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ABSTRACT

A theoretical and numerical procedure for incorporating
kinematic boundary conditions into nonlinear finite element
analysis is described. The nonlinear finite element code NONSAP
is modified to include the proposed method. Numerical examples
are given in an effort to substantiate the developed procedures.
The input information necessary to use the resulting computer

program is included in the Appendix.
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1. INTRODUCTION

Most numerical codes based upon the finite elemer;t approach
provide only for stress boundary conditions. In many important struc-
tural problems, however, it is necessary to specify kinematic, or
mixed stress and kinematic boundary conditions.

In this report a numerical procedure is developed to obtain the
response of a finite element-decomposed structure subjected to a time-
dependent kinematic boundary history. The procedure is incorporated
into the nonlinear finite element program NONSAP [1]. The validity of
the procedure is exemplified by numerical examples.

The program NONSAP noted above forms the foundation for current
development work concerning the simulated response of reinforced con-
crete masonry assemblies and multistory structures. The program
modification described herein is only one of many currently being made
to NONSAP,

2. THEORETICAL FORMULATION AND
NUMERICAL TIME INTEGRATION

The incremental nodal point equilibrium equations for an
assemblage of nonlinear finite elements, including velocity-dependent
damping forces are [ 1, 21]:

F, o, (1)

Mu ¢ et At T Tt

+ Ku = R
t

t+at T C Y% At

in which



M = mass matrix

C = damping matrix

Kt = tangent stiffness matrix at time t

Rt+ At S vector of externally applied forces at time t + At

Ft = vector of nodal point forces equivalent to the
stresses of the elements at time t

i

t+ At vector of nodal point acceleration and velocities

3 t.

UL At at time t + At

u = vector of nodal point displacement increments from
time t to time t ; l.es =u -u.
ime to time t+ At; i.e., Au AUV

It will be assumed that the mass matrix is constant at all times,
except that if a mass is known to break off from the structure, its
effect could be removed., The value of the structural stifﬁless matrix
is assumed to be the tangent at the beginning of the time-step. If the
system includes viscous dampers, then effects can be included in the
damping matrix,

In general, the solution of Eq. (2) yields approximate displace-
ment increments u, as the stiffness matrix K and vector of nodal point
forces F are known only at time t. The solution of u is improved by
equilibrium iteration during which operation the nodal point force vector
Ft is updated to Ft+ T by including the nonlinear effects. However,
the matrix K is gtill the same; i.e., Kt. The accuracy of this step-
by-step solution depends naturally upon the recursive scheme used to

solve the system of equations, Many different schemes are currently

2



used in practice which were used for linear systems before. The
properties of the operators used in the system have been strictly
established only for linear analysis and they have been successfully
used in obtaining solutions in the nonlinear analysis.

it should be realized that a great deal of experimentation is
required for the design of reliable time-integration opgrators based
on consistent finite formulations in which stable constitutive relation-
ships can be used. It is the interaction between thé numerical analysis,
continuum mechanics, and the correlation of experimental results that
makes the development of a nonlinear analysis program for this project
a rewarding challenge.

a) Wilson 8-method

In the §-method, a linear variation of acceleration is
assumed over the time increment 7 = §-At (where 6 = 1,37), and the

equilibrium equations, Eq. (1), are considered at time t+ 7T,

M 5o+ = - F 2
pprd T Gyt Kpuo= R ¢ (2)
where
ke ce(n o n)
prr T T 6( £+ At t
e

In order to obtain the solution at time t + At, the following

quantities are computed

. T /(. .
= + = ( + ) » 3a
ut + T ut 2 u'1: +T ut (32)



2

14 T »s
u = u + TUu + —--( U )
prr - ST TR T Byt 2Y) (3b)
where . ilt, iit are known values,
The above set of equations can be solved for U and u ,
t+T t+ 7

explicitly as shown below:

v 6 ( ) 6 . .

_ b N LRI 4
T T % T 4% (42)
) 3 ( ) . T,

R Y e (4b)

Substituting these expressions into the dynamic incremental -

equilibrium equation (2), and using the expression u = u, and

Yerr T %

transferring terms not containing u to the right-hand side, yields

?>

K.u = R , ' (5)

where

- 6 . 6
Ripr™ By 9<Rt+At'Rt>+ M[Zut+ Tt Tgut]

T . . 3
+C[2ut+ Zut+Tut]-Ft .

The solution of Eq. (5) gives the incremental displacement
vector u. The values of u are improved by the iteration procedure
described in [1], Finally, the acceleration, velocity, and displace=-

ment vectors at the desired time t + At are calculated using the

following interpolation technique:



) 6 6 3N .
i T AR Y T A it (1 - 9>“t ’ (7a)

. . Bt .

R (“t+ At T u-t) ’ (7b)
u = u + AMtu + —A—tf- (u + 240 ) (7¢)
t+ At Tt t 6 t+ At t *

b, Newmark Method
In the Newmark method [3], the displacement, velocity, and
acceleration vectors at time t + At(8 = 1) are expressed in the

following form

ut+At = ut + u , (8a)
u

__u t R v

“r At T ad T abt (2(1 1>ut ’ (8b)

AV {lt + (1 - §) Atiit + éAtﬁHAt . (8¢c)

Similar to the Wilson #-method, the incremental equilibrium
equation (2) can be then written as indicated in equation (5) by

substituting equation (8) in which

~ N 1 6
Be= Xt MY oA © (92)

~

1 o 1
ST (-1
b At T b4 At M[aAt ot e - )%

+ C[(%- 1>{1t+ ('2832' 1>Atﬁt]- Fto
(9b)

It should be noted that the incremental displacement u, solved by
this system of equations is at time. t + At. The velocity, and
acceleration at time t + At are obtained by using the interpolation

technique given in equation (8).



3. KINEMATIC DATA INPUT

In the case of kinematic time-history input, the values of u have to
be computed according to the interpolation techniques used in the respective
analyses by either the Wilson 8-method or the Newmark method, This is
required in order to obtain the correct values at time t + At. Table 1,

shows the procedures for each interpolation scheme.

4, MODIFICATION OF THE EFFECTIVE STIFFNESS MATRIX

In a1l the schemes, the structural stiffness matrix is assembled by
a direct superposition using equilibrium equations. If a degree-of-freedom
is eliminated, the corresponding equation is not retained in this structural
stiffness matrix., However, if a degree-of-freedom 'p' has a specific value
at time equal to t, the corresponding equation is retained. The equations

can be represented in the following matrix form:

- 1
X X 0 0 X 0 0
]
X X X X X 0
]
X X X 0 X
th ]
p row TR R X - X- - X--X- -0-
X X X X
Sym
' ' X X
1
' X
]
]




Table 1

Calculation of effective incremental displacement u.

Calculate u by sub-

Type of . s o .
1 . : .
input Solve 9. At from: | stituting WL At into
Displacement
' . (7c) Eq. (7a)
3 - Y+ At 4
5.
S Velocit -
& P Eq. (7b) Eq. (7a)
s e t+ At
B on
g = Acceleration
i Eq. (72)
t+ At
Displacement
o u tEq. (8a)
g v t+ At
;3 .
R V§1°°1ty Eq. (8c) Eq. (8b)
e ;‘ t+ Mt
% " Acceleration
Z B i Eq. (8b
Y4 At q. (8b)
u is not dependent on u.t+ At "




where Ep is the known value of the degree-of-freedom p at time t,

f(p is the unknown value of the force at time t. The rest of the u vector

components are unknown, and the rest of the R vector components are known.
In crder to keep the number of equations the same, the above equation

is rewritten in the following form, This results in decoupling the matrix for

a prescribed degree-of-freedom such that the calculation of the unknown value

of up will equal the prescribed value of Ep during the solution phase.

'1 A
X X 0 0 X 0 0 0 u R,
X X 0 X X 0 0 . .
X 0 X 0 X 0
1 0 0 0 © v | =] % ., (11)
p P
X X X X . :
Sym X X X :
X X . .
X u fl
L~ i n !/ n

This scheme for modifying the effective load vector R for the specified
degree-of-freedom p is

Ri = Ri - kip up (for i # p)
. _ (12)
R™ = u .
P P

~

Then the elements in the plCh row and the column in K are replaced by
zeros except the diagonal element kpp' which is set to equal unity., This
procedure is repeated for all specified degrees-of-freedom. Finally, this set

of equations can be expressed in a compact form



K¥u = R* (13)

where

modified effective stiffness matrix,

Az
[A)
il

modified effective force vector.

o]
I

5., MODIFICATION OF NONSAP FOR KINEMATIC INPUT
The existing nonlinear finite element computer program NONSAP
suggests the use of pseudo high stiffness spring to approach the specified
displacements. This technique may result in a poorly conditioned numerical
scheme. To avoid this difficulty, the above modification is introduced into
the NONSAP program, The required modification in the NONSAP program
is given as follows.

1. Input phase, after reading the load data, the kinematic data are
read next. The load vector and kinematic vector are in the same
array and are stored on tape 3.

2. In the calculation of effective load vector, the increment of node
displacement is computed and stored in the nodal increase force
array in corresponding specified nodal degrees-of-freedom
position,

3. In the solution subroutine COLSOL, if the reformed effective
stiffness matrix is to be solved, the column vectors of the
effective stiffness matrix corresponding to the specified nodal
degrees-of-freedom are stored on tape 33, and then the effective

stiffness matrix and effective force vector are modified. If the



solution step does not involve the re-formation of the
stiffness matrix, the existing modified stiffness matrix is
already triangularized. Hence the force vector can be
modified by using the corresponding column vector
stored on a tape 33 in the previous step.

4. In the iteration subroutine EQUIT, the corresponding location

of incremental load array is set equal to zero.

6. NUMERICAL EXAMPLE AND CONCLUSIONS

In order to illustrate the use of the developed procedure for kinematic
boundary conditions, a square plate as shown in Figure 1, consisting of
plane-stress elements was analyzed. This plate was subjected to inplane
time-dependent forces at corner nodes as shown in Figure 2. Displace-
ment, velocity and acceleration were obtained for all nodes at every
time-step.

The results obtained above were used é.s kinematic input at corner
nodes where the forces were applied. Independent analyses were made
for displacement, velocity, and acceleration inputs, respectively, as
shown in Figure 2 in order to assess the reliability of the procedure.

The results are given in Tables 2 and 3, and it may be seen from
these tables that the results are identical for linear range (Step 1, t = 0.2),
and are very close within the tolerance limit prescribed for iteration for
nonlinear range (Steps 2 and 3, t = 0,4 and 0. 6). It should be noted that

the Newmark method and Wilson 8-method may yield significantly

10



different results depending on the time-step used for integration,

The analyses demonstrate that the calculation procedures are
dependable for the specified kinematic boundary conditions. It must be
pointed out that the nodal equilibrium equations (2) are solved at time
t + At in the Newmark method and at time t + 8 At(6 = 1.37) in the
Wilson A-method for the displacement increments, The Wilson O-method
interpolates backwards for the accelerations, velocities, and displace-
ments at time t + At. In some nonlinear cases, the structural response
at time t + 6 At and t + At may be significantly different. Hence, it
is suggested that the Newmark method be used unless the time-step

considered is extremely small,

11



T N

401

327

24+

161

Fig. 1. The finite element grid of the rectangular plate.
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APPENDIX

INPUT INFORMATION FOR

SECTIONS IV AND VIII

OF NONSAP
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APPLIED LOADS AND KINEMATICST DATA

Iv.

1. Control card (7I5)
note columns variable
(1) 1 -5 NLOAD
(2) 6 - 10 NLCUR
(2) 11 - 15 NPTM
(3) 16 - 20 NDEFL
(4) 21 - 25 NDCUR
(4) 26 - 30 NDPTM
(5) 31 - 35 IDENTY

entry

Number of cards used to prescribe
loads acting at the nodes

Number of load curves (time
functions)

Maximum number of points used to
describe any one of the load curves

Number of cards used to prescribe
deflections, velocities and
accelerations acting on the nodes

Number of kinematic curves
(time function)

Maximum number of points used to
describe any one of the kinematic
curves
Flag for kinematic input

* EQ., 1 displacement

° EQ. 2 velocity

* EQ. 3 acceleration

T Kinematics may mean either displacement, velocity, or acceleration

depending on the context.
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IV. APPLIED LOADS AND KINEMATICS DATA (continued)

NOTES/
(1)

(2)

(3)

(4)

(5)

NLOAD determining the number of cards to be read in Section
IV. 3, below. The loads defined in Section IV.3 are con-
centrated node forces/moments that do not change direction
as the structure deforms; i.e., the applied node forces are
conservative loads.

Time-dependent loads are applied to the structure by means
of load (or time) function [i.e., f(t)] references and function
multipliers assigned with the loads., At time t the value of
f(t) is found by linear interpolation in the table of f(t) vs. t;
f(t) times the multiplier is the magnitude of the applied load
at t. NPTM is the maximum number of [f(t),t] pairs used
to describe any one of the NLCUR functions; an individual
function may have fewer than NPTM [f(t),t] points as input,
but no function can be input with more than NPTM points.

At least two points are required per function; otherwise
interpolation in time is not possible.

NDEFL determines the number of cards to be read in Section
IV. 5, below. The kinematic quantities defined in this

section are those that do not change direction as the structure
deforms.

Time-dependent kinematic quantities are applied to the struc-
ture by means of deflection (or time) function [i.e., §(t)]
references and function multipliers assigned with the loads.
At time t the value of & (t) is found by linear interpolation
in the table of 6(t) vs. t; §(t) times the multiplier is the
magnitude of the applied deflection at t. NDPTM is the
maximum number of [§(t),t] pairs used to describe any one
of the NLCUR functions; an individual function may have fewer
than [6(t),t] points as input, but no function can be input with
more than NDPTM points. At least two points are required
per function; otherwise interpolation in time is not possible.

IDENTY determines the type of prescribed kinematic input.

If set to equal 1, the prescribed input is displacement;
If set to equal 2, the prescribed input is velocity;
If set to equal 3, the prescribed input is acceleration.
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IV. APPLIED LOADS AND DEFLECTION DATA (continued)

2. Load function data

Input NLCUR sets of the following data cards in order of
increasing load function number,

a. Control data (2I5)

note columns variable entry
1-5 NTF Time function number;
GE. 1l and LE. NLCUR
6 - 10 NPTS Number of points (i. e., f(t), t pairs)

used to input this time function;
GE. 2 and LE, NPTM

b. [f(t), t] data (8F10,0)

note columns variable entry

(1) 1-10 TIMV (1) Time at point l,t1
11 - 20 RV (1) Function value at point 1, f(tl)
21 - 30 TIMV(2) Time at point 2, tz
31 - 40 RV (2) Function value at point Z,f(’cz)
71 - 80 RV (4) Function value at point 4, f(t4)
Next card (if required)

(2) 1-10 TIMV (5) Time at point 5,1:5
11 - 20 RV (5) Function value at point 5, f(t5)

NOTES/

(1) Time values at successive points must increase in magnitude
(i. e., TIMV(1)<TIMV(2)<TIMV(3), etc.), and TIMV(1l) must be
equal to zero (i.e., TIMV(l). EQ.0.0). The last time value for
the function [i.e., TIMV(NPTS)] must be greater than or equal
to the time at the end of solution; i.e., TIMV(NPTS) = TSART
+ NSTE*DT otherwise an error condition is declared.

(2) Input as many cards in this section as are required to define
NPTS points, four points per card.
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IV. APPLIED LOADS AND DEFLECTIONS DATA (continued)

3. Nodal Loads Data (315, F10.0)

Skip this section if NLOAD. EQ. 0; otherwise input NLLOAD
cards in this section.

note columns variable entry

(1) 1 -5 NOD Node number to which this load is
applied; GE. 1 and LE. NUMNP

6 - 10 IDIRN Degree-of-freedom number for
this load component;
EQ.0; solution terminated
EQ. 1; X«translation
EQ. 2; Y-translation
EQ. 3; Z~translation

EQ. 4; X~rotation
EQ. 5; Y-rotation
EQ. 6; Z -rotation

11 - 15 NCUR Load curve number that describes
the time dependence of the load;
GE. 1 and LE. NLCUR

16 - 25 FAC Function multiplier used to scale
f(t) for the load at ''t'';

NOTES/

(1) If the same degree-of-freedom (IDIRN) at the same node (NOD)
is given a multiple number of times, the program combines
the loads algebraically with no error diagnostic.
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IV, APPLIED DEFLECTION DATA (continued)

4, Deflection function data

Input NDCUR sets of the following data cards in order of
increasing deflection function number.

a. Control data (2I5)

note columns variable entry

1-5 NTF Time function number;
GE.1 and LE. NDCUR

6 - 10 NPTS Number of points (i.e., 6(t), t pairs)
used to input this time function;
GE. 2 and LE. NOPTM

b. [6(), t] data (8F10,0)

note columns variable entry

(1) 1-10 TIMV(1) Time at point 1,1:l
11 - 20 RV (1) Function value at point 1, G(tl)
21 - 30 TIMV(2) Time at point 2,1:2
31 - 40 RV (2) Function value at point 2, 6(1:2)
71 - 80 RV (4) Function value at point 4,6(t 4)

Next card (if required)

(2) 1-10 TIMV(5) Time at point 5,t5

11 - 20 RV (5) Function value at point 5, 5(1:5)

NOTES/

(1) Time values at successive points must increase in magnitude
(i.e., TIMV(1)<TIMV(2)<TIMV(3), etc.), and TIMV(1l) must be
equal to zero (i.e., TIMV(1l), EQ.0.0). The last time value for

the function [i. e., TIMV(NDPTM)] must be greater than or equal

to the time at the end of solution; i, e., TIMV(NDPTM)=2TSTART
+ NSTE+DT otherwise an error condition is declared.

(2) Input as many cards in this section as are required to define
points, four points per card,
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IV. APPLIED DEFLECTIONS DATA (continued)

5. Nodal Deflection Data (315, F10.0)

Skip this section if NDEFL. EQ. 0; otherwise input NDEFL
cards in this section,

note columns variable entry

(1) 1 -5 NOD Node number to which this load
is applied; GE. 1l and LE. NUMNP

6 - 10 IDIRN Degree-of-freedom number for
this load component;

EQ.0; solution terminated
EQ.1l; X-translation
EQ.2; Y-translation
EQ.3; Z-translation
EQ.4; X-rotation

EQ.5; Y-rotation

EQ.6; Z-rotation

11 - 15 NDCUR Load curve number that describes
the time dependence of the load;
GE. 1 and LE.NLCUR

16 - 25 FAC Function multiplier used to
scale f(t) for the load at "'t'';

NOTES/

(1) If the same degree-of-freedom (IDIRN) at the same node
(NOD) is given a multiple number of times, the program
combines the deflections algebraically with no error
diagnostic.
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VIII. INITIAI. CONDITIONS

Initial conditions for the element are defined in this section.
Initial conditions may be established using one (1) of three (3)
methods.

METHOD l—For MODEX. EQ. 2, this is a restart job. Refer to
Appendix A for setting up a restart job. The variable
"ICON" appearing on the card below is read by the
program, but ignored; i. e., the control card
(Section VIII. a) must still be input.

METHOD 2—For MODEX. NE. 2, and initial conditions of all zero,
input ICON. EQ. 0 with no additional data; all vector
components are then automatically initialized to zero
at time of solution start, TSTART.

METHOD 3—-—For MODEX. NE. 2, and khown non-zero initial
conditions, input ICON. EQ. ! and read the system
vectors in compacted form from cards as described
in Section VIIL. b, below.

a) Control card (I5)

note columns variable

(1) 1-5 ICON Flag indicating the type of initial
conditions;

EQ.0 and MODEX. NE. 2 with
NDEFL. EQ.0, zero initial conditions
are generated automatically

EQ. 1 and MODEX., NE. 2, non~-zero
initial conditions are read from data
cards immediately following

(see Section (b))

EQ.0 and MODEX.NE. 2 with
NDEFL.NE.O, non-zero initial
conditions are read from data cards
immediately following (see Section (c))

b) Card Input of System Vectors (3F10,0)

For the case MODEX, NE. 2 and ICON., EQ. 1, the program
performs the following read operations:
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c)

READ (5,1010) (DIS(K), VEL(K), ACC(K), K =1, NEQ)
where DIS/VEL/ACC are the system initial displacement
velocity/acceleration vectors, respectively. The variable
NEQ is the total number of freedoms retained for

evaluation; i.e., six (6) times the total nodes minus (- ) all
deletions provided by fixed boundary condition specifications.

The list of equation numbers can be obtained in Section III
(variable PSF') and can be identified conveniently from the
displacement (velocity and acceleration) print-out of a
previous solution.

For the case of a static solution, the VEL/ACC system initial
vectors are not read from card input. A static solution is
performed if IMASS. EQ. 0 (Section II, card 2).

Card Input of System Vectors (3F10.0)

For the case MODEX. NE. 2 and ICON. EQ.0 (i. e., Displace-
ment input condition) read NDEFIL CARD in the same order
as in the displacement input.

READ (5, 1010) (DIS(K), VEL(K), ACC(K), K = 1, NDEFL)

where DIS/VEL/ACC are the system initial displacement
where deflections are prescribed.
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