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Abstract

A number of models for engineering seismic risk analysis are proposed
and compared. In all cases, uncertainties are included both on the seismic
demand at the site, and on the seismic resistance of the facility. Particular
attention is given to the effects of inductive uncertainty on the model
parameters, which is due to limited available information. These parameters
include the mean occurrence rate of seismic events, the "decay rate' of the
frequency-site intensity law, the mean value and the variance of the resistance
distribution. The results from the models are comﬁared with currently used
approximations, which are found to be unconservative. A numerical example is
presented, dealing with the estimation of seismic risk for nuclear power plants

located in Massachusetts.






Prefacg

This is the 2lst in a series of reports under the general title of
Seismic Design Decision Analysis. The overall aim of the research is
to develop data and procedures for balancing the increased cost of more
resistant construction agains the risk of losges during possible future
earthguakes. The research has been sponsored by the Earthquake Engineering
Program of NSF-RANN under Grant GI-27855X3, A list of previous reports
follows this preface.

The analysis presented herein is oriented to the risk of failure
(i.e inadeguate preformenace) in a single, complex structure. A nuclear
power plant is used as an example -~ because of the work thatalready ap-
pears elsewhere in the literature concerning the behavior of such a
facility. However, the theory applies equally well to important non-
nuclear facilities.

Dr. Robert V, Whitman, Professor of Civil Engineering is principal
investigator for the overall research project, and the author is grate-
ful to Professor R.V, Whitman for his encouragement in pursuing this
effort and for his continuocus helpful advice. Appreciation is also ex~
pressed for the critcal comments expressed by Professor C.A. Cornell
on an earlier draft of this report.
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I. Introduction

The seismic risk to which an engineering system is exposed depends on
two factors:

- the future seismic demand at the site ('""load'"); and

* the (future) seismic capacity of the system ("resistance').

Description of the seismic load requires information at two different time
scales: at a macroscale, about the sequence of earthquake occurrences near

the site; at a microscale, about the detailed time history of the ground motion
for each future occurrence during the lifetime of the system. In a state of
uncertainty the earthquake sequence can be modeled as a realization of a random
point process, and the indicidual microscale time histories as realizations of
continuous random processes.

The seismic capacity of the system can be described by a "resistance
vector" (assume a finite dimensional model), which collects the seismic response
characteristics and the performance criteria of the system as a whole, as well
as of its various subsystems and components. Some of the dynamic characteristics
may be time- or respénse—dependent; for example, the structural stiffness and
viscous damping.

The amount of information which is required for a complete probabilistic
description of both seismic demand and capacity is not within present knowledge
and analysis capability. Nevertheless, one can formulate simplified, yet
meaningful, models which demand much less information. In these simplified

models, the seismic load at the site is generally described by:

1. The mean earthquake occurrence rate, A, as a partial characterization

of the random point process, (Under the common gssumption of Poisson
arrivals, A characterizes completely the occurrence process.)

2. The marginal probability distribution of a scalar (possibly vector)

"intensity parameter" Y, which replaces in approximation the

continuous random process model of the ground mction. Y might
measure (or include) the Modified Mercalli intensity at the site I,
the peak ground acceleration a, the peak ground velocity v, or any other

motion parameter which is correlated with the system's performance.

Alsc basic to these simplified models is the description of the seismic resistance

through a random damage function of intensity, D(Y), which accounts implicitly

for all the possible consequences of malfunctioning and failures of any part of

the system.



Clearly, there is a whole theory behind the quantification of local
seismicity parameters such as A and the distribution of Y {(engineering
seismology); similarly, there is a whole theory behind stochastic damage
analysis (system reliability, random vibration), which can be used to calculate
the damage function D(Y).

The price for this simplified description of demand and capacity is that
seismic risk statements can only involve the mean rate of events producing
given damages (e.g., see Eq. 2). But this is not a critical limitation; although
neither the complete time characteristics of the damage process, nor the exact
nature of damage are given by the analysis, mean damage rates provide enough
information for the practical evaluation of seismic risk, and for comparison with
other natural threats. Clearly, if the occurrence of seismic events follows a
Poisson process and the resistance of the system does not depend on time, the
occurrence of damaging events is also a Poisson process. Under the weaker
condition that strong earthquakes occur as an approximately Poisson process
(which is a frequent assumption in engineering seismic risk analysis), the
probability of experiencing extensive damage during a period of time T is well
approximated by the expected number of such rare and highly damaging events in T.

Formally, the analysis of selsmic risk proceeds as follows. Let
Fy(y) = P{Y<y|seismic event} be the .cumulative distribution function (CDF) of
the site intensity measure whenever an earthquake occurs. Then the mean rate of

events with site intensity larger than y is:

hy = A[1- Fy (] . (1.1)
If FDlY(&Iy) = P{Qfd!Y=y} denotes the CDF of the damage caused by an earthquake
with site intensity y, the mean rate of events which cause damage in excess of d
is:
d) = -
Apld =N [1 Foy (1)) dE, (9. (1.2)

alt 4
In many cases it is not the whole function AD(') which is of dinterest, but only

AD(df), i.e. the mean rate of events damaging the system beyond a critical level
dg. Such events are called "failures." Then the mean failure rate is, from
Equation (2):
De=Ap(dg)= A Py (y) oLFyC‘}*) , (1.3)
ally
where Pg(y) = 1—%1§(df|y) = probability of failure at intensity y.
This report is concerned with the seismic risk analysis of engineering systems

in the sense of Equation (3). Some attention is also given to comparing the



results from Equation (3) with past proposed approximations. One approximate
procedure, which has been used without due caution, is based on the following
reasoning. If ground motions more severe than the design earthquake (e.g., in
nuclear reactor design, the so-called Safe Shutdown Earthquake) occur with
mean rate ADES = A[l—FY(yDES)] , and if Pf(yDES) is the probability of failure

at the design intensity, then the mean failure rate can be calculated as:

Ap o= Mppet B () - (1:4)
Equation (4) yields unconservative (too small) estimates of Af for any given
yDES' In fact, ' ‘
Do =] BOLEM 5 2| B 5 A hlng) | dE ),
ally 9> TS 47 Foes

and the last expression equals the approximation ADES Pf(yDES)' The unconservatism
of using Equation (4) instead of (3) is quantified in the present study, and
correction factors are calculated, which depend on the seismic risk model and
model parameters.

Several of the assumptions made in this study are common to the technical
iliterature on engineering seismic risk, but the model as a whole is original. To
the authoer's knowledge, statistical uncertainty {although not new to seismic risk
formulations) was never extended to both damand and capacity parameters, and
indeed not even to capacity parameters alone. These extentions are conceptually
and sometimes numerically important. Finally, sensitivity analyses of Af in
Equation (3) of the type presented here were never reported.

The presentation is organized as follows. First, sources of uncertainty
{on the seismic demand and on the seismic resistance) and types of uncertainty
(deductive and inductive) are briefly reviewed; see Sections II and III. In
Section IV a few probabilistic models are studied, in which the functions Pf(y)
and FY(y) in Equation (3) are given analytical form. The effects of statistical
(inductive) uncertainty on the parameters of the probabilistic models are studied
analytically and numerically in Section V. Additional numerical results are
collected in the Appendices. Finally, Section VI discusses the choice of the

parameters for mean failure rate calculation, and presents some numerical examples.



10

IT. Analysis of Uncertainty: Sources

As expressed by Equations (I.2)}and (I.3) seismic risk of engineering
facilities depends on the unknown seismic demand at the site (function FY) and

on the unknown seismic resistance of the system (functionsF and Pf).

D|Y
Information related to these functions is briefly reviewed here, and will be
used in Sections IV and V to construct probabilistic and statistical seismic
risk models. With regard to seismic demand, emphasis is on data and models

for Eastern U.S. regions.

IT.]1 Uncertainty on the Seismic Demand

A common assumption, which has obtained repeated validation from historical
records (Richter, 1958; Allen et al, 1965; Esteva, 1968) is that in any given

region the instrumental magnitude M has exponential distribution:

\ Pr{ M >m} = 1-F, (m) = e_ﬁm (II.1)

This is a consequence of Richter's "linear" frequency-magnitude law, which
establishes that the log number of earthquakes exceeding magnitude m, loglonm,

decays linearly with m:

L03 0 ‘f]_m = a-bm . (1I1.2)

a and b = 8/1in 10 being regional constants.

Both from theoretical considerations (Rosenblueth, 1964; Rosenblueth and
Esteva, 1966) and from statistical evidence, it appears however that Equations
(1) and (2) have a limited magnitude range of validity. The upper limit, m,,
varies from region to region, but in all cases is smaller than 9., If in addition
events of small size (say, with Mﬁmo) are neglected, the distribution (1) assumes

the doubly truncated exponential form (Cornell and Vanmarcke, 1969; Cormell, 1971):

1 ’ m <M, |
[ e-fm-m . IT.3
PI"%M>1’U}: t-x_-[1-e plm - ¥to) , M <M<, (I1.3)
1
’ o 3 1

—e_B(ml_mO)] "1 is a normalization constant.

where K = [1
1
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Although the parameter B in equations (1) and (3) varies from region to
region, values reported from different parts of the United States show remarkahble
consistency (see Table 1).

Other nonlinear frequency-magnitude relationships have been proposed. Among

others: the "bilinear law" (see, e.,g., Esteva, 1974):

%y exP(‘ B;L 111) s Mgm
Pr {m>m} = o (I1.4)
oy exp(-B ) s m>E
= (62—61)5. " " . n
where Bzzﬁl and az—al e ; and the (here, truncated) "quadratic law

(Shliep and ToksBz, 1970; Merz and Cormell, 1973):

' B By ST
h -, mn -m
BriMom)= (1= Ky J1-e? RO meam, ; (L9
o 3 mym, g
2 2
Bl(ml-mo)+82(m1-mo) -1
where le=[l—e ] . (A condition on 81,82 and m, is clearly

needed to ensure that Equation II.5 is an appropriate, i.e. non-increasing,
complementary CDF.)
Equations (4) and (5) generalize Richter's linear law (1); both have been

reported to fit well empirical complementary CDF's.

While the value of £ is quite stable throughout the United States, there is
evidence of large regional variability in the upper bound magnitude my . The
question of the upper size limitation is often discussed in terms of Modified
Mercalli (MM) epicentral intensity, since most of the historical data are
available in this form.

A number of relationships have been proposed between Richter's magnitude

and epicentral intensity I,. Some of them, in the linear form

M= a+a, l, (11.6)

are collected in Table 2. The parameters a; (az in particular) are quite stable
from region to region.

Due to the linéarity of Equation (6), the frequency-epicentral intensity
law is of the same type as the assumed frequency-magnitude law. For example,
from the exponential magnitude distribution (3) and from Equation (6), it follows

that
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1 , .
. . 1 g1 :
. ~B (1‘10) . oo
Pr {Ion} = 1—gii-{1— e To ] y i,<ici, 3 (I
) L] ibil;
where ij = (mj—al)/az 3 i=0,1 ,
BIO = 3289
.. -1
Ki; = {l-exp[-By (i3-i)1} ~ .

For typical values of (ij-ig) and BIO, Kil is very close to 1, and a good

approximation to equation {(7) is:

o = igle g
: B (1-1, . s .
PP{IOH}: e~ P ( ) ,i.cici, (IL.8)
o , 1yi, .

Blo can be estimated from B and ap; if these parameters are known (see Table 1 and 2).

In other cases BIO , or more generally the linear frequency-intensity law:
1 v = - B i
n Ay = o BIol

(A{=mean annual rate of events with epicentral intensity in excess of i), have been
estimated directly from data on epicentral intensity. Table 3 collects some
proposed values for o, and BIO' The variability of BIO from region to region (or
from author to author) is explained in part by the subjective assessment of
epicentral intensities, and by the inclusion/exclusion of early, incomplete data.
As to the parameter Q,, it clearly depends on the seismic region and on its
extention. The estimates in Table 3 are therefore reported with the only purpose
of indicating typical values.

The question of whether an upper bound intensity il s, OF an upper bound
magnitude m; can be established with good confidence in a given region is quite
controversial. Upper bound magnitudes: m1=8.7 for the whole world, m;=8.5 for
California (Housner, 1970), m;=7.4 for Central United States (M & H Engineering,
1974) havé been proposed. Housner (1970) has tentatively suggested the following

functional dependence of m; on the seismicity parameters in equation (2):
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b
< b

my; = my - %_ (a,-2) (11.9)

where mlc=8.5=magnitude upper bound for California;
(ac,bc)=(5.5,0.9)=seismicity parameters for Californiaj;

(a,b)=seismicity parameters for a generic region.

The upper bound epicentral intensities: il=10 for the New Madrid zone, il=9
for the Matcog area (M&H Engineering, 1974), il=6.3—8.7 for various socurces in
the Boston area (Cornell and Merz, 1974), and the 'maximum creditable" value
il=lO for the Mississippi Valley area (Howe and Mann, 1973) have also been
proposed.

In the Eastern United States, where regional seismicity is weakly correlated
with the known geological structure, and where bursts of activity often alternate
with pericds of quiescence, the arguments sgainst adopting moderate upper bounds
(say, iy=6-7) are rather convincing (Chinnery and Rogers, 1973; Howell, 1973;
Nuttli, 1974; Housner, 1970)}. 1In Section V it will be shown that, depending on
the resistance characteristics of the system, the mean failure rate lf in Equation
(I.3) may not be sensitive to ij. When applicable, this is a most welcome result,
due to the large uncertainty on and the open controversy about the upper bound
intensity.

For the purpose of seismic risk analysis one needs a measure of site
intensity. Throughout this study, such meazsure is taken to be either Modified
Mercalli intensity I, or alternatively, peak ground acceleration, a. Other motion
parameters, such as peak ground velocity or displacement could be used instead,
without altering the procedure, or the results to any significant degree.

A widely used relationship between site intensity I, epicentral intensity IO,

and epicentral or focal distance R is (see, e.g., Cornell, 1968):

I=oc +c; 0, -C;InR +e (11.10)

where Cl:CZ:C3 are regional constants, and € is a random error term. For
the Northeastern United States, Cornell and Merz (1974) used a more general

attenuation law, of the form:
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IO+E L) R<RD M
T = (II1.11)

C, *Clo~G;laR v, Ry R,

with parameters: RO=1O miles

Cl={2.6 for sites with rock foundations
3.1 for "average" soil conditions
€y=1.0

C5=1.3

The standard deviation of the zero-mean, nofmal error term € was estimated to
be about 0.2 for rock foundation sites and about 0.5 when including all possible
soil conditions at the site. The value C3=l.3 was found to agree quite losely
with data from Eastern United States regions.

Due to a higher absorbtion of wave evergy, in the western states intensity
attenuates much faster with distance (Algermissen, 1972; Brazee, 1972; Bollinger,
1973); for those regions a value of about 2.0 or 2.5 might be appropriate for

the coefficient Cq in Equation a1).

Given the geometry of the activé sources, their geographical location with
respect to the site, the mean rate of earthquake occurrences, the spatial
distribution of the epicenter, and the probability distribution of the epicentral
intensity for each source (the last distribution in the form, say, of Equation 8),
one can calculate the frequency-intensity law at the site through repeated appli-
cation of Equation (11) (see Cornell, 1968, 1371; Cornell and Merz, 1974). For
a set of sources with no intensity upper bound, the exponential distribution of

epicentral intensity:

P {]; i} " ’ Ledo s (I1.12)
g > = N 1-1 . . .
e - e BI.:( o) , 1i>1s

and a deterministic attenuation law (£=0 in Equation 11}, the complementary CDF

of the site intensity is:

- 1-1,
e {% ( SITE) (I1.13)

i
v
pte

EI‘{ 1> i} 1o

2 CsiTE 2
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. iO » for R <Rgs,
where i =
OSITE .
C1+10~1.3 In Ryip, » for Ry ;. >Rg,
Rmin = minimum distance of the site from the active sources,
Br = BIO/CZzBIO

Cl,iO,Ro= constants; same as in Equation (11).

Typical results are shown in Figure 1 (from Cornell and Merz, 1974), where the
annual prebability that Boston experiences an earthquake of intensity i or more is
plotted versus i. This probability is contributed by 8 separate seismic sources
located at variable distance from the city of Boston. Each curve corresponds
to a different set of parameters values, but in all cases it is BIO=1.10 and Cp=1;
i.e., BI=1.10. The upper curves, denoted UBl12 and RANDOM 12, are for the case
of an upper bound epicentral intensity il=12 for all sources. The slope of these
curves is almost identical with that of equation (13), with By=1.10 (see the line
between dots in Figure 1). The increase of negative slope at high intensities
is due to the upper bound on Io' The randomness of the attenuation law (a
standard deviation G€=0.2 was used in Equation 11) has no appreciable effect on
the slope of the risk curve. In obtaining curve CA 12 it was assumed that the
upper bound epicentral intensity was 12 for two sources, and was variable in the
range 6.3-7.3 for the other 6 sources. The remaining curves result from smaller
upper bounds on I, this reduction causing a rapid risk drop at smaller levels of
site intensity.

Within the intensity range shown, the risk curves in Figure 1 are well
approximated either by straight lines with an "effective'" slope parameter
81=1.1 (curves UBl2 and RANDOM 12) or BI=1.77 {curve CA 12), or by truncated
straight lines with an effective BI between 1.70 and 2.00 (remaining curves).
These and other "monlinear' seismic risk models will be studied in Section IV.

Results of a similar kind are shown in Figure 2 (from Liu and Dougherty,1975)
for a site at variable distance from the San Andreas fault. For the calculation
of the site intemsity risk curve, the magnitude distribution (3) was used, with

parameters mo=4.5, m,=°, RB=0,87 1n 10, and a mean occurrence rate over the

1
entire fault length (644 Km) of 6.33 events/year. The attenuation law, expressed

in terms of magnitude and focal distance was taken to be;
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I1=20Cy+G0M-c;1nR

= 8,16 + 1.45M~-2,261nk ,

Again, a linear relationship between 1og10 risk and I, with slope -b/Cy=-0.6
(slope of the line between dots in Figure 2) provides a good approximation to

the risk curves for all but very small site intensities.

A parameter which is often used as a measure of seismic demand at the site
is peak ground acceleration. Empirical relationships have been established among
a, M and R, and between a and I, so that seismic risk curves in terms of a can
be evaluated (in approximation) either from known frequency-magnitude relations,
or from site intensity risk curves. According to the best information presently
available (Esteva, 1970,1974; Esteva and Villaverde, 1973; Donovan, 1973,1974;
see also Newmark, 1974) the model

I

a = bl,eszfL(R] (II.14)
is in satisfactory agreeument with the empirical data if, for a in g's and
L(R)=a linear function of focal distance in Km, the parameters b; are given the
values in Table 4. (Formally identical relationships have been suggested for
peak ground velocity.)

Several proposed relations between log acceleration and MM intensity are
shown in Figures 3 and 4. The selid line in Figure 4 used the most extensive
set of data.

Due to the approximate linearity of In a in M (equation 14) and in I
{(Figures 3 and 4), the considerations about the exponential decay of the site
intensity distribution {Equation 13 and related comments) hold also for 1ln a,
after replacing C, by b2. For example, for a set of seismic sources with
magnitude distribution (1), the probability that the peak ground acceleration
a is exceeded during any one event is proporticmal to exp{-ln a*B/b,}.

In this study, both seismic demand and seismic resistance are characterized
in terms of MM intensity. Tor design,however, it is desirable to measure intensity
through actual characteristics of the motion, such as peak ground acceleration. The
relationships sketched in Figures 3 and 4 were fit to very dispersed data (see,e.g.,
Newmark,1974,and Awmbraseys,1974). How to account for this dispersion when passing
from MML to ln a is not clear: simply "adding" it to the variability of MM

intensity {(say, in the attenuation law) generates very large ln a uncertainties.
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What is more important, is that there are ways to calculate risk in terms of
peak ground acceleration which are more efficient, in the sense of producing
less dispersed results. One such way is to first convert epicentral intensities
into magnitudes (the empirical relationships in Table 2 show little dispersion;
see, e.g., Chinnery and Rogers, 1973), and then use an attenuation law giving
acceleration as a (random) function of magnitude and distance. The plots in
Figures 3 and 4 should therefore be regarded as best estimates of 1n a given

MM site intensity, not as functional relatiounships, and caution should be

exercised in their use.
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II.2 TUncertainty on the Seismic Resistance

It is gemerally believed that the uncertainty in the seismic resistance
of engineering facilities contributes marginally to the overall risk (Ferry Borges,
1956; Rosenblueth, 1964; Vanmarcke and Cornell, 1969), and that even a seismic
risk model with deterministic resistance produces valuable results. The present
study reaches different conclusions, particularly when the analysis includes
statistical uncertainties. It appears, in fact, that a substantial fraction of
total risk may come from moderate intensity earthquakes which, although
associated individually with small failure probabilities, are much more frequent
than large and statistically more destructive events.

Three different approaches have been pursued to estimate the probability
distribution of system damage (this includes the probability of "failure," if
failure is defined as a particular damage state) for given seismic intensity:
(a) random vibration theory: (b) simulation of artificial ground motions and
repeated deterministic analysis of the system's response; (¢) direct analysis of
damage statistics from past earthquakes. The main advantages and limitation of
each approach are:

(a) Random vibration analysis generally requires simple models, both

of the ground motion {(e.g., a pseudo-stationary Gaussian process)

and of the system (e.g., linear elastic, with known parameters).

Apart from these limitations, random vibration techniques are most
powerful, in that they characterize the system's response as a

random process, from which the probabilities of reaching various
damage states can be calculated (approximately); see, e.g., Vanmarcke,
(1969) and Cornell (1971). Unfortunately, most structural systems
become highly nonlinear near collapse, or even after moderate damage.
In addition, if the size of the earthquake is known in terms of MM
intensity or of peak acceleration, it is not easy to relate these

parameters to a random ground motion process.

(b) Simulation methods {see, among others, Housner and Jennings, 1965; Hou,
1968) do not impose such strict limitations on the input and system ‘
models; however, by their very nature, they generate information on
low probability events at prohibitive computational costs. Simulation
methods also become impractical if the behavior of the system is itself

uncertain.
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(c) 1In recent vears, much has been learned from the analysis of
actual damage statistics; although data on severe damage probabilities
are still scarce for some categories of buildings, information is
becoming available at an (unfortunately) high rate. Lack of
statistically relevant data is indeed the major limitation of
this approach. Advantages over (a) and (b) are that no assumption
is made on the seismic load or on the system behavior, and that
direct correlations are obtained between intensity parameters (say,

I or a), and damage.

In this study, the damage-statistics approach {¢) is followed, with consideration
both of the estimated damage probabilities, and of the uncertainty on such
estimates due to limited data processing. Information and models of seismic

damage are reviewed in the remainder of this section.

Much information can be found in recenr literature on the Mean Damage
Ratio (MDR=expected repair cost over total property value) for various categories
of buildings, exposed to ground motions of given intensity. Mean damage ratio
functions (of MMI) have also been fitted to the data, or estimated subjectively.
Although the damage statistics for some building categories (such as wooden
frame and masonry constructions) are of less direct interest to this study,they
are also reviewed briefly, since they provide further insight into the general
dependence of seismic damage on intensity and on seismic design.

Figure 5 (adapted from Mann, 1974) summarizes the information available on
wooden frame dwellings. The solid curve was proposed by Steinbrugge, McClure and
Snow (1969), as a result of a very extensive effort which combined field data,
past experience and subjective judgement. The damage values suggested by
Friedman and Roy (1969) are also judgemental; they were estimated by extrapolating
data on dwellings' damage from the 1957 San Francisco earthquake, the 1952 Kern
County earthquake and the 1933 Long Beach earthquake. These data are not strictly
comparable with the remaining data podints in Figure 5, since they make no
distinction between types of dwelling construction (e.g., frame versus brick), or
existance of chimney. For wooden frame dwellings and in the intensity range 5
to 8, the MDR varies by a factor of approximately 4 per unit of intensity.

Data for ordinary and for reinforced masonry constructicn are summarized

in Figure 6 (from Mann, 1974). 1In this case the MDR for a given intensity is
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very sensitive to the quality of construction and to the use of reinforcement or
not., Aﬁart from the rapid decay of the expected damage at low intensity levels,
the dependence of MDR on I is approximately exponential (as for wooden frame
construction), now with a factor of about 3 per unit of intensity for ordinary
masonry, and of about 2.75 per unit of intensity for reinforced masonry. The
MDR for weak masonry is from 3 to 10 times the MDR for high quality masonry,
depending on the ground motion intemsity. At high intensity levels, reinforcement
has the effect of reducing the mean damage ratio by a factor or approximately 5.

Damage statistics for high-rise buildings with steel-framed, concrete-framed,
and concrete-shear-wall structural systems have become availlable only in the very
recent past. Reliable information was collectéd after the 1971 San Fernando
earthquake (Steinbrugge et al, 1971; Whitman et al, 1973 a,b; Whitman, 1973).
The most extensive of these surveys (Whitman, 1973) documented 368 buildings -
with 5 stories or more, calssified by age, by structural material, and by
height. Most of these buildings experienced a motion of intensity 7. At that
intensity, old (pre-1933) buildings, designed under nc seismic requirement,
experienced a MDR about 2% greater than recent (post-1947) construction, designed
for the Uniform Building Code seismic zone 3 (UBC 3). On the average, steel
frame buildings performed better than concrete-structured buildings. Figure 7
(from Whitman, 1973) displays MDR data for high~rise buildings from the San
Fernando as well as from other earthquakes, While data are differentiated by
UBC zone, all heights and all types of construction (steel and concrete) are
lumped together. The data denoted "Japan" are from the 1968 Higashi-Matsuyama
and from the 1968 Tokachi-Oki earthquakes and refer to buildings designed for
lateral forces about 2 to 3 times greater than those for UBC zone 3.

Based in part on these empirical data, curves relating the MDR of high-rise
buildings to MM intensity have been proposed by several authors. Figure 8
{(from Whitman, 1973) shows mean damage ratio functions evaluated subjectively
(by S.B.Barnes and Associates, Los Angeles) for 13-story concrete frame
buildings designed in compliance with various UBC zones, and for a "Superzone"
S, with twice the lateral force required for zone 3. Similar subjective
estimates have been made for other structural systems, Figure 9 (also from
Whitman, 1973) compares estimates for Concrete Shear Wall (CSW), Concrete
Moment-Resisting Frame (CMF), Steel Moment-Resisting Frame (SMF), and Steel
Braced Frame (SBF) structural systems. By combining these subjective estimates
with empirical data on high-rise buildings, Whitman (1973) suggested the mean
damage ratios shown in Figure 10 (solid lines) as applicable to the population

of constructions mentioned above.
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For high-rise buildings (5-stories or more) in Los Angeles, Whitman and
Hong (1973)vpr0posed the dashed lines in Figure 10 (the dotted continuations
are extrapolations beyond the available data).

In the analysis of data from the 1971 San Fernando earthquake, Benjamin
(1974) found no statistically significant difference between the mean damage ratios
of high-rise reinforced concrete and steel constructions. He also observed that
log MDR is approximately linear in MMI, and suggested the straight lines (a)
and (b) in Figure 10 as probable bounds to the actual log MDR-I relationship.

The degree of correlation between "aseismic" design provisions and effective
damage protection is rather controversial. In some cases (see, e.g., McMahon,
1974, for damage to high-rise buildings during the 1972 Managua earthquake; and
Pique, 1975, for damage statistics from the 1974 Lima earthquake), comparable
mean damage ratios were found for buildings designed for different UBC zones.
However, the probability of high damage and collapse were notably and consistently
reduced by seismic protection, particularly in shear-wall constructions.

At the other extreme, cases were reported (e.g., Hong and Reed, 1972, on
the 1965 Puget Sound, Washington, earthquake) where aseismic protection was
apparently very effective. The same conclusions were arrived at by Mann (1974),
who compared the performance of skeleton framed buildings designed for UBC zones
0 and 3, during various earthquakes (see Figure 11, where Class A refers to steel
and Class B to reinforced concrete constructions).

Evident, but not so extreme, beneficial effects of aseismic design were
found by Whitman (1973) for high-rise buildings (see Figures 8 and 10), and by
Crumlish and Wirth (1967) for school buildings in California and in Washington.

In all cases, as Whitman (1973) suggested, greater benefits are expected
in stiff buildings, if the increased design lateral force does not impare severely
the ductility of the system, and if the seismic resistances of various portions
of the structure are comparable, Similarly, Newmark (1974) pointed out that
construction details, selection of materials, placement of reinforcement and
of stiffeners,quality control of welds and connections, more than the general
compliance with aseismic provisions are essential to reach high ductility factors

and therefore to resist strong ground motions.

(daliy,

Some information is available also on the conditional CDF of damage, FDII
i.e. the function which is used in Equation (I1.2).
Benjamin (1974) found that for broad classes of bulldings (ranzing from

wooden frame dwellings, to light industrial constructions, to high-rise buildings)
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the damage data for given intensity fit well both lognormal and gamma distributions.
If a lognormal model is used, then (log MDRII) has normal distribution. Benjamin
also found that the variance of (Log MDR]I) is approximately constant with I.

For light industrial buildings he estimated:

%Log Mpr|T = U+29° for model (a) in Figure 10;

“Log wr|1 ~ 922 for model (b) in Figure 10.

The damage statistics reported by Whitman (1973) alsc indicate that OLog MDRII
is not sensitive to I; the same statistics are consistent with a normal
distribution of (Log MDR]I).

As indicated previously, the log mean damage ratio varies almost linearly
with the MM intensity. For the developments in Sections IV and V it is not the

absolute value of O which has importance, but the ratio

Log MDR|I
b
B = D o, (11.15)
D
O-Log MDR T

where by is the slope of the linear relationship:

E }:Log MOR ]1‘] =apy+ b T . (II.16)

Table 5 collects some statistics and some subjective evaluations of the parameters
bD and BD. In a strict sense, the values of bD and BD from Newmark (1974) and
Vanmarcke (1971) cannot be compared with those from Benjamin (1974) and Whitman
{1973), because they refer to given peak ground acceleration a, instead of MMI,

Newmark suggested values of ¢ for ordinary buildings and for

1n(response) |a
nuclear reactor structures and equipment (parameter BETA in his Table 3). If

the level of response is proportional to a, and a varies by a factor 2 per unit

of MMI as suggested by Figure 4 (but see earlier comments on Figures 3 and 4), the
response varies also by a factor 2 per unit of intensity; so that one can

estimate BD in equation (15) as:

in 2
PD% .
g
1n (response)a




23

This relationship was used to calculate the BD values in Table 5 from Newmark's

estimates of oln(response)la'
The estimates of bD and BD from Vanmarcke (1971) were found as follows. If

Eflog MDRII] is linear in I (see Equation 16) and if 1ln a has functional relation-

ship with I (again, see Figure 4 and related comments):

ma = T-ln2 - 7.3, (11.17)

then E{log MDR|al is linear in 1n a, say: .

a.D,& + Bu,a lna

:a-D+th-]DD,a‘I .

|2 [Locﬂ MDR l a.]

I

whence: b

=b . - 1ln2 . (11.18)

It is also:

a. - 11.19
Log MPRIT = TlogmdR|Ina ° ( )

where In a is given by Equation (17). Given bD, a and O — estimates

Log MDR]ln a
of these parameters can be obtained from the data in Vanmarcke (1971) , —

bD and BD can be calculated from Equations {(18), (19) and (15).

A critical question is how all this information on the damage statistics and
on the resistance distribution of ordinary buildings relates to the behavior of
special constructions or of new structural typologies. The problem arises, for
example, in the seismic risk analysis of nuclear power plants, to which the
following considerations are primarily addressed. Statistical data on seismic
damage to nuclear power facilities are practically missing, so that the procedure
of extracting information from historical records no longer applies. Also the
analytical approaches (say, of the random vibration type), which were found some-
what inaccurate for damage prediction of ordinary buildings (Whitman,1973),
enceunter major difficulties here, due tc the complexity of nuclear reactor
systems, to the sequentiality of accidental events leading to "failures,” to
the built-in redundancy, and to the different levels of resistance of wvarious

subsystems and components.
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Nevertheless, some general conclusions can be drawn on the seismic

frequency of specific initiating events. In fact, for each initiating event

a single subsystem or component is involved directly, and some damage
characteristics of ordinary structures can be assumed to heold, at least qualitat-
tively (e.g., the approximate linearity of the expected log "damage' as a
function of MMI). From Table 5, a range of values for Py in Equation (15) can
be established (the values from Newmark were suggested specifically for nuclear
reactor structures and equipment), The question remains to be answered, what

is a reasonable value for the expected subsystem or component damage at a given
MMI (this would determine the parameter ap in Equation 16), and what damage level
dg should be associated with "accident initiation.” 1In the context of the risk
model introduced in Section IV, the last two questions reduce to a single
question; for example, what is the seismic intensity at which there is 507 change
of accident initiation? Newmark (1974) estimated that at the design value of

peak ground acceleration the ratio

1n (response at failure) - E[In(response)]

GaJaCTGSPOﬂSEJ

for nuclear power plant structures and equipment exceeds by about 0.63 and 0.66,
respectively, the same ratio for ordinary buildings designed for UBC zone 3.
This indication will be used in Section VI to relate the seismic risk of ordinary

buildings to the seismic risk of reactor structures and equipment.



25

"SEISMIC REGION

COMMENTS

Southern New England
(Chinnery and Rogers,1973)

2.19(+0,12)

1800-1959; 135 events

New Jersey 2,17
(Isacks and Oliver, 1964)
Central Mississippi River 2.00(+0.25)| 1833-1972; 250,000 Kn>
Valley
(Nuttli, 1974)
North and Central America 2,26 1963-1968
(Shlien and ToksBz, 1970)
Southern California 1.94 1934-1963; 10,126 events;
(Albee and Smith, 1967) 296,000 Km2
California 2,07
(Housner, 1970)
Various Parts of the World 1.61-2,88
{Evernden, 1970; Esteva,
1968; Ferry Borges and
Castaheta, 1971)
World
{Gutenberg and Richter,1941) 2.30
{(Housner, 1970) 2.07 1904-1946
Table I1.1

Values of f in Equatioms (IX.31) and (II.3) for

Different Seismic Regions
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SEISMIC REGLON

Southern California
(Gutenberg and Richter,1956)

Southern New England
{Chinnery and Rogers, 1973)

Fastern United States -
shallow eqs.
{Howell, 1973)

Washington and Oregon
{Algermissen, 1969)

{Algermissen et al, 1969)

1.2 + 0.6 I,

1.3+ 0.6 I
0.82 + 0.69 I
(o]

1.14 + 0.62 I,

Table I1.2

Proposed Relationships Between

Magnitude and Epicentral Intens

ity
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SEISMIC REGION o, B1,

Southern New England 1.31 (£0.07)
(same for Boston area, southern
New Hampshire and Hartford area;
Chinnery and Rogers, 1973)

Southeastern United States (Southern| 6.93 1.36
Appalachian, Central Virginia and
South Carolina-Georgia zones;
Bollinger, 1973)

Northeast United States 1928-1967 1.05
{(Cornell and Merz, 1974)

Bostor area 1630-1970 3,62 1.10
{Cornell and Merz, 1974)

New Madrid Zone 1870-19270 7.64 1.43
(M&H Engineering, 1974)

Matcog Area 1870-1970 5.02 1.34
(M&H Engineering, 1974)

Mississippi Valley 3.41 .93
(McClain and Myers, 1970)

Mississippi Valley-St.Lawrence 6.24 1.17
(Algermissen, 1969)

Central United States 4.49 1.15
(Liu and Fagel, 1972)

California 9.03 1.24
(Algermissen, 1969)

World 1534-1974 1.35
(Cornell and Merz, 1974)

Table II1.3

Parameters of the Linear Frequency-Epicentral Intensity Law:

In Ay = og=fr 1

A; = mean annual rate of events in the entire seismic region with

epicentral intensity in excess of i
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by by by
Esteva (1970) 1.26 .80 2.00
Donovan(1973) 1.35 0.58 1.52
Donovan(1974) 1.10 0.50 1.32

Table II.4 Coefficients b; in the acceleration—

magnitude-focal distance relation (II.14)

%
bD( ) Bp
Benjamin (1974) model (a) in Fig.l1l0 0.484 1.64
model (b) in Fig.10 0.347 1.54
Whitman (1973) Post-1947 Buildings
San Fernando,I=6 . ~ 1.13 ~ 1.88
San Fernando,I=7 =~ 1.13 ~ 2.13
San Fernando,I=7.5 = 0.91 = 1.90
Nevmark (1974)(*)
Nuclear Reactor
Structure 1.33
Nuclear Reactor
Equipment 1.16
Vanmarcke(lQ?l)(*)
I=6.7 = 0.68 = 1.24
I=7.8 = .59 =~ 1.53

Table IL.5 Values of bp and Bp in equations

(IT1.15) and (11.16)

(*)

These values were not obtained from equations (II,15) and (II1.16);

see explanation in the text.

(* %)

More than one value of bD is given for proposed nonlinear functions

Ellog MDR]I}. The values correspond to local linearization around

the indicated MM intensity.
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ITL. ANALYSIS OF UNCERTAINTY: TYPES

The frequency-magnitude and the frequency-intensity laws presented in
Section II (Equations II.l to II.8 and equation I1.13) are idealized relation-
ships, fitted to historical data. The same is true for the intensity-expected
damage curves in Figures II.5, IL.6, II.8-11. The gquantatitive limitation of
statistical information is not the only problem of seismic inference. Additional
difficulties are due to often present biases and to the incompleteness of
historical records. Uncertainties on MMI data include: the uncertainty on
epicentral intensity, which may be higher than'the intensity at the closest
inhabited center; the uncertainty on the mean rate of events in the low-to-
moderate intensity range: the older the record, the less complete the data;
the uncertain effect of neglected local soil conditions; the uncertain effect of
aftershocks, which are typically removed from the statistics; the uncertainty
on the epicenter location and on the focal depth.

There is also reason to believe that damage statistics collected through
guestionnaires are inaccurate and biased. On the other hand, direct subjective
evaluations of damage, such as those in Figures I11.8-10, differ from author to
author. '

Because of all these sources of uncertainty, only limited confidence can
be placed on any one probabilistic model which is estimated from statistical data,
or which relies on professional judgement. In some cases (e.g., in the
estimation of the seismicity parameter b for California) the data base is so
large that statistical uncertainty can be neglected in the context of the overall
accuracy of the analysis. In other cases (e.g., in the estimation of the
seismic parameters in a low-seismicity region, or in establishing the resistance
distribution of a new piece of equipment) statistical variability may be a major
source of uncertainty and risk.

In Sections IV and V, seismic risk models will be classified into two
categories:; (i) models which result from best data fitting (or from other
statistical estimation procedures), and which do¢ not include inductive uncertainty.

These models are called "probabilistic,' and will be studied in Section IV,

(ii) models which incorporate inductive uncertainty; these models are called
"statistical," and will be studied in Section V.
Although probabilistic models can be vieweq as limit cases of their

statistical counterparts,as the amount of information "tends to infinity," they



41

are considered separately on account of their greater simplicity. Also, most of
the seismic models proposed in the past have been of the "probabilistic" type
(for exceptions see Benjamin, 1968; and Esteva, 1969). It is found appropriate,
therefore, to quantify the effects of statistical uncertainty through penalty

factors on the '"probabilistic" mean failure rate.

The theory of statistical prediction (of future random events, under limited
information on the generating probabilistic mechanism) has been developed mainly
in the last decade (Thatcher, 1964; Aitchison and Sculthorpe, 1965; Guttman,1970).
Different methods and different terminologies are used, depending on the meaning
of probability, and on the inference schocl (frequentist, likelihood, fiducial,
Bayesian). Preference is given here to the Bayesian viewpoint, but the numerical
results can be readily given a frequentist, or a likelihood, or a fiducial inter-
pretation. The general methodology and some specific results to be used in
Section V are reviewed next. For a more detailed account of the theory and for
applications in the area of reliability, see Veneziano (1974, 1975).

Consider a random vector X (for the case of interest here, X might include
some measures of site intensity for the next earthquake and some resistance
parameters of the facility at risk), with distribution function FX('). Suppose
that the type of distribution in known (this assumption can be reiéased, see
Veneziano, 1974), but that uncertainty exists on some of the parameters (for
example, on the mean value vector, on the covariance matrix, etc.) If O is

the vector of unknown parameters, with Bayesian distribution F@('),and FXI@(.)

is the conditional CDF of X, the unconditional distribution ofﬁ& is, from

the total probability theorem:

F, (g)zj Fo.o(®) 4By (@) . (111.1)
all® -

In general FX(') and F *} differ both in the parameteré, and in the

x|t

distributioﬁﬁtype. In fact, it is precisely this condition which differentiates
probabilistic from Bayesian-statistical models.

The probability distribution Fe(-) in Equation (1) can be either the "prior"
distribution Fé(‘), or the "posterior" distribution, F8(°), the latter including
information in addition to that already contained in Fé . If z denotes this

additional infermaticn, Fg

can be found from Bayes' theorem:

p) = dIL(8)-L(8|2) ,
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where 1(Q]z)mfz|@(zl99 is the likelihood function of the experiment which
generatés Z. B

For applications in Section V, consider the special case of a normal random

variable X~N(u,02), with unknown mean U and/or unknown variance 62. Information
on the unknown parameter(s) is provided by a prior distribution and by the random
sample Ef{Xl, XZ""’xn} from the unknown population of X. The problem of finding
the predictive distribution of X, Equation (1), was discussed, among others, by
Raiffa and Schlaifer (1961) and by Guttman(1970). The results given below are
for the case of the unknown parameter(s) having conjugate prior distribution
(Raiffa and Schlaifer, 1961). Under this condition the Bayesian results are
numerically identical with the frequentist results obtained by Proshan (1953),

after an appropriate redefinition of the sufficient sample statistics.

(a) Y unknown, 02 known

For a normal prior distribution of H: u~N(u';O'2=02/n'), the posterior

distribution of | is also normal:

M~ N (/u” Do cr"/‘rﬁ) ,

3 n' = Iﬂ+11,

] ! S . n
where A ,Elfi~jLE;ff . o= 2
e '+ » M ! zixl

From Equation (1), X has normal posterior predictive distribution:

X ~ N(/vc" ; 0‘2(1+1/n")). (111.2)

(b) M known_lld2 unknown

From Raiffa and Schlaifer (1961) the family of conjugate distributions of

2

the precision parameter h=1/0“ is Gamma-2: for a prior demsity in the Gamma-2

form:

' n'/2 -1 2 2
£, (1) < h -GXP(-%}I“'S') , heo 51,58 50

the postericr density of h is:

. h“/z __1

f{; (h) o« h - CXP (— 45 hn" s"z) ,
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I 3
where n=n+n
Z 2
g ms +ns*
n' +n

s'= 2 gi (%5 )"

In this case, Equation (1) yields a predictive t ,~distribution for y=(X-u)/s",

and

with density:

(Il‘+i (n +1 /z

L
£}(j)=:%§#F ) (e 4/

(I11.3)

{c) M and 02 unknown

From Raiffa and Schlaifer (1961), the conjugate family is now Normal-Gamma.
If the prior parameters are [n', u', (@'-1) S'z], this means that
-{n'+2) \ z 2
(/V.o- o ad .exp{_[(hﬂi)s’_t‘n(/u/-yu,‘)]/ﬁo‘l}-
leen the sample {Xl,...,X }, it is found that the posterior distribution of
(u,o ) is also Normal-Gamma, with parameters [n", p", (n"- 1)5"2],where

n"=n'+n
po ) /ot

O LIRS CR T e

i

and i, s2 are the sample statistics:

n
4 2 4 '\ ~ N2
= - 2{' N g = . —
o 12—:1 b ’ n-1 12:1(}(1 M)

From Equation (1) Aitchison and Sculthorpe (1965) found that

7:( n' )M x

n"+ 1 g

has tnn_l—distribution; i.e. that the prediction density of y has the form (III.3),

with (n"-1) replacing n'".

In Section V it will be shown that replacing the suggested normal distribution
of the seismic resistance expressed in terms of ln a or of MMI (see, e.g.,
Newmark,1974,and Benjamin,1974) by a (predictive) t=-distribution may increase

considerably the calculated risk.



IV, Probabilistic Seismic Damage Models

The information on seismic risk and on seismic resistance of engineering
systems reviewed in Section II is used here for mean failure rate calculations.
A simple, yet realistic model is presented first, for which closed-form results
are readily obtained. Thereafter, more sophisticated models are introduced and
studied numerically. In all cases inductive uncertainty is neglected. Statist-

ical (inductive) versions of the same models will be considered in Section V.

IV.1 Linear Gaussian Model

Consider the "linear" damage model in Figure 1 (lower part). D denotes
the actual damage or the actual damage ratio, and d¢ is the value of D at
"failure." For each given MM intensity I, the probability distribution of
Log D is assumed Normal (as suggested by Benjamin, 1974), with mean value
aD+bDI (see Equation I1.16) and variance Og. Then the probability of failure
for an earthquake of site intensity 1 dis:

Pe(1) = [ (dy ~a,-3,1) /0,1 (1V.1)

where ¢{*] is the standard normal CDF. Pf(I) is also the probability that the
resistance (with respect to the threshold damage df) is less than I, meaning

that the probability distribution of the resistance R (in units of MMI) is normal:

R~ N{(u, s or) (1v.2)
with mean value: Mg = (ch - aj))/’bb ;
-3 (*)
and standard deviation: Tg = ‘TD,/IDD = @D . {see Equation II.15)

Typical values of BD are given in Table II.5. In terms of the normalized

intensity Iy, defined:

IN:;(I‘/m)/ql

* '3 - .
( )The use of Equation (2) in the following calculations is numerically
correct, but the reader may disagree on its interpretation as a resistance

distribution.
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(IN measures the algebraic distance of I from the mean resistance in units of
OR), R is a standard normal variate, R~N(0,1). Let ki be the mean rate of events
with site intensity larger than i. In its simplest form, the model assumes that

Ai varies exponentially with i (See Figure 1, upper part):

i:: 7\ eﬁBI.l_

A

(IV.3a)

For typical values of 31 see Equation (II.13) and related comments, Figures II.1,
I1.2, and Table II.3. Alternatively, in terms of the normalized intensity

iN=(i—uR)/UR,Equation (3a) can be written:

B
- N
A: = A, e N (IV.3b)
3
“B1HMr
where A°=Ae is the mean rate of events with site intensity larger than the

mean resistance, and
BN:ﬁIG?? :[31'/(3_0‘

For BI=BIO=slope of the frequency-epicentral intemsity relation (see Equation II.12
and lines between dots in Figures II.l1 and II.2), and using Tables II.3 and II.S5,

B, is found to vary between 0.60 and 1.20, with typical value of about 0.90.

N
The mean failure rate, Af, can be calculated from Equation (I.3), which in

the present case becomes:
(5]

Ao f
A, = — e
£ e )l e

2
By/2 N .
The quantity YDET=e can be interpreted as a penalty factor for uncertain

. . 2 2
Beiy -1, /2 i, - 7\Oersb,/z_

(IV.4)

tesistance (i.e., with respect to the '"deterministic" case 0_=0_.=0); it increases
P R 5

D

with op and with BI (see Equation 3b), and is 1 whenever either of these

parameters is zero. Typical values of YpgpT ate in the range 1.20 to 2.05.
However, it will be shown later in this section that YDET may increase when one
allows for upper truncation or for other nonlinearities in the frequency-
epicentral intensity law.

The exact mean failure rate, A can be compared with sometimes used

f’
approximations of the form (IL.4), rewritten here:

e
he = E-dge i fr e , (IV.5)
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where FR P is the P-fractile of the resistance distribution (here, of the
3

standard normal distribution; ine.,FR P=®,P). Recall that Afp is the product
3

between Aoexp(—B ), which is the mean rate of events with intensity

NFR,P
I>ip=@,pOR+uR, and P, which is the probability of failure if an earthquake of
intensity i, occurs. Values of P between 10“1 and 10~2 (USAEC Reactor Safety
Study, WASH~1400, Preliminary Report) and between 1072 and 107% (Newmark, 1974)
have been used. 1In Figure 2, the ratio
2
TN VISP el b2
S SO Py e (IV.6)

is plotted versus'BN for selected values of P. - For BN=1 it is Y10—1=4.6;

L .
DET 2 YO.S gives the factor of

unconservatism when the resistance is assumed deterministic and equal to its

Ylo_2=16,1; Y10-3=75; Y10_4=400. The curve Y
mean value Mg

IV.2 Nonlinear Gaussian Models

Five cases are considered: (a) truncated linear frequency-intensity law;
(b,c) truncated linear first and second derivatives of the frequency-intensity
law; (d) quadratic frequency-intensity law; (e) logaritlmic frequency-intensity

law.

(a) Truncated-Linear xiN

The resistance of the system is modeled as in the previous case (Figure 1,
lower part), but now the frequency-site intensity curve is truncated at the
upper bound intensity level ij (See Figure 3, curve b). As observed in
Section II, this is a good approximation to calculated site intensity risk cutrves
when the epicentral intensity is bounded (See Figure I1.1 and related comments).

For mathematical convenience, let il be the algebraic distance of the
upper bound from the mean resistance, in units of standard deviations of
resistance. In this case, i;>® for untruncated site intensity, i;=0 for
truncation at the mean value of resistance. Formally, the mean rate of events
with (normalized) site intensity in excess of iN is:

N Ao Gﬁﬁvlﬂ , for iy <iy o (19.7)
1w . .
O D) fDT 1N>11 3
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which replaces the risk law (3b). Using Equation (7), the mean failure rate is:

Ao ii _'f%\*iN_il:/Z
11y Va1 o
= >\D eﬁv/z § (i1+ BN) R (IV.8)

For Afp defined as in Equation (5) (FR P=®,p=P-fractile of the standard normal
b4
distribution), the ratio
2
ﬁwiip *‘@q/b .
Yo o = A . = L e B (i, (1V.9)
P’l'l f,li/kff P ﬁ( 1 N)
is plotted in Figure 4 as a function of il’ for BN=1.O, and for selected values
of P, It is emphasized that Afp is calculated as if the risk curve were not
truncated at iy, which fact makes Yp,il defined also for-11<®,p.

As ij»», the ratio (9) approaches Yp in Equation (6) and TFigure 2, Indeed,
values of Af»il very close to Ay are found for i;>0, meaning that truncation of
the risk curve above Y hag little effect on the calculated mean failure rate.
This in an interesting conclusion, which shows that lf is not always sensitive
to the decay of the seismic risk curve in its upper "tail," as commonly believed.
From Equation (8) it is apparent that the upper trumncation point for which the
mean failure rate becomes half the value for no truncation is: il=—BN (il=-l in

Figure 4). The penalty factor YDET . 1 applies when Af is approximated
k]

1
"270.5,1
by Ao (i.e., when assuming GR=0 and wﬁen using the untruncated linear model,
Equation 3b).

Notice that all the curves in Figure 4 are obtained by simple vertical
translation of the curve YDET,il' The same being true for any fixed BN’ it

is convenient to plot the factors ¥y for several values of BN (Figure 5),

and to tabulate separately the factgfz,;§ which YDET,il must be multiplied to
calculate YP,il° (This is done in Table 1 for selected values of P.)

Example. Five linear approximations to the risk curves in Figure II.1 are

shown in Figure 6. Some of them are untruncated, and correspond to sources with
no (cr very high) upper truncation of the epicentral intensity. The other curves
are truncated, being approximations to those frequency-site intensity relationships
in Figure II.l1 which used small or moderate upper bounds on the epicentral

intensity. The values of BN, Ao and il for the five approximations are given

in columns 2,3 and 4 of Table 2, respectively. For a normal resistance
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distribution with mean up=8 and standard deviation 0, =0.8 (see Figure 6), the
exact mean failure rates, from Equation (8), are given in column 5 of Table 2.
The same values could be found from: Af,il:AO‘YDET,il, the last factor being
plotted in Figure 5. Finally, the last two columns of Table 2 refer to the

and P=0.1, 0.01, respectively. The numbers in

1Y
parenthesis are the factors of unconservatism, Yp,il’ associated with the

approximation (5), where FR P=®,
>

approximations (see Equation 9, or Figures 2,4,5 and Table 1), It is observed
that:

(1) truncation of the frequency-site intensity law has a small effect

on the mean failure rate for il>0. However, the effect would
increase markedly for truncation values il<—8N; the latter is the

case for very reliable systems (for high pR).

(ii) truncation of the frequency-epicentral intensity law is more

important, primarily because it reduces the mean rate Ao. {At

the same time it increases BN and causes a sudden drop of the

risk curve at the site); )

(iii) the factors of unconservatism associated with the approximation (5)
are not sensitive to truncation of either the epicentral, or the

site intensity laws.

Since different assumptions on the frequency-epicentral intensity law have
sizable consequences on the mean failure rate through variations of Ao and
BN, statistical uncertainty on these seismicity parameters will be considered
in Section V.

It has been observed (Cornell, 1975) that the truncated linear model (7)
is logically unsatisfactory because it associates a finite mean rate (namely,
Koe—BNil) to events with site intensity equal to the upper bound il' (This does
not mean, however, that the model should be avoided as a mathematical approxi-
mation.) Several other models with upper truncation can be formulated, which do

not display this singularity; four of them are considered next. §

(b) Truncated Linear dAj /diN

By truncating the first derivative of the linear risk function (7) at iy,

and by imposing the condition Ail=0 one obtains the following frequency-site

intensity law:
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EY —Byiy . .
Ao ( e Pr 1w - e ) , Ig<iy (IV.10)
i, = . .
N O > Iy 21,

(see a representative plot in Figure 3, curve c¢). When used in Equation (I.3),
the risk function (10) yields the following mean failure rate (compare with

Equations 4 and 8):

. , Bels .
7\£’i1: A, [eﬁ /2§ (114-{31\1)* e N @(11)] (1v.11)

. 2 24
(¢) Truncated Linear d AiN/d iy

One might still argue that the model {(10) implies a discontinuity in the
mean rate "density" at il (from the value KOBNE~BN11 to zero), and therefore
that it is also physically unsound. A "better" model might be obtained by
truncating higher order derivatives of the risk function. Truncation of the
second derivative at i, generates the following model (for a representative

plot, see Figure 3, curve d):
Bi. B BT
7\0[(6 v e 1)_@3(11 e BT, iy <y

] ,1N>/il

(Iv.12)

i =

N

which gives the mean failure rate:

Af,if Ro{éﬁw/{ EE(ij_—FBN)" éﬁj\?ii[(i+ﬁqii)§(ii)+@v ¢(ii):[} , (IV.13)

where ¢(*) is the standard normal density function.

In both models (10) and (12), Ao is the mean rate of events with site
intensity in excess of the mean resistance, for the case of no truncation,
iqwee (see Figure 3).

A comparison of the three "linear" models with truncation, Equatioms (7),
(10) and (12) is straightfoward in terms of the mean failure rates, Equations
(8), (11) and (13). However, when using different truncated "linear" models to
approximate the actual nonlinear frequency-intensity law, ome would conceivably
select different values for iy, and possibly for Ao. In so doing, one would
reduce the difference between the risks calculated from the various models. In
the remainder of this study, no further consideration will be given to models of

the type (10) and (12).
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(d) CQuadratic

A quadratic law for Richter magnitude was proposed by Shlien and ToksBz
{1970), and by Merz and Cornell (1973). A quadratic model is used here to
approximate frequency-site intensity curves (such as those in Figure II.1 and
IT.2). Let then:

.2 .
—oeg iy - By iy

>\iN = Ay € e (IV.14)

s

where, as in the linear case, Ao is the mean rate of events with site intensity
exceeding the mean resistance value, and uN’BN are known parameters. Equation
(14) is an appropriate risk function only if it is non-increasing; i.e., only

iy >— 2a, .
for iy BN/ Ol

For the case of no upper bound site intensity, the mean failure rate can be

calculated analytically:

oo . .2 2
p) Ao ‘%Ni;”@NlN iy /2 ) Ne @N/@d’ﬁ"'?‘)
_F:: > e . e oLlN et [ . (IV-lS)
vam J Voo +1

Integration over the entire real axis violates the condition that AiN should be a

non~increasing function of i However, if failure events caused by earthquakes

N*
with normalized site intensity iN<—BN/2&N are negligible, the mean failure rate
(15) is numerically accurate. When oy=0, Equation (15) reproduces the mean fail-
ure rate for the linear law, Equation {(4).

It is interesting to compare the exact mean failure rate, Equation (15),
with a conservative approximation obtained from a tangent linearization of the
quadratic law. Linearization around iN=i; yields:

"‘PN,]’_* *1ln
. . - . N
in,dg = 7\0,1;“ e ’ (1V.16)

A

'-)(—2'
o, 1 (3 . &
. N *A . .
Ao,-l; = A, € ; N,1; - ﬁv+'sz1N ,

and the following upper bound to the mean failure rate:

_ 2 . x %2
)\f,i,\j’ = Ap-€Exp {FN fo 4 2e BAY o, (2%, v1)iy } . (1v.17)
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The tangent approximation which produces the least upper bound is found for
R ‘ g
i Byl (20yt1) , being: N oo i )
. o, 1 . L4 .
Inu1(3£ ;*) - min —ah exp(;ﬁ csevly =1 /2 cilN
L 4 ’-LN s * N’lN N
iy = V2T Shay (1v.18)

= o exp | B/ (e +2)] -

This choice of i§ corresponds to BN’.*=—1§ in Equation (16), which means that
the maximum contributions to the risk for the quadratic and the linear tangent
laws occur both at iN=i; » and that such maximum contributions coincide (evaluate
the integrands in Equations 15 and 18 for iN=i§).

The ratio
min Apir/Ap o= (2o )
N

is the factor of conservatism for the "best' tangent approximation. Risk curves

4/2

with BN=1.6 and &N=0.2,0.3 are shown in Figure 7. The factor of conservatism is
1.18 forczN=0.2, and 1.26 for(xN=0.3, showing that in this (realistic) range of
%N values the tangent approximation produces accurate results. These calculations
also suggest that accurate linear approximations to nonlinear seismic risk curves
can be obtained in general by choosing the point of tangency, i;, so that the

*®

%
derivative at iN’ -B,. .%, equals iN'

N,].N

(e) Logarithmic

Consider the 3-parameters frequency-site intensity relationship:

d[In(is-1py) - Inc]
Aiy="e 3 ocrda ) >7 (IV.19)

iy £ 1,

9

where il is the intensity upper bound, ¢ is the value of (il—iN) for which

AiN=K, and A and d are a location and a scale parameter on semileg paper, -
respectively. (Note that A is a redundant parameter, which is introduced only

for mathematical convenience.)

The "logarithmic" law (19) (plotted in Figure 8 for c=1 and d=1,2,3)
1

corresponds to the Pareto distribution of (il—iN et
: d ,
(1> ¢ L -17,0,01.‘70.

SO ’

Reasons for using risk functions in the form (19) are:
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(i) they include an upper bound intensity;
(ii) the mean rate of events with site intensity in excess of iN is a
decreasing function of iN'
Neither of these properties is enjoyed by the quadratic law (14).

For a resistance distribution R~N(0:;1), the mean failure rate

N L
;\ — WL (11 “‘lN) "lN/Z .
£ = LOO —+r) e d i, (1IV.20)

is a function of il’ c and d. The linear approximation with slope numerically

*
equal to the intensity iN at the point of tangency is found for

-y il vad |
. % 3. - .
ig - 22 ; (= e ix) s (1v.21)
with associated mean failure rate.
= M enpldig /i) R /2]
(Iv.22)

— }iyii 11+ )/ZQ] exp(a—l* )

The factor Kf’iﬁ/lf, by which Equation (12) is a conservative approximation to (20),
depends only on d and iy; it is plotted in Figure 9 for d=1(1)5 and for i

values in the range (-3,3). For truncation intensities which are not much smaller
than the mean resistance, the linear approximation (22) is quite accurate.
Clearly, in the actual linearization of convex risk curves one should not use a
tangent approximation, if not to calculate upper bounds for lf. Figure 9 shows,
however, that for logarithmic risk functionms the tangent upper bound is itself

quite close to the exact mean failure rate.

IV.3 Linear Gamma Model

Suppose now that the normalized resistance R (zero mean, unit variance) has
shifted Gamma distribution, with density:
S 0 y T<-D ,
Fo0=¢ plnzen] -1 -p(r+D) (1v.23)
e s 2-D
? T ")

D=positive constant

Plots of the density (23) are shown in Figure 10. Being UR=1, the Gamma density
(23) reduces to a shifted exponential when D=1, and to the standard normal N{0;1)
as Do,
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For the untruncated linear law (3b), one finds a mean rate of failure

D [ -Bie o Pl p (i D)
o e MV D1+ D)] e diy

Ap =
£ (") J-p

2.

- 2, E@ND( D )D (IV.24)
D +l3N
The ratio between the mean failure rate for Gamma (Eq: 24) and for normal (Fq.4)

resistance distribution:
2 2
A D - 2
v\fc' = <_¥E___> epN R/ (1V.25)
N

D+ f3
is plotted in Figure 11 as a function of BN’ for p=1,2,3,5,8. The ratio (25) is

"N

generally smaller than 1, due to the Gamma density (23) vanishing for R<-D.

This shows the importance of the left tail of the resistance distribution, a fact
which will be fully emphasized in the following section. However, with the
exception of the rather artificious cases when D<1, and for typical values of

BN (say, BN<1.5) the mean failure rate does not change significantly if one
replaces the normal resistance model by a Gamma model with the same first two

moments.

B
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FRACTILE By

P 0.60 0.80 1,00 1.20 1.40 1.60 1.80 2.00

0.5 2 2 2 2 2 2 i 2

10—l 4.63 3.59 2.77 2.15 1.66 1.29 0.995 0.770
10_2 24.77 15.55 9.77 6.13 3.85 2.42 1.52 0.954
10'3 156.6 84.42 45.50 | 24.53 13.22 7.13 3.84 2.07
10'4 1074 510.4 242.6 115.3 54.80 26.05 12.38 5.88
10—5 7738 3298 1405 598.8 255.2 108.7 46.34 19.75

Table IV,1 Factors by which the values YppT iy in Figure IV.4
s .

must be multiplied to obtain the ratio Yp 4 in Equation (IV.9)
]
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1 2 3 4 5 13 7
(*) : (%) (*) (*)

RISK |B.=R.-©C A i e s A pon - (Y ) (v ")
CURVE N "I 'R o) 1 f,i4 £,p=0.1""0.1,i47 £,P=0,01 0.01,1l
1 0.88 5.9 - 4 o 8.7 - 4 1.8 - 4 (4.7) 4.5 - 5 (19.1)

2 1.55 8.6 - 5 o 2.9 - 4 6.3 - 5 (4.6) 3.2 = 5 (9.0)

3 1,55 8.6 - 5 0 2.7 - 4 6.1 -5 (4.4) 3.1 -5 (8.9)

4 1.58 2,6 -5 o 9,1 - 5 2.0 -5 (4.6) 1.0 - 5 (8.8)

5 1.58 2.6 - 5 [-0.625 5.3 -5 1.4 -5 (3.9) 7.3 6 (7.3)
(*)Notation: X—1:1=X110—n ‘

Table IV.2 Mean Failure Rates for the Risk Curves

and the Resistance Distribution in Figure IV.6
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Figure IV.2 Untruncated Linear Frequency-Intensity Law
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=g/

YpET o



2.
1074

Jt

'ai

1,

Lad
|
[
1
[
<
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See Section IV,2
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Figure IV.6 Linear and Truncated Linear Approximations ro the

Risk Curves in Figure II.1
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Figure IV.7 Quadratic Law (IV.14);
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around iNz_BW/<ZaN+l); see Equation (IV.18)
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Figure IV.8 Logarithmic Frequency-Intensity Law (IV.19):
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Figure IV.9

Logarithmic law; Conservatism of the

Tangent Approximation (IV.22)
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Figure IV.10 Shifted Gamma Densiries, Eq.(IV.23).

In all cases the mean is zero and the variance is 1.
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Figure IV,11 Ratio between the Mean Failure Rate for
Gamma and for Normal Resistance Distributions,Eq. (IV.25)




V. Statistical Seismic Damage Models

The models analyzed in the last section are intended to be "best'" estimates
from statistical data. Unfortunately, the information available on the seismic
risk at & site, and even more on the resistance distribution, is far from
supporting conclusively any particular model. As a result, both the "correct"
type of the model (e.g., whether the risk law is linear, or logarithmic, or
other; whether the resistance distribution is normal, or Gamma, or other) and
the "correct" parameters values {e.g., the mean occurrence rate Ko and the
slope BN of the linear model) remain uncertain. In the same sense, the parameters
of the normal or Gamma resistance distributions are essentially unknown. A few
models, in which inductive uncertainties on the parameters are taken into consider-
ation are studied in this section. Some of the numerical results are reported

in Appendices A and B.

V.1l Uncertainty on Demand Parameters

In Section IV it was shown that the linear law:

?\iw = A EZEJ%N:LN

. , (v.1)

or a truncated version of it provide accurate approximations to calculated
nonlinear risk curves at a site. The parameters AO and BN depend on the
regional seismicity, on the assumed upper bound epicentral intensity, and on

the attenuation law. Following the general Bavesian approach in Section ITI,

AO and/or BN are considered now to be random variables, with given probability
distribution. In each of the cases studied, the effect of inductive uncertainty
is quantified through multiplicative penalty factors on the mean failure rate

under perfect statistical information,

(a) Linear Gaussian Model; A, unknown; By known

Let N(0;1) be the probability distribution of the (standardized) resistance

R. If AO in Equation (1)} has lognormal distribution:

in A, ~ N (/“111'9\0 U o) (v.2)
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and B is known, the mean failure rate is

s iy - .
e T P R ST

which means that statistical uncertainty on Ao increases Kf by the (penalty)

factor:

Y\ _ ALIB, _ eo'lmo/z'
Yo Npla, B o (V.4)
0lnA, InAg

YA is plotted versus e in Figure 1. (Notice that e is the ratio
between the values of k at (E[lnk ]+0 A ) and at E[InA;]). In the range
e lnko =0.4 to 1.1 (Wthh corresponds to 1-51gma uncertainty factors on k of

1.5 to 3), the penalty Yao varies from 1.1 to 1.8.

(b) Linear Gaussian Model; Ao known; BN unknown

. . . L2
Now let Ao be known, and BN have normal distribution N(MBN,GBN). For

R~N(G;1) the mean failure rate is found to be:

e = | Mg - 4, ()

N AM [(1T5)
et (3B 5 ] 4, = 2o IO

ﬁwfeTr 1/2 frfg (V.5)

(In all practical situations,it is 0§N<1.)

The associated penalty factor with respect to the case OBN=O is:
1 Z 2 _ 2

%Elﬂ (L o ),1& 3 Ma 0@//(1 Ta )

'A£‘q0,ﬁ

In Figure 2 this factor is plotted versus UBN for GBN=0¢1(0.1)0.5.

Rt

A

(vV.6)

Typical values of Ugy are between 0,8 and 1.6, and of SEe between 0.1 and
0.3. This implies a typical YBN range of 1.01 to 1.2 ({(the upper limit of this

range is, however, very sensitive to the assumed maximum for OBN).

(¢} Linear Gaussian Model; KO and By unknown

In general, both ko and Bn are ynknown. For the marginal distributions
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given above and under the condition of independence the mean failure rate is

Ap =~ ex {,t /—+2-qu 473/M20} -0 ,
£ W P4/ 100t 5 TInne ™ 2 /B, ﬂ,v/( BN)} V. 7)

with associated penalty factor:

Y - A /} - . .
)oJ{i = {1209{% - AY%D w(@v ? (v.8)
Y}O andY@N as in Equations (4) and (6).
In most practical cases the assumption of independence between ho and BN is not
appropriate, Let then 1In AO and BN have generic bivariate normal distribution
lh }\0 /41 A G_z ) .
n fa e
/3 ~ N o ; ]_h A.O i _Lh)-o i . (V.9)
2

Y /ALPN f’UitlloC?% B,
A convenient visualization of what this distribution implies (and a convenient
means of selecting the parameters of the covariance matrix) is suggested in
Figure 3. 1In the figure, a (normalized) intensity level id is defined, such

—~Rni
that the mean rate Aidzkoe Bt is independent of BN. For example, in the case
of Figure I1.1, the condition of independence might be satisfied at MMI 4 or 5,
which implies a value (4—uR)/OR ot (SfuR)/OR for iy (UR and Oy are parameters of
the resistance distribution).
If the mean and the variance of In Aid are denoted simply Uy and Gi, the

joint distribution of 1n kid and BN is:

1n A4 M 7]
MU N . ; “ © , (V.10)

Gi /ﬂ?% O G?%
with an implied joint distribution of 1n ko and BN:
. z W22
In A +1 gy + 14 o iya,
I~ N e e o L8, . (Vi)
.2
ﬁ/\/ /u/?‘/ jdvqﬁ/v U-EN

In general it is i4<0 and In A  and BN are negatively correlated.
From the joint distribution (9), the conditional distribution of (In AOIBN)

is easily found:
(45 %o / EN)NN(/AIn9\0+ J

Then, using Equation (3)}:

G-

;ﬁ?\c(ﬁwﬁ/‘lﬁ) 2 (4-F) Ufnxc,) -

7\5”3,\, = ex?{/ﬁn?\o_F iji}j}o (@/ _/14/34/)+%[(1f2) U—lzhg;ﬁzJ} L (V.12)

O’BN
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Finally, integration with respect to BN yields the unconditional mean failure

A= g -2 (R 46

= e e M 3T, 2R P V) s was

2
1~G@/
which can be written, in the notation of Equation (11):

i . 2 - 2
Ap = 7_‘;;3_‘"‘ Exp %/“oﬁ 14 Mp, + Z (5 v Uréw)
w2 o, ) (1)) (v.14)

From this equation, and after some algebra, one can express the penalty factor

rate:

on Kf due to statistical uncertainty of Ao and BN:

YA”&, = Y'Aior,. Y/ﬁ, SRETNE (V.15a)
where: v, is given by Equation (4) with Aid in place of AO; see also plots

4

in Figure 1;
Y8y is given by Equation (6) and is plotted in Figure 2;
1 [ 2 . ' 2
Yig = EXP[Z% % (Th+2/,)/ (i”gﬁﬁ)} - (V.15b)

For 13=0, AO and BN are independent, so that Aid=Ao and Equation (15a) reproduces
the results (7) and (8). 1If the mean rate Aid is known with certainty (which
means that the uncertainty on Ao is totally explained by BN) the penalty factor
(15a) reduces to:A}aD,Eb::‘}?L-'Yii. If in addition it is 143=0, A, becomes
known and JYAD!G/ = “{@V_

The factor Yig depends on id’ Hay and Oy Plots of Yiq versus Mgy for
id=—l(—l)—8 and UBN=O.1(O.1)O.5 are shown in Figure 4. TFor small |id|, Yig
is not sensitive to Uay and Tpy and is generally smaller than 1. As Iid[
increases Tig also increases, with high penalties for combinations: Igy large,
May small. For uﬁN in the range 0.8 to 1.6; UBN in the range 0.1 to 0.3, and
for i4=-5, Yig has values between 1.05 and 2.3. (More will be said on the

selection of the seismicity parameters in Section VI.)

(d) Linear Gamma Models

Suppose now thai the normalized resistance {zero mean, unit variance) has
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the shifted Camma density (IV.23) and that the seismic risk at the site has

the linear form (1), with one or both parameters unknown.

% By known, and In A0~N(uln 3od 021n AO), Integration of the conditional

mean failure rate with respect to A, yields:

Aeig, = L Aia,, e B (L) dA

- D p* §
) <—m——) exp i@/D Jr/u'ln')«o+ %O-lnﬂ\o} ' (V.16)

By comparison with the mean failure rate for Ao and BN known, Equation (IV.24),
the penalty factor Y,, is found to be the same as for normal resistance, i.e.,

Equation (4)}.

%* If Ay is known, and @N has Gamma distribution G(X,r) with density:

K~1 ulmﬁ

Y

fa(f)= = (rB) e (v.17)
v NG,

the use of Equations (IV.24) gives the following expression for the

mean failure rate: k-1
A _ ext (7 B e(b"r)@v LB
" roo ), (- Loy N
D

~ roAK ST (D1 n) (Ki1sn) (V.18)
Jf’(T—D) 1*%0 nl [D(r-p)]"

o

where the symbol (m;d;v) denotes
(m; d;vY=m(mtd) {m+2d) ... (mt+(v-1)d) 3 v=1,2,...

For a generic density function fBN(BN)’ the same mean failure rate must

be calculated numerically from

A p*

However, for practical purposes, it is not very important which distribution

one assumes for BN’ since Aflko is typecially close to the conditional mean
rate Aflko,BN=UBN (see Equation IV.24). This qualitative conclusion is in
agreement with earlier results for normal resistance and normal distribution

of By ; see, e.g., Figure 2.
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* Assume now that A  and By are correlated random variables, with
. . . . - . 2
distribution: BN G(K,r) and (in XO[BN) N(uo+1d(BN-uBN); Od). As

already discussed for the normal model, this corresponds to 1In A, =

id
(In AO—BNid) being independent of By, with distribution:
N(Ho"idUBN;Gé)-
Conditional on given BN the mean failure rate is:
2
— D\’ : 4 o> (4 |
Mg, = (DH%V) e"P[/“" g pg e Loy (e D) Bt (V.19)

Integration with respect to BN yields the unconditional mean failure rate:

J; Arip g () 4B

H]

Ap

i

K (o] 3
s . L 2 A > < (D1rm) (k545 n)
expi M 1 Y [ ;
[/ A/ g 7 i}’ (%D,u H%D nlDv-D-1p1"™  (v.20)

gy .
If A, and BN are independent, then id=0 and Af:Ylo:Aflko’ where Yko= ez 4ig
the penalty factor for statistical uncertainty on A, and;Kfllo is given by

Equation (18).

V.2 Uncertainty on the Resistance Parameters

One way of introducing uncertainty on the resistance parameters is to
treat OD and the constants ap and bD in Equation (II.16) (see also Figure IV.1)
as Bayesian random variables. In this study, the simpler approach is followed,
of quantifying statistical uncertainty directly on the parameters UR and 0; of
R. Under the assumption that the actual distribution of R is normal, use will

be made of the statistical prediction results in Section III,

(a) LR unknown, Uﬁ known

Let UR“N(ﬁR,Gﬁln). In a Bayesian approach this distribution corresponds,
for example, to a random sample of size n being available from the population
of R, and to a noninformative prior distribution of Wg (to n'=o0 in the results
of Section III). The same distribution would result from the model in Figure
Iv.1, if o and.ﬁD were known, and a, were estimated from n independent data
points.

Under these conditions the predictive distribution of R is, from Equation

(111.2), N(ﬁR;(l-Fl/n)Gé)9 and the reduced variable R'=(R—QR)/ORyl+l/n has
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standard normal distribution. If AO is the mean rate of events with site
intensity larger than ﬁR’ the mean failure rate is:
2
\ (_—;?V (i»:—i/l’l)/.z
/ .
flop = Mo € ’ (V.21)
where BN=BI°GR, This corresponds to a penalty factor for statistical uncertainty

on H,: 2
R
y = -—__.kf _l_GR e - E (3A/ /2 Il .

L (V.22)

Af|/”n;ok

(See plots in Figure 5.)

(b) © ; unknown, “R known or unknown

In Section IIT it was shown that if Mp is known, 0, has noninformative

R
prior distribution (n'=0) and a sample of size n is given from the population

of R, the predictive distribution of the reduced variable R'=(R-UR)/S is t
with n degrees of freedom (52 is the sample variance). Under the same condi-
tions, but with Hg also unknown, it was found that

¢ o 1/2 R_//Q‘E’
R = (g2) —&

has t_1 predictive Bayesian distribution. This fact allows one to study jointly

the two cases when N is known or unknown.
Let the reduced resistance R' be distributed like t, (i.e., y=n, or yv=n~1),

with density:

~(v+1)/2 ™0
N e , 4 Tl(v~1)r]
Be()- o (5 + 3 SR De O

Then the mean failure rate from earthquakes with (normalized) site intensity

between iNO and iNl is:

i,

1 2~ (v+1)/2 .

Apo s 5 = Fe Gy (1+}L ( e s
3V g s day, - < '

b A B (V.24)

1 A,

where By=B1S if pp is known, and BN=BIS(l+l91/2
n

if HR is unknown.

As iNO tends to - , diverges for any finite v. It therefore

£iv,iga,iy
becomes important to establish a %ight truncation point iNQ for the resistance

distribution v (or indeed for the validity of the model as a whole), and to
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exclude failure events caused by earthquake loads of smaller size. The "natural
trunaction at MM intensity zerec might be used for this purpose, but a higher
truncation peint is often more appropriate. In fact, failures at very small

site intensities, say for I<3, are due primarily to factors other than the
seismic load, for example, to very poor design, or to wrong selection of
materials, or to gross construction errors. In other cases, the simple know-
ledge that the system survived previously applied loads (seismic or other)
guarantees truncation (or rapid decay) of the resistance density at low inten-
wity levels. The importance of iNo in the calculation of Af is apparent from
Figure 6, where the integrand in Equation (24):

s 2w+ d)/2 B i
. 1w A A
3(1/“:‘7}{34/)‘—“ (i"' 2 ) <

(v.25)

is plotted versus g for BN=1 and for a set of V values, The reason for studying
this function is that it shows the relative contribution to the risk from
events with various site intensities. As v+  g(iy,Vv, By) approaches
exp {—%—iﬁ - BNiN} , i.e. the integrand for normal tesistance densities (see
Equation IV.4).

Noticeable features of the function (25) are:

* For iy=0, it is g(0,v,By)=1;

For BN<§%%" g(-,v,By) has a relative maximum at

B —(v+ 1)+‘\/(V+i)2-4-1) 3,2 )
23,

i (V.26a)

(as v | this expression approaches —pN),and a relative minimum at

: ~(v7+1)—\/[>:+1)2#4v ﬁf]

2(3N

When By=1 (as in Figure 6), the relative maximum occurs at -1 for all v, and

the relative minimum is at -v. For BN<§%%. the function (25) decreases mono-

tonically with iN.

* lim g (iy,V,By)= = for all finite Vv;

lim ¢ (iN,v,BN)=0 for all v.
iy
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* For W the relative maximum at —BN is the absolute maximum, about
which the function is symmetric.

For positive i the functions g(iN,V, BN) are practically the same for all

N
V. A completely different gituation is found at low levels of intensity,
particularly for small v (i.e., for large statistical uncertainty on the resist-
ance parameters). In this case the risk contribution may even increase with
decreasing intensity, well within realistic ranges of iN values. In other words,
for small v the model suggests that if failure occurs at intensity iNO or higher,
it is most likely that the event was caused either by an earthquake with very
low site intensity (close to iNO), or by an earthguake with site intensity close
to the value in Equaticn (26a). One should associate the former failure events
with systems having "very poor performance® {(systems of this kind are infrequent,
but they rarely escape seismic failure, due to the high fregquency of small size
shocks), and the latter failure events with rare, but highly destructive earth-
quakes, having intensity levels close to (but smaller than) the mean resistance
of the system. Smaller risk is associated with earthgquakes of intermediate

size, or with ground motions having site intensity larger than the mean
resistance of the system.

While iNO in Equation (24) depends mainly on the truncation of the resist-
ance distribution, iNl depends on the site intensity upper bound. The curves in
Figure 6 show that the mean failure rate in Equation (24) is not sensitive to
iNl’ provided that truncation is above the mean resistance; instead, AF may be
guite sensitive to iNO’ particularly for small v. This is a gualitatively new
result in engineering seismic risk analysis, showing that combinations other
than "high demand-average resistance" may dominate the damage statistics, and
warning about the possible presence of an intensity range below the mean
registance, with rather uniform contribution to the total risk.

Results from the numerical integration of Equation (24) {(a resigtance
density normalization factor [l»«t\)(iNO)]_l was included in the calculations)

are displayed in Figures 7 through 12. In all cases the mean failure rate

f;v,iNO,iNl is normalized with respect to the mean failure rate for no
statistical uncertainty (W) and for an unbounded intensity range; i.e., with
respect to

By /2
7\{’;@,_@,%:7‘06 :

ror lN

0

CKE;QO’—OO,CO

T
=-8, the ratio £5vV,-85 =0 is plotted in Figure 7 for v=1,3,5,7,10,20,
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as a function of BN' The effect of statistical uncertainty on Kf increases
dramatically with BN, and in all cases is non-negligihkle. It should be said,
however, that iN0=—8 is a rather conservative value for the lower bound. It
would result, for example, from a known mean resistance uR=lO (MMI scale), from
an estimated standard deviation Sg=l, and from a resistance truncation point at

MMI=2. For the same values of N and S_, but the lower truncation point moved

?
to 5, one should use the wvalue iN0=—5. RA second argument in favor ef a higher
truncation point comes from the nonlinearity of the empirical log mean-damage-
ratio as a function of intensity (See Section II.2 and Figures II.5 through
I11.11), In the present "linear" resistance model (See Figure IV,1), the rapid
decrease of log MDR at low intensities can be épproximately accounted for through
more severe truncations of the resistance distribution.

Ap.ys. i
Figures 8,9 and 10 contain plots of the ratio iSRRI AR

P so0s e o0 for iN0=~4(—l)—8
and for v=1 (Figure 8), v=5 (Figure 9) and v=10 (Figure 10). These figures
confirm previous observations on the high sensitivity of the mean failure rate
to the lower truncation point, particularly for large values of BN.

The effects of varying the upper limit of integration in Equation(24) (this
limit ceincides with the upper truncation point in the frequency-site intensity
law) are quantified in Figures 11 and 12 for v=5 and v=10, respectively. In both
cases it is iNO=~8. The upper curves in these figures are for iN1=®. It is
seen that for iNl>0 the upper truncation has no appreciable effect on kf; also,
for any given iNl, the effect of truncation decreases with BN. For example,for

iN0=-8, the values of iNl in Table 1 are required to reduce the mean failure

rate Agy,-8,0 by a factor of 2.

BN v=5 v=10
0.8 -1.5 -1.0
1.0 -2.6 -1.4
1.2 -5.0 -1.9
1.4 -6.5 -2.7
LM}.é -7.0 ~-4,3

A
£i2,-8, 00 - 2.

Table V.1 Values of iNl such that
A .
£3))) -8, lN:L
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’A;E . »
s, in,.1
Tables of the ratio — 172 2N TN

are collected in Appendix A, for v=5,10,20;
£ 300, ~o0s OO
a

iyg=-8(1)-3; iy;=4(-1)iygs nd B,=0.6(0.2)2.0.

V.3 UNCERTAINTY ON BOTH DEMAND AND RESISTANCE PARAMETERS

Consider the linear risk model

B (L-1a)
9\‘ — )x' i
i o © (V.27)
and the normal resistance model:
oA
R=/p+ & ’ Eg~N(03507) » (V.28)

2
/M?;(Th known or unknown.

For a seismic risk law-in the form (27) - as opposed to the equivalent form (1) -
it is reasonable to assume that the seismic demand parameters, AiO and BI’ are
independent of the resistance parameters, HR and Gg. In the remainder of the
present section two cases are considered: (g) AiO’ BI and Mg unknown, 9 known;

and (b) AiO’ BI and 02

R unknown, UR known or unknown.

{(a) Aio, By, HWR unknown ; 0§ known

Let BN=BI'UR ; 1d=(1o—ﬁR)/GR (ﬁR is an estimate of the mean of R), and
kid=Ai have independent normal distributicn:
0

ln.)id /%i ﬁf 0 O
ﬁL ~ N Mao |5 o Gﬁv O .
MR Jo 0 e 0r/n

Implied by the model (29) is that R~N (ﬁR,02(1+l/n), and that the parameter of

(v.29)

the frequency-site intensity law, written now:
B
. N =N
klw—— )O e
-8 (1)

where A =Aioe is the mean rate of events with site intensity

¥

greater than ﬁR, and

have the distribution (11) , independent of R. The mean failure rate is still
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given by Equation (14), after replacing

gy by Mgy (L/n)2

oéN by céN (1+1/n), and

/2

i (1+1/0) "+

d by i

d

The penalty factor for statistical uncertainty becomes:

. o\ |
Y’)\o;ﬁ,;/ug - f ‘O_R — ,X”\'laL" yﬁ, . ’Yiot. };MR s (V.30)
%f!’A01@V)/MRJO_R

is the mean failure rate for no statistical uncertainty

where: A
flxo’BNauR’GR
when all the parameters equal their mean values;
YAi is given by Equation (4), with OinAreplaced by 05 (see also
d
Figure 1); ©

Yoy is given by Equation (6), with UBN(1+1/H)1/2

in place of HBy and
U%N(1+l/n) in place of OéN (see also Figure 2);

Yig is given by Equation (15b) with the replacements above and, in
addition, id(1+l/n)"1/2 instead if id (see also Figure 4);

Yig is given by Egquation (22).

For n»» the factor (30) approaches the factor YXO’BN in Equation (15a)., The only
partial factor in Equation {(30) which does not depend on n is Yki . To exemplify
the dependence of the remaining partial factors - and so of YAO,BN,UR - on m,
consider the realistic case:

u8N=l.4; 08N=0.2; id=-5. The factors YBN,iYid, YUR and their product are

given in Table 2 for n=%,10,5.

n YRy Yig Yug gy Yig Yugr
© 1.063 1.258 L 1.337
10 1.083 1.248 1.103 1.491
5 1,107 1.232 1,217 ' 1.659

Table V.2 Partial penalty factors in Equation (V.30); UBN=1.4; GBN=O.2 and

i.=~5.

d
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The increase on&O’QN’ﬂR'w1th decreasing n is due primarily to the factor XLR.

(b) 0, BI,OZ unknown ; Hg known or unknown

Consider now the case when the normalized resistance R' (see Section V.2b
for definition) has t,~distribution (23), as a result of uncertainty on Gé , and

possibly on M,. A_ and B. are Bayesian random variables, independent of R'. Let:
R" o I

B.=as in Equation (24);

N
_ (i-thR),/S , Af g is known;
1., =
v (1—%1/10 (l~7ﬁtg)/5 s if Wy is unknown;
5(1 1/4R)/5 , if Up is known;
l(1+ 1/11) (1 ‘y}ARJ/S , if uR is unknown;
My=Ag,

The joint distribution of 1n Aid and BN is assumed to be normal, as in Equation
(29). It iNO is the lower truncation poini of the resistance distribution and

iNl is the upper truncation point of the risk curve, the mean failure rate is:

Mt o= S LA J J _;;@’*“/2 B Cumta,
£’l%°“& 1- € @N] ld] ﬂa ﬁjl (1+ eliy d,
Mo
_ e[ w»fi)/ZJe B (L0~ loL)ﬂg(@) AR i,
4 -t (Any)

lag

where <, is the constant in Equation (23); t () is the CDF of t ;

ELMi )= expf ycvisel i ”N(/Aﬂ ;o)

Integration with respect to BN yields:
o\ Cy, /Mi'+cﬁi/2 i —(v+1)/2
fiip iy, = ———— ¢ (i+ “’)
i—tp tlf\/o) iND

cexp{ R, (y Ta)rE T (G i) felin . OO
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The alty factor vy, . . : : . 4
penalty Yii ,BN:UR>(Or thd’BN’uRﬁOE)’ which is the ratio between

Af’iNoaiNl in Equation (31) and the limit mean failure rate:

. _ . 2 2 2
tm o Af,iNo,iNl = explughigy - iatugy/2} » depends on o.ugys ogys 1gs
iNO-%—°o V, iNo and iNl:
iNi+w 2 .
Z 1
e A C 0oLz -fa sz j‘ M ( ;a2\ (P12
b = e———— e e 1+ 7
Ll s ﬁfw/*ra s TR 1- by N >

. 2, .2 .
° EXP {m/rif/gv 1, 11— G/%/ (1/\/ *loj_) }CL:LV,(V.:}:Z)
2 . 2/2
Since the dependence on T4 is only through the multiplicative factor e7d’“? it
2

is convenient to tabulate the ratio .
Yhig,ByHR.Og

This is done in Appendix B for the following values of the remaining parameters:

UBN=0.6,1.0,1.4,1,8

GBN=0.1,0.2,0.3

id =-3,_6
v =5,10
i, =-8(1)-3

iNl=4 (-l) iNO

It is interesting to compare the exact penalty, Equation (32l with the

roximati ial £ ¢ 1 ion: i.e. wi . . .
aip oximation by partial factor multiplication; i.e. with Ykid YRy Yig YUR,GR’
where

Y/\id' /X\?’N ' Yid{ = Y)\(ja[a/v (Equation 15a);
Y o Miv,de iy, is tabulated in Appendix A.
MR Ug — A

'.E;OO)—'oof'oo
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For example, using the following set of parameters' values:

Load parameters: 14 = -6 3} A8 = 1.4 5 0p =0.2 3 iy, =0 ;

Resistance parameters: Y =5 ; i, = ~5 3

o finds, from Appendix B:

ne inds [9) PP 99 eo_cf_/z
. = 2.6
,y’)\chsf/avs/lAil’U—R 2

UBN /2
e

Jg3/2 .
(meaning a mean failure rate: 2.699 ed/ A ). From the partial factor

approximation one would find instead:

/2 ,
Mg, = e s Yi = 1.492
Vp, = 1.063 ; Ypig i = 24107 5
and
}()‘ gl /2

: ~ 3.
id s fhs MR Ok 242 €

A more extensive comparison is shown in Tables 3 a,b,c,d, where the following

parameters' values are considered:

O'@V:O.Z 5 1y =0 3 W=5 "iNo:_gt;L)-S;

e

Table 3a: i&/= ~ 6 5/}q%’: 4.4

Table 3b: Same as Table 3a, except for idﬂ—B;
Table 3c: Same as Table 3a, except for OBN:0.3;
Table 3d: Same as Table 3b, except for GBN=0.3.

Although generally conservative, the approximation by partial factors
gives penalties which are sometimes smaller than the exact values. One can
explain this as follows: 1in the approximation, the effect of BN unknown is
calculated under the assumption of normal resistance distribution, while in the
exact calculation the same distribution is of t-type (t5 in Table 3)}. If
]idl is small (Tables 3b and 3d) and, at the same time, IiNOI is large, replacing
the normal distribution by the ts—distribution increases the risk from low
intensity earthquakes (See Figure 6), and introduces unconservatism in the
approximation.' The approximation by partial factors is, instead, conservative
for larger ]id] values, because in this case the sensitivity of the mean failure

rate to BN is smaller if the resistance distribution is t, than if the resistance
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distribution is normal.
For some numerical evaluation of kf when both demand and resistance

parameters are unknown, see Section VI.

iNo BY PARTIAL | EXACT iNo BY PARTIAL § EXACT
FACTORS FACTORS
-8 11.74 8.16 -8 7.97 9.54
-7 7.20 5.15 -7 4,89 5,20
-6 4,78 3.61 -6 3.24 3.22
-5 3.34 2,70 -5 2.27 2,19
—4 2.39 2.07 o 4 1.62 1.56
-3 1.66 1.55- -3 1.13 1,10
(a) (b)
iNo BY PARTTAL | EXACT iNo BY PARTIAL | EXACT
FACTORS , FACTORS
-8 22,09 9.56 -8 8.81 13,59
-7 13.55 6.36 ' -7 5.40 6.24
-6 8.99 4,80 -6 3.58 3.52
-5 6.29 3.89 -5 2,51 2.31
=4 - 4,49 3.22 -4 1.79 1.64
=3 3.13 2.63 -3 1.25 1.17
(c) (d)
Table V.3 Penalty factors: Ykid’BNa“R’GR/ecglz.

Parameters' values:
Table a: id=-6; UBN=1.4; UBN=O.2; iNfO5 v=5
Table b: Same as Table a, except for id=—3;
Tabhle c: Same as Table a, except for UBN=OQ3;
Table d: Same as Table b, except for GBN:O°3'

The exact values are from Appendix B.
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Figure V.1 Penalty factor Yig for statistical uncertainty

on the seismicity parameter Ko;

Fquation (V.4),



84

T ] I r T | T
i.8 7

— '05N==C‘5 —
1.6

o 0.4 a
1.4 /

——”””””’- |

— "‘—’,,—“ . ._
1.2/ ///

f// | 0.2 —
1.0 - , . : 0.1 .

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ey

Figure V.2 Penalty factor for statistical uncertainty on the

seismicity parameter BN;

Equation (V.6)
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Figure V.8 Penalty factor for Cﬁ.unknown and!JR known ot

unknown; V=1; variable lower resistance truncation

point.
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VI. PARAMETERS SELECTION AND RISK EVALUATION

The information summarized in Section II is used now to select the para-
meters of the seismic risk model (or their Bayesian distribution).As an
application example, the seismic risk of typical nuclear power plants located
in Eastern United States regions is calculated, and compared with approximations

from Equation (I.4).

VI.l SELECTION OF RESISTANCE PARAMETERS

The resistance parameters of the probabilistic Gaussian model in Figure

IV.1 are uR and OR. If a statistical Gaussian model is used instead (see
Section V.1l), the following information must be provided:

1, ﬁR and Ox if e is unknown and ¢, is known;

R

V, uR’SR and N, if op is unknown and Kp 1is known or unknown

(for g know§, ﬁR=uR).

In consideration of the limited information available on resistance parameters,

the last assumption - 0, and Y unknown -~ seems to be the most realistic omne.

R

(a) SR

Estimates of Op are available for ordinary civil and industrial constructions

(GR=851 and estimates of BD are given in Table I1.5), in which case SR varies
typically between 0.50 and 0.65. Higher values are found using data from
Newmark (1974) and from Vanmarcke (1971). From Newmark's data one calculates
55=0.75 for nuclear reactor structures and ordinary civil constructions and
SR=0.86 for nuclear equipment. These values refer to seismic demand and
resistance expressed originally in units of log peak ground acceleration, and
then converted to MMI, through the solid line relationship in Figure (II.4)}.
In the same sense, the data in Vanmarcke (1971) suggest S, values between 0.65

R
and 0,70 for ordinary civil constructions. Reasonable values of SR might be:
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(0.65, 0.75) for nuclear reactor structures;
SR in the range (VI.1)
(0.70, 0.85) for nuclear reactor equipment.

() fi

For ordinary buildings ﬁR can be estimated, for example, as the intensity
at which the appropriate line in Figure II.10 reaches the critical MDR value,
dfu For reactor systems and components it was coqcluded by the USAEC Nuclear
Reactor Safety Study WASH~1400 (draft report) that the probability of failure

under the Safe Shutdown Earthquake (MM intensity i,..) is in the range lOml

SSE
—2(%
to 10 2(%)

« For normal resistance distribution this implies an estimated mean

value of R:

(iggpt0.9, iggptl.62), for §=0.70,
fl in the range (VI.2)
(iggptl.09,1ggp+l.97), for 8p=0.85.

For most nuclear power plants either in operation or under construction in the

Fastern United States the peak ground acceleration for the SSE, a E® is about

55
0.17g. This value corresponds to a Modified Mercalli intensity iSSE of

approximately 8 (see Figure II1.4) and to the following ranges for/ﬁR:

o (8.9,9.6) for SR=0.70 s (a)
/uR_in the range (Vi.3)
(9.1,10) for SR=O.85 (b)
(e) v

The'"confidence parameter'" Vv is not easy to establish because the information
on R is rarely in the form of a statistical sample. It is suggested that values

in the range 5 to 10 (corresponding to "equivalent sample sizes" from 6 to 11)

%

( )Newmark (1974) suggested failure prebabilities for nuclea
reactor equipment under the design earthquake of the order 102 to 107 ’
or smaller
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may be appropriate.

!>

For a set of independent N(0;1) variables Yl,...,Yn the statistic n
has Student's t distribution with v=(n-1) degrees of freedom. This means that
if ﬁR is chosen to be the center value of the intervals (VI.3), the same

intervals contain Mp at the following confidence levels:

0.74 for v=(n-1)=5
0.88 for v=(n~1)=10

Arguments of this kind can be used to select an appropriate value (or range

of wvalues) for v.
@ 1y,

This is another parameter which is difficult tec establish with high
confidence., If one defines "seismic failures" to be those triggered by ground

motions of intensity VI or larger, then iNo should be given the following values

(i, = (6~ /5) :

{(-5.1,-4.1) for 5g=0.70 and (a)
ﬁR in the range (3a); (VI.4)
i

N in the range
o

(-4.7,-3.6) for 55=0.85 and (b)
ﬁR in the range (3b).

If the threshold intensity is lowered to V, the range (4a) becomes (-6.5,-5.5),
and the rnage (4b) becomes (~5.9,-4.8).

VI.2 SELECTION OF SELSMIC DEMAND PARAMETERS

The exact selection of seismic demand parameters can be done only with
reference to a specific grographical location. However, using regional seismic
information and typical attenuation laws, ranges of parameters' values can
be estimated, sometimes over large areas.

For complete characterization, the linear frequency-site intensity law

(IV.3b) requires knowledge of Ao (mean rate of events with site intensity
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greater than ﬁR) and BN if the model is probabilistic; of iy, ud=E[ln Aid],

HRy» 0491 Aig , and OBN if the model is statistical., For truncated linear
risk laws, the upper bound site intensity iNl must also be given. The analysis
in Section V did not allow for statistical uncertainty on iNl' If the intensity
upper bound is larger than the mean resistance, the effect of this uncertainty
is negligible; if instead the upper bound is smaller than ﬁR’ the mean failure
rate calculated in previous sections and tabulated in the appendices for
different values of iNl can be used to establish the effect of iNl uncertainty.
The following ranges of seismic demand parameters are consistent with recent
risk calculations for Massachusetts (Cornell and Merz, 1974; Tong et al, 1975).
With obvious caution, the same ranges can be considered typical for many regions
in the Eastern states. Figures 1,2 and 3 (solid lines) are from Tong et al
(1975). They give the annual seismic risk in MMI at five different sites in
Massachusetts, under different assumptions on the geometry of the seismic sources.

In all cases the maximum epicentral intensity I, was assumed not to exceed 8.7,
(a) id

The site intensity i at which Ai and BI can be considered independent of
one another is approximately V; see Figures VI.1,2,3, and Figure IT.1l. From
the ranges of mean resistance values (3), the normalized intensity id“(i—ﬁR)/SR

is then:

( (-6.5,-5.5),  for 53=0.70 and fi; (a)
j in the range (3a); V1.5)

id in the range
(-5.9,-4.8), for S,=0.85 and ﬁR (b)

in the range (3b)
(b) Hg» T4

At all sites within Massachusetts analyzed by Cornell and Merz (1974) and
by Tong et al (1975), and under all the assumptions made by the same authots
about the seismic sources and the regional seismic parameters, the mean annual
rate of seismic events with site intensity larger than V was found between

0.7 = 10—2 and 2.3 x 10_2. One may therefore assume:
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M

-2
< 2 4.3 x 40 B (VI.6)

and Od values between 0.1 and 0.5.

(c) Mgy OBy

In Section IV (see Figure IV.6 and Table IV.2) BN=BI'OR was found to
have values in the range 0.90 to 1,60, Linearization of the curves in Figures

1,2 and 3 gives BI values of about 1.45 to 2.30, corresponding to

(1.0,1.6), for'sR=o.7o (a)
BN in the range VI1.7)
(1.2,2.0), for §,=0.85 ()

Appropriate values of UBN and OBN for Massachusetts might then be:
UBN=1.4; OBN=0.2,
(d) iNl

The upper bound site intensity varies from region to region and, within
each seismic region, from site to site. For Massachusetts, values between 7.5
and 8.7 seem reasonable (see Figures VI.1,2,3 and Figure II.1). If the

resistance parameters are in the ranges (3), these values correspond to

J’(_330)9 for SRf0.70;
iNl in the range (VI.8)

1 (-3,-0.5), for SR=O.85.

Upper bounds cannot be established with certainty; indeed, according to a few
seismologists (see, e.g., Chinnery and Rogers, 1973), epicentral MM intensities
as high as X are possible in Massachusetts., An appropriate practical upper
bound for site intensity might be iNl=—l.

Although not treated explicitly here, statistical uncertainty on iNl can
be incorporated (approximately) into the analysis by assigning (Bayesian)

probabilities to a discrete set of iNl values, and by weighting the associated
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risks through the same probabilities. The tables in Appendices A and B would

be helpful for this type of analysis.

VI.3 MEAN FAILURE RATE CALCULATIONS

From the preceeding discussion, the following "best" parameters' estimates

are suggested:

* TFor nuclear power plant resistance: U,=9.5; SREO.75;

R
. (V1.9
v =lp; ig,==33 )
* For seismic risk at a Massachusetts site (see dashed lines
in Figures 1,2,3):
Y -
i.=-6 ; e d=l¢.3 x 10 2
d
Gd=0.4; UBN=1.40 (VI.10)
UBN=O 2; iN1=~l
For an untruncated linear risk function, uln 3 satisfies:
o}
2 14, -5
exp | Mo, = e/t A = 0.29 x 1077,
and the mean annual failure rate is:
Ap = ex . ex AR
f P{fﬁnlo} F{/ﬁ%/ } %iid%afﬁ’gh'
, . , e s od/2=
Using the tables in Appendix B it is Ykid,BN,HR,UR/e 1.468,
and
1.=0.29 x 1077 x 2,66 x 1,08 x 1.468 = 1.23 x 10" (VI.11)

The values (9),(10) correspond to a probability of failure 0.046 for an event
with site intensity 8, and to a mean annual rate 0.48 x 10_4 of exceeding the
same intensity. Using the approximation (I.4) one finds Rf30.22 X 10_5,

which is about 5.6 times smaller than the estimate (i1).
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Conservative estimate of Af

Consider the following "pessimistic"parameter values:

UR=9.5 3 SR=0.75

v =5 3 iNo=—5
H -
126 3 e 9=2,0x107% (V1.12)
Od=0.5 3 UBN=1.4O
OBN=O.3 s iNi=4
The associated mean annual failure rate is:
Af=0.446 X 10“5 x 2.66 x 1.133 x 4.404 = 5.92 x 10._5 (VI.13)

The difference between the estimates (11) and (13) is due mainly to lowering
VvV and to increasing GBN' Using iNl=—l, and the values (12) for the remaining

parameters, one finds kf=3.97 X IO_S.

For an upper bound site intensity 8, for which iNl=~2, the mean failure
rates (11) and (13) become: Ag=0.75 x 10_5, and Ag=2.71 x 10_5, respectively.
Changing iNO by *1 produces a change of about 10% in the estimate (11), and
a change of about 207 in the estimate {(13).

Other sensitivity analyses are easily made with the aid of the tables in

Appendices A and B.

The preceeding calculations refer to the mean annual rate of accident
initiation in a specific mode {(e.g. by break of a pipe in the primary coolant
system). Many different events may trigger an accident sequence, and eventually
lead tocore melt and to radiocactive releases. The probabilistic analysis of
all such sequences is complicated by two factors: (i) the statistical
correlation between different failure events (which,should they occur, would be
caused by the same ground motion), and (ii) the redundancy of nuclear reactor
systems and safety devices. The inclusion of these features in the seismic
risk analyses of complex systems is possible within the methodology proposed

and illustrated in this study. In fact, the probability (IV.1l) - interpreted
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as the resistance CDF - should account implicitly for all possible failure modes.
This is the case, for example, when Pf(I) is estimated from historical records
of seismic damage, such as those reviewed in Section II1.2, Instead, the
calculation of Pf(I) for the whole system is not an easy task when starting

from the failure probabilities of subsystems or components, as 1s usually

the case in structural reliability theory. The explicit consideration of this

problem is left, however, for future efforts.
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MOST FREQUENTILY-USED SYMBOLS

constants in the frequency-magnitude law, Eq.(II.2)
{(a is also used for peak ground acceleration, depending on context)
constants in the epicentral intensity-magnitude law, Eq.(II1.6)

parameters of the linear intensity-mean damage ratio model,
Equations (II.15) and (I1.16).

constants in the acceleration-magnitude-distance relation (II.14)
damage

(mean) damage ratio

critical level of damage or of damage ratio

MM site intensity

MM epicentral intensity

same as I,i; normalized

same as io’ normalized

MM intensity, such that kio is independent of BN; see Figure V.3
MM intensity upper bound

Richter's magnitude

magnitude upper bound

failure probabilitcy

seismic resistance (alsc used for epicentral or focal distance;
see context)

normalized seismic resistance; see Section V.2.b
measure of seismic intensity

design seismic intensity

b 1n 1l0=constant in the frequency-magnitude law

decay parameters of the epicentral and site intensity distributions,
Eqs.(I1.7) and (II.13)

same as BI, normalized

penalty factor for uncertain resistance
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penalty factor for 61,...,6m unknown; see Section V
standard normal CDF and PDF

mean rate of events with intensity larger than the design
intensity

mean failure rate

approximate mean failure rate; see Eq. (IV.5)

mean rate of events with normalized MM intensity larger than iy
mean rate of events with site intensity larger than the expected
resistance (see Section IV,2 for more precise definition in the
case of nonlinear risk models)

mean, variance

\ . 2
unbiased estimates of W and ©

vector of unknown parameters; see Section IIIL
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APPENDIX A

PENALTY FACTORS FOR UNKNCWN Cp AND. KNOWN OR UNKNOWN Hr

A
f,v,lNo,lNl

Unkncwn OR and known or unknown uR; tables of the ratio

A

f;oo’_oo,oo

see Equation (V.24). The tables are foxr v=5,10,20; BN=O.6(O.2)2.O;

iNO=~8(l)—3; iNl=4(—l)iNo.
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1.0 1.207 1.194 1.176 1c14F 1.1CC 1.C07
0.0 1.075 1.062 1.044 1.017 0.969 0.875
—IOC Co—ili_, Cavalﬁ Ca716 00689 00640 005!9‘5‘
2.0 0,407 0.394% 0,377 0.34%9 C.3CC C.203
-3.( £.2GChH G.193 C.17>5 0.148 G.098 C.C
-4, C c.10C8 C.C95 C.677 G.C49 ¢.C .0
=-5.0 0.059 0.04% . (.028 C.C C.C C.C
-6.0 0.031 0.C18 £.0 0.C 0.C §eC
_?oc C'Ol3 \':G-C C&O C.C Ooc 0:0
% V=10 B =1.2C *=*
&
tag

Lavy -2, ~7,0 -6.0 -5 .0 ~4.G -2.0
4.C 1,454 1.4CF 1,356 1.29C 1134 1.C473
3.0 1.454 1.40¢ 1,355 1,285 1.194 1,043
2.0 1.454 1.407 1.355 1.289 1.193 1.C42
1&(4 1-4111 1»39‘4 153“"2 1.276 1v181 §u029
0.0 1.343 1.29¢ 1.244 1.17¢8 1.C83 C.G83¢
-1.C 1.049 1.002 0.950 0.884 0.788 C.634
-2.0 C.683 C.£3¢ .5R84 C.217 £.422 .26¢
“3.0 09419 00372 0.320 05?511 0.157 C'C
4. Ce?262 C.215 C.163 0.096 G.C C.C
-5.C C.165 CGIIE C-r)bb CoC G.C Oe‘C
—bs(} C.()qq 0.0SZ C.O C.C ClC C-C
_7¢C 00047 0.0 ch O'G O.C 0.0




2k V=10 @v_—.l,t,o ke
L/Vo
l;/v "8.0 *7-0 —6.0 '—500 _400 —310
4

4.0 1.922 1.771 1.623 1.471 1.29C 1.053
3.0 1.933 1.771 1.623 1.471 1.29C 1.C53
2.0 1.932 1.77C 1.623 1.47C 1.290 1.4053

1.C 1.925 1.757 1.615 1.462 1.282 1.045
0.0 1.854 1.692 1.548% 1.392 1.212 C.974%
-1.0 1.601 1.439 1.791 1.136 0.758 0.719
_2-0 1.?20 10058 _C.QIC C-?S? -576 60336
-3.0 C.887 0.724 0.577 0.424 0.7243 C.C
-4, C.644 344872 C.335 C.182 0.0 G.C
5.0 C.4863 C.3CC C.153 C.C 0.0 C.C
_6).0 03310 O‘llip C.O O-C O-C CoC
~T.C 0.162 0.0 0.0 0.C 0.C C.C

#x V=10 f,=1.60 #*
Loy,

Lw, —8.n ~7.0 —6.0 -5.C ~4.0 -3.¢

4.C 2,025 2.494 Z2.083 1.743 1.414% 1.C59

3.0 3.025 2484 2.083 1.743 1414 1.059

2.0 3.025 2.434 2.082 la 142 1.414 1.C56

1.0 3,021 2.480 2.078 1.738 1.409 1.C54

De.C 2972 2.431 2.C30 1.69¢ 1.361 1.0058
-1.0 2.761 2.221 1.819 1.47S 1.15C C.793
-2.C 2.379 1.838 1.437 1.C096 GC.767 0.409
3.0 1,973 1.433 1.031 0.€91 C.361 C.C
-4, 1.613 1.072 C.671 0.3230 GaC C.C
-5.C 1.283 J.7T42 C.340 0.C 0.C 0.C
-6.0 C.943 C.402 cC.C C.C C.C C.C
—75(‘ 015['1 0.0 CnO O-O OaC C-C




%%y =10 BN:L,so * %
Ly,

' ~-2.,0 ~7. -€.0 ~-5.0 -4.0 -1,

Ly, n 5.0 0

4,C 5.668 3.33C 2.874 2.145 1.567 1.056

3.0 5.6€£2 2,63 2.874 2.14% 1.567 1.C5¢

2.0 9.668 3.93C 2.874 2.14% 1.567 1.05¢

1.C 5.665 3.927 2.872 2.147 1.5¢€5 1.C54

c.C 5.633 3.895 2'8ﬁ0‘1 2.110 1.533 1.021
-1.C 5.464 3.72¢ 2,671 1.541 1.363 C.851
-2.C 5.095 3.357 2.301 1.571 0.994 0.48C
"3-“: (’-618 ZIEBC 1.825 1.(:95 CoSl? C'.C
-4 .0 4,107 Z2.364 1.309 0.57¢% C.C C.C
—5.C 3.5924 1.786 0.7390 0.¢ 0.C C.C
_6.C ?o7qlf 1.C55 C.O CCC C-O O.G
—T1.0 1.713¢8 0.0 c.0 c.C C.C c.C

s % = = ok
v=10 B =2.cc
Lay,

L, -R. ~7.¢ ~5.6 -5.¢C ~4.0 -3.0
4 .0 12,793 6.908 4,236 2.7271 1.75C 1.C0473

3.C 17.793 6.90¢8 4.236 2.127 1.75C 1.C42

2.0 12.293 £.608 4,236 2.7127 1.75C 1.0473

1.0 12.291 €.20¢ 4e225 2. 125 l.746G 1.C41

0.0 17.271 6.886 4.214 2.705 1.728 1.C2C
~1.3 12.140 t.755% 4,384 ?2.574 1.598 0.889
-2.0 11.796 6.411 1.739 Z2.723C 1.253 C.542
-3.C 11.257 9.872 3.2700 1.691 Gafl4 0.C
-4 .0 1C0.544 5.156 2.488 C.978 GaG C.C
-5.0 9.567 4,182 1.510 0.C 0.C C.C
-6.0 8.057 2.672 C.0 0.C 0.0 0.C
'7-‘:1 50385 C-C C.O C.C C-O 0.0
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%Y =20 @v:o_ec %

4%
l;lvi _8-C _700 _6-0 _500 _4-0 —'300
4.0 1.022 1.022 1.022 1.022 1.C168 1.002
3.0 1.022 1.022 1.022 1.021 1.018 1.001
2.0 1.017 1.C17 1.017 1.Cl6 1.613 0.996
1.C 0,967 G.967 C.967 C.G6¢ 8.663 C.94¢€
0.0 0.751 0.751 ¢.751 0.751 0.747 C.73¢C
-1.0 0.377 C.377 C.377 0.377 0.373 0354
-2.0 0.114 0.114 L0.114 0.114 C.llC €.C9¢C
-3.C C.024 0.C24 0.02¢4 0.023 0.026 ¢.C
~4.C C.0C4 C.CC4 C.CC4 C.CC4 G.0 0.0
“5.C £.001 0.C01 . C.C01 e.cC c.cC c.c
_O-C Q.Ogn 0.00C’ C.O OOC O.G G.C
-7.C €.C%0 €.C €.0 C.C 0.C C.C
#% V=20 (i=o.eo o
Lo

Ly, -8.0 -7.0 -6.0 ~5.0 -4.0 -2.0
4.C 1.045 l.C4cs 1.064 1.C43 1.035 1.005
3.0 1.044 1.044 1.044 1.C42 1.C35 1.C05
2.0 1.042 1.0641 1.041 1.039 1.C32 1.C02
1.¢ 1.0CQ t.coe 1.C08 1.C0¢ 0.999 G.969
0.0 0.836 0.835 C.p2% C. 034 C.B2¢ C.795
-1.0 2,475 0.475 0.475 0.473 Ca.4bE C.423
-2.0 .179 C.17¢ C.16% C.168 0.160C N0.127
-3.0 0.043 0,043 C.043 C.C41 0.C34 C.C
-4.0 0.010 2.0C9 0.009 0.C07 0.C C.C
-5.0 0.002 ¢.co? c.ccz €.C 0.C 0.0
-6.0 0.000 Cc.COoC C.0 c.C C.C C.C
-7.0 0.noo 0.0 0.0 0.0 0.0 C.C




#xV=20 [ =1.00 #x
—800 '-700 _650 ‘[iac —3.0
1.080 1.C79 1.078 1.060 1.007
1.0R0 1.079 1.078 1.C6C 1.007
1.078 1.078 1.077 1.C5E 1.CC¢
1.057 1.057 1.056 1.037 0.984%
C.923 C.923 C.922 G.SC3 C.850C
0.589 0.588 0.587 0.56¢8 C.514
G247 C.2471 C.246 C.227 C.172
N.076 0.07€¢ €.075 C.C5€ c.C
C.020 0.020 0,019 0.C g.C
C.005 C.005 C.004 0.C 0.0
0.001 0.001 c.C C.C C.C
0.000 .0 .0 0.C c.C
#% V=20 Qv=1.20 2%
Lay,
Loy -8.¢ -7.6 -6.C -4.0 -3.0
4,0 1.135 1.134 1.131 1.093 1.00¢€
3.0 1.135 1.134 1.131 1.093 1.008
2.0 1.135 1.133 1.130 1.C82 1.CQ7 .
1.0 1.122 1.12C 1.117 1.076 .C.594
0.C 1.022 1.021 1.018 0.980C Ca.894
-1.0G 0.722 C.721 C.718 C. €8C C.592
2.0 0.354 0.353 0.350 0.317 C.224
-3.0 C.131 C.13C c.127 c.G88 C.C
-4 .0 D.043 0.042 c.03e C.C c.C
-5.0 0.014 0.013 0.009 0.C C.C
-7.0C 0.001 0.0 C.0 c.C c.C




L,
é”& -8.¢ -7.C -6.0 -5.0 4.0
4.0 1.225 1.220 1.211 1.19¢C 1.136
3.C 1.225 1.22¢ 1.211 1.19C 1.136
2.0 1.224 1.22C 1.211 1.19C 1.13¢
1.0 1.216 212 1.203 1. 182 1.12¢
0. C 1.145 1.141 1.132 1.11C 1.057
-1.0 C.BB6 C.8R2 C.B73 Ga. 852 0. 798
-2.C 0.504 0.500 0491 0.470 0.416
-3.0 N.?224 c.21¢ C.21¢ 0.189 0.135
4,0 0.089 C.0R4 €.075 C.C54 C.C
-5,0 0.035 0.030 . 0.021 0.0 0.C
~6.C C.n13 €.C09 0.0 0.0 0.0
-7.0 C.0GC4 c.C C.0 C.C C.C
%Y =20 BN=1.60 %
Lig

Lay -8.C -7.0 -6.0 -5 .0 -4 .0
4.0 1.373 1.359 1.334 1.287 1.191
3.0 1.373 1.359 1.334 1.288 1.191
2.0 1.373 1.359 1.334 1.288 1.191
1.6 1.3569 1.354 1.33¢ 1.223 1.18¢
0.0 1.319 1.305 1.281 1.234 1.137
-1.C 1.1C4 1.095 1.065 1.019 0.922
-2.0 0.721 0.707 £.683 C.€3¢ 0.535
-3.0 0.381 0.367 0.342 0.296 0.199
-4,0 C.1R3 0.16¢F C.l44 C.C37 0.6
~5.0 0.085 0.071 C.047 0.C - 0.C
-6.0 0.039 0.02% 0.0 0.C 0.C
~7.0 C.014 0.C C.0 0.0 0.0
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#xW =20 fB=1.80 *x
L'NO
) - ~ - - - -3
LNS_ 8-0 700 6.0 500 4.0 J.O
4.0 1.632 1.587 1.524 1. 425 1.257 0.578
3.0 1.632 1.587 1.524 1.425 1.257 C.G7¢
2.C 1.632 1.597 1.524 1.425 1.257 0.G78
1.0 1.630 1.584 1.521 1.422 1.254 0.97%
0.0 1.597 1.552 1.488 1.389 1.222 £.942
~3.0 0.658 0.612 0.549 C.45C 0.282 C.C
-4,C C.276 6.330 0.267 ‘0.168 0.0 C.C
-5.0 C.228 C.162 €.099 C.C C.C C.C
-6.0 0.108 0.063 6.0 .G 0.C €C.C
~-7.C C.045 €c.C 0.0 0.0 0.0 0.0
#% V=20 B =2.c0 #*
LA%

' —-Q.{'\ —7. - -C —50 e —3-
L, o 0 6 C 4.0 C
4,.C 2.112 1.973 1.816 1.613 1.333 0.95C
3.0 2.112 1.972 1.81¢ 1.£13 1.333 G.395C
2.0 2.112 1.973 1.816 1.613 1.233 €C.G5C
1.C 2.110 1.972 1.814 l.612 1.3372 0.945
0.0 2.089 1.651 1.793 1.591 1.311 C.G2¢
-1.0 1.956 ‘1.81¢8 1.660 1.458 1.177 C.794
-2.C 1.612 1.474 1.316 1.114 0.834 0.449
-3.0 1.165 1.027 C.8¢9 Co. €867 C.38¢ c.C
-4.0 0.779 0.641 0.483 N0.281 C.C C.C
-5.0 2.498 G.360 0.202 0.0 0.0 C.C
-6.°C 2.296 C.15¢ c.0 C.C C.C c.C
_700 O¢138 CJ-O C-O O-C O.C CCC
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APPENDIX B

PENALTY FACTORS FOR UNKNOWN DEMAND AND RESISTANCE PARAMETERS

/605/2

Tables of the ratio Ykid BN for unknown demand and
3 H

Hgs9R

resistance parameters (see Equation V.32). The tables are for:

ig=3,-6
v =5,10
Hgy=0.6,1.0,1.4,1.8
1y =-8(1)-3

iy= 4(-Diy,
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¥%T5 =0.10 —l) =3.00 **
* % = S =0. Ak
v Ma, 60
tn,
Lay -8.0 -7.0 -6.0 -5.0 ~-4.0 -3.0
4.0 1.192 1. 175 1.156 1.132 1.098 1.043
3,0 1.191 1.174 1.154 1.120 1.096 1.042
2.0 1. 182 1.165 1.146 1.122 1.088 1.034
1.0 1.130 1.113 1.094 1.070 1.035 0.981
0.0 0.91% 0.897 C.877 0.853 0.818 0.761
-1.0 0.550 0.533 0.513 0.588 0.452 0.391
-2.0 n.291 0.2784 0.255 0.229 0.193 0.129
-3.0 0. 164 n. 147 0. 127 n.102 0.065 0.0
-4.0 0.100 0.083 0.062 0.037 0.0 0.0
-5.0 0.062 0.045 0.025 0.0 0.0 0.0
6.0 0.037 0.020 0.0 0.0 0.0 0.0
‘-7-0 0.017 G.O 090 0.0 0.0 0.0
kO, =0. .—L =3, £33
B,=0-10 =300
*k P = =%, %
5 Mg =1.00
L';vo
Q%' -8.0 -7.0 -6.0 -5.0 -4.0 -3.0
8.0 2.027 1.777 1.584 1.420 1.260 1.088
3.0 2.027 1.776 1.584 1,020 1,260 1.080
2.0 2.025 1,774 1.582 1.417 1.258 1.081
1.0 2.003 1.752 1.559 1.39% 1.236 1.059
0.0 1.869 1.618 1.425 1.261 1.101 0.923
-1.0 1.544 1.293 1.100 0.935 0.774 0.593
-2.0 1.207 0.956 0.763 0.597 0.436 0.251
-3.0 0.960 0.709 0.516 0.350 0.187 0.0
4.0 0.773 n.522 0.329 0.163 0.0 0.0
-5.0 0.610 0.359 0.166 0.0 0.0 0.0
-6.0 0.44Y 0.193 0.0 0.0 0.0 0.0
-7.0 0.251 0.0 0.0 0.0 0.0 0.0
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**U‘B~:O_1O "‘:4:3‘00 * %
*¥k = =1. 4 3 %
5 /"ﬁN 1.40
L,
Lry -8.0 -7.0 -6.0 -5.0 —-4.0 -3.0
4,0 7.946 4772 3.142 2.2C8 1.599 1.141
3.0 7.946 5,772 3,142 2.208 1.599 1.141
2.0 7.946 n.772 3.142 2.208 1.599 1.140
1.0 7.938 4.763 3.138 2.200 1.591 1.132
0.0 7.866 4.692 . 3.062 2.128 1.519 1.059
-1.0 7.615 4,441 2.811 1.877 1.267 0.805
-2.0 7.236 4.062 2.432 1.457 0.886 0.420
-3.0 6.822 3.648 2.013 1.082 0.470 0.0
-4.0 6.355 3.180 1.550 0.614 0.0 0.0
-5.0 5.742 2.567 0.936 0.0 0.0 0.0
-6.0 4.806 1. 631 0.0 0.0 0.0 0.0
-7.0 3.175 0.0 0.0 0.0 0.0 0.0
*%x0p =0.10 - 1y=3.00 *x
#x V= =1. E3
) /"‘PN 1.80
l',vo
Luvy -8.0 -7.0 -6.0 -5.0 ~4.0 -3.0
4.0 55.273 20,626 8.7135 4.181 2.193 1.187
3.0 55.273  20.626 8.735 4.181 2.193 1.187
2.0 55.273  20.626 8.715 §.181 2.193 1.187
1.0 55,270  20.623 8.722 5.178 2.190 1.184
0.0 55,237  20.590 8.699 4.145 2.157 1.151
~1.0 55.071  20.423 8.532 3.978 1.990 0.981
-2.0 54,702  20.055 8.163 3.609 1.619 0.607
-3.0 54,104 19,456 7.565 3.009 1.018 0.0
-4,0 53,090 18,0443 6.551 1.994 0.0 0.0
-5.0 51.100 16,452 4.559 0.0 0.0 0.0
-6.0 46.544 11,895 0.0 0.0 0.0 0.0
-7.0 34.651 0.0 0.0 0.0 0.0 0.0
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% T =0, -—l: =3, ¥ &
BN 0.10 d 3,00
¥ = = % %k
V=10 /uﬁv 0.60
Ly,
N ~-8.0 -7-0 -6.0 -5.0 -4.0 -3.0
4.0 1.088 1.087 1.085 1.081 1.071 1.042
3.0 1.088 1.087 1.085 1.080 1.070 1.041
2.0 1.080 1.079 1.078 1.073 1.063 1.034
1.0 1.027 1.026 1.024 1.019 1.009 0.980
0.0 0.802 0.R01 .0.799 0.795 0.784 0.753
-1.0 0.423 0.u22 0.u20 0.41¢6 0.405 0.372
-2.0 0.159 0.158 0.156 0. 151 D.140 0.106
-3.0 0.054 G.053 0.051 0.046 0.034 0.0
—uoo 04019 0@018 0-016 0.012 0.0 Ooo
_5.0 00007 00006 O.OOL‘ 000 0.0 Ooo
-6.0 0.003 n.002 0.0 0.0 0.0 0.0
-7.0 n.ooM 0.0 0.0 0.0 8.0 0.0
k%o, =0.10 -L;=3.00 **
B0 )
% V=10 /ﬂ”=1_oo e
L',,,o
Lay -8.0 -7.¢C -6.0 -5.0 -4.0 -3.0
4.0 1.258 1.244 1.225 1.197 1. 148 1.055
3.0 1.258 1. 284 1.225 1.198 1.148 1.05%
2.0 1.256 1. 2472 1.223 1. 194 1,146 1.053
1.0 1.233 1.219 1.200 1.172 7.123 1.030
0.0 1.N94 1.080 1. 061 1.032 0.984 0.890
-1.0 0.755 0,741 0.722 0.694 0,545 0.549
-2.0 0.4812 0.397 t.378 0.2350 0. 301 g.203
-3.0 0.210 0.196 0.177 0.148 c.099 0.0
-4,.0 0.112 0.097 D.078 0.050 0.0 0.0
-5.0 0.062 0.047 N.029 0.0 0.0 0.0
-6.0 0.033 0.019 c.0 0.0 D.O 0.0
-7.0 0.014 0.0 0.0 0.0 0.0 0.0




13%

**GhN=O.1Q -Qi=3.00 % ¥

*% V=10 /%%/=1.u0 * %

L'Vo
Ly, 8.0 -7.0 ~6.0 -5.0
4.0 1.985  1.805  1.648  1.491
3.0 1.985 1.805 1.648 1.491
2.0 1084 1.804  1.648 1,490
1.0 1.976  1.796  1.639  1.482
0.0 1.901 1,722 . 1.565  1.407
-1.0 1640  1.861  1.304 1,146
-2.0 1.255  1.075 - 0.918  0.760
-3.0 0.921  0.781  0.584  0.427
-4.0 0.678  0.498  0.341  0.184
-5.0 0.498  0.315  0.158 0.0
6.0 0.337  0.157 0.0 0.0
-7.0 0.180 0.0 0.0 0.0
+40p =0.10  -Ly=3.00 *x
ROV =10 M =1.80 =
L,
i, -8.0 ~7.0 ~6.0 5.0
u. 0 5.970  4.042  2.918  2.165
3.0 5.970  4.082  2.918  2.165
2.0 5.970 4.042 2.918 2.164
1.0 5.968 4.039 2.915 2.162
0.0 5.933  4.005  2.887  2.128
-1.0 5.759  3.831  2.707  1.954
-2.0 5.386 3,458  2.338  1.580
-3.0 4.909  2.981  1.857  1.103
~4, 0 4.392  2.464  1.34C  0.586
-5.0 3.806 1.878 0.7c4 0.0
6.0 3.052  1.128 0.0 0.0
-7.0 1.928 0.0 0.0 0.0
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*%07 =0.10 - ()=6.00 *x
EN d
#% Y= 5 =0.60 **
/8,
L,
by -8.0 ~7.0 -6.0 -5.0 -4,0 -3.0
u.0 1.317 1.301 1.283 1.260 1.226 1.171
3.0 1.315 1. 300 1.281 1.258 1.224 1.169
2.0 1.305 1.289 1.2M 1.2u8 1.214 1.159
1.0 1.242 1,227 1.209 1.186 1.152 1.096
0.0 0.992 0.976 .0.958 0.934 0.900 0.841
-1.0 0.581 0.566 0.547 0.523 0.487 0.425
-2.0 0.298 0,283 nN.264 0.240 0.203 0.138
-3.0 0.163 0,147 0.128 0.104 0,067 6.0
-5.0 0,096 0.081 0.062 0.038 0.0 0.0
-5.0 0.059 0.043 0.025 0.0 0.0 0.0
-6.0 0. 034 0.019 0.0 0.0 0.0 0.0
~7.0 0.016 6.0 0.0 0.0 0.0 0.0
On = - ) =
**0p =0.10 L) =6.00 **
kHx )= =1, 00N %=
5 /4/3” 1.00
L,
Lo, -8.0 -7.0 -6.0 -5.0 -4.0 -3.0
4.0 2.110 1.881 1.700 1.540 1.381 1.200
3.0 2.109 1.880 1.699 1.540 1.381 1.200
2.0 2.107 1.878 1.697 1.537 1.378 1.197
1.0 2.080 1.851 1.670 1.511 1.352 1.170
0.0 1.925 1.696 1.515 1. 355 1.196 1.012
-1.0 1.559 1.330 1.148 0.988 0.828 0.641
2.0 1.190 0.961 0.779 0.619 0.457 0.266
-3.0 0.927 0.698 6.517 0.356 0.193 0.0
4.0 0.735 0.506 0.324 N. 163 0.0 0.0
-5.0 0.572 0.343 0.161 0.0 0.0 0.0
-6.0 0.411 0.182 0.0 0.0 0.0 0.0
_7.0 0.229 Osn 0.0 0.0 0.0 0.0
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%0~ =0, --L‘ =6. * &k
B,=0- 10 4=6.00
* % = = &
V=5 Mg =1.40 *x
L/Vo
tw, -8.0 -7.0 -6.0 -5.0 -4.0 -3.0
4.0 7.661 5.765 3.233 2.328 1.719 1.248
3.0 7.661 4,765 3.233 2.328 1.719 1.248
2.0 7.660 4.764 3.232 2.327 1.719 1.247
1.0 7.651 4.755 3.222 2.317 1.709 1.237
0.0 7.568 8.672 . 3.139 2.234 1.626 1.153
-1.0 7.286 4.390 2.857 1.952 1. 342 0.867
-2.0 6.871 3.975 2.442 1.536 0.925 0.446
-3.0 6.432 3.535 2.002 1.096 C.484 0.0
-4, 0 5.950 3.054 1.520 1.613 0.0 0.0
-5.0 5.338 2441 0.908 0.0 0.0 0.0
-6,0 4. 431 1.534 0.0 0.0 0.0 0.0
-7.0 2-897 0-0 0-0 Onn O-O 0-0
**TﬂN:O‘TO. .—Ld_=6.00 *%
% % = = 3
V=5 Mg =1.80
(a,
L, -8.0 -7.0 ~6.0 -5.¢ ~4.0 -3.0
4.0 51.464  19.884 8.713 4.304 2.320 1.285
3.0 51.464 19,8384 8.713 4.304 2.320 1.285
2.0 51.464 19,884 8.713 4.303 2.320 1. 285
1.0 S1.461  19.887 8.710 4.3C0 2.317 1.282
0.0 51.423  19.843 8.672 B.262 2.278 1.243
-1.0 51.235  19.€55 8.484 4.074 2.090 1.053
-2.0 50.832  19.252 8.081 3.671 1. 685 0.644
-3.0 50.198  18.618 7446 3.035 1.048 0.0
~4.0 49.155  17.575 6.403 1.991 0.0 0.0
-5.0 47.168  15.587 4.4 14 0.0 0.0 0.0
-6.0 42.756  11.175 0.0 0.0 0.0 0.0
-7.0 31.584 0.0 n.0 0.0 0.0 0.0
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kv, = =
O@N 0.10 ld 6,00 #Hx

k% = =
V=10 fp =0.60 *x
Loy -8.0 -7.0 -6.0 5.0 -4.0 -3.0
4.0 1.217 1.217 1.215 1.291 1.200 1.371
3.0 1.217 1.216 1.274 1.210 1.199 1.170
2.0 1.208 1.207 1.205 1. 201 1. 191 1.161
1.0 1.184 1.143 1. 1481 1. 137 1. 126 1.097
0.0 N.883 ©.882 -0.881 0.876 0. 866 0.834
-1.0 0.456 0.455 0.453 0.449 0.438 0.405
-2.0 0.166 0.165 - 0.1814 8. 1%9 0.148 0.113
-3.0 0.054 G.053 0.052 0.047 0.036 0.0
-4.0 0.019 n.018 C.018 0.012 2.0 0.0
-5, 0 0.007 0.006 0.004 0.0 0.0 0.0
-6.0 0.003 D.002 0.0 0.0 0.0 0.0
—700 0-001 Ooo 0.0 0.0 0.0 0.0
**O—EN::O.1O. —‘Ldl:6_00 ook
ok ) = =1, k dc
10 Mg =1.00
L,
Lay -8.0 -7.0 6.0 -5.0 ~4.0 -3.0
4.0 1.374 1.360 1.343 1.315 1.266 1.171
3.0 1.373 1. 360 1.3482 1. 315 1.266 1.171
2.0 1.371 1. 358 1.3480 1. 312 1.26U 1.168
1.0 1.3484 1-.3230 1.313 1. 285 1.236 1.1417%
0.0 1.182 1. 169 1,152 1. 124 1.075 0.979
-1.0 0.801 0,788 0.770 0.743 0.693 0.595
-2.0 0.u25 0.412 0.394 0.366 0.317 0.2186
~3.9 0.210 0.197 0.179 0.151 0.102 0.0
~4,0 0.109 0.095 0.078 0.050 0.0 0.0
-5.0 0.059 0.046 0,028 0.0 0.0 0.0
-6.0 0.031 0.018 0.0 0.0 0.0 0.0
—7.0 0.013 000 0-0 OJO 000 0.0
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Ty =0.10 L] =6.00 **
k% = =1. ¥k
10 Mg =1.40
(e
bary -8.0 -7.0 -6.0 -5.0 -4.0 -3.0
4.0 2.066 1.902 1.754 1.602 1.419 1.175
3.0 2.066 1.902 1.754 1.602 1.419 1.175
2.0 2.066 1.902 1.7%4 1.601 1.419 1.174
1.0 2.056 1.892 1.744 1.591 1.4009 1.164
0.0 1.970 1.806 1.658 1.505 1.323 1.078
-1.0 1.676 1.512 1.364 1.211 1.028 0.782
-2.0 1.254 1.090 0.942 0.789 0.606 0.357
-3.0 0.899 0.735 0.587 n.434 0.251 0.0
-4.0 0.649 0.485 0.337 0.184 0.0 0.0
-5.0 0.U465 0.1301 0.153 0.0 0.0 0.0
6.0 0.312 0.148 0.0 0.0 0.0 0.0
-7.0 0.1€4 0.0 0.0 0.9 0.0 0.0
*%xUp =0.10 <Q£:6.oo *
*% ) = C =1, * ok
1 '/%~,1 80
[/Vo -
Lary -8.0 -7.0 -6.0 -5.0 ~4.0 ~3.0
4.0 5.819 4.060 3.002 2.272 1.688 1.161
3,0 5.819 4.060 3,002 2.272 1.688 1.161
2.0 5,819 4.059 3,002 2.271 1.688 1.161
1.0 5.816 B.056 2.999 2.268 1.684 1. 157
0.0 5.776 4.017 2.960 2.229 1.645 1.118
-1.0 5.581 3.821 2.764 2,033 1. 489 0.921
-2.0 5.173 3.413 2.356 1.625 1.040 0.510
-3.0 Y.666 2.907 1.849 1.118 0.533 0.0
-4,0 4,134 2.374 1.317 0.586 0.0 0.0
-5.0 3.548 1.789 0.731 0.0 0.0 0.0
~6.0 2.817 1.057 0.0 0.0 0.0 0.0
-7.0 1.760 0.0 0.0 0.0 0.0 0.0
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*xUg =0.20 -Qi=3.00 * %
N

** V=5 Mg =0,60 **
N

L.A/o
tw, -8.0 ~7.0 -6.0 -5.0 ~4.0 ~3.0
4.0 1.318 1. 295 1.271 1. 245 1.210 1.157
3.0 1.315 1.292 1.269 1.242°  1.207 1.154
2.0 1.302 1.279 1.256 1.230 1.195 1.141
1.0 1.233 1.210 1.187 1.160 1.125 1.070
0.0 0.975 0.952 . 0.928 0.901 0.865 0.809
-1.0 0.574 0.551 0.528 .0.500 n. 463 0.402
-2.0 0.306 0.283 - 0.259 0.232 0.194 0.130
-3.0 0.178  0.155 0. 131 0.103 0.065 0.0
~4.0 0.114 0.090 0.067 0.039 0.0 0.0
-5.0 D.075 0.052 0.028 0.0 0.0 0-0
-6.0 0.047 0.024 0.0 0.0 0.0 0.0
-7.0 0,023 0.0 0.0 0.0 0.0 0.0
#%0p =0.20 —(;=3.00 **
* ¥ = ' =1,00 *=*
V=5 /f‘ﬂ/v 1
L',vo

L, -8.0 -7.0 -6.0 -5.0 -4.0 ~3.0
4.0 2.261 1.919 1.687 1.506 1.341 1.164
3.0 2.260 1.919 1.686 1.50% 1.331 1.164
2.0 2.257 1.915 1.683 1.502 1.337 1.160
1.0 2.227 1.886 1.653 1.472 1.307 1.130
0.0 2.068 1.726 1.494 1.313 1.147 0.969
-1.0 1.711 1.369 1.137 0.955 0.789 0.607
-2.0 1. 362 1.020 0.788 0.6C5 0.438 0.252
-3.0 1.114 0.772 0.539 0.357 0. 188 0.0
-4.0 0.926 0.584 0.352 0.169 0.0 0.0
-5.0 0.758 n.416 £.183 0.0 0.0 0.0
-6.0 0.575 0.233 0.0 0.0 0.0 0.0
-7.0 0.342 0.0 0.0 0.0 0.0 0.0
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= = e
+%073 =0.20 tj=3.00
% % v = =1, % %
S /UIBN 1.40
Ca,
La, -8.0 -7.0 -6.0 -5.0 -4,0 -3.0
4.0 9.636 5.292 3.320 2.289 1.657 1.197
3.0 9.636 5.292 3.319 2.289 1.657 1.197
2.0 9,635 5.291 3.319 2.288 1.656 1.196
1.0 9,625 5. 281 3.308 2.277 1.646 1.18%
0.0 g .540 5.196 . 3.223 2.19?2 1.560 1,099
-1.0 9,265 4.921 2.948 1.917 1. 285 0.820
-2.0 8.873 4.529 2.555 1.524 0.890 0.142?2
-3.0 8.457 4.113 2.139 1.108 0.472 0.0
~4,0 7.987 3.642 1.669 0.6137 0.0 0.0
-5.0 7.351 3.007 1.033 0.0 0.0 0.0
-£.0 6.319 1.974 0.0 0.0 0.0 0.0
~7.0 n.345 0.0 0.0 0.0 0.0 0.0
= -1 == *x ¥
**UBN 0.20 ‘LCL 3.00
% Y = 5§ =1,80 *x*
B,
La,
iy -8.0 -7.0 ~6.0 -5.C -4.0 -3.0
4,0 71.400 23.779 9,338 4.301 2.237 1.225
3.0 71.400 23.778 9.338 8.301 2.236 1.225
2.0 71.399 23.778 9,338 4,301 2.236 1.224
1.0 71.396 23.77% 9.33% B.267 2.233 1.221
0.0 71.357 23.736 9.296 4. 258 2.194 1.182
-1.0 71.175 23.55%4 9.114 4.076 2.011 0.997
-2.0 70.794 23.173 8,732 3.694 1.628 0.610
-3.0 70.193 22.572 8.131 3.092 1.024 0.0
-4,0 6£9.174 21.552 7.111 2.071 0.0 0.0
-5,0 67.106 19,484 5.042 0.0 0.0 0.0
-6.0 62.068 189,445 0.0 0.0 oo 0.0
-7.0 47.626 0.0 0.0 0.0 0.0 0.0
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ﬂ:*O‘BN:()‘ 20 - ""cf" 3.00 %%

x% V=10 My =0.60 **

N
Ly,
~-8.0 ~T7,0 -6.0 -5.0 -4.0 -3.0
1.204 1.203 1.200 1.196 i. 185 1.157
1.203 1.201 1.199 1.194 1.184 1.155
1.192 7. 190 1. 188 1. 184 1.173 1.17448
1.120 1.119 1.116 1.112 1.101 1.072
0.852 0.851 .0. 848 0.8484 0.833 0.802
0.436 0.434 0.432 o.uz27 0.416 0,383
0.161 D.160 - 0.157 0.153 0.141 0.107
0,055 0.054 0.051 0.047 0.035 0.0
0. 021 0.019 0.017 D.012 0.0 0.0
0.009 0.007 0.005 0.0 0.0 0.0
0.00u 0.002 0.0 0.0 0.0 0.0
N.001 0.0 0.0 0.0 6.0 0.0
**GpN=0.2O —Ld=3.00 # %
% % = = E 3
Vv =10 /ﬁﬁ& 1.00 =%
L',Vo

-8.0 -7.0 -6.0 ~-5.¢C -4.0 -3.0
T.354 1.334 1.311 1.280 1. 230 1.137
1.353 1.3314 1.311 1.280 1.230 1.137
1.350 1.331 1.308 1.277 1.227 1.134
1.320 1.300 1.278 1.247 1. 196 1.103
1. 155 1. 135 1.112 1. 081 1.031 0.937
0.783 0.764 0.741 0.710 0.65? 0.563
0.u27 0.407 0.388 0.353 0.302 0.204
0.224 0.204 0.182 0.150 0.099 0.0
N. 125 0. 108 0.083 0, 051 0.0 0.0
0.074 0.054 0.031 0.0 0.0 0.¢C
0.0u42 0.023 g.0 0.0 0.0 0.0
0.020 0.0 n.0 0.0 0.0 0.0
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*x0g =0.20 -4Q=3.oo * ok

% V=10 Mp =140 %
A

La,,
Ly, -8.0 -7.0 - -6.0 -5.0
n.0 2.162 1.917 1.728 1.555%
3.0 2.162 1.917 1.728 1.555
2.0 2.161 1.916 1.727 1.554
1.0 2.150  1.905 1.716 1.543
6.0 2.062 1.817 . 1.628 1.455
-1.0 1.776 1.531 © 1.342 1.169
-2.0 1.377 1.132 - 0.943 0.770
-3.0 1.041 0.796 0.607 0.434
-4.0 0.797 0.553 0.364 0.190
-5.0 0.607 0.362 0.173 0.0
6.0 0.433 0.189 0.0 0.0
-7.0 0.244 0.0 0.0 0.0
**G‘(g”=0.20 - c[,:3'00 % ¥
A Y = =1, %
10 g =1.80
L}Vo

Loy -8.¢ -7.0 -6.0 -5.0
4.0 7.051 4.416 3.057 2.227
3.0 7.051 4.416 3.057 2.227
2.0 7.051 0.416 3.057 2.226
1.0 7.048 4.412 3.054 2.223
n.o 7.007 4.372 3.013 2.183
-1.0 6.817 4.182 2.823 1.993
-2.0 6. 431 3.796 2.437 1.606
-3.0 5.952 3.316 1.958 1.127
-5,0 5.432 2.797 1.438 0.607
-5.0 4,825 2.190 0.831 0.0
-6.0 3.994 1.359 0.0 n.0
-7.0 2.636 0.0 0.0 0.0
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**(TﬁN=G.2O -4 =6.00 *%

& ) -~ 5 :0, E3
/‘*ﬁ” 60
Lay,
L, -8.0 -7.0 -6.0 -5.90 -4.0 -3.0
4.0 2.013 1.997 1.979 1.957 1.924 1.869
3.0 2.007 1.991 1.973 1.950 1.917 1.862
2.0 1.978 1.962 1.944 1.921 1.888 1.833
1.0 1.837 1.821 1.803 1.780 1.747 1.690
0.0 1.371 1.355 -1.337 1.313 1.278 1.217
-1.0 0.723 0.707 0.689 0.665 n.628 0.560
-2.0 0.336 £.320 0.301 0.277 0.239 0.167
-3.0 0.172 0.156 €.137 0.112 0.074 0.0
-4,90 0.099 0.082 0.064 0.039 0.0 0.0
-5.0 0.060 0.044 0.025 p.0 0.0 0.0
-6.0 0.035 0.019 0.0 0.0 0.0 0.0
-7.0 0.016 0.0 0.0 0.0 0.0 0.0
#%0p, =0.20 - [y=6.00 **
% Y= 5 /u/g,v :1.00 # ¥
z;b
Lay -8.0 -7.0 ~6.0 ~5.0 -4.0 -3.0
4.0 2.712 2.475 2.293 2.134 1.971 1.776
3.0 2.711 2.474 2.292 2.133 1.970 1.775
2.0 2.703 2.465% 2.284 2.125 1.961 1.766
1.0 2.644 2.4807 2.225 2.0E5 1.902 1.706
0.0 2.357 2,120 1.938 1.778 1. 614 1.415
-1.0 1.782 1. 585 1.363 1.202 1.036 0.832
-2.0 1.280 1.042 0.860 0.699 0.531 0.322
-3.0 0.963 0.725 0.543 0.381 0.213 0.0
-14,0 0.751 0.513 0.331 0.169 0.0 0.0
-5.0 0.582 0,345 0.162 0.0 0.0 0.0
-6.0 0.421 n. 183 0.0 0.0 0.0 0.0
—7-0 0-238 0.0 0.0 0.0 0.0 0-0
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**T3 =0.20 - Ly=6.00 **
*%x V=5 =1.40 *x
M8, =1
Lw,
” -8.0 -7.0 -6.0 -5.¢ -5.0 -3.0
4.0 R.332 5.325 3.784 2.875 2.248 1.733
3.0 8.1332 5.325 3.783 2.875 2. 247 1.733
2.0 8.330 5.323 3.781 2.873 2.245 1.731
1.0 8. 308 5.301 3.760 2.852 2.224 1.709
0.0 8.156 5.149 . 3.608 2.699 2.071 1.554
-1.0 7.715 4.708 3.167 2.258 1.628 1.107
-2.0 7.153 4.146 2.604 1.694 1.063 0.536
-3.0 6.624 3.617 2.075 1.165 0.532 0.0
~4.,0 6.095 3.088 1.546 0.635 0.0 0.0
-5.0 5.462 2.454 0.912 0.0 0.0 0.0
-6.0 4.551 1. 543 0.0 0.0 0.0 0.0
-7.0 3.008 0.0 0.0 0.0 c.0 0.0
##Up, =0.20 -1 =6.00 *x
*% Vo= = * %
5 /4/34/ 1.80
Ca,
La, -8.0 -7.0 -6.0C -5.0 -5.0 -3.0
4.0 53.384  20.544 9.3(3 4.877 2.829 1.698
3.0 53.384  20.544 9.303 4.877 2.829 1.698
2.0 53.383 20,544 9.303 L.R76 2.829 1.697
1.0 53.377  20.537 9.296 4,870 2.822 1.691
0.0 53.307  20.467 9.227 4.800 2.752 1.620
-1.0 53.016  20.176 8.935 4.508 2.459 1.324
-2.0 52.472  19.632 8.391 3.963 1.913 0.772
-3.0 51.711  18.871 7.630 +  3.201 1.148 0.0
-4.0 50.568  17.728 6.486 2.056 0.0 0.0
-5.0 48.516  15.675 8.832 0.0 0.0 0.0
-6.0 H4.087  11.245 0.0 0.0 0.0 0.0
-7.0 32 .844 0.0 0.0 0.0 0.0 0.0
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#¥03 =0.20 - (y=6.00 **

#% V=10 Mg =0.60 **

lag
Lay -8.0 ~7.0 -6.C -5.0 ~4,0
4.0 1.922 1.922 1.920 1.916 1.906
3.0 1.919 1.918 1.916 1.912 1.902
2.0 1.894 1.893 1.892 1.888 1.877
1.0 1.749 1.748 1.747 1.743 1.732
0.0 1.265 1. 264 -1.263 1,259 1.2u8
-1.0 0.592 0.591% 0.589 0.585 0.573
-2.0 0.195 D.194 . 0.1792 0.188 0.176
-3.0 0.059 0.058 0.056 0.052 0.039
-4.0 0.019 0.018 0.016 0.012 0.0
-5.0 0.007 0.006  0.004 0.0 0.0
-6.0 0.003 0.002 0.0 0.0 0.0
~7.0 0.001 0.0 0.0 0.0 0.0
**0p, =0.20 -L;{=6.00 %
3 % - =1. ﬂ % &
Y =10 /»%V 1.0
L’,,,o
Ly -8.0 -7.0 -6.0 -5.0 -4.0
4.0 1.961 1.948 1.930 1.902 1.852
3.0 1.961 1,947 1.929 1.902 1.852
2.0 1.954 1.940 1.922 1.895 1.845
1.0 1.892 1.879 1.861 1.833 1,784
0.0 1.595 1.581 1.563 1.536 1.485
-1.0 D.996 D.983 0.965 0.937 0.886
2.0 0.483 0. 470 0.852 .42y 0.3273
-3.0 0.223 0.210 0.192 0.164 0.112
4.0 0. 111 0.097 0.080 0.052 .0
-5.0 0.059 0.046 0.028 n.0 0.0
-6.0 0.032 0.018 0.0 0.0 0.0
C=7.0 0.014 n.o 0.0 n.n 0.0
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%0 =0.20 —()=6.00 **

x% V=10 =1.40 **
B,
L./Vo
La, -8.0 -7.0 -6.0 -5.0 -4.0 -3.,0
4.0 2.581 2.411 2.262 2.109 1.920 1.653
3.0 2.581 2.411 2.262 2.1C9 1.920 1.653
2.0 2.579 2.409 2.260 2.107 1.918 1.651
1.0 2.557 2.387 2.238 2.085 1.896 1.628
0.0 2.1399 2.229 . 2.080 1.927 1.738 1.469
~1.0 1.940 1.770 1.621 1.468 1.278 1.007
-2.0 1.367 1.197 1.049 n.895 n.70% 0.431
-3.0 0.939 0.769 0.620 D.467 0.276 0.0
-4.0 0.663 0.493 0.345 0.191 0.0 0.0
-5.0 0.473 0.302 0.154 0.0 0.0 0.0
-6.0 0.319 0.149 0.0 0.0 n.o 0.0
'_700 0. 170 O—O 0.0 O.‘O 0-0 0'0
#4Up =0.20 _L;[ Z6.00 **
*x - - ¥
Y =10 g =1.80 **
Lag
Loy -8.0 -7.0 -6.0 -5.0 -4.0 -3.0
4.0 6.360 4,534 3.470 2.736 2.132 1.554
3.0 6.360 4.534 3.470 2.736 2.132 1.554
2.0 6.360 4.533 3.470 2.736 2.132 1.554
1.0 6.353 4.526 3.463 2.729 2.125 1.547
0.0 .280 n.454 3.391 2.657 2.053 1.474
-1.0 5.977 4.150 2_087 2.353 1.749 1.169
-2.0 5.425 3.599 2.5136 1.801 1. 196 0.613
-3, 0 4.816 2.989 1.926 1.192 0.586 0.0
-4, 0 4,230 2,404 1.341 0.6(6 0.0 0.0
-5.0 3.624 1.798 0.73% 0.0 0.0 0.0
-6.0 2.890 .  1.063 0.0 0.0 0.0 0.0
~7.0 1.826 0.0 c.0 0.0 0.0 0.0
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*%0Q =0,30 -£y=3.00 *x

% )V = 5 /Mﬂw_zo.ﬁﬂ *%

Lay,
-8.0 ;—7n0 —6-0 —5.0 —U.O _300
1.5886 1.548 1.%16 1.485 T.4489 1.397
7.580 1.541 1.510 1.479 1.4842 1.391
1.553 1.515 1.1483 1.45%2 1.416 1.364
1.441 1.602 1.371 1.340 1.303 1.250
1.094 1.055 -1.024 0.3992 0.954 0.898
0.625 0.586 0.5%4 0.522 0.u82 0.421%
0.339 0.300 - 0.268 0.236 0.195 0.131
0.210 c. 171 0. 139 0.106 0.065 0.0
0,145 0.106 - 0.074 0.081 0.0 0.0
0.104 0.065 0.033 0.0 0.C 0.0
0.071 0.032 0.0 0.0 0.0 0.0
0.039 0.0 0.0 0.0 0.0 0.0
#%0p =0.30 -(y=3.00 **
% o }) - =%. k3
5 /uﬁv 1.00
(,

-B. 0 -7.0 -6.0 -5.0 -4.0 -3.0
2.783 2. 209 1.891 1.678 1.503 1.327
2.782 2.207 1.889 1.677 1.502 1.325
2.774 2,200 1.882 1.669 1.485 1.318
2.727 2. 153 1.835 1.622 1.447 1.270
2.514 1.94C 1.621 1.408 1.233 1.0548
2.098 1.523 1.205 0D.921 0.814 0.631
1.727 1.152 0.833 0.619 0.442 0.254
1. 476 0.9%1 0.583 0.3€8 0.190 0.0
1.287 0.712 0.394 0.179 0.0 0.0
1.108 D.533 0.215 0.0 0.0 0.0
0.894 0.319 0.0 0.0 0.0 0.0
0.575 0.0 c.0 0.0 0.0 0.0
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#x0p =0.30 ~(;=3.00 **

% - = *
*%x /uﬁv 1. 40 *x*
-8.0 -7.0 ~6.0 -5.0 -4.0
13.726 6.373 3.656 2.441 1.769
13.726 6.373 3.6%56 2.440 1.769
13.724 6.371 2.654 2.439 1.767
13.707 6.354 3.637 2.422 1.750
13,594 6.241 3.524 2.308 1.637
13.275 5.922 3.2¢C5 1.989 1.316
12.859 5.506 2.788 1.572 0.898
12.439 5.087 2.369 1.152 0.477
11.965 4,612 1.834 0.677 0.0
11.290 3.936 1.218 0.0 0.0
10.072 2.719 0.0 0.0 0.0
7.354 0.0 0.0 0.0 0.0
**Ohvzo.3o ~Ly=3.00 *x
*x V= § /“Av:1-80 o
~-8.0 -7.0 -6.0 -5.0 -4.0
1171.€53 3n.u82 10.482 4.517 2.317
111.653 30.482 10.482 4.5177 2.317
111.652 30.a81 10.482 4,516 2.316
111.647 30.476 10.476 3.511 2.3M
111.595 30.424 10.425 h,459 2.259
111.384 30.213 10.214 4.248 2.047
110.981 29.810 9.810 3.844 1.642
110.376 29.205 2.205 3.238 1.034
109.347 28.176 8.175 2.207 0.¢
107.144 25.%72 5.970 0.0 0.0
101.177 20.004 .0 c.0 0.0
81.177 0.0 0.0 0.0 0.0
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#%0g =0.30 -~ 1y=3.00 **

¥ V=10 Mg =0.60 *+

L"Vo

(ay -8.0 -7.0 -6.0 -5.0 ~4.0 -3.0

4.0 1.448 1046 1.443 1.u438 1.426 1.399

3.0 1.44¢8 1.442 1.439 1.434 1.423 1.395
2.0 1.422 1.420 1,417 1.412 1.401 1.373

1.0 1.307 1.304 1.301 1.296 1.285 1.257

0.0 0.9U6 0.984 .0.941 0.936 0.924 0.894
-1.0 0.458 0.456 0.452 0.447 0.u435 0.402
-2.0 0.166 0.163 - 0.1697 N.155% 0. 142 0.108
-3.0 0.059 0.056 0.052 0.047 0.035 0.0
-4.0 0.024 0.021 D.018 0.013 0.0 0.0
-5.0 0.011 0.009 0.006 0.0 0.0 0.0
-6.0 0.005 0.063 0.0 0.0 0.0 0.0
-7.0 0.002 0.0 0.0 0.0 0.0 0.0

x% Y =10 ,anlzw.co g
g%

Lay -8,0 -7.0 -6.0 -5.0 -4.,0 -3.0

4.0 1. 548 1.516 1.485 1.4849 1.396 1.303
3.0 1.547 1.515 1.484 1.448 1.395 1.302
2.0 1.541 1.5009 1.478 1.442 1.389 1.296

1.0 1.492 1.460 1.429 1.393 1.340 1.247
0.0 1.271 1.239 1.208 1.172 1.118 1.024
-1.0 0.837 0. 805 0.774 0.738 0.684 0.588
-2.0 0.459 0.426 0.395 0.359 0.305 0.206
-3.0 0.254 0.221 0.19n n,154 0.100 0.0
-4.0 0.154 n.122 0.091 0.0%4 0.0 0.0
-5.0 0.100 0.067 0.037 0.0 0.0 0.0
-6.0 0.063 0.031 0.0 0.0 0.0 0.0
-7.0 0.033 n,0 0.0 0.0 0.0 0.0
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*x0g =0.30 -q1=3.00 *%

** Y =10 /“/3”2‘31.110 &k

La,

”» -8.0 ~7.0 -6.0 -5.0 -4.0 -3.0
4,0 2.550 2.140 1.882 1.679 1.479 1.239

3.0 2.5U9 2.140 1.881 1.678 1.478 1.239
2.0 2.548 2.138 1.880 1.677 1.477 1.238
1.0 2.530 2.120 1.862 1.659 1.459 1.220
0.0 2.413 2.003 . 1.74% 1.542 1.342 1.102
-1.0 2.080 1.671 1.412 1.209 1.009 0.767
-2.0 1.657 1.247 - 0.989 0.786 0.585 0.341
~3.0 1.319 0.909 0.650 0.4487 0. 246 0.0
-4.0 1.073 0.663 C.4(C5 0.201 0.0 0.0
~5.0 0.871 0.462 0.203 0.0 0.0 0.0
-6.0 0.668 0,258 0.0 0.0 0.0 0.0
-7.0 0.410 0.0 0.0 0.0 0.0 0.0

**0p =0.30 -L)=3.00 *x
& ¥ =10 ="1. s e
V=10 //"/3” 1.80
zﬁb

L, -8.0 -7.0 -6.0 -5.0 -4 .0 -3.0

4,0 9,637 5.185 3.318 2.340 1.697 1.179

3.0 9.637 5. 185 3.318 2.380 1.697 1.179

2.0 9.636 5.185 3.318 2.340 1.697 1.179

1.0 9,631 5.179 3.312 2.334 1.697 1.173

0.0 9.577 5,126 3,259 2.281 1.638 1.119
-1.0 9,357 4.906 2,039 2.061 1.418 0.898
-2.0 8.949 4,498 2.630 1.6%52 1.009 0.487
-2.0 8.466 4,01t 2.147 1.169 0.525 0.0
-4,0 7.942 3.490 1.623 0.645 0.0 0.0
""'51:0 7.297 2.8”6 0.978 0-0 0.0 0.0
_6.0 6-319 1.867 OPO OGD 0.0 000
-7.0 4.451 0.0 0.0 0.0 0.0 0.0
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*#Tg =0.30 -1 =6.00 **

*% Y= § /uﬂ,v =0.60 *x

4%

Lay -8.0 -7.0 -6.0 -5.0  -4.0 -3.0

4.0 4.559 4,543 4.526 4,506 4.479 4.436

3.0 4.502 u,486 4.869 4,849 8,421 4.378

2.0 n.332 4,316 u.299 4.279 4,251 4,205

1.0 3.779 3.763 3.746 3.725 3. 695 3.644

0.0 2. 462 2.445 2.428 2.405 2.371 2.307
~1.0 1.070 1.053 1.035 1.011 0.972 0.894
-2.0 0.41% nD.3¢8 - 0.380 0.355 n.315 0.230
-3.0 0.189 0.172 0.153 n.128  Nn.087 0.0
-4.0 0,102 0.085% n.066 0.041 0.0 c.0
-5.0 0.061 0.048 0.025 0.0 0.0 .0
-6.0 D.036 0.019 0.0 0.0 0.0 0.0
-7.0 0.017 n.C 6.0 0.0 0.0 0.0

%% =0.30. féizﬁ.OO * %
- w% V) = =1. 3%
5 /Q@V 1.00
La,

tny -8.0 -7.0 -6.0 -5.0 -4.0 -3.0

L.0 4.622 4,370 4.188 4.029 2,862 3.647

3.0 n.611 4.360 u,177 4.018 3.851 3.637

2.0 4.564 4,312 4,130 3.971 3.803 3.588

1.0 4.334 4,082 3,900 3.7480 3.572 3. 355

0.0 3.531 3.279 3.096 2.936 2.765 2.540
-1.0 2.306 2.054 1.871 1.7C9 1.535 1.297
~-2.0 1.463 1. 211 1.027 0.865 0.687 0.842
-3.0 1.028 0.776 0.592 0,429 0. 250 0.0
-ﬂ.O 0.779 0'527 003“2 00179 0.0 0.0
-5.0 0.60D 0.3u8 0.163 0.0 0.0 0.0
-6.0 0.437 0.184 0.0 N.0 0.0 0.0
-7.0 0.253 0.0 0.0 9.0 0.0 0.0
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#*0p =0.30 -idze.oo * %

kok ) = 5 /{ﬂ,‘, ::1.[40 3 d

L,

Ly, -R.0 -7.0 -6.0 -5.0 ~-4.0
4.0 10.076 6.873 €.318 4.404 3. 748

3.0 10.074 6.872 5.316 4.403 3.743

2.0 10.063 6.860 5.305% 4.391 3.731

1.0 9.980 6.778 5.222 4.309 3.6u48

0,0 9.558 6.355 4,800 3.886 3.224
-1.0 8. 628 5. 1425 2,869 2.954 2.289
-2.0 7.691 4.488 . 2,931 2.015 1.348
-3.0 6.970 3.767 2.210 1.292 0.623
-4.0 6.350 2.147 1.589 0.672 0.0
-590 5.679 2;“76 C.918 0.0 0-0
~6.0 4.762 1.558 .0 0.0 0.0
-7.0 3.204 0.0 0.0 0.0 0.0

**Qp =0, 30 ~Ly =6.00 *x
*¥% W = 5 /uﬂ,v =7.80 %%
L--'Vo

La, -8.0 -7.0 ~6.0 -5.0 -4.0

4.0 57.150  22.086 10.727 6.272 4. 114

3.0 57.150  22.085  10.727 6.272 4.113

2.0 S7.148  22.C83 10,724 6.27C 4.111

1.0 57.122  22.057  10.699 6.284 4.085

0.0 56.931  21.866  10.5(7 6.052 = 3.893
~1.0 S6.321 21,256 9.897 5.442 3.280
-2.0 55.422 20,357 8.997 4,541 2.376
-3.0 54.390 19. 324 7.964 3.507 1.339
~u.,0 53.057  17.991 6.631 2.17 0.0
-5.0 50.889 15.823 n.ug2 0.0 0.0
-6.0 46.431 11,364 0.0 0.0 0.0
~7.0 35.069 0.C 0.0 0.0 0.0
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% & = L =6. %k
Op,=0.3C —¢;=6.00
* = - A&
** V=10 pp =0.60 **
La,
5”1 -8.0 -7.0 -6.0 -5.0 -4.,0 -3.0
4.0 4.485 4. 484 4.483 4.479 8,471 4.548
3.0 4,454 4.453 5.457 B.,4u8 4,439 4.816
2.0 4,312 4,311 4,309 4.3C6 4.297 4.274
1.0 3.744 3.743 3.741 3.738 3,729 3.702
0.0 2.375% 2.370 . 2.372 2.368 2.358 2.323
-1.0 0.928 0.927 0.925 0.921 0. 909 0.861
-2.0 0.256 0.255% 0.253 0.249 0.236 0.190
-3.0 0.067 0,066 0.064 0.060 0.047 0.0
-4.0 0.020 0.019 0.017 0.013 0.0 0.0
-5.0 0.007 0.006 0.004 0.0 0.0 0.0
-6.0 0.003 0.002 0.0 D.0 0.0 0.0
-7.0 0.001 0.0 C.0 0.0 0.0 0.0
**0p =0.30 - ;:[:6'00 Kk
% U =10 g =1.00 **
LAy,
Cay -8.0 -7.0 -6.0 ~5.0 ~4,0 ~-3.0
5.0 3.9860 3,846 3.828 3.8C1 3,749 3.636
3.0 3.855 3.840 3.822 3.795 3.744 3.630
2.0 3.815 3.800 3.782 3.755 3.703 3.590
1.0 3.578 3,563 3,545 3,518 3,466 3.35%
0.0 2.744 2.729 2.711 2.684 2.631 2.512
-1.0 1.470 1. 455 1.437 1.409 1.356 1.229
-2.0 0.607 0.592 0.574 0.546 0,492 0.361
~3.0 0.248 0.234 0.216 0,188 0. 133 0.0
-4.0 0.116 0.101 0.082 7.055 0.0 0.0
-5.0 N.061 0.046 0.028 0.0 0.0 0.0
-6.0 0.032 0.018 9.0 0.0 0.0 0.0
-7.0 N. 014 0.0C 0.0 0.0 0.0 0.0
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4‘4 =6.00 *x

*% Y =10 /uﬁ” =1, 40 *x%k

La,
[,”1 —8.0 -7.0 -6.0 _5‘0 —uno -3¢0
4.0 4.059 3.878 3.728 3.574 3.375 3.066
3.0 4.058 3.877 3.727% 3.573 3.374 3.065
2.0 n.0u8 3.867 3.71¢ 3.563 3.364 3.055
1.0 3.963 3.782 3.632 3.478 3.279 2.969
0.0 3.525 3.344 - 3.194 3.040 2.840 2.528
-1.0 2.556 2.375 2.226 2.071 1.870 1.553
2.0 1.600 1.420 1.27¢ 1.115 0.913 0.591
-3.0 1.013 N.832 0.683 0.527 0.325 0.0
-4.0 N.688 0.507 0.358 N,202 0.0 0.0
=-5.0 0.u486 0.305 0.15% 0.0 0.0 0.0
-6.0 0.330 0.150 0.0 0.0 0.0 0.0
-7.0 0.181 0.0 0.0 0.0 0.0 0.0
0y = —ty =
#*Tp =0.30 -~ (;=6.00
£k Y = =1.80 **
10 Mg, =1.80
Lu,

i, -8.0 —7.0 ~6.0 ~5.¢ -4.0 3.0
4.9 7.694 5.750 4.677 3.937 3.298 2.625
3.0 7.694 5.75¢0 4.677 3.937 3.298 2.625
2.0 7.692 5.748 4.674 3.9135 3.296 2.623
1.0 7.665 5.721 4.648 3.908 3.269 2.596
0.0 7.467 5.523 4.45n 3.710 3.071 2.396
-1.0 6. 831 4.887 3.814 3.074 2.435 1.757
=-2.0 5.917 3.973 ©2.900 2.160 1.519 0.836
-3.0 5.086 3.142 2.089 1.329 0.688 0.0
-4.0 4,400 2.456 1.382 0.642 0.0 0.0
-5.0 3.758 1.814 0.740 .0 0.0 0.0
~-6.0 3.017 1.073 C.0 0.0 0.0 0.0
~-7.0 1.944 0.0 0.0 0.0 0.0 0.0







