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by 
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ABSTRACT 

A theoretical and numerical procedure for incorporating 

kinematic boundary conditions into nonlinear finite element 

analysis is described. The nonlinear finite element code NONSAP 

is modified to include the propo sed method. Numerical examples 

are given in an effort to substantiate the developed procedures. 

The input information necessary to use the resulting ~omputer 

program is included in the Appendix. 
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1. INTRODUCTION 

Most nwnerical codes based upon the finite element approach 

provide only for stress boundary conditions. In many important struc-

tural problems, however, it is neces sary to specify kinematic, or 

mixed stress and kinematic boundary conditions. 

In this report a numerical procedure is developed to obtain the 

response of a finite element-decomposed structure subjected to a time-

dependent kinematic boundary history. The procedure is incorporated 

into the nonlinear finite element program NONSAP [1 J. The validity of 

the procedure is exemplified by numerical examples. 

The program NONSAP noted above forms the foundation for current 

development work concerning the simulated response of reinforced con-

crete masonry assemblies and multistory structures. The program 

modification described herein is only one of many currently being made 

to NONSAP. 

2. THEORETICAL FORMULATION AND 
NUMERICAL TIME INTEGRATION 

The incremental nodal point equilibrium equations for an 

as senlblage of nonlinear finite elements, including velocity-dependent 

damping forces are [I, 2 J: 

in which 

I 

(1) 



M = 

C = 

K = t 

Rt+ ht = 

F
t = 

~t+At I 
HAt 

u = 

mas s matrix 

damping matrix 

tangent stiffness matrix at time t 

vector of externally applied forces at time t + 

vector of nodal point forces equivalent to the 
stresses of the elements at time t 

bt 

vector of nodal point acceleration and velocities 
at time t + ~t 

vector of nodal point displacement increments from 
time t to time t + At; i. e., ~u = u A - U • 

HL.)t t 

It will be assumed that the mass matrix is constant at all times, 

except that if a mass is known to break off from the structure, its 

effect could be removed. The value of the structural stiffness matrix 

is assumed to be the tangent at the beginning of the time-step. If the 

system includes viscous dampers, then effects can be inclUded in the 

damping matrix. 

In general, the solution of Eq. (2) yields approximate displace-

rnent increments u, as the stiffness matrix K and vector of nodal point 

forces F are known only at time t. The solution of u is improved by 

equilibrium iteration during which operation the nodal point force vector 

F
t 

is updated to F by including the nonlinear effects. However, 
t + 1" 

the matrix K is still the same; i. eu, K
t

• The accuracy of this step­

by-step solution depends naturally upon the recursive scheme used to 

solve the system of equations. Many different schemes are currently 

2 



used in practice which were used for linear systems before. The 

properties of the operators used in the system have been strictly 

established only for linear analysis and they have been successfully 

used in obtaining solutions in the nonlinear analysis. 

It should be realized that a great deal of experimentation is 

required for the design of reliable time-integration operators based 

on consistent finite formulations in which stable constitutive relation-

ships can be used. It is the interaction between the numerical analysis, 

continuum mechanics, and the correlation of experimental results that 

makes the development of a nonlinear analysis program for this project 

a rewarding challenge. 

a) Wilson a-method 

In the a-method, a linear variation of acceleration is 

assumed over the time increment l' = a~t (where a ~ 1. 37), and the 

equilibrium equations, Eq. (1), are considered at time t + 1', 

Mute utKu=R -F 
ttT ttT t t+T t 

(2) 

where 

u = u - u 
t t l' t 

In order to obtain the solution at time t + hat, the following 

quantities are computed 

• • l' (.. .. ) u =u+- u tU
t ttT t 2 ttT 

(3a) 

3 



2 

U = + . +L(u +2u
t

) t t r Ut rUt 6 t + r (3b) 

where u
t

' 1\, u
t 

are known values. 

The above set of equations can be solved for u
t 

+ rand u
t 
+ r' 

explicitly as shown below: 

6 • 
-u r t 

2u 
t 

r .. -u 
2 t 

Substituting these expressions into the dynamic incremental 

(4a) 

(4b) 

equilibrium equation (2), and using. the expression u = u - u and 
tt T t 

transferring terms not containing u to the right-hand side, yields 

,. " 
Ktu = R tt r (5) 

where 

K
t 

= K + 1. e t .£ M 
t T r2 (6) 

Rtt r = R t t e (Rtt bt - R t ) t M [2iit t ~ tit t ~ utJ 

t e[Tu t 2u + 1. u J- F 
2 t t T t t • 

The solution of Eq. (5) gives the incremental displacement 

vector u. The values of u are improved by the iteration procedure 

described in [1 J. Finally, the acceleration, velocity, and displace-

ment vectors at the desired time t + At are calculated using the 

following interpolation technique: 

4 



U 6 6 
( 1 

3) .. 
t + llt 

:::: 

93 Ae 
u - 92 At 

u
t 

+ - - u 
9 t 

(7a) 

. . 
+ u t + 6t 

:::: u
t 

l\t ( .. 
T ut + ~t + U ) t 

(7b) 

+ Atu + 
l\t~ 

( .. + 2 u
t 

) u = u 
t+ At t t 6 u t + b.t (7c) 

b. Newmark Method 

In the Newmark method [3 J, the displacement, velocity, and 

acceleration vectors at time t + .6t (6 :::: I) are expressed in the 

following form 

u 
t+ ~t 

:::: u
t 

+ u (8a) 
. 

Ii 
u 

u
t 

( ;a -
I ) .. (8b) 

t+ At = a~ta aAt - u
t 

, 

. . 
+ ( I 8) lltu

t 
+ 6 btiit + At (8c) ut + At 

:::: u
t - . 

Similar to the Wilson e-method, the incremental equilibrium 

equation (2) can be then written as indicated in equation (5) by 

substituting equation (8) in which 

K
t 

= K + 1 M + _0 - C 
t a ~t2 a.6.t 

(9a) 

" 
~+At =R +M[: u

t
+(_l_-l)ul 

t+At a"-lt 2a t...l 

+ c[(~ - l)Ut + (:a - I) AtutJ - FtO 

(9b) 
It should be noted that the incremental displacement u, solved by 

this system of equations is at time t + At. The velocity, and 

acceleration at time t + At are obtained by using the interpolation 

technique given in equation (8). 

5 



3. KINEMATIC DATA INPUT 

In the case of kinematic time-history input, the values of u have to 

be computed according to the interpolation techniques used in the respective 

analyses by either the Wilson B-method or the Newmark method. This is 

required in order to obtain the correct values at time t + bt. Table I, 

shows the procedures for each interpolation scheme. 

4. MODIFICATION OF THE EFFECTIVE STIFFNESS MATRIX 

In all the schemes, the structural stiffness matrix is assem.bled by 

a direct superposition using equilibrium. equations. If a degree-of-freedom 

is eliminated, the corresponding equation is not retained in this structural 

stiffness matrix. However, if a degree-of-freedom 'p' has a specific value 

at time equal to t, the corresponding equation is retained. The equations 

can be represented in the following matrix form: 

pth col. 
I "-

X X 0 0 X 0 0 0 u
1 

R 
1 

I 

X X X X X 0 0 

X X X 0 X 0 
th " p row - - - - - -~- ~- K--X -0- u = R , (0) 

P P 

Syrn 
X X X X 

n 

;, 

X X X , 

) X X 
I ",' 

X u R 
n n 

6 



Table 1 

Calculation of effective incremental displacement u. 

Type of 
input 

Displacement 
U 
t+ 6t 

Velocity . 
ut + 6t 

Acceleration 

Displacement 

ut + /).t 

Velocity . 
ut + /).t 

Acceleration 

ut + At 

Solve u
t

+
At 

from: 

Eq. (7 c) 

Eq. (7b) 

Eq. (8c) 

t u 1s not dependent on u
t 

+ ~t • 

7 

Calculate u by sub­
stituting ii A into: 

t + Llt 

Eq. (7a) 

Eq. (7a) 

Eq. (7 a) 

tEq. (8a) 

Eq. (8b) 

Eq. (8b) 



where u is the known value of the degree-of-freedom p at time t, 
p 

R is the unknown value of the force at time t. The rest of the u vector 
p 

components are unknown, and the rest of the R vector components are known. 

In C'rder to keep the number of equations the same, the above equation 

is rewritten in the following form. This results in decoupling the matrix for 

a prescribed degree-of-freedom such that the calculation of the unknown value 

of u will equal the prescribed value of u during the solution phase. 
p p 

x x 
X 

o 
X 

o 

o 
x 0 

1 

Sym. 

x 0 0 

X X 0 

X 0 X 

0 0 0 

X X X 

X X 

X 

0 

0 

0 

0 

X 

X 

X 

X J 

u 
p = u 

p 

• 

u R 
n I n 

A 

0 

X 

X 

0 u 
P 

X 

X 

X 

0 

This scheme for modifying the effective load vector R for the specified 

degree-of-freedom p is 

R.* = R. 
1 1 

R>:~ = u 
p p 

k. u 
Ip P 

(for i f. p) 

th A 

Then the dements in the p row and the column in K are replaced by 

zero s except the diagonal element k , which is set to equal unity. This 
pp 

, (11 ) 

(12) 

procedure is repeated for all specified degrees-of-freedom. Finally, this set 

of equations can be expressed in a compact form 

8 



where 

K';'u = R';' 

K';< = modified effective stiffness matrix, 

R';< = modified effective force vector. 

5. MODIFICATION OF NONSAP FOR KINEMATIC INPUT 

( 13) 

The existing nonlinear finite element computer program NONSAP 

suggests the use of pseudo high stiffness spring to approach the specified 

displacements. This technique may result in a poorly conditioned numerical 

scheme. To avoid this difficulty, the above modification is introduced into 

the NONSAP program. The required modification in the NONSAP program 

is given as follows. 

1. Input phase, after reading the load data, the kinematic data are 

read next. The load vector and kinematic vector are in the same 

array and are stored on tape 3. 

2. In the calculation of effective load vector, the increment of node 

displacement is computed and stored in the nodal increase force 

array in corresponding specified nodal degrees-of-freedom 

position. 

3. In the solution subroutine COLSOL, if the reformed effective 

stiffness matrix is to be solved, the column vectors of the 

effective stiffness matrix corresponding to the specified nodal 

degrees-of-freedom are stored on tape 33, and then the effective 

stiffness matrix and effective force vector are modified. If the 

9 



solution step does not involve the re-formation of the 

stiffnes s matrix, the existing modified stiffnes s matrix is 

already triangularized. Hence the force vector can be 

modified by using the corresponding column vector 

stored on a tape 33 in the previous step. 

4. In the iteration subroutine EQUIT, the corresponding location 

of incremental load array is set equal to zero. 

6. NUMERICAL EXAMPLE AND CONCLUSIONS 

In order to illustrate the us e of the developed procedure for kinematic 

boundary conditions, a square plate as shown in Figure 1, consisting of 

plane-stress elements was analyzed. This plate was subjected to inplane 

time-dependent forces at corner nodes as shown in Figure 2. Displace­

ment, velocity and acceleration were obtained for all nodes at every 

time-step. 

The results obtained above were used as kinematic input at corner 

nodes where the forces were applied. Independent analyses were made 

for displacement, velocity, and acceleration inputs, respectively, as 

shown in Figure 2 in order to as sess the reliability of the procedure. 

The results are given in Tables 2 and 3, and it may be seen from 

these tables that the results are identical for linear range (Step 1, t = 0.2), 

and are very close within the tolerance limit pres cribed for iteration for 

nonlinear range (Steps 2 and 3, t = 0.4 and 0.6). It should be noted that 

the Newmark method and Wilson B-method may yield significantly 

10 



different results depending on the time-step used for integration. 

The analyses demonstrate that the calculation procedures are 

dependable for the specified kinematic boundary conditions. It must be 

pointed out that the nodal equilibrium equations (2) are solved at time 

t + At in the Newm.ark m.ethod and at time t + 9 ~t (9 ::<:: 1.37) in the 

Wilson e-method for the displacement increments. The Wilson 9-method 

interpolates backwards for the accelerations, velocities, and displace­

ments at time t + At. In SOlne nonlinear cases, the structural response 

at time t + 9 II t and t + At may be significantly different. Hence, it 

is suggested that the Newm.ark method be used unless the time-step 

considered is extremely small. 

11 
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Fig. 1. The finite element grid of the rectangular plate. 
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APPENDIX 

INPUT INFORMATION FOR 

SECTIONS IV AND VIn 

OF NONSAP 
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IV. APPLIED LOADS AND KINEMATICSt DATA 

1. Control card (715) 

note columns variable 

( 1 ) 1 - 5 NLOAD 

(2) 6 - 10 NLCUR 

(2) 11 - 15 NPTM 

(3) 16 - 20 NDEFL 

(4) 21 - 25 NDCUR 

(4) 26 - 30 NDPTM 

(5) 31 - 35 IDENTY 

entry 

Number of cards used to prescribe 
loads acting at the nodes 

Number of load curves (time 
functions) 

Maximum number of points used to 
des cribe anyone of the load curves 

Number of cards used to prescribe 
deflections, velocities and 
accelerations acting on the nodes 

Number of kinematic curves 
(time function) 

Maximum number of points used to 
describe anyone of the kinematic 
curves 

Flag for kinematic input 

• EQ. 1 displacement 

• EQ. 2 velocity 

• EQ. 3 acceleration 

t Kinematics may mean either displacement, velocity, or acceleration 
depending on the context. 
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IV. APPLIED LOADS AND KINEMATICS DATA (continued) 

NOTES/ 

(1) NLOAD determining the number of cards to be read in Section 
IV. 3, below. The loads defined in Section IV. 3 are con­
centrated node forces/moments that do not change direction 
as the structure deforms; i. e., the applied node forces are 
conservative loads. 

(2) Time-dependent loads are applied to the structure by means 
of load (or time) function [i. e., f(t) ] references and function 
multipliers assigned with the loads. At time t the value of 
f(t) is found by linear interpolation in the table of f(t) vs. t; 
f(t) times the multiplier is the magnitude of the applied load 
at t. NPTM is the maximum number of [f(t), tJ pairs used 
to describe anyone of the NLCUR functions; an individual 
function may have fewer than NPTM [f(t), tJ points as input, 
but no function can be input with more than NPTM points. 
At least two points are required per function; otherwise 
interpolation in time is not pos sible. 

(3) NDEFL determines the number of cards to be read in Section 
IV. 5, below. The kinematic quantities defined in this 
section are those that do not change direction as the structure 
deforms. 

(4) Time-dependent kinematic quantities are applied to the struc­
ture by means of deflection (or time) function [i. e., 0 (t) ] 
references and function multipliers assigned with the loads. 
At time t the value of 0 (t) is found by linear interpolation 
in the table of 0 (t) vs. t; 0 (t) times the multiplier is the 
magnitude of the applied deflection at t. NDPTM is the 
maximum number of [0 (t), tJ pairs used to describe anyone 
of the NLCUR functions; an individual function may have fewer 
than [0 (t), tJ points as input, but no function can be input with 
more than NDPTM points. At least two points are required 
per function; otherwise interpolation in time is not possible. 

(5) IDENTY determines the type of prescribed kinematic input. 

If set to equal 1, the prescribed input is displacement; 
If set to equal 2, the prescribed input is velocity; 
If set to equal 3, the prescribed input is acceleration. 
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IV. APPLIED LOADS AND DEFLECTION DATA (continued) 

note 

note 

( 1) 

(2) 

2. Load function data 

Input NLCUR sets of the following data cards in order of 
increasing load function number. 

a. Control data (215) 

columns variable 

1 - S NTF 

6 - 10 NPTS 

b. [f(t), tJ data (8FlO. 0) 

columns variable 

1 - 10 TIMV(I) 

II - 20 RV (1 ) 

21 - 30 TIMV(2) 

31 - 40 RV (2 ) 

... . .. 
71 - 80 RV (4) 

Next card (if required) 

1 - 10 

11 - 20 

TIMV(S) 

RV (5) 

entry 

Time function number; 
GE. 1 and LE. NLCUR 

Number of points (i. e., f(t), t pairs) 
us ed to input this time function; 
GE.2 and LE. NPTM 

entry 

Time at point 1, t 1 

Functio,n value at point 1,f(t
1

) 

Time at point 2, t2 

Function value at point 2,f(t
2

) 

. .. 
Function value at point 4, f(t 4) 

Time at point 5, ts 

Function value at point 5, f(t
5

) 

... 
NOTES/ 

(1) Time values at successive points must increase in magnitude 
(i.e., TIMV(l)<TIMV(2)<TIMV(3), etc.), and TIMV(1) must be 
equal to zero (i. e., TIMV( 1). EQ .. 0.0). The last time value for 
the function [i. e., TIMV(NPTS) ] must be greater than or equal 
to the time at the end of solution; i. e., TIMV(NPTS) ~ TSAR T 
+ NSTE>!<DT otherwise an error condition is declared. 

(2) Input as many cards in this section as are required to define 
NPTS points, four points per card. 
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IV. APPLIED LOADS AND DEFLECTIONS DATA (continued) 

3. Nodal Loads Data (315, FlO. 0) 

Skip this section if NLOAD. EQ. 0; otherwise input NLOAD 
cards in this section. 

note columns variable entry 

(1) 1 - 5 NOD Node num.ber to which this load is 
applied; G E. 1 and LE. NUMNP 

6 - 10 IDIRN Degree-of-freedom. num.ber for 
thi s load com.ponent; 

EQ.O; solution term.inated 
EQ.1; X-translation 
EQ.2; Y -translation 
EQ.3; Z-translation 
EQ.4; X-rotation 
EQ.5; Y -rotation 
EQ.6; Z-rotation 

11- 15 NCUR Load curve num.ber that describes 
the tim.e dependence of the load; 
GE.1 and LE. NLCUR 

16 - 25 FAC Function m.ultiplier used to scale 
f(t) for the load at II til ; 

NOTES/ 

(1) If the sam.e degree-of-freedom. (IDIRN) at the sam.e node (NOD) 
is given a m.ultiple num.ber of tim.es, the program. com.bines 
the loads algebraically with no error diagnostic. 
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IV. APPLIED DEFLECTION DATA (continued) 

note 

note 

(1) 

(2) 

4. Deflection function data 

Input NDCUR sets of the following data cards in order of 
increasing deflection function nUInber. 

a. Control data (215) 

columns variable 

1 - 5 NTF 

6 - 10 NPTS 

entry 

Time function number; 
GE. 1 and LE. NDCUR 

NUInber of points (i. e. , ° (t), t pairs) 
used to input this time function; 
GE.2 and LE. NOPTM 

b. [O(t), tJ data (8FIO.0) 

colUInns variable entry 

1 - 10 TIMV( 1) Time at point 1, tl 

11 - 20 RV(l) Function value at point I,O(t
1

) 

21 - 30 TIMV(2) Time at point 2, t2 

31 - 40 RV (2) Function value at point 2, O(t2 ) 

71 - 80 RV (4) Function value at point 4,O(t 4) 

Next card (if required) 

1 - 10 TIMV(5) Time at point 5, t5 

11 - 20 RV (5) Function value at point 5, O(t
5

) 

NOTES/ 

(1) Time values at successive points must increase in magnitude 
(i. e., TIMV(1)<TIMV(2)<TIMV(3), etc.), and TIMV(I) must be 
equal to zero (i. e., TIMV( 1). EQ. 0.0). The last time value for 
the function [i. e., TIMV(NDPTM) ] must be greater than or equal 
to the time at the end of solution; i. e., TIMV(NDPTM) ~TST AR T 
+ NSTE':'DT otherwise an error condition is declared. 

(2) Input as many cards in this section as are required to define 
points, four points per card. 
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IV. APPLIED DEFLECTIONS DATA (continued) 

note 

(1) 

5. Nodal Deflection Data (315, FIO.O) 

Skip this section if NDEFL. EQ. 0; otherwise input NDEFL 
cards in this section. 

columns variable 

1 - 5 NOD 

6 - 10 IDIRN 

11 - 15 NDCUR 

16 - 25 FAC 

entry 

Node number to which this load 
is applied; GE. 1 and LE. NUMNP 

Degree-of-freedom number for 
this load component; 

EQ.O; 
EQ.I; 
EQ.2; 
EQ.3; 
EQ.4; 
EQ.5; 
EQ.6; 

solution terminated 
X-translation 
Y -translation 
Z-translation 
X-rotation 
Y-rotation 
Z-rotation 

Load curve number that describes 
the time dependence of the load; 

GE. 1 and LE. NLCUR 

Function multiplier used to 
scale f(t) for the load at "t"; 

NOTES/ 

(1) If the same degree-of-freedom (IDIRN) at the same node 
(NOD) is given a multiple number of times, the program 
combines the deflections algebraically with no error 
diagnostic. 
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VIII. INITIAL CONDITIONS 

Initial conditions for the element are defined in this section. 
Initial conditions may be established using one (1) of three (3) 

methods. 

note 

(1) 

METHOD I-For MODEX. EQ. 2, this is a restart job. Refer to 
Appendix A for setting up a restart job. The variable 
lIICON" appearing on the card below is read by the 
program, but ignored; i. e., the control card 
(Section VIII. a) must still be input. 

METHOD 2-For MODEX. NE. 2, and initial conditions of all zero, 
input ICON. EQ. 0 with no additional data; all vector 
components are then automatically initialized to zero 
at time of solution start, TSTAR T. 

METHOD 3-For MODEX. NE. 2, and known non-zero initial 
conditions, input ICON. EQ. 1 and read the system 
vectors in compacted form from cards as described 
in Section VIII. b, below. 

a) Control card (15) 

columns variable 

I - 5 ICON Flag indicating the type of initial 
conditions; 

EQ.O and MODEX. NE. 2 with 
NDEFL. EQ. 0, zero initial conditions 
are generated automatically 

EQ. I and MODEX. NE. 2, non-zero 
initial conditions are read from data 
cards immediately following 
(s ee Section (b)) 

EQ.O and MODEX. NE. 2 with 
NDEFL. NE. 0, non-zero initial 
conditions are read from data cards 
immediately following (see Section (c)) 

b) Card Input of System Vectors (3FIO.0) 

For the case MODEX. NE. 2 and ICON. EQ. I, the program 
performs the following read operations: 
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READ (5,1010) (DIS(K), VEL(K), ACC(K), K = 1, NEQ) 
where DIS/VEL/ ACC are the system initial displacement 
velocity/ acceleration vectors, respectively. The variable 
NEQ is the total number of freedoms retained for 
evaluation; i. e., six (6) times the total nodes minus (- ) all 
deletions provided by fixed boundary condition specifications. 

The list of equation numbers can be obtained in Section III 
(variable PSF) and can be identified conveniently from the 
displacement (velocity and acceleration) print-out of a 
previous solution. 

For the case of a static solution, the VEL/ ACC system initial 
vector s are not read from card input. A static solution is 
performed if IMASS. EQ. 0 (Section II, card 2). 

c) Card Input of System Vectors (3FIO.0) 

For the case MODEX. NE. 2 and ICON. EQ. 0 (i. e., Displace­
ment input condition) read NDEFL CARD in the same order 
as in the displacement input. 

READ (5, 1010) (DIS(K), VEL(K), ACC(K), K = 1, NDEFL) 
where DIS/VEL/ ACC are the system initial displacement 
where deflections are prescribed. 
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