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ARSTRACT OF REPORT

Reinforced concrete nuclear containment vessels would be cracked in
both the horizontal and vertical directions by an internal pressurization
caused by a loss of coolant accident in the reactor and steam supply
system of a nuclear power plant. If an earthquake occurs simultaneously
with the loss of coolant accident some means must be found to transfer
the shear forces developed by the earthquake across the cracks. Current
design codes imply that inclined reinforcement needs to he used in highly
seismic areas to transfer these forces across the cracks. The inclined
steel is expensive to form and decreases the quality of the concrete
because of the congestion of steel reinforcing bars. The plausibility.of
an alternative design which utilizes the combination of dowel action of
the longitudinal reinforcement and the shear transfer capacity of the
horizontal cracks is studied in this report., The effects of the vertical
cracks are not considered.

The results of tests performed to investigate the shear transfer
characteristics of cracks are shown and discussed. These test results
are used as input to a finite element model which was used to study the
shear stress distribution at cracks.

A computer program was developed which incorporated these experimen-
tal and analytical results into the seismic analysis of a cracked reiﬁ-
forced concrete containment vessel. Since the shear transfer mechanism
of the cracks was found to be nonlinear this program is a nonlinear seismic
analysis program. Soil-structure interaction is included in the analysis.
A synthetic earthquake generated from response spectra given in NRC 1.60
was used as the base acceleration in all the computer runs. The effects

of not including the horizontal cracks and changing the stiffness of the

10,



underlying soil are studied.

A linear seismic analysis which ylelds results giving a least squares
fit to the nonlinear results for the synthetic earthquake was also devel-
oped.

It is felt that the 'shear transfer capabilities of the combination
of cracked concrete and reinforcement orthogonal to the cracks can ade-
quately resist the shear forces developed by design earthquakes normally
used in containment vessel design. Hence, it should be possible to eliminate
or greatly reduce the inclined reinforcing steel currently used in most
contaimments to carry seismic shear forces. A final recommendation on
this important design question can be made after suitable experiments are
conducted on reinforced concrete specimens subjected to combined biaxial

tension and cyclic shear.
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Chapter 1

INTRODUCTIGN

1.1 Nuclear Containment Vessels

The heart of a nuclear power station is the nuclear reactor and its
steam supply system. Of equal importance, for reasons of safety, is the
containment vessel which houses the reactor along with its steam supply
system components (see Figure 1.1). The purposes of the containment are
to prevent lecakage of radioactive substances to the outside environment
and to support the structures and equipment connected to it. The vessel
shown in Figure 1.1 is typical of the large reinforced concrete contain-
ment vessels now used in pressurized water reactors. It consists of a
large cylindrical shell (4 1/2 feet thick) with a hemispherical head,
resting on a circular foundation. The containment vessel volume must be
able to dissipate the energy released during a loss of coolant accident
in the reactor. This accident creates an internal pressure which stresses
the containment vessel. The containment vessel shell must be.able to
transmit these and all other forces down to the foundation mat. In
concrete containment vessels a 1/4 to 3/8 inch steel liner is attached
to the inner surface of the shell to prevent leakage. This liner per-
forms no load carrying function but must be able to underge the strains

which are imposed on it by the concrete shell wall.
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Since the containment vessel is of great importance to nuclear
safety, it must be able to maintain its structural integrity during an
carthquake. This means that a matérial failure which could cause radio-
active leakage should not occur in the steel liner. One of the design
conditions for the containment combines the internal pressure from a loss
of coolant accideht acting simultaneously with the dea& weighp of the
containment vesse} and the Safe Shutdown Earthquéke (SSEj..'Tﬁe Safe
Shutdown Earthquake, as defined by the Nuclear Regulatory Commissioﬁ
(NRC), is considered to be the "earthquake which produces the vibratory
ground motion for which structures, systems and components important to
safety are designed to remain functional.'" The horizontal design
response spectra, given in the NRC Regulatory Figure Guide 1.60 as '"'the
spectra representing the effects of the vibratory motion of the SSE,"
is shown in Figure 1.3.

Because concrete has little tensile strength, the internal pres-
surization will cause cracks in the containment in both the horizontal
and vertical (principal) directions (see Figure 1.2}, Both préstreﬁsed
steel tendons and normal reinforcing steel are being used in concrete
containment vessels. There is little or no c¢racking in prestressed
vessels. However, the construction of these prestressed vessels is
cxpensive because of the difficulty of prestressing in the circumferential
direction. Only reinforced concrete containments will be discussed in
this investigation, Presently most reinforced concrete vessel walls
have steel not only in the two‘principal‘directions but also in directions
inclined * 45° from these principal directions. This inclined steel is
deéigned to transfer the SSE inertial shearing forces across the cracks

in the vessel wall. In a cylindrical wall, inclined bars will form a



series of helixes. These continuously curved bars are very cxpensive

to form and cause congestion problems during coﬁstruction. If a design
could be developed which eliminates these inclined bars, lower construc-
tion costs and improved concrete quality (because of reduced congestion
of reinforcing bars) would result. If the orthogonal steel in the prin-
cipal directions were assumed to carryvshear across the cracks by dowel
action and if the cracks themselves have shear transfer capability then
a design could be formulated that does not rely on inclined steel. The
earthquake shearing forces would then be carried to the foundation by

a combination of dowel action of the vertical reinforcing bars and by

the shear transfer capacity of the horizontal cracks.

1.2 Scope of this Investigation

The central purpose of this investigation is to study the feasi-
bility of the above proposal for eliminating or reducing inclined steel
in concrete containment vessels. Chapter 2 deals with the phenomenon
of shear transfer across cracks in concrete. The results of tests
which give the load-displacement behavior of the shear transfer mechanism
of cracked concrete blocks (with internal reinforcing bars to include
dowel action) are shown and discussed. The distribution of shear
stresses at horizontal cracks is studied through use of a finite element
model. The maximum shear stress is an important design parameter because
a high shear stress could cause a diagonal tension failure or dowel
splitting in the containment vessel wall.

In Chapter 3 a lumped mass model of the containment vessel shown in
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Figure 1.1 is developed for linear seismic analysis. The effects of

- including rotationai degrees of freedom in the analysis are discussed.

A computer program which performs linear seismic analysis (modal analysis)
is developed. Soil-Structure Interaction is added to the model in
Chapter 4. In Chapterls, the cracks caused by internal pressurization
are included in the seismic analysis of the containment vessel. Since
the load-displacement behavior of these cracks is nonlinear (as shown

in Chapter 2) the seismic analysis becomes nonlinear. The modeling of
the crack stiffness is discussed along with the analytical tools which
are required to perform the nonlinear analysis. The computer program
developed to perform nonlinecar analysis is then used with the lumped
nass model of the containment vessel shown in Figure 1.1 for a time
history of ground accelerétions corresponding to the NRC response spec-
trum of Figure 1.3. Soil-Structure Interaction is included in this
model. Three different runs‘which correspond to three different stiff-
nesses of the underlying soil are made. The modal analysis program of
Chapter 3 is input with the same ground accelerations and the results of
the linear and nonlinear analyses are compared. System identification
is used to obtain a linear model which produces results which ”bést fig"
the results of the nonlinear analysis. Chapter 6 states the main con-
clusions of this investigation and proposes future work which relates to

this topic.

1.3 Design Philosophy

The design of reinforced concrete containment vessels is governed:



by Section III Division 2 of the ASME Boiler and Pressure Vessel Code [14].

The load combination of interest is the extreme environmental load. This

load combination is

1.0D+ 1.0L + 1.0 TO + 1.0 ESS + 1.0 PV (1.1)
where D, L, To’ Ess and PV are the dead, live, température, SSE and
external pressurc loads, respectively. For the containment the only
live load is the internal pressure due to the loss of coolant accident
(LOCA). Pv and T0 are not included here because they are unknown.

The allowable membrane compression stress in the concrete is .60 fé
where fé is the compressive strength of the concrete (normally f{ = 4 Ksi

for containment vessels). Concrete tensile strength is neglected. The

allowable tangential shear stress is dependent upon p, the reinforcement

ratio:
v, = 12,000 p p = .01 (1.2a)
v, = 93+ 2,700 p .01 £ p € .025. (1.2b)
Vv

e is the maximum tangential shear stress (in psi) which may be carried
by the concrete. v may not exceed 160 psi. p is taken as the lesser of
the reinforcement ratios in the meridional and circumferential directions.

The design yield strength of the steel reinforcement cannot exceed

60,000 psi. The average tension and compression stresses must not

exceed .9 fy’ where f 1is the tensile yield strength of the reinforcing

bars.



According the ASME Section II11 [14], if v, (the nominal design shear
stress) is greater than Ve then the following reinforcement shall be
provided:

(1) The meridional and circumferential reinforcement shall
be designed to resist 1.5 times the shear force corresponding
to Ve in additior} to the membrane forces which result from
the LOCA.

(2) The excess shear force corresponding to (vu - vc)

shall be resisted by inclined reinforcement,

The steel liner is designed on thé basis of allowable tensile and
compressive strains. The ASME code states that for extreme environmental
loads € T .002 and €st = .001 where e is the allowable liner com-
pressive strain and Eqt is the allowable liner tensile strain. The
anchors which attach the liner to the concrete containment are spaced

at about 20 inches. The allowable relative displacement between the

anchors that is commonly used in design is .1 inch.



Chapter 2

SHEAR TRANSFER IN NUCLEAR CONTAINMENT VESSELS

2.1 Cracks in Nuclear Containment Vessels

Current design criteria specify that the nuclear containment vessel
must be able to withstand the simultaneous occurrence of a design basis
accident which would give rise to internal pressurization and a strong
motion (SSE) earthquake. The internal pressure creates tension forces
in both the longitudinal and circumferential directions while the earth-
quake causes inertial forces which in turn cause shearing forces and
bending moments in the vessel., These forces and moments must be trans-
ferred across the horizontal and Qertical cracks in the reinforced
concrete caused by pressurization. Clearly the crack patterns, crack
widths and spacings are important. Crackwidths (caused by internal
pressurization) vary from .0l to .015 inches. Horizontal cracks with
regular spacings throughout the vessel will be assumed. The possible
effects of vertical cracks will be discussed later in this chapter and
in Chapter 5. It has been found from tests at Cornell University [1,2]
and elsewhere that a mechanism exists which makes it possible to transfer
shear force across cracks in concrete. This mechanism is called inter-
face shear transfer (IST) or aggregate interlock. The effect of the

shearing stiffness of these cracks on the shear stress distribution in

.



the vessel is studied in this chapter. The maximum shear stresses may

then be found once the shear forces acting at each section are known.

2.2 Interface Shear Transfer

Several types of tests have been conducted at Corncll to determine
the behavior of IST in concrete [1]. Some of these tests were used
solely to investigate IST, with no reinforcing bars crossing the crack
plane. Other test specimens had internally embedded reinforcing bars
and had é greased plate inserted at the crack plane so fhat the only
shear stiffﬁess was produced by dowel action, Still other specimens
had internal bars crossing the crack plane and thus included the effects
of both dowel action and IST. The early tests which included both IST
and dowel action were done on the testing setup shown in Figure 2.1.
This "beam-type' specimen was loaded by two beams, one above and one
below the concrete specimen. When the positive (+) rollers were used
the shear diagram is as shown. The shear loading direction could be
reversed by use of the negative {-) rollers. All beam specimens had
a single #14 bar located in the middle of the 15 in. x 15 in. specimen.
This longitudinal bar was stressed until a crack occurred in the specimen
at mid-length of the specimen. Unfortunately, there were variations in
the width of this crack due to the self-weight of the beam and the axial
tensioning system. With the tension held coﬁstant, fully reversing
shear loads were applied. The 15th cycle load-slip curve for the beam
specimen with the most uniform initial crack width is shown in Figure 2.2

(curve F). The load history was. cycles 1 - 15 at £ 100 psi shear,



cycles 16 - 25 at * 125 psi and cycles 26 - 30 at * 150 psi. Curve F is
for an initial crack width (ICW) of .03 inches and an axial tension at

28 ksi. The tension in the bars was maintained through the test to model
the stress which occurs in the longitudinal bars of a containment due to
internal pressurization. By this time the shearing stiffness for small
slippage has decreased from the early cycle stiffness because of the
degradation of the contact surface due to the 15 load cycles. When the
slip increases in the 15th cycle the stiffness increases also. This is
caused by an increased overriding action at the crack plane. This over-
riding increases the axial force in the reinforcing bar which in turn
increases frictional resistance. Thus each load increment must overcome
greater frictiomal resistance and the load-slip curves are upward

curving after the low initial stiffness. The seating against the concrete
of the reinforcing bar also increases the stiffness with increasing slip.
Curve F will be used as the input for IST + dowel stiffness for the

remainder of this chapter.

2.3 Shear Stress Distributions

The shearing stiffness of the cracks (due to the IST mechanism) may
affect the shear stress distribution in the containment vessel. A con-
tainment vessel after internal pressurization is shown in Figure 2.3. If
no cracks were present and the concrete was assumed to remain elastic
the sinusoidal shear stress distribution shown in Figure 2.5 is found.
The presence of the cracks may change the shear stress distribution as

shown by the dashed line in Figure 2.6. The increase in shear stress
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(over the elastic distribution) near ¢ = 0° is due to the behavior shown

in the Figure 2.2. Curve F shows that the crack stiffmess increases with

o

increasing slip. Since the greatest slip occurs at ¢ = 0° the stiffness
is greatest here. A large stiffness concentration for low values of ¢
could cause higher'shear stresses to occur for thesc values of ¢ than
would be predicted by Figure 2.5.

The shear stress distribution in a section of the cracked cylinder
will be found using the lingar énalysis program SAP IV [3]. It will be
assumed that the stiffness of all of the cracks in the vessel can be
characterized by curve F in Figure 2,2. While the initial crack width,
axial stress and reinforcing‘pércentage may be different in the actual
vessel it is felt that the ratio of the high stiffness to the initial
low stiffness of these curves will not change drastically with variations
in these parameters. This ratio is the most important influence of the
cracks on shear stress distribution., The bilinear idealization of curve
F is shown in Figufe 2.4,

The SAP IV model of the cracked cylindrical section is shown in
- Figure 2.7. Only the horizontal cracks are included in this model. The
effects of the vertical cracks will be discussed later. Three horizontal
cracks occur in the cylindrical section and these are modeled by the
truss elements 1 - 27, It was felt that at least three crack layers
were required to significantly affect the sinusoidal shear stress distri-
bution. The horizontal crack spacing used in this model is 10 feet.

This spacing was used to achieve nearly square flat shell finite elements
(see next paragraph). This improves the results obtained from these
elements. The stiffness of truss elements I - 27 will be the slope of

either lines 1 or 2 in Figure 2.4. The length of each truss element (Lt)
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L, £\/Q2 « sin5® x 7201 + (.03)% = 125.5", (2.1)

The cross-sectional area Uﬂ) of elements 1 - 27 is taken as 1/9 % the

total cross-sectional area of the quarter cylinder

e+
LO]A»-A

x CELZZ%l££§l) = 6032 in’. (2.2)

Two different Young's moduli, E. and E, are chosen to model the slopes

1

1 and 2 in the following manner:

20 x At E A

_ _ St
Slope 1 = 1 =
t
E, = 251 ksi
(125 - 20)  A_ E.A
t 2t
Slope 2 = =16 = 01y - I
E, = 220 Ksi. (2.3)

A series of flat shell finite elements developed by Clough and
Felippa [4] which combine‘plate bending and plane stress behavior are
used to model the quarter shell. This element uses four compatible
triangles which each use the constant strain triangle and the LCCTY
element to represent the membrane and bending behavior, respectively.
The LCCT9 element is based on a cubic displacement formulation for the
transverse displacement which gives linearly varying moment fields (thus

the name Linear Curvature Compatible Triangles with 3 degrees of freedom
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at each node). These four triangles are combined to form a rectangle
with a central node along with the four corner nodes. The six degrees
of freedom associated with this central node are condensed out at the
element formulation level. The resulting quadrilateral element has
twenty-four degrees of freedom, 1.e., six degrees of freedom per node in
the global coordinate system. The thin shell elements model elastic
uncracked concrete and have the appropriate Young's modulus (3640 ksi)
and Poisson's iatio (.17).

Since only one-quarter of the shell is being modeled, certain
boundary conditions must be used to adequately model the behavior of
the full cross-section. The shear force V is assumed to act in the
direction of the global Z-axis (see Figure 2.7). This means that the
Z-axis must be a line of symmetry. To insure this, the X displacement
and rotations about the Y and Z axes are deleted for nodes 1 - 8. For
Kinematic stability the Z displacement at node 8 is also deleted. The
support reactions that were developed due to this deletion were negligible
so that shear stress distribution in the cylinder was not affected. The
vertical displacements in the direction of the global Y-axis werc deleted
for nodes 73 - 80. This nodal line represents the neutral axis of the
cylindrical cantilever beam so no vertical displacements should exist
along this line if bending only is considered.

The SAP IV model was loaded incrementally by imposing ncdal loads
at the top nodes 73, 65, 57, 49, 41, 33,‘25, 17, 9, 1. Equal but oppo-
site loads were imposed on nodes 80, 72, 64, 56, 48, 40, 32, 24, 16, 8.
The idea was to examine the shear stress distribution at the central
crack (elements 10 - 18) to see what changes from the original distri-

bution had occurred due to the top two cracks. The original shear stress
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distribution at the top nodes was assumed to be the elastic distribution
for a beam of cylindrical cross-section. This distribution is shown in
Figure 2.6 with Tnax = 1.0 psi. Tﬁe shear area is A/2, where A is the
cross-sectional area. The nodal loads are arrived at by computing work
equivalent forces which correspond to this elastic shear stress. Since
the displacements which correspond to the shear stress are linear, the
work equivalent forces at node i are computed according to the following

equation:

$;+5°
P . = t-/- t(¢) cosd R do
Z1 ’¢ _So C

i

$;+5°
Pxi = t-[; o t(¢) sing RC d¢ (i =1, 9, 17, 25, 33,
* 41, 49, 57, 65, 73)
T(9)} = Tmax cos¢
Vv 2V
"max ~ Shear Avea = A’ (2.4)

The incremental loading procedure used will be described by reviewing
some of the typical load steps that were used and the stiffness changes
which occurred after each of the load steps. The result of the first
load step is shown in Figure 2.8. Since all of the cracked elements

(truss elements 1 - 27) had Young's modulus E, the cylinder acted as in

1
the usual uncracked elastic manner with the SAP IV results being almost
exactly the same as the elastic (t = 1 cos¢) distribution. Note that

the maximum stress (which occurs in bars 1, 10 and 19 which correspond

to ¢ = 5°) is 20 psi. This means that the actual SAP IV results, which
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were based on a maximum shear stress (Tmax) loading of 1 psi, have been
scaled up by a factor of 20 so that the most highly stressed bars (1, 10,
19) will be at the break point in the shear-slip curve (Figure 2.5).
Since the expected elastic shear stress distribution was obtained in the
SAP TV model the boundary conditions discussed above would seem to be
verified. In the second load step (Figure 2.9) bars 1, 10 and 19 had

the high E, Young's modulus while the rest of the bars remained at E

2 1
The loading corresponding to 1 cos¢ distribution will stress bars 2, 11
and 20 to .6 psi (see Figure 2.9). Adding this to the 19.4 psi in these
bars from the first load step produces a total of 20 psi which now puts
these bars at the stiffness break point. For the next load step bars

1, 2, 10, 11, 19 and 20 will have the high modulus E The load incre-

5"
ments continue in this manner, with each successive bar along the crack
being loaded until it reaches the stiffness break point. From there on
this bar will have the modulus E2. The remaining load steps (shown in
Table 2.1) continue in this manner. Total stresses are obtained by
simple addition of the results from each load step. The shear stress
distributions from each load step are shown in Figures 2.8 - 2.16.

The stiffness change from the last stiff bar to the first flexible
bar always causes a stress concentration at the last stiff bar. The
magnitude of this stress concentration varies for the different load
steps but the distortion from the elastic distribution is quite evident
except for the run with bars 1 - 7 stiff, which is to be expected. The
maximum stress ratio (maximum inelastic stress to maximum elastic stress)
is approximately 1.7 and occurs with bars 1 and 2 stiff. While there

are large stress concentrations in the individual load steps, these

concentrations cancel each other out when total stresses after each load
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step are computed. This can be seen from Figure 2.17 where the deviations
from the elastic distribution of total stresses is very small. The
reason for this is that the load steps with the highest stress concen-
trations (steps 2 - 6) are very small load steps with the maximum deviation
from the elastic distribution being only 3 psi in step 6 (Figure 2.13).
Therefore, the maximum shear stress distribution does not change appre-
ciably from the elastic distribution shown in Figure 2.6 when the non-
linear action of IST is included. The elastic shear area of A/2 may
then be used at the cracks,

During an earthquake the overturning moment caused by imertial
forces may cause the crack width tb change. If the crack were to close
completely over some portion of its circumference then this would be
the source of a large stiffness concentration which may alter the shear
stress distribution. In section 5.5 it is shown that for a total
unbonded length at the crack of 2.5 inches the change in crack width is
small compared to the initial crack width. Therefore the shear stress
distribution is not significantiy altered from the sinusoidal distribu-
tion. The unbonded length of 2.5 inches was observed in tests at Cornell.
A much larger unbonded length, such as 15 inches, may cause a significant
alteration in the shear stress distribution because the crack may then
close completely. However, this (the closing of the crack) would only
occur for an extremely brief period of time and the assumption of an
unbonded length of 15 inches at the crack is far fetched.

Figure 2.3 shows that vertical cracks also exist in the containment.
These cracks may effectively decrease the flexural and shear stiffness
of the containment vessel. It is not yet known how much this stiffness

decrease might be. The effects on seismic analysis of this stiffness
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decrease will be discussed in Chapter 5.



Chapter 3

LINEAR SEISMIC ANALYSIS OF A CONTAINMENT VESSEL

3.1 Tdealization of the Containment Shell Vessel

A seismic analysis of the containment shell must be performed to
obtain the forces and deformations caused by the SSE which are required
in design. The current practice is to use a linear model for seismic
analysis which does not take into account the cracks in the vessel wall,
The dynamic structural model which is used in seismic analysis attempts
to model the real structure (in this case the containment vessel of a
nuclear power plant) with a finite number of discrete node points. The
number of nodes used in a dynamic analysis is normally much less than
would be used in a static analysis of the same structure. The best
rationalization for the inexactness of the dynamic model is that the
earthquake loading itself is a totally random occurrence with character-
istics which cannot be accurately predicted. Clearly there is no point
in developing a highly refined dynamic model when the loadings are
uncertain because of the random nature of earthquakes.

In this chapter a linear dynamic model of the containment shown in
Figure 1.1 will be developed. The results from this model will be com-
pared with the results of the nonlinear model (which includes the effects

of cracking) developed in Chapter 5.
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The equations of motion for a structure undergoing ground accelera-

tions are
[M] {ii} + [c] {a} + (K] {u} = - [M] {xg} (3.1}

where fi, G, u and xg are the relative acceleration, relative velocity,
relative displacement and ground acceleration, respectively. These

quantities are shown in Figure 3.1 where
= 7
Luf Lul 81 u, 6, u, b, u, 84 ug GSJ. (3.2)

The relative displacements u; are related to the total displacements X5

by
u. = X. - X i=1....5 (3.3)

where Xg is the ground displacement. The rotational degrees of freedom
6;----0g will be included in this analysis so [M], [C] and [K] in (3.1)
will be 10 x 10 matrices. Later in this chapter the effects of dropping
the rotational degrees of freedom will be studied.

In Figure 3.2 the actual containment vessel and the dynamic model
are shown. The lumped mass method is used to model the containment.
The 120 ft. cylinder is broken up into four equal segments with mass of
Mc and mass moment of inertia of Imc' The density of the concrete is
. 150 k/fts.

2m % 69,75 x 4,5 x 120 x .15

_ .15 2,. :
M, = 3863 > = 22.967 k-sec“/in (3.3a)
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2 2

ZE) - 8.293 x 10° k-sec’-in (3.3b)

]
it
=

(o]

+
A =
A~

e

MC and ImC are the values of the lumped masses at nodes 2 - 5 in Figure 3.2Z.
The hemisphexical head is modeled by node 1. Node 1 is located at the
center of gravity of the head (RS/Z above the bottom of the head). The
mass (MS) and mass moment of inertia (Ims taken about the CG) of the

spherical head are

_2n % 68.75% x 2.5 x .15
s 386

= 28.822 k—seczfin (3.4a)
R \2
1 =2MR% .M (—3) = 8.174 x 10° k-sec®-in (3.4b)
s s S

The mass matrix [M] for a lumped mass representation is always a diagonal
matrix. The diagonal members of [M] for the model shown in Figure 3.2

are

F:Q :[—§; (3.5)

I

|
The stiffness matrix [K] in equation (3.1) is based on the shear

beam element stiffness matrix (see Figure 3.3 and Table 3.1). Thié

reflects the assumption that the containment vessel acts as a vertical
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cantilever beam with a thin walled cylindrical cross-section. The
validity of this assumption is discussed in [8]. For concrete typical
values of Young's modulus and the shear modulus are E = 3640 ksi and

G = 1540 ksi. I and AS are the moment of inertia and shear area of the
beam. For the cylindrical beam segments I = ﬂRcstC and AS.= FRCtC.

The shear area 1s one-half the cross-sectional area, since the concrete
is assumed to behave elastically. Tor the beam segment which models

the hemispherical head average values of Ay and I are computed in the

following manner:

412.5 180
Agy = "Rty 5935 * "Rt " 5935
A . = 97270 in® (3.6a)
sl )
w/6 2
cos ¢ d¢
3 0 412.5 3 180
I, = "Rt w76 *s57.5 * ™.t To7s
J,ow
0
I, = 6.7064 % 1070 it (3.6b)

The global stiffness matrix [K] (see Table 3.2) is formed directly by
simple addition of terms which correspond to the same degree of freedom.
The damping matrix [C] is the most difficult part of the model to
define. In this analysis [C] will be based on the ratio of critical
damping which occurs in each mode of vibration. This will be explained

further in the next section on modal analysis.
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3.2 Modal Analysis

In modal analysis the first step taken is the calculation of the
natural frequencies and mode shapes of the idealized model. This corres-
ponds to the solution of the undamped free vibration problem, which may

he stated as

(M} {ii} + [K] {u} = {0O}. (3.7)

We now assume a harmonic solution for the displacement {u} in the form

ful

{6} singt

Le] =

1
[
-
ot
-
(3]

...... ¢10J. (3.8)
Substituting (3.8) into (3.7) we find that there are ten possible values

of the frequency w and ten associated eigenvectors L¢J which satisfy

(3.7). The modal matrix [A] is made up of these ten eigenvectors.

[A] = [{¢}1 {¢}2 """ {CP}IO]' (3°9)

It may be shown [11] that the following relationships are true:

i

(a]' M) [A] = [1] = [f] (3. 10a)

(a7 [c1 [A]

1

[C] (3.10b)

i1

(AT (K] [A] = (E] (3.10¢)
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where [I] is the identity matrix and [E] is a diagonal matrix containing

wlz Ve w102 on the diagonal. In this formulation the eigenvectors
have been orthonormalized with respect to the mass matrix. [E} is a
diagonal matrix only if [C] is proportional to the stiffness and/or the

mass matrix:

(€1 = o [M] + o, [K]. (3.11)

Equation (3.1) may now be written as ten uncoupled equations:

d + (o r o 4 el a =T (=1L 10) (3.12a)
{q} = [A] {u} (3.12b)
- T

{F} = - [A] {Xg}. (3.12¢)

Equation {3.12a) represents the contribution of the kth mode to the
motion of the 10 dof system and is completely uncoupled as far as (3.11)

holds. The coefficients ey and o, can be used to get only two different

values of modal damping. In this treatment a constant damping ratio
will be used for all modes. For nuclear containment vessels, the commonly

used value is about 5%.

C .
= XK 05 (for all W), (3.13)

B8
k M kkmk

Equation (3.12a) now becomes



2%

. . 2 -
qk + ZBkwqu + mk q = Fk (3.14)

The computer program MODAL (scurce listing in Appendix A) has been
developed to do modal analysis. The Jacobi method [11] is used to find
frequencies and mode shapes. The Newmark B3 method [11] is used to inte-

- grate the uncoupled equations of motion (3.14).

5.3 Rotational Degrees of Freedom

The linear dynamic analysis program MODAL was tested and verified
through use of the dynamic capabilities of SAP IV {3]. The test earth-
quake (ground accelerations Xg) is shown in Figure 3.4, The idealized
structural moedel used is that shown in Figure 3.2. The results from
both SAP IV and MODAL for the displacement of the top mass (defined as
ul) are given by curve 1 in Figure 3.5, the small differences between
the two analyses not being discernible with the scale used.

It is standard procedure in dynamic analysis to eliminate rotational
degrees of freedom. This can be done by using any one of a number of
condensation methods or by dropping all terms in the stiffness and mass
matrices which are associated with rotational degrees of freedom. Con-
densation procedures require that a matrix be inverted each time the
stiffness matrix is set up. It would be expensive to use one of these
condensation methods in a nonlinear analysis since it would require
finding the inverse of a 5 x 5 matrix every time a stiffness change was
encountered. A much simpler method would be to drop out rotational

degrees of freedom from the model and subject this new model to the test
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earthquake. Curve 2 in Figure 3,5 shows the effects of dropping the
rotational degrees of freedom. C(learly the model is significantly
stiffer than the model corresponding to curve 1. This can be seen quite
clearly in Table 3.3. The first column shows the natural frequencics
obtained when the rotational degrees of freedom are included.

Column 2 gives the frequencies obtained by dropping the rotational
degrees of freedom. A comparison of the fundamental frequencies shows
that the 5 DOF model has a fundamental frequency which is 25% higher
than the 10 DOF model. Curve 2 shows that this increase in stiffness
affects the motion of the top mass significantly for the base motion
shown in Figure 3.4, However, it must be noted that this base motion is
of extremely short duration (.25 seconds) and means nothing as far as
design requirements go. The NRC response spectra shown in Figure 1.3
is the basis of seismic design of containment vessels (see Introduction).
This figure shows that the frequencies of 6.0 ¢ps and 7.5 ¢ps occur in
a flat region of the graph for the spectral acceleration. For a maximum
base acceleration of 1.0 g both frequencies correspond to a spectral
acceleration of about 3.5 g (for 5% critical damping). The maximum
displacements for 6.0 cps and 7.5 cps are l.Olinches and .5 inches,
respectively. This would seem to indicate that dropping the rotational
degrees of freedom will give forces and moments which are acceptable but
will underestimate the maximum displacements by about 50%. This is borne
out by the results of the test case since the maximum base shears were
fairly close for the two models (.139 ksi for the 5 DOF model and .159 ksi
for the 10 DOF model). Since the time history of displacements is of
great importance it is concluded that rotational degreces of freedom should

be included in the seismic analysis of a containment vessel. Rotational
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degrees of freedom will be included in the rest of this study.



Chapter 4

SOIL-STRUCTURE INTERACTION

4,1 Introduction

If a scismograph were placed in an area in which no buildings were
located the time history of the ground movements obtained would be the
"free field" accelerations. Normally, thé flexible multistory buildings
built in this country do not have sufficiént stiffness and mass to affect
these free field accelerations. If a seismic analysis were to be per-
formed on one of these buildings it would usually be sufficient to use
the free field accelerations as the base accelerations defined as ig in
the previous chapter. However, a nuclear containment vessel is much
stiffer than most multistory buildings. If the containment vessel is
at least as stiff as the underlying soil then the inertial forces developed
during an earthquake will cause local deformations in the soil in the
area of the foundation. These local soil deformations may alter the
free field motion considerably. The degree of alteration depends on the
relative stiffness and mass ratios between the structure and the soil.
Naturally if the structure is much stiffer than the soil the local foun-
dation base motion may be quite different from the free fiecld motion.
This change in motion at the soil-structure interface is called soil-

structure interaction. Soil-structure interaction should be differentiated

-26-
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from soil amplification.

Soil amplification is the effect of local soil conditions on the
seismic waves produced by an earthquake. The effect may be one of
amplification, attenuation or filtering of the underlying '"base rock"
motions. In Figure 4.1 the base rock motion is shown as xl, the free
field motions (which occur a large distance from the containment) are

552 and ground accelerations at the base of the foundation (taking into

account soil amplification and soil-structure interaction) are Xg.

4.2 Brief Summary of Seismic Waves

The underlying causes of earthquakes are not yet well known. The
most widely accepted theory at this time is the elastic rebound theory
developed by H. F. Reid following the San Francisco earthquake of 1906.
Reid's study of the large shear displacements along the San Andreas
fault 1led him to conclude that the vibrational energy of earthquakes
originates from the release of accumulated strain in the earth's crust.
These strains are caused by the movement of large crustal plates. In
the case of the San Andreas fault this movement is a counterclockwise
rotation of the Pacific basin crustal plates relative to the North
Averican continental land mass [11]. The strain release is a sudden
shearing fracture.

The wave systems which result from this fracture are what actually
cause the surface vibratory motion. It can be shown [5] by using the
“hree dimensional wave equations that in an unbounded isotropic solid

Ohs tyo types of elastic wave may be propagated. These waves are called
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the irrotational (P-waves) and equivoluminal (S-waves) waves. The

velocities of the P-waves (Cl) and S-waves (Cz) are

Cl = \/(}\L + ZG)/OS
C2 =\/G/ps. 4.1)

RLis Lame's constant, G is the shear modulus and(&sis the density of the
medium through which the waves travel, Clearly the P-wavés travel faster
than the S-waves through all media. When there is a bounding surface,
surface waves also cccur. 1t can be shown that these surface waves

(one type is Rayleigh waves) decay rapidly with depth of the medium but
show much less amplitude decay than P-waves or S-waves at the surface
boundary. The surface motion contains both vertical and horizontal
{parallel to wave direction) components. They travel with a velocity
(CR) siightly less than that of the S-waves. For uw (Poisson's ratio)

= .25, CR = .9194 C;-

Seismographic records show that earthquakes may be broken down into
two stages. These are the preliminary tremor and main shock. The pre-
liminary tremor consists of two phases, which correspond to the arrival
of first the P-waves and then the S-waves through the interior body of
the earth, The main shock may be broken down into three phases. In the
first two phases the movement is horizontal and transverse to the dircc-
tion of wave propagation. In the third phase the horizontal movement
is in the propagation direction. The movements in the main shock are

much larger than in the preliminary tremor. Originally it was felt #at

the main shock was caused by Rayleigh waves travelling over the s face
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of the earth from the initial disturbance. However, the vertical compo-
nent of motion is larger than the horizontal component at the surface for
Rayleigh waves. Also the horizontal motion in Rayleigh waves is in the
wave propagation direction. Thus Rayleigh waves don't explain the motion
in the first two phases of the main tremor.

Love [6] proposed that the transverse movements in the main shock
are caused by waves which travel through an outer crust of the earth
which differs in material properties from the interior. These waves,
calles Love waves, do not penetrate deeply into the interior of the earth
and because of this create large amplitude motions at large distances
from the initial disturbance. For Love waves to be confined to this
outer crust, the S-wave velocity C2 for this outer layer must be less
than C2 for the next lower layer. Love waves will not occur unless this
is true. The Love wave travels with.a velocity somewhere between C, for

2

the outer crust and C2 for the next lower layer. The transverse motion
in the first two phases of the main shock is then caused by Love waves.
The longitudinal motion in the third phase must then be caused by Rayleigh

waves, which travel at a speed less than C2.

4,3 Modeling of the Soil

The stiffness and damping effect of the soil will be modeled using

equivalent springs and dashpots. The values for these springs and dashpots

are found from the problem of a rigid circular footing which oscillates
on an elastic half-space. For ground motion in the horizontal direction,

‘e need spring constants which correspond to the u, and ¢f degrees of

f
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freedom shown in Figure 4.2. These springs are actually functions of the
load frequency, but it has been found [7] that the following frequency

independent expressions are adequate.

32{1 - u)Gr
K = ©
u 7 - 8u
SGrO3
= e 4.2
KRICE (-2

G and u are the shear modulus and Poisson's ratio for the soil and Ku

and K, are the translational and rotational spring constants shown in

¢

Figure 4.3. Poisson's ratio varies from gbout .35 to .5 in soils,
depending upon the degree of saturation. A value of .4 will be used in
this investigation. From various in-situ tests, typical values of the

shear wave velocity C, may vary from about 500 fps {weak scils) to

2
2000 fps (rock). G is directly related to C2 by (4.1). Table 4.1 gives

values of Ku and K, for shear velocities of 500 fps, 1200 fps and 2000

¢
fps with u = .4 in all cases.

In an ideal elastic half-space only geomctrical damping exists.
Geometrical damping is caused by the loss of energy which occurs when
the elastic waves travel from the footing out to infinity. Calling the
translational and rotational geometric damping ratios DuG and D¢G’ we
have from [7] that

(7 - SWim .
(Bu) 32{(1 - u)osro
15 3(1 - U)If
Dy = 73 By = —————p— (4.3)

1 .
(1 + By (By) 80T,

)

{
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mf and If are the mass and mass moment of inertia (calculated at the top
of the foundation) of the circular foundation,. pSiS the density of the

underlying soil.

me = jfgi—§£~15‘= 61.74 k—secz/in

=g r s T, t% = 12,742 x 10° k-sec’-in
Y. = Unit weight of concrete = .15 K/ft3

tf = Foundation thickness = 9 ft

ro= Foundation radius = 75 ft

Bu and B¢ are the modified mass ratios. They essentially describe the
'relationship between the mass of the foundation which undergoes either
translational or rocking motion and and effective mass of the underlying
soil. It is felt that equations (4.3) give soil damping percentages
which are too high [8].

In real soils hysteretic damping is also important. Hysteresis
occurs when loading and unloading follow different paths on the stress-
strain diagram (see Figure 4.4). In each complete loading cycle an
amount of energy equivalent to the area inside the hysteresis loop is
dissipated. Hysteresis in soils is caused by slippage between particles
and clearly is dependent upon the magnitude of maximum strain in the soil.

For SSE earthquakes (peak ground acceleration greater that .1 g) this

damping is usually taken as about 5%. The total damping ratios Du and D

¢
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are then the sum of geometric and hysteretic damping.

Dy = Dy + +05 (4.4)

If the above value of me and [f are substituted into the equations for

geometric damping (4.3) estremely high values of DuG and D¢G result (for

w o= .4, DuG = .56 and D¢G = .14). Since the validity of equation (4.3)

is in doubt, the values of Du = ,25 and D¢ = ,05 will be used in all
subsequent analysis. These values are recommended in [9].

The necessary additions to the global stiffness matrix are shown in
Table 4.2. The first ten rows and columns are exactly the same as in

Table 3,2, The element stiffness matrix [Kff] contains the stiffness

contributions of the translational and rotational soil springs.

4.4 Mass and Damping Matrices for SSI

Certain changes and additions must be made in the mass, stiffness
and damping matrices described in Chapter 3 to implement the soil-structurse
interaction model shown in Figure 4.3. The degrees of freedom to be

included in this analysis are
fu] = [ul By Uy 8, Ug By Uy 8, U B Ug efJ. (4.5)

In (4.5) Uy e Ug and u_ are displacements relative to the ground.

f
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91 ... 9_ and ¢f are total rotations. Positive sign conventions for u
2

are shown in Figures 3.1 and 4.2. The mass matrix [M] is now

l 28,822

8.174 x 106
22,967
8.293 x 106
22.967
8.293 x 106
[M] = (4.6)
22.967
8.293 % 106
22,967
8,293 x 106
m -
izl Il + 1

Since the lumped mass model of the containment vessel remains the same
the first 10 members of the main diagonal of [M] are the same as the
lumped masses shown in Figure 3.2. g and If were calculated in the
previous section.

The normal method of assigning percentages of critical damping to
each ﬁode in order to develop a damping matrix (see Chapter 3) is no
longer longer valid when the effects of soil are included in the analysis
since the soil has much more damping (normally more than 10% of critical)
than the containment vessel. The subregioned energy proportion method [10]

for calculating modal damping values will be used to incorporate the dif-

ferent critical damping ratios for the soil and structure into one effec-
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tive critical damping ratio for each mode. In this method, the modal

damping ratio Dm is the weighted average of dissipated strain energy:

nm
, E, d.
i=1 im i
D = fi— , (4.7)

m E
m

Dm = modal damping factor at mth mode

di = fraction of damping factor of ithmass
. th

Em = total energy in m  mode

Eim = energy in ith mass in mth mode

nm = number of masses in analysis

1 (i)

Eim =5 by kij ¢jm £ =1 ... mm j=1i...nmn ne sumonm
nm
Em - .Z Eim
i=1
¢ij = modal displacement of ith mass for jth mode
(1) . . th . .
Kg. = element stiffness of 1 member connecting nodes & and ] (see

Table 3.1). The modal damping ratios thus calculated may then be used in
the program MODAL as described in Chapter 3 and the Appendix. If direct
numerical integration of the equations of motion is to be performed {as
will be done in the next chapter), then the fully populated damping matrix

[C] may be found:
[c] = [a'] [} [a]7 (4.8)

[D] is a diagonal matrix which contains the modal damping factors obtained
from (4.7).
Soil-structure interaction is included in all of the seismic analyses

discussed in the next chapter. The effects of changing the stiffness of
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the underlying soil will be studied in particular.



Chapter 5

SEISMIC ANALYSIS INCLUDING CRACKS

5.1 Introduction

In this chapter the effect of including cracks in seismic analysis
will be studied., First, new IST test results are described. The ideali-
zation of these cracks for use in the nonlinear computer program SAC is
shown. The numerical integration techniques used in SAC are described.
A synthetic time history is used as input to SAC in a parameter study
designed to study the effects of including cracks in seismic analysis and
to show the significance of varying the vaiues of the soil springs described
in Chapter 4. Finally system identification is used to find a linear

model which can best approximate the results obtained from SAC.

5.2 Modeling of the Cracks

The circumferential (horizontal) and longitudinal (vertical) cracks
in the vessel may have a significant effect on the dynamic response of the
vessel due to the SSE. The effecf of cracks on seismic analysis has been
studied previously at Cornell [15]. The important design parameters (as

described in the Introduction) which may be affected are the liner distor-

-36-
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tion and the maximum shear stress in the concrete containment vessel. For
the seismic analysis, recent IST test results [2] are used. In the beam
tests described in Chapter 2 the dead weight of the specimen and the axial
loading system made it difficult to achieve a uniform crack width at the
shear plane before the initiation of the cyclic shear test. 1In the more
recent tests, the loading setup shown in Figure 5.1 was used. An inde-
pendent frame was used to tension the internal reinforcing bars. The
crack at mid-height of the block was formed by initially tensioning the
reinforcing bars. The location of the crack was set by use of a crack-
iniating groove which was formed into the specimen during casting. The
shear loading was applied at the vertical beams, which could be moved up
or down to reverse the loading direction. This setup resulted in less
tilting at the crack plane and a more uniform crack width. After the
desired initial crack width was obtained by stressing the reinforcing bars,
the cyelic shear stress tests were begun.

In one of the test specimens two #14 reinforcing bars were cast into
the specimen in a plane perpendicular to the direction of loading. The
reinforcement ratio (steel area/cross-sectional area) for the block was
.0178. The reinforcement ratio for the longitudinal steel in a typical
containment vessel is .0185 (two #18's spaced at 8 inches} which is
reasonably close to this test case. Presently, no tests have been done
using #18 bars but the effects of increasing the bar diameter may be
significant. The initial crack width was .02 inches with a bar tension of
31 ksi.

The cyclic loading schedule was: 9 cycles at 110 psi on the gross
concrete area, 6 cycles at 125 psi, 11 cycles at 202 psi, 13 cycles at

260 psi and 4 cycles more at 260 psi with the bar tension increased to
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41 ksi. Each loading cycle was composed of a complete reversal of the
maximum stresses listed above. C(ycles 1, 15 and 25 were loaded incremen-
tally so that detailed measurements of horizontal slip, increase in crack
width and bar strains could be taken. The specimen failed during the 42nd
cycle at a stress of 230 psi. The mode of failure was a sudden brittle
splitting fracture which was due to the dowel forces in the reinforcing
bars. Figure 5.2 shews the shear stress versus horizental slip measure-
ments for the 1st,‘15th and 25th cycle. The loading portion of the 1ist
cycle is almost linear, while the 15th and 25th cycles show the same har-
dening effects as was observed in the beam tests. After the lst cycle
the shape and slope of the hysteresis loops were essentially the same with
only the maximum slip changing with each cycle. The maximum slip increased
at a nearly constant rate in these tests. The crack width remained nearly
constant at .02 inches until just before failure.

In the seismic analysis only the horizontal cracks will be included.
As was mentioned previously in Chapter 2, the vertical cracks may signi-
ficantly affect the shear and flexural stiffness of the containment vessel.
Since only uniaxial tests have been performed at this time it is difficult
to quantitatively assess the effects of horizontal cracks. It is felt that
a decrease in the flexural stiffness of the containment is not a signifi-
cant factor. Tests using the program MODAL have shown that if the flexural
stiffness of the containment vessel is reduced by one-third the fundamental
frequency changes By less than 1%, However, a large change in the shear
stiffness of the vessel would produce significant changes in the seismic
analysis. Current tests under way at Cornell include cracks in both the
horizontal and vertical directions. These tests should give quantitative

results on how much the vertical cracks affect the shear stiffness of the



-30-

containment vessel,

The stiffness of the horizontal cracks is found from the test results
shown in Figurc 5.2. To simplify the analysis these curves are idealized
in the manner shown in Figure 5.3, In this figure the data from the 25th
loading cycle and the idealization are shown. The idealization consists
of six straight lines which were drawn to model as best as possible the
slope of the hysteresis curves and the area inside the curves (energy loss/
cycle). Note that in Figure 5.3 the shear-slip curve is nonsymmetric about
the y-axis. It was felt that this was due to eccentricity in the axial
loading system and the entire hysteresis lcop is moved to the left in
Figure 5.4 so that the loop is anti-symmetric about the‘y—axis.

In this same figure four assumptions which have not yet been experimen-
tally verified are shown. Unloading from point A on line 1-2 is done along
line A-B which is parallel to line 2-3. This assumption should be correct
since the unloading stiffness remained almost constant for all cycles,
including the early cycles which only went up to 110 psi maximum shear
stress. The second assumption is that reloading from point C on line 2-3
goes along line C-D which is parallel to line 1-2Z. The reasoning behind
this is that the higher loading stiffness (the slope of line 1-2} 1is
activated when loading occurs at a shearing stress greater than the stress
at point 1 (30 psi in this case). The last assumption is also based on
this. Line E-F shows unloading from a stress greater than that at point 2
(202 psi). Reloading occurs along line F-G (parallel to line 1-2) since
the stress at point F is greater than the stress at point 1. These three
assumptions all hold true for the shear-displacement curves in the third
quadrant. The arrows in Figure 5.4 show the possible load directions

along each of the six lines. Along line 1-2 only loading occurs. Only
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unloading gCCurs aldng (or parallel to) line 2-3. Slip may occur in both
directions along lines 3-4 and 1-6. Loading in the negative direction
occurs along line 4-5 and.unloading along (or parallel to) line 5-6. Only
unloadihg occufs along 3-H and 6-1. As mentioned above, loading starts in
a direction parallel to line 2-3 from both these lines.

The hysteresis loops change with load cycling in the manner shown in
Figure 5.2, The idealization of this phenomenon is shown in Figure 5.6,
The first cycle of loading is assumed to be linear (for both loading and
unloading). The hysteretic behavior first appears in the second cycie
and continues through the rest of the load cycles. The slope of each of
the six line segments thatICOmpose the hysteresis loop remains the same
for all cycles. The stiffness break point is 30 psi (for loading) for
all cycles. The manner in which one cycle of loading or unloading is
defined is described in the next section.

The f1exibi1ity of the cracks must be included in the global stiffness
matrix [K]. This is done by considering the cracked cantilever beam shown
in Figure 5.7. For purposes of illustration, the element stiffness matrix
will be developed for the case of one crack in the beam, but this formu-
lation may easily be generalized to the case of N cracks in a beam. First
the deflection uy and rotation due to the loads Pl and Ml are calculated.
At the crack plane the bond between the reinforcing bars and concrete is
deatroyed for a certain length. In the tests described previously the
uﬁbonded length wWas about 2 inches. Since these tests were perforned on
#14 bars the unbonded length (Lu) was scaled up to 18/14 x é = 2.5 inches
for use in this analysis. The linear scale factor was uscd becausc un-
bonded length is a function of the bar force/bond force ratio. The bar

force and the bonding force (per unit length) are proportional to the
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reinforcing bar area and circumference, respectively. Over the unbonded
length a conservative assumption would be that the moment of inertia is

provided only by the longitudinal reinforcement. This moment of inertia
over the unbonded length at the crack plane will be called . Including

this in a moment area analysis of the cracked shear beam we find that

/s Y '- 3 2 r N
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SAE 1.1 B T, 1 “E T, 1 :
C C C

where Kc is the crack stiffness.

This equation is inverted to obtain
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From equilibrium
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From the reciprocal law we have that

o] = [ (512

The complete cracked beam element stiffness matrix for N equally spaced
cracks is given in Table 5.1. Formulas for A, B, C and det are also
given for N equally spaced cracks in the beam element.

The crack stiffness KC is obtained from the hysteresis loops in
Figure 5.6. The slopes of these lines are in units of ksi/in. The
values must be multiplied by the shear area of A/2 (as was concluded in
Chapter 2) to obtain the crack stiffness K.- The factor of N/KC (in
Table 5.1) will be changing during the seismic analysis as the shear
stress at the cracks traverses the hysteresis loops. Some method must
be devised of keeping track of where each crack is on its respective loop.

This is discussed in the following section.

5.3 Nonlinear Seismic Analysis

A program has been written to perform seismic analysis incorporating

the effects of circumferential cracking. This program, which is named
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SAC (Seismic Analysis including Cracks, see Appendix) uses numerical inte-
gration rather than the method of normal modes used by MODAL. Since the
cracks are to be included the overall stiffness of the vessel is no longer
constant‘buf is a function of the shearing stresses in the vessel. Because
of this direct numerical integration of the equations of motion (3.1) is
performed. The mass [M] and damping [C] matrices have been described in
Chapter 4. The clement stiffness matrix shown in Table 5.1 is used in the
manner shown in Table 4.2 to obtain the global stiffness [K]. Equations
(3.1) are solved iteratively using the Newmark g method. The convergence
criterion for ending the iterations is

(Auti+l - bu, ) /bu < TOL (5.13)
with Au,. being the change in relative displacement from time t to time
(t + At) for the ith iteration and Auti+lthe same quantity for the i + 1
iteration. TOL is the convergence criterion which should be .001 or less
for reasonable accuracy. The size of the time step, At, is critical as
far as obtaining accuracy and rapid iteration convergence. It was found
during test runs that did not include crack flexibilities that the maximum
time step where Convergenée could be achieved was .0025 seconds. This
time step will be used throughout this chépter also.

Stiffness changes will occur during some time steps. This is obvious
when one sees the nonlinear stiffness ideélization of the cracks shown in
Figure 5.4. The SAC subroutine INHYST keeps track of where each crack
is on the hysteresis loops of Figure 5.6 and makes changes in the crack
stiffness when necessary. A time step is repeated only when the stiffness

change from line 2-3 to line 3-4 or from line 5-6 to line 6-1 occurs {see



45~

Figure 5.5). This is because the high velocities which occur during the
unloading from lines 2-3 and 5-6 can cause the crack slip to go far below
the specified slips at points 3 and 6, which causes the loop to grow much
wider than originally specified. The iteration scheme designed to prevent
this 1is shown in Figure 5.5. At time t, one of the cracks is at the
position marked on line 2-3 of the hysteresis loop. At time (t + At),
point 3 has been missed by a significant amount. The program SAC goes
back to time t, refines the time step At to At' (according to simple
linear interpolation) and computes the shear stress and crack displacement
at {t + At'). If the shear stress is not within a specified limit (% .05

shears) of shear,, then another iteration using a smaller time step At"

3
is performed. This process continues until the specified limits are met.
The same procedure is used for the stiffness change between lines 5-6
(and all lines parallel to it) and for the change between lines parallel
to 2-3 and 3-4.

The changing of hysteresis loops due to cycling is shown in Figure 5.6.
All cracks start on the cycle 1 line. Once the shear stress of 30 psi is
exceeded and unloading starts the unloading proceeds along a line parallel
to line 2-3 (as shown by dashed line A-B). The 2nd cycle loop is reached
when A-B intersects line 3-4. From there on the cycles are defined in
the following mamner: a cycle occurs when the shear stress across a
crack unloads from a stress of at least # 100 psi to a stress of less
than + 50 psi.

The lines which make up all the hysteresis loops have the same slopes.
The only difference between these loops is that the points 1 and 4 move

further away from the origin at a uniform rate as cycling proceeds. This

is confirmed by the test data described previously which showed that the
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maximum slip in each cycle increased at a faifly uniform rate (.90001 in/
cycle). The method of changing from the 2nd cycle loop to the 3rd cycle
loop is shown in Figure 5.8. The shear at a crack on the 2nd cycle Ioop
has inereased to above 100 psi. Unloading occurs along the dashed line
and goes below 50 psi. Since this means that the 3rd cycle has now been
reached the unloading continues along line 3'-4' of the 3rd cycle loop
instead of 3-4 of the 2Znd Iloop. These unloading paths have not yet been
verified completely by testing but they seem to be a rational way of
explaining a complex phenomenon and are the most convenient manner of

including the effects of cycling in the program.

5.4 Input to Linear and Nonlinear Analyses

The earthquake to be used as ground motion is specified as a time
history of ground accelerations which correspond to the horizontal design
response spectrum from NRC provision 1.60 shown in Figure 1.3. A deter-
ministic method described in [12] used a‘”spectrum—suppressing” technique
to develop a ground motion time history which corresponds to this spectrum.
This method is used to generate a base moticn time history which has a
maximum ground acceleration of .4 g (typical for an SSE) and a duration
of 11.5 seconds.

Computer Run 1 makes use of the linear model described in Chapter 3.
The member properties and lumped masses are given in Figure 3.2. The
element and global stiffness matrices are given in Tables 3.1 and 4.1.
The mass matrix is given in Table 5.6. The soil springs used are those

given for the medium stiffness soils shown in Table 4.2. The damping
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matrix is found using the method described in Chapter 4 with the critical
damping percentages recommended there. Note that no cracks at all are
assumed in the containment vessel and that the concrete is assumed to
remain elastic throughout the earthquake. The linear seismic analysis
program MODAL is used to perform the analysis.

Runs 2 - 4, made with the SAC nonlinear analysis program, included
the effects of the cracks shown in Figure 1.2. This figure shows the
cracking patterﬁ of a containment vessel which has been internally pressur-
ized for test purposes., Large horizontal cracks (about .015 inches wide)
occurred at the construction joints, which were spaced at 5'-6" in this
vessel. Between these joints smaller cracks occurred which did not run
completely arcund the vessel, At the construction joints the moment of
inertia is IC, as was described in section 5.3. In between the joints
small cracks do exist so it would be incorrect to use the moment of inertia
of the full section there, Since the cracks do not extend to the neutral
axis the fully cracked moment of inertia is also not correct. The moment
of inertia I will then be taken as the average of the full section moment
and the cracked section moment. The member properties for these three
runs are given in Table 5.4. The element and global stiffness matrices
are given in Tables 5.1 and 4,2, respectively. The mass and damping
matrices are the same as for Run 1. The crack spacing is the 5'-6'" shown
in Figure 1.2. The only parameters to be varied in Runs 2 - 4 are the
soil spring stiffnesses. Run 2 uses the KU and K¢ given for medium
stiffness soils in Table 4.2. Run 3 corresponds to soft soils and Run 4
uses the hard soil values. The medium soil stiffness of Run 2 is the most
likely soil to be encountered in practice so the results of this run have

the most importance for design considerations. Table 5.5 summarizes the
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soil types and crack spacings used for each computer run.

5.5 Discussion of Results

The displacement time histories for the top (mass 1) and bottom masses
(mass 5) are shown for Runs 1 - 4 in Figures 5.9 - 5.12. Figures 5.9 and
5.10 show the results for the uncracked containment founded on a soil of
medium stiffness (Run 1) and for the cracked containment vessel founded
on a medium soil (Run 2), respectively. These figures show the effects
of including the cracks in the seismic analysis of a containment vessel.
The maximum response fbr both runs occurs in the interval between t = 10,15
and t = 10.5. The most obvious difference is that both the maximum posi-
tive and negative displacement peaks are greater for Run 2. This is to
be expected since the inclusion of the cracks creates a more flexible
model. The difference in maximum peaks is not great; the ratio of peaks
for Run 1 to Run 2 being about .85, This increase in flexibility is also

apparent in the period of oscillation. In both runs a positive peak

occurred at -t = 10,15, For Run 1l the next positive peak occurs at

t = 10.46 for a period of .31 seconds. TFor Run 2 the next positive peak
occurs at t = 10.53 for a period of .38 seconds. These periods are about
the same for both runs for the large oscillations which occur between

t =89 and t = 9.3. This lengthening of period can once again be explained
by the inclusion of crack flexibility. The maximum values for displacement
(of mass 1, the tep mass) shear and crack slip are given in Table 5.2 for

Runs 1 - 4. The difference in maximum shear stress is negligible for

Runs 1 and 2. However, Table 5,2 points out that the linear analysis
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gives no values for crack slip, an important design parameter which will
be discussed later in this section.

Figures 5.9 and 5.10 show that significant differences exist in the
displacement time histories for the uncracked and cracked seismic analyses.
The displacement or acceleration time histories are of particular impor-
tance in seismic analysis of equipment which is supported by the contain-
ment vessel. Normally this equipment is not included in the analysis of
the containment., If the equipment were included the results would probably
be unreliable because of the large difference in mass between the contain-
ment and the equipment. Because of this the containment and the equipment
are analyzed separately and the results from the containment analysis are
used as input for seismic analysis of the equipment. In Figure 1.1 it is
shown that a crane is supported by a concrete floor which frames into the
containment wall. Certainly the motion of the top of this crane would be
of importance in design. Because of the differences in maximum response
and oscillation period, it may be necessary to use the results of the
nonlinear analyses as input for selsmic analysis of equipment. Figures
5.11 and 5.12 show the displacement time histories for Run 3 (cracked
vessel with soft underlying soil) and Run 4 (cracked vessel with hard
underlying soil)}, respectively. Figure 5.11 shows that soft ﬁnderlying
soil increases the maximum displacement by a factor of 2,565/1.543 = 1,67
and increases the period of oscillation over the maximum response interval
from .38 to .55 seconds. Figure 5.12 shows that a hard underlying soil
decreases the maximum displacement by a factor of 1.2/1.543 = .78, The
oscillation period decreases from .38 to .32, The softening and hardening
of the soils therefore produces the expected changes in response. This

is also borne out by the maximum values given in Table 5.2. While the
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hardening éf the soil in Run 4 produced only a small increase in shear
stress {which would be expected in a stiffer system) the softeniﬁg of the.
soil produces an extremely large decrease in maximum shear stress ot 54%.
The maximum crack slip increases with maximum shear stress, as expected.
The maximum number of cycles (using the cycle definition of section
5.3) naturally increases with increasing soil stiffness. It should be
noted that the number of cycles obtained is not equal to the duration of
the earthquake divided.by the oscillation period. A different cycle
definition may have caused this to come about. Certainly the higher the
number of cycles and maximum shear stress the greater is the chance of
concrete failure by dowel splitting. In section 5.2 it was stated that
the IST test specimen failed by dowel splitting during the 42nd cycle of
loading. However, the loading schedule was more severevthan could be
expected during an SSE design earthquake. Most of these cycles were com-
plete reversal cycles from shear stresses of greater than 200 psi to less
than -200 psi. Certainly this is much more sSevere than the criterion of
a decrease from at least 100 psi to less than 50 psi. The maximum shear
stress of 280 psi was reached only once during the earthquake, Because
of this it is felt that dowel splitting will probably not occur. The only
reservation comes from the fact that the tests were performed on #14 bars
instead of the #18 bars normally used in containment vessels. #18 bars
unquestionably would pose a more critical dowel splitting problem, but
how severe this problem is cannot be estimated without further testing.
Figures 5,13 -~ 5.15 show hysteresis loops for the bottom beam segment
which models the bottom 180 inches of the containment (sce Figure 4.3) for
Runs 2 - 4. These loops were drawn for the period whére the maximum shear

stress for each run was obtained. These figures show that some error
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exists in making the stiffness change from lines 6-1 and 3-4 to lincs 1-2
and 4-5. In Figure 5.13 the loop shown is for the 15th cycle. This mcans
that the crack slip at the stiffness break point should be (15 - 2)x .0001
+ 2.67 x 107> = 3,97 x 107" inches. The shear stress at this stiffness
break should always be 30 psi. At time t = 10.42 the shear stress is
38 psi and the crack slip is 5.5 X lO-3 inches., It would be possible to
reduce these errors by repeating the previous time step with a smaller
step size but it was not felt that these errors were critical enough to
justify this procedure. The main effect of these errors may be to increase
the maximum crack slip of 13.6 % 10_3 inches slightly from the value that
would be obtained if the time step were repeated. However, the difference
is likely to be very small and also would be on the conservative side.
Figure 5.13 also shows one of the main effects of cycling, which is
the narrowing of the hysteresis loop at low slips., The line followed by
the cracks from t = 10.61 to t = 10.63 slightly higher up and parallel to
the line followed from t = 10.17 to t = 10.22. This is the same behavior
as shown in Figure 5.6. Figure 5.14 shows an example of somewhat sur-
prising behavior. Unloading occurred from t = 10.36 to t = 10.43 along
the 7th cycle hysteresis loop. However, reloading occurred at t = 10,43
before the expected 6-1 linc (dashed line) for the 7th cycle was reached.
Reloading occurred along a line parallel to 6-1 because the shear stress
was less than 30 psi. The effect of this was to cause a stiffness change
at t = 10.58 at a crack slip of 5.25 x 107 inches rather than 3.17 x 107°
inches. Since test results did not look into a change of loading like
this it is hard to say if this is an inadequacy of the model. C(Clearly

this may cause crack slips to be larger than they should be, but since the

maximum slips in Table 5.2 are not unexpectedly large this is probably not
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a critical problem.

Table 5.3 shows the maximum seismic bending stresses which occurred
in Runs 1 - 4. The concrete stress occurs in the concrete between the
construction joints. The moment of inertia for the concrete is I (sece
Table 5.4). The maximum concrete seismic bending stress is .696 ksi in
Run 4. The steel stress shown in Table 5.3 occurs in the reinforcing bars
at the horizontal cracks located at the construction joints. The moment
of inertia here is IC (see Table 5,4). The longitudinal tenSile.stresses
due to an internal pressurization of 50 psi are pRC/ZtC = .388 ksi.
Including dead weight (.165 ksi) but not including the effects of vertical
ground accelerations, the maximum total concrete compression stress in
the longitudinal direction is .696 - .388 + .165 = .473 ksi, which is less
than the concrete allowable of .6 fc (see section 1.3). The maximum longi-
tudinal tensile stress is .696 + .388 - .165 = .910 ksi. The tensile
stress in the circumferential direction is pRc/tC = .776 ksi. The maximum
seismic shear stress is .280.ksi.

The seismic shear Stress may cause additional cracking in the veésel.
At ¢ = -45° (Figure 2.7) the longitudinal stresses are tensile. The
principal tensile stress at ¢ = -45° is .95 ksi inclined at 40° from the
horizontal. This means that new crack planes inclined at 40° from the
vertical may be created by the earthquake. It should be noted that this
angle of inclination will change around the circumference of the vessel
as the shear stress and longitudinal bending stress change. These new
cracks may have some effect on the seismic response of the vessel but at
this time it is not known how significant this effect may be.

Using p = .0185 (the typical longitudinal reinforcement ratio for

concrete containment vessels) equation (l.2b) gives VC = ,140 ksi.
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According to the ASME code [14] the excess shear stress of .140 ksi (.280 -
.140) must be carried by inclined steel. As explained previously in this
section, it is felt that the recent IST tests performed at Cornell [2] show
that the combination of IST plus dowel action can effectively transfer

.280 ksi across the cracks without including inclined reinforcement.

If two layers of #18 reinforcing bars are spaced at 8 inches (1.0 in2/
in) around the circumference of the vessel then the stress in each rebar
due to internal pressurization would be

WRczp pRC )

= —— = 20.9 ksi.

2mR 2
c

Adding this to the maximum siesmic bending stress of 29.2 ksi and sub-
tracting 8.9 ksi (dead weight) the total rebar stress is 41.2 ksi. Since
60 ksi steel is normally used in containments this is less than .9 fy.
However, if the shear and bending stresses in the rebar due to dowel
action are included, the yield point may be reached. Presently it is not
possible to estimate what these additional stresses are. This yielding
would only occur over the unbonded length of the rebar.

The changes in crack width (shown in Table 5.3) due to the seismic
bending stresses are all small compared to the initial crack width of
.015 inches, These changes were computed over the unbonded bar length
of 2.5 inches. If the change of crack width had been at least half as
large as the initial crack width, then it could have been grgued that the
crack stiffness changes during the selsmic analysis, since it has been
shown that crack stiffness is a function of crack width. However, this
was not the case so the change in crack width does not affect the analysis.

In the Introduction it was stated that the steel liner and its anchors
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must be able to withstand the deformations imposed upon it by the concrete.
The maximum deformation imposed on the liner is the sum of the maximum
crack slip shown in Table 5.2 and the elastic shear deformation in the
concrete between the construction joints. The maximum crack slip is .0143
inches in Run 4. The maximum shear stress of 280 psi also occurs in this

run. The elastic shear strain in the concrete is approximately

— = .000182,

If the anchors are spaced at 20 inches, the elastic shear deformation over

this distance is

.000182 x 20 = .00364 inches.

The maximum relative displacement which occurs between the anchors is

then

.0143 + .00364 = ,01794 inches.

This value is far below the allowable .1 inch used as a design requirement,
Since the liner is attached to the concrete the liner strain is assumed
to be compatible with the concrete strain, If the liner steel modulus is

29000 ksi then

m
1l

.473/29000 = 1.63 x 107> < .002

(.388 + .696 - .165)/29000 = 3.17 x 10‘5 < .001

™
i
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where £ and €, are the maximum compressive and tensile strains in the
liner. These values are far below the ASME allowables of .002 and .001
(see Introduction).

From the stresses shown in Tables 5.2 and 5.3 it would appear that
flexible soils are the optimum soils for the foundation of nuclear contain-
ment vessels. This would be an incorrect conclusion. Besides the much
larger displacements that occur, it would be doubtful that a soft soil
such as clay or silty ﬁlays with sand could undergo the stresses imposed
upon it by the foundation and a soil failure would be likely. However,

the strength of the underlying soils undergoing dynamic stresses and

strains is an extremely difficult problem which will not be studied here.

5.6 System ldentification

The dynamic response of a single degree of freedom structural system

can be described by the following single degree of freedom system:

X+ oagx + azi = p(t). (5.14)
Here x is the displacement of the single degree of freedom and p(t) is the

forcing function. The coefficients a, and a

1 represent the stiffness and

2
damping properties of the system. The system identification problem is
normally concerned with determining these properties so that the above
mathematical model will yield results which are in best possible agreement

with experimental data derived from the testing of a prototype structural

system. Formulated in this manner, the identification problem reduces to
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a best-fit problem. Here the parameters a, and 4, will be determined so

1
that (5.14) will yield results that give the best possible agreement with
the results from the nonlinear analyses discussed in thc previous section.
This can be done by using the direct method [13] of system identification.
In this method it is assumed that x(t), i(t) and x(t) are known from the
nonlinear analysis at N discrete points over the time interval t = 0 to

t = T. To obtain the "best fit" values for a, and s, the quadratic

functional

(X. + a,x, + a,x. - pi)2 (5.15)

T(a) = T R

I b~

i

is minimized. Clearly (5.15) corresponds to a least squares curve fit.
P; is the inertial force due to the base accelerations of the earthquake.

Minimizing (5.15) gives the following:

3J(a) _ .. = 2 . _
~§§I—-— 2xixi + 2a1xi + 2a2xixi - 2Xipi =0 (5.16a)
8J(a) _ L, n . e 2 e
aaz = 2xixi + 2a1xixi + 2a2xi - 2xipi = 0. {5.16h)
Summing (5:16a) and (5.16b) over the N time points gives
N 2 N N
a ‘Z X7+ a, D X X, = .Z (xipi - xixi) (5.17a)
ci=1 i=1 i=1
N . N, N
AL NN Ay LooxT = T eyt 4E). (5.170)
i=1 i=1 i=1

Using Cramer's rule,
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1
a = 4 (DI x €22 - D2 x Cl12) (5.18a)
1
a, = 35¢ (C11 x D2 - D1 x C12) (5.18b)
N ) N
Cll = 'Z Xy D1 = 'Z (xipi - Xixi)
i=1 i=]1
N | N
12 = ) xk D2 = ) (k;p; - k%)
i=1 i=1
N 2 2
cz2 = 7} X, det = Cl11 x €22 - Cl2
i=1

Therefore for a single degree of freedom system there exists a closed form
solution (5.18) for the parameters a and ay- In the nonlinear analysis
performed in this chapter there are a total of 12 degrees of freedom.
Modal analysis will be used to uncouple the 12 simultaneous equations of
dynamic equilibrium. Then separate values of a and a, may be computed
for each mode, with each modal equation (3.14) corresponding to (5.14). If
the displacements, velocities and accelerations for each time step from
the nonlinear analysis are stored in the vectors [u], |[U] and [iif, the

transformation to the generalized coordinate tﬂ is accomplished in the

following manner (see [3.12b]):

1

{q} = [A] ~ {u} (5.19a)
{q} = [A}”l {a} (5.19b)
{4} = [A]‘1 {1} (5.19¢)
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Comparing {3.4) and (5.4},

ayp T Wy {5.20a)

a, =28, (5.20D)

2K K X

for the Kth mode,

The above procedure for determining the parameters a and a, was
carried out during Run 2 (medium soil stiffness). This particular run
was chdsen because the values used for the two soil springs represent the
s0il stiffness most likely to be encountered at power piant sites. The
values obtained for ay and a, for the first three modes are shown in
Table 5.7. These values were then used as input for MODAL. The results
for the displacement of the top mass using only the first mode are shown
by the dashed line in Figure 5.10. The results obtained using the first
two modes were almost the same. However, when three modes were included
in the analysis, the displacements became extremely large. This is probably
hecause the third mode participates very little in the motion of the model
and because of this the system identification method computes‘a stiffness

parameter a, which is very low. It would be expected that a, for the

1

for the two lower modes,

1

third mode would be significantly higher than ay
but Table 5.5 shows otherwise. Because of this low stiffness in mode
three the corresponding modal equation makes bogus contributions which
yield ridiculously large displacements. It appears then that using the
first mode only is the most effective way of using this particular appli-

cation of system identification. As shown in Figure 5.10, the displacement

time history yielded by the first mode gives a very good approximation to
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the nonlinear analysis. The maximum shear stress (282 psi} is also
reasonably close to. the value obtained by the nonlinecar analysis (272 psi).
It is therefore concluded that the system identification using the first
mode only gives satisfactory results for both displacement time histories
and maximum stresses and displacements. If a, and a, for the first mode

1 2

are divided by w z and ZBlwl it is found that

1

2
| = ag/u)” = 667 (;.21a)

©
1}

ob)
Il

, = a,/28.0) = 1.493. (5.21b)

Ei shows the effect of including the cracks in the analysis. TFor an
uncracked vessel a; = 1.0. Clearly'ﬁl = 1.0 shows that the cracks increase
the flexibility of the model. In the same way Eé takes into account the
effects of the hysteretic behavior of the cracks by increasing the viscous
damping coefficient. With no hysteretic behavior Eé = 1.0. It would
probably be incorrect to generalize these results for all base acceleration
time histories. By this it is meant that a different synthetic earth-
quake may very well produce different values for El and Eé. Further work

must be done using different base acceleration histories and different

soil stiffness before (5.21a) and (5.21b) could be recommended for use in

design.



Chapter 6

CONCLUSIONS

The main conclusions of this study are:

1. The presence of cracks in the concretc does not significantly
affect the shear stress distribution in a reinforced concrete containment
vessel during and earthquake. The distribution is essentially the same
sinuseidal distribution which exists in elastic thin-walled cylinders.
Because of this, the shear area of A/2 normally associated with elastic
uncracked analysis is used in the nonlinear analysis in stiffness formu-
lations‘and for determining maximum shear stress.

2, In linear seismic analysis rotational degrees of freedom must
be included to obtain accurate displacement time histories, This must
also be true for nonlinear analysis. Therefore, rotational degrees of
freedom were included in all analyses.

3. There is a significant difference in the displacement time
histories obtained by linear {(uncracked) aﬁd nonlinear (cracked) siesmic
analysis., The maximum shear stresses obtained by the two methods are
quite close. The effect of soil-structure interaction can be quite sub-
stantial. As the soils which underly fhe containment become softer the
maximum stresses in the vessel will decrease significantly but maximum
displacement increase by a large degree.

4,  The system identification method provides a good linear approxi-

~60-
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mation to the nonlinear analysis. The resultant displacement time history
gives sufficiently accurate results to be used as input for seismic analysis
of equipment. However, some important design parameters such as maximum
crack slip connot be provided by a linear analysis.

S. The liner distortions and strains which result from the nonlinear
analysis are within allowable values. The stresses in the concrete con-
tainment are either less than the allowables given by ASME or are less
than the stresses which caused failure in the IST tests. The biaxial ten-
sion field which exists in the containment vessel may give dowel splitting
failures at lower shear stresses than in the uniaxial IST tests that were
described here. However, the combined mechanism of IST and dowel action
appears capable of replacing the inclined bars presently used to transfer
shearing forces down to the foundation mat.

It is felt that adequate analytical tools exist for seismic analysis
of cracked containment vessels. More experimental work is needed to in-
vestigate the combined behavior of IST and dowel action, particularly for
the larger #18 bars used in containment vessel construction. It would also
be interesting to see the effects of cycling at low stresses in the range
of 50 psi rather than the 200 psi actually used in the tests so far.

During an earthquake shear as high as 200 psi occur very rarely while

50 psi is quite common. The loading schedule used in past IST tests has
been too regular. The results of seismic analyses show that shear stress
loadings in the containment are very irregular and may change directions
at unexpected places in the hysteresis loop which represents the load-slip
behavior of the cracks. Current IST tests underway include specimens with
cracks which run in both the horizontal and vertical directions and are

pretensioned in both directions to simulate biaxial tension. Input from
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these tests could be used in the nonlinear analysis program developed in

this study to give an improved model of the containment vessel.
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LIST OF SYMBOLS

Cross-sectional area

Shear area

Matrix containing the eigenvectors
Damping matrix

Translational critical soil damping ratio
Rotational critical soil damping ratio
Young's modulus

Compressive strength of concrete

Yield strength of reinforcing bars

Shear modulus

Moment‘of inertia

Cracked moment of inertia

Crack stiffness

Translational soil spring

Rotational soil.spring

Global stiffness matrix

Length of beam segment

Lumped mass matrix

Internal pressure caused by loss of coolant accident
Generalized coordinate for ith mode
Radius of the containment vessel cylinder
Safe Shutdown Earthquake |

Time during seismic analysis

66



-67-

t. Thickness of containment vessel cylindrical wall

LuJT Vector of relative displacements

LGJT Vector of relative velocities

LﬂJT Vector of relative accelerations

Ve Maximum tangential shear stress which may be carried by concret

according to existing codes

vy Design tangential shear stress

v Total shear force at a cross-section

8, Critical damping ratio for the i mode

p Steel reinforcement ratio

b Angle that meridional plane makes with x-axis in a cylinder
{see Figure 2.7)

w0, Natural frequency for the ith mode

A Crack slip

T Shear stress

y Poisson's ratio

A Shear flexibility factor

A Lame's constant



APPENDIX A

1. Description of the Computer Program MODAL

This program computes the response of a linear structure subjected
to base accelerations which model an earthquake. The structure is idealizced
és a vertical cantilever shear beam with the mass lumped at the node points
(lumped mass model). Soil-structure interaction may be included. When
soil-structure interaction is included effective damping ratios for each
mode are calculated using the subregioned energy proportion method. The
natural frequencies and mode shapes are calculated using the Jacobi method.
The uncoupled modal equations are integrated using the linear acccleration

method.

2. Input to MODAL

The input for a sample problem will be given. The model to be input
is the model of the reinforced coﬁcrete containment vessel shown in
Figure 4.3. Soil-structure interaction will be included. The soil springs
K, and X have the values 100,000 K/in and 10 x 101 %-in, respectively.
The shear area and moment of inertia for all beam segments are 150,000 in2
and 9 x 1010 iﬁ, respectively. The shear area is taken as A/2, where A

is the cross-sectional area. The lumped masses are m1 = 30 K—secz/in,

m, =m, = m

2 3 =m

g = 25 K—secz/in and m. = 60 K—secz/in. The lumped mass

4 £

6 2 ~
moments of inertia are I1 = 12 = 13 = 14 = IS = 8 x 10 K-sec -in and

If = 13 x 106 Knsecz—in. The material properties are G (shear modulus) =

1500 ksi and E (Young's modulus) = 3000 ksi. The modal damping ratio for

-68-
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all modes of vibration of the concrete contaimment is .05. The modal
damping ratios for the soil in the translational and rotational directions
are .25 and .05, respectively. The test earthquake shown in Figure 3.4
will be used as the base accelerations. The IBM cards (with FORTRAM for-
mat) to be input after the *DATA card follow. The units are kips, inches

and seconds. The maximum number of degrees of freedom is 12,

CARD 1 (5I5, F10.0)
cols 1-5: 12 (total number of degrees of freedom)
cols 6-10: 3 {number of modes to be included in the analysis)
cols 11-15: 12 (number of time steps in the analysis)
cols 16-20: 10 {number of base acceleration time points)
cols 21-25: 3 (number of Jacobi iterations, the suggested
number is 3)

cols 20-35: .01 (recommended length of time step in seconds)

CARD 2 (8F10.0)
cols 1-10: 30. (ml)

cols 11-20: 8.0E06 (Il)

cols 21-30: 25, (mz)
cols 31-40: §.0EQ6 (12)
cols 41-50: 25, (ms)
cols 51-60: 8.0E06 (I,)

cols 61-70: 25. (m4)

cols 71-80: &.0EQ6 (I4)
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CARD 3 (4F10.0)
cols 1-10: 25. (m
cols 11-20: B.0E06 (15}
cols 21-30: 60. (mf)
cols 31-40: 13.0E06 (I

o
CARD 4 (2F10.0, I5, 2F10.0)
cols 1-10:  1500. (G)
cols 11-20: 3000. (E)
cols 21-25: 1 (1 = soil-structure interaction is to be
included, 0 = no soil-structure interaction)
cols 26-35: 10.0El0 (K¢)

cols 36-45: 100000. (Ku)

CARD 5 (5F10.0)
cols 1-10: 592.5 (length of top beam segment, see Figure 4.3)
cols 11-20: 360. (length of 2nd beam segment)
cols 21-30: 360. (length of 3rd beam segment)
cols 31-40: 360. (length of 4th beam secgment)

cols 41-50: 180. (length of 5th beam segment)

CARD 6 (5F10.0)
cols 1-10: 9.0E10 (moment of inertia of top beam segment)
cols 11-20: 9.0ELO (moment of inertia cof 2nd beam segment)
cols 21-30: 9,0E10 (moment of inertia of 3rd beam segment)
cols 31-40: 9.0E10 (moment of inertia of 4th beam segment)

cols -41-50: 9.0E1Q0 (moment of inertia of 5th beam segment)
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CARD 7 (S5F10.0)
cols 1-10:  150000. (shear area of top beam segment)
cols 11-20: 150000. {shear area of 2nd beam segment)
cols 21-30: 150000. (shear area of 3rd beam segment)
cols 31-40: 150000. (shear area of 4th beam segment)

cols 41-50: 150000. (shear area of 5th beam segment)

CARD 8 (3F10.0)
cols 1-10: .05 (critical damping ratio for concrete contain-
ment vessel)
cols 11-20: .25 (critical damping ratio for translational
motion in underlying soil; Du in Figure 4.3)
cols 21-30: .05 (critical damping ratio for rotational motion

in underlying soil; D¢ in Figure 4.3)

CARD 9 (2F10.0)
cols 1-10: 0. (time in seconds of base acceleration)
cols 11-20: .084 (base acceleration, fraction of g acceleration

of gravity)

CARD 10 (2F10.0)

cols 1-10:  .023 (time in seconds of base acceleration)
cols 11-20: .158 (base acceleration, fraction of g acceleration

of gravity)

CARD 11 (2F10.0)

cols 1-10: .058 (time of base acceleration)
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cols 11-20: .271 (base acceleration)

CARD 12 (2F10.0)
cols 1-10: .083 (time of base acceleration)
cols 11-20: .349 (base acceleration, fraction of g acceleration

of gravity)

CARD 13 (2F10.0)
cols 1-10: .113 (time of base acceleration)

cols 11-20: .44¢ (base acceleration)

CARD 14 (2F10.0)
cols 1-10: .149 (time of base acceleration)

cols 11-20: .509 (base acceleration)

CARD 15 ({2F10.0)
cols 1-10: .186 (time of base acceleration)

cols 11-20: .382 (base acceleration)

CARD 16 (2F10.0)
cols 1-10: .23 (time of base acceleration)

¢cols 11-20: .191 {base acceleration)

CARD 17 (2F10.0)
cols 1-10:  .256 (time of base acceleration)

cols ‘11-20: .058 {base acceleration)
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CARD 18 (2F10.0)

cols 1-10: .3 (time of base acceleration)

cols 11-20: 0. (base acceleration)

3. Qutput from MODAL

For each time step, the relative translational displacement and
inertial force associated with each mass is printed out. The shear stress
in each beam segment is also printed out. Previous to this the global

stiffness matrix, natural undamped frequencies and eigenvectors are printed.
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Sk MODAL %kslesk

THIS PPAGRAM COMPUTES THE EACTHQUAKE RESPANSE CF A LIN
EAR

STRUC TURT THROUGH THE USE OF THE NORMAL MODES TECHNIOU
.

THE MAIN BODY OF THE PROGRAM (WHICH FOLLCOWS DIRECTLY)

READS IN DATA AND CALLS ALL THE SUBRCUTINES. THE SUBRO
UTINES

ARE NAMED STIFF,JACORY,RATIO, INQUAK AND LINACC. STIFF
SETS UP THE _

STIFFNESS MATRIX AND JACOBY COMPUTES THE NATURAL FREQU

ENCIES

AND EIGENVECTORS OF THIS MATRIX. RATIN COMPUTES THE £F
FECTIVE

CRITICAL DAMPING RATIOS FOR FACH MODE TAKING SOQIL~STRU
CTURE

INTERACTION INTO ACCOUNT.

INQUAK READS IN THE EARTHQUAKE ACCELERATION DATA AND C
AMPUTES '

THE CORRESPONDING GENERALIZED FORCF. LINACC NUMERICALL
Y

INTEGRATES THE EQUATIONS OF MOTION USING THE LINTAR

ACCELECATION ASSUMPTICN. A MARE IN DFPTH DESCRIPTION I
S

GIVEFM IN THE SUBROUTINES THEMSE| VES.

COMMON /DYN/GSTIFF{3),GMASS(3),DAMP(3),5Q=NR(12),GE0RC
C E(3),

IDISP(12) ,RKFOR(12)

COMMON /EIG/GLOK(12,12),0MEGA(L2) 44(12,12),°MASS(12),4
C TR(12,12) |

COMMON /PROP/AS(5)RIZ(5),SL(5),S1Z(5)

DIMENSION D{5)

DIMENSION BETA(5)

DIMENSION A1(3},A2(3)

N IS THE NUMBER OF DEGRETES DF FREEDOM. NM IS THE NUMBS
R

OF MODES TO BE SUPERIMPNSED. H IS THE TIME STEP AND NH
IS THE

TOTAL NUMBER OF TIME STEPS IN THE ANALYSIS. NTP 1§ THE

NUMBER OF GROUND ACCELERATION POINTS READ IN SUBRDUTIN
E

INQUAK. ®MASS IS THE LUMPED MASS VECTOR,G IS THE SHFEAR
MCDULUS

+AS 1S THE SHEAR AREA AND SL IS THE LENGTH NF T4CH SHT
AR

BEAM SEGMENT, IF [ROT=1 SOIL STRUCTURE INTERACYICN IS

INCLUDED. ROTK IS THE ROTATIONAL SOIL SPRING AND TRANS
K :

IS THE TRANSULATIONAL SOIL SPRING. K IS THE NUMBER OF

JACOBY ITERATIONS AND BETA IS THg CRITICAL DAMPING RAT
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10,
T=TIME 0OF ANALYSIS.

READ(S,100 NyNMyNH,NTP,K,.H

READ{5,11) {RMASS{IV,1I=1,8)

READ{5,11) (RMASS(I),I1=9,12)

READ(5,12) GysEs IROT4ROTK, TRANSK

READ (5,14) (SL{I},I=1,5])

READ(5,14) (RIZ{I)41=1,5)

READ(5,14) (AS(T1),I=1,5)

READ(5,14) BETA,CTRANS,CROT

NTHETA=1

T=O’

ICOUNT=0

JCOUNT=0

IFLAG=0

NS=N

IF ¢IR0OT.EQ.O) GO TO 20

NS=N-2

CONTINUE

DO 21 I=1,NM

D(1)=BETA

CALL STIFF{NSsIROT+ROTK,TRANSK,G,NTHETA,E)
CALL JACOBY(N,K)

IF (IROT.EQ.O0) GO TO 69

CALL RATIOD(N,BETAsCTRANSCROT,TRANSK,,ROTK)
CONT INUE

DO 2 I=1,NM

DAMP{TI)=2.%D(1)*0OMEGA(T)}
GSTIFF(I)=0OMEGA(T1)*%2

GMASS(1)=1.0D0

WRITE(64+48) (GSTIFF(I1),I=1,NM)

WRITE(6,48) (DAMP{TI),1=1,NM)
FORMAT(/10X+5E14.7)

DO 4 I=1,NH

CALL INQUAK{(N,T4NTP,ICOUNT,NTHETA,NM, IROT)
CALL LINACCE(N,NM,H,T,JCOUNT)

T=T+H

CONT I NUE

FORMAT(515,3F10.0)

FORMAT{(8F10.,01}

FORMAT{2F10.0,1542F10.0)

FORMAT{(15)

FORMAT (5F10.0)

STOP

END

SUBROUTINE INQUAK{NT ¢NTPyTCOUNT,NTHETA 4NM, IRQOT)
COMMON /DYN/GSTIFF(3) ,GMASS(3),DAMP(3),EQFOR(12),GFORC
C E{(31,

10ISP{12),RKFOR({12)

C OMMON /EIG/GLOK(12,12),OMEGA(lZ),A(12,12).RMASS(12),A
C TR(12,12)}

DIMENSION GRACC(20),TIME(20)
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THIS SUBROUTINE INTTIALLY READS IN THE GROUND ACCEL=RA
TION

HISTORY AND KEEPS TRACK OF THE CURRENT VALUE. THE GENE
RAL IZED

FORCE WHICH APPEARS 0ON THE RHS DOF THE UNCOUPLEN MODAL

FQUATIONS IS THE VECTOR GFORCE WHICH IS COMPUTED HERE,

GFORCE=—ATR*RMASS*GRACCyWHERE ATR TS THE TRANSPOSE OF
THE

MODAL MATRIX AND RMASS IS THE LUMPED MASS VECTOR,

IF (ICOUNT.EQ.1) GO 70 3
ICOUNT=1

DO 1 I=1,NTP

READ(5,11) TIMC(I),GPACC(IS
CONTINUF

DO 2 I=14NTP
GRACC(1)=386.4%GRACC(I)
CONTINUE

NOW FIND THE CURRENT VALUE (FDR TIME=T) 0OF THE GROUND
ACCELERATION X.

1F {(T.GT.TIME(NTP)) GO TQ 7
[=1
=T+1

IF {T.GT.TIME(T)) GO TO 4

IF {TLT.TIME{I-1)) GD YO 4
SLOPE=(GRACC(I)-GRACC(I-L))I/{TIME(I)-TIMF(I-1))
X=GRACC(I-1)+(T-TIME{I-1))*SLOPE

Nl=N-1

DO 8 I=1,N1,2

EQFOR(I ) =—RMASS{T)=*=X

EQFOR (1+1)=0.

CONTI NUE

DO 6 T=1,NM

GFORCE(I)=0,

b0 6 J=1,N

GFORCE(TI)=ATR (T ,J)*EQFOR({J}+GFORCE(T)

CONT I NUFE

RETURN

FORMAT(2F10.0)

END

SUBRQUTINE LINACC(NyNM,H,T, JCOUNT)

IMPLICIT REAL =4 (M)

COMMON /DYN/GSTIFF(3),GMASS(3),DAMP(3), ZQFOR(12),GFORL
C F(3),
1DISP(12).RKFOR(12)

COMMON /EIG/GLOK(12412) OMEGA(L2)+2(12,12)4RMASS(12),4
£ TrR(12,12)

COMMON /PROP/AS(5),RTIZ(5),5L{5),51Z(5)

DIMENSION CFORCE{12),RINFOR(12),4DELOSP(3)4D=LVEL(3),DF
C LACC(3),

IMDISP({3),MVFL(3), MAFC(B),B(IZ 12} ,C012,123)4ACC{12),4VEL
C (12)
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THIS SUBRQOUTINE USES THE ASSUMPT ION THAY THE ACCELERAT
ICN :

VARIES LINEARLY IN EACH TIME STEP TO COMPUTE THE CHANG
ES

IN VELOCITY AND DISPLACEMENT FOR EACH UNCOUPLED MODAL

FQUATION, RMASS AND GLOK ARE THE ACTUAL STRUCTURAL LUMP
ED

MASS VECTOR AND GLOBAL STIFFNESS MATRIX.THE GENERALTZE
D

MASS,STIFFNESS AND DAMPING ARE THE GMASS,GSTIFF AND DA
MP VECTORS.

THE RELATIVE DISPLACEMENTS AT TIME T ARE CONTAINED IN
THE

DISP VECTOR.

MDISP,MVEL AND MACC ARE VECTORS CONTAINING THE DISPLAC
EMENTS

+VELOCITY AND ACCELERATION AT TIME T FOR FACH MODAL EQ
UATICN.

RKFOR IS THE VECTOR OF SHEAR FORCES IN EACH STCRY,DELD
SP,

DELVEL AND DELACC ARE VECTORS WHICH CONTAIN THE CHANGE

IN

DISPLACEMENT,VELOCITY AND ACCELERATION FOR EACH MODE.

CFORCE AND RINFOR CONTAIN THE TOTAL DAMPING AND INERTI
AL FORCES

AT TIME T,EQFOR IS THE INERTIAL FORCE DUE TO THE EARTH
QUAKE

AND GFORCE 1S THIS FORCE GENERALIZED IN THE UNCOUPLED

EQUATIONS,

AT TIME T=0 INITIALIZE DISPLACEMENTS,VELOCITIES AND AC
CELERATIONS.,

IF (JCOUNT.GT.0) GO TO 300
JCOUNT=1

DO 1 I=1,N

DISP(I)=0.

RKFOR(1)=0.

RINFOR(I1=0.

CONTINUE

DO 71 I=1,NM

MDISP(I1=0.

MVEL (1)=0,

MACC( 1)=GFORCE(I)/GMASS(T)
DELDSP(11=0.

DELVEL{I)=0.

DELACC(1)=0.

CONTINUE

60 TO 400

FOR EACH TIME STEP SOLVE FOR DELACC. THEN, USING THE L
INEAR
ACCELERATION ASSUMPTION, CCMPUTE DELVEL AND DELDSP.
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DO 2 I=1,NM
DELACCUI)=(GFORCE(TI-MACCCTI)-DAMP{T)={MVEL{T)+H=MACC (]
c )=
IGSTIFF{IIR(MDISPLI)+MVEL (T XH+MACC (T IR Hx%2/2.050) 1) /1
C 1.0E0+

2DAMP(I)*H/2.0EO+GSTIFF{I}*(H*x*2/6.0EQ})1}
DELDSPOIV=MVEL{ T RH$(H®= %2 /6. 0EQ0) *{(3.0BE0XMACC(TY+DELACC
¢ (m

DELVEL(II=(H/2.0E0)%(2.0EQ0*MACC(I}+DELACC(I))
MDISP(I)=MDISP(I)+DELDSP(I)

MVEL(I)=MVEL(T)+DELVEL(T)

MACC(I)=MACC(II+DELACC(I)

CONT INUE

NOW COMPUTE THE TOTAL RELATIVE DISPLACEMENTS {(DISP),

TOTAL INERTIAL FORCES {RINFOR) AND TRTAL SHEAR FORCES

{RKFOR} AND PRINT THESE QUANTITIES OUT.

DISP=A%XMDISP

RINFOR=RMASS*A*OMEGA®MDISP.RKFOP (SHEAR FORCE) IS THE

SUM OF ALL INERTIAL FORCES (RINFOR) ABOVE AND INCLUDIN
G

MASS 1.

DO 3 1=1,N

DISP(1)=0.

DO 3 J=1,NM
DISP{I}=A(I,J)*MDISP(J)+DISP(])
CONTI NUF

DO 4 I=1,4N

DO 4 J=1,NM
B{I,J}=RMASS(I)*A(I,J)

CONT INUE

DO 5 I=1,4N

DO 5 J=1.+NM
C{IyJ3=BLT,JY*OMEGA(J)**2
CONTINUE

DO 9 I=1,4N

RINFOR{T}=0.

DO 9 J=1,NM ‘
RINFOR{II=CHTI,4J)=MDISP(JY+RINFOR( 1}
CONT TNUE

DO & I=1,5

RKFOR{I)=0,

L=2%1-1

D0 6 J=l,L,2
RKFOR(TI=RINFOR{J)+RKFOR(I)
CONT INUE

DO 68 1=1,5
RKFOR(T)=RKFOR{II/AS(I)
CONTINUE

WRITE(6410) T

pbo 8 I=1,5

L=2%1-1
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WRITE(6,11) DISP(LI,RINFOR(L),RKFOR(I)

8 CONTINUE

10 FORMATU(/LOX ' TIME=?,ET7,2,"

88

14

13

18X+ *INERTIAL FORCE',6X,*SHEAR STRESS'/)
11 FORMAT(35X,%10.3+10X,E10.3,10X,F10.3)

RETURN
END
SUBROUTINE STIFF{N,IROT,ROTK, TRANSK,G4NTHETA, E)

THIS SUBRGOUTINE COMPUTES THE GLOBAL STIFFNESS MATRI

LOK.

SECONDS* 95Xy *OISPLACEMENT *,

Xy G

SHEAR AREA AND ROTATIONAL DEGRFES OF FREEDOM ARE INCLU

DED
IN THE VERTICAL CANTILEVER BEAM MODEL.

COMMON /EIG/GLOK(12,12),0MEGA(12)sD(12,12)yRMASS{12),A

C

TR(12.12)
COMMON /PROP/AS(5),RIZ(5),SL(5),S1Z(5}
DIMENSTON TK{10})+ELK(4,4),VK(12)
DD 88 I=1,45
TKOIY=SL{T)/(G*AS(T))
TK{II=14/TK(T)
CONTINUE
NN=N
N1=N-1
NN=N
I (IROT.EQ.O0) GO TO 14
NN=N+2
DO 13 I=1,NN
DO 13 J=1,NN
GLOK(I,J)=0.
CONTINUE
DO 10 I=1,N1,2

SET UP THE BEAM ELEMENT STYIFFNESS MATRIX,SLK(4,4%)

SH={3 #FEXRTZ{(I+1)/72)/SLI{I+1)/2)=%3)/TK({I+1)/2)
ELK(L,y1)1=12*EXRIZ((T+1)/72}/SLC(TI+L}/2) %=
FLK(T] 32)=—6.*E*RIZ(I(I+1)/2)/SLE{I+1V/2)%%2
ELK(l43}=—ELK(1,1}

ELK(lfq’):ELK( 112)
ELK(Z242)=4*EAXRIZ((TI+13/72V/SL({1+1)/2)
ELK{242)=ELK{2+2)%(1.4+5SH)
ELK{2.,3)=—ELK(1l,2)

ELK(2 34)=2.%E%RIZ{(I+1)/2)}/7SLLLI+1)/2)
ELK(24)=ELK(2y4)*{1.—-2.%5SH)
ELK(3,43)=ELK{1,1})

ELK(3,4)=—ELK(1,2}

ELK{4,4)=ELK(2,2)

DO 3 K=1,4

DO 3 J=1lsK

ELK(J ¢ KY=ELKL{JI K}/ (l.¥+4,%SH)
ELKIK 4 J)=ELK(J K]

GLOK(T 3T =ELK{L,1)4GLOK(I,I)
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GLOK(I+1sI1+41}=CLK(2,2V+GLOK{(I+]1,1+1)
GLOK(I+L,11=FLK(2,1)+6GLOK(I+1,])
GLOK{(I+2,I)=ELK(3,1)
GLOK(T+#3,1)=ELK(4,1)
GLOK(I+2,141)=ELK(3,2)

GLOK( I+3, [+11=ELK(4,2])
GLOK({TI+2,1+2)=ELK(3,3])
GLOK(I+3,1+2)=ELK (4,3}

GLOK( 143, I+3)=ELK(4y4)

CONTINUE

DO 11 I=1,NN

DO 11 J=1,NN

GLOK{I,J)=GLOK{J, 1)

IF (IROT.EQ.Q) GC TO 45

IF IROT=1 THEN SOIL STRUCTURE INTERACTION IS TO BE INC
LUDED,

GLOK{NN-1,NN-1) sGLOK({ NN—1,NN-1)+TRANSK
GLOK{NNyNN)=GLOK{NN4NN)+ROTK

RETURN

END

SUBRCUTINT RATIO(N3,RETA2,CTRANS,CROT,TRANSK,ROTK]}
COMMON /ODYN/GSTIFF(3) 4GMASS{3),DAMP{3), SQFOR(12),GFORC
C £(3),

1DISP(12),RKFOR(12]}

COMMON /EIG/GLOK(12,12),0MEGA(12),8(12,12),RMASS(12),4A
C TR(12.12) '

COMMON /PROP/AS(5)4RIZ(5),SLI5),STZ(5)

DIMENSION V(5},RMOM(5)

DIMENSION EN{12,12),ET(12),8(12)

THIS SUBROUTINE IS CALLED ONLY IF SOIL STRUCTURE INTER
ACT TON

IS 7O BE INCLUDED IN THE ANALYSIS. SINCE THE CRITICAL
DAMPING

RATIOS IN THE STRUCTURAL AND SOIL DEGREES OF FREFDOM U
SUALLY

DIFFER BY A LARGE AMOUNT SCMt CCMMON MODAL DAMPING vaL
UES

ARE REQUIRED. THE SUBREGIONED ENERGY PROPORTION METHOD

[S USED TO DO THIS. THE STEPS INVOLVFD IN THE METHOD A
RE

FXPLAINED BELOW.

FIRST SET UP THE VECTOR B WHICH CONTAINS THE CRITICAL
DAMPING

RATID FOR EACH MASS. THE DAMPING RATIO FOR &LL THE STR
UCTURAL

MASSES IS BETA2. THE TRANSLATIONAL SOIL DAMPING RATIOD
IS CTRANS ‘

AND THE ROTATIONAL SOIL DAMPING RATIN IS CROT,

NM=12
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N=N3-2

N2=N/2

DO 100 I=1,N
BUI}=BETAZ
CONTINUE
BIN+1)=CTRANS
B{N+2)=CROT

NOW COMPUTE THE STRAIN ENERGY IN THE ITH MASS, THE STR
AIN

ENERGY FOR EACH LUMPED MASS FOR EACH MODE IS STORED IN

THE MATRIX EN.THE INTERNAL MODAL STRAIN ENERGY IS ONE

HALF THE PRODUCT OF THE AVERAGE INTERNAL FORCES AT THE

LUMPED MASS AND THE MODAL ODISPLACEMENT.

DO 1 J=1,NM

DO 2 TI=1,N2

SK=SLA{T}/{G*AS(1}]}

XF=0,

EI=E*RIZ(TI)

S=0.

T=0,

C=0.

AA=0Q.

88=0.
DET=SL(T)%%4/ (12 HEI®*2)+SL(II*SK/ET+S*SL(I)/EI+Cx*
LOSL{I)**3/ET+SK+#SI=T*SLOI)*¥x2/E]-T**2
RMOM(I)=(CA(2%T# L, J)=A(2%]-1,J) )= (SL{T)*=2/FT+T)+A(2%*]
C WJ)*

LOSLCOT ) *=%3/ET4+SK&SI+A( 2% 42, Y= (SLITI*=*3/ET+T%SL{1])
2-SK-S))/DET
VET)=0(A(2%T-1,J1—A(2%T+1,J))*(SLOT}/ET+C)-A(2*],J)=(S
C L{I)*x%x2 :
1/ (2.%E1)+T )+A(2%1 42, P *(T=SL(T)*%2/(2.%E1)=-SL{I)*C)) /D
C ET

EN(2%T-140)=VT)#%2%5K/2,

EN(2*T 3 J)={ 1/ (2. %EXRTZ{T )} IR(RMOM{T }kx2%SL (T )+RMOM(T)

C *=v(I)

IHSL(T ) x*24 V(I ) x*2%SL (T1*%3/3,)
EN(2%T,J)=EN(2% T, J)+RMOM (T ) **2%UL*XF/ 2. +RMOM{ [ )%V (]} %R
€ B+

TV(IY%E2%AA

CONT INUE

EN(N+1,J}=TRANSKXA{N+1,J)**2%,5

ENEIN+24 JI=ROTKHRA(N+2, J)*%2%,5

CONT INUE

COMPUTE THF TOTAL ENERGY IN EACH MCDE AND STORE IN VEC
TOR
ET.

DO 7 I=1,NM
ET{1)=0.
PO 7 J=1,NM
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ET(I)=EN(J, T} +ET(T)
CONTINUE

NOW COMPUTE THE MODAL DAMPING RATIOS (STOFED IN VECTOR
D).

DO 8 I=1,NM

D{I}=0.

DC 8 J=1,NM

DUII=EN{JLII%BCJ)4D(1)

"CONTINUE

DO 13 1=1,NM

CI)=DCI}/ET(1}

CONTINUE

DO 9 I=1,NM

WRITE(6,12) 1,D(1)

CONTINUE

FORMAT(/10X, 'MODAL DAMPING FOR MODE',I1,4%=%,E10.3)
RETURN

END

SUBRDUTINE JACOBY(N,K)

COMMON /DYN/GSTIFF(3),GMASS(3),DAMP(3),EQFDOR(12}),GFCRC
C E(3),

1DISP(12),RKFOR(12)

COMMON /S1G/GLOK(124120+0MEGA(L12) y2(12412)4RMASS(12)1,4A
C TYR(12,12)

DIMENSION EM(12),5TB{12+412),7(12,12),77T¢12,12),8(12.12
cC ),

15T¢(12,12),A1(12,12)

DIMENSION C(12,12)

THIS SUBROUTINE CALCULATES ETIGENVECTORS AND EIGENVALYUE
S

FROM A GIVEN STIFFNESS MATRIX AND MASS VECTOR, N IS TH
E

NUMBER 0OF STRUCTURAL CEGREES DF FREENOM IN THE SYSTEM,

EM IS THE MASS VECTOR AND ST IS THE STRUCTURAL STIFENE

5SS MATRIX.

ONLY THE STRUCTURAL PORTION OF THE GLOBAL STIFFNESS MA
TR 1X

1S DIAGONALIZED SO THE FREQUENCIES AND MODE SHAPES ARC
FOR

& FIXED BASE STRUCTURE.

DO 75 I=14N

DY 75 J=14N
ST{1,J)=GLOK(1,4J)
CONTINUE

D0 76 I=1,N
EM{T)=RMASS({T)
CONTINUE

CALL PRINTS5(ST,N)
CALL UNIT(AL1,N)



OO0

QOO0 0

OO0

YOO

VIO OO0

10

12

14

30

32

33

-83-

STB=U1/SQRTH{EMI ) *{ST)*(1/SQRT(EM}}. THE STIFFNESS MATR
IX

ST IS TRANSFORMED INTO A FORM IN WHICH THE JACCBY METH
0D

CAN BE APPLIED.

DO 10 I=1,N

EM{T)=SQRT(EMI(I})

DO 12 I=1,4N

DO 12 J=1,N

STB(I yJ)=ST(I,J)/(EM(JI*EM(T)}
DO 20 KK=1,K

DC 15 I=1,N

DO 15 J=I4N

IF (I-d) 14,15,14

T IS A UNIT MATRIX SXCEPT FOR T(I+1)9T(JyJ),yT(I,d),

AND T(J,1). BY PRE AND POST MULTIPLYING ST8B BY T THE

ELEMENT ST8(I,J) IS SET=0. THIS ACTUALLY A SERIES OF

ORTHOGONAtL TYRANSFORMATIONS YO DIAGONALIZE STB.AFTER ST
B

IS DIAGONALIZED IT WILL CONTAIN THE EIGENVALUES ON ITS

MAIN DIAGONAL.

IF (ABS{STB(I4J)).LT.1.0E-10) GO TO 15
CALL UNIT(T,N)
DIFF=STB(I,1)-STB(J,4J)

IF (ABSIDIFF)-.00005D0% 30,30,32
TH=.785398E0

GO TO 133

THC=2 .QEO*STB(I,J}/DIFF
TH=.5EQ*ATAN(THC)

T{I1,1¥=COS(TH)

T(JvJ)=T(Ivl,

TUIyJY¥Y==SINATH)

T(JyIWZ-T(I'J)

CALCULATE THE TRANSPOSE OF T (TT).
CALL TRA(T,TT,N)
TT%STB%T=STRB

CALL PRMULT{STB,TH,I,4J+N)
CALL POMULT{STB,TH,1,JsN)

A1%T=Al. Al STORES THE RESULTS OF

T1%T2%T3, ... TKo( THERE ARE K ITERATIONS) . ALl=SQRT(EM)*A

WHERE AIS THE MODAL MATRIX.T1 IS T FOR THE FIRST ITERA
TION ,

T2 1S T FOR THE SECOND ITERATION UP TO TK FOR THE KTH

ITERATION,

CALL POMULT(A1,THy1,d,N)}
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CONTINUE

THE MODAL MATRIX A=(1/SQRT(EM))*A1.THE FIPST ROW QOF A
IS NORMALTZED 7O 1

DO 18 J=1,N

DO 18 I=1,N
A(TeJ)=A1(T,J)/EM(T)
CONTINUE

DO 50 I=1,N
OMEGA(TI)=SQRT(STB(I,I})
CONTINUE

SORY FREQUENCIES AND EIGENVECTORS STARTING FROM MQODE 1
(LOWEST]
AND GOING UP TO MODE N.

NN=N—1

DO 80 I=1,NN
L=1+1

DO 9 K=L,N

1F (OMEGA(K).GT .OMEGA(I)) GO TO 9
WX=0MEGA(T)
OCMEGA{1)=0OMEGA(K)
OMEGA(K)=WX

DO 300 II=1,4N
AX=8(11,1}
A(IT,1)=A0I1,K)
A(TIT,K)=AX
CONTINUE
CONTINUE

CONTINUE

PRINT OUT THE NATURAL FREQUENCIES AND EIGENVELTORS,

DO 11 I=1,N

WRITE(64122) [,0OMEGA(])
FORMAT(/10X," FREQUENCY'",15,"=",F10.2)
CALL PRINTS(A,N)

CALL TRA(A,ATR,N)

RETURN

END

SUBRCOUTINE MULT{A,B,C,N)

DIMENSION A(124+12),8(12+12)4C(12,412)
DO 10 I=1,N

DG 10 J=1,N

C{1,J)=0.0%0

DO 10 L=1,N
CUI,J)=ClIsd)+ACT,L)%*B(L,J)}
RETURN

END

SUBRDUTINE UNIT(A,N)
DIMENSION A(l12,12)
DO 10 I=1,N
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DO 8 J
A(I,J)
A(T,1)
RETURN
END
SUBROUTINE TRA(A,B,N)

DIMENSION A(12,121,8(12,12)

L3 10 I=14N

DO 10 J=1,N

B{I,J)=A(J,1}

RETURN

END

SUBRCUTINE POMULT(STR,THyI4JyN)

DIMENSTION STB{(12,121,C(12,2)

DD 1 I1=1,N
CCIT,19=STB8(I1,1)*%COS(THI+STB(TI1,J)I%SIN(TH)
CaIl+20=STBAIT,J)*COS(THI=-STB{IT, I)*SIN(TH)
CONTINYE '
DO 2 TI=14N

STB(II,1)=C(1I1,1)

STB(IT,J¥=C{11,2)

CONTI NUE

RETURN

END

SUBPOUTINE PRMULT(STR,TH,I,yJyN)

DIMENSION STB(12,12),C(2,12)

DO 1 JJ=1,4N
C{lsJJY=STBOI,,JJ)*COSCTH)I+STR(I 4 JIIHSIN(TH)
C(24JJ1=STBLI s JJ)}=COS{THI=STB(I,+JJIRSINITH)
CONTINUE 4
Pa 2 JJ=1,N

STB(ILJJ)I=C(1,J4J)

STR(JJJ)=C(2,4J)

CONT INUE

RETURN

END

SUBRCUTINE PRINTS5{A,N}

DIMENSION A(12,12)

WRITE(6,20)

DO 10 I=14N

WRITE(6,12) (A(I,J),J=1,N]}
FORMAT(10X,10F10.3) ‘

FORMAT(//)

RETURN

END

o

L,
C.0E0
1.0E0



APPENDIX B

1. Description of the Computer Program SAC

This program performs the seismic analysis of cracked nuclear contain-
ment vessels. Only horizontal cracks are taken account of. Because shear
transfer across cracks exhibits stiffness characteristics which change with
the slip at the crack plane, the seismic analysis of cracked containment
vessels is nonlinear. The structure is idealized as a vertical cantilever
shear beam with the cracks contributing additional shear flexibility. The
mass of the vessel is lumped at the node points. Soil-structure inter-
action is included through use of translational and rotational springs
which model the stiffness of the underlying soil. The dampiﬁg properties
of the structure and soil are included by assigning critical damping ratios
for each mode of vibration. Effective critical damping ratios for each
mode (that include the large soil damping capacity) are calculated through
use of the subregioned energy proporticn method. The symmetric fully
populated damping matrix is generated from the critical damping ratios in
the manner shown in section 4.4. Because the model is nonlinear direct
numerical integration of the equations of motion is performed using the

1inear acceleration method.

2. Input to SAC

The same sample problem will be used as in Appendix A. The input is
similar except that the additional information of crack spacing and crack

stiffness will be input. It will be assumed that the horizontal cracks

~-86-
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are spaced at 5'-6'". The crack stiffness is input by specifying the six
pairs of values for shear stress and crack slip which define the second
cycle hysteresis loop (seé Figure 5.6). Both cracked and uncracked values
for the moment of inertia must be input. The "uncracked" moment of
inertia occurs in the concrete between the horizontal cracks (see section
5.4). The cracked moment of inertia is the moment of inertia supplied
solely by the longitudinal reinforcing bars which cross the open horizontal
cracks. The maximum number of beam segments which may be used is 5. This
could be increased by changing the pertinent DIMENSICN statements (see
source listing of SAC). The units are kips, inches and seconds. The
times for which output is printed out may be controlled as described in

the next section,

CARD 1 (2F10.0, 2I5)
cols 1-10: .0025 (recommended time step size)
cols 11-20: ,25 (duration of analysis)
cols 21-25: 5 (number of beam segments)

cols 26-30: 10 (number of base acceleration time points)

CARD 2 (I5, 2F10.0)
cols 1-5: -1 (=1 if soil-structure interaction is to be
included, = 0 if not)
cols 6-15:  10.0E10 (K¢)

cols 16-25; 100000, (Ku)

CARD 3 (3F10.0)

cols 1-10: .05 (critical damping ratio for the containment)



CARD

CARD

cols 11-20:

cols 21-30:

4  {3F10.0)
cols 1-10:
cols 11-20:

cols 21-30:

5 (2I5)
cols 1-5:
cols 6-10:
cols 11-15:
cols 16-20:

cols 21-25;

CARD 6 (4F10.0)

CARD

cols 1-10:
cols 11-20:

cols 21-30:

cols 31-40:

7 (4F10.0)

cols 1-10:

-88-

.25 (critical damping ratio for translational

motion in underlying soil)

.05 {eritical damping ratio for rotational motion

in underlying soil)

1500. (G, shear modulus, ksi)

3000, (E, Young's modulus, ksi)

837. (RC, radius of the containment vessel cylinder)

9 (number of cracks
6 (number of cracks
6 (number of cracks

6 (number of cracks

93]

(number of cracks

in

in

in

in

in

top beam segment)
2nd beam segment)
3rd beam segment)
4th beam segment)

bottom beam segment)

150000, (shear area of top beam segment)

5902.5 {length of top beam segment)

9.0E10 (uncracked moment of inertia of top beam

segment)

2.0E10 (cracked moment of inertia of top beam

segment)

150000. (shear area of 2nd beam segment)



CARD

CARD

CARD

CARD

cols 11-20:

cols 21-30:

cols 31-40:

8 (4F10.0)

9  (4F10.0)

10 (4F10.0)

cols 1~10:

cols 11-20:

cols 21-30:

cols 31-40:

11 (8F10.0)

cols 1-10:

cols 11-20:

cols 21-30:
cols 31-40:

cols 41-50:

cols 51-60:

cols 61-70:

cols 71-80:
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360. {length of 2nd beam segment}

9.0E10 (uncracked moment of inertia of 2nd beam
segment)

2.0E10 (cracked moment of inertia of 2nd beam

segment)

(same as CARD 7 for 3rd beam segment)

(same as CARD 7 for 4th beam segment)

150000. (shear area of bottom beam segment)

180. (length of bottom beam segment)

9.0E10 (uncracked moment of inertia of bottom
beam segment)

2.0BE10 (cracked moment of inertia of bottom beam

segment)

30. (m

P
8.0E06 (1)

25. (m,)

8.0E06 (I,)

25. (mg)
8.0E06 (1)

25. (m

47

8.0E06 (14)
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CARD 12 (4F10.0)

cols 1-10: 25. (ms)
cols 11-20: 8.0E06 (15)
cols 21-30: 60. (mf)
cols 31-40: 13.0E06 (If)
CARD 13 (2F10.0)
cols 1-10: .03 (Tl in Figure 5.6)

cols 11¥20: .00627 (Al in Figure 5.6)

CARD 14 (2F106.0)
cols 1-10: .110 (Tz in Figure 5,60)

cols 11-20: .005 (AZ in Figure 5.0)

CARD 15 (2F10.0)
cols 1-10:  -.00053 (1, in Figure 5.6)

cols 11-20: .0037 (AS in Figure 5.6)

CARD 16 (2F10.0)
cols 1-10:  -.03 (r, in Figure 5.6)

cols 11-20: -.0027 (A4 in Figure 5.6)

CARD 17 (2F10.0)
cols 1-10: -.110 (rS in Figure 5.6)

cols 11-20: -.005 (AS in Figure 5.6)



CARD

CARD

CARD

CARD

CARD

CARD
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18 (2F10.0)
cols 1-10: .00053 (T6 in Figure 5.6)

cols 11-20: -.0037 (A6 in Figure 5.6)

19 (I5)

cols 1-5: 3 (number of printout intervals)
20 (3F8.0)

cols 1-8: .10 (1st printout interval)

cols 9-16: .20 (2nd printout interval)

cols 17-24: .26 (3rd printout interval)

21 (3F8.0)

cols 1-8: .025 (time between printouts in lst interval)
cols 9-16: .01 {time between printouts in 2nd interval)

cols 17-24: .025 (time between printouts in 3rd interval)
22 (2F10.0)

cols 1-10: 0. (time in seconds of base acceleration)
cols 11-20: .084 (base acceleration, fraction of g, accelera-

tion of gravity)

23 (2F10.0)
cols 1-10: .023 (time in seconds of base acceleration)

cols 11-20: .158 (base acceleration)



CARD

CARD

CARD

CARD

CARD

CARD

CARD

24  (2F10.0)

cols 1-10: .058
cols 11-20: .271
25 (2F10.0)

cols 1-10: .083
cols 11-20: .349
26 {2F10.0)

cols 1-10: L1113
cols 11-20: 446
27 (2F10.0)

cols 1-10: . 149
cols 11-20: .509
28 (2F10.0)

cols 1-10: .186
cols 11-20: .382
29 {2F10.0)

cols 1-10:

cols 11-20:

30 (2F10.0)

cols 1-10:

cols 11-20;

(time

{base

(time

(base

(time

{base

(time

(base

(timé

{(base

-972-

in seconds of base

acceleration)

in seconds of base

acceleration)

in seconds of base

acceleration)

in seconds of base

acceleration)

in seconds of base

acceleration)

191 (base acceleration)

.058 (base acceleration)

acceleration)

acceleration)

acceleration)

acceleration)

acceleration)

.23 (time in seconds of base acceleration)

.256 {time in seconds of base acceleration)
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CARD 31 (2F10.0)

cols 1-10: .3 (time in seconds of base acceleration)

cols 11-20: 0. (base acceleration)

3. OQutput from SAC

The times at which output is desired is controlled in the manner shown
by CARDS 19, 20, 21. CARD 19 inputs the number of printout time intervals.
In this case the first printout interval is from t = 0 to t = .10 seconds.
In this interval the time between printouts is .025 seconds so the first
three printouts occur at t = 0, .025, .05, At t = .10 the time between
printouts changes to .0l seconds. Printouts occur at t = .10, .11, .12
.... At t = .20 the time between printouts changes back to .025 seconds
again. The maximum number of different printout time intervals which may
be specified on CARD 19 is 10.

For each printout time the translational displacements, shear stresses
and crack displacements in the containment are printed out. 1In the dis-
placement column the top number corresponds to the displacement of the top
mass, the second number corresponds to the displacement of the second mass
and so on down. The shear stress and crack slip columns have the values
for the top beam segment in the first row, the second beam segment values
in the second row and so on. After the analysis is completed the maximum
values for shear stress, bending stress, displacements (including rota-
tional and soil degrees of freedom) and crack slip are output. Units are

kips, inches and seconds.
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=** SAC J':“’,.*’,'( ,».»‘»
~
Lo

TR AR RR
THIS PROGRAM,NAMED SAC (SEISMIC ANALYSIS INCLUDING CRA

CKS Y,

PERFORMS THE SELSMIC ANALYSIS DOF CRACKED NUCLEAR CDONTA
INMENT

VESSELS. THFE CONTATNMENT VESSEL IS MODELED BY 4 VERTIC
AL

CANTILEVER SHEAR BEAM WITH 5 LUMPED MASSES. AT E2ACH MA
SS

PCINT 2 DEGREES OF FREED(OM EXIST,ROTATIONAL AND TRANSL
ATIONAL,

THE SOIL UNDERLYING THE CONTAINMENT VESSEL FCUNDATION
I

MODELED BY 2 SPRINGS, TRANSLATIONAL AND ROTATIONAL, IN
ALt ‘

THERE ARE 12 DEGREES OF FREFDOM.

CCMMON /DYN/RMASS(IZ)«DAMP(12,12),CK(6)7CFORCE(12),EQF

c 0OR(12),
IRKFOR(L2)+OLOFOR(12),RINFOR(12)4ACC(12),4DISP(12),VEL(L
cC 2,

20LDVEL(12),0LDACC(12),SHEAR(12),0LDSHR(12),RFL(12),1LD
C  AMP(L12),
3SHEARK(5) 46GLOK(12,12) ¢ NCR(5),0LOCK(6) 4NLDIPD(5),0LDREL
€ (12),RK{(8)

4y TK(6),0LDISP{12)

COMMON /EIG/OMEGA(L2)+A(12,12),ATR(12,12),D(12)

COMMON /B/RLOAD(6),DELTA(E) ,IPD(5)4NCYCLE(S5),RLOADN(S,
cC 61,

IDELTAN(5,6)

COMMON /PROP/AS(5),RIZ(5)+SL(5),5,G,S1Z(5)

H 1S THE TIME STEP SIZE AND ENDTIM IS THE TOTAL DURATI

ON

OF THE SEISMIC ANALYSIS, NSEG IS THE NUMBER 0OF BEAM SE
GMENTS.,

NTP IS THE NUMRER CF GRDUND ACCELFQATIWN TIME POINTS,
NH IS

THE TOTAL NUMBER OF TIME STEPS. BETAZ IS THE CONSTANT
CRITICAL DAMPING RATICO OF THE CONTAINMENT VESSEL, IF [

ROT

=1 THEN SOIL-STRUCTURFE INTERACTION IS T0O BE INCLUDED.
ROTK

AND TRANSK ARE THE ROTATIONAL AND TRANSLATIONAL SOIL S
PRING :

CONSTANTS. CROT AND CTRANS ARE THZ SOIL CRITICAL DAMPI
NG RATIOS

FOR. ROTATIONAL AND TRANSLATIONAL MOTION, G AND E ARF T
HE  SHEAR ‘

AND YOUNG,S MODULITI FOR CONCRETE. R 1S THE RADIUS OF T
HE

"CONTAINMENT VESSEL WALL. NCR(I) IS THE NUMBER QF HORIZ
ONT AL

CRACKS IN THE ITH BEAM SEGMENT. AS(I) AND SL(1) ARE TH
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E SHEAR

ARCA AND LENGTH OF THE ITH BFAM SEGMENT, RIZ(T) IS THE
MOMENT

OF INERTIA OF THE UNCRACKED CONCRET=, SIZ(I) IS THE MO
MENT

OF INERTIA AT THE HORIZONTAL CRACK NR THE MOMENT OF IN
ERTIA

PROVIDED BY THE LONGITUDINAL REBARS NNLLY. RMASS CONTA
INS THE

VALUES NDF THE LUMPED MASSES., RLOAD{1l...6) AND NELTA(1,.
..6)

CONTAIN THE SHEAR STRESS AND CRACK SLIP FOR THE 6 POTIN
TS

WHICH DEFINE THE SECOND CYCLE HYSTERESIS LOOP WHICH IN
TURN

DEFINES THE HORIZONTAL CRACK STIFFNESS. STIFF1 IS THF
CRACK

STIFFNESS FOR THE FIRSY CYCLE. DINC IS THE INCREAST IN
DELTA(L)

WHICH QCCURS WITH EACH ADDITIONAL LDJAD CYCLE.

READ(5,100) HHaENDTIMyNSEG,NTP,NH

N=2%NSEG

READ(5,106) IRQOT,ROTK,TRANSK
READ(5,101) BETA2,CTRANS,CROT
IFLAG=0

JFLAG=0

KFLAG=Q

ISTIFFE=Q

KREF=1

LFLAG=0

K=3

DINC=,0001

T=0.

BETA=,16566667

OH=H

NM=4

NDOF =N

NQUAKE=N

READ(5,101) GyE4R

READ{5,110) (NCR(I),1=1,NSEG)
PO 1 I=1,NSEG

READ(S,101) ASCI)sSLOT),RIZ(T),STZ(I)
SHEARK(T)=G*AS(I)/SL(YT)
CONTINUE

IF (TROT.EQ.D0) GO TO &0

NDOF =N+2 ‘
NQUAKE=N+1

CONTINUE

READ(5,101) (RMASS{I},I=1,8)
FEAD(S5,101) (RMASS(T1),1=9,NDOF)

INPUT THE P-DELTA FELATIONSHIP FOR THE HYSTERESIS LOOP
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S
BY READING IN RLOAD(1l....6) AND DELTA(l....6).

DO 200 I=1,6

READ(S5,201) RLOAD(I),DELTA(I)
FORMAT(2F10.0)

CONTINUE

NOW THAT THE P-DELTA RELATIONSHIP HAS REEN AN TN

THE SLOPE OF EACH STRAIGHT LINE SEGMENT WHICH MAKES UP
THE

HYSTERESIS L2NP IS COMPUTED.THEN THE VECTOR OF SHEAP S
TIFENESSES

FOR THE BEAM SEGMENTS (TK) IS COMPUTFD,

RK{1)=18.3
RK{2}=(RLCAD(Z)—-RLOADCLIY/(DELTA{2)-DBELTA(L )}
RK{3}=(RLOAD(3)}-RLOAD{Z2})/(DELTA(31-DELTA{2))
RK{4)=(RLOAD(4)}-RLOAD(Z2} )}/ (DELTA(4)-DELTA{(3))
RK({5)=18.3

PK{6)=RK(2])

RK(T7)=RK(3)

PK{R)=PK{4)

Do 700 1=1,8

WRITE(46,70L) RK(I}

FORMAT(10X,E14.7)

CONTINUE

THE MATRICES DELTAN AND PLOADN STORE THE SLIP AND SHEA
R STRESS

WHICH DEFINE THE HYSYERESIS LOOPS FOR SACH BEAM SEGMEN
T.

INITTALLY THE HMYSTERESIS LOOPS CORRESPONDING T THE St
COND CYCLE

ARE INPUT FOR ALL BEAM SEGMENTS.

DO 703 I=1,NSEG
DELTAN(I,1¥=DELTA(1}
DELTANCT,2)Y=DELTA(2)
DELTAN(I,3)=DELTA(3}
DELTAN(I,4)=DELTA(4)
DELTAN(T,5)=DELTA(5S)
DELTAN(I,6}=DELTA(6)
RLOADN(I,1)=RLOAD(L}
QRLOADN(I,,2)=RLOAD(2)
RLOADNI(I,3)=RLOAD(3)
RLOADN(I,4)=RLOAD(4)
RLOADN(T,5)=RLOAD(5)
RLOADN(I,6)=RLOAD( 6}
CONTINUE

DO 10 I=1,NSEG
CK{I)=RK(1)

CONTINUE

Ut=2.5
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CALL STIFF(NsNSEG,IROTROTK,TRANSK,KREF,ISTIFF,UL)
CALL JACOBY{NDOF,K)

CALL RATIO(N,BETA2,CTRANS,CROT, TRANSK,ROTK, UL}

CALL INDAMP(NDOF)

DO 102 I=1,NH

NFLAG=0

1 (1.EQ.1} GO TO 300

IF (H,LT.0.) GO 7O 999

CALL STIFF{N,NSEG, IROT,ROTK,TRANSKKREF,ISTIFF,UL}
CALL INQUAK{T+NTP,NQUAKE H,IFLAG)

CALL NUMINT{H,T,BETA,NDCF,IRCT,ENDTIM,4R)

IF (T.GTLENDTIM)} GO TO 105

CALL INHYST(H,T40H,NSEG,JFLAG,PRINT,KREF,NFLAG)

IF (T.EQ.1} GO TO 102

IF {(NFLAG.EQ.1) GO TC 102

CALL CYCLE(NSEG,LFLAG,DINC)

CONT I NUE

FORMAT(2F10.0,515)

FORMAT (8F10.0)

FORMAT(15,2F10.0)

FORMAT(515)

WRITE(6,998) T,H

FORMAT(/10X2E14.7)

sTOP

END

SUBROUTINE STIFF(NyNTR,IRQOT R0TKyTRANSK,KREF, ISTTFF,UL
c

THIS SURRQOUTINE COMPUTES THE GLOBAL STIFFNESS MATRIX W

HICH

IS STORED IN GLOK. THE VECTOR TK CONTAINS THE SHEAR
FLEXIBILITIES QF THE CONTAINMAENT VESSEL. 1./SHEARKIT)

Is

THE FLASTIC FLEXIBILITY OF THE UNCRACKFED CONCRETE, =OR
THE

ITH BEAM SEGMENT NCR(TI/(AS(II=CK(I)) IS THE TOTAL SHE
AR

FLEXIBILITY OF ALL THE HORIZONTAL CRACKS IN THE BEAM S
EGMENT. ‘

C OMMON /DYN/RMASS(12) ,DAMP({12,12},CK(6),C=0RCE(L2}, 5QF
C OR(12),

IRKFOR(12) ,O0LDFOR{12), RINFOR(L2)+ACC(12),DISP(12),VEL(]

C 21,
ZOLDVFL{12),0LDACC(12}ySHEAR(12),ALDSHR(12),REL{12),0LD
C AMP(12},

3SHEARK(5) ,GLOK(12,12) 4 NCR(5),0LDCK(6),NLDIPD(5),0LDREL
C (12),RK(8)

4,TK{6),0LDISP(12)

COMMON /PROP/AS{5) 4 RIZ(5)4SLI5)424G,SIZ(5)

DIMENSTION ELK(4,44),VK{5)

DIMENSION A{5)48(5),C(5)

IF IROT=1 THEN SOIL STRUCTURE INTERACTION IS TC BE INC
LUDED.
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1F (KREF.FQ.0) GO T2 45

NN=N

N0 1 I=1,NTR
TKAT)=ANCR(IDI/(CKLT)=ASTL) )+ (1. /SHEARK(I))
CONT INUE

CONTTINUE

SEYT UP THE GLOBAL STIFFNESS MATRIX L,GLOKIN,N).

N1=N-1

NN=N+2

DO 13 T=1,NN

DO 13 J=1,4NN

GLOK{1,J)=0.

CONTINUE

DD 10 T1=14N1,2

IF (ISTIFF,GT.,2) GO TO 222

SET UP THE BEAM ELEMENT STIFFNESS MATRIX ELK(4,4) FOR
THE LTH
BEAM SEGMENT,

L=(I+1)/2

EI=E*RIZ(L)

SUM=0.

SUM2200

NC=NCR({L}

RNC=NCR{L)

DO 22 K=1,NC

AK=K

RX=(2.%2K=1,)/(2.%RNC)

SUM=SUM+RX

SUM2Z2=SUM2+R X¥k=x2

CONTINUE |

ALY = ({1 /STZALY)—(L/RIZAL))INSL{L ) R®2%YL%RSUM2/E
BOLI=CC1./7STZOL) ) =(L/RIZALEIIESLILYXULRSUM/F
CALY={(1./STZ L I)=(L /RTZ(L ) I=UL=NCRE(L)/E

CONTENUE

L=(I+1}/2

EI=FE*RIZ(L) '
DET=SLIL)*%4 /(12 %ETx%2 ) +TK(LIRSL(L)/ET+A(LIRSLIL)/EL+
C C(LI=

TESLAL I F* 3/ (3 a*ET)+TK{LI+A(L ) -BIL)RSLILY*%2/F =B ([ )*%?
X=1./DET

FLKOL 1) =Xx((SLILY/ETI+C (L))

FLKAL 92)==X=0(SLILI*%:2/(2.%ET))+B{(L))
ELK(143)=-5LK(1l,1)}

ELRCL g &3=X(BILY-(SL{L)=%2/(2.2ET ) ) ~-C{L)=SL{L})
ELK(Z2 32 =X ((SLIL)#x3/ (3. xET) I+TK(LI+A{L))
CELK{2,3)=—FLKI(1l,2)
ELK(234)=X3(SLIL)=*3 /{6 ST ) +B(LY=SLIL)-TK{L)Y-a(L})
ELK{(3 4,3} =ELK(1,1)

ELK(3,4)=—ELK(1,2)
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ELK(444)=ELK(2,2)

DO 3 K=1,4

DO 3 J=1.9K

ELK(KsJ}=ELK(J4K)
GLOK({T+I)=ELK(1,1)+GLOK{(I,1I)
GLOK{I+1,T+1)=ELK(2,2)+GLOK(T+1,[+1)
GLOK(T+1,T)=ELK{2,1)+GLOK{TI+1,1)
GLOK(I+2,I)=ELK(3,1)
GLOK{I+3,I)=ELK (4,1)
GLOK{I+2,I+1)=FLK(3,2)
GLOK(I+3,1+1)=ELK(4,2)
GLOK(I+2,1+2)=ELK(3,3)
GLOK{T1+3,1+2)=ELK(4,3)

GLOK({ I+3,4 I+3)=ELK(4,4)

CONTINUE

DO 11 I=1,NN

DO 11 J=1,NN

GLOK(T4J4)=GLOK(J,T)

IF {(IRDTLEQ.Q0) GO YO 44

ADD TO THE GLOBAL STIFFNESS MATRIX THE TPANSLATIONAL
TRANSK) AND ROTATIONAL (ROTK} SCIL SPRINGS WHICH MODEL
THE STIFFNESS NF THE UNDERLYING SOIL.

GLOK{NN=14NN-1) =GLOK(NN—-14NN~1 ) +TRANSK
GLOK{ NNy NN} =GLOK (NN,NN)+RQTK
ISTIFF=ISTIFF+1

CONT TNUE

RETUFPN

END

SUBRDUT INE NUMINT(H,T,BRETA,N, IRDT,ENDTIM,R)

THIS SUBROUTINE CALCULATES THE CHANGTS IN DISPLACEMENT

?

VELOCTITY AND ACCELERATION FOR EACH TIME STEP [N THE SF
ISMIC

ANALYSIS. DDF(TI} AND DSF({I) ARE THE CHANGES FNR £ACH T
IME

STEP IN DAMPING AND SRING FORC=T FOR THE ITH DEGREE QOF
FREEDQOM, '

CFORCE(T) 4RKFOR(I) AND RINFOR(I) CONTAIN THE TOTAL DAM
PING '

FORCES+SPRING FORCES AND INERTIAL FORCES AT TIME T, DI
SP(I}

s VEL(I) AND ACC(TI) ARE THE DISPLACEMENT,VELOCTITY AND

ACCELERATION FOR THE ITH DEGREE 0NF FREEDOM AT TIME T,
SHEAR{I)

CONTAINS THE SHEAR FORCE IN THF ITH BEAM SEGMENT, REL(
1) IS

THE CRACK SLIP FOR THE CRACKS IN THE ITH BEAM SEGMENT,.

OLDSHR(I},OLDAMP(I),OLDFOR(I),OLDACC(I),OLDVEL{I) 2aND

OLDISP{1} CONTAIN THE SHEAR, DAMPING FDRCE,SPRING FNRC
E'ACC“’

ELERATION,VELOCITY AND DISPLACEMENT F(QR THE [TH DEGREE
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neE
FREEDOM AT THE PREVIQUS TIME POINT.

DIMENSION ZMOM(5) , ZMAX{5)

DIMENSION DELACC{12),DELDSP(12),DELVEL(L2Z)

COMMDON /PROP/AS(S5),RIZIS)sSLUIS)E,5,81Z(5)

NPIMENSION X(12)

COMMON /DYN/RMASS{12) ,DAMP{12,12),CK(6)4CFORCE(12),EQF
C DR(12}),

1RKFOR(12) 4OLDFOR(12),RINFOR{12),ACC{12),DISP(12),VFL(]
C 2%,
20LDVEL(12)40LDACC(12)+sSHEAR(IZ)ZOLDSHRL12),25L(12),0LD
C amMp(12),
ISHEARK(S5) ,GLOK(12,12),NCR(5}),0LDCK{&)NLDIPD(S),NLDREL
C (12}RK(8})

44 TK( &Y OLDISP(12)

DIMENSION DDF{12),DSF{12),EQFEFR(12])

DIMENSION SHRMAX(12),DISMAX(12),RELMAX(12)

THE VELOQCITIES AND DISPLACEMSENTS OF THE LUMPED MASSES
ARE SET EQUAL 7O THEIR INITIAL VALUE.

I {(T.GT,.0.) GO TO 302
NP=N

N1l=NP-1

NP2=N/2

IF {IROT.EQ.Q0) GO 70O 447
NP=N-2

N1l=NP-1

NP2=NP/2

CONT INUE

N0 32 T=1,N

DOF(I1=0.

DSF(I1}=0.

CFORCE(I)=0.
PKFOR(I}=0.

DISP(I)=0D.

VEL{I)=0.
ACC({I)=EQFOR{IV/RM2SS(T)
RINFOR(I)=RMASS(I)=*=ACC(])
DELDSPI(I)=0.
DELVEL{T1})=0.
DELACC(I)=0.
SHEAR(I)=0.

REL(11=0.

OLDSHR(I)=0.
OLDAMP{ 1) =0.
QLDISP{I)=0.
CLDOREL{I)=0.
OLDFOR(I)=0.
DLDACC(IN=0.
NMDVELL{I)Y=0.
SHRMAX(T)=SHEAR(I)
DISMAX{I)=D1ISP(I)

i
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RELMAX(I)=REL(I)
CONT INUE

DO 23 I=1,NP2
IMAX(1)=0,

CONT INUE

GO 70 84

THE CHAMNGES IN DISPLACEMENT AND VELOCITY FOR THIS TIME
STEP ARFE

CALCULATED ACCORDING TO THE NEWMARK BETA METHOD, FIRST
THE VALUE

FOR THE CHANGE IN ACCELERATION (DELACC) FOR THE PREVIOD
us TIME o

STEP IS ASSUMED FOR THE PRESENT TIME STEP, THE THANGE
IN THE

VELOCITY (DELVEL) AND DISPLACEMENT (DELDSP) CAN THEN B
E SOLVED

FOR,

ITER=0

ITER=ITER+1

DO 49 L=1 1N

X{L)=DELDOSP(L)
DELVEL(LI=(2.*%ACC{L)+DELACC(L))I*H/2.
DELDSP(LY=(VEL(LY*H)+(.5-BETAYHACC(L Y5H%%2 + BETA%(ACC
c (v

1+DELACC (L Yy ) ®RH%x%2

CONTINUE

IF (ITER.(T.4} GO TO 48

JouT=0

00 45 I=1,N

IF (DELDSP(I).FQ.0.) GO TO 45

IF (ABS((DELDSP(I}-X(T1)}/DELDSP({I)).LE..001) GO TO 45
JoUT=1

CONTINUE

IF {JOUT.EQ.O) G0 TO 350

DD 44 1=1,N

DO 99 K=1,N
DOF(T)=DAMP(T1,KI¥DELVEL{KI+DDF(1)
DSE(T)=GLOK{I 4K)XDELDSP(K}+DSF{ 1)
CONTINUE

EQERR IS THE ERRMOR IN EQUILIBRIUM DUE TO THE ASSUMPTIO
N OF
VALUES FOR DELACC.

EQERR{TI=(RINFOR(TII+RMASS(IV*DELACC(I))+{(CFORCE{I)+DDF
c ()

I+{RKFCOR{IDI+DSF{I})—-EQFOR(I)

DSF(I)=0.

DDF(I)=0.

CONTINUE

DO 47 1=1,N :
DELACC(I}=(RMASS{T)*DELACC{I)-EQERR(I))/(RMASS(I})
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CONTINUE

GO TC 300

CONTINUE

DD 98 I=1,N

DO 97 K=14N

DSF(I)=GLOK(I K}*DELDSP{K)+NSF(TI)
ODF(TI)1=DAMP(I,K)*DELVEL(K)I+DDF(T}
CONTINUE

OLOFOR(I}=RKFOR(I)}
OLDISP{I)=DISP(T)
OLDVEL(EI=VEL{T)

OLDACC(I)=ACC(I)
OLDSHR{IY=SHEAR(I)
OLDAMP({I)=CFORCE(I)
OLDREL(I)=REL(T)

THE VALUES OF DISPLACEMENT,VELOCTITTY AND ACCELERATIQN

FOT TIME
T ARE CALCULATED.

DISP(I)=NISP(IY+DELDSP(I)
VEL({T)=VEL(I)+DELVELLI)
ACC{T)I=ACC{TI}Y+DELACC(T)

RKFOR( I} =RKFOR(I}+DSF(I1)
RINFOR{I}=RMASS(T)*ACLC(T)
CFORCE({I)=CEORCE(TI)+DDF( 1)
SHEAR(I)=0.

DDF({1)=0.

DSF{1)=0.

CONTINUE

DO 401 TI=1,NP2

[1S=2%1~1

DO 72 K=1,15,2

SHEAR (T} =RKFOR(K)+SHEAR(T)

IF (1.6T.1) GO TO 28

ZMOM( 1Y=RKFOR(L)*5L(1)

GO TN 72
ZMOM{T)=ZMOM(I-L)+SHEAR(T)=SL(T)
CONTINUE

CONTINUE

DO 201 I=1,NP2

SHEAR({ I)=SHEAR{ I)/AS( 1)
IMOM(I)=ZMOM(I)*R/RIZ (1)
CONTINUE

DO 540 I=1,NP2
REL(I)=0LOREL{I)+(SHEAR(I)-OLOSHR(I))/CK(I)
CONTINUE

DN 501 I=1,N

IF (ABS(DISMAX(I)).GE,ABS(DISP(TI})) GO T 501
DISMAX{I)=DISP(I}

CONT INUE

DO 701 I=1,NP2 :
IF (ABS(SHRMAX{I)).GE.ARS{SHEAR(I))) GN TO 401
SHRMAX{I)=SHEAR(T)
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IF (ABSCZMAX(I)),GE.ABS(ZMOM(T})Y) GO TO 801

IMAX( T)=ZMOM{ 1}

IF (ABS(RELMAX{I}).GELABS(REL{(I})}) G TO 701
RELMAX(I)I=REL({I)

CONTINUE

IF (T.LT.ENDTIM) GO 7O 84

WRITE(6,1)

FORMAT /11X, " MAXTMUM SHEAR® ,3X, "MAXIMUM DISPLACEMENT?Y,
C  3Xs :

L*MAX CRACK DISPLACEMENT',3X,'MAX BENDING STRESS')

DO 411 I=1,NP2

WRITE (642) SHRMAX(I)sDISMAX{TY,RELMAX(I), ZMAXA{TI)}
FORMAT (10X EL 4T 6XeE144T7,10X4EL4.T99Xs 514, 7)

DO 412 I=64N

WRITE (6,3) DISMAX(I)

FORMAT (30X ,EL4.7)

WRITE(64333) (CK(1),I=1,5)

FORMAT(/10X,5E14,7)

CALL PRINTS{GLOK,12)

RETURN

END

SUBROUTINE RATIO(N,BFTAZ2,CTRANS,CROT,TRANSKROTK,UL}
COMMON /DYN/RMASS(12),D0AMP(12412),CK(6) ,CFORCE(12),EQF
C OR(12),
1RKFOR{12),0LDFOR(12),RINFOR(12},ACC{12),DISP(12},VELI(]
C 2),
20LOVFEL(12),0LDACC(12)ySHEAR(L2)OLDSHR{12),REL(12),0LD
C AMP(12),
3SHEARK(5),GLOK(12,12)yNCR(5),OLDCK{6),NLDIPD(5),0LDREL
C (121 ,RK(8)
4,TK(6),0LDISP(12)

COMMON /ETG/OMEGA(12),A(12,12},ATR(12,12},D{12)

COMMON /PROP/AS(5) 4RIZ(5) 4S5L{5),5,6,STZ2(5)

DIMENSION V(5)4RMOM(5)

DIMENSION EN(12,12),ET(12),B(12)

THIS SUBROUTINE IS CALLED ONLY IF SOIL STRUCTURE INTE®
ACTION :

IS 7O BE INCLUDED IN THE ANALYSTIS. SINCE THE CRITICAL
DAMP ING

RATIOS IN THE STRUCTURAL AND SOIL D=GRERS OF FRECSDOM U
SUALLY

DIFFER BY A LARGE AMOUNT SOME COMMAN MODAL DAMPING VAL
ues

ARE REQUIRED. THE SUBREGIONED ENERGY PRJIPCRTINN METHOD

IS USED TD DO THIS. THE STEPS INVOLVED IN THE METHOD &
RE

EXPLAINED BELOW.

FIRST SET UP THE VECTOR B WHICH CONTAINS THE CRITICAL
DAMPING

RATIO FOR EACH MASS,., THE DAMPING RATIO FOR ALL THE STR
UCTURAL

MASSES IS BETA2. THE TRANSLATIONAL SCIL DAMPING FATIO
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1S CTRANS
AND THE ROTATIONAL SOIL DAMPING RATIOD IS CROT,

NM=12

NZ2=N/2

DO 100 I=1,N

B(T)Y=BETA2

CONTINUE :

BIN+1 )=CTRANS .
BIN+2}=CRCT

NOW COMPUTE THE STRAIN ENERGY IN THE [TH MASS, THT S7Tg
AIN

ENFRCY FOR EACH LUMPED MASS FOR SACH MODE IS STORED IN

THE MATRIX ENLTHE INTERNAL MODAL STRAIN ENERGY [S ONE

HALF THE PRODUCT OF THE AVERAGE INTERNAL FORCES AT THE

LUMPED MASS AND THE MUDaL DISPLACFMENT,

DO 1 J=1,NM

DD 2 I=1,N2

SK=NCR(IV/(CK(TI*AS(TI))+(1./SHEARK(I))

El=E*RIZ(1)

SUM=0.,

SUMZ2=0.

NC=NCR(I]

RNC=NCR(1)

DO 22 K=1,NC

AK=K

RX=(2.%AK-1.)/7(2.%RNC}

SUM=SUM+RX

SUM2=SUMZ2+R )Xk x2

CONT INUE

XF=(1./STZ(1}-1./RIZ(1}))/E

S=XFxUL®SL{I) **%2%5UM2

T=XFRULASL A1) #SUM

C=XFxUL*NCR{1)

AA=XF*UL **3%SUM2/6,

BB=XFxyL#k2%xIUM/ 2,

DET=SL(] ) %4/ (12.%xEI%%2)+SL(TVESK/ET+SHSL{T)/EI+Cx
TASL(T ) **3/ET+SK4S)-TxSLA{T)%=2/ET-T%%2
PMOMOI)=((A(2%I+1,J)—A(2%T-1,J))R(SLLT)*%2/ET4+T}+A(2%]
C 4%

LOSL (D) 43 /ET+#SKASY+A(2%T 42, J)*{SLAT Y3 /2T +TxSL{])
2-SK=-S}}/DET
VEDI=00a(2%I-1,d)=A(2%]+1,J))*{SLIE)/ETI4C)-A(2%],J)=(S
C LI )*x2 :
1Z7(2.%ETI+TIHA(2%T 42, )4 (T=SLA{ T ) =22/ (2 .5%E1)=SL(1}*C))/D
c ET

EN(2%I-1,J) =V (] }*%x2%3K/2.,

ENC2%T2J)=(1. /{2 %¥EXRIZ{T} ) b={RMOMUT 125G (T)+RMOM(T)
C =v(I)

ISELT )2+ V(T )**2%SL(1)%%3/3.)

EN{2% T4y J)=EN{2%] , J)+RMOM(T ) X% 2L *XE/ 2 +RMOM( T )y (1) =8

C B+
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IV ) =%2%AA

CONT INUE

EN(N+1,J) sTRANSK#*A (N+1,J)%%2%.5
EN(N+2,J) =ROTK*A(N+2, J)5%2%,5
CONT INUE

COMPUTE THE TOTAL ENERGY IN TACH MODE AND STORE IN VEC
TOR
ET.

PO 7 I=1,NM
ET(I)=0.

DO 7 J=1,NM
ETCIN=EN(J,1)+ETL{T)
CONTINUE

NOW COMPUTE THE MODAL DAMPING RATIOS (STORED IN VECTOR
D).

Ny 8 I=1,NM

D{1}=0. .

DO 8 J=1,NM

DUII=EN(J,1D¥EB{JI+D(])

CONTINUE

DO 13 T=1,NM

DEIY=D(TIY/ET(I]}

CONTINUE

DO 9 I=1,NM

WRITE(6,12) T1,0(T1})

CONTINUE

FORMAT(/10X,*MODAL DAMPING FOR MODE',I1,'=7',F10.3)
RETURN

END

SUBROUTINE INDAMP(N)

COMMON /DYN/RMASS(12),DaMP(12,12),CK(&6),CFDORCF(12]),EQF
C 0OR(12}),

1IRKFOR(12) yCLOFOR{12),RINFOR(L2),ACC(L2),DISP{12Y,VEL{L
C 2},
20LDVEL(12),0LDACC(12),SHEAR(12),0LDSHR{12),REL({12),DLD
C AMP{12),
3SHEAPK(5)4GLOK{12412)+NCR{S)OLDLK{ )Y NLDIPD(5),0LDREL
C (12)4RK(8B)
4,TK{6),0LDISP(12)

COMMON /EIG/OMEGA(12),A(12,12),4TR{12, 12),D(12)
DIMENSION C{12,12)

FROM MODAL ANALYSIS,DAMPIN,N)=INV{ATR{N,N}}H=CBAR(N,N])*
INVIA(NsN)
WHERE CBAR(N,N) IS A DIAGONAL MATRIX WITH THE TERMS ({
2 112.%D( 1)
*OMEGA(T) . THE FOLLOWING STATEMENTS COMPUTE DAMP(N,N) U
SING THE
FACT THAT INVCA(NSN})=ATR{NyN)*RMASS(N,N],
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DO 1 I=1,N
DO 1 J=1.N
Cl{I,Jd)1=2.%D({JY=OMEGA(J)*A({],J)RRMASS(T)

CONTTNUE

CALL MULT(C,ATR,DAMP,N)

po 2 I=1,N

DD 2 J=1,N

DAMP{ I4J}=DAMP{I ,J)*RMASS{J}

CONTTINUE

DO 3 I=1,N

WRITE(694) (DAMP(I,J)Jd=1,N)

FORMAT (/10X,7E14.7)

RETURN

END - ‘

SUBROUTINE TINQUAK(TNTP,N,H,IFLAG)

COMMON /DYN/RMASS{12) sDAMP(12412)CK(6) CFORCE(L2),EQF
C O0R({12),

1RKFOR(12) ,0LDFOR(12},RINFOR{12),ACC(22),DISP(12),VELI(1
C 2)s
2O0LDVFL(12),0LDACC(12},SHEAR{12),0LDSHR(12),REL(12),0LD
C AMP(12),

3SHEARK(5) ,GLOK{12,12)YyNCR{5),OLDCK(6Y¥,NLOIPD(5),2LDREL
C (121,RK{8]
4, TK(6},0LDISP(12])

THIS SUBROUTINE READS IN THE GROUND ACCELERATION HISTO
RY AND

KEEPS TRACK OF THE CURRENT VALUE DOF THE GROUND ACCELER
ATTON,

DIMENSION GRACC{10),TIME(10)
1F (TFLAG.EQ.1) GO TO 44
IFLAG=1

DO 100 I=1,NTP

READ(5,101) TIME(I),GRACC(I)
FORMAT(2F10.0)}

CONT INUF

DO 55 I=1,N,2
FQFOR(I}=-RMASS{I)*GRACC{1)#%38.64
EQFOR(I+1)=0.

C ONTINUE

GO TO 200

NOW FIND THE CURRENT VALUE OF THE GROUND ACCELERATION
x.

CONTINUE :

IF (T.GT.TIME(NTP)) GO TC 200
I=1 '
I=1+1

IF (1.GT.NTP) GO 7O 150

IF (TL.GT.TIME(I)) GO TO 102
IF (TL.LTL.TIME(I-1)}) GO FO 102
J=1-1
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J IDENTIFIES WHICH OF THE STRAIGHT LINE SEGMENTS CONTA
INS THE
CURRENT GROUND ACCELERATION.

SLOPE=(GRACC(JI+1I-GRACC(JII) AL TIME(I+L)-TIMELI))
X=GRACC{JI+(T-TIME(J) }*=SLQOPE

DO 98 I=11N12

EQFOR(T)=—RMASS({I}*X%386.4

EQFOR(I+1}=0,

CONTINUE

GO TO 200

150 WRITE(6,151) ‘
151 FORMAT(Z20X,'THE GROUND ACCELERATION CORRESPONDING T2 7T

C IME T HAS |
INDT BEEN FOUND' /)

200 CONTINUE

75

RETURN

END

SUBRDUTINE JACOBY{NsK)

COMMON /DYN/RMASS(12),.,DAMP(12,12),CK{6),CFORCE(12),=QF
C OR{12}),
IRKFOR(LZ2),0LDFOR( 12}, RINFOR{12),8CC(12},DISP(12),VEL(L
C 2},
20LDVEL(12)Y,0LDACC(12) +SHEAR(12)},0LDSHR(12)4REL{12),0LD
C AMP (12},
3SHEARK({5) yGLOK(12412}+NCR{5},0LDCK{6)NLDIPD(5),0LDREL
C (12),RK(8}

4, TK(6),0LDISP(12)

COMMON /EIG/OMEGA(L12) ,A(12,12),4TR{12,12),0D(12)

DIMENSION EM{12),57TB({12,12),7(12,12),T77(12,12),B(12,12
C )}y
1STl12412)+A1012,12)

DIMENSION C(12412)

THIS SUBRQUTINE CALCULATES EIGENVECTORS AND EIGENVALUE
S ‘

FROM A GIVEN STIFFNESS MATRIX AND MASS VECTOR, N IS TH
E

NUMBER GF STRUCTURAL DEGREES NOF FRESDOM IN THE SYSTEM,

EM IS THE MASS VECTOR AND ST IS THE STRUCTURAL STIFFNE

SS MATRIX.
ONLY THE STRUCTURAL PORTION OF THE GLOBAL STIFFNESS MA
TRIX
IS DIAGONALIZED SO THE FREQUENCIES AND MODE SHAPES ARE
FOR :

A =IXED BASE STRUCTURE.

D3 75 1=1,N

DO 75 J=14N
ST{I,Jd)=GLOK(I,d}
CONT I NUE

DO 76 I=1'N
EM{I)=FMASS(I)
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CONTINUE
CALL PRINTS5{ST,N}
CALL UNIT(AT,N}

STB=(I/SQRT(EM))*(ST)*(l/SQRT(EM)). THE STIFFNESS MATR
IX

ST IS TRANSFORMED INTQ A FORM IN WHICH THE JACOBI MTTH
18]

CAN BE APPLIED.

DO 10 I=1,4N

EM{T)=SQRT{EM(I))

DO 12 I=1,N

D0 12 J=1,N
STB(I,J)=ST(1,0)/TEMUJI*EM(1))
DO 20 KK=1,K

DO 15 I=1,N

DO 15 Jd=I4N

IF (I-Jd) 14,15,14

T IS A UNIT MATRIX EXCEPT FOR TUT41)sT(Jed)sT{I1,4d),

AND T(J,1)a BY PRE AND POST MULTIPLYING STB BY T THE

ELEMENT STR(T,4) IS SET=0. THIS ACTUALLY A SERIES NF

ORTHOGONAL TRANSFORMATIONS TO DIAGONALIZE STB.AFTER ST
B

1S DIAGONALTIZED IT WILL CONTAIN THE EIGENVALUFES ON ITS

MAIN DTAGONAL,

IF (ABS(STB(I,J)1).LT.1.0E-10) GO TO 15
CALL UNTT{T,N)
DIFF=STB(IQII—STB(J!J,

IF (ABS{DIFF)-.00005D0) 30,30,32
TH=.,78532G8F0

GO TN 33

THC=2.0E0%STB(1,J)/DIFF
TH=.5FEO0=ATAN{THC)

T{I,1)=COS(TH)

T{JyJ)=T(I,1)

T{l,d)==SIN(TH)

T{Jy 1) ==T(I,4)

CALCULATE THE TRANSPOSE OF T (TT),
CALL TRA{T,TT,N)
TT#STB*T=STBH

CALL PRMULTISTByTHy I+ JaN}
CALL POMULT(STB,yTH,I,J«N)

Al*T=Al, Al STORES THE RESULTS 9F

T1#T2%T3awee TKe {THEREF ARE K ITERATIONS) A1=SQRT{EM}xA

WHERE ATS THE MODAL MATRIX,T1 IS T FOR THE FIRST ITERA
TION
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T2 1S T FQR THE SECOND TTERATION UP TQ TK FOR THE KTH
ITERATTION,.

CALL POMULT{AL1,TH,TI4J 4N}
CONTTNUE

THE MODAL MATRIX A=(1/SQRT(EM})*Al.THE FIRST ECOW CF &
IS NORMALIZED TO 1

DO 18 J=1,N

DO 18 I=]1,4N
ACT,Jd)=AL(T,d)/7=M(])
CONTINUE

B0 50 I=1,N
OMEGA(T)=SQRT(STB(I,1})
CONT INUE

SORT FREQUENCIES AND EIGENVECTORS STARTING FRNOM MODE
(LOWEST)
AMD GOING UP TO MODE N.

NN=N-1

DO 80 I=1,NN
L=I+1

DO 9 K=L4N

IF (OMEGA(K).GT.OMEGA(TI)) GO T9O 9
WX=0MEGA(I)
OMEGA(1)=0MEGA(K)}
CMEGA{K)=WX

DD 300 Ii=1,N
AX=A{11,1)
A(TL,I)=A(11,K)
A{IT,K)=AX

CONT TNUE

CONTINUF

CONTINUE

PRINT OUT THE NATURAL FREQUENCIES AND FIGENVECTNRS.

DD 11 I=1,N

WRITE(6,122) T1,0MEGA{T)}
FORMAT(/10Xs'FREQUENCY'y154%'="',F10.2)
CALL PRINTS5(A,N)

CALL TRA{A,ATR,N)

RETURN

END

SUBROUTINE MULT(A,B,C,N}

DIMENSION A(12,12),B8(12,12),C(12,12)
DO 10 I=1,N

DO 10 J=1,N

C(1,J3¥=0.0€E0

DO 10 L=14N
CUI+J)=ClI,J)+A(I,L}*B(LyJ)

RETURN

1
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END

SURRQOUTINE UNIT(A,N)

DIMENSION A(12,12)

DN 10 I=14N

DO 8 J=1,N

A(1,9)=0.0FE0

A(I,1}=1.0F0

RETUPN

END

SUBROUTINE TRA(A,B,N)

DIMENSION A(12,12),8(12,12)

NN 10 T=1,N

No 10 Jd=14N

B{I,J)1=4(J, 1)

RETURN

END

SUBRDUT INE POMULT(STB,THy1,J,N)

DIMENSION STR(12,12),C{12,2)

D1 II=19N
COTT,1)=STR{ITI,I)*COSUTH)I+STBL{II+JYXSIN(TH)
C{II42Y=STR(IT1,J)*COS(THI=STB{II, I1)%SIN(TH)
CONTINUE

N 2 T1=1,N

STB(II,J¥=C(11,2}
CONTINUE

PETURN

END

SUBRCUTINE PRMULT(STB,TH,1,J,N)

DIMENSION STB(12,+12),C(24121)

DO 1 JJ=1,N

Tl JJ)=STRITyJJ}*COS{THI+STB(Y ,JJIXSIN(TH)
C(2+JJ)=STBLS,JII=COSCTHI-STBLI , JJIHSIN(TH}
CONT I NUE

DO 2 JJ=1,N

STB(I,JJ)=C(1l,00)

STR{J,JIY=C(2,4J)

CONTT NUE

RETURN

END

SURRMNUTINE PRINTS5(A,N)

DIMENSIDON A(12,12)

WRITE(6,20)

DO 10 I=1,N

WRITE(6412) (A(I+d)sd=1,N)
FORMAT(10X,10F10.3)

FORMAT(//)

RETUPN

END

SUBROUTINE CYCLE(N,LFLAG,DINC)

(YO OO

THIS SUBROUTINE KEEPS TRACK 0OF WHICH CYNLE OF LNADING
EACH CRAZK IN THF VESSEL IS CON. THE LOAD CYCLE NUMBER
FOR ALL
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THE CRACKS IN THF ITH BEAM SEGMFNT IS STORED IN NCYCLE
(1}

8T T=0, NCYCLE(I)=1. THE FIRST CYCLS CRACK STIFFENESS |
S
LINEAR WITH NO HYSTERFSIS {0O0P.

COMMON /DYN/RMASS(12} ,DAMP(12,12),CK{6),CFORCE(L2),EQF
€ 0ORrR(12}%,
IRKFOR{12),0LDFOR(12) s RINFOR(12),4CCL12),DISP(12),VEL(]
c 21,
2CLDVFL(12),0LDACC{12),SHEAR(12),0LDSHR(12),RELL12),0LD
C AMP(12),
3SHEARK(5) ,GLOK(12912) 4 NCR(5),0LDCK(6),NLDIPD(5),0LDREL
C (121,RK(8)

4, TK(E},0LDISP(12)

COMMON /B/RLOAD(6),DELTA(6),IPD{5)NCYCLE(5),RLOADN(S,
C 6},

IDELTAN(5, 6]

DIMENSION PEAK(5)

IF (LFLAG.GT.O) GO TO 2

LFLAG=1

DO 1 I=1,N

PEAK(I)=0,

NCYCLELI) =1

GO T 45

THE PEAK SHEAR STRESS FOR THE CURRENT [ 0AD CYCLE IS ST
CRED
IN PEAK(I) FOR THE ITH BFEAM SEGMENT,

DO 10 1=1,N

IF (ABS{SHFAR(T}} L= ABS(PEAK(I}}) GO T2 10
PEAK({T)=SHEA®(T)

CONTINUFE

FOR THE FIRST CYCLE, IF ABS(PEAK{(TI)) IS GT RLOAD(1) AN
D

UNLOADING IS CCCURING. THEN THE SECOND CYCLE HYSTERESIES

LONP IS SWITCHED TO.

DC 3 I=1,N

IF (ABS{SHEAR({I)).GE.ABS{DLDSHR(I)}) GC 70O 3
IF (NCYCLE(I).GT.1) GO TO 4

IF (ABS(PEAK(I)).LT.RLOAD(L)) GO TO 3

IF (PEAK{TI}1.LT.0.) GO TO 8

1P0(1}=3

CK{II=RK{3)

PEAK(T}=0.

NCYCLE(TI)=NCYCLE(I}+]

G T 3

AFTFR THE FIRST CYCLE THE DEFINITION 0OF AN ADDITIONAL
LOAD CYCLE CHANGES., IF ABS(PEAK(I)) GT .LKST AND ABS{
SHEAR(I)) LT .05 KSI THEN NCYCLE(T) IS INCREASED BY 1.
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THE HMYSTERESTS L00P =0NR THE ITH BREAM SEGMENT, 28 DEFIN
<0 BY

PELTAN(!,1e0ses6) AND RLOADN(I,1,...6) ARC CHANGED

ACCORDINGLY.,

IPD(IY=7

CK(I)}=RK(T)

PEAK(T1)=0.
NCYCLF{IV=NCYCLE(TI)+1

GO 70 3

IF {IPN{T).FQ.3) GO 7O &

IF (IPD{1).2Q.7) GO 7O 6

GO T 3

IF (ABS(PEAK(IY).LT..1) GO T 3
IF (SHREAR(T).GT..05) GO TO 3

GO 70 7

IF (ABS{PEAK(IN).LT.. 1} GO
IF (SHEAR(I).LT,.(-,05)) GO
NCYCLE{I)=NCYCLE(TI)+1
PEAK(T1)=0.
DELTAN(T,1)=DELTAN(T41)+DINC

DELTAN(I 42)=DELTAN(I,2}+DINC

DELTAN{T,4)=-DELTAN(T, 1)

NDELTAN(1,5)=-DELTAN(I,2)
DELTAN(Iy3)‘(RLOAD(2)*QLOAD(4}+PK(4)*DCLTAN(‘,4)—QK(3)
C *DELTANI

11,2))/7({RK(&)=-RK({3))

RLDADN(I,3) QK(4)*(D5LTAN(1,3)—D¢L*AN(I,4))+QL”AD(4)
DELTAN{I,6)=—DELTAN(I1,3)

RLOADNEI 4, 86)=—RLOADN(T,3)

CONT INUE

RETURN

END

SUBROUTINE TNHYST(H,s Ty OHNLIJFLAG,PRINT,KREF {NFLAG)

— —
Q7
W

INHYST KEEPS TRACK OF WHERE THE SHEAR STRESS IN SACH 8
EAM

SEGMENT TS IN THE CYCLE DEPENDENT HYSTERESIS LQOPS,

THE CRACK STIFFNESS FOR THE ITH BEAM SEGMENT IS CK(I).

DIMENSION TI(10),VPRINT(10)
COMMON /OYN/QMBSS(12)gDAMP(12q12), JK{6) 4 CFORCE(L2), EQF

C 0ORrR{12),
1RKFOR(12)Y40LDFOR({12)yRINFOR(12),ACC(12),DISP{12),.VFLI(1
cC 2%,

20L0VEL(12)40LDACC(12)+SHEAR(12}y0LDSHR(12),REL{12) ,0OLD
C AMP(12),

B3SHEARK(S) yGLOK(12412) ¢ NCR(5),OLDCK{AB) JNLDIPD(5),LDREL
€ (12),RK(8)
4Gy, TK(6),0LDISP{12}

COMMON /B/RLOAD(6)DFLTA(S),1PD(5) 4NCYCLE(S5) 4 RLCADN(S,
cC 6),

IDELTAN(5, 6]

IF (JFLAG.GTL0) GO TO 202



OO0

OO,

OO OO

YOO

13

101

46

202

131

-113-

JFLAG =1

PRTIM=0.

aLNTI M=0.

REAN(5,13) NTI

FORMAT(I5)

PRTOL=H/10.

READ(5,101) (TI(L)sI=1,NTI)}
READ(5,101) (VPRINT(I),I1=1,NTI)
PRINT=VPRINT(1)

JJd=1

FORMAT(10F8.0)

THE INITIAL STIFFNESS IS ASSUMED TO RF RK{1l)}

PO 46 1I=1,N
CK{I}=RK{1)
IPD{T)=1
NCYCLE(TI) =1
CONTINUE

G0 TO 500

IPD IDENTIFIES WHICH LINEAR SEGMENT 0OF THE HYSTERZSTS
LOCP YU
ARE IN.

CONT INUE

DO 131 L=1,N
OLDCKA(LY=CK(L)
NLDIPD(LY=IPDI(L)

CONTINUE

DO 299 I=1,N

IF {IPD({T}.EQ.8) GO 72 212
I (IPD(I).GE.3} GO TC 205
IF {(IPD(I).GT.1) GO TO 204

IPD HAS BEEN TESTED TQO SEE IF IT IS EQUAL 77 1.THE

SHEAR STRESS IS THEN CHECKED T3 SEE [F IT IS NEGATIVE,
IF SO,

THE STIFFNESS CK IS SET EQUAL TD RBK(5),THE INITIAL

NEGATIVE STIFFNESS.

IF (SHEAR(I).GF.0.) GO TQ 299
IPD{T11=5

CK(T)=RK(5)

GO TO 299

CHECK T0O SEE IF A CHANCE OF STIFFNESS HAS QOCCURED DURI
NG THE

LAST TIMS STEP.IN THIS CASE THE STIFFNESS LK HAS CHANG
ED

FROM RK(1) TO RK(2).

THE STATEMENTS BELCW PERTAIN 7O CRACKS ON THE RK(2) 'SE
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CTION NF

THE [ 00P. A CHECK IS MADE TO SEF WHETHFR UNLDADING HAS
STARTED

NDURING THE LAST TIME STEP, [F S, THE STIFFNESS BECOME
S PK(3),

IF (SHEAR(T).GELOLDSHR(I))} GC TC 299
IPD(T)=3

CK(I)=RK(3)

GD TC 299

IF {IPD(T1).GT.,3) GQ TQO 207

THE FOLLOWING STATEMENTS DEAL WITH CRACKS ON THE RK=RK
(3)

SECTTON NF THE HYSTERESIS LOOP. A CHECK IS MADE TN SEE
[F THE -

PK(4) BRANCH HAS BEEN REACHED,

IF (SHEAR({I).LT.OLDSHR(IYY GO TO 29

IF (SHEAR(T).LT.RLOAD(1)) GO TO 68

IPD(I)=2

CK{T)I=RK(2}

GQ 17 299

IPD(1) =4

CKIT)=RK(4)

GO TN 299
FLAG3=RLNADN(IZ3)+(REL(T}I-DELTAN(TI,3))*RK{4)

IF (SHEAR(I).GT.IFLAG3+,05%RLOADI(L})) GO0 TQ 299

NOW CHECK T0O SEE HOW MUCH FLAG3 HAS BEEN EXCEEDED BY.
THE

ACCEPTABLE ERROR IS 5 PER CEMT. IF THE ERRNR TS GREATE
R THAN

THIS GC BACK TO THE LAST TIME STEP AND USE A SMALLER H

FRRNR=SHTAR(I)-FLAG3 .
YF (ABS(ERROR)LELABS{.OSKRLOADIL1)IY GO T 300

IR (OLDSHR({I) .GT.FLAG3) GO TO 90

NLDCK (1)=RK (4)

NLDIPDI(T) =4

KRFF=1

GO TR 60
H=({FLAG3=-OLNSH® (1) )/ (SHEAR(I)~OLDSHP (1)) *H
GO TO 59

CONT ITNUE

IPD(1) =4

CKIT)=RK(4)

60 TH 299

THZ FOLLOWING STATEMENTS CHECK Tn SEE TF THE CRACK STI
FFNESS

FQUAL S RK(4}. IF SO ,A CHECK IS MARE TO SEF IF R={0ADI
NG IS
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OCCURING. TF IT IS AND SHEAR(T) IS GREATER THAN RLOAD(
1) THEN THES

STIFENESS IS CHANGED TO RK{2). IF NDO RFELOADING HAS OCC
URED

A CHECK IS MAOF TO SEE IF A CHANGE 7O RK({6) SHOULD 8%
MADE,

IF (IPD(1).GT.4) GO 7O 209

TF (SHEAR(T) L LELOLDSHR(I)) GO TO 208
[F (SHEAR(I).LT.RLOAD(1)) GO 7O 299
IPD(IY=2

CK{I)=RK(2)

GO 7O 299

IF (RLOAD(4).LT.SHEAR(IY)} GO 7O 299
IPD(I)=¢

CK{II=RK (6]

GO TC 299

THE FOLLOWING STATEMENTS APPLY TO CK=RK(5). & CHANGE 0O
c

STIFFENESS IS CHECKED FOR.

IF (IPD(I).GT.5) GO TO 210

IF (SHEAR(I).LT.0.) GO 7O 299
IPD(I =1

CK(I)=RK(1)

GO TQ 299

THE FOLLOWING STATEMENTS ApPLY TO CK=RK(6)., RELCADING
1S CHECKED
FOR. :

IF (IPD{I).GT.6) GO TO 211

IF (SHEAR{I).LELOLDSHR{I}) GO TD 299
1PO(1) =7

CK{I)=RK(7)

GO To 299

THE FOLLOWING STATEMENTS APPLY T0O CK=RK(7). A CHANGE O
F STIFFNESS
1S CHECKED FOR,

IF (SHEAR{T).GT.OLDSHR{I)) GG T2 39

IF {(SHEAR(1).GT.RLOAD{(4)) GO TO 78

IPDLI =6

CK(T)=RK(6)

GO TO 299

IPD(I V=8

CK{I)=RK(8)

GO TO 299
FLAG6=RLOADN(I,6)+(REL(I}-DELTAN{I,6))*RK(8)

TF (SHEAR(I) , LT.(FLAG6—.05%RLOAD(1})) GO TO 299

CHECK TQ SEE HOW MUCH FLAGS HAS BEEN EXCEEDED RY. THE
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ACCEPTARBLE ERROR IS & PER CENT., IF THIS IS S©XCEEDED TH
EN GO BACK 7
LAST TIME STEP AND USF & SMALLER H,

FRROF=SHEAR(T}-FLAGS
TF (LBS(ERROR) (LELABS(LO5%RLCAD(L))) GO 70 400
IF (CLDSHR(IVLLT.FLAGS) GO T2 91
NLDCKIT)=RK(8)
NLDIPD(T) =8
KREF=1
GD TO 60
91 H={{FLAGH—-OLDSHR{T) I/ (SHEAR(I)-DLDSHR(I)))*H

GO TC 59

400 CONTINUF

401 1PD(1)=8
CREIY=RK(8)
GO TG 299

THE FOLLOWING STATEMENTS APPLY 79 TPD=1,CK=PK(8).CHANG
E OF
STIFFNESS AND UNLOADING ARE CHFCKED FQOR.

212 IF (SHEAR(I).GE.OLDSHR{I)) GO TN 213
IF {SHEAR(I).GT.RLOAN(4}) GO TN 299
IPD{I =6
CK(T)=RK(A)

G0 TO 299

213 IF {(SHEAR(T).LT.RLOAD(L1)) GO TO 2993
TPO{TI) =2
CK{T)=RK(2)

299 CONTINUE
H=0H
KREE=0
DO 99 1=1,N
IF (NLDIPD{T).5Q.IPD{(I)) GO TO 99
KREF=1

99 CONTINUF
IF (T.L7.10.} GO TO ¢4
IF {(T.GT.10.8) GO T0 94 :
WRITE(6,93) T,L,SHEAR(S)4REL(5),NLDIPD{5)
@3 FORMAT(/10X,3E14.7,15)
94 CONTINUE
IF ((T+PRTOL-PRTIM).LT.0.) GO TO 459
[F (ABS(T-PR¥TIM),LE.PRTOLY GO 7O 17
H=PRT IM-OLDT IM
59 CONTINUE
KREF=Q
60 NFLAG=1
T=0LDTIM
D 89 K=1,N
IPD(K) =NLDIPD(K)
SHEAR(K)=0LDSHR{K)
REL(K)=0OLDREL (K}
CK{K)=0LDCK{K)
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89 CONTINUE

DO 189 K=1,12
DISP{K}=DOLDISP(K}
VEL (K )=0LDVEL (K
ACC(KI=0LDACC(K)
RKFOP(K)=0LDFORI(K)
RINFOR(K}=RMASS(K]}=*ACC(K)
CFORCE(K)=0LDAMP (K )

189 CONTINUYE
GO T 461

PRINT OUT DYNAMIC RESULTS AT TIME=T,

17 CONTINUE
WRITE(6,12) (NCYCLE(TI),I=1,N)
12 FORMAT(/10X,515)
WRITE (6,22) T
22 FORMAT(/10Xy'FOR TIME = ",F8.24+8X,"DISPLACEMENTT,8X,
1*SHEAR STRESS ', 9X, 'CRACK DISP*, 10X, *STIFFNESS Y/}
DO 73 I=1.N .
WRITE(6,T76) DISP(2%T~-114SHEARP{I},REL(T),CLDCK(T]
76 FORMAT(36X1E14.T96XsE14,796X4FE14.746X4514.7)
73 CONTINUE
TE {T.WUT.TI(II))Y GO TO 5
Jd=JJ+1
PRINT=VPRINT(JIN
5 PRTIM=PRT IM4PRINT
450 DLDOTIM=T
461 T=T+H
500 RETURN
END
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TABLE 2.1

INCREMENTAL LOADS FOR THE SAP IV MODEL

Step Load* Bars with E2 Modulus
1 20 cos¢ None
2 1 cos¢ 1, 10, 19
3 2 cos¢ 1, 2, 10, 11, 19, 20
4 4 cos¢ 1-3, 10-12, 19-21
5 6 cosp 1-4, 10-13, 19-22
6 9 cosé 1-5, 10-14, 19-23
7 23 cos¢ 1-6, 10-15, 19—24
8 77 cos¢ 1-7, 10-16, 19-25
9 138 cosé 1-8, 10-17, 19-26
Total 280 cosd

* These loads are shear stress distributions which are
converted to equivalent nodal loads using equations (2.4).
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TABLE 3.1

BEAM ELEMENT STIFFNESS MATRIX
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TABLE 3.2
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GLOBAL STIFTNESS MATRIX
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TABLE 3.3

NATURAL FREQUENCIES (CYCLES/SEC)

Mode 10 DOF 5 DOF
1 6.0 7.5
2 15.3 18.4
3 24.0 31.2
4 30.2 43.9
5 43.2 51.0
6 43.5 S
7 50.6 ——-
8 68.2 ———
9 94,5 S

10 - 109.2 -——
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TABLE 4.1
Soil Type cz(fps)' K, (k/in) K¢(k~in/rad)
Soft Soil 500 30,647 2.184 x 1010
Medium Soil 1,200 176,528 1.258 x 10771
. 11
Hard Soil 2,000 490,356 3.494 x 10
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TABLE 4.2
u383 u464 u595
0 0 0
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TABLE 5.2

Run Displacement Shear Stress Crack Slip Cycles
(inches) (psi) (inches)
1 1.330 288 ———
2 1.543 272 18
3 2.565 126 7
4 1.200 280 25
TABLE 5.3
Run Concrete Stress Steel Stress Change in
(ksi) (ksi) Crack Width
(inches)
1 T
2 .599 25.10 .0022
3 .237 9.93 .0009
4 .696 26.17 0025
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TABLE 5.4
Bean 1 (inh I, (inh A, (in%)
1 4,485 100 1.074 100 97,270
2 6.202 1010 1.179 1010 142,000
3 6.202 1010 1.179 1010 142,000
4 6.202 1010 1.179 1010 142,000
5 6.202 1010 1.179 lO10 142,000
TABLE 5.5
Run Soil Type Crack Spacing
1 Medium @ e
2 Medium 5t - 6"
3 Soft 5! &
4 Hard 5 - 4"
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TABLE 5.6

DOF us 8 uy-Ug, 9,8 Ups g
Mass 28.82 22.97 61,74
(k-secZ/in)
Mass Moment 8.17 8.29 12.74
(k—secz—in X 106)
DOF = Degree of Freedom

TABLE 5.7
Mode 1 2 3
a1 240.38 1070.33 443,02

a, 5.78 4,27 - 2.25
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Figure 1.2
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a. Actual Containment Vessel b. Lumped Mass
Model
Mass Moment of Inertia Mass Moment Shear Area
Node (k-secz/in) (in4) (k—secz—in) (inz)
10 6
1 28.822 6.7064 = 10 8.174 =% 10 97,270
2 22.967 9.9476 x 100 8.293 x 10° 142,000
3 22.967 9.9476 x 1010 8.293 x 106 142,000
4 22.967 9.9476 x 10lO 8.283 x 106 142,000
5 22.967 9.9476 x 1010 8.293 x 106 142,000

Figure 3.2
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