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ABSTRACT

We introduce a two-dimensional finite element model of fluid
flow in fractured rock masses wherein the discontinuities are
deformable and constitute the primary flow paths. The interaction
between the fluid and the fracture motions as well as inertia effects
are taken into account. The model permits us to simulate fractured
rock systems which are at an incipient state of instability; it is
possible to predict the behavior‘of such systems when their state of
stress is changed by injection or removal of fluid.

A computer program based on this theory has been developed. It
determines the hydrodynamic state of the fluid, the displaﬁement, strain
and stress response histories of the rock masses, the change of the
kinetic and the potential energy of the rock, and the amount of energy
dissipated during slip. A number of simplified problems are solved.
The results confirm £hat the present model can be used to study the
controlled release of tectonic stresses along predetermined faults

through fluid injection.



ii

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENT .

1. INTRODUCTION
2. A KINEMAfIC FINITE ELEMENT MODEL OF FRACTURED ROCK
2.1 Tangent Formulétion of the Joint Element
2.2 Computational Considerations
2.3 The Governing Initial Value Problem
3. FLUID-FLOW NETWORK ANALYSIS
3.1 Derivation of the Flow Element .
3.2 Statement of the Governing Equations

4. SOLUTION ALGORITHMS FOR THE NONLINEAR DYNAMIC STRESS-FLOW
ANALYSIS

4.1 Time Discretization
4.2 FEnergy of the Solid Material

4.3 Solution Strategy for the Ana1y51s of Coupled Solid-
Fluid Systens . e e . e e e

5. . APPLICATIONS

5.1 An Elastically Supported ngld Block Sliding Between
Two Joints e e e e e e e e

5.2 Single Degree-of-Freedom Oscillatory System

5.3 Effect of Injéction and Withdrawal in a Crude Fracture
Model with Stick-Slip Ratio of (.98

5.4 Effect of Injection and Withdrawal in a Crude Fracture

Model with Stick-Slip Ratio of 0.99

5.5 Effect of Injection and Withdrawal in a Crude Fracture
Model with Stick-Slip Ratio of 0.94

Page

iv

16
20
22
22

28

31
31

32

33

38

38

43

48

50

53



iv

ACKNOWLEDGEMENT

We would like to acknowledge the support for this work provided by the
National Science Foundation under contract number GK-42776. We thank Ellen

McKeon for typing and editing the manuscript.



1. INTRODUCTION

Considerable evidence, gathered recently at Rangely, Colorado oil field,
strongly suggests that fluid injection has caused small earthquakes along a
fault. This and similar observations are described by Dietrich, Raleigh and
Bredehoeft [1] and Handin and Raleigh [3], among others. Consequently the
concept was developed that if earthquakes can be made by man's injection of
fluid into the subsurface, then perhaps the appropriate control of fluid
pressures in the earth's crust can lead to a méthod of earthquake control
along major faults {3]. In order to study the role of fluids in controlling
the behavior of fractured rock masses, it is necessary to develop both mathe-
matical models and corresponding computer programs that allow the engineer to
simulate the behavior of such systems under a wide range of field conditionms.

Recently several attempts at'developing appropriate mathematical models
have been reported [4-10}. Gale, Taylor, Witherspoon and Ayatollahi [8],
modifying the two-dimensional finite element formulation déscribed in [6;7],
successfully simulated quasi-static pfocesses in systems of deformable
fractured rock wherein the discontinuities constitute the dominant flow
paths. However, the dynamic nature of slip mechanisms limit the applicability
of the quasi-static medel to the study of pre-failure conditions. Dietrich
et al. [1,2] developed a dynamic finite element model for a single fault that
undergoes slip under the influence of teétonic énd predetermined fluid stresses.
This model is able to provide a basis for predicting the dependence of dis-
placements and near field transient‘motions on stress drop, rupture dimensions
and seismic energy. However, Dietrich's model was not designed to incorporate
the interactive processes between the fluid pressure, the fracture deformations

and the stresses in the rock.
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use standard step-by-step integration methods of structural dynamics to
replace the differential equations by‘approximating algebraic equations of.
recursive form, Furthermore, we discuss suitable iterative techniques té
solve these nonlinear equations in each time step.

Chapter 5 presents five applications of this finite element modél to
simplified problems in order to demonstrate some of its pertiﬁent propertiésﬁ

Conclusions from this investigation are summarized in Chapter 6.
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Pt E e (2.8¢)
where
C = diag(c, ¢, ¢, ¢) (2.8d)

and a_ and a  are Boolean matrices, the elements of which are either 1 or 0;

for example,

- : (2.86)

Next we define the constitutive model of the joint material. To this end

we introduce the vectors

M
n

> €)', (2.10a)

‘ T
(fs, fn) . (2.10b)

£

where the elements of € are defined by (2.4), and fS and fn are shear and normal
forces per unit length acting in directions s and n, respectively. Constitutive
theories of discontinuities in rock defining the relation between f and € were
discussed by Goodman and Dubois [9]. In the present work the mechanical
behavior of jointed rock is described by a nondilatant model in which shear
and normal deformations are locally uncoupled. However, shear and normal
modes of deformations are coupled indirectly through a Coulomb type failure
criterion, as will be seen later. Gobdman, Taylor and Brékke [7] proposed
a constitutive model similar to the one introduced here.

In accordance with the experimental data reviewed in {9}, the normal
stress is related to the normal strain by an elastic, {(i.e. path independent

and nondissipative) law of the form
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Fig. 3. Constitutive relation of joint element in contacting mode of
deformation.
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where

_ 2 2
~5¢C sc 0 ¢ -5 :
9 = [ 2 2 ]_, (2.14b)

s c 0 -2s¢c

and s = sin0, ¢ = cos®. Equations (2.14) are used to define the initial
state of stress of a fracture surface such that it is statically compatible
with the corresponding initial state of stress of the adjacent continuum.

Next we introduce the vector of nodal forces in global directions

T _
g = (le, pyl’ ey Px4’ Py4) s _ (2.15)
‘and the vectors

P = (P, P.,P . ,P )"
~5  sP "s2’ "s3* "s4

2.16
P = (P P P P )T ’ (2.16)
~N nl* n2* "n3* n4d

where, for example, P is the force at node 1 in direction s. The

sl

vector P is related to P_and P by the equilibrium equation

T. T T
g - g (?Isgs * -a.'n?.n)’ . . (2.17)

and matrices C, 2 and a, have been defined above; see expressions (2.8),.
We want to establish the conditions of equilibriuﬁ between the nodal
forces and the internal state of stress. By the principle of virtual

displacements

(2.18)
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(2.23)
L. T |
s [ e en
1 '

The mass density of material contained between slip surfaces is usually
negligible compared to the density of the surrounding rock. Accordingly, we
assume the joint element to have no mass.

The sum of the strain energy and the dissipated energy is defined by

1 : .
T.
f de dg . | (2.24)
1 Y0 | | _

Substituting (2.10) into (2.24), and making use of (2.5) and (2.18), we obtain

| o Pn
T g+ f T Pra (2.25
U~ ED - Es Ps o “Pn - -25)

0 0

~ £

Y]

u + ED =

iR

The shear behavior is governed by the elastic-plastic constitutive model
defined in Figure 4. Correspondingly, we can decompose the shear strains
into elastic and plastic components:

€ T & +E_ | (2.26)

[

51 . £52 . tn1 n2
u -f Py deg, +f Pz dE_, +f P4 de s +f Pgde, (2.27a)
, 0

0

and the dissipated energy
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Next we discuss methods for computing the vectors of internal forces
(2.18) and the stiffness matrices (2.23). The integrals in equations (2.18)
and (2.23) are most conveniently evaluated numériéally. A two—point‘integra-
tion rule was found to be adequate in terms of accuracy and computational
efficiency. A one-point integration rule does not suffice, since it amounts
to an averaging procedure which neglects all but the constant terms in the
integrands of (2.18) and (2.23). Among the commonly known two-point quadra-
ture methods, the Gaussian integration rule provides the highest accuracy
when continuous functions are integrated; waever, it introduces coupling
between the degrees of freedom of adjaceﬁt nodal points along the fracture
surfaces, (e.g. between the degrees of freedom of nodes 1 and 2 in Figure 2).
This, in turn, can prevent the itérative solution algorithm from converging
into dynamic states of equilibrium. For example, we tested the two-point
Gaussian formulation in a series of problems which were supposed to simulate
nonlinear displacement oscillations of a planar fault system in shear {(i.e.
frictional modes of deformation). The equilibrium iterations consistently
failed to converge whenever one or more mass points passed the point of
maximum amplitude énd started to accelerate in reversed direction; see
example 4 in Chapter 5. However, we have been able to simulate nonlinear
frictional motions in a physically meaningful way by performing the state
determination at the nodal points of the joint element. This was accomplished
by choosing a two-peoint integration rule which saﬁples at the two sections
£ = 1. This integration rule is defined by the foliowing example: consider

the function g(£), then

1
/ g(g) d& = g(-1) + g(1) . (2.30)
f | ,
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The energies stored and dissipated in the joint element are determined by
equations (2.27). The integrals in (2.27) are evaluated incrementally. For
this purpose each integral in (2.27) is written in an incremental form which

can be defined as follows:

& .
f P(e) de = Z [ P(e) de . (2.33a)
0

i=0,1,2,

‘The integrals extending over the individual increments are evaluated

approximately using the trapezoidal rule:

e1+1
.I. P(e) de = [P(e;) + P(éi+1)](ei+1 - €)/2 .,  (2.33b)

£,
1

Finally, it should be mentioned that the vector of nodal forces due to

internal pressure, defined by (2.17) in conjunction with (2.29), is explicitly

given by
E =bp R (2.34)
wheré
T .
P = (Pl, Pz) s (2.35)
and b = N e, Matrix N is defined by
0 01
0 -n
N= |~ Y|, - (2.36a)
- 0 n .
Ln 0
where
n = (-s5in@, cos@)T {2.36b)

=)

is. the unit vector in direction (see Figure 2). Furthermore, matrix
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The assemblage procedure establishing matrices M, K, B,

etc., in terms of the corresponding element matrices is standard;

see for example [12]. The initial value problem of (2.38) consists of

finding the vector valued function u(t) satisfying (2.38) at all times

} , ' (2.40)

where d and v are given initial data. It is to be noted that the

te [0, tmax]’ tmax > 0 and

u(0)

u(0)

H
=N

1l
s

discrete model described by (2.38) dissipates energy through frictional deform-
ations of the fracture surfaces only. - Dissipation due to viscous properties
of the material has been ignored.

Equation (2.38) constitutes one equation for the unknowns.g and E.
To make the problem well posed a second equation is needéd; It will be

derived in the following chapter.
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h= HEAD (AVERAGED OVER THE CROSS-SECTION)
d= WIDTH OF FLOW CHANNEL

Fig. 5. Geometry and coordinate system of a fluid flow element.
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convective and inertia terms in the Navier-Stokes equation, for consistency,

we also drop the kinetic energy term in the expression for p and simply use

p=yh . - (3.5)

Combining (3.3) and (3.4) yields the partial differential equation

_ 38

== (3.6)

2 oh
3% K5

which determines the state of the fluid at any section x; see Figure 5. The
boundary value problem consists of finding the function h(x,t) which satisfies
(3.6) and one boundary condition at each end of the flow element depicted in

Figure 5. Admissible boundary conditions are

h = ﬁl or q = al at section 1
(3.7)

u

o o
]
f= 2

or q —az at section 2

2
The sign convention used in (3.7) is defined in Figure 5, and prescribed
quantifies are characterized by a superposed hat.
In order to derive the finite element equations of the abﬁve boundary
value problem, it has to be rewritten in weak form. Denoting the boundary
points by '"b'", the points where gq is specified by bq aﬁd the prescribed

boundary flow rates by a, the weak (or Galerkin) form of (3.6) is given by

L ‘
_/ [B_BX_ (k %_E) - %i_] P(x) dx +f (g-q) ¥(x) db = 0 , (3.8)

0
q

which must hold for all admissible functions $(x); see Strang and Fix [13].
The first step towards the discretization of (3.8) is to admit only a finite

number of test functions wi(x). Here i = 1, 2 and the functions wi are
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clr o _
ke =1 , (3.14a)
-1 1
h=(h, h) ' 3.14b
~_(1’.2‘ 3 (- )
T _
q = (49, 95) , (3.14c¢)
T
S = (Sy, 5y (3.144d)
In (3.14a)
k = v add/azn - . (3.14¢)
where |
=3 .3 2 2 3
d” = (@] +djd, +d; d +d)/4 . (3.14€)

Note that the '"hats' on the nodal quantities in (3.14b,c) are omitted for

‘notational convenience.
A basic question with regard to the finite element fluid-flow equations

is the following: Do equations (3.13) determine states of fluid flow which
approximately (i.e. in a discrete fashion) satisfy the governing differential
equation (3.6)? To answer this question we compare the sum and the difference
of equations (3.13) with the associated differential equations (3.3) and (3.4),

respectively. The sum yields

+ "= 0 . > (3' 153)

and the difference can be written in the fo?m

- h - h q1+q2 . . .

k i f = L(S - §1/12 . (3.15b)
Obviously, (3.15a) is a first order difference approximation to (3.3)3
(3.15b) is a first order difference formula for (3.4), provided that L|é2 - Sll
is sufficiently small compared to the left hand terms in (3.15b). Thus, the

form (3.13) is consistent with (3.6) and the discrete solution converges to
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4. SOLUTION ALGORITHMS FOR THE NONLINEAR DYNAMIC STRESS-FLOW ANALYSIS

The behavior of the entire solid-fluid system of fractured rock is des-
cribed by equations (2.38) and (3.20). The interactive effects between the
solid and fluid domains in the model are represented by the term E H in (2.38),
and by the terms %T é and Kp H in (3.20)}. To determine the state of the system
at 411 times tEZ(O,tmaX] we have to find the response histories g(t) and g(t)
which simultaneously satisfy equations (2.38) and (3.20). Due to the inherent
complexity and nonlinearity of this sytem of coupled differential equations we
cannot hope to find a closed form solution, but instead must resort to
numerical techniques which generate approximate solutions in a step~by—step‘

fashion.

4.1, TIME DISCRETIZATION

The Newmark family of step-by-step integration formulas [11] was found to
be a versatile and efficient tool for integrating equations (2.38) and
(3.20). Application of the Newmark methods amounts to replacing these

differential equations by the following algebraic equatiomns of recursive form:

2
d =d_+ At v. + At"[(1/2 - B)Y a_ + B a_.!
“n+l 1N ~N N ~n+l } , (4.1a)
Xn+1 = Yn tAt[(1 - ) gn Ty §n+1]
M a1t §(§n+1) = Bn+l + B Ho ' (4.1p)
T
}},F Xn-f'l * EF(gnH[) }.}n+1 T Zn+1 * (4.1¢)
d =4
~0 - , (4.1d)
v = v
~0 ~
H o= K'd) [Q - BL v ]
Ro o Wol 19 - B Y } (4.1e)
-1 ’ :
2= M IR, ¢ BH - K]
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n _ ”
Rz My (4.42)
and
n _ T T '
Ug = 172 én Ks én * Escgo) o ' (4.4b)

respectively, where Mis the mass matrix of the solid‘material and ES is
defined by (2.39). Both g and Es are assembled from the mass and stiffness
matrices of the isoparametric quadrilateral elements. The vector Es(go} in
(4.4b) represents the nodal forces due to the initial sfate of stress of the
continuous rock. In (2.38) the effect of initial stresses is implicitly
accounted for through R. In the computer program matrix operations (4.4)

are most efficiently performed at the element level.

4.3 SOLUTION STRATEGY FOR THE ANALYSIS OF COUPLED SOLID-FLUID SYSTEMS

In order to generate the entire response history the system of nonlinear

algebraic equations (4.2) has to be solved at the set of discrete points tn+1’

n=20,1,2, ..., N-1. Thus, at any instant of time tn’ it is essentially the
same problem that has to be solved as in the case of the steady-state

analysis,
The fixed-point iteration technique which was used by Gale et al. [8] to
simulate quasi-static processes was found to be suitable for the dynamic

analysis also. This technique amounts to solving equations (4.2b) for §n+1

with dn+1 fixed, and then holding Hn+ fixed during the iterative solution

1

of (4.2a) for dn+ This cycle is repeated until convergence is reached.

1
Convergence implies that the fluid pressure distribution is (numerically)
compatible with the state of stress throughout the deformable rock.

We define the fixed point iteration technique by rewriting (4.2) in

the form



- 35 -

For notational simplicity we rewrite (4.5a) in the form

F(d) - R* = 0 , (4.6a)
j+1
in whlch d = g o
x_ D J
K=y B, (4-60)
and
F(d) = (o, M+ k) d + K (d) (4.6c)

where KS and K. are defined by (2.39). To solve (4.6a) for § we use the

Newton-Raphson method; it is defined by the following recursive formulas:

i+l

oK' Ad - Feah)

~ 0~ , 1i=0,1,2,.... (4.7)
d1+1 dl . Ad1+l

~ ~ ~

il

The starting values are given by a° = di+l’ and the tangent stiffness matrix

DE = ao % + ES + DEI , {(4.83)
where
. 3K
1 o |
DK T - » (4 ogb)
~dJ Bg d=d1

i, . . 3 .
DEJ is assembled from the corresponding JOlnt element stiffness matrices

defined by (2.21). Equilibrium is achieved, and the iteration is terminated,

if

[Ire - Fa™ D], < e, (4.9a)
where ||. .llz is the L, vector norm defined by [lg]]z (E: p 1/2 F =
(Fl: Fzs ---)T, and € is a given convergence tolerance. Instead of (4.9a)

the following convergence criteria may be used:

i+] i
Hag " l, < e [1a7]], (4.9b)
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5.2 SINGLE DEGREE-OF-FREEDOM OSCILLATORY SYSTEM

A single degree-of-freedom oscillatory system is used to test the release
and locking mechanisms of the joint elements as well as the solution algorithms,
under nonlinear dynamic conditions. The problem set-up is shown in Figure 11:
A rigid block is sliding between two joints in a dynamic motion which consists
of a forced and a free phase. The finite element mesh and the forcing
function P(t) are defined in Figure 11.

The constitutive relations of the joint elements are defined in Figures
3 and 4 with the following data: fn =f =-1,f =0,%k =1,k =1/2,

no SO no SO

d0 =1, ¢ =45°, C=0, a =1, The mas$ of the rigid block is assumed to
be one and the time step size At = 1/10. Since C = 0 and fn = -1, the peak
shear strength fSy equais one. As in the previous examplé, no fluid effects
are considered. If the density of the fluid is set to zero, the computer
program automatically skips the determination of the fluid flow and the
fixed-point iteration is switched off.

The displacement of the rigid block as a function of time is shown in
Figure 12. For the purpose of comparison, the displacement reponse history
according to a linear joint constitutive law is included in the same figure.
As indicated in Figure 11, the motion is forced during the first 3.4 Seconds,
and it is free thereafter. The amplitudes of the free oscillator can be
read off Figure 12. They are uﬁax = 4.3 for linear elastic friction and

u = 2 for the elastic-plastic friction mechanisms. The

max ~ “steady state
~difference between the linear and the nonlinear oscillations is due to the
energy dissipated during plastic sliding. The slip-phases are indicated in
Figure 12, and the force-displacement history is plotted in Figure 13.
Figures 12 and 13 indicate that the rigid mass slides into a new permanently

displaced equilibrium position, u about which it oscillates

steady state’
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stick-slip ratio o = 0.99. The new mesh and the corresponding displacement
histories uy(t) of nodes 1 and 2 are depicted in Figure 16. Figure 17 shows
the displacement response histories of nodes 1, 2 and 3 in a larger scale.
The final increase of pressure which was necessary to create failure at node
2 induced a vibration of nodes 2 and 4 in x-direction, as indicated in
Figure 17. The motions of some points within the continuous rock are
indicated in Figure 18, in which the response functions uy(t) of nodes 6,

7, 8 and 10 are plotted.

The original joint element, as introduced in |7}, employes a one-point
integration rule. It has been explained in Chapter 3, why this is inadequate
in general: The one-point integration rule neglects the strain energy due
to nonuniform deformation patterns. Hence, a joint element based on a two-
point Gaussian integration rule was tested, However, this formula introduces
coupling between the sections 1,4 and 2,3 of the joint element (see
Figure 2), which, in turn, can cause the joint element to simulate friction
and contact mechanisms in a physically incorrect way. For example, consider
the displacement response histories of nodes 1 and 2 corresponding to the
joint element with Gaussian integration, shown in Figure 19. The interaction
between the degrees of freedom of adjacent nodes along the fault prevents
the individual masses from being locked at the points of maximum displacement
(i.e. zero velocity), and thus leads to physically meaningless resuilts,

as indicated in Figure 19.

5.5 EFFECT OF INJECTION AND WITHDRAWAL IN A CRUDE FRACTURE MODEL WITH

STICK-SLIP RATIO OF 0.94.

In this example we consider a rigidly supported mass of rock, which is

subdivided by a straight fracture inteo two equal parts., The finite element
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The y-acceleration of nodal point 4 as function of time is plotted
in Figure 22. The slip phases are clearly distinguished from the phases
of linear elastic oscillatioms around the new positions of equilibrium
indicated in Figure 20,

The energy dissipated during slip and the kinetic energy of the rock
as functions of time are plotted in Figure 23. The change in strain energy

of the system, denoted by AU" can be computed from

Eg + E% + AT = Ego * AU, n = 0,1,2,...,N, (5.2)

where EKo is the kinetic energy and AUO is the change in strain energy at

the instant of failure. In the present case E o * AUO ==~0,5 104.

K
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