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ABSTRACT

This report contains two studies that were made of the effects of
differential motion of the foundations upon the response of the super-
structure of a bridge. The first study deals with the dynamic response
of a "long beam" model of a bridge to both steady-state and random
excitations applied at the supports. The study has been simplified by
considering a long shear beam, simply supported at two ends; this beam
is subjected to two end excitations in the form of ground displacements.
Harmonic excitations, differing in phase at the ends, were considered
in the frequency domain by analyzing the steady state vibrations and
calculating the displacement amplitudes at specific points on the beam.
The energy content of the system has been presented, and the correlation
hetween the two end excitations has been considered. For the random
excitations, the analysis has been made in the time domain; two different
cases of random motions have been considered.

The second study develops a method to analyze the dynamic soil-
bridge interaction of a simple two-dimensional bridge model erected on
an elastic half-space, with the input ﬁotion in the form of incident plane
SH-waves. The bridge model consists of an elastic shear girder
supported by two rigid abutments and rigid foundations which have a
circular cross section and which are welded to the half-space. Finally,
the dynamic response of the bridge and the effect of the radiative damping

in the half-space on the interaction of the bridge are also studied.






iv
Chapter Title Page
1

STUDIES ON THE EFFECT OF DIFFERENTIAL MOTIONS
OF TWO FOUNDATIONS UPON THE RESPONSE OF THE
SUPERSTRUCTURE OF A BRIDGE

General Introduction 1

I DYNAMIC RESPONSE OF A LONG BEAM MODEL 3
OF A BRIDGE STRUCTURE SUBJECT TO TWO
END EXCITATIONS

I-1. Introduction 3
I-2. Steady-State Vibration Analysis 7
I-2-1. Undamped natural frequencies and 7
mode shapes
I-2-2. Equation of motion of damped shear 8
beam
I-2-3. Steady-state solution 8
I-2-4. Dynamic response of the beam 12
(Numerical results)
I-2-5. Energy consideration 17
I-3. Random Vibration Analysis 24
I-3-1. Eguation of motion 24
I-3-2. Dynamic response under random 26
displacements
I-3-3. Dynamic response under random 32
accelerations
I-4. Conclusions 38
I-5. Appendices 39
I-a. Expressions for Jp{w, t;08) and 39
I-b.  Expression for I(w,t) 41
REFERENCES OF CHAPTER I 43
It ANTIPIANE DYNAMIC SOIL-BRIDGE INTERACTION 44
FOR INCIDENT PLANE SH-WAVES
II-1. Imtroduction 44
I1-2. The Model, the Excitation and the Exact 48
Solution ‘
II-2-1. The coordinate systems 48
1I-2-2. Motion of the soil 50
II-2-3. Forces generated by the soil and 52
compliance functions
I1-3. Dynamic Analysis of the Bridge 55
. II-3-1. Motion of the bridge 55

I1I-3-2. Forces exerted by the bridge 56



Chapter

Title

I11-4, Dynamic Soil-Bridge-Soil Interaction
II-5. Interpretation of the Interaction

1I-6. Response of the Bridge

II-7. Conclusions

REFERENCES OF CHAPTER II

Page

58
63
81
85
87



STUDIES ON THE EFFECT OF DIFFERENTIAL MOTIONS

OF TWO FOUNDATIONS UPON THE RESPONSE OF

THE SUPERSTRUCTURE OF A BRIDGE

General Introduction

The effect of differential motions of two (or more)} foundations
upon the dynamic response of the superstructure of a bridge is a
little understood problem which is of considerable interest in earth-
quake engineering. Although dynamic loadings acting on a bridge
structure may result from different sources,including wind or
vehicular motions, to the structural engineer one of the most
important types of dynamic input is that produced by an earthquake.
The definition of an appropriate ground-motion history is the most
difficult and uncertain phase of the problem of predicting structural
response to earthquakes. A common assumption in the usual treat-
ment of earthquake excitations is that the same motion acts simul-
taneously at all points of the structure's foundation. If rotation
motions are neglected, this assumption is equivalent to considering
the foundation soil to be rigid. Such a hypothesis is not consistent
with the concept of earthquake wave propagation; however, if the
base dimensions of the structure are small relative to the vibration
wave length in the soil, the assumption is acceptable. For example,

if the velocity of the wave propagation is 6, 000 ft/sec., a sinusoidal
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wave of 3 Hz frequency will have a length of 2, 000 £t., and a building
with a base dimension of 100 ft. will be subjected to essentially the
same motions over its entire length. On the other hand, a suspension
bridge, which might have a length of several thousand feet, obvio‘usly
would be subjected to drastically different motions at its two founda-
tions. No direct measurements have been made on a bridge (or
similar structure) at two widely separated foundations during an
earthquake; however, it is evident that the motions must vary and
their variance could contribute significantly to the dynamic response.
Therefore, it is important to develop analytical procedures capable
of dealing with multiple support excitation.

In order to lay a foundation from which later work, analyzing
the dynamic response of long-span suspension bridges to earthquake
ground motions applied at separate points of support, can be developed,
two related topics have been studied in this report. The
first topic, in Chapter I, deals with the dynamic response of a
""long beam' model of a bridge span to both steady-state and random
excitations applied at the supports; the .results'involve a large number
of modes. The second topic, preseated in Chapter II, develops a
methvod to analyze the dynamic soil-bridge interaction of a simple
bridge model erected on an elastic half-space, and the input motion
is in the form of incident plane SH-waves. The dynamic response of
the girdér and the effect of the radiative damping in the half-space on

the interaction of the girder are also studied.



CHAPTER 1

DYNAMIC RESPONSE OF A LONG BEAM MODEL

OF A BRIDGE STRUCTURE SUBJECT TO TWO END EXCITATIONS

I -1, Introduction

For long spé,n structures such as suspeasion bridges, the piers
or the abutments of the bridge may be far apart. In such a case, one
may have a situation involving ground motion with different charac-
teristics at each point of the bridge structure. For instance, during
the 1971 San Fernando earthquake, the motions recorded by instru-
ments located in Millikan library, at one énd of the campus of
California Institute of Technology, differed greatly from those of the
Caltech Athenaeum located at the other end.

The following study deals with the effect of differential motions
of two end supports upon the response of the superstructure. The
study has been simplified by considering a long shear beam, simply
supported at two ends, as shown in Fig. I-1l, this beam is subjected
to two end excitation, fl(t) and fz(t) s in the form of ground dis-
placements.

Two cases of excitation have been examined:

1. Harmonic excitations where
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fl(t) = Asinwt and fz(t) = A sin(Wwt+a)

in which A is the amplitude of the input motion and « is

the phase difference between the two end excitations, as

shown in Fig. I -1-a.

2. Random excitations where
fl(t) = fz(t) = f(t)

in which f(t) is a random function of time.

For the harmonic excitations, which may differ in phase at
the ends, the analysis has been made in the frequency domain by
considering the steady state vibrations and calculating the displace~
ment amplitedes at certain points on the beam. The energy content
of the system has been presented, and the correlation between the
two end excitations has been considered.

For random excitations where fl(t) = fz(t) = f(t}), i.e., where
the two ends of the shear beam have the same motion (symmetric
mode shapes), the analysis has been made in the time domain; two
cages of random motion have been considered: (1) Random motion
(or displacement) of the supported ends that might be appropriate for
a motion reéulting from earthquake acceleration. This random
motion was suggested by Shinozuka [1], and is in the form of the
integral of a product of an envelope decaying deterministic function
times a random function. (2) Random acceleration of the supported
ends, which was developed by Tajima [8] from the work of Kanai [9],
has been studied. The case where the excitation has a certain dura-

tion followed by free vibration has been considered.
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Fig. I-1. Bridge model subjected to motions at the support points.
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In either case of random motion, the response of the beam
structure has been calculated and plotted versus different cases
of envelope functions for case {1) and different durations for

case (2).



I-2. Steady-State Vibration Analysis

In this section, a study is made of the shear beam excited by
the motion of the two support points, as shown in Fig. I-1-a. The
two harmonic excitations, evidenced in the form of displacements,
are of the same frequency and amplitude, but differ in phase by «.
The steady-state vibration of the beam is studied, and the results
are expressed in a nondimensional form that enables a concise

graphical presentation of the dynamic characteristics of the system.

1-2-1, Undamped natural frequencies and mode shapes

The free vibration of the undamped shear beam is described by

the equation of motion

2

pa LY - 'ac Y (1.1)
ot ox

where p is the mass density, a is the cross-sectional area of the
beam, k' is a numerical factor depending on the shape of the cross-
section, and G is the shear modulus. From Eq. 1.1, the eigen-

functions or mode shapes for the simply supported beam are

2 (x)=sia g7, n=1,2,3,4,..., (1.2)

where L, is the span length of the beam.

The natural frequencies are

wn:_"' —_ ) n=1,2,3,... . (1'3)
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th natural

Egs. 1.2 and 1.3 are the a mode shape and the n
frequency, with the understanding that these mode shapes and
frequencies could be for fixed-end bridges as well as for hinged-end

cnes so long as they do not violate the boundary conditions of the dis-

placement for such shear beams.

I-2-2. Equation of motion of damped shear beam

The differential equation of motion, in which a strain-rate type

damping (relative damping) is assumed, can be written as

2 2 3
p——a‘2’=k’Ga‘2’+c 3"2 , (1.4)
dt Ox a9t 0x

where c is the damping coefficient.

The initial and boundary conditions are

vix, 0) = v(x,0) =0 , (1.5)
v(0,t) = Asinwt (1.6-a)
v(l,t) = Asin({wt+a) } (1.6-b)

where A is the amplitude of the two harmonic excitations, « is the

phase difference, and @ is the frequency of the excitations.

1-2-3. Steady-state solution

For the steady-state vibration, the solution of Eq. 1.4 maybe

written as
vix, t) = Xl(x) cos Wt + Xz(x) sinwt , (1.7

where both Xl(x) and Xz(x) are functions of the spatial coordinate



X, only.

Substitution of Eq. 1.7 into Eq. 1. 4 yields two simultaneous
ordinary differential equations; putting these two equations in a
matrix form containing the golutions and their derivatives, and then

solving these four equations, one can obtain

X, x) = ¢y coshgx cospx + c, sinhgx cospx + ¢, sinhgx sinpx

3
+ Cy4 coshgx sinpx (1. 8)

and

Xz(x) =-c; sinhgx sinpx - <y coshqgx sinpx + Cq coshgx cospx

+ Cy sinhgx cospx , {(1.9)

where Cy» Cps Cg and cy are arbitrary constants which can be
determined from the boundary conditions (Eq. 1.6), and q, p

and B are given by

a-wye ‘/[!LZIJ , (1.10)
2

p=wyhs [9%] : (1.11)
2p

6= 1+(§9’)2 . (1.12)

Upon using the boundary conditions (Eq. 1.6), the constants

€1 s €34 C3, and c, are found to be
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cy =0 (1.13)
sina sinhgqLcospL - cosacoshgLsinpL: + cospL sinpL,
cp = A 3 Z 3 73 » (1. 14)
sinh gqLcos pl: + cosh qLsin pL
C3 = A 2 (].. 15)

sine coshgl sinpLs + cosa sinhqL cospL - sinthcoshjL} (1.16)

c, = A[ «
4 costhL sinsz + sinhqu cossz

Therefore, at any point ¥ on the beam, the displacement can

be written as
* % ..
V(x,t)=X1(x)coswt+X2(x)smwt . (l.17-a)

or more conveniently as

v(X,t) = V(% )sinlwt+o) (1.17-b)

o!

where VO( %) is the amplitude of the beam displacement at point

# ; it is expressed as

yo(ﬁi) - ]/xf(;*é) Fx2E) . (1.18)

In Eq. 1.17-b, ¢ is the phase angle between the displacement at that
particular point i and the harmonic motion of the left support

(where x=0 and o= 0); © is given by

. X (%
* -1 1 .
_go(x)—tan [Xz( )J . (1.19)
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To simplify the calculations, all the parameters involved in
the steady-state solution are expressed in nondimensional form; for
instance, define the dimensionless frequency & as

W
w-—-&,—l— s (1.20)

where W,y is the fundamental natural frequency of the beam which is

given by
—_ . (1.21)

Therefore, Egs. 1.10 and 1.11 become

V [ﬁ_—ﬂ , (1. 22)

q= =
L 2p

%

w
and

T %

p=1 @

¥ F’—%} . (1.23)
2B
Now, the steady-state solution, wv(x,t), can be expressed in

térms of the normal modes ‘Pn(x) as follows
m .
vis t) = D ®60m () (1. 24)
n-1

where nn(t) is the nth normal or generalized coordinate and is a
function of time only.

Substitution of Eq. 1.24 into Eq. 1.4 yields

(23

C 2 . 2 _ _
nn(t) + o wnnn(t) + wn nn(t) =0, n=1,2,3,. (1 25)
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Tet

C 2 _ ‘ '
Gk %y T anEn ! (1. 26)

where En is the damping ratio which is given by

1 C
Pt 3 .2
€= 2% G (1.27)
then, one can obtain
cw W _ w *
Gk " awg T T 20 (1.28)

where €1 is the damping ratio of the first mode. Therefore,

B Y rree @ (1.29)

I1-2-4. Dynamic response of the beam {numerical results)

Eq. 1.12 becomes

With the aid of Egs. 1.17, 1.18 and 1. 19, the displacement

v(x, t) , and the phase a.'ngle ©(x) were computed at three different

points of the beam: at x= =% , and %l-'- . The damping for

L
1

the first mode was assumed to be 2%, and a was given several

Sl

values: 0°, 45°, 90°, 135° and 180° . Figures 1-2, I-4 and

I1-6 show the displacement amplitudes VO(%) s VO(%) and

Vo(%) as functions of the dimensionless frequency & s with the

excitation phase angle @ as a parameter. From these figures the

following observations may be made.
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In all cases, the amplitude curves for different values of the
phase angle a, all have the same value ([VO l = 1. 0) when

£ approaches 0.

At the mid-point of the span ( |VO(£2‘—)], Fig. I —2), there is
no contribution from the even modes {antisymmetric mode
shapes), because that point (:’f = -%f—) is always a node point
for these mode shapes.

In Fig. 1-2, also, the maximum displacement is attained when
@ = 0%, i.e., when the two harmonic end-excitations are in
phase, and this maximum (or peak value) decreases as ¢
increases in all the odd modes (sy'mrn‘etric mode shapes).
Further understanding of this behavior of the system may be
obtained by studying Fig. I-3 which corresponds to Fig. 1-2.
In Fig. I-3, when o= 0° to @=60° the rate of decrease is
very slow, while from o ~60° to « = 180°% the rate of decrease
is very rapid.

Because of the type of damping assumed, the contribution from
the third mode, in Figs. [-2 and I-3, is smaller than the con-
tribution from the first mode (by about 80%).

At the points IVO <—Ii~)l and lVO (-Bji-'-'—)l , the results are
almost ideatical, as seen from Figs. I1-4, 1-5, I-6 and 1-7,
There is no contribution from the fourth mode where there are
nodes at these points (:’Q:< = % and %) . For different
values of the angle « , the behavior of the system at the second

mode is completely different from the behavior at the first

mode.
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6. The phase difference ¢ between the response and the left-
support excitation (Eqs. 1.17-b and 1. 19), has been plotted
for these three points on the beam, as a function of the
dimensionless frequency (.xf.! » and with & as a parameter.
All three sets of curves in'Figs. I-8, 1-9 and 1-10 indicated
that during resonance of the first mode, the external forced
displacement at the left support and fhe response have a phase
difference of -75— . .

7. By comparing Figs. 1-9 and 1-10, a considerable difference
is seen in the phase characteristics of the two cases when
:’; = -};—: and %—II-"'— , in contrast with the similarity of the

amplitude characteristics (in the frequency domain) shown

in Figs. I-4, I-5, I-6 and I-7.

I.2-5. Energy consideration

For an external force F(x,t), the equation of motion (Eq. 1. 4)

can be written as

. 9%y 8%,
7 ¥ ¢
ox ot 9x

2
97y
p Y = Gk
Btz

5 + F(xt) (1. 30)

In terms of the inertia forces which result from the two end

motions, F(x,t) can be described, as shown in Fig. l-l-c, as

F(x,t) = p [(L %) 'f.l(t) + -’I% 'f'z(t)] . (1.31)

Because fl(t) = Asinwt and fz(t) = Asin(wttea), Eq. 1.31 becomes
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2 x

F(x,t) = pA [~wzsinwt -W I (sinwtcosa+ coswt sina - sinwt)] . {1.32)

Therefore, the amount of energy input into the system, which

is supplied by the harmonically excited motions is

E

L
_ ov
0

and the energy per cycle of the vibration is

EI/cycle =j J F(x, t) —g;t’- dtdx . (1. 34)
00

- This energy was calculated and plotted in dimensionless form

£ as

_'E’Ifg _ (El/cycle ) . (L 35)

17 akG.AZ

L

* 3%
Fig. I-11 shows EI versus & with o as a parameter., At

resonance, this energy input is equal to the energy dissipated by the
system due to damping. Fig. I-11 shows t1;1e increase of this
energy in the higher modes. The contribution from the odd
symmetric modes and the even antisymmetric modes are shown to
be proportional with the phase angle o« . Finally, the energy of
vibration as seen in Fig. I-11, is greatest in the normal modes of
low order; this is to be expected because to excite the lower modes

requires more energy.
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A similar analysis was made for both the kinetic and strain

energies of the system. The kinetic energy is
L 2
1 ov
T(t):—zj pa(é-é-) dx , (1.36)
)

and the mean value of this kinetic energy per cycle is

L& e
-l w oy
Tmean/cyclef 5 ZnJ.J pa(at) dtdx . (1.37)
00 :
The strain energy of the system is
L 2
L[ aa(®
u(t) = zf KaG(3L) ax (1. 38)
0

and the mean value of this energy per cycle is

1w ' v
u ean/cycle—-z--z—;fj k aG(E) dtdx . (1.39)
0 0

m
This strain eaergy is due to shear alone, because any element
of the beam may undergo distortion but no rotation.

Expressing these energies in nondimensional form, one obtains

T /cycle
3
A ( mean ) ,

“\Kag A2 (1.40)
L
and
% Umean/cycle
U= (-5 (1.41)
kaG | AZ

L
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Figs. I-12 and I-13 show these two dimensionless energies

. ¥
as functions of w; they are almost equal at each normal mode.
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I1-3. Random Vibration Analysis

This section contains a discussion of the transient response of
the beam to random excitations applied at the support points. The
analysis has been confined to the stationary aspects of the motion.
Two types of input motion having various specific characteristics
were considered, and the mean square displacement was calculated
for both cases. The two end excitations were assumed to be identical

in both cases.

I-3-1. Equation of motion

Substituting Eq. 1.24 into Eq. 1.30, with F(x,t) defined as
in Eq. 1. 31, one can obtain the following, after multiplying both .
sides of the resulting equation by ¥ (x), integrating from 0 to L

with respect to x , and making use of the orthogonality of the modes.

0

t)+2w € 7,(t) ) + 0l AT, (t) = [f ®) - (1)1, a=1,2,3,..
(1.42)

N

By considering Fig. I ~l-c, one can decompose the two triangular
inertia forces to the symmetric case where one has %—(fl (t)+f2(t)) .

and the antisymmetric case where one has %(fl(t) -;‘.‘.z(t)); using

Eq. 1. 42, these two cases can be written as

B () + 20 & (t)+w17(t) (f(t)-l—f(t)) , n=1,3,5,.
(1.43)
which includes the contributions from the odd modes (symmetric

mode shapes), and



B )+ 20 € A () +win (0 =2 (£ -50) . a=246,...
(1.44)

which includes the contributions from the even modes (antisymmetric
mode shapes).

Because this analysis considers that fl(t) = fz(t) = f{t) , where
f(t) is a random iaput motion, it shows only the coatributions from

the symmetric modes. Accordingly, Eqa. 1.43 and1.44 reduce to
N (t) + 2w §ﬁ(t)+w2n (t)=i¥(~t) n=1,3,5,... (1.45)
n n’n'n n'n nm ’ P
If the initial conditions are assumed to be zero, a valid solution

of Eq. 1. 45 is obtained through the time domain using the convolution,

or Duharmel, integral

t
n_(t) = E‘-‘-’; j h(t-T) f(t)dr , n=1,3,5,... (1.46)
0

in which 7 is a dummy time variable and h{t) is the unit-impulse-~

response function of the system; it is expressed by

v
o

- __L -£ wnt .
hit) = o e °n sn'xwdnt s t

, (1.47)
= t <0

with Way = l/ 1- gi w, ~ as the damped natural frequency.

The stochastic mean square of the normal coordinate of

Eq. 1.46 can be written as



w2b -

z 4 2 . . -, p
P> =(Z) | | he-7) hs-) CEr) £x) ddvdr’ , n=1,3,5...
0 "0 (1. 48)

where E(t) is assumed to be mean square continuous. The quantity
<¥(T)}.:(T')> is, by definition, R%‘('r, '}, which is the autocor-
relation function for E(T) . The autocorrelation function for a
stationary process depends only on the time difference (t-71'),
and not on T and T individually. |
The random excitation has been considered as either
(1) Random imput displacement f(t) with specific characteristics,
or
(2) Random input acceleration f(t) with specific duration and

other definite characteristics.

I-3-2. Dynamic response under random displacements

The particular form of random motion considered for the
random function f(t) {(case (1) above) might expresgs ground motion
resulting from earthquake acceleration as stated by Shinozuka and
Henry [1]. Unfortunately, the amount of data on strong motion earth-
quakes is quite limited, so it has not been possible to obtain anything
like a complete statistical description of earthquakes. However,
there has been previous work concerning the statistical nature of
ground motion; reference is made to studies by Bogdanoff, Goldberg
and Bernard [3], Bolotin [4], Rosenblueth and Bustamante (5],
Caughey and Stumpf [2], Sharpe, et al. [6], and Housner and

Jennings [7].
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The random displacement f(t) suggested by Shinozuka and
Henry [1] was based on the evident condition that the ground
velocity i;(t) must approach zero as time t approaches in.finif.y.
This ground displacement is in the form of the integral of the
envelope deterministic time function times a randem function

having specific properties:
t
£(t) =J G(r)g{r)dr , (1.49)
0
where G(t) is the envelope function; it is expressed by

Gty = (e .eB | gsaso ; (1. 50)

o and B are constants.
The random function g(t) has the following properties:
1. g(t) is stationary
2. glt) is Gaussian
3. g(t) has mean zero, i.e., <g(t)> =20
4. g(t) has power spectrum ¥ (w)
5. g(t) exists and is continuous in mean square; moreover,
because g{t) is stationary and Gaussian, so is g{t) .
Hence, g(t) and g(t) are Gaussian and continuous in mean square
with mean {g(t)> = {gt)> = 0.
From Eq. 1.49, the expressions fof the velocity and the

acceleration are

f)= (e -ePhewm . (1.51)
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and

ot _ e-pt

£(t) = (~ee " 4 ge Pt git) + (e~ )8 . (L.52)

The random function has a covariance given by
-3
{glt)ygls)D = Rg(t—s):-zl—w- J‘I’(w)eiw(t's)dw (1.53)

where Rg(t - 8) is the autocorrelation function for g(t} ; it depends
only on the time difference (t-s), and noton t and s individually.
The covariances of both the velocity (Eq. 1.51) and the accelera-

tion (Eq. 1.52), are given by

CEREs)> = (7% - e™Ph % e P9 amrgs)> (1.54)
and
(iR E(s) > = (~ae e pe P (cae™ 5+ e P (git) gla))
+ (-ae™ ¥ +pe Phe L PR (gt) p(a)>
+ (e e Pt oo %% 4 pePE) (&) g(s)> t-55)
+ (™ e P PR (it i(e)>
in which

{glt)gls)> = -<glt) gls))> = R,g(t- s) = %f w ¥ (w) Qlw (t - 8) dus

(1. 56)

- gty als)> = I'ig(t-s)= _21_1; jwzq,(w)eiw-(t—s)dw

=0

Now, substitution of Eqs. 1. 47, 1,53, 1.54, 1.55 and 1.56 into
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Eq. 1.48, after lengthy algebra operations, yields

nm

2 s >
<'fli(t)> =(—i) -21; J‘I’(w)[lJn(w,t;a,ﬁ)l +

2
+ 2w Im{Jn(w, t; a, 8) fn(w, t;1, 1)} + wzlJn(w, t;1,1)] :)dw s
(1.57)

where j—n denotes the complex conjugate of .]'n . The expressions
for Jn(w, t;1,1) are shown in Appendix I -a.
For the purpose of numerical computation, Shinozuka [1]

suggested the following power spectrum

2 2 -
Y(w) = De D @ , (1.58)

where B and D are constants. Shinozuka admits that the applica-
bility of this form of ¥(w) to earthquake problems is open to
question; however, due to the lack of statistical studies concerning
earthquake ground displacement, a superior spectrum has not been
discovered by this investigation. The autocorrelation function of
Eqg. 1.58 is

R
D ) 8(432)

Ry(m) = (m (1.59)

Expressing all the parameters in nondimensional form enables
one to visualize some of the characteristics of the problem. By
introducing w; from Eq. 1.21, one can obtain the dimensionless

quantities
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*” % W (. w-‘—% B
t‘" wlt ] W = '{J‘I" ] wn - wl - n ’
3 (I- 60)
w
k. =.dn _ 2 k. @ - B
(""dn"w:l -n 1"gn r @ 1 and é( wy
and
« T(w ) 2 2%2
u@y - B o L -BRwjwT (1.61)

* D D

® ®2 | % % % 27 %
va BT G, 51,1 + &% T @, 61, | ]dw :

(1.62)

% ok ok
+ 20 Im{.]’n(w,t

o2}

Upon using the modal solution v(x, t) = ; ¢n(x) 'nn(t) , one
n=1,3,5

can obtain the mean square displacement as

2 _ . 2 ntx 2
CAIC R Z sin” == < n.> (1. 63)
n=4,3,5

Evaluating the integral of Eq. 1.62 is very involved; so its
value was obtained numerically by using the Hildebrand algorithm,

which is based on the following relation

Ie_xzxz £(x) dx = %g—ltf(-—z‘(%)+4f(0)+f(—z¥1);l (1.64)
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A numerical example is presented for the set of parameters

#
and B , 1i.e., for different envelope functions as shown in

R %

Fig. I-14 where four types, designated by A, B, C and D, are

as follows:

Type & é‘
A 0. 2 0.5
B 0.5 1.0
C 0.8 1.5
D 2.0 4.0

%
The corresponding mean square displacement (v)2 was

plotted in Fig. I-15, where

3 2 X
IR CaltR3), (1. 65)

DL ]/I,
kG

Only the first term of the series of Eq. 1. 63 was considered because
the series is rapidly convergent.

In the numerical example, the damping was taken to be 10%,
which is quite high, and the quantity Bzwg' in the power spectrum
was taken equalto 0.5 .

It is important to note, also, that the contribution from the term

. 2 .
sin _r%z in Eq. 1.63 was taken to be equal to%— indicating oune of

two possibilities

1 x=£or3—li or
. 4: 4: L]



2. the space average of the mean square displacement is in

the form
ma— i L
2 * 1 ., 2 2 %
vi(x,t)> = E EJ sin mj.f{—dx ('r}n(t)) . (1.66)
n=1,3,5 0

Figs. 1-14 and 1-15 show the correlation between the shape
of the envelope function G(t) and the corresponding mean square
displacement (':"r()2 . In all curves of Fig. I-15, there is a rapid
decaying of these response curves due to the high percentage of

damping which has been assumed (10%).

I-3-3. Dynamic response under random accelerations

Another example of random excitation is based on the random

acceleration with specific duration, which is given as

F(t) = [H) - H(t-to}] (), (1.67)

where H{t) is the unit step function (the Heaviside function), and to
is the duration of this input excitation. The displacements both
during and after the application of the random acceleration are
presented.

The solution of Eq. 1.45, which is in the form of Eq. I.48,
may be reduced to the following form, after much algebra is per-

formed

o]

2
<ni(t)> ﬁzl—Tr[H(t) - H(t - t,)] (f‘;) J‘P(w)l(w,t)dw ; (1 68)

k==
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the expression for I(w,t) is given in Appendix I-b.

Another method to evaluate the integral of Eq. 1.68, is the one
suggested by Caughe;lr and Stumpf[2]; their method approximates the
integral of Eq. 1. 68 by

@

W(w., ) 2
)y = — 22 [H(E) - Hit - £)] () [ f Iiw, t)dwjl ;' (1.69)

-0

which, with the aid of Appendix I-b, becomes

¥(w, ) 2 i
A0 = —5=2 [H() - HGs- £} () £~ [1 2bwt
n .
2 2& 1 "52 Zg £
+ gn (e“ nwnt co8 dent - TB e n Sinzwdnt- I)J .
n

a.70)

The power spectral density of strong motion earthquake
acceleration suggested by Tajimal8] was used for the purpose of

numerical computation. The power spectrum [7] is in the form

"
0.01238 (1 +-—-)
T(w) - S 1473

2
w w
1- 242) + (147. 8)

The root mean square (rms) value of the displacement was com-

(1.71)

puted for the random input, for different durations of the excitation

(to = 30, 20 and 10 seconds). Also, the free vibrational displacement
which followed the forced vibration was computed. The time history
of the two displacements is shown in Figs. I1-16 and [-17, where only

two terms of the series of Eq. 1.63 were considered. In these figures,
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wl (the fundamental frequency) was assuméd to be 0.3 rad/sec.;
i. e., the natural period was taken to be about 21 sec., which is
the fundamental period of a long-span suspension bridge. The
damping was taken to be 10% which is, again, a very high value.
The figures show the displacement at the mid-point of the span; for
the displacement at 4% and %"— » or for the space average of the
displacement, one has to multiply the ordina‘te by 0. 707.

As is seen from Figs. 1-16 and I-17, for the 30 seconds
duration, the displacement at the mid-point of the beam reaches
a value of 1.7 ft. at t=~33 sec., while for 10 seconds duration, the
displacement reduces to 1.2 ft. at about 13 seconds. One can
notice, also, that the maximum displacement always occurs
immediately after the excitation subsides.

Fig. I-18 shows the energy content of the system with both
the strain and kinetic energies plotted for the example of 30 seconds
duration. The figure demonstrates the gradual increase of the two
energies during the input motion; subsequently, during free vibration,
the kinetic energy is at its minimum when the strain energy is at

its maximum. The sum of the two energies is the envelope of the

two curves, and it is shown in the same figure.
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I-4. Conclusions

This study has examined the effect when the two end supports
of a simply supported uniform bridge deck (assumed to be shear beam
type) are shaken simultaneously by earthquake-type motion; this
situation was analyzed in both the frequency and time domains, with
harmonic and random excitations, respectively.

In the harmonic vibration analysis, the response of the beam as
well as the correlation between the two support-point excitations
have been investigated. The different modes of vibx;a.tio.n are related
to the nature of the support movement; in particular, they depend on
the relative phase of the two support motions. When the two supports
move in phase, symmetric modes of beam vibration can be excited,
while when the end supports are moving 180° out of phase, the anti-
symmetric modes are excited.

In the random vibration analysis, two methods are presented
to determine the stochastic response of the beam when it is subjected
to identical stationary Gaussian excitations acting simultaneously
on both end supports. Both methods indicated that significant dis-
placement amplitude occurs immediately subsequent to the end of

&

the random excitations.
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I-5. Appendices
Appendix I-a

Expressions for .Tn(w, t;a, B) and J'n(w, t:1,1)

The complex quantities Jn(w, t; e, ) and Jn(w, t;1,1) of
Eq. 1.58 are given by

t
T (@t e, B) =Jh(t cr) (e %" - pePT) 10T g
0

and

t
Jn(w, t;1,1) =f h(t-T)(e"”_e-ﬁT) 10T g4
0

Let Gn(w, t;8) and Hn(w,t;ﬁ) be defined as

£

Gn(w,t;e) = Re{j h(t-T)e('6+iw)T d'r}
0

and

£
H_(w,t;8) = Im{f hit - 1) el "8 Fiw)T d‘r}
0 .

where 6 stands for o and B

Then, Jn(w, t; 2, B) and .Tn(w, t;1,1) can be written as

Jn(w, t;e, ) = Lo Gn(w, t; ) - bGn(w, t;8)] + ile Hn(w, t;e) - B Hn(w, t; p)J



w0

and

Jw,t:1,1) = [G (@, t;e) - G (w, &B)] + ilH (W, t;e) - H (w, £ )]

Gn(w, t;0) and H (w,t;8) are evaluated and given by

1/

W
' dn 2, 2 2
) e AT P o Lo

{wdne 'etcos wt - (E;nwn-e) e _gnwntsinwdnt—wdne -E’nwntcos wdnt}

+ Zw(ﬁnwn-e){wdne'et sinwt - we "5n%nt ginw nt}J

d
and
1/w
dn 2, 2 2
H (w,t;8)= [w -8 tw, ~w
i Bgnwn_9)2+win-w2]z+wz(gnwn'e)z {( o ) dn }

-8t _. - w.t . -0t
{wdne sinwt - we 5rl n Smwdnt}-zw(gnwnbe){wdne cos wt

- (gnwn-e) e-gnm"r:tt sinwdnt - wdne—gnwnt coswdnt }J ;

again Wi = 1- Ef wn is the damped frequency for the nth mode.
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Appendix 1-b

Expression for I(w,t)

Hw,t) of Eq. 1.69 can be written, in terms of the unit-impulse-

response function h(t) (Eq. 1.48), as

t t
28 wt (€ w +iw)T (& -iw)r’
Lw, t) = - e g"‘ n e En n sinw, {t-T)'e €n n sinw, (t
wZ dn dn
dn 00
- 1) drdr’
or, more conveniently, as
I, t) = —— I, T
? wZ ] 1
dn

where Tl denotes the complex conjugate of I1 which is given by

w,t

sin wdnt

w 2+w2 -wz- iwg W
I. = ( ngn) dn 2 €n n)2 [(w

b [(énwn)2+ wczin-wz]2+ 4(w§nwn an ©OPWE &%

-E Wt -& w,t
- > . . _ n* .
wdne 0 cos wdnt) +1(wdn81nwt we 51nwdnt)J .

Therefore, the expression for I{w,t) is



I{w, t) =

1

42 =

[%;

w

no_,
+ Zﬁn wdn sin

e-gnwnt (

-& W t
- 2e 6‘1 n Ew-— sinwdnt sinth

2
+wd -w

dn

wdni: cosw

n n
coswdnt " @

Pl

dn

) ~2£nw t

£Ew

sinw 1:) cos wt
dn
dn

2 2

(anwn') _wdn
2
wdn
sin wdnt
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CHAPTER 1L

ANTIPLANE DYNAMIC SOIL-BRIDGE INTERACTION

FOR INCIDENT PLANE SH-WAVES

II-1. Introduction

The problem of the dynamic interaction between buildings and the
soil during earthquake excitation has attracted considerable interest of
many investigators [1, 2, 3, 4, 5]. However, such analyses have, so
far, not beeﬁ extended to more complicated structures, such as bridges
or large industrial buildings, where differential motions of foundations
might influence response in an important way, as seen in Chapter I.

There have been many cases reported in the literature in which
bridges suffered damage during earthquakes L6, 7] . These examples
clearly indicate the need for detailed investigations of the dynamic
soil-bridge interaction to determine the significance of that interaction
on the bridge response. The soil-bridge interaction effect is cbnsidered
important, for example, when the motion of an abutment or foundation
is significantly different from the motion of the ground in the absence
of the bridge, the latter motion being usually referred to as the free-

field ground motion.
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The general dynamic soil-structure interaction problem can be
broken down into three parts [8] . These are:

1. The determination of the input motion to the foundations (the
contribution of the seismic waves) or equivalently the deter-
mination of the driving forces.

2. The evaluation of the force-displacement relétionship (the
impedance functions or their reciprocal, the compliance
functions) for the foundations.

3. The.solution of the equations of motion including both the
foundations and the superstructure.

This approach has the advantage that once the solutions of the first
two parts have been obtained for a class of foundations, the results
can be used to calculate the interaction response of different
structures. This is done by superimposing the results so that the
equations of motion for the foundations are satisfied. This method,
of course, is possible only if the problem is linear.

Luco and Contesse [5] have studied the dynamic interaction,
through the soil for two parallel infinite shear walls placed on rigid
foundations and for vertically incident SH-waves. In a similar study
Wong and Trifunac [9] have determined the driving forces induced
by harmonic plane SH~waves and the impedance functions for a class
of embedded foundations with circular cross sections at different
separation distances. These results will be used in the present
analysis of a two-dimensional superstructure (the girder), the sub-

structure (the two abutments) and the two foundations.
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In the following study, the analysis of dynamic soil-bridge

interaction has been performed in three steps. These are:

1. the analysis of input motions

2. the force-displacement relationships for the foundations

3. the dynamic analysis of the structure itself, i. e., the bridge.
Based on the exact solution of the first two steps, the dynamic inter-
action of a simple two-dimensional bridge model erected on the elastic
half-space has been investigated for a single span case. The two-
dimensional model under study consists of an elastic shear girder
bridge supported by two rigid abutments and rigid foundations which
have a gircular cross section and are welded to the half-space. It
has been shown that the dynamic interaction depends on:

1. the incidence angle of plane SH.waves,

2. the ratio of the rigidity of the girder and the soil,

3. the ratio of the girder mass to the mass of the rigid abutment-

foundation system, and

4. the span of the bridge.
The dynamic response of the girder and the effect of the radiative
damping in the half-space on the interaction ofthe girder have been
studied.

Finally, the model considered in this study offers obvious
analytical advantages and a simple and direct insight into a complicated
wave propagation phenomenon. However, this model represents a
highly simplified version of the actual three-dimensional problem, in

which in-plane as well as anti-plane incident waves are present, and



where coupling between the horizontal, rocking, torsional and

vertical motions of the structure and the foundations take place.
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iJ-2. The Model, the Excitation and the Exact Solution

The two-dimensional model studied in this analysis is shown
in Fig. II -1-a. It consists of three structural elements: the super-
structure (the girder), the substructure (the abutments) and the
foundations. These elements are assumed to be infinitely extended
in the z-direction. Furthermore, the following assumptions are
made:

1. The soil, which is represented by the half-space, is elastic,
isotropic and homogeneous. Its rigidity and the velocity of
shear waves are [ and {33 » respectively.

2. The two foundations are assumed to be rigid, semicircular
in creoss section, and welded to the half-space.

3. The abutments are also assumed to be rigid. They are welded
to the foundations so they behave together as a rigid body
partially embedded in the soil.

4. The model for the girder is a shear beam, of span L and
depth d, supported at the ends by the rigid piers. The beam
is isotropic and homogeneous; the rigidity and the velocity of
the shear waves in the beam are given by By and Bb s

respectively.

I1-2-1. The coordinate systems

1. For the superstructure, i.e., the girder, the origin of x and y
coordinates is located at the left support point as shown in
Fig. II-1-a. The x-axis is defined along the span of the bridge,

while the y-axis is in the vertical direction.
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2. For the two rigid abutment-foundation systems, the scattered
waves from the two rigid foundations are best represented by
polar coordinates (rl, (’01) and (rz, 902) ; which have their
origins at the center of each foundation. The cartesian

coordinates (x’, y') are located at the left foundation such that

Xy b4 ry cosgt)1 Y1 L5 sm(pl

= = )

X, x -L r,cosp, Y, T, sintpz

i

(2.1)
This choice of the (rl,(pl) and (rz,qoz) coordinate systems is

identical to that used by Wong and Trifunac [9].
As shown by several investigators [5,9,10], the interaction
problem can be separated into three steps:
1. Input motion or 'driving forces, !
2. Impedance functions or ''‘compliance functiojns. r
3. Dynamic analysis of the structure (bridge).
The final results are then obtained by superposition. Some
parts of these analyses are given inthis study for the completeness

of this presentation, as follows.

II-2-2. Motion of the soil

It is assumed that the excitation is in a form of plane harmonic
'SH-waves with an amplitude equal to one and ﬁth the angle of
incidence 8, which is measured counterclockwise from the horizontal
axis to the normal on the plane wave front (Fig. II-l-a). This

incident wave is given by
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. . 7 [
u;(xl’yl’ t): elw(t-x /CX_Y/CY) , (2'2)
where
B, B
“x " Cos8 ! vy " 5inb ’ (2. 3)
K, | ' ,
and p_= I is the shear wave velocity in the soil; Mg is the

S

shear modulus of the soil,and ps is the density.
The resulting free-field motion, i.e., motion of the half-space

in the absence of the bridge and its foundations, becomes

[ -i p& x cos®
e

S

u:‘:r(x', y', t) =2 of:m"lc

cos(ey—l sine) » (2. 4)

l3s

whereA ui;r stands for the sum of incident, u;, and reflected,

u; , waves from the half-space boundary y': 0. This motion can

be represented in terms of polar coordinates (rl,tpl) and (rz, (,02) Cal.
The total displacement field u, s in the half-space in the

presence of the two rigid foundations is composed of the free-field

motion ui;r and the scattered waves, u{{'z and u?z. » from the two

foundations; i.e.,
w =Ty R LR (2.5)
Z 1z z

This total displacement, u_, must satisfy the Helmholtz equation in

each of the (rl,tpl) and (rz,tpz) coordinate systems

1 2 _ .
5 = tku =0 , j=1,2, (2. 6)
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in which ks = -é—u— is the wave number, and the two boundary condi-
S
tions:

1. Stress-free surface boundary condition

o, Bu,
U(sz-‘-—]—:—j-«acpj =0 attpj=—1r, 0533112’ rJERJ’(Z"T)

2. Harmonic displacement boundary condition

u

Z(Rj’ (pj, t) = &jelwt 2 -TI'S (p. _<_0 ? j = 1! 2 H (2“ 8)

where &, and &, are the displacement amplitudes of the two
foundations {Fig. IL-1-b). Ay and Az are unknown and depend
on the soil-structure interaction of both foundations and on the
characteristics of the incoming waves.

This interaction problem can be analyzed in three parts which
are illustrated in Fig. 11 -2-i. ‘This figure represents a generaliza-

tion of the solution method presented by Wong and Trifunac [9] to

the soil~bridge interaction problem studied in this analysis.

I1-2-3. Forces generated by the soil and compliance functions

The forces exerted by the so0il on the two foundations and caused
by the incident waves and the motion of the neighboring foundations,
as shown in Fig. II-l-b, are given by

0

Fs1 ‘J 0,z (R 9p)R Aoy
-1

, (2.9

0
FSZ -J crrz(R‘Z’ (pZ)RZd(pZ
-
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where
ou

_ 7 s
GrZ(Ri’ (Pl) - P'S ari L =R ’ 1 1,2. (2.10)
Pt

1

Using the principle of superposition, the total soil forces can be
expressed in terms of the '"'driving forces, ' and the unknown displace-

ments {A} premulitiplied by the impedance matrix,

ES
Fa1 -F] Kii B2 &
- + (2.11)
F FF K K A
s2 -F, 21 B2 2

* £ S
Here the driving forces Fl and Fz are the forces exerted by the

soil on the two foundations which are held fixed during excitation by
the incident waves uiz . The driving forces depend on the properties
of the foundations and the soil and also on the nature of the seismic
excitation. An element of the impedance matrix Kij (i,j=1,2)
represents force acting on the motionless ith foundation caused by
the unit harmonic motion of the jth foundation. The impedance
matrix depends only on the characteristics of the foundations and
so0il and on the frequency of the motion. Fig. I1-2-iillustrates the

physical meaning of these force coefficients.
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II1-3. Dynamic Analysis of the Bridge

II1-3-1. Motion of the bridge

The displacements u and v of the two-dimensional bridge
model are selected to be zero, while the displacement w depends
only on the coordinate x. This displacement must satisfy the

equation of motion of an undamped shear beam;

2

2
Swixt . L 2wkl o<xcrn, (2.12}

in which {Sb =\ “'b/pb e+« is the shear wave velocity in the heam;
].Lb is the shear modulus of the beam, and pb is the density of the

beam.

The boundary conditions for the beam are

w(o, t) Al eiwt

i

s (2. 13)

wi(L, t) l}.z

where A&, and A, are the unknown complex displacements of the
two foundations. The solution of Eq. 2.12, compatible with the

boundary conditions given by Eq. 2.13, is
21
wix, t) = {[cos (kbx) ~cot (kbL) sin (kbx)], [cosec (kbL) sin(kbx)]} vt

By

- {2.14)
in which kb = w/{3b +.+ 1is the wave number in the shear beam.

From Eq. 2.14, it is seen that the displacement w(x, t) depends on

the instantaneous values of the harmonic boundary conditions.
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I1-3-2. Forces exerted by the bridge

The end resisting forces, per unit length, acting on the two

abutments (Fig. II-1-b) are given by

b b dw(o, t)
F(t) F(o, t) o (0, t) g d ==
= = = » (2.15)
b b awg L, t)
Fz(t) F(L, t) -dUXZ(L, £) —,ubd e

where d is the depth of the shear beam and UZZ is the shear stress
in the z-direction.

By using Eqs. 2.14 and 2.15, ard by introducing the
expression

Mb = pde , (2.16)

which corresponds to the mass of the beam per unit length in the

z-direction, these support forces can be written as:

t(k I1J) cosec (k. Li)
b 2, SOtV 2 b
F ) WMy, T @M, & o
b b .
= 1t
b 2 cosec (kbL) 2 cot (kbL)
Fz(t) w My w—-———-————(kbL) -w Mb ———~——-—-———(kbL) AZ
(2.17)
It is convenient to recall here that the undamped natural
frequencies of the simply supported shear beam are given by
B
= BT b _nam =
w =T 5 =B, » n=L23... (2.18)
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T his corresponds to
kbL=nTT, n=1,2,3,... {2.19)

The mode shapes are given by

Wn(x)=sin9{5 ., n=1,2,3,... (2.20)
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II-4. Dynamic Soil-Bridge-Soil Interaction

The unknown foundation displacement amplitudes b5y and AZ
can now be determined from the balance of forces exerted on each
foundation. These forces are:

1. Soil forces F, 2nd F ., as given by Eq. 2-11.
2. Bridge end forces Ftl)(t) and Fg(t) » as given by Eq. 2.17.

3. Inertia forces of each rigid abutment-foundation system, with
masses Mfl and 1\/[fz , and accelerations —wZAlelwt and
2 t

- Azelw » as shown in Fig. II-1-b.

The balance of the forces for the two abutment-foundation systems is

then
2 o # b
-w A M = - [-F1 KA TR LA, ¢ Fl(t)]
» . b (2.21)
-w A,M, = - [-FZ TR, A TK LA+ Fz(t)]
Introducing
2
Msl . Rl
= 3R ) , (2.22)
MsZ RZ

which corresponds to the mass of the soil per unit length removed

by the two foundations and by using Eqs. 2.17 and 2. 21 there follows:

pom -

[ksRl <Mﬂ+ My cot(kbL)) = ][_ kSRl(Mb cosec(kbL)) = J
2 \M,; ™, T~D) 11 2 \M,, T ) Rer] )4
l’:kSRZ<Mb cosec(kbL)> = }Iikst (Mf2+Mb cot(kbL) = ] R
L 2 \Mg, (kL) 2yl 2 \M_, "M, (k, L) 221\ =2
Taw
Fy
= , (2. 23)
X
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where
K K K K
11{ _ 4Tk R _11 ’ 21 _ U ok R 2
K s 81 7 K g s 2 B
12 12 22 22
and
F’l" Rl’is"i‘
= M Tk . (2. 24)
F* 5 s R'F—\*
2 2 2

The foundation displacement amplitudes Al and -Az are uniquely
determined by solving the two simultaneous, complex, and non-
homogeneous equations (Eq. 2.23).

Numerical examples presented in Figs. II-3 through II-12
depend mainly on the angle of incident waves 8 and five other

dimensionless parameters:

_ 2w

L Ry = ksRl =5 R, » which is the dimensionless frequency
s

1. 7=
Ps
which compares the wavelength ks of the incident wave to the

width of the left foundation.
M

M £2
2. 7 and , which are the ratios of the masses of the

Msl MSZ

abutment-foundation systems to the masses of the soil replaced

by the foundation only. They are set equal in the examples

‘ M M
. . . . fl _ "7f2 _ MPF
considered in this paper (1. e . T M. - M3 )
sl s2

M, M,

3. Y and Vi » which are the ratios of the mass of the bridge
sl ‘82

girder to the masses of the soil replaced by its foundatiouns.

(In the figures these are denocted by —% when R.1 = Rz and

MB MB
bY"M—S'l— and NE2 when R’l # RZ -)



R,

k, L p B
€= l—c-%{.— = = -Eli = =2 ?L- . N ; this ratio reflects the
sf2 By Ry By Ry Ry

relative stiffness of the bridge and the soil; it also describes
the ratio of the span to the radius of the foundation. Large
values of € indicate a more flexible bridge with respect to the
soil and/or a longer span, while € = 0 implies a rigid
structure composed of a rigid bridge girder, rigid abutments

and rigid foundations. In that case &y =48,

R
; this geometric parameter which reflects the relative
2
width of the two foundations is also needed unless R’I = RZ .

For different types of soil and a typical reinforced concrete

structure ‘'bridge' with ¢, ¥, and B as shown in Table II-1
R

and for selected rations of L and L , the range of
Ry Ry

values for € is as shown in Table II-2.
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IT-5. Interpretation of the Interaction

The two displacement amplitudes A; and A&, computed for the
excitation corresponding to the incident plane harmonic SH-waves have
been illustrated in Figs. II-3 through II-12. The displacement of the
left foundation A, is represented by a dashed line, and the displace-
ment of the right foundation 4, by a solid line. These two displace-
ment amplitudes have been plotted against the dimensionless frequency
n.

Different cases have been considered which correspond to the
following parameters:

1. The mass ratios have been considered in four cases:

MF _ MB _
» MS "% v wms @
ME _ MB _
b M§ Tt 0 MS T2
MF _ MB _
¢ M5 % mMs 4
. ME _ 5 MB =2 , MB:S
© MS T MS2 MS1
2. The following geometric size ratios were examined: -R—If- =5,10,
R 2
for -R—l = 1,2, respectively.
2

3. The relative stiffness ratio of the bridge girder and the soil,
which is represented by the parameter € (Note: € is written
as EPS in these graphs), has been assumed to have the values
1, 2, 3, and 4.

4. The angle of incidence, 8 , of plane SH-waves has taken the
values equal to 0°, 457, 90°, 135° and 180° . (Note: In

the case of R.1 = R.2 , only 0°, 45°, and 90° have been shown

because of symmetry. )
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The figures have been arranged so that the influence of the angle

of incidence and the relative stiffness ratio can be studied for the

mass ratios and the geometric size ratios fixed in each figure. Each

of these figures consists of parts a, b, ¢, and d which correspond to

different values of €.

Some of the most important phenomena of the interaction of the

bridge and the soil through the two rigid abutment-foundation systems

and the dynamic characteristics of the bridge girder response are as

follows:

1.

As €~ 0, A~ A, (from Eq. 2.23). In that case, one has
a rigid structure composed of three elements (two foundations,
two abutments and a girder) all acting as a rigid body. Fig.
II-3-a illustrates this case for € small. When € increases,

the differences between Al and A, become more apparent.

2
One notes, however, that in all cases these amplitudes approach
the low frequency limit of lAl\ = lAZl = 2, which correéponds
to the displacement amplitude of the surface of the half-space
for incident SH-waves with unit amplitude.

The amplitude Al may become larger than AZ due to the
amplification effect caused by the scattering from the right
foundation. In the cases of €= 1.5 in Fig. II-3-d, for example,
or for € = 2.0 in Figs. Il -4-b and II-5-b, the peaks of a5y
are considerably larger than 2 for small dimensionless
frequencies.

In the case of 8 = 90° , when Rl = R2 s the two foundations

are in phase and have the same amplitude. These amplitudes
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become zero when the beam is excited at its odd fr‘equencies,

i. e., the symmetric mode-shapes. In that case

n=nn/€ , n=1,3,5..., (2. 25)

and the symmetric modes of the bridge are
Wn(x) = (si.n mrx)/L , n=1,3,5,... . (2.26)

Thus, when 8 = 90° and R =R, the symmetry of vibration
reduces mathematically to a single foundation problem [2, 3].
When incident waves have a frequency corresponding to a fixed
base frequency of this structure, the foundation(s) is(are) located
at a node of the standing wave pattern and the structure above and
the soil bélow are moving 180° out of phase.

The dip of the displacement amplitude curve Bys which occurs
for a shallow angle of incidence 6= 0° 45°, is displaced |
towards the lower values of the dimensionless frequency 7, as
the flexibility of the bridge increases {Figs. II-4 and II-7). If
one compares Figs. II-4 and II-6 and II-7 and 1I-9, one notes
that, for the same € and the same L/R‘Z » as the mass of the
bridge increases, the dip moves again towards low values of 7,
i. e., the frequency decreases.

This behavior cah be gualitatively explained by the simplified
model consisting of three masses and several springs (shown

in Fig. II-2-ii) where the spring constants kl. kZ’ and klz
depend upon the soil properties, while the spring constant k13
depends on the bridge stiffness. The displacements resulting

from simple excitation, shown in Fig. II-2-ii, can be deter-
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mined from the following matrix equation

2

~wTm, itk gtk K12 k13 Xy kg
2 _
'k12 - m2+k2+k13+k2 -k13 XZ =!0 s
2
_k13 -k13 - m3+2k13 X3 0
(2.27)
where X, , X2 and X3 are the displacement amplitudes of the
- 2 z2
three masses. X2 = 0 when klz(-w m3+2k13) + k13 =0 ,
i.e.,
k
g (242
13 klz
Wy = . {(2.28)

This frequency depends on the absolute stiffness of the hridge
kg and the ratio of stiffness of the bridge with respect to the

soil underneath it k,,/k - As the stiffness of the bridge k.,

13°712
or the stiffness ratio le/kIZ decrease, the frequency for
which the dip occurs decreases (e.g., Figs. II-4, II-6, II-7
and I1-92). This frequency also decreases when the mass of the
bridge increases. The above model is, of course, only a
simple one-dimensional analogue, while the problem under
consideration is a two-dimensional one involving propagation,
reflection and scattering of waves from the rigid foundations in
the soil and inside the beamn. Nevertheless, in spite of its one-
dimensional simplicity, the above model does alIowlone to

obtain an approximate physical understanding of a more com-

plicated wave propagation problem.
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4. In all cases which have been shown in the figures for the non-
vertical incidence of waves and when 1= an/€, n=1,2,3,...,
(3. e., when the frequency of the incident waves corresponds to
the natural frequencies of the girder ), one finds that
IA1| = 'AZI . As was mentioned before, Al = AZ for
n=13,5,... and Al = —-Az for a=2,4,6,...3 i.e., the
two end displacements are 180° out of phase. This observation
gives a better idea about the phase difference between the two
amplitudes By and Az , as shown,for example, in Fig. II-10.
In some cases, Al = AZ ~0 at n = nv/€, n=1,2,3,5, as in
Figs. II-5-b, II-7, 1I-8 and II-9-c for the second mode,

Fig. II-7-c for the first mode, and Fig. I1I-8-c for the third
mode.

5. The peak amplitudes of the displacements 8y and A, may be

2
relatively high in some cases (e. g., Figs. II-5 through II-9).
For the cases studied, these amplitudes are as much as four
times greater than they would be if the foundations did not
interact with the soil. These peaks occur at frequencies which
increase as the parameter € increases for a constant span.
Therefore, the more flexible the girder, the higher the frequency
at which the peak occurs. Increasing the span while holding €

constant decreases the frequencies of these peaks. This cor-

responds to increasing the rigidity of the bridge with respect to
L

e

that of the soil since €= —2
Bp B2
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When the mass of the foundations increases with respect to

that of the girder, the peak values of the Al and A, ampli-

2
tudes increase moderately. This additional increase results
from increasing the span, which also decreases the significance
of the interaction (e.g., Figs. II-5 and II-8).

When the mass of the girder increases with respect to that of

the foundation (e.g., Figs. II-6 and II-9), the peak amplitudes

of Al aad Az decrease appreciably. As the span increases,
this effect becomes less pronounced.

In general, as the span L increases, there is a greater degree

of fluctuation in both Al and AZ amplitudes. For constant L,

the fluctuations of a, and Az decrease as the angle of

incidence @ approaches 90°, since in that case the projected
wavelength on the horizontal surface X’; = )\s/cose becomes
infinite.

When the sizes of the two foundations differ, more complicated

interaction phenomena occur (Figs. II-11 and II-12):

a. When the incident wave first hits the larger foundation {the
left one), i.e., when 6= 0° or 45°, this foundation acts
as a shield for the right foundation. This shielding effect is
most evident in Figs. II-l1l-a,b and II-12-a, where the
smaller foundation moves with nearly the same displacement
as the larger one. The additional amplification effects
caused by the smaller foundation are negligible in all these

cases because of the massiveness of the larger foundation.



-70-

AONINOIWA SSINDISNIMIO
<

$-11 814

06

=3IINI0IONT 40 3TONY

ADNINO3IHS SSINOTSNIAIO ADN3N03WS SSIINOTSNIMIC AINI00IHA SSIWNCISNIMIC
4 Z z

f T f

S

=

o ( T T
2 o e
g 2 &
g 5 2
> Z 3 =
i 3
£ 2 P
g 5 5
R 08 =3N30IONI 40 IONW & 06 =30N30IONI 40 319N o8 06 =IWIIINI 40 IING
A0S SSIWOISNMIQ
° h g 2 1 0
A T
] = -2
%
3 5 3
,, 8 Sh =30N30IONT 40 319Ny g g

L

o]

=30NJ0IONT 40 379NY

2 2 -2
: g g
2 8 2
% w
H g g
2 z ex
2 X =} 3
R 0 =30N3AIINT J0 379NY X > & 0 =30N30IONI 40 379N8 o8 0 =30NA0IONI 40 319N8
~w = 5
h = §d43 [3 = s z = ed3 1 = 843
S =(SNI0HY/NGLS) S =(SNI0NY/NEAS ) S =(SNI0YY/NELS) S =(SNI0BY/NBJS)
C =SW/EH 2 =SW/EH Z =SH/EW Z =SH/BH
C =S/ 2 =SH/ N 2 =GR/ 2 =SW/ W
€2 INFWBIISI0 —————  (Z) INWIWISID —————— () INWIESI0 ————————  (2) INB3ISIO
QU NSO el CUYINMWESIE e CD INW3RESI0 e €1 INZWIIIASI0

51404dNS QI9IY S1H0ddNS 01914 S1¥0ddns 01914 S140ddNs G1olY

0

1
30N11768 INNIOY BTG

1
WL INBEN WSO

30N157MY  ININWSIO



[
—
I~

)

o

1

3 5§ h £ 2
0NLINME INWNIN IS0

L

8

ANIOWNS SSTHOISKMIO
Z

= ¥

06 =3JNIAINT 40 IINY

0

Z 1

£

S

[)
0011 INBHIWWSTO

8 L 9

Sh =20N30IONI 40 I9NY

G-11 *S1d4
ADNI0JML SSTMOISNMIA ANINDNI SSINOISNMID
L] € z 1 0 E I N 1 o
o T T e — t T
o 2
- 1%
| 4
3 3
w3 =3
06 =3IN3OIONI 30 FWONY & 06 =20NIAIONI 40 I1ONY 18 06 =IINIOIINI 40 30N
ANIONI SSTNGISNMIQ AININ04A SSTNOISNMID ANINOS SSTMNOISNMIO
€ 4 ! [ » € z 1 [
4 = T~ o
s ¥ VTS s
-8 "3
8 R
N 8
3 |
w5 5
Sh =30N30IINT 40 37ONY v %  Sh =3ON30TINI 40 J1ONO =5 Sh =3ON30IONT 40 319Nd
Je
ANIONS SSTWNOISHIMIO - ANINONS SSTMNOISNMIO
£ 2z 1 0 " € 13 1 [
= ] f o \3 ==
| s o
-8 "3
m |
i 3
w5 5
0 =3IN30IINI 40 31N ® 0 =30NIOIONI 40 TONY <8 0 =30NIOIINT 40 39N

no=
S =CSNIOBY/NGAS )
Z =CH/BH
T =GH/
(2) INMIWSIA
C1) INFHIIS IO

843

S1Y0ddnS 0191y

€ =

S =(SNI0LE/NIJS )
< =SH/BH

h =SH/ M

<T)> INFHINSID
(1) INWIWSI0

§d3

S1H04dNS dI91Y

z =
S =(SN108L/NEIS )
Z =GN/
h =GH/ M
(2> INMIWISIT
(1) INW3IW4S10

Sd3

S140ddNS 0I91Y

hoeg 2zt
300111 INMINVSI0

8 Lt 9 s

0 =30N30IONT 40 I19NY

T =

543
S =(SAI0KE/NEJS )
T =Sh/oM
h =S/
(2> INFWIWISI0
1) INMNIWGSIT

S140dd0S Q191

]

1
FONLIME INMWIOWREI0

z

JOMLIIWY INBNIY 6 10



AJNIN0FEA SSIMOJENMIO
2

r T T T °

|
Z 1

1
B
30NLITMY INIHIOBLSTO

06 =3DN30IONI 40 3TONY

A0S SSIMNDISNMIQ
<

9-11 814

ADNIND3HS S53TNOISHIAI0
(4

"

0B =20N30IONI 40 379NY

—

1

4

h €
300117dWY INTNIIWISCT0

S

9

ADNINOIHS SSIINDISHIAIO
[4

ADNFIO SSIINOTSNIMIQ
4

o

AININOIYS SSITNOISNIMIA
2z

T T T ° L T
2
g
o
g
2
~E
06 =3INIOTONI 40 ITONY & 06 =30N30IONI 40 3ONY

0

1
30NL(WY ININIILSTQ

AMNINOISS SSITNOTGNM I
z

<T) INWAWSTa
e 1) INIWIDYLSI0

S1404dNS 4191y

(2> INFWAPHSI0
mmmmmmmmem—emmaee (1) INIWIIBNESLO

S1H04dNS 0191Y

» £ t 7] £ 1 0
4 4 2
2 H H
2 =2 ]
Sh =3IN30IONI 40 3TONG m Gh =3JIN30IONI 40 I1INY sm Sh =3INIJIINI 4D 379NG m
w
AININO3YS SSIMNDISKIMID ADNINDIYS SSINDISNIMI0 e AON3ND3WS SSAINDISNIMIO
h £ 2z 1 0 € 4 1 z
9 (ErTTeeape—— T °
s T Nemmr T .// -] — ]
-2 em ¢
P 2 ES
.5 g g
0 =3IN30IONT J0 3N N m 0 =30N3AIINT 40 IINY E3=} 0 =33N30TINI 40 339Nd m
h = m.mu € = Sd43 Z = Sd3
S =(SNIABY/NYJS ) S =( SNI0Y/NYLS ) S =(SNIOBY/NBAS )
h =SW/aH h =CH/8H h =SH/GW
Z =SW/3H Z =SH/d 2 =SH/dH

(2) LNIWIIBILSIN
-- (1) IN3W3I4STO

S1HG4dNS Q191Y

Sh =30N3QIINT 40 I3T9NB

i
t
30AL13dMY INSNIISTO

0

[
1

J0NS17MY INZWIYESTO

=3IN3GIONT 40 379NY

1 = Sd3

S =(SNI0BY/NEAS )
h =SH/8W

Z =GH/ W

(2> IN3W3IZET4STO
R 1) AN3W3JUdS 0

S140ddNS 0191y



=30N30ION] 40 3TONY

ADN3NO343 SSIWOTSNMIO
Z

L-I1 314

[—= T

06 =3IN3AIINT 40 F19NY

2
2
5
g
H
S
[
=
R Sh =3IN30I3NT 40 J19NY
4
£
2
£
I
G =3ON3CIONT 40 3N H 0 =30N30IONI 4D 379Ny

h = 543

0l =(SNT0HY/NYLS)
C =SH/BH

C =SW/

(27 LNIWIIHLSIa
1) IN3W3IEISSI0

S1HO4dNS 0191y

£

€ = 843

01 =(SN108Y/NYIS)
Z =Sp/G

Z =CH/ M

2> INWIWIISTD
€1) INH3NS IO

S1HBddNS Q191

€

n
3ANLISNY INFHIIEWSTO

s

30NLI74HY INIWNIIYISSIT

30N117dME INBHIWIASIO

AININOIKS SSITNOISNIMIC
Z

T

06 =33N30IINT 40 310N

ANI0MI SSITNOISNIHID
Z

Sh =30NIGIONI 40 37989

h £ Z 1
30NLITdHY INZHIWISTO

s

JONLIISNE INFHIZY TS IO

0 =30N30IONI 40 379NY

k4 = 843

O =(SNJ0BY/NEdS)
2 =5H/GW

Z =GN/

(2> INWIHSI0
1) INIH3oETISIQ

S1HOJdNS 0101y

€

h
300111dHY LNIKIIYIIS IO

<

ADNINDIYS SSTNDISNMIC
z

o

T T

Q6 =3INICIINT 40 310Ny

AININOIHI SSINDISNIWIO
2

)

0

=30NIAIONT 40 379NY

1 = Sd3

01 =(SN10UY/NELS )
2 =SH/aW

T =SH/4W

(2> INM3PSIO
1) IN3W328748 L0

S1H04dNS 0191y

i

Z

0NL11dWE INIWITYIS1D

1

=
J0NLITMY ININIDBS IO

€

30011798y AN S0



ANIN0WS SSIWDISHNIMIT
2

o

T T °

!
1

L
€

2
3ONLITNE INTWIDESIC

06 =3INICIONI 40 319NY

AININOIIF SSIWOISNINID
Z

g-11 *81d

ANNONS SSTINOISNIMIQ
2

o

AIN3NOHA SSIINOTSNIWIO
£ 4 1 0

2 1
J0NLIGNE INIHIOYTST

£

h

06 =3IN30TINT 40 379NY

AONIMU3YA SSIINDISNIMIO
2

Z 1

€
300U Md4H NN IS I

ol

>

=30N301ONT 40 379NY

)

h £ 1 0 ° o -
<3 s
-8 m -
_ g -3 .
<t 2 = L e
F(_ Sh =30N30TONT 40 3719NY m Sh =3DN30I0NT 40 379NY ~g Sh =3IN3QIaNT 40 319NY N
- @ Je
ANINOIYI SSIMNQISNIMI0 - AN SSITNOISNIKIC ADNINDYS SSINOTSNIMTO
h £ Z 1 £ 2 1 0 ° o
I S\ <% S Y e .
2 —-q -
- M 5
" ot
3 2 )
sm 0 =30N30IONT 40 379N “& 0 =33N30IDNI 40 379NY

0 =30N30IINT 48 319NY

hoo=
01 =CSNTOHY/NIIS )
2 =SH/BH
h =S/
(2> INFW0EISIT
(1) IN3WIIETESID

Sd3

S140ddns 0101d

§d3
D1 =(SNI08Y/NE4S)
2 =GH/8H
h =SW/ W
(2> INFWIoESIQ
C1) INWIDYTHSIa

g =

S1¥04dNS 0191y

z =

Sd3
01 =¢SNI0YY/NLIS )
2 =Sh/aW
h =GH/ 44
(2> INIWIOHT4SI0
{1 INWESS 1O

S1¥0ddns 01214

30ALIENY ININIOWIS I

30ALI1NY ININIOHTISIO

ADNINDIYI SSIMNOISHIHID
Z

06 =3INI0IINI 40 319NY

ADNINO3YA SSIMNOISNINIA
2

G =30N30IONI 40 3BNY

o= sd3

01 =CSNIQLY/NYdS )
Z =SH/aH

h =SH/ W

(2) INNDSIa
Q1> IN3WIOHIdS IO

S1H04dNS 0191d

o

1

[4
J0NLIVGWY INSW3IHISTO

30NLISNY INIHIIELSTO

300LT7aWY INIHIY IO



A0S SSTNOISNHMID
Z

ANINO3YS SSTWOISNIMIT
2z

LIS SSINOISHIMID
e

)

" 3 1 5 ! o " B
T T T e { @ T i = T
e ~e -
R ~ g
e w8 -3
H -2 2
L . 3
06 =3ONZOIONI 40 IONY <=8 06 =2ONIOIONT 0 TV LB 06 =30MI0IONI 40 310M § 05 =3INICINI 40 FoNg
AHIOMS SSTROISNMIO ANIIOMS SSTROLSHMIO ANINOH SSTNILSNMIO R ——
" 3 z ' 0 3 3 | 0 13 z : o " ¢ P
r T e
2 -2 g
& o3 b
2 wh 8
' \ s
10 i 5ol i
5 Mg 5
7_ Sh =30NIQIONI 40 31ONY & Ssh =30MIAIONT 40 oMY H_Lm Sh =30NI0IONT 40 3I9NG g =30N301 N1
® AN SSTROISNMIO -
3 z i ¢ »
2 -2 2
3 ~g k]
-3 3 g
0 =3ON30IONI 40 T19NE “8 0 =3N30IONI 40 TN HUE 0 =30N3010NT 40 oM 8 O =IONIDINI 40 FIONg
Jo . Jeo w
th = Sd3 € = G&43 Z = sd3
01 =(SNIABY/NBdS ) 01 =(SNJOBY/NYIS ) 0@ =(SOTOBY/NELS)
h =SH/GH h =SW/gW h =Gh/BW
2 =SW/3H 2 =SW/ M 2 =S/
(2> IN3WIIBTSIO (2 INFWIMSIO (2} INWIWILL[D
C1y INWIESIE e ———- C1) LNIN3DHILSED CLY INW3®WSIe .

S1HOddNS QI91Y

S1HO4dNS QoI

SL¥0ddNs QIoly

1=

843
OF =(SNT0BY/NY4S )
h =CU/an
& =SH/
(2> INWIMWIS IO
C1y AN 10

$1¥0ddns a191y

0

1 1
IAOL1 VM NSO

3002 119My INIIIHWSIG

1

30NLIMY INFHIW1IEI0



76 -

(a)

4.0

| %
| K
i m AN%
; | o Aw&
4 ] %,
R t S
1 ﬁ__ 3
| N 2
“ i | = ¢
N
B
Y I
1 BN
! N R A g
N /] \__ —
I H ﬁ“
i ] !
) A G
i | L
i ; e H.Bw&. %.i.i AY,

RIGID SUPPORTS

=80

ANGLE OF INCIDENCE

2
2

MF /MS:
MB/M3:

= 5

CSPAN/RADIUS >

EPS

oc

8!

81 hl & 01 8 9 n
F0NLITdWY LN3W3TESIO

DIMENSIONLESS DISTANCE X/L

RIGID SUPFORTS

ANGLE @F INCIDENCE=YS

2

MB/MS= 2

WF /HS:

(SPAN/RADIUS = S

EP3

b)

4.0

DIMENSIONLESS DISTANCE X/L

oz 81

8

I nl 2 0
JONLITdHY L

L 8 8 b
NIW32ETJE 0

Fig. II-10



-T7=

The shielding effect decreases with an increase of the

following parameters:

(1) the flexibility of the girder

(2) the span (Fig. I1I-11)

(3) the angle of incidence 0

(4) the ratio RZ/RI for the same span (Figs. II-11 and
II -12).

When the incident wave first hits the smaller foundation

(the right one), i.e., when 8= 135° or 180°, the left

foundation acts as a barrier which reflects significant

wave energy back towards the small foundation while the

shielding effect provided by the right foundation is

negligible (Figs. II-11-b and II-12-b). The overall

amplitudes of &y and Az are influenced by:

(1) the flexibility of the girder; *

(2) the span and the size of the foundations; and

(3) the angle of incidence 8 .

The peak value of the displacement amplitudes Al and Az

increases with the increase of flexibility of the super-

structure and the increase of ratio R, /R.2 (Figs. II -11-b

and II-1Z2-a,b,c).

For both vertical and nonvertical incideant waves, small

amplitudes of ]All and |A occur at M = an/€ ,

2|
R/Ry,#1 , n=1,3,5... as shown it Figs. I[-11 and

II.12. Since R, # R, ; the bridge system is not symmetric
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now and, in general, one does not expect to find that

] _om R
IAII IAZI for all 6 and 7 z R,
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II.6. Response of the Bridge

From the Earthquake Engineering and Structural Dynamics
point of view, one of the more important problems is to find which
are the critical sections of a structure and to estimate where the
maximum displacements or the maximum stresses may occur. With
this in mind, and to illustrate the effects of soil-bridge interaction on
the girder of the single~span bridge studied in this analysis,
the response of the midpoint and the two quarter points (x/L = 0. 25,
0. 75); have been examined in some detail as shown in the three-
dimensional Fig. I -10.

Using Eq. 2.14 for x = L/2, the displacement amplitude

| w(L/2,t)| is calculated at the midpoint of the span as:
' k L k, L
W(%’t) = [cos( g ) - cot(kbL) sin(—%—):}A1+

%)
+| cosec (kbL.) sin|—5— Az s

which reduces to

-

(2| -] S ee(5E)]

When interaction is neglected, both &, and a, would become 1, and

[w(L/Z, t)[ would become infinite at the natural frequencies of the
shgar beam, i.e., at kbL =nm n=1,3,5... (since there is con-
tribution only from the symmetric rhodes for the midpoint). However,
if interaction is not neglected by using the results from the above

analysis the following can be said about the beam response:
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1. When A, =4A,=0 at Tl=mr/€;n:1,3,5,...;R1=Rz;

1 2
i.e., in the case of vertical SH-waves where 8= 90°, the
response given by Eq. 2.29 remains finite and is characterized
by relatively small peaks, as shown for example, in Fig.

II -13. It can also be seen in this figure that when 67 90°

the peaks, in general, are much larger and the effect of

small A, and /.\2 is less pronounced.

1

2. When Al and AZ

n=1,3,5,..., andin the case of non-vertically incident SH-

have considerable amplitudes at 7= aw/€,

waves, the amplitude of the beam response is large at 7= nn/€,
i.e., at the fundamental resonant frequencies of the beam. It
should be noted that the sharp peaks in Fig. II-13 have been
plotted only up to the am‘plitude equal to 40 to preserve the
detail and resolution of the neighboring smaller amplitudes.
Other important characteristics of the results which can be
shown in figures similar to Fig. II-13 can be summarized as follows:
In general, the peak values of { w{L/2, t)l increase with €, when
6= 90°, i.e., for higher flexibility of ﬁhe structure with respect to
that of the soil and for the MB/MS fixed. The peak response
amplitudes decrease for the higher modes and for the same €.
Increasing the foundation mass [larger (MF/MS)] leads to more
effective coupling of the bridge to the soil and thus less radiative
damping, while increasing the mass of the girder | larger (MB/MS)]
leads to higher radiative da.mpingﬁwhen L is constant. The increase
d__L

of span L for a fixed value of (—-— =

B ER ) »  which is equivalent to
8 2
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increasing the rigidity of the girder with respect to that of the soil,

algso leads to more radiative damping.
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i1 -7. Conclusions

A key step in the evaluation of the soil-structure interaction
effects on the earthquake response of a structure is in the computation
of the force-displacement relationships for the foundation. Several
such relationships [2, 5, 8, 9], expressed in terms of impedance or
compliance functions, are available in the literature.

Having obtained the impedance function for particular two-
dimensional abutment conditions, tepresented by rigid foundations
with semicircular cross sections, and having defined the input motion
in terms of plane SH-waves, the calculation of the response of bridge
girder depends on the stiffness, mass and damping characteristics
of the bridge relative to that of the soil. For some input frequencies
the amplitude of the foundation response has been found to be signifi-
cantly larger than the free field surface displacement amplitude which
could be obtained for the same excitation in the absence of a bridge or
its abutments.

The excitation of different modes of vibration of the two-
dimensional bridge girder is related to the nature of the foundation
movement for different angles of incident SH-waves and, iﬁ particular,
depends on the relative phase of motion for two bridge abutments.
When two abutments move in phase, there is a tendency to excite
symmetric modes of girder vibration; while when they are moving
out of phase, the antisymmetric modes are excited more effectively.
The simplest type of two-dimensional soil-bridge interaction
occurs for the vertical incidence of SH-waves and for the symmetric

bridge and its abutments. In that case, for the frequencies that
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correspond to the symmetric modes of girder vibration, the two
abutments do not move and the efficiéncy of radiation damping,
which results from the wave scattering from the two foundations,

is maximum. In all other cases, when the angle of incident waves
is not vertical, or when the bridge girder is not symmetric and/or
when the abutments are different, this simplicity is lost and the
efficiency of radiative damping is significantly reduced. In general,
‘when the angle of incident SH-waves is not vertical, large response
of the bridge is obtained at the fixed base natural frequencies of the
bridge.

When the bridge and its abutments are symmetric, the torsional
motion of the whole bridge does not seem to be excited appreciably,
at least not for the mass ratios and the geometries studied in this
analysis. However, this tendency is completely reversed when the
bridge abutments are not the same (i.e., R; # R, and/or
MS1 # MS2). Noansymmetry of mass distributions enhances the
overall torsional response, especially for horizontally incident
SH-waves. Other related phenomena, such as shielding, amplifica-
tion by the wave scattered from the other foundation, and the
influence of the standing wave pattern on the excitation of two bridge
abutments, are all accentuated and made more complex by the non-

symmetry of the two abutments.
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