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ABSTRACT

A method of dynamic analysis for vertical, torsional and
lateral free vibrations of suspension bridges has been developed
that is based on linearized theory and the finite-element approach.
The method involves two distinct steps: (1) specification of the
potential and kinetic energies of the vibrating members of the con-
tinuous structure, leading to derivation of the equations of motion
by Hamilton's Principle, (&) use of the finite-element technique to:
(a) discretize the structure into equivalent systems of finite
elements, (b) select the displacement model most closely approxi-
mating the real case, (c) cerive element and assemblage stiffness
and inertia properties, and finally {(d) form the matrix equations of
motion and the resulting e.genvalue problems. The stiffness and
inertia properties are evaluated by expressing the potential and
kinetic energies of the element (or the assemblage) in terms of
nodal displacements. Detailed numerical examples are presented
to illustrate the applicability and effectiveness of the analysis and
to investigate the dynamic characteristics of suspension bridges with
widely different properties. This method eliminates the need to
solve transcendental frequency equations, simplifies the determination
of the energy stored in different members of the bridge, and repre-
sents a simple, fast and accurate tool for calculating the natural
frequencies and modes of vibration by means of a digital computer.
The method is illustrated by calculating the modes and frequencies

of a bridge and comparing them with the measured frequencies.
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DYNAMIC ANALYSES OF SUSPENSION BRIDGE STRUCTURES

General Introduction

Throughout the history of suspension bridges, their tendency
to vibrate under different dynamic loads has been a matier of con-
cern which, in modern times, has led to several investigations into
their vibrational properties. As a prerequisite to the further inves-
tigation of aerodynamic stability, traffic impact, soil-structure
interaction and earthquake resistant design of suspension bridges, it
is necessary to know certain dynamic characteristics such as the
natural frequencies and the possible modes of motion during
vibration,

The natural, free vibrational modes of a suspension bridge may
be classified as wvertical, torsional and lateral, as shown in Fig.
A-1. In pure vertical modes of vibration, all points on a given cross
section of the bridge move the same amount in only the vertical
direction, and they remain in phase (see Fig. A-l-a), In pure
torsional modes, each cross section of the bridge rotates about an
axis which is parallel to the longitudinal axis of the bridge and which
is in the same vertical plane as the centerline of the bridge. Cor-
responding points on opposite sides of the centerline of the roadway
attain equal displacements, but in opposite directions, as shown in
Fig. A-1-b. In pure laterzl motion, each cross section swings in a

pendular fashion in its own vertical plane, and, therefore, there is
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upward movement of the cables and of the suspended structure
incidental to their lateral movements, as shown in Fig. A-1l-c.

Problems in the dynarnic analysis of the free vertical vibration
of suspension bridges have been investigated by many specialists
during the past few decades; the fundamental equations expressing
this type of free vibration were well understood many decades ago.
Much of the development which made these equations and their
solutions versatile in application, however, has taken place in the
wake of the collapse of the Tacoma Narrows Bridge in 1940. |
However, there have been few investigations into, and relatively
little work published on, the dynamic analysis of either torsional
or lateral vibration. Generally, in all past studies of the different
types of vibration, investigators have started with certain more or
less valid assumptions, have made a series of approximations in
varying degrees, and have attempted to develop equations and
formulas that would predict with fair precision the performance of
suspension bridges in free vibration. The relative value of these
equations and formulas lies in their reliability for such prediction
and, also, in their agreement with results obtained from experiments
with models and with full-scale structures. In tihis regard, most of
the complex formulas developed so far are not adequate beyond the
first few modes; this is either due to the type of assumptions involved
or to the type of solution techniques adopted.

Current investigations have implied that the problem of the

dynamic analysis of suspension bridges cannot be solved effectively



by analytical methods, but that the evolution of both the digital
computer and various associated numerical techniques of analysis
have significantly enhanced solution capabiylity. Thus, in spite of
the recognition of the problem and intermittent attempts at its
solution, the state-of-the-art of the study of suspension bridges'
free vibration is, still, not satisfactory.

The following study, in which the modern digital computer and
the finite element method of analysis play a central role, develops
methods to analyze the dyn:lamic problems of suspension bridges.

The finite element method is very useful in that it provides a unified
approach to discretization which can be applied to complex structures
such as suspension bridges; the digital computer makes it\ possible

to routinely solve the resulting equations of motion, which may
involve even hundreds of degrees of freedom. The methods of
analysis developed here are designed to present general theories

and their applications in order to determine the dynamic character-
istics, namely the natural frequencies, the modes of vibration, and
the energy storage capécity, of the different members of a suspension
bridge. In order to simplify the presentation, coupling among vertical,
torsional and lateral motions is neglécted, and some conventional
assumptions are used.

In general, it is believed that the theoretical treatments
presented yield practical solutions with reasonable accuracy and
increase understanding of the general characteristics of vertical,

torsional and lateral vibrations of suspension bridges. Furthermore,
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the formulation of the problem provides a basis for future theoretical
study in two directions: aanalysis of geometric-nonlinear free vibra-
tions and of earthquake-resistant design.

The study is divided into four chapters, and each chapter is
further divided into several sections and sub-sections. FEach chapter,
and many of the sections, have individual introductions which give
brief accounts of the historical development of the particular subject
under investigation. The historical information has been collected
from many sources; in somne cases the original works have been
referred to, as in others, where source material is difficult to
obtain, the reader is directed to treatises which list references.
Many references have beern included so that the reader may easily
obtain a more complete discussion of the various phases of the
total subject.

The first chapter contains analyses of the free vertical vibra-
tion of 2 broad class of suspension bridges. In the first section, a
detailed introduction is presented, and in the second section preli-
minary considerations and fundamental assumptions are given. The
third section discusscs the different expressions for energy in the
vertically vibrating system and the derivation of the equations of
motion by means of Hamilton's Principle. In the fourth section,
topics which receive attention are: the finite element formulation,
the solutions obtained, and detailed numerical examples which exa-
mine the effect of the extensibility of the cables and the continuity of
the suspended structure. Ir: the analyses in the third and the fourth

sections, it is assumed either that the cables rest on nests of
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rollers at the tower tops or that the towers are of rocker type with
pin-bearings at their bases. Thereafter, in the fifth and the sixth
sections, it is assumed that the saddles are fixed at the tower tops,
and therefore, the towers offer a certain bending resistance to any
horizontal displacement at their tops. Also, the in-plane free hori-
zontal vibration of the towers has been considered. The fifth sec-
tion contains the energy expressions meodified due to the rigidily of
the tower, and it also includes the derivation of the equation of
motion for the towers. The sixth section concerns the finite element
solutions of the overall problem (which includes the suspended struc-
tures, the cables and the towers), A numerical example, to illus-
trate the tower effect, is presented.

The second chapter is concerned with analyses of free tor-
sionally vibrating suspension bridges. Two advancementis are made
in this chapter. Firstly, a detailed treatment of a generalized theory
of free torsional vibration for a wide class of suspension bridges
having double lateral systems is developed, taking into account the
warping of the cross section of the bridge deck and the effect of
torsional rigidity of the towers. Secondly, a method of dynamic
analysis based on a finite element approach is developed to determine
vibrational properties in torsion., Almost the same procedures which
were followed in the vertical vibration chapter are followed in this
chapter on torsional vibration.

The third chapter contains analyses of the free lateral vibra-
tion of suspension bridges. The upward movements of the cables

and of the suspended structure, incidental to their lateral
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movements, are taken into consideration. The first and second
sections contain some thecretical preliminaries and fundamental
concepts., The third section contains the different éxpressions for
energy in the laterally vibrating suspension bridge and the derivation
of the equations of motion which couple the vibrational movements of
the cables with those of the suspended structure. The fourth sec-
tion is concerned with the finite element formulation, the solutions,
and a numerical example which illustrates and augments the analyses
of this chapter,

In the last chapter, vibration studies and experiments with the
Vincent Thomas suspensior bridge (between San Pedro and Terminal
Island, California) are presented to illustrate the applicability and
the effectiveness of the analyses under consideration as well as to
investigate the dynamic characteristics of a real bridge. To further
prove the validity and reliability of these analyses, a rigorous com-
parison with previous results obtained by other investigators has
been made., In addition, the computed frequencies of this bridge
have been compared with the measured frequencies, and the results

of simple experiments conducted on the bridge are presented.



CHAPTERI
FREE VERTICAL VIBRATIONS OF SUSPENSION BRIDGES

I-1. Introduction

The Tacoma Narrows Bridge disaster in 1940 profoundly
influenced suspension bridge research by sharply focusing attention
on the related dynamic problems. Prior to that time, the gradual
development of suspension bridge theory, which took place during
the nineteenth century and the first half of the twentieth century, had
led to the construction of progressively more economical and more
slender structures, such asl the Tacoma Narrows Bridge. Early
warnings of suspension bridge failures caused by vibration during
high winds then culminated in the warning signs of the major dis-
aster that befell Moisseiff's Tacoma Bridge. It was a slender bridge
of 2800 ft. span that showed a marked tendency to vibrate in the wind,
both in flexure (vertically) and torsion, soon after construction, and
finally, after a life of only a few months, it collapsed as a result of
excessive vibrations in a transverse wind of approximately 40 m. p. h.

This disaster so shocked the engineering world that major
efforts were made to understand the nature of the dynamic problem
of suspension bridges and to learn how to counter it. In accordance
with this, several investigations into the vibrational properties of

suspension bridges were conducted, and, as a result, it was found
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that severe vibrations can e largely caused not only by wind but
also by various dynamic loads, such as moving vehicles and earth-
quakes.

One approach to this dynamic problem used aerodynamic
theories and the research methods of aeronautics. The most
extensive studies using this approach are the model investigations
of Farquharson (8], vonKarman [6], Frazer [10], Scruton [10],
Steinman [14] and Selberg [16], and the theoretical work of
Bleich [9], and others. Tlus, the aerodynamic stability of sus-
pension bridges has been of central interest for bridge designers
and scientists and has been the subject of numerous treatises,
while there have been comparatively few investigations into their
response to other dynamic ‘oads or into their general dynamic
characteristics.

However, in the last decade, Hiral and Ito [213 did lead an
investigation into the practicability of railway suspension bridges.
They studied their response to moviang vehicles, theoretically and
experimentally, and they provided information enabling the creation
of an impact Specifica.tioln for a long-span railway suspension bridge.
The live load intensity oﬁ a bridge of this type is, of course, large
compared with that in a highway bridge, and thus the dynamic
effects in the former are generally much more remarkable.
Although significant in the area of railway bridges, their research

did not address the general problem of traffic loads.
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Design of a major suspension bridge for a region where severe
earthquakes may be expected is a problem which has also received
little study; even though it is a much more demanding problem than
the design of a typical multi-story building frame. Modern
building codes have now been developed to the point where the
basic earthquake requirements to be imposed on a ""standard"
building are specified adequately, and intelligent consideration of
these requirements will lead to the design of a safe and economical
structure. A large suspension bridge, however, is a vastly dif-
ferent structure than a typical frame building. The fundamental
period of vibration of the suspension bridge may be many times as
great as the longest period of a building (in which the first mode is
primary), and it may be necessary to include a relatively large
number of modes of vibration in order to obtain a reasonable rep-
resentation of the total response.

Knowledge of the natu.;'al frequencies and possible modes of
vibration of a suspension bridge is necessary to investigate the
response to acrodynamic forces, live loads and earthquake loads.
The earliest relevant investigations of natural frequencies and
modes, concerned the vibrations of a heavy, isolated suspension
cable in a vertical plane. The first known theoretical treatments
of this problem were by Poisson [28] in 1820, and by Rohrs [1]in
1851. The latter examined the symmetrical modes of a nearly
horizontal cable which was assumed to be inextensible and produced

results for the first two natural modes. The same problem was



-11-

examined more generally by Routh [2]in 1868, at which time he gave
an exact solution for the symmetrical vertical vibrations {and
associated longitudinal motion) of a heterogeneous cable which hung
in a cycloid. Like Rohrs, e also assumed that the cable was inex-
tensible. He showed that the result for a cycloidal cable could be -
reduced to Rohrs' solution Jfor the uniform cable, when the ratio of
sag to span was small. Rouath also obtained an exact solution for

the antisymmetric, vertical vibrations (and associated longitudinal
motion) of the cycloidal cahble.

At this point the subject appears to have been laid to rest until
the aerodynamic failure of the Tacoma Bridge which, as explained
previously, initiated a comoarehensive investigation of the problem
of dynamic vibrations of suspension bridges. In 194L Rannie (6] and
von Kérman {5, 6] derived results for an inextensible, three-span
cable. In 1945, Vincent [15, 18] extended Rannie's and von Kidrman's
analyses to allow for the efiects of cable elasticity in the calculation
of the symmetric vertical motion of the three-span cable. However,
he did not explore the nature of the solution so obtained and, there-
fore, he appears to have been unaware of the substantial effect which
the inclusion of cable elasticity can have.

From 1941 to 1943, Steinman [14] derived a number of
simplified formulas for conmiputing the frequencies and the modes of
both vertical and torsional vibrations of suspension bridges. They
have been independently checked for validity and accuracy by
investigators using more complex formulas. Steinman's formulas

appear to be the simplest and most practical to date, but some of
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the more involved modes predicted by these formulas have not been
found in other solutions.

A semi-empirical theory for the natural frequencies of the
first in-plane (vertical) modes of a uniform suspended cable was
put forward by Pugsley (13]in 1949. He demonstrated the applica-
bility of his results by conducting experiments oﬁ cables in which
the ratio of sag to span ranged from 1:10 up to approximately 1:4.

Later, various analytical studies were made to develop
formulas for computing the frequencies and modes of vertical as
well as torsional vibrations of suspension bridges with and without
recognition of the extensibility of the cable. Formulas for most of
these cases and for other cases as well were developed by Bleich [9].
He analyzed free vibration by the so-called exact method (i.e., by
solution of the fourth order linearized differential equations of
motioa), and he applied this method to various examples. An
approximate method, based on the Rayleigh-Ritz approach and
representing the deformation of the structure by Fourier series
was also developed by Bleich, though this method can be applied
usefully only to the first few modes because of the complexity and
the redundancy of suspension bridges.

In 1952, Pugsley [11] discussed the stiffness of a heavy inex-
tensible cable in terms of work done bSr the cable against gravity
when the cable is loaded; he also examined the relationship between
this energy treatment and the conventional "linearized deflection

theory" in common use. The latter is often presented in a form that
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appears to imply that the giravity stiffness of a cable is negligible;
this has proved to be misleading and results from neglect of a term
in the expression for zero extension.

Until the sixties, it was believed that the best formulaé for
computing the frequencies and the modes of suspension bridge
vibrations were those developed at the University of Washington
by Smith and Vincent [15]. These formulas were derived from the
differential equation of m‘ot:'.on in bending (vertical vibration);
unfortunately, the misleadiag condition of inextensibility of the
cable, which Pugsley has critically examined, was used in some
of these formulas.

As mentioned before, recent studies have implied that the
problem of the dynamic analysis of suspension bridges cannoct be
solved effectively by analytical methods, but that the evolution of
both the digital computer arnd various associated numerical
techniques of analysis have significantly enhanced solution capability.
Therefore, with the advance made in the computer, it has become
possible to solve even extremely complex cases.

The first use of a digital computer in analyzing this problem
achieved significant results. This first trial was made by Cloughfl 71,
as a consultant in earthquake engineering, in an unpublished report,
'Seismic analysis of the main piers for the Tagus River Bridge."
The earthquake behavior of the Tagus River Bridge (in Lisbon,
Portugal) was studied in the late fifties and early sixties by Housner,

Converse [17] and Clough. The vibrational analysis of this bridge
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was based on a lumped mass system, which was interconnected by
elements having shearing and bending stiffness representative of
the actual structure. Rotational stiffness of the foundation material
was considered also.

In the early 1960's, Konishi, Yamada and Takaoka [19, 20]
started an extensive research study to investigate the dynamics of
suspension bridges and their earthquake resistant design. They
simulated a three-span suspension bridge, structurally comprised
of systems of masses and springs, agd using linearized theory,
calculated the pericds and modes of free vertical vibration. In this
study, the vibration of the towers was considered as well as the
vibration of the suspended structure and the cables.

In the late 1960's, Tezcan and Cherry [23] undertook similar
research concerned with the earthquake analysis of suspension
bridges, in which the effect of large deflections was taken into
account. Their study dealt with an iteration scheme for the non-
linear static analysis of suspension bridges by means of tangent
stiffness matrices. The concept of these matrices was then
introduced in the frequency equation governing the free vibration
of the system. The bridge was idealized as a three-dimensional
lumped mass system and was subjected to three orthogonal com-
ponents of earthquake ground motion producing horizontal, vertical
and torsional vibrations. As the first nonlinear analysis of a
vibrating suspension bridge, this study provided a foundation for

further nonlinear suspension bridge research.
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The following study develops a method of analyzing the
dynamics of suspension bridges by means of a digital computer.
This method is designed to determine the dynamic characteristics,
namely the natural frequencies, the modes of vertical vibration, and
the energy storage capacitics, of the differeat members of the
structure. This method is based on the so-called "lHnearized
deflection theory' and a finite element approach. The method
incorporates certain special simplifying features, and it involves
two distinct steps which are summarized as follows:

1. sSpecification of the different potential and kinetic energies of
the vertically vibrating members of the real continuous
structure and then derivation of the equations of motion, and

2. Use of the finite element procedures to: 2a) discretize the
structure into equivalent systems of finite elements, b) select
the displacement model most closely approximating the real
case, ¢) derive eclement and assemblage stifiness and inertia
properties, and finally d) form the matrix equations of motion
and the resulting eigenvalue problems.

The evaluation of the stiffness and inertia properties of the
idealized structural element and assemblage is based on the expres-
sion of the potential and kinztic energies of the element (or the
assemblage) in terms of nodal displacements. This determines
expressions for the stiffness and mass matrices. Hamilton's
principle is then used to derive the matrix equations of motion.

This finite-element technique furnishes a system with finite degrees
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of freedom upon which matrix algebra operations can be performed.
It has proved convenient to separate the investigation of the
symmetric modes from that of the antisymmetric modes.

Finally, detailed numerical examples are presented to
illustrate the applicability and the effectiveness of the analysis and
to investigate the dynamic characteristics of a broad class of sus-
pension bridges with widely different properties. In these examples,
the effect of cable extensibility, tower stiffness, and suspended
structure continuity are examined and some useful comparisons

are drawn.
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I-2. Preliminary Considerations and Fundamental Assumptions

The following section is intended to briefly delineate the
essential structural members of suspension bridges and their fuanc-
tiens andtodiscuss advantzges of the suspension bridge over other
bridge types. An outline of the coordinate systems used in the
following analysis is also presented. Finally, this section contains

the fundamental assumptions involved in the subsequent analysis.

I-2-1. Elucidation of the structural members of suspension

bridges

Suspension bridges consist 'esse.ntially of cables, suspenders,
towers, anchorages, and a suspended structure or bridge deck. The
two cables are the principle carrying members and are fixed at their
ends to anchor blocks which resist the cable pull. The cables are
generally continuous over saddles at the tops of the towers; these
saddles are either bolted tc the tops of the towers or are equipped
with rollers as shown in Fiz. I-2-b. In modern suspension bridges
the ratio of the cable sag tc the span length ranges generally between
1/8 and 1/11.

The tower is usually composed of two parts: the substructure
or pier, and the tower proper extending above the roadway and
supporting the cables. The pier does not involve any special features
differentiating it from ordinary bridge piers. The tower is composed
of a column or tower leg for each suspension system. For lateral
stability, the tower legs arc braced by means of cross-girders and

cross-bracings. The tower leg may be fixed to the pier or may be
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of rocker type with a pin-bearing at the base. Rocker towers afford
the most economical and scientific design for bridges of longer span;
however, they must be secured against overturning during construc-
tion.

The suspended structure consists of two stiffening trusses (or
girders) and one or two lateral wind bracings to counter transverse
wind pressure and lateral forces from moving loads, and to carry
these forces to the piers. Stiffening trusses (or girders) are usually
added to reduce and control the vertical movements due to heavy live
loads and any other dynamic loads. When the required depth of a
stiffening structure of the plate girder type exceeds practical or
economical limitations, an open truss type can provide a solution.
The two stiffening structures are located in the same planes as the
suspenders and cables; they are hung from the suspenders which are
attached to the suspension cables. Besides carrying the floor, they
act vertically as stiffening trusses (or girders) and horizontally as
chords of the lateral bracing system. The stiffening structures in
each span are restrained at their ends by the towers so as to prevent
horizontal movement of the bridge deck.

The stiffening girder (or truss) is usually very shallow in
comparison with its length, (and the same is usually true of the
lateral bracing). In practical terms, a three-span suspension bridge
may incorporate three differeant types of stiffening structures in con~

nection with the general problem under consideration:
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1. The stiffening structures might be continuous over all
three spans with suspenders throughout those spans. And,
although it is extremely unusual, they might actually be con-
tinuous over two of the spans and non-continuous over the
third span.

2. As a second major aliernative, the stiffening structures
might be continuous over all three spans, but with no
suspenders in the side spans. In this case, the stiffening
structures in the side spans would probably be much shorter
than the full length of the side spans.

3. Finally, the stiffening structures might be of the two-hinged
type; it is widely usec. and is probably the most efficient.
Also, it is more economical than the continuous type. In
this case, the hinges are located in the towers where they
are least objectionable. Actually, the stiffening structures
might be a three-hinged type, but this is little used because
it lacks rigidity and has other disadvantages arising from the
hinge at mid-span.

Suspension bridges are, in general, very flexible as compared
with other types of bridge structures, the amplitudes being manay
times as great. It should bz noted also that the rigidity of each
member of a suspension bridge is markedly different from the
rigidity of each of the other members. Furthermore, interaction
occurs among members of the bridge from one end of the cable to

the other, so that consideration of one member involves study of all
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of the members. The stresses in some members of the structure —
like the towers, cables and anchorages — are due largely to dead
loads, while the stresses in other members — such as the stiffening
girders (or trusses) and lateral bracings — are due entirely to live
loads, winds, changes of temperature and possibly earthquakes.
Economic utilization of construction materials demands that,
as far as possible, the predominant stresses in any structure should
be those for which the material is best adapted. DBecause steel is
a very economic material, especially when used in a condition of
tensile stress, the suspension bridge type, which undergees prima-
rily tension rather than compression, provides a superior design for
long spans. To summarize, the superior economy of suspension
bridges as long-span structures is fundamentally due to the following:
a) the very direct stress paths from the point of loading to the point
of support, b) the predominance of tensile stress, and c) the highly
increased ultimate resistance of steel in the form of cable wire.
Furthermore, for heavy railway bridges, the suspension
bridge is more economical than any other type for spans exceeding
about 1500 ft. And, as the live load becomes lighter in proportion
to the dead load, the suspension bridge becomes increasingly more
economical in comparison with other types. DBased on a study of
existing bridges, Thul [22] has compared the center span length to
the total length of three-span continuous girder bridges, of cable-
stayed bridges, and of suspension bridges. His results are sum-

marized in the following table:
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Bridge type span comparison Center Span (C,;gtzf ssgj’r?)"/
Three-span continuous girder bridges up to 700 ft. 30%-50%
Cable-stayed bridges 500-1200 ft. 50%-60%
Suspension bridges 1000-4000 ft. 60%-70%

This table indicates that suspension bridges have a lower economic
limit of approximately 1000 £ft., with a ratio of center span to total
span of approximately 60%.

In addition to the economic advantages, the suspension bridge
has several other points of superiority. It is light, aesthetic, and
graceful; it easily provides a roadway at low elevation, and it has a
low center of wind pressure. It is also easily constructed, using
materials that are easily transported. There is little danger of
failure during erection, and after completion, it is the safest
structure known to bridge engineers. In other structures, the
failure of a single truss or girder member may precipitate a
collapse; in a suspension bridge, the rest of the structure will be

unaffected.

I-2-2. Coordinate systems

The following coordirate systems are used for the typical
three-span suspension bridge shown in Fig. I-1. These coordinate
systems have been chosen because they are appropriate for a wide
class of suspension bridges, including a single suspended span as

well as multiple suspended spans, either continuous or hinged.
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Obviously, any number of spans may be considered,

1.

For the cable, the xi-axis of the .ith span (i=1, 2, 3) is defined
as the horizontal line starting from the vertical plane passing
through the left support of each span as shown in Fig. I-1,
while the ordinate Vi of the ith span is measured downward
from the closing chord of each span, i.e., the straight line
connecting the extremities of the cable in the ith span. (Note:
in Fig. I-1, the subscript i has been left out for convenience)
For the stiffening girders (or trusses), the xi-axis of the it}[1
span (i=1, 2, 3) is defined along the centerline of the span with
the origin located at the left support of that it span.

For the towers, the x'-axis is taken to be the centerline of

the tower column or leg with the top of the column (or leg)

being the origin, as shown in Fig. I-2-b.

I-2-3. Fundamental assumptions

In a consideration of the different factors affecting the dynamic

analysis of a suspension bridge,the following general assumptions and

approximations are made:

1.

All stresses in the bridge remain within the limits of propor-
tionality and thus follow Hooke's law.

The initial dead load is carried by the cable without causing
stress in the stiffening girder (or truss).

Thig condition is generally desirable since it simplifies con-

struction. However, if the bridge is erected in such a manner
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that the dead load dces cause certain stresses in the stiffening
structure, this may be compensated for, in the dynamic
problem, by taking into consideration all the initial stresses
involved.

The cable is assumed to be of a uniform cross section and of a
parabolic profile under dead load. The assumption of a para-
bolic profile requires that the ratio of the sag to the span be
kept relatively small; in other words, the cable slopes are,
and remain, small. For example, the analyses to be presented
are valid provided that the ratio of sag to spanis 1:8 or less,
so that the weight of the cable may be assumed to be uniformly
distributed along the span rather than along the length of the
cable (see Appendix I-a).

The cables are assumed to be perfectly flexibile. In con-
sideration of the smill moment of inertia of the cable as
compared with that of the stiffening structure, this assump-
tion is obviously close to being exact for the purpose of
determining horizontal cable tension and the stresses in the
stiffening structure. The flexural stiffness of the cables

was thoroughly investigated, and it was found that the bending
stresses in the cables could be neglected.

The vibrational suspender forces, instead of being treated

as concentrated forces, are considered as distributed loads

in the same manner as if the distance between the suspenders
were very small, the suspenders thus forming a continuous

sheet or wall without shearing resistance.
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The suspenders or hangers are considered inextensible and
are assumed to remain vertical during the vibration of the
bridge; therefore, the vertical vibrational displacement of
the cable, vc(xi, t), i=1,2,3, and that of the stiffening
girder (or truss), v i(Xi’ t), i=1,2,3, are assumed to be

g
identical (see Fig. I-2-a); i. e.,

vc(xi, t) = Vgi(xi’ t) = Vi(x.i, t) ,i=1,2,3, (1. 1)

where vi(Xi’ t) represents the generalized vertical displace-
ment of the vibrating system. Consideration of the effect of
the suspender elongation results in a negligible gain in
accuracy (Johnson, Bryan and Turneaure [26] ) at the expense
of a notable complication of the analyses, and it is therefore
not to be recommended. Steinman [3] estimates the contribu-
tion of the deformation of the suspenders to be only a fraction
of one per cent. Selberg [16] indicates that the change of
inclination of the hangers is greatest near the center of a
symmetrical stiffening structure. On the other hand, he
finds that the influence of the hangers' deviation from the
vertical upon the vibration of the bridge is negligible even

for a slender stiffening structure.

To stay within the linear theory, small vibrational displace-
ments from the position of the static equilibrium have been
assumed; i. e., in the following analysis, attention will be

restricted to small vibrations in the vertical plane.
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8. The additional horizcntal component, H{t), of cable tension
caused by the inertia forces is small in comparison with H,
the initial horizontal component of cable tension due to dead

loads, i.e.,

H +HE)~H . (1.2)

Similarly, the additional axial force P(t) due to inertia forces
at the top of the tower is small compared with that due to dead

loads, P , i.e.,
W

P_+PH)xP_ . (1.3)

In studying free vertical vibration, it has been assumed that
there are no live loads on the vibrating bridge, vibration damping
of the structure is neglected, and the total mass of the bridge deck
is assumed to be concentrated along the centerline of the stiffening
girders (or trusses). Furthermore, the initial curvature of the
stiffening structure is considered small in comparison with the cable
curvature, and therefore it can be neglected.

Other assumptions will be discussed as they are encountered

in the development of the analysis.
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I-3. Analysis of Suspension Bridges Having Negligible Tower

Stiffness

In order te lay a foundation from which later work is herein
developed, the differential equations of motion of a typical three-
span suspension bridge and their associated boundary conditions
will be derived by means of Hamilton's Principle. Application
of this variational principle reéuires a knowledge of the different
expressions of energy of the vibrating bridge structure (which will
also be very useful later on). In addition, the use of Hamilton's
Principle has the advantage of furnishing, automatically, the correct
number of boundary conditions and their correct expressions. There
is no necessity to solve the differential equations of motion nor the
resulting transcendental frequency equations, since they have both
received considerable attention from other investigatofs.

In the following analyses, the horizontal components of cable
tension, HW and H(t) due to dead loads and inertia forces
respectively, are assumed to be the same on both sides of the
tower in all spans of the cabie. (There is no tower resistance
to displacement at the t.op. )} This presupposes that the tower
cable saddles are free to move horizontally either upon roller
nests under the saddles or via rocker tower bases. The former

construction, however, is now considered ohsoclete.
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I-3-1. Potential enerpy of the cables

As a result of small, free vibrations about the position of static
equilibrium, the horizonta) component of cable tension, HW will
change to EHW+ H(t)], and the differential length of the cable ds,,

in the it™

span will increase to (dsi+Adsi) , as shown in
Fig, I-2-a. (Note: The subscript i has been left out of Fig. I-2-a
for convenience. )

Now, the potential energy of this cable element, ds.1 . can be
expressed as

ds.
_ 1. X . .
dv (%, t) —{[HW+%H(1:)] dx.} Ads;, - wov dx, i 1,2,3 (1.4)

1

where Ads.1 is the cable siretch of the differential length dsi s

‘?;i is the dead weight of the cable (wc} per unit length of the ith

span plus the dead load of the stiffening girder or truss (ng) per
unit length of that ith span; and v, the vertical vibrational dis-
placement of the cable. The first term in Eq. 1.4 is the straia
energy stored in the element ds, and is equal to the average force

ds.
H +2H(t)]=— times the cable stretch Ads, . The factor % is
w dx; i

needed due to the fact that H(t) increases from zero to its maximum
ds.

value H(t); a—X-}- is the cosine of the angle of inclination, ©;, as
i

shown in Fig. I-2-a. The second term represents the gravity energy,

i.e., the potential energy loss due to the lowered position of the dead

load.
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it is seen from the geometry of displacement (Fig. I-2-a) that,
in static equilibrium,the element of length dsi of the cable can be

given by

2 .2 2 .
dsy = dx + dy] i=1,2,3. (1.5)

When the cable is displaced (in-plane), its length increases to

ou
(ds, + Ads;) , dx, increases to dx, + z— dx, where u_ is the
i i i i o0x, i c

i
horizontal movement of the element, and dyi becomes

ov
dyi + ﬁ dxi . Then, for the vibrational displaced position,
i
2 Buc 2 Bvc 2
(dsi + Adsi) :(dxi + axi dx.1> + (dyi + -8—}21— dxi> s i=1,2,3,
or
2 du du \2 > 8VC
2ds. Ads, + (Ads,)” = 2dx, =—=dx, +|+— ) dx“+ 2dy, = dx.
i i i i Bxi i Bxi i i 8xi i
ov \2 2
+(5—9") dX. ? i=1,2,3.
X, i

In general, u (xi, t) is small in comparison with Vc(Xi’ t); therefore,
the increment in the length of the cable element Adsi » correct to

the second order of small quantities, is

auc dXi E’VC dVi 1 (BVC 2 dxi
Aoy =g @5, TiTexy, @, T2 "5;) &, ¥y LS
1 1 1 1 1 i (1 6)

Integrating Eq. 1.4 over all spans and substituting Eq. 1.6,

the potential energy Vc(t) of the cable may be written as
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where Ei is the length of the ith span.
Integration of the second term (in the second set of brackets)

by parts gives

'qi v _\/dy. dy. £, ﬂi dzy.
< (__1) dx. = —=* ,1 14
ox, /\dx: / %1 T am. e T z e
i i i 0 dx;
0 0 i
(1.8)
¥
(i dvy;
= - 5V dx s i=1,2,3
dx2 © 1
0} i

dy. 1 OV

providing that <~d——1—> and | ——~£) can be treated as continuous
Xy \ 8Xi

functions of e and that V(.(Xi: t) vanishes at the ends x, = 0 and

x. =4, .
i i
Appendix I-a gives the parabolic profile of a hanging uniform
cable of the ith span having a load uniformly distributed along the

horizontal span. It also gives the other cable profiles. The parabolic

profile is expressed as

i S
yilx) = 2H_ [ T'(f‘.‘) ] » i=h23. (1. 9)
2

The cable deflection at mid-span X, = 'Zi) is the sag, fi » and the

—_—
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horizontal component of cable tension is

WAL
H = . (1.
W Sfi _
With the aid of Eq. 1.10, Eq. 1.9 is more conveniently written as
yi(xi)=4,fi {T"(F’") } , i=1,2,3. (1.
i i
Eqs. 1.9 and 1. 11 give
#
dzy. w, 8F
— E e = . i=1,2,3 (1
2 H 2z S ’
dx, w L
i i
Now, Eq. 1.8, with the aid of Eq. 1.10, becomes
fi B\ dy, w, fi
j (5{)(@‘)“"@[ o Pe a3 (-
o ' 0
Using the result of Eq. 1.8, the potential energy V_(t) of the
cable (Eq. 1.7) may be written as
3 . %74 ) (iyov_\2
Vc(t) = Z{ [HW + gH(t)J T U + gHW J(a’:) dxl
i=1 x.=0 0
1
£,
. i/8v_\dy, . & dv_\ 4
* EH“)H (E)(d‘x—) de "E‘J (E?;) dxi”‘ S
0 1 1 0 1

The assumption that there are no movements of the tower tops

10)

11)

12)

13)

or of the anchorages makes it possible to reduce the potential energy,

Vc(t) , of the cable (Eq. 1.13) to
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1 3 'ei BVCZ 'Qi avc dy.l
V(o) =3 Z {HWJ (5;') e H“)U (a—x)(&—.) dx;
i=1 0 ! 0 . !
(1.14)
.ﬂi v o
1 o

+EJ (a—;l) dx; J}

0

In order to put Eq. 1.14 in a more convenient form, reference
can be made to the cable ecuation which relates the stretching of the
cable element to the geometric displacements which it undergoes. A
derivation of this general cable equation can be found in Appendix I-b.

In the present context, the equation reads

I--]'.(t)I...ei Ei 8VC dyi) 1 ﬂi (8VC>Z
EA. j (a—x“)(a et *zj x, ) T F ATy o 15 L23
¢ e 0 i i 0 i
(1.15)
where Ec is modulus of elasticity of the cable material, Ac is the
effective cross~sectional a:-ea of the cable, Et is the coefficient of
thermal expansion, ATi i3 the incremental change in temperature

in the ith span (it is assuraed uniform along the ith span) and Lei

and Lti are virtual lengths of the cable in the ith span; they are

defined by
{
i dsi>3 'gi dsi 2 :

Lei:j (a—};- dxi and Lti: J (K) dx.l ’ i=1,2,3. (1.16)
0 h 0 .

The cable equation of compatibility (Eq. 1.15) can be written for
the whole cable, i.e., for & suspended cable hanging between two rigid

anchorages and passing over vertical towers, by summation over the
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three spans, as

i avc 2
( x) dxiiEtATiLti} s (1.17)

3
where LE = ? Lei for the entire lenpgth of the cable.
i=1

Substituting Eq. 1.17 into Eq. 1.14, and assuming that the
thermal effect is of minor importance and may consequently be

neglected, then the potential energy of the cable is

. > b dv_\2 ) H? (£) « Lig |
v_(t) = §Z |:HW (a—xl-) dx, | + 3 Ea : (1.18)
“i=1 0

1t will be recognized that the second term of Eq. 1.18, which
includes the area, the virtual length and the modulus of elasticity of
the cable, expresses that part of potential energy stored elastically
in the cable, i.e., the strain energy stored in the cable. The first
term contains the constant Hw and the expression for the change in
length of the cable, and actually represents the potential energy
resulting from the elevation of the center of gravity of the entire
structure while the cable is momentarily distorted under the influence
of the inertia forces. These two terms of the potential energy expres-
sion, Eq. 1.18, were adopted by both Vincent [15] and Bleich fol,
though on different grounds.

To further clarify the two terms of the preceding potential

energy expression (Eq. 1.18) via a physical interpretation, and to
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examine the relations betwzen the energy treatment and the conven-
tional, commonly used "linearized deflection theory,” one must con-
sider the strain energy and the strainless or gravitational energy
separately.

The strain energy stored in the cable due to the change in
tension associated with H(:) is designated by V (t) . At any point
in the cable, this change of tension is H{t)—5~ ji , so that the strain
energy amounts to: | '

3 [ )d& i 3 4
;| HE dx} io2. /ds,\3
ZJ. 2E_A_ 'dsi:ZJ %%L (&1) dx;
i=170 cc 1
which, upon using the virtual length definition of Eq. 1.16, will give

2
H () L
\% (t):%{_—__—EcAc E} ) (1.19)

which is exactly the second term of Egq. 1.18.

Now, to clarify the first term of Eq. 1.18, assume an inextensible
cable, and consider the charge in potential energy of the system arising
from movement within the gravity field. Due to the vibrational dis-
placement Vc » each element of weight \?v:d.xi of the bridge will lose
potential energy equal to \’;;'ivcdxi . Thus the total change of potential

energy arising from gravity will be

3
Tk
ZJ WVdXi . {(1.20)
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But, for an inextensible cable, the elastic extension of the
H(t)- LE

E A
c’c
therefore Eq. 1.17, with the aid of Eq. 1.8, is reduced to the inex-

cable due to vibration. » given by Eq. 1.17, is zero, and

tensibility condition:

2 f H 3 fifav \?
-Zg W. V dXi:TZJ —a-}-f- dXi . (1.21)
i=1 “0 i=1 "0 '

Thus incorporating the inextensibility condition(Eq. 1.21), the

change in potential energy arising from gravity can be written as

3

L, 2
ch(t) > ? [HWL(-&—{: dXi , (1.22)

i=1

1

which is identical to the first term of the equation for the potential
energy of the cable, Eg. 1.18. There is thus an effective gravity
stiffness associated with the vibration @f the cable of the suspension
bridge. This emphasis on gravity stiffness brings to the fore a type
of stiffness that is not generally familiar but which helps to present
the problem of the dynamics of suspension bridges in clear physical
terms, in a way that brings out the nature of the nonlinearity present.
It is worthwhile to indicate that the so-called "Linearized
Deflection Theory of Suspension Bridges' in common use, is often
presented in a form that appears to imply that the gravity stiffness
of the cable is negligible; this is oblviously misleading and results
from neglect of the higher order term in the cable equation, Eg. 1.17,

when it is used to obtain the expression for zero extension. This first
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approximation, which corresponds to the condition of inextensibility

and which has been used very commonly, is expressed by the relation
3 4.

\ 1

Z}vdx.:o X (1.23)
[ < 1

=1 70

Now Eq. 1.23 suggests that the change in potential energy
arising from gravity, Eqs. 1.20, 1.21 and 1.22, approximates zero
for the inextensible cable.

It is seen by comparing Eqgs. 1.21 and 1. 23, that the conventional
approach treats the integrel in Eq. 1.23 as approximating zero, as
though the gravity stiffness of the cable, given by Eqs. 1.20 and 1. 22,
were negligible and as though the cable were in a state of neutral
equilibrium! This is obviously paradoxical. Actually, Pugsley [ii]
was the first one to examire more critically the use of the expression
for an extensible cable (Eq. 1.21), when he studied the nonlinear
response of a simple cable to a static concentrated load by using an
energy approach. More discussion and alternative viewpoints on the

inextensibility condition of the cable can be found in Appendix I-c.

1-3-2. DPotential energy of the suspended structure

The potential energy stored in the stiffening girders (or trusses)
is in the form of strain energy due to the effects of bending moments,
shearing forces and normal forces (see Fig. I-2-a).

The total vertical vikrational displacements, Vgi(xi’ t) or
Vi(Xi’ t) . of the ith stiffening structure at a point X consists of

two parts, one caused by bending and one by shear, so the slope of
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the deflection curve at the point x, can be written as

8v.1(xi, t) -

—-—a—xi— = ﬂi(xi, t) + ﬁi(xi, t) . i=1,2,3, {1.24)
where ni(xi’ t) is the slope of the deflection curve when the shearing
force is neglected (i.e., it is rotation fiue to bending) and (Si(xi, t) is
the angle of shear at the neutral axis in the same cross section. As
usual, the linear deflectionandthe angular deflectionare assumed small.

From the elementary flexural theory, the relation between the
bending moment and the bending deformation is derived as

Mi(xi,t)= E.I.x)— , i=1,2,3, (1.25)

gitgii Bxi

where E ; is the modulus of elasticity of the stiffening structure in
the ith span and Igi(xi) is the area moment of inertia of the
stiffening girder (or truss) about its horizontal axis in the ith span.

It is worthwhile to note that, in the case of a stiffening truss

a? a?
Igi(xi) = 24 (x )—4}- -21— . i=1,2,3, (1.26)

i = A=)

where Ai(Xi) is the area of one chord at section x in the ith span
and cIi is the depth of the vertical truss in the ith span.
The relation between the shearing force and shearing deformation

is given by

Si(Xi’ t) = Ggi f-tvi (xi) |3i {Xi, t) i=1,2,3, (1.27)
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where Ggi is the shear modulus of the ith

stiffening structure and
y,vi(xi) is the shear resistance coefficient of the vertical web plate
(or diagonal and vertical truss members). The value of the shear
resistance coefficient depends on the effective cross-sectional area
of the web plate (stiffe’ni.ng girder); in the case of a truss, l'%ri depends
on the equivalent solid web section, i.e., on the sectional area of the
diagonal and vertical members in the truss panel. In the latter case
it also depends on the type of truss system used. The shear
resistance coeifficients for the different types of trusses which are
commonly used as stiffening trusses can be found in Chapter IL
Because of shear alone, thz element undergoes distortion but no
rotation.

Now the potential energy due to vertical displacement can be

expressed by

1 3 g1 Bﬁ‘(x,t) 1 3 ﬁl
ng(t):zz M. (x,, t) — 5 dxi+ZZj S.(x., t) B.(x., t) dx. ,
i=1 0 t i=1 70
(1.28)
K 3.4 Bni(xi,t)z < y .
B ZZJ Eg1 Igl(xl)—. ox XmJr_Z—Z ngi%i(Xi)ﬁi (Xi’ £) dX1
i=1%0 1 i=1 %0

It is important to note that the first term of this equation
represents the strain energy stored in the flanges (or chords) of
the stiffening structure, wlile the second term represents the strain
energy stored in the web system of the stiffening structure as a result

of transverse shear deformation. The inclusion of shear flexibility in



-40-

the dynamical beam problem is known as the Timoshenko beam
theory, in contrast to the Bernoulli-Euler theory, in which there
is no transverse shear deformation.

The strain energy of the Timoshenko beam, Eq. 1.28, may be

rewritten, conveniently, as

3 4. 3 1. 2
1 ' on 1
v (t)=—-ZJ ( )dX+ Zj (—-—-—T)) dx,
gv 2 gi g1 Bx gi v1 i
i=170 i=1
(}.29)
Using Bernoulli-Kuler theory, Egq. 1.24 reduces to
8V.1
é;;:ni ’ i=1,2,3, (L.30)
and it follows from Eq. 1.25 that
82v.
M, =E 1. —s , i=1,2,3, (1.31)
i gligi sz
i
The strain energy of the Bernoulli-Euler beam can now be
written as
~ 1 ‘3 'Qi Bzvi 2
V=7 ZJ Egily —= dx, - (1.32)
i=1'0 3

In general, the shear deformation effect plays an important
role in the vibration ofhigher frequencies when a vibrating beam is
subdivided by nodal cross sections into comparatively short portions.
In other words, for the purpose of taking into account the effects of

the cross-sectional dimensions on the frequencies, shear deformation
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must be considered. Whert the cross-sectional dimensions of the
beam are small in comparison with its length, Bernéulli—Euler
theory can be used with acceptable accuracy.

The expression for the potential (or strain) energy of the

stiffening structure, deforming longitudinally is

3 4, 2
1 i du i(Xi’ t)
Vel =3 § J Egi A 05) (MH%’T_ dx, (1.33)
i=1"0

where ugi(xi’ t) is the longitudinal displacement of the ith span

and Agi(xi} is the cross-sectional area. In general, the longitudinal
vibrational displacement ugi'(xi, t) is very small as compared with the
vertical displacement Vgi(xi’ t).

The following analysis will consider only the vertical vibrational

displacements of the structure.

I-3-3. Kinetic energy of the vertically vibrating suspension

bridge

In the Timoshenko beam theory, the kinetic energy of the
vertically vibrating bridge is due to translation and rotation and

is expressed as

3 iy, av.(3,, t) 2 1 3 ﬂi M. (x., t) Z
E m, (x, )| === dx. += Z T ()~ | dx,
i1 of: 12 gii ot i’
: 0 :

(1.34)

where ﬁ:li(xi) is the mass of the bridge (i.e., cables and stiffening

structures) per unit length of the ith span, and J i(xi) is the mass
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moment of inertia per unit length of the i stiffening structure
about the neutral axis which passes through the center of the girder

{or truss). But Jgi(xi) .is related to Igi(xi) by

M) _ 2 .

(1.35)
where pgi is the mass density of thé ith stiffening structure, mgi(xi)
is the mass per unit length of the ith stiffening structure and ri(xi), is
the radius of gyration about the neutral axis.

When the cross-sectional dimensions are small compared with
the length of span, the rotary inertia effects represented by the
second integral in the kinetic energy expression, Eq. l.34, can be

neglected. Therefore, the kinetic energy expression of the vibrating

bridge reduces to
v Sy vl
Tv(t) =3 Z mi(xi) 5 dXi . (1.36)
] 0

The kinetic energy due to longitudinal deformations will not be -

considered since only vertical vibrational deformations are assumed.

I-3-4. Variational formulation of the equations of motion

a. Derivation of the general equations of motion

For convenience and simplicity, the differential equations of
motion will be derived by Hamilton's principle, without taking into

account the effects of shear deformations and rotary inertia. However,
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Appendix I-e contains the cerivation.of the governing equations of
motion including the effect of transverse shear deformations and

rotary inertia.

Hamilton's principle is given by the integral form

ta
j 5(T-V)dt=0 |, (1.37)

31

where T is the total kinetic energy of the vertically vibrating birdge,
V is the total potential energy of the system, including both the strain
energy and the potential energy of any conservative forces, and 8 is a
variational operator taken during the indicated time interval.

The variation of kinetic energy, Tv(t) » has the form

3 4 3 g
— iy Bvi avi i, Bvi 5
8L, (t) = ZJ m, (%) 5t 5(“5?) dx; :ZJ m;05) 5 pp OVl dx 5

therefore,
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2 tZ 3 _ 2 . avi 5
!5Tv(t) dt :J Z[f mi(Xi) 5 Bt (5Vi)dxi:l dt
t t i 0

1 p 1=l
3 g
S T ) 2 (v yas | s
= my (%) 55 5p Ovy)dt | dxg
=170 "%,
. By 2 2,0k Vg |
:Zf [lni(xi) re v -J‘ 'a—E(ml(Xl) —gﬁ—)-gg (5Vi)dt} dx,
=170 LYy
E7) £1 « 8zvi _ ‘ _
_ -ZJ J m, (%) = by, dx, dt (1.38)
=1t 70

Note that the order of integration with respect to x, and t is
interchangeable, and the variation and differentiation operators are
commutative,so the integration can be performed by parts. Also, by
1 and t = t2 .

The total potential energy, V(t) , of the vertically vibrating

definition, Bvi(xi, t) is zero at t =t

bridge can be expressed, from Eq. 1.14, after substituting A for

v, » and from Eq. 1.32, as

3 2. 5 \2
~ - ~ ~ i 1 Vi
V() = Vc(t) + ng(t) = Z—Z{HWJ' (-E-E—) dxi

L.
j‘1 (8 \£ }
+ E . I {—=]| dx. s (1.39)
gigi 2) i
0 0%;
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and therefore, the variation of the total potential energy may be

written as

N fobv, fav, fidy,\ /ov, (isov.\ fov,
0T ) wa %, f’(ax. dx; FHI) (a;ﬂa:)dxi* <5‘£)5<'5;:>dxi
i=1 0 1 1 0 1 3 0 1 1
"21 Bzvl Bzvi
J Egl gi 5 2 6(;;?_> dxl} ’
1 1
3 j 'qi Bvl
:Z | HwJ ox, O, (0Vy)dx;
i=1 0 1 1
£1 dy1 5 11 Bvl 5
' H“)U (aT) T, OV 9 "*f (fa—x—l) Tx, (ﬁvi’dxi}
0 0

then integrating by parts, if it is necessary, yields

3 3 2 1. 5
~ Vi i 1 9 Vi
0¥ = )y 0y | - (5;; Ao ox, ) OV 5
i=1 * 0o “o' * !
2

dy. i g‘i a7y, dv. i rio v,
+ H(t)li"a;;“ 6Vi -_, dxz (SVi dxi+r 5v - 3X2 ﬁVi dxi
t 0 o N t o 0 N
Bzvl 9 £1 9 Bzvl 1_1
FEgilg T2 _B—x—i({)vi) ‘&”( gi'gi 2 8v,
0 i 0




3 dy, 8%y, fi
:Z [(H +Ht)>—+H()E£—-8X ( ol z)]ﬁv
i
i= 0
32v. gi
i 0 (6v.)
2
gigl axl E)xi i |
1, 2 2 2
i 9%y d Y; 52 ] v;
- H +H(t) _-T+H(t)__—2- - > 11 3 ) v dxl
0 0x; dx 9 EL Bt 5 :
(1.40)

Introducing Eqs. 1.38 and 1.40 into Eq. 1.37 after using Eq. 1.12,

gives
3 ) Ei * 82Vi 82 32v azvi
> i) g + = By Ty )-{ B, + HO
i 2 2 gigi 2
— ot ox, x. 0%,
i=1 t 0 i i i
vxs; . Bzvl 8V1 ’Qi
H(t )ﬁ—]ﬁv dx, - EgJ.Igl el %,
W
0
: 5 Bzvi Bvl dy ﬂi
i X, i
i 0
(1.41)
The integral must vanish for any arbitrary values of ﬁvi and
v,
5(——);—1) » 50 these varlations can be set equal to zero at x; =0 and
i
x, = Ei , 1=1,2,3 and different from zero throughout the domains

0<Xi< Ei , 1i=1,2,3. Therefore, one must have

2
- 9%v, a2

N a A a A Vé;i
mi(xi)_2_+ é;:i < gi gl(x ) XZ) H +H(t)> 2 '1'?{'— H(t) =0 ,
i i
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where 3 g

E A \ i y0v,\ /dy. 'Ei v, \2
H(t) = ——< ) (——1)(-——1)@; 13 (52 ) ax (1. 43)
L 9x. / \dx. i 2 Ix. i ) )
o i i i
i=1 0 0

Eqs. 1.42 and 1.43 are the basic differential and integral
equations expressing the vertical vibration of suspension bridges.
The symbol of summation in Eq. ‘1. 43 is applied when the bridge has
suspended side spans. Eqgs. 1.42 and 1.43 are the well-known
equations in the theory of suspension bridges.

Furthermore, because of the arbitrary nature of the variation,

in considering Eq. 1.41, oae can write

Szvi Bvi jzi
EgiIgi axz 6(—8~X—1) =0 s i=1,2,3, (1. 44)
i 0
and
5 Szvi avi dyi 'ei
a—xl- (Egilgi 8X2 ) - (HWFH(t)) 5;;';" - H(t)'d—.}z: 5Vi L =0, i=1,2,3,
: (1.45)

which take into account the possibility that either

2

0 v, avi
Balagz T0 O 0 M R0 m ok 15123
i (1.46)
and that
. 8%, ov, dy,
!:a—x—l' (Egilgigx—z-> - (HW-F}[(‘(:))E—X—i- - H(t)d—Xl:lz 0
* (1. 47)

or vi:O at x.=0 , x =1¢. |, i=1,2,3.
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Egs. 1.46 and 1.47 represent the boundary conditions associated
with the equations of motion for vertically vibrating suspension
bridges. The first part of Eq. 1.46 implies that the bending moment
at each end vanishes, as in a bridge which has a stiffening structure
with a free end or a simply supported end (hinged end). The second
part of Eq. 1. 46 indicates that the slope of the deflection curve
vanishes at each end, such as when the ends of the stiffening structure
are fixed (built-in ends). The first part of Eq. 1.47 requires that the
vibrational resisting shear, which is developed by the vibration of the
stiffening structure at the ends of each span, be equal to the vibra-
tional shear which is developed by cable forces. The second part of
Eqg. 1.47 means that the vibrational displacement is zero at each
end. Hence, both the natural and geometrical boundary conditions of
the problem are presented.

Thus, Hamilton's principle has furnished the fundamental
differential equation of vertical vibration corresponding to the
defined energy, and it furanished conveniently all the most meaning-
ful boundary conditions,

The differential equations including the effects of shear
deformations and rotary inertia, derived in Appendix I-d, are:

o 0%V, 2 8%y, o/ E_I1_.\ dty
m.——2+—— E . I. L -m .r (l+ g1 gl) 1
gl g

1 gt 8x2 9xZ 81N g ur?) 8xlat?
i i givi'i i~

(1.48)

2
[ab]
<
Qo
<
€

. Y. . 7
B L (g aHm) -k b HE) =0, i=1,2,3,

gi%i 3

Q
&
@
fa)
£
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where the effect of rotary inertia is represented by the term

2 54v.
mgiri —2-1—2 » while the effect of the shearing deformations is
9x, dt
i

E 1. 8t 2.2 o4

. V. m
i i gi i i
represented by the terms (m . BLBL ) .
& Gk axcor”  Fgihi et

b. Conventicnal linearized theory

The equations of motion, the cable equation and the boundary

conditions which were derived above, have nonlinear terms:
BZV.
i. the term M(t) —= (Eqgs. 1.42 and 1,48)

1

E

ov.
ii. the term H(t)g}-;l- (Eq- 1.47) , and

™) -

o, 2
iii. the term _Jj -5—}1 dxi (Eq. 1.43} .
i

Two useful simplifications are possible as aids in linear"izing the
problem:
1. It has been assumed that the horizontal component of cable
tension [(t) due to inertia loads is small compared with the
initial tension Hw . In this case, Eqs. 1.42, 1.47 and 1.48

can be simplified by the omission of H(t) , to read:

. Bzvi 52 Bzvi Bzvi \;vp'i
n.rl.(x.)——-’ru—(E.I.(XJ )-H —— 4+ =—H{t)=0 , i=1,2,3,
i1 81:2 8XiZ gigi i 8Xi2 w Bxf HW



3 0 vy avi dyi
".a—""E.I-—'Zf' H "a——-H(t)—— =0 at x, -0, atx. = {4, ,
X gigl g ¢ w Ox, dx i i i
i=1,2,3, (1. 50)
and _
L 0 2 8%y, . I,y %,
m; —— + z(EiIi' 21>‘miri (“’ ggz) 2.2
ot ox, B Bl gy g G .p.r./ 0x_ ot
i i gi'vi' i i
1.51)
% (
mzirf 84vi Bzvi w,
+——L——4—-1—1W >t HO) =0 , i=1,23,
M. Ot Ox, W
gi'vi i

- 2. Since small vibrational displacements have been assumed, the
nonlinear, second order term in the cable equation (Eq. 1.43)

may be neglected,and the cable equation is reduced to

3 4
E A i/8v.\/dy.
o _ c C 1 1
A= Z,U (5}?)(&“) d’%} ' t-52-2)
0 1 1

i=1

or (byusing Eq. 1. 8‘)

N EA <[ w 5 ‘
H(t) = E £ E [ﬁij vidxi:| . (1.52-b)
E S vy

The basic equations of motion (Eq. 1.49 or Eq. 1.51) thus
become linear differential equations. These equations have been
studied at some length by Steinman [14] and by Bleich [9]. The
former concentrated on stgdy of bridges having an inextensible
cable. Bleich's work on this problem, using the full equations of

motion (Eq. 1.49), allowed for the elastic extensibility of the cable
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and led to expressions for the frequency equations that are much

more complicated and that. therefore, could not be solved

explicitly. ' _ |
Another way of treating the linearized problem is by means of

energy relations, wusing trizonometrical series for the approximate

representation of the modes of vertical vibration. This series

method was, as in so many structural problems, first applied by

Timoshenko. Then the application of the Rayleigh-Ritz method in

dynamics leads to a system: of linear, homogeneous equations deter-

mining the natural frequencies. Bleich [9] used this approximate

technique for the determinction of the first three modes of vertical

vibration (and their natural frequencies) of suspension bridges with

hinged and continuous three-~span stiffening structures.
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I-4. A Finite Element Approach to Vertical Vibrations

The finite element method, an effective and commonly used
discretization procedure, provides a convenient and reliable idealiza-
tion of the structure under consideration and is particularly effective
in a digital-computer analysis.

The first step in the fihite—element idealization of the structure
involves dividing the suspension bridge into an apbropriate number of
segments, or elements. Their size is arbitrary; they may all be of
the same size or may all be different. Then, a set of nodal points is
selected along the boundaries of these elements. The displacements
of these nodal points are taken as the depgrees of freedom (generalized
coordinates) of the system.

| The deflection of the complete structure can now be expressed
in terms of these generalized coordinates by means of an appropriate
set of assumed displacement functions. In this case, however, the
displacement functions are called interpolation functions because they
define the shape of the displacement curve between the specified nodal
displacements. Furthermore, as the displacements associated with
any degree of freedom are non-zero over only the neighboring finite
elements, the mass and stiffness matrices will be very sparse, and
the degrees of freedom can be ordered so as to arrange the matrices
in banded form, leading to great reductions in the computational effort
and the computer storage required for analysis. However, as is dis-
cussed later, there is a case where evaluation of the interaction among
all elements is necessary in order to formulate the elastic stiffness

matrix, and this necessitates a full matrix.
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The evaluation of the stiffness matrices for the finite elements
involves expressing the pofential (or strain) energy of the element or
the assemblage in terms of nodal displacements, which leads to an
expression for the stiffnes:s matrices in terms of the finite element
interpolation functions and various other structural propexrties.

Exceptfor satisfying the appropriate continuity conditions at inter-
element boundaries, consitderable freedom exists in selecting the
interpolation functions. The computational effort required in deter-
mining the element stiffness matrices, and the accuracy with which
the element represents the stress and deformation state in the
structure, depends on the interpolation functioans, i.e., on the order
of the polynomial if interpolating polynomials are being used.

The element consistent mass matrix can be determined in a
manner similar to the formulation of the stffness matrix. DBasically,
the kinetic energy of the elernent is expressed in ferms of the nodal
velocities, leading to an expression for the mass matrix in terms of
the mass density and interypolation functions {which were used in
determining the stiffness matrix).

In this section, the underlying principles of structural
idealization for suspension bridge structures are discussed. Also,
stiffness and inertia propezxties are developed for the elements and
for the entire assembled suspension bridge, using the different energy
expressi-ons developed for suspension bridges in the previous section.
Finally, Hamilton's Principle is used to derive the equations of motion,

from which the natural frequencies and modes of vibration are obtained.
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This formulation has the advantage of dealing only with purely scalar
energy quantities. Several numerical examples are included to
illustrate the effectiveness and the applicability of the analysis under
consideration, and to investigate the dynamic characteristics of

suspension bridges.

I-4-1. Idealization of the structure and the displacement model
By the finite element approach, the suspension bridge structure
is assumed to be divided into a system of discrete elements which are
interconnected only at a finite number of nodal points. It has been
assumed previously, in Sec. I-2, that the suspenders are inextensible
and remain vertical during vibration,and that consequently the vibra-
tional displacements of both the cable and the stiffening structure are
identical; these assumptions lead to the following:
1. The element consists of cable and girder (or truss) elements
connected by two or more rigid suspenders, as shown in
Fig. I-3-b.
2. Theelements are connected to each other at common cross
sections or interfaces; this defines the cable nodes as well
as the stiffening girder (or truss) nodes.
3. Since the displacements of each stiffening structure node must
equal the displacements of the corresponding cable node
(joined by a single suspender), it is appropriate to define
only the nodes on the centerline of the stiffening structure,

as shown in Fig. I-3-a.
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The two nodal points by which this type of element can be
assembled into the suspended bridge structure are located at its ends.
Obviously any number of elements may be chosen in establishing the
idealized system, depending on the accuracy desired. If only vertical
'plane displacements are considered, there are two nodal degrees of
freedom at each node: vertical translation and rotation. The inter-
polation functions associated with the two degrees of freedom of the
nodal point, which produce vertical displacements, could be any
arbitrary shapes which satisfy nodal and internal continuity require-
ments, but they are generally assumed to be the shapes which develop
ina u.niform beam subjected to these nodal displacements. These are
cubic Hermitian polynomials which are sketched in ¥ig. I-3-c¢c, and

may be expressed as:

_ = LT
EOl(x)=1-3;§+2:3- s ~
z (§)=3§i-z-§—%—
02 2003
-2 3 . (1.53)
£11(§)=§-z%-+i§ .
112(5‘_):'%‘2{*?‘52’ y

where L is the length of an element in the suspended structure.
With these four interpolation functions, the deflection shape
ve(SE, t) , of the element can now be expressed in terms of its nodal

displacements as:
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v (%, 8)= L) (X) a0+, 1 {(F) qp(t) H455 (X ag(t) +45(X) qult) - (1. 54)

where e is the subscript indicating "element, " and qi(’c) » 1=1,2,3,4

are the nodal displacements for the element. (See Fig. 1-3-b.)

Eq. 1.54 can be written in & matrix form as

v (20 ={850) 1 fqw ], (1.55)

in which {f(i)}z represents the transpose of {f(X) }e ; it is the vector

of the polynomials
) }E = [0 0@ 108 4,0 | (1. 56)

and {q(t)} is the vector of nodal displacement for the element.

By introducing the no:rmalized coordinates

B

51(2’):(1-%) and £,(5) = ( ) , (1.57)

any point X in the element [0, 1] can be referred to in terms of
the "coordinate functions, gl(";"f) and gz(E) , as new coordinates.

Therefore, Eq. 1.55 can be written as

V(€ Epit) = 67 - 28 )y - LETE,, £53-26,), 18,65 | faw)] . (1.58)

Finally, integration of the polynomial terms in the normalized
coordinates is conveniently expressed by the formula

L |
fN,m - _ _ plml!

j €16, dx=qgiminT L - (1.59)

0
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where n! is the factorial product n{(n-1)}{(n-2) ... (1), and 0! is
defined as unity. Also, differentiation with respect to x is given

by the formula

) DRk ) ()] e

I-4-2. Evaluation of structural-property matrices

In practice, the finite element approach frequently provides the
most convenient means for evaluating the elastic or stiffness properties
of the complete structure. These properties are found by evaluafing
the properties of the individual finite elements and superposing them
appropriately. Thus the problem of defining the stiffness properties
of the structure is reduced basically to evaluating the stiffness of a

typical element.

a. Elastic stiffness matrix of the stiffening givder

(or truss)
The strain energy of the stiffening structure due to bending
only (Bernoulli-Euler beam), Eq. 1.32, may be expressed (with the

aid of the displacement model, Eq. 1.58), as

3 N L
=lZ Z: e 1 = (01T ), T (et ) ax |0 aen)
v 2 ge ge e e ’ ’
=1
where N.1 is the total number of elements used to present the ith
bridge span, and Ege Ige is the flexural rigidity of the element; it

is assumed uniform over the entire element. The integrations invoived
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in Eq. 1.61 are performed for the individual elements before the
summation inherent in the assembly process is carried out. Here,
{f”}e is the vector of the curvature model; this vector can be
accomplished by using Egs. 1.58 and 1.59, The resulting curvature

model vector is

{e*, = £¢ . £5) };F':—L-l:z— | (6-126), (1€, -2¢,). (6-12£ ), L(2€, -48,) | -
(1.62)

Eqg. 1.61 may be expressed conveniently in terms of the stiff-

ness matrix, as

N
Vow=1 ) {af ¥ (g} (1.63)
gv 2 RS gee " e ? )
e=1
3
with the understanding that N =Z Ni is the total number of
i=1

elements used to present the entire assembled structure, and

L.

k1 mJ‘ Egejﬁge{f”}e {f”}g dx (1. 64)
is the element elastic stiffness matrix of the stiffening girder (or truss).
The subscript ge indicates ''girder elastic, " while the subscript e
alone indicates ''element. ¥ The integration involved in the evaluation

of [gge]e can be accomplished by using Eq. 1.62 and the integration
property (Eq. 1.59) of the interpolation function. The resulting

stiffness matrix is
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[ 12 6L -12 -6L
- E eI e -61, 4L2 61, ZLZ
[k J, = 555 . (1.65)
g L -12 6L 12 6L
| L 2L® 6L 4L2_J

It should be noted that these stiffness coefficients are the exact
values for a uniform beam without shear deformation because the
interpolation functions used in Eq. 1.53 are the true shapes for this
case. For an analysis of the effect of shear deformations on a beam
element, refer to Ref. [27]; this consideration of shear deformation
naturally leads to rather complicated expressions for the interpolation
functions, and consequently the formulation of the elastic stiffness
matrix is complex and is therefore not presented here. The matrix

itself reads:

[ 12 -6L  -12 61 |
| E I . 6L (4+¢)L2 6L, (z_fI>)L2
Ok ) = —SE= . (1.66)
ge e L’(1+9) 12 6L 12 6L

6L (2-8)I% 6L (4+¢1>)sz

12ZE 1
$ - ___,_ge_.gzﬁ s (1,67)
G M L

in which Gge"‘x‘re is the shear rigidity of the element.

where

As mentioned earlier, the process of constructing the equations

for the assemblage from the equations for the individual elements is
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routine. Nodal compatibility is used as the basis for this process.
Because the displacements are matched at the nodes, the stiffnesses
are added at these locations; therefore, the assemblage stiffness

matrix and the nodal displa:ements can be written as follows

N N
Repl= ) (80, or [Kgpl= ) [x ] . (1.68)
e=1 e=1

and

N
(x}- ) la}, - (1.69)
e=1

Now, the total strain energy of the assemblage due to the

countribution from the stiffening girders (or trusses) can be written

as
V0= g lel Roplie) or v =30 [keglled . @.70)

Finally, when it is nolted that the strain energy stored in a
stable structure during distortion must always be positive, it is

evident that

ST Rl >0 or 20T IK 1 1e) >0

Matrices which satisfy this coandition, where {r} is any arbitrary
nonzerc vector, are said to be positive definite; positive definite
matrices (and consequently stiffness matrices) are nonsingular and

can be inverted. The stiffness matrix is also symmetric and banded.
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b. Consistent gravity-stiffness matrix of the cable

From the strainless or gravitational energy expression of the
cable (Egq. 1.22), it has been found that this energy depends not only.
on the change in the shape of the cable but also on the initial internal
stress, represented by the constant Hw . A similar situation exists
in the buckling problems. In these prdblems, the geometric-stiffness
property represents the tendency toward buckling induced in a structure
by axially directed load components; thus it depends not only on the con-
figuration of the structure but also on its condition of loading.

The finite-element concept can be used to obtain a higher-order
approximation of gravity stiffness by using Hermitian interpolation
functions (Eé. 1.53) in deriving the gravity-stiffness coefficients; the
result is called the consistent gravity-stiffness matrix. Thus the
consistent gravity-stiffness matrix represents rotational as well as
translational degrees of freedom.

Now, the gravitational energy of the cable ch(t) (Eq. 1.22)

and the displacement model (Eq. 1.58), give

[f‘Hw({f’}g{Q}F({f’}g{q};) d§} : (1. 71)

e=1 0

N

)= 1
ch(t) T2

where {f’}e ig-the vector of the slope of the model displacement and

is expressed by

{fl}g': ']-l_‘ [65;1(51‘1)’ Lgl(zgz"gl).’ 6€2(1-€2)a L‘Ez(zgl‘éz)] (1- 72)

Eg. 1. 7! may be expressed conveniently in terms of the consistent

gravity-stiffness matrix, as follows
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N
1 T
v 0 =5 ) el b fad, (1.73)
e=1
in which L
_ ' 4T
[kcg]e = HWJ {f }e {f }e a= (1.74)
0

is the element consistent gravity-stiffness matrix. In the double sub-

script cg ., c¢ indicates ''cable'" and g indicates ''gravity."
Substituting Eq. 1,72 into Eq. 1,74, and using the integration

property (Eq. 1.59) in the resulting matrix, the element consistent

gravity-stifiness matrix can be obtained as

r -

36 -3L  -36 -3L
Ho | 3L 41?2 31, -18
tkcg]e ~ 30L <36 3L, 36 3L .. - 78)
| 3L o122 3L 41?2

The assemblage gravi.ty-stiffness matrix can be obtained by

merely adding the eclement stiffness coefficients appropriately and by

taking the boundary conditions into consideration, it is expressed as
N
EKCG:I - ; :[kcg]e ?
e=1

which has a similar configuration (positions of the non-zero terms)

1.

as the elastic stiffness matrix [KGE

Now, the potential encrgy expression {due to gravity) of the

assemblage may be given a:s-
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Veglt) = % {1 (Kool i), (1. 76)

in which [KCG] is a positive definite, symmetric and banded matrix.

c. Elastic stiffness matrix of the cable

Using the linearized cable equation (Eq. 1.52-b), the strain
energy of the cable due to the additional cable tension caused by

vibration (Eq. 1.19) may be written as

N  HPOLy L EA S ow f
Vel "2 EAx  "2Ea [ =) . ® § vilEgs B 6 (L. 77)
cc ce E ~

With the aid of the displacement model (Eq. 1.58), the energy

expression (Eq. 1.77) becomes

£ A Grod & b T W, [ |
ot [ [ wa] [ [ er .
i=1 "e=l V0 e=1 7

(1.78)
and uvpon using the assemblage nodal displacement {r} in Eq. 1.78, it

can be obtained

V-1 ( c ) r}T[ Z J%ml f{f}de)J{r}

{1.79)
Now, define the vector {E}e as the integral
L
2 Z
AT [ efTag. [L-0 L, C
{f}e—J.{f}edX_ [2'12 > 12] ; (1. 80)

0
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and

N
=2 g, (1.81)
then Eq. 1. 79 becomes
PN 53
~ 1 T| ¢’ ¢ i¢r iaT
== — {f ==t ) 1.82
V0= 3 G| (-2 o )]s e
i1 i=1
or equivalently
~ _1 T
ot =5t Ko}, _ (1. 83)

in which [KCE] is the assamblage elastic stiffness matrix of the

cable; it can be defined as

M.

.:( 3

E A w,
[KCE]= EE [(Z i (£} )(Z—H—— )J . (1. 84)

This matrix is symmeatric and is a partially complete matrix

{i. e., not banded); the arrays are well distributed over the matrix.

A general form for such a matrix and for the banded stiffness matrices
[KGE] and [KCG] is shown schematically in Fig. I-4; only the
hatched blocks are non-zeron arrays. These matrices are the
assemblage matrices for the special case of a suspension bridge

with hinged stiffening strucfures.
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I-4-3. Evaluation of inertia-property mairices

Making use of the finite-element concept, it is possible to eval-
uate mass influence coefficients for each element of the bridge by a
procedure similar to the analyses of element stiffness matrices. The
degrees of freedom of the element are the translation and rotation at
each end, and it is assumed that lthe displacements within the element
are defined by the same interpolation functions used in deriving the

element stiffnesses; the redult is called the consistent-mass matrix.

Consistent-mass matrix

When interpolation displacement models are used, Eq. 1.58
can be inserted into the expression for translational kinetic energy

(Eq. 1. 36) to obtain,

3 N
Fm=1)" [ZmE j (017 ta1, )" (T {éi}e)dsz} . (1.85)
i=1 = e=l 0

whezre ;{‘le is the mass of tae bridge element per unit leangth.

Fq. 1.85 can also be written as
3 Ny
¥ (1 %Z(Z (a1f &, {q}> : (1. 86)

where [{'ﬁ]e is the consistent mass matrix of the element which is

defined as

(e}, (6 ax . (1. 87)

| ]
N
OL_J
I
o“mwt'*



-68-

The integration involved in the evaluation of [ﬁ'ze] can be
accomplished by using Eqs. 1.58 and 1.59. The resulting consistent-

mass matrix is

156  -22L 54 13L |

% 2 2

o] m L |-22L 4IF -BL -3L
m] = . (1.88)

e 420 54 ~13L 156 221

131, =312 221, ‘417

The physical meaning of the different coeffic‘ients of this matrix
is shown in Fig. I-3~c. The mass matrix of the complete element
assemblage can be developed by exactly the same type of super-
position procedure as that described for development of the assemblage
stiffness matrix. The resulting mass matrix will have the same
general configuration (that is, arrangement of non-zero terms) as

the stiffness matrices [KGE} and [KC The assemblage con-

ey

sistent-mass matrix is

N
[f1=3%, w1, (1. 89)
e=1

and, therefore, the translational kinetic energy can be written as
[a] _ 1 e T 2 .
T (t) = > {17 IMI {2} (1. 90)
The evaluation of the consistent-mass matrix, when the effects
of both shear deformation and rotary inertia are accounted for, is
very involved (see Ref. 27). However, if the kinetic energy due to

translation and rotation is considered and the shear deformation is
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neglected the resulting consistent-mass matrix takes the form

156 -221, 54 131, ] (36 3L -36 3L
o |-z21, 4t® Ci3n o312 m 2 | 3L 41f 31 -1f
[m] s € +..—_?;g£.—_e— R
e 420 54 -13L, 156 22L 0L | 3¢ 3L 36 -31
13L -31% 22L 417 | 3L -rf 3L 41
(1.91)

where m e is the mass of the stiffening girder (or truss) element

per unit length and e is the radius of gyration of the element cross
section. The first term in Eq. 1.9l represents the translational
ineriia of the element, i.e., the mass matrix [fﬁ]e s while the second
term represeuats the rotatoryinertia. A derivation of the general con-

sistent-mass matrix can be found in Ref. 27.

I-4-4., Variational formulation of the matrix equations of motion

To establish the matrix equations of motion, one can make use of
the scalar energy quantities, already obtained, in a variational form.
The most generally applicable variational concept is Hamilton's
Principle (Eq. 1.37), which leads directly to the equation of motion.

Now, inserting Kqs. 1.70, 1. 76, 1.83 and 1. 90 into Hamilton's

Principle (Eq. 1.37), one can obtain for the assemblage

k2

1 [J ~ ° o ’

5 Jt (097 03] - G R ) () - (0 D g1 (e - (TP T gl e
1

=0



~-70-

Applying the variational operator yields

ka -
J ({6%}T["1\’/1]{%}- {Gr}T‘:[KGE]+ [KCG]+[KCE]} {r})dtz 0 . (1.92)
b

Integration of the first term by parts with respect to time gives

tZ - t
‘J (631001 (3] at = ({arﬁﬁm})
Y

&2 -
- J {6r1fIMI{*}at . (1.93)
t

Again, according to Hamilton's Principle, the tentative displace-
ment configuration must satisfy given conditions at time ty and ty -
Hence, {51‘(!:1)} = {51’(1:2)} = {0}, so the first term on the right hand
side of Eq. 1.93 vanishes. Substituting the remaining term into

Eq. 1.92 gives

t

F {ﬁr}T (MI{#}+ ([K LA SR [KCE]) {r}]dt=
t

Since the variations of the nodal displacement, {6r}, are
arbitrary, the expression in brackets must vanish. Therefore, the
matrix equation of motion for the assemblage can be obtained in the

form

[M1{3}+ (R, 1+ [R o1+ [K 5 ))Txd= {0} , (1. 94)

where the tilde indicates that in this matrix equation of motion neither
the shear deformaticn effect nor the rotatory inertia effect has been

¢onsidered. However, if these secondary effects are taken into account,
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Eq. 1.94 becomes

IMI{F} + (Kl + (Kool (Kl )ied = {01, (1. 95)

N
with [M1 = 2:31 [m]e ; [m]e is given by Eq. 1.91 and [KGE] is

given by Eq. 1.68.

Eq. 1.94 (or Eq. 1.95) is the governing matrix equation of the

vertical vibration of susper.sion bridges. There are two separate

parts of the problem, i.e., two independent eigenvalue problems,

which must be considered. They are:

1.

The symmetric eigenvalue problem having the symmetric

modes of vertical vibration,which include additional cable
tension, and in which there are an even number of internal
nodes along the spans. Here, H(t) is not zero and accordingly,
the stiffness matrix [KCE] igs not a zero matrix.

The antisymmetric eigenvalue problem having the antisymmetric
modes of vertical vibration,which cause no additional cable
tension, and in which there are an odd number of internal nodes
along the spans. Here H(t) is zero, and accordingly the stiff-
ness matrix [KCE] is a null matrix.

Thus, for the symmetric modes:

[KS] = [KGE] + [KCG] +[KCE] , (1. 96)

and for the antisymmetric modes:

[KAS] = [KGE] + [KCGJ . (1.97)



-72-

Then the matrix equations for the free, vertical-undamped
symmetric and antisymmetric vibrations of the suspension bridge
structure are, respectively:

[M]{’fsh [KSJ{ rgl= {o}, (1.98-a)

and

[MILF 3+ [K I r,gd= (0] (1. 98-b)

By writing the solutions of Eq. 1. 98 in the familiar form
_ % oq itet _ iwt | L
frg3= {£gle oo lragtd=ir, 3™ 5 1=Vl (1.99)

and substituting Eq. 1.99 into Eq. 1.98 (leaving out the common factor

elwt), the following equations are obtained

(-w? [m]+[KS]){§fS}: T (1.100-2)

(-wz[Mh[KAS]){&*AS}: fo} (1.100-b)

where {;fs} and {;'TAS} are the vectors of the displacement amplitudes
(which do not change with time) of both symmetric and antisymmetric
vibrations, respectively, and (v is the natural circular frequency.

Now it can be shown by Cramer's rule that the solutions of
these two sets of simultaneous equations (Eqs. 1.100-a and b) are

of the form

(1= {0} , (1.101-a)
57 eyl Tl ||

{o}
Tk gl e Ml |

{fAS}: (1.101-b)
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Hence a nontrivial solution for each problem is possible only
when the denominator determinant vanishes. In other words; non-

zero amplitude free vibrations are possible only when

lixg: - w®tal]| =0, (1.102-a)
and >
Ik 1-w®Imd] = 0 . (1.102-b)
Egs. 1.102-a and b are called the frequency equations of the
symmetric and antisymmetric vertical vibrations, respectiveiy.
Expanding each determinani will give an algebraic equation of the
Nth degree in the frequency parameter mz for a systermn having N
degrees of freedom.
Because of the positive definitiveness of [M], [KS] and
{KAS]’ the roots wili s wg s mae g (,glz;{ (eigenvalues) of each problem
are real and positive quantities; Eqs. 1.100-a and b provide non-

' £
zero solution vectors {;S} and {I”AS} (eigenvectors) for each

root wZ of the symmetric and antisymmetric problems, respectively.

I-4-5. Illustrative numerical examples

Three examples of suspension bridges with widely different
properties are presented to demonstrate the applicability of the
analysis developed herein, and to cover the dynamic characteristics
of these suspension bridges. In these examples, the free vertical
vibrations of suspension bridges are analyzed. The natural frequencies
and modes of vibration of the system are computed, and the distribu-

tion of the energy stored in the various members of the structure is
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also determined. A knowledge of the energy of vibration of a given
mode of vibration of a suspension bridge is essential if any study of
the damping and exciting forces is to be made. Furthermore, if the
motions and resisting actions of the various members of the structure
are kept clearly in mind, it will not beldifficult to anticipate which
are likely to have a significant effect on a given mode.

Also, the influence of both the extensibility of the cable and the
continuity of the stiffening girders (trusses) upon the vertical vibration
frequencies and modes is considered in these examples.

Lastly, the computation of the eigenvalues wf and the eigen-
vectors {fi}, i=1,2,..., N, for both the symmetric and the anti-
symmetric vibrations, is worked out through a Householder-QR-
Inverse Iteration Solution subroutine. A double precision version is
available from the Caltech computer (IBM 370/158 system) program
library and is written for the solution of the problem in the standard
form ([Al-AL1]){x}= {0}, where [A] is a real matrix, ) is the
eigenvalue, [I] is the unity mairix and {x} is the eigenvector. Con-
sequently, Eqs. 1.100-a and b must be converted to the standard form
by premultiplying each by the matrix [M] " Thus, 2 matrix inver-
sion subroutine is also needed and the final forms of the eignevalue
and eigenvector problems for both symmetric and antisymmetric

vibration, will be

([M]“l[KS] - wz[ﬂ){';fs}: {0l , (1.103-a)

and
(M1 K, 1 - wP1]) {5 3= [0} . (1.103-b)
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Finally, for simplicitiy of presentation.the effects of shear
deformation and rotatory irertia will be neglected (in all examples),

but if required, they can be accounted for without difficulty.

Example 1. (One suspended span)
The suspension bridge shown in Fig. I-3-a, having one sus-
pended span,has the following properties:

a) stiffening girder (or {russ)

1, =0 = 2800 ft. , I . =1 =128400 ftZin%
g2 g
%k . a B . . B
W, = W= 2.85 Kipfit. EgZ = Eg = 29600 Kip/in®
b} cable
£, =F= 232 ft. , A= 1.91.5 inZ
H_ = 120040 Kips. , E_= 26000 Kip/in?
L = L, = 4000 ft.

The number of elements (N'2 = N) was taken to be 20 elements;
therefore, the number of exsected modes is (N-1) (i.e., 19 modes
are expected), and the lengthof each element L is 140 ft.

The two eigenvalue problems (Egs. I.103~a and b) have been

solved by the Caltech digital computer (IBM 370/158) system).
The computed natural periods and frequencies, for different cases,
are presented in Table I. 1, and the mode-shapes of both translational
and rotaticnal displacements are shown in Fig. I-5.

Bleich [3] calculated the first two symmetric modes for the same

bridge by sclving the frequency equation (involving trigonometric and
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TABLE I-1

a. Natural Frequencies and Periods of the Symmetric Modes
Effect of the Extensibility of the Cable
(One Suspended Span)

Mode Extensible Cable Inextensible Cable

Order| Frequency Period Frequency Period
(rad/sec.) (sec. ) (rad/sec.) (sec.)

1 1.397460 4.496146 0.481302 13, 054559

2 2. 704650 2.323105 2.653828 2.367593

3 6.847194 0.917629 6. 841255 0.918426

4 13.118742 0.478947 13.116910 0.479014

5 21.510308 0.292101 21.509355 0.292114

6 32. 068751 0.195929 32. 068340 0.195931

7 44, 883375 G.139989 44. 883155 0.139990

8 60. 088212 0. 104566 60. 881410 0. 104566

9 77.848210 0.080711 77. 848260 0. 080711

10 97.978733 0. 064128 97.978832 0. 064128

b. Natural Frequencies and Periods of the Antisymmetric Modes
Comparison Between the Finite Element Method and Exact Solution

(One Suspended Span)

Finite Element Method Exact Solution
Mode {Using Eq. 1.104)
Order | Frequency Period Frequency Period
(rad/sec. ) (sec.) (rad/sec.) (sec.)
1 1.333049 4.749018 1.331842 4. 717666
2 4.487016 1.400304 4.490103 1.399341
3 9.716318 0.646663 9. 713860 0. 646827
4 17. 046238 0.368597 17.020489 0.369154
5 26.513585 0.236980 26.412797 0.237884
) 38.186522 0.164539 37. 891516 0.165820
7 52. 176271 0.120423 49. 739350 0.126322
8 68. 640026 0.091538 67.139526 6. 093584
9 87.697946 0.071646 82.281857 0. 076362
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hyperbolic functions) resulting from the linearized equation of motion
(Eq. 1.49) and the linearized cable equation (Eq. l.52); he used a
process of trial and error, and he found that:

w, = 1.400 rad/sec. and w, = 2.696 rad/sec.,
Then, using the approximate energy method (Rayleigh-Ritz), he arrived
at |

w, = 1.402 rad/sec. and w, = 2.705 rad/sec.

The method of analysis under investigation gives

wy = 1.3975 rad/sec. and W, = 2. 7046 rad/sec.,
in addition to the higher frequencies.

For the antisymmetric case, the frequency equation ‘res.ulting
from the linearized equation of motion (Eq. 1.49 with H(t) = 0) has

a simple form:

2 2

2 dn w E I
:__7'_1_1_11 _gb_ H +_____...g_.g. R _n:1,293, co .
n .!ﬁz v’; W .EZ

(1.104)

It is easy, now, to compare the results obtained by the method
of analysis under study and the results obtained by the frequency ex-
pression (Eq. 1.104). Table I-1-b.and Figs. I-6 and I-7-a indicate
a very close agreement between the two solutions. The degree of
accuracy increases as the mode order decreases (i. e, in the higher
modes the finite element solution represents an upper bound to the
exact solution).

To demonstrate the influence of the extensibility of the cable,
calculations of frequencies and modes with cable extensibility and

without are shown in Table I-1-a and in Fig. I-8. Inextensibility of
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the cable is mathematically expressed by the equation ECAC ~
I{&)LE
i. e.» A" 0 ); therefore, the second term of Eq. 1.18, ex-
pressing :hec strain energy of the cable, equals zero, and accordingly,
the stiffness matrix [:KCE] in Eq. 1.94 equals the null matrix. In
this context the stiffness of the cable is seen to arise largely from
its own weight and from the dead load upon it, and as indicated before,
the interaction between the cables and the stiffening girders (or
trusses) is regarded as the interplay of the gravity stiffness (essential-
ly nonlinear) of the cable and the elastic stiffness (linear) of the
stiffening structure.

Inspection of Table I-1-a and Fig. I-8 shows that the effect of
cable stretch on the frequencies is limited to only the first few modes.
This suggests that the actual extension of the cable in the higher
modes is quite small and thiat eonsequently H(t) is alsc small.

Fig. I-7-b also shows the rnagnitude of the cable tension H(t) which
decreases rapidly as the nuimber of modes of vibration increases. On
the other hand, Fig. I-8 shows that extension of the cable permits a
mode (the fundamental mode) that is quite different from that which
results with an inextensible cable.

In Fig. I-9, the varicus energies accumulated in the cables,
the stiffening structure and the system as a whole have been considered
at each of the symmetric and antisymmetric modes. In this figure,
the normalized factor is designated by the total energy of the partic-
ular mode. The relative contribution of the strain energy of the

cable to the total energy storage capacity of the structure is greatest



_80-

I3 00R0°0 =8l

‘73 $%E0°0 ~8LL

‘I5 2210 ShlL

‘36 88591°0 =214

‘I3 BBLEZ’0 <DL

"33 0EGSED ~ Al

336 BOLNG°0 ~ 81

‘I35 1868E°T = B

T SMLh e T

FEVD DRLIRVASIINY 40 NOILMOE  LVID  HIOURS

*(UOT1eICIA JO S3POW DTIJSWUIASIIUR) UOTINTOS JOBXO Y3 O]

3004 SH HI S

300 54 W B

006 SY ML L

3004 54 W9

0MSY HS

3009 S KA

05y e

004 S W2

W 5 15T

TI% BONO'C AL

2% 99680°0 9l

33 9122170 ML

‘U3 6859170 =21t

33 BBLEZ'D =0

T3S 0589670 ~ 6l

236 60LMD = AU

"33 1000E°1 = N

IR LSBT e U

AAAA A AAAA
VYV VV VYV

ah AN AN AN
VV YV VYV

A ANNANAA
VVVVNVY

AN ANAN
I AAVAVAAS VALY,

ANANWANIANIAN
ViV IV VIV

JANVANVANVAN
ViV VIV

JANVANEVAN
NV

pN

CSINIGd 00N 341 Jb OTUYVIWI) HOLIAGS 136X3

S3dPHS-300W  JTHLIWAS- 1IN

W04 B¢ W B

00549 M8

M EY KL

00 S WD

00 EH WS

0MEY MWD

0S¥ BYE

0 S ONT

Y IS 1

TIF 0WSE0 =

TIE P9S80

33 0E00R1 =

336 ZOBMM

osoy} pue yoeoadde juswia[o-93Tul oy} wox] sadeys-opoul 9y} uesMmlaq uosiieduron

3% S93L0°0 B!l
335 51600 “HIL
*236 TAZ1°0 =hIL
“3¥ HSN81°0 =2l

235 ©6RET0 =0iL

=9

=z

SUkiaatras
\AAANANS

A NNAA
VV VNV NVVY

\/\/\J\/\/j
YVV YNV

ANVANIANANIAN
VoV VIV

AN ANYANYA
\VARVARVARV/

JANVANNA
NV

N

CSINIMO3IS OZ#H) OOMLM (N33 31114

SIMHS-I00H  IIULIHAS-TING

*9-1 *31q

3008 S KL E

0M SY HL B

N S ML L

004 SH M9

3OO0 S ML S

008 5S4 WL b

30M S B8 €

3006 S 08 2

3004 S¢S 1



30 0 53 60 0

CIRCULRR FREQUENCY ¢RAD/SEC.)

u

3

INCREMENT HC 1 )/H.%

2
T

-81-

Fig. I-7-a.

MRIN SPAN OF A SUSPENSION BRIDGE
[ PNTI-SYMMETRIC MODE SHAPES
EXACT SOLUTION I
L FINJTE ELEMENT METHOD N —
o
L 1 1 — ] 1 ] 1 1 I3 L H s Iy
1] 1 2 3 4 H 18 iH 12 13 1%

[:] 7 ] ®
ANTI-SYMMETRIC MBOE SHRPES

Comparison between frequencies from the finite-
element approach and those from the exact
solution (antisymmetric modes).

MiRIN SPAN (F A SUSPENSION BRIOGE

AOD) TIONAL HORIZANTAL COMPONENT OF CASLE TENSION
FOR DIFFERENT STHMETRIC MODE-SHAPES

FINITE ELEXENT METHOO

— .
I} f { 1 1 i L 1 i 1
[+ i 2 1 4 5 B 7 ] £l 10
SYMMETAIC MODE-SHAPES
Fig. I-7-b. Magnitude of the horizontal component of additional

cable tension, H(t) for various symmetric modes.
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in the first two symmetric modes, while the re latiw}e contribution
of the strain energy of the stiffening girder (or truss) builds until
it governs almost all of the potential energy of the structure.
Therefore, the stiffening structures have a significant role in
determining the modes and frequencies of the higher modes of
vibration; these higher modes with their shorter waves involve
sharper curvature in the stiffening girder and, therefore, greater
bending moment. Furthermore, they reflect accordingly the
influence of the stiffening girders' stiffness to a greater degree
than do the lower modes.

Generally, the results obtained by using this analysis satisfy
the principle of conservation of energy so that for each mode the

total potential enexgy is equal to the total kinetic energy.

Example 2. (Three suspended spans with hinged stiffening structures)
The properties and dimensions of the second suspension bridge
are:
a) stiffening girders (or trusses)

- side spans

b -2, = 1100 ft. Iy = Iy = 128400 £t2 in?

E,p = Egy = 29600 Kip/inZ Wy = ‘§§3 = 2. 85 Kip/ft. )
b) cable |

£, = f- 232t A_=191.5 in®

E_= 26000 Kip/in;2 H_ = 12040 Kips.

3.
L :Z L., = 6080 ft.

i=1
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The number of elements in each side span, N1 = N3 s was
taken to be 1} elements, providing 10 modes per side span. FEach
element has a length 1. = 140 ft.; the number of elements in the
center span N2 » was take:n to be 28 elements of the same length,
giving 27 possible modes.

Table I-2 shows the computed natural pericds and frequencies
of vertical vibration for the symmetric and antisymmetric cases
respectively, while Fig. {-10 shows the modes of vibration.

Again, to illustrate the effectiveness of the analysis under con-
sideration, a comparison between the obtained results and Bleich's [3]
resulis has been made. Bleich's frequency equation (resulting from
the linearized equation of motion, Eq. 1.49, and the linearized cable
equation, Eg. 1.52) for the symmetric modes gives:

w, = 1,051 rad/sec. as compared with w, = 1.05144 rad/sec. from

1

the method under considerstion. Bleich's approximate method

(Rayleigh-Ritz method) givas: W,y = 1. 055 rad/sec., w, = 2. 255 rad/sec.

and w, = 2. 699 rad/sec. as compared with w = 1.055 rad/sec. ,

Wy = 2.254 rad/sec. and w., = 2.698 rad/sec., for the first three

3
symmetric modes.

As seen from Fig. I-10, in the lowest three modes the center
span and side spans vibrate together but in the higher modes the center
and side spans vibrate sepzrately. This illustrates the role played

by the cable during the first few modes of vibration where the cable

creates an interaction between the side spans and the center span.



-86 -

-1 dIdVL

8096€0 °0 | GGLPE9"8ST| 0€E2H0 0| 6€9Z¢H "8F T || L¥S0¥0 0] 908196 *¥ST || 80€H%0 ‘0| 91%908 "I¥1 | 12
STIYEVY0 "0 | PIPSZL "FPPI |} I8%FH0 0 | PPLOSZ "I¥ 1 || GLOFTO0 "0| BSICT9 0% T || SL9%¥0 "0 | 9S1€H9 "OF%1 | OC
¥€9L%0°0 | L29906 "TE€T | 60L1S0 0| 9¥€60G 121 || 06598%0 0] ¥8660¢€ "621 || 68%€S50 "0 | 0ZTL9% "LIT | 61
999750 *0 | POLLYT"GTT )| $995950°0|S68GL8 "ZTIT || €86950°0f LLOS9Z 011 |f £€86950 0| 620592 "OT1T | 81
LO¥8G0 "0 | 9999LG "LOT || 218€90 0 | $L2¢9¥% *86 821690 "0| SL¥H92°90T || ¥995990 "0 092989 46 L1
68%690 "0 { £9002% ‘06 8202L0°0 | 6TL2€EZ "L8 20€€L0°0} T9691L "48 828%L0°0| $99896 €8 91
€90%L0 *0 | 0¥5S€8 "¥8 L9€080°0 | 0¢STIBT "8L 8¢28%L0°0f 199896 *¢8 €0€820 "0 | 86LTIPE 9L Gl
€¥2680 ‘0 [ 62€50¥ ‘0L 612960 °0 | 86800€ *99 810€60°0] 0ELLPS LY 6712010 |8LTI0OTIS"19 | ¥I
928860 °0 | ZHS8LG €9 || LGSF0T 0 |291€60 09 6%1201°0| $52016 19 G16G0T°0|28622¢ 6% el
LLZLTIT 0 |09%GLG €S 9061€T1°0|L06€EC9 LY 1€9121°0| 999L99 "14 8GOI¥I "0 |8EILYS'¥¥ |21
LIC6ET 0266660 SV 292¥%1°0 |LEBESS 'EP [ 99TLPT 0| 18%L69 2% GSTILYPT°0|{018L69 2% [N
9Z%091°0 | 919991 "6¢ 85965981 °0 | 29288L "¢¢ L9¥S91°0| 12¥%2L6 "LE 02L961°0|2L96¢€6 "1¢€ 0T
€96802 *0 | 82¥%890 ‘0¢ 8%9L12°0 [L86198 "82 80€622°0]82900% °LZ 01€622°0 | 2L%00% "L2 6
LI¥%€2 0 | S%%€08 "9¢ $25LL2°0 | ZF10%9 22 LE9LEZ "0 L220%¥ "9¢ 0%9262°0 | 9990L% "1¢ 8
60¥¥€E€ 0 | ¥€688L 81 28¥%89¢ °0 | $99190 L1 L6689¢ 0| TPLLZ0 LT 081¥%0% 0 | ¥679%S "G 1 L
8L788¢ °0 {6L1281 '91 600LG% "0 | 86%78%L "C1 192%0% "0 | LO¥Z¥G "G1 0926L% 0| 09%01T "€1 9
SG18885°0 |L060L9°01 69GLEL "0 |2LL81S°8 0PL9%9°0 | LGTGIL "6 292L.88 "0 | 8%4180 "L g
LS666L°0 |66ETS8 "L 170506 °0 [ 2E¥2¥6 °9 961L.88°0{ 890280 L €98L16°0|9295%8 "9 14
¥81292 1 [ S208L6 ¥ 61€998 °1 {92¥89¢ ¢ G0€66¢ "1 | 61206% % G6¥8Z¢ *7|88E869 ‘T €
80L60G "7 |299€09 "¢ 008199 °2 |20409€ "2 928%91°¢ | 1191661 GZ8L8L "2 | ¥6LEGT 2 (4
G88T11Z % |GLLI6T T €9%996 "9 | £98¥%90 1 CS9LTIL 7| 9¥81¢CE "1 Z¥LGL6 "9 [ 0FF1G90 °T 1
(*098) I Ko9s/pea)m |l (-oos)T |(-Oos/pea)m| (-0os) T, (*oos/pea)m|l (-oes) L (oos/pea)m g
potxsg | Aomenboa g potaisg Aouonbox g || porisg Aouonboxg| porreg Aouenbexg | §
o
SOPOW DIIIDWWASIIUY SOPON JTIoWWAS || s9poN DI WIUAS 1IUY SOPOW OTIjowWwAG m
93pixg 2d4AJ, uedg-snonurjuon o8ptag odLJ uedg-poduly m

o8p1xg uorsuadsng jo adLJ uvedg-snonurjuor) e pue odAJ, vedg-peSull ' usemjlayg uostiedUIO)
(suedg pspuadsng 92aY]L)

SOPOA OlIjoWWIAS Uy oy} pue d1Ijowwikg oy3 JO SpPOIIsg pue sardusnbei g einjeN




Reproduced from
best available copy.

-87-

ISPENS 10N BAIGE WITH THREE SPRRS SUSPENSION BHLOGE W11 THREE SAANS
{(HINGED STIFFERING GIROERS) CHINGED STIFFENING CIADEAS)
STHMETHIL HOUE-SHPES RAUTI-SYHKETAIC HACE -SHAPES

WU s oo

P -, .
s 3 s = e meamse wsmw s N /\/ N T3 02308 e

: I A AN
: A, \/

owa s \ //\r wesre. s nm s /\ /\/\/—.;.w.m

. _ vame M.m/\ /\ A 1o oo .
VoL \ VY

‘ e s ANA N AN
EYAYAVEY VRV

» g | ! e ne 4/\ /\1 /\ l/\ o 228
y 7 oA vy

EAVAVAS MALPAAY
oy S J/\LAV /\vﬂv/\..‘.n,,m
T L1\
o o Wil S: /\\/A\/ﬂ\ A MAV{\;\W N, jﬂU\/ -

e % f\\ \;@i W\ S LV R Y1 P
— WAy e f\\f ‘,f ‘V“’
iy ¥ ¥ VSV JVVVVVVVQL‘"‘
[\/\M—W\?Aﬁjﬁ m,‘./\vhvf\\fj\v /\vl\vfi\vf\v.mm
1 S T PY ME——
it Mﬂvﬂw\/ﬂ\f\ V/\V f\uﬂvﬁv. .
e AR e e s AN

Fig. I-10. Mode-shapes of the symmetric and the anti-
symmetric vertical vibration (Example 2) .

:

&

)
S

5

é
=

r"

H
1




-88-

The antisymmetric deflections of the cable and the stiffening
structures cause no additional cable tension H(t) because the down-
ward movement on one side of the centerline of the center span tends
to increase the cable length, while at the same time the upward move-
ment on the other side of the center span tends to reduce cable length,
and the effects balance each other. In consequence of the lack of
additional cable tension, Hi(t) , there is no interaction between the
center span and the side spans; i. e., two types of independent vibra-
tion are possible. Both types of vibration may occur at one time,
and any mode of one type may be combined with any mode of the other.

The distribution of the energies stored in the various members
of the structure, for both the symmetric and antisymmetric cases, is
demonstrated by Fig. I-11. From this Figure the significance of the
relative contributions of the cable and the stiffening structures to the
total energy storage capacity of the bridge structure can easily be
extracted. The lower modes reflect the influence of the strain and
strainless (gravitational) energies of the cable, while the higher
modes with their relatively shorter waves involve sharper curvature
in the stiffening girder (or truss) and, therefore, involve greater
bending moments. Furthermore, they reflect accordingly the influence
of the stiffening girder to a greater degree than do the lower modes.
It is worthwhile to note that in the antisymmetric modes, all of the

cable energy storage is of this strainless, i.e., gravitational energy

type.



§~ -— — e g 2
I & -omens e
o Lol
2L o e
(= 'I
/ SUSPENSION BRIDGE WITH THREE SPANS
8| / {HINGED STIFFENING GIRDERS }
s / ENERGY STORAGE CAPACITY
/ OF THE THREE SUSPENDED SPANS
o FOR DIFFERENT STMMETRIC MODE-SHAPES
&L
STRAIN ENERGY OF THE GIRDERS /TOTAL EMERGY ...
KINETIC ENERGY OF TME SYSTEM /TOTAL ENERGY
)_ﬂ_ L STRATM ENERGY OF THE CRBLE /TOTR. ENERGY __ _ _ _
ED GRAYITATIONAL ENERGY OF SYSTEM/TOTRL ENERGY _ . _ _ _
2.0 %
0 A
= 4 /
= |
wid v
N A
@ 4
s |
¥
. ,
e
Bl
S YR @
T L ...
2 1 1 TN 3 b b : T i S b G p i b STITIY TITURN SIS $ooooe PO S Y
ot 2 3 i g H 7 8§ 16 11 13 . A I I
SYMMETRIC MODE-SHAPES
(a)
o
g r S
p
E e
af -~
/ SUSPENSION BRINGE HWITH THREE SPANS
gl / (HINGED STIFEENING GIRDERS
- / ENERGY STORAGE CAPRCITY
/ OF THE THREE SUSPENDED SPRNS
2 ¢ FOR DIFFERENT RANTI-SYMMETRIC MODE-SHRPES
= rd
- :"r, STRAIN ENCRGY OF THE GIRDEAS /TOTRL ENERGY  ccccwa
KIMETIC EHERGY DF THE SYSTEH /TOTAL EMERSY
8 ¢ GARYITRTIONGL EMNERGY OF SYSTEM/TOTRL ENEPGY  .....c.
~al
(é o
&
0y,
w8
wl
=
(a4
g5l
2 o
w .
S ‘qu
B
6 r <
.
g .
ar ‘o
o
e & BN
2 | | ! 1 ! ) T A GRS S [ SRPLTPTCUIT PP SRR SO S SN WP W o
a ] 2 3 4 LY 5 12 13 N 15 18 17 i3]

Fig. I-11.

8 9 10 "
ANTT-SYMMETRIC MODE-SHAPES

(k)

Relative energy storage capacity for the hinged-span

suspension bridge (Example 2) .



-90-

Table I-3 illustrates the effect of the inextensibility of the cable
upon the frequencies of free vertical vibration for the symmetric
modes, while Fig. I-12 shows a comparison between the modes of
vibration for the extensible cable and those for the inextensible
cable. It is seen that the role played by the extensibility of the
cable is confined to only the first few modes where the interaction
between side and center spans exists. In the first mode, the inex-
tensibility effect increases the fundamental period to two times
its value when the cable is extensible, and for the second and third
modes the magnifications are about 13% and 2%, respectively. This,
again, demonstrates the significant contribution at these modes from
the elastic strain energy of the cable.

Anocther effect of inextensibility is seen in the independent
vibration of both the center and side spans. It is desirable to re-
examine more critically, the use of the expression for an inextensible
cable (Eq. 1.23). This inextensibility expression, which is a result
of the conventional deflection theory, requires that the algebraic sum
of the areas between the deflection curve and the line of static
equilibrium be zero. But it has already been shown, by considering
a higher order term in the cable equation (Eq. 1.17), that the form
of this conventional expression for inextensibility appears to imply
that the gravity stiffness of the cable is negligible. This is seen to
be misleading, because were this gra.vity stiffness negligible, there
would be no potential energy contribution from the cable at all, and the

only energy contribution would be from the stiffening girders.This is
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certainly contradictory and violates the fundamental assumptions which
say that the cable and the stiffening structure have the same vibra-
tional displacement.

Thus, the relation between the inextensibility condition and the
gravity stiffness, heretofore virtually ignored, must be considered,
and therefore the general problerﬁ of the dynamics of suspension
bridges still involves the interaction of the two major members (the
suspension cables and the stiffening structures), regardless of the

extensibility of the cable.

Example 3. (Three suspended spans with a continuous stiffening
structure)

The properties and dimensions of Example 2 have also been used
to compute the frequencies and modes of vibration of a suspension
bridge having continuous stiffening girders (or trusses). The computed
natural periods and frequerncies are presented in Table I-2, and the
mode-shapes are shown in Fig. I-13.

In order to judge the effect of continuity upon the frequencies of
both the symmetric and antisymmetric modes, the frequencies of the
suspension bridge with hinged stiffening structures (Example 2) are
shown in the same table. This table suggests that the adoption of
continuous stiffening structures in suspension bridges offers the
advantage of increased stiffness in comparison with the hinged stif-
fening structures normally used in suspension bridges. This increased
stiffness has the tendency to increase the value of the frequencies, as

seen from Table I-2. No remarkable long span suspension bridge



Fig. I-13.
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having continuous stiffening structures has been acknowledged in the
literature. However, the cffect of a continuous stiffening structure
on the dynamic characteristics of a suspension bridge is an important
question in a comprehensive study of the dynamics of suspension
bridges.

Inspection of Table I..2 revéals that the effect of continuity of
the stiffening structure upcn the frequencies of the symimetric modes
is very small, while the effect upon the frequencies of the anti-
symmetric modes is considerable.

As a comparison, the approximate energy-method (Rayleigh-
Ritz method) gives w, = 1. 060 rad/sec. for the first symmetric
mode and wy = 1.495 rad/sec. for the first antisymmetric mode,
as compared with w, = 1. 0549 rad/sec. for the first symmetric
mode and w,; = 1.4918 rad/sec. for the first antis;rmmétric mode,
from the analysis under coasideration.

Again, it is desirable to compute the amount of potential energy
stored elastically in the stiffening structure and in the cable separately
from that due to the change of elevation of the structure, at different
modes, in order to anticipate which are likely to have a significant
effect on a given mode. Also, because the damping action differs in
the various members of the bridge, the total energy lost per cycle
depends upon the distribution of the potential energy. Fig. 1-14 shows
the distribution of the energy storage capacity in the various members
of the structure for both symmetric and antisymmetric modes of
vibration. The relative distribution of the energies is seen to have the

same trendasina suspensionbridge having hinged stiffening structures.
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span suspension bridge (Example 3).
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I-5, Effect of Tower Stiffrness Upon Free Vertical Vibrations

In the preceding analysis, it was assumed that the tower cable
saddles were free to move norizontally either upon roller nests under
the saddles or by means of rockers at the bases of the towers. How-
ever, the construction of hinged tower bases is often found impractical
especially in larger bridges, and so fixed tower bases are often
resorted to. Fixed saddles provide one of the simplest and safest
constructions, but the friction forces accompanying this design are
so high that the tower tops :move in unison with the adjacent cables.

A consequence of the fixed tower-base or fixed saddle is that
the horizontal movement of the top of the tower is accompanied by a
horizontal component of the force between the cable and the tower.
Thus the horizontal force in the side spans will differ from that in the
center span, but ‘uéua.lly by only small amounts if the towers are well-
designed. A modification of the analysis for this complication will be
made. Furthermore, the vibration of the entire tower should be con-
sidered as the tower is an important member of the suspension bridge.

In general this section will include analysis of the following:

1. The effect of the elaslicity of towers on the free vertical
vibration of suspensicn bridges.
2. The in-plane free horizontal vibration of the towers, i.e.,

their vibration in the longitudinal direction of the bridge.
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I-5-1. Correction for strain energy of the cables

In the entire preceding analysis, it was assumed that the
horizontal component of cable tension, H(t) was the same on both
sides of the tower. However, this is not true if the tower resists
displacement at the top. If, for example, it is deflected toward the

side span as shown in the upper half of Fig. I-15, the increase in
tension in that span, Hl(t) or H3(t) » must equal the sum of the
center span increase, Hz(t) , aad the elastic resistance of the tower.
This tower resistance can be expressed as the product of the tower
top movement, u'l(t) or ug(t) » and the elastic resistance of the

tower, s or s The displacements and forces at the top of

t1 t3 °
the towers are shown in Fig. I-15, with their sign conventions.

When the top of each tower moves toward or away from the center
of the bridge the cable tension component Hi(t) , i=1,3 acts on
the ith span, and the tension component Hz(t) acts on the center
span.

Given this new situation, the strain energy of the cable,
Eqg. 1.19, should be modified; the linearized part of Eq. 1.19 can

be written as follows

% i/dy.\ /Ov,
Lo tE w0 ] .
. 1

3 £
& W.
V_ () = %{) H, (t) 7 Fvi dx, ] : (1.106)
i 0
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Upon recalling the linearized cable equation {from Appendix I-b),

i.e.,
x.—k, g
H, (6L, A dy.\ [ dv, _
—E—C'A_-—U.C(Xi,t) + =/ \7= dxi,1= 1,2,3
¢ x=0 "0 1 : (1.107)
and noting that;
121 I
uc(Xl’ t) ] = uc(ﬂl’ £) - uC(O, t) = ul(t) s
0
ﬁz ¢ 1
uc(XZ’ t) ! = U.C(JZZ, t) - uC(O, t) = —(ul(t)+u3(t)), (1.108)
0
and
123 ,
uc(x3, t)} = uC(JZB, t) - uC(O, t) = —u3(t) s

0

where the assumption of fixed anchorages has been made, then the
modified linearized cable equations, applied successively to the side

and center spans, become

H.(6)L . 2i dy.\ /ov.
u;(t) :—]é._A—_e_l “.{ (g}f‘) 3_X1-> dx, , i=1,3, (1.109)
cc 0 i if :
and

H,(t)L 2 /dy ov

i p _ 2 el 2 2
_(ul(t)+u3(t))»TK——-J (Ex””)(&?‘) dx, . (1.110)

c e 0 2 2

For symmetric suspension bridges, the two towers are identical
and, except for the sign, the displacements u’l(t) and ug(t) at the top

of the left and right towers, respectively, must be the same. There-
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fore, the linearized cable equation for the entire bridge can be

written by summing Eqs. 1.109 and 1.110 to give

3 3 U

Hi(t)Lei i dyi 8vi _
) Eas). J (Ex—.)(’éz)dxf“- (-1
: c“te — i i

i=1 i=L "0

Considering the equilibrium of the horizontal forces at the top

of the towers, the following is obtained:

lE{Z(t) SH ()| s w0 i=1,3, | (1.112)

ti

where s5.., 1=1,3 characterizes the elastic resistance of the ith

t1
tower; this resistance is the force required to deflect the ith tower

by unit deflection, and it can be expressed, for uniform Iti ; as

I _3Etilti
(i .3 ’
hti

i=1,3, (1.113)

where Eti is the modulus of elasticity of the ith tower material, -

Iti is the average value of the moment of inertia of the ith tower
leg about a horizontal axis perpendicular to the longitudinal axis of the
bridge, and hti is the height of the ith tower leg.

The next step to be taken is to express Hi(t) , 1=1,2,3 in
terms of the displacement A i=1,2,3. For this purpose, the

displacements of the tops u'l(t) and u'_,)(t) have been eliminated

from Eqs. 1.109 and 1.110, and Eq. 1.111 has been used to give
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2 3 1. 1,
E A dy.\/0v. L L risdy.y /9v,
H.(t)= Tt N0 ax, + oot _25)( i) g
i (E A L +L L .s_.)} dx./\ox./ ] E A dx. /\0x./ 1|’
e TE ez ei 3 j c ey i 1
i=1,3. - (1.114)

When the coefficients cy; and Coi s i=1,3 are defined as

| (4" L5,
;TR E T T and ¢, ==, i=1,3,
i ¢ ¢ R Tel el t1) : C

Eqg. 1.114, can be written as

() (2 ) (2
Hy(e) = Cli[Zj (dx.)(ax.) day 4 °2qu( &‘) (é‘x—) dxi] - =3
i=tY0 - ¥ o Yt (1. 116)

Substitution of Eq. 1.116 into Eq. 1.111, yields

S (2 T LA

i=170 0

i=1lor3 . (1.117)

Therefore the modified strain energy of the cable, Eq. 1.106,

with the aid of Eqs. 1.116, 1.117 and 1. 8', may be written as

i=1, 3 ] 0 0 0
F3 b w4,
% Ls \oo % (i W [t 2
+-I;I— Sy 1+CZ1L 2) 0 jvjdx -2(:1 Coi . gv dX:Hi VZdXZ:] s
w ““5=1 Vo 0 0

(1.118)
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where the index i, indicated between the second set of brackets, is

either 1 or 3

I.5-2. DPotential energy absorbed by the towers

Now, the strain energy due to the bending of the two towers is

given by h

1 : t Mi’i )
V() =5 Z [ = dx] (1.119)
. Y titL

where fo.l is the bending moment of the tower leg at the point Xli s
i= 1,3 caused by the horizontal force Hz(t) - Hi(t) s, i=1,3 and

is expressed by

: x’i , i=1,3 . (1.120)

M_s = [Hy(t) - TL ()

Substitution of this expression into Eq. 1.119 and then integra-

tion, yields

Loy

. 3 'H t)-H.(t)’Z°hti

Vi) = 5 Z T : (1.121)
i=1, 3\, ti"ti

From Eqgs. 1.116 and 1. 117 the force ’Hz(t)-Hi(t)| can be

obtained as

i

(0 [ (R () ]

JOJ

|, - 1y

[T
(1.122)

Therefore, the strain energy absorbed by the two tower legs,

Eq. 1.119, can be written, with the aid of Egs. 1.122 and 1.8, as
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3 2 2 3 % 4, % 4 2
Vo =L Z B8y | ey Z I Wit g
th*- ~ 2 3E_I .| L H Vieg) TH | it
i=1, 3 ti'ti E =1 W Jg wJy
(1.123)

Because of the complexity of the resulting equations, it is not
desirable to derive the differential equations of motion which include
the effect of tower rigidity. Instead, the solutions will be obtained by

the finite element approach.

I-5-3. Equations of motion for the towers

In order to derive the differential equations of motion, each
tower of the suspension bridge is now replaced by the equivalent |
system shown in Fig. 1-2-b, where the elastic constraint by the
cables at the top of the tower is simulated by a spring of stiffness
kei » 1=1,3 (see Refs. 19 and 20). It has been assumed that the
centerline of the tower is allowed only horizontal motion in the
longitudinal direct;lon of the bridge, and the axial and horizontal

forces acting on the top of the tower have been taken into consideration.

The bending-strain energy in the towers may be written as

2
1 3 hti , azu’ (X;, t) ,
Vte(t) =5 Z J Eti Iti(xi) “—-8""";-2-'"— dX‘l 3 (1.124)
. X.
i=1,3 70 i

where the index i implies the left (i=1) and the right (i=3) towers.
In Fig. I-2-b this index has been omitted for simplicity.
In order to calculate the poteantial energy of the tower due to

the static and dynamic reactions of the cable, the relative displacement



-105-

Ahti » 1i71,3 caused by the vertical loads during bending must
first be determined. With this in mind, consider an element ds’
of the tower leg in its deflected shape; the infinitesimal relative dis-

placement over the element of the tower leg is

- 9u’ +2
2 "z =] (dx”) "2
¢ 4 (ds) -(dx)w(é}? _1{8u .
ds -dx == gorde T zaw T a\aw) & i (1-125)
therefore;
t 4 4 1 ti 3ul2 I's
Ah, :j (ds; - dx;) = EJ (5;1) dx{ . i=1,3. (1.126)
0 0

During this displacement, the load PW remains constant,
while the load P(t) increases gradually. Therefore, the potential

energy of the two loads in the deflected position is:

3 .
Vta(t) = - (PW-I*-i:—P(t)) . Ahti , i=1,3,
i=1,3
3 ( 1 hti 1 u’ 2 ,
= - Z Pw'i"é P(t))J\ ‘2“ Sut Xm s 1= 1: 3 ?
i=1,3 0
3
1 ]'lti 311; 2 ,
2'22 PWJ p ey dxi s, 1=1,3.
i=1,3 ) -
(1L.127)

In deriving this relation, assumption no. 8 (Eq. 1. 3) of the fundamental

assumptions mentioned in saction I-2-3, has been used.
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The potential energy stored in the equivalent spring is

1i

3
1 -Z- 12
-z- keiui (t) H (1.128)
i=1,3

Ves(t)

where k‘ei » 1=1,3 is the stiffness of the equivalent spring at each
tower top. Konishi and Yamada 19, 201 have estimated the value of
the spring stiffness, kei » to be
E A E A
c ¢ ¢ e

kei =14, 0 7 1
el el

, i=1,3 . (1.129)

Now, the total potential energy in the towers, Vi:(t), is
V() = V(&) ¥V (E) . (1.130)

The kinetic energy for the tower legs can be expressed as

I 3 hti , Bu;(x;, t) Z ,
Tt(t) =3 Z J mti(xi) — 5 d.xi . (1.131)
i=1,3 0

where mti(X;) is the mass per unit length of the ith tower leg.
Application of Hamilton's Principle, Eq. 1.37, as before,

enables derivation of the equation of motion of the ith tower leg

in the form:
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and the associated boundaryv conditions are

2 }
9 R d lli aui , .
o | e T () 8,2) PR TR TRy o 7 L3, (1.133)
1 Xi . 1
and
’ azu; o
' _ .
tiIti( i) aXIZ ax_'.l (511.1) =0, i=13. (1.134)
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I-6. Finite Element Approach for the Overall Problem

This section contains the finite element solutions for the overall
problem, i.e., for the suspended structure, the cables and the towers.
Therefore, the stiffness and inertia characteristics of the entire

assembled suspension bridge structure must be determined.

I-6-1. Modification of structural-property matrices

a. The modified elastic stiffness matrix of the cable

With the aid of the displacement model, Eq. 1.58, the modified

energy expression, Eq. 1.118, becomes

N, .
% 1‘ : "q"ch : ! dl 3 T —
] A )
i=1,3 YV Sj=1vesl VD
Ny & L . N oL
v 2wt [ Wt e | [ 2 [, o]
e=1 W e=1 “Q
e, L o &
RIS NS A O 4 —lJ{f}T 1 dx
Hw [( 2i LeZ); (;1 Hw 0 ¢ {qe )
L N X L v_ N2 g )
ceepri ) 6l (o), % | [Z ( {f}z{q}eﬁ]
e2 g1 WY e-1 "0 J

Using the integral of Eq. 1. 80 and the definition of Eq. 1. 81 in this

modified energy expression leads to



3 sk 3 e b3
F w=LT e S T N B F AT
ce 2 c:11H, H Nj 2iH Ny i
i=1, 3 MRS B w
T, 3 q"‘
tenm \l e T H N
W g2/ & W J
ji=1
Lel “',1 Ay L
- 2¢y v 77 Uy, Uy, )| e} (1.135)
e2 Tw

or equivalently

ARCEE R EY - S P (1.136)

where [f&c ] is the modified assemblage elastic stiffness matrix of

the cable; it can be defined as

*
-2, T H {f N; f}NZ , (1.137)
el Tw

where, again, the index i, indicated between the second set of

parentheses, is either 1 or 3.
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b. The e‘lastic stiffness matrix of the towers

corresponding to bending of the towers.by the

cable forces

The strain energy absorbed by the two towers, Eq. 1.123, due to
their elastic resistance to the movement of their tops, can be expressed

in a matrix form by using the displacement model, Eq. 1.158, as

follows
N.
V. (t) = 5 i (htisti)z e i J —3—&%‘ L{f} {q} ax
tb* ~ 2 SEIL | Ly H e (4l O
i=1,3 =1 Ye=1 WV
NooxoL 2
i T —
T[]
e=1 0
Expanding, and using Eqgs. 1,80 and 1. 81, this expression becomes
3 2 3 ¥
h,_.s,, L . W
S T & (By %) ei (Y
Vip(t) = 5 {r] [ Z 3E, 1. (L ZH v,
o tittl E &= W J
i=1, 3 j=1
* 3 b £
W L W, W T
- = {f} )(—ﬂ Z =k £y, - = {f} {r} (1.138)
H, " N/\ Lg P Hy = N Hy 7N
or equivalently
1 T
Vi) =5 {r} [K o 1{r} (1.139)

where [KTB] is the bending stiffness matrix of the towers; it is

defined in Eq. 1.138.
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So far, the stiffness and mass matrices have been of order
NXN, where N is the nurnber of degrees of freedom of the
suspended structure and the cable, i.e., the number of unknown
nodal displacements. The rector of nodal displacement for the
assemblage {r}, is of order NXx1 . Even the bending stiffness
matrix of the tower is of order NXN, since it is expressed in terms

of the nodal displacements of the suspended structure and the cable.

I-6-2. Modification of the matrix equations of motion

To formulate the overall problem, the stiffness and inertia
matrices of the towers must be determined. For this, the towers
are divided into small elements as shown in Fig. I-2-b. The top
element of the tower must include the equivalent spring which
simulates the influence of the restraint of the tower by the main
cable.

The element elastic stiffness matrix due to flexural rigidity for
the elements of the tower is the same as that for the elements of the
stiffening structure, Eq. 1.65, excepting the matrix for the uppermost

element which includes the spring effect; the latter is in the form

T 12 61 -12 6L
E L. 6L’ 41’2 6L’ 2L 2
Cepedes = 75 : o
L -12 61, 124k, 6L
6L 21/2 61 4L’2J

i=1,3, (1.140)
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where Etelte is the flexural rigidity of the individual element; it
is assumed that Ite is constant along the element. L' is the
element length.

The assemblage bending-stiffness matrix for the two towers

is thus
s N
(Kool = Z ( Z Ekte]ei) . (1.141)
i=1,3 e=1

Here, Ni' is the total number of elements in the ith tower leg.

The nodal displacements can now be written as

N 3
{rt}=Z{qt}e with N'—Z Ni' . (1.142)
e=1 i=1,3

The element geometric-stiffness matrix due to the compressive

load Pw then takes the form

36 3L -36 0 -3L)
-P 317 4L'® 31 _1t@

Ceygle = 03 SR
8 -36 31/ 36 31/
L3n 0 -L/% 3nf 41/®

The assemblage geometric-stiffness matrix for the two towers is

N/
3 i

[KTG]= Z ( Z [ktg}e> . (1.144)
i=1, 3 e=1

The consistent-mass matrix for the element of the tower can

be written as
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[ 156 -22L' 54 131

mteL' 221 4L'® 131! 312
'l = 220 54 S131) 156 221 | (- 149)

130 -3n% 22t 4L

where m, is the element distributed mass per unit length.

The assemblage consistent mass matrix for the two towers

is 3 Ni'
[MT] = Z ( Z [mt]e)
i-1,3 e=1

Now, the nodal displacements, that is, the unknowns for the

entire assemblage, may be written in the following partitional form

%-} (1.146)

bt H
Z‘t}

o |
{}2

where the subvector {r} is of the order N X1, while the subvector
{rt} is of order Nil>< 1 ; therefore, the order of {}} is (N+N)X1.
To form the overall stiffness and inertia matrices more con-
veniently for both the suspended structures and the cables on one hand,
and thé two towers on the other hand, one can write each matrix in a
partitioned form. Two examples, one for the suspended structure and

the cable and the other for ‘he towers., are presented as follows
K . J= |--.8% Aeome , (1.147)

and
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(&) = [.E(_’l:i?l___] . . (1.148)
[0 IR ppd | )

Now, performing the same variational procedure as before, the
assemblage (overall}) matrix equations of motion for symmetric

vibrations may be written as
(803 + E8e ) (5 1 (IR (4 TR  THIRE, (IR IR D4 TR D) 1F)
= {0} , (1.149)

or more conveniently
[1(‘/13] {?S}Jr [&] {}S}= {o} . (1. 150)

where [RS] is a symmetric, full, positive definite matrix, of order

(N+N')x {N+N') ; it is defined through Eq. 1.149. Eq. 1.149 (or 1.150)

is subjected to the constraint

L, W (t
q(ZN'—l) =ui(t): T A " H g vidxi , 1i=1,3, (1.151)
i c e W 0

which can be written, by the aid of Eqs. 1.116, 1.58, as

this is actually the relation between the nodal displacement, q(ZNi 1)°

at the top of the tower and the nodal displacements {r} of the
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suspended structure.

For the antisymmetric vibrations
% ~
[KCE]— fol aad [KTB] = {al , (1.153)
and the equation of motion (1.150) reduces to

(0814 T ) e (R I+ TR I+ R ]+ TR 1G] ) T3 = f0), (1 154)

or

NI {7, o} + R GI{E, 3= (0} (1.155)

where [kASJ is a symmetric, banded, positive definite matrix of
order (N+N,)><(N+NI) ; it is defined through Eq. 1.154,

The formulation of the eigenvalue problem, for both the sym-
metric and the antisymmetric vibrations, follows similar procedures
to those which were used in section I-4. |

The following computation illustrates the application of the

previous analysis to the overall problem.

I-6-3. Illustrative numerical example

To clarify the effect of the flexural rigidity of the towers upon
the dynamic characteristics of suspension bridges and to show the
different modes of vibration of the towers, a numerical example has
been worked out for the suspension bridge in Example 2. Additional

information about the towers follows:
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_ _ 2.2 _ _ .
Ty = L3 = 20,000 ft." in: Wy T Wig = 4.0 Kip/ft.
by = by, = 400 ft. P_ =10, 000 Kips.
.. 2
I 29,600 Kip/in.

The frequencies and modes of vibration have been computed
for the symmetric case of the overall problem. The number of
elements in each tower leg (Ni' ;» 1=1,3), was taken to be 10 elements
and therefore the length of each element L' is equal to 42 ft.

The frequencies of vibration and the mainly vibrating members
corresponding to each frequency, are shown in Table I-4., While
Table I-3 shows that the effect of the flexural rigidity of the towers
upon the frequencies of the vertically vibrating stiffening structure
is comparatively small and is limited to only the first few frequencies.

The vibrational modes of the system, shown in Fig. I-16, can
be separated into two groups. In one group, the displacements of the
stiffening structures are predominant, and in the other group, the
displacements of the towers are predominant. Therefore, investiga-
tion of the energy accumulated in the different members of the
suspension bridge, nﬁay require separation of the energies into two
groups. Fig. I-17-a represents the energy storage capacity of the
cables and the stiffening structures as one group, including that
part of the potential energy absorbed by the towers during vibration
of the suspended structures. The minor (or secondary) role the
towers play in the energy storage capacity of vertically vibrating
bridge is indicated by the dotted line near the horizontal axis. The

correction in the strain energy of the cable (Eq. 1.118) can be shown
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TABLE I-4

Natural Periods and Frequencies of Vertical Vibration

The Overall Problem
(Symmetric Mode Shapes)

Mode Frequency Pesriod Frequency Member of Dominant
Drder | w(rad/sec) T (siec.) f{cps) Vibration

1 1. 064821 5.91)0698 | 0.169471 center and side spans
2 2.255588 2.735608 | 0.358988 center and side spans
3 2.698381 2.328502 | 0.429461 center and side spans
4 5.477865 1.147013 0. 871830 towers
5 6. 845536 0.917851 1. 089501 center span
6 7.081554 0.837261 | 1.127064 side spans
7 13.110453 0.479250 2. 086594 center span
8 15. 545536 0.434179 2.474151 side spaus
9 17.733480 0.3534312 2. 822371 towers

10 21.470668 0.222640 | 3.417168 center span

11 27. 400477 0.229309 4.360928 side spans

12 31.939673 0.136720 | 5.083367 center span

13 33.794722 0.185922 | 5.378600 towers

14 42.697815 0.147155 | 6. 795556 side spans

15 44.543139 0.141058 7. 080282 center span

16 53. 246513 0.118002 8.474433 towers

17 59, 322982 0.105915" | 9.441533 center span

18 76. 341798 0.082303 [12.150225 center span

19 81.392639 0.077196 12.954039 towers

20 83. 968655 0.074828 [13.363981 side spaas

21 95. 686260 0. 055664 }15.229045 center span

22 117.471018 0.053489 118,695433 center span

23 119. 085201 0.052762 |18.953034 towers

24 140. 643156 0.014675 |22.383884 side spans

25 141. 806416 0.044308 22.569288 center span

26 165, 742317 0.037909 [26.378960 towers

27 168. 755532 0.037232 |26. 858616 center span

28 197. 325764 0.031842 131.405063 center span
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by a comparison between Fig. I-11-a and Fig. 1-17-a; actually it is
very small. Fig. I-17-b shows the energy storage capacity of the
towers at different modes, as the other group (when the main
vibrating elements are the towers). The very small contribution
of the negative poteatial energy of the axial force, Pw ;» due to
cable reaction is an interesting phenomena. Actually, the drop of
the relative kinetic energy in the first two modes is caused by that
negative potential energy.

As is seen, there is no situation in which the towers and the
suspended structures vibrate simultaneously in a common mode;
however, the towers vibrate opposite to each other so when their
vibration is significant, the stiffening structure vibration will
increase.

It is important to note that in all the previous numerical
examples the mode shapes obtained by the finite element method
are distorted in the higher modes because they are determined by
connecting the displacemerts at the various nodal points, and these
nodal points, of course, do not describe all points on the curve; in
the lower modes, each loop is deseribed by more nodal points,

enabling a smoother curve.
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I-7. Appendices

Appendix I-a

Cable Profiles of Suspension Bridges and their Associated Properties

A single flexible cable suspended between two fixed points is the
simplest suspension bridge. The initial problem in such a case is to
determine the form adopted by the cable when it is loaded solely by its
own weight, and to find the tension in the cable at any point along its
length. The solution of this problem provides a starting point for a
consideration of the effects upon a suspended cable of extraneous
applied forces, such as the dead weight of the stiffening structures
of a practical suspension bridge. This appendix is devoted to the
initial problem of determiring the different cable profiles of sus-
pension bridges and their associated properties, as well as discover-

ing the most usable profile.

1. The Common Catznary

The curve in which a perfectly flexible uniform cable hangs
wheun freely suspended betvreen two fixed points is called a catenary.
"Perfectly flexible' means that the cable resists applied load by
developing direct stresses only. It follows, therefore, that at any
cross section the resultant cable force is tangential to the cable pro-
file at that point and acts thirough the centroid of the cross section.
"Uniform'! indicates that the weight per unit length, W, of the cable

is constant. This defines the classical problem of the common
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catenary which was first solved by James Bernouilli, in 1691; the
earliest published solution was by David Gregory in 1697.

Consider a cable hanging symmetrically between two fixed
points at the same level, as shown in Fig. I-a-i. Let 0 be the
origin for the ordinates x and y . If the cable is treated as inex-
tensible, the vertical equilibrium of the element of the cable shown

in Fig. I-a-ii requires that

L(re)- =, 1-a-1

where T is the tension in the cable, is the weight of the cable

ela =

per unit length of the cable curve and is the sine of the angle of
inclination, i.e., sin@.
The horizontal component of cable tensicn, Hw » is constant

since there are no acting longitudinal components of load.

H =T - onstant |, (I-a-2)
w ds

where -g—? = cos® . Consequently, Eq. I-a-1 is reduced to

or (I-a-3)

Since W is constant, the solution of Eq. I-a-3 gives the

Catenary. Integration of Eg. I-a-3 yields

.oo-1 dy W
sinh T ——HW x + ¢

1 L
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Diagram

H
wds

ii—Equilibrium of an Element

/2 vt £,/2
a

ili—Cable Profile in @ Side Span

Fig. I-a
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where <y is a constant of integration. But at x:% s %}%: 0, so
. w L
that CI T H 3 and
W
ol - T (L)
sinh Feele HW (2 X/ - (I-a-4)

Integration again, the following can be obtained

y:-zﬁycosh[%(%-x)}rcz s

is another constant of integration. The cable deflection

where ¢,
) is the sag, / , and therefore cs =f+1 and

at mid-span (x =5

HW w [ 4
V——ﬁ?—{l - COSh[ﬁ—(‘Z‘"X)}}'*'f o (I—&-S)
W
This gives the shape of the curve adopted by the cable. When
required, the length of the catenary is given by
4 1
2%
- éy_) ] —a-
s j[““(dx dx . (I-a-b)
0

Substituting %-}% » obtained from Eq. I-a-5, in Eq. I-a-6 and integrat-

ing yields
wi
b ) . (I-a-7)

€|~
o

i
[\8]

A

g =2

The tension at any point in the cable is given by Eq. I-a-2 or

2L
oy ds _ dy ) |*
T=H, 5 Hw[l + (dx) ] ) (1-2-8)

derived from Eq. I-a-5, Eq. I-a-8 is

%y

Substituting the value

reduced to
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_ - w L —a-
T=H, -oshl:HW(z x):l . (I-a-9)

This tension will be maximum at the ends of the span, where
x=0 or x=1{, yielding

T " chosh(zgﬂ ) . (I-2-10)
W

All the above results depend upon a knowledge of the parameter

Hl for their usefulness.
w

2. The Parabolic Cable

In many practical suspension bridges the total dead weight of the
bridge, instead of being distributed as though uniform along the cables,
is distributed more uniforraly across the span. Of more practical
importance than the common catenary, therefore, is the case of a
cable suspended between tvro points and so loaded (or with a weight
per unit length such) that the load per unit of span, £ . rather than
the curve, is constant. Remarkably enough, although the catenary
was understood at the end of the seventeenth century, this related
yet simpler problem was not solved until one hundred years later. In
1794, a suspension bridge ‘was proposed across the Neva, near
Leningrad, and it was as a result of considering this proposed bridge
that Nicholas Fuss published his solution that year.

Now, consider the cable, as before, to be perfectly flexible
and inextensible. The vertical load on the element, ds , of the

cable will be V?;ds {instead of Wds which wasg for the common



-126-

catenary). Again, the equilibrium of this element of the cable gives

T % = HW = constant , (I-a-11)
and

.('1_" g__y_ N P

ds (T ds)— -wo- (I-a-12)

Furthermore, Eqs. I-a-11 and I-a-12 give

2
H Ei—%:-&;g—s- . (I-a-13)
de X

When WC%}S; is constant, the profile of the cable is a parabola (which
is the essence of the discovery made by Fuss).
However, for flat-sag cables of constant weight per unit length,

the slope of the cable profile is everywhere small and, therefore

ds ~ dx .

The differential equation of the equilibrium curve is then

accurately specified as

a® i
0 3= -w . (I-a-14)
W ax

The solution of this differential equation, for the coordinate

system shown in Fig. I-a-i, is the parabola

sk 2
_wl x x\2
y = -Zﬁ_‘; [I— ‘-(T) ] . (1—3—15)

The cable deflection at mid-span (X = -5) is the sag , / , and

=

the horizontal component of cable tension is
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%2
K . {I-a-16)

Hy = 87
The tension at any point in the cable is given by Eq. I-a-8, and

its value 1is
L
2

l: v:é;z.ﬂz x Z:’
T=H_|[1+ (1 -2 -—) : (I-a-17)
w 41{3v (E)

The maximum tension in the cable, occuring at either support, will

be

T = ]/va E I (I-a-18)

max

With the aid of Eq. I-a-16, Eq. I-a-15 is more conveniently written as

y:f-zzx(ﬂ~x)

(I-a-19)

It is worthwhile to note that this equation is also valid for the

parabolic cable shown in Fig. I-a-iii.
The length of the parabolic cable is given in general by

Eq. I-a-6, and in this particular case the total length is therefore

!

g :J [1 + %(1 - 2@5))}2}% ax . (I-a-20)
0

It is convenient, and sufficiently accurate, to expand the integrand

of Eq. 1-a-20 in a binomial series and then to carry out the integration

term by term. If this is done, it is found that

s =1 [1 +3 (%)2 - %‘%(if Fo. } , (I-a-21)
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and for small ratios, it is sufficient to adopt

180 ]

for most practical purposes.

}blk",

Similarly. in the more general case when the two ends are not
on the same level, as shown in ¥ig, I-a-iii, this formula for s still
holds provided that both 2] and the sag fl are measured from the

closing chord joined the two end supports.

3. Some Other Cases

In the case of the common catenary, W was constant measured
along the cable; in the case of the parabolic cable, vét was constant
measured along the span (horizontal) of the cable. In addition, there
is the heterogeneous cable in which w 1is a variable, whether
measured along the cable or the span. Shortly after solving the
catenary preblem, Bernouilli proceeded to solve this more general
problem, inquiring into the law of the variation of w associated with
various possible geometrical forms for the cable. The main result
from this kind of approach concludes that w measured along the
cable must vary so that w g—i » corresponding to \;; measured along

the span, is a constant. A further result of interest is that when

3
W(ﬁ) is constant, the curve is cycloid. Another example of a

dx
possible cable profile is the catenary of uniform strength developed
by Gilbert in 1826, in which the cable's cross sectional area is

proportional to the tension acting upon it. But this approach limits
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the spans of suspension bridge cables, which should be set by con-

siderations other than matlematical limits.

4. Comparigson of Ceble Profiles

The cables of suspension bridges are commonly constructed
with a uniform cross-sectional area, and thus, if allowed to hang
freely, they would adopt the form of the common catenary given by
Eq. I-a-5. But in practice they are often constructed at the site on
a temporary platform, and the roadway is hung from them by vertical
suspension rods so that when all is complete, and the structure is
bearing its own weight, the form of the cables is more nearly
parabolic. The aim of this erection procedure is to ensure that the
dead weight of the whole bridge (roughly uniform measured along the
span) be carried wholly by the cables and suspension rod without
causing bending actions in any stiffening structures.

Thus practical interest naturally settles upon the parabolic
rather than the catenary profile of cable, but there is another reason
for this. The profiles of the two curves are very similar in terms of
their ratios of span to sag which fall in the range common in
suspension bridges (usually 8:1 or more). And since the cable
profiles are alike, the loads in the cable and in any subsidiary
structure of the real bridge will also be similar. In these circum-
stances it is natural to adopt the parabolic profile, with its greater
simplicity and familiarity, as the standard one for suspension bridges,

and this has become the general custom.



-130-

Appendix I-b

The Cable Equation (Compatibility Equation)

The cable equation provides a compatibility or closure condi-
tion relating the changes which occur in the cable tension to the
changes in cable geometry when the cable is displaced (in-plane) from
its original equilibrium position.

It is seen from the geometry of displacement (Fig. 1I-2-a), that
for the static position of equilibrium, the element of length d;si in

the ith span of the cable can be given by
ds? = dx? + dy> , i=1,2,3.
i i 1

When the cable is displaced {in-plane) due to vibration, its length

du
c

9%,
1

u is the vibrational horizontal movement of the element, and dyi
ev
becomes dyi+ax—c- dxi where A is the vibrational vertical movement
i

of the element. Then for the vibrationally displaced position

increases to dsi-l-Adsi s dXi increases to dxi+ dxi where

2 8U.C )Z ( 8VC )2
(dSi + Adsl) = (d.}l1+§;{; Xm + in'l"g:-i': Xm 3

or

5 auc auc 2 5 BVC 8VC 2 >
2ds; Adsi + (Adsi) = dei g-x—l- dxi + <-g;;) dxi +2dyi§;-i- dx, + 5;;: dXi

In general uc(xi, t) is small in comparison with Vc(xi’ t) ;
therefore the increment in the length of the cable element é}.dsi s

correct to the second order of small quantities, is
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Buc dXi Bvc dyi 1 avc Z dxi
Adsig-é?c;as_idxi+@;a'§;'dxi+f<8_x—i> -d-?idxi s i=1,2,3.

Hooke's Law, applied to the element, requires that

ds, Ac‘lsi
- - i: ].’ 2’ 3 ’

where H(t) a-}-cl is the increment in tension exerted on the element,
E_ is the modulus of elast'city of the cable material and A_ is the
effective cross~sectional area of the cable. Consequently, the cable

equation for the element reads
3 2

TI(t) dsi _auc+3vc dyi+1__?jr_(:_ i1 o s
E A dx. / 8Xi Sx.l dx, 2 8xi »otT G

c C 1

The effect of a change in temperature can readily be accomodated,

and the cable element equalion then is
2

3 2
ds, 8u  ov_ dy. v ds. ,
E A (dx) T Ox. * Ox. dx. 4 2(8};,) * Et ATi (dx) 2 i=1,2,3,
Cc C 1 1 1 1 I i

where Et is the coefficient of thermal expansion and ATi is the

incremental change in temrperature in the ith span.

The above cable equation may be integrated, for each span,

to give

H(t)L 5= 4 avc dy. 1 £ Bv, z

MECAC = U, (Xi: t) ']"J. (8X1)<a_}§> Xm +'Z (5‘-‘;) Xm =+ étATi Lti :
x.=0 0 0

where Lei and Lti are virtual lengths of the cable in the :'Lth span

which are defined by
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and it has been assumed that ATi is uniform along the ith span.

In the case of a suspended cable, hanging between rigid supports,

the above cable equation reduces to

E A
ce

L, Fdv iy oy
J (Ex—xa‘;') &5t Ej (E—Xj dg £ € AT Ly - 121,23,

o ¥ 1 0

Finally, to evaluate Lei » the expression for v, is:

fi
yi:4;—£—x  -x) i=1,2,3,
i
dy. £ x
. i_42b gy 1
SR A Sflﬁz ’
1
but
ds. 3 dy \2 3/2
_-.l = ]_-{-.___}_
(dx.) dx) ?
1 1

3 2 4

e W T G AT W o A N
dx. 2\ dx. 8 \ d=.

1

Hence
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2
11 dsi?) 3 1dylz 3 idy‘i4
j &) & =fl+zj &, dXﬁ"éJ T, a7
o 0 o *
2. 5 2
- ol PR S S U N b
i 2 fl 12 i i 8 -@i
0 i 0
2 2 2
32
~ 3 fi fi . 64 Ji fi
-ﬂﬁ“z“(lf’z—.- A I Y
1 1 1 1

2 4
_ 3({16 Jfi Ji
_ﬂi'l'i(*—g—- *ﬂ—.—)'}'O(T';) + ...

therefore the virtual length Lei is defined by

2
L . gf.fﬁl + E’»(—f—l) :‘
ei 1 .(li

Similarly, for Lti » one czn write

2
16 { /i
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Appendix I-c¢

An Alternative Appreach to the Inextensibility Condition

To re-examine more critically the use of the expression (Eq. 1.23)

(Eq. 1.23) for an inextensible cable. In the presentations given by
von Karman, Boit and Rannie [5,6] it is noted that the initial total
length of the cable is given by

B [

i=1 0

1
2

dxi} R (I-c-1)

and hence, by replacing i with (yiJr \A (Xi’ t)) and expanding in a

Taylor series, the variation As , for the entire length, is found to

be

{(I-c-2)

neglecting higher terms in v.. Hence, by integrating by parts, noting

that v, = 0 at the two limits of the integral, and by neglecting the
departure from unity of the denominator of Eq. I-c-Z, it is found that

3 ii dy
ASZ—E {j vc——2~dx}
; d1

wte
sk

- .
{ﬁ—-j‘v dx}, (I-c-3

W

HMw

(see Appendix I-a, Eg. I-a-14).
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Eq. 1.23 is identical to Eq. I-c-3 when As is zero.

From a review of the approximations made in this argument,

it is apparent that the paradox noted has been unaffected by the

1
dy;\" |B
replacement of l:l + (dxi) } in Eq. I-c-2 with unity; the explana-

tion must lie, at least in part, in the neglect of higher-terms in the
Taylor series for

s . If further term is included then

‘. 2

i /ov
J (555") dxi} . (I-c-4)
0 1

The second termy here is, of course, the same as the change in

L

w
M
———
o=
TN
o Q.
fl <
e e
N
N
QJ; Q
V] -t

o
e
(o}

X
-

+
W

length, due to v, s of a straight member from x. = 0 to x. =1

% g

W,

i
J v dx.) for the first of
H c i
W
0
these two integrals in Eq. l1-c-4 depends upon a process of integra-

dy. v
tion by parts which is stric:ly legitimate only when( 1) and ( )

dx. ox,
i i
are continuous functions of x.

between the limits X, = 0 and x, =1

Again, the substitution of (

i
Thus, for an inextensible cable, the further equation
3 ¥ 4, 1. 2
w. 1 i /Ov
- _'];‘ vodx, - l C) dX =0
2:: Hw c i 2 9x, i ’
i=1 0 0 '
or
3 f. i L. 2
% 1 1 Y 1 (BVC>
Z Wi J v, 4x; = —2?254 Hw[ 7= : (I-c-5)
i=1 0 i= 1 0 t

is the inextensibility condition for the cable.
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Appendix I-d

Effect of Shear Deformation and Rotary Inertia

The governing equations of motion for the vertical vibration of
suspension bridges, including adjustments for the effect of transverse
shear deformations and rotary inertia, will be derived by Hamilton's
Principle.

The kinetic energy is due to translation and rotation (Eq. 1. 34)

and is expressed by

. 3.ﬁ- ( \ . 3 12.1 (a,ni)z
T(t)-ié:fm %) ¢ EE: Tg\78/ ™5 o
i=1 70
. . . .th
where m; is the mass of the bridge per unit length of the i span,
Jgi is the mass moment of inertia per unit length of the ith stiffening

structure about the neutral axis, Vi is the total vibrational displace-

ment and n is the angle of rotation due to bending, i.e.,

8v.

—5;—'” +[3 » ]'.:1,2,3,

with ﬁi as the angle of distortion due to shear. But ‘Tgi is related
to Igi (the moment of inertia of the ith stiffening structure) by

fusd :'___g_._
Jgi pgilgi A, Tgi i gl

where pgi is the mass density of the ith stiffening structure, mgi

is the mass per unit length of the ith stiffening structure and T, is

the radius of gyration about the neutral axis.
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Furthermore, the variation of T{t) can be written as

3 ﬂi ov. ov. 3 'ei on. /on.
8T(t) = E M, 5(——1) dx, + E P 6(—1) dx;
i ot ot i i77gi dt ot
i=170 i=l1 70
The potential energy of the stiffening structure (Eq. 1.29) is
. 3 4. 8"Ti Z . 3 ﬂi avi 2
(ACEEYD rEgiIgi 7x) Y EZJ Ggii\ax, " M)
i=1 "0 ! i=10 !
where Egi Igi and Ggi K., are the flexural and shear rigidities,

respectively, of the it‘h stiffening structure. Hence the variation

of the potential energy, ng > has the form

It is convenient to consider only these two energies T(t) and
ng(t) since the potential energy of the cable, Vc(t) , has been dealt
with before.

Introducing 6T(t) anc ﬁng(t) in the variational principle leads

to



~-138-

far fi, v av, [ov, A, en fem,
J 8(T-V,,)dt = Z{J [j m; 5t O\ 5t 81: dx; +J1rimgi_a“?6‘§£— dx;
t. =70 0
1
g'i on, an
-l E .1 .~—1~5< )dx
gigi 0x, "\0x,
-JO 1
'g‘i BVi 8Vi
- Ggi“vi<'5; - "?i) 5(3; - ”i) dxi:I dt} -
“O 1 1

The order of integrations with respect to . and t is inter-
changeable and the variation and differentiation operators are com-

mutative, so one can perform the following integrations by parts:

t 1 ot
1 1
L v S22y, b,
= m, 5= 5Vi - -51-:-(1111 "—57) 5V dt
oY
&2 = 82vl
= -1 m, - > 5vidt R
A t
1

because 5Vi vanishes at t = tl and t= tz . In a similar fashion one

can obtain

2 o ) ¢a o o
J rimgi 5t o) I dt = —f rimgi*g;—z* 5?’} dt
| £

On the other hand, integration over the spatial variable yields
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fi on; 8771) [ om;
J'lEgi Igi 9%, \0x., d'xi :ngflIgl x, 3x (677 ) dX
0 1 1 O 1
£, .
My L1y on;
“\Egilgi o, 0T L' 3. \Fgilei Bx, ) O %y
i A i

il 8v1 8v1 ) El Bvl )
j gluvx ox, ~ 'k 0 55{ - ni‘ dX] :j Ggl;"l’v1 ox nl ox, (OVy) dx
0 0

avi i
= | Cgiti '5321'“771 bvy

1, 5
o Vi

‘g o, ’:Ggiﬂvi(ax. - Wi)] Bv; dx;
0 i 1

i avi
-{ Sy ”vi('a?i; - ’7'1) o, dx;
0

Sk f, 8%, Ao, ot 8
5I:E -1 m, L &, dx. - r.m.——~*—57’i dx, ~-{E . I .
i 4.2 i i7gl 4,2 i gigiox
- ot ot
i=1 t 0 0
£,
i

-Q. IS
' o o, ov;

4 Bxi ( gilrl 8X 5?3 dx h g1Mv1( h ni) 5vi
0

;”_1)5
i
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The virtual displacements Gni and 5vi are arbitrary and
independent, so they can be taken equal to zero at %, = 0 and x, = ii
and arbitrary for 0 < %, < ﬂi ; therefore, after including the variation

of the cable's potential energy from Eq. 1.40, one must have

5 2 2 *
3 ( Y3 } £ 9 vy W
o=, | Cgifi\Tm "M | "™ T [ HE0) — - HO =0,
i i ot 8Xi W
i=1,2,3,
2

on. dv, 3 n.
;—(E.I.———l- +G . pleton)-efm . —r=0, i=1,2,3,
. gigi Bxi gi'vi Bxi i i7gl Btz

throughout the domain, In addition, one can write
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=0 , i=1,2,3,

87‘}i
(Egi L 5?2.') bn;
* 0

i

8Vi 8vi dy,l
Ggiuvi(_a—x—.l' - 771> + (HW+ H(t)) 5;1- + H(t) 'a";z; J 5Vi

0

Eliminating 'r)i from the two resulting equations of motion, a
more complete differential equation for the vertically vibrating

suspension bridge can be obtained as follows:

" 82v. 82 8%y, > E 1.
S LU L
Pt e \ BT E by BN Gt/ exCat
1 + givi'i 1
mgiri 84Vi 82"1 W,
TG u, 3 ‘(HW+H(“)“‘7 - Hit) =0 , i=1,2,3.
gi'vi 8t 5x” W

In this manner, the effect of rotary inertia is represented by

97,
(mgi rf’ -—25—2-) » while the effect of shearing deformations is
Ix. bt
i

represented by
E .I. 84\1. mz.r.z 84V.
m gigi i, gl i

B Gl axle®  Ggfa et
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CHAPTER II

FREE TORSIONAL VIBRATIONS OF SUSPENSION BRIDGES

II-1. Introduction

Torsional vibration of a suspension bridge may be produced by:
a) unsymmetrical live loads such as a traffic load on only one side of
the bridge roadway, b) unsymmetrical dead loads created during
erection, c¢) aerodynamic forces which tend to twist the roadway of
the bridge about a longitudinal axis, and d) earthquake ground motion
perpendicular to the longitudinal centerline of the bridge and trans-
mitted through the piers, foundations, and anchorages to the bridge
deck and cables. Each of these loading conditions produces vibra-
tional torque of the bridge deck about the longitudinal axis of the bridge
together with opposed-phas: vertical vibration of the two cables.

As mentioned in Charpter I, the analysis of vertical, flexural
vibrations of suspension bridges has a long history and is well
established. However, torsional analyses have been much less
frequently made; there have been few investigations into, and
relatively little work published on, the torsional vibrations of sus-
pension bridges. For example, few analytical studies have been
made to develop formulas for computing the natural frequencies and
mode shapes, and most of those which have been developed are not

precise either due to the assumptions involved or due to the type of
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solution techniques adopted. Standard treatises such as those by
Steinman [13], Smith, Vincent [11] and Bleich [3] call attention to
the undeveloped state of torsional analyses,and recent investigations
such as those of Selberg [9] and Irvine [5, 6] imply that the problem
of the torsional vibration of suspension bridges needs to be treated
more effectively by either analytical or approximate methods. Thus,
in spite of the recognition of the problem and intermittent attempts
at its solution, the state-of-the art of free torsional vibration of
suspension bridges is, still, not satisfactory. Nonetheless, in order
to achieve a complete picture of the problem, a brief review of the
literature {in English) seems appropriate.

In 1941, in connection with the spectacular failure of the Tacoma
Narrows bridge, Rannie [8] presented an approximate analysis of the
free torsional vibrations of a three-span bridge which lacked a iower
lateral wind-bracing system; in his study, the torsional stiffness of
the deck was ignored, but the flexural rigidity of the stiffening trusses
in the vertical planes was considered, and the cables were assumed
inextensible.

In 1948, Smith and Vincent [11] extended Rannie's analytical
approach by including the extensibility of the cables. They found that
the simplified approach of Rannie did not agree well with the observed
torsional frequencies for the Tacoma Narrows bridge and for its model
Accordingly, they also meodified the analysis to take into account the
torsional rigidity of the suspended structure. They assumed a linear

relation between the angle of twist and the torque induced in the
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suspended structure. The torque was represented by a couple con-
sisting of two equal and opposite forces acting vertically on the two
stiffening structures; then, when this additional force was added to
the equation of vertical vib:ration, with modified inertia load, the
torsional equation of motion was obtained. However, Smith and
Vincent recognized that in an actual bridge, in order to attain any
substantial torsional rigidity, both top and bottom lateral bracing
systems must be used, so that the entire deck system would act like
a rectangular tube.

In 1950, in a comprehensive work on the theory of vibrations of
suspension bridges, Bleich [3], et al., studied the torsional vibration
of a suspension bridge haviang a uniform four-truss box deck with heavy
chord members at the cornsrs. In this structure, bending deforma-
tions resulted from the longitudinal strains in the chord members, and
shear deformations resulted from strains in the bracing members.
They assumed that the torque, due to the inertia forces, produced in
each of the four trusses a kending moment and a torsional shearing
force, both acting in the plane of the truss. They further assumed
that the longitudinal stresses in each ghord were as a result of the
bending of the vertical as well as the horizontal truss in which this
chord participated. These longitudinal stresses were later corrected
by Steinman [13]. Bleich did not obtain the differential equation of
motion in its most general form, but used an approximate method of
solution involving a Fourier series to evaluate the first few torsional

frequencies and modes of motion. This was the first attempt to deal
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with the torsional vibration of a bridge having a box-shaped deck
system.

Later, in 1957, Sih [10] presented a brief paper analyzing static
torsion in box truss suspension bridges. In his paper, equations were
derived to determine the stresses in the stiffening trusses due to
torsion considering cable interaction, and for the first time, the
effect of warping was considered. Warping involves the longitudinal
movement of points on a cross section {sometimes it is known as
bending-torsion).

In 1959, Steinman [13] published a paper in which he presented
simplified formulas for the calculation of the natural frequencies and
modes of torsional vibration of suspension bridges. Some of these
formulas were derived by Steinman in 1941-1943 and were subseqguently
modified {to include box-shaped decks) and tested for simplicity and
practical usefulness. In his study, he essentially adopted Bleich's
approach. He considered the bending moment contributions of the
vertical and the horizontal trusses to be equal; however, Steinman
concluded that when Bleich added the two contributions, he created a
duplication, identical chords being counted in both the horizontal and
vertical trusses.

A recent and extensive treatment of torsional vibration is the
one by Selberg [9]. 1In 1961, he deduced the fundamental equations
of motion of a torsionally vibrating suspension bridge. including
warping effects. He made a significant modification by adopting both

Bleich's approach and Steinman's approximate method of analysis, in
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a very careful and precise way. In fact his work was the first to
provide major refinement of the previous approaches and was also
the first to treat the problem of torsicnal vibration of suspension
bridges in as general a manner as possible.

In 1974, Irvine [5,6] made a detailed analysis of the response
of the boxgirder, single-span suspension bridge to static torsional
loading, and he later developed a linear theory for the free torsional
vibration of this type of bridge. IHe considered the deck to be a thin-
walled box-girder of elliptical cross section and assumed there would
be nc warping associated with torsion.

In the following analysis, two further advances in the analysis
of torsional vibrations of suspension bridges have been made:

1. A theory of free torsional vibration for a wide class of sus-
pension bridges, having double lateral systems, is developed
taking into account the warping of the cross section. Certain
simplifying assumptions are made, and Hamilton's Principle is
used to derive the equations of motion and the associated boundary
conditions. Solutions of the differential equations are obtained.

2. A method of dynamic analysis based on the finite element
approach is developecl for calculating the natural frequencies
and modes of free torsional vibration.

In addition to the theoretical analysis, some approximate equa~
tions and formulas are derived which help to clarify the torsional
behavior of suspension bridges. Finally, a numerical example is

presecnted.
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II-2. Preliminary Considerations and Fundamental Assumptions

The main aim of this section is to present a brief description of
the different types of suspended structures (or bridge decks) commonly
used in modern long-span suspension bridges. These suspended
structures have a very significant role in resisting torsional vibrations.
The section is alsc intended to outline the coordinate systems used,
and it contains the simplifying assumptions involvedin the subsequent

analysis.

I1-2-1. Types of suspended structures and thelr torsional

resistance

The old type of suspended structure (bridge deck), consisting of
two stiffening girders (or trusses) and a single lateral wind bracing
system below the floor stringers, had so small a torsional rigidity
that its effect on torsional vibrations could be disregarded [2,8,11,13],
The only restoring {orces provided by the deck came from the bending
resistance of the stiffening girders (or trusses). Accordingly, the
principal torsional modes in this case are identical to the correspond-
ing vertical modes, except that the two sides of the deck and the two
cables each move in opposite directions, i.e., 180° out of phase.
Certain differences between the frequencies of these two comparable
modes — flexural and torsional — arise, however, from the different
inertial conditions involved. In the flexural mode, the vertical motion
of the deck is uniform across any one cross-section; in the torsional
mode, one side is rising when the other is going down, and the mid-

point of the deck remains stationary.
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Modern long-span suspension bridges frequently have decks
which are comprised of two lateral wind-bracing trusses provided
in the horizontal planes of the top and bottom chords (or flanges) of
the stiffening trusses (or girders). This four-walled bridge deck
represents a rectangular tube of high torsional rigidity which has
a significant effect on torsional vibratioas.

Fig. I1-1 shows two examples of tile rectangular deck: one
with stiffening plate-girders and the other with stiffening trusses.
Two lateral bracing systems, of truss type, are in the plane of the
top chord and the plane of the bottom chord. Fig. II-2 shows

commonly used types of stiffening trusses and lateral bracing systems.

I1I-2-2. Coordinate systems

In this chapter, the dead load ordinate of the cable, measured
from the clésing line to the cable of the i span, is defined as yc(xi)
to avoidconfusion with the y,-axis of the deck cross section shown
in Fig, II-3. (Note: In this figure, the subscript i has been left cut
for convenience.) The xi—axis of the ith span coincides with the
longitudinal axis of the bridge (i.e., the axis of rotation); this is the
axis along which there is no movement. The coordinate crigin for the
deck is located at the left support of each span, while for the cable it
is located at the left support of the cable whether it is an anchorage or
a tower top. Beside the %00 % and z; coordinate system of the
th

deck in the ith span, an additional coordinate system 3y for the 1

span is established along the perimeter of the section of the suspended
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structure as shown in Fig. II-4. This peripheral coordinate d;
is measured clockwise along the centerline of the cross-section

walls.

I1-2-3. Simplifying assumptions

When a rectangular bridge deck, having one or more cross
sections constrained against warping, is vibrating torsionally, a
complex distribution of longitudinal stresses is developed that
cannot be evaluated using elementary theories of stress analysis.

The assumption that plane sections remain plane during deformation
is no longer valid, and applications of Saint-Venant's Principle may
lead to serious error. The well-known example of the twist of a
cantilever I-beam that is built-in at one end illustrates the nature

of the problem.

Finding an exact solution of the problem of free torsional
vibration of a suspension bridge having a rectangular deck structure
is not possible. Certain simplifying assumptions must be introduced
in addition to the fundamental assumptions adopted in the analysis of
vertical vibration (Chapter I). Not only is it assumed that the hangers
are vertical and inextensible, the cables parabolic, and only small
deformations allowed, but also the following simplifying assumptions
are introduced:

1. The cross section of the bridge deck is assumed to be symmetric
about the center of the section. This cross section consists of
four horizontal chords {or flanges), and four shear web

systems (either diagonal and vertical truss members or web
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plates). The two chords (or flanges) of each stiffening truss

{or girder) in the ith span have the same effective cross-
sectional area Ai s, 1i=1,2,3, and the web members of the

top and bottom bracing systems are also the same. Accordingly,
% and zZ; i=1,2,3, are axes of symmetry of the four-walled
structure shown in Fig. II-3.

2. The four horizontal chords (or flanges) transmit axial forces
only, and the axial stresses in each chord {or flange) are
distributed uniformly over its cross-sectional area Ai ’
i=1,2,3.

3. The web systems of the vertical walls (either plates or trusses)
and the horizontal walls (usually trusses) transmit pure shear
(there is no tension or compression in the horizontal or vertical
directions). Also, the shear stress is constant through the web
system. Thus, the shear stresses are in the web systems only,
while the direct stresses are in the corner chords (or flanges).

4. The original shape of every cross-section is unaltered during
vibrational deformation. Thus, the geometric dimensions of
every plane normal to the bridge's longitudinal axis remain
unchanged, although the section may undergo out-of-plane
deformation (warping). Also, the peripheral bending in the
walls of the section is negligible.

In view of the last assumption regarding rotation and out-of-plane
deformation of the cross-section, it follows that the vibrational angle
of twist, @i , i=1,2,3, of a cross section in the ith span and the ¥

z; components of the vibrational displacements v and w, are
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functions only of x, and of time t, while the longitudinal vibrational
displacement u; is a function of ai ;X and time t.
Other assumptions will be discussed as they are encountered in

the development of the analysis.
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IT-3. Analysis of Suspension Bridges Having Negligible Tower

Stiffness

The following analysis assumes either that the cable rests on
nests of rollers at the tower top (i. e., with a movable saddle) or that
the tower is of the rocker type with a pin-bearing at the base. In both
cases, the horizontal components of cable tension, I—IW (due to dead
load) and H(t) (due to inertia load), are the same on both sides of the
tower since there is no tower resistance to displacement at the top.
The equations of motion of the torsionally vibrating suspension bridge
and the associated boundary conditions will be derived by means of

Hamilton's Principle:

1:2 . |
J' O(T-V)dt = 0 : (2. 1)
f1
where T is the total kinetic energy of the torsionally vibrating bridge,
V is the total potential energy of the system, including both the strain
energy and the potential energy of any conservative forces, and 0 is
the variational operator taken during the indicated time interval.

The kinetic energy T consists of two parts: the kinetic energy
T_ of the two cables vibrating in their vertical planes, 180° out of
phase, and the kinetic energy T, due to the rotation of the entire cross
section of the suspended structure. Similarly, the potential energy of
vibration V consists of two parts: the potential energy Vc of the
vibrating cables and the potential energy VS of the elastic deformation

of the torsionally vibrating suspended structure.
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II-3-1. Potential encrgy of the suspended structure

Based on the previous simplifying assumptions in Section II-2,
the elastic potential energy VS , i.e., the strain energy stored in the
deck, can be divided into two parts: VSC the strain energy due to the
direct longitudinal stresses in the corner chords (or flanges) and VS(1
the strain energy due to the shearing of the web system of both the
stiffening trusses (or girders) and the lateral bracings.

The total strain ener 3y vy of the suspended structure is com-
puted by summing the strain energy of each of the individual com-

ponents of the cross section. Thus, Vs is given by

3
oy = 1
Vg (t) = 72 [JJJ(4oiei+zvviTvi + Z‘YhiThi)dV} : (2.2)
i=1 VvV

where O‘i and €. are the direct longitudinal strain and stress due to
a non-constant rate of twist measured at the cross section of each of
the four corner chords (or flanges) in the ith span; T . and ’)/Vi
are the torsional shear stress and strain in the web system of the two
vertical walls (stiffening trisses or girders} in the ith span, and
finally, Thi and yhi are the shear stress and strain in the web
system of the two horizontal walls (lateral bracings) in the ith span.
The summations extend over all three spans. In general, the shear
stress and strain in the four walls dependon the effective cross-
sectional area of the web plate for a plate girder type. Ia the case
of a truss they depend on the equivalent solid web section, i.e., on

the sectional arca of the diz.gonal members or of the truss panel

members.
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The first term in Eq. 2.2, as indicated above, is the portion of
the strain energy Vsc stored in the four chords (or flanges), i.e.,
the strain energy associated with warping, while the second and third
terms are the portions of the strain energy Vsd stored in the web
system of the two vertical and the two horizontal walls, respectively.
In order to further evaluate VS , a knowledge of direct and

shearing stresses resulting from torsional vibration, in terms of the

vibrational angle of twist, 91 » 1=1,2,3, must be specified.

1. Stress-Strain Relationships

From a consideration of the deformation of an element of length
dXi in both the vertical and horizontal web systems, illustrated in
Fig. II-4, the vibrational shear strain due to the warping displacement
u, and the twist Gi about point 0 in the vertical system of the cross-

section in the ith span may be expressed as

__vi_ i i .
== oy =1,2,3 . (2. 3)

Here Gi is the shear modulus of the ith span, v, is the vertical
vibrational displacement of the vertical system and u, is the vibra-
tional axial displacement of the corner chords {or flanges) in the ith
span. This axial displacement is the same (excepting the sign) for
each of the chords in any given cross-section. From Fig. 11-4-a, for
the vertical system, it can be seen that
b,
vy, t) = 5 0. (x,t) » i=1,2,3, (2. 4)

where b.1 is the width of the deck in the ith span.
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The shear strain due to warping displacement u, in the

vertical system is given by
——1:""—"'i 3 i:1,233 3 (2'5)

where di is the depth of the deck in the ith span.
The vertical vibrational shear force SV.1 is equal to the product

of the shear stiffness and the shear strain; i.e.,

Svi(xi’ t)=G. M. ¥ . (x,t) , i=1,2,3, (2.6)

1V Vi 1

where ”vi is the shear resistance coefficient of the vertical web
system and Gi “vi is the shear stiffness of the wall. The value of
the shear resistance coefficient depends on the effective cross-
sectional area of the web plate (plate girder type). In the case of a
truss, H . depends on the equivalent éo]id web section, i.e., on the
sectional area of the diagonal member or members in a truss panel.
In the latter case Hos also depends on the type of truss system used.
Appendix II-a demonstrates the shear resistance coefficient for the
different types of trusses commonly used in stiffening trusses and in
lateral Bracing systems. These types are shown in Fig. II-2.

Substitution of Eqs. 2.4, 2.5 and 2.6 into Eq. 2.3 yields

. b. :
YIRS + S S R S N R 0

Similarly, the vibrational shear strain in the lateral system is

given by
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A
yhi:—d-:——:-é;z;-i-.a_a,; 3 1:1,2,3. (2-8)
1

T

Here w. is the horizontal vibrational displacement of the lateral

system, and can be expressed as

d.
_ 1 -
wix,t) =5 O(x,t) . 1=1,2,3. (2. 9)

From Fig. 1I-4-b, the shear strain due to warping displacement

u, in the horizontal wall can be written as

_aa.:“fl . 1=1,2,3. (2.10)
1

The horizontal vibrational shear force Shi can be expressed as

with Hos being the shear rssistance coefficient of the horizontal web
system.

Substitution of Egs. 2.9, 2.10 and 2.11 into Eq. 2.8, yields
yh.zé—_———z-;;,l&—'u—g_— , i=1,2,3. (2.12)

Now, the direct axial strain € and stress Oi due to warping
in the corner chords (or flanges) of the ith span are

8u.1 Bui
. = o 0. =k €, = E =—
i 3xi ? i ii i Bxi ’

€ i=12,3, (2.13)

where Ei is the modulus of elasticity of the deck in the ith span.
The axial force L acting st each chord (or flange) of the ith span

as shown in Fig. II-3, is given by
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aui
Fi:EiAig; R i=1,2,3, (2. 14)
1

where Ai is the equivalent cross-sectional area of the corner chord
(or flange).
Since the total axial force in the deck structure must equal
zero at any section, the following relation must hold
”cri Ada=0 ¥ i span (2. 15)
A

where A is the entire cross-sectional area.

2. Equilibrium Relationships

At a section of the ith span there are two shear forces SVi
that form a couple, and two shear forces Shi that form another
couple, and there are four chord forces Fi . The two couples have
a resulting twisting moment Mti'

From consideration of the equilibrium of an element of length
dxi » located at the corner chord (or flange) as illustrated in
Fig. II-5-¢, it can be seen that

O0F. S.. S,

i vl hi s
8X. - d. - b. 2 1= 1: z: 3 ? (2' 16)
1 1 i

and the equilibrium of the torsional moment gives

M, =8, b +8.-d , i=123. (2.17)

Egs. 2.16 and 2. 17 express the two equilibrium relationships for
the various vibrational forces.

The next step is to express the forces Fi , 8 and Shi , and

vi

accordingly Mti ; in terms of the vibrational angle of twist Gi
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3. Force-displacement Relationships

Multiplying Eq. 2.7 by di and Eq. 2.12 by bi and then adding

yields:
a6, d. b.

b, d, =— -5, t—=— 5.,
i 18Xi .G, Tvi 'uhiGi hi

Vi 1

i=1,2,3. (2.18)

Substitution of Eq. 2.18 into Eq. 2.16 then gives

2 2
28,
_aFi - —bi L .G i - Piferi G| Hog S i=1,2,3 (2.19)
Ix. d. "vi i ox. b.d 1 . . d. "hi °’ P )
1 1 1 1 17V Nt 1

or

oF, 4 99, (bizl'“"v;fr df“’hi) By

M S SR € JAIy g S. , i=1.2,3. (2.20)
O, b; "hi Ti 9%, bidibogby; /0 dy v

Introducing the coeffizient (31 as

By
Bi=

i 2
ikt diby;

, i=1,2,3, (2.21)

into Eqs. 2.19 and 2. 20 gives the following

BFi bi aei “vi

< 4 Mi%on a3, (2.19 )
1 1 1 11

and

OF.  -d, 08. @ .

— = L _t . _hi . .

7% B, PniCiox T B, Swi ¢ 17123 (2.20%
1 1 1 11

Differentiating Eq. 2.7 twice and Eqg. 2.14 once (w.r ot 'Xi)’
combining the two equations, and then substituting Eq. 2.20° in the

resulting equation obtains:
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08, b.d.p, (bi 2%, . azsvi)
S .=G.p.d > - E, A, w22t (2 - , i=1,2,3.
vi it 18:>ci i™i zuhi 2 axf uviGi axiZ

(2.22)
A similar expression for Shi can be obtained by using the same

procedure; it can be written as

3 2
98, b.d.p, /d. 278, 88, .
- i iitif i i 1 hi .
Sps T Gy b o - By A T (z 3 TG a2 ) i=1.23.
i vi 9x; viTi 9=,
* ' (2.23)

Differentiating Eqgs. 2.22 and 2. 23 twice and substituting the
resulting expressions for the last term in each equation results in a

final expression for the torsional shearing forces, given in terms of

6. .
i
96, b.d.p. (b. B.b.\ 8°8.
1 111 1 11 1
S .=G.B.d == E, A —22 L. )
vi i"ii Bxi i771 Zg.tv_.l 2 ‘uvi 3X§
5
b.d.g.\¢/b. 6.d.\ 078,
1 ( i1 1) ( i Y3 x) i .
- E. A —— —_—— + ... 1=1,2,3.
Gifog \T178 20y, /N2 ) 5,0
1 (2. 24)
s G 80, - b,d.p, (di ﬁibi> a3ei
hi 15171 8Xi 11 Zuv,i 2 f.!,vi BXS
5
b.d.p.\¢ /d. B.b,\ 9”8,
1 17303 i i1 1
- E. A, = . + ... 1=1,2,3.
G.H-(llzﬂ.>(2 [.L.) 5 2
i"hi vi hi axi (2. 25)

The Saint-Venant shear forces are now given by the first term
of both Eqgs. 2.24 and 2.25; i.e., they are proportional to the rate of
twist.

Neglection of terms of higher derivatives than 3 is identical to

the usual neglection of shear deformation of beams. Consequently,



_ 96, %8 /Py By 8361 12
Sy 7 G8d; a E1A1—2'uh. I 03 i=1,2,3.
1 Vi Xi (2. 241)
26, biciBy (4 Byby\ 278
ShizGi[SibiéE-—EiAi—zﬁ_—.-— 5 - 'uh> ; 3 , 1=1,2,3.
1 V1 1 X'i (z' 25 I)

Introducing expressions 2.24 and 2. 25" into Eq. 2.17, M

ti
can be written as
98, A b.dp, [ b, (bi Bd, ) d; (di B,b, Ja3ei
M. =2G.B.b.d v -E, —5—2| — |5 - S - )——-—
t iftiiexy 1 2 Hpg \ 2 B/ B N2y axf’

i=1,2,3. (2.26)

The warping displacement u, of the cross-section in the ith

span is given by

4/ 1 by 99 .
“iz'??(u .G, Svi"z_éz) » i=1,2,3, (2.77)
Vi 1 1
or
Pl 1 d; 98 :
U‘i:T thiGi Shi-—z——a;i' y 1=1,2,3- (2-12)

Usingthe expressions for Svi and Shi (Egs. 2. 24" and 2.25") ,

Egs. 2.7  and 2.12° can be expressed in terms of Gi as follows:

2 3
w3 (e g (B33 e
vi i vi hi i vi E)xi (2.27)
or
b, /d, p.b.\ 08, AbZdp. /d. B 98,
u.:—i(—l_ll) i '_1111 (_1_ 11) 1 1:1’2,3-
i 2\ 2 “lhi 9x i ‘mvi"‘hiGi 2 'uhi 8x3 ’

i (2.28)
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Appendix II-b gives a proof showing that expressions 2. 27 and

2.28, for the longitudinal warping displacement, are identical.

The axial force Fi can now be obtained by substituting Eq. 2.27

or 2.28 into Eq. 2.14 to get

2 2

F.-E. A fi(ﬁibi _Ei_)___a % +(E A)Z P Py (Bidi _3)8 ¢
! 712 \ Ky 2 85{? t 4p'viphiGi Hoi 2 8X?
i=1,2,3, (2“ 29)

or
b, /d. 8.d.\ 8% 2 b2d.p d, B.b.\ 88
FzEA_i(_i_ii) iy (m s f i (_1_11> i
R axiz L1 ARGy N2 gy ox

i=1,2,3, (2.30)

Now, all displacements, strains, stresses and forces are

expressed in terms of the vibrational angle of twist Bi .

Neglecting the high derivative terms in the above expressions for

u; s leaves

di ﬁidi bi 86i 89i
s \E, "7)E CGEE, v T bR B30
Vi 1 1
or
bi di pibi 86}._ 89i
LBE2\2 Bys ox. i ox, ? i=1,23, (2. 32)
i i i
where Ei is now the warping per unit rate of twist of the i span.

a. Strain energy of the chords (or flanges)

The strain energy VSC stored in the corner chords (or flanges)

of the cross section, due to direct (torsion-bending) stresses, may bhe
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expressed as:

ZZ[JIJ4U€ va ZZ[iélEiAieizdxiJ , (2.33)

using the linear stress-strain law (Hookean elasticity).

Using Eqs. 2.13, 2.31 and 2. 32, the direct strain fi and stress

o due to a non-uniform raute of twist become

aze.1 a‘zei
€ -8, —5 . O =ET— , i=1,23. (2. 34)
Bxi axi

Therefore, the strain energy associated with warping can be

written, with the aid of Eqs. 2.31 through 2. 34,as

1 i d, (p d bl) 9 61}
Vsc(t)—z-Z{J ZEiA.[-z— i "2 dx,
=1 0 Vi 3.
1 i
2
Jlil ’:bl & By 5%, J }
+| 2E. A, |51+ - ) dx. ( ,
A 2h2 My oax i
or
1 Sk 4 /Bd. bl2 b, /d.  B;b, ]8 8.
Vsc(t):_Z—Z{J El[ i 2 \p. -2 tA 2\ [TH SZ)dxl’
i=1 70 vi hi x,
(2.35)

3 £, 0%g.
O 511 RTLL'S U
i 0 i
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where I‘i is the warping constant of the cross section in the ith

span {sometimes called the torsion-bending constant); it is expressed
a 2

o= A, - (ﬁidi bi)z b oA (di ﬁibi)z i=1,2,3. (2.37)
"= A — - == R , i=1,2,3. .
i i2 ‘u'vi 2 i2\2 uhi

by >

The warping constant has units of length to the sixth power. The
product, Ei I‘i » in Eq. 2.36 is called the warping rigidity of the
cross section in the ith span. The expression for the warping

constant, Fi » (Eq. 2.37) is the same as the coefficient of

5%,
Ei 31 in the second term of the vibrational torsional moment
ox;
1

(Eq. 2.20). Appendix II-c contains a proof of this equality.

k. Strain energy of the web systems

The strain energy VSd stored in the web system of both the
vertical and the horizontal walls of the cross section, using a linear

stress-strain law, is given by

3
1
Vaalt) = Ez [ Jfﬂz"vi Tt 2% Ty )2V J ‘
=1 ¥

or
3 JZi/ .2 2
_ 1 vi hi
Vealt) = 3 [ZJ \Pviq, T )dXiJ ' (2. 38)
i=1 0 1 1

Using Egs. 2.24  and 2.25° and noting that
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T, = — and T .= — ., (2.39)

then Eq. 2.38 can be written as:

3 L.

L. [G.p.d 88, b,d.8, /b, B.d.\8° 8,
(t) = 1 {J-lz v1[1u 1_r A 111(:_11) dx
d 2 U, Gi N’vi Bxi it zu'viu’hi 2 M 8x3 i
L. 3 2
+J12 E_}E[Glﬁlbl ___'L_ _E A b;d;B; (f1_1 _Bibi> g ei} e }
G L R P TR G V2 ) i

ox,
i
(2. 40)
Neglecting terms wita higher derivatives than the first is

identical to assuming that these shear stresses due to twisting are
equal to those in St. Venan:'s theory of torsion. Therefore, the

strain energy, in accordan:e with St. Venant's theory of uniform

torsion, will take the form

z

2 2
4’ B 88, 3
1 1
sd(t)_ZZ{j\ZGﬁ [u +Iihi:,<axi) dxif - (2.41)

vi

Recalling the definition of the coefficient B, (Eq. 2.21), the

strain energy expression (Iq. 2.41) becomes

3 ‘Q. 89
1 E : ‘
i=1 0

Defining the torsion constant .Ti as

g5 eBybidi (2. 43)
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then Eq. 2.42 can be written in a more convenient form as

3 ¢

: i 89, \ |
v =3 U G, %, (5;) dx, . (2. 44)
i=1 "0 '

Here, Gi J'i represents the torsional rigidity of the cross section in
the ith span.

The torsional strain energy can also be examined within the
framework of St. Venant's theory of uniform torsion which gives an
alternative way to derive Eq. 2.44. The shear stresses due to
twisting are assumed to be the same as in St. Venant's theory and
the resultant of these shear stresses is a torque which is expressed
by the first term of Eq. 2.26; i.e.,

96, . 88,

— or M.=G L=~ , i=1,2,3.

M NZG [31 i 18x1 ti i1 Ox.
1 (2. 45)

The strain energy for an element of the bridge deck of length dxi
is necessarily equal to the work done on the element by the torque

ﬁti . Therefore, Vsd for the entire bridge deck is

]
08,
1 L ¢
Vsd( - -2_ [fMtl %, dx]] Z ’:f ( xi) dxi:l ? (2.447)
0

which is exactly the same expression obtained previously (Eq. 2.44).
Returning to the derivation of the total strain energy stored in
the torsionally vibrating suspended structure, Eqs. 2.36 and 2.44 are

summed to give:
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. 3 £ azei 2 £, (89_1)2
Vs(t) iy [ fEl ri ‘8X_2 dXi +fGi Ji 8—Xl dXi . (2. 46)
i=1 0 i 0

It is worthwhile noting that in the St. Venant type of torsion the
torque is constant along the beam and the sections of the beam are
permitted to warp freely. When the warping is restricted by physical
constraints at the ends of the beam, normal stresses arise in addition
to the shear stresses, and they coatribute an additional resistance to
twisting. This same effect is caused by variations in the applied
torque along the beam such as a torque caused by inertia forces
resulting from vibration. 'The warping effect is completely absent
from beams of circular crcss section whose normal sections remain
plane during torsion, but it is very important in box-shaped cross

sections.

II-3-2. Potential energy of the cables

In torsional vibration, corresponding points on the two cables
move equal distances in opposite directions. For small torsional
amplitudes the movement of any point is essentially vertical and the
variation of amplitude along the cable is the same as for the corre-
sponding pure vertical vibrational modes. Thus, the two cables vibrate
in their vertical planes in cpposite phase with antisymmetric vertical
movements of :Evi » 1i=1,2,3 . The downward movement of the cable
tends to increase its length by bending the cable more sharply while
at the same time the upwar:d movement tends to reduce its length by

straightening the cable. The total potential energy, Vc’ of the two
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vibrating cables is composed of the potential energy of the depressed
cable, Vd » and the potential energy of the elevated cable, V: .

ds,

If H (——l) is the tension of the cable under deal load at
widxg h ds,

a point along the it span, and :l:H(t)(El) are the vibrational
i

increments in cable tension for the depressed and elevated cables,

respectively, then the potential energies VCd and Vce stored in

cable length dxi , are

d 1 dsi d %
d.VC (Xi' t) = {I:HW + 'gH(t)]d—;:j;} « Ad 8, = W; vidxi ., 1=1,2,3,
(2.47)
and
e a1 dsi e P
dve (g0 8) = {[Hw - ® H“’}a;:} Padis twy vidxy o, 1512, 35
. (2. 48)

HW is the horizontal component of cable tension owing to dead load,
H(t) is the vibrational increment in the horizontal component of cable

2

tension, va@'i is the total dead weight of the bridge per unit length
per cable, and Add"si and Adesi are the vibrational increments in
the length of the depressed and elevated cables, respectively. Using
the results of the analysis given previously in Chapter I which deals

with vertical vibration, the potential energy Vf' ‘stored in the

depressed cable can be given in the form

3 £, 9 2
v = 25 [Tt ) ax
c T2 W ox, i
i=l 0 t
'Ei dy’c avi 1 £1 8V1 2
+ H(t) ?)(E—x‘) ds, + ij o) @ ] . (2. 49)
0 i i 0 i
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dy
where —= is the dead load slope in the ith span of the cables.

dx.
1
The relationship between H(t) and Vi(xi, t) is expressed by
the cable equation which relates the elastic stretching of the cable to
the vertical vibrational displacement, as follows:
HLg 3.k /dy
S— e dx +
E A f\dx
c C 0

1—1

(2.50)

o) =
o“'—’?’ﬁ
A

Here, E_ is the modulus of elasticity of the cable, A is the area of

one cable cross section and LE is a virtual length of the cable defined

by 3 3 3

4
i/ds,
= = -1
Lp =20 ey = 2o J(dx) a=;
i=1 i=1 o = !
After substitution of Vs and -H(t) for Vs and H(t) ,

respectively, in Eq. 2.49, an expression for the potential energy

of the elevated cable VCe is obtained as

2

- 432 i (5] - [ [ () oot o o

The total potential energy, V. storedin the two cables of the
torsionally vibrating suspension bridge, is obtained by the sum of

VCC1 and V:’ and is given by

3 L. 5 2 £,
1 \f i dyc avi
i=1 o o v

b.
By noting that 7 —2-1- Gi s Ig. 2.52 can be rewritten in terms
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of 8. , as
i

3 2 1, 2 g
H_b. ,i/90. ifdy \ /08.

-3 2 (1 w2 ]} oo
i=1 o ! o Yt

£ 2
() (8
It will be noticed that the term v B dx:.L . has been
0 i

canceled. Also, it will be recognized that the first term of Eg. 2.53
represents the strainless or gravitational energy while the second
term, after neglecting the second order term which appears in the
cable equation (Eq. 2.50), represents the strain energy stored in the
two cables.

The contributions to the potential energy of the system from the

hangers are neglected since they are usually too small to be important

Lal.

I1-3-3. Kinetic energy of the torsionally vibrating suspension

bridge

The expression for the kinetic energy of the torsionally vibrating
suspension bridge may also be divided into two parts: one part repre-
sents the vibration of the bridge deck, TS » and the other part repre-

gents the vibration of the two cables, TC

The kinetic energy, Ts » of the suspended structure (or the deck),

for the entire bridge may be expressed by:

Sr A [ee\
1 E : i
Ts(t) - [j Ipi.(_é—t-) dXi:] ’ {(2.54)
0
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where 1 i is the mass polar moment of inertia per unit length of the
cross section of the ith span. It is equal to msirii s M. being
the mass of the ith suspended structure per unit length and T being
the radius ‘of gyration of the cross section.

The two cables, haviig the weight w_ per unit length of the span

and vibrating with antisymmetric vertical displacements = Vi i=1,2,3,

have kinetic energy expressed by

. 3 _WC ﬁi avi 2
CEE DY ?f (W) dxi} ’ (2.55)
i=1 - 0

[«

but since v, = —2—1- 6.1 » the kinetic energy Tc becomes

3
1 w, by 1(861)
rw-z2, =4 ) e (2.56)

g being the acceleration of gravity.

The total kinetic energy of the structure is then given by

— ﬂi( W, blz) aei 2
i 0

1:

tof—
A

T(t) = T (t) + T_(t) =

et

The total kinetic energy may also be written in the form

A S 26, 2
T(t):EZ[[ Imi_a? dxi:l s (2.58)
i=1-~0
where
5
1

W
1 .=(1pi+—g"——4-) , i=1,2,3, (2.59)
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and Imi is the equivalent mass polar moment of inertia of the
bridge cross section in the ith span (including the contribution

of the two cables) per unit length.

II-3-4. Variational formwulation of the egquations of motion

The variation of the total kinetic energy can be expressed

as
2 5.0 & 36, 2 k2, 59,
J 6T(t)dt=2 [Imi_a—f_ 56, -J gg(lmiué?)ﬁeidtj\ ax,
t; i=1 0 b %

S h 9%,

- ~Z[f 1 st 86, dx dt:] , (2.60)
1YL at
i=1 "¢, Yo

since, be definition, 661 is zero at t:tl and t:tz

The total potential energy of the torsionally vibrating suspension

bridge can also be expressed, from Eqgs. 2.46 and 2.53, as

2
1 3 121 8291 ﬂ1 861 2
V(t)ZEZ[ E L 2 ) 95 +f G Tlon Xm:’
i=11Y0 O, 0 1

H b Fi /09 \2 A /dy \ /98,

+ | — 2 ax, + H b, | (=) (=
Z 8Xi i i \ax /\F=.) ¥ © o (2.61)

1
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The expression in the first set of brackets represents the
potential energy stored in the suspended structure, while that in
the second set of brackets represents the potential energy stored
in the two cables.

Performing the variation with respect to Gi » of Eq. 2.61,
and integrating (by parts, where necessary), the following equation

is obtained

3 8291 08 ﬂi
SV(t) = E ET, — o(a—i>
ox, %
i=1 i 0
2 Y
878, H b. 08 d i
0 i w1 ) i C *
+| - — + — —
{ Bxi <E1 Tl 952 ) (Gi 'Ii T2 B, T ) bi 681
’ i 0
¢ 5 52 2
i 3] 9 W
H =z | BT, =) -5 (6,0 5= ) - 2
. 8X1 itig %, 171 9x, axl 2 axl
dzyc
- H(t)b, ( 2) }5 6, Ix, . (2. 62)
dx]
. dZYC \;i:- 3
Noting that -——s = - -I_:I—l- where w, is the dead weight (per

dx. W
i
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cable) per unit length, and introducing Eqgs. 2.60 and 2. 62 into

Hamilton's Principle (Eq. 2.1) the following is obtained:

3o b A %8 52 a%g, . 86,\ 4 (H b2 08
-E I 1y E.T Y A o [ LANE Syt 2
mi 2 2 i'i 2 Ox. \ 1"i0x ox 2 ox
ot ) dx, i
i=1%¢ 0 1
1
w,b, 8%, 130\ [i [, 5%,
+ H(t) = 68.dx. - E.T N 5 5(8};' + E Eill - 2)
W e i,
80, H_b 90, dy, =
- Gi Ii Yy 5 5% " H(t) 1(*& 591 dt = 0 (2.63)
i i
0
Because the integral must vanish for any arbitrary values of 591’.
a8.
and 5(55;1—> , these variations can be set equal to zero at X, = 0 and
3

X, = ‘ﬂi . 1=1,2,3, and equal to values other than zero throughout the

domain O(Xi(ﬂi . It follows then that the differential equation governing

the torsional vibration of the ith span in the suspension bridge is

0%, 42 ( azei> 5 ( aei) ; (Hwbzi aei)
I (k) — + = (B T, —2 ) - (G, 0 ot |-
mi‘i atz 8Xi2 i7i BXiZ Bxi 17 Bxi axi 2 axi
w, b
FHE) = =0, i=1,2,3, (2. 64)
w
where
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Equations 2. 64 and 2. 65 are the basic differential and integral equations
of the torsional vibration of suspension bridges.

In addition, because of the arbitrary nature of the variation, the
last bracketed term and the term preceeding it in Eq. 2.63, vanish,

and thus the following conditions are obtained:

829_1 83, 4
E, T, — 5(559 -0 , i=1,2,3, (2. 66)
X. 1
i 0
and
5 aze1 28, }gﬂbf %6, ay, L
['a‘x—( T3 z)‘ i%i %%, T2 B 'H‘”bl(g °06;1 =0
X. 1
i 0
i=1,2,3, (2.67)

0%, 86
E.T =0 or =—=0 at x.=0 , x =4, i=1,2,3,
i'ig 2 ox. i i
=. 1
1 (2. 68)
and that
5 azei 08, H_bZ 80, dy,
o, (Ea T 2) "G aR -T2 ax,  HENN (a‘{) =0
i Bxi i 1 i
or e. =0 at x, = 0 s X. = ﬂ. 3 i = 1, 23 3 . (20 69)
1 1 1 1

Equations 2. 68 and 2. 69 represent the boundary conditions
associated with the differential equations of motion for torsionally
vibrating suspension bridges. The first part of Eq. 2.68 requires
that the direct stress vanish at each end, as in a bridge which has a
deck with a free end or a simply supported end (which are free of

normal stress). The second part of Eq. 2.68 requires that the warping
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be zero at each end of the structure, such as when the ends of the deck
are fixed so that the built-in section can neither twist nor warp. The
first part of Eq. 2.69 requires that the vibrational resisting torque
Mti which is developed by the vibration of the deck at the ends of each

span be equal to the vibrational torque M, which is caused by the

vertical shear forces in the depresséd and elevated cables at the ends

- of each span. Mti is expressed by:

29, 5 azei
Mti(xi,t)=GiJ-—~é—}§ E T, —s ], i=1,2,3, (2.70)

i axi 3x.2
1
and Mtc by:
H_b (96, ay,
M, (x,,t) = —5=\ 5/ Hlt) b, &/ - i=1,2,3. (2.71)

The second part of Eq. 2.69 requires that there be no twist at the ends,
such as when there are fixed or simply supported ends.

Hence, both the natural and geometric boundary conditions of the
problem are presented. The above results are general and provide an
accurate formulation of the problem which W]'.].].r be useful for analytical
study and for understanding the general characteristics of the vibrations.

Three useful simplifications are possible for the general theory.
In the first, the equations are linearized, in the second {see Appendix
II-d) the solutions are obtained for a simplified case, and, finally in the
third, the equations are verified. These three cases are discussed

below.
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1. Iinearization

The problem is linearized by neglecting all second-order terms

which appear only in the cale equation. This requires that the term
b fif 08, \2
—LJ — (ilx].L be removec from Eq. 2.65, Consequently, the cable

2 Ox,
o' 1
equation reduces to ®
AcEc > Wi.bi Ii ,
H(t) = —1:; T J 6, dx, | . (2.651
s w
i=1 0

2. Solutions

The chief aim of this chapter is to derive the equations of motion
in a general form and to outline the procedure for determining the
frequencies and modes of tcrsional motion by a finite element approach.
But since solutions of the tcrsional equations of motion are not well
known, they have been derived in order to present a complete theory
of the free torsional vibrations of suspension bridges. However,
because the solutions are lengthy, they have not been included here
but are presented in Appendix IT-d.

The solutions of the linearized differential equations of motion are
given for a three span symmetric suspension bridge in which the
stiffening trusses (or girders) of each span are simply supported, with
the cables held on top of the towers by roller supports. It is agssumed
that the mass of the bridge and its elastic properties are uniform along
each span. Both mode shapes and natural frequencies for the sym-

metric and antisymmetric modes are obtained.
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3. Verification

In what follows, the reliability and validity of the equations of
motion and their associated boundary conditions will be examined by
considering the dynamic equilibrium of an element dXi of the sus-
pension bridge. Fig. II-5 shows a free body diagram for the bridge
element dx.l . The total vibrational torque, MTi , acting at the cross
section is equal to the vibrational torque, M_. , developed by the deck

t1
plus the vibrational torque, M. caused by the vertical shear forces
in the depressed and elevated cables. As seen from Fig. II-5,
lH +H(t)]-—8-( +v.) and [H -H(t)]—i( ~-v,) are the vertical
W 8Xi LA W Bxi o™ Vi

shear forces in the depressed and elevated cables, respectively. Thus,

the vibrational torque, Mtc » at the cross section is

b. b ;
2 i )
My b 8 = 5 T+ EOT 5 (3, +vy) - g LH - B0 G -vy)

i
i=1,2,3. (2.72)
b,
After substituting v, = —21~9i » Egq. 2.27 reduces to
2
Hwbi BBi dyc :
Mtc(xi’ t) = 5 —a;:"f Hit) bia;i R i=1,2,3, (2. 73)

It may be noted that Eq. 2. 73 is in exactly the same form as

the equation for Mtc obtained from the interpretation of the boundary

b. Ov,
conditions (Eq. 2.71), and also that the nonlinear terms =|=H(t)—z-1- -5;-1-

1
have canceled each other out.

The torgue M » which the deck would develop if the cables were

absent,is
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%, 4 8%,
My t) = G 5 -5 (BT —2) » 1=1.23.
i i a .
(2.70)
The total torque MTi is then given by
20, 4 2%9, I—Iwb? 29, dy,
Mp "M M =G5 -5 Eiria 5] T e T HE b

1 1 Xi 1 1

i=1L2,3. (2. 74)
The equations of the torsional motion can readily be derived by
considering the equilibrium of forces acting on the differential segment

of the bridge shown in Fig. II-5.

M. (x;, £) Bzei(xi,t) _
MTi(Xl, t) + —'“—'TX;—-— - MTl(Xis t) :Imi(xl) T s 1L = ]., 2, 3 s
(2.75)
which reduces to
OM.,, (., t) 928 (x., t)
—r -1 (x) 1 1 , i=1,2,3. (2.76)
ox. miv i 2
i ot
dzy \;rhi
In view of Eqs. 2.74 and 2.76 and the relation —% = - 7
dx. W
Eq. 2.76 becomes t
5 86\ 52 : Bzei Hwbiz 8291 biv?;i azei
5576%3i5§i>' Z(Ei:i z> 2 z ~HE g =l
i i Bx. Ox, 9. ot
1 1 1
i=1,2,3, (2.64")

which is in precisely the same form as Eg. 2. 64, derived by using

scalar quantities in a variational form.
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I1-4. A Finite Element Approach to Torsicnal Vibrations

I-4-1. Idealization of the structure and the displacement model

The finite-element concept, described in Chapter I, will be used
to express the dynamic characteristics of the torsionally vibrating
suspension bridge. This adproach to the analysis of structural continua
frequently provides a convenient and reliable idealization of the system,
and it also provides the most convenient means for evaluating struc-
tural and inertia properties; it is particularly effective in a digital-
computer analysis. In this approach,the bridge is assumed to be
divided into the same system of discrete elements which was used in
the analysis of vertical vib:zation; these elements are interconnected
only at a finite number of nodal points where both rotations and trans-
lations are presented as basic nodal degrees of freedom. Since
vi(Xi’ t) = Ezi Gi(xi, t) , the vibrational angle of twist Gi can be

expressed in terms of the cubic Hermitian polynomials used in

Chapter I. Thus

0_(E,,£,) = % v (£, E,) = b—ze {£(€,, 6,017 laml,

e=1,2,..., N, (2.77)
where N is the total numbszr of elements and e is an index denoting
an element; (t';'l, 52) are the normalized coordinates. The vector of

interpolating functions {f(éjls 52)} is given by

(£, 60) = 6] (3-2¢,), -1&]8,, £5(3-26,), LE6al, (2.78)

where L is the length of an individual element, and {q (t)} is the
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vector of nodal displacements.

The structural and inertia properties of the complete structure
can now be found by evaluating the properties of the individual finite
elements and superposing them appropriately. However, as mentioned
in Chapter I, there is a case where evaluation of the interaction
between all elements is necessary to formulate the elastic stiffness

matrix of the cable.

1I-4-2. Evaluation of structural-property matrices

a. KElastic-stiffness matrix of the chords (or flanges)

The strain energy associated with warping {torsion-bending)
which is stored in the four chords {or flanges), Eq. 2.36, may be
expressed conveniently in terms of the stiffness matrix (with the aid

of the displacement model, Eq. 2.77), as follows:

l

4 EYS w#qT -
Vv, (t) = ZZ ,[E bZJE T, (e} {q}) (273, {q}e)dx}.
¢ (2.79)
Here, Ni is the total number of elements used to present the
ith span, X is the horizontal axis of the individual element (note:
gl =1 -

element; and is assumed uniform over the entire element.

and 62:—;5- ), and E_ I'e is the warping rigidity for the

[t P

Eq. 2.79 can be written in a more convenient form as

N
v (0 =5 20 falf Ix, ) Lol (2. 80)
e=1

where
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3
N = 2, N, is the total number of elements used to present the
i=1

entire assembled structure, and

‘LEel—‘e 3 " eV
[kSC]e=- > J {1 }e {r }e dx , (2. 81)
b
e 0

is the element elastic stiffress matrix associated with warping.
The integration involved in the evaluation of [ksc]e can be
accomplished as described in Chapter I. The resulting stiffness

matrix is

12 -6L _12 -6L
2 2
] 4R T 61, 41° 61, 21
[k < . (2. 82)
sc € b2L3 12 6L 12 6L
L 6L 214 6L 412 )

The assemblage stiffress matrix and the assemblage nodal

displacements are respectively

N
[Kged= 20 [k, ] . (2. 83)
e=1
and M
{r}= 2. la}, . (2. 84)
e=1

Now; the total strain eaergy of the assemblage associated with
warping and stored in the chords (or flanges) of the suspended structure

may be expressed by

voty= = o) Ko I Le) (2. 85)

sc 2 SC
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Finally, when it is noted that the strain energy stored in a
stable structure during any distortion must always be positive, it is

evident that

| T
E{r} [KSC]{r} >0 . (2. 86)

Matrices which satisfy this condition, where {r} is any arbitrary
non-zero vector, are said to be positive definite. Positive definite
matrices, and consequently the stiffness matrices, are nonsingular

and can be inverted.

b. Elastic-stiffness matrix of the web system

The strain energy associated with the torsional shear which is
stored in the web system of both the vertical and the lateral walls of
the bridge deck (Eq. 2.44), can now be expressed conveniently, in

terms of the stiffuaess matrix, as

3 Ni L
vsd(t):§2[z -:—_,gf G T, (€697 Lal, Y (19T 1a),) dE] , (2 87)
i=1 " e=1 Te 70

where Ge J, is the torsional rigidity of an element. Simplifying this

equation, vsd can be expressed as

N
1
Veqt) = -Z-Z {q}gtksd] {al, (2. 88)
e=1

where

1
Eksd]e:f-zfae;re ({f'}e {f’}eT)dSE , (2. 89)
e "0
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is the element stiffness metrix associated with St. Venant's uniform
torsion. For the special case of a uniform deck segment, the stifiness
matrix resulting from Eq. 2. 89, when the interpolation functions of

Eq. 2.78 are used, may be expressed by

36 -3L  -36 -3L ]
S 2G_J_ | -3L 412 31, 12 o
Fad'e 7 15b2 -36 3T, 36 3L (2-99)
3L -12 0 3L 41?

Finally, the assemblage stififness matrix is

N
(Kepd= D, [x 1 (2. 91)
e=1

and the total strain energy of the assemblage stored in the web system

is given by

H

v_y(0) % {30 [Kopdizl (2.92)

where [KSD] is a positive definite matrix if one assumes that the

boundary conditions have already been incorporated.

c. Gravity-stiffness matrix of the cables

The first term of Eqg. 2.53 represents the strainless or gravita-

tional energy of the two cahles. The strainless energy, ch(t) is
given by
5 2 f

N [Hgb; [i/28,)\2
v (t) "52.4[ 5 f(axi dx, | - (2.93)

i=1 0
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Using the displacement model of Eq. 2. 77, ch can be

expressed in terms of the gravity stiffness matrix to obtain

N L
Z{zﬂj (i (6 e | 0w
0

Nl'—'

or equivalently

N
Vot =g 2, lalg il fal, (2. 95)
e=1
where
1.
B ) e T
[kcg]e = ZHWI {f }e{f }e d= , (2. 96)
0

is the element gravity-stiffness matrix of the cable; it may also be
expressed as

- g

36 -3L  -36 3L

3L 412 31, .12

H
_ W
[kcg]e_15L 236 3L 36 3L (2. 97)
31, -12 3L 41f

Finally, the assemblage gravity stiffness matrix is

N
G]:E [kcg] , (2. 98)

and the assemblage's potential energy due to gravity (or change of

geometry) which is stored in the two cables is given by

_ 1l 37T
ch(t) = {r} [KCG]{r} . (2.99)
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in which [Kg G] is a positive definite matrix.

d. Elastic-stiffness matrix of the cables

From the second term of Eq. 2.53, the elastic potential energy

of the two cables is

1 2 ﬂi dyc 89i
celt) = EZ{H“)’%U ey (é?) )] (2.100)
i=1 o i 1
where
A_E_\N[wb, (i by fi /06, 2 ,
H(t) = LE Z 24 f Gi dXi +? (—8?) dxi:l . (2.65)
- W 1
i=1 0 0

Integrating Eq. 2.100C by parts vields

1 3 dy oLl
v (t) = -Z_Z{H(t)bi[(&%) 6, -f (dxzc) Bidxi] } ,  (2.101)
i i

1

i=1 0 0
dy ‘88,
providing that (E—g—) and (8_1) can be treated as continuous functions
of X - Furthermore, becsuse Gi vanishes at the ends where %, = 0
2
A W,
and X, = ﬂi ; and because - ¢ Eq 2.101 may be reduced to
Cx. W
i
. 3 bisf{?i 4
V() =5 E H(t)[ = f :H dxi:! } . (2.102)
i=1 Y

Substitution of Eq. 2.65" into Eq. 2.102, obtains
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3 A ®f, 2 4. 2
b.w. 2 [b.w, (b. i/08, )J}
1 ii i'i i i
Veel®) "Z‘Z{ [( H feidxi) +(H feidxi) TJ (a;;.) &) f
i=1 w0 ¥ o *

(2.103)
It may be noted that the first term in Eq. 2.103 represents the

linear strain energy, while the second term is the contribution from
the nonlinear component of horizontal tension H(t) .

Now, using the linear part of the strain energy expression
(from Eq. 2.103) and the displacement model expression (Eq. 2.77),

one obtains
3 . N N

B[S T o]

i= est V0 (2.104)

Use of the assemblage nodal displacement {r} in Eq. 2.104

yields

Nl L
2A E w
Vce(t)z%—( L‘;} C){ }T[ (E :rf{f}T E : Wf{f}de r}
1 0 e=

izl e= (2.105)

where W, is the total dead weight of the bridge element per unit

length for each cable.

As before, in Chapter I, if the vector {g}e is defined as

2 2z
PR Tog-L& _ L L L
{f}e~j{f}e a-[3. K, L, =],
0

N, :
-2 £}, (2. 106)
e=1

and
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then Eq. 2.105 becomes

ZAE 3 w
b (T 2 0 3

i=1

Mw

{f}T )] {r} , (2.107)
or more conveniently

Vo (t) ‘—’%{r}T [(Kegliel . (2.108)

where [KCEJ is the asserablage elastic stiffness matrix of the cable

defined by

ZACEC : Ve (a We ¢2qT
ot AL O Y m i) - e

This matrix is symmetric and is a partially complete matrix
(not banded); i. e., the arrzays are well distributed over the entire
matrix. Thus an interaction exists not only between adjacent elements

but also among all elements of the structure.

II-4-3. Evaluation of the inertia-property matrix

Generalized consistent-mass matrix

The kinetic energy expression (Eq. 2.58), with the aid of the

displacement model (Eq. 2.77), gives:

=

G

i
roj =
-
—

=
2|
o

mcr;\ill'b

1,
.'J ({f}z{@e)T( (3l ay,) dE] . (2.110)
: "0

i=1 e=1

where Ime is the equivalent mass polar moment of inertia of the cross
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section of an element in the ith span per unit length (including the

contribution of the two cables). 1In this case Im is assumed uniform

across the individual element.

Eq. 2.110 may also be written in the form:

i

N
T(t) = % Z [Z {é}eT [‘Ielle {al, ] , (2.111)
e=1

i=1

where [Ie:le is the generalized consistant-mass matrix of the bridge

element and is defined by

L

4Ime T
[:[9]e = I {f}e {f}e = . (2.112)
b

e 0

Upon carrying out the necessary vector multiplications and

integrations, this matrix becomes

[ 156 221 54 13L
1 L _221, 41 _13L -31°
[Ie]e Sl . {2.113)
105 b2 54  -13L 156  22L
13L =312 zaL 41l

When the mass coefficients of the elements of the bridge have
been evaluated, the mass matrix of the complete element assemblage
can be developed by using the same superposition procedure as that

described in developing the deck stiffness matrices from the element

stiffnesses. Thus the assemblage generalized consistent-mass matrix

is
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3 N
[lgl = Z: (E [Ie]e> : (2. 114)
=1 " e=1 ~

This resulting mass matrix has the same configuration, that is,
the same arrangement of nonzero terms, as the deck stiffness matrices.

The total kinetic energy of the system can now be written as

o) = 5 (31 [1gl(E) . (2.115)

II-4-4. Variational formulation of the matrix equation of motion

Inserting the different energy expressions, Eqs. 2.85, 2.92,
2.99, 2.108 and 2.115, into Hamilton's Principle, Eq. 2.1, and
then applying the variational operator and integrating by parts obtains

the following
t

J

2

{62)7 [[Ie] {¥}+([KSC] +EKSD]+[KCG] +[KCEJ) {r}]dt =Q .
t
1

Due to the arbitrary nature of the variations in nodal displace-
ment, {6r}, the expression in brackets must vanish. Therefore the

equations of motion for the assemhblage can be obtained in the form

[16]{11}+([KSC]+[KSD]+£KCG]+[KCE]){r} ={0} . (2.116)

These are the governing differential equations of the problem. As in
the vertical vibration analysis, there are two separate parts of the

problem which must be considered. They are:
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1. The symmetric modes of vibration in which there are an
even number of internal nodes along the center span. Here
H(t) is not zero, and accordingly the stiffness matrix [KCE]
is not a zero matrix.

2. The antisymmetric modes of vibration which result in an odd
number of nodes along the center span. Here H(t) is zero,

and accordingly the stiffness matrix [K _._]1 is a null matrix.

CE
Thus, for the symmetric modes:
Kl = K I+ IR T+ [T+ KT (2.117)
and for the antisymmetric modes:
[KASJ = [KSC] + [KSD] +'[KCG] . (2.118)

v

Then, the matrix equations for the free undamped symmetric and

antisymmetric vibrations of the suspension bridge structure are,

respectively:

[lgMiEgd + K ) {rgd= {0} (2.119-a)
and

[19]{§AS}+[KAS]{rAS}= fo} . (2.119-b)

By writing the solutions of Eq. 2.119 in the familiar form

¥ 4 iwt * - _

{rs(t)} = {rs} el ) {rAs(t)} = {rAS} elwt > 1 :\/'—1__ .
(2.120)
and substituting Fq. 2.120 in Egs. 2.119 (omitting the common factor

it ) » the following equations are obtained



-199-

(_wztle]-lr[KS]){ifs}: {o} ., (2.121-a)
and

(-w2[191+ [KAS]) ?AS} = {o} , (2.121-b)

where {is} and {rAS} are the vectors of the displacement amplitudes
(which do not change with time) of both symmetric and antisymmetric
vibratio.ﬁs, respectively, and « is the circular frequency.

Then Eqs. 2.121-a and b admit non-trivial solutions if, as is

well known,

-wzt'leﬁi +[KS] n =0 |, | (2.122-23)

-w? [lg-+ [KAS] “ =0 . (2.122-b)

Eqgs. 2.122-a and b are called the frequency equations of the
symmetric and antisymmet:ric vibrations, respectively. Expanding
each determinant will give an algebraic equation of the Nth degree
in the frequency parameter wz for a system having N degrees of
freedom.

Because of the positive definitiveness of [Ig] , [KS] and
[KAS],the roots w:i)' s wg s e e

are real and positive quantities; KEqs. 1.121-a and b provide non-zero

: wlz\I (eigenvalues) of each problem

. sk e . ' z2
solution vectors {rS}i and {rAS}i (eigenvectors) for each root W,

of the symmetric and antisymmetric problems, respectively.

I1-4-5. Numerical example

The numerical example is based on computations for the Vincent-

Thomas suspension bridge located between San Pedro and Terminal
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Island in Los Angeles County, California. An extensive study of this
particular bridge, including a complete description, vibration studies
and test measurements of the structure, will be presented in Chapter
IV; however, the geometry of the bridge and an outline of the structural
properties necessary for a torsional vibration study are given by the
data below.

Although the frictional resistance between the cables and the
saddles of this specific bridge prevents the cables from sliding through
the saddles, movement of the tower tops will not be taken into con-

sideration until the subsequent section.

Center span ﬁz = 1,500 ft. Side spans ﬂl = ﬂg = 506. 5 ft.
Cable sag [, = 150 ft. K= £y = 17,103 .
Width (center to center of cables) b=59,17 ft.
Depth of stiffening truss (assumed distance

between the two lateral systems) d=15. ft.

Dead load on suspended structure (both

trusses) W = 6.15 Kips/ft.
Dead load on cables (both cables) W= 0. 85 Kips/ft.
Total dead load of bridge 2w = 7.2 Kips/ft.
Cable force H_ = 6, 750 Kips/cable.
Cross-sectional area of one cable AC =121 'm..z
Cros_s~sectiona1 area O..f one 'chord of 2

side span (assumed invariable) Al = A3 = 55.56 in.
Cross-sectional areca of one chord of 2

center span (assumed invariable) A2 = 53.78 in.

Cross-sectional area of the diagonals of 2
the stiffening truss (average value) Acl = 16.9 in.
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Cross-sectional area of the diagonals of

the lateral bracings (average value) Ad = 16.58 in.2
Radius of gyration of the cross section ry = 20. 3 ft.
Shear modulus of the stiffeaing truss G=11,600Ksi
Modulus of elasticity of the stiffening truss E = 29,000 Ksi
Modulus of elasticity of the cable EC = 27,000 Ksi
Virtual length of the cable LE = 3,460 ft.

The number of elements in the side span, N1 = N3 , was taken
to be 11 elements; the number of elements in the center span N2 ’
was taken to be 28 elements

The computation of the eigenvalues w? and the eigenvectors
{ifi} » for both the symmetric and the antisymmetric vibrations, is
worked out through a Householder method subroutine. A double
precision version is available from the Caltech computer program
library and is written for the solution of the problem in the standard
form ([A]l-A[1]){x} = {0] where [A] is a real matrix, A is the
eigenvalue, [1] is the unity matrix and {x} is the eigenvector .
Consequently, equations 2. .21-a and b must be converted to the
standard form by premultiplying each of them by the matrix [ 18 ]_l.
Thus, a matrix inversion subroutine is also needed,and the final
forms of the eigenvalue and eigenvector problem, for both symmetric

and antisymmetric vibrations, will be

([Ie]'l [KS] ~w? [1]){§S}= {o} , (2.121 '-a)

and

([ g1t (K 5] - w? [I]){f?AS] = {0} . (2.121"-b)
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The two eigenvalue problems have been sclved on the Caltech
digital computer (IBM 370/158 system); some of the computed natural
frequencies and periods of symmetric and antisymmetric vibrations
are shown in Tables II-1 and II-2 respectively, while Figs. II-6 and
II-7 show the modes of torsional vibration for both cases.

To check the effectiveness and reliability of the method of
analysis under consideration, a comparison between these results
and some previous results is also presented. The first few modes
of torsional motion were predicted and the corresponding natural
frequencies of the bridge were computed by the Bridge Department
of the State of California using the approximate energy method; they
were also recorded in a report by Ernest G. Wiles [16]. The follow-

ing table summarizes this comparison.

Natural Natural
Torsional Frequencies cps | Frequencies cps
Modes of Vibration {Wiles' Report) (Tables II-1 & I-2)

1.} Symmetric Modes

first 0. 46 cps 0.449419 cps
second o 0. 66 cps 0.943311 cps
third 0.95 cps 0.949762 cps

2. | Antisymmetric Modes

first 0.59 cps 0.595927 cps

second 1.33 cps 0.944303 c¢ps

Fig. II-8 shows the modes of torsional vibration given in Wiles' report.
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From this comparison between Wiles' (predicted) modes

(Fig. II-8) and the computed modes (Fig. II-6 and II-7) and from

the preceding table, the following observations may be made.

1.

The frequency of the first predicted mode (of both symmetric
and antisymmetric vibrations) is in very close agreement with
that of the computed one, és is the mode shape. This may be
explained by the simple configuration of this fundamental mode
in both the symmetric and antisymmetric cases.

The frequency of the second predicted symmetric mode deviates
considerably from the computed one and the mode shapes also
disagree. This predicted mode, as shown in Fig. 1I-8, has the
same number of internal nodes along the center span as the third
mode of Fig. II-6. Flowever, the positions of these nodes in the
two cases are not identical. The computed second mode in

Fig. II-6 shows dominant vibration of the side spans with only 2
slight contribution from the center span.

The frequency of the third predicted symmetric mode seems
close to the computec one, but at the same time the two mode
shapes differ. In the predicted one, this bimodal shape has no
nodes along the center span while the computed one has two nodes.
The frequency of the second predicted antisymmetric mode
agrees with the compited frequency of the third computed mode
(in which £, = 1. 36665 cps), and the two mode shapes are
identical. It would scem that the predictions for the anti-

symmetric case were confined to the center span, because,
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apparently, no prediction was made for the second computed

mode where the motion of the side spans is dominant.

The distribution of the energy storage capacity in various
members of the structure, for both the symmetric and the anti-
symmetric cases, is demonstrated in Fig. II-9. From this figure,
one can easily extract the most sign.ific;ant dynamic characteristics
of the relative contributions of the deck structure and the cables to
the total energy storage capacity of the bridge structure at the
different modes. The following points are of some interest in this
regard:

1. The reiative contribution of the strain energy accumulated in
the chords builds until, in the high modes, it governs almost
all of the potential energy of the structure.

2. For the symmetric case, the strain energy accumulated in the
web systems peaks in the second and third modes and then
decays, while for the antisymmetric case it begins very high
(being significant even in the first mode) and then decays at

almost the same rate as for the symmetric case.

3. The relative contribution of the strain energy of the cable to the

total energy storage capacity is greatest in the second and fourth

symmetric modes, while it is almost zero in the third mode

where the positive areas of the deflection curve are canceled by

the negative areas. {Nofte: The additional cable tension H(t) is

proportional to the algebraic sum of the areas under the deflection

curve. )
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Again, from the symmetric modes of vibration it is easy to
recognize that any kind of symmetric-torsional vibration, in particular
in the first few modes, cavses interaction between the center span and

the side spans.
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SAN PEDRO-TERMINAL [5) AND SUSETNSION BRNGE

SYMMETRIC MODES OF TOHSIONAL VIBRHIION
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Fig. I1I-6. Symmetric modes of torsional vibration of the
San Pedro-Terminal Island suspension bridge.
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SAN PEDRO-TERMINAL I1SLAND SUSPEIISION BRIDGE
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Antisymmetric modes of torsional vibration of the

San Pedro-Terminal Island suspension bridge.
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II-5. Effect of Torsional Rigidity of the Towers Upon Free

Torsional Vibration

In the preceding analysis, it was assumed that the cables either
rested on nests of rollers at the tower tops (i.e., on movable saddles)
or that the towers were of a rocker type with pin-bearings at the bases.
On the whole, however, fixed saddles provide one of the simplest and
safest constructions, but the friction forces accompanying the design
are so high that the tower tops move in unison with the cables. This
results in increments, different in each span, in the horizontal com-
ponent of cable tension. Furthermore, the towers offer a certain bend-
ing and torsional resistance to any horizontal displacement of the top.
The effect of this tower resistance upon the dynamic characteristics
of a suspension bridge, and the correction for the potential energy
stored in the cables, will be considered in this part of the study of

torsional vibration.

11-5-1. Correction for strain energy of the cables

To compensate for the fact that the cable tensions due to inertia
forces are different in the side spans and the center span, modification
of the strain energy of the cables is introduced, for both cables, through

the equation

> £i7dy \ /06
Vce(t) = “12“[2 H, (t) bij (‘&E’)(&f) dXiJ , (2.123)

i=1 0

where Hi(t) is the vibrational horizontal component of cable tension

in the ith span. As in Fig. II-10, if both columns of the two towers
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are deflected toward the center span in the vertical plane of the
depressed cable, the increraent in the horizontal component of cable
tension in the center span, H,(t), must equal the sum of the incre-
ments inthe side spaas, Hil_t) , 1= 1,3 plus the tower resistance R.1 s
i=1,3. This tower resistance can be expressed as the product of the
tower -top movement, ug(t) ; 1=1,3, and the elastic resistance

S i=1,3.

Ti’
Recalling the linearized cable equation (Appendix I-b), assuming
fixed anchorages, and applying this cable equation successively to the

side and center spans, yields

. H@®L, b L ay,\ /98,
ui(t) T A "2 f (-CTX—)(-a-; dXi s 1i=1,3, (2.124-3a)
C 0 T 1

o4

and 25
Ho(t)L , b dy_\ /28
2 2 2 2
(o] ©)+ uy(0)) = 5= - 'z‘f (af) (5;) By (2. 124-b)
c ¢ 0 2 2

Therefore, the linearized cable equation for the entire bridge can

be written by summing Eqs. 2.124-a and b to give

3 H, (t)L,, 5 b, 4 dy,\ (96,
Z—EA—Z—Z—J =N\ ) a0 (2.125)
=1 ¢ ¢ 4=1 o Y

Now, from the equilibrium of the horizontal forces at the top of

each tower column, the following is obtained

H,(t) - H(t)| =S, u;(t) , i=1,3, (2.126)
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where STi characterizes the elastic resistance of the tower; it is
equal to the force required to deflect the leg (or column) of the ith
tower by a unit displacement when the other leg is also deflected by
a unit displacement in the opposite direction by an equal force. The
evaluation of STi is very involved [11] and is best done through the
use of the digital computer or thi’ough model studies.

Now, to express the horizontal components of cable tension
Hi(t) , i=1,2,3, in terms of the vibrational angle of twist, Qi ,
i=1,2,3, the top displacements u'l(t) and u;(t) have been eliminated

from Eqgs. 2.124-a and b, and Eqs. 2.125 and 2. 126 have been used, to

give

3 B fi fdy, Z b, (i /dy.\ /96,
H(t) =8 Z 2 f &, E)XJ,) dx; ¥ “i“zhj (E‘l‘) o) | T

=t 70 0 (2.127) |
where B. and @, are coetficients defined as follows:

(E_A_)° LS
- c ¢ _ Te2 Ti .
1T EA_ L TL_L) S T EaA S 0 T3
ei”Ti ¢ e (2.128)

Substituting Eq. 2.127 into Eq. 2.125 yields:

3 i
L . b, ri/dy.\ /08,
= £ o 20§ N §
Hz(t) Bi[(l +a,i Lez>z 2 J (dx)(@x) dX_}

1
L . b, ri/dy 36‘)
ei i c i .
- zail_e'é —Z—J (“—-1)(5;1' dXi > 1=1lor3 . (2.129)
0

1

Finally, substituting Eqs. 2.127 and 2.129 into Eq. 2.123 obtains

the modified strain energy {Fce stored in the two cables:
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3 3 g,
b, rj/dy\/98.
K- 1 i C 1
Veel®) = 3 Z zﬁi[z 2 J (d:x:j)(dxj) o,

i=1,3 j=1 0
4 £,
bl i dy’c 861 bi izdy_\ /99
+“1‘2_J (a;:)az;dxi £ (dx o, ) i
0 0
3 L, 3 Ei .aJ ay, 331
f Z 51[ (1 T E"Z)Z zj (E)(em)dx;
i=1, 3 €Lt =1 o
L4 1
L, by rifdy) (88, by r2/dy \(98,
"ie T TJTTdX' ?fa;'a——dxz
1 e2 >4 x 1 2, Xz

(2.130)

II-5-2. Potential energy absorbed by the towers

In the vertical vibration analysis presented in Chapter I, the
tower stiffness primarily involves the flexural rigidity of the tower
legs {or columns). Under torsional vibrations the situation is quite
different; resistance to the antisymmetric movement of each leg of a
tower can involve flexure and torsion of the leg, and most importantly,
flexure of the portal beams (or cross-bracings) between the tower
columns. For instance, for the symmetric vibraticn, the tops of the
tower legs undergo horizontal displacement u;(t) . 1=1,3, as
illustrated by Fig. 1-10 (for the fundamental mode). Since the two
legs are connected by relatively stiff horizontal struts, such a dis-
placement is possible only when the tower top rotates about a vertical
axis. Thus the two legs are bent and twisted, and the struts are

deformed as indicated in Fig., I-10.
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The torsional analysis of suspension bridge towers will not
be treated here; only the potential energy stored in the towers due
to unbalanced top forces will be considered. However, an analytical
procedure for torsional analysis of suspension bridge towers can be
found in a paper by Baron and Arioto [17].

The potential energy accumulated in one half of a twisted tower

acted upon by the top load Hz(t) - Hi(t) , 1=1,3, is equal to the
work done by this top load "&‘hen the point of application is displaced
by a distance u;(t) , i=1,3. Therefore, the total potential energy,
Vte , stored in the two towers, with their four columns supporting

the two cables,is
3
_ 2 1 .
Vte(t) = 2 [ > ' Hz(t) - Hi(t) I ui(t):[ ) (2.131)
i=1,3"

where the top load is obtained from Egs. 2.127 and

H, (£) - H, (t)

2.129. For example, for the depressed cable where Hz(t) > Hi(t) s

i=1,3, the top load takes the form

(2.132)

With the aid of Eq. 2.126, Eq. 2.131 can be written in the form
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3 2
B sz(t) - H; (t)]
Vo (t) =3 Z 2 [ 5 , (2.133)

and using Eq. 2.132, Ve becomes

L, b, (i dyc> 08, 2
- (zr—+1) 7] \& /e, dxi:l . (2. 134)

The comp.lexity of the resulting differential equations of motion,
when this alteration of the potential energy (Eq. 2.130 and 2. 134) is
added, is so great that it is difficult to deduce any information from
them. Accordingly, the analysis will proceed directly to the finite

element approach.
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IT-6. Finite Element Apprcach to Include the Effect of the Towers

2 *

dy w
Noting that ZC = - 3_1__ (for the parabolic cable), and that
dx. TTw
1
% ray \ /98, dy i fiod%y w. Fi
—N=]dx, === 6.| -| —s 6.dx, ==~ ]| 6, dx
dxi 3xi i dxi i d.xz i 71 HW i i
0 0 "0 i 0

the energy expressions (Eqgs. 2.130 and 2. 134) take the following forms

3 3 % g, Q. kg
a 1 Z _Vf;ifi j a;w.b, i b.w. ri
Veelt) =32 Z P H_ 0, dx, + ") %% ZHVJ 9; dx;
i=1, 3 =1 0 0 0
3 Lo\ v b, [
+ Z Bl (1 + Oc'i L—Z)Z 20 0. dx
i=1, 3 ¢ =1 WY
L. ﬁlbl - v’éfzbz P
el W W
0 0
and
3 3 3 i
L w.b
1 p1 el el Z i ]
Vel = 3 Z “TA [3 2 | 854
i=1,3  ° ““ =1 W
L, Wb, £ 2
_ (z oo 1) - I Gidxi} . (2.136)
[
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1I-6-1. Modification of structural-property matrices

a. The modified elastic-stiffness matrix of the cable

With the aid of the displacement model, Eq. 2.77, the modified

strain energy, Eq. 2.135, becomes

3 3 3 N,
. wh, /e o
che(t) :% 7 pl[ ] ——LlH (E J £} {ad, d':?)
i=1,3 “j=1 " e=1"0
a.w.b NoL Tedy /oL
+ = 1( f{f}e {al, d?gﬂ [ 2;11( f {f}z{q}e di)]
w e=1 *0 w e=1"0
3 3 % Ny L
L . w.b J
e ) (S e, )
i=1,3 2/ T3 W leor %
N N wls N
L . w.b b Trd b ¢ F
- T 1(2 f{f}T{q} dszﬂ [gé—z(/ J{f}f{q}ediﬂ
e —w e=1l "0 WVoe=10 ,
(2.137)

Using the integral and the definition of Eq. 2. 106 in this modified

energy expression yields

3 3 % o %
" 1 T w.b. . a.w.b, . w.b. . T
Vce(t) - _Z—{r} [ ; : ﬁi( _I:Iu {f}N.J{"—%—Iﬁ—l—L {f}N. _2_% {f}N
i-1, 3 =1 W ] W i W i
3 3 ¥
Lei W;_fbl
! Z i (1 ey, )Z 7 (g
1=1, 3 el J:]_ w J
* 5
L . whb, w.b T
el i7i¢2 2 2 ¢2
- o, —= {£} )(..._,_ {£} ) } {r} , 2.138
i LeZ HW Ni ZHW NZ ( )

or equivalently
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ﬁ‘fce(t) = {r}T [fécE] {r} ., (2.139)
where [f,,éc

is the modified assemblage elastic stiffness matrix of
the two cables; it is defined by the matrix resulting from vectorial
multiplication of the quantities between brackets in Eq. 2.138

b. The elastic-~stiffness matrix resulting from the

contribution of the towers

The portion of the potential energy absorbed by the structure and
stored in the towers (Eq. 2.134) can now be expressed in a matrix form

by using the displacement model of Eq. 2.78, as follows

=
W

j=1 e=1

_(z izﬂ) - ( > f{f}jj{q}e ch')T
¢ 1“0

N,
! 13iLeZ Lei : ‘;’jbj ! 3 T{ e
2: 2T A LZZ:ZH 2. I{f}e q}dX)
':1, Cc C e w 0

(2.140)
e=
Expanding and using Eq. 2.106, it becomes
3 3 ‘“VF
T
RTE Do AT 2 10
i=1,3 eZ i=1 w
’i‘b L 3 b3
w - w.bh
-(2 e1+1) — {f} )(—EZ—J—HE}
LeZ ZHW N.1 LeZ - ZHW Nj
Lel ; bi ). *
- (2 + 1) s Uf) ) J{r} ; (2.141)
el w i

or equivalently
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v, () = % {r1° Kppllr} (2. 142)

where [K is the elastic stiffness matrix of the tower and is

TE:|
defined by the matrix between two brackets in Eq. 2.141.

II-6-2. Modification of the matrix equation of motion

The assemblage equation of motion for symmetric vibration may

now be written as

(19108} + ([Kgols Kgp I+ IR+ gl e pgd ) x= (03,

(2.143)

or more conveniently as

[1g){F}+ [KI{r}= {0} , (2. 144)

where the symmetric matrix [f%S] is defined through Eq. 2. 1%3, it
is a full, real and positive definite matrix of order NXN(N'—' iz-:l Ni) .
It is important to note that, in the case of antisymmetric Fvibra-
tion where the center of the cable is not tied to the stiffening girder
(or truss), the inertia forces do not produce any stresses in the cables,
and no interaction occurs between the center span and the side spans.
Hence, the tower remains at rest.
The solutions of Eq. 2.144 can be obtained in the same manner
as before. The following computation shows an application of the
above analysis, taking into account the effect of the torsional rigidity

of the towers upon the free torsional vibration of the suspension bridge.
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I1-6-3. Numerical example

To illustrate the effect of the torsional rigidity of cantilever
towers upon the dynamic characteristics of suspension bridges, a
numerical example has been worked out for the San Pedro-Terminal
Island Suspension Bridge. The elastic resistance of the tower,

S . i=1,3, has been computed by applying Castigliano's second

Ti
theorem; it is found to be

Spq = Spg = 235. 4323 Kips/ft.

The eigenvalue problem resulting from the equations of motion
(Eq. 2.144), was solved by the Caltech digital computer. Some of
the computed natural frequencies of symmetric vibration are shown
in Table II-3. Inspection of this table shows that the effect of the
torsional rigidity of the towzrs upon the frequencies. of the torsicnally
vibrating bridge is comparatively small and is limited to only the first
few frequencies. Fig. II-1] shows the effect of the torsional rigidity
of the towers on the first foir mode shapes. The first, third and
fourth modes show very slight alteration due to tower effect, but the
second mode shows a significant alteration, particularly of the center
span amplitudes. Without this tower effect, the second mode has very
small amplitudes in the cenfier span; however, when the tower rigidity
is taken into consideration, the simultaneous movement of the tower
tops toward the center span and the corresponding upward motion of

the side spans are reflected in increased center span amplitudes.
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TABLE II1-3

Effect of the Torsional Rigidity of the Towers
Upon the Frequencies of the Free Torsional
Vibration of the San Pedro-Terminal Island Suspension Bridge

(Symmetric Mode-Shapes)

No Consideration of Effect of Tower
Towers Elasticity
Mode
Order (Frequency w rad/sec.) {(Frequency w rad/sec.)
1 2.823%782 2. 867896
2 5.930141 5.969224
3 5.967536 5.973676
4 6.354410 6.358562
5 11.666183 11. 666594
6 15.125%76 15,125776
7 19.348123 19. 348246
8 29.111019 29.111410
9 29.275287 29.275433
10 41.556141 41.556164
11 48. 365446 48, 365446
12 56. 262482 56.262494
13 73.1373240 73.137421
14 73. 462733 73. 462740
15 93. 238806 93. 238810
16 103. 641937 103.641937
17 115.694549 115.694952
18 140.176745 140. 176766
19 140.959¢12 140. 959614
20 169. 168520 169.168521
21 183.143402 183.143410
22 200. 359700 200. 359760
23 232.994136 232.994143
24 233.230648 233.230948
25 289,521274 289.521374
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II-7. Appendices

Appendix II-a

Shear Resistance Coefficients K, and ’Jh

To determine the value of the shear resistance coefficients p,v
and uh for different types of trusses used in both the stiffening
trusses and the lateral bracing systems, shown in Fig. II-2, consider,
for convenience, a panel of vertical stiffening truss shown in Fig. II-2
as type 2 (Worren System). This truss is subject to vertical shear
force 5 (with negligible warping). The vertical displacement of the
panel at point p due to the elongation Akd of the diagonal which is
stressed by the force SV/s.inae1 and which has the cross-sectional

area Ad is given by

o = My SM 1 84 T
V= Sina EA 2 EA 37 ma-
1 d sin ay d sin al

where Ad is the length of the diagonal, %y is the angle of inclination
from the horizontal of the diagonal and E is the modulus of elasticity
of the truss material. (Note: In the above equation, the relation
Ad = d/sinag1 is used where d is the depth of the truss.)

By considering the displacement line shown in Fig. II-2, it is

possible to write

tan ﬂ!s = -x-; AT 3 : (I1-a-2)
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here lv is the panel lengta. But because (d/)\v) = tane; , Eq. II-a-2

can be written as

anVs =G EA, . 2 TR a
d sin al COs o:l v

where G is the shear modulus of the truss.
Thus, the shear resistance coefficieat, M, for this truss is
given by
M = % Ay sinzcu1 cosay - (IT-a-4)
Replacing the broken displacement line with a continuous curve,
tan §, may be replaced at any poiat of the curve by %:r-; ; therefore

Eq. II-a-3 becomes

By _ flf._. (II-a-5)
Jx Gﬁ.lv : ‘

Following the same procedure, the shear résistance coefficients
H, and My can easily be obtained for the different patterns of trusses
shown in Fig. II-2.

For type 1 of the lateral bracing systems, known as the multiple
web system, the force in each diagonal is equal to %(Sh/sincez) > which
gives

]J.h= Zgﬂd sinzazcos a, - (II-a-0)

For type 1 of the stiffaning trusses, known as the N-system, the
vertical displacement of the panel at point P due to the elongation

A)Ld of the diagonal and the elongation Ad of the vertical member is

given by
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A?\d Svd 1 Svd
Av = Sina + Ad = EA —3 +EA > (IT-a-17)
1 d sin ay v
which gives
E AdAv sinzal cos @y
M, = = ( 3 ) (II-a-8)
A +A sin"a
v d 1

From which it can be seen that there is a contribution from the
vertical members of that particular system.
Finally, for type 2 of the lateral bracing systems, known as

the K-system, the shear resistance coefficient ,uh is given by

E ZAdAV sinzaz cosa, '
uh—- 'E}— 3 L] (H"a‘g)
A +A.sin o

v d 2

Now, if the stiffening structure is a plate-girder type, then

Eq. II-a-5 can be written as

3 S
ev.__v
9x Gdt °

(II-a-10)

which gives M= dt ; t is the thickness of the plate.
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Appendix II-b

Longitudinal Warping Displacement

To prove the equivalence of the two expressions for the longitu-
dinal warping displacement, u, equate the coefficients of similar

terms in Eqs. 2.27 and 2.28, as follows
086

a) coefficients of Fo
x

This is consistent with the definition of the coefficient P defined

before by Eq. 2.21

3
b) coefficient of 5_3__% :
574

bd°EAB (gg_ _19.): bZAEAR (g &b) ,

4phuVG M2 4uhuv(} 2 H
or
2 2
B <%— +%-> = bd
v 'h
giving by g
. vh
P alp vl
h v

Thus the two expressions for the warping displacement u are

identical.
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Appendix II-c¢

The Warping Constant

839,

1
8}:.3
1

The coefficient of Ei in the second term of the expression

for the vibrational torsional moment, Mti » (Eq. 2.25), is given as

2 2
A;bydB, ( b, B.d; ) X Ab.dB, (di B.d

i ii1 __1i> , i=1,2,3.
2 By 2y - (-c-1)
Expanding and rearranging obtains
o () aghis
+ - . , i=1,2,3. (II-c-2)
4 Ppi o g bys

Now, upon recalling the definition of the coefficient ﬁi (Eq. 2.20),

Eq. II-c-2 becomes

2 2 222
Agbid ABbd
4 LN
or
A.b2d?
"—3—3—1—-\:# p . - 4p° , (LI-c-3)
4uhiuvi viThi i

The warping constant Ti resulting from the expression for the
strain energy of the chords V.. @nd defined by Eq. 2.37, can be

rewritten as

d; (Bid; by ’ bf d; Bk
I"=A—E— } - == +Ai-§—_§—_ B (II—C—4)
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Expand and rearrange the terms to get

Alblzf AB.b.d df‘ bf Aipf df bf’
T - - R % t—t—) . (-c-5)

i 4 2 Boi o Hp Ny

i
Again, using the definition of the coefficient @i from Eq. 2.20,

Eq. II-c-5 takes the form

Ab.zd.z A. bzd2 A.BZ dz b,2 2 2 bzdz
I‘\' - T 1 - 1 1 % + 11 + 1 - p 1 1 ,
L 4 2 2 pvi “hi t “v1 ‘u'hl
apZad A bld? , bid
R + - A B — 1 ,
1 4 z iPi HoiFng
and finally,
r AlblzdZ / 2
i_w ( Hoibni - ﬁi) ’ (IT-c-6)

which is identical to Eq. II-c-3. Therefore, the vibrational

torsional moment Mti can be written, with the aid of Eq. 2.45, as

20, 88,

M,.=G.J — -E.T g, i=1,2,3. (II-c-7)
ti iti Bxi 1 axf

Thus, the total vibrational twisting moment developed in the deck
cross section may be expressed as the sum of two parts — a moment
results solely from torsionil shearing stresses, it is related to the
angle of twist Gi by the re.ation of the first term of Eq. II-c-7, and
a warping torque results from the stresses produced by restrained

warping.
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Appendix II-d

Solutions of the Differential Equations of Motion

If it is assumed that the mass of the bridge as well as its elastic
properties are uniform aleng the it span, the equations of motion

become

870, a%g. pZ\ 8%p. - b.
+EL —L - (G.o+H S| —l+HE)AL=0, j=1,2,3,
2 i3 w 2 HW

I .
™ gpf I ayt ox
. J (1-d-1)
with H(t) as
AE_ S [ wb, (i Ei £ ?Eiz |
() = P j B dx, + j(ax. dx; | - (LI-d-2)
iz M) J
J
It may be further assumed that
Gj(xj, t) = @J.(xj)eiwt s H(t) = ﬁeiwt s i=1,2,3,
(1I-d-3)

in which i =V-1 and w is the natural circular frequency of torsional

vibration. Substituting Eq. II-d-3 into Eq. II-d-1, yields the equations

of moticn in the form

ot
P

t

-w’r e +ET ) (G i+H |l dd B0, j=1,2,3.
m 4 w 2 A H
I S 1] dx" w
L J (II-d-4)

Because H is independent of Xj and may be treated as a con-
stant, Kq. II-d-4 represeats linear, ordinary differential equations
of the fourth order with constant coefficients. The general solutions
of Eq. (IV-4) are nonhomogeneous differential equations and are

expressed as
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e
s

w.b. H
~~ _ . -
9'(Xj) = Clsmh)\jxj + C cosh).jxj + CBSmquj + C4cosf.tjxj + ——-'1—*]—2 )

j 2 WwH I .
W myj
j - 1, z, 3 2 (II.'d—S)
where
L2
® [z +1 ®4/z. -1 (G..T. +H -*z]—)
A':.——J— _...1__..._ R p‘:_.al __]...___ s @_:ﬂ_. 1] W
j L. 2 i L, 2 i 3 E.T.
j j iTi
and
41 122
Z, = 1+ 2l 5 j=1,2,3, (II-d-6)
J ' be
¢’.2(G.J.+H L
iVl w2

Gy Cys Gy and C, are arbitrary constants and are determined in
conformity with the boundary conditions of the vibrating structure;
i.e., the boundary conditions at the supports of the j° stiffening
girder (or truss). The first four terms of Eq. II-d-5 represent the
general solutions of the homogeneous equations (ﬁ: 0) . while the
last term of the same equation represents the particular solutions of
the complete differential equations.

The cable equation, Eq. II-d-2, which relates the elastic and
geometric compatibility of the cable, is expressed, to the first order

of small quantities, as:

L AE [ Wb £
iy = T Z ——J—J—ZH J Gj(xj)dij ) (I1-d~7)

j=1 W Y
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It is convenient to separate the investigation of the symmetric
modes from that of the antisymmetric modes; i. e., the problem can
be divided into two parts:

1. The symmetric modes of vibration in which there are an

even number of internal nodes along the center span. Here ﬁ

is not zero.

Z. The antisymmetric modes of vibration which result in an odd
number of internal nodes along the center span. Here H is

Zero.

Symmetric Modes of Torsional Vibration

When the bridge is a three-span, symmetric type in which the
stiffening structures of each span are simply supported by cables held

on top of the towers by roller supports, the boundary conditions are:

a‘e
for x, = 0: §.=0; and E.I’.——zf]=0
j j T3 gl
J
and i=1,2,3,

~ a%e,

for =. =4, : .= 0; and E.T. ——-291 =0 (II-d-8)
3 j S
J

expressing the fact that the angle of twist and the normal stress are
zero at the supports of each span. Therefore, modes of the symmetric

vibration become
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w.b, B @}z, +1 dVz.+1 =
11 1 1 1

Y if 1 .
Gi(xi) > 2 Zj + (Zi -1) [tanh W—_ sinh "—-7:2*-—- T
i w

1

'cbi Zi+1 X, @il/zi-l i:i Zi'l X,
- sh ——— = | _ (Z.+1)|tan —=— sgin ——a—— " —
Ty L% ’[ Y7 %
(I)il/Zi-l =<
+ cos —— - i=1,3, 1i.e., for side spans,
72 4
(II-d-9)
and
w.b, H ® V7. +1 ®,)z,+1 =
o~ _ 272 : 22 2Y 72 2
Gz(xz) = > ZZZ—(ZZ-I) sech ————— cosh ————— N
2w°I_,Z,H 272 V2 2
ma2 2 w
b lVz. -1 $ Vz. -1 x
2" 2 ZE 2 2
- (Zz'l'l) sec Tﬁ_— cos """“—?:2——*_ . —f; s (IT-d-10)

for the center span.
Finally, substituting .Eqs. II-d-10 and II-d-9 in Eq. I-d-7 in
order to obtain the frequency equation, the following characteristics

equation is obtained

3 G 2 2
Lg wib\* V2 £ 1
E A H 5 . 3 > V2 7. &,
c ¢ 41 w b/ ¢ Z(Z 7 -1) vt
G.J. +H = 1
iYi w2

Z +1 ®.ﬁ-1 Z. -1 &1z +1
- ——— tan|{—-1 - tanh ——1——’-—~—~—)} A(II-d-11)

z, -1 272 ,/zi+1 272
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Antisymmetric Modes of Torsiocnal Vibration

An antisymmetric vibrational deflection of the cable and of the
stiffening girder causes no additional cable tension H. Therefore,
there is no interaction between the center span and the side spans.
For this reason, two types of independent vibration in a three-span
bridge are possible. |

The boundary conditions for the center span are:

N a‘g,
for x, = 0: 92 = 0; and EZI'Z > = 0,
dxz
and . (11-d-12)
', ~ a%,
for Xy T 92 = 0; and EZPZ —5 = 0
d'XZ

The second part of Eq. II-d-12 indicates that the center of the
span remains at rest and that an inflexion point of the deflection curve
does exist.

After dropping the last term, depending on H in Eg. II-d-5, and

using Eq. II-d-12, the frequency equation is derived in the form

.Cﬁﬂ_
sin\— =0 , (II-d-13)

from which may be derived

;.Lz£2=2,n1r (n=1,2,3,...)

The characteristic value Z, 1is obtained from the second equation

of (II-d-6)
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2
240
ZZ:——-~")T23—+1:1+8“21T
& o
2 2

Substituting this in the last equation (II-d-6), the natural circular

frequency for the center span is determined:

2 2 2
b 4n" v " E,T
_2nTw 1 -2 272 -
“on T T 1"“[(G2J2+HW2 >+ 5 } n=1,23,...
2 ma ﬂz
(II-d-14)
The antisymmetric modes are given by
~ 2.1'1'rrx2
= in ——= = . -d-1
Gzn(xz) C3n sin ﬂz . n=1,2,3, (II-d-15)

In a similar way, the frequency equation for any side span is

found to be sinui,lli =0, i.=1,3., Therefore,

6, (x)=C, sin—4— , i=1,3, n=1,23,... (T1-d-16)

and the natural circular frequency is determined by

2 2 2

1 b. n" T E.T.
w, =304/ G, T+H_ 5 | f—s—2t |, i=1,3, n=1,2,3,...
in = 1. I . i1 w2 2
1 mi ﬂi

(IT-d-17)
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CHAPTER Il

FREE LATERAL VIBRATIONS OF SUSPENSION BRIDGES

III-1. Introduction

The great span length of suspension bridges makes their static
and dynamic behavior under the action of lateral forces an important
engineering problem. The most significant lateral forces are due to
wind and to earthquakes. In the literature, little can be found on the
subject of lateral vibrations in suspension bridges, although many
studies deal extensively with the subject of vertical vibrations (as
scen in Chapter I). There have been few publications in recent
decades dealing with the lateral rigidity of suspension bridges under
wind loading, but there have been at least three investigations [6, 7, 8]
on lateral vibrations and earthquake resistant design of these
structures.

Lateral forces such as horizontal wind pressures, when acting
on a suspension bridge, are sustained by the cables and the suspended
structure, which transmit the resulting reactions to the towers and
abutments or piers. The hangers, which connect the stiffening
structure to the cables, cause the two loaded systems to interact so
that the deformation of one system exerts an influence on the other.

For instance, compared with the suspended structure, the cables
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themselves offer only a small exposed area to wind pressure, but
part of the forces which act on the suspended structure are trans-
mitted through the inclined hangers to the cables. The magnitude

of the transmitted forces depends on the respective stiffnesses of the
two systems and on the ratio of the wind forces acting on them.

Methods of analysis of suspension bridges subject to lateral
wind forces acting as static loads were derived by Moisseiff, et al. (1],
Silverman [3], Erzen, et al. [5], and Selberg [2]. In these studies,
the lateral bending of a suspension bridge is examined, considering
the combined influence of the suspended structure and the cables by
distributing the wind load between the two systems. In general, these
investigations showed clearly how the cables, hangers, and suspended
structures participate and cooperate in resisting lateral forces. Also,
the numerical results obtained in these investigations revealed pre-
viously unknown characteristics of the static behavior of suspension
bridges, and formed a good starting point for the study of the dynamic
behavior of these structures.

The first attempt at investigation of the free lateral {ribration of
suspension bridges was made by Silverman [3]in 1957. He proposed
a formula, based on a Fourier series solution, for calculating the
natural frequencies, but some of his assumptions about the coupling
between the cables and the suspended structure are questionable. In
1958, Selberg (4] found that Silverman's analysis gave an incorrect

equation of motion. Selberg corrected the equation of motion to include
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the interaction between the cables and the suspended structure and,
using a Fourier series solution, obtained formulas for the natural
frequencies.

In the early 1960's, Ito, Hirai, Ckumura and Narita [6,7, 9]
undertook an extensive investigation of the lateral rigidity of a
suspension bridge subjected to static lateral loads and to foundation-
motion. In their publications, they discuss the free lateral vibration
of the bridge and its bending deformations due to lateral loads, both
theoretically and experimentally, They applied an approximate method
of analysis (the Ritz-method) to the equations of motion already
derived by Selberg [4], and thus obtained frequency equations. Then,
they developed these equations to include the effect of the upward
deflection of the cables and the suspended structure which accom-
panies the lateral movement. Their analysis is an improvemeat over
that of Selberg, but they were careful to point out that further improve-
ments were required.

Despite the foregoing efforts, an entirely satisfactory vibration
problem has not yet been derived. It would appear that the most
promising direction of research on this problem would be to utilize
the capabilities of the digital computer. The first use of a digital
computer in approaching this problem, by Konishi and Yamada (8],
achieved significant results. Their vibrational analysis was based on
a lumped-mass and spring system représenting a one-span suspension
bridge. Natural periods and mode shapes were obtained, and it was
found that some of their modes did not agree with those predicted by

the approximate methods of Selberg [4:] and Ito, et al. [7] .
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In the following study, methods of analysis are developed
employing a digital computer and the finite-element technique.
The objective of the study is to determine a sufficient number of
natural frequencies and mode-shapes to enable an accurate analysis
to be made for practical purposes. The problem is linearized by
restricting the amplitudes of vibration to be small. Free lateral
vibrations are investigated using the same procedures employed in
the analyses of vertical and torsional vibrations. The governing
differential equations of motion of the cable and of the suspended
structure are derived first, using Hamilton's Principle. These
equations include the effect of upward deflections associated with
lateral movements; that is, the pendulum action of the cable and
suspended structure is taken into account. The study uses a matrix
discrete method based on a finite-element idealization, as in Chapters
I and II. A numerical example is presented as verification of the
analysis. This method appears to be the simplest and most practical
thus far developed for calculating the natural frequencies and mode
shapes required for a satisfactory analysis of a laterally vibrating

suspensgion bridge.
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III-2. Preliminary Considerations and Fundamental Assumptions

The following section contains a description of the coordinate
systems used in this analysis and of the different vibrational-displace-
ments describing the motion of the cable and the suspended structure.
In addition, a discussion of the simplifying assumptions involved in the

analysis is preseanted.

1I1-2-1. Coordinate systems and vibrational-displacements

For the suspended structure system, the xi-axis s 1=1,2,3, of
the ith span coincides with the equilibrium position of the longitudinal
axis of the bridge deck with the origin located at the left support of
each span; the yi-axis s 1=1,2,3 is vertical and the zi-a.xis is
horizontal, as shown in Fig. III-1-a. For the cable system, the
cables' dead-load ordinate, Vc(Xi) . is measﬁred downwards from the
closing chord-line to the cable of the ith span. The origin for this
cable system is located at the left support of each cable span whether
it is an anchorage or a tower top.

The vibrational displacements of the suspended structure are
measured from the % -Y; plane and the X -2 plane. The cable's
vibrational-displacements are measured vertically and horizontally
from the static position of the cable itself, as shown in Fig. III-1.

The coordinates of vibrational-displacements of the suspended struc-

ture are us(xi, t), v (Xi’ t) and w (xi, t) in the X0 V3 and z;

= =

directions, respectively, and the coordinates of displacement of the

cable are uc(xi, £) vc(xit) and wc(xi, t) in the X ¥, and zy
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directions, as shown in Fig. III-1. (Note: Again, the subscript i

has been left out of this figure for convenience. )

III-2-2. Basis for analysis

The following simplifications are introduced in the analysis.

1. Small vibrations about the position of equilibrium are assumed;
i.e., the amplitudes of vibration about the static equilibrium
configuration are taken to be sufficiently small so that the
stiffness of the structure may be taken to be constant during
the motion.

As a corollary to the above, the increment of horizontal
component of cable tension, H(t), due to lateral vibration
is small in comparison with the initial dead-load horizontal
component of cable tension HW

2. In this theoretical analysis, the ends of the cables are taken
to be immovable. Actually, the tops of the towers on a real
bridge will move in response to changing forces, and this
properly should be taken into account in the specification of
the end conditions; but for purposes of exposii:ion, the tower
tops are taken to be immovable. 1In the finite element analysis,
the deformations of the towers can be taken into account; in
fact, the deformations of the towers may have a significant
effect on the natural periods of vibration and the mode

shapes.
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3. The coupling between lateral, torsional and vertical motions
should be taken into consideration when a suspension bridge
is transversely vibrating. However, as this coupling leads
to very intricate calculations and has significant influence only
for non-small displacements, it is not considered here.

4. In addition to the above assumptions, it has also been assumed,
in studying free lateral vibration, that vibration damping of the
structure may be neglected, the suspenders (or hangers) are
inextensible, the cables are parabolic, and the mass of the
cables is separate from that of the suspended structure.

There are upward vibrational-displacements of the cables and
the suspended structure incidental to their lateral movements. A
pendulum action occurs which may be defined in terms of the coupling
between these upward and transverse motions. For small vibrations
(assumption 1) the upward movements can be found as follows.

By considering Fig. III-1-a, the upward displacements A and
vy of the cables and the suspended structure, respectively, may be

expressed as

vc(Xi’ t) = yc(xi)[l - Cos@i] , i=1,2,3, (3. 1)

and
Vs(Xi: t) = VC(Xi)[l - cosqai} + h(xi)[I - cos Gi] , i=1,2,3,
(3.2)

where ©. is the angle of rotation of the cable plane (at section x,)
1
with respect to the vertical plane passing through tower top and 8, is
i

the angle of rotation of the suspended structure with respect to the
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vertical plane passing through the deflected position of the cable at
section X, (see Fig. II-1-a and III-1-d).
Since A and w_ are very small quantities compared with

Y, and h , one can write

~ wc(Xi’ £) ' )
(’Di.( i’t)—[w:l s 1=1,2,3, (3. 3)

and
WS(Xi, t) - wc(xi, t)

8. (x;, t) = [ N ] ,i=1,2,3. (3. 4)

1

Expanding Eqs. 3.1 and 3.2, and using Eqgs. 3.3 and 3.4, one

obtains

2 4
o 9 .
chy'c[l—l‘l'—ir——zl—"*'... ] , i=1,2,3
or 2 2
WC WC
Vcﬁyc[ 2:’ 2 ? (3 5)
2y Yo
C
and o ol 2 g4
vNy[1-1+—}-—--4-}—+ 'J+h[1“1+21"T11+ :l
i=1,2,3
or
2 : 2 2 2
v >y, [_W'CZ]Jrh[(WS_WC)] ::C P v (3-6)
5 Clayf 21 Ve 2h
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IIT-3. Derivation of the Equations of Motion

In this section, the governing differential equations of lateral
vibration of the cable and suspended structure systems are derived
in a very general form by using Hamiltoa's variational principle. The
resulting equations are linearized and reduced to a standard form

through use of the previously stated simplifying assumptions.

II1-3-1. Potential energy of the cables

The potential energy of the laterally vibrating cable, Vc(t) , is
comprised of two parts: the strain energy, Vce(t) » of the cable, and
the gravitational potential energy, ch(t). Thus, the total potential
energy of the cable is expressed as:

V. (t) = Vce(t) + ch(t) . (3.7)

C

The expression for the strain energy, Vce(t) s will be derived
by considering the inertia forces and the corresponding small vibra-
tional-deformations. The inertia forces change the horizontal com-
ponent of cable tension HW to I—IW:I: H{t) , where H(t) is the
horizontal-component of cable tension caused by the vibration. As
illustrated in Fig. I1II-1-d, the horizontal displacement of the cable is
accompanied by a vertical displacement. The length of the cable
element clsi s in the ith span, 1=1,2,3, under dead load is
ds.l2 = dxf + dycz » dx; and dy_  being the projections in the
horizontal and vertical directions, respectively. As a result of
small, free lateral-vibration about the position of static equilibrium,

the length of the cable element will become dsi + Adsi in the laterally
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displaced-position with projections dx, + du_ along the i span,

dyc T dvc in the vertical direction, and dwc in the lateral direction,
as shown in Fig. IIl-1-d. Here u, and v, are the longitudinal and
vertical components of the in-plane motion, respectively, and w_

is the lateral horizontal component of motion (perpendicular to the
vertical plane through the two bearing points of the cable in any span).
The components of motion are functions of both position and time.

Therefore, one has

2 2 2 2 .
(ds; +Ads,)” = (dw, +du )" + (dy_+dv)" + (dw )" , i=1,2,3
(3. 8)
and consequently

2ds. Ads, + (Ads.)? = 2dx. du_ + 2dy_dv_+ du” + dv> + dw>
1 1 1 1 [ (&4 C (&4 C [o4

since dsi2 = dxf12+dyf ; it follows that

2 BuC avc dyc avc 2 (8WC 2 2
ZdSiAdSi+(AdSi) 2[2 axi +2<8Xi)(dxi> +(8Xi) + 8Xi) }dxi

Since the analyses are to be valid for cables with sag to span
ratios of about 1:8 or less (flat-sag cables), the slope of the cable
profile is consistently small; furthermore the longitudinal component
of motion u, isa small quantity in comparison with A and v,

ou
Consequently, (————SXC) is a small quantity of higher order, and so
4 .

the differential extension, Ads, , inthe length of the cable element,

correct to the second order of small gquantities, is
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SuC dxi 8VC dyc 1 Bvc dei 1 awc)z dxi
Ads = 5= g5~ 4% 5= T, dxi”f'i(s;:) T 95t ‘z‘(s;;f s, 55 ¢

1 1 1 1 1 1 1 1
i=1,2,3. (3.9)

The strain energy of the cable element, dsi » in the it‘h span,

can be expressed as

ds.
av_ (1) = {[H +;H(} 11 ads, . i=1,2,3. (3.10)

In this equation, the factor %— is needed due to the fact that H(t)
increases from zero to its maximum value H(t) .
Substituting the expression for the cable stretch Ads;i (Eq. 3.9)

into Eq. 3.10 and then integrating over all spans, the strain energy,

Vce(t) , of the two cables may be written as

- 1 Ei 8uc: li 8Vc e 1t 8vc: :
Veel®) = 2 {Z[Hvﬁ EH“)]U o, dxi'*f (x) (E{) Ptz (3;) By
i 0

i=1 o 7 1 0

i BWC
GRS

where ﬂi is the length of the ith span. This energy expression can

be written more conveniently as

[

3

t)—Z{ H+H [
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The assumption that there are no movements of the tower tops
or of the anchorages makes it possible to reduce this energy expres-

®
sion to

- ﬁi avc dyc 1 {* avc
E{ 211, 7 HG ﬂ{ (“é';)(a"g) dxi““zj (fa";;“) &
i=1 0 0
| ﬂi BWC 2
+ EJ (3;1—-) dxj} } . (3.12)

Now, the cable equation, which relates the stretching of the
cable element to the geometric displacements which it undergoes,
can be modified to include the lateral vibrational-displacement W

as follows: (See Appendix I-b. )

HOL,, | fifow) i oy \ fdy_ i/ Y
A :-—Z—J B dxi'l'f = \dx dxi'f'ij T dxi , 1=1,2,3,
c C 1 1 1 1
0 0 0
(3.13)
where EC is the modulus of elasticity of the cable, AC is the area

of the cable,and Lei is the virtual length of the cable which is defined
ds,
by L .= j (f) dXi . {An evaluation of the virtual length can also
el :
i

be found in Appendix I-b. ) This cable equation can be written for the

entire cable, in the three spans, as

H(t)L.., o fi B /9%, /dy, Loy \

N dx, + dx, + 1) (52 4

E A ~ 8x dX i 2 ox. ) i
€ ° =1 0 0 o
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3
where L. = 2. L_, for the entire length of the cable.
i=1
Substituting ¥qg. 3.14 into Eq. 3.12, the strain energy of the

cable becomes

2
H H(t)LE H (t)LE
Veelt) = 2[‘*—‘%—;—“} +2{2_E—A_} : (3-15)
c cC c C

Attention is drawn to the fact that if the dead-load cable tension
were to remain constant during vibration with a horizontal component
Hw » and if H(t) were due only to the inertia load, then the first term
of Eq. 3.15 would be the dead-load work stored in the cable while the
second term would be the energy of vibration stored in the cable.
However, the dead-load cable tension changes because of the altered
cable curve, and H(t) represents the combined effect of this change
in dead-load stress plus the inertia load stress.

The expression for gravitational energy, ch(t) » of the two
cables due to the upward deflection, vC ,» incidental to their lateral

movement W, . can be written (in view of the preceding analysis) as

31
Lo
ch(t)=z f w v (x, ) dx, (3.16)
=1 *0

where ‘;;c is the dead weight of the two cables per unit length of the
span.
Using the approximate relation between v, and W (Eq. 3.5},

Eq. 3.16 can be expressed as
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) 23 A * wf(x t)
i= 0

Now, (after substituting Eqs.

3.15 and 3.17 into Eq. 3. 7) the
expression for the total potential energy of the cable is

2[4 o

0 (3.77)

HWH(t)LEW Hz(t)
Vc(t)zz ———~——~—ECAC +2[ ZE = } +

=1

II1-3-2. Potential energy of the suspended structure

The potential energy of the laterally vibrating suspended

the elastic potential

structure, Vs(t) » also consists of two parts:

energy (i.e., the strain energy), V. (k) due to the effects of bending

moments, shearing forces and normal forces, and the gravitational

potential energy, ng(t) , due to upward movement; i. e.,

Vglt) = V() + V(1) (3. 18)

Neglecting the effects of shear and longitudinal deformations, the

strain energy stored in the suspended structure due to bending can be

written as

Ox.

i= i

3 52 2
v _1 WS(X t)
selt) =7 B Igl—F | ax, . (3.19)
0

where E is the modulus of elasticity of the suspended structure in

the ith span, and Isi is the area moment of inertia of the suspended

. .th .
structure about its vertical axis, y; > in the i span. This moment
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of inertia includes the contribution from the two stiffening girders

(or trusses) as well as the contribution from the lateral bracing

systems. The suspended structure displacement, w_ is measured

from the vertical pla.nel through the longitudinal centerline of the span.
The gravitational energy, ng(t) s of the suspended structure

due to the upward displacement v, is

3
ng(t)zz J w (v e ) dx, (3.20)
i=1

e
where Wi is the dead weight of the suspended structure per unit

length of the ith span.

By the aid of Eq. 3.6, this gravitational energy becomes

3 4 2 )
_ g | W (xi, t) (WS(Xi, t) - wc(xi, t))
i=1 Y0 c i

where h(xi) is the length of a hanger in the ith span at section X -

Es

It should be noted that Eq. 3.21 contains a coupling between the

vibrational-displacements of the cable and those of the suspended
structure systems.
Now, the equation for the total potential energy of the suspended

structure (Eq. 3.18), becomes

1. £,

> i (w w)2
1
s :EZ[J si 51< )dx S‘h dei}°

i= *§ 0

+
é“r

(3.189
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Ti1-3-3. Kinetic energy of the laterally vibrating suspension

bridge

The kinetic energies caused by the lateral vibrational displace-
ments W, and W, of the two cables and of the suspended structure,

respectively, are expressed as

1 3 ﬂl " SW x t)
=22 | m ) (3. 22)
i=1 Y0
and
3 f,
T =i [T (ol :
5 T 2 et gi\— 2t dx. (3.23)
. ot i
i=1 0
ks
] Wc . .
where m = 3 is the mass of the two cables per unit length of the
span, and m_. = -rsél— is the mass of the suspended structure per unit

length of the ith span; g is the acceleration due to gravity.
The kinetic energies caused by the incidental vertical movements,
v, and v, o of the cables and the suspended structure, respectively,

are given by

3 4, 2

~ 1 i Bvc(xi, t)

Tc(t) =5 Z J m |\ = dXi s (3. 24)
i=1 "0

and
3
~ av X s t)
T (t) = ; > J ( <2 ) dx, - (3. 25)
i=1

Using the relation between the lateral and vertical moverments
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of the bridge (Eqs. 3.5 and 3.6), Eqs. 3.24 and 3.25 become

~ 113\ ﬁi B3 0 Wcz 2
T (t) =3 jmc[ﬁe;)} dx, (3.26)
i=1 70 ¢
and
N 1 3 ﬂl* . Wl (w-w )T
Ts(t)=z=}:fm81[—a-€(2; + S )J dx, . (3.27)

II1-3-4. Variational formulation of the equations of motion

a. Derivation of the general equations of motion

When applying Hamilton's Principle to derive the differential
equations in terms of the lateral displacements w_ and W T and
V must be functions of the dependent variables w. and w only.
This requires making use of the approximate relations given by

Egs. 3.5 and 3.6 which can be expressed in variational form as

(WC) WC
O0v_=08ls—] = — bw ) (3.28)
c Zyc V. c
and
2 2
W (W ~w) (w -w ) w o o(w-w)
_ C S C _ S C '_C_ S C
bv, (‘{ 7y, + h } = {_h :]5WS +[YC St ] 6w,
(3. 29)
The variation to be performed on the kinetic energy is
tz tz 5 ~
J 6Tdt =I G(TC+TS+TC+TS)dt . (3.30)
t t

1 1
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Expanding, performing the variation of each of the terms for the
various kinetic energies with respect to A and W and integrating

by parts where necessary, yields

¢ 3 t, 4,
2 2 i,
j 8T dt = ZJ m_ Sw_dx. dt (3.30-a)
tl i=1 t 0 '
£, 3 tz JZi . a2WS
£ i=17¢, 0 b
1 1
tZ N 3 tZ ﬂi ) 82V
Jawa-Z m —S §v dx, dt
C C C 1
t =1%¢, Y0 ot
1 1 1
3 tZ ﬂi x W 82 Wf'
o m = = == fw dx.dt . (3.30-c)
Y, g 2 | 2y c i
. ¢ ot c
i=1%t. Y0
1
and
t2 . okl %y
JGTdtz-ZJJm bv_ e dt
5 si
t ' i=1%, "0 ot
1 1
3 tZ Ei - W~ W 82 W2 (W-—W)2
_ _Z 1;5 ( S c:) C + s [od 5w
8i h 2| 2y Z2h 8
. ot c
i=1 t1 0
2 2
W (w.-w) 2w (w_ -w)
c 5 ¢ 0 c s C
+(Yc - n ) 8t2 l: ZVC + 54 :l GWC} dxidt . {3.30-4)

The above equations have incorporated the fact that 5wc s 5WS ,

ﬁvc and 5vs are zeroat t=t, and t=¢

1 2
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The variation to be performed on the potential energy V is
£2
f §Vvdt [ 8(v. +VvV_ +V +V_ )dt . (3.31)
ce cg se sg
b

Proceeding as in the case of the kinetic energy, the variation of

the potential energy terms can be obtained.

t 3 0t 1. 2 )

2 2 i/0w i/ov \ /dy
jav E J {ZEHW+H(t)]5[%f (‘a‘;f) dx, +J (ﬁ)(&-‘i) dx,
t t 1 0 1 1

1 i=1 0
1 ﬂi 8VC 2
+—2-J 5}?) dxi }‘ dt
0 i
3t ow, r4 azwc ay, 3
=EJ {ZEHWJr H(t)] aXi 5WC -—f axz GWC dxi-l-a‘;;_.“ 6VC
i=1"¢, 0 "0 4 t 0
1 dzyc avc ﬂi 'ﬂ'i azv
- 6v dx, +5—06v | - Gv dx dt . (3.31-a)
2 i Ox 2
dx. i 3x
0 i 0°0

Substituting Egs. 3.5, 3.6, 3.28 and 3. 29 into Eq. 3.31-a, aad

dzy /W w_,
noting that for the parabolic cable zc =3 -—CH—E » gives
dx, W
1
3 t, 1 2 w % 4 % 5 2
wtw.\ w W
J 6V_ dt- ZJ 20H_+ H(t) }{f{ _l_c_(_s_.%},)+_£ 2 (.__2,) B dxc.
1 Ox 2 Yo Hw o 8 2y, ¢

aWC e dyc Ve 8 Y [T '
+{8x‘. + ’;C' =7 = (Z‘y )}5“’(1 J dt . (3.31l-a))
0

1




-260-

For the other terms of the integral of Eq. 3. 31, one obtains

tz 3 tz ﬂi 3 tz JZi w
_ £ _ ES _c
J‘ 6chdt~2} J W évcdxidt—ZJ J A T Gwc dxidt » (3.31-Dh)
tl i=1 t]. 0 i=1 tI 0
tz 3 tZ azws ow 21 9 azw ﬂi
j 5Vse(t) = ZJ‘ {Esilsi 2 6(8:& ) T ox. 51 sl 2 ) 6WS
- 83:_ 1 ax.
t]. 1—1 t]. 1 O 0
Jei 82 0 W,
+ —_— LI, dw dx. L dt , (3.31-c)
9 2 sivsi g 2
< X,
0 i i
and, finally
‘t2 3 tZ ﬂi 3
jﬁ 6V, e =D J J w_; 6v_ dx, dt
tl i=1 tl 0
3 tz £
if .,
:Z \; W - W . Tw (WS—WC)
51 5 :‘6W +w - §w | dx. | dt
- s s h
i=1%t.""0

(3.31-d)
Having the foregoing variations of the different energies, Hamilton's

Principle, after rearranging terms, gives
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B3
]< 82wc 1 WC vﬁs;rc+ WS1 WC 82 5‘
- 2[H_ +H({) -—m( )-{--————(———))
Bxiz 2 Ve HW Yo 3xi2 ZYC
W ” W (WS—W)
=W +w (-—C—- C) Sw dx.
Y. ¢© si\y, h c i
ow wody W g WZ ﬁi
PO B 0 . S )
W y., dx. y.  9x. \2y c
c i c i c 0
fl[* (8w (w-wc) aZ(W2 (w-w)2)>
+ +
fo si\ 5.2 R 5.2\ 2y 2h
2 azw W [W =W
;2 —E )t w . [—2—S)l6w d
02 sivsi L 2 si\_ h x
x O,
i i
azws ow i 9 32WS il
- . 2 6(8 ) - 'é-""' ! . o 5W dt = 0
sivsi 4 x X si~si 8}{2 s
¢ i 0
(3.32)

The coefficients of 6WC and GWS that appear under the integral

signs must be equal to zero, and the integral terms must be equal to

zero at %, = 0 and xi:ﬂi It follows then that the differential

equations governing the lateral vibration of the cable and the suspended

structure are given by

B 82W W 2 WZ W (w_~-w) 2 WZ (w_-w )2

% c c 0 c ¥ [ 5 ¢ B c 5 ¢

S ey i A U A B I v A
ot Yo ot Yo Yo ‘ ot Yo



2 % sk 2
2w ] V(W EWL W 82 W W,
- ol ]| — - & 2 (8 51)+._°.__(_c_ foe ¥
w ax.z v2, Ye HW Ye sz bA e ¢
1 1
o [V (Wymw)
T [TC“‘_—h =0 ’ i=1,2,3, (3.33)
and
2 2 -
9 - -
* l: W, N (Wy-w) 4 ( A s (w - w) )
si 31:2 h 31:2 Z'Yc h |
aZ azws . (WS-W ) 7
T Bl +W’{—_—__C-— =0 3 i:1:2:3:
2 si si 2 si o
Ox, O,
' ’ (3. 34)
where
3 £ 2 { 2
A E if Ow i/dy w
=_< . c L7 —< ci @ C
Ht) = Lo E ZJ (ax.) d'xi+f (dx.) Ox, (Zy) dX1
1:1 0 1 0 1 1
ﬂi WZ 2
102 (_C) dx, . (3. 35)
2 X, y i
0 i c




3 £ 2 ¥ i
A E i/ 0w (w_.tw) rif/w
e ¢ 1 C si ¢ c
HE) == E[ 2J (8x.> &t o f(zy) dx;
5 _ i c
i=1 0 0
.Ei WZ 2
1 o c
0 i c

The two equations of motion (Egs. 3. 33 and 3. 34) describe the

. coupled vibrational motion of the cables and the suspended structure

These two equations, as well as the cable equation {(Eq. 3. 35 or Eq.

3.36) contain unonlinear terms.

The boundary conditions specified by Eq. 3.32 are

2 £,
[8WC wody, w4 W i
ZEHW’i'H(t)] oy + *;r— = + e (*Z-'Y—)]GWC =0, 1=1,2,3,
i c i c i < Y
(3.37)
82w aws ﬂl
o5 Lai 82 ) ey =0 i=1,2,3, (3.38)
i
0
and
5 azws vai
T Esilsi 5 GWS =0 ’ i=1,2,3; {3.39)
i 0%
i o
these can be satisfied by
2
] awc e dyc e Ve
2lH__ +H(t) +———--—-+—————-(———-—) =0 or
w Sxi % dXi Y 8Xi Yo
Ye=0 at x, =0 and % =2, , i=1,2,3,
i i i

(3. 40)
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3 W aws
. R =0 or e = 0 at x. = 0 and X, = E- » i = 1: 2: 3 F)
81 sl sz 9x, i i i
i (3.41)
2

9 d LA
e Esilsi-a——z‘— = 0 or WS: 0 at Xi: 0 and Xizﬁi , 1=1,2,3.
i X,
(3. 42)
Eqgs. 3.40, 3.41 and 3.42 repreéent the boundary conditions
associated with the differential equations 3. 33 and 3. 34,
The first part of Eq. 3.40 can be rewritten as
8wc dyc BVC W
ZEHW+ H(t)] 5o + ZEHW+H(t)] (a}-{— + E—) . ?- s, in which the first
i i i c
term represents the lateral shear force transmitted by the cables to

_ the tower tops or anchorages due to only the lateral displacement w, .

The second term represents the transverse component of the shearing

dy v
force, 2[H + H(t)](-—-s- + ——E) » in the rotated plane of the cable
W dxi 8Xi

which is produced by the vertical displacement v, . Eg. 3.40 requires
that either the lateral shearing force or the lateral deflection of the
cable be zero at each end of the cable span. As indicated in the
simplifying assumptions, the deflection of the cable span is zero at
both ends, so its variation is zero, and the geometric boundary con-
dition of Eq. 3. 37 is sé.tisfied.

The first part of Eq. 3.41 requires that the bending moment
vanish at each end of the suspended structure, while the second part
requires that the rotation vanish at each end. Eqg. 3.42 requires that

either the shearing force or the deflection be zero at each end of the
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suspended structure. For a suspended structure hinged at both ends,
the bending moment and the deflection are zero at both eads, and
Eqgs. 3.38 and 3.39 are satisfied. In this case, there is one geometric

and one natural boundary coundition.

b. Linearization of the equations of motion

When the higher order terms in Eqs. 3.33 and 3. 34 are

neglected, the linearized forms of the equations are obtained:

* azw Bzw Woo. o x Woox Wy [ Vg~ W,
m __Zc--ZHW ZC+—9(W+Wsi)+*wcv+——wsi-wsi< h =0,
€ ot Bxi Yo € Ye Ye
i=1,2,3, (3.43)
or
2 2
0" w "w W W W :
e * * % .
m_ —s" - 2H_— -wsi( Shc)+2(wc+wsi)-—°=0 , 1=1,2,3,
ot Ox Yo ,
(3. 43
for the cable; and
i BZW 82. 82WS % WS - Wc
m.———-zc+——-2 E_ I 5 +w.(-—————h =0, i=1,2,3
51 gt 9%’ 18l 5! s
L . (3. 44)

for the suspended structure.

The first term of Eq. 3.43 results from consideration of the
kinetic energy caused by the lateral displacement W enly (Eq. 3.22).
The second and third terms are from the linear strain energy expres-
sion of the cable, which is derived from Eq. 3.12 in the form:

3 21 By \ ydy £ ow \2
- <. < L' =
Velt) =D ZHWU (8x.)(dx.) dx; + ZJ (ax.) dxi}
0 1 1 0 1

i=1
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1
Upon integrating by parts, noting that zc = -3

and using Eq. 3.5, this equation becomes

3 L. 2 L 2

~ 1 (i ch 1 Wc+ AN EVAA ,

Vce(t) - E 2'HW \:ij <_8—x_) dxi * '2_( H )J’ (Zy )dXJ : (3-127)
i=1 o ! c

The fourth term in Eq. 3.43 results from the gravitational
energy expression of the cable (Eq. 3.16) due to the upward displace-
ment, v, while the last two terms result from the gravitational
energy expression of the suspended structure (Eq. 3.21) due to the
upward displacement v, .

Comparison of Egs.3. 34 and 3. 44 reveals that the only lineariza-
tion is due to neglection of the kinetic energy caused by the upward
displacement vy of the guspended structure.

‘Finally, Eqs. 3.43° and 3.44 are identical to those derived by
Selberg [4], except for the last term of Eq. 3.43', which is a con-
sequence of taking into consideration the upward movements of the
structure. No solutions of Eqs. 3.43  and 3.44 in closed form are
known. However, Fourier series solutions, and energy approximate
methods have been used by Selberg and Ito [7, 6] to determine natural
frequencies by assuming sine mode shapes. An approximate solution
of these two linear differential equations of motion (Eqgs. 3. 43_'(and
3.44), in which the frequency equations are obtained, can be found in
Appendix III-a. In this solution, sine mode shapes are assumed, and

the orthogonality property of the modes is used.
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IIT-4. A Finite Element Approach to Lateral Vibrations

A method of analysis based on the finite element technique is
presented in the foilowing section. The method takes into account
the characteristics of both the cable and the suspended structure.

The cable is idealized by a set of string elements, while the suspended
structure is idealized by a set of. beam elements. The two sets of
elements, connected by rigid hangers, form the bridge elements. The
stiffness and inertia properties for each set of elements are derived
and assembled to obtain the gross assemblage characteristics. -
Finally, Hamilton's Principle is used to derive the matrix equations

of motion for the entire bridge structure, from which the natural
frequencies and modes of vibration are obtained. To illustrate the
applicability of the analysis, and to exhibit the dynamic characteristics
of lateral vibration, a numerical example is presented.

In deriving the finite-element solutions, the strain energy of
vibration stored in the cables due to H(t) (second part of Eq. 3.15)and
the kinetic energy caused by the upward motion of the suspended
structure and the cables are bhoth neglected. In addition, the previous

assumptions presented in Section III-2-2 are employed.

IIT-4-1. Idealization of the structure and the displacement models

The suspension bridge structure is divided into an appropriate
number of elements which are interconnected only at a finite number
of nodal points along the cable and the suspended structure, as shown

in Fig. III-2-a (for the center span only). FEach bridge element
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consists of a cable subelement and a suspended structure subelement
connected by two or more rigid suspenders, as in Figs. III-2-b and c.

Since the lateral vibrational-displacement of each suspended-
structure nodal-point is different from the lateral vibrational-displace-
ment of the corresponding cable nodal-point, it is necessary to make
a distinction between the two nodes. Thus, each bridge element has
four nodal-points, two for the susﬁended»—structure subelement and
two for the cable subelement. For the suspended-structure subelement,
there are two nodal degrees of freedom at each node: one is the trans-
lation of the cross section defined by the node and the other is the
rotation of that cross section in the horizontal plane (as shown in
Fig. III-1-c). The cable subelement has only one translational degree
of freedom at each node. This introduces six degrees of freedom (or
nodal displacements) for the bridge element, designated by
qj(t) » j=1,2,3,4,5and 6, at the nodes i, i+1, i+2 and i+3.

(In Fig. III-2, the suspended-structure nodes i and i+2Z are con-
nected to the cable nodes i+1 and i+3, respectively.)

The interpolation functions associated with the two degrees of
freedom of the nodal-point in the suspended-structure subelement are
taken to be cubic Hermitian polynomials (used before in Chapters I
and II). Consequently, the lateral vibration of the suspended-structure
can now be expressed in terms of the bridge-element nodal displace-

ments qj(t) » 7=1,2,3,4,5 and 6, as

w8y £t = [623-28 ) . ~16%e, . 0, £23-26,), LE €2, o faw],
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or

w, ()5 E5t) = (£ (6,601 (] (3. 45)

where e is the subscript indicating 'element, ' 1. is the length of
the element, and El and EZ are the normalized coordinates defined
by

£, =(1-%) and £, = 3% . (3. 46)

X is the horizontal axis of the individual element, as shown in
Fig. III-2-b.

In Eq. 3.45, {fs(El,éjz)}eT represents the transpose of
{fs(gl, £2)}e ; it is the vector of the polynomial for the suspended-
structure subelement, and {q(t)}e is the vector of the six nodal-
displacements for the bridge element.

The interpolation displacement polynomial associated with the
one degree of freedom of the cable nodal-point is taken to be a linear
interpolation function, i.e., interpolation where only function values
and no function derivatives are prescribed. Thus, the cable lateral
vibrational-displacement can be expressed in terms of the six nodal-

displacements of the bridge-element, as
w_ (&t) = [o s 0, 4, 0, 0 ﬂz(i)]e fatvl, . .47

Here, f-l(':E) and ﬂhz('f) are the linear interpolation functions for the

cable-subelement, and are given {(on Lo, Ll) as

fl(':';’)=(1—-§L—) and fsz)zzi- . (3. 48)
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By introducing the normalized coordinates €1 and 52 (Eq. 3.46),
any point in the cable subelement [0, 1.] can be referred to in terms

of & and g, as new coordinates. Therefore, Eq. 3.47 becomes

ch(gligz;t) :[0 F) 0 3 gl 2 0 3 0 3 ﬁz]e {q(t)}e 3
or

w (£ £,50 = (6, 6,)1 {aw)] (3.49)

where {fC(EI, £Z;t)}e is the vector of the polynomials of the cable-
subelement.

Equations 3.45 and 3. 49 furnish the displacement models for the
bridge-element.

Each bridge-element has an average suspender length he, and

an average dead-load cable ordinate Y, + as ghown in Fig. III-2.

IIT-4-2. Evaluation of structural-property matrices

For the derivation of the various stiffness matrices of the
individual bridge element, it is again convenient to treat the| suspended-
structure subelement and the cable-structure subelement separately.
Then by superposing them appropriately, the structural or stiffness

properties of the entire element (or assemblage) can be found.

a. Elastic-stiffness matrix of the suspended structure

The strain energy of the suspended structure due to bending,
Eqg. 3.19, may be expressed (with the aid of the displacement model

for the suspended-structure subelement, FKq. 3.45), as
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N,

3 i L
Vselt) l {Z J se se £ }E{q}e)T( {fg}z{q}e) d'ijl .
1—1 T (3.50)

Here, Ni is the total number of bridge elements used to present the

ith span; Ese Ise s the flexural rigidity for the element, is assumed

uniform over the entire element.
Writing Eq. 3.50 in a more convenient form provides the elastic-
stiffness matrix for the element, as follows
N

v (t) =3 {a)] [k, 1 fq} . (3.51)

e=1

where N = Z Ni is the total number of elements used to present the

entire assembled structure, and

L
S LA (3.52)
0

is the element elastic-stiffness matrix of the suspended-structure sub-
element. The integration involved in the evaluation of [kse]e can be

accomplished as described in Chapter I. The resulting elastic-stiffness

matrix is 12 -6, O -12 -6, O
6L 412 0 6L 212 ©

] :Eselse 0 0 0 0 0 0 . (3.53)
see 1.3 -12 6L, 0© 12 6L O

6L 212 0 61 41 o0

0 0 0 0 0 0 J
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Note that zeros are used for the columns and the corresponding
rows of the nodal~displacements of the cable subelement, as is
expected from the assumptions associated with the individual dis-
placement models of the two systems.

For the complete system, the assemblage elastic-stiffness

matrix and the assemblage nodal displacements are, respectively

N
Regl= 2. Tk 1 (3. 54)
e=1
and N
{r}= 2 fq} (3.55)
e=1

Now, the total strain energy of the assemblage associated with

bending and stored in the suspended structure may be expressed by

V() %{r}T [KSE]{r} . (3.56)

The stiffness matrix of the complete system [KSE} is

symmetric, positive-definite and thinly populated (i.e. banded).

b. Gravity-stiffness matrix of the suspended structure

The gravitational energy associated with the upward deflection
of the suspended structure (Eq. 3.21) can be written, by using the

displacement models for W, and W (Egs. 3.45 and 3.49), as
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3 Mg
W0 X[ {2 (1 w,) =
i=1 ~e=1"v0 "°®
F T T 2
+ff§({fs}e {ad, - £}, (a}) dss}] ; (3.57)
0 e

where ‘;‘;se is the weight of the suspended-structure subelement per

unit length, and Vo and he are the geometric properties defined as

before.
It is important to note that the second term of Eq. 3.57 repre-
sents the coupled vibrational-motions of the cable and the suspended

structure.

Now, define the vector {¢}e as follows
{Q}e B ({fs}e B {fc}e ) ? (3.58)
which in terms of the normalized coordinates, becomes

{01 - [g (3-26)) , -LESE, . -&, . £5(3-26)), L2, -gz}

e
(3.59)
Then Eqg. 2.57, may be expressed as
N L wk L“ﬂ;
1 T se T se
OES Z[{q}e (f -*y;-—{fc}e{fc}e dx + J {8} {817 a ) {al, }
e=1 0 0 (3. 60)

or more conveniently
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N
sg(t) - % Z {q}eT ( [ksl:]e ¥ [kSZ]e) {q}e !
e=1
N
=5 2 {aff Tr ) fal, (3. 61)
e=1

where [ksg]e is the element gravity-stiffness matrix of the suspended
structure; it consists of the sum of two matrices. The first matrix,

[kslje , is due to the coatribution from the cable, and is expressed by

2 V)s;se T
[kslle:f 22 {5 U )y 0= (3. 62)
e
0

while the second matrix, [kszle , is due to the coupled motion of the
cable and the suspended structure, and is expressed by

ats
B

Wse T -
[kszle :f T {cb}e {@}e dx . (3.63)
0 <

The integration involved in the evaluation of both matrices,
[kslje and [kszje’ can be accomplished by the integration property
(Eq. 1.59) of the interpolation functions in Chapter I. The resulting
matrices are F 0 0 0 0 0 0 ]

0 0 0 0 0 0

(k1. = , (3. 64)
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156 -22L -147 54  13L -63
221 41%  21L  -13L -31% 14L
w L |-147 211 140 -63 -14L 70
Hegale - 420h, 54 131,  -63 156 = 221 -147 | (3-6%)
13L -31%  -14L 221, 41% -21L
63 141 70 - -147 -22L 140

Therefore, the resulting gravity-stiffness matrix of the bridge-
element (due to the suspended-structure's upward motion)has non-zero

coefficients corresponding to the six nodal-displacements for the

element; it is

156 -221., -147 54 131, -63
221, 41% 211 -13L -31°% 141
% he he
w L | -147 21L 140(1+=2) -63 -14L 70(l+—)
[k 1] :42%eh Yo ' Yo .
sg e e 54 -13L  -63 156 221, -147
131, -312  -14L  22L 4I%  -21L
h h
63 14L  70(1+~2) -147 -21L 140(1+—=)
I Ve Yo '
(3.66)

The assemblage gravity-stiffness matrix can be obtained by

merely adding the element stiffness coefficients appropriately; it is

expressed as

N
EIRNED DI N (3.67)
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Thus, the gravitational energy associated with the upward
motion of the suspended structure, for the assemblage, may be

given as

1 ¢ AT
vsg(t)=§{r} [KSG]{r} , (3.68)

in which EKSG] is a symmetric, positive-definite and banded matrix.

c. FElastic-stiffness matrix of the cables

Recalling the expression for the strain energy of the cables,

Eq. 3.15, and using Eq. 3. 36 (the expression for H(t)), yields

3 L, 5 2 ‘;-'; +£).J’.. WZ £, ,WZ 2
V. (®) =Y 2H_|+ () ax +(Si = € ) dx, ++ —a~(——°~—) dx;
ce w2 Jx%, i 2H 2y i 2 Ox. \2v, i
i=1 0 i W c 0 i7"
3 L, 2 ¥ kN 2 £, 2\ 242
. Z ECAC 1 i ch - (wsi-l- WC) W dx +l il 5 W
L 2 ox, i 2H 2y i 2] |9x. \2v )
. i W c i c
i=1 0 0 0
(3.69)

The second term of this equation, which is the energy of vibration
stored in the cables, is a very small quantity of higher order and may
be ignored; furthermore, the last term in the first set of brackets is
unimportant and may also be neglected. Therefore, the strain energy

of the cable reduces to the linear form

3 [ 52 3 g 2
_ _:L S l__ b b C
V_ (6 =52 [ZHWF<8X1) dxi]+ >3 [(""sff“’c)J (i—) dxi} . (3.70)
i=1 0 i=1 0

With the aid of the displacement model of the cable subelement

(Eq- 3.49), the energy expression (Eq. 3.70) becomes
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* ) 1. >
1 ¥ se  ce ( T ) —
t3 4.[ — f te ), lad,) a= | (3.71)
i 0
where viﬁce is the weight of the cable subelement per unit length, and
{f,c}e is the vector of the slope of the cable model-displacement,

expressed by

I'I'__l_ ~
gy =00, 0, -1, 0, 0, 1]. (3. 72)

Eqg. 3.7]1 may be expressed in more convenient terms as

L
Vce(t) :% Z [{q}z (2 HWJ {flc}e{f::}g dx

e=1 0

sk sk

Wsen{"wce g 18
+—T——f {fc}e {fc}e dx){q}e J . (3.73)
© 0
or

N N
_1 T( ) _1 T
Vce(t) -2 Z {q}e [kc1]e+[kc2]e {q}e_ 2 Z {q}e l:kce]e {q}e ’
e=1 e=1 (3. 74)
where [kce]e is the element elastic-stiffness matrix of the cable;
again it consists of the sum of two matrices, and can be evaluated, as

before, to give
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0O 0 0 0 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0 0 0 0
5k b3
21 0 0 1 0 0 -1 (w +w ) 0 0 2 0 0 1
[k :I - W + se ce

ce’e L 0 0 0 0 0 0 6y, 00 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0

0 0-1 0 0 1 001 0 0 2

(3. 75)

Once more, note that zeros are used for the columns and the cor-

responding rows of the nodal-displacements of the suspended-

structure subelement, as the previous assumptions would indicate.
The assemblage elastic-stiffness matrix of the cables can now

be written as N
P Zi Tk oo (3. 76)
e:

and consequently, the strain energy expression of the cables is

V() = % {r}¥ (Kl (x} . (3.77)

d. Gravity-stiffness matrix of the cables

The gravitational energy associated with the upward motion of
the cables (Eq. 3.17) can be expressed, by using the cable displace-

ment-model (Eq. 3.49), as follows

8 tal, ) (e T a,) ax |

0
aq
=
"
W] ]
M o
—
nEu
1)
© H
T

N &L
=% Z {q]:f [ Yce j\ {fc}e {fc}g dEJ {ad, . (3.78)
0
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or

N
Velt) =3 2 ok Tk, Lad,
e=1

" Here, [kcg]e is the element gravity-stiffness matrix of the
cables; it can be obtained by using Eqs. 3.62, 3.64 and 3.78 and'is

given as

_ ce
[kcg]e = _6_32’;— . (3.79)

Superposing appropriately gives the assemblage gravity-stiffness

matrix of the cables as

N

Kegl= 2o Tk le s (3. 80)
e=1

and, therefore, the gravitational energy expression of the cables

may be written as

Veglt) = }Z ()T [Kogd (7] . (3. 81)

II1-4-3. Evaluation of inertia-property matrices

In evaluating the mass matrices of the system, the kinetic

energy caused by the incidental vertical motion of the laterally
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vibrating suspension bridge (Eqgs. 3.26 and 3.27) is neglected because
the upward deflections v, and v, are small quantities of higher order

than the lateral displacements W and LA

a. Consistent-mass matrix of the suspended structure

The kinetic energy expression (Eq. 3.23) of the suspended
structure due to lateral displacement, with the aid of the suspended-

structure displacement model (Eq. 3.45), gives

3 N L T ‘
T (t) = —é— > [Z f {fs}:f{c'l}e) ({fS}g{é}e)d}E ] , (3. 82)
i=1 e=1 0

als
where m_ is the mass of the suspended-structure subelement per

unit length. In this case fflse is assumed uniform along the individual

element.

Eq. 3. 82 may also be written in the form

T® =3 Z [Z fal; [msje{é}e:{ : (3. 83)

where [m ] is the consistent-mass matrix of the suspended-

structure subelement and is defined by

L
[m ] = é%sej {fs}e{f.s}f a% : (3. 84)
0

g e

Upon carrying out the necessary vector multiplications and

integrations, this matrix becomes
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156 -221, 0 54 13L O

-22L 415 0 -13L -31% o0

SSSGL o o0 0 0 0 0
(m ] = . {3.85)
54 3L, 0 156 221, O

13L -3L 0 22L 4I1% 0

0 0 0 0 0 0

Thus, the assemblage consistent-mass matrix of the suspended

structure is

N
M 1= m]1 (3. 86)

e=1

and, the kinetic energy expression (Eq. 3. 83) becomes
T.(t) = = {37 [ _3{#) (3. 87)
s 2 s : :

h. Masgs matrix of the cable

The kinetic energy expression (Eq. 3.22) of the cable due to
lateral displacement, can now be expressed conveniently, in terms

of the stiffness mafirix, as

N,
i

3 T
[ A [l ek, )]
0 .

e=1

0'—]

Py

[ d

i
WIIE
[~ w

et
i
[

LS a1 1, 14}, (3. 88)

[
P

where
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L
[rnC]e = fﬁcew[ {fc}e {fcif dx (3. 89)
0

is the element-mass matrix of the cable structure, and m . is the

mass of the cable subelement per unit length.

The element-mass matrix resulting from Eq. 3. 89, when the

results of Eqs. 3. 62 and 3. 64 are used, may be expressed by

_ e
[mcl = ‘g) . (3.90)

Finally, the assemblage mass matrix of the cables is

N
[MC] = Z [mC]e ,

e=1

and the kinetic energy of the assemblage is given by

T (t) = 5 (31T M 1{F} . (3. 91)

IT11-4-4. Variational formulation of the matrix equations of motion

Inserting the different energy expressions, Eqgs. 3.56, 3.68,

3.77, 3.81, 3.87 and 3.91 into Hamilton's Principle, and performing
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the variations and the integration by parts, one obtains the following

t
2

" )1+ )
f {6r} [([MSM[MC] (IR 1+ (R I+ K L1+ IR ] {r}}dt—o.
t
1

Due to the arbitrary nature of the variations in nodal displace-
ment, {6r}, the expression in square brackets must vanish.
Therefore, the equations of motion for the gross assemblage has

the form
([MS]+[MC]){¥}+([KSEJ+[KSG]+EKCE]+[KCGJ){r} = {0} . (3.92)

These are the governing differential equations for the problem
of lateral vibrations of suspension bridge structures.
The matrix equations of motion for the free, lateral undamped

vibrations of the suspension bridge can be conveniently written as

Il {7} + [K1{r}=0 , (3.93)
where

(M]= [MS] + [MC] (3. 93-a)
and

kl= EKSE] + {KSG] + [KCE] + [KCG] (3. 93-b)

are the mass and stiffness matrices, respectively, for the complete
system; they are positive definite, symmetric, and banded matrices.
Again, by writing the solutions of Eq. 3. 93 in the well-known

form

{r()}= {7}t | RV ul (3. 94)

the eigenproblem, identical in form to those given in Chapters I and II,
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appears as

([K] ) &[m]){?}: 0} . (3. 95)

5
e

Here w is the natural circular frequency of free vibration, and {r
is the vector of the displacement amplitudes.
Multiplying throughout by [M]—l , one has the more standard

representation
(oM k1 - w2 1) (5= o) (3. 96)

If the matrices [MJ] and [K] are nxn matrices corresponding
to n degrees of freedom, then there will be n eigenvalues (wi) and
n corresponding ecigenvectors ({in}) satisfying Eq. 3. 95; the above-
mentioned eigenvectors will not necessarily be distinct from one

another.

III-4-5. Numerical example

A numerical example is presented to demonstrate the effective-
ness of the analysis developed in this chapter. In this example, the
finite-element results are compared with those obtained by an approxi-
mate method of analysis (i. e., one based on deriving the frequency
equations). In general, the numerical example is presented not only
in order to illustrate the satisfactory agreement of the results but
also to delineate some characteristics of the dynamic behavior of
laterally vibrating suspension bridges.

Computations using data from the San Pedro-Terminal Island
Suspension Bridge provide the basis for this example. Lateral vibra-

tions of the center span cable and suspended structure are
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investigated. In this illustrative example, the lateral displacements
of the cable segments and the ends of the suspended structure are
taken to be zero.

The structural properties used in this example are:

I, = 293,000 in’ft>

s2

_ .2
E_, = 29,000 Kip/in'

H_ = 6, 750 Kips/cable.

als
3

w = 1.042 Kip/ft. per bridge.

&k

Wy = 6.152 Kip/ft. per bridge.

The span was subdivided into NZ =24 elements, as shown in
Figs. IlI-2-a and b, and the length of each element L is 62.5 ft.
There are (2 N2+ 2) nodes, starting with node 1 at the left support
of the suspended structure and ending with node (2 N, + 2) at the top
of the right tower. There are (3 N, - 1) degrees of freedom for the
complete structure, with the numbering system shown in Fig. III-2.
The eigenvalue problem (Eq. 3. 95 or 3. 96) was solved on the
Caltech digital computer (IBM 370/158 system). Some of the computed
natural periods and frequencies are presented, for the symmetric and
antisymmetric vibrations, in Tables III-1 and III-2, respectively, and
the corresponding mode-shapes are shown in Figs. III-3, III-4 and
III-5. Tt can be seen in these figures that:
- 1. In the lower modes there is a coupled motion between the

cables and the suspended structure, while in the higher modes

the two systems vibrate in a prescribed manner.
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2. The first two symmetric (and antisymmetric) modes have a
similar configuration except for the fact that in the first mode
the cable and the suspended structure are moving in phase,
while in the second mode they are moving 180° out of phase.
Furthermore, the effect of short suspenders at the mid-span
is clear in the second mode from the depression or dip in the
middle region.

3. In most of the coupled modes (such as the Sth symmetric and
the 6th antisymmetric modes} the nodal points of the cable and
those of the suspended structure do not coincide.

4. In the higher modes, where the two systems vibrate in a
prescribed manner, the cable frequencies are smaller than
those of the suspended structure even when the respective
mode configurations are the same; see mode 6 (for the cable)
and mode 16 (for the suspended structure).

The distribution of the various energies stored in the cable and
in the suspended structure, for both symmetric and antisymmetric
vibrations, is illustrated in Figs. 1II-6 and III-7. As presented in
Fig. III-6-a, the relative contribution of the kinetic energy of the
suspended structure is greatest in the first mode (about 90% of the
total kinetic energy, while the contribution of the cables is about 10%);
the opposite is true for the second symmetric mode. Subsequently,
the kinetic energy comes entirely from either the cable or from the
suspended structure, depending on which is dominant. The potential

energy of the complete system in the first mode is 70% strain energy
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of the suspended structure, 15% strain energy of the cable and 15%
gravitational energy of the suspended structure. The coniribution

of this gravitational energy is greatest in the second symmetric mode.
In Fig. III-6-b, the relative contribution from the kinetic energy of
the cable is shown to be the same as that from the kinetic energy of
the bridge deck in the first and second antisymmetric modes. In
general, the relative contribution from the strain energy (of both the
suspended structure and the cable) increases in the higher modes
until it provides almost all of the potential energy of the structure;
the principle effect of gravitational energy is confined to the first few :
modes of the suspended structure vibration. Contribution from the
gravitational energy of the cable is extremely small throughout.

Now, by considering the two linear differential equations of
motion (Eqs. 3. 43'and 3. 44), by assuming sine mode shapes and by
using the orthogonality property of the modes, the frequency equations
can be obtained. Appendix III-a contains a detailed derivation of these
frequency equations. The roots of each frequency equation (i.e., the
natural frequencies) reflect both the in-phase vibration of the cable
and suspended structure systems and the vibration when the systems
are 1807 out of phase. The first few frequencies and some of their
corresponding modes are shown in Tables IT1-3 and II1-4 and in
Fig. III-8. In these tables, a comparison between the finite-element
solutions and the approximate results is included. There is a close
agreement between the frequencies of the finite-element solution and

those of the frequency-equations solution. It will be noted that some
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of the assumed "sine' mode-shapes do not agree with those of the
finite -element solutions; for instance: a) the second assumed "'sine"
symmetric mode (Fig; II1-8) does not show the effect of the short
suspenders in the mid-span, b) in the fifth assumed "sine' symmetric
mode, the two systems have the same number of nodal points, as was
assumed in a prerequisite to deriving the frequency equation (this is
also true in the sixth antisymmetric mode), ¢} the first assumed
“sine' antisymmetric mode is completely different from the finite-
element solution, and finally d) the coupling between the two systems

has disappeared in some modes of the approximate solution.
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Ii1-5. Aggendice s

Appendix III-a

An Approximate Solution for the Equations of Motion

The two linear differential equations of motion (Egs. 3.43 and

3. 44) recalled from section IIi-3 of this chapter,‘ are

® Bzwc azwc k [(WgmW, " " W
m -2H - W . +2(w .+w) =0 ,
c 8t2 W BXZ 8j h(xj) s c yc(xj)
J
i=1,2,3, (III-a-1)
and
BZWS aLl&ws % [(We™We

J
4f.
= - - = - 1 o=
where yc(xj) _ﬁ_z xj(ﬂj Xj) and h{xj) hT yc(xj) PR 1,2,3,
J

with hT being the height of the suspender close to the tower.

These equations cannot be solved in closed form; however, one
can approximate their eigenfunctions and find the corresponding
eigenvalues.

First, define a normal mode vibration as one in which each
system (cable and suspended structure) undergoes harmonic motion
of the same frequency. For each motion one can write
iwt

Wc(Xj’ t) = Wc(xj) e

i=12,3, (IMI-2a-3)
_ iwt
WS(Xj’ t) = WS(Xj) e
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where @ is the natural circular frequency and 1i=7V-1
Substituting these into the two differential equations,
multiplying the first equation (III-a-1) by yc(xj) h(Xj) and the

second equation (ITI-a-2} by h(xj) and rearranging the terms, gives

dzvr;C sk i s ~
ZHWh(Xj)y (XJ) dxz - [wsj yc(xJ) Z(W +Wsj)h(x ) A

and
d4%’fs E O % 2 ~ X o~
E .I .h(x.) tTw.w -m . @ hix.))w, ~w.w =0 , j=1,2,3
8} 8] 3 deL sj s sj i’ s sj ¢
J

(IlLl-a-5)
By letting W and W be two different eigenvalues with the
~ Im

. . . n ~n ~m ~
corresponding eigenfunctions LA A and Wooe o W s the

orthogonality conditions can be derived in the forms

2. w
Jh ~1 ~TY _
(xj) yc(x.j) W W dxj =0
and > i=1,2,3. (I-a-6)
i
J hix.) W &t dx, = 0
i’ s s j
0
-~ I~ J
Define w and w as
C ]
~ nmTx,
WC(X ) = A sin Tl
] J 3:13233: n=1,2,3,4,...
nmx.
W, (Xj) =B sin—ﬂ-—l (II1-a-7)
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Substituting these into the ordinary differential equations

mmx,
(II-a-4 and 5), multiplying each equation by sin——L and using
i
the orthogonality conditions (Eq., III-a-6), give
(all) An+ (alz) B - 0
n=1,2,3,... (LII-a-8)
(ayq) An-l- (azz) B =0
where the coefficients aij » 1,j=1,2, are given by
£z, £.
nwz j >/MT X, . (] o/ T K,
ayy = -2 HW(_.Q:]—)J h(xj)yc(xj) sin (——l‘ej )dxj *WSjJ‘ yc(xj) sin <_—J£j )cl:»cj
0 0 .

a -
22 s s'(i.
J 8] j ;
1, )
b3 J Z nTx
-m . h{x.) sin (—-m——l)dx
sj . j ﬂj j

These coefficients can be evaluated by direct integrations.
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Equation III-a-8 is satisfied for aay An and B if the

following determinant is zero

=0 - (ITI-2-9)

Letting wi = An , the above determinant leads to the
characteristic equation. The two roots of this equation, for each
value of n, reflect both the in-phase vibration of the cable and
suspended structure systems and the vibration when the systems are
180° out of phase.

Finally, substituting these natural frequencies into Eq. IlI-a-8
enables one to find the ratio of the amplitudes An/Bn ,

n=1,2,3,4,...
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CHAPTER IV

VIBRATION STUDIES AND TESTS OF THE

SAN PEDRO-TERMINAL ISLAND SUSPENSION BRIDGE

IV-1. Introduction

The need for extensive dynamic tests of full size suspension
bridge structures has been apparent for many years. Although the only
certain way to determine the parameters of major interest in struc-
tural dynamics problems, such as the frequencies, the modes of
vibration and the amount of energy dissipated by the structure, is by
testing actual structures, very few of these tests have been performed
[2,6,7,9,10]. Knowledge of these properties is essential if one is to
understand and interpret with confidence the structural response of
suspension bridges to strong carthquake ground motion, to wind exci-
tation and to moving vehicles on the bridge deck. Unfortunately, testing
complete or section models does not provide adequate information
[1,4,8]. Tests of actual suspension bridge structures have rarely been
possible due to the difficulty of making the necessary measurements of
dynamic structural response, and due to the lack of development of
appropriate instrumentation. In most of the previous trials, the field
measurements were made on wind excited vibrations, and the motions

usually observed were predominately vertical modes, whereas, the
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most hazardous wind induced vibrations are predominantly torsional
{see Refs. 2,8). In severe wind induced vibrations, oaly one lof the
lower modes is significantly excited, whereas during an earthquake,
many modes may contribute to the response and, therefore, measure-
ments made to throw light on wind induced vibrations are usually not
adequate for studying earthquake induced vibrations.

Early observations of suspension bridge motions [1, 71, excited
by wind or traffic, were inaccurate and incomplete. In tests recorded
before special modern instruments were developed and installed, the
period of vibration was estimated or was measured approximately by
using a pocket watch. Wave forms were noted and remembered accord-
ing to the impression of the observer. In some instances, amplitudes
were estimated by sighting on bridge elements. At other times
sightings were taken with a transit which was located on rods attached
to the bridge. Using these methods, vibrations sufficient to be of
interest were observed [2] on the Golden Gate Bridge. For example,
an engineer who was involved in the construction of the bridge, later
recorded observations of the bridge motion during two storms, one on
February 9, 1938, some eight months after the bridge was opened to
traffic, and the other on February 11, 1941, During the first storm,
the movements were evidently in a multi-noded vertical mode. No
evidence was given which would indicate lateral or torsional vibration.
The highest frequency observed, 0.33 to 0.5 c. p.s., corresponds to
Vincent's [2] subsequent computations for the six-noded vertical mode.

The computed loop length of the six-noded mode averages 600 ft. No
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other recorded observations describe movements having a frequency
as high or loops as short as these. The movements during the second
storm suggest the second symmetric vertical mode which has a com-
puted period of 6.3 seconds.

The failure of the Tacoma Narrows Bridge in 1940 led to a close
scrutiny of all evidence of wind-forced vibration of suspension bridges
by engineers and scientists concerned with the problem [1,9] . Asa
result, a cooperative research project, between the Golden Gate Bridge
and Highway District and the Bureau of Public Roé.ds, was created.
Under this agreement, i_nstrumeqts for measuring movements of a
bridge were developed, and several of them were installed on the Golden
Gate Bridge in 1942. Examples of these early instruments are the
anemometer and the accelerometer (see Ref. 2). The anemometer was
installed on the bridge to record the velocity and direction of the wind
vs., time. The accelerometer, also known as the Hall Recorder, had
two conical pendulums for measuring the two horizontal components of
motion as well as a mass on a helical spring for measuring the velocity
component. The spring suspension could be adjusted tc record within
a considerable range of natural frequencies, permitting the selection
of frequencies most favorable to the recording of the expected vibra-
tions. The record was made by a stylus on smoked paper which was
fixed to a drum that was revolved in a spiral motion‘by clockwork.
Later this instrument was replaced by new types which were designed
to record only vertical vibration.

In the past, most of the data obtained from different records was

analyzedin the time domain. When the time scale of the record was
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selected, it was thought that one would only need to determine the
frequency over a few cycles with sufficient accuracy to obtain the
fundamental frequency, or at the most, the first few natural frequen-
cies, in order to correlate the observations with theoretical calcula-
tions of the frequencies of vibration. The scale was adequate for
these purposes and for identifying pure vertical or pure torsional
motion by noting which stations moved in phase and which moved in
opposite phase. However, subsequent experimental work [1, 2, 8]
and theoretical analysis revealed that a truss-stiffened suspension
bridge might be expected to vibrate in coupled vertical and torsional
motion at an altered frequency and with a distinctive phase difference
in the two motions. Evidence of such motion had existed in the records,
but the time scale had been too small to permit the determination of
phase differences.

In the late 1960's and early 1970's, work was begun to study the
effect of natural winds on suspension bridges. During this time
instrumentation was being developed for measuring all components of
the wind velocity at several locations along a suspension bridge. The
objective was to record the results in such a manner that they could be
analyzed by an electronic computer to produce data on the potential of
the wind for producing vibration, as well as on its potential for produc-
ing static loading over areas of different sizes. In this regard, the
California Division of Highways installed instrumentation on most of
the state suspension bridges, including the San Pedro Bridge. One of
their reports shows that the bridge has a fundamental period of 4.5

seconds in vertical vibration.
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In recent years a method for testing structures based on wind-
and microtremor-induced vibrations has been developed. Although
the method has been in use for almost 40 years by the United States
Coast and Geodetic Survey [7] to measure fundamental periods of
building structures, it was not until recently that this approach was
extended to higher modes (see Refs. 5 and 6) and also to different
structures (other than buildings).

Current studies in Earthquake Engineering and Structural
Dynamics, utilize the Fourier techniques which represent an important
tool for understanding and interpreting the frequency content of various
time signals. An ambient vibration test is only one of the examples in
which Fourier representations are widely used. Furthermore, with
the advance made in seasitive vibration-instruments, digital computers,
measuring techniques and data processing and analysis, it has become
possible to accurately obtain a wide band of natural frequencies of a
structure, to identify the different modes and to study the other dynamic
characteristics such as damping and noalinearity.

In 1971, under a contract with the Department of Transportation,
Federal Highway Administration, Bureau of Public Roads, and as a
part of their continuing program to improve the methodology for pre-
dicting the aeroelastic behavior of suspension bridges, McLamore,
Hart and Stubbs [6] experimentally determined the natural frequencies,
damping and normal mode shapes of vibration for two American
suspension bridges — the Newport Bridge in Rhode Island, and the

William Preston Lane Memorial Bridge in Maryland. The bridges'
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responses to motion caused by traffic, wind, and other environmental
factors were measured using sensitive seismometers. The recorded
motions were analyzed using spectral techniques (a fast Fourier trans-
form computer program). The dynamical behavior of both bridges
included vertical, lateral and torsional vibrations. The study
revealed a total of 20 modes of different vibrational motion in the
frequency range 0 Hz-1 Hz. No coupling between torsional and
vertical motion was observed.

In 1974 and 1975, as part of a project to conduct extensive
repairs to the deck of the Lions' Gate Suspension Bridge {Vancouver,
Canada), an aerodynamic investigation was undertaken which included
a full-scale aeroelastic model. To obtain some guidance in establishing
the dynamic parameters for the model tests and the design calculations,
measurements on the existing structure were carried out by Rainer
and Selst [10]. In determining the bridge's dynamic properties, they
followed exactly the same procedure as did McLamore, et al. [6],
discussed above. Ambient vibrations due to vehicular traffic as well
as forced vibrations due to a series of simulated impacts applied to the
bridge, were recorded. The data was analyzed using the Fourier
technique, and modal damping was computed using the log decrement
relationship. The measured fre.c;{.le.ncies ranged from 0 to 1 c.p. s.
Two methods were used to calculate the modal properties of the bridge:
a continuum model, where the solutions to the differential equations
describing the vibration problem were evaluated, and a lumped mass,

linear stiffness model, for which eigenmodes were found. Some

calculated modes and frequencies were in close agreement with the
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measured values, for the vertical and the lowest horizontal modes.
However, for the frequencies of the torsional modes, the calculated
values showed substantial differences from the measured ones. Also,
in many cases, the measured frequencies corresponding to peak
amplitudes, lacked corresponding computed frequencies.

It is possible that other experimental work equal to or exceeding
the value of the abovementioned studies has been conducted; but no such
works are known to this investigator outside the present study.

Much effort has been made by the faculty and the graduate
students at the California Institute of Technology to establish a
measurement system for the dynamic response of full-scale civil
engineering structures. The system adopted for this investigation
has been used for maay full-scale and reduced-scale studies of the
dynamic response of structures such as earth dams and buildings.

The technique most often used for the experimental determination of
natural frequencies of vibration of large structures involves measure-
ment of the motion excited by wind or traffic by means of sensitive
instruments, and then analysis of that motion using Fourier methods.

The present chapter is concerned primarily with experimental
dynamic studies which were performed on the Vincent-Thomas
Suspension Bridge between San Pedro and Terminal Island, California.
The detailed study of the experimental measurements is directed
toward three major objectives:

1. To check the accuracy and demonstrate the essential reliability
of the dynamic methods of analysis developed in ChaptersIthrough

III of this thesis, by correlating the observed motion of the
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bridge with its computed frequencies of vibration.

2. To make a field trial of both the vibration instruments and
this complex suspension bridge structure.

3. To further the understanding of the dynamic properties of full-
scale suspension bridges, and to lay a foundation from which
later work can be developed.

The instrumentation used in the experiments is described,and
the main features of the structure itself are also presented. The
natural frequencies of the modes of vibration of the bridge were
accurately determined by measuring wind- and traffic-excited vibra-
tions with a sensitive seismometer mounted at various locations on
the bridge. The Fourier amplitude spectrum of the recorded move-
ments was computed and plotted. The measurements revealed a wide
band of natural frequencies. In addition, the results for the vertical
and torsional natural frequencies were correlated with the computed
frequencies. The results of the field measurements agreed very well
with the theoretical results which confirms the validity of the assump-
tions that were made in the previous chapters.

The experience gained in making these measurements will be

valuable in planning future, more complete, measurements.
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IV-2. Description of the Bridge

The Vincent-Thomas Suspension Bridge, shown in Figs. IV-1 and
IV-3, was constructed in the early 1960's across the Main Channel of
the Los Angeles Harbor from San Pedro to Terminal Island. The
bridge was designed by the Bridge Department, Division of Highways,
Department of Public Works of the State of California. The bridge
superstructure consists of a 1500 ft. suspended center span, two
506.5 ft. suspended side spans, two 151.5 ft. backstay (or approach)
spans, a 52 ft. wide roadway and two safety curbs. There are also
tower foundations, anchorages, navigationl‘and maintenance equipment,
a highway lighting system and other items and details necessary for
the proper functioning of the bridge. The approach spans consist of
simply supported welded-plate girders, which serve to bring the cable
down from the roadway grade to the anchorages below (see Fig. IV-2).
There are two 32 ft. splay spans contained within the anchorages which
serve to spread the cables into 20 separate parts and thereby distribute
the force in the cables throughout a large aréa of the anchorages. A
vertical sag of 150 ft. is provided for the cable at the center of the
main span. The supporting towers are vertical, and the suspended
portion of the structure, including the backstay and anchor spans, are
symmetrical about the center of the main span.

The suspended structure consists of two stiffening trusses, floor
beams anda lower wind bracing system of theK -truss type shown in Fig.
IV-3. The suspended structure carries afour lane roadway 52 feet wide
andcurbs and sidewalks 10inches highand 2 feet, 3-3/8inches wide (see

Fig. IV-4). The cables and the stiffening trusses are 59 feet, 2 inches



Fig. IV-1. The San Pedro-Terminal Island Suspension Bridge.

Fig. IV-2. The anchorages and the approach spans.
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BOTTOM LATERAL SYSTEM

SAN PEDRO-TERMINAL ISLAND SUSPENSION BRIDGE

Fig. IV-3
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apart from center to center. The stiffening truss, from center to
center of the upper and lower chord members, is 15 feet deep. The
floor beams are trusses. The top edge of the roadway is 3 feet below
the top edge of the stiffening trusses. The bridge was designed with
bottom lateral and stringer ties in the trussed floor beam system to
develop torsional stiffness. The deck system for the suspended spans
consists of transverse rolled girders, which are 7 feet apart center to
center, and which are supported by the transverse top chords of the
floor truss. Lightweight concrete was utilized for the deck slabs on
both the approach and suspended spans. Reinforcement is conventional,
consisting of straight and truss transverse bars and of longitudinal top
and bottom bars on 12 inch centers.

The San Pedro and Terminal Island towers are supported on
steel piles penetrated to an average elevation of -75 feet at the
Terminal Island tower and to an average elevation of -135 feet at the
San Pedro tower (see Fig. IV-4)., The towers are 335 feet high and
extend 360 feet above M. H. H. W. The main tower is made up of
3/4 inch steel plate. Each tower leg is anchored to the tower footing
by thirty nine 2-1/2 inch (in diameter) and 25 feet long prestressed
rods. There is a total of 5,550 Kips of structural steel in the towers
and the tower bracings. The tower legs are made up of sections of
cruciform design (see Fig. IV-4); they consist of four welded box
sections, field bolted with 1 inch diameter high strength bolts. In
order for the towers to be vertical under ordinary conditions, the

horizontal force in the cables must be equal on each side of the towers.
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The cable in the suspended spans for this structure consists of
4028 cold drawn, galvanized, 6 gage steel wires providiag 121.5 square
inches of area including the galvanizing. The ultimate strength of the
wire was required to be 225, 000 psi providing a theoretical cable
strength of 27,337 Kips. The maximum design tension in the cable
at the towers was 9, 620 Kips. This indicates a design safety factor
of about 3. The suspenders are made of small diameter, high strength
wires layed up into rope. The cable saddles are centered on the tower
legs. This causes the cable to spread at the tower tops where the
frictional resistance between the cable and the saddle is sufficient to
prevent the cable from slipping through the saddle.

Table IV-1 coatains a summary of the structural properties of

the San Pedro Suspension Bridge.
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TABLE IV -1

.. Center Side
Parameter Description Span Span
Weight Bridge Floor
(Kip/tt. ) Curb, bracket and armour 0.203
Grating and railing 0.199
Lightweight concrete 2.592
Reinforcement steel 0.173
Stringers and bracings 0.682
Floor truss, wind shoes and
inspection walk 0.613
Stiffening Truss
Top chords 0.315
Bottom chords 0.302
Gusset plates, splices, etc. 0.124
Webs 0. 142
Posts 0. 053
Struts, rivets, bolts, etc. 0. 007
Lateral System 0.159
Cable
Cables 1.025
Suspenders 0. 054
TOTAL DEAD WEIGHT 7.177
Modulus of Suspended structure 29, 000
Elasticity Cable 27, 000
(Ki /inz) Tower 30, 000
P Shear modulus of suspended
structure 11,600
Areas Cable 121.50
(inz) One chord of stiffening truss
(average) 53.78 55.56
Diagonal in stiffening truss
{average) 16.90
Diagonal in lateral system
(average) 16.58
Forces Horizontal component of
(Kips) cable tension 6, 750
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Structural Properties of the San Pedro Suspension Bridge (Continued)

(average) (in.zft;z)

Parameter Description cgg;zr g;ii
Maoment Vertical moment of inertia of ‘
of stiffening truss 6,050 6, 250
Inertia Lateral moment of inertia of
(in.zft.z) chords 188, 500
Lateral moment of inertia of
slab 105, 000
Lateral moment of inertia of
stringers 290
liateral moment of inertia of
suspended structure 293, 800
Cable Sag i50 17.103
Properties Virtual length Lei ,1=1,2,3 1,620 920
(fe. ) Virtual length Ly 3, 460
Tower Longitudinal stiffness (Kip/ft.) 26.3330
Properties (Force applied at tower top
for unit deflection)
Torsional stiffness (Kip/ft.) 235.4323
{Forces applied at tower top;
tower legs move in opposite
direction)
Dead weight per leg (Kips) 2,700
Vertical reaction from
cable (Kips) 6, 400
Area at base (in.) 1,022
Area at top (inoz) 572
Height (ft.) 335
Longitudinal moment of inertia 10, 000




-321-

IV-3. Dynamic Characteristics of the Bridge

The computed dynamic characteristics of the torsional and lateral
vibrations of the San Pedro Suspension Bridge have been presented in
the numerical examples of Chapters II and III. These characteristics
included the natural frequencies, the corresponding modes of vibra-
tions, and the distribution of the energies accumulated in the va.rioué
members of the structure, for both the symmetric and antisymmetric
cases. The dynamic characteristics of the vertical vibration of the
bridge are presented in this section. The computation of the natural
frequencies, modes of vibration, and the energy storage capacity of
the various members of the San Pedro Suspension Bridge have been
calculated by the method of analysis developed in Chapter I. The
procedure for the discretization of the suspended structure into finite
celements is the same as that used in the numerical example of the
torsional analysis in Chapter II. The number of elements in each tower
leg was taken to be 10. The structural properties necessary for the
vertical vibration study were taken from Table IV-1.

The eigenvalue problems (Eqs. I-100-a and b) were solved by
means of the Caltech digital computer. Some of the computed natural
periods and frequencies, and the dominant vibrating portion cor-
responding to each frequency, are shown in Tables IV-2 and IV-3 for
the symmetric and antisymmetric cases, respectively, and the cor-
responding mode-shapes are shown in Figs. IV-5 and IV-6. By con-

sidering these figures, the following cbservations may be made:
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1. As seen before, vibration modes of the bridge structure can
be separated iato two groups having different characteristics.
In one group, the displacements of the stiffening truss are
predominant, and in the other group, the displacements of
the towers are predominant.

2. Based on (1), investigation of the energy accumulated in the
different members of the suspension bridge may reqLiire
separation of the energies into two groups. Fig. IV-7,
represents the energy storage capacity of the cables and the
stiffening truss together, while Fig. IV-8 shows the energy
s.torage capacity of the towers for different modes.

3. As seen from Fig. IV-5, in the lowest four modes the center
span and side spans vibrate together, while in the higher modes
the center and side spans vibrate separately.

Other features can be easily extracted from these figures, as have
been shown previously in the various numerical examples of
Chapters I and II.

Finally, the modes of vertical motion and their corresponding
natural periods, which were computed by the Bridge Department of
the State of California, are shown in Fig., IV-9. Despite the omission
of certain modes, these results are in close agreement with the
frequencies {as well as the modes, if the tower is excluded) of_ the

finite-element solution.
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SAN-PEDRO-TERMINAL ISLAND SUSPENSION BRIDGE
SYMMETRIC MODES OF VERTICAL VIBRATION
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IV-4. Measuring the Natural Frequencies of the Bridge

Ambient vibration testing of the San Pedro Suspension Bridge
excited by traffic motions is discussed in the following section, with
determination of the natural frequencies of possible vertical and
torsional modes of vibrations in mind. Information is given also on
modern methods of making ambient test measurements based on
magnetic tape recording and electronic analog-digital conversion. A
complete description of the instruments used in the experiment may
be found in Reference [5],buta summary of their salient features is

provided here.

IV-4-1. Description of the measuring experiment

The measurements of the natural frequencies of the San Pedro
Suspension Bridge were carried out with the following instruments.

1. Kinemetrics (S5-1 Short-Period) Ranger Seismometer

Two seisnﬁometers were used at different locations, to measure
vertical motions of the bridge. No strong wind occurred during the
measurements, and the only significant vibrations recorded were
caused by the traffic. The 5S-1 Ranger Seismometer is a short-
period seismometer usable for portable and fixed station seismological
purposes, and is a versatile, sensitive vibration sensor for structural
dynamics applications. Mechanically, the Ranger is a "moving coil
type' (velocity) transducer, adaptable for either vertical or horizontal
operation in the field. Its sensitivity (290 v/m/sec. for 5000 ohm

coil), and size make it suitable as a sensor for ambient vibration
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measurements of buildings, dams, bridges, foundations, or offshore
platforms. The natural period of the seismometer is close to one
second. Damping is adjusted by the choice of appropriate resistance
in the coil and external circuits. During this experiment, the damp-
ing was set at 0.7 of the critical value.

2. Earth Sciences SC-1 Signal Conditioner

The signal conditioner is a wide band, low noise amplifier
system, designed with filters for use in low level structural vibration
and microseismic measurements. Four input channels, each having
its own attenuator and adjustable low-pass filter, provide isolated
circuitry for a normal, integrated, and/or differentiated output signal
(i. e., velocity, displacement, and/or acceleration output using a
velocity sensor). All outputs are simultaneously or independently
available for recording. The output can be recorded on magnetic
tape and/or on a strip-chart recorder. In this experiment, the con-
ditioner was used to amplify and simultaneously control two ocutputs
from 1;he ranger seismometers. The power for this instrument was
provided by an A. C. power source in the tower leg.

3. Magnetic Tape Recorder (Model 3960 Hewlett-Packard)

The amplified signal; i.e., the voltage proportional to the
relative velocity of the seismic mass of the seismometer, is recorded
on low noise magnetic tape. It has a separate eight track magnetic
tape reel. The electrical output of the recorder can be digitized for

computer processing by means of an analog-digital converter.
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4. Mark 220 Brush Recorder

To enable immediate visual inspection of the vibrations during
each measurement, the signals from both seismometers, via the
signal conditioner, were simultaneously recorded on a strip-chart
Brush Recorder having two channels. This was necessary to insure
that the signal was within the limits of operation of the magnetic tape
recorder and the analog-digital computer.

5. Electronic Analog-Digital Converter (Model DDS-1103 Kinemetrics)

The DDS-1103 Digital Data Acquisition System is an accurate
means of converting analog data from the magnetic tape recorder to
digital format on computer compatible digital magnetic tape. At
present, it is wired to handle 1 to 8 input channels. The dynamic

range of the system is approximately 72 db.

IV-4-2. Measuring procedures

In the past, wiand has been the usual source of excitation for
suspension bridges. However, traffic excitation [6,10] of such
flexible structures can induce vibrations large enough to yield informa-
tion about the structural behavior which would be very difficult to
obtain in any other way, except auring severe winds or strong earth-
quakes.

The experiments carried out on the San Pedro Suspension Bridge,
described in Section IV-2, were performed under traffic excited motion
with the principal purpose of finding the natural frequencies of the
bridge. Most ambient vibration tests [5, 7] assume that the structure

under consideration can be approximated by a damped, linear, discrete
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or continuous system. In the experimental study of the bridge vibra-
tion, it was assumed that the resulting motions would be expressed

as the superposition of modes associated with discrete frequencies.

It may be mentioned here that for the measurement of traffic induced
vibrations, it is not necessary fo calibrate all the seismometers used
so that they give the same amplitudes when excited by the same

motion. It is also not necessary to know the absolute values of the
amplitudes that are recorded, because the frequencies are the only
concern; even if the mode shapes are required, the relative amplitudes
of the recorded motions is sufficient.

The conditions under which the tests were made were far from
ideal, and installing the instruments involved difficult maneuvering.
The time schedule for the installation, operation, and ;t'ecording was
very limited by the need to reopen the one closed lane of traffic prior
to rush hour, and by other maintenance activities in the area. Only
approximately four hours were available for completion of the tests.
Additional difficulties were caused by the repainting of the bridge,being
done at that time (mid-November, 1975).

The measurements of the bridge frequencies were conducted
using the following procedures. The recording instruments, consisting
of the Brush Recorder, the signal conditioner and the magnetic tape
recorder as shown in Fig. IV-ll, were placed on a platform located
at the juncture of the tower and the lower wind bracing of the suspended
structure. This platform is generally used to provide access to the
inspection walk shown in Fig. IV-12. The two seismometers were

first placed on the centerline of the lower wind bracing of the center
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Fig. Iv-11., The recording instruments.
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TABLE IV-4

Sequence of Tests to Determine Natural Frequencies

of the San Pedro Suspension Bridge

Instrument Locations and Recorded Motions During 8 Tests

Recorded Location onthe Bridge
No.| Test .
Motion
Point Cross Section Span
1| A-1 | Displacement
A Center line of the Bridge| Center
21 A-2 1} Velocity
3| B-1 | Displacement
B Center line of the Truss | Center
4 | B-2 | Velocity
51 C-1 | Displacement
C Center line of the Bridge| Side
6 | C-2 | Velocity
71 D-1} Displacement
D Center line of the Truss | Side
8 | D-2 | Velocity
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span (i.e., at location A) as shown in Fig. IV-10, and the vertical
motion at this location was recorded for about 4 minutes per run.
(The recording was begun after several minutes of monitoring the
Brush Recorder display during which fine adjustments were made to
obtain identical output from the two seismometers. ) Then the two
seismometers were placed on the centerline of the bottom chord of
the stiffening truss (i. e., at location B) in the same cross section of
the bridge (see Fig. IV-12). At this location vertical motion was
also recorded after all necessary adjustments were made.

These procedures were repeated for the side spans at locations
C and D. Fig. IV-12 shows the locations of the Ranger seismometers
on both the cross section and the elevation of the bridge; Table IV-4
also shows these locations and the type of the recorded motions during
eight tests. It may be mentioned that these particular locations (A, B,
C and D) were selected because they provided safety screens which had
been installed for use in repainting the bridge. For each location, two
simultaneous displacement recordings were made lasting between 2 and
5 minutes in each run; then two simultaneous velocity recordings were
made at the same location. Actually, one seismometer would have
been adequate for each location, but two recordings were made to
verify the results. The seismometers were both coanected to the
recordiang instruments by means of various electrical cables which
ran along the inspection walk. The recording instruments, as well as
the two seismometers, were adjusted at the location, and the various

motions of the bridge were displayed on the two-channel Brush
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Recorder. All of the instruments functioned satisfactorily throughout

the tests.

IV-4-3. Data analysis

The following procedures were used in conducting data process-
ing analysis of the experimental records.

1. The recorded data were converted to digital form on.a magnetic
tape compatible with the digital computer to be used, and 50
discrete points per second were generated for each analog
record. |

2. These original records were filtered with a Kronhite analog
low-pass filter to remove any aliasing effects in the computed
spectrum. Since all frequencies in the records that could be
used in comparing the computed and measured frequencies lie
well below 20 c. p. s., it was decided to use this limit for the
fiifering.

3. It was decided that 50 points per second would be appropriate
for data processing because this would give a Nyquist frequency
of 25 c. p. 8., which is well above all the frequencies being con-
sidered. A typical record consists of 8192 points (2N equispaced
samples with N=4096 points) or 163. 84 seconds. A typical set
of records of the first 150 seconds at locations A, C and D is
shown in Figs. IV-13, 14, and 15. In these figures, the scale
of the vertical axis is proportional to the transducer voltage

after the filtration.
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The Fourier amplitude spectrum for each record of 163. 84
seconds was obtained by using the Cooley and Tukey algorithm
(the subroutine is available from the Caltech computer program
library). This algorithm requires 2N equally spaced data,
where N=2M=4096 points. and M is an integer (M= 12 in this
case).

The distribution of the Fourier amplitude spectra versus the
distribution of the frequencies (from all 8 tests listed in

Table IV-3) was plotted, for up to 10 c. p. s., as shown in

Fig. IV-16 through Fig. IV-19. The natural frequencies of
vibration were determined by considering the distribution of

all peaks in the Fourier spectra for the 8 tests.
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IV-5. Comparison Between the Computed and the Measured Frequencies

To measure the natural frequencies of the vertical ﬁodes of the
bridge, the two seismometers were placed near the centerline of the
lower wind bracing {Locations AandC). By locating them elsewhere
than the‘center of torsion of the bridge cross section, the vertical
motion of that location, which accompanied the torsional vibration of
the cross section, was recorded. To obtain more iﬁ.forn‘ma.tio.n about
the torsional frequencies, the two seismometers were then placed on
the center of the bottom chord of the stiffening truss.

Because the possible sites for measurement were limited, it
is conceivable that some existing modes were not recorded, if the
locations chosen coincided with the nodes of those modes.

The natural frequencies were obtained from the recorded data
in two ways.

1. The frequencies corresponding to the spectral peaks of each
test were determined and were listed in Tables IV-5 and IV-6
in ascending frequency order (lowest frequency first), along with
both the expected vertical and torsional modes for each location
and their computed frequencies. To select the frequencies at
which the peaks occurred, all of the discrete values of the
Fourier amplitude spectrum (the vertical ordinates) were listed
opposite their corresponding frequencies (the horizontal values)
by using a computer program. The frequencies at which the
values peaked were then easily determined.

2. The discrete computed natural frequencies expected for each

location (or record) were plotted (and the corresponding numbers
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of the modes of vibrations were indicated) on Fourier spectra

as seen in Figs. IV-16 through IV-19.

In general, the frequencies corresponding to the peaks in a
typical Fourier amplitude spectrum agree closely with the computed
values given in Tables IV-5 and IV-6. Actually, the measured
frequencies are either the same as or higher than those computed,
and the measured and computed frequencies of the first few modes
(for instance, from 1 to 6) are almost identical.

For the ceater span, in Figs. IV-16 and IV-17 and in Table I1V-5,
there are two peaks corresponding to frequencies of about 0. 71 and
4.64 c.p.s. Itis possible that these frequencies correspond to the
vertical aspect of the lateral modes of frequencies 0.65 and 5. 31 c. p. s.
(i. e., modes 2 and 13 in Table III-2). In these lateral modes, there is
an upward motion incidental to the lateral vibration. Itis also possible
that the peaks represent the coupling between two different motions,
vertical and torsional or lateral and torsional. The analyses in this
thesis does not consider the coupled horizontal-torsional motion or
vertical-torsional motion because, as indicated previously, the
resulting calculations are prohibitively intricate. For the side span,
in Figs. IV-18 and IV-19 and in Table IV-6, there are two dominant
peak‘s corresponding to frequencies of about 2.1 and 5.8 c. p.s. These
two frequencies do not correlate with any of the computed vertical or
torsional natural frequencies of the side spans. It is possible that
these frequencies mayalso correspond to the coupling of different motions.

Figs. IV-20andIV-2], represent a breakdown of the results pre=

sented in Tables IV-5 and IV-6 and also in Figs. IV-16 through IV-19;
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the torsional or vertical vibrations, symmetric and antisymmetric are
shown individually. Again, the calculated frequencies, joined by the
solid line, are in close agreement with the measured frequencies.

It often happens that two vertical modes, two torsicnal modes
or a vertical and a torsional mode are at nearly the same frequency,
and the problem of separating the modes may be troublesome.
Examples of these modes having very close frequencies are:

a) for the center span

S5-V-2 and S5-V-3 s S5-V-9 and S-V-10 ,
S-V-4 and S5-V-1 ) AS-V-13 and AS-T-1 ,
AS-V-7 and S-T-5 , AS-V-13 and AS-T-8

b) for the side span
5-vV-2 and S5-V-3 > S-v-2 , S5-V-3 and AS-V-2
5-V-4 and S-T-1 ’ S-T-2 and §S-T-3 ,

5-v-7 and S-T-4 , S-V-9 , S-V-10 , AS-V-8, S5-T-6 and

AS-T-4

Here '"'S" and "AS" indicate "symmetric' or Yantisymmetric, "
while "V" and "T" indicate ''vertical' or "torsional' vibration.

To identify the different modes of vibration more effectively in
future experimental work, the fellowing recommendations are made:

l. Torsional modes of vibration can be recovered by placing two
seismometers on the same cross section of the bridge, on the
centerline of both stiffening trusses, and simultaneously
recording their vertical motions. By then subtracting their

outputs, one should recover the torsional motions. Vertical
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modes can be isolated similarly by summing the outputs.
Z. To obtain more information about torsional modes and, at

the same time, to identify the pure lateral modes, two

seismometers should be placed in the same cross section,

one at each centerline of the top and bottom chords of one

stiffening truss to simultaneously record their lateral motions.

Summing their outputs will give information about the purely

lateral vibration while subtracting their outputs will provide

data on purely torsional vibration.

Thus, two seismometers recording vertical motions are needed
on the same cross section to distinctly determine both the vertical and
the torsional frequencies, while two seismometers recording lateral
motions are needed to distinguish torsional and lateral modes of
vibrations.

Finally, it may be interesting to note that in Figs. IV-16 through
IV-19 the recorded displacements and velocities did not have large
spectral amplitudes above approximately 5 ¢. p. s.; this gives a limit
above which structural motion is practically indistinguishable from
other recorded noise. One source of noise causing distortion of the
higher modes could be the impact of vehicles crossing expansion and
structural joints of the bridge. (This impact was clearly heard and
felt while the experiments were being conducted.) The equipment used
to repaint the bridge was also a possible source of noise. In general,
however, this method of structural testing, based on traffic induced
vibrations, can give realistic estimates of the natural frequencies of

a wide variety of suspension bridge structures.
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From the Earthquake Engineering and Structural Dynamics point
of view, the proper location of permanent instrumentation to record
strong ground motion, on and in the vicinity of suspension bridges, is
an important question. Proper placement will yield information about
the response of the bridge, the nature of different modes of vibration
and the coupling of those modes. Information indicating the effects of
soil-bridge-soil interaction and, possibly, the damping of the
structure as well as the phase differences in the motions of the piers
and anchorages may also be obtained.

The following are suggestions for appropriate locations of the
instruments; it should be noted that thése suggestions assume an
ideal set of circumstances and, thus, do not consider any economic
limitations.

1. A set of three instruments, located on any given cross section
of the suspended structure, between the mid-point and the point
of support of the span, should be placed on the center span and
one of the side spans. FEach set would include one instrument
on the centerline of the top chord of one of the suspended
structures and another instrument on the centerline of the
bottom chord. The third instrument would be located on either
the top or the bottom chord of the other suspended structure.
All of the instruments should be situated so as to record vertical
motions, horizontal motions in the longitudinal directicn of the
bridge, and horizontal motions perpendicular to the bridge.
Theserecords would help to identify the different modes of

vibrations.
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2. Two additional instruments should be used, one located at each
pier, in order to correlate the ground motions at the two sites
and to evaluate any phase differences. These placements are
particularly important in bridges having very long spans.

3. Instruments should be located, also, at each of the supports of
the suspended structures on the tower legs; from these locatioas,
information may be obtained to evaluate the effect of.the dif -
ferential motion of the supports on the movements and inter-
action of the bridge spans, and thus on the mode shapes.

4. To study the soil-structure interaction, an instrument should
be located on each of the banks, in line with the piers of the
bridge, and below each end of the bridge deck.

5. Finally, although not essential, instruments located at each of
the tower tops and at each anchorage would be useful tc evaluate

the motion of each of those locations.
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IV-6. Summary and Conclusions

1.

The prime objective of this experimental study of the San Pedro
Suspension Bridge was to check the reliability of the dynamic
methods of analysis developed in Chapters I through III by com-
paring the measured and computed frequencies.

The bridge's response to motion caused mainly by traffic, as
well as by wind, and other eavironmental factors was measured
with sensitive seismometers. The recorded motion was analyzed
using Fourier techniques and a digital computer.

The experimental estimates of the natural frequencies of the
bridge revealed many modes of vertical and torsional vibrations
in the frequency range O c.p.s. -~ 5 c.p.s.

The close spacing of the different modes requires high resolution
spectrum analysis and consequently long recording sessions;

it also requires proper placement of the seismometers, as
indicated.

Further recommendations toward obtaining better results are
also indicated.

The natural frequencies measured showed reasonable agreement
with computed values for the vertical and torsional modes of

vibrations in the first few modes.
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SUMMARY AND CONCLUSIONS

The study develops a method of dynamic analysis for the free,
vertical, torsional and lateral vibrations of suspension bridges. The
method is based on the so-called linearized deflection theory, on the
finite element approach and on use of the digital computer. It
incorporates certain simplifying features and involves two distinct
steps:

1. Specification of the different potential and kinetic energies
of the vibrating members of the continuous structure,
leading to derivation, by Harmilton's Principle, of the dif-
ferential equations of motion and the associated boundary
conditions governing the vertical, torsional and lateral free
vibrations. Solutions of the linear differential equations for
torsional and lateral free vibrations are obtained; the
solutions for vertical vibration have not been derived as
they are well known.

2. Use of the finite element technique to:

a. discretize the structure into equivalent systems of
finite elements,

b. select the displacement model most closely approxi-
mating the real case,

c. derive the elerhent and assemblage stiffness and
inertia properties, and finally

d. {form the matrix equations of motion and the

resulting eigenproblems.
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The evaluation of the stiffness and inertia properties of the
idealized structural element and assemblage is based on the expres-
sion of the potential and kinetic energies of the element (or the
assemblage) in terms of nodal displacements.

Detailed numerical examples are presented to illustrate the
applicability and the effectiveness of the analysis and to investigate
the dynamic characteristics of a wide class of suspeﬁsion bridges
with widely different properties. Furthermore, a rigorous com-
parison with previous results obtained by other investigators has
been made.

To further demonstrate the reliability of the analysis, the
natural frequencies and mode shapes of vibration of the Vincent-
Thomas Suspension Bridge (between San Pedro and Terminal Island,
Ca]ifornia) have been computed and compared with the measured
frequencies of the bridge. The experimental estimates of the natural
frequencies revealed many modes of vertical and torsional vibrations
in the frequency range 0 c¢.p.s.-5c.p.s. The natural frequencies
measured showed excellent agreement with the computed values for
the vertical and torsional modes of vibration. Further recommenda-
tions toward obtaining better results are also indicated.

This method constitutes an advance in the analysis of the
dynamics of suspension bridges, in that it eliminates the need to
solve transcendental frequency equations, simplifies the accurate
computation of both lower and higher modes of vibration, simplifies

the determination of the energy stored in different members of the
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suspension bridge, and represents from the engineering point of
view, a simple, fast and accurate tool for calculating the natural

frequencies and modes of vibration by means of a digital computer.



