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ABSTRACT

This thesis is concerned with the earthquake response of

deteriorating systems. A model for stiffness degrading or

deteriorating systems is used to describe six different single

degree-of-freedom systems. A numerical investigation of the

response of these six systems is performed using an ensemble of

twelve earthquakes. The response is studied at nine nominal

periods of oscillation. The numerical results are presented as

response spectra corresponding to six different ductilities.

An approximate analytical method for calculating the earth

quake response of deteriorating systems from a linear response

spectrum is presented. The method, called the average stiffness

and energy method, is based upon the premise that a linear system

may be defined which is in some sense equivalent to the deteriorat

ing system. The criterion for equivalence in this method is that

the average stiffness of the deteriorating system be equal to the

stiffness of the linear system and the average energy dissipated

by the linear system be the same as the average energy dissipated

by the deteriorating system.

The new analytical method is compared to existing methods.

Comparison with the numerical results is also made. Based upon

these comparisons, it is concluded that the average stiffness and

energy method represents a significant improvement over currently

available methods for predicting the earthquake response of

deteriorating and nondeteriorating systems.
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CHAPTER I

INTRODUCTION

There have been numerous studies of the earthquake response

of linear, e1asto-p1astic, bilinear hysteretic and simple yielding

systems and many of the results of these studies have now been

incorporated into design manuals and codes. There has been far

less attention devoted to the study of the dynamic behavior of

deteriorating systems. Deterioration here refers to changes in

a structure which result in loss of stiffness and reduced energy

absorbing capacity with cyclic loading.

Many investigations have demonstrated the existence of

deterioration or II stiffness degradation ' ! in structural elements

[1-9J. Some work has been done to develop a simple model for

deteriorating systems [9-24J. A particularly useful model for

deteriorating was proposed by Iwan [23, 24J and will be used in

this investigation because of its ability to approximate a wide

class of deteriorating systems.

The use of linear response spectra in earthquake design

criteria is well established. Despite some opposition [25,26J, the

use of inelastic response spectra derived from linear response

spectra is also gaining wide acceptance [27-33 J. There are two

methods by which an inelastic response spectrum may be obtained from

a linear response spectrum. The fir st method is to develop a set

of rules based upon empirical observations. An example of such a

method is the widely accepted method of Newmark and Hall [33 J
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for the elastoplastic system. The second method involves an

analytical approach to defining a linear system which will in some

sense be "equivalent" to the nonlinear system. The second method

is more easily generalized to a variety of systems. The second

method also gives greater insight into the manner in which variations

in system behavior affect the earthquake response.

Much of the work in the area of defining an equivalent linear

system for a nonlinear system has been devoted to nonlinear elastic,

elasto-plastic, bilinear hysteretic and simple yielding systems

[34-49J. The little work that has been done in the area of

deteriorating systems has been as sociated with a rather specialized

model for deterioration [19-22J. The method presented in this

investigation is applicable to general deteriorating systems. Com

parison with numerical results for six different systems is also

presented.

The ultimate goal of this investigation is to present an

analytical method for obtaining the nonlinear or inelastic response

spectrum from a linear response spectrum for general deteriorating

systems.

In Chapter II, existing methods for determining the effective

linear system parameters for nondeteriorating systems are dis

cussed. A new method, the average stiffness and energy method,

which is applicable to general deteriorating systems is also pre

sented. The predictions of the various methods are compared for

a simple bilinear hysteretic system.
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In Chapter III a model for stiffnes s degrading systems [23, 24J

is pre sented. Six particular systems used in the numerical section

of this investigation are presented and their behavior is discussed

1D detail.

In Chapter IV the results of a numerical investigation of the

earthquake response of deteriorating systems are presented. The

six systems of Chapter III are considered along with an ensemble

of twelve earthquakes. Nine nominal periods of oscillation are

used to define the response spectrum of the nonlinear system; a

ra,nge of values of relative amplitude of excitation to strength of

the nonlinear system is used to obtain values of spectral displace

ment corresponding to six values of ductility ratio. The numerical

results are compared with linear re sponse spectra and an effective

linear period and damping are determined for each nonlinear system.

In Chapter V the approximate methods of Chapter II are used

to calculate effective linear system parameters and spectral dis

placements. Comparison is made with the numerical results and

conclusions are drawn concerning the relative merit of the various

methods. It is concluded that the average stiffness and energy

method is superior to the other methods considered not only because

it is applicable to deteriorating systems, but also because it gives

a better estimate of the spectral displacement for nondeteriorating

systems.
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CHAPTER II

APPROXIMATE ANALYTICAL METHODS

2.0 Introduction

The response history of deteriorating structures such as

reinforced concrete can be simulated by analytical models which

specify in detail the changes in hysteretic response. Such models

require considerable computational expense. Therefore, an approxi

mate analytical method for estimating the earthquake response of

deteriorating systems is desirable.

In this chapter the existing approximate analytical methods

for estimating the earthquake response of nonlinear systems will

be summarized. First, methods applicable to harmonic excitation

will be discussed. Then, methods for stationary random excitation

and finally methods for earthquake excitation will be examined.

Only the average stiffness and energy method in section

2.5.2 is applicable to a general deteriorating system. Although

the substitute damping method in section 2.5. 1 is applicable to

deteriorating systems, the model for deterioration used by that

method is very specialized. The other methods discussed in this

chapter are not applicable to deteriorating systems.

The approach that will be used throughout this chapter is to

define a linear system which is equivalent in some sense to the

nonlinear system. The equivalent linear system will be described

in terms of two effective or equivalent linear parameters; an

effective period T e and an effective fraction of viscous damping C •
e
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The peak earthquake response of a nonlinear system. m.ay be

obtained by calculating the peak response of the linear system.

specified by T e and ~e'

2, 1 Terminology and Definitions

In this section som.e basic concepts which will be used

throughout the chapter will be defined and explained.

2" 1. I Nature of the System

The system. investigated is a single-degree-of-freedom

oscillator which can be represented as in Fig. 2.1. For conceptual

purposes, the system. m.ay be considered to consist of a mass m
O

supported by flexible m.em.bers whose generalized restoring force is

kC/(x) and which also provides viscous damping cOx. The system

is excited by a base acceleration a(t). It is further assumed that

lim. df(x) = 1
dXx-+O

k O and Co are the nom.inal stiffness and nom.inal damping

coefficient of the system, respectively. f(x) is a norm.alized

(2. 1)

restoring force function which could be linear, nonlinear elastic,

hysteretic or deteriorating as indicated in Fig. 2.2. In this

chapter only hysteretic restoring forces will be discussed, although

the methods are equally applicable to elastic restoring forces.

For hysteretic systems the generalized restoring force f(x)

is generally defined in terms of a scaling param.eter x y called

th{~ yield level. The specification of this param.eter is som.ewhat
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-~. aCt)
Ground

Figure 2.1. Single-Degree of Freedom. Oscillator.
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b-Nonlinear elastic
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c- Hysteretic d- Deteriorating

Figure 2.2. Restoring Force Diagrams.
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arbitrary but it is usually taken to be the generalized displacement

at which significant reduction in stiffness is obtained. If Xm. is

the absolute maximum displacement obtained during a particular

time history of excitation of a hysteretic system, the parameter

flo =xm/xy is referred to as the ductility ratio of the response.

This parameter is frequently used to indicate the degree of yielding

of a hysteretic system.

2.1.2 Viscous and Hysteretic Damping

In a single-degree of freedom oscillator with hysteresis,

energy is dissipated in two ways; viscous damping and hysteresis.

Let V represent the energy dissipated by viscous damping. Then,

for harmonic oscillations of amplitude Xm. the viscous energy

dissipated per cycle of oscillation may be represented by the area

of the ellipse in Fig. 2.3b and may be written as

2= 2TTCkxm
(2. 2)

where C = c/ 2/ km is the fraction of critical damping.

Let H represent the energy dissipated by hysteresis. For

harmonic oscillations of amplitude ~ the hysteretic energy

dissipated per cycle of oscillation is denoted by H(Xm.) and is

represented by the area of the hysteresis loop in Fig. 2.3a.

The total energy dissipated is the sum of the energy dissi-

pated by hysteresis and the energy dissipated by viscous damping.

Let .6W denote the total energy dissipated. Then

.6W = H + V • (2.3)
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2.1.3 Secant Stiffness

In several methods of analysis the secant stiffness will be

used. The secant stiffness k(Xm) is defined as the slope of a line

from the origin of the restoring force diagram to the turnaround

point for cyclic loading to amplitude x m . Fig. 2.3a shows the

secant stiffness for a hysteretic system.

2, 1.4 Skeleton Curve and Loci of Response Maxima

The skeleton curve of a hysteretic system is defined as the

load deflection relation for monotonic loading from a virgin state.

Fig. 2.3a shows the skeleton curve for a general nondeteriorating

hysteretic system. For such a system the maximum of the response

for cyclic loading with a slowly varying amplitude generally lies on

the skeleton curve. In this case, the skeleton curve may also be

referred to as the locus of response maxima.

For a deteriorating system two or more loci of response

maxima may exist. If such a system is loaded cyclically from a

virgin state with gradually increasing amplitude, the locus of

response maxima will correspond to the skeleton curve. However,

if the amplitude of cyclic response is gradually decreased and

subsequently increased, the locus of response maxima will normally

lie below the skeleton curve. This lowe ring of the locus of

response maxima is tied directly to the reduction in stiffness and

energy dissipation of the deteriorating system which takes place

after significant yielding has occurred. In this case, the skeleton
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f (X)
Skeleton Curve
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X
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H(Xm ), Hysteretic Area

Figure 2.3a. Hysteresis Loop for Nondeteriorating System.

f (X)

X

V(X m), Vis cou s
Hysteretic Area

Figure 2.3b. Hysteresis Loop for Viscous Damped
Linear System.
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curve as given by the initial loading curve provides only an upper

bound on the loci of response maxima.

In many deteriorating systems a unique lower locus of

response maxima can be identified as shown in Fig. 2.4. All the

points on the lower locus of maxima are potential turnaround points

for cyclic loading after a maximum displacement xmax has been

experienced.

2. 2 Equation of Motion

The equation of motion for the single-degree-of-freedom

oscillator shown in Fig. 1 may be written as

This equation may be rewritten in the form

2
x + ~Ox + W of(x) = -a(t)

where

(2.4)

(2.5)

(2.6a)

(2.6 b)

Then, Co is the nominal fraction of critical damping, W o is the

nominal frequency and TO is the nominal period of the system.

As mentioned in section 2.0, the approach used in the chapter

involves defining an effective linear system with system parameters

Ce and Te- Thus, the linearized equation of motion may be written

as



-12-

f(X)

Upper Locus of -
Response Maxima ---:t----__....

Lower Locus of
Response Maxima

x

Figure 2.4. Repeated Loading of a Deteriorating System.
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~ex
2

-a(t) (2. 7)x + + w x =e

where

~e = 2C e we (2.8a)

2 k e (i: )2 (2.8b)w = = .e xne

Note that most effective linear system parameters will be a function

of the amplitude of response of the nonlinear systexn. If ~ is the

arnplitude of response, then I-L = Xm/xy is the ductility ratio and the

effective linear paraxneters may be written as functions of I-L.

2.:3 Nondeteriorating Systexns with Harxnonic Excitation

The ultimate goal of this chapter is to examine xnethods for

estixnating the peak earthquake response of deteriorating systexns.

However, before investigating deteriorating systems, methods

applicable to nondeteriorating systems will be discussed. For

srnall amplitude s of excitation and for short duration of strong

ground xnotion, the deteriorating features of a systexn may have

little effect on the response. Hence, in soxne cases deteriorating

systems xnay be modeled adequately as nondeteriorating systems.

Before examining techniques applicable to earthquake-like

excitation, consideration will be given to excitations which can be

more precisely described mathematically. First harmonic and

then stationary random excitation will be discussed.

Structural testing employing forced harmonic excitation is

frequently used to gain inforxnation about the nature of the structure
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and to define structural parameters such as period and damping.

Also, the response of a structure to earthquake excitation is often

very nearly harmonic in character. Hence, an understanding of

the steady- state harmonic response of hysteretic structures is

useful.

2.3.1 Harmonic Equivalent Linearization (HEL)

In the method of equivalent linearization the difference

between the nonlinear equation of motion (2.5) and the linear

equation of motion (2. 7) is minimized with respect to the param

2
eters ~e and we for all solutions of the form

x(t) = A cos (wt - t,O) = A cos e

where A is the amplitude of steady- state oscillation, w is the

(2.9)

forcing function frequency and cp is the shift in phase angle. The

difference between the two equations may be written as

2
w x

e
(2. 10)

Minimization of this difference may take several forms. However,

in the method of equivalent linearization for harmonic response,

the mean square value of the difference over one cycle of oscilla-

tion is minimized. Let

"82
= ~ JT 0

2
dt •

o

A necessary condition for the minimization will be

(2.11)
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(2. 12)

Substituting for x from equation (2.9) and performing the specified

2
differentiations yields the following expressions for ~ e and we

2

~e ~o -
Wo S(A)= p::-we

2 2 C(A)
W = Wo p;-e

where

1
2TT

S(A) = / f(A cos e) sin e de
TT

0

1
2TT

C(A) = f f(A cos e) cos e de .
TT

0

(2.l3a)

(2. l3b)

(2.l4a)

(2. 14b)

The function S(A) is related to the energy dissipated by hysteresis

in the following manner

S(A) = H(A)
- TTkOA

(2. 15)

where H(A) is the energy dissipated by hysteresis per cycle of

oscillation of amplitude A. The function C(A) is related to the

strain energy per cycle of oscillation. For a linear system with

slope kO

S(A) = 0 and



-16-

2.3.2 Resonant Amplitude Matching (RAM)

In this method, the shift in period of the yielding system is

not taken into account. The mass and stiffness of the equivalent

linear system are taken to be the mass and nominal stiffness of

the yielding system. Thus,

Y-A. (2. 16)

The resonant response amplitude of the equivalent linear system is

set equal to the resonant response amplitude of the yielding system

and the effective viscous damping is chosen so that the two systems

dissipate the same amounts of energy at resonance. Thus

":fA (2. 17)

where b,.W(A} is the energy dissipated by the yielding system per

cycle of oscillation of amplitude A. For the linear system b,.We(A}

is given by (2. 2) which can be rewritten as

In this case k e = kO' ":f A. Thus, (2.l7) and (2.l8) give

t" = b,. W(A}
"'e 2 •

2nk
O

A

(2.l8)

(2. 19)

This is easily interpreted as the ratio of two areas; the area of

the hysteresis loop in Fig. 2.3a and the area of the ellipse in

Fig. 2.3b.
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z. 3.3 Dynamic Mass (DM)

Another physically motivated approach is the dynamic mass

luethod. In this method, the stiffness of the equivalent linear sys-

tem is taken to be the nominal stiffness of the yielding system and

the mass of the equivalent linear system is varied so as to match

the observed period shift in the resonance response of the yielding

system. Thus, the effective period calculated by this method is

the same as that calculated by harmonic equivalent linearization.

As in the resonant amplitude matching method, the resonant ampli-

tudes and energies dissipated per cycle by the yielding and equi-

valent linear systems are set equal to each other. Thus, for a

sy·stem with purely hysteretic energy dissipation, resonant ampli-

tude matching and dynamic mass give the same effective viscous

da.mping.

2.3.4 Constant Critical Damping (CCD)

It is possible to define an equivalent linear system in such a

wa.y that the critical damping factor (cc= 2/km) remains constant,

while modeling the period shift of the yielding system. This is

done by setting

and

(2.20a)

k
e

m
e

2
= w

e
(2.20b)

2
where w is given by (2. 13b). Thus, the effective period is thee
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same as in harmonic equivalent linearization and dynamic mass.

As in the resonant amplitude matching and dynamic mass approaches,

the resonant amplitudes and dissipated energies of the linear and

nonlinear systems are equated. Since k e =I k
O

' the effective viscous

damping calculated using this method is not the same as that given

by (2. 19). Hence,

= b.W(A)

2 k A
2

TT e

which differs from (2. 19) by the replacement of k
O

by k e .

2.3.5 Geometric Stiffness (GS)

(2.21)

In all the previous methods with the exception of the resonant

amplitude matching method, the period of the equivalent linear

oscillator matches the resonant period of the yielding oscillator.

In the geometric stiffness method, the stiffness of the equivalent

linear oscillator is specified by the geometry of the hysteresis

loop. Berg [34j, and Rosenblueth and Herrera [49J have used this

approach for hysteretic systems and have chosen the equivalent

stiffness to be the secant stiffness shown in Fig. 2.3a. Equating the

mass, resonant amplitude and energy dissipated for the hysteretic

and equivalent linear oscillators implies that 'e is given by (2.21)

and

(2.22)

where ke is taken to be the secant stiffness. Since k e in this
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method is the secant stiffness, both T e and Ce will be different

from any T e and 'e obtained in previous methods.

2.3.6 Geometric Energy (GE)

Another geometric method of approximating the equivalent

vi.scous damping for the steady- state harmonic response of hystere-

tic structures has been proposed by Jacobsen [44J. In this approach

the geometry of the skeleton curve and the hysteresis loop as shown in

Fig. 2.3a are used to calculate the effective viscous damping. Let

W(A) be the maximum strain energy during a cycle of oscillation

of amplitude A. Note that W(A) is the area under the skeleton

curve as shown in Fig. 2.3a. For a linear system, the energy

dissipated by viscous damping is given by equation (2.2) and the

maximum strain energy is

W{A) (2.23)

Hence, by analogy to the linear system the effective linear viscous

damping for the yielding system may be written as

1 ~W(A)
::: 4TT W(A) (2. 24)

where ~W(A) is the energy dissipated per cycle of oscillation by

the yielding system and W(A) is the maximum strain energy per

cycle of oscillation stored in the yielding system. The geometric

energy method does not provide an effective period.



-20-

2.4 Nondeteriorating Systems with Stationary Random or Earthquake
Excitation

In this section the response of nondeteriorating systems will

be investigated further. The methods in this section are of two

types. The first type assumes the excitation to be a stationary

random process. The second type assumes the excitation to be an

earthquake. In the harmonic methods the response of the system

was assumed to be fixed at one amplitude so that A =xm • In the

methods of this section, the response is assumed to vary in ampli-

tude and Xm will represent the peak value of the response amplitude

while A will continue to represent the amplitude of a cycle of

harmonic oscillation.

2.4. 1 Stationary Random Equivalent Linearization (SREL)

The method of equivalent linearization has been applied to

stationary random excitation by many investigators since first

formulated by Booton [5Q! and Caughey [5 IJ. The development of

the method proceeds just as in the case of harmonic excitation

except that minimization of the difference term 0 in equation (2. 10)

must be interpreted in a statistical sense. If the response is an

ergodic process, time averages may be replaced by ensemble

averages. The minimization condition in this case may be written

as

(2.25 )

where E[· ] denotes the expected value or ensemble average.



Substituting for [) from (2.10), interchanging the order of differen-

tiation and expectation yields

~e 13 0 +
2 E[xf(x) J

= Wo
E[x

2J

2 2 E[xf(x)]
W = Wo

E[x
2Je

(2.26a)

(2. 26b)

.
where it is assumed that x and x are jointly stationary.

In the development of this method, two basic assumptions

about the response of the oscillator are made. First, the response

is assumed to be a narrow band process. Thus, it is assumed that

x(t) = A(t) cos [wt - cp(t) J = A(t) cos e (2.27)

where A(t) and cp(t) are slowly varying random functions of time.

Second, the response is assumed to be Gaussian. These assump-

tions are valid for a linear system with small damping and Gaussian

excitation but for large nonlinearities the response is neither narrow

band nor Gaussian. However, Iwan and Lutes [37J have found that

even though these assumptions are not strictly valid for large non-

linearities, the results of this analysis are surprisingly good.

For hysteretic systems eqns. (2.26) must be modified by sub-

stituting (2.27) into (2.26) and averaging over one cycle of oscilla-

Hon to yield

i3 e (2.28a)
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w2 = 2 E[AC(A)]
e Wo E[A2J

where S(A) and C(A) are defined by eqns. (2. 14).

(2.28b)

Since the response process has been assumed to be narrow

band and Gaussian, the probability density function of the response

amplitude A may be approximated by a Rayleigh distribution.

Hence,

(2.29)

where g(A) is any arbitrary function of A and <T is the rms value

of the response.

Substituting (2.29) into (2.28) yields ~ e and we as functions of

<T rather than I-L or Xr.n. However, the se may be written as functions

of Xr.n by assuming some relationship between x m and <T. The

simplest relationship is a linear one such as

(2.30)

Since xm is the peak response, A must be greater -than one. As A

is increased the probability that Xr.n is exceeded decreases as is

shown in Fig. 2.5. Liu [52J has suggested the use of

A = E[xmJ = r;rz. This value for A would imply that the proba-

bility that x m is exceeded would be 0.45 which is large. On the

other hand, A = 5 would imply that there is only a 4 X 10. 6 probability

that Xr.n is exceeded. The upper bound on values of A is dependent
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on how realistic the resulting system parameters are. Further

discussion of A will be reserved until section 2.6.7.

2.4.2 Extended Equivalent Linearization (EEL)

The method of equivalent linearization has been extended by

Kobori, et aL [53J to include three parameters as randomly distri

buted variables. In this approach the location of the center of

hysteresis, the amplitude of hysteretic oscillation and the frequency

of hysteretic oscillation are all randomly distributed variables.

This method yields stationary random equivalent linearization, if

both the scatter of frequency and fluctuation of the center of hystere

tic oscillation are neglected.

The extended equivalent linearization method is sufficiently

complex to make its application to the problem of the earthquake

response of a hysteretic system very difficult. To begin with, it

is necessary to specify the probability density function for the

three random variables of the model. This involves additional

assumptions about the nature of the response which may not be

valid in the case of a strongly nonlinear system. Therefore, this

method will not be discussed further here.

2.4.3 Average Period and Damping (APD)

Newmark and Rosenblueth [54J present a general approximate

method of analysis for the earthquake response of nonlinear systems.

This method of analysis is applicable to all single-degree-of-freedom

systems with generalized force displacement curves which are
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symmetric about the origin, subject only to the condition that the

system does not deteriorate.

This approach defines the effective linear system to be the

a.verage of all the linear systems, based on the geometric stiffness

m.ethod, corresponding to amplitudes less than or equal to Xm.. Let

T~ be the effective period and ,~ the effective viscous damping for

harmonic oscillations of amplitude A.
,

Hence, T is given by eqn.
e

(;~. 22) and,' is given by eqn. (2.21) where k is the secant stiff-e e

ness. The average period and damping are given by

1 ?'rn
T e = f T~(A)dAxm

0

x m
1 ! C'(A)dA'e = xm o e

(2.31a)

(2.31b)

2.5 Deteriorating Systems with Earthquake Excitation

In this section two approximate analytical methods applicable

to deteriorating systems will be presented. The first method by

Shibata [19J is applicable only to a specialized model for deteriora-

tion. The method called the average stiffness and energy method

is presented here for the first time. This latter method is

applicable to general deteriorating systems. Both methods assume

ea:t'thquake excitation of the deteriorating system.

2.:;.1 Substitut~ Damping (SD)

The substitute damping method first suggested by Gulkan and

SOl1:en [5 J and further modified by Shibata and Sozen [19-22J was
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developed as a vehicle to interpret the response of reinforced

concrete. This method assumes that the deteriorating system can

be modeled using Takeda's [ 9 ] hysteresis rule as shown in Fig.

2.6.

In this method

(2.32a)

(2.32b)

where ~ = xm/xy = ductility in early formulations and ~ = kalke =

damage ratio in later formulations. Since k is taken to be the
e

secant stiffness, the difference between the two formulations dis-

appears if the skeleton curve has zero slope after yielding.

According to Gulkan and Sozen [5 J, quantitative values for

this substitute damping were distilled from results of dynamic tests

of one-story, one-bay frames. This was done by assuming that the

energy input was entirely dissipated by an imaginary viscous

damper.

The empirical basis and special model for the deteriorating

system re stricts the usefulne s s of this method. In particular, this

method cannot be used to estimate the response of a nondeteriorating

system.

2.5.2 Average Stiffness and Energy (ASE)

The average stiffness and energy method is not restricted to

any special model for the deteriorating system. In this method two
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Figure 2.6. Idealized Hysteresis for Reinforced Concrete.
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loci of response maxima are used to specify the effective linear

system parameters. Let a subscript u denote system parameters

based on the upper locus of response maxima and let a subscript

,e, denote system parameter s based on the lower locus of response

maxima as shown in Fig. 2.4. Thus, ku(xm ), Hu(xm ). Vu(xm )

denote the secant stiffness, hysteretic energy dissipated and viscous

energy dissipated by the nonlinear system which follows the upper

locus of response maxima. Similarly, k,e, (xm ) , H,e,(xm ) , V,e, (xm )

denote the secant stiffness, hysteretic energy dissipated and viscous

energy dissipated by the nonlinear system which follows the lower

locus of response maxima.

As in the average period and damping method, the equivalent

linear system will be defined in terms of the average values of the

fundamental parameters. In this method the fundamental system

parameters are the stiffness and the energy dissipated. Let k'(A)

,
and 6:..W (A) be the secant stiffnes s and the energy dissipated for

harmonic oscillations of amplitude A. Then, the average stiffness

k(xm ) is given by

x m
= _1_ J k' (A)dA •
~ 0

(2.33a)

Likewise, the average energy dis sipated 6:.. W(x.m) is given by

1 J
~

6:..W' (A)dA .
o

(2 0 33b)
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The equivalent linear system parameter s are obtained by

taking the average of the values associated with the upper and

lower loci. Hence, the equivalent linear stiffness is given by

(2.34)

Similarly, the total energy dissipated is given by

(2.35 )

For a linear system t::.Wi is given by (2. 18). Substituting (2. 18)
e

into (2.33b) yields.

t::. We(Xm) Ve(xm ) 2 k 2 (2.36)= =
73

fT
' eXe m

Thus, the effective viscous damping of the deteriorating system is

given by

(2.37)

where ~W(xm ) and ke(xm ) are given by (2.33) with (2.35) and

(2.34), respectively. The effective period may be denoted by (2.22).

This method attempts to account for the significant differences

in the stiffness and energy dissipation of the deteriorating system

on initial loading to response amplitude x m greater than x y and on

subsequent loading to that same response amplitude ~. The con

tribution to k and t::. W due to the upper locus alone would over-

estimate the effective stiffness and energy dissipated, while the

contribution due to the lower locus alone would underestimate the
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effective stiffness and energy dissipated. It is felt that the average

of the contributions due to both the upper and lower locus should

give a m.uch better estim.ate of the effective stiffness and energy

) dissipation of a deteriorating structure.

2.6 Exam.ple of Application - Bilinear Hysteresis (BLH)

In this chapter six m.ethods for obtaining an equivalent linear

system. for a nondeteriorating system. with harm.onic excitation

were discussed. Three m.ethods for obtaining an equivalent linear

system. for a nondeteriorating system. with random. or earthquake

excitation were also discussed and two m.ethods for obtaining an

equivalent linear system. for a deteriorating system. with earthquake

excitation were discussed.

Before m.oving into the application of the average stiffness and

energy m.ethod to several deteriorating system.s, a com.parison of

the equivalent linear system.s obtained by the application of the

various m.ethods in this chapter to the bilinear hysteretic system.

will be presented.

In Fig. 2.7 the force-displacem.ent diagram. for a bilinear

hysteretic system. is shown. This system. has initial slope kO'

post yield slope akO' and yield level xy . The m.axim.um. response

am.plitude is xm. =f,LXy and in the harm.onic m.ethods xm. =A.

2.6. 1 Harmonic Equivalent Linearization

For the bilinear hysteretic system. whose force displacem.ent

diagram is shown in Fig. 2.7 the term f(A cos 8) in eqn. (2.14)

may be written as
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f (X)

Figure 2.7. Force-Displacement Diagram for
Bilinear Hysteretic System.

X
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= Ia f.L cos e - (1 - a)

f.L cos e - (~)1- a

cos e < f.L - 2
f.L

f.L - 2 < cos e < 1
f.L.

(2.38)

where f.L =A/xy • Substituting (2.38) into (2. 14) yields

I
0 f.L < 1

S(A)
= (2.39a)

x y
-~ (1- a) sin

2
e* f.L :> 1

n

f.L f.L < 1
C(A) = (2. 39b)
x

. *)Y f.L ( ~~ Sln

2
2e + <r n ] f.L > 1IT [( 1 - a) e -

where

* -1(f.L- 2 )e = cos -- •
f.L

Substituting (2.39) into (2. 13) and using eqn. (2.8) yields

(2.40)

T e

TO
f.L > 1 (2.41a)

'e = C0 Te + .?: (1 _ a) (f.L - 1) (Te )

2

TO n f.L 2 TO

2.6.2 Resonant Amplitude Matching

1-1 > 1 •
I

(2.41b)

For the BLH system indicated by Fig. 2.7 the hysteretic

energy dissipated per cycle may be written as

H(A) I0

~ = 4k
O
(l- a)(f.L - 1)

f.L < 1

f.L > 1

(2.42)
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The viscous energy dissipated may be written as

V(A)
--z-
x

y

v- ~ • (2. 43)

Using (2.3) along with (2.42) and (2.43) to express ~W in (2.19)

and using k e = k
O

' the resonant amplitude matching method yields

2(1- a)(~ - 1)
= '0 + 2

TT~

~ > 1 • (2.44)

Te is given by (2.16). Note that substituting for Te from (2.16)

into eqn. (2.41b) yields (2.44).

2,,6.3 Dynamic Mass

In the dynamic mass method, the effective period shift is

given by (2.41a) and the effective viscous damping is given by

(2.44) .

2.6.4 Constant Critical Damping

The method of constant critical damping gives the same

effective period as harmonic equivalent linearization and the effec-

tive viscous damping is given by

~ > 1 • (2.45)

Note that (2.45) differs from (2.41b) only in the exponent of the

second T efT0 term. In this method the viscous damping is a linear

function of the period shift.
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2.6.5 Geometric Stiffness

For the BLH system of Fig. 2.7 the secant stiffness may be

written as

1-1 < 1

(2.46 )

1-1 > 1

Substituting this expression for k into eqn. (2.21) yieldse

1-1 > 1 • (2.47)

The effective viscous damping is given by (2.41b) with this period

shift.

2.6.6 Geometric Energy

The maxfrnum strain energy for the BLH system may be

written as

W(A)
--2-

x
Y

Q! 2
= k O[ ( 1-1 - ~) + "2 (1-1 - 1) ] 1-1 > 1 . (2.48)

Thus, the effective viscous damping according to the geo:metric

energy method is given by substituting (2.48) and (2.42) into (2.24)

which yields

(2.49)

Note that there is no consistent way to treat '0:1 0 and no expres

sion for Te is given by this :method.
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2.6.7 Stationary Random Equivalent Linearization

Caughey [36J presented the following expressions for the BLH

system

~e
1 - a

= ~O + V;; erfc ( 1 )
fi(J

(2.50a)

1 _ 8( 1 - a)
n

(2.50b)

where erfc is the complimentary error function.

Using eqn. (2. 30) ~ and w may be expressed as functions ofe e

x rn or I.L. As stated in section 2.5. 1, the proper choice of A in

eqn. (2.30) depends on the resulting system param.eters. In Fig.

2.8 the effective period shift T efTO and the effective viscous

damping of a BLH system with a =0.05 and '0 =0 are presented

as functions of I.L for three values of A. Note that as A increases,

both the effective period shift and effective viscous dam.ping

decrease. For the numerical comparison in the next section A

wiU be assumed to be 3, even though 'e I '0 at I.L = 1 for A=3.

2.6.8 Average Period and Damping

As stated in section 2.4.3 the average period and dam.ping

method uses the effective period and damping obtained by the

geometric stiffness method. Hence, substituting (2.47) and (2. 41b)

into (2. 3 1) yields
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Figure 2.8. Dependence upon A = xml (J of the SREL Effective
Linear System Parameters for the BLH System
with C1' = 0.05 and '0 = o.
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I - a ]
3/2f2m. ~

2a
~ > I (2.5la)

where

s = 2AjG{a~2+ (I-a)~J+2a~ + (I-a)

Q! + 2G + I

~ > I .

(2.5lb)

These expressions, although lengthy, are easier to evaluate than

(2'.• 50) because no numerical integration is involved.

2.6.9 Substitute Damping

The substitute damping method as presented in section 2.5. I

is applicable to Takeda! s [ 9 ] rule for hysteresis. Hence, no

direct comparison with the other methods can be made.

2.6. 10 Average Stiffness and Energy

For the BLH system the lower locus of response maxima is

identical to the upper locus of response maxima. Hence, substi-

tuting (2.46) into (2.33a) and (2.42), (2.43) into (2.33b) yields

~ > I (2.52a)

1\

= H(~) ~ > 1 (2.52b)
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TIC k
o 0 [( 1 _ a) (l- t)
1J.

1J. < 1

• (2.52c)

1J. > 1

Thus, the average stiffness and energy method yields

T
e

TO
1J. > 1 (2.53a)

(2.53b)

These expressions are easier to evaluate than (2.50) and at least

as easy to evaluate as (2.51).

2. 7 Numerical ExaITlple and Comparison

The results of the various methods for a BLH system with

a = 0.05 and '0 == 0 are presented in Fig. 2.9. Note that the geo

metric energy method has no period shift as mentioned earlier.

Although the viscous daITlping for dynamic ITlass and resonant

aITlplitude matching are identical, the period shift for resonant

amplitude matching is unity, while the dynamic mass method yields

the largest period shift.

All harmonic ITlethods yield an effective viscous damping with

a ITlaxiITla in the range 1::;; 1J. ::; 10, while only the average stiffness

and energy method of the nonharmonic methods has a maxima in

this range.
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Figure z. 9. Effective Linear SysteITl ParaITleters for the BLH
SysteITl with Q' = 0.05 and Co = o.
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All harmonic methods yield an effective period shift which is

larger than the nonharmonic methods except resonant amplitude

matching and geometric energy. The average stiffness and energy

method gives the smallest effective period shift neglecting the

Te/To= 1 from the resonant amplitude matching method.

The nonharmonic methods which were applied to the BLH

system in the last section are all averaging methods. The SREL

method is a weighted average of the HEL method. The APD is an

average of the GS method. The ASE is an average of other system

parameters, namely stiffnes s and energy dissipated. A comparison

between SREL and HEL or APD and GS demonstrates the effect of

averaging. As long as the system parameter due to the harmonic

method is monotonically increasing, the system parameter due to

the averaging method will be smaller than the system parameter

due to the harmonic method.

These approximate methods are discussed further in Chapter

V, where comparison is made with the numerical results for a

particular BLH system. In Chapter V conclusions are presented

regarding the merits of the various methods presented in this

chapter.
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CHAPTER III

MODEL FOR HYSTERETIC AND DETERIORATING SYSTEMS

300 Introduction

Many models for deteriorating or stiffness degrading systems

have been proposed. These models fall into three categories. In

the first category are highly idealized models which lead to con

siderable simplification of the mathematics of the dynamic response

problem but which only very roughly approximate the behavior of

real structures [14, 18J. In the second category are detailed

e:mpirical models which very precisely describe a particular system

and a particular loading history [9,55 J but cannot be easily genera

lized to other systems or loading histories. In the third category

are physically motivated models which are based on phenomeno

logical description of the behavior of deteriorating structures

during cyclic loading [23, 24J. At the same time, models in this

third category are sufficiently well defined mathematically to make

their use in dynamic analysis straightforward.

3. 1 The Model

The model which will be used in this investigation falls in

the third category. It was first proposed by Iwan [23J and has

been demonstrated to be capable of modeling a wide range of

deteriorating structures.

The model may be thought of as a subclass of the distributed

element model [56 J. The gradual changes observed in many

force-displacement diagrams may be modeled with distributed
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elements. However, in this investigation only one element from

each of the three basic types of elements will be used to model the

. deteriorating system.

3. 2 Elements of the Model

The three basic elements of the model for the deteriorating

restoring force are: an elastic element (E-type), an elasto-plastic

element (Y-type) and an element which exhibits both cracking and

crushing like behavior (C-type). In Fig. 3.1 physical analogs of

these elements are indicated ~long with force-deflection diagram's

for one cycle of loading from the virgin state.

3.2.1 E-type Element

The E-type element which is completely elastic, contributes

a force kex to the generalized force for all generalized displace

ments x.

3.2.2 Y-type Element

The Y-type element 1S an elasto-plastic element with initial

stiffness k s and generalized yield displacement x s • Hence, the

generalized yield force as shown in Fig. 3.1 is

(3. 1)

The Y and E-type elements are frequently used in the analysis of

nondeteriorating structures. The bilinear hysteretic system (BLH)

can be modeled by a single E-type in parallel with a single Y-type

element.
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3.2.3 C-type Element

The effects of deterioration come from the inclusion of the

C-type element. As shown in Fig. 3. I when this element is loaded

in a tensile direction it slips or 11 cracks" at a generalized force

level fb corresponding to a generalized displacement xb. When the

element is loaded in a compressive sense, it yields or "crushes 'l

at a generalized force level f c corresponding to a generalized

displacement xc. The initial stiffness of this element is given by

k c . The similarity of the behavior of the C-type element to that

observed in concrete is apparent. The fact that the generalized

force associated with crushing normally decreases with increasing

displacement can be accounted for by a negative stiffness after

yielding, denoted by k d (kd ~ 0).

It is easily seen that the cyclic energy dissipation of the C

type element decreases sharply after the first loading excursion to

an amplitude greater than that required for compressive failure

(i. e. x> xc>. Two such elements are used in a back-to-back con

figuration to model the initially symmetric force-displacement

diagrams considered herein.

These three basic elements are the building blocks of the

distributed element modeL As mentioned earlier, a model com

posed of one E-type element, one Y-type element and one pair of

C-type elements will be used in this investigation to simplify the

analysis. An example of how these three elements are combined

to give the deteriorating response of the system is shown in Fig.

3.2.
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SYSTEM RESPONSE
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--;r==7E=~~~=t=~~~~ C-TYPE ELEMENT
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Figure 3.2. SUITnnation of Element Contributions.
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3.3 System Parameters

For this simplified model there are five basic system

parameter s a, ~, Y, [) and \i. These five basic system parameters

specify the relationships between the spring stiffnesses k e , k c ' k s

and kd' and the yield forces f s ' fb and f c or the yield displacements

3.3. 1 Definition and Description

The five basic system parameters will be defined in terms of

the parameter s in Fig. 3. 1 and in terms of their effect on the

shape of the restoring force diagram. The five system parameters

are:

ratio of the stiffness of the elastic
element to the nominal stiffne s s
of the system

ratio of the small amplitude stiffness
of the simple yielding element to
that of one deteriorating element

Y = = ratio of the generalized displacement
at which significant yielding occurs
to that at which crushing occur s

= ratio of cracking to crushing strength
for deteriorating elements

\i ratio of the limiting large amplitude
stiffness to the small amplitude
stiffness of the deteriorating elements

All of these parameters have a direct physical interpretation and

are in some way related to the parameters used in structural
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design. The parameter y, for example, denotes the degree of

ductility of the structure. If y < 1, the system is said to be of

ductile design with yielding of steel elements occurring before

significant crushing of concrete elements.

3.3. 2 Effect of Varying the System Parameter s

In Fig. 3.3 the initial loading curve for this model is given.

The various stiffnesses are indicated in terms of kO the nominal

stiffness of the system and the system parameters a, ~, y, 6 and

\). Note that a and \) control the limiting slope for large amplitude

response. The parameter ~ controls the ratio of the various slopes

while y and 6 control the location of the points of slope change.

In Fig. 3.4 the effect on the shape of the hysteresis loop due

to variations in ~ and yare demonstrated for nine systems speci

fied by a = 0.05,6 = 0.10, \) = 0.0, ~ = 0.2, 1.0,50, and y = 0.2,

0.6, 1.0. Note that ~ small indicates a highly deteriorating system.

The effect of varying 6 is demonstrated in Fig. 3.5. When

6 =0 the system has no cracking strength, while 6 = .5 indicates

that the cracking strength is half the crushing strength.

3.3.3 Typical Range of System Parameters

The system parameters ~ and y could be deduced directly

from an analysis of a given beam or column section according to

the rules of normal design practice [57J. This gives a range of

values for y between approximately 0.2 and 0.5 and for ~ between

5 and 15. However, from tests of full scale structural components

it would appear that if the model is used to describe the gross
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Figure 3.4. The Effect of Varying f3 and Y.
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Figure 3.5. The Effect of Varying 6.
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behavior of a structure including joints, the parameter Y should be

allowed to vary from O. 2 to 1.0 while the meaningful range of ~

is O. 2 to 5. 0 •

3>.4 Six Particular Systems

In this investigation six systems will be taken as represen

tative of the wide range of systems which can be modeled by the

TI1.odel discus sed in this chapter. In all six systems the parameters

\) and Q' will be fixed at 0.0 and 0.05 respectively. Hence, the

structural model may be described in terms of the three param

eters ~, Y and 6. In what follows, the systems will be designated

by the code 10~-10y-1006. Hence, the code 02-06-10 respresents

the system described by the parameters ~ = 0.2, Y =0.6 and 6 =

O. 10. The BLH system is the only system among the six inves

tigated which will not be specified by this code.

The force-displacement diagrams of these six systems are

shown in Fig. 3.6 for the case of a cyclic loading with monotoni

cally increasing amplitude. It is seen that the systems encompas s

a wide range of structural behavior. Table 3. 1 indicates the

nature of the system behavior for the six systems considered as a

function of ductility ratio. In this case the ductility ratio is

defined as

(3.2)

where ~ is the maximum amplitude of response. In the table,

cracking refers to hysteretic energy dissipation associated with
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Figure 3.6. The Six Systems Investigated.
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slip level fb while stiffness degrading refers to deteriorating energy

dissipation associated with the slip level f. TLH denotes non-e

deteriorating trilinear hysteretic behavior.

The BLH system with initial slope kO and post· yield .slope

ak
O

= O. 05k
O

is included in the six systems of this investigation

for comparison with the nondeteriorating methods. This system has

been studied by other investigators [35-37J and next to the elasto-

plastic system is one of the most commonly used hysteretic models.

The system parameters and the resulting element parameters

for the six systems are presented in Table 3.2. The BLH,

10-10-00 and 02-10-00 systems have no cracking strength, while

the other three systems all have 10 % cracking strength. The

02-10-00,02-10-10 and 02-06-10 systems all have five times as

much stiffness in the C-type element as in the Y-type element.

The system 02-10-10 differ s from 02-10-00 by the addition of

cracking strength. The system 02-06-10 differ s from 02-10-10

by the change in yield point for the C-type elements.

Both 10-10-00 and 50-06-10 systems have less deterioration

tha.n the three systems with ~ =0.2. The 50-06-10 system is

closest to the BLH system of the five deteriorating systems. Thus,

it is seen that the smaller ~ is the greater the contribution of the

C-type elements and the more deterioration possible in the system.

Likewise, the larger ~ is the greater the contribution of the Y-type

element and the less deterioration possible in the system.
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Hence, it is seen that a wide range of system behavior from

nondeteriorating to highly deteriorating is represented by the SlX

systems used in this investigation_.
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CHAPTER IV

NUMERICAL RESULTS

4.0 Introduction

In this chapter the selection and scaling of an ensemble of

twelve earthquakes is discussed. The nonlinear equation of motion

is restated and the method of numerical integration is discussed.

The numerical results of the present investigation are presented

in a general form as a function of the parameter s of the study.

Then, the results are converted to nonlinear response spectra.

Fi.nally a method for defining an effective linear system based upon

response spectra is discussed and effective linear system param-

eters are presented.

4, 1 Selection and Scaling of Input Acce1erograms

In Chapter II the nonlinear equation of motion (2,5) was

written as

(4. 1)

Let the displacement ratio z and the system parameters A and a y

be defined as

z = x/x ;y A = f /(kOx )y y (4.2)

Then, the equation of motion becomes

.. , 2-
z + ~Oz + wOf(z)

where



f(z)
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= f(x)/x
y

(4.4)

The magnitude of the excitation in eqn. (4.3) may be specified

by some characteristic acceleration a':<. This might be taken as

the peak acceleration, the rms acceleration, or some other measure

of the strength of the excitation. The right-hand side of the equa-

tion of motion could then be expressed in terms of the characteris-

tic acceleration as

2 !cw~ p [a(t)/a'l<J a(t)!cwO a(t)/a y = =

where

p = a':</a .y

(4.5)

(4.6)

In this form, [a(t)/a':<J is a dimensionless normalized excitation and

the parameter p specifies the strength of the excitation relative to

that value of steady input acceleration which would just cause sig-

nificant yielding of the system.

The twelve earthquake accelerograms used in the present

investigation are selected so as to be representative of a variety

of different types of earthquake. In Table 4. 1 the twelve earthquake

accelerograms are listed along with their maximum accelerations,

am and characteristic accelerations, a*. Except for the accelero-

gram denoted by SGGP all accelerograms may be found among the

Caltech digitized accelerograms.

Since the peak acceleration is not necessarily the best

measure of the strength of an earthquake [54 J, the characteristic

acceleration used herein is derived from the response spectrum
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of the earthquake. The characteristic acceleration a':< is the peak

acceleration of a reference spectrum which has been scaled so as

to minimize the squared error between the log of the 2% damped

spectrum of the earthquake and the log of the reference spectrum

for periods from 0.2 to 4.0 seconds. Almost any spectrum may

be used as the reference spectrum. In the present investigation

the reference spectrum is the 2% damped spectrum from the

Nuclear Regulatory Guide 1. 60 [58J adjusted to mean value. The

mean value spectrum is deduced from the published spectrum by

subtracting !o- from this spectrum as discus sed in references

[59-61J. The peak and mean value design spectra are shown in

Fig. 4.1.

The average response spectrum for the twelve earthquakes

used herein is shown in Fig. 4.2. This average spectrum is

obtained by scaling all of the response spectra of the earthquakes

in the ensemble to a 19 characteristic acceleration and taking the

ensemble average.

4.2 Method of Numerical Integration

Since the nonlinear restoring force in eqn. (4.3) is piecewise

linear for all systems used in the pre sent investigation and since

the input accelerograms as available have all been digitized at an

equally spaced time interval. an approach based on the exact

analytical solution of the Duhamel integral for the successive

linear segments of excitation [62J will be used herein.
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Figure 4. 1, Design Spectra - Nuclear Regulatory Guide 1.60.
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Let ..6.t be the- time interval, k be the local slope of the

restoring force curve and w be the natural frequency based upon

the mass m and stiffness k. Let C be the fraction of viscous

damping of the system and let z., z. and a. be the relative dis-
1 1 1

placement ratio, relative velocity ratio and scaled input accelera-

tion at time t i respectively. As shown in Fig. 4.3, Zo is the point

of intersection between the line with slope k which passes through

[z., f1z.}] and the displacement ratio axis. Using these definitions
1 1

the displacement ratio and velocity ratio at time t i+1 = \ + ..6.t are

given by

lZi

z
-' .zoJ= [A(',w,..6.t}]

1

(4.7)

The elements of matrices A and Bare

(4.8)

w -Cw..6.ta 21 = e sin wd..6.t

~ 1 _ ,2

-'w~t ( ,
sin wd~t)a 22 = e cos w

d
..6.t

~ 1- C2
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f(z)

z

Figure 4.3. Piecewise Linear Restoring Force.
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(4.9)

b"2 =t_

where

(4.10)

If the displacement and velocity of the oscillator are known

at t., the complete re sponse can be computed by a step-by- step
1

application of eqn. (4.7). The advantage of this method lies in the

fact that for a constant time interval ~t, matrices A and B depend

only on C and w which are constant along any linear segment of the

restoring force.

4.:3 Numerical Results

Solving eqn. (4.3) yields the entire time history of the

response. However, only the maximum amplitude of response will
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be discussed in this investigation. Let zm be the maximum dis

placement ratio as a function of the earthquake, system, nominal

period, nominal viscous damping and relative strength of the

excitation. Then, the ductility ratio may be expressed as

(4. 11)

For each p as given in eqn. (4.6) there is a corresponding

yield displacement Xy. Hence, the maximum displacement response

x m may be expressed as

(4. 12)

For a typical earthquake in the ensemble such as HOL the values

of xr.nfa* may be plotted versus the corresponding values of ~ for

monotonically increasing p. This is illustrated for the earthquake

HOL in Figs. 4.4-4.9.

In Figs. 4.4-4.9 the response of a completely linear system

would be a line of constant x.m./a'~ for all ~. This is seen in the

regions of linear response for the BLH, 02-10-00 and 10-00-00

systems. The method of scaling the system relative to the exci

tation which was used in the present investigation yields decreasing

x y with increasing p. For a linear region of system response, as

p is increasing x y is decreasing and ~ is increasing such that

x m = ~Xy remains constant.

Visual inspection of Figs. 4.4-4.9 reveals that Xm/a'~ versus

~ is not a single valued function of ~. For a typical system such
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as 02-10-00 in Fig. 4.8 with nominal period TO = 2.0 seconds the

response as a function of ductility is multivalued in the range of

ductilitie s 1. 5 S; I-L S; 2.0.

The time histories for this system corresponding to seven

va.lues of p are presented in Fig. 4.10. There are two important

characteristics of these time histories that help to explain the

rnultivalued nature of the nonlinear system response. First, as

p increases and Xy decreases the system enters the nonlinear

region of response earlier and thus dissipates more energy. Hence,

although the system is getting weaker the maximum response may

decrease due to the energy dissipation. This decrease in the

maximum response may be greater than the corresponding decrease

in x y so that I-L actually decreases. In Fig. 4. 10 this behavior is

evident in comparing p = 2.36 with p = 1.89. For p = 1.89 the'

response doesn't exceed the yield level until t = 11 seconds but for

p = 2.36 the first nonlinear response occurs at t = 7.5 seconds.

Comparison of p = 4.72 with p = 2.36 reveals that more nonlinear

behavior is occurring even earlier and the peak response is there

fore much earlier as well as being smaller.

The second important characteristic to note from the time

histories in Fig. 4. 10 is that as the system becomes nonlinear the

effective period of the system changes and the system in essence

detunes itself from the excitation. Hence, the system may shift

its response to a period range where there is less excitation

energy and may therefore have a smaller maximum response in

spite of the relative increase in the strength of the excitation.
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Figure 4, 10. Time Histories of Response for HOL
Earthquake, 02-10-00 System with
TO = 2,0 seconds. Vertical Scale is
the same in all seven
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Again, the decrease in maximum response may be greater than the

corresponding decrease in yield level resulting in a decrease in

ductility. An example of this detuning is seen in comparing p ::: 4.72

with p ::: 1. 89. For p ::: 1. 89 the response is nearly the narrowband

response of a linear system while p ::: 4.72 resembles a broadband

response due to the changing period of the nonlinear system.

4.4 Nonlinear Response Spectra

The nonlinear spectral displacement SDn may be obtained from

the maximum response xm(Eqk, Sys, TO' '0' p) and the ductility ~ by

letting

SDn(Eqk, Sys, TO' 'O'~) ::: max ~(Eqk,Sys, TO' '0' p)
p

p such that ~ ::: zrn(Eqk, Sys, TO' '0' p)

) (4. 13)

Based on data such as that presented in Figs. 4.4-4.9, dis-

placement response spectra are calculated for each earthquake in

the ensemble and each of the six systems at the six ductilities

~ ::: 0.6, 1.0, 1.5, 2.0, 4.0 and 8.0. The ensemble average

response spectra for each of the six systems is presented in Figs.

4. 11-4. 13. The nonlinear displacement response spectra are pre-

sented as pseudove1ocity spectra using the relationship

PSV ::: :; SD • (4. 14)

For the remainder of this chapter the numerical results are based

upon the ensemble average rather than one particular earthquake.
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For highly deteriorating systems with cracking such as

02-06-10 and 02-10-10 the nonlinear response spectra generally

increase with increasing ductility. On the other hand, for non

deteriorating or slightly deteriorating systems such as BLH and

50-06-10 the response spectra decrease with increasing ductility

up to I-L = 2.0 then they increase with increasing ductility.

The three systems with no cracking (BLH, 02-10-00 and

10-10-00) have similar response. The I-L = 0.6 and 1. 0 spectra are

the linear response spectrum for these systems. The response

decreases then increases with increasing ductility. The spectrum

corresponding to I-L = 8.0 is larger than the other spectra for small

periods. This behavior is predicted by approximate stationary

theories [37] •

The individual earthquake dependence has been removed from

the data presented in Figs. 4. 11-4. 13 by taking the ensemble

average. A measure of the dispersion of the data may be obtained

from the ratio of the standard deviation 0- and the mean x of the

nonlinear spectral displacement. In Table 4.2, the ratio o-/X is

presented for all six systems at the six ductilities and the nine

nominal periods considered herein.

From visual inspection of the ratio CJ/x in Table 4.2 it appears

tha.t there is a significant dependence of o-/x on the nominal period

of the system. Performing two way analyses of variance with

replication [63] confirms the observation that period effects have

a more significant effect upon o-/x than ductility or system effects.

For a period of 0.4 sec the average value of o-/x is 22.64'10 while



T
A

B
L

E
4

.2
.

ey
/x

NO
M

IN
AL

PE
R

IO
D

0
.4

0
.5

0
.6

0
.8

1
.0

1
.5

2
.0

3
.0

4
.0

SY
ST

EM
I'"

BL
H

0
.6

3
2

.1
9

2
2

.1
3

3
2

.2
5

2
1

.5
7

2
3

.1
8

3
5

.8
5

2
8

.8
6

4
2

.9
5

4
8

.8
5

1
.a

3
2

.1
8

2
2

.1
1

3
2

.3
4

2
1

.5
5

2
3

.3
3

3
5

.7
8

2
8

.9
0

4
2

.9
1

4
9

.
0

8
1

.5
1

8
.2

7
2

5
.9

6
3

2
.2

7
2

1
.9

9
2

5
.6

2
3

0
.4

4
3

0
.8

6
3

6
.9

0
4

8
.0

4
2

.0
2

2
.8

6
1

7
.8

7
1

1
.8

1
1

7
.6

3
2

6
.1

6
2

7
.2

8
3

3
.0

1
4

3
.4

1
4

3
.9

5
4

.0
1

6
.1

0
1

6
.3

5
1

6
.0

7
1

3
.6

6
2

1
.3

4
2

9
.6

4
2

6
.9

0
4

2
.6

9
4

9
.9

6
8

.0
1

2
.6

7
1

6
.8

0
1

6
.0

4
2

4
.0

7
2

9
.3

8
2

8
.6

3
3

8
.1

1
5

0
.9

4
5

0
.3

0

0
2

-0
6

-1
0

0
.6

2
2

.3
9

2
4

.7
2

1
9

.2
2

2
7

.1
7

1
6

.6
5

2
3

.2
2

2
6

.6
4

3
3

.3
6

4
1

.4
1

1
.0

2
5

.2
3

2
5

.5
0

2
3

.4
0

2
0

.5
3

1
7

.6
4

2
4

.9
1

2
4

.4
2

3
6

.2
2

4
3

.6
4

1
.5

2
5

.8
1

2
4

.0
9

2
6

.8
5

1
8

.1
6

2
0

.8
8

2
5

.0
9

2
3

.6
0

3
9

.4
4

4
4

.3
7

2
.0

2
6

.9
5

2
1

.7
1

2
6

.9
1

1
5

.6
6

2
1

.1
2

2
3

.8
8

2
3

.8
5

4
0

.5
4

4
5

.2
0

4
.0

1
5

.4
4

2
0

.5
4

1
5

.1
2

1
6

.7
5

2
4

.1
0

2
3

.3
2

2
8

.1
0

4
1

.8
3

4
4

.2
2

8
.0

1
2

.6
1

1
2

.5
3

1
6

.0
1

1
9

.5
9

2
0

.8
9

2
7

.4
0

3
1

.0
7

4
3

.3
1

5
3

.5
7

5
0

-0
6

-1
0

0
.6

3
4

.0
7

2
3

.1
2

2
7

.4
1

1
8

.7
3

2
0

.8
7

2
8

.0
7

2
4

.2
6

4
0

.4
1

4
8

.3
4

1
.0

3
4

.5
2

2
2

.7
1

2
7

.8
6

1
8

.4
0

2
0

.8
2

3
0

.3
7

2
5

.9
5

3
9

.5
5

4
8

.7
8

1
.5

2
0

.3
7

1
9

.6
9

2
9

.2
1

1
8

.0
5

2
3

.0
6

2
7

.0
3

2
3

.8
4

3
7

.1
5

4
8

.9
9

2
.0

1
9

.4
8

1
9

.6
6

2
5

.0
5

1
5

.3
8

2
4

.8
8

2
7

.8
6

2
3

.6
8

4
3

.6
1

4
1

.0
5

4
.0

1
9

.5
4

1
7

.0
0

1
3

.7
4

1
3

.0
1

1
8

.5
8

3
1

.7
8

2
9

.1
4

4
4

.3
6

5
0

.9
1

I

8
.0

1
3

.1
6

1
4

.6
6

1
6

.4
9

1
8

.9
3

2
8

.9
9

3
0

.8
2

3
1

.2
1

5
1

.4
1

5
3

.0
9

00 0 I
0

2
-1

0
-1

0
0

.6
2

5
.2

9
2

5
.3

7
2

3
.1

2
2

0
.7

2
1

7
.8

2
2

4
.9

3
2

4
.3

1
3

6
.2

0
4

3
.5

5
1

.0
2

9
.1

2
2

4
.5

2
2

5
.7

2
1

9
.1

6
2

1
.7

6
2

4
.2

6
2

2
.8

6
3

9
.1

5
4

5
.1

7
1

.5
2

8
.1

0
1

9
.6

8
2

5
.0

7
1

5
.5

5
2

0
.6

5
2

4
.8

5
2

7
.6

9
3

8
.4

6
4

4
.8

0
2

.0
2

0
.8

5
2

0
.8

1
2

5
.0

2
1

5
.0

1
2

2
.9

3
2

4
.5

2
2

6
.6

2
3

7
.8

4
4

5
.5

2
4

.0
1

6
.1

7
1

2
.8

9
1

4
.4

9
1

8
.4

2
1

8
.2

0
2

6
.6

0
2

6
.1

0
3

9
.4

5
5

0
.1

3
8

.0
1

0
.2

4
1

4
.8

3
1

8
.6

8
2

0
.2

9
2

6
.2

9
2

6
.3

4
3

8
.0

1
4

9
.9

4
5

0
.9

8

0
2

-1
0

-0
0

0
.6

3
2

.1
7

2
2

.2
0

3
1

.6
1

2
1

.4
3

2
3

.2
4

3
5

.8
1

2
8

.1
6

4
3

.0
1

4
9

.0
3

1
.0

3
2

.3
9

2
2

.1
9

3
1

.4
2

2
1

.5
3

2
3

.1
6

3
5

.8
3

2
8

.6
6

4
2

.9
6

4
8

.8
1

1
.5

2
4

.7
9

1
9

.6
1

2
4

.8
1

2
0

.1
8

1
9

.0
7

2
1

.2
4

3
6

..
6

9
3

9
.8

1
4

4
.5

2
2

.0
1

8
.7

0
2

4
.8

7
2

4
.2

6
1

8
.4

0
2

1
.8

8
2

5
.4

3
4

1
.6

9
4

5
.8

9
4

3
.4

2
4

.0
2

0
.3

9
1

3
.8

9
1

5
.0

0
2

0
.3

2
2

3
.3

9
3

4
.3

3
3

0
.1

0
4

0
.2

3
4

5
.6

3
8

.0
1

1
.6

2
1

7
.4

6
2

0
.0

5
2

4
.6

0
3

0
.1

3
3

2
.0

2
4

1
.6

9
4

7
.7

0
5

5
.5

7

1
0

-1
0

-0
0

0
.6

3
2

.3
0

2
2

.1
9

3
1

.6
1

2
1

.4
2

2
3

.2
2

3
5

.8
0

2
8

.7
6

4
3

.0
0

4
8

.8
4

1
.0

3
2

.3
4

2
2

.1
1

3
1

.3
5

2
1

.5
3

2
3

.3
4

3
5

.9
3

2
8

.6
2

4
2

.9
7

4
8

.9
4

1
.5

2
4

.2
8

2
0

.4
3

2
1

.0
3

2
0

.1
5

2
1

.3
lt

2
3

.1
2

3
1

.7
6

4
1

.2
8

4
6

.6
5

2
.0

2
1

.1
5

2
4

.6
5

2
2

.2
9

1
8

.4
1

2
2

.0
9

2
8

.8
4

3
0

.2
6

4
4

.1
3

4
2

.7
6

4
.0

2
0

.5
5

1
1

.4
1

1
2

.4
2

1
5

.5
4

2
1

.2
2

2
4

.0
9

3
1

.8
6

4
2

.4
4

5
0

.
8

4
~

8
.0

1
0

.0
1

II
t.

1
9

1
5

.8
8

2
0

.4
5

2
9

.7
7

3
0

.0
0

3
9

.4
5

5
2

.6
4

5
2

.0
6

M
EA

N
VA

LU
E

2
2

.6
4

2
0

.0
3

2
3

.1
9

1
9

.2
9

2
2

.1
5

2
8

.5
5

2
9

.8
1

4
2

.1
9

4
1

.5
3



-81-

for a period of 0.8 sec it is 19.3% and for a period of 4.0 sec

it is 47.5%.

4.5 Defining an Effective Linear System

In Figs. 4. 11-4. 13 it is observed that the averaged nonlinear

response spectra resemble the average linear response spectra

except for a shift along an axis of constant displacement. For

example, it is seen that if the nonlinear spectrum corresponding to

the 02-06-10 system at ~ = 8.0 is shifted along an axis of constant

displacement by a factor corresponding to a period shift of T/TO =

1. 59 then this spectrum lies almost exactly on the linear spectrum

corresponding to ,= 13.7%. This is illustrated in Fig. 4.l4a.

Another example of a shifted nonlinear response spectrum is shown

in Fig. 4.l4b for the 02-10-00 system at ~ =8.0. On the basis of

this observation, it is concluded that it is possible to define an

effective linear system for each earthquake, system, ductility

combination.

The effective linear system may be specified by two param

eters T /T
O

and C which minimize the rms error between a linear
e e

and shifted nonlinear spectra. The period ratio is used rather than

period itself to eliminate the dependence upon nominal period. Let

SDn(Eqk, Sys, TO' 'O'~} be the nonlinear spectral displacement as

defined in eqn. (4. 13) and let SDt (Eqk, T, ,) be the linear spectral

displacement corresponding to a linear system with period T and

viscous damping ,. Then, the spectrum error at a particular

nominal period T. is given by
1
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<\ = 6(Eqk,Sys,T,Ti ""O'j.L)

SDt (Eqk, T , ,)
= - 1 •

SDn(Eqk, Sys, Ti , '0' j.L}

The rms spectrum error denoted by ~ is then taken to be

o j"i9=1 69~dEqk, Sys, T/TO' " '0' j.L) LJ

(4.15)

(4. 16)

Note that the period shift T/TO replaces the dependence upon both T

and T. in eqn. (4. 15) •
1.

Let ~ be the minimum rms spectrum error and let Tm/TO

and' be the linear system parameters corresponding to ~ •m . m

Then, the effective linear system for a particular nonlinear system

is given by

T = T.· T ITOe 1. m
(4. 17)

where Ti is the nominal period of the nonlinear system and Tm/TO

and' are functions of earthquake, system, ductility and nominal
m

viscous damping.

All the data presented in the remainder of this chapter are

derived from the average linear and average nonlinear spectra.

Values of the rms spectral error ~ for all of the systems con-

sidered in this study are shown in Figs. 4. 15 -4. 19 as a function of
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are indicated.

Contour lines for € = 10, 20, 30, 40 and 50 percent

The location of (T /TO' , ) corresponding to €m m m

is denoted by a box. There are thirty contour plots in Figs. 4.15-

4.19 correspondJng to the rms spectral error for all six systems

and all ductilities considered except for combinations which result

in purely linear behavior.

In Figs. 4.15-4.19 it can be seen that the gradient of £ is a

mdnimum in the direction of an axis passing diagonally through the

point (Tm/TO' 'm) such that {; 0::: (T/T O). For example, in the case

of system 02-06-10 at I-L = 8.0 the minimum rms spectral error is

€ =3. 17% at T /T
O

= 1. 594 and {; = 13.66%. Along the axis ofIn m m

minimum gradient at T/TO = 2.0 and' = 2110 the error is £:;;z, 1010

while off this axis at T/TO = 1. 2 and, = 21 % the error is €::::>< 40%.

Hence, it is concluded that approximations to T /TO and' will
m m

give better results if they fall on or near the axis of minimum

gradient.

The values of Tm/To' 'm and €m are tabulated for the average

spectra in Table 4.3. Note that for the three systems with non-

zero cracking strength 50-06-10, 02-06-10 and 02-10-10 the period

shift is less than one for ductilities less than or equal to one.

This is due to neglecting the cracking in defining the nominal stiff-

ness of the system. Hence, the initial stiffness of the system

including cracking is greater than the nominal stiffness and the

effective stiffness remains greater for all ductilities less than one.

The period shift for the more highly deteriorating systems

with cracking such as 02-06-10 and 02-10-10 is smaller at ~ =0.6
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than the slightly deteriorating system 50-06-10 due to the greater

increase in initial stiffness from the larger C-type element contri-

bution. The effective viscous damping for these three systems

with cracking is much larger at small ductilities due mainly to the

energy dissipated by cracking and partly due to the effect upon

viscous damping factor of period shift. Note that the slightly

deteriorating system 50-06-10 has much smaller effective viscous

damping at j.1 = 0.6 than the highly deteriorating systems.

The three systems with zero cracking strength BLH, 02-10-00

and 10-10-00 behave as linear systems up to a ductility of one.

For the se systems Ern should be zero at T miT0 = L 0 and bm = '0 =

2% but numerical inaccuracies such as round-off errors cause E
m

to be as large as 0.28% at values of T ITO and' slightly
m m

different from their theoretical values.

The effect of cracking is greatest at small ductilities which

is clearly demonstrated by comparing the 02-10-10 and 02-10-00

systems. The contribution to the effective viscous damping due to

c:racking is significant at small ductilities, but at I-L =8.0 its con-

tl'ibution is negligible. The effective period shift continues to

reveal some effect of cracking even at ductilities as large as

I-L =8.0.

The effect of a more "ductile" design is to increase the

energy dissipation as demonstrated by comparing 02-06-10 and

oZ-10-10. The 02-06 -10 system is termed more ductile since the

Y -type element yields before the C -type element. At I-L = 1.0 and

at I-L = 4.0 the viscous damping of 02-06-10 exceeds that of 02-10-10.
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The period shift for 02-06-10 is less due to the increased post

yield stiffness associated with unyielded C-type element.

In Table 4.3 the minimum rms spectral error Em is

generally less than 6%. Hence, the spectral displacement of the

nonlinear system can always be estimated to within this error using

the effective linear system values Tm/To and em. Although the

error may be larger than the rms value at a particular period,

this still provides a very good estimate of the spectral displace

ment.
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CHAPTER V

NUMERICAL COMPARISON WITH ANALYTICAL MODELS

5 n 0 Introduction

In this chapter the approximate methods of Chapter II are

compared to the numerical results of Chapter IV. First, methods

applicable to nondeteriorating systems are considered; then,

m.ethods applicable to deteriorating systems. Finally, the average

stiffness and energy method is used to demonstrate the manner in

which a nonlinear response spectrum may be generated from a

particular earthquake, system and ductility.

5. 1 Nondeteriorating Systems

There are eight approximate methods presented in Chapter II

which maybe applied to nondeteriorating systems. The five

methods which may be used from the harmonic excitation section

are harmonic equivalent linearization, resonant amplitude matching,

dynamic mass, constant critical damping and geometric stiffness.

The geometric energy method is excluded since it gives the effec

tive viscous damping only. The two methods which may be used

from the random and earthquake excitation section are stationary

random equivalent linearization and average period and damping.

Of the two methods in the deteriorating system section, only the

average stiffness and energy method may also be applied to non

deteriorating systems.

Each of these eight methods yields a value of the period

shift and viscous damping as a function of ductility. This may be
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translated into a value for the spectral displacement using the

appropriate linear response spectrum.

In this section the eight approximate methods indicated are

applied to the BLH system of Chapter III. The approximate linear

system parameters and the approximate spectral displacement are

compared to the results presented in Chapter IV.

5.1. 1 Effective Period Shift and Effective Viscous Damping

Applying the eight methods just mentioned to the BLH system

with a = 0.05 and '0 = 2% yields the values of Te/To and 'e indicated

in Fig. 5. 1. The effective viscous damping is larger than that

indicated in Fig. 2.9 since Co = 2% in this case. Also indicated in

Fig. 5.1 are the numerical results for the period shift and viscous

damping which minimize the rms spectral error between the average

linear and nonlinear response spectra. These results are tabulated

in Table 4.3.

The following observations may be made about the approxi

mate methods. All of the approximate methods except resonant

amplitude matching and dynamic mass overestimate the effective

viscous damping at all ductilities. For ductilities less than 5 the

RAM and DM methods also overestimate the viscous damping,

Generally speaking, the effective period shift is overestimated by

all the methods except RAM and ASE methods. At f.L = 1.5 the

SREL and APD methods also underestimate the effective period

shift.
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Figure 5. 1. Approximate Linear System. Parameters for the
BLH system with a = 5 % and '0 = 2%.
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As mentioned in Chapter II and indicated by the numerical

results, the effective viscous damping increases much more

gradually with ductility on the range 1 ~ IJ. ~ 2 than indicated by

the harmonic methods.

Generally speaking the three methods SREL, APD and ASE

appear to give values for the effective linear system parameters

which show better agreement with numerical results than do those

from the harmonic methods. Furthermore, for large ductilities

(IJ. ::::: 4) the ASE method gives effective linear system parameters

which show better agreement than either the SREL or APD methods.

5.1.2 Spectral Displacement

The fact that an approximate method gives better values for

the linear system parameters mayor may not imply that it also

gives a better value for the spectral displacement. As mentioned

in section 4.5 the location of the point (Te/TO' be) with respect to

the axis of minimum gradient has an important effect upon the

accuracy of the approximate spectral displacement.

To evaluate the accuracy of the approximate spectral dis

placement, the rms spectral error e as defined by· eqn. (4. 16) is

used. In Table 5.1 e is tabulated along with Te/T~ and.. be for each

of the eight approximate methods considered in this section.

As mentioned earlier, the location of point (TefT0' b e) as well

as its distance from (Tm/To' 'm) has an important effect on the

rms spectral error. In the case of the CCD method at j..L = 4 the

rms spectral error is 18.310 even though Te/T O is 56.4% greater
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TABLE 5.1

Comparison of Approximate Methods
BLH System with a = 50;0 and Co = 2.0;0

DUCTILITY RATIO, !-L

1.5 2..0 4.0 8.0

RAM Te/T = 1.000 1.000 1. 000 1.000
Ce (%~ = 15.44 17.12. 13.34 8.61
e (0;0) . = 37.7 36.9 31.8 30.8

BEL Te/TO = 1. 176 1. 380 2..060 2..904
Ce (%) = 2.0. 95 31. 56 52..2.3 610 61
e (%) = 36.0 4100 52.. 2. 57.3

DM Te/TO = 1. 176 1. 380 2..060 2..904
Ce (0;0) = 15.44 17.12. 13.34 8.61
e (0;0) = 2.5 • 2. 13.5 52..0 98.8

eCD T /T - 1. 176 1. 380 2..060 2..904
C: (%~ : 18. 16 2.3.63 2.7.48 2.5.02.
e (0;0) = 30.7 2.6.5 18.3 2.8.7

GS Te/TO = 1. 2.10 2..380 10 865 2..434
Ce (0;0) = 2.2..09 31.56 43.17 44.07
e (0;0) = 36.2 4100 43.9 40.3

SREL Te/TO = 1.030 1. 095 1.458 2. 105
Ce (0;0) = 5.72 11.30 30.31 48.79
e (0;0) = 8.6 16.8 37.1 53. 1

APD Te/TO = 1. 036 1. 102 1. 372 1.775
Ce (%) = 5.82 11.20 25. 17 34.76
e (0;0) = 8.4 16.0 31.8 40.6

ASE Te/TO = 1. 031 1. 082 1. 273 1. 551
Ce (0;0) = 8.92 14.83 21. 83 210 74
e (0;0) = 20.3 25.9 30.2 25.6
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5.2.2 Spectral Displacement

As in section 5. 1. 2 for the BLH system, the effective linear

system parameter s are used to calculate the rms spectral error for

the six systems considered in the present investigation. In Table

5.2 the effective period shift, the effective viscous damping and the

rms spectral error are tabulated for the ASE method applied to the

six systems considered at the six ductilities investigated. As noted

in the last section, the ASE method does a much better job of

estimating the effective linear system parameters and hence the

spectral displacement for highly deteriorating systems than for non

deteriorating or slightly deteriorating systems. This is seen in the

fact that e is generally less than 1010 for the systems 02-06-10,

02-10-10 and 02-10-00 while it is as great as 30% for the BLH

system. This may be due to the fact that the actual system

behavior of nondeteriorating systems favors smaller amplitude

oscillations. Hence, the weighting factor used in calculating the

average stiffness and average energy dissipated should not be

uniform but should decrease with increasing amplitude of response.

The rms value of the error does not provide any information

about the sign of the error in estimating the spectral displacement.

As mentioned in section 5.2.1, overestimating Ce should imply a

nonconservative estimate of the spectral displacement. In Figs.

5.8-5. 10 the spectral error, 0i' is indicated for each nominal period

for each ductility considered and for all six systems.

As mentioned previously, the ASE method almost always over

estimates the effective viscous damping and hence the estimated
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spectral displacement is almost always nonconservative. This is

especially true for the nondeteriorating and slightly deteriorating

systems such as BLH, 50-06-10 and 10-10-00.

The rms spectral error may disguise a strong period depen

dence of the spectral error but in this case the spectral error is

generally independent of the nominal period. As indicated in Table

5.2 the spectral errors shown in Figs. 5.8-5. 10 are less for highly

deteriorating than for nondeteriorating or slightly deteriorating

systems.

Up to this point the spectral error has been calculated using

the relatively smooth average spectra. One might ask, how well

the ASE method estimates the spectral displacement for a particular

earthquake whose spectrum is not particularly smooth.

In Figs. 5.11-5.13 the spectral errors for the ELC earth-

quake are presented for all nominal periods, for all ductilities

considered and for all six systems investigated. The increased

scatter in the spectral error and the increased period dependence

are the most obvious changes from the average spectrum cases of

Fi.gs. 5.8-5.10. However, the magnitude of the spectral error is

still less than 50% in these cases.

Comparing Figs. 5.8-5.10 with Figs. 5.11-5.13 respectively,

one can clearly see that the amplitude of the spectral error and the

scatter of the spectral error about the rms spectral error is larger

in the case of the ELC spectrum than the average spectrum.

Generally speaking, the approximate spectral displacement will be

more accurate when using a smooth linear response spectrum such
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that maximum error in estimating the spectral displacement is less

than 29%.

The fact that a nonlinear response spectrum can be generated

from a linear response spectrum is more clearly indicated in Figs.

5. 14a and b. In Fig. 5. l4a the nonlinear response spectra corres

ponding to fJ.. = 1,2 and 4 are indicated along with the linear response

spectra corresponding to , = 2,5 and 10 percent damping. Shifting

the linear response spectrum corresponding to the appropriate Ce

by the appropriate Te/T 0 from Table 5.3 the nonlinear response

spectrum may be obtained for each value of fJ.. as indicated in Fig.

5. l4b. There is clearly a strong similarity between the analytically

predicted and numerically determined response spectra. The

approximate nonlinear response spectra and the numerical results

for fJ.. = 1 and 2 show much better agreement than those for fJ.. = 4.

However, even for fJ.. = 4 the numerical results show trends similar

to a shifted linear response spectrum. It is encouraging to note

that the strong peaks and valleys of the numerical results are

matched reasonably well by the approximate nonlinear response

spectra.

5 0 4 Comparison with Newmark-Hall Procedure

The Newmark-Hall procedure [33J for calculating an inelastic

response spectrum from a linear response spectrum strictly speaking

applies only to an elasto-plastic system. However, this method is

sometimes applied to other systems for lack of a better method.
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Comparison of the Newmark-Hall inelastic response spectrum

with the numerical results for the six systems investigated herein

indicates that the spectral error may be as great as 125 % based

on the average spectrum. The rms spectral error may exceed

88%. For the bilinear hysteretic system, the maximum error is

100%, but the rms error is less than 38%.

All nominal periods used in thi s investigation except TO = O. 4

seconds are in the region where the Newmark-Hall spectral dis

placement for the inelastic response spectrum is identical to that

of the linear response spectrum for all ductilities. Hence, using

the Newmark-Hall inelastic response spectrum, while it may be

conservative, gives no information regarding the variation of

response amplitude with ductility. In all cases, the results of the

ASE method represent a significant improvement over the predic

tions of the Newmark-Hall inelastic spectrum.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.0 Sununary

In Chapter II the existing approximate analytical methods for

linearizing nonlinear systems are surveyed. Six methods are con

sidered which are applicable to nondeteriorating systems with har

monic excitation. Three methods are discussed which are applicable

to nondeteriorating systems with stationary random or earthquake

excitation. Two methods are presented which are applicable to

deteriorating systems with earthquake excitation. Of all of the

methods considered only the average stiffness and energy method

is applicable to both deteriorating and nondeteriorating systems.

Comparison of those methods which may be applied to non

deteriorating systems is made with reference to a bilinear hystere

tic system with ratio of upper to lower slope of 0.05 and no viscous

damping.

It is observed that the nonharmonic methods (SREL, APD and

ASE) give effective period shifts which are smaller than the values

obtained from the harmonic methods except RAM whose period

shift is unity. It is also observed that the effective viscous

darnping s obtained from the harmonic methods increase more

rapidly in the range 1::;; I-L ::;; 2 than do the values obtained from the

nonllarmonic methods.

Presented in Chapter III is a model for general deteriorating

and nondeteriorating systems. The model is physically motivated

and based on a phenomenological description of the behavior of the
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system. during cyclic ;loading. The m.odel is sufficiently well

defined m.athem.atically to m.ake its use in dynam.ic analysis straight

forward. Also the m.odel is easily generalized and adapted to a

variety of dynam.ic loading histories.

The m.odel consists of three basic elem.ents. The nature of

the behavior of these three basic elem.ents is discussed. The

relationship between the elem.ent parameters and the system. param.-

eters is presented and six particular systems are discus sed in

detail. These six systems are used throughout the rem.ainder of

the investigation.

In Chapter IV the results of a numerical investigation are

presented. First, the selection and scaling of the input earthquake

accelerogram.s are discussed. Then, the m.ethod of num.erical inte-

gration is presented. This method utilizes the special character of

the piecewise linear restoring forces and uniformly digitized

accelerogram.s to simplify the computer calculations.

The num.erical results presented in Chapter IV are first pre

sented as functions of the relative strength of the system excitation.

Then, simple linear interpolation is used to obtain nonlinear response

spectra for six values of ductility. It is observed that the nonlinear

response spectra have the sam.e trends as do linear response spec-

tra of higher dam.ping and shifted period. This fact is used to

define effective linear system parameters T ITO and' whichm. m

minimize the rms value of the error between the linear and non-

linear response spectra.
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The absolute minimum values of the rms spectral error are

generally less than 610. Examination of the rms spectral error as

a function of period shift and viscous damping indicates that there

is an axis of minimum gradient (valley in the contour plots). Along

the direction of the axis of minimum gradient the spectral error is

minimized relative to any other direction.

Presented in Chapter V is a comparison of the approximate

ana~lytical methods of Chapter II and the numerical results of

Chapter IV. First, the eight methods which may be applied to the

BLH system are compared. Comparison of the effective linear

system parameters reveals that the nonharmonic methods (SREL,

APD and ASE) yield parameters which show better agreement with

the numerical results than do the harmonic methods (BEL, DM,

CCD, GS and RAM). Comparison of the spectral displacement also

supports this conclusion. The fact that the error between the

approximate response spectrum and the numerical results is

dependent upon the relative position of effective linear system

parameters with respect to the axis of minimum gradient is also

demonstrated.

Also presented in Chapter V is a comparison of the average

stiffness and energy method and the numerical results for all six

systems considered in the present investigation. Comparison of

the effective linear system parameters indicates that the ASE

method overestimates the damping for nondeteriorating and slightly

deteriorating systems. For highly deteriorating systems the

effective linear system parameter s obtained from the ASE method
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show good agreement with the numerical results. Comparison of

the spectral displacement shows that overestimating the viscous

damping generally implies underestimating the spectral displace

ment. Although the approximate spectral displacement is generally

smaller than the numerically calculated spectral displacement, in

no case is the error greater than 40% for the average response

spectrum and for highly deteriorating systems the error is less

than 2010.

The effect of the smoothness of the linear response spectrum

upon the accuracy of the approximate nonlinear response spectrum

is also considered in Chapter V. Generally speaking, the smoother

the linear response spectrum the better the agreement between the

approximate nonlinear response spectrum and the actual response

of the nonlinear system. Smoothness of the linear response spec

trum minimizes the effect of inaccuracies in estimating the effec

tive period shift.

An example of how the ASE method may be applied to obtain

a nonlinear response spectrum is presented in Chapter V. Three

nonlinear response spectra are presented and numerical results

corresponding to eighteen nominal periods of oscillation are com

pared to these spectra. Even though the linear response spectrum

is not very smooth the approximate response spectra show good

agreement with the numerical results. Even in the case where

agreement between the approximate re sponse spectrum and the

numerical results is poorest, it is obvious that the numerical

results have trends similar to a shifted linear response spectrum.
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The procedure proposed by Newmark and Hall for obtaining

an inelastic response spectrum from a linear response spectrum

is used to estiInate the spectral displacement for the systems

investigated. It is observed that large errors in the spectral

displacement occur when this procecure is used to calculate the

spectral displacement for deteriorating systems.

6. z Conclusions

Based on the results of this investigation, it is concluded that

the ASE method is a useful tool in estimating the peak earthquake

response of deteriorating systems. This method is useful in

estimating the peak earthquake response of nondeteriorating systems,

even though it somewhat overestimates the effective viscous damping

and hence underestimates the spectral displacement.

Further study should be done in the area of understanding why

this method overestimates the effective viscous damping for non

deteriorating systems. Perhaps the weighting factor in calculating

the average stiffness and average energy dissipated should be a

function of the amplitude rather than a constant. Also the weighting

of the contribution due to upper locus of response maxima relative

to lower locus of response maxima might be investigated further.

At the present there is no obvious reason to weight either contri

bution higher than the other.

Another area for further investigation is applying the ASE

method to more deteriorating and nondeteriorating systems. The

present model for the system may be used or an extension of the
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present model to include more than one element from each of the

three types of elements in the model. The ASE method is not

restricted to the model used for the system. Hence, further

investigation might include applying this method to other models

for deteriorating systems.

The region of greatest variation in response as a function of

system parameters occurs at short periods. There is relatively

less variation for long periods. Hence, it would be instructive to

extend the range of numerical results to nominal periods below

T O =O.4 seconds.
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