate for the fact that the cable tensions due to inertia

forces are different in the side spans and the center span, rrlodification

of the strain energy of the cables is introduced, for both cables, through

the equation

(2. 123)

where H. (t) is the vibrational horizontal cOrrlponent of cable tension
1

in the i
th

span. As in Fig. II-10, if both colurrlns of the two towers



-213-

are deflected toward the center span in the vertical plane of the

depressed cable, the incrernent in the horizontal component of cable

tension in the center span, H 2 (t) , must equal the sum of the incre-

ments in the side spans, H. it) , i = 1, 3 plus the tower re sistance R.,
1 1

i = 1,3. This tower resistance can be expressed as the product of the

tower-top movement,
Iu. (t) , i = 1, 3 , and the elastic re sistance
1

ST i ' i = 1, 3 .

Recalling the linearized cable equation (Appendix I-b), assuming

fixed anchorages, and applying this cable equation successively to the

side and center spans, yields

I
u. (t) =

1

H. (t)L .
1 el

E A
c c

_bi Jl i (dYc) (aSi )
2 dx. ax.

o 1 1

dx.
1

i= 1,3, (2.l24-a)

and

(2.l24-b)

Therefore, the linearized cable equation for the entire bridge can

be written by summing Eqs. 2. l24-a and b to give

~ Hi(t)Lei _ ~ biJ~i(dYc)(aSi) =
L...J E A L...J 2 dx. ax. dXi 0

i= 1 c c i= 1 0 1 1

(2.125)

Now, from the equilibrium of the horizontal forces at the top of

each tower column, the following is obtained

i = 1, 3 , (2.126)
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where STi characterizes the elastic resistance of the tower; it is

equal to the force required to deflect the leg (or column) of the i th

tower by a unit displacement when the other leg is also deflected by

a unit displacement in the Jpposite direction by an equal force. The

evaluation of STi is very involved [11 ] and is best done through the

use of the digital computer or through model studies.

Now, to express the horizontal components of cable .tension

H. (t) , i = 1, 2, 3 , in termH of the vibrational angle of twist, 8.,
1 1

i = 1,2,3 , the top displacElments u~(t) and u;(t) have been eliminated

from Eqs. 2. l24-a and b, and Eqs. 2.125 and 2.126 have been used, to

give

where 13. and a. are coefficients defined as follows:
1 1

i = 1,3 ,

(2. 127)

13· =1

(E A )2
c c

(E A L E + L 21, ,ST')c c e e1 1
and i = 1,3 .

(2. 128)

Substituting Eq. 2.12,7 into Eq. 2.125 yields:

[(
L . )~ b. J£j(dY )(08.)

H 2 (t) = l3 i 1 +a i L:~ LJ -f dX~ at- dxj
j=l 0 J J

Lei bi Jii (dYc )(08i \
- 2a -- -- -- --}dx

i L e2 2 dx. ox. io 1 l'

i = 1 or 3 . (2. 129)

Finally, substituting Eqs. 2.127 and 2.129 into Eq. 2. 123 obtains

the modified strain energy {)
ce stored in the two cable s:
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dx.
J

+ a. b i JQi(d
YC ) (OSi) dx.J [bi J.Qi(dYc)(OSi) dx.J

1 Z dx. OX. 1 Z dx. ax. 1
o 1 1 0 1 1

L.el
- Za. -

1 L eZ

bi S.Qi(d
Yc ) (OBi) dX.J [bZ S.QZ(dYc)f oez) dx ]

Z dx. ox. 1 Z dxZ \ oXz Z
o 1 1 0

(Z. 130)

II-5-Z. Potential energy absorbed by the towers

In the vertical vibration analysis pre sented in Chapter I, the

tower stiffness primarily involves the flexural rigidity of the tower

legs (or columns). Under torsional vibrations the situation is quite

different; resistance to the antisyrnmetric :movement of each leg of a

tower can involve flexure and torsion of the leg. and most importantly.

flexure of the portal beams (or cross-bracings) between the tower

columns. For instance. for the sy:mmetric vibration. the tops of the

tower legs undergo horizontal displacement u~ (t) • i = 1, 3 • as
1

illustrated by Fig. 1-10 (for the fundamental mode). Since the two

legs are connected by relatively stiff horizontal struts. such a dis-

placement is possible only when the tower top rotates about a vertical

axis. Thus the two legs are bent and twisted. and the struts are

deformed as indicated in Fig. 1-10.
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The torsional analysi.s of suspension bridge towers will not

be treated here; only the potential energy stored in the towers due

to unbalanced top force s will be considered. However, an analytical

procedure for torsional analysis of suspension bridge towers can be

found in a paper by Baron and Arioto [1 7J .

The potential energy accunlUlated in one half of a twisted tower

acted upon by the top load /H2 (t) - Hi (t) I ' i = 1, 3, is equal to the

work done by this top load when the point of application is displaced

by a distance u~ (t) , i = 1, 3. Therefore, the total potential energy,
1

V
te

, stored in the two towers, with their four columns supporting

the two cable s, is

(2.131)

where the top load IH 2 (t) 0 Hi (t) J is obtained from Eqs. 2. 127 and

2.129. For example, for the depressed cable where H
2

(t) >Hi(t) ,

i = 1, 3 , the top load takes the form

[
L 0 'E3

b'flj(dY:)(Oeo)[H
2

(t) - H
1
, (t)J = f3 ~ .J ~ -l dx

i Q i L 2' . 2 dx, ax, j
e j= 1 0 J J

( Lei ) bifli(dYc ) (oe i ) ]- 2--11 - -- -- dx
L 2 2 dx, ax. i

e a 1 1

i = 1,3.

(2. 132)

With the aid of Eq. 2.126, Eq. 2.131 can be written in the form
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3

Vte(t) = i 2:
i=I,3

(2.133)

and using Eq. 2.132, V
te

becOITles

1
Vte (t) = 2" 2:3 [3. a, [L . 2:3 b'fij(dY.) (06,)2.2:-2:.- ~ ...l. ~ ----l dx

ST' L 2 2 dx, ox, j
'-I 3 1 e '-I 0 J J1- , J-

(
L, ) bOfii(dY. )(06,) ]2_ 2~ + I ..2:. -..£. _1 dx
L 2 2 dxo ax. i

e 011

(2. 134)

The cOITlplexity of the resulting differential equations of ITlotion,

when this alteration of the potential energy (Eq. 2.130 and 2. 134) is

added, is so great that it is difficult to deduce any inforITlation froITl

theITl. Accordingly, the analysis will proceed directly to the finite

e leITlent approach.
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II-6. Finite Element Approach to Include the Effect of the Towers

Noting that

>r::
w.

- :;r 1 (for the parabolic cable), and that
··w

Jii (dY )(88.) dy--.£ _1 dx =.-£.
dx. 8x. i dx.o 1 1 1

2 * i.
d Y. W. JlC 1
-2- 8. dx. = -H e. dx.
d

1 1 1 1Xi w 0

the energy expressions (EqB. 2.130 and 2. 134) take the following forms

f (t) = 2
1

ce

(2.135)

and

I 3 f3L [L 3
Vte (t) = ~ L 2 ~ l2 ~~ ei L

. -1 3 c C e2'_ 11- , J-

::< 1.
w.b. Jjz1r1- e. dx.

w J Jo

( L. ):.b'Jii J2
- 2 L el + 1 2~ 1 ei dX

i
e2 w 0

(2.136)
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II-6-1. Modification of structural-property matrices

a. The modified elastic-stiffne ss matrix of the cable

With the aid of the displacement model, Eq. 2. 77, the modified

strain energy, Eq. 2. 135, becomes

~" N.

:;b; (25
w e=l

L.
el- a --

i L
eZ

~ce (t) =il.t ~i[t ~:j (i I [£}~ [q}e dx)

1=1,3 J=l e=l 0

* ~ L T * ~ L
+ "~W;b; (~ i (£)~ [q}e dx)J [:~:(~ I (£)~ [q}e dX]

w e=l 0 e=l 0

3 3 * Nj L

+ ik3~i [(1 + "i ~:~) ~ :k: (E 1(£)~ [q}e dX)
L T ~~ NZ L

l(£}~ [q}e dX)J [:~:2(E1(£}~[q~dX)JI·
(2.137)

U sing the integral and the definition of Eq. 2. 106 in this modified

energy expression yields

(2. 138)

or equivalently
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"< T *V (t) = ~ {r} [KCEJ {r}ce .
(2. 139)

,J~

where [:~CEJ is the modified as semblage elastic stiffne ss matrix of

the two cables; it is defined by the matrix resulting from vectorial

multiplication of the quantities between brackets in Eg. 2.138.

b. The elas1:ic-stiffness matrix resulting from the

contribution of the towers

The portion of the potential ene rgy absorbed by the structure and

stored in the towers (Eg. 2.134) can now be expressed in a matrix form

by using the displacement model of Eg. 2.78, as follows

(2. 140)

Expanding and using Eqo 2. 106, it becomes

33*
1 T[ [ 13· L ., ( L. [ w.b.

V (t)=-{ } 2 1 e,::. ~ -.L.l
te 2 rEA L 2H

'-1 3 c C e2 '-1 w1- , J-

vt. b. " )(L ,_1_1. {f} ~

2H N. L 2
W 1 e

3

[
j=l

or equivalently

(2.141)
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(2. 142)

where [KTEJ is the elastic stiffness matrix of the tower and is

defined by the matrix between two brackets in Eq. 2. 141.

II-6 -2. Modification of the matrix eguation of motion

The as semblage equation of motion for symmetric vibration may

now be written as

[leJ{r} t ([KSCJt[KSDJt[KCGJt[f(CEJt[KTEJ){r1= {o}.

(2.143)

or more conveniently as

(2. 144)

where the symmetric matrix [RSJ is defined through Eq. 2. 1~3. it

is a full, real and positive definite matrix of order NXN(N= L: No)
i=l 1

It is important to note that, in the case of antisymm.etric vibra-

tion where the center of the cable is not tied to the stiffening girder

(or truss), the inertia forces do not produce any stresses in the cables,

and no interaction occurs between the center span and the side spans.

Hence, the tower remains at rest.

The solutions of Eq. 2. 144 can be obtained in the same manner

as before. The following computation shows an application of the

above analysis, taking into account the effect of the tor sional rigidity

of the towers upon the free torsional vibration of the suspension bridge.
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II-6 -3. Num.erical e)!:am.ple

To illustrate the effec t of the torsional rigidity of cantilever

towers upon the dynam.ic characteristics of suspension bridges, a

num.erical exam.ple has been worked out for the San Pedro-Term.inal

Island Suspension Bridge. The elastic resistance of the tower,

STi ' i = 1, 3 • has been com.puted by applying Castigliano I s second

theorem.; it is found to be

STI = ST3 = 235.4323 Kips/ft.

The eigenvalue problem. resulting from. the equations of motion

(Eq. 2. 144). was solved by the Caltech digital com.puter. Som.e of

the computed natural frequencies of symm.etric vibration are shown

in Table II-3. Inspection of this table shows that the effect of the

torsional rigidity of the towers upon the frequencies of the torsionally

vibrating bridge is com.paratively sm.all and is limited to only the first

few frequencie s. Fig. II-ll. shows the effect of the torsional rigidity

of the towers on the first fou m.ode shapes. The first, third and

fourth modes show very sli~~ht alteration due to tower effect. but the

second mode shows a signif:.cant alteration, particularly of the center

span amplitudes. Without this tower effect. the second mode has very

small am.plitudes in the center span; however. when the tower rigidity

is taken into consideration, the simultaneous m.ovem.ent of the tower

tops toward the center spall and the corresponding upward m.otion of

the side spans are reflected in increased center span am.plitudes.



SA
N

PE
DR

O-
TE

RM
IN

AL
IS

LA
ND

SU
SP

EN
SI

O
N

BR
ID

GE

SY
M

M
ET

RI
C

M
OD

ES
OF

TO
RS

IO
NR

L
V

IB
RR

TI
O

N

EF
FE

CT
OF

TO
RS

IO
NA

L
RI

G
ID

IT
Y

OF
TO

W
ER

S
UP

ON
FR

EE
TO

RS
IO

NR
L

V
IB

RR
TI

O
N

OF
TH

E
BR

ID
GE

(
D
~
U
B
L
E

LA
TE

R
R

L
S

Y
S

TE
M

S
)

I
=
-
I
~
~
I

I

F
IR

S
T

SY
M

M
ET

R
IC

M
~
D
E

(
W
I
T
H
~
U
T

T
~
W
E
R
S
)

T
1

=
2

.2
2

5
0

9
5

4
4

S
E

C
.

(W
IT

H
T
~
W
E
R
S
)

T
1

=
2

.1
9

0
8

6
9

4
8

S
E

C
.

~
~

I
---

-
---

-
---

---
---

---
---

---
---

0-
---

-
-
-
-
-
1

S
E

m
N

D
SY

M
M

ET
R

IC
Mr

:JD
E
_

_
(W

IT
H

C
lU

T
TO

W
ER

S)
T

2
=

1
.0

5
9

5
3

3
9

7
S

E
C

C
W

IT
H

TO
W

ER
S)

T
2

=
1

.0
5

2
5

9
6

9
4

S
E

C
.

k:
::

:
:
;
;
;
=
-
~
"
:
:
:

7~
-=

::
::

--
--

--
-=

=-
-1

TH
IR

D
SY

M
M

ET
R

IC
M

Cl
OE

C
W

IT
H

C
lU

T
TO

W
ER

S)
T

3
=

1
.0

5
2

8
9

4
3

3
S

E
C

.
C

W
IT

H
TC

JW
ER

S)
T

3
=

1
.0

5
1

8
1

2
1

7
S

E
C

.

~
.
.
-
c
:
:
:
:
=

==
=-=

=-=
.-=

=
-
~

:
:
:
:
:
-
-
-
"
'
~
I

FO
U

R
TH

SY
M

M
ET

R
IC

M
~
D
E
_

_
(W

IT
H~
i~
-:
-

TO
W

ER
S)

T
4

=
0

.9
8

8
7

9
1

3
3

S
E

C
.

C
W

IT
H

TO
W

ER
S)

T
4=

0
.9

8
8

1
4

5
5

7
S

E
C

.

F
ig

.
II

-I
I

I N N *'"I



-225-

TABLE II-3

Effect of the TOl'siona1 Rigidity of the Towers

Upon the Freqw:mcies of the Free Torsional

Vibration of the San Pedro-Terminal Island Suspension Bridge

(Symmetric Mode-Shapes)

No Considerntion of Effect of Tower
Towels Elasticity

Mode
Order (Frequency W lad/sec.) (Frequency W rad/sec.)

1 2.823'i'82 2. 867896
2 5.930141 5.969224
3 5.967:36 5.973676
4 6. 354.<JIO 6.358562
5 11. 666183 11. 666594
6 15. 125'i'76 15.125776
7 19.348123 19.348246
8 29. l1lC I19 29. 111410
9 29.275287 29.275433

10 41. 556141 41. 556164
11 48. 365446 48.365446
12 56.262482 56.262494
13 73.137240 73. 137421
14 73. 462'i'33 73.462740
15 93. 238E;06 93.238810
16 103.641 S'37 103.641937
17 115.694S49 115.694952
18 140. 176/45 140.176766
19 140.959E12 140.959614
20 169.168520 169.168521
21 183. 143402 183.143410
22 200.359/'00 200.359700
23 232.994136 232.994143
24 233.230S48 233.230948
25 289.521374 289.521374
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II-7. Appendices

Appendix II-a

Shear Resistance Coefficients Ilv and ~

To determine the value of the shear resistance coefficients /I
"'v

and Il
h

for different types of trusses used in both the stiffening

trusses and the lateral bracing systems, shown in Fig. II-2, consider,

for convenience, a panel of vertical stiffening truss shown in Fig. II-2

as type 2 (Worren System). This truss is subject to vertical shear

force S (with negligible warping). The vertical displacement of the
v

panel at point p due to the elongation 6.A.
d

of the diagonal which is

stressed by the force Sv/sinCt'l and which has the cros~-sectional

area Ad is given by

S d1 v
. 2 =EA

dSin Ct'l

1
(II-a-l)

where Ad is the length of the diagonal, Ct'l is the angle of inclination

from the horizontal of the diagonal and E is the modulus of elasticity

of the truss material. (Note: In the above equation, the relation

Ad = d/ sin Ct'l is used where d is the depth of the truss. )

By considering the displacement line shown in Fig. II-2, it is

possible to write

,1, 6.v
tan 'l's =r

v
(II-a-2)



-227-

here A
v

is the pane11engb.. But because (d/Av ) = tanO'l ' Eq. II-a-Z

can be written as

S G 1
tan 1jf = -.:!.. -- ---:::::"-----

S G E.A
d

. 2
Sin 0'1 cos 0'1

where G is the shear modulus of the truss.

s
v

= GfJ.
v

(Il-a-3)

Thus, the shear resi:3tance coefficient, fJ.
v

' for this truss is

given by

(II-a-4)

Replacing the broken displacement line with a continuous curve,

ov
tan ljis may be replaced at any point of the curve by ox ; therefore

Eq. II-a-3 becomes

sv
GjJ

v
(II-a-5 )

Following the same procedure, the shear resistance coefficients

/-Lv and /-Lh can easily be obtained for the different patterns of trusses

shown in Fig. Il-2.

For type 1 of the 1ate:ral bracing systems, known as the multiple

web system, the force in each diagonal is equal to i(Shl sin 0'2) , which

. give s

(II-a-6 )

For type 1 of the stiffening trusses, known as the N-system, the

vertical displacement of the panel at point P due to the elongation

6A
d

of the diagonal and the elongation 6d of the vertical member is

given by
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which gives

From which it can be seen that there is a contribution from the

vertical members of that particular system.

(II-a-7)

(II-a- 8)

Finally, for type 2 of the lateral bracing systems, kn0wn as

the K-system, the shear resistance coefficient I-L
h

is given by

= E (2AdAv Sin2Q2 cos Q 2 )
I-Lh G 3

Av +Ad sin Q 2

(II-a-9)

Now, if the stiffening structure is a plate-girder type, then

Eq. II-a-5 can be written as

which give s IJ. = dt
v

t is the thickness of the plate.

(II-a-l 0)
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Appendix II- b

Longitudinal Warping Displacement

To prove the equivalEnce of the two expressions for the longitu-

dina1 warping displacement, u, equate the coefficients of similar

terms in Eqs. 2. 27 and 2.28, as follows

a) coefficients of ~~ :

...

i. e.

This is consistent with the definition of the coefficient f3 defined

before by Eq. 2.21

b)

or

giving

Thus the two expressions for the warping displacement u are

identical.
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Appendix II-c

The Warping Constant

03e.
The coefficient of E

i
--f in the second term of the expression
ox.

1

for the vibrational torsional moment, M . , (Eq. 2.25), is given as
h

2 2
A. b; d.l3. (b. l3.d.) A. b.d.l3.
1111 -2:._2-!- + 1111

2/-Lh· 2 /-Lh' 2/-L •1 1 V1
(

d. l3.d.)1 1 1

2-~
V1

i= 1,2,3.

(II-c-l)

Expanding and rearranging obtains

2 2 222
A.13.b.d. ( b. d.) A.I3. b. d.

1 1 1 1 _1_ + _1_ _ 1 1 1 1

4 /-Lhi /-Lvi f.l.hi [.Lvi
i= 1,2,3. (II-c -2)

Now, upon recalling the definition of the coefficient 13. (Eq. 2. 20),
1

Eq. II-c -2 become s

2 2 222A.b.d. A. 13. b. d.
111 1 1 1 1

4 J,Lhi IJvi
or

2 2
A.b. d.

[I' -I'h- - 4 ~2 ]
1 1 1

(II-c-3)
4/-Lh·/-L . V1 1 1

1 VI

The warping constant r. resulting from the expression for the
1

strain energy of the chords V and defined by Eq. 2.37, can be
sc

rewritten as

2( )2 2d. 13. d. b. b. (d.r Ill 1 1 1=A----- +A--
i i 2 IJ. 2 i 2 2

VI

13.b.)21 1
- f.L

hi
. (II-c -4)
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Expand and rearrange the terms to get

r. =
1

2 2
A.b. d.

1 1 1

4

2 2 2 4
A.(3. b.d. (d. b.) A.(3. ( d.

1 1 1 1 _~ + _1_ +.2.2.. _1_

2 J.L. "h' 2 1/2'71 ,... 1 ,... .
V1

b~ )++ .
J.Lhi

(ll-c-5)

Again, using the definition of the coefficient (3. from Eq. 2.20,
1

Eq. ll-c-5 takes the form

r. =
1

2 2 2 2 2 2
A. b. d. A.(3. (d. b.)

1 1 1 + ---!2., _1_ + _1_

2 2 J.L. /-Lh'V1 1

2
A. (3.

1 1

b~d~
1 1

/-Lvi /-Lhi

2 2
A.b. d.

:. r
i

= - 1 l 1

and finally,

2 2
A.b. d.+ 1 1 1

2
2

- A. (3.
1 1

b~d~
1 1

/lvi /lhi

2 2
A.b. d.r = 1 1 1

i 4,.". J.L
h

.
Vl 1

/ - 4 Al~)\ J.Lvi J.Lhi t"
\

(II-c -6)

which is identical to Eq. II .. c -3. Therefore, the vibrational

torsional moment M
ti

can be written, with the aid of Eq. 2.45, as

ae.
M

t
. = G. J. ~ - E. T'.
1 1 1 ux. 1 1

1

i= 1,2,3. (ll-c-7)

Thus, the total vibrational twisting moment developed in the deck

cross section may be expressed as the sum of two parts - a moment

results solely from torsional shearing stresses, it is related to the

angle of twist e. by the re:.ation of the first term of Eq. II-c-7, and
1

a warping torque results from the stresses produced by restrained

warping.
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Appendix II-d

Solutions of the Differential Equations of Motion

If it is assumed that the mas s of the bridge as well as its elastic

properties are uniform along the i th span, the equations of motion

become

a2e.
I . -t+ E.I':
mJ at J J

with H(t) as

2 2 ~,

(

b. ) a e. w.b.
G. J. +Hw -[- -T + H(t) --rP = 0

J J ax. w
J

, j = 1, 2, 3 ,

(ll-d-l)

A E
H(t) = c c

LE
z:3 [~f£j ~ f£j(3)2 ]

2H e. dx. + 8 Q dx.
J J ux. J

j= 1 wOO J

(ll-d-2)

It may be further assumed that

?( iwt
e.(x., t) = t1'.(x.) e

J J J J
H(t) = Heiwt j = 1, 2, 3 ,

(ll-d-3 )

in which i =vCl and W is the natural circular frequency of torsional

vibration. Substituting Eq. II-d-3 into Eq. II-d-l, yields the equations

of motion in the form

~
2.-.J d e.

- WI. e. +E. r. ---l4
mJ J J J dx.

J

.0,

w.b.
~ H = 0 , j = 1,2,3

w
(II-d-4)

'"'"Because H is independent of x. and may be treated as a con-
J

stant, Eq. II-d-4 represents linear, ordinary differential equations

of the fourth order with constant coefficients. The general solutions

of Eq. (IV -4) are nonhomogeneous differential equations and are

expressed as
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'"e.(x.) = ClsinhA.x. + C
2

coshA.X.
J J J J J J

* I'Vw.b.H
+ C 3 sinlJ·x. + C 4 coslJ·x. + 2] J

JJ JJ WHI.
wmJ

j = 1, 2, 3 , (II-d-5 )

where

E.r.
J J

( b~)
G.J. +H -1.....2J J wcPo = £.

J J

cP.,~
J1 =-1.V~j £. 2

J

cP.,~
A. = -LV _J~

j £. 2
J

and

~I .£~w2
Zj = V1 + ~,mJ] b~ )

~(G.J.+H -L2J , J J w

J=1,2.3. (II-d-6)

C 1 ' C 2 • C 3 and C 4 are arbitrary constants and are determined in

conformity with the boundal'y conditions of the vibrating structure;

i. e., the boundary conditiolls at the supports of the jth stiffening

girder (or truss). The first four terms of Eq. II-d-5 represent the

'"general solutions of the honlOgeneous equations (H = 0 ) , while the

last term of the same equation represents the particular solutions of

the complete differential equations.

The cable equation, Eqo II-d-2, which relates the elastic and

geometric compatibility of l:he cable, is expressed. to the first order

of small quantities. as:

'"H= 2:
3 [.;.b. S£j

J J
2H

. 1 w 0J=

6.(x.) dx. ]
J J J

(II-d-7)
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It is convenient to separate the inve stigation of the symmetric

modes from that of the antisymmetric modes; i. e., the problem can

be divided into two parts:

1. The symmetric modes of vibration in which there are an

even number of internal nodes along the center span. Here H

is not zero.

2. The antisymmetric modes of vibration which result in an odd

number of internal nodes along the center span. Here H is

zero.

Symmetric Modes of Torsional Vibration

When the bridge is a three-span, symmetric type in which the

stiffening structures of each span are simply supported by cables held

on top of the towers by roller supports, the boundary conditions are:

'"
d

2e.
for x. ::: 0 e. ::: 0 and E.r.-t ::: 0

J J J J dx.
J

}and j ::: 1, 2, 3 ,

d
2e.

""for x. ::: i.. e.::: 0 and E.r.-t ::: 0 (II-d-8)
J J J J J dx.

J

expressing the fact that the angle of twist and the normal stress are

zero at the supports of each span. Therefore, mode s of the symmetric

vibration become
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[

~.'~ Cb ... G X.IV Lo i
Tl

. IV Lo
i

T1
1

2 Zj + (Zi - 1) tanh 2 {2 Slnh f2 . £i

. c.P.,G X'JIV Lo i TIl
- cosh - -f2 £.

1
[

c.P.~
(Zi +1) tan 1 2fz sin

Cb.,G x .IV Li i - 1 • 1

i2 r:
1

and

c.P ... G X'-J+ cos IV Li
i - 1 . --2:.

f2 £.1 _

i = 1,3, i. e., for side spans,

(ll-d-9)

. ~2~ c.P2~ x 2
2 Z - (Z - 1) sech cosh.' -

2 2 2 i2 f2 £2

Cb2~-1 c.P2~ X z
- (Z2 +1) sec 2 i2 cos i2 . ~ (ll-d-10)

for the center span.

Finally, substituting Eqs. II-d-lO and II-d-9 in Eq. II-d-7 in

order to obtain the frequency equation, the following characteristic s

equation is obtained

1
3 2c.P. Z.(Z. -1)
111

[ rz Z. cPo
1 1

-;.Z=i=+=l tan(<I>i"fz:-_-
1
-)_ Zi -1 tanh (cPa/Z i + 1 )J I. (II-d-11)

fZi -1 2 t2 YZi + 1 Z f2
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Antisymmetric Modes of Torsional Vibration

An antisymmetric vibrational deflection of the cable and of the

stiffening girder causes no additional cable tension I:t. Therefore,

there is no interaction between the center span and the side spans.

For this reason, two types of independent vibration in a three-span

bridge are possible.

The boundary conditions for the center span are:

and

for

for

X :: 0
2

'"
d

2e
e - 0; and E

2
r

2
2 0,::2 - 2

dX
2

. (II-d-12)

d
2e

9 :: 0; and 2
E 2 r2 -2- :: 02

dx
2

The second part of Eq. II-d-12 indicates that the center of the

span remains at re st and that an inflexion point of the deflection curve

does exist.

After dropping the last term, depending on H in Eq. II-d-5, and

using Eq. II-d-12, the frequency equation is derived in the form

sin(JJ
2
:

2
) :: 0

from which may be derived

(II-d-13)

(n :: 1, 2, 3, ... )

The characteristic value Z2 is obtained from the second equation

of (II-d-6)



z =2
+ 1

-237-

2 2
=1+ 8n 'IT

4>2
2

Substituting this in the last equation (II-d-6), the natural circular

frequency for the center span is deterll1ined:

I [( b
2

) 4 2 2 E r ]W = 2 n'IT _1_ G J + H ~ + n 'IT 2 2
2n £2 Ill12 2 2 w 2 £~

The antisyll1ll1etric ITlode s are given by

n= 1,2,3, ...

(II-d-14)

2 n'ITx2
= C 3n sin -£-2- n= 1,2,3•... (ll-d-15)

In a sill1i1ar way, the frequency equation for any side span is

found to be sin/-L ..£. = 0 , j = 1,3. Therefore,
1 1

e. (x.) = C. sin
In 1 In

n'ITx.
1

-f.-.-
1

i = 1,3, n= 1,2,3, ... (II-d-16)

and the natural circular frequency is deterll1ined by

I 222
1 [( b.) n 'IT E. r. ]

Win = ~.'IT r-:- GiJi+HwT + £2 11 ,i=1,3, n=1,2,3, ...
1 ll11 ..

1 (II-d-17)
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CHAPTER III

FREE LATERAL VIBRATIONS OF SUSPENSION BRIDGES

III-I. Introduction

The great span length of suspension bridges makes their static

and dynamic behavior under the action of lateral forces an important

engineering problem. The most significant lateral forces are due to

wind and to earthquake s. In the literature, little can be found on the

subject of lateral vibrations in suspension bridges. although many

studies deal extensively with the subject of vertical vibrations (as

seen in Chapter I). There have been few publications in recent

decades dealing with the lateral rigidity of suspension bridges under

wind loading, but there have been at least three investigations [6. 7, 8J

on lateral vibrations and earthquake resistant design of these

structures.

Lateral forces such as horizontal wind pressures, when acting

on a suspension bridge, are sustained by the cables and the suspended

structure. which transmit the resulting reactions to the towers and

abutments or piers. The hangers. which connect the stiffening

structure to the cables, cause the two loaded systems to interact so

that the deformation of one system exerts an influence on the other.

For instance. compared with the suspended structure, the cables
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themselves offer only a small exposed area to wind pressure, but

part of the forces which act on the suspended structure are trans

mitted through the inclined hangers to the cables. The magnitude

of the transmitted forces depends on the respective stiffnesses of the

two systems and on the ratio of the wind forces acting on them.

Methods of analysis of suspension bridges subject to lateral

wind forces acting as static loads were derived by Moisseiff, et al. [lJ,

Silverman [3J, Erzen, et al. [5J, and Selberg [2J. In these studies,

the lateral bending of a suspension bridge is examined, considering

the combined influence of the suspended structure and the cables by

distributing the wind load between the two systems. In general, these

investigations showed clearly how the cables, hangers, and suspended

structures participate and cooperate in resisting lateral forces. Also,

the numerical results obtained in these investigations revealed pre

viously unknown characteristics of the static behavior of suspension

bridge s, and formed a good starting point for the study of the dynamic

behavior of these structures.

The first attempt at investigation of the free lateral vibration of

suspension bridges was made by Silverman [3J in 1957. He proposed

a formula, based on a Fourier series solution, for calculating the

natural frequencies, but some of his assumptions about the coupling

between the cables and the suspended structure are questionable. In

1958, Selberg [4J found that Silverman's analysis gave an incorrect

equation of motion. Selberg corrected the equation of motion, to include
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the interaction between the cables and the suspended structure and,

using a Fourier series solution, obtained formulas for the natural

frequencie s.

In the early 1960 l s, Ito, Hirai, Okumura and Narita [6,7. 9J

undertook an extensive investigation of the lateral rigidity of a

suspension bridge subjected to static lateral loads and to foundation

motion. In their publications, they discus s the free lateral vibration

of the bridge and its bending deformations due to lateral loads, both

theoretically and experimentally. They applied an approximate method

of analysis (the Ritz-method) to the equations of motion already

derived by Selberg [4J, and thus obtained frequency equations. Then,

they developed these equations to include the effect of the upward

deflection of the cable s and the suspended structure which accom

panies the lateral movement. Their analysis is an improvement over

that of Selberg, but they were careful to point out that further improve

ments were required.

Despite the foregoing efforts, an entirely satisfactory vibration

problem has not yet been derived. It would appear that the most

promising direction of research on this problem would be to utilize

the capabilities of the digital computer. The first use of a digital

computer in approaching this problem, by Konishi and Yamada [8J •

achieved significant results. Their vibrational analysis was based on

a lumped-mass and spring system representing a one-span suspension

bridge. Natural periods and mode shapes were obtained, and it was

found that some of their modes did not agree with those predicted by

the approximate methods of Selberg [4J and Ito, et al. [7J.
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In the following study, methods of analysis are developed

employing a digital computer and the finite-element technique.

The objective of the study is to determine a sufficient number of

natural frequencies and mode-shapes to enable an accurate analysis

to be made for practical purposes. The problem is linearized by

restricting the amplitudes of vibration to be small. Free lateral

vibrations are investigated using the same procedures employed in

the analyse s of vertical and torsional vibrations. The governing

differential equations of motion of the cable and of the suspended

structure are derived first, using Hamilton's Principle. These

equations include the effect of upward deflections associated with

lateral movements; that is, the pendulum action of the cable and

suspended structure is taken into account. The study uses a matrix

discrete method based on a finite-element idealization, as in Chapters

I and II. A numerical example is presented as verification of the

analysis. This method appears to be the simplest and most practical

thus far developed for calculating the natural frequencies and mode

shapes required for a satisfactory analysis of a laterally vibrating

suspension bridge.
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III-2. Preliminary Considerations and Fundamental As sumptions

The following section contains a description of the coordinate

systems used in this analysis and of the different vibrational-displace-

ments describing the motion of the cable and the suspended structure.

I.n addition, a discussion of the simplifying assumptions involved in the

analysis is presented.

III-2-1. Coordinate systems and vibrational-displacements

For the suspended structure system, the x. -axis, i = I, 2, 3 , of
1

the i
th

span coincides with the equilibrium position of the longitudinal

axis of the bridge deck with the origin located at the left support of

each span; the y. -axis, i = 1, 2, 3 is vertical and the z. -axis is
1 1

horizontal, as shown in Fig. ill-I -a. For the cable system, the

cables I dead-load ordinate, y: (x.) , is measured downwards from the
c 1

closing chord-line to the cable of the i th span. The origin for this

cable system is located at the left support of each cable span whether

it is an anchorage or a tower top.

The vibrational displacements of the suspended structure are

measured from the x. -yo plane and the x. -z. plane. The cable IS
1 1 1 1

vibrational-displacements are measured vertically and horizontally

from the static position of the cable itself, as shown in Fig. III-I.

The coordinates of vibrational-displacements of the suspended struc-

ture are u (X., t), V (x., t) and w (X., t) in the x. , y. and z.
S1 S1 S1 11 1

directions, respectively, and the coordinates of displacement of the

cable are u (x.,t), v (x.t) and w (x.,t) in the x., y and z.
C1 C1 C1 1 C 1
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directions, as shown in Fig. III-I. (Note: Again, the subscript i

has been left out of this figure for convenience. )

.III-Z-Z. Basis for analysis

The following simplifications are introduced in the analysis.

1. Small vibrations about the position of equilibrium are assumed;

i. e., the amplitudes of vibration about the static equilibrium

configuration are taken to be sufficiently small so that the

stiffness of the structure may be taken to be constant during

the motion.

As a corollary to the above, the increment of horizontal

component of cable tension, H(t) , due to lateral vibration

is small in comparison with the initial dead-load horizontal

component of cable tension H
w

2. In this theoretical analysis, the ends of the cables are taken

to be immovable. Actually, the tops of the towers on a real

bridge will move in response to changing forces, and this

properly should be taken into account in the specification of

the end conditions; but for purposes of exposition, the tower

tops are taken to be immovable. In the finite element analysis,

the deformations of the towers can be taken into account; in

fact, the deformations of the towers may have a significant

effect on the natural periods of vibration and the mode

shapes.
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3. The coupling between lateral. torsional and vertical motions

should be taken into consideration when a suspension bridge

is transversely vibrating. However. as this coupling leads

to very intricate calculations and has significant influence only

for non-small displacements. it is not considered here.

4. In addition to the above assumptions. it has also been assumed.

in studying free lateral vibration. that vibration damping of the

structure may be neglected. the suspenders (or hangers) are

inextensible. the cables are parabolic. and the mas s of the

cables is separate from that of the suspended structure.

There are upward vibrational-displacements of the cables and

the suspended structure incidental to their late ral movements. A

pendulum action occurs which may be defined in terms of the coupling

between these upward and transverse motions. For small vibrations

(assumption I) the upward movements can be found as follows.

By considering Fig. III-I-a. the upward displacements v and
c

v of the cables and the suspended structure. re spectively, may be
s

expressed as

v (x.• t) = Y (x.)[l - coscpJ
c 1 c 1 1

and

i= 1,2,3, (3. 1)

v (X., t) = Y (x.)[ I - cos cp.J + h(x.)[ I - cos e.J
Sl C1 1 1 1

(3. 2)
where 'Pi is the angle of rotation of the cable plane (at section x.)

1

with respect to the vertical plane passing through tower top and e. is
1

the angle of rotation of the suspended structure with respect to the
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vertical plane passing through the deflected position of the cable at

section x. (see Fig. III-l-a and III-I-d).
1

Since wand ware very sIl1all quantities cOIl1pared with
c s

yc and h , one can write

and

[
w (x.,t)]

cpo (x., t) ~ c (1 )
1 1 Y x.

C 1

[

w (x., t) - w (x., t)]
e ( t) ~ S 1 C 1

i Xi' h(x.)
1

, i= 1,2,3,

, i = I, 2, 3 .

(3. 3)

(3.4)

Expanding Eqs. 3. 1 and 3.2, and using Eqs. 3.3 and 3.4, one

obtains

i = I, 2, 3

or

(3. 5)

and

or

cp~ cp~
v ~ y [1 -1+ 2~ __1 +

S C • 4!

2 . 2

[
w J [(W -w ) Jv~Y~+h sc

s c 2 2 2J
yc

i = I, 2, 3

w2 (w _ w )2
- c s c
- 2yc + -~2-h--=='--

(3.6)
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III-3. Derivation of the Equations of Motion

In this section, the governing differential equations of lateral

vibration of the cable and suspended structure systems are derived

in a very general form by using Hamilton's variational principle. The

resulting equations are linearized and reduced to a standard form

through use of the previously stated simplifying as sumptions.

III-3-1. Potential energy of the cables

The potential energy of the laterally vibrating cable, V (t) , is
c

comprised of two parts: the strain energy, V (t), of the cable, and
ce

the gravitational potential energy, V (t).
cg

Thus, the total potential

energy of the cable is expressed as:

V (t) = V (t) + V (t)
c ce cg

The expre s sion for the strain energy,

(3. 7)

V (t), will be derived
ce

by considering the inertia forces and the corresponding small vibra-

tional-deformations. The inertia forces change the horizontal com-

ponent of cable tension H to H ± H(t) • where H(t) is the
w w

horizontal-component of cable tension caused by the vibration. As

illustrated in Fig. III-I-d, the horizontal displacement of the cable is

accompanied by a vertical displacement. The length of the cable

I t d . h .the emen s., in tel span,
1

222
ds. = dx. + dy dx. and dylie 1 c

i = I, 2, 3, under dead load is

being the projections in the

horizontal and vertical directions, respectively. As a result of

small. free lateral-vibration about the position of static equilibrium,

the length of the cable element will become ds. + 6ds. in the laterally
1 1
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displaced-position with projections dx. + du along the i th
1 c

span,

dy + dv in the vertical direction. and dw in the lateral direction.
c c c

as shown in Fig. III-I-d. Here u and v are the longitudinal and
c c

vertical components of the in-plane motion, respectively, and w
c

is the lateral horizontal component of motion (perpendicular to the

vertical plane through the two bearing points of the cable in any span).

The components of motion are functions of both position and time.

Therefore, one has

2
(ds. +6ds.)

1 1

and consequently

2 2 2= (dx. + du) + (dy + dv) + (dw )
1 c C C C

i = 1. 2. 3.

(3. 8)

2 2 2 2
2ds. ~ds. + (~ds.) = 2dx. du + 2dy dv + du + dv + dw

11 1 1 C C C C C C

since
2 2 2

ds. = dx. + dy ; it follows that
1 1 c

2 [au (OV )(dY)2ds.~ds.+(6ds.) = 2~ +2 ~ c d
C

1 1 1 ux. ux. X.
1 1 1

2 2

+(::~) +(::c) JdX~ .
1 1

Since the analyses are to be valid for cables with sag to span

ratios of about 1:8 or less (flat-sag cables). the slope of the cable

profile is consistently small; furthermore the longitudinal component

of motion U c is a small quantity in comparison with wand v
c c

au 2

Consequently, (OX~) is a small quantity of higher order, and so
1

the diff~rentialextension. 6ds. , in the length of the cable element.
1

correct to the second order of small quantities, is
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6ds.~ __c __1

1 ax. ds.
1 1
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2 2
av dy' 1(av) dx. 1(OW) dx.c c C 1 c 1 dxdx +--dx+-- -dx +-- -i ax. ds. i 2 ax. ds. i 2 ax. ds. i

1 1 1 1 1 1

i= 1,2,3. (3. 9)

The strain energy of the cable element.

can be expressed as

d V (t) = {[H + 2
1

H(t}]· dx
dSi t· 6ds.

ce Wi) 1

d . th .ths. , 1 n e 1 span,
1

i = 1.2. 3. (3. 10)

In this equation. the factor ~ is needed due to the fact that H(t)

increases from zero to its maximum value H(t).

Substituting the expression for the cable stretch 6ds. (Eq. 3. 9)
1

into Eg. 3.10 and then integrating over all spans. the strain energy.

V (t), of the two cables may be written as
ce

(3. 11)

where 1. is the length of the i
th

span. This energy expression can
1

be written more conveniently as
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The assumption that there are no movements of the tower tops

or of the anchorages makes it pos sible to reduce this energy expres-

•
sion to

(3. 12)

Now, the cable equation, which relates the stretching of the

cable element to the geometric displacements which it undergoes,

can be modified to include the lateral vibrational-displacement w
c

as follows: (See Appendix I-b. )

H(t) L .e1
EA

c c

.R. . (Q )2£. Q ) (d ) £. (Q )21 1 uw 1 uv y. 1 1 uv

== zfax~ dXi +f (ax~ dX~ dXi + 2f ax~ dxi
0 1 0 11 0 1

i == 1, 2, 3

(3.13)

(An evaluation of the virtual length can also

is the virtual length of the cable which is defined

where E is the modulus of elasticity of the cable, A is the area
c c

of the cable, and L .e1

f

.R.i(dS. )3
by L == _1 dx.

ei dx. 1o 1

be found in Appendix I-b.) This cable equation can be written for the

entire cable, in the three spans, as

H(t)L
E

EA
c c

(3. 14)
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3
where L

E
= L L . for the entire length of the cable.

i= 1 e1

Substituting Eq. 3.14 into Eq. 3.12, the strain energy of the

cable becomes

(3.15)

Attention is drawn to the fact that if the dead-load cable tension

were to remain constant during vibration with a horizontal component

H ,and if H(t) were due only to the inertia load, then the first termw

of Eg. 3. 15 would be the dead-load work stored in the cable while the

second term would be the energy of vibration stored in the cable.

However, the dead-load cable tension changes because of the altered

cable curve, and H(t) represents the combined effect of this change

in dead-load stress plus the inertia load stress.

The expression for gravitational energy. V (t), of the two
cg

cables due to the upward deflection, v , incidental to their lateral
c

movement w , can be written (in view of the preceding analysis) as
s

3 l.

1
1

Vcg(t) = L:
i= 1 0

*w v (x., t) dx. ,
c C 1 1

(3.16)

where

span.

w
c

is the dead weight of the two cables per unit length of the

Using the approximate relation between v and w (Eg. 3.5),
c c

Eq. 3. 16 can be expressed as
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3

V (t) ='"cg LJ
i=l
to

2
;; (WC(xi' t»)

c 2y(x.)
c 1

dx.
1

(3. 17)

Now, (after substituting Egs. 3.15 and 3.17 into Eg. 3.7) the

expression for the total potential energy of the cable is

2 3 £. 2

[
HwH(t)LE l [H (t)LE ] """ 11 ~:~ (Wc )

Vc (t) = 2 E A J + 2 2E A +LJ Wc 2y
c c c c i= 1 0 c

dx.
1

(3.7')

1II-3-2. Potential energy of the suspended structure

The potential energy of the laterally vibrating suspended

structure, v (t) , also consists of two parts: the elastic potential
s

energy (i. e., the strain energy). V (t), due to the effects of bending
se

moments, shearing forces and normal forces, and the gravitational

potential energy, v (t), due to upward movement; i. e. ,
sg

V (t) = V (t) + V (t)
s se sg

(3. 18)

Neglecting the effects of shear and longitudinal deformations, the

strain energy stored in the suspended structure due to bending can be

written as

3 1.

V (t) = 1.. ~f1
se 2 L-J

i=l 0

2 2

(
8 w (x.• t»)

E I s 1
s1 si 2 dXi 'ax.

1

(3. 19)

and I . is the area moment of inertia of the suspended
Sl

. 1· . th . th Th· tstructure about its vertlca aX1S, y., 1n e 1 span. 1S momen
1

where E . is the modulus of elasticity of the suspended structure in
Sl

th
.th

e 1 span,
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of inertia includes the contribution from the two stiffening girders

(or trusses) as well as the contribution from the lateral bracing

systems. The suspended structure displacement, w,
c

is measured

from the vertical plane through the longitudinal centerline of the span.

The gravitational energy, v (t), of the suspended structure
sg

due to the upward displacement v is
s

3 1.

L I
I -',

V (t) = ;;; . v (x., t) dx.
sg Sl S 1 1

i=l 0

(3. 20)

*where w. is the dead weight of the suspended structure per unit
Sl

length of the i th span.

By the aid of Eq. 3.6, this gravitational energy becomes

V (t)
sg

=~ I1i.:t. [W;(Xi ' t) +
L..J SI 2y (x.)
i= 1 0 C 1

(w (x., t) - w (x., t) )2 lSIC 1 (3. 21)

where h(x.} is the length of a hanger in the i th span at section x ..
1 1

I

It should be noted that Eq. 3.21 contains a coupling between the

vibrational-displacements of the cable and those of the suspended

structure systems.

Now, the equation for the total potential energy of the suspended

structure (Eq. 3. 18), becomes

1
V (t) = -

s 2

3 1. (02 2 i.. 2

'" [ II E . I. w2c \ dx. ti l .:t .[Wc +
L..J 51 SI ° ) 1 SI Y
i= 1 0 xi 0 c
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III-3 -3. Kinetic energy of the laterally vibrating suspension

bridge

The kinetic energie s caused by the lateral vibrational displace-

ments wand w , of the two cables and of the suspended structure,
c s

respectively, are expressed as

and

3

T (t) = ..!. ""'c 2 L.-i
i= 1

3
l~'

T (t) = - '\
S 2 J.."J

i= 1

f
£i ,,- (ow (x., t))2

'I' c 1
m c ot dXi

o

f£i >:~ (ow (x., t))2
m. s 1 d

o S1 at xi

(3. 22)

(3.23)

>lc
w':< c

where m = - is the mass of the two cables per unit length of the
c g ja<* Woo

span, and m ° = S1 is the mass of the suspended structure per unit
S1 g

length of the i
th

span; g is the acceleration due to gravity.

The kinetic energies caused by the incidental vertical movements,

v and v , of the cables and the suspended structure, respectively,c s

are given by

and

3

'" 1 LT (t) = -
c 2

i= 1

3
I"V 1 L:T (t) =-

s 2
i= 1 f

£i * (avs (xi' t))2
m ° at dx.S1 1

o

(3. 24)

(3.25)

Using the relation between the lateral and vertical movements
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of the bridge (Eqs. 3.5 and 3.6), Eqs. 3.24 and 3.25 become

(3. 26)

and

III-3 -4. Variational formulation of the equations of motion

a. Derivation of the general eguations of motion

When applying Hamilton's Principle to derive the differential

equations in terms of the lateral displacements w
c

and T and

V must be functions of the dependent variable s wand w only.c s

This requires making use of the approximate relations given by

Eqs. 3.5 and 3.6 which can be expressed in variational form as

and

Ov = 0 ( We
2

) = we (5 w
e 2y y e

e e
(3. 28)

(3. 29)

The variation to be performed on the kinetic energy is

o(T + T + T +T ) dt
e s e s (3. 30)
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Expanding, performing the variation of each of the terms for the

various kinetic energies with respect to wand w , and integrating
c s

by parts where necessary, yields

3 t £. Z

-I: fZ fl ~ c 3 :c

i-I t 0 3t- I

6w dx. dt
c 1

(3.30-a)

t z 3 t z £. 3Z

f. "f Jl ~,- Wo T dt :: - LJ ill . -Zs Ow dx. dt
s. Sl at S 1

t
l

1= I t l 0

(3.30-b)

3 ftz J£i * !:Izv-" m ~zc ov dx. dt
L..J C at C 1

i=l t 01

3 t 2 £. 2 [ 2"f Jl * W a W]= - LJ m c y.C 2 z; oWc dXi dt
i-I t 0 C at c- I

and

(3.30-c)

3 tz P.. 02"f Jl * V- L..J In . -zc ov dx. dt
Sl at s 1

i= I t
l

0

3 t P.. Z Z

= _LIZJl ~ .{ (Ws-Wc ) £ [ Wc + (ws-wc ) ] ow
Sl h otZ Zy Zh s

i-I t 0 c- I

2 Z

(
w (w - W») aZ [W (w - W)] }+ -.£ _ s c _ .-£. + scow
yc h atZ Zyc Zh c

dx. dt . (3.30-d)
1

The above equations have incorporated the fact that Ow , Ow ,
c s

ovc and ovs are zero at t = t l and t:: t z .
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The variation to be performed on the potential energy V is

t 2 t 2

J oVdt~f o(V tV tV tV )dt .
ce cg se sg

t 1 t 1

(3.31)

Proceeding as in the case of the kinetic energy, the variation of

the potential energy terms can be obtained.

i
ii d2y n

v ·'£i iii n

2
v ]}

- -2
c Bv dx. t~ov - ~2c ov dx. dt. (3.3l-a)

dx c 1 x. C 0 C 1
Oil 0 0 Xi

Substituting Eqs. 3.5,

noting that for the parabolic

3.6, 3. 28 and 3. 29 into Eq. 3.3l-a,
2 >t< ~:<

d Y. 1 (W t W.JC C Sl •
cable --2-=-"2 H ,gIves

dx. w
1

and

n d 2£. }vW w y. WnW 1
C C C C v c

t -- + - - + - - - Ow dt{ OX. y. dx. y. aX. (2Y)} c I J.
1 C 1 C 1 C 0

(3. 31-a ')
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For the other ter:ms of the integral of Eq. 3.31, one obtains

f
t2

L:3 st2iii * ~ ft2fi i * w
BV dt =. w Ov dx. dt = , w --.£ ow dx. dt ,eg e e 1 L-I eye 1

t
l

i= 1 t
l

0 i= 1 t
1

0 e

t 2 3 t 2 o2w ow ii a ( a2w

f OV (t)=L:f{E.I'~2s0(~)I--Q E.I·-2
s

)se S1 S1 0 ux. ux. S1 S1 0
t '-1 t x. 1 0 1 X.1 1- 1 1 1

(3.31-b)

+J:ii ~ (E I 02Ws )
Q 2 si si 0 2

O
ux. x.

1 1

and, finally

t 2 3 t
2

Q.

J:
0 V dt = "" f r1

:. Bv dx. dtsg L.J J S1 S 1

t l i= 1 t l 0

Ow dx.} dt ,s 1
(3.31-e)

L;3 ft2{J:ii( ,.. [ ( ) ] ) }~ w-w ~ w w-w
= i=l t 0 wsi [ sh eJ QWs + ~si y: - she OWe dxi dt.

1
(3.31-d)

Having the foregoing variations of the different energies, Ha:milton.'s

Principle, after rearranging ter:ms, gives
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(~ +~ .)C 81

H w

[

OW w
+ Z[H +H(t)] r +......£

w Xi Yc

d Z J f.
~ + Wc _a (Wc ) Ow 1

1
dx. ~ aX. Z~ c

1 C 1 C 0

f. Z Z Z

f1 [* (a w (w - w) oZ ( w (w - w) ))+ rn __c+ s c __ .-£..+ s c
o si otZ h otZ Zyc Zh

oZ (+-Z E.I.
aX. Sl Sl

1

+ E . I .
Sl Sl o(::~)

1

1. oZ 1. }

1
1 - ~(E .I. Wzs ) Ow 1

1

dt = 0
ux. 81 Sl a 8

o 1 Xi 0

(3.3Z)

The coefficients of Ow and Ow that appear under the integral
c s

signs must be equal to zero, and the integral terms must be equal to

zero at x. = 0 and x. =f. . It follows then that the differential
1 1 1

equations governing the lateral vibration of the cable and the suspended
/

structure are given by

Z Z
(w - w ») a

Z ( w (w -w ) )Js c _u_ -.£..+ s c
h otZ Zyc Zh
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[
82W w (: +:.) W 2 (W

2
) ]2[H +H(t)] __c _ 1:. -.£. C Sl +-.£. _8_ -.£..

W a 2 2 y. H Y. 8 2 2yux. c W C x. C
1 1

and

>:<
+ W.

Sl [
w (W - W ) ]C S C

-y- h
c

= 0 i = I, 2, 3 , (3.33)

2 2
(w - w) a 2 (W (w - w) )Js c _u_ _ c_+ s c

h 8t2 2yc 2h

where

( E . I .
Sl Sl

a21 )
8x.

1

*+ W.
Sl

i = I, 2, 3 ,

(3.34)

AE
H(t) = c c

LE

3

L:
i=l

.£..(a)2 P..(d) (2)I 1 uW 1 y 8 wzf 8x~ dxi +f dX~ 8x. 2; .
o 1 0 1 1 C

dx.
1

Integrating the second term by parts and using the relation

(3. 35)

d
2

yc
-2-=
dx.

1

gives
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AE
H(t) = c c

LE

(3. 36)

The two equations of motion (Eqs. 3.33 and 3.34) describe the

coupled vibrational motion of the cables and the suspended structure.

These two equations, as well as the cable equation (Eq. 3.35 or Eq.

3. 36) contain nonlinear terms.

The boundary conditions specified by Eq. 3. 32 are

i = l, 2, 3 ,

(3.37)

and

E .1 .
S1 S1

i = 1, 2, 3 , (3. 38)

8
ax.

1
(

82w )E .1 . __s
Sl S1 8x~

1

Ow
S

i= 1,2,3 (3.39)

these ean be satisfied by

2[H +H(t)J [~We + we dYe + we _o_
w ux. y dx. y ox.

1 C 1 e 1

or

We = 0 at x = 0 and x. =£.
ill

i = 1, 2, 3 , (3.40)
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o2w ow
E . I s

0
s

0 at 0 and = i..-2- = or
ox. = x. = x.

Sl si 1 1 1ox. 1
1

i = I, 2, 3 ,

(3.41)

a
ox.

1
(

8
2W

)E . I . -2
s = 0 or

Sl Sl Q
ux.

1

w = 0 at x. = 0 and x. =p..
S 1 1 1

i = I, 2, 3 .

(3.42)

Eqs. 3.40, 3.41 and 3.42 represent the boundary conditions

associated with the differential equations 3. 33 and 3.34.

The first part of Eq. 3.40 can be rewritten as

8w (dY 8V) w
2[H +H(t)] ~ + 2[H +H(t)] d c + Q c .-£.

w ux. w x. ux. y
1 1 1 C

in which the first

term represents the lateral shear force transmitted by the cables to

. the tower tops or anchorages due to only the lateral displacement we

in the rotated plane of the cable

The second term represents the transverse component of the shearing

(
dY. OV)

2[Hw +H(t)] dx~ + ox~
1 1

which is produced by the vertical displacement v . Eq. 3.40 requires
c

force,

that either the lateral shearing force or the lateral deflection of the

cable be zero at each end of the cable span. As indicated in the

simplifying assumptions, the deflection of the cable span is zero at

both ends, so its variation is zero, and the geometric boundary con-

dition of Eq. 3. 37 is satisfied.

The first part of Eq. 3.41 requires that the bending moment

vanish at each end of the suspended structure, while the second part

requires that the rotation vanish at each end. Eq. 3.42 requires that

either the shearing force or the deflection be zero at each end of the
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suspended structure. For a suspended structure hinged at both ends,

the bending moment and the deflection are zero at both ends, and

Eqs. 3.38 and 3. 39 are satisfied. In this case, there is one geometric

and one natural boundary condition.

b. Linearization of the equations of motion

When the higher order terms in Eqs. 3. 33 and 3. 34 are

neglected, the linearized forms of the equations are obtained:

o2w
c

2H -2-
wax.

1

Wc * * Wc * Wc * ~< ( Ws - Wc )
+ - (w +w.) + - w + - w. - w. h =Y. C Sl Y. c y.c Sl Sl

C C

o ,

or

i = I, 2, 3 ,

o ,

(3.43 )

i = I, 2, 3 ,

(3.43 ')

for the cable; and

2.... a w
-" c

m -- +
si at2

a
2w

)s
E.I.-( .,., ax~

1

= 0 , i=I,2,3

(3.44)

for the suspended structure.

The first term of Eq. 3.43 results from consideration of the

kinetic energy caused by the lateral displacement w only (Eq. 3.22).
c

The second and third terms are from the linear strain energy expres-

sion of the cable, which is derived from Eq. 3.12 in the form:

3

V (t) =~
ce L.J

i=l
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Upon integrating by parts, noting that

and using Eq. 3.5, this equation becomes

3

V (t) =~
ce L-J

i= 1

(3.12')

The fourth term in Eq. 3.43 results from the gravitational

energy expression of the cable (Eq. 3.16) due to the upward displace-

ment, v , while the last two terms result from the gravitational
c

energy expression of the suspended structure (Eq. 3.21) due to the

upward displacement v .
s

Comparison of Eqs. 3. 34 and 3.44 reveals that the only lineariza-

tion is due to neglection of the kinetic energy caused by the upward

displacement v of the suspended structure.s

. Finally, Eqs. 3.43 I and 3.44 are identical to those derived by

Selberg [4J, except for the last term of Eq. 3.43 I, which is a con-

sequence of taking into consideration the upward movements of the

structure. No solutions of Eqs. 3.43 I and 3.44 in closed form are

known. However, Fourier series solutions, and energy approximate

methods have been used by Selberg and Ito [7, 6J to determine natural

frequencies by assuming sine mode shapes. An approximate solution

of these two linear differential equations of motion (Eqs. 3.43 I and

3.44), in which the frequency equations are obtained. can be found in

Appendix III-a. In this solution, sine mode shapes are assumed, and

the orthogonality property of the modes is used.
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III-4. A Finite Element Approach to Lateral Vibrations

A method of analysis based on the finite element technique is

presented in the following section. The method takes into account

the characteristics of both the cable and the suspended structure.

The cable is idealized by a set of string elements, while the suspended

structure is idealized by a set of beam elements. The two sets of

elements, connected by rigid hangers, form the bridge elements. The

stiffness and inertia properties for each set of elements are derived

and assembled to obtain the gross assemblage characteristics.

Finally, Hamilton's Principle is used to derive the matrix equations

of motion for the entire bridge structure, from which the natural

frequencies and modes of vibration are obtained. To illustrate the

applicability of the analysis, and to exhibit the dynamic characteristics

of lateral vibration, a numerical example is presented.

In deriving the finite-element solutions, the strain energy of

vibration stored in the cables due to H(t) (second part of Eq. 3.l5)and

the kinetic energy caused by the upward motion of the suspended

structure and the cables are both neglected. In addition, the previous

assumptions presented in Section III-2-2 are employed.

III-4-l. Idealization of the structure and the displacement models

The suspension bridge structure is divided into an appropriate

number of elements which are interconnected only at a finite number

of nodal points along the cable and the suspended structure, as shown

in Fig. III-2-a (for the center span only). Each bridge element
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consists of a cable subelement and a suspended structure subelement

connected by two or more rigid suspenders, as in Figs. III-2-b and c.

Since the lateral vibrational-displacement of each suspended-

structure nodal-point is different from the lateral vibrational-displace-

ment of the corresponding cable nodal-point, it is necessary to make

a distinction between the two nodes. Thus, each bridge element has

four nodal-points, two for the suspended-structure subelement and

two for the cable subelement. For the suspended-structure subelement,

there are two nodal degrees of freedom at each node: one is the trans-

lation of the cross section defined by the node and the other is the

rotation of that cross section in the horizontal plane (as shown in

Fig. III-I-c). The cable sube lement has only one trans lational degree

of freedom at each node. This introduces six degrees of freedom (or

nodal displacements) for the bridge element, designated by

q.(t), j=1,2,3,4,5and6, at the nodes i, i+1, i+2 and i+3.
J

(In Fig. III-2, the suspended-structure nodes i and i + 2 are con-

nected to the cable nodes i + 1 and i + 3, respectively.)

The interpolation functions associated with the two degrees of

freedom of the nodal-point in the suspended- structure subelement are

taken to be cubic Hermitian polynomials (used before in Chapters I

and II). Consequently, the lateral vibration of the suspended-structure

can now be expressed in terms of the bridge-element nodal displace-

ments q.(t) , j = 1,2,3,4,5 and 6 , as
J



-270-

or

(3.45)

where e is the subsc ript indicating "element, II L is the length of

the element, and ;1 and ;2 are the normalized coordinates defined

by

; (x) = (1 _ x) and l: (x) = x
1 L "'2 L

(3.46 )

x is the horizontal axis of the individual element, as shown in

Fig. III-2-b.

In Eg. 3.45, [£s(;l' ;2)}; represents the transpose of

Us (; l' ~2)}e; it is the vector of the polynomial for the suspended

structure subelement, and [q(t)} is the vector of the six nodal-
e

displacements for the bridge element.

The interpolation displacement polynomial associated with the

one degree of freedom of the cable nodal-point is taken to be a linear

interpolation function. i. e., interpolation where only function values

and no function derivatives are prescribed. Thus, the cable lateral

vibrational-displacement can be expressed in terms of the six nodal-

displacements of the bridge-element, as

'"o , £. 1 (x) , o ,

A ,.,

Here, £.1 (x) and £.2 (x) are the linear interpolation functions for the

cable-subelement. and are given (on [0, LJ) as

(3.48)
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By introducing the normalized coordinate s ~ 1 and ~2 (Eq. 3.46),

any point in the cable subelement [0. LJ can be referred to in terms

of ~l and ~Z as new coordinates. Therefore, Eq. 3.47 becomes

or

(3.49)

where [£c(~l' ~z;t)}e is the vector of the polynomials of the cable

subelement.

Equations 3.45 and 3. 49 furnish the displacement models for the

bridge -element.

Each bridge-element has an average suspender length h , and
e

an average dead-load cable ordinate y. , as shown in Fig. III-Z.e

III-4-Z. Evaluation of structural-property matrices

For the derivation of the various stiffne ss matrices of the

individual bridge element. it is again convenient to treat ther suspended-

structure subelement and the cable-structure subelement separately.

Then by superposing them appropriately. the structural or stiffness

properties of the entire element (or assemblage) can be found.

a. Elastic-stiffness matrix of the suspended structure

The strain energy of the suspended structure due to bending,

Eq. 3. 19. may be expressed (with the aid of the displacement model

for the suspended-structure subelernent, Eq. 3.45). as
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3 Ni L

V (t) = .!.~ [~ rEI ([£"}T [ } )T( [£"}T [ } ) dX] .
se 2 ~ ~ L se se seq e seq e

i=l e= 1 O· •
(3.50)

Here, N. is the total number of bridge elements used to present the
1

.th
1 span; E I ,the flexural rigidity for the element, is as sumedse se

uniform over the entire element.

Writing Eq. 3.50 in a more convenient form provides the elastic-

stiffness matrix for the element, as follows

N

Vse(t) = ~ L [q}; [kseJe [q}e

e=l

(3.51)

3
where N = L N. is the total number of elements used to present the

i=l 1

entire assembled structure, and

L

[ k ] =i E I [fit } [f" }Tdx ,
se e se se s e s e

o
(3.52)

is the element elastic - stiffness matrix of the suspended- structure sub-

element. The integration involved in the evaluation of [k J can bese e

accomplished as described in Chapter 1. The resulting elastic-stiffness

matrix is

[k ] =
se e

E I
se se

L
3

12 -6L 0 -12 -6L 0

-6L 4L2 0 6L 2J 0

0 0 0 0 0 0 (3. 53)

-12 6L 0 12 6L 0

-6L 2J 0 6L 4J 0

0 0 0 0 0 a
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Note that zeros are used for the columns and the corresponding

rows of the nodal-displacements of the cable subelement, as is

expected from the assumptions associated with the individual dis-

placement models of the two systems.

For the complete system, the assemblage elastic-stiffness

(3. 54)[k ]
se e

matrix and the assemblage nodal displacements are, respectively

N

[KSEJ = 2:
e=l

and

(3.55 )

Now, the total strain energy of the assemblage associated with

bending and stored in the suspended structure may be expressed by

(3. 56)

The stiffness matrix of the complete system [KSEJ is

symmetric, positive-definite and thinly populated (i. e. banded).

b. Gravity- stiffne s s matrix of the suspended structure

The gravitational energy associated with the upward deflection

of the suspended structure (Eq. 3.21) can be written, by using the

displacement models for w
s

and w
c

(Eqs. 3.45 and 3.49), as
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3 Ni L * 2

V (t) = 1.. "" [""{i .w
se (u }T [ }) dxsg 2 L..J LJ y ceq e

i=l e=l 0 e

L*+{ wse (U }T [ } _ U }T [ } )2 dX}]
h se qe ce qe

o e

(3.57)

where is the weight of the suspended-structure subelement per

unit length, and Ye and he are the geometric properties defined as

before.

It is important to note that the second term of Eq. 3.57 repre-

sents the coupled vibrational-motions of the cable and the suspended

structure.

Now, define the vector [~} as follows
e

[~} =([f} - U} )
e sec e

which in terms of the normalized coordinates, becomes

(3. 58)

Then Eq. 2.57, may be expressed as
(3.59)

N L* L*
V (t) = 1.. "" [[ }T ({ wse U } U }T dx +1 W

se [cr?} [cr?}T d"X) [ } ]sg 2 L..J q e y. c e c e h e e q e '
e e

e=l 0 0 (3.60)

or more conveniently



N

V (t) = .!. ,
sg 2 L..

e=l

N

=~ L
e=l
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[q}T([klJ +[k 2J)[q}e s e see

(3.61)

where [k J is the element gravity-stiffness matrix of the suspended
sg e

structure; it consists of the sum of two matrices. The first matrixl

[k IJ 1 is due to the contribution from the cable, and is expressed by
s e

L ~:~

[k J =1 W
se [£} [£ }T dX

s1 e y c e c e
o e

(3.62)

while the second matrix l [k 2J ,is due to the coupled motion of the
s e

cable and the suspended structure, and is expressed by

L ~:~

[k J =I W
se [ep} [ep}T dX

s2 e h e e
o e

(3.63)

The integration involved in the evaluation of both matrices 1

[k IJ and [k 2J ,can be accomplished by the integration propertys e s e

(Eq. 1. 59) of the interpolation functions in Chapter 1. The resulting

matrices are

~:~

w L
[k J =~

sl e 6 y
c

o

o

o

o

o

o

o

o

o

o

o

o

o

o

2

o

o

1

o

o

o

o

o

o

o

o

o

o

o

o

o

o

1

o

o

2

(3.64)
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156 -22L -147 54 13L -63

-22L 4L
2

21L -13L -3rf 14L
,'--.' L 140 -63 -14L 70w -147 21L

[ks2Je = 42~eh (3. 65).
e 54 -13L -63 156 22L -147

13L _3L2
-14L 22L 4L

2
-21L

-63 14L 70 -147 -Z2L 140

Therefore, the resulting gravity-stiffness matrix of the bridge-

element (due to the suspended-structure's upward motion) has non-zero

coefficients corresponding to the six nodal-displacements for the

element; it is

156 -22L -147 54 l3L -63

-ZZL 4L
2 21L -13L _3L2

14L

*
h h

w L -147 21L 140(1+~) -63 -14L 70(1~)
[k ] = se Ye Ye

sg e 4Z0h 54 -13L -63 156 22L -147e

13L _3LZ -14L Z2L 4LZ -ZlL
h h

-63 14L 70(1+~) -147 -ZlL 140(1~)
Ye Ye

(3.66 )

The assemblage gravity-stiffness matrix can be obtained by

merely adding the element stiffness coefficients appropriately; it is

expressed as

[k ]
sg e

(3.67)
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Thus. the gravitational energy associated with the upward

motion of the suspended structure. for the as semblage. may be

given as

(3.68)

in which [KSGJ is a symmetric. positive-definite and banded·matrix.

c. Elastic-stiffness matrix of the cables

Recalling the expression for the strain energy of the cables,

Eq. 3.15. and using Eq. 3.36 (the expression for H(t)), yields

3EA[ f.. a)2 (* + *l·~· 2) p.. (2)~2]2+" c c !. Il( Wc dx. +wsi wcf Wc dx. +.!.Ilr~ Wc .
~ LE 2 ax. 1 2H 2y . 1 2 Lax. 2y
i= 1 0 1 W 0 COl c

(3. 69)

The second term of this equation. which is the energy of vibration

stored in the cables, is a very small quantity of higher order and may

be ignored; furthermore, the last term in the first set of brackets is

unimportant and may also be neglected. Therefore, the strain energy

of the cable reduce s to the linear form

(3. 70)

With the aid of the displacement model of the cable subelement

(Eq. 3.49). the energy expression (Eq. 3. 70) becomes
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3 Ni L

Vce(t) c ~ :L [:L 2 H wi ([f~); [q}J dX ]

i= 1 e= 1 a

+! ±[~i (~se)'h~ce) JL( [f); [qJ} dx]
i= 1 e= 1 e a

(3.71)

':<:
where w is the weight of the cable subelement per unit length, and

ce

[I'} is the vector of the slope of the cable model-displacement,
ce

expre s sed by

(3. 72)

Eq. 3. 71 may be expressed in more convenient terms as

N L
V (t) =.!. '" [[ }T (2 H i [£'} [£' }T dXce 2 L... q e w c e c e

e=l a

or

(3. 73)

N

Vce(t) = i L
e=l

N

[ q}T ([k 1 ] + [k 2] ) [q} = -2
1

'" [q}T [k ] [ q} ,
e c e c eeL.... e ce e e

e=l (3.74)

where [k ] is the element elastic-stiffness matrix of the cable;
ce e

again it consists of the sum of two matrice s, and can be evaluated, as

before, to give
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0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

2H 0 0 0 -1 C~ *) 2 0 0 11 0 w +w 0 0
[ k J =-.-::!!.. +

se ce
ce e L 0 0 0 0 0 0 6y 0 0 0 0 0 0e

0 0 0 0 0 0 0 0 0 0 0 0

0 0 -1 0 0 1 0 0 1 0 0 2

(3. 75)

Once more, note that zeros are used for the columns and the cor-

responding rows of the nodal-displacements of the suspended-

structure subelement, as the previous assumptions would indicate.

The assemblage elastic-stiffness matrix of the cables can now

be written as
N

[KCEJ = L: [kceJe
e=l

and consequently, the strain energy expression of the cables is

d. Gravity-stiffness matrix of the cables

(3. 76)

(3. 77)

The gravitational energy associated with the upward motion of

the cables (Eq. 3. 17) can be expressed, by using the cable displace-

ment-model (Eq. 3.49), as follows

3 N i

Vcg(t) =i L [ L
i= 1 e= 1

1
=2" (3. 78)
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N

L {q}T [k J {q}
e cg e e

e=l

Here, [k J is the element gravity-stiffness matrix of thecg e

cables; it can be obtained by using Eqs. 3.62, 3.64 and 3.78 and iis

given as

0 0 0 0 0 0

0 0 0 0 0 0

*w L 0 0 2 0 0 1
[k J = ce

(3. 79)6ycg e
e 0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 2

Superposing appropriately gives the assemblage gravity-stiffness

matrix of the cable s as

N

[KeGJ = 2: [kcgJe
e=l

(3. 80)

and, therefore, the gravitational energy expression of the cables

may be written as

III-4-3. Evaluation of inertia-property matrices

(3. 81)

In evaluating the mass matrices of the system, the kinetic

energy caused by the incidental vertical motion of the laterally
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vibrating suspension bridge (Eqs. 3. 26 and 3. 27) is neglected because

the upward deflections v and v are small quantities of higher orderc s

than the lateral displacements wand w
c s

a. Consistent-mass matrix of the suspended structure

The kinetic energy expression (Eq. 3.23) of the suspended

structure due to lateral displacement, with the aid of the suspended-

structure displacement model (Eq. 3.45), gives

(3. 82)

where
:.;:

m
se

is the mas s of the suspended- structure subelement per

unit length.

element.

In this case m se is assumed uniform along the individual

Eq. 3. 82 may also be written in the form

3 Ni

Ts(t) c ~ 1: [1: [Cd;; [rn s]. lq}e ]

i= 1 e=l

where [m ] is the consistent-mass matrix of the suspendeds e

structure subelement and is defined by

L

[ m ] =;;; i [f} [f}T dx
sese s e s e

o

(3.83)

(' 3. 84)

Upon carrying out the necessary vector multiplications and

integrations, this matrix becomes



-282-

156 -22L 0 54 13L 0

-22L 4L2
0 -13L _3L2

0
oJ,
'.'

0m L 0 0 0 0 0
[m ] se

(3. 85)=s e 420
54 -13L 0 156 22L 0

13L -3L 0 22L 4L
2

0

0 0 0 0 0 0

Thus, the assemblage consistent-mass matrix of the suspended

structure is

[m ]
s e (3. 86)

and, the kinetic energy expression (Eq. 3.83) becomes

b. Mass matrix of the cable

(3. 87)

The kinetic energy expre ssion (Eq. 3.22) of the cable due to

lateral displacement, can now be expressed conveniently, in terms

of the stiffness matrix, as

3 N i L

Te(t) = ~ L [L ';;eei ([£eJ; [<iJJ([ieJ; mel dX]
i=l e=l 0

where

(3. 88)
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L," I T[m ] = n; [£ } [£} dx
c e ce c e c e

o

is the element-mass matrix of the cable structure, and

mass of the cable subelement per unit length.

*m ce

(3. 89)

is the

The element-mass matrix resulting from Eg. 3.89, when the

results of Egs. 3.62 and 3.64 are used, may be expressed by

0 0 0 0 0 0

0 0 0 0 0 0
,',
'I'

L 0 0 2 0 0 1m
[m ] = ce (3. 90)

c e 6
0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 2

Finally, the assemblage mass matrix of the cables is

N

[M ] =~ [m ]
c L.J c e

e=l

and the kinetic energy of the as semblage is given by

(3. 91)

III-4-4. Variational formulation of the matrix equations of motion

Inserting the different energy expressions: Egs. 3. 56, 3.68,

3.77, 3.81, 3.87 and 3.91 into Hamilton's Principle, and performing
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the variations and the integration by parts, one obtains the following

Due to the arbitrary nature of the variations in nodal displace

ment, [or}, the expression in square brackets must vanish.

Therefore, the equations of motion for the gross assemblage has

the form

The se are the governing differential equations for the problem

of lateral vibrations of suspension bridge structure s.

The matrix equations of motion for the free, lateral undamped

vibrations of the suspension bridge can be conveniently written as

where

and

[M] [r} + [KJ [r} = 0 (3.93)

(3. 93 -a)

(3. 93-b)

are the mass and stiffness matrices, respectively, for the complete

system; they are positive definite, symmetric, and banded matrices.

Again, by writing the solutions of Eq. 3.93 in the well-known

form

i = \,tCl (3. 94)

the eigenproblem, identical in form to those given in Chapters I and II,



-285-

appears as

(3. 95)

:>~

Here W is the natural circular frequency of free vibration. and [r}

is the vector of the displacement amplitudes.

Multiplying throughout by [Mr 1 • one has the more standard

representation

(3. 96)

If the matrices [M] and [K] are nXn matrices corresponding

to n degrees of freedom, then there will be n eigenvalues (w
2

) and
n

n corresponding eigenvectors ([;n}) satisfying Eq. 3. 95; the above-

mentioned eigenvectors will not necessarily be distinct from one

another.

III-4-5. Numerical example

A numerical example is presented to demonstrate the effective-

nes s of the analysis developed in this chapter. In this example. the

finite-element results are compared with those obtained by an approxi-

mate method of analysis (i. e .• one based on deriving the frequency

equations). In general. the numerical example is presented not only

in order to illustrate the satisfactory agreement of the results but

also to delineate some characteristic s of the dynamic behavior of

laterally vibrating suspension bridges.

Computations using data from the San Pedro-Terminal Island

Suspension Bridge provide the basis for this example. Lateral vibra-

tions of the center span cable and suspended structure are
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investigated. In this illustrative example, the lateral displacements

of the cable segments and the ends of the suspended structure are

taken to be zero.

The structural properties used in this example are:

I
s2

= 293, 000 in~ft~

E s2 = 29, 000 Kip/in~

H = 6,750 Kips/cable.
w

~~

w = 1.. 042 Kip/ft. per bridge.
c

~:t:

ws2 = 6. 152 Kip/ft. per bridge.

The span was subdivided into N2 =24 elements. as shown in

Figs. III-2-a and b, and the length of each element L is 62. 5 ft.

There are (2 N
2

+2) nodes, starting with node I at the left support

of the suspended structure and ending with node (2 NZ+2) at the top

of the right tower. There are (3 N2 - 1) degrees of freedom for the

complete structure, with the numbering system shown in Fig. III-2.

The eigenvalue problem (Eq. 3.95 or 3.96) was solved on the

Caltech digital computer (IBM 370/158 system). Some of the computed

natural periods and frequencies are presented, for the symmetric and

antisymmetric vibrations, in Tables ill-I and ill-2, respectively, and

the corresponding mode-shapes are shown in Figs. III-3, ill-4 and

III-5. It can be seen in these figures that:

1. In the lower modes there is a coupled motion between the

cable s and the suspended structure, while in the higher mode s

the two systems vibrate in a prescribed manner.
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2. The first two symmetric (and antisymmetric) modes have a

similar configuration except for the fact that in the first mode

the cable and the suspended structure are moving in phase,

while in the second mode they are moving 1800 out of phase.

Furthermore, the effect of short suspenders at the mid-span

is clear in the second mode from the depression or dip in the

middle region.

3. In most of the coupled modes (such as the 5
th

symmetric and

the 6th antisymmetric mode s) the nodal points of the cable and

those of the suspended structure do not coincide.

4. In the higher modes, where the two systems vibrate in a

prescribed manner, the cable frequencies are smaller than

those of the suspended structure even when the respective

mode configurations are the same; see mode 6 (for the cable)

and mode 16 (for the suspended structure).

The distribution of the various energies stored in the cable and

in the suspended structure, for both symmetric and antisymmetric

vibrations, is illustrated in Figs. 1II-6 and 1II-7. As presented in

Fig. III-6 -a, the relative contribution of the kinetic energy of the

suspended structure is greatest in the first mode (about 90% of the

total kinetic energy, while the contribution of the cables is about 10%);

the opposite is true for the second symmetric mode. Subsequently,

the kinetic energy corne s entirely from either the cable or from the

suspended structure, depending on which is dominant. The potential

energy of the complete system in the first mode is 70% strain energy
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of the suspended structure, 15% strain energy of the cable and 15%

gravitational energy of the suspended structure. The contribution

of this gravitational energy is greatest in the second syITunetric mode.

In Fig. ill-6 -b, the relative contribution from the kinetic energy of

the cable is shown to be the same as that from the kinetic energy of

the bridge deck in the first and second antisyrnmetric modes. In

general, the relative contribution from the strain energy (of both the

suspended structure and the cable) increases in the higher modes

until it provides almost all of the potential energy of the structure;

the principle effect of gravitational energy is confined to the first few

modes of the suspended structure vibration. Contribution from the

gravitational energy of the cable is extremely small throughout.

Now, by considering the two linear differential equations of

I
motion (Eqs. 3.43 and 3.44), by assuming sine mode shapes and by

using the orthogonality property of the modes, the frequency equations

can be obtained. Appendix III-a contains a detailed derivation of these

frequency equations. The roots of each frequency equation (i. e., the

natural frequencies) reflect both the in-phase vibration of the cable

and suspended structure systems and the vibration when the systems

oare 180 out of phase. The first few frequencies and some of their

corresponding modes are shown in Tables ill-3 and ill-4 and in

Fig. ill-S. In these tables, a comparison between the finite-element

solutions and the approximate results is included. There is a close

agreement between the frequencies of the finite-element solution and

those of the frequency-equations soluiion. It will be noted that some
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of the assumed "sine" mode-shapes do not agree with those of the

finite-element solutions; for instance: a) the second assumed "sine"

symmetric mode (Fig. III-B) does not show the effect of the short

suspenders in the mid-span. b) in the fifth assumed "sine" symmetric

mode, the two systems have the same number of nodal points. as was

assumed in a prerequisite to deriving the frequency equation (this is

also true in the sixth antisymmetric mode), c) the first assumed

II sine i1 anti symmetric mode is completely different from the finite

element solution, and finally d) the coupling between the two systems

has disappeared in some modes of the approximate solution.
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1II-5. Appendices

Appendix III-a

An Approximate Solution for the Equations of Motion

The two linear differential equations of motion (Eqs. 3.43 and

3.44) recalled from section ill-3 of this chapter, are

2
a w ,I, (W -w ) "< ,'- w

2 H -2
c

- ;;;. h( ) c + 2 (~ . +;;;) (c) =
W n sJ X. sJ c Y x.

uXj J c J

j = 1, 2, 3 ,

o ,

(III-a-l)

and

h(x.) = hT-y (x.).
J c J

,I, (W -w )'.' s c
+ W sj h(x.)

J

j = 1, 2, 3 ,

(III-a-2)j = 1, 2, 3 ,= 0

and

a4 w
s+ E . I. 4

sJ sJ ax.
J

4f.
Y (x.) =T x.(i. - x.)
c J i J J J

j

where

with h
T

being the height of the suspender close to the tower.

These equations cannot be solved in closed form; however, one

can approximate their eigenfunctions and find the corresponding

eigenvalues.

First, define a normal mode vibration as one in which each

system (cable and suspended structure) undergoes harmonic motion

of the same frequency. For each motion one can write

,.., iwt
w (x.,t) = w (x.) e

c J c J

,.., iwt
w (x., t) = w (x.) e

s J s J

j = I, 2, 3 , (III-a-3)
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where W is the natural circular frequency and i = y':T .

Substituting these into the two differential equations,

multiplying the first equation (Ill-a-l) by y. (x.) h(x.) and the
c J J

second equation (III-a-2) by h(x.) and rearranging the terms, gives
J

d
2

; [.. (., ..) ]c ,.< . ~..... "'.(. /"fIJ

2 H h(x.) y. (x.) --2 - w. y. (x.) + 2 w + w. h(x. ) w
w J c J dx. sJ c J . c sJ J c

J

and

'~2 /"'oJ >:< """-I+ m W h(x. ) y. (x.) w + w . y. (x.) W = 0
c J C J C sJ C J S

j = 1,2,3 (III-a-4)

d
4w

s
E . I . h(x.) -4-

sJ SJ J dx.
J

+ ~ .w -~ .W 2 h(x.); - ~ .; = 0
sJ S sJ J S sJ C

j = 1,2,3

(III-a-5 )

By letting wand w be two different eigenvalue S with the
n m

corresponding eigenfunctions ""nw
C

"'n ""mwand w
S C

"'mw , the
S

orthogonality conditions can be derived in the forms

Q.

iJ ",n ""m
h(x.) y. (x.) w w dx. = 0

J C J C C J
o

and

Q.

fJ "'n "'m
h(x.) w w dx. = 0

J S S J
o

Define wand w as
C S

j = 1, 2, 3 . (III-a-6 )

rv n7TX.
w (x.) = A sin---l

C J n Q.
J

n7Tx.
W(x.) = B sin---;-l

s J n x.
J

j= 1,2,3, n= 1,2,3,4, ...

(III-a-7)
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Substituting these into the ordinary differential equations
m'ITx.

sin --l. and using£.
J

the orthogonality conditions (Eq. III-a-6), give

n= 1,2,3'00'

where the coefficients a .. , i, j = 1,2, are given by
1J

(ill-a-8)

P...
+2 (: +: .)JJ h(x.)

c sJ J
o

2(n'ITx.~ .', 2JP..j 2G'lTX~sin --r dx. +m W h(x.) y. (x.) sin r dx.
. J cn JCJ . J
J 0 J

and

~~ Jp..
j

. 2(5~- W. SIn. n dx. =
SJ .t. J

o J

.'- .f.
'I' ..1

- wsj 2

( ~
4 11j \n 'IT x.) .f, i.._ n'IT . ----..l ,......1.

a 22 - E . I . -n- h(x.) sm n dx. -r- w. 2
SJ sJ .t. J ..1:.. J sJ

J 0 J

.f, 2 Jp..J, 2(n 'IT x.)'j' . --l.
- m . W h(x.) Sln n dx.

sJ n J .t. J
o J

The se coefficients can be evaluated by direct integrations.
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Equation III-a-8 is satisfied for any A and B if the
n n

following determinant is zero

= 0 . (ill-a-9)

Letting
2

W = A , the above determinant leads to the
n n

characteristic equation. The two roots of this equation, for each

value of n, reflect both the in-phase vibration of the cable and

suspended structure systems and the vibration when the systems are

o180 out of phase.

Finally, substituting these natural frequencies into Eq. III-a-8

enables one to find the ratio of the amplitudes A IB
n n

n= 1:2,3,4, ...
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CHAPTER IV

VIBRATION STUDIES AND TESTS OF THE

SAN PEDRO-TERMINAL ISLAND SUSPENSION BRIDGE

IV -1. Introduction

The need for extensive dynamic te sts of full size suspension

bridge structures has been apparent for many years. Although the only

certain way to determine the parameters of major interest in struc

tural dynamics problems, such as the frequencies, the modes of

vibration and the amount of energy dissipated by the structure, is by

testing actual structures, very few of these tests have been performed

[2,6,7,9, 10J. Knowledge of these properties is essential if one is to

understand and interpret with confidence the structural response of

suspension bridges to strong earthquake ground motion, to wind exci

tation and to moving vehicles on the bridge deck. Unfortunately, testing

complete or section models does not provide adequate information

[1,4, 8J. Te sts of actual suspension bridge structures have rarely been

possible due to the difficulty of making the necessary measurements of

dynamic structural response, and due to the lack of development of

appropriate instrumentation. In most of the previous trials, the field

measurements were made on wind excited vibrations, and the motions

usually observed were predominately vertical modes, whereas, the
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most hazardous wind induced vibrations are predominantly torsional

(see Refs. 2, 8). In severe wind induced vibrations, only one of the

lower modes is significantly excited, whereas during an earthquake,

many modes may contribute to the response and, therefore, measure

ments made to throw light on wind induced vibrations are usually not

adequate for studying earthquake induced vibrations.

Early observations of suspension bridge motions [1, 7J, excited

by wind or traffic, were inaccurate and incomplete. In tests recorded

before special modern instruments were developed and installed, the

period of vibration was estimated or was measured approximately by

using a pocket watch. Wave forms were noted and remembered accord

ing to the impression of the observer. In some instances, amplitudes

were estimated by sighting on bridge elements. At other times

sightings were taken with a transit which was located on rods attached

to the bridge. Using these methods, vibrations sufficient to be of

interest were observed [2J on the Golden Gate Bridge. For example,

an engineer who was involved in the construction of the bridge, later

recorded observations of the bridge motion during two storms, one on

February 9, 1938, some eight months after the bridge was opened to

traffic, and the other on February II, 1941. During the first storm,

the movements were evidently in a multi-noded vertical mode. No

evidence was given which would indicate lateral or torsional vibration.

The highest frequency observed, 0.33 to O. 5 c. p. s., corresponds to

Vincent's [2J subsequent computations for the six-noded vertical mode.

The computed loop length of the six-noded mode averages 600 ft. No
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other recorded observations describe movements having a frequency

as high or loops as short as these. The movements during the second

storm suggest the second symmetric vertical mode which has a com

puted period of 6.3 seconds.

The failure of the Tacoma Narrows Bridge in 1940 led to a close

scrutiny of all evidence of wind-forced vibration of suspension bridges

by engineers and scientists concerned with the problem [1, 9]. As a

result, a cooperative research project, between the Golden Gate Bridge

and Highway District and the Bureau of Public Roads, was created.

Under this agreement, instruments for measuring movements of a

bridge were developed, and several of them were installed on the Golden

Gate Bridge in 1942. Examples of these early instruments are the

anemometer and the accelerometer (see Ref. 2). The anemometer was

installed on the bridge to record the velocity and direction of the wind

vs. time. The accelerometer, also known as the Hall Recorder, had

two conical pendulums for measuring the two horizontal components of

motion as well as a mass on a helical spring for measuring the velocity

component. The spring suspension could be adjusted to record within

a considerable range of natural frequencie s, permitting the selection

of frequencies most favorable to the recording of the expected vibra

tions. The record was made by a stylus on smoked paper which was

fixed to a drum that was revolved in a spiral motion by clockwork.

Later this instrument was replaced by new types which were designed

to record only vertical vibration.

In the past, most of the data obtained from different records was

analyzed in the time domain. When the time scale of the record was
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selected, it was thought that one would only need to determine the

frequency over a few cycles with sufficient accuracy to obtain the

fundamental frequency, or at the most, the first few natural frequen

cies, in order to correlate the observations with theoretical calcula

tions of the frequencies of vibration. The scale was adequate for

these purposes and for identifying pure vertical or pure torsional

motion by noting which stations moved in phase and which moved in

opposite phase. However, subsequent experimental work [1,2, 8J

and theoretical analysis revealed that a truss-stiffened suspension

bridge might be expected to vibrate in coupled vertical a.nd torsional

motion at an altered frequency and with a distinctive phase difference

in the two motions. Evidence of such motion had existed in the records,

but the time scale had been too small to permit the determination of

phase differences.

In the late 1960' s and early 1970 1s, work was begun to study the

effect of natural winds on suspension bridge s. During this time

instrumentation was being developed for measuring all components of

the wind velocity at several locations along a suspension bridge. The

objective was to record the results in such a manner that they could be

analyzed by an electronic computer to produce data on the potential of

the wind for producing vibration, as well as on its potential for produc

ing static loading over areas of different sizes. In this regard, the

California Division of Highways installed instrumentation on most of

the state suspension bridges, including the San Pedro Bridge. One of

their reports shows that the bridge has a fundamental period of 4. 5

seconds in vertical vibration.
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In recent years a method for testing structures based on wind

and microtremor-induced vibrations has been developed. Although

the method has been in use for almost 40 years by the United State s

Coast and Geodetic Survey [7J to measure fundamental periods of

building structures, it was not until recently that this approach was

extended to higher modes (see Refs. 5 and 6) and also to different

structures (other than buildings).

Current studies in Earthquake Engineering and Structural

Dynamics, utilize the Fourier techniques which represent an important

tool for understanding and interpreting the frequency content of various

time signals. An ambient vibration test is only one of the examples in

which Fourier representations are widely used. Furthermore, with

the advance made in sensitive vibration-instruments, digital computers,

measuring techniques and data processing and analysis, it has become

possible to accurately obtain a wide band of natural frequencies of a

structure, to identify the different mode s and to study the other dynamic

characteristics such as damping and nonlinearity.

In 1971, under a contract with the Department of Transportation,

Federal Highway Administration, Bureau of Public Roads, and as a

part of their continuing program to improve the methodology for pre

dicting the aeroelastic behavior of suspension bridges, McLamore,

Hart and Stubbs [6J experimentally determined the natural frequencies,

damping and normal mode shapes of vibration for two American

suspension bridges - the Newport Bridge in Rhode Island, and the

William Preston Lane Memorial Bridge in Maryland. The bridges'
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responses to motion caused by traffic, wind, and other environmental

factors were measured using sensitive seismometers. The recorded

motions were analyzed using spectral techniques (a fast Fourier trans-

form computer program). The dynamical behavior of both bridges

included vertical, lateral and torsional vibrations. The study

revealed a total of 20 modes of different vibrational motion in the

frequency range 0 Hz-l Hz. No coupling between torsional and

vertical motion was observed.

In 1974 and 1975, as part of a project to conduct extensive

repairs to the deck of the Lions' Gate Suspension Bridge (Vancouver,

Canada), an aerodynamic investigation was undertaken which included

a full-scale aeroelastic model. To obtain some guidance in establishing

the dynamic parameters for the model tests and the design calculations,

measurements on the existing structure were carried out by Rainer

and Se1st [l0]. In determining the bridge's dynamic properties, they

followed exactly the same procedure as did McLamore, et a1. [6J,

discussed above. Ambient vibrations due to vehicular traffic as well

as forced vibrations due to a series of simulated impacts applied to the

bridge, were recorded. The data was analyzed using the Fourier

technique, and modal damping was computed using the log decrement
.

relationship. The measured frequencies ranged from 0 to 1 c. p. s.

Two methods were used to calculate the modal properties of the bridge:

a continuum model, where the solutions to the differential equations

describing the vibration problem were evaluated, and a lumped mass,

linear stiffness model, for which eigenmodes were found. Some

calculated modes and frequencies were in close agreement with the
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measured values, for the vertical and the lowest horizontal modes.

However, for the frequencies of the torsional modes, the calculated

values showed substantial difference s from the measured ones. Also,

in many cases, the measured frequencies corresponding to peak

amplitudes, lacked corresponding computed frequencies.

It is possible that other experimental work equal to or exceeding

the value of the abovementioned studies has been conducted; but no such

works are known to this investigator outside the present study.

Much effort has been made by the faculty and the graduate

students at the California Institute of Technology to establish a

measurement system for the dynamic response of full-scale civil

engineering structures. The system adopted for this investigation

has been used for many full- scale and reduced-scale studies of the

dynamic response of structures such as earth darns and buildings.

The technique most often used for the experimental determination of

natural frequencies of vibration of large structures involves measure

ment of the motion excited by wind or traffic by means of sensitive

instruments, and then analysis of that motion using Fourier n~ethods.

The present chapter is concerned primarily with experimental

dynamic studies which were performed on the Vincent-Thomas

Suspension Bridge between San Pedro and Terminal Island, California.

The detailed study of the experimental measurements is directed

toward three major objectives:

1. To check the accuracy and demonstrate the essential reliability

of the dynamic methods of analysis developed in Chapters I through

III of this the sis, by correlating the observed motion of the
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bridge with its computed frequencies of vibration.

2. To make a field trial of both the vibration instruments and

this complex suspension bridge structure.

3. To further the understanding of the dynamic properties of full

scale suspension bridge s, and to lay a foundation from which

later work can be developed.

The instrumentation used in the experiments is described,and

the main features of the structure itself are also presented. The

natural frequencies of the modes of vibration of the bridge were

accurately determined by measuring wind- and traffic -excited vibra

tions with a sensitive seismometer mounted at various locations on

the bridge. The Fourier amplitude spectrum of the recorded move

ments was computed and plotted. The measurements revealed a wide

band of natural frequencies. In addition, the results for the vertical

and torsional natural frequencies were correlated with the computed

frequencies. The results of the field measurements agreed very well

with the theoretical results which confirms the validity of the assump

tions that were made in the previous chapters.

The experience gained in making these measurements will be

valuable in planning future, more complete, measurements.
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IV -2. Description of the Bridge

The Vincent-Thomas Suspension Bridge, shown in Figs. IV -1 and

IV-3, was constructed in the early 1960 I S across the Main Channel of

the Los Angeles Harbor from San Pedro to Terminal Island. The

bridge was designed by the Bridge Department, Division of Highways,

Department of Public Works of the State of California. The bridge

superstructure consists of a 1500 ft. suspended center span, two

506.5 ft. suspended side spans, two 151. 5 ft. backstay (or approach)

spans, a 52 ft. wide roadway and two safety curbs. There are also

tower foundations,· anchorages, navigation land maintenance equipment,

a highway lighting system and other items and details necessary for

the proper functioning of the bridge. The approach spans consist of

simply supported welded-plate girders, which serve to bring the cable

down from the roadway grade to the anchorages below (see Fig. IV-2).

There are two 32 ft. splay spans contained within the anchorages which

serve to spread the cables into 20 separate parts and thereby distribute

the force in the cables throughout a large area of the anchorages. A

vertical sag of 150 ft. is provided for the cable at the center of the

main span. The supporting towers are vertical, and the suspended

portion of the structure, including the backstay and anchor spans, are

symmetrical about the center of the main span.

The suspended structure consists of two stiffening trusses, floor

beams and a lower wind bracing system of theK -trus s type shown in Fig.

IV-3. The suspended structure carrie s a four lane roadway 52 feet wide

and curbs and sidewalks 10 inches high and 2 feet, 3 -3 /8 inches wide (see

Fig. IV-4). The cables and the stiffening trusses are 59 feet, 2 inches
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Fig. IV-I. The San Pedro-Terminal Island Suspension Bridge.

Fig. IV-2. The anchorages and the approach spans.
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apart from center to center. The stiffening truss. from center to

center of the upper and lower chord members. is 15 feet deep. The

floor beams are trusses. The top edge of the roadway is 3 feet below

the top edge of the stiffening trusses. The bridge was designed with

bottom lateral and stringer ties in the trussed floor beam system to

develop torsional stiffness. The deck system for the suspended spans

consists of transverse rolled girders. which are 7 feet apart center to

center. and which are supported by the transverse top chords of the

floor truss. Lightweight concrete was utilized for the deck slabs on

both the approach and suspended spans. Reinforcement is conventional.

consisting of straight and truss transverse bars and of longitudinal top

and bottom bars on 12 inch centers.

The San Pedro and Terminal Island towers are supported on

steel piles penetrated to an average elevation of -75 feet at the

Terminal Island tower and to an average elevation of -135 feet at the

San Pedro tower (see Fig. IV-4). The towers are 335 feet high and

extend 360 feet above M. H. H. W. The main tower is made up of

3/4 inch steel plate. Each tower leg is anchored to the tower footing

by thirty nine 2-1/2 inch (in diameter) and 25 feet long prestressed

rods. There is a total of 5. 550 Kips of structural steel in the towers

and the tower bracings. The tower legs are made up of sections of

cruciform design (see Fig. IV-4); they consist of four welded box

sections. field bolted with 1 inch diameter high strength bolts. In

order for the towers to be vertical under ordinary conditions. the

horizontal force in the cables must be equal on each side of the towers.
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The cable in the suspended spans for this structure consists of

4028 cold drawn. galvanized. 6 gage steel wires providing 121. 5 square

inches of area including the galvanizing. The ultimate strength of the

wire was required to be 225. 000 psi providing a theoretical cable

strength of 27.337 Kips. The maximum design tension in the cable

at the towers was 9.620 Kips. This indicates a design safety factor

of about 3. The suspenders are made of small diameter. high strength

wires layed up into rope. The cable saddles are centered on the tower

legs. This causes the cable to spread at the tower tops where the

frictional resistance between the cable and the saddle is sufficient to

prevent the cable from slipping through the saddle.

Table IV-1 contains a summary of the structural properties of

the San Pedro Suspension Bridge.
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TABLE IV-l

Structural Properties of the San Pedro Suspension Bridge

Parameter De sc ription
Center
Span

Side
Span

Weight
(Kip/ft. )

Modulus of
Elasticity

(Kip/in2 )

Forces
(Kips)

Bridge Floor

Curb, bracket and armour
Grating and railing
Lightweight concrete
Reinforcement steel
Stringers and bracings
Floor truss, wind shoes and

inspection walk

Stiffening Trus s

Top chords
Bottom chords
Gusset plates, splices, etc.
Webs
Posts
Struts, rivets, bolts, etc.

Lateral System

Cable

Cables
Suspenders

TOTAL DEAD WEIGHT

Suspended structure
Cable
Tower
Shear modulus of suspended

structure

Cable
One chord of stiffening truss

(average)
Diagonal in stiffening truss

(average)
Diagonal in lateral system

(average)

Horizontal component of
cable tension

0.203
0.199
2.592
0.173
0.682

0.613

O. 315
0.302
O. 124
O. 142
0.053
0.007

o. 159

1.025
0.054

7.177

29,000
27, 000
30,000

11,600

121.50

53.78 55.56

16. 90

16.58

6,750
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Structural Properties of the San Pedro Suspension Bridge (Continued)

Parameter

Moment
of

Inertia

(in~ft~)

Description

Vertical moment of inertia of
stiffening trus s

Lateral moment of inertia of
chords

Lateral moment of inertia of
slab

Lateral moment of inertia of
stringers

Lateral moment of inertia of
suspended structure

Center
Span

6,050

188,500

105, 000

290

293,800

Side
Span

6,250

Cable
Properties

(ft. )

Sag
Virtual length

Virtual length

L . , i =: 1, 2, 3
el

LE

150 17.103
1,620 920

3,460

Tower
Properties

Longitudinal stiffne s s (Kip/ft.)
(Force applied at tower top
for unit deflection)

Torsional stiffness (Kip/ft. )
(Forces applied at tower top;
tower legs move in opposite

direction)
Dead weight per leg (Kips)
Vertical reaction from

cable (Kips) 2
Area at base (in. )

Area at top (in~)
Height (ft. )
Longitudinal mornent of inertia

(average) (in~ft~)

26.3330

235.4323

2, 700

6,400
I, 022

572
335

10,000
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IV -3. Dynamic Characteristics of the Bridge

The computed dynamic characteristics of the torsional and lateral

vibrations of the San Pedro Suspension Bridge have been presented in

the numerical examples of Chapters II and III. These characteristics

included the natural frequencies, the corresponding modes of vibra

tions, and the distribution of the energies accumulated in the various

members of the structure, for both the symmetric and antisymmetric

cases. The dynamic characteristics of the vertical vibration of the

bridge are presented in this section. The computation of the natural

frequencies, modes of vibration, and the energy storage capacity of

the various members of the San Pedro Suspension Bridge have been

calculated by the method of analysis developed in Chapter 1. The

procedure for the discretization of the suspended structure into finite

elements is the same as that used in the numerical example of the

torsional analysis in Chapter II. The number of elements in each tower

leg was taken to be 10. The structural properties necessary for the

vertical vibration study were taken from Table IV-1.

The eigenvalue problems (Eqs. I-IOO-a and b) were solved by

means of the Caltech digital computer. Some of the computed natural

periods and frequencies, and the dominant vibrating portion cor

responding to each frequency, are shown in Tables IV-2 and IV-3 for

the symmetric and antisymmetric cases, respectively, and the cor

responding mode-shapes are shown in Figso IV-5 and IV-60 By con

sidering these figures, the following observations may be made:
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1. As seen before, vibration modes of the bridge structure can

be separated into two groups having different characteristic s.

In one group, the displacements of the stiffening truss are

predominant, and in the other group, the displacements of

the towers are predominant.

2. Based on (1), investigation of the energy accumulated in the

different members of the suspension bridge may require

separation of the energies into two groups. Fig. IV-7,

represents the energy storage capacity of the cables and the

stiffening truss together, while Fig. IV-8 shows the energy

storage capacity of the towers for different modes.

3. As seen from Fig. IV-5, in the lowest four modes the center

span and side spans vibrate together, while in the higher modes

the center and side spans vibrate separately.

Other features can be easily extracted from these figures, as have

been shown previously in the various numerical examples of

Chapters I and II.

Finally, the modes of vertical motion and their corresponding

natural periods, which were computed by the Bridge Department of

the State of California, are shown in Fig. IV -9. Despite the omission

of certain modes, these results are in close agreement with the

frequencies (as well as the modes, if the tower is excluded) of the

finite-element solution.
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Fig. IV-5. Symmetric modes of vertical vibration of the
San Pedro-Terminal Island Suspension Bridge.
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Fig. IV -6. Antisymmetric modes of vertical vibration of the
San Pedro-Terminal Island Suspension Bridge.
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SAN-PEDRO-TERMI NAL ISLAND SUSPENSION BRIDGE

SYMMETRIC MODES OF VERTICAL VI BRATION

S. MODE I

S. MODE 2

S. MODE 3

I I wI = 1.39 rod/sec I I

l~~ v:=>-l T1 '4.52 sec
I I I I
I I I I
I I W2 = 2.21 rod / sec I I

: k::=:> ~ 1_
1<:::::::71 ""'=7 I~I T2 -2.84 sec
I I I I
I I I I
I I I I
I I w3 =2.89 rOd/sec I I

~~QT3'2.17SeC
I I I I

A-S. MODE I

A-S. MODE 2

ANTI-SYMMETRIC MODES OF VERTICAL VIBRATION

I WI =1.25rOd/~1 I
""1~~1 I TI = 5.02 sec
I~ I I

I ::
I I I

I IW2=2.08rod/sec I~~
'........... /1 I~ 12 = 3.02 sec
I~I I I
I I I I

I : w3 =3.49 rod/sec : :
I I /"'\. c:\ I I

A-S. MODE 3 I ~\J '\. /' I T3 = 1.80 sec
I I '-.../ "-.-/ I I

VERTICAL MODES OF VIBRATION COMPUTED BY THE STATE
OF CALIFORNIA BRIDGE DEPARTMENT

Fig. IV-9
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IV-4. Measuring the Natural Frequencies of the Bridge

Ambient vibration testing of the San Pedro Suspension Bridge

excited by traffic motions is discussed in the following section, with

determination of the natural frequencies of possible vertical and

torsional modes of vibrations in mind. Information is given also on

modern methods of making ambient test measurements based on

magnetic tape recording and electronic analog-digital conversion. A

complete description of the instruments used in the experiment may

be found inReference [SJ,buta summary of their salient features is

provided here.

IV-4-1. Description of the measuring experiment

The measurements of the natural frequencies of the San Pedro

Suspension Bridge were carried out with the following instruments.

1. Kinemetrics (SS-l Short-Period) Ranger Seismometer

Two seismometers were used at different locations, to measure

vertical motions of the bridge. No strong wind occurred during the

measurements, and the only significant vibrations recorded were

caused by the traffic. The SS-l Ranger Seismometer is a short

period seismometer usable for portable and fixed station seismological

purposes, and is a versatile, sensitive vibration sensor for structural

dynamics applications. Mechanically, the Ranger is a J'moving coil

type ll (velocity) transducer, adaptable for either vertical or horizontal

operation in the field. Its sensitivity (290 v Iml sec. for 5 000 ohm

coil), and size make it suitable as a sensor for ambient vibration
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measurements of buildings, dams, bridges, foundations, or offshore

platforms. The natural period of the seismometer is close to one

second. Damping is adjusted by the choice of appropriate resistance

in the coil and external circuits. During this experiment, the damp

ing was set at O. 7 of the critical value.

2. Earth Science s SC -1 Signal Conditioner

The signal conditioner is a wide band, low noise amplifier

system, designed with filters for use in low level structural vibration

and microseismic measurements. Four input channels, each having

its own attenuator and adjustable low-pas s filter, provide isolated

circuitry for a normal, integrated, and/or differentiated output signal

(i. e., velocity, displacement, and/or acceleration output using a

velocity sensor). All outputs are simultaneously or independently

available for recording. The output can be recorded on magnetic

tape and/or on a strip-chart recorder. In this experiment, the con

ditioner was used to amplify and simultaneously control two outputs

from the ranger seismometers. The power for this instrument was

provided by an A. C. power source in the tower leg.

3. Magnetic Tape Recorder (Model 3960 Hewlett-Packard)

The amplified signal, i. e., the voltage proportional to the

relative velocity of the seismic mass of the seismometer, is recorded

on low noise magnetic tape. It has a separate eight track magnetic

tape reel. The electrical output of the recorder can be digitized for

computer processing by means of an analog-digital converter.
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4. Mark 220 Brush Recorder

To enable immediate visual inspection of the vibrations during

each measurement, the signals from both seismometers, via the

signal conditioner, were simultaneously recorded on a strip-chart

Brush Recorder having two channels. This was necessary to insure

that the signal was within the limits of operation of the magnetic tape

recorder and the analog-digital computer.

S. Electronic Analog-Digital Converter (Model DDS-ll03 Kinemetrics)

The DDS-ll 03 Digital Data Acquisition System is an accurate

means of converting analog data from the magnetic tape recorder to

digital format on computer compatible digital magnetic tape. At

pre sent, it is wired to handle 1 to 8 input channels. The dynamic

range of the system is approximately 72 db.

IV -4-2. Measuring procedures

In the past, wind has been the usual source of excitation for

suspension bridges. However, traffic excitation [6, 10J of such

flexible structures can induce vibrations large enough to yield informa

tion about the structural behavior which would be very difficult to

obtain in any other way, except during severe winds or strong earth

quakes.

The experiments carried out on the San Pedro Suspension Bridge,

described in Section IV -2, were performed under traffic excited rnotion

with the principal purpose of finding the natural frequencies of the

bridge. Most ambient vibration tests [S, 7J assume that the structure

under consideration can be approximated by a damped, linear, discrete
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or continuous system. In the experimental study of the bridge vibra

tion, it was assumed that the resulting motions would be expressed

as the superposition of modes associated with discrete frequencies.

It may be mentioned here that for the measurement of traffic induced

vibrations, it is not necessary to calibrate all the seismometers used

so that they give the same amplitudes when excited by the same

motion. It is also not necessary to know the absolute values of the

amplitude s that are recorded, because the frequencie s are the only

concern; even if the mode shapes are required, the relative amplitudes

of the recorded motions is sufficient.

The conditions under which the te sts were made were far from

ideal, and installing the instruments involved difficult maneuvering.

The time schedule for the installation, operation, and recording was

very limited by the need to reopen the one closed lane of traffic prior

to rush hour, and by other maintenance activities in the area. Only

approximately four hours were available for completion of the tests.

Additional difficulties were caused by the repainting of the bridge, being

done at that time (mid-November, 1975).

The measurements of the bridge frequencies were conducted

using the following procedures. The recording instruments, consisting

of the Brush Recorder, the signal conditioner and the magnetic tape

recorder as shown in Fig. IV -11, were placed on a platform located

at the juncture of the tower and the lower wind bracing of the suspended

structure. This platform is generally used to provide access to the

inspection walk shown in Fig. IV -12. The two seismometers were

fir st placed on the centerline of the lower wind bracing of the center
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Fig. IV -10. Location of ranger seismometer on the lower

Fig. IV-II. The recording instruments.
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TABLE IV-4

Sequence of Tests to Determine Natural Frequencies

of the San Pedro Suspension Bridge

Instrument Locations and Recorded Motions During 8 Tests

Recorded Location on the Bridge
No. Test

Motion
Point Cross Section Span

1 A-I Di s placement
A Center line of the Bridge Center

2 A-2 Velocity

3 B-1 Displacement
B Center line of the Trus s Center

4 B-2 Velocity

5 C-l Displacement
C Center line of the Bridge Side

6 C-2 Velocity

7 D-l Displacement
D Center line of the Truss Side

8 D-2 Velocity
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span (i. e., at location A) as shown in Fig. IV -10, and the vertical

motion at this location was recorded for about 4 minutes per run.

(The recording was begun after several minutes of monitoring the

Brush Recorder display during which fine adjustments were made to

obtain identical output from the two seismometers.) Then the two

seismometers were placed on the centerline of the bottom chord of

the stiffening truss (i. e., at location B) in the same cross section of

the bridge (see Fig. IV -12). At this location vertical motion was

also recorded after all necessary adjustments were made.

These procedures were repeated for the side spans at locations

C and D. Fig. IV -12 shows the locations of the Ranger seismometers

on both the cross section and the elevation of the bridge; Table IV-4

also shows these locations and the type of the recorded motions during

eight te sts. It may be mentioned that the se particular locations (A, B,

C and D) were selected because they provided safety screenS which had

been installed for use in repainting the bridge. For each location, two

simultaneous displacement recordings were made lasting between 2 and

5 minutes in each run; then two simultaneous velocity recordings were

made at the same location. Actually, one seismometer would have

been adequate for each location, but two recordings were made to

verify the results. The seismometers were both connected to the

recording instruments by means of various electrical cables which

ran along the inspection walk. The recording instruments, as well as

the two seismometers, were adjusted at the location, and the various

motions of the bridge were displayed on the two-channel Brush



-338-

Recorder. All of the instruments functioned satisfactorily throughout

the tests.

IV -4-3. Data analysis

The following procedures were used in conducting data process

ing analysis of the experimental records.

1. The recorded data were converted to digital form ona magnetic

tape compatible with the digital computer to be used, and 50

discrete points per second were generated for each analog

record.

2. These original records were filtered with a Kronhite analog

low-pass filter to remove any aliasing effects in the computed

spectrum. Since all frequencies in the records that could be

used in comparing the computed and measured frequencies lie

well below 20 c. p. s., it was decided to use this limit for the

filtering.

3. It was decided that 50 points per second would be appropriate

for data processing because this would give a Nyquist frequency

of 25 c. p. s., which is well above all the frequencies being con

sidered. A typical record consists of 8192 points (2N equispaced

samples with N= 4096 points) or 163.84 seconds. A typical set

of records of the first 150 seconds at locations A, C and D is

shown in Figs. IV-13, 14, and 15. In these figures, the scale

of the vertical axis is proportional to the transducer voltage

after the filtration.
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4. The Fourier amplitude spectrum for each record of 163.84

seconds was obtained by using the Cooley and Tukey algorithm

(the subroutine is available from the Caltech computer program

library). This algorithm requires 2 N equally spaced data,

where N= 2M = 4096 points. and M is an integer (M = 12 in this

case).

The distribution of the Fourier amplitude spectra versus the

distribution of the frequencies (from all 8 tests listed in

Table IV -3) was plotted. for up to 10 c. p. s., as shown in

Fig. IV -16 through Fig. IV-19. The natural frequencies of

vibration were determined by considering the distribution of

all peaks in the Fourier spectra for the 8 te sts.
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IV-5. Comparison Between the Computed and the Measured Freguencies

To measure the natural frequencies of the vertical modes of the

bridge, the two seismometers were placed near the centerline of the

lower wind bracing (Locations A andC). By locating them elsewhere

than the center of torsion of the bridge cross section, the vertical

motion of that location, which accompanied the torsional vibration of

the cross section, was recorded. To obtain more information about

the torsional frequencies, the two seismometers were then placed on

the center of the bottom chord of the stiffening truss.

Because the possible sites for measurement were limited, it

is conceivable that some existing modes were not recorded, if the

locations chosen coincided with the nodes of those :modes.

The natural frequencies were obtained from the recorded data

in two ways.

1. The frequencies corresponding to the spectral peaks of each

test were determined and were listed in Tables IV-5 and IV-6

in ascending frequency order (lowest frequency first), along with

both the expected vertical and torsional mode s for each location

and their computed frequencies. To select the frequencies at

which the peaks occurred, all of the discrete values of the

Fourier amplitude spectrum (the vertical ordinate s) were listed

opposite their corresponding frequencies (the horizontal values)

by using a computer program. The frequencies at which the

values peaked were then easily determined.

2. The discrete computed natural frequencies expected for each

location (or record) were plotted (and the corresponding numbers
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of the modes of vibrations were indicated) on Fourier spectra

as seen in Figs. IV -16 through IV -19.

In general, the frequencies corresponding to the peaks in a

typical Fourier amplitude spectrum agree closely with the computed

values given in Tables IV -5 and IV-6. Actually, the measured

frequencies are either the same as or higher than those computed,

and the measured and computed frequencies of the first few modes

(for instance, from 1 to 6) are a1m.ost identical.

For the center span, in Figs. IV-l6 and IV-17 and in Table IV-5,

there are two peaks corre sponding to frequencie s of about O. 71 and

4.64 c. p. s. It is possible that these frequencies correspond to the

vertical aspect of the lateral modes of frequencies 0.65 and 5.31 c. p. s.

(i. e., modes 2 and 13 in Table Iil-2). In these lateral modes, there is

an upward motion incidental to the lateral vibration. It is also possible

that the peaks repre sent the coupling between two different motions,

vertical and torsional or lateral and torsional. The analyses in this

thesis does not consider the coupled horizontal-torsional motion or

vertical-torsional motion because, as indicated previously, the

resulting calculations are prohibitively intricate. For the side span,

in Figs. IV-18 and IV -19 and in Table IV -6, there are two dominant

peaks corresponding to frequencie s of about 2. 1 and 5. 8 c. p. s. These

two frequencies do not correlate with any of the computed vertical or

torsional natural frequencie s of the side spans. It is possible that

these frequencies may also correspond to the coupling of different motions.

Figs. IV-20 and IV-21, repre sent a breakdown of the re suIts pre-

sented in Tables IV-5 and IV-6 and also in Figs. IV-16 through IV-19;
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the torsional or vertical vibrations, symmetric and antisymmetric are

shown individually. Again, the calculated frequencies, joined by the

solid line, are in close agreement with the measured frequencies.

It often happens that two vertical modes, two torsional modes

or a vertical and a torsional mode are at nearly the same frequency,

and the problem of separating the modes may be troublesome.

Examples of these modes having very close frequencies are:

S-V-3 and AS-V-2S-V-2

S-V-9 and S-V-lO

AS - V -13 and AS - T -1

AS-V-13 and AS-T-8

a) for the center span

S-V-2 and S-V-3

S-V-4 and S-V-1

AS- V-7 and S-T-5 .

b) for the side. span

S-V-2 and S- V-3

S-V-4 and S-T-l S-T-2 and S-T-3

S-V-7 and S-T-4 , S-V-9 , S-V-10 , AS-V-8, S-T-6 and

AS-T-4 .

Here "s" and "AS" indicate Ilsymmetric" or "antisymmetric, II

while "VII and "TIl indicate "vertical" or "torsional" vibration.

To identify the different modes of vibration more effectively in

future experimental work, the following recommendations are made:

1. Torsional modes of vibration can be recovered by placing two

seismometers on the same cross section of the bridge, on the

centerline of both stiffening trusses, and simultaneously

recording their vertical motions. By then subtracting their

outputs, one should recover the torsional motions. Vertical
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modes can be isolated similarly by summing the outputs.

2. To obtain more information about torsional modes and, at

the same time, to identify the pure lateral modes, two

seismometers should be placed in the same cross section,

one at each centerline of the top and bottom chords of one

stiffening truss to simultaneously record their lateral motions.

Summing their outputs will give information about the purely

lateral vibration while subtracting their outputs will provide

data on purely torsional vibration.

Thus, two seismometers recording vertical motions are needed

on the same cross section to distinctly determine both the vertical and

the torsional frequencies, while two seismometers recording lateral

motions are needed to distinguish torsional and lateral mode s of

vibrations.

Finally, it may be interesting to note that in Figs. IV-16 through

IV-19 the recorded displacements and velocities did not have large

spectral amplitudes above approximately 5 c. p. s. ; this give s a limit

above which structural motion is practically indistinguishable from

other recorded noise. One source of noise causing distortion of the

higher modes could be the impact of vehicles crossing expansion and

structural joints of the bridge. (This impact was clearly heard and

felt while the experiments were being conducted.) The equipment used

to repaint the bridge was also a possible source of noise. In general,

however, this method of structural testing, based on traffic induced

vibrations, can give realistic estimates of the natural frequencies of

a wide variety of suspension bridge structures.
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From the Earthquake Engineering and StructuralDynamics point

of view, the proper location of permanent instrumentation to record

strong ground motion, on and in the vicinity of suspension bridge s, is

an important question. Proper placement will yield information about

the response of the bridge, the nature of different modes of vibration

and the coupling of those modes. Information indicating the effects of

soil- bridge- soil interaction and, possibly. the damping of the

structure as well as the phase differences in the motions of the piers

and anchorages may also be obtained.

The following are suggestions for appropriate locations of the

instruments; it should be noted that these suggestions assume an

ideal set of circumstances and, thus, do not consider any economic

limitations.

1. A set of three instruments, located on any given cross section

of the suspended structure, between the mid-point and the point

of support of the span, should be placed on the center span and

one of the side spans. Each set would include one instrument

on the centerline of the top chord of one of the suspended

structures and another instrument on the centerline of the

bottom chord. The third instrument would be located on either

the top or the bottom chord of the other suspended structure.

All of the instruments should be situated so as to record vertical

motions. horizontal motions in the longitudinal direction of the

bridge, and horizontal motions perpendicular to the bridge.

These records would help to identify the different modes of

vibrations.
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2. Two additional instruments should be used, one located at each

pier, in order to correlate the ground motions at the two sites

and to evaluate any phase difference s. These placements are

particularly important in bridges having very long spans.

3. Instruments should be located, also, at each of the supports of

the suspended structures on the tower legs; from these locations,

information may be obtained to evaluate the effect of the dif

ferential motion of the supports on. the movements and inter

action of the bridge spans, and thus on the mode shapes.

4. To study the soil-structure interaction, an instrument should

be located on each of the banks, in line with the piers of the

bridge, and below each end of the bridge deck.

5. Finally, although not essential, instruments located at each of

the tower tops and at each anchorage would be useful to evaluate

the motion of each of those locations.
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TEST A-I

A Symmetric Vertlcol FrequencIes

n Anti-symmetric Vertical F,equenclM

o SymmetrIc Torsional Frequencles

• Anti-symmetric'Torslonal Frequencies
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Fig. IV -16. Fourier amplitude spectrum of the (A-l) displacement
and (A-2) velocity recorded at location A.
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TEST B-1

~ Symmetric. Vertical Frequencies

o An11·symmetrlc Vertical Frequencies

Symmetric Torsional Frequencies

.. Anti-symmetric Torsional Frequencies
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TEST B-2

.1 Symmetric Vertical Frequencies

a An1i-symmetric Vertical Frequencies
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* Anti-symmetric Torsional Frequenc1es

Fig. IV-17. Fourier amplitude spectrum of the (B-1) displacement
and (B -2) velocity recorded at location B.
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TEST C- I
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TEST c- 2

~ Symmetric Vertical Frequencies

o Antl·symmelric Vertleal Frequencies

Symmetric Torsional Frequencies

* Anti-symmetric Tor,ional Frequencies

Fourier amplitude spectrum of the (C-I) displacement
and (C-2) velocity recorded at location C.
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TEST D-I

A Symmetric Vertical Fr.qu.ncl.1

o Anti-symmetric Vertlcol Frequencl.s
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TEST D- 2

A Symmetric Vertical Frequencies

o Anti-symmetric Vertical Frequencies

o Symmetric Tor~lonal Frequencies

• Anti-symmetric Torsional Frequencies

Fig. IV-19. Fourier amplitude spectrum of the (D-I) displacement
and (D-2) velocity recorded at location D.
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SAN f'£DRO-T£RMINAL ISLAND SUSPENSION BRIDGE

COMPARISON BETWEEN CALCULATED AND MEASURED FREQUENCIES

SYMMETRIC VERTICAL VIBRATION

8.-

EXPLANAT ION
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(b)
Comparison between calculated and measured
frequencies for vertical vibration (a) symmetric and
(b) antisymmetric.
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IV -6. Summary and Conclusions

1. The prime objective of this experimental study of the San Pedro

Suspension Bridge was to check the reliability of the dynamic

methods of analysis developed in Chapters I through III by com

paring the measured and computed frequencies.

2. The bridge 1 s response to motion caused mainly by traffic, as

well as by wind, and other environmental factors was measured

with sensitive seismometers. The recorded motion was analyzed

using Fourier techniques and a digital computer.

3. The experimental estimates of the natural frequencies of the

bridge revealed many modes of vertical and torsional vibrations

in the frequency range 0 c. p. s. - 5 c. p. s.

4. The close spacing of the different modes requires high resolution

spectrum analysis and consequently long recording sessions;

it also requires proper placement of the seismometers, as

indicated.

5. Further recommendations toward obtaining better results are

also indicated.

6. The natural frequencies measured showed reasonable agreement

with computed values for the vertical and torsional modes of

vibrations in the first few modes.
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SUMMARY AND CONCLUSIONS

The study develops a method of dynamic analysis for the free,

vertical, torsional and lateral vibrations of suspension bridges. The

method is based on the so-called linearized deflection theory, on the

finite element approach and on use of the digital computer. It

incorporates certain simplifying features and involves two distinct

steps:

I. Specification of the different potential and kinetic energies

of the vibrating members of the continuous structure,

leading to derivation, by Hamilton l s Principle, of the dif

ferential equations of motion and the associated boundary

conditions governing the vertical, torsional and lateral free

vibrations. Solutions of the linear differential equations for

torsional and lateral free vibrations are obtained; the

solutions for vertical vibration have not been derived as

they are well known.

2. Use of the finite element technique to:

a. discretize the structure into equivalent systems of

finite elements,

b. select the displacement model most closely approxi

mating the real case,

c. derive the element and assemblage stiffness and

inertia properties, and finally

d. form the matrix equations of motion and the

resulting eigenproblems.
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The evaluation of the stiffness and inertia properties of the

idealized structural element and assemblage is based on the expres

sion of the potential and kinetic energies of the element (or the

assemblage) in terms of nodal displacements.

Detailed numerical examples are presented to illustrate the

applicability and the effectiveness of the analysis and to investigate

the dynamic characteristics of a wide class of suspension bridges

with widely different properties. Furthermore, a rigorous com

parison with previous re suIts obtained by other investigators has

been made.

To further demonstrate the reliability of the analysis, the

natural frequencies and mode shapes of vibration of the Vincent

Thomas Suspension Bridge (between San Pedro and Terminal Island,

California) have been computed and compared with the measured

frequencies of the bridge. The experimental estimates of the natural

frequencies revealed many modes of vertical and torsional vibrations

in the frequency range 0 c. p. s. -5 c. p. s. The natural frequencies

measured showed excellent agreement with the computed values for

the vertical and torsional modes of vibration. Further recommenda

tions toward obtaining better results are also indicated.

This method constitutes an advance in the analysis of the

dynamics of suspension bridges, in that it eliminates the need to

solve transcendental frequency equations, simplifies the accurate

computation of both lower and higher modes of vibration, simplifies

the determination of the energy stored in different members of the
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suspension bridge, and represents from the engineering point of

view, a simple, fast and accurate tool for calculating the natural

frequencies and modes of vibration by means of a digital computer.


