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ABSTRACT

This report contains two studies that were made of the effects of

differential motion of the foundations upon the response of the super

structure of a bridge. The first study deals with the dynamic response

of a lliong beam l' model of a bridge to both steady-state and random

excitations applied at the supports. The study has been simplified by

considering a long shear beam, simply supported at two ends; this beam

is subjected to two end excitations in the form of ground displacements.

Harmonic excitations, differing in phase at the ends, were considered

in the frequency domain by analyzing the steady state vibrations and

calculating the displacement amplitudes at specific points on the beam.

The energy content of the system has been presented, and the correlation

between the two end excitations has been considered. For the random

excitations, the analysis has been made in the time domain; two different

cases of random motions have been considered.

The second study develops a method to analyze the dynamic soil

bridge interaction of a simple two-dimensional bridge model erected on

an elastic half-space, with the input motion in the form of incident plane

SH-waves. The bridge model consists of an elastic shear girder

supported by two rigid abutments and rigid foundations which have a

circular cross section and which are welded to the half-space. Finally,

the dynamic response of the bridge and the effect of the radiative dampin'g

in the half-space on the interaction of the bridge are also studied.
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STUDIES ON THE EFFEC T OF DIFFERENTIAL MOTIONS

OF TWO FOUNDATIONS UPON THE RESPONSE OF

THE SUPERSTRUCTURE OF A BRIDGE

General Introduction

The effect of differential motions of two (or more) foundations

upon the dynamic response of the superstructure of a bridge is a

little understood problem which is of considerable interest in earth

quake engineering. Although dynamic loadings acting on a bridge

structure may result from different sources, including wind or

vehicular motions, to the structural engineer one of the most

important types of dynamic input is that produced by an earthquake.

The definition of an appropriate ground-motion history is the most

difficult and uncertain phase of the problem of predicting structural

response to earthquakes. A common assumption in the usual treat

ment of earthquake excitations is that the same motion acts simul

taneously at all points of the structure I S foundation. If rotation

motions are neglected, this assumption is equivalent to considering

the foundation soil to be rigid. Such a hypothesis is not consistent

with the concept of earthquake wave propagation; however, if the

base dimensions of the structure are small relative to the vibration

wave length in the soil, the assumption is acceptable. For example,

if the velocity of the wave propagation is 6, 000 ft/sec., a sinusoidal
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wave of 3 Hz frequency will have a length of 2, 000 ft., and a building

with a base dimension of 100 ft. will be subjected to essentially the

same motions over its entire length. On the other hand, a suspe~sion

bridge, which might have a length of several thousand feet, obviously

would be subjected to drastically different motions at its two founda

tions. No direct measurements have been m.ade on a bridge (or

similar structure) at two widely separated foundations during an

earthquake; however, it is evident that the motions must vary and

their variance could contribute significantly to the dynamic re sponse.

Therefore, it is important to develop analytical procedure s capable

of dealing with multiple support excitation.

In order to lay a foundation from which later work, analyzing

the dynamic response of long-span suspension bridges to earthquake

ground motions applied at separate points of support. can be developed,

two related topics have been studied in this report. The

first topic, in Chapter I, deals with the dynamic response of a

"long beam" model of a bridge span to both steady-state and random

excitations applied at the supports; the results involve a large number

of modes. The second topic, presented in Chapter II, develops a

method to analyze the dynamic soil-bridge interaction of a simple

bridge model erected on an elastic half-space, and the input motion

is in the form of incident plane SH-waves. The dynamic response of

the girder and the effect of the radiative damping in the hali- space on

the interaction of the girder are also studied.
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CHAPTER I

DYNAMIC R.ESPONSE OF A LONG BEAM MODEL

OF A BRIDGE STR.UCTURE SUBJECT TO TWO END EXCITATIONS

I -1. Introduction

For long span structures such as suspension bridges, the piers

or the abutments of the bridge may be far apart. In such a case. one

may have a situation involving ground motion with different charac

teristics at each point of the bridge structure. For instance. during

the 1971 San Fernando earthquake. the motions recorded by instru

ments located in Millikan library. at one end of the campus of

California Institute of Technology; differed greatly from those of the

Caltech Athenaeum located at the other end.

The following study deals with the effect of differential motions

of two end supports upon the response of the superstructure. The

study has been simplified by considering a long shear beam, simply

supported at two ends. as shown in Fig. I -1, this beam is subjected

to two end excitation. f l (t) and fZ{t). in the form of ground dis

placements.

Two cases of excitation have been examined:

1. Harmonic excitations where
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f
l

(t) = A sinwt and f
2

(t}:: A sin (wt+ a)

in which A is the amplitude of the input motion and a is

the phase difference between the two end excitations, as

shown in Fig. I -1 -a.

2. Random excitations where

f l (t) :: f
2

(t) = f(t)

in which f(t} is a random function of time.

For the harmonic excitations. which may differ in phase at

the ends, the analysis has been made in the frequency domain by

considering the steady state vibrations and calculating the displace

ment amplitudes at certain points on the beam. The energy content

of the system has been presented, and the correlation between the

two end excitations has been considered.

For random excitations where f
l

(t) =f
2

(t) :: f(t) , 1. e., where

the two ends of the shear beam have the same motion (symmetric

mode shapes), the analysis has been made in the time domain; two

cases of random motion have been considered: (1) Random motion

(or displacement) of the supported ends that might be appropriate for

a motion resulting from earthquake acceleration. This random

motion was suggested by Shinozuka [l J. and is in the form of the

integral of a product of an envelope decaying deterministic function

times a random function. (2) Random acceleration of the supported

ends. which was developed by Tajima [8J from the work of Kanai [9J.

has been studied. The case where the excitation has a certain dura-

tion followed by free vibration has been considered.
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A sin[wt.aJ
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Fig. 1-1. Bridge model subjected to motions at the support points.
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In either case of random motion, the response of the beam

structure has been calculated and plotted versus different cases

of envelope functions for case (1) and different durations for

case (2).
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1-2. Steady-State Vibration Analysis

In this section. a study is made of the shear beam excited by

the motion of the two support points. as shown in Fig. I-I-a. The

two harmonic excitations. evidenced in the form of displacements.

are of the same frequency and amplitude. but differ in phase by a.

The steady-state vibration of the beam is studied. and the results

are expressed in a nondimensional form that enables a concise

graphical presentation of the dynamic characteristic s of the system.

1-2-1. Undamped natural frequencies and mode shapes

The free vibration of the undamped shear beam is described by

the equation of motion

(1. 1)

where p is the mass density. a is the cross-sectional area of the

beam. k' is a numerical factor depending on the shape of the cross-

section. and G is the shear modulus. From Eq. 1. 1. the eigen-

functions or mode shapes for the simply supported beam are

cl> (x) =
n

• nTIX
Sln-

L
n= 1.2.3.4•... , ( 1. 2)

where L is the span length of the beam.

The natural frequencies are

- mr Vkp'Gwn -L n= 1,2,3, ... (1. 3)
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fu thEq s. 1. 2 and 1. 3 are the n tnode shape and the n natural

frequency, with the understanding that these tnode shapes and

frequencies could be for fixed-end bridges as well as for hinged-end

ones so long as they do not violate the boundary conditions of the dis-

placetnent for such shear beatns.

I -2-2. Equation of tnotion of datnped shear beam

The differential equation of motion, in which a strain-rate type

damping (relative datnping) is assumed, can be written as

(1. 4)

where c is the damping coefficient.

The initial and boundary conditions are

v(x, 0) ::: v(x, 0) ::: 0

v(O, t) ::: A sinwt

v(L, t)::: A sin(wt+a) }
(1. 5)

(1.6-a)

(1. 6-b)

where A is the atnplitude of the two harmonic excitations, a is the

phase difference, and W is the frequency of the excitations.

I -2-3. Steady- state solution

For the steady-state vibration, the solution of Eq. 1. 4 maybe

written as

v(x, t) ::: Xl (x) cos wt + Xl(x) sinwt (1. 7)

where both Xl (x) and Xl (x) are functions of fue spatial coordinate
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x, only.

Substitution of Eq. 1. 7 into Eq. 1.4 yields two simultaneous

ordinary differential equations; putting the se two equations in a

matrix form containing the solutions and their derivatives, and then

solving these four equations, one can obtain

Xl (x) = c 1 cos,hqx cospx + c 2 sinhqx cospx + c
3

sinhqx sinpx

+ c 4 coshqx sinpx

and

X 2 (x) =-c 1 sinhqx sinpx - c
2

coshqx sinpx + c
3

coshqxcospx

+ c 4 sinhqx cospx

(1. 8)

(1. 9)

where c 1 ' c 2 ' c 3 and c 4 are arbitrary constants which can be

determined from the boundary conditions (Eq. 1. 6), and q, p

and (3 are given by

q=wV/c f[~J

=w ~C£ V[.ltU..]p Vi?G 2
2(3

~ = V1+ t~~f

(1. 10)

(l.11)

(1. 12)

Upon using the boundary conditions (Eq. 1.6), the constants

c l ' c 2 ' c 3 ' and c 4 are found to be



c1=0 (1.13)

c = A [sina sinhq L cO~PL - cosa coshq L ~inpL \ cospL sinpL ] ' (1. 14)
2 . h L 2 L+ h L' LSln q cos p cos q Sln p

c
3

=A (1.15)

c = A [sinacoshgL~inPL +lcosa Sinhgtcosp!z - sinhgLcoshgLJ ,(1.16)

4 cosh qL si.n pL + sinh qLcos pL

Therefore, at any point 5E on the beam, the displacement can

be written as

v(~ > t) = Xl (~)coswt + Xl(~) sinwt

or more conveniently as

* *v( x, t) = VO( x ) sin(wt+<p)

(1.17-a)

(1.17-b)

where VO( i) is the amplitude of the beam displacement at point

5e ; it is expressed as

(1.18)

In Eq. 1. l7-b, <p is the phase angle between the displacement at that

*particular point x and the harmonic motion of the left support

(where x = 0 and a = 0); cP is given by

(1. 19)
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To simplify the calculations, all the parameters involved in

the steady-state solution are expressed in nondimensiona1 form; for

t,(
instance, define the dimensionless frequency w as

* _ wW - - (1.20)
WI

where WI is the fundamental natural frequency of the beam which is

given by

w =1 L
yk/G

P
(1. 21)

Therefore, Eqs. 1.10 and 1.11 become

and

(1. 22)

11" *P = L W (1. 23)

Now, the steady-state solution, v(x, t), can be expressed in

terms of the normal modes ~n(x) as follows

00

v(x, t) =L ~n(x) 'I7n (t)
n=I

(1. 24)

thwhere '17 (t) is the n normal or generalized coordinate and is an

function of time only.

Substitution of Eq. 1. 24 into Eq. 1. 4 yields

.• c 2. ( 2
'I7n(t) + Gk' w '17 t) + W '17 (t) = 0 ,n n n n

n = 1, 2, 3, ...
(1. 25)
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Let

c 2 /:
Gk' W = 2w sn n n

where; is the damping ratio which is given by
n

then, one can obtain

(1. 26)

(1. 27)

where ~1 is the damping ratio of the first mode. Therefore,

Eq. 1. 12 becomes

(1. 29)

1-2-4. Dynamic response of the beam (numerical results)

With the aid of Eq s. 1. 17, 1. 18 and 1. 19, the displacement

v(x, t), and the phase angle cp(x) were computed at three different

points of the beam: at x = ~ ,~ and 34L The damping for

the first mode was assumed to be 2%, and at was given several

values: 0°, 45°, 90°, 135° and 180° . Figures 1-2, 1-4 and

I -6 show the displacement amplitudes Vo(~)

Vo( 34L) as functions of the dimensionless frequency It , with the

excitation phase angle a as a parameter. From these figures the

following observations may be made.
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1. In all cases, the amplitude curves for different values of the

phase angle a, all have the same value (IvoI= 1. 0) when

*w approaches o.

2. At the mid-point of the span (Ivo(~ )1, Fig. I -2), there is

no contribution from the even modes (antisymmetric mode

shapes), because that point (~= ~ ) is always a node point

for the se mode shape s.

3. In Fig. I -2, also, the maximum displacement is attained when

a = 0°, i. e., when the two harmonic end-excitations are in

phase, and this maximum (or peak value) decreases as a

increases in all the odd modes (symmetric mode shapes).

Further understanding of this behavior of the system may be

obtained by studying Fig. I -3 which corresponds to Fig. I -2.

In Fig. I -3, when a = 0° to a ~600 the rate of decrease is

very slow, while from a ~600 to a = 180°, the rate of decrease

is very rapid.

4. Because of the type of damping assumed, the contribution from

the third mode, in Figs. I -2 and I -3, is smaller than the con-

tribution from the first mode (by about 80%).

5. At the points Ivo(3;)/ ,the results are

For different

almost identical, as seen from Figs. I -4, I -5, I -6 and 1-7.

There is no contribution from the fourth mode where there are

nodes at these points (~= ~ and 3
4
L)

values of the angle a, the behavior of the system at the second

mode is completely different from the behavior at the first

mode.
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6. The phase difference cp between the response and the 1eft-

support excitation (Eqs. 1.17-b and 1. 19), has been plotted

for these three points on the beam, as a function of the

dimensionless frequency ~ , and with a as a parameter.

All three sets of curves in Figs. I -8, I -9 and 1-10 indicated

that during resonance of the first mode, the external forced

displacement at the left support and the response have a phase

difference of ~ •

7. By comparing Figs. 1-9 and 1-10, a considerable difference

is seen in the phase characteristics of the two cases when

~ =Land 3
4
L ,in contrast with the similarity of the_ 4

amplitude characteristics (in the frequency domain) shown

in Figs. 1-4, I -5, I -6 and 1-7.

1-2-5. Energy consideration

For an external force F(x, t) , the equatlon of motion (Eq. 1. 4)

can be written as

(1. 30)

In terms of the inertia forces which result from the two end

motions, F(x, t) can be described. as shown in Fig. I -l-c, as

(1.31)

Because £1 (t) = A sinwt and £2(t) = A sin (wtt a), Eq. 1.31 becomes
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F(x, t) =pA [_W 2
sinWt - "i ~ (sinwt cosa +coswt sina - sinwt) ] • (1.32)

Therefore, the amount of energy input into the system, which

is supplied by the harmonically excited motions is

8v
F(x, t) at dt dx , (1. 33)

and the energy per cycle of the vibration is

L 211'

Ell cycle =I JW F(x, t) ~; dt dx

o 0

(1. 34)

This energy was calculated and plotted in dimensionless form

~I ' as

* *.Fig. I -11 shows E
1

versus W Wlth a as a parameter. At

resonance, this energy' input is equal to the energy dissipated by the

system due to damping. Fig. I -11 shows the increase of this

energy in the higher modes. The contribution from the odd

symmetric modes and the even antisymmetric modes are shown to

be proportional with the phase angle a . Finally, the energy.o£

vibration as seen in Fig. 1-11, is greatest in the normal modes of

low order; this is to be expected because to excite the lower modes

requires more energy.
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A similar analysis was made for both the kinetic and strain

energies of the system. The kinetic energy is

L

T(t) ~ i i pa(i-J dx •
o

and the mean value of this kinetic energy per cycle is

(1. 36)

1 W iLf~1r
T /cycle ::: -2 -2mean 1r

o 0

The strain energy of the system is

(av)2
pa at dtdx ( 1. 37)

L 2
1 I I (av)U (t) ::: '2 k a G ax dx

o

and the mean value of this energy per cycle is

L 21r
1 WJ fW, (av )2Umean/cycle ::: '2 21r k aG ax dtdx .

o 0

(1. 38)

(1. 39)

This strain energy is due to shear alone, because any element

of the beam may undergo distortion but no rotation.

Expressing these energies in nondimensional form, one obtains

and

* (
T ICYCle)

T::: rrean

kaG . A2
L

* (
u ICYc1e)

U::: rrean
kaG . A2

L

(1. 40)

(1.41)
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Figs. 1-12 and 1-13 show these two dimensionless energies

as functions of ~; they are almost equal at each normal mode.
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1-3. Random Vibration Analysis

This section contains a discussion of the transient response of

the beam to random excitations applied at the support points. The

analysis has been confined to the stationary aspects of the motion.

Two type s of input motion having various specific characteristic s

were considered, and the mean square displacement was calculated

for both cases. The two end excitations were assumed to be identical

in both cases.

I -3-1. Equation of motion

Substituting Eq. 1.24 into Eq. 1.30, with F(x, t) defined as

in Eq. 1. 31, one can obtain the following, after multiplying both .

sides of the resulting equation by ¢'m(x) , integrating from 0 to L

with respect to x, and making use of the orthogonality of the modes.

?1n (t) + 2Wn ~ n 11n(t) + W~ 17n (t) = ~7T [f'1 (t) - (-1) n f2 (t) ] , n = 1, 2, 3, •••

(1. 42)

By considering Fig. I -l-c, one can decompose the two triangular

inertia. forces to the symmetric case where one has i(fl (t) +f2 (t») ,

and the antisymmetric case where one has i(f1(t) - f 2(t»); using

Eq. L 42, these two cases can be written as

17 (t) + 2w ~ r, (t) + w
2

't7 (t) = 3... (II (t) + f2 (t»)n n n n n n n7T n = 1, 3, 5, •.•

( 1. 43)

which includes the contributions from the odd modes (symmetric

mode shapes), and
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11 (t) + Zw ~ 1] (t) + w Zl1 (t) :::.3... (rl(t) - £z(t»)n n n n nn nil"
n ::: Z, 4, 6, ..•

(1.44)

which includes the contributions from the even modes (antisymmetric

mode shapes).

Because this analysis considers that f 1 (t) :: fZ(t) :: f(t), where

f(t) is a random input motion, it shows only the contributions from

the symmetric modes. Accordingly, Eqs. 1. 43 and 1 .44 reduce to

11 (t) + Zw ~ 1] (t) + w Zl1 (t):::.£ f(t)n n n n n n n1T
n::: 1,3,5, ... (1.45)

If the initial conditions are assumed to be zero, a valid solution

of Eq. 1.45 is obtained through the time domain using the convolution,

or Duhamel, integral

4 It ..11 (t) ::: - h(t-T) f(T) dT
n n1T

o
n ::: 1,3,5, .•. (1.46 )

in which T is a dummy time variable and h(t) is the unit-impulse-

response function of the system; it is expressed by

1 -~ w th(t) ::: W e nn sinwdnt ,
dn

::: 0

t ~ 0

t < 0

(1.47 )

with W :::'~ W as the damped natural frequency.dn V J. - ""n n

The stochastic mean square of the normal coordinate of

Eq. 1.46 can be written as
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2 (4)2J1 ....<17
n

(t) >= n:rr h(t-T) h(t-T'} < f(T} f(T'} >dT dT' ,

o 0
..

where f (t) is assumed to be mean square continuous.

n = I, 3, 5, ...

( 1. 48)

The quantity

<f(T}f(T'}) is, by definition. Rf·(T. T'}. which is the autocor-
..

relation function for f (T). The autocorrelation function for a

stationary process depends only on the time difference (T - T') ,

and not on T and T' individually.

The random excitation has been considered as either

(1) Random imput displacement f(t} with specific characteristic s.

or

(2) Random input acceleration f (t) with specific duration and

other definite characteristics.

1-3-2. Dynamic response under random displacements

The particular form of random motion considered for the

random function f(t} (case (I) above} might express ground motion

resulting from earthquake acceleration as stated by Shinozuka and

Henry [1 J. Unfortunately, the amount of data on strong motion earth-

quakes is quite limited, so it has not been possible to obtain anything

like a complete statistical description of earthquakes. However.

there has been previous work concerning the statistical nature of

ground motion; reference is made to studies by Bogdanoff. Goldberg

and Bernard [3J. Bolotin [4J, Rosenblueth and Bustamante [5J •

Caughey and Stumpf [2J. Sharpe. et al. (6J. and Housner and

Jennings [7J .
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The randoIn displaceInent f(t) suggested by Shinozuka and

Henry [1] was based on the evident condition that the ground

•
velocity £(t) Inust approach zero as tiIne t approaches infinity.

This ground displaceInent is in the forIn of the integral of the

envelope deterIninistic tiIne function tiInes a randoIn function

having specific properties:

t

£(t) = .f G(T) g(T) dT

o

where G(t) is the envelope function; it is expressed by

(1.49)

13>0'>0 ( 1. 50)

a and 13 are constants.

The randoIn function g(t) has the following properties:

1. g(t) is stationary

2. g(t) is Gaussian

3. g(t) has Inean zero, 1. e., <g(t)>= 0

4. g(t) has power spectruIn W(W)

5. g(t} exists and is continuous in Inean square; Inoreover,

because g(t} is stationary and Gaussian, so is g(t}.

Hence, g(t) and g(t} are Gaussian and continuous in Inean square

FroIn Eq. 1. 49, the expressions for the velocity and the

acceleration are

• -at -l3t
f(t)=(e -e }g(t} (1. 51)



and

-28-

•• -at -{3t -at -(3t.
f(t) = (-ae + (3e ) g(t) + (e - e ) g(t)

The random function has a covariance given by

00

(g(t) g(s) > = R (t - s) = _1 J'V(W) eiW(t - s) dw
g 2rr

_00

(1. 52)

(1. 53)

where R (t - s) is the autocorrelation function for g(t); it depends
g

only on the time difference (t - s) , and not on t and s individually.

The covariances of both the velocity (Eq. 1.51) and the accelera-

tion (Eq. 1. 52), are given by

(£(t)f(s) > = (e -at _ e -(3t) (e -as _ e -(3s) <g(t) g(s) > ,
and

(f(t)f(s» = (_ae-at +{3e-{3t) (_ae-as +{3e-{3s) (g(t)g(s»

+ (_ae-at +{3e-{3t)(e-as _e-{3s) (g(t)g(s»

+ (e-at_e-{3tH_ae-as+{3e-{3s) (g(t)g(s»

+ (e -at _ e -(3t)(e -as _ e -(3s) (g(t) g(s»

in which

( 1. 54)

(1. 55)

00

(g(t) g(s» = - (g(t) g(s» = Rg(t.., s) = k I w 'V(W) e iW (t - s) dw

-00

(1. 56)
00

- (g(t) g(s» = it (t - s) = _..L Jw 2'11(W) eiW(t - s) dw
g 2rr

-co

Now, substitution of Eqs. 1. 47, 1. 53, 1. 54, 1.55 and 1.56 into
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Eq. 1. 48, after lengthy algebra operations, yields

- 2 2J+ 2w 1m[J (w, t; a, (3) J (w, t; I, I)} + w IJ (w, t; I, I) I dw ,
n n n

(1. 57)

where J denotes the complex conjugate of J . The expressions
n n

for In(w,t;l, 1) are shown in Appendix I-a.

For the purpose of numerical computation, Shinozuka [1 ]

suggested the following power spectrum

(I. 58)

where Band D are constants. Shinozuka admits that the applica

bility of this form of W(w) to earthquake problems is open to

que stion; however, due to the lack of statistical studies concerning

earthquake ground displacement, a superior spectrum has not been

discovered by this investigation. The autocorrelation function of

Eq. 1.58 is

2

(~:2)
e (1. 59)

Expressing all the parameters in nondimensional forIn enables

one to visualize some of the characteristics of the problem. By

introducing wI froIn Eq. 1.21, one can obtain the dimensionless

quantities
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* * w *
W

n
t.=WIt W=- W -- = n

WI n WI

* wdn
= n VI -~~ * ct and ~=LW =-- ct =-

dn WI .. WI WI

and

(1. 60)

* * \]I {',I\
,¥(w) =~ = ( 1.61 )

Therefore, Eq. 1. 57 becomes

CD

(4)2 D_IPL f
= n:; 21T V'Gkr ;-

-CD

* * * * * ~ '* * * *2I* * * ,2 JdW* .+2wlm{J (w.t;ct.p)J (w.t;l.l)} +W J (w,t;l.l)
n n n

(1. 62)
00

Upon using the modal solution v{x. t) = ")' ~ (x) 'fl (t) , one
n=~3, 5 n n

can obtain the mean square displacement as

00

n=1,3,5

. 2 n1TX
Sln L (1. 63)

Evaluating the integral of Eq. 1.62 is very involved; so its

value was obtained numerically by using the Hildebrand algorithm,

which is based on the following relation

( 1. 64)
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A numerical example is presented for the set of parameters

;'< ;'<
a and 13 I i. e. I for different envelope functions as shown in

Fig. I -14 where four types l designated by AI B I C and D I are

as follows:

* ~Type a

A O. Z 0.5

B O. 5 1.0

C 0.8 1.5

D Z.O 4.0

*zThe corresponding mean square displacement (v) was

plotted in Fig. I-IS, where

*z(v) =
z *<v (x, t»
DL~

(1. 65)

Only the first term of the series of Eq. 1. 63 was considered because

the series is rapidly convergent.

In the numerical example l the damping was taken to be 10%1

which is quite high l and the quantity BZwi in the power spectrum

was taken equal to 0.5.

It is important to note, also, that the contribution from the term

sin
Z

n;,x in Eq. 1. 63 was taken to be equal to ! indicating one of

two possibilities

1. L 3L
x ="4 or ""4 or
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2. the space average of the mean square displacement is in

the form

CD

L
n=l, 3, 5

L
Ii .2n1TX d- Sln -- xL . L

o
( 1.66 )

Figs. I -14 and I -15 show the correlation between the shape

of the envelope function G(t) and the corresponding mean square

*2displacement (v) . In all curves of Fig. I-IS, there is a rapid

decaying of these response curves due to the high percentage of

damping which has been assumed (10%).

1-3-3. Dynamic response under random accelerations

Another example of random excitation is based on the random

acceleration with specific duration, which is given as

F(t) = [H(t) - H(t - to)] g(t) (1.67)

where H(t) is the unit step function (the Heaviside function), and to

is the duration of this input excitation. The displacements both

during and after the application of the random acceleration are

presented.

The solution of Eq. 1. 45. which is in the form of Eq. 1.48,

may be reduced to the following form, after much algebra is per-

formed

00

<'l~(t)>"i" [H(t) - H(t - to)] (;,i J>It(w) I(w, t) dW

-00

( 1.68)
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the expression for I(w, t) is given in Appendix I-b.

Another method to evaluate the integral of Eq. 1.68, is the one

sugge sted by Caughey and Stumpf [2J; their method approximate s the

integral of Eq. 1. 68 by

<1j~(t)> '" 'i'(;:n) [H(t) - H(t - to)] (n~)2 [ j I(w. t) dw J
-ClO

which, with the aid of Appendix I-b, becomes

(1. 69)

(l .70 )

The power spectral density of strong motion earthquake

acceleration suggested by Tajima(S] was used for the purpose of

numerical computation. The power spectrum [7] is in the form

W(W) = (1.71)

The root mean square (rms) value of the displacement was com-

puted for the random input, for different durations of the excitation

(to := 30, 20 and 10 seconds). Also, the free vibrational displacement

which followed the forced vibration was computed. The time history

of the two displacements is shown in Figs. I -16 and I -17, where only

two terms of the series of Eq. 1.63 were considered. In these figures,
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WI (the fundamental frequency) was assumed to be 0.3 rad/sec. ;

i. e., the natural period was taken to be about 21 sec., which is

the fundamental period of a long-span suspension bridge. The

damping was taken to be 10% which is, again, a very high value.

The figures show the displacement at the mid-point of the span; for

the displacement at .t and 3~, or for the space average of the

displacement, one has to multiply the ordinate by o. 707.

As is seen from Figs. I -16 and 1-17, for the 30 seconds

duration, the displacement at the mid-point of the beam reaches

a value of 1. 7 ft. at t!:::: 33 sec., while for 10 seconds duration, the

displacement reduces to 1. 2 ft. at about 13 seconds. One can

notice, also, that the maximum displacement always occurs

immediately after the excitation subsides.

Fig. I -18 shows the energy content of the system with both

the strain and kinetic energies plotted for the example of 30 seconds

duration. The figure demonstrates the gradual increase of the two

energies during the input motion; subsequently, during free vibration.

the kinetic energy is at its minimum when the strain energy is at

its maximum. The sum of the two energies is the envelope of the

two curves, and it is shown in the same figure.
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1-4. Conclusions

This study has examined the effect when the two end supports

of a simply supported uniform bridge deck (assumed to be shear beam

type) are shaken simultaneously by earthquake-type motion; this

situation was analyzed in both the frequency and time domains, with

harmonic and random excitations, respectively.

In the harmonic vibration analysis, the re sponse of the beam as

well as the correlation between the two support-point excitations

have been investigated. The different modes of vibration are related

to the nature of the support movement; in particular, they depend on

the relative phase of the two support motions. When the two supports

move in phase, symmetric mode s of beam vibration can be excited,

while when the end supports are moving 18{)oout of phase, the anti

symmetric modes are excited.

In the random vibration analysis, two methods are presented

to determine the stochastic response of the beam when it is subjected

to identical stationary Gaussian excitations acting simultaneously

on both end supports. Both methods indicated that significant dis

placement amplitude occurs immediately subsequent to the end of

the random excitations.
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1-5. Appendices

Appendix I-a

Expressions for J (W, t; a, 13) and J (w, t; 1,1)
n n

The complex quantities J (w, t; a, 13) and J (w, t; 1,1) of
n n

Eq. 1. 58 are given by

t

i -a-r -13-r iw-rIn(W, t; a, 13) = h(t - -r)(ae -l3e ) e d-r

o

and

t

( 1 ( (-a-r -13-r iW-rI n w, t; ,1) =L h t - -r) e - e ) e d-r

o

Let G (w,t;8) and H (w,t;8) be defined as
n n

and

t

{f- (-8 + iW)-r }H
n

(W, t; 9) = 1m h(t - -r) e d-r

o

where 9 stands for a and 13 .

Then, J (W, t; a, 13) and J (W, t; 1, 1) can be written asn n

J (W,t;ad3) = [aG {W,tia)-bG (W,til3)] + i(aH (W,t;a) -I3H (W,t;I3)]
n n n n n
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and

J (w. t; 1.1) = [G (W. t; a) - G (w. t; (3)J + i[H (W. t; a) - H (w. t; (3)Jn n n n n

G (W. t; a) and H (w, t; a) are evaluated and given by
n n

l/Wdn [{ 2 2 2}
G(w.t;a)=~ 22 2

J
2 2 (w~-e)+wd-w .

n (~w-e)+Wd-w +4W(~w-e) nn n
n n n n n n

and

l/Wdn [{ 2 2 2}
H (W.t;8)=U. 2 2 2J2 2 2 (w ~-e) +wd -w .

n ~ W -e) +W
d

-w + 4W (~ W -e) n n
n n n n n

is the damped frequency for the th
n mode.
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Appendix I-b

Expression for I(W, t)

I(W, t) of Eq. 1.69 can be written, in terms of the unit-impulse-

response function h(t) (Eq. 1.48), as

tt,
1 -2~ w t r f. (~w HW)T (~W -iW),.

I(W, t) =-2- e n n 1- e n sinWdn(t-T)' e n sinwdn(t

Wdn 0 0

or, more conveniently, as

where II denotes the complex conjugate of II which is given by

Therefore, the expression for I(w, t) is
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W+ 2t n ) -2t W t 2
~ -- sinW t coswdnt + e ~ n W2Wdn dn

Wdn

_t W t ( ~ W+ 2e ~ n n n-cos wdnt -W-- sinWd t) cos wt
dn n

_t W t ]_ 2e ~ n W .W slnWd t sinWt
dn n

. 2
Sln wdnt
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CHAPTER II

ANTIPLANE DYNAMIC SOIL-BRIDGE INTERACTION

FOR INCIDENT PLANE SH-WAVES

II-I. Introduction

The problem of the dynamic interaction between buildings and the

soil during earthquake excitation has attracted considerable interest of

many investigators [1,2,3,4, 5J. However, such analyses have, so

far, not been extended to more complicated structures, such as bridges

or large industrial buildings, where differential motions of foundations

might influence response in an important way, as seen in Chapter I.

There have been many cases reported in the literature in which

bridges suffered damage during earthquakes [6, 7J. These examples

clearly indicate the need for detailed investigations of the dynamic

soil-bridge interaction to determine the significance of that interaction

on the bridge response. The soil-bridge interaction effect is considered

important, for example, when the motion of an abutment or foundation

is significantly different from the motion of the ground in the absence

of the bridge, the latter motion being usually referred to as the free-

fie Id ground motion.
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The general dynamic soil-structure interaction problem can be

broken down into three parts [8J. These are:

1. The determination of the input motion to the foundations (the

contribution of the seismic waves) or equivalently the deter

mination of the driving forces.

2. The evaluation of the force-displacement relationship (the

impedance functions or their reciprocal, the compliance

functions) for the foundations.

3. The solution of the equations of motion including both the

foundations a.nd the superstructure.

This approach has the advantage that once the solutions of the first

two parts have been obtained for a class of foundations, the results

can be used to calculate the interaction response of different

structures. This is done by superimposing the results so that the

equations of motion for the foundations are satisfied. This method,

of course, is possible only if the problem is linear.

Luco and Contesse [5J have studied the dynamic interaction,

through the soil for two parallel infinite shear walls placed on rigid

foundations and for vertically incident SH-waves. In a similar study

Wong and Trifunac [9J have determined the driving forces induced

by harmonic plane SH-waves and the impedance functions for a class

of embedded foundations with circular cross sections at different

separation distances. These results will be used in the present

analysis of a two-dimensional superstructure (the girder), the sub

structure (the two abutments) and the two foundations.
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In the following study, the analysis of dynamic soil-bridge

interaction has been performed in three steps. These are:

1. the analysis of input motions

2. the force-displacement relationships for the foundations

3. the dynamic analysis of the structure itself, i. e., the bridge.

Based on the exact solution of the first two steps, the dynamic inter

action of a simple two-dimensional bridge model erected on the elastic

half- space has been investigated for a single span case. The two

dimensional model under study consists of an elastic shear girder

bridge supported by two rigid abutments and rigid foundations which

have a circular cross section and are welded to the half-space. It

has been shown that the dynamic interaction depends on:

1. the incidence angle of plane SH-waves,

2. the ratio of the rigidity of the girder and the soil,

3. the ratio of the girder mass to the mass of the rigid abutment

foundation system, and

4. the span of the bridge.

The dynamic response of the girder and the effect of the radiative

damping in the half-space on the interactionofthe girder have been

studied.

Finally, the model considered in this study offers obvious

analytical advantages and a simple and direct insight into a complicated

wave propagation phenomenon. However, this model represents a

highly simplified version of the actual three-dimensional problem, in

which in-plane as well as anti-plane incident waves are present, and
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where coupling between the horizontal, rocking. torsional and

vertical motions of the structure and the foundations take place.
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il-2. The Model, the Excitation and the Exact Solution

The two-dimensional model studied in this analysis is shown

in Fig. II -I-a. It consists of three structural elements: the super-

structure (the girder), the substructure (the abutments) and the

foundations. These elements are assumed to be infinitely extended

in the z-direction. Furthermore, the following assumptions are

made:

1. The soil, which is represented by the half-space, is elastic,

isotropic and homogeneous. Its rigidity and the velocity of

shear waves are J.L and 13 , respectively.
s s

2. The two foundations are assumed to be rigid, semicircular

in cross section, and welded to the half-space.

3. The abutments are also assumed to be rigid. They are welded

to the foundations so they behave together as a rigid body

partially embedded in the soil.

4. The model for the girder is a shear beam, of span Land

depth d, supported at the ends by the rigid piers. The beam

is isotropic and homogeneous; the rigidity and the velocity of

the shear waves in the beam are given by J.L
b

and 13
b

,

re spectively.

II -2 -1. The coordinate systems

1. For the superstructure, i. e., the girder, the origin of x and y

coordinates is located at the left support point as shown in

Fig. II-I-a. The x-axis is defined along the span of the bridge,

while the y-axis is in the vertical direction.
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2. For the two rigid abutment-foundation systems, the scattered

waves from the two rigid foundations are best represented by

polar coordinate s (r l , <PI) and (r2, <P2) , which have their

origins at the center of each foundation. The cartesian

coordinates (x', y') are located at the left foundation such that

=

(2. I)

This choice of the (r l , <PI) and (r2, CP2) coordinate systems is

identical to that used by Wong and Trifunac (9J .

As shown by several investigators [5,9, 10J, the interaction

problem can be separated into three steps:

1. Input motion or "driving forces. II

2. Impedance functions or "compliance functions. II

3. Dynamic analysis of the structure (bridge).

The final results are then obtained by superposition. Some

parts of these analyses are given in this study for the completeness

of this pre se ntation, as follows.

II-2-2. Motion of the soil

It is assumed that the excitation is in a form of plane harmonic

SH-waves with an amplitude equal to one and with the angle of

incidence e, which is measured counterclockwise from the horizontal

axis to the normal on the plane wave front (Fig. II-I-a). This

incident wave is given by
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i I I iW (t - x' / c - y'/ c )
u (x • y • t) = e x yz

(2. Z)

where

I3 s
c =--

x cose

I3 sc =--
y sinS

(2. 3)

and 13 =~s .••s p
s

is the shear wave velocity in the soil: IJ is thes

shear modulus of the soHland P is the density.s

The resulting free-field motion, i. e., motion of the half-space

(2.4)Sine)itr( I I t)u x , y,
z

in the absence of the bridge and its foundations, becomes

. [-i :s x' cos eJ I

Z lwt e (w v= e cos ~
5

i+r i
where u stands for the sum of incident, u , and reflected,z z

r Iu , waves from the hali-space boundary y = O. This motion canz

be represented in terms of polar coordinates (rI,CPl) and (rZ'CPZ) [9J.

The total displacement field u , in the half- space in thez

presence of the two rigid foundations is composed of the free-field

. Hr R Rmohon U
z

and the scattered waves, u lz and u Zz • from the two

foundations; i. e. ,

(z. 5)

This total displacement, u , must satisfy the Helmholtz equation inz

each of the (r I , CPI) and (r Z' CPZ) coordinate systems

oZu
+l..

ou aZu
+ kZuz ~ +..!.- z

0 j 1, Z , (2. 6)-2- -2- = =r· or. 2 s zor. J J r. ocp.
J J J
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in which k s ::: ~ is the wave number, and the two boundary condi
s

tions:

1. Stress-free surface boundary condition

JJ ou
lJ ::: ~ __z ::: 0 at cpo ::: -1T , 0 , j::: I, 2,

cp.z r. ocp. J
J J J

2. Harmonic displacement boundary condition

iwtu (R., cp., t) ::: 6..e
z J J J

-1T~ cpo ~ 0
J

j ::: 1,2 , (2. 8)

where 6 1 and 6 2 are the displacement amplitudes of the two

foundations (Fig. II-I-b). 6. 1 and 6. 2 are unknown and depend

on the soil- structure inte raction of both foundations and on the

characteristics of the incoming waves.

This interaction problem can be analyzed in three parts which

are illustrated in Fig. II-2-i. This figure represents a generaliza

tion of the solution method presented by Wong and Trifunac [9J to

the soil-bridge interaction problem studied in this ana-lysis.

II-2-3. Forces generated by the soil and compliance functions

The forces exerted by the soil on the two foundations and. caused

by the incident waves and the motion of the neighboring foundations,

as shown in Fig. II-I-b, are given by

o
Fsl - f lJrz(Rl,CPl)RldCPl

-1T

o-f lJ rz(R2, CP2)R2dCP2
-1T

(2. 9)
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where

(] (R., <p.) = J.Lrz 1 1 S

au
z

ar.
1
I
r.=R.

1 1

i = 1,2 . (2. lO)

Using the principle of superposition, the total Boil forces can be

expressed in terms of the "driving forces, " and the unknown displace-

ments (.6. J premultiplied by the impedance matrix,

-F*
1

= +

-F*
2

~l

(2. 11)

* *Here the driving force s F 1 and F 2 are the forces exerted by the

soil on the two foundations which are he ld fixed during excitation by

the incident waves ui . The driving forces depend on the properties
z

of the foundations and the soil and also on the nature of the seismic

excitation. An element of the impedance matrix K.. (i, j = 1,2)
1J

represents force acting on the motionless i
th

foundation caused by

the unit harmonic motion of the j th foundation. The impedance

matrix depends only on the characteristics of the foundations and

soil and on the frequency of the motion. Fig. II -l-i illustrates the

physical meaning of these force coefficients.
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IT -3. Dynamic Analysis of the Bridge

II -3-1. Motion of the bridge

The displacements u and v of the two-dimensional bridge

model are selected to be zero, while the displacement w depends

only on the coordinate x. This displacement must satisfy the

equation of motion of an undamped shear beam;

2a w(x, t)

Bx2

21 a w(x, t}

= f3~ Bt2
O~x~L , (2. l2}

is the shear wave velocity in the beam;

J.Lb is the shear modulus of the beam, and Pb is the density of the

beam.

The boundary conditions for the beam are

w(o, t)I=

w(L, t)

(2. 13)

where 6 1 and 6 2 are the unknown complex displacements of the

two foundations. The solution of Eq. 2.12, compatible with the

boundary conditions given by Eq. 2. 13, is

w(x, t) = ([co s (k
b
x) - cot (k

b
L) sin (k

b
x) l, [co sec (k

b
L) sin (kbx))) 61leiw t

6 2

(2. 14)
in which k b = W lf3

b
• .• is the wave number in the shear beam.

From Eq. 2. 14, it is seen that the displacement w(x, t} depends on

the instantaneous values of the harmonic boundary conditions.
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II-3-2. Forces exerted by the bridge

The end resisting forces. per unit lengtht acting on the two

abutments (Fig. II-I-b) are given by

:: ::

b-dO' (L, t)
xz

::

8w(0. t)
-lJbd ax

-IJ d 8w( L. t)
b ax

• (2. 15)

where d is the depth of the shear beam and O'b is the shear stress
xz

in the z-direction.

By using Eqs. 2.14 and 2. 15. and by introducing the

expression

(2. 16)

which corresponds to the mass of the beam per unit length in the

z-direction. the se support force s can be written as:

F~(t) _W 2M
cot (kbL) 2

cosec (k
b

L)
.6. 1b (kbL)

w M
b (kbL)

iwt:: e

F~(t) 2 cosec (kbL) 2 cot (k
b

L)
W M b (kbL)

-w M b (kbL)
.6. 2

(2. 1 7)

It is convenient to recall here that the undamped natural

frequencies of the simply supported shear beam are given by

n:: 1.2.3•... (2. 18)
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. T his corresponds to

~L=nTT, n=I,2,3, •••

The mode shapes are given by

(2. 19)

W () . nTTx
n x = Sin -r- ' n= 1,2,3, .•• (2. 20)
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II-4. Dynamic Soil-Bridge-Soil Interaction

The unknown foundation displacement amplitudes 61 and 6 2

can now be determined from the balance of forces exerted on each

foundation. These forces are:

1.

2.

Soil forces F s1 and F s2 ' as given by Eq. 2.11.

Bridge end forces F~(t) and F~(t), as given by Eq. 2.17.

as shown in Fig. II -1- b.

masses Mfl

W
2A iwt

- u 2 e ,

Inertia forces of each rigid abutment-foundation system, with

d M d 1 t ' _W2A e iWt andan £2 ' an acce era lons u 1

3.

The balance of the forces for the two abutment-foundation systems is

then

(2. 21)

Introducing

(2.22)

which corresponds to the mass of the soil per unit length removed

by the two foundations and by using Eqs. 2. 17 and 2.21 there follows:

-*F 1

= (2. 23)

-*F 2
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where

= IJ TTk R2.s s

and

(2.2.4)

The foundation displacement amplitudes 6. 1 and 6.2. are uniquely

determined by solving the two simultaneous, complex, and non-

homogeneous equations (Eq. 2.2.3).

Numerical examples presented in Figs. II-3 through II·l2.

depend mainly on the angle of incident waves e and five other

dimensionless parameters:

1. wT]=-R =k Rf3 1 s 1
S

which compares

= ~TT R l ' which is the dimensionless frequency
s

the wavelength A of the incident wave to the
s

width of the left foundation.

Mfl M£2.
2. ~ and ~ ' which are the ratios of the masses of the

51 sZ
abutment-foundation systems to the masses of the soil replaced

by the foundation only. They are set equal in the examples
. M M

.d d' thO ( . fl fZ MF)conSl ere In IS paper 1. e., ~ =~ = MS
M M sl sZ

3. M band M b I which are the ratios of the mass of the bridge
slsZ

girder to the masses of the soil replaced by its foundations.

(In the figures these are denoted by ~~ when R l = R2. and

MB MB
by MSI and MSZ when Rl:f. R Z . )
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k b L _!3 s L _ !3 s L. R l
E = ksR

Z
- !3

b
R

Z
- f3

b
R

l
R

Z
; this ratio reflects the

relative stiffness of the bridge and the soil; it also describes

the ratio of the span to the radius of the foundation. Large

values of E indicate a more flexible bridge with respect to the

soil and/or a longer span, while E = 0 implies a rigid

structure composed of a rigid bridge girder, rigid abutments

and rigid foundations. In that case 6 1 = 6 Z .

R 1
5. R; this geometric parameter which reflects the relative

Z
width of the two foundations is also needed unless R l = R Z .

For different types of soil and a typical reinforced concrete

structure 11bridge II with p., y, and f3 as shown in Table II-I

L RI
and for selected rations of - and - , the range ofRZ RZ
values for E is as shown in Table II-Z.
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II-5. Interpretation of the Interaction

The two displacement amplitudes D. l and D. Z computed for the

excitation corresponding to the incident plane harmonic SH-waves have

been illustrated in Figs. II-'3 through II-l2. The displacement of the

left foundation D. I is represented by a dashed line, and the displace

ment of the right foundation D.2 by a solid line. These two displace

ment amplitudes have been plotted against the dimensionless frequency

T}.

Different cases have been considered which correspond to the

following parameters:

1.

2.

3.

The mass ratios have been considered in four cases:

MF 2 MB 2a. MS = MS =

b. MF 4 MB ZMS = MS =

MF = 2 MB = 4c.
MS MS

d. MF = Z MB = 2 MB
MS MSZ MSI = 8

The following geometric size ratios were examined:
R I

for "If" = 1,2, respectively.
2

The relative stiffness ratio of the bridge girder and the

= "S, 10,

soil,

which is represented by the parameter E (Note: E is written

as EPS in these graphs), has been assumed to have the values

l, 2. 3, and 4 .

4. The angle of incidence, e , of plane SH-waves has taken the

values equal to 00
, 45°. 90°, 1350 and 1800

• (Note: In

the case of R l = R Z • only 00
, 450

, and 900 have been shown

because of symmetry. )
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The figures have been arranged so that the influence of the angle

of incidence and the relative stiffness ratio can be studied for the

mass ratios and the geometric size ratios fixed in each figure. Each

of these figures consists of parts a, b, c, and d which correspond to

different values of E.

Some of the most important phenomena of the interaction of the

bridge and the soil through the two rigid abutment-foundation systems

and the dynamic characteristic s of the bridge girder response are as

follows:

1. As E .... 0, 6. 1 -> 6. 2 (from Eq. 2.23). In that case, one has

a rigid structure composed of three elements (two foundations,

two abutments and a girder) all acting as a rigid body. Fig.

II- 3 -a illustrates this case for E small. When E increases,

the differences between 6. 1 and 6.
2

become more apparent.

One notes, however, that in all cases these amplitudes approach

the low frequency limit of \ 6. 1 \ = 16.2 1 = 2 , which corresponds

to the displacement amplitude of the surface of the half-space

for incident SH-waves with unit amplitude.

The amplitude 6. 1 may become larger than 6.
2

due to the

amplification effect caused by the scattering from the right

foundation. In the cases of E= 1. 5 in Fig. II- 3-d, for example,

or for E = 2.0 in Figs. II -4-b and II-5-b, the peaks of 6.
1

are considerably larger than 2 for small dimensionless

frequencies.

2. In the case of e = 900
, when R 1 = R 2 ' the two foundations

are in phase and have the same amplitude. These amplitudes
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become zero when the beam is excited at its odd frequencies,

i. e., the syxnmetric mode-shapes. In that case

11= mr/E n = 1, 3, 5 .•. , (2. 25)

and the symmetric modes of the bridge are

w (x) ::= (sin n1Tx)/L
n

n = 1, 3, 5, ... (2.26 )

Thus, when e = 90° and R 1 ::= R2 ' the syxnmetry of vibration

reduces mathematically to a single foundation problem [2, 3J .

When incide.nt waves have a frequency corresponding to a fixed

base frequency of this structure, the foundation(s) is(are) located

at a node of the standing wave pattern and the structure above and

the soil below are moving 1800 out of phase.

3. The dip of the displacement amplitude curve .t:.
2

' which occurs

for a shallow angle of incidence e::= 0°, 45°, is displaced

towards the lower values of the dimensionless frequency 11, as

the flexibility of the bridge increases (Figs. II -4 and II-7). If

one compares Figs. II·4 and II-6 and II -7 and II-9, one notes

that, for the same E and the same L/R2 , as the mass of the

bridge increases, the dip moves again towards low values of 11,

i. e.• the frequency decreases.

This behavior can be qualitatively explained by the simplified

model consisting of three masses and several springs (shown

in Fig. II -2-ii) where the spring constants k 1, k 2, and k 12

depend upon the soil properties, while the spring constant k 13

depends on the bridge stiffness. The displacements resulting

from simple excitation, shown in Fig. II-2-ii. can be deter-
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mined from the following matrix equation

2 -k12 -k13 Xl k 1-w m l +k1+kI3+kI2

-k12
2

-k13
X 2 0-w m2+kZ+kI3+k2 =

-k13 -k13
2

X 3
0-w m 3+2k13

where Xl' X2

three masses.

i. e. ,

(2.27)
and X

3
are the displacement amplitudes of the

2 2
X 2 = 0 when k I2 (-W m 3 + 2k13) + k 13 = 0 ,

w =
*

k (2 + kl3 )
13 k 12 (2. 28)

This frequency depends on the absolute stiffness of the bridge

k 13 and the ratio of stiffness of the bridge with respect to the

soil underneath it k 13 /k12 . As the stiffness of the bridge k l3

or the stiffness ratio k 13 /k12 decrease, the frequency for

which the dip occurs decreases (e. g., Figs. II-4, II-6, II-7

and II-9). This frequency also decreases when the mass of the

bridge increases. The above model is, of course, only a

simple one -dimensional analogue, while the problem under

consideration is a two-dimensional one involving propagation,

reflection and scattering of waves from the rigid foundations in

the soil and inside the beam. Nevertheless, in spite of its one-

dimensional simplicity, the above model doe s allow one to

obtain an approximate physical understanding of a more com-

plicated wave propagation problem.
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4. In all cases which have been shown in the figures for the non-

vertical incidence of waves and when fJ::: OTT IE, n = 1, Z, 3, ... ,

(i. e., when the frequency of the incident waves corresponds to

the natural frequencies of the girder ), one finds that

16 11 = 16 zI . As was mentioned before, 6 1 ::: 6 Z for

n ::: 1, 3, 5, . .. and 6.
1

= -6.
Z

for n::: Z, 4,6, ... ; i. e., the

two end displacements are 1800 out of phase. This observation

gives a better idea about the phase difference between the two

amplitudes 6 1 and 6
Z

' as shown,for example, in Fig. II-lO.

In some cases, 6. 1 = 6. Z ~ 0 at fJ ::: nrr/E, n = 1, Z, 3, 5, as in

Figs. II-5-b, II-7, II-8 and II-9-c for the second mode,

Fig. II-7 -c for the first mode, and Fig. II-8-c for the third

mode.

5. The peak amplitudes of the displacements 6 1 and 6.
Z

may be

relatively high in some cases (e. g., Figs. II-5 through II-9).

For the cases studied, these amplitudes are as much as four

time s greater than they would be if the foundations did not

interact with the soil. These peaks occur at frequencies which

increase as the parameter E increases for a constant span.

Therefore, the more flexible the girder, the higher the frequency

at which the peak occurs. Increasing the span while holding E

constant decreases the frequencies of these peaks. This cor-

responds to increasing the rigidity of the bridge with respect to

13 s L
that of the soil since E =- --

13 b RZ
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6. When the mass of the foundations increases with respect to

that of the girder, the peak values of the .:::).1 and .:::).2 ampli

tudes increase moderately. This additional increase results

from increasing the span, which also decreases the significance

of the interaction (e. g., Figs. II -5 and II -8).

7. When the mass of the girder increases with respect to that of

the foundation (e. g., Figs. II-6 and II-9), the peak amplitudes

of .:::).1 and 6 2 decrease appreciably. As the span increases,

this effect becomes less pronounced.

8. In general, as the span L inc reases, there is a greater degree

of fluctuation in both .:::).1 and .:::).2 amplitudes. For constant L,

the fluctuations of ~l and 6. 2 decrease as the angle of

incidence e approaches 90°, since in that case the projected

wavelength on the horizontal surface A* ;;: A Icos e becomess s

infinite.

9. When the sizes of the two foundations differ, more complicated

interaction phenomena occur (Figs. II-ll and II-12):

a. When the incident wave first hits the larger foundation (the

left one), i. e., when e;;: 0° or 45° , this foundation acts

as a shield for the right foundation. This shielding effect is

most evident in Figs. II-Il-a, band II-IZ-a, where the

smaller foundation moves with nearly the same displacement

as the larger one. The additional amplification effects

caused by the smaller foundation are negligible in all these

cases because of the massiveness of the larger foundation.
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The shielding effect decreases with an increase of the

following parameters:

(1) the flexibility of the girder

(Z) the span (Fig. II-ll)

(3) the angle of incidence e
(4) the ratio RZ/R1 for the same span (Figs. II-ll and

II -1Z).

b. When the incident wave first hits the smaller foundation

(the right one). i. e., when e= 1350 or 1800
, the left

foundation acts as a barrier which reflects significant

wave energy back towards the small foundation while the

shielding effect provided by the right foundation is

negligible {Figs. II-11-b and II-1Z-b). The overall

amplitudes of.6. 1 and .6. Z are influenced by:

(1) the flexibility of the girder; •

(2) the span and the size of the foundations; and

(3) the angle of incidence e.
c. The peak value of the displacement amplitudes .6. 1 and .6. 2

increases with the increase of flexibility of the super

structure and the increase of ratio R1 /R2 (Figs. II -ll-b

and II-12-a,b,c).

d. For both vertical and nonvertica1 incident waves, small

amplitudes of \.6. 1 1 and 1.6. 2 1 occur at 77 = mr/E ,

R l /R2 ;f 1 ,n = 1,3,5, . .. as shown in Figs. II -11 and

II -12. Since Rl;f R2 ' the bridge system is not symmetric
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in general, one does not expect to find that

't'l _ n1T R l
for all e and " - E R
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II-6. R.esponse of the Bridge

From the Earthquake Engineering and Structural Dynamics

point of view, one of the more important problems is to find which

are the critical sections of a structure and to estimate where the

maximum displacements or the maximum stresses may occur. With

this in mind, and to illustrate the effects of soil-bridge interaction on

the girder of the single-span bridge studied in this analysis,

the response of the midpoint and the two quarter points (x/L = 0.25,

O. 75), have been examined in some detail as shown in the three-

dimensional Fig. II-I O.

Using Eq. 2. 14 for x = L/2, the displacement amplitude

Iw(L/2, t) I is calculated at the midpoint of the span as:

w (~ • t) " [cos (k~L) -cot (~L) Sin(k~L) ]61+

+[ cosec (k
b

L) sin (k~L) ] ~2

which reduces to

I (~ )I = I (~l +~2) (kbL) 1
w 2' t 2 sec 2 . (2. 29)

When interaction is neglected, both ~l and ~2 would become 1, and

Iw(L/2, t) I would become infinite at the natural frequencies of the

shear beam, i. e., at kbL = nrr, n = 1,3,5, ..• (since there is con

tribution only from the symmetric modes for the midpoint). However,

if interaction is not neglected by using the results from the above

analysis the following can be said about the beam response:
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1. When 6. 1 = 6. 2 = 0 at T1 = nTr / E ; n = 1, 3, 5, . . . ; R l = R2 ;

i. e., in the case of vertical SH-waves where e= 90°, the

response given by Eq. 2. 29 remains finite and is characterized

by relatively small peaks, as shown for example, in Fig.

n -13. It can also be seen in this figure that when e f. 90°

the peaks, in general, are much larger and the effect of

small 6.
1

and 6.2 is less pronounced.

2. When 6. 1 and 6. 2 have considerable amplitudes at T1= nrr/E,

n:: 1,3, 5, ... , and in the case of non-vertically incident SH

waves, the amplitude of the beam response is large at T1= nrr/E,

i. e., at the fundamental resonant frequencies of the beam. It

should be noted that the sharp peaks in Fig. II-l3 have been

plotted only up to the am'plitude equal to 40 to preserve the

detail and resolution of the neighboring smaller amplitudes.

Other important characteristics of the results which can be

shown in figures similar to Fig. II~13 can be summarized as follows:

In general, the peak values of Iw{L/2, t) I increase with E, when

e:: 90°, i. e., for higher flexibility of the structure with respect to

that of the soil and for the MB/MS fixed. The peak response

amplitudes decrease for the higher modes and for the same E.

Increasing the foundation mass [larger (MF /MS)] leads to more

effective coupling of the bridge to the soil and thus less radiative

damping, while increasing the mass of the girder Llarger (MB/MS)]

leads to higher radiative damping when L is constant. The increase

of span L for a fixed value of (::: E~) • which is equivalent to
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increasing the rigidity of the girder with respect to that of the soil,

also leads to more radiative damping.
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11-7. Conclusions

A key step in the evaluation of the soil- structure interaction

effects on the earthquake response of a structure is in the computation

of the force-displacement relationships for the foundation. Several

such relationships [2, 5, 8, 9J, expressed in terms of impedance or

compliance functions, are available in the literature.

Having obtained the impedance function for particular two

dimensional abutment conditions, tepresented by rigid foundations

with semicircular cross sections, and having defined the input motion

in terms of plane SH-waves, the calculation of the response of bridge

girder depends on the stiffness, mass and damping characteristics

of the bridge relative to that of the soil. For some input frequencies

the amplitude of the foundation response has been found to be signifi

cantly larger than the free field surface displacement amplitude which

could be obtained for the same excitation in the absence of a bridge or

its abutments.

The excitation of diffe·rent modes of vibration of the two

dimensional bridge girder is related to the nature of the foundation

movement for different angles of incident SH-waves and, in particular,

depends on the relative phase of motion for two bridge abutments.

When two abutments move in phase, there is a tendency to excite

symmetric modes of girder vibration; while when they are moving

out of phase, the antisymmetric modes are excited more effectively.

The simplest type of two-dimensional soil-bridge interaction

occurs for the vertical incidence of SH-waves and for the symmetric

bridge and its abutments. In that case, for the frequencies that
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