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ABSTRACT

A procedure of analysis is presented for determining
the dynamic instability and response of framed structures
subjected to pulsating axial loads, time-dependent lateral
forces, or foundation movements. Included in the analytical
work are the instability criterion of a structural system,
the finite element technique of structural matrix formula-
tion, and the computer solution methods.

Dynamic instability is defined by a region in
relation to transverse natural fregquency, longitudinal
forcing frequencyr.and the magnitude of axial dynamic force.
The axial_pulsating load is expressed in terms of static
buckling locad for ensuring that the applied load is not
greater than the buckling capacity of a structural system.
Conseqguently, the natural frequency and static instability
analyses are also included. For static instability analysis,
both the concentrated and uniformly distributed axial loads
have been investigated.

The displacement method has been used in this research
for structural matrix formulation for which the elementary
matrices of mass, stiffness, and stability have been
developed by using the Lagrangian equation. The system
matrices have been formulated by using the equilibrium and
compabitibility conditions of the constituent members of

a system,

Two numerical integration technigues of the fourth-order
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Runge~-XKutta method and the linear acceleration method have
been employed for the elastic and elasto-plastic responsé
of continuous beams, shear buildings, and frameworks. The
general considerations are the bending deformation, p-A4
effect, and the effect of girder shears on columns. For the
elasto~plastic analysis, the effect of axial load on plastic
moment is also included.

A number of selected examples are presented, and the
results are illustrated in a series of charts, tables, and
figures in which the significant effect of pulsating load

on the amplitude of transverse vibration can be observed.
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I. INTRODUCTION

In recent years the theory of dynamic instability has
become one of the newest branches of the structural dynamics
and mechanics of deformable solids. The problems, which
have been examined on the basis of the classical theory of
vibrations and structural dynamics, emphasize the response
history resulting from lateral, time-dependent excitations.
It is known, when a rod is subjected to the action of
longitudinal compressive force varying periodically with
time, that for a definite frequency the transverse vibra-
tions of the rod will have a rapidly increasing amplitude.
Thus, the study of the formation of this type of vibration
and the formulation of the methods for the prevention of
their occurence are necessary in the various areas of
mechanics, transportation, industrial construction, and

structures excited by earthguakes.

A. Purpose of Investigation

The purpose of this study has been to develop an ana-
iytical method for determining the behavior of dynamic in-
stability and to study the response of structural systems
subjected to longifudinal pulsating loads and lateral dyna-
mic forces or foundation movements. The mathematical formu-
lation, which is general enough for computer analysis of
large structural systems, considers geometric and material

nonlinearity.






B. Scope of Investigation

The scope of the study may bhe briefly stated as the
derivation of instability criteria and the development of
finite element formulation of structural matrices and the
numerical methods of computer sclution.

In Chapter 1I1, the basic formulation of mass matrix,
stiffness matrix, and stability matrix is presented by using
the energy concept and finite element technique. The govern-
ing differential equation is expressed in terms of system
matrix, which is formulated on structural geometric and
equilibrium conditions.

In order to evaluate the dynamic instability regions,
it is convenient to express the axial load in terms of static
buckling load and the longitudinal forcing frequency in terms
of natural frequency. Thus, in Chapter IV, the techniques
for finding natural frequencies, buckling loads, and insta-
bility regions are presented. For the buckling load case,
the uniform axial load is also investigated.

Two numerical integration techniques for dynamic re-
sponse that use the fourth-order Runge-Kutta method and the
linear acceleration method are presented in Chapter V in
which a comparison of numerical solutions shows the accuracy
of the presented methods.

Chapter VI contains examples of the dynamic response of
various types of frameworks subjected to axial pulsating loads,

lateral forces, or foundation movements.






The elasto-plastic case 1s given in Chapters VII and
VIII for the formulation of member matrices and system
matrix, plastic hinge rotations, and numerical solutions.

Two typical computer programs of elastic and elasto-
plastic analyses of general types of rigid frames are

given in the Appendix.






II. REVIEW OF LITERATURE

A. Structural Dynamics With Longitudinal Excitations

The behavior of structural systems subjected to both
lateral and longitudinal excitations is little Xnown. Most
of the research work has been concentrated on the problem
of an elastic column subjected to a periodically varying
axial load for the purpose of searching for the stability
criteria of double symmetric columns (1) as well as non-
symmetric columns (2).

Sevin E. (3), among other investigators, studied the
effect of longitudinal impact on the lateral deformation
of initially imperfect columns. Recently, Cheng and Tseng
{5) investigated the effect of static axial locad on the
Timoshenko beam-coclumn systems.

It seems that very little work has been done on either
the criteria of dynamic instability or the response behavior

of framed structures subjected to dynamic lateral and

longitudinal excitations.

B. Structural Dynamics Without Longitudinal Excitations

The conventional structural dynamics problems have been
generally solved by using three methods: lumped mass,
distributed mass, and consistent mass. Before computer facil-
ities were available, the lumped mass model with a finite

degree of freedom had been extensively studied by a number






of investigators. With the advent of computers, research
work on multistory structures was initiated by several
investigators, namely N.M., Newmark, R.W. Clough, J.A. Blume,
{6,7,9-12,17), and later by Cheng (13), E.L. Wilson, aﬁd
I.P. King, (14,15,16).

For the distributed mass system, the early research
work was limited to single members (18) or one-story frames
(19) . Later Levien and Hartz (20) used the dynamic flexibility
matrix method to solve problems of one- and two-story rigid
frames, and Cheng (4,13,29) solved free and forced vibrations
of continuous beams and rigid frames by using the displace—‘
ment method. The dispalcement and flexibility methods cited
above may be considered exact in the sense that the members
must be prismatic and that the structural joints are rigid.

In recent years, the finite element technique has been
extensively used for solving structural dynamics problems.
The method was initially proposed by Archer (21) for plane
frameworks. Cheng (22) recently extended the technique to
solve space frame problems. The model of the method is
similar to the distributed mass system. The equation of
motion, however, is expressed in an explicit form for which
the solution effort is much less than that of the distribu-~
ted mass model.

The fundamental behavior of the dynamic response of elasto-
plastic systems can be found in standard texts (23,24). The

elasto-plastic analysis method of beams and one-story frames






with distributed mass has appeared in references (25,26)
in which the method is limited to simple structures.

For large structures, typical studies can be found in
references (27,28). Berg and Dadeppo (27) investigated the
response of a multistory elasto-plastic structures subjected to
lateral dynamic forces, and Walpole and Sheperd (28) studied
the behavior of reinforced concrete frames subjected to

earthgquake movements.






III. MATRIX FORMULATION OF ELASTIC STRUCTURAL SYSTEMS

The displacement matrix method has been used in the
structural system formulation for static and dynamic
instability analysis and dynamic response. The formulation
involves deriving differential eéuations, element matrices
of stiffness, mass, stability, and the matrix of general
structural systems. The structures are plane frameworks
in which the joints are rigid and the constituent members
are prismatic. As shown in Fig. 3.1, the structure is
subjected to time-dependent axial forces, N(t), and lateral
dynamic lead, F(t), or foundation movement, G(t), and may
have a superimposed uniform mass, m, and a concentrated
mass, M, in addition to its own weight.

For the purpose of investigating large systems, the
shears transmitted from girders to columns are taken into
consideration,and the members are assumed to héve bending

deformation only.

A. Governing Differential Egquation
Consider an arbitrary member of a structural system as
shown in Fig. 3.2. The governing differential equations

for such an element can be obtained by using the Lagrangian

equation
d ,oT 9T U IV . AW
= (z=) - + - =3 =Q. (3.1)
dt 'aqg. qu qu Sqi eqy i
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in which
T = kinetic energy
U = strain energy of bending
V = potential energy done by axial force
Qi = generalized forces
q; = generalized coordinates at node 1 associated with
Qi
éi = generalized velocities
W = work done by generalized external forces.

Let ¢ (x) be the shape function and qi(t) be the time
function of the beam motion, then the displacement of the beam

can be expressed as

(t)o, (x). (3.2)

[ ]
o}

y(x,t) =

The kinetic energy for lateral displacement of the

member is

1,
T = & m{%{—i}—(-’——t-:—)*]zdx (3.3)

where m is the mass per unit length.
The strain energy for bending of the member may be

represented by

L 2

U= %/ EIIa (x't)lzdx (3.4)
%’

0
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where E, and I are Young's elastic modulus and moment of

inertia, respectively.

The potential energy for the longitudinal force is

L
Vo= & N(t){31§§45112dx

(3.5)
0
By the substitution of Eg. (3.2), one may obtain
n n dqg. dq
T=%2% % "EE'"Elf i (¥)e5 (0 ax (3.6)
i=1 j= 0
n n L dZQ)l(X) d2¢ (X)
U=%72 I q.q,JfEI 1 ax (3.7)
n d¢; (x) d¢4(x)
v o=k T ququm( ) —= J (3.8)
i=1 j=1 dx dx
0
or
nn . . - .
T 21 ;}mijqiqj s{q} [mij]{q} (3.9)
nn 7
= X = L
n n T
= 1 h = L '

where
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-~

m o= / mo; (x)¢ (x)ax (3.12)
0
L n 113

kjy = / EI¢; (x) 65 (x)dx {3.13)
0
L ' ,

' =

S{ f N(t)(i)i(x)cpj(xl)dx. (3.14)
0 ,

To include the concentrated masses in the formulation

of m,

5 let us consider masses Mk(xk) acting at the

positions Xy s k=1,2,+++,r, then Eg. (3.12) should be expressed

as

L
= f m¢i(x)¢j(x)dx +

r
5
0 k=

mij le(xk)¢i(xk)¢j(xk). (3.15)

The work done by external forces acting at the general-
ized coordinate d; is

n L

P
W= D LI R ekl 4 [ £ 0)e; (dxlg (3.26)
=t =t 0

where Fj(xj) is the concentrated forces acting at positions

¥

57 j=1121.°'rpo

Let N(t)=(u+8cos@t)NO, then Eg. (3.14) becomes

s' = (ot+Bcosbt)s, | (3.17)
i3 i3
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where

L 1 1
s = f N0¢i(X)¢j(X)dX~

0

By substituting Egs. (3.9, (3.10), (3.11), and {3.17)
into Eg. (3.1) and by performing the operation shown in
Eg. (3.1), the following governing differential equations of

motion can be obtained:
[mij]{a} + [kij]{q} - (u+80058t)[sij]{q} = {f} (3.18)

in which the matrices [m,.], [kij], and [sijl are the matripes

i1
of mass, stiffness, and szability defined in Egs. (3.12), (3.13),
and (3.17), respectively. The term {f} is the vector of equi-
valent generalized external forces. All the elements in-[mij],
[kij}, and [sij] are derived in the next section.

For a structural system, the member matrices are
assembled together by using the equilibrium and continuity
conditions at nodal points and are discussed in Section

C. Similar to Eq. (3.18), the system matrix may be written

as

M] X} + [K1{X} - (a+BcosOt)(81{x} = {F} (3.19)

in which {X} represents global coordinates; [M]}, [K], and [S]

are the matrices of total structural mass, stiffness, and
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stability, respectively, and may be formulated through

the procedure of displacement method. Eg. (3.19) is

the governing differential equation of motion to be used in
this study of the dynamic instability and dynamic

response.

B. Derivation of Members Mass, Stiffness, Stability Matrices

For the displacement method, it is generally preferable
to formulate the mass matrix, stiffness matrix, and stability
matrix of a typical member on the basis of a set of defined
local coordinates; then, the system matrices can be formulated
by transfering local coordinates to global coordinates by
using equilibrium and compatibility conditions.

Let us consider a typical bar shown in Fig. 3.3 in
which g (i=1,2,3,4) are local coordinates in the positive
direction, and Qi (i=1,2,3,4) are positive local generalized
forces corresponding to gq;- The compressive axial force ,
N(t) is considered to be positive. The displacements, 3
are due to the application of the generalized forces Qi'

The displacement y({x,t) of the beam section at point , X,
and time, t, may be written as

4

yix,t) = ¥ g (t)e (x)-. (3.20)
i=1 i i

If bending deformation is considered only, then the differ-

ential equation of beam deflecticn is ¢"" (x)=0 for which






v
P Q°
f N
a4 a,
1 22
No "“ﬁ\ t‘é“
0, C4

Fig. 3.3 Generalized Local Coordinates and
Generalized Forces for a Typical Beam

14
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the solution may be expressed in cubic polynomials

2 3

¢ (x) = a; + asX + a +oagx’.

3X
This is the shape function in Eg. (3.20). Let the coordi-

nates, dy s in Fig. 3.3 be displaced, one at each time,

for a unit displacement; then ¢ (x) becomes

o (%) = (x-2x*/L+x /L) (3.21)
¢, (x) = (x*/L%-x"/L) | (3.22)
o5(x) = (-1+3x*/L%-2x%/L°) (3.23)
b, (x) = (3x%/L2-2x°/L°). (3.24)

Substituting Egs. (3.21 to 3.24) into Egs. (3.12 to 3.14)
and performing the integration over the bar length, we can

obtain [m, . ), [k..], and [s..] as follows:

ij ij ij
[ 4mL°® -3mL°® -22mL? 13mL2 1T ..
9 420 420 420 420 93
-3mL°? 4mL°® 13mL? -22mL2 .
9 420 420 420 420 92
? = < %(3.25)
o -22mL? 13mL2 156mL ~54mL 5
3 420 420 420 420 3
0 13mL2 -22mL? -54mL 156mL .
4 420 420 420 420 9y
i jm I )
[m..] —

13






[ ] [4EI 2EL
9 L L
25T 4ET
J 9, 5 L
-6EI ~6ET
3 L? L2
-6ET -6EI
Yy FEE L?
1kt
L [kij]
P 2L -L
9y 15 30
0 -L 2L
2 30 15
e,
-1 -1
93 10 10
0 -1 et
4 10 10
L iP L
{Sij

Note that Ql, Q. and Q3, Q

2 4

shears, respectively; ql, q2

-6EI -6EI]
L2 1.2
-6EI -6EI
L? L?
12EI 12EX
L® L’
12EI 12E1
L? L?
-1 1]
10 10

i
-1 -1
10 10
6_ 6_
5L 5L
6 6
5L, 5L

and q3, q4 correspond to

q3

correspond to moments and

16

(3.26)

(3.27)






17

rotations and displacements, respectively; and él’ ﬁz and §3
’

§4 are accelerations due to rotations and displacements,

respectively. For convenience, let us rewrite Egs. (3.25,

3.26, 3.27) in the following condensed forms:

) [ ‘ ( )
Q, [MMR] fmy) || G
_— S 1: _____ _ (3.28)
! ..
L Qu |, ([MVRI JMvyl )| g
roN g ( )
Q (MR} IR || qy
D S S SR G (3.29)
Qy Ik | IXVR] I[RVY] || g
J - I
[ 3 ] [ 3
Q. [sMR] j{smy] || a_
U S 1: ..... - (3.30)
i
Q, JE [SVR] HsvY] || g |

in which the subscripts m, k, and p signify that the moments

{Qm} and shears {QV} are associated with {mij
[sij], respectively. The subscripts r and s signify the joint

1, [kij], and
rotations and displacements, respectively.

C. System Matrices of Mass, Stiffness, and.Stability

The displacement method of formulating structural
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system matrix has been well documented (31,32). Following
Cheng's recent work (13), one can rewrite the relationship
between the generalized external forces, {F},and generalized

external displacement, {X},as

| (2,1 [KVR] [A]

[ [2q] [SMR] [Ag]T | [An] [SMY] (A1 T) [x,
e | {-- ‘ (3.31)
[Ay] [SVRI A1 | 1A,) [8VY] [a,17] [%g! .

Knowing {F .} and {F.}, one canfind {X,}, {Xg}, {Xz}, and
{Xs} from Eq. (3.31) by using the numerical integration
presented in Chapter V. Consequently, the member end

moments and end shears can be obtained as follows:
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[MMY] (A, T e

[MVR]{AV]T %

S—
3]

[kmMy] (A 17

[suR] [A_]" ; (smy) a1 ) { x_
—|mm—m————- ;—é —————————— ; < -= = (3.32)
[SVRI(AL]T | [SVYIA 10 | U X )
in which
[Am] = equilibrium matrix relating internal moments
to external nodal moments;
[Av] = equilibrium matrix relating internal shears
to external nodal fofces;
[Fr} = external nodal moments;
[FS] = external nodal forces;
[X,] = global rotations;
[Xg] = global displacements;
[ﬁr] = acceleration due to global rotations;
[ES] = acceleration due to global displacement;
[A,g] = diagonal matrix involves the inertial forces

due to joiﬁt displacements; and

T = transpose of matrix.
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Egs. (3.31, 3.32) have been explained in detail in

SUBROUTINE ASATA, ASATB, SATMV shown in the Appendix.

D. Shear Building Subjected to Lateral Forces

In many practical cases, the girder stiffnesses compared
with those of columns are sufficiently large. Consequently,
the structural joint rotations are very small and only
the sway displacements are significant. By neglecting the
global coordinates corresponding to the structural joint

rotations, one can rewrite Eg. (3.31) as

(MI{X .} + [K}{x_} - (s}{x } = {F_) (3.33a)
where

M1 = (A, [MVY][A,]T + [Apg)

[K] = [A,)IKVY)[A,]7T

[S] = [A,1[SVY][Ay]T .

When the axial lecad 1is N(t):(a+Bcoset)N0, then Eq. (3.33a)

becomes

M1 {X } + [K}{X )} - (a+Beoset)(S1{X } = {F_}-  (3.33b)
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IV. STATIC AND DYNAMIC STABILITY

A. Boundary of Dynamic Instability

Wwhen a structural framework is subjected to a transverse
pulsating load, the framework will generally experience
forced vibration with a certain frequency of the excitation.
The amplitude of the vibration becomes larger and larger
when the forcing frequency apprcaches the natural
frequency of the vibrating system. The behavior is called
resonance. However, when the frame is subjected to a pulsating
axial load as shown in Eg. (3.19),an entirely different type
of resonance is observed. The resonance occurs when
a certain relationship exists between the natural frequency,
the frequency of longitudinal forces and their magnitude.
This resonance 1is called parametric resonance. The behavior
of parametric resonance may be studied by using the
governing differential eguations of motion, Eg. (3.19).

Let us consider the time dependent axial forces only,

then Eq. (3.19) becomes

M]{X} + (IK] - (a+Bcosbt) [S]1]{X} = 0O (4.1)

which represents a system of second-order differential equa-

tions with the pericdic coefficient of the known Mathieu-

Hill type. It has been observed that the Mathieu-Hill equa-

tion similar to Eg. (4.1} has periodic solutions with periods
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T and 2T (T=27/0) at the boundaries of the instability region
{2). The regions of instability may be determined by finding
the periodic solutions of Eg. (4.1) in the form of a
trigonometric series. The instability regions are bounded
by two solutions with the same period. The stability regions
are bounded by two solutions with different periods. The
critical values of parameters o, 8, and & contained in
Eg. (4.1) are obtained from the condition that Eg. (4.1)
has periodic solutions. The stability or instability
solutions of Eg. (4.1) correspond to the stability or
instability of the structural system. The above-mentioned
statement can be illustrated by the following derivation.

For the solution with period 2T, let the trial solution

be in the form of a series

o0

X} = =z (Aysink2E 4 B cosklt) (4.2)

k=1,3,5,"+" 2 k 2

in which A, and Bk are vectors independent of time. By substi-
tuting Eg. (4.2) into Eq. (4.1), the following system of

matrix equations can be obtain by comparing the

coefficients of sinE%E and COSK%E :
([K] - (o-%B)[8) - %07 [M])A; - %B[S]A; = 0
_ 2n2 - -
(1K) = afs] - ¥k*8% MDA - %8IS] (A _,48, ) = 0

(k=3,5[7[.....)f
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([K] - (o+%B) [S] - %07 [M])B; - %8[S5]By = 0
({XK] - c[S] - %k*02(M]1)By - %B[S](By_,+By,,) = 0
(k = 3,5,7,--°-" ).

Solutions having the period 2T=47/6 can occur if the following

conditions are satisfied:

2
[K)—(at%)m—%-[m —581(8S) 0
~48[S] [K]—a[sx%eztm %8 (S5]

0 ~LR(S] tx1~a[51—%§e2[M1 .

LI LI I LI )

(4.3}
Similarly, for the solution with period T, let the trial

solution be represented by

X} = 48, + & (Aksin3§£+skcoskﬁﬁ). (4.4)
k=2,4,6,*"*"* 2 2

Substituting Eg. (4.4) into Egq. (4.1) yields Egs. (4.5) and
(4.6) for the solution having the period T=27/6.
For finding the regions of instability as sketched in

Fig. 4.1, one may solve Egs. (4.3), (4.5), and (4.6) for the
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critical values of the parameters (o, 8, Ny, 8). The first region
of instability (Region A) is determined from Eq. (4.3).

Similarly, the second region of instability (Region C) is
determined from Egs. (4.5) and (4.6). The stability

region (Region B) is confined by Region A and Region C.

N
Region C
/
Region B -~
8
T w
Fig. 4.1 Instability Region
[K]-a[S}-6%[M] -%B [s] 0
-%8 [s] [K]-a[S]-46% [M] -%8(s]
= 0
0 "'}EB fS] [K]—*a[S]—]682[M] Y
ceea  edeee i }

(4.5)
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[K]-afs] - Bls] 0 e

-%R 8]  [Kl-ofs]-02[M] -%8{S]
0 -%p (3] (K1-a{S]1-40°[M] ...| = 0O (4.6)
0 0 -%81S] .-

In practice, only the finite number of terms in the
determinant is used for studying the principal instability
regions. Thus when the first term of the series of Eg. (4.2)
is considered (i.e., k=1, {X}=A

sin(ft/2)+B,cos(6t/2)), one

1 1

may have

52 '
[ [K] - (atk8) [s] - Z“[M][ =0 (4.7)

which corresponds to the first matrix element along the

diagonal of Eg. (4.3). The solution of Eg. (4.7) gives the

principal regions of dynamic instability., Similarly, from

Egs. (4.5) and (4.6), we may have

[ [K] - afs] - 062[M]| =0

and
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[K]-a[s] - B[S)
~%B(S] [K]-[S]-82 [M]

which give the secondary region (Region C of Fig. 4.1) of
dynamic instability. Note that Eg. {(4.7) is an eigenvalue
equation which can be solved by the conventional method of
expanding the determinant equation, Eg. (4.7), into a
polynomial equation for the eigenvalue and its associated
eigenvector. For this research of studying large structural
systems, a different technigque of matrix iteration has been

used by utilizing computer facilities (32).

B. Static Buckling Load and Natural Freguency

It may be observed from Eg. (4.7) that an instability
region is confined by the axial load and the ratio of axial
forcing frequency to the natural frequency. In order to en-
sure that the amount of axial load to be applied is not greater
than the elastic buckling capacity of the system, it is
essential to express the applied load in terms of buckling
load No, as uNO and 8N, o and 8 are fractional numbers less
than one. 1In this seétion, the techniques of finding static
buckling load and natural frequency are discussed.

By observing Eg. (4.1), one may obtain the three groups
of eigenvalue problems classified as (a), (b), and (c¢) that

are shown below:
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(a). For static buckling case when {§}=0, BcosbBt=0, then

Eg. (4.1) becomes
([K] - afs]){X} =0 or |IR] - afS)] =0. (4.8)

(b). For free vibration of harmonic motions without external

axial loads,Eg. (4.1) may be written as

(M1 (K} + [KI{X} = 0. | (4.9)
Let {X}={Aeiwt},then Egq. (4.9) bécomes

| K] - w?[M)] = 0 (4.10)

which gives the natural frequency w.

{c}. For the influence of static axial loads on the

natural frequency,one can rewrite Eq. (4.1) as
| [K] - a[s] - w?M]| =0 ' (4 11)

from which one may observe that the compressive load will
decrease the natural frequency, and the tensile force will
increase the natural fregquency.

Let Egs. (4.7), (4.8), (4.10), and (4.11) be expressed

in a standard eigenvlaue form as
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%{x} = [DM]{X} (4.12)

where [(DM] and A in Eq. (4.7) signify either

i

(DM] = [[K] - (0+%8) (S]]  [M], and A

H]

02/4 (4.13)

or

[DM]

i

[(K] - (a-%B)(S11™'[M], and A = 62/4. (4.14)

[DM] and XA in Eq. (4.8) represent

[DM] = [K]~'[S], and A

I
i+
.

For Eq. {(4.10)

[DM] = [K]~'[S1, and A 2

l)
E

and for Eg. (4.11)

(oM] = [[XK] - «(S]17'[M], and X = w?,
The matrix iteration method developed by Cheng (30) has been
employed to obtain the eigenvalue A and its associated eigen-
vector {X}.

Example 4.1. Consider that the step beam given in Fig. 42a

is subjected to an axial force N(t)=uNO+BNOCOSSt. The cross
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section of segments AB, BC are 8.375"x3.465" and 6.925"x
3.465", respectively. Let E=30x10%psi, Yv=490 lbs/ft?,
Lap=144", Lpc-=96". Find the dynamic instability region.
Solution: Using the local coordinates:{gl and global
coordinates, {X}, shown in Fig. 4.2b and 4.2c, respectively,
one can find the equilibrium matrices [Am}, [AV] tabulated

in Fig. 4.2d and then manipulate Eq. (3.19) for

3 3 2 2
4 _ A
4my pLapt4mpeLlpe 22mp pLagt22mpalpe
420 420
[M]= (4.18)
2 2
-22mABLAB+2 2mBCLBC 156mABLAB+156m8CLBC
420 420
\ J
( 3
L * L : L2 Ll
AB BC AB BC
[K]= (4.19)
~6EI,, 6EI,, 12FT,,  12EIg.
2 + 2 3 - 3
L L L L
AB BC AB BC
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v - i
N(t) o ) 4 N(t)
Ve B C
A
{a) Given Problem
4 o v
4 \‘i v
2
(b} Global Coordinates
1 2 4
Ay l}‘ Y
ANy IR 1
(c) Local Coordinates
M
12 1 2 3 4
Am
0. 1. 1. 0
Byl 11 |2 |3 |4
A
v 0.11. F1.1 0

(d) Eguilibrium Matrices

Fig. 4.2 Example 4.1






31

ZLAB . 2Lpe
15 15

(s] = (4.20)

SLAB SLBC

Thus substituting Egs. (4.19) and (4.20) into Eg. (4.8)
gives the static buckling lecad N0=2975. kips. Using Egs.
(4.10) and (4.12) yields the natural frequency w=28.95 cps.
Let o=0., 0.1, 0.2, 0.3, 0.4, 0.5, and B=0., 0.1, 0.2, 0.3,
0.4, 0.5, then one can find various values of 6 from

Egs. (4.12), (4.13), (4.14). Expressing 06 in terms of

8/w and then using parameters o and £, one can draw the

instability regions shown in Fig, 4.3.(12).

C. Static Buckling Resulting From a Combined Action of
Distributed and Concentrated Axial Forces

In the previous section, the static buckling load was
assumed to be acting at the structural joints as a
concentrated force. However, there are many cases where
the longitudinal forces are distributed along the members.
Typical examples may be the self-weight of chimneys, the
self-weight of slender tall buildings,and the weight of
walls attached to columns. The stability matrix for the

above mentioned type of structures is different from that

in Eq. (3.27).
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It is well known that if a longitudinal compressive
force is continuously distributed along a bar, the classical
mathematical formulation becomes very sophisticated, because
the differential equation of the deflection curve of the
buckled bar will no longer be an equation with constant
coefficients. Consequently, the direct integration of the
equation can only be applied to simple bars, such as cantile-
ver columns. It is the purpose of this section to present
the stability matrix due to a combined action of distributed

and concentrated axial forces.

1. Formulation of Stability Matrix

Consider the beam of Fig. 4.4a subjected to a concentrated
axial force, N, and a uniformly distributed axial load, g.
The generalized coordinates, d; and generalized forces, Qi, are
shown in Fiq. 4.4b and c, respectively. Let N, q, Qi, g4 are
positive as shown, the displacement y(x) of the peam at
point x due to q; and Qi may be expressed as

4
y(x) = L

1

1

For bending deformation only, the shape functions ¢ (x) of
Egq. (4.21) are the same as Egs. (3.21, 3.22, 3.23, 3.24)

shown below:
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cbl(X) = (x - 2x%/L + x¥/L%) .
¢2(X) = (x3/L? - x?*/L)
{(4.22)
¢>3(x) = (-1 + 3x%/L? - 2x3/L%)
¢, (x) = (3x%/L? - 2x?*/L?)

where VN i; the virtual work done by the axial force N on
displacement A, and Vq is the virtual work done by the uni-
formly distributed axial load, g, on displacement A; where A
is the displacement resulting from the displacements dy - For

an element dx shown in Fig. 4.4d one may have

da

ds - dx (4.23)

ds

dax{1 + (dy/dx)z}% (4.24)
for small deflection, Eg. (4.24) becomes
ds = dx{1 + Y(dy/dx)?} (4.25)

Substituting Eg. (4.25) into Eg. (4.23) and then integrating

over the length , one can obtain
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A = %[ {(dy/dx)*dx .
0

We can now write the work V. _ as

N
L
Vg = N = N[ (dy/dx)?dx (4.26)
0
0[‘*“'x
Y g

(a) Typical Bar

(b} Local Generalized Coordinates
3 Q
1 Q
& ok
Q4

(c) Local Generalized Forces

Q
1
ds
Nl —— ==}
!
bid |

! e y <+—— N
[ 1
E g A
— e—dx o
L Q4

(d) Force-Deformation Relationship

Fig. 4.4 Typical Bar Subjected to Concentrated Axial
Load N and Uniformly Distributed Load g
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From Fig. 4.4d, dA=ds-dx=%(dy/dx)*dx ,the work done by the

load acting on the right side of x on dA is

qu = (L-x)dA = gq(L-x){%(dy/dx)?}dx

Therefore, the total work produced by the distributed load

over the length is

L L
Vg = f dvq = %f g(L-x) (dy/dx) *dx. | (4.27)
0 0

The strain energy is

L
U =% BI{y"(x)}%dx. (4.28)
0

The virtual work done by forces Qi on g, may be written as

W= !0.9.. (4.29)
R 1
1
By Lagrange's equation,

BU/qu - BV/qu = BW/qu (4.30)

upon which the substitution of Egs. (4.26), (4.27), (4.28)},

(4.29) leads

{yu} - {wy} - Wyl = {yW). (4.31)
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From Eq. (4.21) ,

y'(x) = ?qi¢;(x) (4.32)
i

y" () = Iqét(x) ~ (4.33)
1

Thus substituting Egs (4.32), (4.33) into Egs (4.26), (4.27)

and (4.28), respectively, gives

4 s (T s . = » s
U = %i § kqulqJ %{q}I[kl]]{q} (4.34)
——1 =;§
VN = %E g sijqiqj {q} [sij]{q} (4.35)
V = %I I g..q,q. = }I ' l .
q i gqulqj 5{q [gljl{q} (4.36)
in which

L
k., = [EI¢"(x)¢" (x)dx
1] 1 J
0
L
s;5 = [ Nel)e! (xax
o * J
= Ma(-x) e (x) 6! (x)a
gij | q ¢i ¢j X)dax.

0

The substitution of Egs. (4.34), ¢4.35), and (4.36) into

Eq. (4.30) yields the results of Eg. (4.31) as
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Vol = [k 1{q}
{vvyl = [sij]{q}
(4.37)
fw_} = lg, . 1{q}
g i3
{vw} = [(Q} .
Therefore Eg. (4.31) may be rewritten as
(x, gl - s, 1{g} - [g, 6 1{q} = {Q} (4.38)
13 1] 1]

in which [kij] and [sij} are exactly the same as Egs. (3.26)
and (3.27). The term [gij] is the stability matrix due to a

uniformly distributed axial load, and can be expressed as

follows
, _
0 1 (G(ILZ -qL2 0 0 1 { q ]
1 50 60 1
0 —qL2 2qL2 -qL. ~-gL
21 160 60 10 10(| % 4.39)
0 0 -glL 3q 3q q
3 10 5 5 3
o s LR Q1S U
4 10 5 5 ] 4
. J - I | -
[gij]

Through the displacement method discussed in Section C
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of Chapter ITI, one can calculate the buckling load of a
structure subjected to a simultaneous action of concentrated
axial force N and distributed axial load,q. The following
examples are selected for the comparison of the numerical
solution obtained by the present method with

Timoshenko's rigorous mathematical approach (34).

2. Numerical Examples

Example 4.2. Consider the uniform cantilever column
shown in Fig. 4.5a with a concentrated axial force , N, ‘acting
at end, B, and a uniform load, g, acting along the axis.

Find either the critical load,_qcr, or the cr?tical load, Ncr'
Let the member length L=240 in., the uniform cross section
A=24 in%?, I=96 in!, and E=30x10° psi.

Solution: Let the column be divided into five segments
as shown in Fig. 4.5a. The global coordinates and local
coordinates are shown in Fig. 4.5b and 4.5c, respectively,
from which the equilibrium matrices {Am] and {Avl are

established as follows:

[Am] = 3(]0 6 0 0 O 1 1 O 0C0 O
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y g
’g - R — el = A—— el e e ol el o il A L N
A 48" ‘ 48" ' 48!! 48" 48" B
(a) Loading
1 2 3 4 5
4 J N Ve N /Y
i Y N N N N
6 7 8 9
10
(b) Glocbal Coordinates
1 2 3 4 5 6 7 8 9 10
AU LA N Ny AYE Yo W
EEN Ly I (A RN AV IR IO /1

{¢) Local Coordinates

Fig. 4.5 Example 4.2
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1 0 1-1 0 6 0 0 0 0 O
2 6 ¢ 0 0 1-1 0 0 0 O
[Av] = 3 o 6 0 0 6 1 -1 0 0 O

The eigenvalue equation of this problem is similar to

Eq. (4.8) with the inclusion of [gij]. Using the digital
computer program based on the matrix iteration method (32)
yvields the solutions shown in Tables I and II in which the
comparison of the present solution with Timoshenko's
solution is very satisfactory.

Example 4.3. Consider the simply supported uniform
beam shown in Fig. 4.6a with a concentrated axial force, N,
acting at both ends, A and B, and a uniform load, g, acting
along the axis. Find the critical load, dope for given N
and critical load, Ncr' for given ¢g. Let L=240 in.,
A=30.2376 in?%, I=192 in?, and E=30x10° psi.

Solution: Let the beam be divided into five segments as
shown in Fig. 4.6a. The generalized global coordinates and
generalized local coordinates are shown in Figs. 4.6b and
4.6c, respectively, from which the equilibrium matrices

[Am] and [Av] are established as follows !
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q
N
A B
48" 48" 48" 48" 48" _
(a) Loading
1 2 3 4 5 6
O JAR J Ja AR JAIY
\.‘ \‘ \‘ \( .
7 8 9 10

(b) Global Coordinates

(c) Local Coordinates

Fig. 4.6 Example 4.3
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[A,] =

" 4 0o o 0 0 0 1 1 o 0 0O
5 0O 0 0 0 0o 0 0 I 1 ¢
6 0 0 0 0 0 0 0 0 0 1

P
P 1 2 3 4 5 6 7 8 9 10

1 o 1-«1 O O O O O O O
2 6o o0 0 1-1 0o O O 0O O

(a,] =
3 6 0 o 0 0 1-1 ©C O O
4 o o 0 0 0 0 O 1 -1 o0

Similar to Example 4.2, the solutions obtained by using
the computer program are shown in Tables III and IV in which
a very good comparison between the present solution with

Timoshenko's solution is shown.
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V. NUMERICAL INTEGRATION METHODS AND THEIR
APPLICATION TO DYNAMIC RESPONSE

In the analysis of dynamic response, an exact or
rigorous mathematical approach may be possible for a very
simple structure subjected to a force expressable in a
mathematical function. For practical problems of complicated
structures and loadings, the direct mathematical integration
becomes tedious, or, perhaps impossible. Therefore, it is
often desirable and sometimes imperative to solve the
equations of motion by step-by-step numerical integration
procedures which are designed to utilize modern computa-
tional techniques.

Two well-known methods, the Runge-Kutta fourth-order method

and the linear acceleration method, have been employed in this

research for the geheral dynamic excitation of elastic as well

as inelastic structures.

A. Fourth-Order Runge-Kutta Method
Consider the following second-order simultaneous

differential equation

d?%x

{
dt?

} = F(t,x,dx/dt) (5.1)

of which the numerical integration by the fourth-order Runge-

Kutta method may be expressed as (33)
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dt

{X}i+l = {X}i - (dt){x}i+ (E—)({Kl}+{K2}+{K3}) (5.2)
- . _ * _ _l_ »
{x}i+1 = {x}i 6({Kl}+2{K2}+2{K3}+{K4}) (5.3}
where

(K} = (@O)F (ty, {X}{,1X})

Il

Ky} = (@o)F (4458, ix), +SEGRY (XD +s R )

2

{K,} = (QB)F(t, +2 AXYS + L{x}, + {Kl} (X}, ;K1)

{K,} = (dt)F(t;+dt, (X}, +dt{X} +4t {K Y, X7}, +{K 1
2

From either Eg. (3.19) or Eqg. (3.,31), one can write

the acceleration equations as

(X} = M]"P({F} - ([K] - (a+BcosoOt)[S]){X}). (5.4)

Because of the similarity between Eg. (5.1) and Eg. (5.4),
the solution of Eg. (5.4) can be obtained by applying the
fourth-order Runge-Kutta method.

The SUBROUTINE GFMKP in the appended computer programs
is based on Egs. (5.2 and 5.3) for which two examples are
selected for the comparison of the numerical solution with
the exact soclution by direct integration,

Example 5.1, Find x and y of the feollowing simultaneous

second-order differential equatiocns by using (a) direct






integration and (b) the fourth-order Runge-Kutta method.

a2 d
SX 48, p - y = sint
at? at
(5.5)
4?2 dx
——¥'+ — + x -y = 2¢?
dt dt

of which the initial conditions are:

x=2., y=-4.5, dx/dt=~1., and dy/dt=-3.5 at t=0.

Selution: (a) Using the given initial conditions one

can find the following solution to Eg. (5.5) by the direct

integration technique:

S
il

l+t~2t2+§t3—%t“+e-t—sint

y = —6—3t—4t2—%t“+et-e"t—%sint—%cost

in which x and y are function of t. Let t be varied in
an interval of 0.1 sec., then the values of x and y are
tabulated in Table V.

(b) L=t Eg. (5.5) be rewritten in the following matrix

form:
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Using the computer program GFMKP the solution of x and y
in Eq. (5.6} has been found for the interval of time
dt=0.004 sec. The result is shown in Table VI. Comparing
Table V with Table VI reveals that the difference is
negligible. x and y obtained in (a) and (b) are plotted in
Fig. 5.1.

Example 5.,2. Find x, y, 2z of the following simultaneous
second-order differential equations by using (a) the direct in-

tegration method and (b) the fourth-order Runge-~Kutta method.

d?x/dt? + d?z/dt? - x

]
o

d?y/dt? + d?z/de? - y =

1
o

(5.7)
d?x/dt? + y = 2cost

of which the initial conditions are: x=0, y=0, z=3, dx/dy=0,

dy/dt=0 and dz/dt=1.5 at t=0.

Scolution: {(a) The solutions to Eg. (5.7) are obtained

by the direct integration method as

t sint

=<
i

t sint

<
|
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z = 1.5t - 2tsint - 2{(l-cost) - 3.

The numerical values of x, y, z are tabulated in Table VIT.

(b) Let Eg. (5.7) be rewritten in matrix form as
1 0 1) z (0 o0 -1] z 0
1 1 0/ {§p+jo -1 of{yp=({ o0 (5.8)
0 0 1j { x| 0 1 o) | x | | 2cost .

The computer solution of Eq. (5.8) for dt=0.002 sec. is shown
in Table VIII. The comparison between the results obtained
by these two methods is very satisfactory. Fig. 5.2 shows

the function of x, vy, z vs time.

B, Linear Acceleration Method

The general expression of numerical integration of a

second-ordexr differential equation may be rewritten as (17)

{(x} = {x} + (X}
t

—n! v 2 vy 2
. s L @0+ (B @n? ¢ B ) @e

(5.9)

(X}

]

e T X g P EUX) G0 IXF)(Ey) {(5.10)

in which the parameter B' is chosen to.change the form
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of the variation of acceleration in the time interval dt.
When B'=1/6, the motion solution corresponds to a linear
variation of acceleration in the time interval dt, and

Egs. (5.9) and (5.10) become

- : 1.3 CRRR 2
(X} o= X} g+ @)X} 0+ 3{X}t_dt(dt) + 6{X}t(dt)
(5.11)
xp,o= X} g * @Y _ 0+ %(dt){g}t (5.12)

in which the subscripts t and t-dt denote the response at

time, t, and the previous, t~dt, respectively. . Thus the

solution method is called a linear acceleration method.
Let the governing differential equation of motion of

Eq. (3.19) be rewritten as

IM1{X} + ([X] - (a+Bcos6t)[S]){X} = {F} {5.13)

which is actually a nonlinear differential equation, because
the stability matrix (a+Bcosft} [S] is time dependent. The
motion equation may be considered to be linear during a

very short time duration, dt, for which Eg. (5.13) can be

expressed in an incremental form as

(M1{aX} + ([K] - (a+BcosOdt)[S]){AX} = {AF) (5.14)






in which
{AX}
{AX}
{AF}

From Egs.

{ax}

and

{AX }

in which

{8X}

{a}

{B}

incremental acceleration;

i

incremental displacement; and

incremental force.

{(5.11) and (5.12) we have

= {X}, - (X} _4¢ = 3/4t{8X} + {B) (5.15)
= {¥}y - {X}o_gqy = 6/at%{sx} + {A) (5.16)
= {x}t - {x}t_dt (5.17)
= —6/dt{x}t__dt - 3{x}t‘dt (5.18)
= -3{X} g, — at/2{Xb .- (5.19)

Substituting Egs. (5.15 to 5.19) into Eq. (5.14) yields the

following symbolic form:

[K']1{Ax} = {AR} (5.20)
in which

[K'] = 6/dt?[M] + [K] - [S'] (5.21)

{AR} = {AaF} - [M}{A} (5.22)

[s']

(a+RcosOt) [ST. (5.23)
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Thus Eg. (5.14) is reduced to the pseudo-static form of

Eq. (5.20) from which {AX} can be solved as
{aX} = [R']7'{AR}, (5.24)

Using the pseudo-static form to find the dynamic
response of a structure, one must repeatedly perform the

following procedures :

{a} = ~6/dt{X}t_dt—3{X}t_dt

(B} = -3{X}__4,-dt/21X} __ .

{AR} {aF} - [M]{A}

[K'] = ([K]-[S']+6/dt%[M])

{AX} = {K']7'{aR}

{X}t = {X}t_dt+{Ax}

{X}t = {x}t—dt+{AX} = {x}t_dt+3/dt{ax}+{5}

. _ . e _ e 2

{x}t —{X}t_dt+{AX} = {X}t_dt+6/dt {x}t_dt+{A}

in which [S') is different from time to time. Consequently,
the structure is assumed to behave in a linear manner during
each time increment, and the nonlinear response is obtained

as a sequence of successive increments.
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C. Modal Analysis

In analyzing the response of a structural.system
subjected to dynamic excitation, the governing differential
equations of motion are usually composed of a set of coupled
differehtial‘equations of second order. ©One of the
approaches of solving these coupled eguations is to
uncouple the equations by using a technique of linear
coordinate transformation. The linear transformation is
obtained by assuming that the response is a superposition
of the normal modes of a system multiplied by corresponding
time-dependent generalized coordinates. The solutions to
the uncoupled equations can be obtained by using Duhamel's

integral. This analysis is called modal analysis (23,24).

D. Application of Numerical Integration Methods to a
Structure Subjected to a Ground Acceleration

When a structure is excited by a ground acceleration,
the motion equations of Eg. (3.19) may be expressed in terms

of the following relative coordinates:

{Xs}relative = {XS} - {Xg}

{xr}relative = {Xr}

. . . (5.25)
{Xs}relative = {Xs} - {xg}

(X 3 = {X }

r relative r






Table V Values of x and y of Example 5.1

Time

secC.

NHHHHFPMHRPRPHMFEFRPRFAERFOOOOCOOOOOQO
CVWONOUIdWNHFOWONIOWMEWN O

by Direct Integration Method

Direct Integration Method

x {(inch)

0.2000000E 01 -

0.1885653E 01
0.1745129E 01
0.1581950E 01
0.1399307E 01
0.1200031E 01
0.9865822E 00
0.7610353E 00
0.5250612E 00
0.2799199%E 00
0.2643967E-01
-0.2349665E 00
-0.5043706E 00
-0.7822802E 00
-0.1069665E 01
-0.1367968E 01
-0.1679098E 01
-0.2005452E 01
~0.2349898E 01
-0.2715786E 01
-0.3106950E 01

y (inch)

~-0.4500000E
-0.4877422E
~0.5309491E
-0.5796082E
~0.6337336E
-0.6933632E
-0.7585610E
~0.8294145E
-0.9060350E
-0.9885552E
-0.1077128E
~0.1171918E
-0.1273120E
-0.1380931E
-0.1495567E
-0.1617241E
-0.1746175E
-0.1882587E
~0.2026689E
~0.2178680CE
-0.2338741E

01
01
01
0l
01
01
01
01
01
01
02
02
02
02
02
02
02
02
02
02
02






Table VI Values of x and y of Example 5.1
by Runge-Kutta Method

Time ~ Runge-Kutta Method
sec. x (inch) y {(inch)

0.2000000E 01 -0.4500000E
0.1885633E 01 ~0.4877402E
0.1745090E 01 -0.5309444F.
0.1581895E 01 -0.5796010E
0.1399232E 01 -0.6337241E
0.1199939E 01 -0.9933517E
0.9864780E 00 -0.7585473E

*
Yoo~k lWwWNPFPOoOVwRNOOUMTRWNFHO

* & &

0.7609386E 00 ~0.8293986E

. 0.5249753E 00 -0.9060167E
. 0.2798458EF 00 -0.9885345E
. 0.2638184pr-01 -0.1077105E
. -0.2350211E 00 -0.1171899E
. -0.5044181%8 00 -0.1273105E
-0.7823184EF 00 -0.1380923E

. -0.1069688E 01 -0,1495564 E
. -0.1367956 1 01 -0.1617238F
. -0.1679055E 01 ~0.1746130E
. -0.2005371E 01 ~-0.1882509E

-0.,234