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EFFECT OF MULTI-DIRECTTICNAL SHAKING ON
LIQUEFACTION OF SANDS

by

1 .3
H. Bolton Seed, Robert Pyke2 and Geoffrey R. Martin, Members, ASCE

Introduction

The phenomenon of liquefaction of sands under cyclic loading such as
that produced by earthquakes has received much attention in recent years.
While the basis for any evaluation of the significance of this phenomenon
is the historic evidence that liquefaction has, or has not, caused damage
in certain circumstances, our understanding of the problem and our ability
to consider situations without direct precedent has been greatly enhanced
by the development of analytical procedures for evaluating liquefaction
potential. In effect however, these procedures have generally considered
only one component of motion, whereas the shaking induced by earthquakes is
in fact multi-directional. Recent studies by Pyke, Seed and Chan (1974)
have shown that the settlement of dry sand is relatively greater under multi-
directional shaking than under 1-directional shaking of similar amplitude
and thus it appears that the liquefaction potential of a saturated sand will
be increased if this factor is taken into account. The effect of multi-
directional shaking on liguefaction potential i1s examined quantitatively in
this paper by combining the results obtained by Pyke (1273) in shaking

table and cyclic simple shear tests on dry sand with the model of the

1 . . . . . . . .
Professor of Civil Engineering, University of California, Berkeley, Calif.
2 . . . .

Senior Engineer, bames & Moore, San Francisco, Calif.

3Sr. Lecturer, Department of Civil Engineering, University of Auckland,
New Zealand.



mechanism of liquefaction proposed by Martin, Finn and Seed (1975). The
paper also serves to 1llustrate the practical application of this model for

engineering purposes.

Background Information

The analytical procedures currently used for evaluating liguefaction
potential generally follow those suggested by Seed and Idriss (1967, 1971).
In these procedures the average cyclic shear stresses induced at wvarious
points in the ground are evaluated using one-dimensional or plane strain
finite element models, These stresses are then compared with the uniform
cyclic shear stresses causing liquefaction of representative elements of
s0ll at different depths as determined by laboratory tests; that the test
specimens be truly representative in this procedure 1s extremely important
(Seed, 1976). If the occurrence of liguefaction is no£ predicted, then a
factor of safety egual to the stress required to cause liguefaction divided
by the stress induced by the earthquake may be determined for each point
in the deposit.

Cyclic triaxial tests have generally been used to evaluate the resis-
tance to liguefaction of laboratory samples. It is believed, however,
that the loading to which elements of soil are subjected in earthquakes is
better reproduced in cyclic simplie shear tests. Comparative studies have
indicated that for normally consolidated sands the shear stresses causing
liquefaction under simple shear conditions are less than those causing
ligquefaction in cyclic triaxial tests where the isotropic consolidation
stress in the triaxial tests is equal to the wvertical consolidation stress
in the simple shear tests. Seed and Peaccck (1971) have suggested that the
stress ratio Th/O; causing liquefaction under cyclic simple shear condi-
tions might be related to the stress ratio GdC/QGa causing liquefaction in

cyclic triaxial tests by a correction factor, Cr' where



Recent studies at the University of California, Berkeley, in which Monterey
No. 0 sand was used in both shaking table and cyclic triaxial tests indicate
values in the order of 0.63 to 0.65 for this correction factor (DeAlba et al,
1975) .

In the application of these procedures only one component of motion
has normally been considered in as much as the induced shear stresses are
computed using only one component of motion and the laboratory tests have
involved cyelic leading in one direction only. The basis for assigning the
amplitude and duration of the component of motion used in the analysis is
variable, but commonly the peak acceleration used is estimated on the basis
of the greater of the two horizontal components of recorded motions. The
relative amplitudes of the two horizontal components of recorded motions of
course vary, being a function not only of any preferred direction of motion
in either bedrock or soil deposits but also the orientation of the recording
instrument. For design purposes it is usual to assume two egqual components,
but this will be conservative if the wvalues used are the greatest that might
occur in any direction.

The effect of vertical motion is usually disregarded in studies of
saturated soils because it is believed that the transient wvertical inerxtia
forces will be carried primarily by the pore water, and cause little change
in the effective stresses carried by the soil grains or in the residual pore
water pressures. This is a consequence of the fact that for a fully satura-
ted soil the stiffness of the pore fluid is usually at least an order of mag-
nitude greater than the stiffness of the soil skeleton, and vertical acceler-
ations greater than lg are required to produce any significant tendency for

volume reduction in the soil grain structure.



The Effect of Multi-Directional Shaking on
the Settlement of Dry Sand

Because the phenomenon of liquefaction is related to the tendency for
dry or drained granular materials to compact under cyelic loading, it should
be possible to gain at least a gualitative estimate of the effect of multi-
directional shaking on liguefaction by studying the results of tests on dry
sand.

Tests in which dry Monterey No. 0 sand was subjected to unidirectional
and multi~directional sheaking under simple shear conditions have been repor-
ted by Pyke,; Seed and Chan (1974}. Two basic patterns of motion were used
in these tests. The first was a combination of two sinusoidal components with
a phase difference of 90 degrees so that a circular resultant motion, termed
gyratory shear, was obtained. The second was a pailr of randomly generated
motions (see Fig. 1) which could be run with the peaks of the two components
-either in or out of phase. The loading was acceleration or stress controlled
and it was found that for anvy of the circumstances described above the settle-
ment caused by the combined horizontal motions was approximately equal to the
sum of the settlements caused by the two compnnents if these were run sepa-
rately.

The results of the tests using random motions are summarized in Fig. 2
where the settlement in 10 cycles of loading is shown as a function of the
stress ratio, Th/Oé ; where Th is the maximum horizontal shear stress and
U; is the applied vertical stress. These tests confirmed the previous find-
ing by Silver and Seed (1971b) that for a given cyclic shear strain the in-
duced settlement 1s independent of the wvertical stress; however, if a test
is run under stress controlled conditions, the cyclic shear strains and hence
the settlements increase with increasing values of the stress ratio. For a

given value of the stress ratic it may be seen that the settlement caused by



the combined motion is approximately equal to the sum of the settlements caused
separately by the X and Y components. However, because the stress-Settlement
relationship is non-linear, the stress ratio causing a given settlement for

the combined motions is typically only about 20 percent less than the stress-
ratio which causes the same settlements under a single component.

On the basis of these results it seems reasonable to postulate that
for saturated sands tested under undrained conditions the pore pressures will
increase approximately twice as fast under two egqual components of shaking
as compared with shaking under one component only. The cyclic shear stress
causing ligquefaction in a given number of cycles under multi-directional
shaking however, would only be slightly less than the cyclic shear stress
causing liquefaction for shaking in one direction only; this reduction may
be in the ocrder of 20 percent, but it should be noted that the stress ratio,
Th/O; used to characterize the shaking table test conditions is not directly
comparable with the stress ratio, Th/O; , used in liquefaction analyses be-
cause the histories of effective stress and cyclic shear strain will he 4dif-
ferent under drained and undrained conditions.

While these conclusions might be accepted as sufficient for practical
purpcses, it is instructive to examine the relationship between drained and
undrained behavior in more detail, in order to provide a guantitative evalu-
ation of the effect of multi-directional shaking on liguefaction.

Model of the Mechanism of Pore Pressure Development
Leading to Initial Liquefaction

A model by which the behavior of sands under undrained cyclic loading
can be computed from data obtained in tests on dry sand has been suggested by
Martin, Finn and Seed (1975). This model may be iilustrated as shown in Fig.
3. As a consequence of any applied cyclic stress or strain under undrained

conditions, the structure of a cohesionless soil tends to become more compact,



with a resulting transfer of styress Lo the pore waler and a reduction in
stress on the soll grains. As a resulb of the reductlon in stress, the soil
grain strxucture rebounds Lo the extent reguired to keep the wvolume constant
and this intexrplay of voluwne reduction and soil structure rebound cn succes-
sive cycles determines the magnitude of the incrcase in vore watsy pressure
increase in the soil.

If the magnitude of the vertical strain due to reduction in velume of the
structure of a soil element in any one cycle is Aavd and the deformation
modulus for one-dimensional or constrained unloading is designated Er’ then
the stress release required fo maintain constant volume will be

A =8B - Ae | (1)
r va

and the corresponding increase in pore water pressure will be

Aa = EI g Agvd (2)

The wvextical strain per cycle c¢an be determined by cyclic loading tests
on dry sand and the rebound modulus by a rebound test on the dry sand. Thus
the change in pore pressurc can be computed directly from these data.

That such a mechanism provides a reasonable model of the behavior of
saturated sands subjected to cyeclic stress or strain applications can be illu-
strated by simple shear tests on dry sands. Indeed if a dry sand is sub-
jected to cvelic leading in a constant volume test, the relaxation of ver-
tical effective stress is similar to that which occurs when the constant
volume condition is maintained in the presence of water (Pickering, 1973).

Tt should be noted that eqguation (2) assumes that the stiffness of the
pore fluid is significenily greatexr than that of the soll skeleton. Should
this not be true because of incomplete saturation cr any other reason the
full expression given by Martin, Finn and Seed (1975) should be used.

In order to perform computations using the model of soil behaviox



described above it is clearly necessary to have available data which pro-
vides the wvalues of settlement per cycle consistent with the previous strain
history, together with data describing the modulus on unloading. However,
it is also necessary to have data concerning the shear modulus at the appro-
priate levels of effective stress and previous strain history in oxder to
model a stress-controlled cyclic loading condition because it is necessary
to compute the cyclic shear stxain in order to obtain the settlement per
cycle. The results of tests conducted to davelop such data for Monterey No.

0 sand are presented in the following section.

Data on_ the Characteristics of Dry Sand Under Cyclic Loading

In order to develop a full set of data on the characteristics of dry
Monterey No. 0 sand under cyclic loading conditions, a series of tests was
performed using the NGI type cyelic simple shear device previously described
by Silver and Seed (1971a). Tests were conducted at three strain levels
and three vertical stress levels for each of three relative densities.

While the tests were intended to hawve constant cyclic shear strains, the
shear modulus tended to increase as a result of the cyclic loading and be-
cause of some flexibility in the loading system, the cyclic shear strains
actually measured on the sample decreased as the modulus increased. This
may be seen from the results of a typical test presented in ¥ig. 4, which
shows the variation of shear stress, shear strain, shear modulus and cumula-
tive vertical settlement with increasing numnber of cycles.

In order to eliminate the effect of the varving cyclic shear strain
and to present the data in a form convenient for further analysis, the
settlement per cycle is shown in Fig. 5 as a function of cyclic shear strain
for the test results shown in Fig. 4 and for a number of other tests con-

ducted at 60 percent relative density. The path of cach test is shown by



a dashed line and values of the total settlement corresponding to the
various data points and curves are marked on each path.
For examplie, from the test data shown in Fig. 4, the following values

may be read off directly:

Table 1. Material Characlteristics Determined From Test Data in Fig. 4.

(1) (2) (3) (4) (5)
Total Prior Seitlement Cveclic Shear Cyclic Shear |. Shear
Vertical Settlement per Cycle Strain Stress Modulus
-percent ~percent -percent -pst ~psf
0 0.105 0.235 480 2 x 10°
0.1 0.0565 0.220 480 2.2 X 105
0.2 0.032 0.202 600 3.0 x 10°
0.3 0.015 0.187 690 3.7 x 10°
0.4 0.005 0.170 730 4.3 x 105

Values of settlemenl per c¢ycle versus cyclic shear strain correspond-
ing to different values cf prior total wvertical settlement from the above
table are plotted as open cirgles in Fig. 5. Similar results from other
tests with different initial conditions, but for the same relative density
of test specimens, are also plotted in Fig. 5 and contours have been drawn
through points of equal total settlement. Thus the settlement per cycle
can be determined for any level of cyclic shear strainlon the first cycle
of loading {shown as total settlement £, equal to zero} and for the next
cycle of loading following accumulation of various total settlements. These
regults further confirm the findings of Silver and Seed (1971b) and Youd (1972)

that settlement is a function of cyclic shear strain and the previous strain



history, but is independent of the vertical stress. 1In the previous studies
the previous strain history was indicated simply by the number of cycles
but the total settlement is found to be a more convenient indicator of the
previous strain history because it combines in a single parametexr the
effects of both the number of load cycles and their amplitudes.

The data for shear modulus obtained in these tests can be reduced and
plotted in a similar manner as shown in Fig. 4, Table 1 and Fig. 6. 1In
the latter figure the equivalent linear shear modulus is plotted as a
function of cyclic shear strain. Again the test results from Fig. 4 are
shown as open circles and the path of each test is shown by a dashed line
with the total settlement being used as an indicator of previous strain
history. As 1s well known, the shear modulus decreases with increasing
cyclic shear strain. For dry sand, the shear modulus also appears to
ingrease with previous c¢yclic strain histoxry. The results are illﬁstrated
for one vertical stress only. The full results showed that the shear modulus
varied approximately with the square root of the mean confining stress
although this was less true at higher strain levels and lower confining
pressures (Pyke, 1973).

Data on the cne-dimensicnal loading and unleading stress—-strain
relationship for Monterey No. 0 sand were also obtained by c¢ycling the
vertical load once before the cyclic shear stresses were applied, and
by cbserving the vertical strain on unlcocading at the end of the cyclic
load test. A typical result is shown in Fig. 7. The rebound on unloading
following cyclic shear stress applications was alwavys somewhat greater than
that observed in a gsingle cycle of vertical load application, but the
difference in results was not very large during the first two-thirds of the

unloading process. Thus for many analytical purposes, the virgin unloading



curve may be considered to provide an adequate approximation to the -
behavior of the soil under cyclic loading conditions.

It is of interest to note that similar data were also extracted from
the shaking table teste which have been referred to previously. Good
agreement was found between the shear moduli measured in the two types‘of
test. Good agreement was also found between the settlement on the first
cycle in the two types of test but the settlement per cycle appeared to be
greater for later cycles in the shaking table tests. It may be that the
wire-reinforced rubber membrane which contains the sample in the simple
shear device restricted the settlement of the cap in these tests. The
presence of this membrane may also limit the accuracy of the one-dimensional
stress-strain relationships. However, it is believed that the general nature
of the results is correct.

The above results demonstrate that the behavior of sands at the
relatively small strain levels which are normally associated with cyclic
loading is sensitive to previous strain history. The results are also
sensitive to the method of sample preparation (Pyke, 1973) and the results
reported here are for samples prepared by raining dry sand at a controlled
rate of deposition. These aspects of the behavior of dry sands also appear
to be significant in the evaluation of the ligquefaction characteristiés

of saturated sands.

Use of Test Data to Compute Pore Pressure Generation and

Develeopment of Initial Liquefaction in Cyclic Load Tests on Saturated Samples

1. l-Directional Shaking

The data cobtained on dry Monterey No. 0 gand may now be used to predict

10



the undrained behavior of this sand by using the model of soil behavior
described previcusly. The computational procedures can best be illustrated
by an example which can be worked manually. For this purpose it is helpful

to present the three required sets of data on separate plots:

(1) ©Data on Settlement Per Strain Cycle

The settlement data from Fig. 5 is reproduced in Fig. 8 with additional
contours of total settlement interpclated.

(2) Data on Shear Modulus of Sand

Bacause the data for shear modulus become too unweildy for hand
calculation if the effects of previous strain history are included,

the shear modulus data for the sand 1s reproduced in Fig. 9 for several
vertical stress levels and for the fifth cycle of loading in the cyclic
simple shear tests. It mav be noted, as found in many previous inves-
tigations, that the shear modulus increases with increasing confining
pressure but decreases with increasing amplitude of cyclic shear strain.

(3)  Rebound Curve on Unloading

The unloading portion of the stress-strain curve from Fig. & is re-
rlotted in Fig. 10, showing the wvertical strains that correspond

to decreases in the vertical stress from the maximum value, Again,
only the virgin unloading curve 1s shown and no attempt has been made
to take account of the effacts of cyclic loading, since the two curves
are essentially parallel during the first two-thirds of the wunloading

Process.

Suppose now it is desired to determine the rate of development of

pore water pressures and initial ligquefaction under undrained conditions

11
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in a stress-controlled cyclic lead test involving the application of gyclic
shear stresses of 200 psf to an element of Monterey No. 0 sand consclidated
to 60 percent relative density under a vertical stress of 1600 psf. The
corresponding value of the cyclic stress ratio, Th/Oé , is 0.125.

The computation begins by entering the data shown in Fig. 9 to
obtain the cyclic shear strain caused by a cyclic shear stress of 200 psf
when the effective vertical stress is 1600 psf. This is most easily done
by deterxrmining the locus of all points which hawve a shear stress of 200
psf (shown by the brcken line in Fig. 9) and then locating the intercept
of this lccus with the modulus curve for the regquired vertical stress.
For the designated conditions, this is shown by the point marked 1 in Fig. 9,
and the strain developed may be read off directly as 0.027 percent. At
this stage the total settlement will be equal to zero and the settlement
during the first cyecle corresponding to the developed strain of 0.027 percent
may be read off directly for these conditions from the data presented in
Fig. 8. The resulting settlement per cycle, designated by the point 1 in
Fig. 8, may be seen to be (.008 percent. This value becomes the total
settlement after the first cycle and the decrease in vertical effective stress,
(which will be egual to the increase in pore water pressure during the first
cycle) required to produce a rebound of 0.008 percent may be read from Fig., 10,
The necessary reduction, marked by point i in Fig. 10, may be seen to be
350 psf. MNote that by plotting Fig. 10 in this manner it is not actually
necessary to determine the tangent modulus and perform the multiplication
indicated in equation (1).

The sexies of computations described above are listed in the first row

of the results shown in Takle 2. At the end of the first cycle, the computed
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value of pore water pressure is 350 psf and the corresponding value of the
effective vertical stress is 1250 psf. The same procedure is then repeated

for additional cycles. The results obtained for each subseguent cycle are
indicated by points marked 2, 3, 4 and 5 in Figs. 8, 9 and 10 and tabulated

in Table 2. It may be seen that initial liguefaction, that is, the condition
for which the excess pore water pressure becomes equal to the initial effective

stress, occurred on the sixth cycle.

2. 2-directicnal shaking

The computation ijllustrated above may readily be modified to predict
the probable behavior of sand under two or multi-directional shaking for
undrained conditions. In the shaking table tests on dry sand it was\found
that the effect of a second vomponent of shaking, equal to the first, was
to approximately double the settlements caused by a stress-controlled
loading, see Fig. 2. While there are some small differences in the effects
of multi-directional shaking on both settlement per cyele and soil moduli
as compared with one coméonent acting alone (Pyke, 1973), the effect of
multi-directional shaking can be represented simply by doubling the settle-
ment per cycle which is measured under one-directional shaking conditions.
The computations of the rate of development of initial liquefaction, using
the same stress conditions as for the example in Table 2, but for two-
directional shaking producing twice the settliements per cycle indicated in
Fig. 8, are presented in Table 3. It may be seen that for these conditions
initial liquefaction develops after only about 3 - 1/2 cycles. The rates
of development of pore pressures for the test conditions represented by

Tables 2 and 3 are plotted in Fig. 11.
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In order to compare the effects of 1 and 2 directional shaking on the

development of pore water pressures and initial liquefaction over a wide
range of cyclic stress conditions, computations similar to those described
above have been made for conditions representing l-directional and multi-
directional shaking over a range of values of the stress ratio, Th/O; .
A chort computer program was written to expedite the work and to allow
inclusion of the effect of strain history on the shear modulus. Analytical
functions were fitted to the data for settlement per cycle, shear modulus
and the modulus on unloading in the manner suggested by Martin, Finn and
Seed (1975).

The results for two simulated tests with the same stress ratio,

Th/O'v ;, but with the settlement per cycle doubled in the second test,

are shown in Fig. 12. Both the excess pore pressure and the cyclic shear
strain are plotted as a function of the number of cycles of loading. It
may be seen in both Figs. 11 and 12 that the excess pore pressures increase
approximately twice as fast for the test condition representative of multi-
directional shaking and that initial liquefaction occurs in about half the
number of cycles that are required for one-~directional shaking.

In Fig. 13 these results plus additional points are plotted in the
conventional manner showing the number of cycles reguired to cause initial
liguefaction as a function of the stress-ratio, Th/O; . The results of
the computations shown in Tables 2 and 3 are shown by the triangular points
in this figure. Again, for a given stress-ratio, the number of cycles
required to cause initial liquefaction under multi-directional shaking is
about half that under one-dimensional shaking:; however, because the relation-

ship between shear stress and number of cycles to liquefaction is non-linear,
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there is only a small difference between the stress ratios causing liquefaction
in a given numbexr of cycles. In the range from 5 to 20 cycles, the shear
stresses causing liquefaction under multi-directional shaking are in fact

only 10 to 20 percent less than those under cne-directional shaking.

It is also interesting to note that the shear stress ratios causing
liquefaction under one-directional shaking computed by this procedure are
somewhat less than those determined experimentally by DeAlba, Seed and Chan
(1975) in shaking table tests on saturated samples of Monterey No. 0 sand.

It may be that closer agreement could be obtained by making refinements to
the computational model used, particularly with regard to the modulus on
unloading; however, the general form of the results is very similar to that
obtained experimentally. Thus it seems reasonable to believe that the model
can be used with a high degree of confidence for evaluating effects such

as that studied herein.

On the basis of the results shown in Fig. 13, it would be possible to
account for the effect of multi-directional shaking in the analyses of ligue-
faction potential either by adjusting the stregss ratio that causes lique-
faction in a given number of cycles or by altering the number of uniform
cycles that is taken to be equivalent to the irregular loading in the field.
A procedure for obtaining the egquivalent nunber of uniform cycles forx
individual components of motion and typical values for this number have
been given by Seed et al, 1975. The effect of multi-directional shaking
could be taken into account by adding together the equivalent number of uni-
form cycles obtained for each component; however, this would only be an approx-
imation, as the effect of two mo?ions applied successively is not the same as
the effect of those motions applied concurrently. A generally simpler and

gsufficiently accurate approcach appears to be to conduct analyses considering
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cnly one component of motion and to apply a small reduction to the stresses
estimated to cause liguefaction on the basis of laboratory tests in oxrder to

account for the presence 1in the field of a second horizontal component.

Conclusions

Both gualitative use of the results of shaking table tests on dry
sand and the results of a quantitative evaluation using data from cyclic
simple shear tests indicate that the shear stresses causing liquefaction
under multi-directional shaking with two equal components are 10 to 20 percent
less than the shear stresses causing ligquefaction under one-directional
shaking. Since in practice it is unlikely that a second component of
motion would be equal to the single component used for design purposes,
i1t is suggested that a reduction of 10 percent in the shear stresses causing
liquefaction is a suitable general procedure for accounting for the effects
of multi-directicnal shaking. Combining this factor with the correction
 factor which should be applied to cyelic triaxial test results in order
to cobtain the shear stresses causing liquefaction under simple shear
conditions with uni-directional shaking (DeAlba et al, 1975) an overall
correction factor of about 0.57 is obtained on the basis of studies con~

ducted on normally consolidated samples of Monterey No. O sand.
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Appendix 1 - Notation

The following symbols are used in this paper:

c, correction facotr from cyclic triaxial test to field
conditions

Th maximum horizontal cyclic shear stress

Odc cyclic deviator stress

lec vertical consolidation stress

O'a isotropic consolidation stress

U; vertical effective stress

Dr relative density

%d vertical strain or settlement under drained conditions

E tangent modulus in one-dimensional unloading
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"Three Dimensional Analysis of Building Systems," Extended
Version, by E. L. Wilson, J. P. Hollings, and H. H. Dovey
~ 1975

"Determination of Soil Liquefaction Characteristics by
Large~Scale Laboratory Tests," by Pedro be Alba, Clarence

" XK. Chan and H. Bolton Seed -~ 1975

"A Literature Survey - Comprehensive, Tensile, Bond and
Shear strength of Masonry,” by Ronald L. Mays and
Ray Clough = 1975

"Hysteretic Behavior of Ductile Moment Resisting Reinforced
Concrete Frame Components,” by V. V. Bertero and E. P.
Popov - 1975

"Relationships Between Maximum Acceleration, Maximum
Velocity, Distance from Source and Local Site Conditions
for Moderately Strong Earthquakes," by H. Bolton Seed,
Ramesh Murarka, John Lysmer and I. M. Idriss - 1975

"The Effects of Method of Sample Preparation on the Cyclic
Stress—Strain Behavior of Sands," by J. Paul Mulilis,
Clarence K. Chan and H. Bolton Seed - 1975

"The Seismic Behavior of Critical Regions of Reinforced
Concrete Components as Influenced by Moment, Shear and
Axial Force," by B. Atalay and J. Penzien - 1975

"Dynamic Properties of an Eleven Story Masonry Building,”
by R. M. Stephen, J. P. Hollings, J. G. Bouwkamp and
D. Jurukovski - 1975

"State-of-the-Art in Seismic Shear Strength of Masonry -
An Evaluation and Review," by Ronald L. Mayes and Ray W.
Clough - 1975

"Frequency Dependencies Stiffness Matrices for Viscoelastic
Half-Plane Foundations," by Anil K. Chopra, P. Chakrabarti
and Gautam Dasgupta - 1975

"Hysteretic Behavior of Reinforced Concrete Framed Walls,™
by T. Y. Wong, V. V. Bertero and E. P. Popov - 1975
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"Tasting Facility ¥for Subassemblages of Frame-Wall
tructural Systems,” by V. V. Berterxo, E. P. Popov and
Endo — 1975
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“"Influence of Seismic Histowxrv on the Liguefaction
Charvacteristics of Sands,” by #. Bolton Seed, Kenji Mori
and Clarence K. Chan -~ 1975

“tThe Seneration and Dissipation of Pore Water Pressures
During Soil Liquefacition,” bv H. Bolton Seed, Phillippe
P. Marxitin and John Lysmer - 1975

"Tdentiification of Resecarch Heeds for Improving a Seismic
Design of Building Structures,” by V. V. Bertero - 1975

"Evaluation of Scil Liguefaction Potential during Earth-~
quakes,.” by H. Rolten Seed, L. Avange and Clarence K. Chan
1975

"Representation of Irregular Stress Time Historiles by
Equivalent Uniform Stress Serieg in Liquefaction Analyses,”
by H. 3olton Seed, X. M. Idriss, F. Makdisi and N. Banerjee
1275

"EFLUEH A Computer Program for Approximate 3-D Analysis
of Soil~Structure Interaction Problems," by J. Lysmer,
T. Udaka, C.-F. Tsai and H. B. Seed = 1975

YALUSH ~ A Compubter Program for Seismic Response Analysis
of Axigymmetric Soil-Structure Systems,” by E. Berger,
J. Lysmer and H. B. Seed -~ 1975

PTRIP and TRAVEL -~ Computer Programs for Seil-Structure
Interaction Analysis with Horizontally Travelling Waves,”
by . Udaka, J. Lysmer and H. B. Seed - 1975

"Predicting the Performance of Structures in Regions of
High Seismicity,” by J. Penzien - 1975

"Rfficient Finite Element Analysis of Seismic Structure -
Soil -~ Direction,” by J, Tysmexr, H. Beolton Seed, T. Udaka,
R. W. Hwang and C.-F, Tsal - 1975

"The Dynamic Behavior of a First Story Girder of a Three-
Story Steel Frame Subjected to Earthquake Loading,™ by
Ray W. Clough and Lap-Yan Li - 1975

"Eartlquake Simulator Study of a Steel Frame Structure,
Yolume II ~ Analytical Results,” by David T, Tang - 1975

"ANSR~1 General Purpose Computer Program foxr Analysis of
Non-l.inear Structural Response,” by Digambar P. Mondkar
and Graham H. Powell - 1975
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"Nonlinear Response Spectra for Probabilistic Seismic Design
and Damage Assessment of Reinforced Conerete Structures,”
by Masaya Murakami and Joseph Penzien - 1975

"study of a Method of Freasible Dirxections for Optimal Elastic
Design of Framed Structures Subjected to Earthquake Loading,”
by N. D. Walker and K. 8. Pistex - 1975

"An Alternative Representation of the Elastic-Viscoelastic
Bnalogy," by Gautam Dasgupta and Jerome L. Sackman - 1975

"Effect of Multi-Directional Shaking on Liquefaction of
Sands," by H. Bolton Seed, Robert Pyke and Geoffrey R.
Martin - 1975



