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Stabilization of Potentially Liguefiable Sand Deposits

Using Gravel Drain Systems

by

1 2
H. Bolton Seed, and John R. Booker

INTRODUCTION

In recent years substantial gains have been made in the understanding
of the phenomenon of ligquefaction of saturat;d granular materials. It is
now widely accepted that if a saturated granular material is subjected to
cyeclic leoading involving the reversal of shear stresses it will tend to
compact, and that if the material is unable to drain, this‘tendency te de-
crease in volume will lead to an increase in pore water pressure. Ultimate-
ly if the cyclic loading is maintained the soil will reach a condition of
zero effective stress and, depending on its relative density, will suffer
essentially a complete loss of strength (ligquefaction) or underge some de-
gree of strain with little or no resistance to deformation (initial lique-
faction with limited strain potential).

Considerable progress has been made in the development of both tests
and test procedures to obtain guantitative measures of the stress conditions
which lead to these types of soil liguefaction. This development has been
accompanied by an associated development of methods of analysis (Seed and
Idriss, 1967, 1971) which make use of the test results to evaluate the
ligquefaction potential of soil deposits in the field, and the methods have
been found to provide a useful basis for assessing probable site performance

under prescribed earthquake conditions.
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Much of the work referred to in the preceding paragraph has been
restricted to soil behavior under undrained conditions and finds its appli-
cation in situations in whic¢h the redistribution and dissipation of pore
water pressure do not have a significant influence on the liguefaction
potential of the soll mass. It has been recognized, however, that such
mechanisms may be of considerable importance and may have both adverse and
beneficial effects. For example, the dissipation of pore water pressures
generated in deep soil lavers may lead to upward seepage which results in
liguefaction of surface layers (Seed and Lee, 1966; Ambraseys and Sarma,
1969; Yoshimi, Yoshiaki and Kuwabara, 1973 and Seed, Martin and Lysmer,
1975). ©On the other hand, if the pore water pressures generated in a soil
mass by cyclic loading can to some extent be dissipated as they are created,
then the danger of liquefaction may be awverted, Seed et al {(1975). 1In fact
it is thought that the better field performance of gravels over sands may
be directly attributable to their capacity to dissipate pore water pressures
because of their higher permeability (Wong, Seed, and Chan, 1975).

A possible method of stabilizing a soil deposit susceptible to ligue-
faction is to install a system of gravel or rock drains as shown in Fig.
1{a) so that pore water pressures generated by cyclic leading may be dis-
sipated almost as fast as they are generated. In this paper the one dimen-
sional theory of pore water pressure generation and dissipation developed
by Seed, et al{l975) is generalised to three dimensions and applied to the
analysis of columnar gravel drains under a variety of earthguake conditions.
The results of these analyses are summarised as a series of charts which

provide a convenient basis for design considerations.
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BASIC EQUATIONS

In developing the basic equations governing the generation and
dissipation of pore water pressure throughout a granular material, it will
be assumed that the flow of the pore water is governed by Darcy's Law so

that the usual considerations of continuity of flow lead to the equation:

T 3t (1)

where u is the excess hydrostatic pore water pressure
kv' kH are coefficients of permeability in the vertical and horizon-
tal directions
Yw is the unit weight of water

and € is the volume strain, with volumetric reduction being considered

positive.

During an interval of time dt the pore water pressure in an element
of s0il will undergo a change du, while the element will also be subjected
to dN cycles of alternating shear stress which will cause an additional
increase in pore pressure Bug/BN - dN, where ug is the pore pressure gene-
rated by the alternating shear stresses for the appropriate conditions of
prior strain history. It therefore follows, considering that the change
in bulk stress is negligible, that the volume chanage d€ of the element in

time dt is given by

Ju
= - 3
de = m .(du - x= aN) (2a)
whexe m o3 is the coefficient of volume compressibility
d
i.e % _ m (Bu - _Ei gﬁ)
t v3 '3t 9N ot (2b)



Combining Egns. (1) and (2b) it is found that:

o fma b Faow L d fmaw  fa Mg (3
ax Yy, Ix dy Yy dy dz Y, 9% . oN dt

If the coefficients of permeability are constant and the problem

exhibits radial symmetry, Eqn. (3) becomes

2w, 1w Sy 3w Pgaw
" = _ oN
Ymmv3 3?r  r or Yuly3 dr2 3t ON dt (4}

and for purely vertical drainage reduces to the form developed by Seed et

al (1975).
k 2 ou
v 3u_ du oN (5)
= - - 5.
Ywmv3 3z at O9N ot

Under conditions of purely radial drainage as considered in the

following section, Egn. (4) reduces to

*y 3%a 1 3w _ du _ Y 3m (6)

Yy, B TTar T3 T ot

In order to evaluate the extent of pore pressure generation and dis-
sipation using this equation, it is necesgsary to determine Bug/BN and 9N/dt

as well as the soil properties kH and m

3 The values of Bug/BN can be

found from undrained tests as described by Seed et al (1975). For many
soills the relationship between ug and N can be expressed for practical pur-
poses in terms of the number of cycles N2 required to cause initial ligue-

faction under the given stress conditions in the form (Seed et al, 1975):

Eﬁw 9 1/20
g = ﬁ-arc sin (ﬁ») (7)
o 2

where OO' is the initial mean bulk effective stress for triaxial test con-
ditions or the initial vertical effective stress for simple shear conditions

and o is an empirical constant which has a typical value of 0.7. (see Fig. 2)
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Thus,
du 20
g__o 1 (8)
oN QTN , 20~ ,T i
L sin (- r) cos (- r)
2 u 2 u

u
where r = — , . .
u O is the pore pressure ratioc.

For practical purposes the irregular cyclic leoading induced by an
earthquake may be converted to an equivalent number Neq of uniform stress
cvcles at a stress ratio Th/gé occuring in some duration of time td of

earthqguake shaking (Seed, Idriss, Makdisi, Banerijee, 1975). Thus

N
N _ eq (9)
at td

In using these results it must be noted that the rate of pore pres-
sure generation 3ug/8N depends on the previous cyclic history of the soil
and this may be represented approximately by the accumulated pore pressure
u. Thus for any given point at time tl, the appropriate rate of pore pres-

sure generation (BuU/BN)t must be determined from Egn. (8) corresponding
= 1

to the value of u existing in the soil at that time. By this means the

past history of strain cycles may be taken into account with a reasonable

degree of accuracy.

ANALYSIS OF ROCK DRAINS

As discussed previously, in cases of high liguefaction poténtial
the installation of columnar gravel drains may well provide an efficient
method for preventing the development of excessively high pore water pres-
sures. In most practical cases for example the horizontal permeability of
a sand will be several times greater than its vertical permeability and the
spacing between vertical drains can be made less than the distance required

for water to drain vertically to a free surface. Furthermore, many natural



deposits of sand are interspersed w}th narrow horizontal layers of rela-
tively impermeable silt which may severxely inhibit vertical drainage. For
these reasons it seems quite likely that the dominant mechanism in the oper-
ation of a gravel drain s&stem will often be one of pure horizontal drain-
age.

Consider, therefore, a network of rock drains as shown in Fig. 1l(b)}
of diameter 2a and an effective spacing 2b installed in a layer of sand
with horizontal permeability, k, an initial effective stress G; and having
characteristics such that it would liquefy after NR uniform stress cycles
of magnitude qu if it were undrained. Suppose also that the layer is sub-
jected to an earthquake consisting of Neq unifoxrm stress cycles of the same
magnitude applied over a period of time td' It will be assumed that the’
pore pressure generating characteristics of the sand are described by Egn.
9 and that the filler material in the drains is far more permeable than the
surrounding sand layer, so that the excess pore water pressure in the drain
is effectively zero. It will also be assumed that the coefficient of com-
pressibility is constant. Examination of experimental data (Lee and
Albaiso 1974) shows that this is nearly so for moderate pore pressure
ratios and thus if the sand drains are performing their function, this
assumption is justified.

Under these assumptions of purely radial flow, the pore pressure
ratio, r, = u/Gé » throughout the sand and drain system depends on the

following dimensionless parameters:

a/b = a ratio characterizing the geometric configuration of the
sand drains
N /N . s .
eq’ & = a ratio characterizing the severity of the earthquake

shaking, in relation to the ligquefaction characteristics of



T g =k . _d  relating the duration of the earthquake to the

Ym mv3bz
consolidation properties of the sand,

and o = a parameter characterizing the shape of the pore pressure
generation curve, Egn. 7. (It is found that for many

materials o = 0.7 fits the experimental data well and this

value will be adopted throughout this paper).

A finite element program LARF (Liquefaction Analysis for Radial Flow
-has been written to solve Egqn. 3 for purely radial flow (see Appendix A).
Before examining the behavior of a gravel drain system it is instruc-
tive to consider the behavior of a sand layer when no drain is present.
Since only radial drainage is considered and no vertical drainage may occur,
the layer will act in an undrained manner. There are two cases to consider.
First if the number of equivalent uniform stress cycles induced by the
earthguake, Neq' is less than that required to cause ligquefaction, NQ, the
' excess pore water pressure will rise according to Egn. 7, until a final
value (which remains constant thereafter) is reached when t = t_ and

d

N = Neq' Of more practical interest is the case when Neq > NQ. For this
case the excess pore water pressure will rise according to Egn. 7 until it

reaches the value Gé when N = N£ and t = tu where
t (10)

the sand then developing a condition of initial liquefaction and no further
increase in pore pressure being possible.

In order to illustrate the effect of a system of gravel drains, the



74

IWIL ANV O11VH 34NSS3d¥d 3H0d WNWIXYIN NI3IML38 dIHSNOILY13Y ¢ big

i/
(0] 02 Ol Z | 0 20 'O 00
_ | _ T _ _ ] 0
O.muDQ._. \
| —20
2050w U 02=P9
57 % L
- G- o\n —+0
J.. /ba G2l
2= “N/°N
\ AuvaEl_
| —90
- 20 g0
ONUD-_v
| _ | _ _ ol




case of a sand layer with drains spaced at a/b = 0.2 will be examined in

some detail for an earthquake condition where N2 is egqual to one half of

N .
€q

In Fig. 3 the maximum pore pressure ratio rmax(t) = maximum value

of u/Oé throughout the layer at time t is plotted against t/td. If the

sand had zeroc permeability so that, T = 0, undrained conditions would

bd
prevail and the pore pressure ratio would rise to a value of 1 at

t=+t= tu = 1/2 td (for this case); the entire layer would then develop

a condition cof initial liquefaction at this instant and remain in this
condition thereafter since no dissipation could occcur. For a sand having
a relatively low permeability coefficient, say for example, a value corre-

sponding to T, . = 0.2, the maximum pore pressure ratioc rises approximately

bd
as it would in the undrained case and initial liquefactidn will develop at
some time between t = tu and t = td' The ligquefied zone then continues to
grow until the end of strong shaking. After this no further excess pore
water pressures are generated, the pore pressures that have built up
dissipate and the liquefied zone contracts and finally vanishes whereupon
the maximum pore pressure ratio drops steadily from the wvalue one down to
zero. If the sand had a still greater permeability., corresponding to say
de = 1.25, the pore pressures build up during the period of strong shaking

but the soil does not develop a condition of initial ligquefaction although

it can be seen that if the earthguake were maintained beyond t. liguefaction

d
would eventually occur. On cessation of strong shaking the excess pore
pressures dissipate and the pore pressure ratio drops from its greatest
value rg back to zero. For a still higher permeability corresponding to

de = 5,0, the pore pressure increases initially but then tends to level off

as a stage is reached where the rate of dissipation of pore pressures is

almost equal to the rate of their generation.






Similar cbservations to those described in the previous paragraph
hold for a material for which Neq/Nﬁ = 5. This case can be regarded as
similar in everyv respect to the one described previously except that the
intensity of the earthguake is increased. This implies that excess pore
pressures are generated at a faster rate and thus it would be expected
that the permeability necessary to limit the pore pressure ratio to a speci-
fied greatest value rg would be increased. This is illustrated by compar-
ison of the results shown in Figs. 3 and 4.

The effect of changing the diameter of the gravel drain is illustrated
by considering a material for which Neq/NE = 2 for a range of values of a/b
but with a constant value of de = 1. Computed results for this case are
shown in Fig. 5. If no drains are present a/b = 0, there are no drainage
boundaries and so the layer behaves in an undrained fashion and liquefies at
t = tu = %—td and remains liquefied thereafter. For a relatively sméll
drain corresponding to a/b = 0.1, initial liquefaction is deferred for a
period of time but eventually occurs, the liquefied region continuing to
grow until the end of the period of strong shaking; thereafter it shrinks
and vanicshes as a result of pore water pressure dissipation. If a larger
diameter drain is introducea corresponding to a/b = 0.25, initial liquefac-
tion of any part of the layer may be prevented entirely and the greatest
pore pressure ratio will be less than one. Note that the diameter of the
drain in this region of values of a/b is quite critical and the greatest
value of pore pressure ratic rg developed changes rapidly with a/b. Thus,
for example, there is a far greater decrease of rg when a/b changes from
0.2 to 0.25 than there is when a/b changes from 0.25 to 0.3.

In designing a network of gravel drains to prevent liquefaction, it

would be helpful to know for a given soil and a given diameter of drain
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what spacing of drains should be chosen to limit the pore pressure ratio
to a given greatest value r . To facilitate this choice, a series of
curves Figs. 6 to 9 have been computed which show the variation of the
greatest pore pressure ratioc rg developed ags a function of the spacing
ratio a/b for wvalues of Neq/NR equal to 1, 2, 3, 4, and for a range of

t

k 4
values of the parameter T _ = —- 5
ad w& mVBa

For any particular soil and a

given diameter of sand drain, Ne /NQ and T a will be known and thus the
g a

value of a/b corresponding to a given allowable value of rg can be read
directly from the curves. A similar series of plots showing the greatest

average pore pressure ratio in the soil, (iﬁg, are shown in Figs. 10-13.

ExamEle

Suppose, for example, that a soil layer having the properties

k 10 ° m/sec

&

2% 10 ° ££%/1b = 4.2 X 10 ° kN/m®

and mV3

is subjected to an earthquake which can be considered as applying 24
uniform stress cycles in a period of 70 seconds and it is known that under
undrained conditions, the so0il would liquefy under this sequence of stress
applications after 12 cycles {i.e. after 35 seconds) so that Neq/N2 = 2.
If gravel drains of 2' (0.6l m) diameter were considered then, noting

that Y, = 9.8 KN/m?

. k. _a 107° x 70 ~ les
ad Y, mv3a2 T 9.8 % 4,2 x 1075 X (0.305)2 '

Now referring to Fig. 7, if a value of rg = 0.6 were considered to be allow-
able, it may be seen that

b/a £ 0.25
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so that a spacing of 8 ft would have to be adopted. A comparison with

s

11

Fig. 11 shows that a similar spacing would have been adopted if a greatest

average pore pressure ratio (;)g = 0.6 had been considered allowable.

EFFECT OF PERMEABILITY OF FILLING MATERIAL

In the calculation of the previous results it has been assumed that

the material within the gravel drain was infinitely permeable. The effect

of this assumption can be examined by assuming a finite permeability for
this material and again solving Egn. 5. To simplify the analysis it has

been assumed that radial drainage also occurs in the filling material but

there is an infinitely pervious pipe at its center. (If no such pipe were

present the generated excess pore water pressures within the drain-layer
system would redistribute because of their different properties and then
dissipate to a final non-zero value, since no pore water could escape.)
To illustrate the effect, the case of a sand deposit with Neq/NQ = 2 and
de = 1.25 with a spacing ratio a/b = 0.2 was analyzed for a range of
values of kf/k where kf denotes the permeability of the filling material.
For the sake of simplicity it was assumed that the filling material had
the same liquefaction characteristics as the sand. The results of the
analysis are shown in Fig. 14 and it can be seen that the drain operates
perfectly provided it has\a permeability of the order of 200 times that

of the sand. Thus it would appear that for most sands, medium to fine

gravels would provide adequate filling material for the drains.
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EFFECT OF VERTICAL DRAINAGE -

The preceding analyses have been based on the assumption that vertical
drainage plaved an insignificant role in the functioning of the drains. To
illustrate this effect, consider the case of a 20 ft laver of the material
_ described in the previous example resting on an impermeable layer and buried
beneath a pervious fill 50 ft deep, both materials having a unit weight of
120 lbs/fta. Suppose alsc that the vertical permeability of the sand is
cne third of its horizontal permeability.

It was assumed that 8" diameter sand drains were placed in this mater-
ial at an effective spacing of 6 ft. The problem was analyzed first assuming
that only radial drainage could occur and that the soil had a uniform initial
effective stress equal to that at its midsection, and secondly allowing the
initial effective stress to vary throughout the layer and allowing both
vertical and horizontal drainage to occur. The results of these analyses
are compared in Fig. 15, and are virtually indistinguishable within the
accuracy of plotting.

Of course there may be many situations in which vertical drainage may
have a significant effect but it is conjectured that for many of these cases

it will be sufficiently accurate to use the relationship:

Greatest pore Greatest pore pressure Degree of consolidation
pressure ratio = ratio for purely radial x for purely vertical
developed drainage of midsection drainage of the layer

Thus the data in Figs. 6 to 13 could still be used to evaluate the efficiency

of any proposed drainage system,
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CONCLUSTION

In many cases, the installation of a drainage system as described in the
preceding pages offers an attractive and economical procedure for stabilizing
an otherwise potentially liquefiable sand deposit. In fact, the method has
already been used in one case involving the construction of stone columns
in a relatively loose sand deposit and it is currently being proposed for
stabilization of a medium dense sand layer which is known to have developed
some degree of liquefaction in a recent earthquake but which appears to be
too dense for stabilization by further densification using currently available
procedures.

The simplified theory presented in the preceding pages provides a con-
venient basis for evaluating the possible effectiveness of a gravel drain
system in such cases. Where appropriate, additional analyses may readily be
made using the computer program LARF but for most practical cases, it is be-
lieved that the results presented in Figs. 6 to 13 will provide an adeguate
basis for design and selection of a suitable drain system for effective sta-

bilization of a potentially liquefiable sand deposit.
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2a
2b

dt

Tad

bd

NOTATION

Diameter of sand drain.

Effective spacing of sand drains.
Increment of time.

Isotropic permeability.
Horizontal permeability.

Vertical permeability.
Coefficient of volume decrease.

Number of cycles.

Number of uniform stress cycles equivalent to the earthguake.

Number of cycles to liquefaction.
Pore pressure ratio.

Maximum pore pressure ratio at time t.
Greatest average pore pressure ratio.
Time.

Duration of the earthguake.

Time at which liquefaction occurs under undrained conditions.

Dimensicnless time factor.

Dimensionless time factor.

Parametery describing pore pressure generation in sand.

Volume strain.
Unit weight of water.

Initial mean bulk, or vertical, effective stress.
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APPENDIX A

A computer program LARF, g;quefactionlgpalysis for Radial Flow, has
been written to integrate Egn. 6 numerically using the finite element ap-
proach. The program consists of a main program LARF and 6 subroutines
DATA, STIFF, DGNL, SETUP, DUG, SYMSCL. The action of the program is shown
schematically in the flow chart, Fig. 16. The finite element discretisation
for such problems is well known (see Zienkiewicz, 1971) and so is not de-
tailed here; details of the numerical determination of the source function

Bug/at have been given by Seed et. al. (1975).

Input Details

Data for the program LARF must be input as described in Table 1 and
read by means of the subroutine DATA. An illustrative example is given

later. The data may be in any set of consistent units.

Output Details

The output of program LARF consists of the values of the maximum pore
pressure ratio, average pore pressure ratio and greatest pore pressure
ratio as well as the values of the excess pore pressures at all the node

points.



ita

READ
DATA

SET UP

STIFFNESS
MATRIX

e

SET UP

EQUATIONS
FOR TIME STEP

DT

ratl——

SET UP DO FOR
LOAD VECTOR ALL TIME INCREMENTS

SOLVE DO FOR ALL
APPROXIMATING | INCREMENTS OF

EQUATIONS SIZE DT

OUTPUT
PORE PRESSURES

ETC.

‘ STOP ,

Fig. 16 FLOW CHART FOR LARF







No. of
DATA
CARDS

NR

NINT

NR-1

TABLE 1

SEQUENCE FOR READING DATA

DESCRIPTION FORMAT
Read unit weight of water GAMAW. Fl10.4
Read duration of earthquake TD. F10.4
Read initial wvertical effective F10.4
stress ESV.
Read the number of nodes NR. T4
Read the node number (J), R I4,3F10.4

coordinate R(J), number of
equivalent cycles ENE(J), and
number of cycles to liquefaction
ENL(J) for each node.

Read number of different time I4
steps, NINT.

Read number of time steps NDELT(I), I4,F10.4
and magnitude of that time step

DELT(I)

Read element number JR, horizontal I4,2E12.6

permeability of the element PERMR(JR)
and compressibility of the element
COMX (IR)
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Special Details

At the moment the program is set up to cope with
{a) ' A maximum number of 50 nodes NRA
(b) A maximum number of 10 different time increments NINTA.
If desired, this can be changed by altering the statements
NRA = 50 to say NRA = 100
NINTA = 10 to say NINTA = 20

and the replacement, in the common blocks and dimension statements, of

50 by 100
49 by 99
10 by 20

The finite element nodes should be numbered from the drain outwards.
It will always be assumed that the innermost node is free to drain and
thus has no excess pore pressure and that the outer-most node lies on an
impermeable boundary. The elements are bounded by pairs of adjacent nodes

and are numbered from the inner-most to the outer-most.

Examgle

To illustrate the use of LARF, consider the drain system discussed in
the earlier example. Suppose, in the finite element discretisation, that
7 equally-spaced nodes are chosgn and that the solution is calculated at 30
distinct times, the first 20 at 3.5 second intervals, the subsequent 10 at
five second intervals. Force, distance and time will be expressed in terms
of k Newtons, meters and seconds respectively.

It will be assumed for definiteness that the initial effective stress

has a value of 100 units although it should be noted that the pore pressure

ratios are independent of this wvalue.
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The above problem should be regarded merely as illustrative. In any
practical situation, the error due to choice of time step should be reduced
to an acceptable level by an independent study (series of trial runs)

examining the effect of changing the step size.
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PROGRAM  LRRF (I
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ThETHMI
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HLL S PETL CRAG BRL N P MEL PR ERED

CALCULATE MA=IMEL AVERAGE AND GREATEST PORE PRESSURE RATIOS
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SAMPLE OF OUTPUT FROM PROGRAM LARF
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