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SUMMARY

The earthquake simulator testing and analytical correlation of the
second reinforced concrete frame studied as part of the NSF project
"Energy Absorption Characteristics of Structural Systems Subjected to
Earthquake Excitation" is degscribed. This frame differed from the
first only in avoiding a significant construction error, and in the
sequence of earthquake tests to which it was subjected. Except for
local damage attributed to the construction error of the first frame,
the behavior of this frame was similar to that of the first, Damage
apparently is a cumulative result of the total cyclic strain history
to which the structure is subjected, and is not sensitive to the testing
sequence, Adequate analytical correlation with the observed results was
obtained using the same mathematical modeling concepts as were employed
with Frame 1, based on a bilinear frame analysis program with a super-

posed first mode stiffness degradation and determination mechanism.
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1. INTRODUCTION

1.1 BACKGROUND

The investigation described in this report is part of the research
program "Energy Absorption Characteristics of Structural Systems
Subjected to Earthquake Excitation,"” which has been in progress at the
Earthquake Engineering Research Center since the organization of that
regearch unit. The specific objective of the research described herein
was to continue the study of reinforced concrete frames subjected to
simulated earthquake motions by the EERC shaking table.

The first stage of this study which involved the design, construc-
tion and testing of a two-story concreie frame structure was described

completely by Pedro Hidalgo(l}.

That est served as a pilot model for
the earthquake simulator testing of reinforced concrete frames, and it
demonstrated conclusively

(1) that typical structures could be subjected to base motions
intense enough to cause significant damage, and

{2) that dynamic response data coild be obtained which would serve
to verify the validity of assumed mathsmatical models and analytical
procedures.

However, two features of that test were not typical of expected
field conditions, as follows:

| (1) The most prominent damage obssrved in the first test structure

was a crack in the first floor slab above the transverse girder, extending
the full width of the structure; subsejuent examination revealed that the

crack resulted from a construction error--the wire mesh in the slab

having been terminated at this section.



{2) The testing sequence which had been adopted for the first structure
provided a gradual increase of earthquake intensity, requiring five tests
to proceed from the weakest to the strongest level of excitation. Thus
the strongest shake was applied to a structure which already had been
significantly damaged by the preceding tests and it is believed that
this damage had an important effect on the resulting response behavior.

These deviations from normal conditions suggested that a second
test should be performed on another frame built in accordance with the
design plans and specifications of the first test structure. In this
second frame, the construction would be inspected continuously, and the
testing segquence would be planned to apply a maximum intensity earth- -
quake to an essentially undamaged structure. This present report describes
the construction and testing of Frame 2, It is an independent report,
giving complete experimental results and a full account of the correlation
of analysis with experiment. However, because of the great similarity
between Frames 1 and 2, extensive reference is made here to the report

(L in order to avoid excessive duplication.

on the testing of Frame 1
In general only specific differences between the construction and tests
of Frames 1 and 2 are discussed in detail here. The organization of

this report follows its predecessor in order to emphasize and take

advantage of the similarities between the two studies.

1.2 REVIEW OF OTHER RESEARCH

An extensive list of references to research work related to the
seismic response of concrete frames was given by Hidalgo(l), together
with brief descriptive comments on each entry. Similar references and
comments on work which has appeared since that report was written (1973)

are presented here.



1.2.1 Dynamic Tests

K. Muto, T. Hisada, M. Yamamoto, . Tsugawa, S. Bessho of the
Kajima Corporation in Japan (1973) , carried out experimental studies
to improve reinforcement procedures fo:r concrete structures. The
reinforcing method was intended to be applicable to field construction.
From the point of view of damage control, they established necessary
geismic criteria for structural design,.

R. Shepherd and D. A. Ross {1973) tested a full scale reinforced
concrete frame, subjected to lateral loading into the inelastic range.
The inelastic structural behavior was induced dynamically using an
exciter mounted on a frame. The dynamic lateral load at which signifi-
cant inelastic behavior was induced was found to be significantly less
than the equivalent static load on which the elastic seismic design
was baged. The frame also exhibited marked torsional response despite
the fact that the excitation was applizd along the plaﬁ center line of

the slabs.

1.2.2 Dynamic Analysis

R. D. Sharpe and A. J. Carr (1974) describe the problems encoun-
tered in writing a comprehensive computer program with which the defor-
mation sensitivity of a two dimensional inelastic frame can be measured.
These difficulties arise from the fact that there is a need to simplify
computer input data, as well as the selection of an economic and accu-
rate numerical integration technique which can remain stable over a
reasonable and realistic frequency range. The difficulties met in
designing a beam model for the moment-curvature relationship are also
described and a recommeﬁdation made as to the method that can best be

used. The sensitivity of the frames to modelling is also discussed.






2. THE TEST STRUCTURE

2.1 SELECTION AND DESIGN OF TEST STRUCTURE

The basis for selection and desiga of the test structure was that

(1)

described for Frame 1 , except that the defect in the slab reinforce-
ment would be avoided for Frame 2 by adequate inspection during construc-
tion. However, for convenience, the principal features of the test
structure will be described again here,

Figures 2.1 and 2.2 show the dimensions, reinforcing, and general
arrangement of the test structure, which was intended fo represent a
two~-bay segment of a long narrow building subjected to an earthquake in
the short axis direction. TFor economy and convenience in testing, it
was built to a length scale of 0.7; ir addition, the span in the direc-
tion perpendicular to the excitation zxis was reduced drastically.
Other deviations of the test structure from the prototype configuration
were the introduction of force transducers at mid-height in each column,
and the addition of heavy concrete weights on each floor. The force
transducers were intended to provide direct measurements of the dynamic
axiai force, shear, and moment developed in the columns during the test;
their location at mid-height insured that they would not influence the
dynamic response behavior. The weighis served to increase the forces
induced during the test, and also to provide an appropriate frequency
of vibration in the model.

In addition, 1" ¢ steel cable bracing (shown in Fig. 2,1) was
provided in the transverse direction to constrain the structure against

transverse or torsional motion. Thess cables were tightened enough to

prevent out-of-plane motions, but did not induce any significant static

Preceding page Biank 5



or dynamic stresses in the columns. Figure 2.3 shows the test

structure mounted on the shaking table ready for testing.

2.2 MATERIAL PROPERTIES

Sample spgcimens of both the reinforcing steel and the concrete
were tested to determine their structural properties. Average stress-
strain curves were then constructed for each type of material, and
these average propertles were used in establishing the mathematical
models formulated to represent the structure in computer analyses.

Test data obtained for each type of material are discussed in the
following paragraphs.
(a} Reinforcing Bars

Figure 2.4 is the stress-strain curwve obtained in testing a typical
bar of the ASTM A615 grade 40 reinforcing steel used in the.test frame.
Also tabulated in the figure are the yield stress, ultimate streﬁgth,
and other relevant properties measured in each bar test. All bars were
deformed except the #2 bars which were used for ties and stirrups.

{b) Wire Mesh Reinforcement

Both floor slabs were reinforced with 4"x 4" welded wire mesh.
During tensile tests of the mesh, it was found to be quite brittle,
generally breaking at the welded intersection points. Also it was found
that the strength of the mesh used in Frame 2 was noticeably lower fhan
that used in Frame 1. A typical stress—gtrain curve, the c¢orresponding
ideali;ed curve, and average values obtained from the wire mesh tests
are shown in Pig, 2.5.

{(c) Concrete
The readymix concrete used in the test structure was proportioned

to provide 4000 psi compressive strength. Six 6"x 12" test cylinders



were cast during the concreting of the structure, and were stored in
conditions similar to those of the tesi structure. These were subjected
to compressive stress-strain tests jusi: before the shaking table test
of the frame was performed. Stress and strain properties measured
during these tests are listed in Table 2.1, together with average values
for all the tests,

Stress~strain curves obtained from these cylinder tests are shown
in Fig. 2.6. Also shown on this graph is Hognestad's parabolic cuIVe(Z)
which was used in the analysis to approximate the stress-strain behavior.

Note that the ultimate strain assumed for analysis was

€, = 0.305 .
ult

2.3 SECTION PROPERTIES

The effective cross-section properties of the test structure column
and girders were evaluated on the basis of three different behavior
hypotheses, as follows:

{a) Transformed Area Section

In this case, the concrete is assumed to function as a linear
elastic material in both tension and compression, with a modulus of
elasticity E.. The steel in the section is assumed to contribute addi-
tional stiffness in accordance with its transformed area As(n-l), where

A_ is the actual area of steel and n = Es/Ec in which Eg is the modulus

S

of elasticity of steel.

{b} Gross Section

In this case, the concrete is assumed to contribute in tension and

compression but nc additional stiffness is attributed to the steel.



{¢} <Cracked Area Section

In this case, the concrete is assumed to function in compression,
but not in tension. WNo additional stiffness in compression is attributed
to the steel, but it is assumed fully effective in tension.

Based on these hypotheses and using the properties measured for
the steel and concrete materials, the effective section properties of
both columns and girders were calculated. The actual locations of the
steel in the sections (as measured before pouring of the concrete)
shown in Fig. 2.7 were used in these calculations. Details of the
calculations are shown in Appendix A; results are listed in Tables 2.2
and 2.3. Cracked section vield moments for the girders were evaluated
taking account of the wire mesh reinforcement in the slab, The mesh
contributed little to the positive moment capacity, but made a signifi-
cant difference invthe negative vield moment at which tensile vield
occurs in the top layer of steel. For use in a computer program which
does not distinguish between moment of inertia values corresponding to
the positive and negative values of the yield moments, the moment of
inertia of the cracked section was defined to be the average of these
values. Idealized yield gurfaces for the columns and bilinear moment-

curvature relations for the girders are shown in Fig. 2.8.

2.4 STRUCTURAL PROPERTIES

The dimensions of the test frame were measured, and its dead weight
as well as the weight of the concrete blocks supported by the floor
slabs were evaluated before the test program was initiated. Results
of these measurements, shown in Fig. 2.9, were used in calculating the
stiffness and vibration properties of the structure,

Based on these dimensions and the section properties discussed



above, the flexibility coefficients of the frame and its vibration
mode shapes and fregquencies were calculated. Three sets of results
were obtained corresponding to the three hypotheses used in evaluating
the section properties: gross, transformed area, and cracked sections.
The basic section properties and corresponding frame property results
are listed in Table 2.4. It should be noted that the frequencies

were evaluated for the structure without the concrete blocks added;

the column lengths were measured with the force transducers installed.

In addition to the frame's vibration properties, its static load
carrying capacity also was evaluated. For this purpose, a computer
program based on a simple elastic - perfectly plastic moment yield
mechanism was used(s). The plastic moments assumed for the girder
sections were their ultimate capacities calculated using an ultimate
strain in the concrete of Ecult = 0.005. Contributions of both compres-
sion steel and slab mesh were included in the analyses. The yvield
moment capacity of the column sections was determined including the
effect of axial force. The axial force used for this purpose was that
produced by the dead load, plus the maximum dynamic load achieved during
the test program. Details of the evaluation of these vield moment
capacities are presented in Appendix A.

Two different analyses of static load capacity were carried out
using these member moment capacities, for the two cases discussed in
the following paragraphs:

Case 1

This was intended to approximate the strength of the frame during
its earthquake simulator testing. Loads applied to the structure in
the computer program included the gravity loads of Fig. 2.9 combined

with a first mode distribution of lateral loads. If an assumed unit
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lateral load was applied at the first floor level, the corresponding

load at the top floor was given by the ratio

_ (0.0352) (3.000)
My ¢Bl (0.0572) (0.553)

1.13

in which M is the story méSS, ¢1 is the first mode shape, and the sub-
cripts T and B refer to the top and bottom stories, respectively. The
initial yield and collapse values of the story shears, moments and
displacements computed by this program are discussed in Chapter 4.
Casgse 2 |

After the structure had been tested on the.earthquake simulator,
repaired and then tested again, it was subjected to a final static test
to determine its ultimate load carrying capacity. In this final phase
of testing, the concrete blocks were taken off the structure, and also
the fofce transducers were removed to avoid any possible damage to them,
Accordingly in the second case considered by the elasto-plastic frame
analysis program, the dead load and column lengths of the frame were ad-
justed appropriately. Results of this analysis are presented in Fig. 2.10
which shows both the lateral load capacity and the order of appearance
of plastic hinges as predicted by the computer program. In addition,
the load-deformation behavior calculated for both cases 1 and 2 is
listed in Table 2.5. Correlation of these analytical results with the

observed static test behavior is discussed in Chapter 4.

2.5 CONSTRUCTION AND REPAIR OF TEST STRUCTURE

In most respects, the construction of Frame 2 was similar to that
of Frame 1 as described in Réference 1. A major difference was that

care was taken to ensure that the wire mesh in the floor slabs was
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extended over the top of the transverse girders, to avoid the slab
cracking over the girder which was so prominent in Frame 1. A second
important difference was that special c¢are was taken in curing Frame 2
to avoid shrinkage cracks. The model was kept in the laboratory under
controlled temperature conditions and the forms were not stripped before
28 days. Testing was then started witain three weeks, with the result
that the frame was essentially free of cracks and consequently very
stiff at the beginning of testing. At that time it was decided that
this nearly perfect structure was not typical of norﬁal construction in
the field. A typical structure would have numerous minor cracks due to
shrinkage and variable live loads, which would reduce its stiffness.
Accordingly Frame 2 was subjected to & small intensity earthquake as
the first step in its testing sequence; this caused sufficient cracking
so that its stiffness was then representative of normal field conditions.
After completion of the first major test sequence, the test frame
was removed from the shaking table and repaired by epoxy injection.
The repair technique was the same as hat employed with Frame 1, and

is described in Reference 1.
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VIBRATION PROPERTIES OF THE TEST STRUCTURE

TABLE 2.4
UNDER DIFFERENT STIFFNESS FORMULATIONS
(STRUCTURE WITHOUT CONCRETE BLOCKS)
E = 264C KST
C
STIFFNESS FORMULATION
GROSS TRANSFORMED| CRACKED
SECTION RREA SECTION| SECTION
TOP COLUMN 294.3 371.60 159.0
I STORY GIRDER 1440.0 1650.0 446.0
(in%)
BOTTOM COLUMN 294.3 371.6 159.0
STORY GIRDER 1440.0 1749.0 583.5
FIRST NATURAL FqI:EQUENCY (H=z) 6.66 7.42 4.63
T 1.000 1.000 1.000
MODE 1
¢B1 0.499 0.495 0.476
NATURAL FREQUENCY (Hz) 18.28 20.36 13.09
SECOND ¢T2 1.000 1.000 1.000
MODE ¢BZ -1.826 -1.842 ~1.920
. . 1 0.0240
FPLEXIBILITY MATRIX FBB 0.0124 0.0099
. . .0
COEFFICTENTS F o 0.0145 0.0116 0.0294
.0347 .02 0.0730
F oy 0.034 0.0280
(in/kip)
. . 3.042
FTT//FBB 2.800 2.820
.170 1.172 1.225
FBT/ FBB 1.1
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TABLE 2.5

VALUES FOR LOAD-DEFPORMATION CURVES FOR

A SINGLE FRAME USING ELASTO-PLASTIC ANALYSIS

BASE SHEAR| LOAD FACTOR DISPLACEMENTS PLASTIC HINGE
(inches)
v Y NUMBER

(kips) {kips) BOTTOM STORY [ TOP STORY

CASE 1(*)
7.045 3.334 0.380 0.744 1
7.588 3.591 0.426 0.819 2
8. 346 3.950 0.508 0.940 3
9.000 4.260 0.791 1.266 4
9.061 4,289 0.818 1.300 5
9.276 4.390 0.927 1.450 6

casg 2 %
7.650 0.452 1.126 1
7.781 0.460 1.154 2
7.961 0.477 1.199 3
8.226 0.537 1.303 4
8.502 0.599 1.426 5
8.567 0.615 1.480 6

(¥) Cases 1 and 2 are explained in Fig. 2.10.



17

*HIGYIL ONIMVHS NO INIWIZDONYINVY LSHL ANV HTENLONELS LSHL

NOILVA3 3 3QiSs

1°Z2°b1a

NOILVA33 LNOYd

w06 1S -.2
- __w,_w <=9 NOILI3HI0 NOILLOW ANNOYS > __ov_l._
- T -
ow%.@..wm%hﬂ. oo R oA nod 3000 Mw,‘mo B“.M\.Qomnoo%w vw w.%mv..wouu% &OOV_ Qm\nwn a4 l S mQ qu =0 .OQOm 0 ouvwo PR oeﬁrv“.o..o.
%r Wom ,ﬁ%m@mo.m.asco@Zc_M.mo S _Wém\v&:ﬁe. Rt e 34 IQMQZOO S RS B s
_ f1 * ONIL004 2 !
1we/10-) ! [ 1] H o \_ 29vyoroNy L1 1 “
I T
* ﬁ _ il ani1oo4 | Il L
_ |
i
3
1Y WINAS % |
K
M MF”L_ ey wwis ¥30NASNYAHL
3¥NLONYLS 33578 ;
E 33318 ﬁ e/L-9
o ,0-,9 saoy _
o ul Q3aV3INHL -—,0~,9 _
Toua v A.NH# =7
871 :SSINMOIHL §3IM | L — [ B
LOI/€ ' SSANMOIHL 39NV ) 94
saoy
H43ONASNVHL q3gvIuHL ee2
30404 Buvre2
"l =g e 0
| -0-,5
WO |f=—=] JBNL-9
& o o}
__m
) w JN\Ei
|
u ¥ j /€S
b —— 2N 8




18

LNAWHDYOANIHY 40 STIVLAd ~ SRANLOAYLS LSHAL z'z "bta

NOILVA3I3 34lS NOILVA33 LNOYS
% SHVE b# 8
G220 =34M O t¥IAYT HOV3 _M IulTr “E =
‘NOILOHIA HOV3 NI 13441 O2I0=Y 34V . suva vl = o
WOL108 8 dOL NO HSIW J™IM b X, b | = SrEt s
:1LNIWIDYOANIZY gvs i F ez O z#b
¥30YI9 A¥OLS dOL ©®L03s | | Suive & 4 O A e N
2w SanNNLLS —™ e 6 IL MH S3LV1d N3 1 %,6 %,0l ‘WHW_ e
i Sdny —]
syvab # 2 ‘IJ on N'le e WA .n_&M\_ mN;@mMWM_M“o __Mw_nvmm_.rm muomw”ow m WPE 2 Ozwb
suvas# v & r @ S = ~1 | OO @  Ozws Vl@ma.m_ = ﬂ
¥3QYI9 AYOLS WOLLO8(® L03S | o ;_ il __IE_ “ TTTTTT T, Jere @2mez
2# SdNYYILS |L Ddalel @ ! M NNW ~ _ ~ W
syvaES# 2 & A | = (dAL) _ =
w8/ N‘»* B8 1 - A3 ¥VIHS —
- W2/LEX, S X | Yave2 Oeme
Syve e # 9 [~ ] Hle— —
o i —}
2#¢e
. 430819 NWA102 m SdNYYILS ¥3aYI9 w —
ASNVML ® 103S @M 1238 m 2/ 202 # bl SdNYYILS 830819 || } ve2 @emep
/e S T\U»I 2# SANNYILS (B ] OO S7ws | o3 ws) E
NMMMMMJ_MM 8/8 11 | SHVE S# b @ _ = [ @ = == - Y OF I
T ' | F
Vsl [5 IETE _ LI
D Fﬁ@q =T L— @ < ! ~ =
W82 n/18 = D 19V WWAS D L8V 'WNAS Wﬂpm_)w__ww



TEST STRUCTURE ON SHAKING TABLE

19




20

Lingy

*SISEL WOdd JANIVIEO SHNTIVA HDOVAEAVY
*¥Vd THALS ONIDMOANITI ¥ J0 HAYND NIVILS-SSHILS TVOIdAL -z "btd

NIVYLS
HS5 A3y
P
¢ o G2l 6000 o100 0] SG'Iv 862 g o _\
3
obt' 0 6¢8 921070 10200° 0 1’96 08¢ 14
¢£6l'0 9'2. 6820 0 ¢€8l100°'0} 02¢ | v'82 ¢
061’0 1 vS 8610°0 #1000 ¢€'Iv | &'62 4
1ng ._..I_A_‘_va: . A (1SM) Aw_mv_:
E) Sy E) B Ay 3 ([ON&vd A
SS3HILS



21

"SLSHL WOdd JANIVILO SHATYA
HOVIHIAY " INFIWHOIOANTIHY HSHW HIIM

J0 JIHSNOILVIZY NIVYLS-SSMILS Gz °"bta
. (NI1/Ni)NiIvH1S
91200 2H00 02200
I
_ I
|
5| ]
v\
iSY 0€2 = >3 4
2 NOILVYZITv3ai N
ISY Ob b1 =53 | 19
1) 00v'62 = 'S3 | quh ==
S1INS3y 1831 o
£g _ L\. .
3 - el
\ g 66l
(ISH) v

SS3YLS



22

ALEYONOD ¥Od SEHANND NIVMIS-SSTILS 9z "b1d
09 % NIVHLS
- >
1n
S00°0=" > INNSSY \\
1, 0o /,

- ,00 03, :

(2)- 2ea=3 /

g 22 3 \\

aNn /
LHOIVYLS /
/ %680 \\
\ O% \
9 ' /7
4 7/
374N 23 -2 404 NOILJWNSSY S,aVLSINOOH e
7
7
Ve
\\
- 9959 IWvs ¥04
P V108VY4Vd S,aVLSINOOH
\
-
PR 1S31 ¥3ANITAD ,21%,9 IVNLOV
\\
-—
— S — bt

%) ss3uLs |




23

*SNOILOES SNOTYVA A0 IAOAVI LNIWADYOANIHA TYNLOV

NWNT00 AYOLS
WOL108 ANV AHOLS 401

L°C

“bTa

L .08'8 [
! t
WS .S S
(SN
Al S S—F N1 290=°%
A\ —— G #g
d3QY419 AY0OLS dOL 430419 AHOLS WOL108
[
«SLS WSLS
. B e
E81- 205 2 w08 |
_ 3 _
BEINA - ! H3AVT
NI Ob'0=5V “ ¥3d NI I5€0=°Y NIZ90=y 4+ ¥3d NI ISE0=5Y
¢ .V#N\ HIAY ¢ 3 ¢ G*e ¢ o]
- |= AV ¥3d SuvE 6
5o ® Y3AVT ¥3d S¥VE 6 |,
m o NI pb'0-Sy | HS3W 3HIM pod 5 o % % NI 9905V HSIW 34IMm m
oG E € #p ‘ < IEN = m«w7 t g/
. . . 7 ¢ = — . 1 Sell, _ & ) o
1 Ty 7 e I gw > Ll e | P - 2
T « Te- . A4 . | ¢ = -t = *— . 0 3 > =
. | - : _
.89 Omm,o 0S¢ g9l L ol o_.mo._l W W 1,E9¢ R4
" \ — $931 dN¥YILS OL e
K] @_ G73M VL ANlS m_w &



24

“SNOILOES ¥HAYID ANV

NHATOD MOd SHOVANNS TTATA AIZITYHAT gz ‘bTa
NOISNAL }
IVIXY
h§|
o
LINIWOW
BA RNV EERE] ms_ oW 0 oE.. Sn-
A
_3¥NIYANND ‘6 o b
1NIOd ,
| Q3ONV Ve 4
ZUHOU
¥o . | AW
13500 INIOd
SNICT3IA 0
2
LNIWOW NOISSIHAINOD y
TvyNx3aT4 | VIXY




25

THENLONELS LSHL HHL 40 SAY0T ALIAVYD ANY
NOTLLAHTMLSIA SSYW ‘SNOISNAWIA TY¥NALOY 6°C "b14

SINIWIHOVLLY GNV S¥0018 ILIHONOD WOML SSYW = w
93A31 40014 LV GIJWNT 38 0L QIWNSSY ‘SSYW ANOLS FUNLINYLS = Sw

SINIWOW 3LNJWOD OL SNOISNIWIG IINVLSIQ ¥V IWNSSY SISATVNY TVHNALINYLS HO4d SNOISNIWIQ SIXV OL SIXV INNSSV

H3dHI9 HOV3 404 AVO1 ALIAVYS NOILVZITV3Al 3Y4NLONYHILS
LHOIIM SHIO0T9 3LIHINOD Ol 3Na - Mer A 24l
_.mﬁmm_ Lﬁ , wdu
__mm 6b _o¢ ..ww 6t
*v_ ol'y MOl i
AHOLS WOLL108 Am\ L
: H-ul 62| d d W-ul 62
s ;o? w NOlIY . ey
To_.m v_o_.i
AHOLS dOL 43 2
V_-c__.wm\ m%_o_.m* *mazo_.m ,Vx-c__.wm £098/ul-dit L10°0= *w
N . R A—
LHOIAM NMO 3dNLONYLS O1 3Nd Pe8/u1-dN G250 0 = W
- T
T:m.o X260
S31¥0LS HL08 m\ (v ey
H-UIEI2 sdjp6|=1m %-U1 612
* SI'o xm.‘o* _ s
¥\ Sy3Qu10 ISHIASNVHL WON4 aVOT~” Pos/u-dny $ei00="w

2095/U-d 81200+



26

SLTNSHY SISATYNY DILSYId OLSYIA 0T°Z "bta
(S3IHONI) LNIW3IOIVIdSIA AHOLS TTVLINOZIHOH
8l Ll 9l St id ¢l 2l Il o'l 60 80 O 90 60 0 €0 20 I'0
7 1 LD | I T i | | ] T |

'SIONIH DJILSVd 40 IONVYVIHdV 40 ¥3040 ILvOIONI SHIEGWNNN

SHO07d
31340NOD ONV S¥30NJSNVHL
30404 1LNOHLIM 3IYNLONYLS

¢ ASvO

H=A
e

SMo078
A1L3YONOD ONV SH3ONASNVYL

J0YO4 HLIM JUNLONHLS
I 3SVO

A€ 2=A
—

T 1
2} o, d

mﬁ =" %xoo._ y
s
1 1 g
v - s
[ —— AN Ve s/
7 /
%
v 7
- /
e
R —=
23svo tasvo 7
d 4
s W
s L7 2 3SV0
|7 Z
2~ >

e > P ¢

g
\W\\\ \m.\\\

- e 95 3
- v
9

AHOLS d0L —=——

Ad0OLS NOL10H —

(SdIM) A ¥v3aHS dsvd




3. TEST PROCEDURES AND INSTRUMENTATION

3.1 EARTHQUAKE EXCITATION

The ground motion used for the testing of Frame 1 was the N69W
accelerogram recorded at Taft during the Arvin-Tehachapi earthquake of
1952. In general, the generatéd response in the test structure seemed
to be suitable, so it was also selected as the basic excitation of
Frame 2. However as was mentioned earlier (see section 1.1), the
extended sequence of shakes with'gradually increasing intensity which
was adopted for testing of Frame 1 did not seem to be a realistic form
of excitation. Tnstead for Frame 2 a very high intensity earthquake
was applied directly to the undamaged structure.

The test sequence included a preliminary very low intensity shake
which was intended to induce a norxmal degree of cracking in the frame,
and thus to reduce its stiffness to a representative level. The change
of stiffness whiéh occurred during this test induced an interesting
response which is discussed in Chapter 5. The intensity of excitation
for the major earthquake input was determined on the basis of experience
gained in testing Frame 1. From those earlier results, it appeared
that the Taft earthquake with a peak acceleration of 50 to 60 percent
of gravity could cause extensive damage; it was predicted that this
intensity would be obtained with a control "span" setting of 850. For
completeness, this Ffirst high intensity quake was followed by a second
one of similar intensity simulating & severe aftershock in the field.
A comparison of the results of these two tests would demonstrate how
the stiffness of a structure before an earthquake can influence the

behavior of the structure during the earthquake. The contrel span
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settings and the peak input accelerations obtained in the testg of
Frame 2 are listed in Table 3.1. The accelerogram of the actual Taft
earthguake record and of the table motions induced using the Taft record
and a span setting of 850 are shown in Fig. 3.1. The response spectra
for the corresponding accelerogram and the table motions are shown in
Figs. 3.2 and 3.3, respectively. Slight differences are apparent in the
shapes of the spectra; also the great increase of the test intensity over
the recorded motion is obvious.

Aftexr the second high intensity test, the frame was repaired by
epoxy injection and was then subjected to a second sequence of tests
similar to those applied before repair. The control span settings and

peak input accelerations of these tests are alsgo listed in Table 3.1.

" 3.2 INSTRUMENTATION

The instrumentation used in testing Frame 2 was basically similar
. . 1 .
to that used with the first frame( ). Hence only the various types of

transducers employed, and the changes that were made from the instrumen-

tation of Frame 1 are described.

3.2.1 Accelerometers

Three accelerometers were attached to the floor slabs of the frame

to measure horizontal accelerations developed during the tests. Two

were mounted on the top floor slab--one at each side--so that any deviation

from symmetric translation could be observed; one was mounted at the
centerline of the first floor slab. These measured accelerations when
multiplied by the story masses, provided a direct indication of the

earthquake forces developed at each story.
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3.2.2 Potentiometers

Potentiometers were connected at each side of the two floor slabs
s0 as to measure the displacements of the floors relative to the refer-
ence frame which is located on the floor of the laboratory outside the
shaking table. Relative displacements measured by the two gages at a
given floor level indicate the torsional response tendencies of the
structure; differences between the shaking table displacements and the
story displacements indicate the relative story displacements due to

the deformation of the frame.

3.2.3 Linear Variable Differential Transformers (LVDT)

ILVDTs mounted on column frames cemented to the structure were used
toc measure the curvature developed at critical sections of the frame
beams and columns. Two frames were used at each section, and two LVDTs
were arranged to measure the relative rotation of the two frames (i.e.
the difference between the TVDT readirgs divided by the distance between
them}). The average curvature of the member section is given by the
relative rotation divided by the distence between the mounting frames.
Details of the LVDT mounting fremes for the columns and girders
are shown in Figs. 3.4 and 3.5, respectively, while photographs of typical
installations at column base and column girder joint are presented in
Figs. 3.6 and 3.7. The main difference between the installation of
these transducers in Frame 2, as compared with Frame 1, was in the girder-
column joint region. During the tests of Frame 1, it was apparent that
the principal cracking occurred at the plane where the column top met
the bottom surface of the girder. In order to account for this cracking
in the curvature measurement, the column target frame was cemented

directly to the bottom of the girder, as shown in Fig, 3,7. Similarly
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the girder target frame was cemented to the face of the transverse girder,
in order to take account of cracking in the plane of the girder end; this

is also shown in Fig. 3.7.

3.2.4 Force Transducers

Force transducers were installed at mid-height of the columns of
Frame 2 to measure the axial force, shear, and moment developed in the
columns, in the same way as was done for Frame 1. Details concerning
these transducers are presented in Reference 1. The only difference in
the present case is that the transducers were recalibrated; results of
the new calibration tests are listed in Table 3.2. The shear forces
indicated by the force transducers provided a direct measure of the
inertial forces developed in the frame during dynamic testing, hence the
consistency of the experimental data could be checked by comparison of
the accelerometer results with the force transducer results, as explained

in Chapter 4.

3.2.5 S8train Gages in Reinforcing Bars

Resistance wire strain gages were cemented to the longitudinal
reinforecing bars at certain critical sections of the columns, specifically
at top and bottom of the bhottom story columns and at the bottom of the top
story columns. Post-yield gages were used having a strain capacity of
30 mils per inch so that significant ductile deformations could be recorded.
All columns were gaged, but only those on one side of the frame were con-
nected to the data acquisition system because the number of channels of
data that could be recorded was limited.

At each section that was to bhe measured, the gages on two bars were

connected in a single circuit for measuring curvature directly, while
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the gages on the remaining two bars were connected separately so as to
measure their strains independently. ’'the curvature indicated by the
reinforcing bar gages provided a check on the curvature measured by the

LVDTs at the same section.

3.2.6 LVDTs for Static Displacements

LVDT gages having a maximum travel of one inch were mounted between
the reference frame and each floor slas. These were in parallel with
the displacement potentiometers, and were used in static measurements
of the flexibility iﬁfluence coefficients of the frame, because of

their greater precision.

3.3 FREE VIBRATION PROPERTIES

The free vibration mode shapes and frequencies of the test frame
provide a direct indication of its dyramic properties. They were
measured before and after each simulated earthquake test to monitor
the cumulative damage effects induced by severe shaking. Two different
procedures were employved to deterxrmine the free vibration properties,

as described below.

3.3.1 Snap Tests

The most direct measure of the firee vibratién properties was given
by snap tests, which were conducted by loading the structure laterally
at the first floor level and then releasing the 1oad suddenly. The
resulting dynamic response of the stricture was measured by accelero-
meters at each floor leﬁel; the accelerometer records were passed through
narrow band filters to separate the first and second mode response

components. Frequencies and damping values could then be obtained from
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the filtered records, treating them as single degree of freedom systenms.
Details of the procedure are given in Reference 1; results are presented

in Chapter 4.

3.3.2 TFlexibility Matrix Measurements

The free wvibration properties also were evaluated by measuring
directly the flexibility of the frame and then using these measurements
together with the known mass properties to formulate the vibration eigen
problem of the structure. The flexibility coefficients of the frame were
obtained by applying a horizontal load first to one story and then to the
other story, and measuring the resulting displacements of both stories.
The ioad was applied in increments of 200 lbs, and the corresponding
displacements were recorded during both the increasing and decreasing
sequence. The force-displacement relationship obtained at each story
was plotted as a hysteresig loop; the slope of the inereasing load
branch was taken as the flexibility coefficient.

The measurement procedure was esgentially the same as describked in
Reference 1 except that LVDT gages rather than potentiometers were used
to measure displacements. Results of the tests, which are presented in
Chapter 4 demonstrate the improved accuracy obtained with the LVDTs in
that there 1s better agreement between the cross-flexibility coefficients;
however, it was still necessary to average these values before formulating
the vibration eigen prcblem from which mode shapes and frequencies were

calculated.

3.4 STATIC TEST

After the structure had been tested, repaired, and tested again,

it was removed from the earthquake simulator and moved to the Structural
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Research Laboratory to determine its remaining static load behavior
and ultimate capacity. The test procedure was exactly the same as
employed with Frame 1, and only a general outline of the procedure will
be given here.

Instrumentation used in the stati:z test included LVDTs for measuring
curvature at the column bases, and at the same sections strain gages
on reinforcing bars were connected to measure both curvature and direct
strain. In addition, the horizontal static force applied to the top
story and the displacements produced at both stories were measured. &all
static test data were recorded on direct writing oscillographs; hence
the number of channels available was quite 1imited.

The test was performed by applying the static load in increments,
recording all gage readings at each step. When the displacement capa-
city of the actuator was reached, the structure was unloaded, a spacer
block inserted, and then the loading was continued until the displace-
ment capacity was again reached, Static test results are presented in

Chapter 4.
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TABLE 3.2 CALIBRATION VALUES FOR FORCE TRANSDUCERS

TRANSDUCER FLEXURAL SHEAR AXIAL
NUMBER MOMENT FORCE COMPRESS ION
IDENTIFICATION (in - 1bs) 1bs ibs
£ £ c
T T2 73
2 122 26.5 66.4
3 118 26.7 63.0
4 117 25.0 63.0
5 120 29.1 62.4
6 118 21.4 63.2
7 116 22.6 61.3
8 118 21.8 63.2
9 119 26.7 61.3
]
€p, = 1/2 [TOP FLANGE STRAIN-BOTTOM FLANGE STRATN] (1079 in/in)
€y —[SHEAR BRIDGCE STRAIN] (106 in/in)

€T3 = 1/2 [TOP FLANGE STRAIN- + BOTTOM FLANGE STRAIN] (1076 in/in)
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LVDTs, MOUNTED ON FRAME,

TO MEASURE COLUMN END ROTATION.
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4. TEST RESUITS

4.1 DAMAGE OBSERVATIONS

One of the most important indications of the response of structures
to damaging earthquakes is the appeararce of the structure after the
event. In the case of real structures subjected to real earthquakes,
generally no instrumentation has been provided to record the response,
s0 the only available measure of the response characteristics is pro-
vided by the observed damage patterns. For earthquake simulator studies
such as that described herein, extensive instrumentation provides rather
complete quantitative evidence concerning the response, but even in this
case the damage patterns observed in thie structure provide additiocnal
evidence of the response intensity. BAccordingly, the structure was
inspected carefully after each test foir evidence of damage, and a sum-
mary of these observations is presented here..

In general, the extent and type o: damage induced in Frame 2 by
the three simulated earthquakes applied before its repair were very
similar to those cobserved in Frame 1 alter its much more extensive test
sequence before repair. O©Of course the peak accelerations applied in two
tests of Frame 2 (0.57g and 0.65g) were significantly greater than the
two largest accelerations achieved in the tests of Frame 1 (0.30g and
0.449g), so this observed equivalenée of damage is probably due to the
increased intensity in the one case compensating for the greater number
of tests in the other.

As was mentioned earlier, the main difference between the two
structures was that Frame 2 was essentially uncracked before testing.

Even though some cracks were observed when the concrete blocks were

Preceding page blank ®
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installed, these dead load cracks were not closely related to the
lateral deformation patterns. The minor earthguake which was applied
to induce a more realistic degree of cracking caused a noticeable
reduction of vibration frequency and some minor increase in visible
cracking in the bottom story members; however, the structure still
appeared to be essentially undamaged after this test.

During the first major earthquake test {accel. = 0.57g) the steel
at the first story column bases and tops yvielded, and many significant
flexure cracks could be seen in these regions., Also, cracks developed
in the longitudinal girders near the column joints, extending from
the bottom surface to the base of the slab. Some minor cracking occurred
at the top of the first floor slab along the line of the transverse
girder, but no major crack developed eqguivalent to that observed in
Frame 1 because the slab reinforcing mesh was continued across the top
of the transverse girder. The base of the top story column also cracked
at its junction with the first floor slab. In general, it may be said
that during thig 'gquake the structure was significantly cracked and
underwent several cycles of plastic deformation in the reinforcing steel,
but that its strength was not reduced.

During the next major test (accel. = 0.65g) the cracking patterns
were extended, but not changed in character. Cracking at the column
bases became somewhat inclined, showing the influence of shear, and
some spalling and crushing of column concrete occurred at the juncture
with the footing. The bottom story girders showed some minor shear
cracking, and the slab cracks over the transverse girders were enlarged.

After the structure was repaired, the preliminary low intensity

carthquake caused some minor new cracking. The ftwo high intensity
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earthguakes then produced additional cracking which was generally
similar to that incurred in the tests before repair. However, the
shear cracks in the columns became more prominent, as can be seen in
Fig. 4.1. Also, the cracking and spalling of the concrete at the column
bases again was quite evident, and was accompanied by significant
cracking of the footing, as may be seen in Fig. 4.2. Similar spalling
is shown in column tops at the beam-cclumn joint in Fig. 4.3. Another
interesting crack pattern is shown in Fig. 4.4, starting in the top of
the bottom story slab and continuing vertically into the second story
column. This may be due to some type of torsional deformation, but the
source of the torsion is unclear.

One feature of these final two tests on Frame 2 which should be
discussed is the fact that the overturning moment capacity of the shaking
table was exceeded. The horizontal inertia forces develcoped at the two
floors of the frame in response to the high base accelerations applied
to the repaired structure (peak values of 0.78g and 0,82g) induced very
large overturning moments which exceecded the dynamic capacity of the
vertical actuators. As a result, the overload bypass valves of the
actuators operated, allowing the system to move vertically. Significant
vertical accelerations having a peak value of 0.60g accompanied this
vertical motion, and of course the obiserved structural response there-
fore was caused by the combination of vertical and horizontal acceleration.
The vertical direction accelerogram is shown in Fig. 4.5,

An important cbservation drawn from the test of Frame 2 was that the
structure did not appear to be more sensitive to damage when the high
intensity earthquake was applied to a completely undamaged structure than
was Frame 1 which had been strained extensively in low intensity earth-

gquake tests before the maximum test was applied., The damage effects are
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cumulative, so that a sequence of tests produce more damage than a single
test of like intensity. Alsco, the degree of damage during any test is
proporticnal to the intensity of that test. But there was no evidence
that an undamaged structure is more "brittle" or damage-prone than one
which had been cracked and strained significantly before & major earth-

quake was applied.

4.2 VARIATION QOF FREE VIBRATION FREQUENCY AND DAMPING

Free vibration frequencies of the test structure, as determined from
the snap tests and the flexibility matrix measurements are listed in
Table 4.1 and are depicted graphically in Fig. 4.6. It is of interest to
note that the second mode frequency is about three times the first mode
value during all stages of the test; this same ratio was observed in the
test of Frame 1. The fact that Frame 2 was stiffer before testing than
was Frame 1 is apbarent from the first mode frequency of Frame 2 (without
blocks) of 6.58 Hz, as compared with 5.01 Hz of Frame l(l). This demon-
strates the essentially uncracked condition of Frame 2 before testing.

The fundamental mode fregquency of the frame with blocks is shown in
Table 4.1 to have changed during testing from 3.80 to 1.88 Hz, the damaged
structure having only half the frequency of the original frame. Thus it
may be deduced that the stiffness of the frame was reduced by a factor of
4 during the testing before repair. After repair, the frequency was
increased to 2.58 Hz, or 68% of the original value; hence the repaired
stiffness was about 46% of the original value. During subsequent testing,
the frequency was reduced to only one third of the original value; this
corresponds to an ultimate stiffness of only one-ninth of the original.
These changes demonstrate clearly the great stiffness degradation suffered

by concrete frames during severe earthquake loadings. By way of compariscn,
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the frequency of Frame 1 just before repair was 58% and just after
repalr was 77% of its original walue, hence it may be concluded that
Frame 2 suffered more damage during testing than did Frame 1. This
fact is a direct consequence of the essentially virgin quality of
Frame 2--it had more stiffness to lose. However, it is significant
that the frequencies of the two frames were quite similar after each
had been subjected to the first test which caused yielding of the steel.
Similar correspondence was also observed after completion of testing
before repair of the structures. The greater loss of stiffness after
repair of Frame 2 is attributable to the extremely severe‘shaking it
was given during these final tests.

Another feature of the vibration Jroperties apparent in Table 4.1
is that the frequencies computed from the flexibility coefficients are
generally lower than the values obtainzd directly from the snap tests.
The discrepancy averages about 6 per cent implying that the flexibility
coefficients (which are listed in Table 4.2) are about 12 per cent too
high; no explanation can be offered for this deviation.

The damping ratios measured in the snap tests of Frame 2 also are
listed in Table 4.1 and are plotted in Fig. 4.7. These values, which
range from about 2 to 7 per cent in the first mode and from about 1 to
3.5 per cent in the second mode, are generally similar to those observed
in Frame 1. The much greater increase of damping in the first mode shown
during the tests of both structures demonstrates that the damage was pri-
marily concentrated in the first mode deformation pattern. Another aspect
of the damping behavior, which is evident both in Fig. 4.7 and in Table 4.1,
is the decrease of damping ratio which accompanies the addition of the concrete
blocks to the structure. »A decrease cf freguency also accompanied the addition

of the blocks, and since the frequency changed proportionately more than the

damping ratio, it may be argued that the stiffness was reduced at the
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same time that the mass was added. (If stiffness and damping are unchanded
while ﬁhe mass of a single degree of freedom system is changed, both damping
ratio and frequency should be changed by the same percentage.) The argu-
ment is supported by the lateral flexibility coefficients listed in Table
4.2, so it is probable that the cracking, resulting from the gravity load of
the concrete blotcks, did actuaily reduce the lateral frame stiffness.

A similar argument can be applied to the comparison of changes of
frequency and damping that occurred during the epoxy repair of the frame.
The resulting reduction of damping was much greater than the increase of
frequency, hence the material damping factor must have been changed as
well as the stiffness. Of course, it is reasonable to assume that less
energy is lost when the cracks are fully cemented so the test data seem

consistent in this regard.

4.3 LATERAL FLEXIBILITY MATRIX

A main point of interest of the lateral flexibility matrix coeffi-
cients which are presented in Table 4.2 is the relative flexibility indi-
cated for the two stories, i.e. the ratios FTT/FBB and FBT/FBB' These
ratios remained reasonably constant during the testing of the structure
before repair, even though the flexibility coefficients themselves were
changing by factors of four or more. Similar behavior is alsc apparent
during testing after the epoxy repair of the frame, although the ratics
are slightly higher during this sequence than before the repair. The
significance of thig observation is that the damage done during the
testing sequence can be represented reasonably by a single stiffness
degradation parameter (such as a change of modulus of elasticity); it is
not necessary to completely reformulate the flexibility matrix. Advantage

is taken of this fact in the analytical prediction of dynamic response,
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as is described in Chapter 5.

4.4 GLOBAL RESPONSE BEHAVIOR

The general nature of the dynamic response of this frame to the
earthquake simulator inputs is depicted effectively by time history plots
of the story displacements relative to the base. A series of such plots
is presented in Figs. 4.8 through 4.16: in each figure graph "a" shows
the bottom story response and graph "b' the top story motion. A general
conclusion which may be drawn from all of these figures is that the dis-
placement response of the frame is egsantially a first mode motion; very
little contribution is seen at the second mode frequency. BAnother basic
fact is that the type of response depends strongly on the fundamental
frequency of the frame at the time of the test. A direct demonstration
of this phenomenon is shown in Fig. 4.8 which compares the responses
during runs W2 and W3; the change of frequency resulting from the damage
done during run W2 leads to a significantly different response history in
run W3. A similar plot for runs R2 ard R3 after the structure was repaired
is shown in Fig. 4.16.

The fact that the response is similar for two structures having simi-
lar periods is demonstrated by Fig. 4.9 which compares the response of
Frame 2 during test W1 with the response of Frame 1 during its test, W2.
The earthquake intensity was small in both cases, so the response was
essentially linear, and the "beating” phenomenon which is characteristic
of a high frequency linear response, s evident in both structures. A
second comparison of similar structures, but demonstrating nqnlinear
response, is shown in Fig. 4,10. Figire 4.10 shows the response of
Frame 2 during test W3 and the response of Frame 1 to its test W6. The

frequencies of the two structures wers very nearly the same before these
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two similar tests, and the responses are seen to be very similar, even
though yielding of the steel occurred in both cases. A similar comparison
of the behavior of the first and second frames after repair is given by
Pigs. 4.11, 4.12 and 4.13 which show the responses during tests Rl, R2

and R3 of each structure, respectively. A comparison of response of the
structure before and after repair to similar simulated earthquakes is
shown in Figs. 4.14 and 4.15, which show comparisons for runs W2, RZ and
runs W3, R3, respectively.

A summary of the response behavior during the entire test segquence
of Frame 2 is presented in Figs. 4,17, 4.18 and 4.19, which show, respec-
tively, the peak story displacements, story shears, and story overturning
moments developed during each test. 2Also shown with the peak story dis-
placements in Fig. 4,17 are values of displacement calculated by an

(3}

elastoplastic static analysis corresponding to first vield and full

collapse mechanisms. The fact that the structure survived peak dynamic

"collapse" value is evident

displacements which far exceed the so~called
in this figure. Clearly this simple.analysis did not properly model the
actual frame behavior, probably both because the yield capacity of both
concrete and steel were under-estimated, and also because the frame does
not develop true elasto-plastic hinges. Moreover, the dynanmic resistance
of the frame undoubtedly exceeds its static capacity. Similar comments
apply to Figs. 4.18 and 4.19 which show the elasto-plastic predicted vyield
and collapse values as well as the ohserved peak story shears and story

overturning moments, respectively, All observed peak response data also

are summarized in Table 4.3,



53

4.5 MEASURED COLUMN SHEAR FORCES

A comparison of the column story shear forces measured by the force
transducers in the bottom story columns and the average column shear
force computed from the accelerometer readings is presented in Fig. 4.20.
It is seen in this plot of data from ran W1l that there is a slight dis-
crepancy in the results given by the original transducer calibration
factors. Accordingly, correction factors were derived from this data
to obtain agreement between the two types of measurement during test WL.
These same correction factors were then applied to transducer data from
runs W2 and W3, and plotted against the accelerometer derived results
for those runs, as shown in Figs. 4.21 and 4.22. The agreement is
considered to be adequate, but is not as good as was found in the test
of Frame 1. Tt appears that the transducers may have been damaged
slightly at some time in the testing procedure.

The plots of the average north side column shears and average south
side column shears, which are shown in Figs. 4.23 and 4.24, demonstrate
that the columns develop increased shear resistance on the side of the
structure toward which it has moved. 1In other words, the columns sub-
jected to compression due to dvnamic overturning moments consistently
carry the largerxr part of the shear force, as though the increased com-
pression caused an increase of stiffness. This same type of behavior

was observed in the analysis of results from Frame 1.

4.6 STATIC TEST RESULTS

The static test was performed on Frame 2 after the frame was
repaired and tested for dynamic tests, i.e. after run R3. The results

will be presented in two parts:

(1) the actual test load-deformation results compared to the
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load-deformation relationship predicted by the elasto-plastic analysis,
and

(2) damage after the test.

The actual test load-deformation relationship is shown in Fig. 4.25.
The unloading branches during the test are due to the fact that the dis-
placement capacity of the actuator was reached at these points; hence
the frame had to be unloaded and spacers introduced before the frame
could be lcaded again. Comparing this result with the load-deformation
relationship of Fig. 2,10, it can be seen that the actual capacity of
the frame is much higher than predicted by computer analysis.(3) This
increase in capacity is due to the reasons mentioned in éection 4,4,
to reiterate, the increased capacity is a result of the moment capacities
being underestimated and the gross assumption that elasto-plastic hinges
are formed. The important point to note is the significant displacement
capacity of the frame. The maximum top story displacement reached
during the test was 24" before "functional" failure of the frame ogcurred,
due to failure of transverse girder reinforcement. This displacement
capacity is due to good detailing of the sections, which provides a large
amount of ductility.

The damage that occcurred during various stages of testing is shown
in Figs. 4.26 through 4.33. The deformation of the frame midway during
the test is shown in Fig. 4.26 as 16 inches. The crushing and cracking
at the ends of the columns was quite significant. Figure 4,27 shows the
damage at the bottom story girder-column juncture, whereas a general
view of the frame in the transverse direction is shown in Fig. 4.28.

The crack that had developed in the slab and extended vertically into
the column during the dynamic test (Fig. 4.4) was the key factor that pro-

moted the failure of the frame. The widening of this crack and the extent



55

of the damage to the transverse girder can be seen in Fig. 4.29. Another
view of the damage of the same girder—-column juncture is shown in Fig.
4.30. As the deformation increased, the cracks widened and crushing of
concrete continued until the steel in the transverse girder was fractured.
The failure was due to the torsion developed in the transverse girder.

The damage of the frame after "functional" collapse is shown in Figs. 4.31
through 4.33. The damage of the columns on the opposite side of the
transverse girder in which the fracture of the bar occurred is shown in
Fig. 4.31. Views of the extent of the damage to the slab and the trans-
verse girder after "failure" are shown in Figs. 4.32 and 4.33.

Thus it is evident from this static test that the frame had signi-
ficant deformation and load capacity beyond that estimated by the
elasto-plastic analysis. Also the frame finally failed because of trans-
verse girder torsion; if this could have been avoided, the ultimate capa-

city of the frame would have been still higher.
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CRACKING AND SPALLING OF COWCRETE AT

THE COLUMN-FOOTING JUNCTURE.
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COLUMN WITH BOTTOM STORY SLAB.
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Fig. 4.26

DEFORMATION OF SUTRUCTURE MIDWAY THROUGH
THE STATIC TEST.
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926

DAMAGE PATTERN AT BOTTOM

STORY GIRDER~-COLUMN JOINT.



TRANSVERSE VIEW OF FRAME SHOWING

PATTERN AND EXTENT OF CRACKING OF

COLUMNS.
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GIRDER-COLUMN JOINT.

EXTENT OF DIMAGE -

99




100

Fig. 4.31 DAMAGE OF COLUMNS TOWARDS LOADING ACTUATOR,

AFTER "FUNCTIONALY" FAILURE.
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DAMAGE OF SLAB ABCOVE TRANSVERSE GIRDER (AWAY FROM LOADING ACTUATOR)

IN WHICH FRACTURE OF STEEL OCCURRED.
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5. ANALYTICAL PREDICTION OF STRUCTURAL RESPONSE

5.1 GENERAL COMMENTS

In this chapter are described the analytical methods used to
calculate the dynamic response of Frame 2, and the correlation of the
analytical results with the observed structural behavior. The methods
of analysis employed here are essentially the same as those described
in the report on the testing of Frame l(l); however, in this case the
physical parameters used in the analysis were adjusted to give the best
possible fit with the new test data., For the purpose of these correla-
tion studies, the story displacements were considered to be the most
significant measure of structural responée. Only the tests performed
before repair of the structure are discussed. The first test, W1, was
only a light intensity earthquake, not strong enough to cause any
vielding of the reinforcing steel. However, the large reduction of
frequency which occurred during that test provided a difficult problem
in analytical correlation which is discussed briefly. The tests of
greatest interest were W2 and W3, the two runs of nonlinear intensity
performed before repair. The structure was essentially undamaged
(although slightly cracked) at the start of test W2, so this test
demonstrated the performance of a building in good condition when sub-
jected to a ground motion severe enough to cause significant concrete
cracking and vielding of the column steel. Test W3 showed how a
damaged structure might perform when subjected to a strong aftershock—--
the initial damaged condition having an important effect on the response
behavior.

Specific topics dealt with in this chapter include evaluation of
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the linear elastic stiffness properties of the frame, and the use of
four diffefent mathematical models in attempting to correlate analytical
results with the performance observed during the three tests. In all
cases, the basic model was a plane frame with bilinear hysteretic joints
at each end of each member. The four versions of this model were Model
B, the basic system; Model D, which included a stiffness degradation
mechanism; and Models Eand F which combined two different deterioration
mechanisms with the degradation mechanism. All of these models were
1)

originally devised by Dr. Pedro Hidalgo( , and his designations are

used here for consistency.

5.2 EVALUATION OF LINEAR STIFFNESS PROPERTIES

(1)

As was noted in the report on Frame 1 , calculation of even the
simple linear elastic stiffness of a concrete frame before any testing
is not an easy task because the effective member section properties
depend on the extent to which microcracking has taken place. Table 5.1
lists the periods of vibration of Frame 2 computed on the basis of three
assumptions often used in evaluating member moment-of-inertia (and
assuming E, = 2640 ksi, as measured in laboratory tests); also shown
are the measured periods of vibration. Clearly none of the standard
assumptions gives excellent agreement with the obserxrved behavior.

In order that the mathematical model might reproduce the dynamic
response of the frame, it was necessaryv to determine member properties
which would provide the observed free vibration period. For this
purpose, the cracked section moment of lnertia values were adjusted
following a two step procedure. First, two adjustment factors were

derived: one for the top story columns and girder, the other for the
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bottom story members. These two factors were determined such that the
two story flexibility coefficients, Fpq and Fpp, of the mathematical
model were identical to the measured values. The adjusted moments

of inertia obtained in this way were as follows:

TOP STOFY BOTTOM STORY
GIRDER 1456 in4 617 in%
COL.UMN 519 in% 168 in4

Assuming that Eo = 2640 ksi, the structure flexibility matrix provided

by these section properties is

[ 0.0228 0.0278
F = in/ .
0.0278 0.0485 kip
in which .the coefficient ratios are
7 F
T - B - |
T/Fpg = 2.127 , T/Fgy = 1.219

Thesa are very close to the ratics maintained during the test series.
Having an appropriate set of flexibility coefficients, it was then
possible to obtain any desired fundamental frequency of vibration merely
by adjusting the modulus of elasticity. For example, the fundamental
frequency gyiven by the above flexibility matrix is 3.02 Hz, using the
measured value of E, = 2640 ksi. Thus to obtain the 3.13 Hz frequency
observed just before test W2, it was nescessary merely to use a modulus

of

il

3.13)5

303 = 2836 ksi

E 2640 {

During subsequent stages of testing, as the frequency of vibration
diminished because of structural damage, the flexibility was adjusted

by making similar modifications to the modulus of elasticity.
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5.3 "LINEAR" RESPONSE CORRELATION - MODEL B

The biliﬁear hinge mechanism which is assuhed at the ends of each
colunn and girder is depicted in Fig. 5.1. Thus each member remains
fully elastic until the end'moment exceeds the yield moment defined
for that member, which depends on the axial force as well as the member
section properties. For a test like W1, which induced no moments
approaching the yield level, the Médel B computer program behaves as
a simple linear elastic response program.

The regsponse of the frame to the table accelerations recorded
during test W1 was calculated by this Model B program, using a first
mode damping ratio of 2 per cent and adjusting the modulus of elasticity
to provide the fundamental frequency observed before run W1 (3.80 Hz).
The computed response history is‘shown together with the observed results
in Fig. 5.2, where it can be seen that the correlation is good at first.
However, the period of the observed.response then begins to lengthen,
as cracking of the gections causes loss of stiffness, and this change
of period induces a nearly resonant condition with the earthquake input.
The consequent resonant amplification of the observea response is not
contained in the analytical solution.

As a second test of the linear program capability, the modulus of
elasticity was adjusted to provide the frequency observed at the end of
run W1 (3.13 Hz) and the analysis was repeatéd, with results shown in
Fig. 5.3. 1In general, this is a much better correlation than was found
in Fig. 5.2, but it is clear that a significant loss of stiffness occurred
during the test and the unchanging mathematical model cannot simulate
this effect adequately. On the other hand, no yielding of steel occurred
and the stiffness degradation mechanism of Model D is not applicable to

this situation.
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Accordingly, it was decided to modify Model B to account for stiff-
ness loss with less than yield moment deformations. Two different dete-
rioration mechanisms were tried, both controlled by the amplitude of the
first mode response, Yltt). This guantity, which was used by Hidalgo in

{1)

defining the stiffness degradation mechanism of Model D ~', is given by

Y. (8) = Ay ()

where A is the top row of the inverse mode shape matrix,
R Y
o = |

and v(t) is the story displacement vector evaluated at time t. It

should be noted that the mode shape matrix was assumed to remain constant
during the response, even though yielding was taking place.
The first type of deterioration mechanism was assumed to come into

operation each time Y. reached 35 per cent of its yield value (the first

1
mode deflection at which yvield would occur). For each such displacement
swing (either positive or negative), the modulus of elasticity was
reduced by 1 per cent {0.01). Results obtained with this deterioration
mechanism are shown in Fig. 5.4. As can be seen from this_figure, the
correlation is fairly good for the first 15 seconds of response,
However, during the latter part of the time history the stiffness
deterioration rate of the actual test structure decreases, a phenomenon
not accounted for by the model which assumes a constant rate of deteri-
oratlion. The result is that the mathematical model becomes excessively
flexible.

The second type of deterioration mechanism was similar to the
first except that it operated only if 77 exceeded its previous maximum
value as well as 30 per cent of the yi2ld value. Thus deterioration

only occurs during increasing amplitudz phases of the response.
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Results provided by this modified deterioration mechanism are shown in
Fig. 5.5. This modification of the deterioration mechanism appears to
have led to improvement of the correlation in the final stage of the
response, but is not as good as the first version (Fig. 5.4) during
the phase after first reaching the peak response. Hence it is not a

reliable improvement.

5.4 DEGRADING STIFFNESS ANALYSES - MODEL D

Because significant yield occurred in the frame during tests W2
and W3, it was clear that the resulting damage should be represented
directly in the mathematical model and the stiffness degradation
mechanism of Model D was considered appropriate for this purpose. As
degscribed by Hidalgo(l), this stiffness degradation operates in the
first mode component of the dynamic response, and is based on the
Clough concept(4). The basic mechanism is depicted in Fig. 5.6, in
which the yield wvalue of ¥, is that value which existed when the first
vield hinge developed in the frame. It should be noted that the basic
bilinear hinge mechanism continues to function in the frame analysis,
in addition to this stiffness degradation which is superimposed on a
global basis.

Response of the frame to test W2 was carried out using Model D,
assuming a stiffness degradation parameter (second slope) n = 0.05,
adjusting the modulus of elasticity to provide the frequency measured
before test W2 (3.13 Hz) and introducing a damping ratio of 4 per cent.
Resuits of the analysis, shown in Fig. 5.7, are seen to be in good
agreement with the actual behavior for about 10 seconds, bhut then they
begin to drift.

The correlation obtained in the analysis of test W3 is shown in
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Fig. 5.8. 1In this calculation, the strain hardening parameter was set
at n=0.05; the damping ratio was increcased to 5 per cent because it was
assumed that the damaged condition of the frame would cause a greater
energy loss. Also, the modulus of elasticity was adjusted to provide
the fregquency observed just before this test (2.03 Hz). The predicted
response given by this mechanism is reasonably good for Test W3 as
compared to run W2; in particular, no drift is observed in the analyti-
cal results. However during the latterr phases, the effect of.higher
modes begins to cause significant variation between the predicted

and measured responses.

5.5 DEGRADING AND DETERIORATING STIFFNESS -~ MODELS E & F

The degrading stiffness model deszribed above is effective in
reducing stiffness of the structure during the stage of response Qhen
displacement amplitudes are increasing. This is consistent with the
concept that damage and loss of stiffness should correlate with increased
deformations. However, when the displacements no longer increase; the
average stiffness (average of loading and unloading swings) remains
constant, and this does not agree with the observed fact that the con-
crete continues to deteriorate as long as significant deformations are
taking place. For this reason, Hidalco develoéed the two gtiffness
deteriorating models (E and F) mentiored earlier. These stiffness
deterioration mechanisms were similar in concept to those described
above in connection with the linear response analysis; the essential
feature is that the stiffness is redﬁced by a fixed percentage each time
the first mode displacement amplitude exceeds a specified value. Fig. 5.9
describes the deterioration mechanismﬁ used with Models E and F; it should

be noted that the reference value of *he first mode displacement which is
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mentioned refers to its value when first yvield occurs.

The two parameters controlling the response behavior dﬁring the
stiffness degrading and deteriorating analyses are the strain hardening
factor n (second slope) of the degradation mechanism and the deteriora-
tion ratio (DTR} representing thelloss of stiffness durihg each cycle
of deterioration. An analysis of the response during test Wz; using
Model E with n = 0.50 and DTR = 0.0l ig shown in Fig. 5.10. Other
parameters in the analysis were the same as for the case plotted in
Pig. 5.7 (& = 4%, f1 = 3.13 Hz), so a comparison of Figs. 5.7 and 5.10
shows the influence of stiffness deterioration on the response. It is
clear that the deterioration has further increased the drift which
starts after the first 10 seconds; it has not achieved any improvement
in correlation. Figure 5.11 shows the result of another analvsis, using
increased strain hardening (n = 0.80) and a reduced deterioration rate
DTR = 0.005). Again the drift behavior is changed, this time with
drift in the opposite direction, but without any real improvement.
Finally, the strain hardening ratio was reduced to n = 0.60 and the
damping ratio was reduced to £ = 2%, with results as shown in Fig. 5.12.
This time the computed result shows reasonaﬁly good coxrelation with
the observed response, with slightly less drift than was seen in Fig. 5.7
which did not include deterioration.

After this experience with Model E in correlation of the response
during test W2, Model E was applied to test W3 to see if this test would
function as well with a structure already damadged when the test began.
Parameters used in the first attempt were n = 0.80 and DTR = 0.01 to-
gether with £ = 4% and f] = 2.03 Hz. A slight drift resulted toward
the end of the calculated response, as shown in Fig. 5.13; accordingly

the deterioration rate was reduced to DTR = 0.005 and the analysis was
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repeated with results as shown in Fig. 5.14. This is probably the best
correlation achieved in any of the nonlinear analyses to date,

With Model E deterioration, the stiffness reductions are applied
only to the loading branch of the first mode hysteresis loop (Fig. 5.10).
Model F differs in that the reduction applies to both loading and
unloading branches of the loop. Figure 5.15 shows the response of test
W2 calculated with Model F using parameters T4 = 0.50, DTR = 0.01,
£ = 4% and fy = 3.13. These are the same as were used with Model E in
Fig. 5.11, hence a comparison of Figs. 5.11 and 5.15 shows the relative
behavior of Models E and F. It is evident that the response prediction
of Model F is much better than that of Model E. However, in this case,
instead of the drift being towards the end of the response time history,
there is a slight sag during the middle portion of the earthquake. The
reasons for this drift and subseguent recovery are not presently under-
stood,

The computed response during test. W3 using Model F is plotted in
Fig. 5.16. Analysis parameters used in this case were the same as were
used with Model E in Fié. 5.14, (except that the deterioration rate,

DIR = 0.01), and comparison of these iwo figures demonstrates the superi-
ority of Model E in this analysis eve:n though the Model F results are
guite good.

One aspect of the analyses described above, which should be empha-
sized, is that in all cases the initial period of vibration of the
mathematical model was adjusted to correspond with that measured before
the start of the test. Because the period of vibration has a dominant
influence on the dynamic response bekavior, it is apparent that this
empirical adjustment was a big step toward cobtaining satisfactory corre-~

lation. In practice, however, such experimental data would not be
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available and an analysis intended to test the adequacy of a given
design would have to be based on an estimated value of the structure
frequency.

The difficulties involved in estimating the stiffness of a rein-
forced concrete structure for purposes of dynamic response analysis
were discussed earlier in this chapter. It was pointed out‘that both
the distribution as well as the actual magnitude of the stiffness
changed during a severe earthquake test, becausé of variable cracking of
the concrete members. Accordingly in the foregeing analyses, the
cracked section moments of inertia of the members were adjusted to pro-
vide computed frame stiffness coefficients equal to the measured values.
Subsequent stiffness adjustments to duplicate the vibration freguency
cbserved at any stage of testing were then made by merely modifying the
modulus of elasticity of the concrete.

One approach to simplifying the estimation of the frame vibration
properties, which seemed worthy of exploration as part of the present
study, is to assume that all member moments of inertia are given directly
by the standard cracked section hypothesis. Then the changes of stiff-
ness which occur during the damage process can be accounted for entirely
by changes in the modulus of elasticity of the concrete. This approach
differed from that employed in the preceding analyses only in two
respects:

(1) No adjustment is made in the cracked section properties to improve
the distribution of stiffness.

{2) The damage condition of the structure is represented by a modulus
adjustment factor, expressing the ratio of the current effective modulus
to the basic measured value (EC = 2640 ksgi in this case).

Example values of this modulus adjustment factor which would provide
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the measured fundamental frequency at various stages of the test program

are as follows:

Before Test Frequency Adjustment Factor
W-1 3.80 Hz 2.065
W-2 3.13 Hz 1.401
W-3 2,03 Hz 0.589

Note the factors greater than one which demonstrate that the condition of
the frame had not vet achieved the theoretical cracked section state at
the start of tests W-1 and wW-2.

In order to test the effectivenecs of this technique for approxi-
mating the structure vibration properties, several response analyses
were made in which the frame stiffness was defined by the cracked section
properties and a specified modulus ad’ustment factor. Results of one
such analysis are shown in Fig. 5.17. In this case Model F was used to
calculate the response during test W3. The adjustment factor was set
at 0.57, giving £ = 1.99 Hz which is c¢lose to the starting frequency
during the test. Other specified analytical parameters were 1 = 0.80,
DTL = 0.60, DTR = 0,01, and damping ratio & = 4%. The correlation shown
in Fig. 5.17 demonstrates significent phase shifts between the.analytical
and observed results; after the first few seconds the frequency of the
real structure has diminished considerably below that of the mathematical
model. Accordingly a second analysis was made, reducing the modulus
adjustment factor to 0.41 (giving f = 1.68 Hz) to represent a greater
degree of damage. Other analytical purameters were as before, except
DTR = 0.005. Results of this analysis are shown in Fig. 5.18; the
correlation is excellent, showing tha: the chosen adjustment factor is
suitable for the structure condition during this test.

To study the generality of this modeling concept, the same type

of analysis was performed for test W—5 of Frame l--which had exhibited
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about the same damage state as did Frame 2 in test W-3. Analysis para-
meters used in this study were the same as those employed in the regponse
analysis of Fig. 5.18. Correlation of the calculated response with the
behavior observed during test W-6 (first structuré) is shown in Fig. 5.19.
The correlation in this case alsc is quite good, although slight tendencies
toward phase shifts are evident; apparently the adjustment factor of about
0.4 provides a good model of a rather severely damaged frame.

To examine the performance of this modeling technigque for a structure
which is essentially undamaged before the earthquake, it was also applied
to test W-2 of Frame 2. The modulus adjustment factor in this case was
set at 0.81, giving a frequency of 2.37 Hz, which is representative of the
damage state at some stage during test W-2. Other analysis parameters
were taken to be the same as thoge used in Figs. 5.18 and 5.19, except
that the damping was arbitrarily set at & = 2% to correspond with the
initially undamaged condition of the frame. Results of this analysis,
shown in Fig. 5.20, are quite good during the first part of the run, but
then a spurious drift appears. To control the drift, the parameter n was
reduced to 0.45 while all other parameters were left unchanged. Results
of this re-analysis, shown in Fig. 5.21, demonstrate that most of the
drift has been eliminated and that reasonable correlation has been achieved,
although not as good as was obtained from test W-3.

Although these investigations have been too limited to enable any
firm conclusions to be drawn, they do demonstrate that a relatively
simple approach to estimating the frame stiffness can lead to adequate
raesponse analysis. Using frame analysis Model F, and defining the
frame stiffness by the cracked section properties and an adjusted modulus
of elasticity, produced good response calculations for two structures

which were in heavily damaged conditions at the start of the test, and
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a fair correlation for a structure which was essentially undamaged at
the start of the test. Modulus adjustment factors of about 0.4 and
0.8 seem to describe adeqguately the danage state in the two situations,

respectively.
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TABLE 5.1  COMPARISON OF NATURAL FREQUENCIES
AS GIVEN BY ANALYSES AND TESTS
(Structure Without Concrete Blocks)
ANALYTICAL VALUES FOR
FREE VIBRATION
DIFFERENT STIFFNESS FORMULATIONS
TEST RESULTS
c :
GROSS TRANSFORMED CRACKED (Before Dynamic
SECTION AREA SECTION | SECTION Tests)
FIRST 6.66 7.42 1.63 6.58
MODE
{Hz)
SECOND 18.28 20. 36 13.09 20.58
MODE,
(Hz)
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MODEL D
ACTION
Bi-LINEAR AEI
CONSTANT X, n,¢&
STIFFNESS DEGRADATION /EI
ACCORDING TO CLOUGH'S /
MODEL,APPLIED TO DEFORMATION
COMPLETE STRUCTURE
RESPONSE REPRESENTED
BY FIRST MODE GENERALIZED
COORDINATE Y (1) SECTION BEHAVIOR
Y}={dt]{v
{ } [95 ]{ } YIELDING DEFINED BY
FIRST INELASTIC INCURSION
A =STRAIN HARDENING RATIO (ET)g n(E1)g
AT SECTION BEHAVIOR
1= STRAIN HARDENING RATIO 2
AT STRUCTURE BEHAVIOR (E1)g
, Y1)
€= % CRITICAL DAMPING
{E1)g (ED),
{v}= STORY DISPLACEMENTS .
[¢]=MODE SHAPES MATRIX
FOR INITIAL STIFFNESS ) STRUCTURE BEHAVIOR
Fig. 5.6 RILINEAR STIFFNESS DEGRADING MODEL

{MODEL D)
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6. CONCLUDING REMARKS

Although the testing of a single structure, as described in this
report, is too limited a basis on which to draw general conclusions
concerning the seismic behavior of reinforced concrete frames, the
combined experience obtained with this frame and its predecessor does
begin to lend credence to certain major observations. These are pre-
sented below in two categories, concerning the seismic resistance of
the structure and regarding the correlztion between its analytical and

observed performance,

6.1 STRUCTURAL PERFORMANCE

(1) This frame, like its predecessor, was designed carefully
according to ACI and Uniform Building Code requirements to achieve a
highly ductile structure. It demonstrated excellent seismic resistance
even when subjected to a succession of very severe earthquakes, with the
damage being limited to cracking of concrete in the most highly stressed
sections of the columns and girders. o permanent sidesway deformations
could be observed, and the frame's ultimate strength capacity was not
reduced by this cracking:; but the sidesway stiffness was considerably
diminished, of course.

{2) In contrast with Frame 1, which suffered a major crack near
one end of the first floor slab due to erroneous termination of the slab
mesh at that line, Frame 2 developed no major failure during testing.
This fact demonstrates the value of close inspection during construction
to ensure that the finished structure corresponds to the design.

(3) After repair by epoxy injection, the frame again demonstrated

excellent seismic resistance. The repair did not restore the lateral

Preceding page Dlank .50
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stiffness to its initial value, but the repaired frame was no more
sensitive to damage than was the original structure.

(4) It is noteworthy that the dynamic forces developed in the
frame during severe tests greatly exceeded the "ultimate load" capacity
indicated by a simple elasto-plastic analysis procedure. This fact
demonstrates the limitations of such simplified analyses in predicting
earthquake performance; a more refined mathematical model is essential
if realistic strength estimates are to be obtained.

(5) Comparisons of damage observed in Frames 1 and 2 indicate that
earthquake damage to concrete frames tends to represent the cumulative
effect of all strain cycleé produced by the total seismic history.
Amplitude and number of response cycles are significant factors, but
the sequence in which they are developed apparently is not., Thus
subjecting a virgin structure to intense loading before a sequence of
smaller quakeé seems to be no more destructive than if the process were

reversed.

6.2 ANALYTICAL CORRELATIONS

(1) The most ciitical factor in achieving good analytical corre-
lation with the experimental results is the initial frequency of the
mathematical model. The two frames exhibited nearly identical responses
when their natural frequencies before a test were similar and they were
subjected to the same intensity. Similarly, a mathematical model
provided quite good correlation if its initial stiffness were chosen to
approximate the actual structure's starting frequency.

(2) Both mathematical Models E and F were found to give good
correlations with the observed results for tests in which significant

yielding occurred. Both consist of standard nonlinear frame analysis
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programs based on bilinear joint regions, with a first mode stiffness
degradation mechanism superposed. Loss of stiffness, expressed by a
changed of the modulus of elasticity, depends both on the peak vield
amplitude achieved and also on the numker of cycles of significant
deformation. At present the parameters which controlled this degradation
and deterioration mechanism can only be selected empirically, and further
experience is needed to define them bei:ter. A major proklem at present
is a spurious drift which results when inappropriate values are assigned
to these parameters.

{3) The initial stiffness property of the frame was selected
empirically in these studies to provide agreement with the observed
initial frequency. In practice, however, the designer would have to
define his analytical prediction model on the basis of design properties,
and an effort was made here to simplify this "a priori" selection.
Results cobtained using the cracked section moment of inertia and a
reduced modulus of elasticity for the concrete generally were satisfac-
torv, so it appears that the designer need merely select the modulus
reduction factor in accordance with the degree of cracking to which the
structure has been subjected., Appropriate factors for the present tests
ranged from over two for the original laboratory model to about 0.4 for
a damaged structure subjected to aftershocks. Further experience is
needed to select a factor suitable fcr a given building after several

vears of normal use,

6.3 EARTHQUAKE SIMULATOR TESTING

Although experience with the earthquake simulator is still quite
limited, it is apparent that tests of this type represent an indispens-

able part of earthquake engineering research. Controlled amplitude
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force or displacement testing provides an efficient means of studying
the seismic capacity of structural components and assemblageé, and for
formulating mathematical models to represent their performance. However,
the adequacy of such models, and of the computer programs in which they
are utilized, can be verified only by testing complete structural systems
subjected to simulated earthquake motions. Only then will the history
of deformation to which each component is subjected represent the true
earthquake behavior, in which the response mechanism ‘influences the
deformation history. On this basis it is clear that the earthquake
simulator and the controlled displacement testing techniques are comple-
mentary, and that the ultimate verification depends on the earthguake

simulator.
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APPENDIX A

A.l1 GENERAL

Section properties were evaluated for the purposes of analyses
using the material properties of Figs. 2.4, 2.5 and 2.6 and Taple 2.1
with the actual reinforcement layout of Fig. 2.7. The results of such

calculations are shown below.

A.2 TRANSFORMED AREA SECTION

td
i

29000 ksi EC = 2640 ksi

n =TFg = 10.98
Ee

Column Section

A, = 5-75 % 8,50 + 2%9.98x0.62 = 61.25 in?
I = 5.75 x{8.50)3 + 2x9.98x(2.33)2x0.62 = 1361.45 ind
= 12

Bottom Story Girder

Depth of neutral axis from top fibre

v* = 3.38 ins.
T = 36x(2.875)3 + 36x%2.875%(3.38-1.44)2
TR —_———
12
+ 5.75x(8.50)3 + 5.75x8,50%x(7.13-3,38)2
12
+ 0.351x9.98x(3.38-0.61)2 + 0.66x9.98(3.38-1.03)2
+ 0.351x9.98x%(3.38-2.11)2 + 0.62x9.98x(9.58-3.38)2
- .4
I = 174%9.0 in
TR

Preceding page hank
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included in the computuation.

Top Story Girder

Depth of neutral axis from top fibre
y* = 3.28 ins.

T o= . 1 4
TR 1650.0 in

GROSS SECTION

Column Section

Ay = 5.75%8.50 = 48.88 in?
I = 5.75x(8.50)3 = 294.3 in4
g o .

Bottom and Top Story Girders

Depth of neutral axis from top fibre

y* = 3,26 ins

Tg = 36x(2.875)3 + 36x2.875x(3.26-1.44)2
i2
+ 5.75%(8.50)3 + 5,75x8.50x(7.13-3.26)%
12
_ . 4
I, = 1440.0 in

YIELD SURFACES

While computing the yield properties, compression reinforcement is

and 2.6 and Tabkle 2.1 were used.

A.4.1 Column Section

_ - . - - ;
B, = AL = 0.62in?, Eg = El 29000 ksi
d = 6.75ins, @ = 1.75 ins, b = 5.75 ins
£l = 4.395 ksi, B = 2640 ksi, £ = 0.00335,

Material properties of Figs. 2.4, 2.5

Cogpp = 0-005



a) Yield values (P = 0)
em
P ¢ dl iL ‘ fc
bools —
¢ é 'y
y
‘ -
d
€y
STRAIN STRESS
Ey (in/in} 0.0014
fy {kgi) ,4,1.5
T (kips) 25.7
c {(ins) 2.80
51;‘ (in/in) 0.0009924
€L (in/in) 0.0003721
Cg (kips) 6.90
C, (kips) 18.90
y (ins) 1.84
M (in-kip) 148.8
- g ]
d}Y E_c {1/in) 0.000354
c
1= M, @(nhH 159.0
CR o

Echy
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b} Compression Yield Force (M = Q)

]
= €
PO o]

P, (kips)

(Ag—AS—Aé) +  (AgHAJ) £y

260.9

c) Tension Yield Force (M = 0)

B

1

Pp = (As+As) fy
Py (kips) 51L.5
d) Balanced Point

CoLt

k
' e
d \ €00
Y : Y 4 -
c %- €s
PLASTIC CENTROID
_____ i A W -
NEUTRAL AXG‘/)’
-w—L-g-T
€y
STRAIN STRESS

Ey (in/in) 0.0014
T (kips) 25.7
c (ins) 5.27
e (ins) 1.74
c =T (kips) 25.7
c; (kips) 57.7
c’(': (kips) 40.7
P (kips) 98.4
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My (in-kip) 352.1

¢p (1/in) 0.000949
. 4

Iy (in%) 140.5

A.4.2 Girder Sections. Tension at Bottom Fibre. Wire Mesh Reinforcement
Included in Computations. :

Bottom Story _Top Story
T (kips) 25.73 22.44
¢ {(ins) 1.66 1.38
Cg (kips) 3.21 0.899
Co (kips) 22.130 ©21.38
¢ (kips) 25.51 22.28
MY (in-kip) 232.1 ' 205.5
¢; (1/in) 0.000177 0.000246
+  (ind
Tt (i) | 497.0 317.0

A.4.3 Girder Sections. Tension at Top Fibre. Wire Mesh Reinforcement
Included in Computations.

In this case we see that the yield moment is not defined as before
i.e. yvielding of main reinforcement, since we have three lavers of tension
reinforcement. Hence the moment curvature relationship is plotted for
various conditions defined in the Fig. A.l1 and the yield moment is the
moment defined in the same figure.

The notation for the forces in the tension reinforcement is as
follows

T : Force in the main tension reinforcement
T.: Force in the tension reinforcement closer to .the top of slab

Tp: Force in the tension reinforcement closer to the bottom of slab.



150

"ANIT JHLLOd A9 NMOHS ST SISATUNY ¥0J4d adsn HAMND dEZITYAAT

“SNOILOHES ¥HAIID Y04 dIHSNOILVTHI HINILVAMND-LNAWORW 1Y "bta

3N LVANND ‘e

v3yv

2 vagy -

(Usnio jou S90p 939I0U0S HUuTUMSse)
onTea S3PWIRITN SOUOLII USSW S8ITM JI83noO e uterls

BADou soyoesx I9qIJ ISJINO 3B UIBILS 932I0UOD

Telo)
3 Saydeal I9(IJ ISINO 3B UTEIAIS OIDIDUOD

sntea DBUIPIoTL soyoeox UsSswW 9ITM Is3NO 1p UTeIS

K
3 SOUOPSI JUSWSOIOFUTSI UOTSUD] UTBW 3° UTEeALS

[ —
v

LIN3IWOW




Bottom Story Girder

Point 1 Point 2 Point 3 Point 4| Point 5
¢ (ins) 4.90 4.82 3.45 3.26 3.30
c, (kips) 19.23 20.60 25.73 25.73 25.73
C. (kips) 50.86 53.31 58,12 61.98 63.19
C (kips) 70,09 73.91 33.85 87.71 88.92
T, (kips) 34.32 34.32 34,32 34.32 34.32
T, (kips) 20.34 22.71 25.19 27.13 27.40
T, (kips) 15.14 16.98 24.45 26.26 27.10
T (kips) 69.80 74.01 83.96 87.71 88.80
M (in-kips) 594.5 629.0 731.0 761.0 764.0°
¢ (in/in) 0.000336 | 0.000369 { 0.000971| 0.00153| 0.00201
Therefore M§ = 720.0 in-kip
¢§ = 0.0004 1l/in
Tp = My = 670.0 infd,
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Top Story Girder

Ot i

R

I

I

575.0

0.0004 (1/in)

ind .

Point 1 Point 2 Point 3 Point 4 Point 5
¢ (ins) 4.77 4.72 3.33 2.94 3.07
c, (kips) 10,72 11.85 16.90 21.14 22.44
c_ (kips) 47.25 50.94 56.10 55.86 56.09
¢ (kips) 57.97 62.79 73.00 77.00 78.53
T, (kips) 22.88 22.88 22.88 22.88 22.88
T, (kips) 20.03 22.71 25.36 27.25 28.04
T, (kips) 15.19 17.26 24.63 27.06 27.60
T  (kips) 58,10 62.85 72.87 77.19 78.52
M (in-kips) 495.0 536.0 638.0 674.0 670.0
¢  (1/in) 0.000326 | 0.000366 0.00101 | 0.00170 | 0.00282
Therefore M_ = 640.0 in-kip
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