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CHAPTER 1
INTRODUCTION

1.1 Object and Scope

The coupled shear wall is considered to be a very efficient,structura]
system to resist horizontal movements due to earthquake motiOns."It is
not possible to investigate thoroughly through model tests the influence
of .the many possible variations in fhe various paraméters that cdntroi»the
response of coupled shear walls. The models are too expensive in terms
of both time and money. Furthermore, it is'not always possible to record
when all the events of interest take place. On the other hand, most of
the papers dealing with the analysis of coupled shear walls are based on
elastic member properties. Those papers where inelastic member properties
are allowed are primarily for the case of monotonically 1ncreasing loads.
In view of the scarcity of data, it is necessary to investigate the
nonlinear response behavior of coupled shear walls due to strong
earthquake motions.

The study is intended to develop an analytical model which can trace
the response history and the failure mechanism of coupled shear walls
under dyﬁamic and static loads and to see the characteristics of coupled
shear walls behavior under these loads.

Although there are many configurations and variations of shear wall
systems in use, the analytical model is discussed only with reference to

reinforced concrete coupled shear walls, two walls with connecting beams

under horizontal earthquake motions and static Toadings.



To predict the actual behavior of coupled shear walls during strong
motion earthquakes, the dynamic structural properties in the highly
inelastic range are taken into consideration. Inelastic properties such
as cracking and crushing of the concrete, and yielding and bond slip of
reinforcing steel complicate the problem. Therefore, 1dealizatioﬁs and
simplifications of the mechanical models for the constituent members are
consideréd necessary in the analytical procedure. The basic model used
in the study is composed of flexural line elements, both for the walls
and the connecting beams.

These constituent flexural elements incorporate their hysteretic
properties uti]izing the test data available. The suitable hysteresis
loops to each constituent member are established by modifying Takeda's
hysteresis rules (1970)* to include the specific characteristics of
coupled shear walls.

The instantaneous nonlinear characteristics of the structure and
the failure process of each constituent member under strong earthquake
motions are estimated by numerically integrating the equation of motion
in a step-by-step procedure. Also the failure mechanism of the structure
under stétic Toads is traced by constantly increasing lateral load at
small increments.

The computed results are cdmpared with the available test results

by Aristizabal-Ochoa (1976).

* References are arranged in alphabetical order in the List of
References. The number in parentheses refers to the year of publication.



1.2 Review of Previous Research

Analyses of coupled shear walls have been performed by many
investigators. No attempt will be made to cite all such reported:
investigations. Only a few of the early and directly applicable studies
are referred to here.

A typical approach to the shear wall problem is the so-called
laminae method. In this method the discrete system of connecting beams
is replaced by a continucus connecting medium of equivalent stiffness.
Beck (1962) and Rosman (1964) ana]yied coupled shear walls under lateral
loads based on this idealization. Coull (1968) extended this assumption
to take account of the shearing deformations of the walls. Later Tso and
Chan (1971) used this method to determine the fundamental frequency of
coupled shear wall structures. Such a determination is, of course,
essential in the application of the response spectrum technique. All
the papers mentioned above are based on linearly elastic propert%es of
the members.

Paulay (1970) used the laminae method to trace the failure mechanism
of coupled shear walls under monotonically increasing loads by introducing
plastic hinges at the ends of each lamina as well as at the base of wall
during the process of loading. Although the Tlaminae method has the
advantage of being relatively simple to apply. this method cannot treat
the expansion of inelastic action over the length of the wall members.

The use of two dimensional plane stress elements with the finite
element method is another way of approaching the analysis of coupled
shear walls. Girijarallabhan {1969) used the element method in an attempt

to define more precise stress distributions of coupled shear walls.



Yuzugullu (1972) analyzed single-story shear walls and infilled frames
- by using the finite element method, including in that analysis the
inelastic properties of reinforced concrete elements. Naturally this
approach is quite time-consuming for a multistory coupled shear wall
system. Such an analysis requires a very large number of elements.
Furthermore, difficulties arise in the wall element to beam element
connection. in order to avoid the use of plane stress elements for the
connecting beams, some means of establishing the rotational degree of
freedom at the wall connection must be introduced. One possibility is
a rigid arm from the wall center to the beam connection.

Instead of using the element method, inelastic beam models in which
each member is represented by a flexural line element were developed to
save the computing time and to simplify the mechanical model. Several
inelastic beam model techniques have been extensively used in the ané]ysis
of the nonlinear response behavior of frame subjected to base excitations.

Clough, et al. (1965) proposed the two component model to represent
a bilinear nondegrading hysteresis. The member consists of a combined
elastic member and an elasto-plastic member. Aoyama, et al. (1968)
developed the four component model to represent the trilinear nondegrading
hysteresis 1oop. In this model the idealized beam has an elastic member
and three elasto-plastic members in paralliel. The four component model
and the two combonent model are based on the same concept. These models
are generally called multicomponent models. The multicomponent model has
some difficulties when applied to a degrading hysteresis system.

Giberson (1967) proposed the equivalent spring model which is

generally called the one component model. In this model rotational



springs, which represent only inelastic behavior of the beam, are
“introduced at both ends of the beam. The rést of the beam, between the
ends, is considered to be elastic. This model has no coupling term in
the inelastic part of the flexibility matrix. In other words, the
inelastic rotation at one end is related only to the moment at the same
end and is independent of the moment at the other end. The infTection
point is assumed to be fixed at the same location during the response
behavior. This assumption is not realistic because the 1ocatioﬁ of an
inflection point is expected to chahge during the real response béhavior
of the beam. But this model is considered to be more versatile than the
multicomponent model, since the rotationa]'spring car. take care of any
kind of hysteresis loop.

Takizawa (1973) developed the prescribed flexibiljty distribution
model which is based on the assumption of a distribution pattern of cross
sectional flexural flexibility along the member axis. In his paper he
used a parabolic curve as the flexural flexibility distribution. The
inflection point is not necessarily fixed in this model.

Otani (1972) presented the combined two cantilever beam model. The
beam consists of two cantilever beams whose free ends are placed at the
inflection point. Tﬁe beam is not allowed to be subjected to ahy change
of the moment distribution which produces a serious suddén movement of
the inflection point. But this model has very natural correspondence
between the actual phenomena and the.availab1e hysteresis data based on
the test result.

Hsu (1974) investigated the inelastic dynamic response of the single

shear wall experimentally and analytically. In the analytical part of



his study, he assumed a divided element beam model in which the beam is
divided into several elements and each é]ement has a uniform flexural
rigidity changeable based on the hysteresis loop. In this model it is
easy to handle a Tocal concentration of inelastic action of the member

by arranging elements finely at the location of interest.

1.3 Notation
The symbols used in this text are defined where they first appear.

A convenient summary of the symbols used is given below.

AS = area of the tensile reinforcement
A; = area of the compressive reinforcement
b = width of the cross section

¢ = depth of the neutral axis
¢' = distance from the neutral axis to the point of
the maximum tensile stress of the concrete
CI’ Cy = coefficients for the damping matrix
[c]
[c,]

damping matrix

instantaneous damping matrix which is evaluated
at the end of previous step
d = distance from the extreme compressive fiber to
the center of tensile reinforcement
d' = distance from the extreme compressive fiber
to the center of compressive reinforcement
D = total depth of a section or diameter of a reinforcing bar
D = cracking displacement of the unit length cantilever beam

D = yielding displacement of the unit length cantilever beam



D= ultimate displacement of the unit length cantilever beam
D(M) = free end displacement of a cantilever beam
E_ = modulus of elasticity of the steel
Eh = modulus to define stiffness in strain hardening range
of the steel
E = inelastic modulus of the reinforcement after y1e1d1ng‘ 
EAj = inelastic axial rigidity of a section
El = initial flexural rigidity
El, = elastic flexural rigidity of a section
EI. = inelastic flexural rigidity of a section
EIy = ratio of flexural rigidity after yielding to that

before yielding

fc = stress of the concrete

fé = compressive strength of the concrete

ft = tensile strength of the concrete

fs = stress of the steel or stress of the tensile reinforcement
f; = stress of the compressive reinforcement

fy = yield stress of the steel

y ultimate stress of the steel

f(M) = flexibility resulting from the bond slippage
of tensile reinforcement of a beam
[fAB] = flexibility matrix of a cantilever beam
GA_ = elastic shear rigidity of a section
GAi = inelastic shear rigidity of a section
[K]
[Kij] = submatrices used in Eq. (4.16) (i,j = 1 or 2)

structural stiffness matrix

{KAB] = stiffness matrix of a cantilever beam



[k ]
[K,]
[k, ]
[k, ]

AL

Am

AMA,

AM_, M

B

{am}
]

An

N(o, €)

n

il

fl

instantaneous structural stiffness matrix
which is evaluated at the end of current step
elastic structural stiffness matrix

inelastic structural stiffness matrix

stiffness matrix of a wall member

length of the subselement j

length of a beam or development length of the bond stress
elongation of the reinforcment

bending moment of a section

increment of bending moment

lumped mass at the story i

bending moment

cracking moment

yielding moment

moment at concrete strain equal to 0.004
bending moment function

increment of moment

incremental moments at the ends of a member
incremental end moments of the flexible element
of a connecting beam

incremental joint moment vector

diagonal mass matrix

axial force of a section

increment of axial force

axial load acting on a section

axial force function



Ny, AN

AS

{AN}

As
{AP}

At
[Tagpl

AU AUB

AB
{au}

£al}
{AU}
{0
i)

AV

incremental shear forces at the ends of a connecting beam
or incremental axial forces at the ends of a wall member
incremental joint vertical force vector

incremental shear forces at the ends of a wall member
incremental story lateral force vector

rotation due to the reinforcement slip at the end Of‘l

a connecting beam

rotation at which the cracking moment is developed

rotation at which the yielding moment is developed

rotation at which the ultimate moment is developed
instantaneous stiffness of the unit length canti]ever‘

beam based on the flexural rigidity

instantaneous stiffness of the unit length cantiiever

beam based on the flexural and shear rigidities.

time interval

transformation matrix of a cantilever beam

average bond stress

incremental lateral displacement at the ends of a wa11 member
incremental story lateral displacement vector or incrémenta]
story displacement vector relative to the base

incremental story velocity vector relative to-the base
incremental story acceleration vector relative to the base
relative story velocity vector at the end of previous step
relative story acceleration vector at the end of previous step

increment of the free end displacement of a cantilever beam



AV

AV

A> B

{AV}
{AX}

T ]
ASA, AGB

AGA, ABB

AV
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increment of the free end displacement of a cantilever beam
only due to the flexural rigidity

incremental vertical displacement of a member

incremental joint vertical displacement vector

incremental base acceleration vector

constant which defines the descending slope of the
stress-strain curve of the concrete

constant of the Newmark f method

h

damping factor of the it mode

(wi/we)]/2

axial strain of a section

increment of axial strain

strain of the concrete or concrete strain

at the extreme compressive fiber

strain at which fé is attained

strain at which ft is attached

strain at the steel or strain in the tensile reinforcement
strain in the compressive reinforcement

strain at which fy is attained

strain at which strain hardening of the steel commences
strain at which fu is attached

distance from the neutral axis of a section

increment of rotation

incremental rotations at the ends of a member

incremental rotations at the rigid 1ink ends

of a simply supported beam



86cs A8

{A8}

1

incremental and rotations of the combined spring-flexible
element of a connecting beam ‘
incremental joint rotation vector

ratio of the length of a rigid link to that of a f]ex%b]e
element for a connecting beam

curvature

curvature at cracking

curvature at yielding

curvature at concrete strain.equa1 to 0.004

increment of curvature

first mode shape vector

th mode

circular frequency of the j
first mode circular frequency in the elastic stage

first mode circular frequency in the inelastic stage
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CHAPTER 2
MECHANICAL MODEL

2.1 Structural System

The Tateral resistance of coupled shear walls results primarily from
three sources of structural actions: the flexural rigidity of the walls,
the flexural rigidity of the connecting beams and the moment effect of the
couple growing out of the axial rigidity of the two walls.

The mechanical model chosen to represent the coupled shear walls is
shown in Fig. 2.1. The walls and the connecting beams are replaced by
massless line members at their centroidal axes. The wall members have
fiexural, axial and shear rigidities as their resistances. The connecting
beam members have flexural and shear rigidities. The axial rigidity of
the connecting beam is assumed to be infinite since the horizontal
displacements of both walls are practically identical.

Three displacement components are considered at each wall-beam joint:
horizontal displacement, vertical displacement and rotation. The right-
hand screw rule is adopted to describe the positive directions of these
displacement components as shown in Fig. 2.1.

The internal subelements or degrees of freedom are condensed out of
the stiffness matrix before the system equations are written so that
only horizontal story movements appear in the final equations. The mass
of each story is assumed to be concentrated at each floor level. In the

analysis the wall is considered to be fixed at the base.

2.2 Mechanical Models of Connecting Beam and Wall

A mechanical model of the connecting beams used in the study is the

one which Otani (1972) developed based on inelastic actions of a cantilever
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beam. This model is quite suitable for the connecting beams of a
coupled shear wall system, since the contraflexure point is practically
fixed at the center of the beam span during its response.

The connecting beams are taken as individual beams connected to the
walls through a rigid link and a rotational spring as shown in Fig, 2.2.
The rotational spring takes care of any beam end rotation which is
produced by the steel bar elongation and concrete compression in the
joint core area as well as the inelastic flexural and shear actions over
the beam length. Such inelastic flexural action is expected to be
localized near the beam ends because of the antisymmetric moment
distribution over the beam length. The action within the joint core
could have been treated by the effective length concept in which the
clear span length of beam is arbitrarily expanded into the joint core to
allow for fiexural and slip action in the joint core. But it was judged
much simpler to consider the joint core as a rigid link and to let the
rotational spring take care of the inelastic and other actions of the
joint core area. The beam itself is considered to be a flexural member
with uniform elastic rigidity along its length.

The wall is also considered to act initially as a beam with a
linear variation of strain over the cross section. To use two-dimensional
plane stress elements for the walls was judged less desirable, since such
an approach would have been much movre expensive computationally without
any compensating increase in accuracy. It is in fact probable that while
accounting for cracking and noniinear action of the plane stress elements
with current concepts and methods the system would not reproduce

experimental results as well as Tine elements can.
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The wall members are exposed to a more general moment distribution
than ére the connecting beams. In addition, the location of the
contraflexure point might shift significantly from a change in the moment
distribﬁtion and the change of axial force during the response might cause
a change of moment capacity in the wall members. Therefore the inelastic
flexural behavior in the wall can be expected to expand along the length
of the member rather than be 10Ca1ized. In order to allow the inelastic
action to cover a partial length of a wall member, the member is further
divided into several subelements as shown in Fig. 2.3. The stress
resultants at the";entroid of the subelements are used as the control
factors for the determination of the nonlinear properties of the
subelements. The degree of subdiVision decreases with story height

since the major inelastic action is expected at the base.
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CHAPTER 3
FORCE-DEFORMATION RELATIONSHIPS OF FRAME ELEMENTS

3.1 Material Properties

Inelastic force-deformatfon re]ationships for the wall subelements
and corresponding relationships for the rotational springs placed at the
connecting beam ends are based on idealized stress-strain relationships
for concrete and steel. These 1neTéstic force-deformation relationships
are used as the primary curves for the hysteresis loop.

(a) Stress-Strain Re]ationship for Concrete

A parabola combined with a straight line in the form used by Otani

(1972) is also adopted here for the stress-strain relationship of concrete.

Accordingly,
\
fc =0 € 5_€t
£ £.2
= £ & _ (€
f. = ‘FC[Z€ (=) ] e, L€ L8, > (3.1)
0 0
fo= full - Z(e, - €))] €5 < £¢ )
and
1
- _ _ 1y2
£y 60[] (1 ft/fc) ] (3.2)
- iy
f, = -6.0 (f.) (3.3)
where
fc = stress of the concréte
fé = compressive uniaxial strength of the concrete
ft = tensile strength of the concrete

strain of the concrete

M
1}
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strain at which fé is attained

strain at which f

t

is attained

constant which defines the descending slope

of the stress-strain curve.

was used in this analysis.

for the use of these relations can be found in Otani's

The value of 100

A typical example of the proposed curve is shown in Fig. 3.1.

(b) Stress-Strain Relationship of Steel

A piecewise Tinear stress-strain relationship is assumed for the

reinforcing steel.

where

Accordingly,
fs = ES €g
fs = fy £
fo = fy +‘Eh(es - eh) £
fo = fu

stress of the steel

yield stress of the steel

ultimate stress of the steel

strain of the steel

strain at which fy

is attained

strain at which strain hardening commences

strain at which fu is attained

modulus of elasticity of the steel

modulus to define stiffness in strain hardening range

(3.4)
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The numerical value of ES is assumed to be 29,000 kip/in.2 in the
‘analysis. The representative stress-strain curve of the steel is shown
in Fig. 3.2. The stress-strain relations represented by Eqs. (3.4) are

assumed to be symmetric about the origin.

3.2 Moment-Curvature Relationship of a Section

The primary moment-curvature curve for a monotonically increasing
momenit can be derived based on the geometry of the secticon, the existing
axial load, the deformational properties of concrete and steel mentioned
in Section 3.1, and the assumption that a linear variation of strain
exists across the cross ection. This linear variation is maintained
throughout the entire loading.

The relationship of curvature of a section to strain can be expressed
by utilizing the assumption of Tinear strain distribution. This is shown

in Fig. 3.3. The relation takes the following forms.

¢ = ec/c
= eé/(c - d'") (3.5)
=g /(d - ¢)
where
¢ = curvature
€ = concrete strain at the extreme compressive fiber
Eé = strain in the compressive reinforcement
€ = strain in the tensile reinforcement
d' = distance from the extreme compressive fiber

to the center of compressive reinforcement
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d = distance from the extreme compressive fiber
to the center of tensile reinforcement
¢ = depth of the neutral axis

The equilibrium equation of the resultant forces can be expressed

as follows:

c , o
J fobdx + A f; - As fs = N (3.6)

_C'
where

f' = stress of the compressive reinforcement
fs = stress of the tensile reinforcement

b = width of the cross section

I=
It

area of the compressive reinforcement
AS = area of the tensile reinforcement
N = axial load acting on the section
c' = distance from the neutral axis to the point

of the maximum tensile stress of the concrete

The bending moment M at the depth x can be calculated by the

following equation.

c c
M = J fc bndn + (x - ¢) J fc b dx + A;f;(x -d'")
-c' -c'
FAF(d-x) +Nx-D - (3.7)
5's 2 :

where
D = total depth of the section

n = distance from the neutral axis

The stresses f_., fg and fS can be calculated by Eqs. (3.1) and (3.4) for
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given strains 0o s; and €go respectively.

It is difficult to solve Egs. (3,5) and (3.6) directly for tﬁe unknowns
€0 and ¢, because the solution may not be available in a closed form.
Therefore a recommended procedure is that Egs. (3.5) and (3.6) aré solved for
c with given €c and N by the iteration method. The moment M and%urvature
¢ can be derived by Eqs. (3.5} and (3.7) with a calculated ¢ and;é_given £ e
The bending moment M is evaluated along the plastic centroid of the section.
The moment-curvature curve can be drawn by the series of ca]culatéd M and
¢ for different values of e

Flexural cracking of a reinforced concrete section subjected to both
flexural and axial load is assumed to occur when the stress at the extreme
tensile fiber of the section exceeds the tensile strength of concrete.
Flexural yielding is considered to occur when the tensile reinforcement
yields in tension. If the tensile reinforcement is arranged in many layers,
the stiffness change occurs gradually starting with the initiation of
yielding of the furthest layer of reinforcement and proceeding uhti]
yielding occurs in the closest layer to the neutral axis of the section.
Because of the requirement of the hysteresis rules used in this analysis,

a single value of tha yield moment is to be given. Therefore the yield
moment is defined as the moment corresponding to the deve]opment of the
yield strain at the centroid of the reinforcing working iﬁ tension.

Typical examples of moment-curvature curves for a wall section and

a beam section are shown in Fig. 3.4 and Fig. 3.5, respectively.

3.3 Deformational Properties of Wall Subelements

The inelastic moment-curvature relationships of the wall subelements

are used as the primary curves in establishing the hysteresis Toops.
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The stress resultants computed at the centroid of each subelement are
~used in the determination of the instantaneous stiffness of the subelement
s0 that each subelement can be subjected to a different stage of
nonlinearity.

Fach subelement has three types of rigidities; flexural, axial and
shear. The 1nstantaneous flexural rigidity of each subelement is defined
as the siope of the idealized moment-curvature curve at the point which is
- Tocated by the history of inelastic action in the subelement.

To simplify the problem this idealized moment-curvature relationship
is determined by trilinearizing the original moment-curvature curve. The
slopes in the three stages of this idealized moment-curvature relatinship

are defined as follows:

M, \

b = M/(@;‘ M E,MC
M, - M

b = M/(ﬁchc) + g, Mo <M <M ? (3.8)
u _Jix M

0= WG v e, M, < )

where

M = bending moment

M = cracking moment

M. = yielding moment

Mu = moment at concrete strain equal to 0.004
¢ = curvature

¢ . = curvature at cracking

¢, = curvature at yielding

¢y = curvature at concrete strain equal to 0.004
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A series of idealized moment-curvature relationships for different
values of constant axial force are shown in Fig. 3.6, Actually the axial
force on a section is not constant and is subject to change in the process
of loading. The moment-curvature curve of a section under a changing axial
load is traced by appropriate shifts or movements between the series of
moment-curvature curves for constant axial loads as shown by the dashed line
in Fig. 3.6. It is assumed that the axial force is small enough that the
interaction curve is in the linear range, about the zero axial force axis.
Cases where the axial compressive forces are near or above the balance
point are not considered.

The axial rigidity is affected by cracking depth and any inelastic
conditions of the steel and concrete. With an aim to simplifying the
problem, it is assumed that the axial rigidity is only related to the
curvature and axial strain of the section., Therefore tﬁe bending moment
and axial force of a section are correlated to each other. A procedure
to calculate the instantaneous inelastic flexural and axial rigidities of
a section, in which the effect of axial force on the moment-curvature
curve and the effect of curvature on the axial force-axial strain curve
are taken into account, is developed in this study.

The moment is assumed to be a function of curvature and axial force,

while the axial force is a function of curvature and axial strain.

m = M($,n)
(3.9)
n= N(¢a€)
where
m = bending moment of a section
n = axial force of a section
M= bend{ng moment function
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N = axial force function
¢ = curvature of a section
e = axial strain of a section

~The incremental forms of moment m and axial force n can be expressed

by differentiating Eq. (3.9).

Am=%a¢+%%ﬁm (3.10)
An=%a¢+%m (3.11)
where
Am = increment of bending moment
An = increment of axial force
A$ = increment of curvature
Ae = increment of axial strain

After substituting Eq. (3.11) for An in Eq. {3.10), the following

equations can be derived in a matrix form:

aM , oM 3N oM oN
am 3T map  dnove | ¢ .
= (3.12)
aN N
An | 5% Ae [ Ae

The stiffness matrix as given above is not symmetric because of the
assumption of Eq. (3.9). In order to save computing time and to simplify

the construction of the structural stiffness matrix, it is desirable to

reestablish symmetry in the stiffness matrix, To eliminate this lack of

symmetry in the stiffness matrix, Eq. (3.12) is rewritten by taking an

Am oM

v by = and

inverse of Eq. (3.12). Then the inverse is used to express 3
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a modification factor and um-by %E~and a modification factor as follows:
N T S
oM 1
] e ("“aﬁ) ’ A
\ an A

¢ p- . S (Y @)

An 0 —3_8- < ] - (___ ):Am ___) he
N/ | 3¢ / 9% Aan' T 3n ./

It is assumed that the ratio of the increment of axial force over that
of moment %%—does not change markedly during the loading process. Therefore
the previous step value of %%—15 used for the matrix terms in Eq. (3.13) to
avoid the necessity of an iteration process.

The value of ~$»can be derived from the idealized moment-curvature
hysteresis loop for the corresponding axial force acting on the section.

The value of %%-can be calculated by referring to the idealized axial
force-axial strain curve for a given curvature. The detailed procedure for
evaluating g$, gg gg and g%»1n the computer program is schematically
explained in Appendix A.

The current effective flexural rigidity EIi and current effective

axial rigidity EA; are considered as

_ oM i

L = %% (] oM 3n> (3.14)

an am -
9N 1
Er, = N ( >
i o€ oM
(3¢ 3¢)(An ) (3.15)
in which gg and QE-are considered as pseudo-rigidities. The current

effective flexural rigidity represents the slope of the moment-curvature

relationship, including the effect of a changing axial force. The pseudo-
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flexural rigidity is the slope of the moment-curvature relationship with
a constant axial force acting,

The evaluation of the shear deformation of a member in an inelastic
range is complicated with the existence of both axial force and moment.
In addition, the shear deformation is considered to be of a secondary
effect to the entire deformation while the flexural deformation is dominant.
Thereforelit is considered acceptable to employ the assumption that the
inelastic values of shear rigidity reduce in direct proportion to those of
flexural rigidity. The equation stating this assumption can be expressed

in the form,

GAi “ET GAe (3.16)
e
where
GAi = jnelastic shear rigidity
GAe = elastic shear rigidity
EIi = inelastic flexural rigidity
EIe = elastic flexural rigidity

These rigidities of the wall subelements are used for the development of

the member stiffness in the analysis.

3.4 Deformational Properties of the Rotational Springs Positioned
at the Beam Ends

Rotational springs are placed at the ends of each connecting beam
to take care of the rotation due to inelastic flexural action in the beam,
bond slippage at the ends of the beam, and shear deformation within the

span of the beam.
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Inelastic flexural action in the connecting beam is assumed to be
localized at the ends of the beam since the beam is exposed to antisymmetric
moment distribution along its length. There is a natural correspondence
between the deformational properties of the rotational springs and the
fixed and moment-free end displacement relationship of a cantilever beam,
since end rotations of a simply supported member subjected to an anti-
symmetric moment distribution can be related to the deformations of two
cantilevers as discussed by Otani {1972). Therefore the deformational
properties of the rotational springs in the inelastic region can be derived
by calculating the moment-displacement curve of a cantilever whose span is
half the length of the connecting beam span. This assumes the point of
contraflexure is fixed at midspan of the connecting beam. To make the
procedure applicable to beams with arbitrary length, a cantilever with
unit length is considered in the analysis.

{a) Idealized Moment Curvature Relationship

An idealized moment-curvature relationship for the connecting beams
is developed to compute the free end displacement of a cantilever beam.
The moment-curvature relationship is idealized by three straight Tines

as shown in Fig. 3.7.

- M )

¢“EI MiMC
%y $

o =y M Mo SM M (3.17)
Y

1 M

=0 [1+=o (—-1)] M <M J

Yy E}f‘y My Y

where
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EI = initial flexural rigidity

n

EI ratio of flexural rigidity after yielding to that

before yielding

For a given moment, the curvature is calculated by Eq. {3.17).

(b) Rotation due to Inelastic Flexural Action Based on Idealized
Moment-Displacement Relationship of a Cantilever Beam

As the bending moment is distributed linearly over the length of the
cantilever replacement of the connecting beam with zero moment at the free
end and the maximum moment at the fixed end, the curvature distribution
can be defined for a given fixed end moment by Eq. (3.17). Displacement
at the free end of the cantilever beam is then calculated from the curvature
distribution by computing the first moment of the curvature diagram about
the free end.

The free end displacement D(M) can be expressed as the function of

the fixed end moment M by equations of the form

2 \
vy = b M
() = b T(1-6%) ¢, M+ o2 ] Mo<M<M
3 y My C c= —y
2 > (3.18)
D(M) = L [(2+8)(1-8) (8 + w1 (1-8))
6 EIy
2
3. % L% 2
+ B(1+R) - 2u0”] T+ 3o b My <M )
where
L = length of the cantilever beam
Qe
M
"y
B = M
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With the moment-displacement relationship of a cantilever beam with
unit Tength available, the relationship for a cantilever beam with any
Tength can be derived by simply multiplying the relationship for a unit
Tength cantilever by the square of the length for the desired span since
the free end displacement is always proportional to the square of the
length of the cantilever.

The idealized moment-displacement curve of a unit length cantilever
is calculated by trilinearizing the original curve, that is, connecting
the origin, cracking, yielding and ultimate points successively by straight
lines. The ultimate moment is defined as the point when the extreme
compressive fiber strain reaches 0.004.

The cracking, yielding and ultimate displacements of the unit length

cantilever can thus be expressed as:

M N\
= _£C
D¢ = 3T
1 3 2
= = - +
D, =5 L{1 - ap) oy + oy o]
i 1 $ (3.19)
Du=g[(2-8u)(1-8u){6u+m(1-Bu)-}
ph (s - 23] e laly
u u u Bu 3 u "¢ )
where
Dc = cracking displacement of the unit length cantilever
Dy = yielding displacement of the unit length cantilever
Du = ultimate displacement of the unit length cantilever
M
I Ty
o :P—4£
u M
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STopes in the three stages of the idealized moment-displacement

relationship are defined as follows:

M
SD(M) = =S M < M )
D —C
c
' M -M
= Y C
SD(M) 5 Mc <M 5,My & (3.20)
y c
Mu - M
SO(M) = 55~ Mo<M
- Yy — _ /7
u Y
where
SD{M) = instantaneous stiffness of the cantilever beam

of unit length

The incremental rotation of the rotational spring due to inelastic
flexural action can be expressed approximately by the instantaneous
stiffness SD{M) since inelastic flexural action is assumed to be localized

at the beam end. Accordingly,

28 = Sy M | (3.21)
where
A6 = increment of rotation
AM = increment of moment
L = length of beam

Equation (3.21) is used as a part of the instantaneous moment-rotation

relationship of the rotational springs in the analysis.
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(c) Rotation due to Inelastic Shear Deformation

In addition to the flexural deformation of the connecting beams,
rotation due to shear deformation of the beams is also taken into
account in this study. The ratio of the shear displacement to the total
displacement of a cantilever beam is considered as a modifying factor
to be applied to the instantaneous stiffness SD(M) which originally
included only the inelastic flexural deformation.

Based on the reasoning discussed in Sec. 3.3, it is assumed that
the inelastic shear rigidity reduces in direct proportion to the
inelastic flexural rigidity.

The incremental free end displacement due to both shear and flexural
deformations in a cantilever beam that result from a given incremental

triangular moment distribution can be expressed as follows:

AV = (E%;—+ %;?) & (3.22)
where
AV = increment of the free end displacement
L = length of the cantilever beam
AM = dncrement of the fixed end moment

The ratio of the incremental displacement based solely on flexural
rigidity to that based on both flexural and shear rigidifies is considered
to remain constant during any stage of inelastic action. The inelastic
flexural rigidity EIi is assumed to be uniformly distributed along the
Tength of the cantilever beam, although the actual inelastic flexural
rigidity is likely to develop near the fixed end of the cantilever beam,

Therefore the instantaneous stiffness of the cantilever can be modified
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where
AVf
SD(M)

ST(M)

For the
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which includes shear deformations as well as flexural

~deformations by simply multiplying SD(M) by the ratio of the flexural
displacement to the sum of flexural and shear displacements. The
displacement ratio is
AVf 1 1
N T 3T, = T3ET (3.23)
i e
GAi L GAe L
since
3E1.  3EI
—_t1 - __€
GAi GAe
where
EIe = elastic fiexural rigidity
GAe = elastic shear rigidity
Thus the stiffness can be expressed as:
AVf
ST{M) = SD(M) Vo (3.24)

incremental displacement due only to flexural rigidity

instantaneous stiffness based on flexural rigidity

i

instantaneous stiffness based on flexural and shear rigidity

case when the rotation due to shear deformation is considered

in the analyses, the instantaneous stiffness ST(M) is used instead of

SD{M) 1in Eqg.

(3.21).

(d) Rotation due to Bond Slippage at the Ends of the Beams

Rotation due to the slip of the tensile reinforcement of the beam

along its embedded length is considered as an additional flexibility factor
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for the rotational spring at the ends of a beam.

Bond stress is assumed to be constant along the embedded length of
the reinforcement. Therefore the tensile force of the reinforcement is
transmitted into the concrete in such a way that the steel stress
decreases linearly with distance in from the wallface.

It is assumed that the reinforcement embedment length is sufficient
to provide the maximum tensile stress that occurs in the response
calculations. The development length L can be computed from the

equilibrium of forces as follows:

L = nihf (3.25)
where
AS = cross sectional area of the tensile reinforcement
fs = stress of the reinforcement at the face of wall
= diameter of a reinforcing bar
u = average bond stress

The strain hardening portion for the reinforcement is idealized by a
line which connects the yield point and the point at fhe maximum strength.
The elongation of the reinforcement over the development length is
calculated by integrating the strain over the length.

If the stress of the reinforcement exceeds the yield stress fy, the
development length is divided into two parts, as shown in Fig., 3.8. This
is done to accommodate the change in the reinforcement's axial rigidity.
Therefore the integration of the strain must be performed separately over
the two parts of the development length, that is, from the point of zero

stress to that of the yield stress and from the point of the yield stress
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to that of the maximum stress.

The elongations of the reinforcement are calculated as:

Lfs - . '
AL = ?E; fs 5_fy (3.26)
£ L f, £, fo - f
AL = ??XE~'+ (1 - 7 )(E + —-iﬁfuxﬁ L fy 5_fs (3.27)
S°S s s y
where '
AL = elongation of the reinforcement
ES = Young's modulus of the reinforcement
Ey = jnelastic modulus of the reinforcement
after yielding is developed
fy = yielding stress of the reinforcement

The e10ngatﬁon can be rewritten by substituting Eq. (3.25) for L in

Eqs. (3.26) and (3.27), and by replacing As by %—DZ. The result is

_1. D 2
AL = g 1 £ fs < fy (3.28)
2
f foo (fg - f)°
- Dry Y s __ ¥
L= 4o [ES (fg - =9 + 2Ey ] _fy < f (3.29)

It is assumed that the compressive reinforcement does not slip and
the concrete in the joint is rigid. Therefore the rotation due to bond

slippage can be expressed as follows:

R = M (3.30)
where
R = rotation due to the slip at the ends of a beam
d = depth of the tensile reinforcement
d' = depth of the compressive reinforcehent
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In order to have a rotation-moment relationship rather than the
rotation-stress one, the relation between bending moment and stress is

assumed in the form

f
fo= M (3.31)
s M
Y
where
M = bending moment at the end of a beam
My = yielding moment at the end of a beam
By using Eq. (3.28) through Eq. {3.31), the rotation-moment
relationship can be expressed as follows:
f 2
1. D ey
R = T (M ) M T M 5_My (3.32)
s y
2
Df
_ oy el oM 1 M 2 1
R=gl e (- 0+ - VP e
M -
4u “E_ My 2 Ey » d-d
| M, < M (3.33)

The idealized form of the rotation-moment relationship is obtained
by trilinearizing the original curve, that is, connecting the origin,
cracking, yielding and ultimate moments successively for simplification
of the problem.

These break points for the trilinearization can be expressed as

follows:
R =D (&)ZMz 1d| )
c 8Es u My cd-
D 2 1
Ry “BEgu Ty d=-d ) (3.3
2
pf M M 2
Ry = 20 EL(M—U ‘]2”)+2?z (M_u‘”]d':_]d' J
s Yy Yy Y
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where
R, = rotation at which the cracking moment is developed
Ry = rotation at which the yielding moment is developed
Ru = rotation at which the ultimate moment is developed

The flexibilities in the three stages of the idealized rotation-

moment re]ationship are defined as follows:

R
- _C 3
f(M) = Mc M< Mc
R -R
=.....\Z._.._._(:_
) = Mo <MW Y (3.35)
R - R
f(M)=Mu_ML M iM A
u "y Y

where
f(M) = flexibility resulting from the bond slippage of

tensile reinforcement of a beam

The incremental rotation of the rotational spring due to bond slippage

can be expressed by the flexibility f(M), as follows:
A6 = (M) AM ‘ (3.36)

Equation (3.36) is used as a part of the instantaneous moment-rotation
relationship of a rotational spring in the analysis.

The calculated moment-rotation curve of a rotational spring including
flexural and shear actions over the beam length and bond slip in the joint

core is compared with the test result by Abrams (1976) in Fig. 3.9.
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CHAPTER 4
ANALYTICAL PROCEDURE

4.1 Introductory Remarks

This chapter describes a method of analysis for reinforced concrete
coupled shear wall structures subjected to static Tloads and dynamié base
excitations. The analytical procedure is developed to study the behavior
of a structural system as well as that of its constituent members even
when that system is loaded into a highly inelastic range.

The constituent member stiffnesses are evaiuated based upon the
force-deformation relationships of the rotational springs of the beam and
the subelements of the wall as described in Chapter 3. The instantaneous
structural stiffness matrix is developed by assembling the constituent
member stiffnesses and then condensing out ali degrees-of-freedom except
those for the horizontal story movements. Only those degrees-of-freedom
remain in the final equations.

The mass of the structure is considered to be concentrated at each
floor level so that the lumped mass concept can be used in the analysis.
The damping matrix is evaluated as the sum of a part proportional to the
mass matrix and a part proportional to the structural stiffness matrix.

The inelastic behavior of the structure under static loads is
evaluated by applying a known set of lateral loads to the structure.
These loads are applied in very small increments. The inelastic dynamic
response and failure process of the structure under dynamic base motions
are calculated by numerically integrating the equations of motion with a

step-by-step procedure, Tung and Newmark (1954).
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The effect of load history in each constituent element is taken care
of by using a set of hysteresis rules. These rules are an adaptation of
those presented by Takeda, et al. {1970). A computer program has been
developed to apply the analytical procedure to fhe analysis of coupled

wall structures. The program is briefly explained in Appendix B.

4.2 Basic Assumptions

In this section the basic assumptions used in the analysis in order
to simplify the solution of the problem are presented.

(1} The analysis is limited to plane frame problems. OQut-of-plane
action is ignored in the analysis. Three independent displacements are
cohsidered at each joint: two mutually perpendicular translations in a
plane ahd one rotation about an axis normal to the plane.

(2) The right;hand screw rule is adopted to describe the global
coordinate system as well as the member coordinate system.

(3) Every member in the structure is considered as a massless line
member'represented by its centroidal axis.

(4) Geometric nonlinearity is ignored in the analysis. Small
deformations are assumed in the analysis so that the calculation of
inelastic response of the structure can be based on the initial
configuration.

(5) The idealized frame is assumed to be fixed at the base of the
structure which rests on an infinitely rigid foundation.

(6) The mass of the structure is assumed to be lumped at each

story level.
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(7) The inelastic deformation of each constituent member is
assumed to follow the Takeda's hysteresis rules.

{8) The instantaneous nonlinear characteristics of the structure
are assumed to be constant within a time interval or a load step interval.

(9) Shear deformation in a joint core is ignored in the analysis.

(10) Only horizontal base motion is considered as the external
dynamic force applied to the structure.

(11) The axial elongation of the connecting beams is ignored so that
the two walls move horizontally at the same rate.

(12) P-A effect is ignored in the analysis.

4.3 Stiffness Matrix of a Member

This section describes the ways to develop the stiffness matrix of
each constituent member of the structure such as the connecting beams and
walls based upon the force-deformation relationships of frame elements
mentioned in Chapter 3.

{a} Wall Member

A wall member has axial force, shear force and bending moment as its
force components. Vertical displacement, horizontal displacement and
rotation are the displacement components at the ends of each wall member.
These member forces and displacements, together with their positive
directions, are shown in Fig. 4.1.

Each wall member is considered to consist of several subelements
so that each subelement can be subjected to a different stage of inelastic
action. The stiffness properties of each subelement are assumed to be

constant over the length of that element,
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A wall member that consists of three subelements is adopted here as
~an example to explain the derivation of a member's stiffness matrix.
This represents a smali-enough structure to be easily explained by
solving an example problem.

It is necessary to consider the wall member as a cantilever beam
for the evaluation of fhe member stiffness matrix. The confiquration of
the cantilever beam as well as its coordinate system is shown in Fig. 4.2.
The flexibility matrix of the cantilever beam can be derived by using the

transformation matrix and the flexibility matrix of each element as follows:
- T T
[fAB] - CTCB] [fAC][TCB] + [TDB] [fCD][TDB] + [fDB] (4-1)

where

[f flexibility matrix of the cantilever beam

AB]
EAC],[TED]and [fDB] = flexibility matrices of the elements 1, 2 and 3,

respectively

1k

[TCB] and [TDB] transformation matrices of the elements 1 and 2,

respectively

[TCB]T and [TDB]T transpose matrices of [TCB] and.[TDB]’ respectively

The matrices which appeared in Eq. (4.1) can be expressed as:

L

L 0 0
¥
3 2
_ 3L L

[fpgd = | O SET, Y GA, T OZEL, (4.2)

. 12 L

T PEI. EI.

1 1




[Fpcl =] O

[fCD] = 0

[fyg) = 0

[Teg] =

[Ty5] =
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¥, T @A, L
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3 2
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2
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0 0
3 2
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3T, © @A, 2L,
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7T L5
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1 0
L+, 1
0 0
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> (4.3)
/

\
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where
L = Tength of the cantilever beam

EAi = instantaneous equivalent axial rigidity
of the cantilever beam

GAi = instantaneous equivalent shear rigidity
of the cantilever beam

EIi = instantanecus equivalent flexural rigidity
of the cantilever beam

EAil’ EAi2 and EA1.3 = instantaneous axial rigidities of

elements 1, 2 and 3, respectively

I

GAiT’ GAiZ and GAiS = instantaneous shear rigidities of
elements 1, 2 and 3, respectively

EIiI’ EIiZ and EI].3 = instantaneous flexural rigidities of
elements 1, 2 and 3, respectively

21, 22 and 23 = Tengths of elements 1, 2 and 3, respectively

These element rigidities EIin’ EA.

in and GAin (n = element number) are

calculated from Eqs. (3.14), (3.15) and (3.16) of Section 3.3, respectively.
The stiffness matrix [KAB] of the cantilever beam is calculated by
computing the inverse of the flexibility matrix [fAB].

The stiffness matrix of a wall member can be developed by using a

conventional matrix formula as follows:

.
Tag Kag Tag = Tag Kas
TR K (4.5)
AB TAB AB
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where
[Kw] = stiffness matrix of the wall member of size, six by six
[KAB] = stiffness matrix of the cantilever beam of size,
three by three
[TAB] = transformation matrix of the cantilever beam
1 0 0
[TAB] =10 1 0
0 -L 1
T .
[TAB] = transpose matrix of [TAB]

The incremental member end forces are related to the incremental member

end displacements through the stiffness matrix [Kw] as follows:

() T :' T (av,)
APy Tag Kap TATB : - Tag ap AUp
My g AOp
e R S
ANB E ) AVB
APg - Kns Tha . Kap Alg
\AMBJ ' kAeBJ

where

ANA and ANB = incremental axial forces at the ends of a wall member

APA and APB = incremental shear forces at the ends of a wall member

AMA and AMB = incremental moments at the ends of a wall member

AVA and AVB = 1incremental vertical displacements at the ends of

a wall member
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]

AUA and AUB incremental lateral displacements

-at the ends of a wall member

A8, and A9y = incremental rotations at the ends

of a wall member

These member end displacements and forces are also considered as the joint
displacements and the contribution to the joint equilibrium from the wall
members, respectively, since the global coordinate system has also been
adopted as the local coordinates. The stiffness matrix [Kw] of a walil
member is used as that member's contribution to the formulation of the
tofal structural stiffness matrix.

(b) Beam Member

A beam member has shear force and bending moment as .its force
components, with vertical displacement and rotation as its displacement
components. These are specified at the member ends in the normal manner.

The connecting beam is considered as an individual beam connected to
each wall through a rigid Tink and a rotational spring. The rotational
spring takes care of the beam end rotation due to bond slip in the joint
core as well as the inelastic flexural and shear action over the beam
Tength. The linear flexible beam element spans between the rotational
springs. The configuration of the connecting beam and the beam end
forces and displacements are shown in Fig. 4.3.

The flexibility matrix for a simply supported connecting beam system,
excluding for the time being the rigid Tinks to the wall centerlines, can
be calculated by simply adding the flexibilities of the rotational springs
to those due to flexural actions in the flexible element. The flexibility

matrix is therefore expressed as:
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-

fee fep 6ET ~ BEI 2ST(Mg) * (M) 0
= + (4.7)
foo f - BT EET 0 ey + )
oc oo 6ET  6EI Z5T(M;) D
where

L = length of the flexible element

EI = elastic flexural rigidity of the
flexible element
L L _ .
ZST(MC) and ZST(MD) = rotational flexibilities due to the

inelastic flexural and shear actions
over the beam length, defined in
Egs. (3.21) and (3.24)

f(MC) and f(MD) rotational flexibilities due to the

bond s1lip in the joint core, defined

in Eq. (3.36)

MC and MD end moments of the flexible element

The first matrix on the right-hand side of Eq. (4.7) is a slightly
modified version of the normal flexibility matrix of a simple beam, The
reason the first matrix is not in the normally recognized form is that
part of the elastic flexibility coefficients of the diagonal elements
have been assigned to the element ?§%Tﬂ7'in the second matrix. This has
been done for computational ease. In the second matrix the flexibility
constants ?§%Tﬁ7'and f(M) are functions of the existing moment level and
the history of the rotational spring.

The incremental end rotations of the combined spring-flexible

element system are related to its incremental end moments through the
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combined flexibility matrix as .

fi

. (4.8)

where

AeC and AeD incremental end rotations of the

combined spring-flexible element

AM . and AMD incremental end moments of the

C
flexible element

It should be noted that the interaction effect of the rotations between
the ends C and D exemplified by the off diagonal terms depends solely on
the elasticity of the flexible element.

Equation (4.8) is converted to the stiffness form by inverting the

rotational flexibility matrix as follows:

M Kee Ko | | 2%
= , (4.9)

AM KDC KDD A@D

D
Incremental moments AMA and AMB at the ends of the rigid links are
related to the incremental moments AM and AMp at the ends of the flexible

element through a transformation matrix as follows:

AMA T+x A AMC

= (4.10)

AMB A T1+A AM



45

where

A = ratio of the length of a rigid Tink to that of a

flexible element

The distribution of moment over the length of a connecting beam is shown
in Fig. 4.4. Incremental rotations Aeﬁ and AeD at the ends of the
interior flexible element are related to incremental rotations AGA and Aeé
at the rigid Tink ends of a simp]y supported beam in the same way as

Eq. (4.10).

- (4.11)

The instantaneous moment-rotation relationship of a simply supported
beam made up of the rigid Tinks, rotational springs and flexible element

can be expressed by combining Egs. (4.9}, (4.10) and (4.11) as follows:

]

AMA T+A A K cD 1+A A ASA

i} - (4.12)
DD A T+A ASB

It should be noted that no shear forces nor vertical displacements at
the ends of the beam member are involved in Eq. {4.12). In order to include
the member end shear forces and vertical displacements in the final equation,
the incremental end rotations AGA and Aeé of a simply supported beam member
should be expressed in terms of incremental end rotations ASA and A8, and

B

incremental end vertical displacements AVA and AVB of the beam member

using the equation
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7~ ™
_ | A
D! L -1 0
A [RGEZIN] [(T+2h) 4 A6, > 1)
A8} L 0 -] 1 AVg
B L0+2A7 L{T+2))
S 4 aey )

The deformed configuration of the connecting beam from which these
relationships are readily observed 'is shown in Fig. 4.5.
Similarly, the incremental member end shear forces ANA and ANB can

be expressed by the incremental member end moments AMA and AMB in the form

£ N — -1
BN, 1 1
L(T+2Ay  L[(1+23)
Bt 1 0 My
y = (4.14)
Mg -1 -1 AMg
E(T+2ay  T(aay | \
AM
(7B) |0 1

The final force-displacement relation of a connecting beam is obtained

by combining Eqs. (4.12), (4.13) and (4.14) into the following form

(oY [ 1]
L{T+2x)  L(1+2%) -
) oy - : . 4 A Ko Kep
AN -1 -1 Ao | ke K
8 [(T¥2x)  T(T+2%) e D
et A 1
1 — o1 [av
C(T+20) C(+2x) 16

(4.15)
AV

T+ A )
L. - L{T+2x) L{T+2}) AG

W W = I
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where

ANA and ANB = incremental shear forces at the ends
of a connecting beam

AMA and AMB = incremental moments at the ends of a
connecting beam

AVA and AVB = incremental vertical displacements at
the end§ of a connecfing beam

A8, and AGB = incremental rotations at the ends of a

connecting beam

With the global coordinate system also adopted as the local coordinate
system for the connecting beam, these member end displacements and forces
are also considered as the joint displacements and the contribution to the
joint forces from the connecting beam, respectively. The stiffness matrix

in Eq. (4.15) is used as the beam contribution to the formulation of the

structural stiffness matrix.

4.4 Structural Stiffness Matrix

The instantaneous structural stiffness matrix is developed by
combining all the instantaneous stiffness matrices of the wall subelements
and the beams then condensing out a number of the degrees-of-freedom so
that only horizontal story movements appear in tﬁe final form of the
equations.

The formulation of the fuli-size structural stiffness matrix is
accomplished by adding force contributions from all the members in a
structure at each story and joint. The force-displacement relation of

a structure is expressible in the form



where

Kiq

K2
K
K22
I
J

AP

AN

- AM
AU
AV

AB

21

AP

AN

&M

submatrix of
submatrix of
submatrix of

submatrix of
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— . — s ™
Kl 1 Ko AU
R R ¢y

! AV
K by
21 1 Koo
3 i IR
size, I by 1

size, I by 23
size, 2J by 1
size, 2J by 24

number of stories

number of jo
incremental
incremental
incremental
incremental

incremental

incremental

The external vertical

ints

story lateral force vector

joint vertical force vector

joint moment vector

story lateral displacement vector
joint vertical displacement vector

Jjoint rotation vector

forces and moments at the joints in the

(4.16)

structure are assumed to be zero, since only lateral loads are considered

in this analysis. Thus sta

tic condensation is used. First Eq. (4.16)

can be rearranged as folliows:

{AP}

it

{0}

[K..T{AU} + [K.. ] {A"
11 12 A

K., 1{AU} + [K ]{AV}
[Kay Pl

(4.17)

(4.18)
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On solving Eq. (4.18) for the vertical displacement AV and rotation

-vector A8, the solution can be written as

AV -1 '
= - [Kypl [Kyy 1AL} (4.19)

AB
By substituting Eq. (4.19) for the vertical displacement and rotation
vector in Eq. (4.17), the incremental Tlateral displacement-force relation-

ship of the structure can be expressed in the form
. I | -1
I V90 R 9% %9 ) (] [ (4.20)

The instantaneous structural stiffness matrix is defined as

) ry, - |
[K] - {K]'l] - [K]Z:”:K22] [KZ]J (4.21)
where
[K] = instantaneous structural stiffness matrix of size,

number of stories by number of stories

Having computed the incremental lateral displacements, the incremental
vertical displacements and rotations of the joints can be calculated from
Eq. (4.19). Incremental member forces can then be computed from the
incremental member end forces versus displacement relationships such as
Egs. (4.6) and (4.15). Finally, current values 6f the displacements and
member forces are evaluated by adding the computed incremental values to

the accumulated values from the previous step.

4.5 Static Analysis
An application of the analytical procedure just described to a static

load case is discussed in this section. The static load applied to the
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structure can be either a monotonically increasing load or a cyclic load.
However, as noted earlier, only lateral loads are considered as the
external loads on the structural system in this analysis. The appropriate
‘lateral loads are applied to each story level of the structure. These
loads are applied in small load increments, increasing up to the maximum
load. It is assumed that the load distribution shape over the height of
the structure does not change during the loading process although the
magnitudes of the loads are monotonically increasing or decreasing.

Equation (4.20) of the incremental Tateral displacement-force
relationships is solved for the lateral story displacements under a set
of lateral loads by a step-by-step procedure. The load increment is chosen
to be small enough to avoid any significant calculation error due to
overshooting in the hysteresis loops.

The structural stiffness is assumed to be constant during the load
increment. Story and jeoint displacements and member forces are calculated
at the end of each load increment. If a member force exceeds its limiting
‘value, the member stiffness is modified at the beginning of the next Toad
increment in accordance with the hysteresis rules. The failure mechanism
of the étructure and the inelastic structural stiffness properties are

studied in the analysis of the structure under static loads.

4.6 Dynamic Analysis

The equations of motion of the structure are expressed by the
equilibrium conditions on the inertia forces, damping forces, and resisting
forces at each story. To calculate the inertia forces, damping forces, and

resisting forces at each story, the mass matrix, damping matrix, and
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instantaneous structural stiffness matrix must be evaluated respectively.
The instantaneous structural stiffness is defined in Eq. (4.21).

(a) Mass Matrix

The Tumped mass concept in which all the mass of a story is
concentrated at its floor Tevel is assumed in the analysis. Inertia
moments and vertical inertia forces at joints are ignored in the analysis.
Only lateral inertia forces at the story levels are considered in the
calculations of the dynamic response due to base excitations. A consistent
mass matrix is therefore considered unnecessary and a diagonal mass matrix

in which off-diagonal terms are zero is developed in the form

[M] = m, (4.22)

where

[M]

m], m2- --mI

mass matrix of size, number of stories by number of stories

lumped mass at each story level

I

number of stories

(b) Damping Matrix

A viscous type damping is adopted in this analysis because of its
mathematical simplicity. This simplification is rationaliized on the
grounds that the damping force phenomenon is not fully understood with
present knowledge. With this assumption the damping forces are considered
to be proportional to the relative velocities which are measured at each

floor relative to the base of the structure.
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The damping matrix is made up of a part which is proportional to
“the mass matrix and a part which is proportional to the instantaneous

structural stiffness matrix. The matrix can therefore be expressed as

[C] = cqIM] + c,(K] (4.23)

where

Ic

damping matrix of size, number of stories by number

of stories

<y and C, constants which are determined from given damping factors

The damping matrix [C] can be diagonalized by using the normal mode
shape vectors, because the damping matrix is a linear combination of the
mass and stiffness matrices and the mode shape vectors are orthogonal with
respect to the mass matrix as well as the stiffness matrix. By considering
this property of the assumed damping matrix, modal damping factors can be
expressed in terms of the constants ¢y and Cpa and modal circular

frequencies in the form

(o]

By = %—(—%—+ <y wi) (4.24)
where
B; = damping factor of the ith mode
w; = circular frequency of the ith mode

i
The derivation of Eq. (4.24) can be found in many textbooks on
structural dyhémics. Clough and Penzien (1975).
The constants cy and ¢y in Eq. (4.23) can be determined by introducing
the first and second mode damping factors BT and B, as well as the first

and second mode undamped circular frequencies w, and Wo into Eq. (4.24) as
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g =L ey ap)
1 2 Wy 2 1
(4.25)
C
-] 1
By = ?'(55‘+ cy wp)

By solving Eqs. (4.25) for ¢ and Cos the constants Cq and ¢, are expressed

by the first and second mode damping factors and circular frequencies as

follows:
2 ™~
2wquy By = Bywp)
€1 7 57
(.O-I - U)Z
> (4.26)
2 w2 _ m2
1 2 P

The first and second mode damping factors B] and 82 are selected based
on engineering judgment prior to the calculation of Cq and Cye Once 9 and
< have been determined, higher mode damping factors are automatically
assigned by Eq. (4.24).

If the‘damping matrix is considered to be proportional to only the
stiffness matrix, the constant Cy is calculated by the first of Egs. (4.25)

assuming the constant cq to be zero. Thus

28

“
Simitarly, the constant S is calculated by the following expression
for the case where the. damping matrix is assumed to be proportional to only
the mass matrix.
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Larger damping factors are automatically assigned to the higher modes
for the case where the damping matrix is assumed proporticnal to just the
stiffness matrix. On the other hand, smaller damping factors are
automatically assigned to the higher modes fof the case with the damping
matrix assumed proportional to the mass matrix.

A damping matrix proportional to the stiffness matrix is mainly used
in this analysis, since it is'effective in reducing the amount of higher
frequency components in the structural responses. In this case, the

damping matrix is simply expressed in the form

[C] = ¢, [K] (4.29)

The stiffness matrix [K] in Eq. (4.29) can be defined either by the
initial stiffness values or by the current instantaneous stiffness values.

If a damping matrix proportional to the initial stiffness matrix is
considered'in the analysis, the damping matrix would remain unchanged
during any inelastic structural response. Naturally this gives over-
estimated values to the damping matrix. Such overestimations might be
acceptable in the analysis, because the damping effect should be expected
to become larger when any inelastic action is occurring in the structure.

If the damping matrix proportional to the instantaneous stiffness
matrix is considered in the analysis, the damping matrix changes during
the response to reflect the current structural stiffness. Therefore the
value of Co in Eq. (4.29) is likewise changed in the manner described in
the folliowing paragraphs in order to keep within reasonable damping
factor values.

It is assumed that the first mode component is the dominant factor

in the response of the structure. The first mode circular frequency of



an elastic stage can be expressed through Rayleigh's method in the form

T
o _ ilk v}
T B

w

(4.30)

where
w, = first mode circular frequency of the elastic stage
[Ke] = plastic structural stiffness matrix
{y} = first mode shape vector of the elastic stage

The first mode shape is not significantly changed after inelastic
structural action has taken place in the response. Therefore the first
mode shape vector of the elastic stage is also used in the inelastic
stage. The first mode circular frequency while in the inelastic stage

is expressed as follows:

-
PRI

S Slallh I (4.31)
T M et

where

1]

W
1

[K;]

first mode circular frequency of the inelastic stage

inelastic structural stiffness matrix

The relationship between these two frequencies, g and ws, c€an be
found from Egs. (4.30) and (4.31}) to be

2 2
wy =Yg (4.32)

where T
{yilK; Hul

LA
(WK v}
When any inelastic structural action has taken place in the response,

the constant Co in Eq. {4.27) is evaluated in the form
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281
C2 = —u-)'; (4.33)
This equation is then rewritten by substituting Eq. (4.32) for Wy with

the result being

Cpr = ==Y (4.34)

Thus the constant Cy is changed by a factor of y-% during the motior in
-accordance with the chénge in the stiffness matrix in order to keep the
damping factor within reasonable values, otherwise the instantaneous
damping matrix is underestimated.

{c} Equation of Motion

The equation of motion is developed in incremental form assuming
that the properties of the structure are constant within each time interval.
The inelastic structural responses and failure processes under a
strong base motion are evaluated by numerically integrating the equations
of motion while using a step-by-step procedure. The Newmark 8 method 1is

used in this so]utfon of the equations of motion.

The incremental form of the equations of motion is expressed as

[MICaU} + [C10a0) + [KITAUY = -[MIGAX} (4.35)
where :
[M] = diagonal mass matrix defined in Eq. (4.22)
[C] = instantaneous damping matrix defined in Eq. (4.29),
which is evaluated at the end of the previous time step
[K] = instantaneous structural stiffness matrix defined in

Eq. (4.21), which is evaluated at the end of the

previous time step
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{AU} = incremental story acceleration vector, relative to the base
{A0} = incremental story velocity vector, relative to the base
{AU} = 1incremental story displacement vector, relative to the base
{AX} = incremental base acceleration vector

The incremental relative velocity {AU} and acceleration {AU} are

expresséd in the Newmark g methed as

03 = ot L 1 S U
(a0} = g (AU} = 5g (03 = (g - 1) ati(} (4.36)
a0y = —1e oty - 0y - L (i (4.37)
B(At) BAL 2B |

where

At = time interval

B = a constant which is indicative of the variation of acceleration
over the time interval usually chosen between 1/4 and 1/6, and
influences the rate of convergence, the 3tabi1ity of the
analysis and the amount of error in the Newmark B method.

{01

relative story velocity vector at the end of the previous
time step
{U} = relative story acceleration vector at the end of the previous

time step

There are two basic ways to solve the equations of motion with direct
integration. One is termed the explicit method. With that approach the
accelerations are calculated from the equations of motion and then integrated
for the displacements and velocities. The other method is termed the
implicit method, in which case the equations of motion are combined with

the time integration operators so that displacements are calculated directly.
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The advantage and disadvantage of both methods when applied to dynamic
~ structural problems were discussed by Belytschko (1976). For the
particular problem under investigation in this study, an implicit method
is used, since the bandwidth of the stiffness matrik is small and an
iteration procedure is not needed. The equations can be solved by
Gaussian elimination or any such decomposition procedure. Unless some
structural chénges occur this decomposition remains in force for the
successive time steps. But the implicit method may be more sensitive
to error unless the small time interval is used.

The incremental story displacement {AU} can be expressed in terms
of the response values and structural propérties at fhe end of the

previous step by combining Eqs. (4.35), {(4.36) and (4.37) in the form

{ay} = [A]"'{8} | (4.38)

where

[A) = Loy D] + —— 1] + [K]
B(At) 2pAt

(8} = [M){pg 03 + 77 (03 - (o))

+ [€] {(—— - 1) At{U} + e {u}}

If the constant R is chosen to be 1/6 in Eqs. (4.36), (4.37) and
{4.38), these equations can be interpreted as the linear acceleration
methed. If the constant B is assumed to be 1/4, these equations are
equivalent to the constant average acceleration method. Both values of
B are studied in the analysis.

The stability of the solution requires the time interval At to be

less than 1/6 of the highest mode period. Therefore to be on the
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conservative side and also to minimize the overshoots of the section
capacities, the constant time interval At is chosen to be 1/10 of the
period of the highest elastic mode in the analysis.

The incremental relative velocities are calculated from Eq. (4.36)
for the given incremental relative displacements which have been
evaluated by Eq. (4.38). The incremental relative acceleratfons are
then calculated from the following equation which is a modified form of

Eq. (4.35) and is based on the current structural prOpérties.

(a3 = -[M17{c 11a0} + [K JEAUY + [MI{aX}} (4.39)
where
{KC] = instantaneous structural stiffness matrix which is
evaluated at the end of the current step
[CC] = instantaneous damping matrix which is evaluated at

the end of the current step

Equation (4.37) is not used to calculate the incremental relative
accelerations, since the acceleration response is very sensitive to
changes in the stiffness properties of the structure. Therefore more
accurate results can be obtained by computing the incremental acceleration
based on the updated structural properties rather than the previous ones.

The residual forces due to changes in the member stiffnesses that

develop within a time interval are applied to the subsequent time step.
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CHAPTER 5
HYSTERESIS RULES

5.1 Hysteresis Rules by Takeda, et al.

The hysteresis rules used in this analysis are an adaptation of those
presented by Takeda, et al. (1970). The hysteresis rules for a trilinear
primary curve are used for the beam rotational spring and the wall
subelement. Some modifications were applied to the rules originally set
down by Takeda. The modifications are disbussed in Section 5.2. The
detailed rules of Takeda's hysteresis are given by Otani (1972). Therefore
in this study only the basic concept of the hysteresis rule is presented.

The primary curve of the hysteresis loop is established by connecting
the origin, cracking point, yielding point and ultimate point successively
by straight lines, thus forming the trilinearized curve. No limit on the
third slope is considered for the primary curve. The primary curve is
assumed to be symmetric about its origin. The loading curve is basically
directed toward the previous maximum point on the primary curve in that
direction. The slope of unloading curve is degraded depending on the
maximum deflection reached in either direction. A typical example

including several hysteresis loops is shown in Fig. 5.1.

h.2 Modifications of Takeda's Hysteresis Rules

The original Takeda's hysteresis rules have to be modified to deal
with some specific problems that appear in the response behavior of

coupled shear walls.
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(a)} Shifting of Primary Curve due to the Axial Force
in the Wall Subelement

For the wall subelements the curves of the moment-curvature
relations for different values of axial force are trilinearized as shown
in Fig. 3.6. Cracking and yielding levels are shifted in accordance with
the value of axial force, It is assumed that the axial force is small
enough that the interaction curve is in the linear range, about the zero
axial force axis.

The working moment-curvature curve is chosen to be the one
corresponding to the present level of axial force. The pseudo-flexural
rigidity %%—in Eq. (3.14) of Section 3.3 is considered as the slope of
the working moment-curvature curve, and it follows Takeda's hysteresis
rules. The real flexural rigidity EI1 in Eq. (3.74) can be obtained by
multiplying %% by the factor which reflects the effect of transferring
from one moment-curvature curve to another due to the change of axial
force. Actual hysteresis loops for a wall subelement are shown by the
thick solid curves in Fig. 5.2. The detailed procedure for evaluating
oM

0 and +~»1n the computer program is discussed in Appendix A.

o
(b) Pinching Behavior and Strength Decay of Connecting Beam

The primary curves for the rotational springs at the ends of each
connecting beam are trilinearized and are assumed to follow Takeda's
hysteresis rules but again with several modifications. Two sources that
require the modifications are considered in this report. The first
source is a pinching action that results from the compression reinforce-
ment yielding before the concrete cracks, that had developed while that
concrete had been in tension, can close. The other modification is a

beam stirength decay due to changes in the shear resisting mechanism.
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Once the rotational spring has exceeded the cracking moment, the
spring will, on subsequent cycles, demonstrate a pinching effect around
'the origin with only the reinforcement providing any resistance until
the previous tension side cracks have been closed by compression.

The original hysteresis .ruies have therefore been modified to take
care of this pinching effect. This is done in the way that whenever a
working hysteresis loop is located in the positive rotation-negative
moment range or the negative rotation-positive moment range, an additional
' spring, whose stiffness is based on only the reinforcement résistance, is
installed in series with the original rotational spring.

After the formation of flexure-shear cracks in the beam, the shear
carrying mechanism is considered to be shifted from the concrete cross
section to a combination of the compressed concrete above the crack and
the transverse reinforcement. Under repeated load, the increase of -
permanent strain in the transverse reinforcement after yielding induces
distortion of the concrete section and causes the shear strength to decay
as a result.

After the rotational spring has exceeded the yielding moment, a
strength decay is introduced in the hysteresis loops on subsequent cycles.
The rate of the strength decay is assumed tc proportionally increase with
rotation for simplification of the problem. A guideline is introduced in
the hysteresis loops to include the effect of strength decay in the
computer program. After the working hysteresis 1oop has exceeded the
guideline, it goes parallel to the third slope of the original primary
curve.

Hysteresis loops which include the effects of both the pinching

action and the strength decay are illustrated ih Fig. 5.3.
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CHAPTER 6
ANALYTICAL RESULTS

6.1 Model Structures

The procedure described in Chapter 4 has been applied to the ten-
story coupied shear wall models tested on the University of Il1linois
earthquake simulator by Aristizabal-Ochoa (1976). The dimensions of the
models are shown in Fig. 2.1. The models are made up of two shear walls,
each 1 by 7 in. in cross section, and having a height of 90 inches. The
walls are joined at each of the floor levels by 1 by 1.5 in. connecting
beams spanning the 4 in. spacing between the walls. A weight of 0.5 kip
is placed at each floor Tevel.

Two types of models are studied here. These are a weak beam model
and a strong beam model. In further discussion they are referred to as
structure-1 and structure-2, respectively. The main difference between
these two models is the amount of steel reinforcement used in the
connecting beams.

Material properties assumed for the models are listed in Table 6.71.
The cross-sectional properties of the constituent elements of the models
are shown in Fig. 6.1. The stiffness properties of the beam rotational
springs and wall subelements were calculated by the procedﬁre described
in Chapter 3. These calculated stiffness properties are listed in Table
6.2. The analysis of a structure-1 type is considered to be a primary

objective in this study.
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6.2 Static Analysis of Structure-]

The inelastic structural behavior and failure mechanism of structure-]
responding to static loads as determined by the procedure described in this
study are reported in this section. The results of this static analysis
are used as the preliminary or backbone information for the subsequent
dynamic analysis. The first mode shape of structure-1 is used to establish
the statfc load distribution, because the first mode is expected to be the
major contributor to the response under dynamic loads. The first mode
shape:is shown in Fig. 6.11.

The static load is increased monotonically at small Toad increments
without changing its distribution pattern. The Toad increment used in
the anaiysjs is 1/300 of the maximum static load. The effect of inelastic
axial rigidity of the wall as well as the effect of axial force on
inelastic f1éxura] rigidity is included in the analysis.

(a) Failure Mechanism

The sequence of cracking and yielding of constituent elements under
the monotonically increasing load is presented in Fig. 6.2.

First cracking appears in the connecting beams at levels 3 and 4.
Cracking theh progresses to the adjacent lower and upper levels of
connecting beams. After all connecting beams have developed cracks,
cracking then starts in the lower part of the tension wall and propagates
into the upper levels followed by cracking in the lower part of the
compression wall. This in turn is followed by yielding of some of the
connecting beams beginning at the intermediate levels and proceeding

further into the lower and upper levels.
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Finally, yielding occurs at the base of the tension wall, then at
the base of the compression wall. After yielding has developed at the
base of both walls the structure Toses practically all its resisting
capability against any further Toad increases. Cracking develops over
the height of the tension wall while the cracking system expands up to
level 5 of the compression wail.

(b) Effect of Inelastic Axial Rigidity

Axial rigidity of a wall section is considered to change reflecting
the levels of curvature and axial strain existing in the wall as explained
in Section 3.3, In Fig. 6.3 the relationship between axial force at the
hbase and vertical displacement of the top level of a wall is presented to
explain the effect of inelastic axial rigidity on the wall section's
behavior. The case of elastic axial rigidity is also shown in Fig. 6.3
to serve as a base for comparison with the case of inelastic axial
rigidity. The dead load of the structure is not considered in the
calcutations. The waximum base axial force is 8.2 kips in the figure.
This corresponds to a base moment of 150 kip-in.

In the case where inelastic axial rigidity is assumed in the analysis,
the tension wall displays a quite different stiffness curve from that of
the compression wall. The curve of the tension wall is softened markedly
by the opening of flexural cracks about the base axial force of 2 kips.
When the maximum tensile axial force is reached, the top vertical
displacement for the case of inelastic axial rigidity is 3.3 times as
much as it would be if the axial rigidity remained elastic. The curve

for the elastic axial rigidity is symmetric about the origin. For the
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compression wall the curves for inelastic axial rigidity and for elastic
axial rigidity are practically the same. This means that for all
practical purposes the compression wall can be assumed to behave
elastically in the axial direction.

(c) Base Moment-Horizontal Displacement Relationship

To study the overall behavior of the structure under a monotonically
1ncreasing load, the relationships of base moment to horizontal displacement
at the top of the wall for different assﬁmed conditions of axial rigidity
of the wall are compared with the test results in Fig. 6.4. Base moment
is defined as the sum of the flexural moments of the individual walls and
the coupling moment due to the axial forces in the walls.

The curve of the test results is considered to be a pseudo-static.
curve based on the first mode component of the dynamic responses recorded
| in the test. The curve of inelastic axial rigidity includes the efféct of
axial force changes on the inelastic flexural rigidity and the effect of
curvature changes on the- inelastic axial rigidity in the wails. For the
curves of elastic axial rigidity the elastic axial rigidity, which is
constant in the process of loading, is assumed for the wall section and
no effect of axial force on the flexural rigidity is considered in the
walls.

The curve of reduced eiastic axial rigidity is obtained by simply
reducing the elastic axial rigidity of the walls by a factor while all
other assumed conditions are the same as would be the case for elastic
axial rigidity. This reduction factor is calculated based on the fact

that the tension wall has a fairly small axial rigidity due to the
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opening of flexural cracks in contrast to the compression wall where
‘Tittle flexural cracking exists as mentioned in the previous section.

A reduction factor of 1.65 is assumed based on the observation that the
vertical displacement of the top story for the case of inelastic axial
rigidity is 3.3 times as much as that displacement would be if the axial
rigidity remained elastic. This effect of inelastic axial rigidity in the
tension wall must be averaged'over both walls to arrive at the reduced
elastic axial rigidity case. Therefore the axial rigidity of the walls

is reduced to 12,700 kips for the case of reduced elastic axial rigidity.

As shown in Fig. 6.4, the analysis with inelastic axial rigidity
produces a curve which lies close to the pseudo-static curve from the
test although the calculated result is slightly stiffer than the pseudo-
static curve. Also the curve for the case of reduced elastic axial
rigidity is in satisfactory agreement. No appreciable difference exists
between the curve with inelastic axial rigidity and that for reduced
elastic axial rigidity except for the trailing part of the curve after
wall yielding has been initiated.

Cracking and yielding of the walls and beams start at about same
lToading levels for all three cases. Cracking of the walls and beams
starts at very low levels of loading. Yielding of the connecting beams
is initiated at a base moment of 112 kip-in. followed by the yielding
at the base of the wall at a base moment of about 175 kip-in. After
yielding at the base of the wall, a marked change in structural
stiffness occurs and the structure Toses its main resisting system

against any further lead increases.
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(d) Redistribution of Base Shear in Walls

Redistribution of base shear betwéen the two walls during the
process of Toading is studied. The results are shown in Fig. 6.5,

A part of the shear from the tension wall is transferred to the
compression wall through the connecting beams due to the change in the
flexural rigidity of the walls. The transferred shear at each Tevel is
accumulated dbwn to the base. This causes a significant difference in
the shears at the base in the two walls.

As shown in Fig. 6.5, the base shear is equally distributed between
the two walls in the elastic stage. When cracking in the tension wall
is initiated, suddeniy the base shear in the tension wall starts shifting
to the.compression wall. The shifting of the base shear continues up to
the point that only 28% of the total base shear is distributed to the
tension wall whiie the remaining majority being in the compression Wa]l.
But when yielding in the walls 1is initiated, the base shear starts to
reestablish back equally between the two walls so that the share to the
tension wall increases. The redistribution of shear in the walls causes
a compression force in the connecting beams so that the strength of the
connecting beam might be increased.

{e) Coupling Effects of Walls

The coupling action of the two walls joined through the connecting
beams is the most distinctive feature in the behavior of the coupled
shear wall system. The influence of the coupling effects of the walls
on the horizontal displacement of the top stdry and on the base moment

are studied here.
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Horizontal displacement at each level is caused by the two sources
of structural actions. One is the flexural and shear deformations of
the individual walls, and the other is the story rotation due to the
contraction of the compression wall and the elongation of the tension
wall. This is considered to be the coupling action of the two walls.
The ratio of the top displacement due tg the coupling effect to the
total top displacement changes during the process of loading. The
variation in the ratio at succeeding Tevels of deformation is illustrated
in Fig. 6.6. The initial ratio of 65% abruptly reduces to 40% with
cracking of the walls and beams. After being reduced to 40% the ratio
gradually starts to increase until the time of the initiation of beam
yielding. At this point the axial rigidity reduces faster than the
flexural rigidity. When yielding of the connecting beams starts, the
ratio shifts to a gradual decrease. Thjs occurs because no significant

increase of axial force in the walls can be introduced at this stage.

A significant portion of the horizontal displacement is caused by
the coupling action even late in the loading sequence when large
dispTacements exist. For example, at the total top displacement of
1.75 in. still 30% of this total top displacement is caused by the
coupiing actions.

Moment at each floor level also consists of both the coupling
moment due to the axial forces in the walls and the flexural moment due
to the bending of the individual walls. The variations in the ratios
of the coupling moment and those of the flexural moment in the walls at

the base to the total base moment are illustrated in Fig. 6.7. These
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ratios are changing during the process of loading. The ratioc of the
coupling moment to the total moment starts at 71%, then decreases with
the process of inelastic action in the structural members. This decrease
continues up to the initiation of yielding in the wail. Inelastic action
of the connecting beams is a major contributor to this decrease. The
inelastic action of the walls works as softening factors of this tendency.
Actua11y'after the walls yield, the ratio starts increasing. At the
initiation of yielding in the wall, the coupling moment shares 55% of

the total base moment. This is the smallest share held by the coupling
moment during the loading.

(f) Flexural Moment Redistribution in Walls at the Base

Fﬁrthermore, the flexural moment of the walls is considered to be
the sum of a flexural moment of the compression wall and that of the
tension wall as shown in Fig. 6.7. At the beginning, the flexural mbment
is equally distributed between the compression wall and the tension wall.
As inelastic action of the walls takes place, the tension wail starts
losing its share of the flexural moment. Finally, the tension wall's
contribution represents only 20% of the total flexural moment. The shift
of the flexural moment from the tension wall to the compression wall
reflects the early deterioration of the stiffness properties of the
tension wall as such deterioration precedes that in the compression wall.

Moment distribution patterns in all the members at the end of the
loading are shown in Fig. 6.8. The concentration of f]exura} moment on
the compression wall, especially at the Tower levels, is clearly observed

in this figure.
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(g) Pinching Action and Strength Decay of Connecting Beams

The effects of pinching action and strength decay of the connecting
beams on the overall structural behavior are discussed next. The base
moment-top story displacement relationships under a cyclic loading are
shown in Fig. 6.9. There are two curves, which have different assumed
conditions, presented in Fig. 6.9. One curve fnc]udes the effect of
pinching action and strength decay of the connecting beams, while the
other curve does not include either of these effects.

In the first cycle there is no significant difference between the
two curves except a slight pinching action in the curve that includes
that effect. But in the second cycle the curve with the pinching action
and strength decay included requires more displacement to reach the same
Tevel of base moment as that which had been experienced in the previous
cycle. Naturally the overall structural stiffness of the case with
pinching action and strength decay included decreases significantly in

comparison with the case when such action is ignored.

6.3 Preliminary Remarks of Dynamic Analysis

Nonlinear response histories of structure-1 and structure-2 are
calculated for selected prescribed base motions. The selected base
motions used are adopted from the measured base motions used in the model
tests with the earthquake simulator. The base motions for structure-1
and structure-2 are referred to as base motion-1 and base motion-2,
respectively. The waveforms of these base motions are the acceleration
signals of the E1 Centro (1940) NS component. The original time axes

are compressed by a factor of 2.5 and the amplitudes of acceleration
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are modified relative to the original record as appropriate to the model
tests. Only the first 3 sec of recorded base motion from the model tests
are used in the calculations, because the maximum responses and most of
the damage to the structures take place within this time interval. The
waveforms of base motion are shown in Fig. 6.10. The maximum accelerations

of the base motions are'listed below.

Maximum Acceleration, g Duration Time, sec
Base Motion-1 0.41 3.0
- Base Motion-2 0.91 3.0

The damping matrix is assumed to be proportional to the stiffness
matrix with a damping factor for the first mode of 2% of critical. The
time interval used in the response calculations is 0.00035 sec. This
time interval requires 8,600 steps for the calculation of the response
history of the structure to the 3 seconds of input base motion.

The effects of various assumed analytical conditions, such as the
deterioration of axial rigidity due to the opening of cracks and the
change of inelastic flexural rigidity taking account of the changing
axial force in the wall section, the numerical integration scheme, the
use of the stiffness matrix for the calculation of the damping matrix,
the arrangement of wall subelements, and the pinching action and strength
decay of connecting beams, are all studied. The assumed analytical
conditions for dynamic runs are summarized in Table 6.3.

Initial mode shapes of structure-1 were computed and the results

are shown in Fig. 6.11. Only the first three modes are presented since
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the dynamic response of the structure is expected to be produced almost
- totally from these first three mode components, The first mode shape
shows that all levels oscillate in the same phase. The second mode
shape indicates that only one node is formed about level eight. The
third mode shape shows that tWo nodes are formed about levels five and
nine. Initial mode shapes of structure-2 are Very much Tike those of

structure-1 and are presented later in Section 6.6,

6.4 Dynamic Analysis of Structure-]

Three cases in which diffekent analytical conditions are assumed
are calculated for the response history of structure-1 subjected to
base motion-1. These calculated responses are compared with the tesf
results. These three cases are referred to as run-1, run-2 and run-3,
respectively. Run-1 includes the effect of axial force on the jnelastic
flexural rigidity and the effect of curvature on the axial rigidity of
the wall section. Run-2 and run-3 do not include these effects. Instead,
linear elastic axial rigidity of the wall section is assumed for run-2,
and reduced elastic axial rigidity of‘the wall section, as discussed in
Section 6.2, is assumed for run-3. All other analytical conditions are
the same for these three runs. Analytical conditions for each run are
1isted in Table 6.3. The pinching action and strength decay of the
connecting beams are considered in the analysis for these runs, and the
current stiffness matrix is used for the calculation of the damping matrix.

(a} Change of Modal Properties during Dynamic Response

Modal properties associated with the first three modes were computed

before and after the run for run-1. These are listed in Table 6.4 and
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illustrate the change of structural properties that occur during the
~dynamic motion. Although the mode shapes have not significantly changed,
the frequencies have been considerably reduced showing the large
deterioration of structural stiffness that has taken place during the

dynamic motion.

(b) Maximum Calculated Response Compared with Test Results

The maximum responses from run-1, run-2 and run-3 are compared with
the corresponding test values in Table 6.5! Also the maximum responses
of run-1 and those of the test are.presented in Fig. 6.12. The maximum
responses for run-1 are fairly consistent with the test results except
for shear in the lower levels and acceleration of the top floor. Run-2
and run-3 predict the maximum responses recorded in the tests to about
the same level of accuracy as run-1 but with some exceptions. For
example, the maximum displacements of run-2 are considerably sma]]erv
than those of the test and the other two runs. The maximum moments of
run-3 are slightly smaller than those of the test and the other two runs.
A major difference appears in the first mode frequency computed for the
structure based on ;onditions of the structure at the end of the run.
This frequency is 10% ]arger than the corresponding values for the test
and the other two runs. This difference is caused by the deterioration
of the axial rigidity of the wall section during the dynamic motion.
The variable rigidity is not adequately treated in run-2 since the
elastic axial rigidity of the wall section is assumed to remain constant

throughout run-2.
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(c) Calculated Response Waveforms Compared with Test Results

The response waveforms of run-1 are shown in Fig. 6.13. Several
of the waveforms are compared with corresponding waveforms from the
test. The overall features of the response waveforms of run-1 are
similar to those of the test. The elongations of the fundamental period
are observed in the response waveforms of run-1‘and are fairly consistent
with those of the test. The times when the maximum response of the top
floor displacement and the base moment occur are comparable to the times
recorded for the test. These occur at about 2.4 seconds. The response
waveform of the base shear is governed by the first mode component but
with some contributing influence of the second mode. The response wave-
forms of base moment and displacement are smooth and governed almost
totally by the first mode component. The response waveforms of acceleration
contain higher mode components, especially at the lower Tevels. At level
eight, which is the position of the node for the second mode, the second
mode component is not visible in the acceleration waveform.

The response waveforms of base shear, base moment, and horizontal
displacement of the top floor for run-2 and run-3 are shown in Fig. 6.14
and Fig. 6.15, respectively. The response waveforms of run-3 are quite
similar to those of run-1. The elongation of the fundamental period of
run-2 is less than those of run-1 and run-3 showing that run-2 does not
predict the structural damage properly.

(d) Response History of Base Moment-Top Floor
Displacement Retationship

The va]ueé of base moment and top floor displacement were recorded

at each time interval in run-1, These are plotted against each other
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in Fig. 6.16 in order to see the overall structural history during the
dynamic motion. Softening of the stiffness of the structure can bé
observed in this figure showing the effects of inelastic action, such as
cracking and yielding of the various members and the strength decay of
connecting beams,‘on‘the overall structural behavior. Also the dominance
of the first mode components in the makeup of the structural response is

seen in this figure through the relatively narrow width of band.

(e) Response Waveforms of Intgrna] Forces

The response waveforms for the flexural moments of the beam
rotational springs at several levels, the total flexural moment at the
base of the two walls and the axial force of a wall at the base as
recorded in run-1 are shown in Fig. 6.17. The first mode component
governs all response waveforms of the internal forces with the stight
second mode component present. This means that each member behaves fn
the same way as the structural system does.

(f) Hysteresis Loops of a Beam Rotational Spring
and a Wall Subelement

The hysteresis loops for the beam fotationa] spring at level six
and those for a wall subelement at the base, which were computed in
run-1 about the time the system underwent its maximum response, are
shown in Figs. 6.18 and 6.19, respectively.

The numerical value of the reduced rotational spring stiffness
used in the analysis to produce the pinching action in the hysteresis
loops is 28 kip-in. This value is calculated based on only the
resistance of the reinforcing. The guideline used to establish the

effect of strength decay of a connecting beam is determined by
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connecting the following two points with a straight line. One point is
"located at 7/10 of the yielding moment at the yielding rotation. The
other is placed at 6/10 of the moment level of the primary curve at an
abscissa of twice the yielding rotation. These points are selected based
on the test results by Abrams (1976).

Pinching action and strength decay are observed in the hysteresis
loops of the beam rotational spring. These effects enhance the softening
action on the rotational spring. The hysteresis Toops of a wall subelement
are made up of smooth curves rather than piecewise straight Tines used in
the case of the beam rotational springs. These curves account for the
shifting from one moment-curvature relationship for a constant axial force
to another moment-curvature relationship for a different constant axial
force reflecting the change that is occurring in axial force as the element
responds to the motion. On the tension side of the loops, softening of the
slope of hysteresis lToops in comparison to the slope of a primary curve is
observed. The primary curve represents the idealized moment-curvature
relationship for a constant axial force calculated based on the dead load.
On the compression side of the loops, the slope of the hysteresis loops
becomes stiffer than that of the primary curve, again due to the presence
of the axial forces. Now they are adding a stiffening effect..

On the tension side of the loops an inflection point is observed,
at which the slope suddenly starts increasing after the curve has been
tracing a relatively flat portion. This inflection point can be explained
by the following sequence of events. The increase in the tensile force
in the tension wall, which has been the cause of the flat portion, is

moderated due to yielding of the connecting beams. Then the axial force
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in the walls becomes nearly constant as the beams are no Tonger supplying
‘the increase. Then the slope for the wall appears to become stiffer again
as it ceases to slide down between the curves for different axial forces
but remains following the moment-curvature curve for a constant axial
force.

(g) Failure Mechanism

The Sequences of cracking and yielding of all constituent elements
were recorded during run-1. Those data are shown in Fig. 6.20. First,
cracking of the connecting beams starts at level 2 and develops to the
upper levels, later coming back to catch level 1. After cracking of all
the connecting beams has been compieted, cracking of wall is initiated
at the base, then propagates to the upper levels. Once cracking of the
wall elements has progressed to approximately one-half the'height of the
structure, yielding of the connecting beams begins at the intermediate
levels and proceeds to the upper and lower levels except level 1 where
no yielding of the beam ever occurs. In the meantime the upper portion
of the walls develops some cracking so that all levels of the walls are
finally cracked. During the formation of yielding in the connecting
beams, the wall yields at the base for a tensile force. Yielding of the
tensile wall at the base does not mean that the structural system loses
its resistance to further Tload, since yielding of both walls does not
occur at the same time. At the time when yielding of the tension wall
occurs the compression wall is still capable of sustaining the additional
forces applied to the structural system,

Times when cracking and yielding of the various members occurred

as recorded in the calculations are briefly summarized below.
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Time, sec Location of Cracking and Yielding
0.42-0.47 Cracking of Connecting Beam
0.60-0.82 Cracking of Wall in the Lower Levels
0.92-1.20 Cracking of Wall in the Upper Levels
0.96-1.20 Yielding of Connecting Beam
1.10-1.20 ~Yielding of Wall at the Base for

a Tensile Force

A11 the cracking and yielding of the various members are initiated
within the first 1.2 seconds. This indicates that the structure was
damaged in the early stages of the motion.

Damage ratios, that is, the ratio of the maximum deformation to

the yielding deformation, of the members are 1listed below.

Connecting Beam at the Left End Lef{ Side Wall at the Base
Floor Damage Floor Damage Damage
Level Ratio Level Ratio Ratio

10 1.8 5 2.8 1.1

9 2.0 4 3.3

8 2.5 3 2.6

7 2.3 2 1.9

6 3.3 | 1 0.9

Average 2.3

Only the damage ratios of the left half of the structure are listed here
since there 1s no significant difference between the damage ratios of the

left half of the structure and those of the right half of the structure.
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The connecting beams in the intermediate levels, such as levels 4, 5 and
6, are the most severely damaged among the members.

(h) Coupling Effects of Walls

The coupting effects of the walls on the base moment and on the
displacements of the system are discussed next. The ratios of the
coupling base moment due to the axial forces in the walls to the total
base moment have been calculated from their computed values and the
magnitude of these ratios recorded at peaks in the response waveforms
of run-1 are plotted 1h Fig. 6.21. ‘The ratio changes in the process
because of inelastic action in the members. The ratio starts at 60% but
suddenly decreases to 53% when yielding of the connecting beams is
1nitiatéd. This results from the connecting beams losing their capacity
to carry any additional shears after yield has started in the beams. For
altl practicai purposes then the axial forces stop increasing in the walls.
After yielding of the connecting beams has formed, the moment ratio
gradually reduces to 50%. |

The ratios of the horizontal displacement at the top due to just
the coupling effect to the total horizontal displacement at the top due
to all effects were calculated at the peaks in the response waveforms
of run-1, and the results are plotted in Fig. 6.22. The ratio starts
at 50%, then gradually reduces to 32% because of the inelastic action
of the members during the system's response. The deterioration of
flexural rigidity of the walls and the moderation of the axial force
buildup in the walls after the connecting beams yield are considered

to be the major contributions to the reduction of this ratio.
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The displacement distribution due to the coupling effect and the
. total displacement distribution over the height of the structure at the
maximum response are presented in Fig., 6.23. The fairly large coupling

effect on the displacement is observed especially at the upper levels.

6.5 Effects of Assumed Analytical Conditions on Dynamic Response

The effects of various assumed analytical conditions on the maximum
response and the response waveforms are discussed in this section.
Already the effects of the axial force change on the inelastic flexural
rigidity and the influence on the inelastic axial rigidity due to the
opening of cracks in the wall section have been discussed. In the
previous section, comparison was made between the elastic axial rigidity
case and the reduced axial rigidity case. Therefore the effects of the
numerical integration scheme, the choice of the stiffness matrix for the
calculation of damping matrix, the arrangement of wall subelements and
the pinching action and strength decay of connecting beams are studied
here.

Because run-3 in which the reduced axial rigidity was assumed for
the wall section successfully reproduced the nonlinear response history
of structure-1, the result of run-3 is used as a standard response
history against which the response histories of the different assumed
conditions are compared. Only the response waveforms of base shear,
base moment and top displacement for each run are presented in Fig. 6.24
through Fig. 6.28. Assumed analytical conditions for each run are

summarized in Table 6.3,
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(a) Effect of the Numerical Integration Scheme

The Newmark £ method is used for the solution of the equations of
motion. The use of the constant B of 1/4 in the Newmark B8 method is
equivalent to the constant average acceleration method. The use of the
constant B of 1/6 is equivalent to the linear acceleration method. The
Newmark B method with B of 1/4 is an unconditionally stable scheme.
This has been broven even for nonlinear systems by Belytschko and
Schoeberle (1975).

As the time intervals used aré increased, most numerical integration
procedures produce results with some period elongation and amplitude
decay. The Newmark B method with B of 1/4 is the most accurate scheme
showing'the least distortion of period and amplitude as discussed by
Bathe and Wilson (1973). Therefore the stability and accuracy of the
calcuiated results can be checked by comparing the case for the consfant
B of 1/6 with that of 1/4. The constant 8 of 1/6 is used for run-3.
The constant 8 of 1/4 is assigned to run-4. A1l other conditions are
the same for these two runs.

The maximum responses of run-3 and run-4 are listed in Table 6.6.
A1l the maximum responses of run-4 are quite consistent with those of
run-3. This.indicates that the choice of numerical integration scheme
to be applied to this problem which has a very small time interval,
such as 0.00035 sec, has no effect on fhe solution of the equations of
motion. Therefore the computed results can be reliable as far as the
stability and accuracy are concerhed. The response waveforms of run-4
are not presented, since there is no visible difference between the

waveforms of run-3 and those of run-4.
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{b) Effect of the Choice of Stiffness Matrix for the
Calculation of Damping Matrix

The damping matrix is assumed to be proportional to the stiffness
matrix as discussed in Section 4.6, The stiffness matrix for the
calculation of the damping matrix can be based on either the initial
member stiffness or the updated member stiffness. The effect of the
choice of which stiffness matrix should be used for the calculation of
damping matrix are studied here by looking at the maximum responses and
the response waveforms.

The updated stiffness matrix is used for the calculation of the
damping matrix in run-3 while the initial stiffness is used in run-5.
A1l other assumed conditions are the same for both runs. The maximum
responses of run-3 and those of run-5 are listed in Table 6.7. The
response waveforms of run-3 and those of run-5 are shown in Fig. 6.15
and in Fig. 6.24, respectively.

There are no significant differences in the maximum responses
between the two runs. The maximum top displacement of run-3 is Targer
than that of run-5 while the maximum base moment of run-3 is smaller
than that of run-5 showing that more inelastic actions take place in
run-3 than in run-5, The elongation of the fundamental period at the
end of the dynamic motion in run-3 is slightly larger than that in run-5.
This is explained by the fact that if the initial stiffness is used for
the damping matrix the damping factor is overestimated after the
inelastic actions take place in the members. For the case of run-5 the
first mode damping factor is overestimated by a factor of 1.5 at the end

of the run.
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(c}) Effect of the Arrangement of Wall Subelements

Wall subelements can be arranged arbitrarily in a wall member
making up that member from up to 7 subeTements. If the subelements can
be arranged coarsely, Tess computing time is required. To save on
computing time can be a significant factor in the nonlinear dynamic
analysis of a multistory structure. The effect of the number and
arrangémént of wall subelements on the maximum responses and the
waveforms are studied here.

The subelement arrangement of run-3 which is shown in Fig. 2.1 is
considered as the fine grid. A coarse arrangement in which only one
subelement is assigned to each wall member, except the first story
where two subelements are assigned, was used for run-6. In run-6 one
subelement of 2 in. length is placed next to the base to take care of
a possible hinge forming at the base. A1l other assumed conditions are
the same for both runs.

The maximum responses of run-3 and of run-6 are listed in Table 6.8.
The response waveforﬁs of run-3 and those of run-6 are shown in Fig. 6.15
~and Fig. 6.25, respectively. Although the maximum responses of run-6 are
slightly larger than those of run-3, there is no significant difference
in the maximum responses between run-3 and run-6. Also the response
waveforms of the two runs are almost identical. For the analysis of
structure-1 the coarse arrangement of wall subelements provides reasonable
results. This means that the inelastic actions of the connecting beams
are more important factors for the entire structural behavior than those
of the walls in the analysis of structure-1 since the walls have not

yielded at the base under compression in this particular problem.
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{(d) Effects of the Pinching Action and Strength
Decay of Connecting Beams

Pinching action and strength decay are ever present characteristics
of the connecting beams in a coupled shear wall system as shown by Abrams
(1976). The effects of the pinching action and strength decay of the
connecting beams on the maximum responses and the response waveforms of
the structure under 1nvestigation are discussed here.

Four different assumed conditions or variations of the pinching
action and strength decay are anaiyzed for the dynamic response of
structure-1. Run-3 includes the effects of pinching action and strength
decay. Run-7 inciudes only the strength decay effect, not the pinching
action effect. Run-8 includes only the pinching action effect, not the
strength decay effect. Run-9 includes none of these effects. A1l other

‘assumed conditions are the same for the four runs.

The maximum responses of the four runs are listed in Table 6.9.

The response waveforms of run-3 are shown in Fig. 6.15. The response
waveforms of run-7, run-8 and run-9 are shown in Figs. 6.26, 6.27 and
6.28, respectively. There are no significant differences among the
maximum accelerations of these four runs. The maximum displacements of
" run-8 and those of run-9 are smaller than those of run-3 by 20%. The
maximum displacements of run-7 are smaller than those of run-3 by 10%.
This shows that the pinching action and the strength decay, especially
the strength decay, are the cause of large displacements. The maximum
shears in the lower levels of run-8 and those of run-9 are larger than
those of run-3 by 20% while the maximum shears of run-7 show a good

agreement with those of run-3. This indicates that strength decay



86

contributes to the decrease of the maximum shears in the lower levels.
From a practical standpoint there is no Significant difference among the
maximum moments of all the four runs.

The first mode frequency after completion of run-8 and that after
run-9 are larger than the corresponding frequency of run-3 by 22% while
the first mode frequency of run-7 is larger than that of run-3 by only 7%.

The'respdnse waveforms of run-7 are fairly consistent with those of
run-3. The response waveforms of run-8 and those of run-9 show a
similarity among themselves but have quite different features from those
of run-3. For example the periods of the waveforms of run-8 and those of
run-9 during the third second are shorter than those of run-3, and the
displaCement response of run-8 and that of run-9 are reduced; particularly
within the third second so that the maximum displacement appears about
1.7 sec rather than about 2.4 sec.

These phenomena, mentioned above, can be explained by the fact that
the deterioration of the beam stiffness is enhanced by pinching action

and strength decay, especially strength decay.

6.6 Dynamic Analysis of Structure-?

The nonlinear response history of structure-2 subjected to base
motion-2 is.ca1cu1ated and discussed in this section. Structure-2 has
stronger connecting beams than does structure-1 and it is subjected to
a more severe’base motion than is structure-1. The calculated maximum
responses are compared with those of the test. The dynamic response
analysis of structure-2 is referred to as run-10.

The reduced elastic axial rigidity is assumed for the wall section

in run-10, since the assumption of the reduced elastic axial rigidity
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successfully reproduced the elongation of the period due to the
deterioration of axial rigidity of the walls for structure-1 as mentioned
in Section 6.4. The effect of axial force on the inelastic flexural
rigidity and the effect on inelastic axial rigidity due to the opening of
cracks in the wall cannot be properly included in this particular case
because the procedure as developed in Section 3.3 does not actually apply.
The strength of the connecting beams is of such a magnitude as to allow
the axial force to build up in the wall elements to a level above the
balance peint load of the interaction diagram. Thus the assumption of a
linear variation about the zero axial force axis is no longer a valid
approximation. Strictly speaking, some additional modifications would
have to be made to make the procedures truly applicable to a structure-2
makeup.

A1l the assumed analytical conditions for run-10 are listed in
Table 6.3. The waveform of base motion-2 is shown in Fig. 6.10.

(a) Modal Properties of Structure-2

Modal properties associated with the first three modes of structure-2
were computed before the run and after the run. These properties are
Tisted in Table 6.10 to show the change of structural properties computed
to develop during the dynamic motion. The mode shapes of structure-2 are
quite similar to those of structure-1 and have not significantly changed
during the dynamic motion as was observed in the case of structure-1.

On the other hand, the fundamental frequency is reduced to approximately

60% of the initial fundamental frequency during the dynamic motion.
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(b) Maximum Calculated Responses in Comparison with the
Test Results

The maximum responses of run-10 are compared with those of the test
in Table 6.11. The maximum accelerations of run-10 are larger than those
of the test, particularly in the top three levels. The maximum displace-
ments of run-10 show a good agreement with those of the test although the
test results are stightly larger than the calculated values. The maximum
calculated shears of run-10 are larger than those of the test for all
levels. The maximum base shear of run-10 is 17% larger than that of the
test. The maximum moments of run-10 are larger than those of the test.
The maximum base moment of run-10 is 16% larger than that of the test.

These differences on the maximum responses can be explained by the
fact that crushing of the concrete at the base of the wall appeared in the
test, and this could not be properly treated in the analysis. The funda-
mental frequency after run of run-10 is quite consistent with that of
the test.

(c) Response Waveforms

Response waveforms of run-10 are shown in Fig. 6{29. The response
waveforms of base moment and displacements are smooth and are dominated
by the first mode component. The maximum top displacement is obtained at
1.97 sec which is consistent with the test. The response waveforms of
accelerations show higher mode components, especially at the lower levels.
At the higher levels, particularly at level 8, the first mode component
becomes more distinguishable in the acceleration waveform. The response
waveform of base shear is governed by the first mode component with some

influence of the second mode component.
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{d) Fajlure Mechanism

The sequence of cracking and yielding of each constituent member
was recorded in run-10 and the result is shown in Fig. 6.30. Only a half
of the structural system is shown in the fiqure, since any kind of
inelastic action takes place symmetrically about the center of the
structure in the analysis as used because of the assumed analytical
conditions.

First cracking of the connecting beams starts at the lower levels,
then propagates to the upper levels. After cracking has formed in all
connecting heams, cracking of the wall is initiated at the base and
propagates to the upper Teveis. After cracking ¢f the walls has developed
up to about level &, yielding of the connecting beams starts at level 4
and proceeds to the upper and lower levels. During this development of
yielding in the connecting beams, both waiis yield at the base.

Times at which cracking and yieiding of the various members occurred

are briefly summarized below.

Time, sec Location of Cracking and Yielding
0.39-0.46 Cracking of Connecting Beaﬁ
0.47-0.63 Cracking of Wall in the Lower Levels
0.94-1.11 Yielding of Connecting Beam

0.95 Yielding of Both Walls at the Base
1.07-1.11 Cracking of Wall in the Upper Levels

A11 cracking and yielding occurs within the first 1.2 seconds, The
structure is damaged in this early stage of the dynamic motion. This

was also observed in the case of structure-1.
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Damage ratios of the members are Tisted below.

Connecting Beam - Wall at the Base
Floor Damage Floor Damage
Level Ratio Level Ratio
10 4.3 5- 3.3 - 7.4
9 4.5 4 4.5 |
g 2.9 3 3.8
7 3.4 2 3.9
6 3.5 1 4.3
Average 3.8

The damage ratios of the members of structure-2 are considerably higher
than occur in comparable members of structure-1. The wall at the base
was very severely damaged and a hinge formed. The concentration of'
damage at the base of wall is primarily becéuse of the strong connecting

beams used in the structure.
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CHAPTER 7
SUMMARY AND CONCLUSIONS

7.1 0Object and Scope

The main objective of this study is the development of an analytical
model which can trace the response history and the failure mechanism of
coupled shear walls under dynamic as well as static loads.

The mechanical model of the coupled shear wall system used in- this
study is based on flexural line elements representing the walls and the
connecting beams (Chapter 2). Rotational springs are considered at the
ends of each connecting beam. Each wall member is further subdivided
into several subelements in order to allow inelastic action to
propagate through a story height. These constituent element models
incorporate the assumed hysteretic properties of the system. Suitable
hysteresis loops to each constituent element are established by modifying
Takeda's hysteresis rules (1970) to include the specific characteristics
of the coupled shear wall systems anaiyzed in this study. Factors
influencing the hysteresis rules include such effects as the pinching
action and strength decay of the connecting beam and the axial force
effect on the moment-curvature relations for the wall subelements
(Chapter 5).

A procedure to evaluate the inelastic stiffness properties of each
constituent element based on the material properties of that element is
presented (Chapter 3). The analytical procedure is developed to study
the nonlinear behavior of coupled shear wall systems subjected to dynamic

loads and static loads (Chapter 4). This procedure is applied to the
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ten-story coupled shear wall models tested by Aristizabal-Ochoa {1976).
- These model structures are analyzed for static loads as well as dynamic
loads and are compared with the test results (Chapter 6). The effects
of various assumed analytical conditions on the maximum responses and
the response waveforms of the model structure subjected to dynamic loads

are discussed (Chapter 6).

7.2 Conclusions

(a) Conclusions Related to the Static Analyses
of the Model Structure

The nonlinear structural behavior and failure mechanism of structure-1
subjected to static loads which are distributed over the height of the
structﬁre in accordance‘with the first mode shape are analyzed in
Section 6.2.

The following statements summarize the conclusions made from thé
static ana]ysis of structure-1.

{1} The inelastic action of the connecting beams occurs prior
to that of the walls. Yielding of the connecting beams is initiated in
the intermediate levels and then propagates to the upper and Tower levels.

(2) It is necessary to assume the form of the axial inelastic
rigidity in the wall section in order to reproduce the overall structural
behavior observed in the test. The use of the reduced elastic axial
rigidity in the‘wa11 section, in which the effect of inelastic axial
rigidity is averaged over the height of the wall as well as over the
compression and tension walls, produces a good comparison with the case

which fully includes the effect of inelastic axial rigidity.
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(3) A large portion of the shear in the tension wall is
transferred to the compression wall due to the early initiation of
inelastic action in the tension wall prior to any development in the
compression wall. This results in only 28% of the total shear at the
base being distributed to the tension wall at the time of initiation
of wall yielding.

(4} The coupling between the walls exerts a considerable
influence on the horizontal displacements and on the base moment. (For
example 30% of the total horizontal displacement of the top story is
caused by coupling action when the top displacement reaches a level of
1.75 in. Also 55% of the total base moment is shared by the coupling
moment at the time of initiation of wall yielding.

(5) The flexural moment of the wall is concentrated in the
compression wall reflecting the early deterioration of stiffness
properties of the tension wall prior to those of the compression wall.
This occurs in such a way that only approximately 20% of the total
flexural moment is contributed by the tension wall during the final
stages of Toading.

(6) Pinching action and strength decay of the connecting
beams produce larger displacements of the structure in subsequent cycles
and consequently accelerate the deterioration of the structural stiffness.

(b) Conclusions Related to the Dynamic Analyses
of the Model Structures

The nonlinear response histories of the model structures, structure-1
and structure-2, subjected to the strong base motions have been analyzed

assuming various analytical conditions and are compared with the test
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results in Sections 6.3 through 6.6, Structure-2 has relatively much
stronger connecting beams than does structure-l but also is subjected to
stronger base motion than structure-l.

The following statements summarize the conclusions made from the
dynamic analyses of structure-1 and structure-2.

{1) Mode shapes of the structures have not changed significantly
during the dynamic motion. Frequencies of the structure have decreased
considerably reflecting the significant reduction of structural stiffness
during the dynamic motion.

{2) The analytical models for structure-1 satisfactorily
reproduce the maximum responses and the response waveforms, especially
the elongation of the period due to the deterioration of structural
stiffness, that were recorded during the test.

(3) Comparison of the calculated response of structure-2 Qith
that of the test is not as good as is the case for structure-1 because
the combination of moment and axial force lies outside the Timits set
when developing the analytical model. The analytical model cannot properly
treat the crushing of concrete at the base of wall as observed in the test.

(4) Inelastic actions of the connecting beams play a major role
in controlling the structural response since the beam strength controls
the axial forces that deveiop in the wall, and the wall moment capacity
is affected by the changes of these axial forces in the walils.

(5) The members of structure-2 are more severely damaged than
are those of structure-1 because of a stronger base motion applied to

structure-2. The damage is concentrated more at the base of the wall
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than in the connecting beams for structure-2. The damage occurs mainly
- in the connectihg beams for the case of structure-1 reflecting the weaker
connecting beam used for structure-1.

(6) Inelastic action of the connecting beams occurs prior to
any such action in the walls. Yielding of the connecting beams starts at
the intermediate levels, then propagates to the upper and lower levels as
observed in the case of static loads.

(7) The response waveform of base shear is governed by the
first mode component but with some infiuence of the second mode component.
The response waveforms of base momeni and displacement are smooth and are
governed by the first mode component. The response waveforms of
acceleration contain higher mode components, especially those for the
lower levels.

(8) The response waveforms of internal forces, such as the
flexural moments of the connecting beams, the total flexural moment at
the base of the two walls and the axial force in the wall at the base,
are governed by the first mode component.

(9) There are fairly large coupling effects between the two
walls. These have a major influence on the base moment and top displace-
ment in the dynamic response. For example, 50% of the base moment and
32% of the top displacement are caused by the coupling action of the two
walls at the last peak of the response waveforms. The coupling effect
on the base moment decreases during the dynamic motion primarily due to
inelastic action in the connecting beams. The coupling effect on the top

displacement aiso reduces during the dynamic motion., This is partly the
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result of increased wall contribution due to the deterioration of the
flexural stiffness properties of the wall while the decay of the
connecting beam strength holds the couple forces down.

(10) It is necessary to include the effects of inelastic axial
rigidity of the wall section and pinching action and strength decay of
the connecting beams in the calculations in order to reproduce the maximum
displacement response and the elongation of the period that were evident
at the end of the tests. The strength decay has a larger effect on the
maximum displacememt response and on the elongation of the period than
does any pinching action. To assume the reduced elastic axial rigidity
in the wall section is a simple way to include the effect of inelastic
axial rigfdity of the wall section.

(11) The use of different numerical integration schemes shows
no significant effect on either the maximum or the waveforms in the
dynamic response even though significant inelastic action is involved.

(12) The use of the updated stiffness matrix for the calculation
of the damping matrix increases slightly the inelastic actions of the
structure during the dynamic motion as compared to the case where the
dinitial stiffness matrix is used.

(13) To use the coarse arrangement of wall subelements
produces a slightly larger dynamic response of strucrure~1 in comparison

to the case with the fine arrangement.
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Table 6.1 Assumed Material Properties

Properties

Concrete
Compressive Strength fé, ksi 4.5
Tensile Strength ft’ ksi 0.403
Strain at fé 0.003
Strain at f 0.00013

t

Steel Reinforcement

Young's Modulus, ksi 29,000
Yield Stress f» ksi 72
Ultimate Stress fu, ksi 83
Yield Strain €y 0.00248
Strain Hardening Strain €, 0.01
Ultimate Strain € 0.08

u
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Table 6.2 Stiffness Properties of Constituent Elements

Structure-1 ‘Structure-2

Wall Subelement

Elastic Axial Rigidity, kip 21,000 21,000
Elastic Shear Rigidity, kip 7,610 7,610

Moment-Curvature Relationship
of Level 6 to 10 {Primary Curve)

* First Stope, kip-in.2 85,700 85,700
Second Slope, kip-in.2 28,500 50,500
Third Slope, kip-in.2 420 1,000
Cracking Moment, kip-in. 4.5 ' 6.5
Yielding Moment, kip-in. . 20.0 39.0

Moment-Curvature Relationship

of Base to Level 6 (Primary Curve)

First Slope, kip-in.2 85,700 85,700

second Slope, kip-in.2 50,500 50,500

Third Slope, kip-in.? 1,000 1,000

Cracking Moment, kip-in. 6.5 6.5

Yielding Moment, kip-in. 39.0 39.0
Beam Rotational Spring

Moment-Rotation Relationship
First Slope, kip-in. 622 810
Second Slope, kip-in. 127 220
Third Slope, kip-in. 14 15
Cracking Moment, kip-in. 0.15 0.15

Yielding iMoment, kip-in. 1.56 2.90
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Summary of Assumed Analytical Conditions for Dynamic Runs

General Conditio

ns for A]] Runs

Damping Factor B] = 0.02
Time Interval ‘ 0.00035
Duration Time, sec 3.0
Number of Steps 8,600
Types of Structure Effect of N* on EI;** B in the
and Base Motion and Effect of ¢*** Newmark B8
on EAi**** in Wall Method
Run-1 Structure-1 Included ‘%
~ Base Motion -1
Run-~2 do Not Included do
7 (Elastic Axial Rigidity)
Run-~3 do Not IncTuded do
(Reduced Axial Rigidity)
Run-4 do do %
Run-5 do do 1
6
Run-6 do do do
Run-7 do do do
Run-8 do do do
Run-9 do do do
Run-10 Structure-2 do do

Base Motion-2

* N = axial force

*k EI.t

inelastic flexural rigidity

**% ¢ = curvature

*kkk EA,
i

inelastic axial rigidity
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Table 6.3 {continued)

Stiffness Matrix Arrangement Pinching Strength
for Calculation of of Wall Action of Decay of

Damping Matrix Subelement Beam Beam
Run-1 Current Fine Included Included
Run-2 do do do do
Run-3 | do , do do do
Run-4 do do do do
Run-5 Initial do do do
Run-6 Current Coarse do do
Run-7 do Fine Not Included do
Run-8 do do Included Not Included
Run-9 do do Not Included do

Run-10 do do Included Included
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Table 6.4 Mode Shapes and Frequencies of Structure-l

Before Run-1 After Run-1
First  Second Third First  Second Third
Mode Mode Mode Mode Mode Mode
(a) Mode Shape
Level
10 1.44% -0.63  0.3] 1.43  -0.65  0.34
9 1.27 -0.33 0.03 1.27 -0.31 -0.01
8 1.10 -0.02 -0.21 1.10 0.03 -0.28
7 0.92 0.26 -0.31 0.92 0.31 -0.34
6 0.75  0.48  -0.23 0.74  0.49  -0.19
5 0.57 0.59 -0.01 0.56 0.56 0.07
4 0.41 0.59 g.22 0.39 0.52 0729
3 0.26 0.48 0.34 0.24 0.40 0.38
2 0.13 0.30 0.29 0.12 0.23 0.30
1 0.04 0.11 0.13 0.03 0.08 0.12
(b} Frequency
Hz 5.0 21 48 2.7 13 32

* Modal participation factors are included in mode shapes.
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Table 6.5 Maximum Responses of Structure-1
in Comparison with Test Results

Test _Ine1§s§19 ) Elagtjc- Redqced §1q3§1c
Results Axial Rigidity Axial Rigidity Axial Rigidity
(Run-1) (Run-2)} (Run-3)
Acceleration, g

Level 10 1.66 1.36 1.35 1.41
9 1.12 1.04 1.00 1.05

8 0.75 0.77 0.81 0.79

7 0.73 0.73 0.75 0.75

6 0.85 0.82 0.73 0.87

5 0.86 0.83 0.70 0.85

4 0.82 0.77 0.66 0.84

3 0.71 0.66 0.60 0.69

2 0.57 0.53 0.51 0.53

1 0.47 0.50 0.43 0.45

Base 0.41 0.41 0.41 0.41

Displacement, in.

Level 10 1.16 1.16 0.90 1.11
9 1.00 1.03 0.80 0.98

8 0.86 0.89 0.70 0.84

7 0.71 0.75 0.60 0.70

b 0.58 0.60 0.49 0.56

5 - 0.46 0.37 0.43

4 ~ 0.32 0.27 0.30

3 - 0.20 0.17 0.19

2 - 0.09 0.09 0.09

1 - 0.03 0.03 0.03
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Table 6.5 (continued)

Test v _IneIgsFig ] E1a§tjc_ Redqced §1q5§ic
Results Axial Rigidity Axial Rigidity Axial Rigidity
(Run-1) (Run-2) (Run-~3)
Shear, kip
Level 9 0.83 0.65 0.65 0.69
8 1.37 1.21 1.17 1.23
7 1.69 1.67 1.52 1.57
6 1.88 1.85 1.72 1.78
5 1.91 1.94 1.85 1.88
4 1.94 2,08 2.01 1.89
3 2.12 2.26 2.22 2.10
2 2.15 2.31 2.40 2.29
1 2.37 2.73 2.57 2.47
Base . 2.54 2.92 2.71 2.60
Moment, kip-in.
Level 9 7.5 5.9 5.9 6.2
8 19.9 16.6 16.4 17.2
7 34.6 30.4 30.0 31.3
6 51.5 45.3 45.3 47.0
5 69.2 61.8 60.6 63.3
4 86.0 78.4 76.8 79.7
3 102.1 91.4 93.1 - 94.9
2 118.9 108.7 110.9 108.5
1 135.4 126.9 128.8 121.7
Base 151.5 148.0 148.5 140.6
Frequency, Hz
Before Run
Ist Mode 4.8 5.0 5.0 4.3
2nd Mode 20,0 21.2 21.2 20.1
After Run
1st Mode 2.7 2.7

2nd Mode 13.0 13.2 13.6 13.6
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Table 6.6 Effect of the Numerical Integration Scheme
on the Maximum Responses of Structure-1

g* of %— B of~% g of %— B of %
(Run-3) (Run-4) {Run-3) (Run-4)
Acceleration, g Shear, kip
Level 10 1.41 1.41 Level 9 0.69 0.69
9 1.05 1.05 8 1.23 1.23
8 0.79 0.79 7 1.57 1.57
7 0.75 0.74 6 1.78 1.78
6 0.87 0.87 5 1.88 1.88
5 0.385 0.85 4 1.89 1.90
4 0.84 0.84 3 2.10 2.12
3 .69 0.69 2 2.29 2.32
2 0.53 0.53 1 2.47 2.51
1 0.45 0.45 Base 2.60 2.60
Base 0.41 0.41 |
Displacement, in. Moment, kip-in.
Level 10 1.1 1.10 Level 9 6.2 6.2
9 0.98 0.97 8 17.2 17.2
8 0.84 0.83 7 31.3 31.3
7 0.70 0.70 6 47.0 47.0
6 0.56 0.56 5 63.3 63.3
5 0.43 0.43 4 79.7 79.7
4 0.30 0.30 3 94.9 94.9
3 0.19 0.19 2 108.5 108.5
2 0.09 0.09 1 121.7 121.7
1 0.03 0.03 Base 140.6 141.3
Frequency, Hz Before Run 1st Mode 4.3 4.3
‘ 2nd Mode 20.1 20.1
After Run 1st Mode 2.7 2.7
Z2nd Mode 13.6 13.6

* The constant of 8 in the Newmark B8 Method.
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Table 6.7 Effect of the Choice of Stiffness Matrix
for the Calculation of Damping Matrix
on the Maximum Responses of Structure-1

Updated Initial ‘ Updated Initial
Stiffness Stiffness Stiffness Stiffness
Matrix Matrix Matrix Matrix
{Run-3) {Run-5) (Run-3) (Run-5)
Acceleration, g - Shear, kip
Level 10 1.41 1.33 Level 9 0.69 0.67
9 1.05 1.04 8 1.23 1.17
8 0.79 0.78 7 1.57 1.54
7 0.75 0.72 6 1.78 1.79
6 0.87 0.77 5 1.88 1.87
5 0.85 0.79 4 1.89 1.93
4 0.84 0.77 3 2.10 2.20
3 0.69 0.64 2 2.29 2.45
2 0.53 0.52 1 2.47 2.61
1. 0.45 0.44 Base 2.60 2.72
Base 0.41 0.41
Displacement, in. Moment, kip-in.
Level 10 1.11 1.03 Level 9 6.2 6.0
9 0.98 0.92 8 17.2 16.6
8 0.84 0.80 7 31.3 30.2
7 0.70 0.68 6 47.0 46.1
6 0.56 0.55 5 63.3 62.8
5 0.43 0.43 4 79.7 79.0
4 0.30 0.31 3 94.9 94.0
3 0.19 0.19 2 108.5 107.6
2 0.09 0.10 1 121.7 122.3
1 - 0.03 0.03 Base 140.6 145.2
Frequency, Hz Before Run Tst Mode 4.3 4.3
2nd Mode 20.1 20.1
After Run 1st Mode 2.7 2.8
2nd Mode 13.6 13.8
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Table 6.8 Effect of the Arrangement of Wall Subelements
on the Maximum Responses of Structure-1

Fine Coarse Fine Coarse
Arrangement Arrangement Arrangement Arrangement
(Run-3) (Run-6) (Run-3) (Run-6)
Acceleration, ¢ : Shear, kip
Level 10 1.41 1.42 Level 9 0.69 0.70
9 1.05 1.06 8 1.23 1.25
8 0.79 0.78 7 1.57 1.59
7 0.75 0.76 6 1.78 1.79
6 0.87 0.87 5 1.88 1.89
5 0.85 0.85 4 1.89 1.91
4 0.84 0.80 3 2.10 2.07
3 0.69 0.69 2 2.29 2.28
2 0.53 0.53 1 2.47 2.48
1 0.45 0.45 Base 2.60 2.64
Base 0.41 0.41
Displacement, in. Moment, kip-in.
Level 10 1.11 1.17 Level 9 6.2 6.3
g 0.98 1.03 8 17.2 17.4
8 0.84 0.88 7 31.3 31.7
7 0.70 0.73 6 47.0 47.6
6 0.56 0.58 5 63.3 64.3
5 0.43 0.44 4 79.7 80.7
4 0.30 0.31 3 94.9 96.0
3 0.19 0.19 2 108.5 109.5
2 0.09 0.10 1 121.7 123.1
1 0.03 . 0.03 Base 140.6 140.8
Frequency, Hz Before Run 1st Mode 4.3 4.3
2nd Mode 20.1 20.1
After Run 1st Mode 2.7 2.7
2nd Mode 13.6 13.4
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Table 6.9 Effects of the Pinching Action and Strength Decay
of Beams on the Maximum Responses of Structure-]

Both Effects Only Strength Only Pinching Both Effects
Included Decay Included Action Included Not Included
(Run-3) {Run-7) (Run-8) (Run-9)

Acceleration, g

Level 10 1.41 1.40 1.41 1.40
.9 1.05 1.05 1.05 1.05

8 0.79 0.78 0.79 0.78

7 0.75 0.73 0.73 0.73

6 0.87 0.85 0.83 0.84

5 0.85 0.83 0.86 0.87

4 0.84 0.80 0.84 0.81

3 0.69 0.66 0.69 0.68

2 0.53 0.54 0.54 0.53

1 0.45 0.45 0.46 0.45

Base 0.41 0.41 0.41 0.41

Displacement, in.

Level 10 1.11 1.01 0.89 0.88
‘ 9 0.98 0.90 0.78 0.78
8 0.84 0.79 0.67 0.67

7 0.70 0.67 0.56 0.56

6 0.56 0.55 0.44 0.45

5 0.43 0.43 0.34 0.34

4 0.30 0.30 0.24 0.24

3 0.19 0.19 0.16 0.16

2 0.09 0.10 0.08 0.08

1 0.03 0.03 0.02 0.02
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Table 6,9 {continued)

Both Effects Only Strength Only Pinching Both Effects

Included Decay Included Action Included Not Included
(Run-3) (Run-7) (Run-8) (Run-9)
Shear, kip

Level 9 0.69 0.68 0.69 0.68
8 1.23 1.22 1.23 1.22

7 1.57 1.58 1.57 1.58

6 1.78 1.80 1.78 1.80

5 1.88 1.89 1.88 1.89

4 1.89 1.93 1.88 1.90

3 2.10 2.19 2.17 2.14

2 2.29 2.43 2.53 2.49

1 2.47 2.60 2.77 2.73

Base 2.60 2.70 2.92 2.88

Moment, kip-in.

Level 9 6.2 6.1 6.2 6.1

8 17.2 17.1 17.2 17.1

7 31.3 31.1 31.3 31.1

6 47.0 47.0 47.0 47.0

5 63.3 63.5 - 63.3 63.5

4 79.7 80.2 79.7 80.2

3 94.9 95.7 94.9. 95.7

2 108.5 110.1 108.5 110.1

1 121.7 124.4 121.7 124.4

Base 140.6 145.2 140.8 141.1

Frequency, Hz

Before Run

Tst Mode 4.3 4.3 4.3 4.3

2nd Mode 20.1 20.1 20.1 20.1
After Run

1st Mode 2.7 2.9 3.3

2nd Mode 13.6 13.9 14.5 14.5
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Table 6.10 Mode Shapes and Frequencies of Structure-2

Before Run-10 After‘Run-IO
First  Second Third First  Second Third
Mode Mode Mode _ Mode Mode Mode
(a) Mode Shape
Level
10 1.46* -0.66 0.32 1.43 -0.63 0.31
9 1.27 -0.32 0.02 1.28 -0.33 0.03
8 1.08 0.02 -0.23 1.12 -0.04 -0.20
7 0.89 0.31 -0.32 0.96 0.22 -0.29
6 0.70 0.52 -0.23 0.79 0.42 -0.23
5 0.53 0.63 0.00 0.63 0.54 -0.05
4 0.37 0.61 0.24 0.47 0.56 0.17
3 0.22 0.49 0.36 0.31 0.49 0.32
2 0.11. ‘0.30 0.31 0.18 0.33 0.31
1 0.03 0.1 0.14 0.07 0.15 0.17
(b) Frequency
Hz 4.4 21 48 2.5 12 31

* Modal participation factors are included in mode shapes.



13

Table 6.11  Maximum Responses of Structure-2
in Comparison with Test Results

Test Ca;culated Test Calculated
Results esults Results Resu]ts
(Run-10) ‘ {Run-10)
Acceleration, g Shear, kip
Level 10 1.84 2.22 Level 9 0.92 1.28
9 1.24 1.71 8 1.52 1.96
8 1.00 1.30 7 1.84 2.59
7 1.10 1.12 6 2.14 2.93
6 1.31 1.32 5 2.43 3.10
5 1.27 1.43 4 2.72 3.23
4 1.19 1.41 3 2.97 3.40
3 1.10 1.27 2 3.42 4.00
2 1.00 0.98 1 3.74 4.44
1 0.94 0.89 Base 3.92 4.54
Base 0.91 0.91
Displacement, in. Moment, kip-in.
Level 10 2.05 1.97 Level G 8.4 11.5
9 1.92 1.78 8 22.2 26.5
8 1.69 1.58 7 38.8 49.7
7 1.43 1.37 6 56.2 76.0
6 1.18 1.14 5 77.6 103.5
5 0.94 0.92 4 99.8 131.4
4 0.71 0.69 3 121.9 158.1
3 0.50 0.47 2 149.0 - 185.3
2 0.28 0.27 1 174.9 211.4
1 0.13 0.1 - Base 199.1 234.3
Freguency, Hz Before Run 1st Mode 4.5 4.4
2nd Mode 19.0 20.8
After Run 1st Mode 2.5 2.5
2nd Mode 12.0 12.0
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APPENDIX A
CALCULATIONS OF WALL STIFFNESS PROPERTIES
IN THE COMPUTER PROGRAM

The detailed procedure to evaluate the wall stiffness properties in
the computer program is schematically discussed in this appendix. The
properties to be evaluated are %%3 %%3 323 and %%; These quantites are
first defined in Egs. (3.10) and (3.11) of Section 3.3.

The instantaneous flexural rigidity and axial rigidity of a wall
subelement are derived from these properties as shown in Eq. (3.13) of
Section 3.3. These properties are varied nonlinearly and correlated
mutuaily in the process of inelastic action of a subelement making the
problem highly complicated.

It is desirable to linearize these properties in a piecewise fashion
for simplicity, because the hysteresis rules are already developed around

a trilinearized version of the primary curve.

A.1 Calculation of Pseudo-Flexural Rigidity %%

The procedure to develop an jdealized moment-curvature relationship
for a constant axial force is discussed in Section 3.3. The series of
idealized moment-curvature relationships for different values of constant
axial force are shown in Fig. 3.6.

A major difficulty in the’calculation of %%—is that there are an
infinite number of moment-curvature curves cerresponding to different axial
forces and axial force variations although the hysteresis rules require

a single moment curvature curve.
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To aveid this difficulty, a moment-curvature relationship for a
specified axial force is chosen to be the primary curve of the hysteresis
loop. The dead load of the wall is considered as the specified axial
force for which the primary curve is chosen, The primary curve is shown
by the thick solid lines in Fig. A.1.

In an actual loading process, the moment-curvature curve may depart
from thié primary curve due to changes in the axial force. In establishing
the various curves the yielding curvature for any moment-curvature curve
is assumed to be the same regardless of axial force level, Fig. A.l.

If the moment, axial force, and previous loading history are known
at a stage in the Toading process, the location for the present loading
level can be specified as shown in Fig. A.1.

If the Tocation of the present loading level happens to be at
point A, the referring point A' on the primary curve can be located by
projecting vertically down from point A to the intersection with the
primary curve as shown in Fig. A.1. The moment at the referring point

A' is calculated from an equation of the form:

_ M |

where
m,, = moment at the referring point A’

L moment at the point A

0

-An difference between the present axial force

and axial force for the primary curve

In this procedure, whether the cracking point or the yielding point

has been exceeded or not can be checked by referring to the hysteresis
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loop of the primary curve.
The value %% for an arbitrary moment and axial force can be calculated
by Tocating the referring point on the hysteresis loop of the primary curve,

then modifying the slope of hysteresis loop at the referring point.

The modification of %% can be expressed as follows:
NCOICIN
K=Ky 11+ (A.2)
L Am
where
K = %%— for arbitrary moment and axial force
K0 = %%— at the referring point on the primary curve
oMy _ . IM . . .
A(gﬁ = increment of 5ﬁ-at the referring point on the primary curve

Am = increment of moment at the referring point on the primary
curve
n = axial force (compression is positive)
ng = axial force for which the primary curve is evaluated

(usually dead load)

M
A.2 Calculation of %ﬁ

The value %% can be evaluated by examinating the idealized moment-

curvature relationship in Fig. 3.6. For simplicity sake, it is assumed

that %%-is a linear function of the moment level. The evaluation of %%—

at an arbitrary point on the hysteresis lcop is schematically explained

in Fig. A.2.

First, the values of %%—at specified moment levels of the primary

oM

curve are determined by taking an average of the values sﬁ-for different
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axial force levels at each specified point, The levels of zero moment,
. ¢cracking moment and yiering moment are chosen as these specified
levels. |

The value éﬂ-is assumed to be zero at the zero moment level.

an
After the yielding level, the value %%-15 considered to be constant.

The value g%-at an arbitrary point in the hysteresis loop can be evaluated

by linearly interpolating the values §M~at specified levels such as the

on
cracking and yielding levels.

The procedure to evaluate %%—can be applied to the unloading curve
as well as the loading curve with one exception. The exception to this
procedure is that before cracking is initiated by the loading, the value
g%~is always zero, taking account of the characteristics of the moment-

curvature relation of the reinforced concrete section.

aN
A.3 Calculation of Pseudo-Axial Rigidity 3¢

The axial force-axial strain relationship corresponding to a givén
curvature can be calculated by using the procedure explained in Section
3.2. In the procedure, the axial strain is determined by taking an
average of the axial strain distribution over the cross section. A
series of axial force-axial strain relationship curves are shown in
Fig. A.3. There are an infinite number of such axial force-axial
strain curves corresponding to different values of curvature.

It is assumed that the relations between axial force, axial strain,
and curvature are kept to be always the same regardless of the loading
history. This means that the deterioration of axial rigidity depends only

on the axial force and curvature. Therefore, if the axial force and
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curvature at any stage in the loading process are known, the present
- location in the loading process can be>specified without knowing the
previous history of loading. The slope of the axial force-axial strain

curve at that Tocation is considered as the instantaneous pseudo-axial
N
3e”

To simplify the problem, the axial force-axial strain curve is

rigidity

slightly modified. In the computer program each axial force-axial strain
curve is represented by a straight Tine with a different slope as shown

in Fig. A.4.

The variation of the slope gg-with respect to curvature ¢ can be

expressed approximately by a third order equation in the curvature, ¢,

as shown in Fig. A.5. It is assumed that if a curvature ¢ exceeds the

limiting value, the value %g-becomes constant.

The siope, ggﬁ is expressed as follows:

0< ¢ <b

%§-= a(b - l¢])3 +c
(A.3)

b < {4]
aN _
'S—E'HC

where
a, b, and ¢ = coefficient of the third order equation
|6] = absolute value of curvature

The coefficient a, b and ¢ should be evaluated so that the approximate

expression of the %g-— ¢ curve in Fig. A.5 is made as close to the real

onhe as possible.
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The~range of axial force-axial strain curves is Timited by two
boundary 1ines A and B as shown in Fig. A.3. If an axial force-axial
strain curve exceeds either boundary line, A or B, the curve is then
assumed to travel along the line A or B depending on which 1line is
exceeded.

Line A corresponds to the situation when the tensile stress due to
moment is overcome by the compressive stress due to compressive force,
There 1is no tensile stress on that section. Line B corresponds to a
full cracking stage in which only reinforcing bars exist on a section
after c¢racking.

Line A can be approximately straight until a concrete crushing is
initiated. Also line B can be straight until reinforcement yielding
happens.

The equation of the idealized axial force-axial strain lines in

Fig. A.4 can be expressed as follows:

Within the range limited by two boundary lines A and B

N = %g-s + (%%1:0 X ¢ )
Otherwise F (A.4)
N = Ke (compression)
N = Kze (tension) y,
where
N = axial force (function of ¢ and ¢)
e = axial strain
N

Se stope of N -¢ line that is defined in Eq. (A.3)
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(%g) o differentiation of axial force with respect
#0 to curvature at zero axial strain
¢ = curvature
Kl = slope of boundary line A
K, = slope of boundary line B

ol
A.4 Calculation of 5%

The expression of %%-can be obtained by simply differentiating

Eq. (A.4) with respect to curvature ¢.

The results of this differentiation are expressed as follows:

Within the range 1imited by two boundary lines A and B

Otherwise

where

(A.5)
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APPENDIX B
COMPUTER PROGRAM FOR NONLINEAR RESPONSE ANALYSIS
OF COUPLED SHEAR WALLS

The computer program was developed to calculate nonlinear response
of coupled shear walls under dynamic loads as well as static Toads. The
method of analysis was described in Chapter 4. The program is limited to
the analyéis of a symmetric coupled shear wall structure with less than 11
stories. A wall member can be divided into subelements in any arrangement
up to 7 elements.

| The total core space required to run the program is approximately

220 kilo-bites in IBM 360/75 computer, including temporary disk space for
ca]cu1afed response values. It took approximately 15 minutes of computing
time to run the program for the nonlinear response analysis of a ten-story
coupled shear wall structure subjected to 3 seconds of base motion at a
.00035 second time interval. Calculated response values were temporarily
stored in disk space and were plotted at the end of analysis on a CALCOMP
plotter. |

The flow diagram of the computer program for nonlinear response

analysis of coupled shear walls is shown in Fig. B.1.
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—

Read and print: . Structural geometry

2. unloading coefficients of
hysteresis loops

3. stiffness properties of wall
subelements

4. stiffness properties of beam
rotational springs

rgkatic case | Dynamic case

Read and print: 1. mass of each story
2. damping ccefficients

Initialize: 1. member stiffness properties
2. response values

Compute and print: 1. translation matrices

2. initial member stiffness
matrices

3. initial structural stiffness
matrix

Fig. B.1  Flow Diagram of Computer Program for Nonlinear
Response Analysis of Coupled Shear Walls
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Static case

[ Dynamic case

Compute and print: 1. initial damping matrix
2. mass matrix

3. modal characteristics
of the structure

{

|Dynamic case

Static case

Read: 1. static loads Read: 1. base acceleration
record

|

Step routine start

O —

Compute: 1. incremental external forces l

Dynamic case

incremental structural responses

Compute: 1.
from equation of motion

|
Static case

Fig. B.1 (continued)
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from structural stiffness matrix

Compute: 1. incremental structural responses t

Compute: 1. total structural responses

2. incremental member end forces and
displacements

3. total member end forces and
displacements

4. new member stiffnesses based on current
force levels and hysteresis rules

5. new structural stiffness matrix

! . ,

Static case Dynamic caséw?

{ Compute: 1. new damping matrix : next step

Record: 1. maximum and minimum structural responses

2. maximum and minimum member and forces

Fig. B.1 (continued)
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Store in disk: 1. structural responses

2. member end forces and
displacements

Print: 1. structural responses

Step routine end

L

Print: 1. maximum and minimum structural responses
2. maximum and minimum member end forces

i ‘

Static case Dynamic case

. base acceleration record
. base shear response

1

2

3. base ogverturning moment response

A, acceleration response at each story
5

. displacement response at each story

1

Plot: 1. base overturning moment-top story
displacement relation

Fig. B.1 (continued)



