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ABSTRACT 

A practicable and sufficiently accurate stiffness matrix method 

for estimating the contribution of a floor system to the overall elastic 
stiffness of moment-resisting space frames is developed. The floor 

system considered consisted of a two-way reinforced concrete slab sup
ported on beams between columns. This stiffness matrix method is achieved 
by performing extensive parametric finite element analyses to identify 
the main parameters affecting and, therefore, controlling the stiffness 

of individual floor panels of the floor system. The stiffness of a two
way slab floor panel has been investigated by establishing an 8 x 8 panel 

stiffness matrix based on two rotational degrees of freedom (DOF) at each 
panel support. Stiffness matrix elements are determined by computing 

the moments necessary to produce a unit rotation at one support OOF 
while restraining the other seven OOF in the panel. Existing finite 
element computer programs are used in these computations. A series of 
rectangular finite elements models the bendin1 and membrane stress-strain 
relations of the floor slab. The beams are modeled as uniaxial 9 prismatic 
members, connected by rigid links to the slab finite element nodes along 
the beam's centerline. Analytical tests confirm this method's accuracy 

in estimating the beam-slab composite action in flexible floors. 

Floor panels are classified in different categories according to 
their location in the floor system. To identify the principal parameters 
controlling the stiffness of these different types of floor panels, a 
total of 122 two-way slab floor panels, including 70 single panels, 14 

corner panels, 28 interior panels and 1 exterior p~nel, are analyzed. 
The range of parameters included in the investigation encompasses most 
of the two-way reinforced concrete floors to be encountered in practice. 

The stiffness matrix method, which is based on the results of 

parametric studies, estimates the elastic rotational stiffness of a 
floor as that of equivalent, uniaxial members between ~djacent column 
floor supports. This method does not identify a physical cross section 
for the equivalent members; rather, it establishes a prrcedure by 

which the position of the neutral axis of the member in relation to 



the top of the slab and the member stiffness matrix is computed directly 

from a set of graphs. Each equivalent member has a 3 x 3 stiffness 
matrix based on one torsional and two flexural OOF. 

The accuracy and practicability of~he stiffness matrix method as 
well as of those methods currently in use, such as the ACI 318-71 
equivalent frame method and an effective slab width method for predicting 

the lateral stiffness of moment-resisting space frames, are evaluated by 
applying all these methods to 27 single-story, single-panel structures 
and 1 single-story, mUlti-panel structure. The results are compared 
with those from analyses using a finite element method. These methods, 
with the exception of the finite element method, are also used to pre
dict the dynamic response of two multistory buildings. The results 
obtained raise serious questions as to the accuracy of equivalent frame 
and effective slab width methods for such predictions. The developed 
stiffness matrix method is found to be not only sufficiently accurate, 
but also simple and economical to use in practice because it can be 
applied directly in existing frame analysis computer programs or in 
manual calculations using techniques such as ~oment distribution. A 
number of recommendations for improving the method developed herein as 
well as for extending it to other reinforced concrete floor systems are 
also suggested. 

i i 
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1. INTRODUCTION 

1.1 Statement of Problem 

Improvement of currently available earthquake response analysis 
capabilities and construction techniques assumes added urgency as more 
tall buildings, nuclear facilities, and other critical structures are 
being built in seismically-active regions. Such structures are required 
to have sufficient lateral stiffness and strength to avoid structural 
damage during minor and moderate earthquake shaking and to avoid 
structural collapse during severe earthquake ground motions. A rational 
seismic design must include a realistic estimate of the magnitude and 
character of the seismic forces that the structure might experience, 
and of the structure-soil interaction in order to be able to formulate 
a practical analytical model of the building-soil system. 

Reinforced concrete buildings employing a moment-resisting frame 
usually have floor slabs that are cast monolithically with the beams or 
joists. Such slabs become an integral part of the moment-resisting 
frame. The most commonly used floor systems in reinforced concrete 
buildings are flat slabs and two-way slabs. 

A flat slab floor system consists of a flat slab reinforced for 
flexure in more than one direction, with or without drop panels and 
column capitals. The flat ceiling surface and economy in the formworks 
make such floors especially attractive to architects and builders. 
However, there are problems with shear transfer between the floor slab 
and columns (even when drop panels and column capitals are used). These 
floors have fared poorly during recent severe earthquakes. In some 
cases, brittle shear failures at the floor supports have occurred, as 
in the Olive View Medical Center during the 1971 San Fernando Earthquake 
[lJ, and in other cases, the flexibility of this type of floor has been 
attributed as the cause of excessive nonstructural damage. These prob
lems have prompted an increasing number of experts to recommend limita
tions on the use of flat slab floors. The 1973 Uniform Building Code 

[2J and the 1971 ACI Building Code [3J have both adopted provisions 
that limit the slab width through which moments can be transferred from 
the floor system to the columns. The provisions of the 1973 code 
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recommended by the Structural Engineers Association of California [4J 
are much more explicit as the commentary on section 2630-d.l states: 

This provision limits the use of flat slab (plate) 
floor framing with a wide portion of the slab or 
even the entire column strip being considered as 
the framing member. Transfer of moments in struc
tures such as these may involve relatively high 
shear and torsional stresses which should in 
general be avoided since these do not exhibit 
ductile characteristics. 

Two-way slab floor systems consist of a slab reinforced for 
flexure in more than one direction and supported on beams spanning the 
columns. This type of floor has been found to be very suitable for 
construction in seismic regions. The beams, with proper web reinforce
ment, relieve the problem of shear transfer between the floor and 
columns, which minimizes the probability of shear failures around the 
columns and ensures more ductile behavior during an earthquake. The 
beams also contribute considerably to the lateral stiffness of the build
ing as well as help limit the amount of cracking in the slab, thus re
ducing earthquake-related damage to the floor. The slab contributes to 
the rotational stiffness and strength of the beams, and also acts as a 
rigid diaphragm in its own plane which ties the planar building frames 
together and helps distribute the lateral loads among them. These 
favorable characteristics of two-way slab floor systems have increased 
the incidence of their use in buildings in seismically-active regions. 

The overall lateral stiffness of moment-resisting frame buildings 
is primarily governed by the lateral and rotational stiffness of the 
columns, and the rotational stiffness of the floor system at the supports 
(Fig. 1.1). The degree to which the floor restrains the column rotations 
at the floor levels has a considerable influence on the overall lateral 
stiffness of a building. This influence becomes clear considering that 
the lateral stiffness of a column fixed at both ends is four times greater 
than that of a cantilever column, and hence it is usually more efficient 
to increase a building's lateral stiffness by increasing the stiffness 
of the floor rather than that of the columns. 

In buildings where the floor slab is poured monolithically with 
beams or joists, studies have shown [5,6] that the lateral stiffness of 
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moment-resisting frames, which is an essential parameter in determining 
the dynamic response of the structure, is very sensitive to the assumed 
participation of the floor slab. Hence an accurate estimation of a 
building's response to dynamic loading requires accurate analytical 
models for the contribution of the floor slab to the lateral stiffness 
of the structure. 

In the direct stiffness method, the overall building stiffness 
matrix can be assembled by appropriately adding the individual column 
and floor stiffness matrices. Currently. there are accurate and effi
cient formulations for the elastic and inelastic stiffness matrices of 
prismatic members [6J which can be used for the individual column stiff
ness matrix. If, as ;s usual. the slab is assumed rigid in its own plane, 
thus neglecting the influence of axial strains and in-plane rotations, 
and if the floor contribution to the overall building stiffness due to 
the uneven settlement of supports (column shortening) is also neglected, 
then the stiffness matrix of the floor can be defined by two rotational 
degrees of freedom at each support, as is shown in Fig. 1,2. Notice 
that due to the two-way action and continuity of the floor slab, all 
these floor degrees of freedom are coupled. As the floor moves into 
the inelastic range, the stiffness matrix at any loading interval will 
depend on the pattern and extent of cracking and yield lines in the floor 
slab. 

1,2 Current Floor Stiffness Mode1s 

Despite the critical need for analytical models of these different 
floor types very few are available, Furthermore, most of the available 
research, both theoretical and experimental, concerns flat slabs. This 
is partially due to the complexity of analyzing floors which combine 
the composite action of slabs and beams. 

Ideally, an analytical floor model must accurately represent the 
steel-concrete composite action, the composite beam-slab action, and 
the slab continuity and its capacity to distribute stresses in more than 
one direction. The finite element method comes closest to fulfilling 
these criteria. Some of the available finite elements have great versa
tility in modeling complex states of stress and strain, and the elasto-
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plastic material properties of the slab, and some can even handle the com
posite action of the concrete and reinforcing steel. Finite element models 

are the most accurate models available, provided a fine enough mesh is 

used. However, even a coarse mesh increases the degrees of freedom in 

the model to such an extent that the cost of a dynamic analysis is pro

hibitive for tall buildings. 

At present this problem is handled by modeling the two-dimensional 

floor system with prismatic equivalent beams between the supports. Two 

such currently used models are the Equivalent Frame Method and the 

Effective Slab Width Method. 

The ACI 318-71 Code [3J recommends the Equivalent Frame Method for 
analyzing buildings with floors consisting of slabs reinforced for flex

ure in more than one direction with or without beams between supports. 

The equivalent frame method is based on studies conducted at the Univer

sity of Illinois [7,8,9J and was to provide a better representation than 
other available models of the torsional and flexural rotations of the 

slab as well as the influence of the column size. This method models a 

structure as two-dimensional equivalent frames on column lines taken 

longitudinally and transversely through the building which are then 
analyzed for loads, vertical or horizontal. acting in the plane of the 

frames. These frames (Fig. 1.3) consist of slab-beam strips bounded 

laterally by the centerline of the panel on each side of the column line. 

The moment of inertia of the slab-beam strip is based on the gross cross 
section of the slab and beam except at the ends where this moment of iner

tia is increased [Fig. 1.3(b)J to account for the additional stiffness 
introduced by the column [10]. 

According to the ACI 318-71 Code [3J the equivalent columns (Fig. 1.4) 

are assumed to consist of the actual column above and below the slab-beam 

plus an attached torsional member transverse to the direction in which 
moments are being determined, and extending to the bounding lateral panel 

centerlines on each side of the column. The column is assumed to be rigid 

from the top to the bottom of the slab-beam at the joint. The flexibility 

of the equivalent column ;s defined as the sum of the flexibility of the 

columns above and below the floor and the flexibility of the torsional 
member. 
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Several assumptions are made in defining the way that the column 
and the torsional beam interact to produce the stiffness (inverse of 
flexibility) of the equivalent column. This is illustrated in the 
simplified physical model of Figs. '.4 and 1.5 [10J. 

which represents a Column AB. extending above and below 
the slab, with a portion of the slab CD attached thereto. 
A moment M applied along CD will cause a torsional rota
tion of the Icross beam' CD as well as a flexural rota
tion of column AB. Thus the rotational restraint on the 
slab-beam which spans in a direction perpendicular to 
AS and CD, depends on both the torsional rotation of 
CD and the flexural rotation of AB. 

The overall flexibility l/Kec of the equivalent column is assumed to 
be the sum of the column flexibility l/LKc and the torsional flexibili
ty of the "beam" l/Kt . The stiffness Kc is based on the length of the 
column from centerline to centerline of slab and including the area of 
infinite moment of inertia from top to bottom of the slab-beam. The 
torsional stiffness Kt of the "beam" is based on several simplifying 
assumptions. These include the definition of an "equivalent torsional 
beam," and a linear moment distribution along the torsional beam which 
is assumed to vary from a maximum at the column to zero at the middle 
of the panel. Figure 1.5 shows the assumed linear distribution of the 
twisting moment applied along the column centerline, the resulting 
twisting moment diagram of the "torsional beam," and the resulting 

unit rotation diagram. Notice also that torsional rotation is assumed 
to be absent in the beam over the width of the support. The development 
of the expressions to calculate Kt , the assumptions on which they are 
based, and the justification for their use are discussed in references 
7,8, and 9. 

Notice that the method does not explicitly state the level at 
which the slab-beam joins the column. However, the code's commentary 
[10J implicitly places the joint at the mid-plane of the slab when it 

defines the column height as being llfrom middepth of slab above to 
middepth of slab below. 1I 

As seen from the above discussion the model defined by this 
method is very complicated and its use in an analysis is by no means 
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simple. The method lends itself, though with some difficulty, to a 

moment distribution type of analysis, but it cannot be directly used 
with most existing computer programs. Such programs usually assign a 
column stiffness matrix based on prismatic beam theory. However, due 
to the rigid sections assumed at the top and bottom of the columns, the 
torsional beam that ;s attached to the column (Fig. 1.4) only changes 
the rotational stiffness K [Fig. 1.3{c)J to a value of K but does c ec 
not influence the terms associated with the lateral stiffness Klc 
[Fig. 1.3{c)J or the off-diagonal terms of the column stiffness matrix. 
Hence, most frame analysis computer programs must be modified such 
that only the diagonal terms of the column stiffness matrix associated 
with the rotational degrees of freedom at the two column ends will be 
modified from K to K c ec 

It should also be noted that this method was developed on the 
basis of experiments on the behavior of flat slabs under gravity loads. 
The method was then generalized to apply to all floor systems employing 
two-way slabs under gravity and lateral loads. This generalization has 
not been tested and its applicability is yet to be proven. 

The widely-used Effective Slab Width Method models a structure as 
a series of plane frames where the floor system is considered as uni
axial, prismatic equivalent beams· between supports. The equivalent 
beams are defined as the floor beams or joists plus an effective slab 
width. Several effective slab width ratios have been suggested [llJ, 
ranging from 0.50 of the half panel width on each side of the column 
line to values greater than unity. There are some studies of flat 

slabs [12, 13J, and others on composite slab-beam floors [14, 15, 16J, 
but most of these deal with defining an effective slab width for de
signing floors with sufficient strength to carry static gravity loads 
rather than for defining the contribution of the floor to the lateral 
stiffness of a moment-resisting frame. 

Often the effective slab width in floors with a two-way slab sup
ported on beams between supports is assumed to be equal to that defined 
for strength design by the ACI 318-71 Code [3J, sections 8.7.2 and 
8.7.4a, which state: 
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8.7.2 - The effective flange width to be used in 
the design of symmetrical T-beams shall not exceed 
one-fourth of the span length of the beam, and its 
overhanging width on either side of the web shall 
not exceed eight times the thickness of the slab 
nor one-half the clear distance to the next beam. 

8.8.4a - For beams having a flange on one side 
only. the effective overhaning flange width shall 
not exceed 1/12 of the span length of the beam. 
nor six times the thickness of the slab, nor one
half the clear distance to the next beam. 

As noted in the 1963 edition of the UBC [17J. these requirements are the 

same as in the 1928 code. The limitations on the flange width are 
empirical but were originally determined by experimental studies of 

T-beams. The provisions are intended to reflect the fact that shearing 

deformations relieve the sections of flange farthest from the web of 

some of the normal stresses due to flexural moments. This relieving 
limits the flange width that can be considered to participate with the 

web in resisting the applied flexural moments. 

The code is very clear that these flange widths are intended for 
use in the strength design of T- and L-shaped beams. However~ due to 
the complexity of the equivalent frame analysis and the lack of better 

alternatives, some analysts extend the application of this code pro
vision to estimate the stiffness of two-way slab floors. An effective 

slab width equal to the maximum allowable flange width is used along 
with the beams to represent the composite action of the floor system. 
Thus. a two-way slab floor is modeled as a series of interior T-beams 

and edge L-beams. 

This and other effective slab widths used are as much a product 

of tradition as of results of studies on design requirements for floor 

strength under gravity loads. This ~ethod greatly simplifies the 
analysis but is open to serious questions as to its underlying assump

tions and to its accuracy in predicting building responses. 
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1.3 Objectives of Investigation 

Section 1.1 discusses the importance of formulating accurate 
analytical models for floor systems to estimate adequately the dynamic 
response of moment-resisting frame structures. Section 1.2 further ela
borates that currently available models either require prohibitive com
putational effort, such as the finite element model, or else are of 
questionable applicability and accuracy. This investigation was intended 
to study the stiffness of floors consisting of two-way slabs supported 
on beams between columns (Fig. 1.6) with the following specific objec
tives: 

1. The methodoloaY should be general enough to cover the vast 
majority of such floors encountered by engineers in practice. 

2. To identify and study all the floor structural parameters that 
have a primary influence on the stiffness. 

3. To develop an accurate and practicable stiffness model based 
on the results of this investigation which would also be suitable for 
use by practicing engineers. 

4. To assess the accuracy of this model and other currently 
available models in estimating the lateral stiffness of moment-resisting 
frames. This would be accomplished by comparing the results from using 
the different models with those from a finite element analysis which 
is considered to be the most accurate analytical tool available for such 
studies. 

1.4 Scope of the Investigation 

The investigation considered the above objectives with the following 
limitations: 

1. Only the initial elastic stiffness of two-way slab floors was 
considered. 

2. All floors studied were considered to consist of rectangular 
panels, with a slab of uniform thickness and cast monolithically with the 
beams of an homogeneous, isotropic. and linear-elastic material. 
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3. In defining the floor stiffness, only two rotational degrees 
of freedom are considered at each support (Fig. 1.2), This is based 
on the assumption that the slab is rigid in its own plane and hence 
the contribution of in-plane bending and axial strains in the slab can 
be neglected, as well as the assumption that the slab1s contribution to 
the building stiffness due to uneven settlement of the supports (column 
shortening) can also be neglected. 

4. The floor is assumed to have point supports which neglects 
the increased stiffness of the floor across the width of the column. 
The corners of the two-way slab floor panels investigated herein are 
fairly stiff due to the intersection of the two orthogonal floor beams. 
Hence the influence of the column in increasing the rotational stiffness 
of the floor will not be as significant as in the case of flat slabs. 
However. this assumption might not be justified in buildings with very 
short spans and wide columns. 
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2. ELASTIC PARTIAL COMPOSITE ACTION IN A TWO-WAY SLAB FLOOR SYSTEM 

2.1 Introduction 

Floors consisting of a two-way slab supported on beams between the 
columns are usually cast monolithically, hence, the slab and the beams 
resist the applied loads as a single unit which is generally referred 
to as Ilcomposite action ll [14J. IIFull composite action ll between the 

slab and the beams takes place when there is an eccentricity between 
the beam neutral axis and the slab neutral surface and then both verti
cal and horizontal shears are transmitted between the edges of the slab 
and beams. IIPartial composite action ll is a special case and occurs when 
the beam and slab neutral surfaces coincide (Fig. 2.1) and only vertical 
shears are transmitted between the beams and the slab. This greatly 
simplifies the analysis especially since membrane forces in the slab 
can be neglected. 

This chapter deals with the elastic stiffness of a single-panel 
two-way slab floor with partial composite action, i.e., the beams are 
cast symmetrically above and below the slab neutral surface. Using a 
single-panel floor further simplifies the analysis as it avoids the 
problem of modeling the continuity conditions at the panel edges. 

2.2 Parameters Affecting Stiffness of a Two-Way Floor System 

It is clear that many different parameters can affect the stiffness 
of a two-way floor system, and that some of them have a greater influence 
than others. It is necessary in an investigation such as this to identi
fy those parameters that have a primary effect and to limit the investi
gation to them. Given that this investigation is restricted to the ini
tial elastic rotational stiffness (to first cracking of the floor system), 
the following parameters are identified as the primary ones to be studied: 

1. Slab Thickness-to-Span Ratio (d s/L 1). - Thickness and span are 

certainly primary parameters in determining the stiffness of the slab: 
A thick slab will be stiffer than a thin one. Also, the larger the span 

the more flexible will be the slab. 
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2. Lenqth-to-Width Ratio of Slab (L,/L2). - A slab reinforced for 

flexure in two directions carries the load~ in the small deflection 
elastic range~ mainly by internal flexure and torsion in two directions 
(Fig. 2.2). To visualize the performance of such a slab, it is con
venient to think of it as consisting of two intersecting sets of parallel 
strips [Fig. 2.2(a)J. Each strip carries part of an applied load by a 
combination of flexural and torsional moments. These sets of internal 
stresses are necessary to maintain strain compatibility within the slab. 
The stiffnesses of the strips are inversely proportional to their spans 
(L, and L2), so that when one span is shortened, the strips in that 
direction become stiffer in both flexure and torsion and carry a higher 
proportion of the applied load. Thus the ratio L,/L2 has an important 

and direct bearing on the distribution of stresses within a floor slab 
and in the latter's overall contribution to the stiffness of the entire 
floor system. 

The ratio L,/L2 is also a factor in determining the relative stiff
nesses of the flexural and torsional beams. This is important inasmuch 
as these beams determine the boundary conditions along the edges of the 
slab and thus influence the overall floor stiffness. 

3. Flexural and Torsional Stiffnesses of Edge Beams (kF and kT). -

Since a two-way slab floor system consists of a floor slab and a set of 
beams (Fig. 2.1). the stiffness and strength of the floor can be con
sidered to be made up of the contribution of the slab plus that of the 
beams. A moment applied to a column (Fig. 2.3) will primarily cause 
bending in one set of beams and twisting in the orthogonal set of beams. 
The contribution of the beams to resisting the applied moment depends 
on the flexural and torsional stiffnesses of the beams which are deter
mined by material properties, cross-sectional geometry, and span length. 
The stiffnesses are usually defined as: 

(2.1) 
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and 
GJS k =-

T L {2.2} 

The relative slab-beam stiffness in a floor system (i.e., ds vs. 
kF and kT) has an important bearing on the behavior of the floor. It 
is clear that if a set of very stiff beams is covered by a thin slab, 

the overall stiffness and strength of the floor will consist mainly of 
the beam's contribution. On the other hand, a set of flexible beams 
supporting a very thick slab will have very little to contribute. and 

the floor will essentially act as a flat slab. 

Another important aspect of the beam stiffnesses is the ratio of 
kF of the flexural beam (AB in Fig. 2.3) to kT of the cross beam (CD in 
Fig. 2.3). If the flexural stiffness of beam AS is very large compared 
to the torsional stiffness of beam CD, then the applied moment will be re
sisted primarily by flexure in beam AS which will in turn transmit the 
moments to the slab along its length. If the opposite were true, then 
the applied moment will be resisted primarily by twisting in beam CD. 

The ratio of the two stiffnesses kF/kr has an important influence 
on the distribution of stresses in the slab since the beams have a major 
bearing on the degree of slab restraint at the edges (i.e., the boundary 
conditions of slab along orthogonal edges). 

2.3 Method of Analysis and Computer Program Used 

The contribution of a single-panel floor system to the lateral 
stiffness of a moment-resisting frame, as defined by the objectives 
and scope of this investigation (sections 1.3 and 1.4), is sufficiently 
defined by considering eight rotational degrees of freedom at the sup
ports (Fig. 2.1). The direct method to establish the panel stiffness 

matrix is to determine the terms of each row by applying a unit rotation 
at the appropriate degree of freedom while restraining the other seven. 
The external moment to produce the unit rotation gives the diagonal term 

K;; while the support moments give the rest of the terms of a row of the 
stiffness matrix. 
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This part of the investigation was conducted using the finite
element program PLATE [19J. The program analyzes bending in thin and 
moderately thick plates using linear curvature compatible triangular 
finite elements, which have a cubic transverse displacement expansion 
with piecewise-continuous second derivatives. The program also has a 
beam element so that it admits beams embedded in the plane of the slab. 

The program PLATE refers the slab to a global right-handed Cartesian 
system x-y-z, with the x-y coordinates in the undeformed midsurface. 
The basic slab mesh unit used is the Q-19 quadrilateral [20J which is 
assembled with four LCCT-ll triangles [Fig. 2.4(a)]. Each has eleven 
bending degrees of freedom and five nodal points. The seven internal 
bending degrees of freedom are eliminated by a static condensation pro
cess. The program also contains a triangular mesh element [Fig. 2.4(b)], 
the LCCT-9, which has three nodal points and nine bending degrees of 
freedom. 

When shear distortions are considered, six more internal degrees 
of freedom are added to each triangle corresponding to a linear kinematic 
expansion of the two mean shear distortion components. 

Prismatic beam elements [Fig. 2.4(c)] used in the program are 
assumed to bend on the neutral axis of the slab. This has the effect 
of neglecting any in-plane bending interaction between slab and beam. 

Two reservations might be raised in using this particular program: 
first, it considers homogeneous material properties for analyzing rein
forced concrete structures; and secondly, it does not have a plane stress 
element that could model membrane forces in the slab. However, since 
this investigation is limited only to the initial elastic stiffness, 
the assumption of a homogeneous isotropic material for the floor is 

acceptable. Also, since the beams in this section of the investigation 
are symmetrical with respect to the mid-plane of the slab, the membrane 
stresses in the slab will be small. 

2.3.1 Modeling of Floor System 

The floor system shown in Fig. 2.5 was modeled of homogeneous, 
elastic, isotropic material where: 
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f' c = 3.0 ks i 

W1.5 33/7' = 3320 56 
(This is based on 

E = ksi recommendations of c . 
the Uniform Build-
ing Code [2J). 

in which 
f' = concrete compressive c strength (in psi) 

v = 0.17 

G 
E 1419.06 ksi = 

2(1+v ) = 

The b~ams were all of a rectangular cross-section (Fig. 2.1), and 
the following properties were used in the analysis: 

Moment of Inertia 
03 b 

(Ixx) = ----rr 

Polar Moment of Inertia (J) 
_ Ob3 
- -5-

Gross Area 

Shear Area 

(A) = Db 
g 

5A 
(A ) = ~ sh 6 

The values for the flexural and torsional moments of inertia and the 

shear area are based on standard derivations that satisfy equilibrium 
and compatibility conditions [21J. 

The plate was modeled as a set of quadrilateral and triangular 

finite elements of uniform thickness. After a study of several meshes 

it was found that a relatively fine mesh close to the unrestrained 
degree of freedom~ becoming coarser farther away from that degree of 
freedom, resulted in fairly good convergence. 
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Three sets of floors were analyzed corresponding to Ll/L2 equal 
to 0.5, 1.0, and 2.0. In the case of Ll/L2 equal to 1.0, the symmetry 
of the floor can be used to construct the full 8 x 8 stiffness matrix 
of each panel from the first row of the matrix alone. In rectangular 
floors with L,/L2 not equal to 1.0, the first two rows are necessary 
to construct the full stiffness matrix. In the case of panels with 
L,/L2 equal to 0.5 and 2.0, however, the first row of the stiffness 
matrix of one can be used to define the second row of the other. As 
an example, rearranging the terms of the first row of the matrix for 

Ll/L2 equal to 2.0 as follows: 

yields the second row of the matrix for L,/L2 = 0.5. 

2.3.2 Rotational Stiffness of Two-Way Slab Floors with Beams Symmetrical 
About Mid-Plane of Slab 

Analyzing the single-panel floor system shown in Fig. 2.5 according 
to the method described in section 2.3.1 yields an array of eight terms 
which make up the top row of the complete (8 x 8) rotational stiffness 
matrix of the floor system: 

This can be normalized by dividing all terms by (K1l)S to yield seven 
carryover factors. Hence the first row of the stiffness matrix can 
be presented as: 

2.3.3 Influence of Structural Parameters on Floor Stiffness 

a) Influence of ds/Ll' - To determine the influence of ds/Ll on 

the value of (K11)S' a series of 240 in. x 240 in. slabs (Fig. 2.5) 
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* supported on beams with the following structural properties was 

analyzed: 

I 2250.0 in. 4 = xx 

J = 2560.0 in. 4 
for D = 14.07 in. 

A = 136.34 in. 2 
g 

b = 9.69 in. 

ASh 113.62 in. 2 = 

Only the depth of slab ds was varied. The results of the analysis are 
given in Table 2.1. 

Another set of floor slabs with 240 in. x 240 in. spans and uniform 
beams with the following beam properties were analyzed: 

I = 5333.33 in.4 xx 

J = 3413.33 in.4 
for 0 = 18.76 in. 

Ag = 181.78 in. 2 

b = 9.69 in. 

ASh = 151 .49 in. 2 

The results of the analysis with this second set of beams are 
also shown in Table 2.1. They clearly indicate that for both sets of 
beams, (K1l)S increases as the slab depth is increased. It is of 
interest to find the contribution of the slab to the total stiffness 
of the floor system, and how this contribution ;s affected by changing 

ds/L,. If the slab in the floor system is neglected, then the rota
tional stiffness of the bare beams at the columns (Kll)S will consist 
of the flexural stiffness of the flexural beam plus the torsional 
stiffness of the cross-beam, thus: 

* This is the only set where a 2:1 depth-to-width of beam ratio was 
not maintained. 
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(2.5) 

If the total stiffness (K11)S is now divided by (Kl1)B' the 
results will reflect the slab contribution. The ratio (K11)S/(Kll)B 
is given in Table 2.1 and also plotted in Fig. 2.6. Notice that since 

the beams for each set maintain their structural properties, (K1l)B 
remains constant, and the plots in Fig, 2.6 have the same shape as 

that of (K1l)S vs. ds/L" These plots show that the contribution of 
the slab picks up dramatically as its depth increased beyond certain 

values. as evidenced by the sharp increase in the slope of the plots. 

This could be explained qualitatively in that for slabs that are shal

low relative to beam depth, floor stiffness comes mainly from the value 

of (K11)S' while as the slab depth increases the contribution of the 
slab dominates. This latter portion of the plot ;s very close to a 

cubic equation, as to be expected since the stiffness of the slab is 
directly proportional to ds

3jL" This relationship is confirmed in 
3 Fig. 2.7 where plotting (K11)S vs. ds ILl yields a straight line beyond 

values of ds
3/L1 equal to 1.5. 

The plots in Fig. 2.6 also show that the relationship between 

(Kl1)S/(K1,)S and ds/L, is not unique, but is dependent on the relative 
stiffness of the beams used. This indicates that the influence of slab 
thickness on the total floor stiffness is coupled with the relative size 

of the beams. 

Hence, the results of this section clearly show that: 

1. Beyond a certain slab thickness the slab contribution dominates 

the value of (K'l)S and the total stiffness coefficient becomes directly 
proportional to ds

3jL,. 

2. The exact relationship between (K11)S and ds/Ll is strongly 
dependent on the size of the floor beams, and for quantitative relation

ships the two variables (floor beam size~ and ds/L,) must be studied 

together. 

b) Influence of ds/L, ~ a. and a. - In this section, a 240 in. x 

240 in. two-way slab floor (Fig. 2.1) is analyzed by varying slab 
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thickness and beam flexural and torsional stiffnesses. In each case, 

parallel beams are assumed to have the same structural properties, and 

a 2:1 depth-to-width ratio. It is clear that in this analysis, where 
the first degree of freedom (Fig. 2.1) is the only one unrestrained, 
beam AB will be predominantly in bending while beam AC will be pre
dominantly in torsion. Thus it will be convenient to call AB the 
flexural beam and AC the torsional beam. The importance of the ratio 
of the torsional stiffness of the torsional beam to the flexural stiff
ness of the flexural beam has already been discussed in section 2.2c, 
and this ratio will be labeled S herein. where: 

S = Torsional Stiffness of Torsional Beam 
Flexural Stiffness of Flexural Beam 

In the special case where L, = L2, eq. 2.6 reduces to: 

Given that in all the beams used b - ~, then 

04 

S = 0.256 XB 

°FB 
For L, - L - 2 

v = 0.17 

(2.7) 

Another variable, a, is defined as the ratio of the flexural 
stiffness of the flexural beam to the stiffness of a strip of slab along 
the length of the beam. The width of the slab strip is defined as half 
a panel width when the slab extends to only one side of the beam and 
from centerline to centerline of adjacent panels when the slab extends 
to both sides of the beam. Thus: 

a = 
4EI FBIL, 
4EISIL, 
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and in the case of a single-panel floor. with a 2:1 depth-to-width 

beam ratio: 

ex = 

ex = 

(4E/L,)[(D FB )4/ 24] 

(4EiL, )(L~ds 3/ 24 ) -

4 
DFB 

3 L2ds 

(2.9) 

The variable ex~ defined above, can be viewed as a measure of the 
relative stiffnesses of the slab and flexural beam and, together with 
the variable S, relates three primary factors in the stiffness of the 
floor (slab thickness, flexural stiffness of the flexural beam, and 

torsional stiffness of the torsional beam). 

A total of 21 floor systems with varying values of ex, S, and ds 
(Fig. 2.1), whose dimensions are given in Table 2.2, were analyzed. 
Notice that as ex ;s a ratio involving slab thickness and flexural beam 
depth, it wi11 be constant only if an increase in slab thickness is 
related to a proportional increase in beam size. This is also similar 
to the case of B where to keep a constant value of B any increase in 
the size of the flexural beam should be coupled with a proportional 
increase in the size of the torsional beam. It should also be noted 
that for the different values of B used, the following relationships 
hold true for square slab floors: 

S 1TB/I FB 

0.064 1.00 

0.107 1.67 

0.160 2.50 

Considering that when S = 0.160 the flexural moment of inertia of 
the cross-beam is 2.5 times that of the flexural beam, the range of B 
chosen for the analysis covers the range usually encountered in square 

panel s. 
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The results of analyzing the floor systems mentioned above are 

given in Table 2.3. The resu1ts of the previous section (Table 2.1) 

are presented in Table 2.4 in terms of the variables d , a, and 8. s 
The most important result shown in Table 2.3 is that the ratio 

(K'1)S/(K11 )8' for the ranges of a, S, and ds studied, is primari1y 
dependent on a, the relative beam-to-slab flexural stiffness. If the 
slab depth is kept constant and S is varied, the ratio (K11)S/(K11)B 
for a given value of a will be fairly stable with a variation of less 
than 2%. This is clear in Table 2,3 for floors with ds equal to 6.5 

in. or 9.0 in. 

Table 2.3 also shows that the ratio (K'l)S/(K11)B remains stable 
as a and B are held constant and ds is varied. This is a very imDortant 

relationship since the values of (Kl1)B and a are readily available for 
any given floor and, by using a plot of a vs, (K'1)S/K11 )B' the value 
of (K,,)S can be obtained directly. Such a plot is given in Fig. 2.8, 
which includes the results shown in Tables 2.3 and 2.4. 

2.3.4 Influence of Structural Parameters on Carryover Factors 

The first term of the rotational stiffness matrix of a floor sys

tem (K1,)S' which was discussed in the previous section, is very impor
tant in the analysis and design of structures and perhaps the single 

most important term in the total stiffness matrix. However, it alone is 
not sufficient and "the values of at least several other terms are also ne
cessary for a rational design. This section will deal with the influence 
of the three structural factors studied (ds ' ex, and s) on the IICarryover 
Factors" CF.", which are the normalized terms of the stiffness matrix 

lJ 
where: 

(K. ,)S 
lJ (2.10) 

The pr~esent practice is to use carryover factors based on pr; sma

tic beam theory so that in the floor shown in Fig. 2,' term CF'3 would 
be equal to 0.50 and CF17 and CF18 would be equal to zero. The Commen
tary to the 1971 ACI Code [10] has two tables (13-1 and 13-2) which 
attempt to correct the carryover factors for the added stiffness due 
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to a rigid joint across the width of the column as compared to a point 

support. This method for assigning carryover factors totally neglects 
the effect of the slab, which distributes the moments in two, rather 
than one, orthogonal directions. In the case of a floor system with a 
slab fairly stiff relative to the beams (i.e .• floors with small values 
of ex), there will be considerab'le divergence in the carryover factors 
from those assuming prismatic members between the columns. Besides the 
influence of the relative slab-to-beam stiffnesses. the carryover fac
tors also depend on the relative stiffnesses of the torsional and flexural 
beams (i.e., the value of S). As the size of the torsional beam is in
creased relative to the flexural beam the carryover factors are also ex
pected to change, with CF'3 decreasing and CF15 , increasing. This means 
that more of the moment applied in the first degree of freedom (Fig. 2.1) 
is transferred in torsion along the torsional beam than in flexure along 
the flexural beam. As we approach the limit S ~ 00, CF13 approaches 
zero while CF15 approaches 1.0. 

Previous sections dealt with the influence of ds/L,. ex, and S 
on (K11 )S through studying the results for the 21 floors given in 
Table 2.2. In each of these cases the carryover factors CF'2 through 
CF'8 were also calculated according to eg. 2.10 9 and the results are 
given in Table 2.5. These results bring out several important aspects 
about the carryover factors, in general, and the influence of the three 
parameters studied (ex, S. and ds/Ll) in particular. Most striking is 
the fact that for the range of parameters studied, CF13 is by far the 
largest and hence the most important. In a descriptive sense this 

means that of the moment (K11)S applied at the first degree of freedom, 
over 35% ;s transferred along the flexural beam and slab to the third 
degree of freedom (Fig. 2.1), while less than 10% is transferred through 
the slab and torsional beam to the fifth degree of freedom. Also im
portant ;s the fact that within the range of parameters studied, CF17 
and CF'8 are fairly small (less than 4%). which means that the cross 
coupling between columns along a diagonal ;s small. Hence, the practice 

of modeling a moment-resistant structure with a two-way slab floor as 
a series of planar frames is adequate. 
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Since CF'3 and CF15 are the larger of the factors given in 
Table 2.5, and as they represent the amount of moment transferred along 
the flexural and torsional beams. a more detailed discussion of these 
factors follows. 

a) Influence of ds/Ll' a, and 8 on CF13 : Within the range of 

parameters studied, Table 2.5 shows that CF13 varies little with respect 
to ds/Ll and 8, and that its value is primarily dependent on a. It is 
important to note here that, as mentioned previously, CF'3 will approach 
zero as 8 + 00. This is confirmed by the results on Table 2.5 where 
the values of CF13 decrease as ds/L, and a are constant and 8 is increased. 
However, in the range used, which includes the range most likely to be 
encountered in the field (see section 2.3.3) the influence of 8 ;s not 
predominant. It should be noted that the values of CF13 are more sensi
tive to variations in S as a is increased. This can be explained quali
tatively considering that a approximates the relative stiffnesses of 
the flexural beam and slab, and S is the ratio of the torsional stiff
ness of the torsional beam to the flexural stiffness of the flexural 
beam. In cases with small values of a, the slab is considerably stif-
fer than the beams and dominates the behavior. Thus, changes in the 
relative stiffnesses of the torsional and flexural beams do not have 
a major influence on the value of CF13 . This is reversed in floors 
with larger values of a where the beams dominate the behavior. Figure 
2.9 gives a plot of CF13 VS. a, and as seen in this figure the curve 
becomes flatter as a increases. For large values of a the curve will 
approach asymptotically the value ~13' which is the carryover factor if 
the slab is neglected. If shear distortions in beams are not taken 

into account: 

(2.11) 
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The difference between CF13 and ~13 is due to the effect of the slab 
in redistributing the moments. 

The results of the analysis also show the inadequacy of computing 
carryover factors on the basis of prismatic members (~13) and that the 
error in doing so can be substantial for low values of a. As an example, 
there is a 20% difference between the values of ~13 and CF13 in the first 
case given in Table 2.5. 

b) Influence of ds!L" a, and S on CF15 : The values of CF'5 given 

in Table 2.5 are much smaller than those of CF'3' This is especially 
true for low values of a and 6 (i.e. shallow beams), In such cases, 
modeling the structure as independent parallel frames with the floor 
stiffness properties based on (K1,)s and CF'3 will give adequate results. 
However, as a and S are increased, values of CF15 also increase making 
it necessary to take into account cross-frame coupling through the action 
of slab and torsional beam. 

The results of Table 2.5 shows that for the range of parameters 
studied, CF'5 is not sensitive to variations in ds/Ll' but rather depends 
on both of the values of a and S, unlike (K1l)S!(K11)B and CF13 studied 
above which were found to vary primarily with a. When S equals 0.160, 
CF'5 goes from -0.064 to -0.096 as a is increased from 0.80 to 3.0, 
This phenomenon is clearly shown in Fig. 2.10, where the spread of 
values of CF 15 due to changes in a increases with S. To interpret this 
behavior, consider that as a approaches infinity the value of CF'5 will 
approach ~15' which is the carryover factor based on a floor having four 
beams and no slab. If shear distortions in beams are neglected, 

(2.12) 

~15 = 
B 

1 + S 
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The limiting values ~15 are represented in Fig. 2.10 by the dashed 
line. As shown in eq. 2.12, CF'5 depends solely on S which defines the 
relative stiffnesses of the torsional and flexural beams. On the other 
hand, a determines the rate of convergence of CF15 toward its limit ~15' 
The larger a gets 9 the closer the results will approximate the case of a 
four-beam floor with no slab. This is clear in Fig. 2,10 where the curves 
for larger values of a are closer to the limiting value given by the 
dashed line. 

Despite the divergent values of CF
15

, it should be noted that in 
square slabs it is not very common to find a cross-beam with a moment of 
inertia more than double that of the flexural beam (i.e., S = 0.128), and 
for this value of S, CF15 varies between -0.055 and 0.113 when a goes 
from 0.8 to infinity. As this divergence is not very large, linear 
interpolation based on the value of a will yield an adequate approximation 
of CF'5 to be used in an analytical model of the floor system. 

2.3.5 Influence of L1/L2 on Stiffness and Carryover Factors of a Single

Panel Floor. 

The importance of L,/L2 to the stiffness and carryover factors of 
a two-way slab were discussed in section 2.2b. To study the significance 
of this parameter, two sets of single-panel floors with L,/L2 equal to 
0.5 and 2.0 were analyzed. These two values of L,/L2 can be considered 
as upper and lower bounds since accepted practice is to consider floors 
with span ratios larger than 2:1 as one-way slabs. The structural pro
perties of the floors analyzed are given in Tables 2.6 and 2.7. The 
values of S used in each set of slabs reflect the following relations 
between the flexural and torsional beams for Ll/L2 = 0.5: 

~ ITB/IFB 

0.032 

0.064 

0.128 
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and for L,/L2 = 2.0, 

~ ITB/IrB 

0.064 0.50 

0.128 1.00 

0.600 4.68 

a) Effect on Floor Stiffness. - The first term (Kl1)S of the 
stiffness matrix and the ratio (Kl,)S/(K1l)B for these two sets of floors 
are given in Tables 2.8 and 2.9. It is important to note that, just as 

in the case of a square panel, the ratio (K11)S/(K11)S is primarily de
pendent on a. Varying the size of the torsional beam (i.e., varying 8) 

causes only small variations in the ratio (K'1)S/(Kl1)S' To study the 
effect on the stiffness of the floor by changing L,/L2, the results of 
Tables 2.8 and 2.9 along with those for a square floor from Tables 2.3 
and 2.4 are all plotted in Fig. 2.11. This plot makes it clear that 
the general behavior of the floors for all three L,/L2 ratios studied is 
the same, where the participation of the slab as reflected by (Kl1)S/ 
(K1l )B increases as a decreases and this ratio approaches a value of 
1.0 as a approaches infinity. The difference in the three curves of 
Fig. 2.11 is the degree of slab participation, which increases with 
Ll /L 2. To show that this behavior is structurally consistent, consider 

the three panels shown in Fig. 2.12 where a, ds ' and Ll are held constant 
and L2 is varied. As L,/L2 goes from 2.0 to 0.5, the following takes 
place: (1) the value of L2 increases by a factor of 4, and (2) to 

maintain a constant a, ds ' and L" the flexural stiffness of beam AS 
must also increase by a factor of 4 (see Eq. 2.8). 

The results of Fig. 2.11, where (K1,)S/(K1l)S is found to decrease 
with L,/L2 as a is held constant, indicate that the increase in beam 
flexural stiffness described above is not matched by a proportional 

increase in slab stiffness. Hence, as L,/L2 decreases, the relative 
slab-beam stiffnesses also decrease resulting in a higher relative con
tribution from the beams to the total stiffness of the floor. 
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Finally, it is of interest in Table 2.9 to examine the influence of 

an extremely stiff torsional beam on the ratio (Kl1 )S/(Kl1 )S' The four 

floors with values of S equal to 0.60 include torsional beams with moments 
of inertia 4.68 times larger than that of the flexural beams. Since the 

flexural beam of a floor with L,/L 2 = 2.0 is twice as long as the torsional 

beam, the usual case would be for the flexural beam to be the larger. 

Hence, the case of S = 0,60 has a much stiffer torsional beam than is to 

be expected in practice. Nevertheless, the influence on the ratio (K1l)S/ 

(K11)B vs. a is not very large. The largest difference in this ratio for 
a = 0.80 is only 10.6% and decreases to 6.1% for a = 3.0. These differences 

indicate that as the torsional beam becomes stiffer, it forces more of the 

slab to participate in resisting a rotation at the corner support and 

hence increases the total stiffness of the floor. However, this increase 

in (K11 )S is at a lower rate than the increase in (K11)B due to the stiffer 

torsional beam; hence. the ratio (K1l )S/(K11 'S drops as S is increased. 
As a increases, the beams dominate the stiffness of the floor and the in

fluence of a larger slab participation due to stiffer torsional beams 

becomes less important. These results point out that even for floors with 

fairly stiff, short cross-beams, the stiffness of the floor can be ade

quately approximated from such plots as shown in Fig. 2.11. 

b) Effect on Carryover Factors. - The carryover factors CF12 through 

CF l8 for single-panel floors with Ll/L2 equal to 0.5 and 2.0 are given in 

Tables 2.10 and 2.11, respectively. These tables confirm the basic con

clusions about the carryover factors arrived at in the case of Ll/L2 

= 1.0, i.e., that the most significant carryover factors are CF 13 and 

CF15 . Notice that CF17 and CF18 are well below 10% in all cases studied, 

which further confirms the acceptability of modeling structures as a series 

of planar frames since the coupling along a diagonal is not very large. 

Notice also that CF17 falls off sharply with L1/L2, so that it is less 

than 2% for L,/L2 = 0.5 while it rises to over 7% for L1/L2 = 2.0. This 

is due to the fact that as L,/L2 increases (Fig. 2.12), the floor has 

shorter, hence stiffer, torsional beams which force more of the slab 

along beam AC to rotate due to a rotation at the corner support. This 

distributes more of the moments and rotations through the slab. On the 

other hand, the stiff flexural beams due to lower values of L,/L2 force 
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most of the floor action to be concentrated along the flexural beam, 

resulting in high values of CF13 and 10\'J va-lues for the other carry

over factors. 

Influence of L,/L2 on CF'3' - The results shown in Tables 2.10 

and 2.11 generally confirm the conclusion reached in section 2.3.5, that 

given L1/L2, the primary factor is a, while the variations in B have 

only secondary effects on CF13 . Notice that in the case L,/L2 = 2.0, 

when B increases from 0.064 to 0.60, the variation of CF13 for a given 
value of a can be as high as 25%. It should be pointed out, however, 

that this high variation occurs when the stiffness of the torsional beam 
is increased to ten times that expected in usual cases. Theoretically, 

if B approaches infinity the value of CF13 will approach zero. The 

values of CF 13 for the three sets of floors analyzed are plotted in Fig. 
2.13. The three are Similar in that they level off into fairly flat 

curves for a > 1.0 and very gradually approach ~13 asymptotically. The 

plot also shows that the value of CF13 varies inversely with Ll/L2 (CF13 
increases as L,/L2 decreases). Hence, the curve of CF13 as a function of 

a approaches its asymptote ~13 faster for lower values of Ll /L2. The 
reasons for this behavior are the same as those given in sectlon 2.3.6a. 

Notice that in eq. 2.11, the asymptote ~13 is independent of Ll /L2. 
Tables 2.10 and 2.11 and Fig. 2.13 further clarify the observation made 

in section 2.3.5a about the inadequacy of assigning values for CF13 based 

on prismatic member theory (~13)' For low values of a and Ll/L2 = 2.0, 

the difference between CF13 and ~13 can be more than 30%. 

Influence of L,/L2 on CF 1S ' - The values of CF1S for the three sets 

of floors analyzed are plotted in Fig. 2.14. These results again confirm 
the observations made above in the case of Ll/L2 = 1.0 where it was found 
that CF15 is dependent on both a and B with the latter being the more 

important. Figure 2.14 shows that for L,/L2 = 0.5, CF15 is very small 

for the range of values studied, and could be neglected for most of these 
cases. This is also true for L,/L2 = 1.0 where the torsional beams are 

the same size as the flexural beams or smaller. CF15 increases when Ll/L2 

= 2.0, where the torsional beams are short relative to the flexural 
beams and, as expected, more of the moments will be resisted by these 
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torsional beams. Along with the results from Table 2.11, Fig. 2.14 also 

shows the limiting values ~15 (see eq. 2.12). Notice that for L,/L2 = 2.0 

and low values of S, CF15 is larger than ~15 but that this relationship is 

reversed as B increases. This means that for low values of B (flexible tor
sional beams) a greater amount of moment reaches the corner supporting the 
torsional beams than would be the case if the beams acted without the slab. 

This sheds some light on the complex interaction of the beams and slab. 

When the torsional beams are very flexible, the torsional stiffness of 
the slab in the short span dominates the behavior of the floor and brings 

a greater amount of torsion to the support than would be the case with 
beams alone. However, as the torsional beams become stiffer, the slab 

acts as an elastic support distributing the torsion away along the length 
of the beam and redistributing it to the other supports. Thus, the slab 

acts as a redistributing element which distributes torsional moments to 
support C (Fig. 2,1) when the torsional beams are very flexible, and 
redistributes torsional moments away from support C when the torsional 

beams are very stiff. 

Figures 2.13 and 2.14 also show that as Ll/L2 increases, a struc
ture cannot in general be adequately modeled as a series of parallel 
planar frames since the moments transferred along the torsional beams can 
be even larger than those transferred along the flexural beams. In this 

case, a series of intersecting orthogonal planar frames would be a much 
more realistic model. 

2.4 Summary and Conclusions 

To make a scientific assessment of existing models for the contri
bution of a floor system to the overall lateral stiffness of a building, 
and to develop new and more realistic models, it was necessary to study 
a fairly simple two-way floor slab. This chapter has investigated the 

stiffness properties of a single-panel rectangular floor supported at its 
four corners. The two-way slab floor was further simplified by: 

1. Considering only point supports, thus eliminating the effect 

of varying column sizes. 

2. Considering only beams symmetrical about the centerline of the 
slab, thus eliminating the effects of beam-slab eccentricity and the re

sulting in-plane slab stresses. 
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3. Fixing the depth-to-width ratio of the beams at 2:1, thus 
fixing also the relationship between the flexural and torsional stiff

nesses of the individual beams. 

The stiffness of the floor is defined by an 8 x 8 stiffness matrix 
based on two orthogonal rotational degrees of freedom in the plane of 
the slab at each of the four supports (Fig. 2.1). Due to the two axes of 
symmetry in a rectangular single-panel floor. the stiffness matrix is 
fully defined by the first two rows and, in the special case of a square 
bay, by just the top row. 

The floors were modeled as a series of rectangular two-dimensional 

finite elements for the slab, and uniaxial prismatic elements for the 
beams. The program PLATE, used to solve the equations, utilizes linear 
curvature compatible triangular finite elements which have a cubic trans
verse displacement expansion with piecewise continuous derivatives, and 
uniaxial beam elements embedded in the slab. 

The study considers the influence of the following floor parameters 
on the values of the coefficients of the stiffness matrix: 

1. The slab depth-to-span ratio (ds/Ll ). 

2. The ratio S of the torsional stiffness of the torsional beam 
to the flexural stiffness of the flexural beam, as given in eq. 2.6. 

3. The ratio a of the flexural stiffness of the flexural beam to 
the flexural stiffness of a half span strip of slab along the flexural 
beam, as given in eq. 2.8. 

4. The ratio of the span of the flexural beam to that of the 
torsional beam L,/L2 (Fig. 2.1). 

A total of 46 single-panel floors was analyzed for different combinations 
of the above four parameters. A wide enough range of ds/Ll' S, and a 
was used to establish a pattern of the influence of these parameters on 
the floor stiffness. The ratios 0.5 and 2.0 were used as limits for 
Ll /L2, as it is customary to consider slabs beyond these limits as one
way slabs in the short direction. The following conclusions can be made 

based on the results given in this chapter: 
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1. The first term of the stiffness matrix (K11)S increases as 
ds/Ll' a, or S are increased, or as Ll/l2 is decreased. 

2. The ratiQ (K11)S/(K,1)B' where (K,')B is as defined in eq. 
2.5, is primarily dependent on a and L1/l2. The influence of ds/Ll and 
S on this ratio for the range of parameters studied is small enough to 
be neglected. This is a very important relationship since L

1
/l

2
, a, and 

(K11)B can be calculated easily for any given floor and this information 
along with the plots of Fig. 2.11 allow a fairly accurate approximation 

of (Kll ) s. 

3. The ratio (K1,)S/(K,1)B converges rather rapidly toward its 
limiting value 1.0 as a increases, and the rate of convergence is faster 

for lower values of L1/L2. 

4. The carryover factors CF 12 through CF l"S' as defi ned in eq. 2. 10, 
are all sensitive in varying degrees to changes in the four parameters 
studied. 

5. The carryover factors other than CF13 and CF15 were generally 

considered small enough to be neglected. Especially important are the 
low values of CF17 and CFl8 which show relatively low coupling via the 
slab betWeen diagonally opposite supports. This reaffirms the usual 
practice of modeling buildings as a series of planar frames. 

6. In floors with ratios of S around those expected in practice, 

CF 13 is primarily dependent on the values of a and lj/L2' and can be 
adequately approximated from plots in Fig. 2.13. However. these values 
can be off by more than 20% in floors with exceptionally stiff torsional 
beams (high values of S). CF13 decreases as S increases. 

7. The value of CF13 can vary substantially from the carryover 

factor based on prismatic beams, ~13' as defined in eq. 2.11. This is 
especially true in floors with high ratios of L,/L2 and low a. Thus 
the usual practice of estimating (K,,)S and then using a CF13 value of 
0.5 or one based on ~13 can result in substantial errors. 

8. CF15 was found to depend primarily on Ll/L2 and S. But a, 

especially in its upper ranges, also showed a marked influence on CF15 
so that this parameter could not altogether be neglected. Figure 2.14 
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shows CF15 as a function of a, S, and L1/L2. 

9. In general, CF15 increases with increases in a, S, and L1/L2. 
In floors with L1/L2 close to 0.5 or in square panels with very flexible 
torsional beams, CF15 is small enough to be neglected. In buildings with 

L1/L2 close to 2.0, CF15 can be as large or larger than CF13 . This means 
that in buildings where adjacent columns do not undergo exactly the same 
rotations, thus introducing torsion in the cross-beams, the usual practice 
of modeling the building as a series of independent parallel planar frames 
is not always adequate. Also buildings with L1/L2 ratios close to 2.0, 

regardless of slab depth, should be modeled as a series of intersecting 

orthogonal planar frames. 

10. The slab contributes relatively· more than the beam to the stiff
ness of the floor for low values of a. This means that as the beams become 
stiffer, instead of causing comparably larger slab participation, they end 
up dominating the stiffness of the floor so that the relative slab contri

bution becomes less. 

11. The slab redistributes stresses among the supports by acting 
as a continuous elastic support for the flexural beam, thus reducing the 
moments carried by the beam to one support due to a rotation at the other 
support--an effect which increases with decreases in a. This is reflected 
in the increased rate of divergence of CF13 from ~13 for lower values of 
a. The slab also redistributes torsional moments along the torsional 

beams, especially when Ll/L2 is large (near 2.0). 
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3. FULL COMPOSITE ACTION IN A TWO-WAY SLAB FLOOR SYSTEM 

3.1 Introduction 

The analysis of floors with partial composite action (beams symmetric 
about the slab mid-plane) is useful theoretically because the coincidence 
of the beam and slab neutral axes simplifies the structure tremendously 
as in-plane slab stresses can be neglected and thus appreciably reducing 
the computational effort needed to establish the floor stiffness matrix. 
These simplifications facilitated parametric studies to establish the 
main parameters controlling the basic beam-slab interaction and their 
contribution to terms of the floor stiffness matrix, 

UnfortunatelY9 such floors are rarely encountered in practice as 
usually the top of the slab is flush with the top of the beam, resulting 
in an eccentricity e between the neutral axes of beam and slab (Fig. 
3.1). This eccentricity has a substantial influence on the mechanism 
determining beam-slab interaction in the floor. The neutral plane of 
the floor is no longer a plane surface coinciding with the mid-plane of 
the slab, but rather a curved surface whose location at any point depends 
on the coordinates of that pOint within the floor and the relative beam
slab stiffneses. The neutral plane of a single-panel floor (Fig. 3.1) 
starts at the edges of the floor somewhere between the neutral axes 
of the beam and slab, then gradually rises to approach the slab neutral 
axis as it proceeds toward the center of the floor. The location of the 
neutral plane at the edge and its slope as it proceeds toward the center 
of the floor depends on the relative stiffnesses of the slab and beams 
(values of a and S). In floors where a is small (the beams are flexible 
relative to slab), the vertical intercept at the edge will be close to 
the neutral axis of the slab, while for higher values of a it will be 
closer to the beam neutral axis. 

The eccentricity e between the neutral axes of floor and slab 
means that normal stresses within the slab are not symmetrical and that 
there is a net normal stress within the slab per unit area. Hence, net 
vertical as well as horizontal shears have to be transferred between slab 
and beam (full composite action). This is shown in the schematic dia
gram of Fig. 3.2, where as a moment is introduced along the flexural beam, 
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part of the slab acts as a flange of a combined beam-slab section pro
ducing in-plane slab stresses. The magnitude of these stresses changes 

in proportion to the distance between the neutra"1 plane of the floor and 
the slab mid-plane, which is a maximum at the edge of the floor and a 

minimum at the center. 

The structural behavior of the floor along the torsional beams is 
similar to, but more complex than, that along the flexural beams. When 

a member with a symmetric section is twisted, it rotates around its shear 
center which coincides with the intersection of its two orthogonal neutral 

axes. Hence, in members vlith symmetric sections, torsional moments are 
uncoupled from flexure in either direction. In the floors analyzed in 
this chapter, part of the slab acts as a flange of a combined beam-slab 
torsional section. Ihis interaction produces a center of shear of the 

combined beam-slab section which, as shown in Fig. 3.3(a), does not coin

cide with the shear center of the beam. As the torsional beam rotates 
about the combined shear center, it also undergoes vertical and lateral 
translations. The magnitudes of these translations are based on the 

location of the combined section's shear center and the angle of twist. 
The location of the shear center is determined by the flange width of the 
combined section which is dependent on the relative stiffnesses of beam 
and slab. The angle of twist is dependent on loading, floor stiffness, 
and boundary conditions. 

Given the boundary conditions and loading used in this analysis, 
the ang"le of twist will vary along the torsional beam from a maximum at 
point A to zero at point C (Fig. 3.1). Hence the 6X and 62 translations 
of the beam geometric center will also vary between these two points pro

ducing flexural moments in the x and z direction along beam AC [Fig. 3.3 
(a)]. Similarly, flexure in the x and z direction are coupled with torsion 
along the flexural beam AB. 

The interaction between the slab and the torsional beams contributes 
to the slab in-plane stresses in two ways. First, the flexural moments 

along the length of the torsional beams will produce in-plane slab stresses 
in exactly the same manner explained above for the case of flexural beams 
(Fig. 3.2), Secondly, as the composite beam-slab section twists, there 
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is a net Lx translation at the slab mid-plane [Fig. 3.3(a)] whose value 

is determined by the degree of torsion at the section. Consider a slab 

strip jk [Fig. 3.3(b)] parallel to the flexural beams. The axial dis
placements, due to torsion, at the two ends of this strip (LX j and 6X

k
) 

are not equal since the torsion at point j and k is different. Hence 
there is a net in-plane stress in the strip due to the torsion in beams 
AB and CD. 

Besides the complex beam-slab interaction, the beam-slab eccentricity 
adds yet another complication to the floor model to be analyzed, the 

point of load application. In floors with partial composite action, 
studied in Chapter 2, the degrees of freedom were located at the neutral 

plane of the floor which coincided with the mid-plane of the slab. How
ever, in the case of floors with full composite action (eccentric beams), 

the position of the neutral axis of the combined beam-slab section is 
not known and there are no convenient analytical methods to locate it. 

Applying the rotation at any other point, such as the centerline of the 
slab, will require application of other appropriate forces to compensate 
for the effect of the eccentricity between the point of load application 
and the neutral axis of the floor at the supports. 

These and other complications are perhaps some of the reasons that 
experimental rather than analytical methods have predominated the research 
of the behavior of two-way slab systems. However, the expense of experi

mental studies and the time they require has limited the extent and 
scope of those studies. The development of new and efficient computer 

programs capable of producing acceptable approximations for the solution 

of these problems is making analytical studies on the behavior of two-way 
slab systems more feasible. 

3.2 Floors and Parameters Considered 

All the floors considered in this chapter are of a single-panel with 
point supports at the corners. The parameters investigated are the same 

four (ds/Ll' a, S, and L1/L2) that were studied in the previous chapter. 
Equations 2.6 and 2.8 define the values of Sand a. 
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All floors analyzed (Fig. 3.1) involve beams with a 2:1 depth-to
width ratio, which fixes the ratio of the flexural to torsional stiffness 
of all beams to be 13.33 (1 + v). Different depth-to-width ratios 
will change the relative flexural to torsional stiffness of the individual 
beam and this would affect the results of this analysis in that torsion 
and flexure in the floor beams have been shown to be coupled (section 3.1). 
Having the top of beams flush with the top of slab fixes the beam-slab 
eccentricity e to be: 

1 e = - (D-d ) 2 s (3. 1 ) 

3.3 Modeling and Computer Program Used 

It is clear from the above discussions that the best analytical 
model for the problem at hand is a three-dimensional finite element, which 
would most adequately account for the beam eccentricity and the resulting 

in-plane slab stresses. Such programs do in fact exist, but the required 
computational effort and cost would be prohibitive. Hence, a model 
utilizing planar finite elements and uniaxial prismatic beam elements 
was developed. Several such models have been suggested and used by 
analysts with reasonably acceptable accuracy, especially when used in 
studies of ribbed concrete bridge decks. One such model is that shown 
in Fig. 3.4 where the slab ;s represented by a planar finite element 
along the neutral axis of the slab and the beams are represented by uni
axial prismatic members located a distance of D/2 below the finite ele
ments. Notice that as the finite element mesh extends to the edge of 
the floor LFig. 3.4(b) and 3.4(c)J, the beam element models only the part 
of the floor beam extending below the slab. This is necessary so that 
the overlapping section between slab and beam wi"ll not be accounted for 
twice. The beam ends are connected to the slab by rigid links at the 
finite element nodes, satisfying compatibility conditions there. 

The section of the investigation presented in this chapter was con
ducted using the computer program SAP-IV [22J, a general-use program for 
the static and dynamic analyses of linear structura'i systems developed 
at the University of California over a period of many years. The program 
contains eight structural elements that can be used separately, or in 
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combination, to model structures. The Thin Plate and Shell Element. and 
the Three-Dimensional Beam Element were used for the work of this 
chapter. 

The thin plate element used in the program is a quadrilateral of 
arbitrary geometry formed from four compatible triangles.. The LCCT9 
element described in section 2.3.1 is used to represent the bending 
behavior of the plate. A constant strain triangle, whose plane stress 
properties are described in reference 23, is used to represent the mem
brane behavior of the plate. The thin plate quadrilateral element has a 
total of 24 degrees of freedom in the global coordinate system (i.e., 
six degrees of freedom per node), after six interior degrees of freedom 
in the triangular elements are eliminated by static condensation prior 
to assembly. The stiffness of the quadrilateral element associated with 
the rotation vector normal to the plate surface ;s not defined; there
fore, the in-plane moments and rotations are neglected in SAP-IV. 

The prismatic beam element included in SAP-IV considers torsion, 
bending about two axes, and axial and shearing deformations. The develop

ment of its stiffness properties is standard and is given in reference 
24. A unique option is that the end nodes of the beam element (slave 
nodes) can be geometrically constrained to a master node. Slave degrees 
of freedom at the end of the beam are eliminated from the formulation 
and replaced by the transformed degrees of freedom of the master node, 
based on the geometry of the master and slave joints as defined in Fig. 
3.5. The rotations and displacement of the slave node is defined by the 
following set of equations: 

8
xS 

8xm 

8ys = e~ 
ezs = ezm (3.2) 

uxs = uxm + (z -z)e - (Ys-Ym)8 zm s m ym 

uys = uym + (Zs- Zm)8 xm + (Xs-Xm)8zm 

uzs = uzm + (Ys-Ym)e xm - (Xs -Xm)8ym 
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This option in SAP-IV efficiently models rigid links between slave and 

master nodes. 

The method of modeling the floors by a mesh of two-dimensional 

finite elements connected by rigid links to prismatic uniaxial beam 

elements, and the specific computer program SAP-IV used, present some 
limitations to the accuracy of the results, These are summarized below: 

1. Beam-slab compatibility is not maintained continuously along 
the full length of the beams; it is only maintained piecewise at the 

nodes where the rigid links between the slab and beams are added. 

2. In-plane bending of slab is neglected as the stiffness associa

ted with it is not defined in the plate element used. However, it is 
generally accepted that due to the great slab stiffness associated with 

in-plane bending, neglecting the rotational degree of freedom normal to 

the surface of flat plates has a negligible effect on the solution [23J. 

3. The use of a constant strain element to model the membrane action 

of the slab results in stepwise, rather than continuous, variation of the 
membrane stresses across the slab. 

4. The three rotational degrees of freedom in the beam element used 

in SAP-IV are uncoupled. The rigid links connecting the beam ends tQ the 

finite element mesh force some coupling between these degrees of freedom. 

Consder the model shown in Fig. 3.6. The x and y rotations of the finite 
element nodes Band C are coupled. Hence, as the finite element mesh is 

subjected to stresses, nodes Band C will undergo x and y rotations. 

Since the beam nodes band c are connected to the finite element nodes 
Band C by rigid links, the beam nodes will also undergo both x and y 

rotations (see eq. 3.2). Hence, while torsion and flexure are uncoupled 

in the beam element used, the rigid links to the finite element nodes have 
the effect of coupling the x and y rotations of the beam nodes. This 
only approximates the actual beam-slab composite action which has been 
described in section 3.1. 

The overall accuracy of the model suggested above was checked by 

using it to calculate the stiffness of a 15-ft cantilever T-beam 
with a moment applied at its free end. The beam section, finite element 
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mesh, and the boundary conditions used are shown in Fig. 3.7. The model 

also includes uniaxial prismatic beam elements located 8 in. below the 
finite element mesh and their end nodes slaved to those of finite elements. 
The moment was applied to node B and very stiff beams were added between 
nodes C and B and between nodes A and B, to force equal rotations and 
displacements of these three nodes. 

The results sought are the x-rotation and y-displacement of node B. 
The moment applied to the beam divided by this rotation yields the beam 
stiffness, while the y-displacement divided by the tangent of the x
rotation at B gives the position of the neutral axis below the centerline 
of the slab (Fig. 3.6). Comparison of these results to those from pris
matic beam theory were as follows: 

K (K- in. ) N.A. below 
rad Top of Slab 

Beam Theory 80987.59 5.857" 

Model 80987.40 5.857" 

This clearly shows that~ for the purpose used, the model is adequate 
despite the limitations mentioned above. Another calculation for the 
same beam section but with a span of 4 ft was attempted and the results 
deviated from the theoretical solution by as much as 17%. Reducing the 
depth-to-shear span ratio to 1:3 changed the beam from a predominantly 
flexural to a predominantly shear beam, and the results clearly show that 
the model is good in flexible beams but fails as shear predominates. 

3.4 Stiffness of a Single-Panel Floor with Full Composite Action 

The method of analysis followed in this chapter is similar to that 
used in Chapter 2 for the case of symmetrical beams. A difficulty arises 
in that the rotation at the first degree of freedom (Fig. 3.1) must be 
applied at the neutral axis of the floor at support A, whose location 3 

as previously mentioned, is not readily available. Applying the rotation 
at the floor neutral axis, which lies between the neutral axes of slab 

and beam, means that the mid-plane of the slab will undergo a 6X transla
tion. This is different from the case of floors with symmetric beams in 

-38-



Chapter 2 where a rotation at the support is not coupled with a transla
tion of the slab mid-plane. If in the model used in this investigation 
the moment is applied at the slab mid-plane (Fig. 3.6), and the beam and 

slab are free to undergo Ax translation at support A. then the floor will 
rotate about the actual floor's axis of rotation. Furthermore, since only 
a moment is applied at joint A. then the neutral axis and the axis of 
rotation at the joint coincide. If the two ends of the rigid link Aa 
(Fig. 3.6) are free to undergo 8y rotations and Ax translations. then 8y 
will be the same regardless of where the moment is applied along the 
rigid link. The values of 8y and uxA are both used as program output and 

the distance 0 between the neutral axis of slab and floor is easily 

established where: 

(3.3) 

and using eq. 3.1. the distance ~ between the neutral axes of flexural 
beam and floor is: 

(3.4) 

Following this procedure, the stiffness of the single-panel floors 
investigated was established by applying a moment at support A at the 
level of the slab mid-plane while restraining all degrees of freedom at 
the support except 6y rotation and Ax translation at support A. 

The material properties used are the same as those given in section 

2.3.1. The mesh size is chosen on the basis of adequate convergence of 

the values of (K11)S and ~ (e.g,. Fig. 3,8 for the case Ll/L2 = 0.5), 
Tables 3.1 to 3.3 give the dimensions of all the floors analyzed and the 
relationship between the torsional and flexural beams based on the values 
of S chosen is the same as explained in sections 2.3.3 and 2.3.5. 

The results of the analysis are given in Tables 3.4. 3.5, and 3.6. 

The values of (Kl1)B are as defined in eq. 2.5 and are independent of 

the pOSition of the beams relative to the slab. The ratio (K11)S/(Kl1)B 

given in the tables follow a similar pattern to those for the symmetrical 
beams in Chapter 2: they depend primarily on the value of a 9 but the 
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variation due to changes in ds/Ll and B are more significant than in the 

case of the symmetrical beams. In the latter case, the ratio (Kl1 )S/(K11 )B 
can be considered a fairly good measure of the slab contribution to the 

stiffness of the floor. since the value of (K1,)B' as defined in eq. 2.5, 

is theoretically the actual stiffness of the beams, and the increase of 

(K11 )S over that is due to the contribution of the slab. This;s not 

true in the case of eccentric beams because, as explained in section 3.1, 

the neutral axis of the floor does not coincide with that of the beams. 

Hence, a more accurate measure of the contribution of the beams to the 

overall stiffness of the floor (K11)S would require that the beam stiff

ness (K1l)B be transformed from the neutral axis of the beams to that of 
the floor. 

If in-plane distortions in a beam are neglected, the torsional stiff

ness ;s equal to GJ/L irrespective of the position of the axis of rota

tion. The flexural stiffness can easily be transformed by transforming 

the moment of inertia to the new axis of rotation. The axis of rotation 

at the support is identified in the previous section (Fig. 3.6), but as 

slab participation varies along the length of the beam, so does the posi

tion of the neutral axis. Assuming a shifted beam neutral axis a distance 
of ~ above the original beam neutral axis (the shifted axis coincides with 
the floor neutral axis at the supports only), then the transformed bare 

beam stiffness (Kll)~ is defined as: 

(3.5) 

where 

(Kll)~ is not the actual contribution of beams to the total floor stiff

ness (K11)S' but is closer to the actual value than (K1l)B' 

Tables 3.4, 3.5, and 3.6 give the values of (Kll)~ and the ratio 

(K11)S/(Kll)~ for each floor analyzed. Notice that this ratio follows 

much more closely the pattern set by (K11)S/(K1l)S in the case of 

symmetrical beams. (Kll)S/(Kll)~ primarily var~les with a and L,1L2 
and the effect of Band ds/Ll on it are negligible for the range of 
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parameters used in this investigation. Figure 3.9 plots the values of 
r (K1l)S/(K11)B vs. a and the three curves follow very closely those of 

Fig. 2.11 for the case of symmetrical beams. The discussions of sections 

2.3.3 and 2.3.5 about the structural significance of a, S. ds/Ll' and 
L,/L2 on the stiffness of the floor apply also to the case of eccentric 
beams. 

Comparing the results of Tables 3.4 through 3.6 with those of Tables 
2.3, 2.8, and 2.9 to identify the effect of the beam eccentricity, it is 
clear that moving the neutral axis of the beam away from that of the slab 
significantly increases the stiffness of the floor. This is to be expected 
since this eccentricity shifts the neutral axis of the floor to somewhere 
between that of the beam and the slab and hence increases the contribution 

of both to the stiffness of the floor. The increase in (Kll)S is of the 
order of 20% for Ll/L2 = 1.0 and less for L,/L2 = 2.0 and 0.5. A very 
interesting result, however, is that for the cases studied, the ratio of 

(K'l )S/(K1l )~, case for case, is very close to (Kl1)S/(K,1)B for symmetrical 
beams. Thus it appears that the relative contribution of the slab and beams 
to the total floor stiffness (K11)S is basically the same whether the beams 
are symmetric with the slab mid-plane or not. 

3.5 Neutral Axis of Floor at Supports 

The effect of beam eccentricity on the position of the neutral 
axis of the floor system is discussed fully in section 3.1. Later dis
cussions have also explained how the results of the computer program can 
be utilized to establish the position of the neutral axis of the floor 
at the support, and the importance of this information in determining 

(Kll)~' Tables 3.4, 3.5, and 3.6 give the distance ~ between the neutral 
axis of the flexural beam and that of the floor for all cases analyzed. 
These tables also give the value of y where: 

y = r (3.6) 
e 

These values of y vs. a are plotted in Fig. 3.100 It is clear from the 
definition of y in eq. 3.6 that as a increases, the influence of the 
beams in determining the location of the floor neutral axis at the edge 
increases. Therefore, the value of ~ and y will decrease so that y + 0 
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as a ~ 00. The results shown in Tables 3.4 through 3.6 confirm this 

trend and also show that variation in B has only a minor effect on the 

value of y for the range of S investigated. Variation in ds/L, has a 
more pronounced effect on y than variation in S. However, for the range 
of ds/Ll most prevalent in practice, y can be considered as being pri
marily dependent on a and L,/L2. Figure 3.10 shows that for any given 
a there is a significant increase in y as L,/L2 goes from 0.5 to 1.0. 
but very little change for L,/L2 greater than 1.0. It has already been 
shown (section 2.3.5) that increasing L,/L2 also increases the degree of 
slab participation in the floor stiffness, which should in turn move the 
floor neutral axis up toward the slab mid-plane (i .e., y should increase 
with L1/L2). There;s a slight deviation from this trend in the results 
shown in Fig. 3.10. The reason is that a coarser finite element mesh was 

used for the case of L,/L2 = 1.0 than for the case of Ll/L2 = 2.0. The 
coarser mesh results in higher values of y (Fig. 3.8) which, given how 
close the values of y for the two cases are to each other. accounts for 
the discrepancy. 

3.6 Carryover Factors of a SiQgle-Panel Floor with Eccentric Beams 

The carryover factors as defined in eq. 2.10 are given in Tables 3.7, 

3.8, and 3.9 for the three Ll/L2 ratios studied. The basic pattern of 
the carryover factors in these tables is similar to that of the comparable 
factors for floors with symmetric beams discussed in section 2.3.5b. The 
values of CF'7 and CF 18 in Tables 3.7 through 3.9 are almost identical 
to those given in section 2.3.5b and confirm once again that, for the 
range of parameters studied, there is only a small coupling of support 
moments across the floor's diagonal and, as such. modeling a structure 
as a series of intersecting orthogonal frames is justified. 

The carryover factors given in Tables 3.7 through 3.9 also confirm 
the conclusions of Chapter 2 that CF13 is the largest and the most sig
nificant carryover factor in a floor. The others, except for CF15 when 
L,/L2 is greater than 1.0, are small enough to be neglected in modeling 
a two-way slab floor. 

a) CF 13 of a Single-Panel Floor with Eccentric Beams: The values 

of CF 13 given in Tables 3.7 through 3.9 clearly show that this factor is 
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not very sensitive to changes in ds/L, and B for the range or parameters 
studied. This pattern of CF13 is discussed thoroughly in sections 2.3.4a 

and 2.3.5b. The influence of a and Ll/L2 on CF13 in a single-panel floor 
with eccentric beams is better shown in Fig. 3.11. Notice that the three 
curves cross at about a equal to 3.0. This seems to be in conflict with 
the discussions of section 2.3.4a and 2.3.5b where an asymptotic value 
~13 independent of L,/L2 and a was established and it was shown that CF13 
approached that asymptote faster as L1/L2 decreased. Thi s argument is 
still applicable to the results of Fig. 3.11 if the definition of ~13 is 
modified from that of eq. 2.11 to include the influence of shear in the 
beams. This is necessary for cases with a larger than 3.0 where the 
beam1s depth-to-shear span ratio increases (especially for low values 
of L1/L2) and shear effects cannot be neglected. The stiffness matrix 
of a prismatic member with inclusion of shear distortion [25J is: 

where 

2E I r2+T 1 -T] 
K = L{1+2T} ~-T 2+T 

(3.7) 

(3.8) 

Using the above equation, a new relationship for ~13 can be defined 
which takes into account the shear distortions in the flexural beam. This 
development is given in Appendix A where ~13 is shown to be not only de
pendent on B. but also on the size of the flexural beam. Following is a 
chart which compares the values of CF 13 from Tables 3.7 through 3.9 with 
those of ~13' as defined in Appendix A for three values of a and L1/L2, 
with ds equal to 6.5 in. and B equal to 0.064. 

L1/L2 := 2.0 
a 

L,/L2 = 1.0 L,/L2 = 0.5 

~13 CF, /<iJ13 ~13 CF1/~13 ~13 CF l /~13 

0.8 0.467 0.645 0.466 0.725 0.453 0.777 

3.0 0.464 0.750 0.462 0.749 0.483 0.789 

8.0 0.460 0.780 0.457 0.755 0.419 0.792 
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Now that shear distortions are taken into account we find that, indeed, 

the values of CF'3 do approach ~13 and that they do so at a faster rate 
as L,/L2 decreases, The above table also shows that shear distortion 

influences ~'3 significantly as a increases (i .e. deeper beams), and 
also as the span of the flexural beams decreases (as a result of lower 
values of Ll /L2). 

Comparing the results given in Tables 3.7 through 3.9 with those of 
Chapter 2s we find that CF 13 is smaller in floors with eccentric beams 
than in floors with symmetric beams. This is due to the added stiffness 
of the slab in floors with eccentric beams due to the membrane action. 
The added slab stiffness results in a higher degree of moment redistribu

tion by the slab, hence lower values of CF'3' 

b) CF15 of a Single-Panel Floor with Eccentric Beams: Similar to 

those of Chapter 2, the values of CF15 given in Tables 3.7 through 3.9 
are primarily dependent on 6 and L,/L2, The influence of ds/L, is small 
enough to be neglected but the influence of a, though less than that of 
8 and Ll /L2, is substantial for larger values of 8. The values of CF15 
from the tables are plotted in Fig. 3.12. As the figure shows, the 
pattern established by these curves is similar to that of Fig. 2.14 of 
floors with symmetric beams, and the reasons for this pattern are pre
sented in sections 2.3.4b and 2.3.5bo Notice that there is some incon
sistency in these results (Fig. 3.12) as the values of CF15 for 8 equal 
0,2 to 0.4 seem to approach the limit ~15 as a gets smaller. This 
indicates that the three curves should cross at the same point to be 
consistent theoretically, and the deviation from this is a function of 
the approximations inherent in the model. Nevertheless, the relative 
relationship between the three curves for Ll/L2 = 2.0, outside the area 
where they cross each other, ;s consistent with the theoretical consider

ations of section 2.3.5b. 

The influence of beam eccentricity is to reduce the values of CF15 
from those for symmetric beams, and this is explained by the increased 
slab capacity to redistribute moments noted in the previous section. 
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3.7 Sum~~nd Conclusions 

This chapter investigates the effect of full composite action (i.e., 

the neutral axis of the beam does not coincide with that of the slab) 

on the terms of the stiffness matrix of a single-panel floor. The stiff

ness matrix of the floor is defined in section 2.3.2. Beam eccentricity 

produces much more complex stress patterns which increase the difficul~ 
of the analysis and the required computational effort. The difficulty is 

primarily that of developing an efficient analytical model to represent 

accurately the compatibility requirements between beam and slab and the 

in-plane slab stresses which develop. 

The slab is modeled as a series of rectangular finite elements, 
where an LCCT9 element formed from four compatible triangles is used to 

represent the bending behavior of the slab and a constant strain element 
with plane stress properties is used to represent its membrane behavior. 

The beams were modeled as uniaxial, prismatic members, connected at both 

ends by rigid links to the plate finite element nodes along the beam's 
centerline. This model's applicability was checked by using it to cal

culate the stiffness of a T-shaped cantilever beam and the results show 

that the model is very accurate for flexible beams under predominantly 

flexural stresses. This accuracy falls off rapidly as the depth-to-shear 

span ratio increases and shear stresses predominate. The results from 

the model can also be interpreted in a way that gives a reasonable approxi
mation of the position of neutral axis of the floor at the supports. 

Thirty-three single-panel floors are analyzed in this chapter to 

study the influence of a, S, ds/Ll' and L1/L2 on floors with eccentric 
beams. In all these floors the beams are considered to be flush with the 
top of slab and to have a 2:1 depth-to-width ratio. The material pro

perties are the same as those of Chapter 2, allowing a comparison between 

the results to determine the effect of beam eccentricity. 

The results of the analyses show that: 

1. The ratio (K1,)S/(Kl1)B is primarily dependent on a and L,/L2, 
but is more sensitive to variations in Sand ds/Ll than is the case with 

symmetric beams. However, the ratio (Kll)S/(Kll)~' where (Kll)~ is de
fined by eq. 3.5, ;s much less sensitive to variations in Band ds/L, 
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and can be appro:'imated on the basis of a and L,/L2. 

2. Shifting the neutral axis of the floor away from that of the 

slab increased the stiffness of the floor (K11)S" The value of (Kl1 )SI 
(Kll)~' for a given L,/L2 and a was basically the same as the value of 
(K11 )S/(K11 )B in a floor with symmetrical beams. 

3. The ratio (Kll)s/(Kll)~ approached 1.0 as a increased and 
approached its limiting value at a faster rate as L,/L2 decreased. This 
behavior was identical to that of floors with symmetric beams. 

4. The relative position of the neutral axis at the supports as 
defined by the value of y (Fig. 3.10) for the range of parameters con
sidered was not found to be very sensitive to variations in S, but was 

mainly dependent on a and L1/L2 with some influence from ds/L" 

S, As in the case of floors with symmetric beams, there was very 
small coupling between the floor supports along a diagonal. CF13 was the 

most significant carryover factor and CF,S increased rapidly as L1/L2 
became greater than one. 

6. CF13 is primarily dependent on a and L,/L2 , while 
mainly determined by Sand L,/L2 with some influence bya. 
was similar to that of floors with symmetric beams. 

CF1S is 
This behavior 

7. The carryover factors were smaller in floors with eccentric 
beams than in symmetric ones. This indicates a higher degree of moment 
redistribution by the slab in floors with eccentric beams. 
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4. EFFECT OF BOUNDARY CONDITION ON FLOOR STIFFNESS 

4. 1 Introduction 

The parametric study of single-panel floors with either full or 

partial composite action has established the relationship between the 
main floor parameters and stiffness. In a mUlti-panel floor it is also 

necessary to consider the different boundary conditions which exist in 
the floor due to varying slab continuity conditions. In a rectangular 

floor, such as shown in Fig, 4.1, at least three basic different boundary 

conditions can be identified: a corner panel, free along two adjoining 

edges and continuous along the other two; an exterior panel, with one 
free edge and continuous along the other three; and an interior panel, 
continuous along all four edges. 

In analyzing framed structures by the direct stiffness method, each 

element stiffness matrix is added directly into the overall structure 
stiffness matrix. The element stiffness matrix is independent of the 
position of the element within the structure; i.e.~ given the beam's 
properties, its element stiffness matrix will be the same whether the 
beam is located at the edge or the middle of the frame. Hence, a standard 
stiffness matrix can be established for prismatic members irrespective of 
where the member lies within the structure. The boundary conditions of 
the element are accounted for in the type of support specified for each 

end of the element, i.e., the stiffness matrix used in the direct stiff
ness matrix for cantilever and continuous beams is the same and only 
their support conditions are different. This procedure cannot be used 

for two-way floor systems. The stiffness of a floor panel as defined 
in section 2.3.2 depends on the composite action between the slab and 

beams in the panel. This composite action depends on the relative stiff
nesses of slab and beams as well as on the continuity conditions of the 
slab at the edges. In the interaction between the beams and slab, two 
aspects are especially relevant to this discussion. First. in the beam

slab composite action, the s1ab acts as a partial support along the length 

of the beams, much as an elastic foundation. The degree of restraint 
offered by the slab is higher when the slab continues across the beams 
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than when it does not. Hence, an interior panel will be stiffer than a 
single-panel floor due to the continuity of the slab along the four edges. 
Second, the shape of the effective beam-slab section produced by the 
(omposite action ;s different dependinq on whether the slab is continuous 
or not. Section 3.1 presents a detailed discussion of the interaction 
between the slab and the flexural and torsional beams in a single-panel 
floor, where the slab obviously extends along one side of the beams 

only. It showed the characteristics of the resulting L-shaped composite 
section (Figs. 3.2, 3.3) in terms of the coupling between torsion and 
flexure in the x and z directions due to the section's lack of symmetry. 
This mechanism is totally different When the slab continues across the 
beam and forms with it a T-shaped composite section. The coupling 
between torsion and flexure in T-shaped composite sections is much 
weaker and in cases where the flange extends equally on both sides of 
the beam, the two are totally uncoupled. Hence in an interior panel 
such as that shown in Fig. 4.1, if complete symmetry about column lines 
C and 3 is assumed (i.e., equal number of bays extend on each side of 
the interior panel as well as having identical support conditions and floor 
properties on the opposite sides of the lines of symmetry), and a unit 
rotation corresponding to degree of freedom 5 is imposed then beams 
C2-C3 and C3-C4 will be in pure torsion and beams 83-C3 and C3-03 will 
be in pure flexure due to compatibility requirements. On the other 
hand, torsion and flexure are always coupled in the edge beams. 

The multi-panel floor shown in Fig. 4.1 shows many different com
binations of boundary effects in the three different types of panels. 
The corner panel and the interior panel represent respectively the least 
and most stiff panels in the floor. A rotation in the sense of the 
second degree of freedom (Fig. 4.1) tends to induce primarily two tor
sional L-shaped sections and one flexural T-shaped section, while the 
third degree of freedom puts the T-shaped section in torsion and the L

shaped sections in flexure. 

Another important consideration is the influence of the slab con
tinuity on the carryover factors in the panel. Applying a rotation in 
the sense of the fourth degree of freedom shown in Fig. 4.1 will transfer 
different moments to supports A2 and Bl from those transferred to 
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supports C2 and 83 due to the different slab continuity conditions at 

the two sets of supports. 

This chapter is devoted to determining quantitatively the influence 
of these boundary conditions on the stiffness matrix of each panel in 

order to develop a realistic stiffness model for the floor. 

4.2 Floor Parameters Considered and Computer Program Used 

The same parameters as in the case of single-panel floors (i.e., 

ds/Ll' a, S, and L1/L2) are considered in this chapter to determine 
whether changes in boundary conditions change the basic relationships 
established for single-panel floors, especially the case of the interior 

panel where the boundary conditions differ most from those of a single
panel floor. 

The computer program and modeling techniques utilized in this 
chapter are the same as those described in section 3.3. 

4.3 Corner Panel of a Multi-Panel Floor 

In investigating the stiffness of the corner panel shown in Fig. 4.2, 

two considerations should be taken into account. First. the moment needed 
to produce a unit rotation at each of the four supports will be different 
due to the different slab continuity conditions at the edges as dis
cussed in the previous section. The stiffness at support Al will be 
closer to that of a single-panel floor and at support 82 to that of an 
interior panel. Secondly, a single value of a is used to describe the 
beams in a panel. This is possible in the case of a single-panel floor 

where the width of slab used to define a (eq. 2.8) is the same for 
both parallel beams. However, in a corner slab this does not hold true. 
The slab width defining a for beam B1-82 in Fig. 4.2 is twice that which 
defines a for beam Al-A2. Hence, while a constant a in a single-panel 

floor produces identical parallel beams, in a corner panel it produces 

interior beams (81-B2 in Fig. 4.2) with twice the stiffness of edge beams 
(Al-A2 in Fig. 4.2). Consequently, corner panels with identical parallel 
beams will have different values of a in the same panel. In practice, 

the size of the edge beams could vary from a little above half that of 
parallel interior beams to equalling them. This difference in the size 
of parallel beams in a corner panel could influence the terms of the 
panel stiffness matrix. 
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40301 Scope of Investigation of Corner Panels 

The investigation of the corner panel shown in Figo 402 is limited 
to the following considerations: 

'0 Establishing the panel stiffness matrix defined by the eight 
degrees of freedom shown in Figo 403, and the influence of Ll /L2, ds/Ll' 
a, and S on the terms of the matrixo 

20 Determining the influence of different-sized edge and interior 
beams by comparing the results of changing the moment of inertia of the 
interior beams from equal to, to twice that of the edge beams 0 

30 Comparing the results of the corner panel with those of a single
panel floor established in Chapter 30 This comparison permits first, 
to determine the influence of the different boundary conditions along 
two edges of the panel and, secondly, to decide whether this influence 
is large enough to require different graphs for determining (K11)S' Y, 
and the carryover factors from those established in Chapter 30 

40302 Modeling of a Corner Panel 

The computer program (SAP-IV) and the modeling techniques used are 
exactly the same as those described in section 3030 The only outstanding 
question is the number of panels needed to accurately model the influence 
of slab continuity along two edges of the corner panel 0 A four-panel 

model with 18 degrees of freedom, as shown in Figo 4.3, is found adequate. 
This is established by comparing the results of a case where the slab is 
assumed fixed along edges GI and IC with another case where these edges 
are free. The results of these two cases are almost identical. The 
model used for the study of the corner panel considered edges GI and IC 
free. 

The number of finite elements used for each of the three sets of 
floors (i.e., Ll/L2 = 1.0, 0.5, and 2.0) was established by convergence 
studies, similar to those described in section 3.4. It was found that 
a coarser mesh in the three panels adjacent to the corner panel gave 
adequate results. Figure 4.3 shows the finite element mesh pattern used 

for the case L,/L2 = 1.0. 
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The corner panels analyzed fall into two basic categories. First 
are those which have interior beams (e.g., beams 81-B2 and Cl-C2 in 
Fig. 4.2) with twice the flexural stiffness of the edge beams parallel 
to them (i.e., beam Al-A2 in Fig. 4.2), meaning that the value of a is 
constant for all parallel beams in the floor. The reason for choosing 
this relationship between the interior and edge beams in this section 
of the analysis is that it defines corner panels with the largest 
expected differences from the single-panel floors of Chapter 3, thus 
establishing the higher limits of variance in the stiffness values 
and carryover factors in the two cases. These corner panels are referred 
to in this chapter as floors with IIconsistent values of a. 1I The term 
IIconsistentll is used since one value of a is sufficient to define both 
parallel flexural beams (i.e., beams AD and BE in Fig. 4.3). The physi
cal dimensions of the panels analyzed are given in Table 4.1. 

The second set of corner panels has identical parallel beams (e.g., 
beams Al-A2, 81-82 and Cl-C2). Comparing the results of this set of 
floors with those described above will establish the influence of varying 
the size of the interior beams on the stiffness and carryover factors 
of corner panels. This comparison is only carried out for the case of 
Ll/L2 = 2.0 inasmuch as Chapter 3 established that the influence of 
the slab ;s most significant for that value. Furthermore, the influence 
of the interior beams on the stiffness at the corner support is dependent 
on the influence of the slab in interrelating all these beams. Hence, 
the higher the slab participation (i.e., larger Ll /L2) the more the 
change in the interior beams will affect the stiffness at the corner 
support. Corner panels with equal parallel beams analyzed in this section 
are referred to in this chapter as "floors with nonconsistent a,1I and 
their physical dimensions are given in Table 4.2. 

4.3.3 Stiffness ,Carryover Factors and Neutral Axi s Locati on of a 
Corner· Pane 1 

The results given in this section correspond to the degrees of 
freedom shown in Fig. 4.3 and are evaluated in exactly the same fashion 
as described in sections 3.4, 3.5 and 3.6 of Chapter 3. 

The stiffness (Kll}S of a corner support and the position of the 
neutral axis ~ for floors with a consistent value of a are given in 
Tables 4.3, 4.4, and 4.5, and those for floors with nonconsistent values 
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of a are given in Table 4.6. These results agree with the basic patterns 

established in Chapter 3. 

Comparing the results. o~ Tables 4.5 and 4.6 shows the influence of 

changing the cross section of the interior beams to be negligible. Re

ducing the stiffness of the interior beams by one-half resulted in a 

maximum variation of 0.64% in the value of (Kll)S/(Kll)~ and 0.36% in 

the values of y. These small variations become eVen smaller as the a 

of the edge beams increases, thus reducing the relative contribution of 

the slab. 

The carryover factors for floors with consistent values of a are 

given in Table 4.7 and those for noors with noncorisistent values in 

Table 4.8, using degrees of freedom shown in Fig. 4.3. Again the results 

agree with the basic patterns established in Chapter 3. 

Comparing the results of Tables 4.7 and 4.~ agafh shows the influence 

of varying interior beam size to be small. The maximum variation in CF13 
is 2.15% while that in CF15 is 8.17%. Notice that the variation in CF'5 

is far less significant than the percentage variations make it appear. The 

maximum difference occurs when a = 0.4 and CF15 in the two types of 

floors 15-0.225 vs. -0.208. The variation in carryover values falls 

off quickly so that for edge beams with a equal to 8.0 the maximum varia

tionin CF13 is only 0.85% and for CF'5' 1.19%. This larger influence 

on the carryover factors than on (Kll)S and y;s to be expected since 

doubling the stiffness of the interior beams will have its maximum effect 

around the support into which these beams frame. 

It can be concluded from this that the stiffness, the position of 

the floor neutral axis, CF13 and CF15 at a corner support can be adequate

ly evaluated from the slab thickness and structural properties of the 

edge beams framing into the support, whether or not identical parallel 

beams are used in the floor. 

Tables 4.7 and 4.8 also show values of CF19 , CFl 13) and CF1 17' 

These reflect the coupling between supports more than one panel apart 

resulti ng from continuity of the f1 oar slab. The very small amount of 

coupling ref1ected by these three carryover factoY's confirms the establis.hed 

practice of neglecting such coupling and modeling the building as a series 

of intersecting orthogonal planar frames. 
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4.3.4 Influence of Boundary Conditions on (K11 )S' y, and Carryover 
Factors of a Corner Panel 

fable 4.9 presents a comparative summary of the stiffness (Kn)S' 
position of the neutral axis y, CF13 and CF15 of a corner panel and a 
single-panel floor. The percentage differences (Diff. %) reflect the 

influence that changing the boundary conditions along the two edges of 
a panel farthest from where the moment is applied has on these terms. 
A careful study of Table 4.9 shows the following: 

"I. Slab continuity makes the corner panel stiffness (Kn)s 

higher than that of a single-panel flQor, but the increase is small 
(the maximum difference in these floors is 4.5%) with the increase being 
larger for lower values of a and for higher vaiues of L,/L2. This is 
consistent since decreasing a and increasing Ll/L2 both have the effect 
of increasing the relative contribution of the slab to the total stiffness 

of the floor (K11)S' Hence, changing the boundary conditions along the 
edges of the slab is expected to have its maximum effect in floors with 
lower values of a and with higher values of L1/L2. 

2. The percentage difference in y is highAr than that for (K1l)S' 
but is not substantial. In the cases L,IL2 = 1.0 and 0.5, this difference 
falls off as a increases (e.g., goes from 7.87% for a = 0.8 to 0.5% 
for a = 8.0 when L,/L2 = 0.5). Notice that y, as defined in eq. 3.6, 
defines the position of the neutral axis somewhere between that of the 

slab and the beam. Hence, for shallow beams (i .e., low a), the eccentri
ci ty e is already sma"ll and even larger differences in percentage than 
those registered in Table 4.9 for the value of y will translate into 
only small shifts of the position of the neutral axis. This trend is 
reversed for L1/L2 = 2.0 where the difference increases as a is increased. 
Furthermore, the change of boundary conditions results in moving the 
floor's neutral axis in a different direction for LI/L2 = 2.0 than for 
Ll/L2 = 1.0 or 0.5. Hence. while the slab continuity moves the floor 
neutral axis closer to that of the beam for L,/L2 = 1.0 and 0.5, it 
moves the floor neutral axis up toward the neutral axis of the slab for 
L1/Lz = 2.0 (i.e .• y for a corner panel decreases for L,/L 2 = 1.0 and 
0.5, and increases for Ll/L2 = 2.0). This indicates that the influence 
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of slab continuity of a corner panel depends on the value of L,/L2. In 
the case of short flexural beams (L 1/L2 = 0.5), the primary effect of 

slab continuity is to increase the restraint at the top of the beam, 
thus increasing its stiffness and sending the neutral axis of the floor 
closer to that of the beam. In floors with long flexural beams (L,/L2 = 
2.0) the primary influence of the slab continuity is to increase the 

effective slab width acting as a flange of the composite beam-slab sec
tion. This larger IIflange ll of the combined effective section brings 
the floor's neutral axis closer to that of the slab (i.e., larger ~). 

3. The influence of slab continuity on CF13 and CF'5 is extremely 
small for L,/L2 = 1.0 and 0.5. The Diff. % for L,/L2 = 2.0, however, 
can be substantial as it reaches 38% tor CF

'5 
when a = 0.4. These 

differences falloff as a and S are increased. It should also be noted 
that as large as the Diff. % are, the differences in absolute values 
are not as dramatic. The largest difference between a corner panel 
and a single-panel floor was CF

'5 
= -0.16 vs. -0.23 when a = 0.4 and 

S = 0.064. 

4.3.5 Summary and Conclusions 

The influence of continuing the slab across two edges of a corner 
panel as compared with a single-panel floor is a small increase in (Kl1)S 
at the corner support, a small shift in the position of the floor's 
neutral axis, and for L,/L2 > 1.0 some effect on the carryover factors 
CFl3 and CF,5 . These variations are primarily determined by the panels, 

aspect ratio, slab thickness, and size of beams framing into the corner 
support. Varying the size of the other beams in the floor has a negli
gible influence on the results. 

Given the small change due to the difference in boundary conditions, 
the graphs and tables developed for single-panel floors in Chapter 3 
adequately model the stiffness of a corner panel. 

4.4 Interior Panel of a Multi-Panel Floor 

It is the accepted practice in analyzing interior panels of a floor 
to assume an unlimited number of panels extending in all directions. 

Beside this condition, the interior panels analyzed here are assumed 
to be within floors with a constant slab thickness ds ' identical beam 
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cross sections for all parallel interior beams, and identical span 
lengths for all the panels in the floor. It should also be noted here 
that in an interior panel such as that shown in Fig. 4.1, it is assumed 
that a unit rotation at a support is resisted by four surrounding panels 
and the term (Kll)~ is twice that defined by eq. 3.5, since two identical 
sets of flexural and torsional beams frame into the support. Hence, in 
the section dealing with interior panels: 

r 
r 4EIFB GJ TB (K11 ) B = 2 [L + -- ] 

1 L2 
(4.1) 

Furthermore, there are now eight supports one panel length away from 
an applied rotation as compared with only three in previously considered 
cases, a nd hence more carryover factors become, rel evant in the case of 
an interior panel. 

4.4.1 Modeling of an Interior Panel 

The computational effort for analyzing an interior panel can be 
greatly reduced by utilizing symmetry conditions in the floor. Given the 

. . 

conditions of a uniform slab thickness, identical parallel beams, and 
identical panel spans, the floor s~6wn in Fig. 4.4 has two axes of 
symmetry. Compatibility conditions along these two axes require that 
when a rotation 8yy ;s applied at support C3 while all other supports are 
fixed. the floor is in pure torsion along column line C and in pure 
flexure along column line 3. Hence, the analysis could be carried out 
using only a quarter of the number of panels (cutting the floor along 
the axes of symmetry. and using only half of the stiffness of the beams 
along column lines C and 3). In this case only 8yy rotations are allowed 
along column line C, and only ~z displacements and 8yy rotations are 
allowed along column line 3. These boundary conditions along column lines 
C and 3 apply at the neutral axis of the floor. However, the analytical 
model used (Figs. 3.4 and 3.7) applies all boundary conditions and loads 
at the finite element nodes situated along the slab mid-plane. Translat
ing the above boundary conditions from the floor neutral axis produces 
the following boundary conditions at the finite element nodes (Fig. 4.4): 
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1 
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o = Free 
I = Fixed 

The discussion of the use of symmetry presented above is theoretical
ly sound. However, there remains a question of whether the inherent 
inaccuracies of the modeling and computer pr09ram used (see section 3.3) 

will not be exaggerated by the use of symmetry to the point of introducing 
unacceptable errors into the results. 10 check for this, a sample case 
was run starting with a four-panel floor and comparing the results with 
those using only one panel with appropriate boundary conditions. The 
floors used and the finite element mesh utilized are shown in Fig. 4.5. 
The'structural properties of beams EH and EF used in the quarter model 
were only half those of the actual floor. The results of the two analyses 
are: 

- ) K-in 
{K11 srad y CF12 CF13 CF'4 CF15 CF16 CF17 CF18 

Full Floor 3755.88 0.66 0 .1585 .001 .0212 0 .0127 .0084 

1/4 Floor 3756.60 0.66 0 .1588 0 .0212 0 .0127 .0083 

Diff. % -.02 - - . 19 - - - - .12 

Notice that in the quarter floor model, the applied moment is a quarter of 
that in the actual floor. The rotation at support E will be the same for 
the full floor and quarter floor model used. A correct interpretation of 
the quarter floor model would be as follows: 

(4.2) 

(4.3) 
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(M, .) 

[CFl .J 
J M 

for j 3,4,5,6 (4.4) = 2.0 TM)~ = 
J F 11 M 

(Ml .) 

[CF, .J = J M 
for j :;; 2,7.8 (4.5) 

J F (Mn ) ~1 

These results clearly show that the finite element model and the compu
ter program used maintain accuracy when structural symmetry is utilized, 
provided that correct boundary conditions are used and the results 
adequately interpreted. 

While symmetry reduces tremendously the computational effort 
required to analyze an interior panel, it is necessary to determine the 
number of panels to be included in the analysis to determine the influence 
of the floor continuity along all four edges. The 16-panel floor shown 
in Fig. 4.4 was analyzed for the stiffness (Kl1)S at support C3 and the 
carryover factors to adjacent supports with the outer edges of the 
floor either fixed or free. The 16 panels were all square with ds = 10.0 

in., a = 0.8, S = 0.065, and L, = 240.0 in. The results of these two 
ana'lyses were: 

( K-in 
Kn ) S rad y CF13 CF'5 

Free Outside Edges 3543510.77 0.438 0.314 -0.050 

Fixed Outside Edges 3544628.65 0.436 0.316 -0.050 

DifL % -0.03 0.46 -0.64 -

The number of finite elements needed for each set of interior panels 
(i.e., L,/L 2 = 1.0, 0.5, and 2.0) was established through convergence 
studies such as those described in section 3.4. The convergence studies 
showed that the outside panels required a coarser mesh than the interior 
panels where the rotations are applied. 
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The physical dimensions of the interior panels analyzed are given 

in Tables 4.10, 4.11 and 4.12. The significance of the chosen values of 

a and S is similar to that described in Table 2.2a with the primary 
consideration being to include the bounds of values most commonly ex
pected in practice. 

4.4.2 Stiffness, Carryover Factors and Position of Neutral Axis of 
an Interior Panel 

Considering a support in an interior panel of a floor, such as 
support E in Fig. 4.6, (Kl1)S is the moment necessary to produce a unit 
rotation in the sense of the first degree of freedom shown in the figure 
while all other rotational degrees of freedom at the floor1s supports 
are fully restrained. Following the procedures of previous chapters, 
Fig. 4.6 clearly shows that 16 carryover factors should be considered. 
However, due to the symmetry of the floors described in section 4.4.1, 
the following relationship between these carryover factors exists: 

ICFl3 1 = ICF19 1 (4.6) 

ICF14 1 ICF, 10 1 (4.7) 

ICF15 1 ICF, 13 1 (4.8) 

ICF16 1 I CF J 141 (4.9) 

ICF17 1 I CF 1 11 I = I CF1 15 1 = ICFl 171 (4.10) 

ICF18 1 ICF1 121 = ICF1 16 1 = I CF 1 181 (4.11) 

Hence the first eight carryover factors are sufficient to establish all 
sixteen. 

The floor stiffness at an interior support (K1l )S and the position 
of the neutral axis yare given in Tables 4.13, 4.14, and 4.15. The 
results in these tables confirm the general conclusions of Chapter 3 as 

to the influence of the four structural parameters a, S, ds/Ll' and L,/L2 
on (K11 )S and y, and establish the fact that these relationships are 
practically independent of the boundary conditions. 
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The influence of slab continuity on the stiffness of an interior 
panel can best be displayed by the plots shown in Figs. 4.7,4.8, and 

4.9 where values of (Kll)S/(Kll)~ for a single-panel and an interior 
panel are presented together for the three L,/L2 ratios investigated. 
As expected, the interior panels are consistently stiffer as the slab 

continuity adds a partial restraint along the edges of the panel. There 
is a discrepancy in the case of L,/L2 = 0.5 (Fig. 4.8) and a > 3.0 where 

the interior panel has a lower value of (Kll)s/(Kll)~ than the single
panel floors. This is due to the error introduced into the mode' of 
the interior panel from using flexural beams with short shear spans and 
large moments of inertia where shear dominates the behavior. As an 
example, for L,/L2 = 0.5, L, = 120 in., and a = 4.0, Table 4.11 shows 
the flexural beams to have a depth of 31.5 in. resulting in a depth-to
shear span ratio of larger than 1:4. As shown in section 3.3, the beam
slab model used in this investigation ;s accurate for slender beams, but 
degrades as the beam depth-to-shear span ratio increases. Notice that 
shear effects become predominant in an interior panel for smaller values 
of a than in a single-panel floor. The reason is that the width of slab 
used to define a (eq. 2.8) is larger in an interior panel ~ as the slab 
extends on both sides of the beam and, hence, the same value of a pro
duces deeper beams (i.e., larger depth-to-shear span ratio) in an interior 
panel than in a single-panel floor. 

Figures 4.7, 4.8~ and 4.9 also show that the increase in the floor 
stiffness due to slab continuity in an interior panel over the stiffness 
of a single-panel floor is small for low values of Ll/Lz (e.g., an 

increase of 6.1% in the value of (Kll)s/(Kll)~ for L1/L2 = 0.5 and a 

= 0.4). The increase in stiffness becomes sizable as Ll/L2 increases 
(e.g., an increase of 15.9% in (Kll)s/(Kll)~ for L,/L 2 = 2.0 and a = 

0.4). This trend is consistent theoretically as it has already been 
shown that the relative contribution of the slab to the overall stiff
ness of the floor gets higher as L1/L2 increases and consequently the 
effect of changing the slab boundary conditions from a single-panel floor 

to an interior panel will also be higher as Ll/L2 increases. Hence, 
while the boundary conditions of a corner panel did not produce a 
significant increase in the stiffness over that of a single-panel floor, 
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the increase due to slab continuity on al'l four sides as in an interior 
panel cannot always be neglected. This is especially true when a is 

low and Ll/L2 > 1.0. 

Figures 4.10, 4.11, and 4.12 show plots of y for a single-panel floor 
and for an interior panel. Here. the influence of the boundary conditions 
is not as easily discernible. As explained in section 3.5 above, the 
value of y is primarily dependent on a and Ll /L2, but can be signifi
cantly influenced by varying ds/L, and to a lesser extent by varying S. 
In the case of L,/L2 ~ 1.0 (Fig. 4.10 and 4.11) the difference in the 
values of y for a single-panel floor and an interior panel are close 
enough that a single curve can be used for both cases. Comparing the 
values of I~B (eq. 3.5) based on the values of y from the analysis 
with those based on values of y from the curve in Fig. 4.11 gives a 
maximum variation of 5.0% which occurs for the case where Ll/L2 = 0.5 
and a = 0.8. 

The difference in y for the case of L,/L2 = 2.0 (Fig. 4.12) is more 
significant with y being larger in interior panels reflecting the influ
ence of slab continuity along the edges of the interior panel. Notice 
that the values of y (Fig. 4.12) diverge as a increases. The reason ;s 
that as a gets smaller, the beams become shallow and the eccentricity e 
between the neutral axes of slab and beam is small so that a larger slab 
participation in the overall stiffness has a small effect on shifting the 
floor neutral axis. An analogy with a T-beam could be drawn here where 
if the flanges of the beam are very wide relative to the web, an increase 
in the flange width will increase the stiffness more appreciably than it 
will move the location of the neutral axis which is already close to the 
flange centerline. Conversely, a T-beam with a relatively narrow flange 
will undergo a more significant shift in the location of its neutral axis 
away from the web's centerline as the flange width increases. Thus the 
results of Figs. 4.9 and 4.12 show that the increased "flange width" of 
the effective section in an interior panel has its higher influence on 

y for higher values of a (i.e., deep web) and higher influence on (K'l)S 
for lower values of a (i.e., shallow beams). 
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The carryover factors, as defined by the degrees of freedom shown 
in Fig. 4.6, are given in Tables 4.16, 4.17, and 4.18. These carryover 
factors are as defined by eq. 2.10 where CF .. is the ratio of the lJ 
moment needed to restrain support j to the moment necessary to produce a 
unit rotation at support i. However, a rotation at an interior support 
such as rotation 811 at support E (Fig. 4.6) is resisted by four adjacent 
interior panels and the contribution of each interior panel to the support 

stiffness (K11)IP is equal to 1/4 (K11)S' On the other hand, the number 
of interior panels contributing to the moments at the other supports is 
less than four (i.e., imposing a unit rotation in sense of the first 
degree of freedom, two panels contribute to moments at supports B. 0, F, 
and H, while only one panel contributes to moments at supports A, C, G, 
and I in Fig. 4.6). If each of the interior panels considered were to be 
isolated along the column centerlines, splitting the beams equally between 
adjacent panels, then the interior panel contribution to the carryover 

factors (CFij)IP would be as follows: 

(CFij)IP = 
(Ki j) I P 
(Kll ) I P 

(4.14) 

{CFij)IP = 
(K; j) IP 

O. 2S( Kn )5 
(4.15) 

e 
(CF13 )IP 

0.5(K13 )s 
2.0 (CF13 ) <I • = O. 2S(Kll ) 5 = (4.16) 

simi'larly: 

{CF15 )IP = 2.0 {CF15 ) (4.17) 

These panel carryover factors can now be compared to the single-panel 
floor carryover factors to identify the influence of slab continuity along 
the four edges of a panel. Figures 4.13, 4.14 and 4.15 give comparative 
plots of CF13 for a single-panel floor and (CF 13 )IP of an interior panel. 
Figure 4.16 gives a similar plot for CF1S ' These figures show that the 
increased stiffness of an interior panel slab, due to its continuity at 
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the edges, results in a higher capacity to redistribute the moments 
away from the flexural beams (i.e., lower values of CF13 ) and toward 
the torsional beam (i.e., higher values of CF

1S
)' This influence is 

most significant for Ll/L2 = 2.0 as the slab participation increases 
with the panel aspect ratio. 

The values of CF'7 and CF,S shown in Tables 4.16, 4.17, and 4.1S 
confirm earlier findings that coupling between diagonal supports in a 
floor panel is very weak. Notice that CF12 = CF14 = CF16 = 0.0 and are 
not given in the tables. 

The values of (Kl1)S/(Kl1)~ given in Tables 4.13,4.14, and 4.15 
are also for an interior support and include the contribution of the 
four panels sharing that support. Unlike the carryover factors, however, 
this ratio remains the same when the contribution of only one interior 

panel is considered since both (K11)S and (Kll)~ would have to be divided 
by 4.0. 

4.4.3 Summary and Conclusions 

The boundary conditions created by slab continuity along the four 
edges of an interior panel markedly influenced the stiffness when com
pared with a single-panel floor. The restraint along the edges increased 
the stiffness of the panel which was more pronounced as Ll/L2 increased 
and a decreased. 

The position of the neutral axis was not affected substantially 

except for floors with Ll/L2 > 1.0. The influence of the boundary 
restraint was to shift the neutral axis closer to the slab centerline 
reflecting a wider slab participation along the beam span. 

Carryover factors CF12 , CF14 , and CF16 are equal to zero in an 
interior panel. The interior panel carryover factor CF13 was lower than 
that of a single-panel floor with the largest drop being for L,/L2 = 2.0 
and for lower values of a. On the other hand, CF15 was higher in an 
interior panel which reflected an increased role of the slab in redis
tributing the moments. 

The variations in the values of (Kl1)S/(Kl1)~ and the carryover 
factors due to the boundary conditions of an interior panel were large 
enough to make deslrable an independent set of curves for these values 
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rather than use those estab 1 i shed for a si ngle-pane 1 floor, In the 
case of y, this was only true for L,/L2 > 1,0. 

4.5 Exterior Panel of a Multi-Panel Floor 

The single-panel floor and an interior panel represent the two ex
tremes in boundary conditions that are encountered when dealing with 
floor stiffnesses. A single-panel floor, discontinuous along all four 
edges, is the most flexible while an interio}~ panel continuous along all 

four edges, represents the stiffest panel. These two limiting cases have 
been presented above and divergence between them illustrated in Figs. 
4.7 through 4.16. However, in the multi-panel floor shown in Fig. 4.1 
there are other panels with boundary conditions that would place their 
stiffness matrix somewhere between these two bounds. The stiffness at 
supports Bl and B2 and the carryover factors associated with them are 
good examples of this. 

The divergence between the two limiting cases (Figs. 4.7 through 
4.16) is distinguishable but not very large. This raises the question 
of whether developing three more intermediate sets of curves for exterior 
panels is necessary. Increasing the number of different panels to be 
considered when analyzing a floor substantially increases the complexity 
of modeling without necessarily enhancing the accuracy of the final re
sults. Furthermore, the computational effort required to analyze an ex
terior panel far exceeds that for others. The symmetry conditions of an 
interior panel make it possible to analyze only a quarter of the floor 
and thus reduce the computational effort required. This is not so with 
the exterior panels where a larger number of panels must be included in 
the analysis. Nevertheless, one of these intermediate cases is analyzed 
below to illustrate the validity of the above arguments. Figure 4.17 
gives the case analyzed and the degrees of freedom studied. The floor 
had the following structural properties: 

Ll = L2 = 240 in. 
ds = 6.5 in. 
a = 0.8 
S = 0.064 

DFB = DTB = 18.021 in. 

(K11)B = 517534.84 K-in/rad. 
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Notice that bays EFJI, FGKJ, IJNM, and JKPN all require fine grids of 
finite elements to give adequate results as all four frame into support 
J where the rotation is applied. In this particular case, 672 finite 
elements, 232 beam elements, and a total of 967 nodes were used to model 
the floor. This was not arrived at through convergence studies but was 
rather based on experience from previous analyses in the thesis. This 
was necessary due to the prohibitive cost of a convergence study. The 
slab-beam model and computer program used are the same as those described 
in Chapter 3. 

4.5.1 Stiffness, Position of Neutral Axis, and Carryover Factors of an 
Exterior Panel 

The stiffness of the exterior panel and the position of the neutral 
axis resulting from the analysis are: 

(Kll ) S K-in K )r K-in ( Kl , ) SI (K11 ) B (Kll ) Sl (K" ) ~ y rad ( 11 B rad 

0.536 10066662.11 689196.57 2.061 1.548 

The carryover factors corresponding to the degrees of freedom shown in 
Fig. 4.17 are: 

CF12 CF'3 CF14 CF15 CF16 CF17 CF18 CF'9 CF 1 10 CF1 11 CF, 12 

- .164 - -.027 .001 .008 .007 .162 - .009 

These are support carryover factors. as distinguished from panel 
carryover factors, of an exterior panel. The distinction is exolained 
in section 4.4.2. It should be noted that. despite the fact that the 

.002 

slab was continuous across column line GK and was discontinuous along IE, 
the carryover factors CF13 and CF19 were very close as were CF17 and CFl 11' 

This shows that the change of boundary conditions one panel length away 
from where the rotation is applied, does not appreciably change the carry
over factors. The carryover factors at supports M, N, and P (Fig. 4.17) 

are the same as those at supports E, F, and G, respectively. 
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The following table compares the stiffness and CF'3 for a single
panel floor with an exterior and an interior panel. Notice that the 
CF13 used is for a panel and not a support. 

Panel ( 1<11 ) SI ( 1<11 ) ~ CF13 

Single 1.476 .338 

Exterior 1.548 .328 

Interior 1.578 .328 
I 

The values in the table confirm that the exterior panel has stiffness 
and carryover factors intermediate between the two limiting cases of a 
single-panel floor and an interior panel. However, the values of the 
main terms of the stiffness matrix of an exterior panel are shown here 
to be closer to those of an interior panel. 

4.6 Summary and Conclusions for the Influence of Boundary Conditions 
on the Stiffness Matrix of a Floor Panel 

The influence of boundary conditions on (K,1)S' position of the 
neutral axis y, and the carryover factors of a floor panel is determined 
by analyzing corner, exterior, and interior panels. The results are 
compared with those of a single-panel floor. The slab-beam model and 
the computer program used in the analysis are the same as those described 
in Chapter 3. The findings of the investigation carried out in this 
chapter can be summarized as follows: 

1. Slab continuity along any of a panel IS edges produced an 
increase in the rotational stiffness {K11)S' and consequently a higher 
value of the ratio (Kl1)s/(Kl1)~' due to the stiffening of the slab as 
it ;s partially restrained along the continuous edges and thus increases 
its contribution to the overall stiffness of the panel. 

20 The carryover factor CF'3 decreased and CF'5 increased as the 
number of continuous edges in a panel increasedo The higher slab stiff
ness due to the partial restraint at the edges increased the slab's capa
city to redistribute floor moments. 
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3. In general, the influence of slab continuity across the panel 
edges was to shift the floor neutral axis higher toward the slab mid
plane and therefore to increase y. The increase in y was proportional 
to the number of continuous edges in the panel. Nevertheless, the change 
in y was small and was significantly different from that of a single
panel floor only in the case of an interior panel with Ll/L2 = 2.0. 

4. It was necessary in interior and exterior panels to distinguish 
between "support" and "panel 'I stiffness and carryover factors. The dis
tinction is between the total support stiffness and the contribution of 
each panel framing into the support. The "support stiffness matrix" 
terms are defined as the moments necessary to impose a unit rotation at 
a support while restraining all other supports. The "panel stiffness 
matrix" is the contribution of a panel to the support stiffness (e.g., 
at an interior support, four interior panels contribute to the stiffness 
at the support). 

5. The panel stiffness increased with the number of continuous 
edges. Thus, interior panels and single-panel floors set the upper and 
lower bounds of a panel stiffness. All the terms of the stiffness matrix 
of a single-panel floor and a corner panel were close enough that they 
could be used interchangeably for analytical models. 

6. The terms for the stiffness Jf an exterior panel fell between 
those of corner and interior panels. The stiffness of edge supports of 
an exterior panel is closer to that of a corner support and the stiffness 
of an interior support of an exterior panel is closer to the stiffness 
of an interior panel support. Hence, the values for the stiffness matrix 
of corner and interior panels can be used to approximate the stiffness of 
an exterior panel. 
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5. "STIFFNESS ~1ATRIX METHOD" OF MODELING ROTATIONAL 
STIFFNESS OF TWO-WAY SLAB FLOORS 

5.1 Introduction 

The previous three chapters present a detailed investigation of the 

rotational stiffness of a two-way floor slab as determined by the panel·s 

main structural parameters (i.e., ds/L" a, S9 L1/L2) and the possible 

different boundary conditions of a panel according to its position with
in a multi-pane-' continuous fioor system. The objective of this investi

gation, as already stated in Chapter 1, is to develop a practical and 

accurate model of the rotational stiffness of a floor slab for use in 

analyzing multistory moment-resisting frame structures having as a 

floor system two-way slabs (Fig. 5.1). 

Presently used models, which are described in section 1.2, seek 
to establish the physical properties of an equivalent structure that 

will accurately model the rotational and translational stiffness of the 

column-floor moment-resisting frame. In general this is accomplished 

by establishing a certain "effective slab width" to be considered as 
a flange of an equivalent beam. This L- or T-shaped beam is then con
sidered to define the approximate contribution of the floor to the over

all stiffness of the structure The ACI 318-71 equivalent frame method, 
which is described in section 1.2, goes further in also modifying the 

rotational stiffness of the column in an attempt to upgrade model 

representation of the floor 1 s structural behavior. 

In the elastic analysis of a structure using the direct stiffness 

method, the stiffness matrix of equivalent members, which models the 
floor contribution, is alone sufficient. Defining an actual physical 
shape for these elements is not only unnecessary but can add restric
tions on the versatility of the model as described in section 1.2, The 

Stiffness Matrix Method (SMM) is developed in this chapter from the 

results of this investigation. In this method. the elastic stiffness 

of a floor panel is modeled by a set of uniaxial members, each with 

three degrees of freedom, The S~'1M does not identify a physical shape 

for these members; rather, it establishes a procedure by which the posi

tion of the neutra1 axis of the equivalent member in relation to the top 
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of sl ab and its member sti ffness matri x can be computed di rectly from a 

set of graphs based on the boundary conditions and the main physical 

parameters (ds ' a, S, and L1/L2) of the panel under consideration. 

The rest of the chapter is devoted to applying the stiffness matrix 
method in analyzing lateral stiffness of some structures. The results 
are then compared with those derived from other currently used mOdels 
and with those based on a finite element model whenever this is possible. 

This comparison allows an objective evaluation of the accuracy and 
practicability of the various models. 

5.2 Stiffness Matrix Method for Modeling Rotational Stiffness of a 
Two-Way Slab Floor 

The results obtained in the studies of individual panels and the 
evaluation and discussion of these results presented in the previous 
chapters have allowed the determination of the main parameters controll
ing the rotational stiffness of a two-way slab floor which is the basis 
for the SMM. The results clearly show that coupling between supports 
along a diagonal and supports more than one span length from each other 
is very weak. Hence, it is concluded that the currently used method of 
replacing the floor by equivalent members which only couple adjacent 
supports is adequate in an elastic analysis. 

The investigation also shows that while coupling between supports 
is higher along a flexural beam, the coupling along a torsional beam 
cannot always be ignored. Hence the equivalent members in the SMM are 
defined with three degrees of freedom [Fig. 5.2(b)], one torsional and 
two flexural (one flexural degree of freedom at each end of the member). 
The torsional degree of freedom is uncoupled from the flexural one, and 
the stiffness matrix of the equivalent member, [k] (equivalent member), 
has the form: 

[k] (equivalent) = (K)em 
member 

where (K)em is a scalar, S22 = $33 and k23 = k32 

-68-

( 5.1) 



The symmetry conditions (i.e.~ 522 = $33 and k23 = k32 ) given in 
eq. 5.1 are theoretically correct in interior panels (as defined in 
section 4.4) only. In other panels there is some difference in the 
value of these terms. As an example, the contribution of the corner 
panel (Fig. 5.1) to resisting a e rotation at support B is a little yy 
higher than at support A due to the different slab continuity conditions 
along column lines AE and BF. Hence 522 and 533 in equivalent member 

AB [Fig. 5.2(a)] should be different. However, the results presented 
in Chapter 4 show that this difference ;s very small and does not justify 
the complication resulting in the model if these differences were to be 
included. A compromise between accuracy and simplicity is necessary for 
practical applications. 

The investigation of the floor stiffness presented in previous 
chapters was based on support degrees of freedom and the stiffness terms 
reflected the contribution of the flexural and torsional beams of all 
the panels that framed into a support. Hence, it is necessary that the 
stiffness matrix of the equivalent members be such that as they are 
added together they will produce the same support stiffnesses as those 
found in the investigation. 

The 5MM identifies two types of equivalent members: edge members 
[e.g., members BC and AE in Fig. 5.2(a)] and interior members [e.g., 

members BF and FJ in Fig. 5.2(a)]. Both have a 3 x 3 stiffness matrix 
(eq. 5.1) and differ only in the equations and graphs used to determine 
the matrix elements. Again it can be shown that the stiffness of the 
exterior panel (Fig. 5.1) along beam BC is higher than that of the corner 
panel along beam AB as well as that along beam BF being different from 
the stiffness of the interior panel along beam FJ. However, these dif
ferences were found to be small (see Chapter 4) and using one set of 
equations and graphs for all edge members and another for all interior 

members is justified. 

Figures 5.3(a), 5.3(b), 5.3(c), and 5.3(d) give all the graphs 
necessary to locate the neutral axis and calculate the stiffness matrix 
of equivalent edge members; and Figs. 5.4(a), 5.4(b), 5.4(c), and 5.4(d) 
are sufficient for calculating equivalent interior members. These figures 
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are derived from the results of the investigation presented in the previous 

three chapters as follows: 

1. Figures 5.3(a) and 5.4(a) define the position of the neutral axis of 
equivalent edge and interior members respectively. Figure 5.3(a) is derived 

from the results for a single-panel floor (Fig. 3.10) after the curves 

for L,/L2 = 1.0 and 2.0 were merged due to the very small variation between 

them. Figure 5.4(a) is an exact reproduction of the results of an interior 
pa n e 1 ( Fig s. 4. 1 O. 4. 11, and 4. 1 2) . 

2. Figures 5.3(b) and 5.4(b) define the stiffness matrix term (K)em 

for equivalent edge and interior members. respectively. Figure 5.3(b) is 

derived from the results of a single-panel floor (Fig. 3.9) and Fig. 5.4(b) 

from the results of an interior panel (Figs. 4.7,4.8, and 4.9). In the 

SMM, the value of (K'l)S of a floor panel as defined in previous chapters 
is proportioned between orthogonal equivalent members such that the flexural 

stiffness of one equivalent member plus the torsional stiffness of the 
orthogonal equivalent member will equal the (K1l)S of the panel. As an 
example, if the single-panel floor shown in Fig. 3.1 is modeled by four 
equivalent members between the supports, then: 

where single panel floor stiffness as defined 
in Chapter 3 

terms of stiffness matrix of equivalent 
member AB as defined by eq. 5.1. 

terms of stiffness matrix of equivalent 
member AC as defined by eq. 5.2. 

3. Figures 5.3(c) and 5.4{c) define the off-diagonal matrix terms 

k23 and are identical to the graphs for CF13 vs. a of a single-panel floor 
(Fig. 3.11) and those of an interior panel (Figs. 4.13, 4.14, and 4.15). 

CF13 in the actual floor panel and k23 in the equivalent member both 
define the moment necessary to restrain a floor support when a unit 

rotation is applied to the adjacent support (the rotation vector being 

orthogonal to the column line connecting the two supports). 
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4. Figures 5.3(d) and 5.4(d) define a factor S which is to be used 

in computing the value of S1' of the equivalent member stiffness matrix. 

The product S'l (K)em in eq. 5.1 defines the torsional stiffness of the 
equivalent member, and can be derived from the results of the analysis 
reported in previous chapters. 

Consider the single-panel floor shown in Fig. 3.1. The product 

(CF15 ) (Kl,)S is the torsion carried by the floor along beam AC due to a 
unit rotation at A in the sense of the first degree of freedom. This is 
analogous to the torsional stiffness of the equivalent member AC to be 
used in modeling the floor. Hence, the values of CF15 given in Figs. 
3.12,4.16 and Tables 4.16 through 4.18 can be used to determine S11 
as fo 11 O'.'/S : 

a) In the figures and tables of CF15 mentioned above, the values 
of Ll/L2 are based on L, being the span of the flexural beam (Fig. 3.1). 
In the SMM it is found more convenient to work with a value Lem which 
is the span of the equivalent member being considered and Lcm as the 
orthogonal span (cross member). This means that Lm/Lcm used in Figs. 
5.3(d) and 5.4(d) are the reciprocals of L,/L2 used in Figs. 3.12 and 4.16 
and in Tables 4.16 through 4.18. Notice that this is only necessary in 
dealing with the torsional stiffness of the equivalent member since in 

computing the flexural stiffness terms (i.e., (K)em' S22' S33' k23 and 
k32 in eq. 5.1) the equivalent member and the flexural beam in the panel 
coincide. Changing the values of L,/L2 in Figs. 3.12 and 4.16, and 
Tables 4.16 through 4.18 to their reciprocals gives the curves shown in 

Figs. 5.3(d) and 5.4(d) for the term S. 

b) The torsional moment at C due to a unit rotation at A (Fig. 3.1) 

was defined above as CF15 (K,1)S' Notice that (K,l)S is the panel stiff
ness term which has been assigned to equivalent member AB in the SMM 
(see point 2 above). Hence the torsional stiffness of equivalent member 

AC in this floor is equal to S[(K)emJAB' Thus, given the definition of 
Sl1 in eq. 5.1, it ;s clear that 

. _ [(K)em]AB 
(Sll)AC - [(K) ] (S)AC 

em AC 
(5.la) 
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5. In the computations of the stiffness matrix of edge members, a 

parameter ¢ is defined such that ¢ = 1.0 for all equivalent members fra

ming into a corner support (AB, AE in Fig. 5.2) and ¢ = 0.5 for all other 

equivalent edge members (BC, EI in Fig. 5.2). This is based on assuming 
that when computing the stiffness of an equivalent edge member such as 
CD (Fig. 5.1), only half of floor beam CG acts with it as part of 

exterior panel CGHD while the other half of beam CG acts with the adja

cent panel. Similarly, in the case of computing the stiffness of an 
interior equivalent member (e.g., GK in Fig. 5.2) only half of the 
orthogonal floor beams are considered to contribute; i.e., only half of 

floor beams GH and GF of Fig. 5.1 contributes to the stiffness of 
equivalent member GK and the other half contributes to equivalent member 
GC. 

5.2.1 Equations for Calculating Member Stiffnesses for the Stiffness 
Matrix Method 

This section describes in detail the step-by-step procedure to 
locate the neutral axes and to compute the value of the terms of the 
stiffness matrix of equivalent edge and interior members. 

a) * Procedure to Calculate Stiffness of an Equivalent Edge Member 

1. Calculate panel parameters ¢, a, B, e, and Lem/Lcm where: 

¢ = member parameter equal to 1.0 for members framing into a corner 
support and assumed equal to 0.5 for all other edge members. 

a = ratio of flexural stiffness of floor beam in the direction of 

edge member being considered to the slab stiffness as given by 
eq. 2.8. 

s = torsional stiffness of floor beam in direction of member 
¢ [flexural stiffness of orthogonal floor beam] 

e = eccentricity between slab mid-plane and the neutral axis 
of the floor beam in the direction of member being considered 
(Fig. 5.3). 

L /L = panel aspect ratio with Lem being the span of the equivalent em cm 

* 
member being considered. 

A detailed application of this procedure to model a 3 x 3 panel two-way 
slab floor is given in Appendix D. 
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2. Enter Fig, 5.3(a) with a and L IL and determine y. Then em em 
calculate the position of the member neutral axis ~ where: 

E;, = ye 

3. Calculate (Kll)~ at support where: 

4EIFB GJTB (Kll)~ = Lem + cP -L
cm 

and 

A = area of floor beam cross section 

Notice that flexural beam (FB) here refers to the floor beam in the 

direction of the equivalent member and the torsional beam (TB) ;s the 

orthogonal floor beam. 

4. Enter Fig. 5.3(b) with a and L /L m and determine (K)em/(K1l)rS' r . em c 
Given (K11)B from step 3, compute (K)em' 

~, Enter Fig. 5.3(c) with a and Lem/Lcm and determine k23 , From 

eq. 5.1, k32 = k23 , 

6. Enter Fig, 5.3(d) with a~ a, and L IL (as computed in step 1) em cm 
and determine S, Then compute Sl' where: 

cP [(K)em] orthogonal member 
= [(K}emJ member being considered (S) 

7, Compute S22 where: 

¢ [(K)em Sl'] orthogonal member 
S22 = 1.0 - [(K)emJ member being considered 

(Notice that for L /L > 1.0, the fraction is very small and S22 could em em 
be taken to be '.0. However for small panel aspect ratios and high values 

of S of the orthogonal member, the fraction should not be neglected.) 
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From eq. 5.1,533 = S22' 

* b) Procedure to Calculate Stiffness of an Equivalent Interior Member 

1. Calculate panel parameters a, S, e, and Lem/Lcm where a, e, and 
Lem/Lcm are computed the same as for an edge member, and 

s = torsional stiffness of floor beam in direction of member 
0.5 ~ flexural stiffness of orthogonal beams 

2. Enter Fig. 5.4(a) with a and L IL and determine y. Then em cm 
calculate the position of the member neutral axis where: 

I; = ye 

3. Calculate (Kll)~ at support where: 

4EIFB [~ GJ TB] 
= L + 0.5 ~ L orthogonal members 

em cm 

A = area of floor beam cross section. 

[Notice that the flexural beam (FB) and torsional beam (TB) are the 
same as defined for an equivalent edge member.] 

4. En;er Fig. 5.4(b) with a and Lem/Lcm and determine (K)em/(Kll)~' 
Given (Kl1 )B from step 3, compute (K)em' 

5. Enter Fig. 5.4(c) with a and Lem/Lcm and determine k23 . From 
eq. 5.1, k32 = k23 , 

6. Enter Fig. 5.4(d) with S, a, and L IL (as computed in step 1) em cm 
and determine S. Then compute S" where: 

* 

0.5 I L(K)emJ orthogonal member 
Sl' = [(K) J member being considered (S) 

em 

A detailed application of this procedure to model a 3 x 3 panel two-way 
slab floor is given in Appendix D. 
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7. Compute S22 where: 

0.5 E [(K)em S"J orthogonal member 
S22 = 1.0 - [(K)em member being considered 

From eq. 5.1, S33 = S22' Similar to the case of edge members, S22 
can be assumed to be 1.0 for L /L > 1.0. em cm 

Once the stiffness matrix and position of the neutral axis of each 

member are determined, the structure can be analyzed as a three-dimen
sional frame. The effects of shear on the floor stiffness are already 

included in the terms of eq. 5.1; hence, no other terms to model shear 

effects are necessary. Furthermore, if the floor is considered rigid 

in its own plane, as is usual in such analyses, then the axial areas 

of the equivalent members are not necessary and the 3 x 3 element stiff

ness matrix is sufficient. 

5.3 Application of Different Models to Compute Lateral Stiffness of 
Single-Panel, Single-Story Structures 

The SMM as well as other currently used methods (see section 1.2) 

is applicable for modeling a floor under combined loading conditions. 

This section, however, is limited only to investigating structures under 
lateral loads and is intended to evaluate the accuracy and practicabili

ty of the different models for use in ana-lysis of structures under 

lateral forces (wind or due to seismic excitations). 

Four different models are used to evaluate the lateral stiffness of 

a set of single-panel, single-story structures shown in Fig. 5.5 and de
scribed in Tables 5.1 through 5.4. These structures are monolithic, 

with material properties as those given in section 2.3.1, and have 
rectangular floors of uniform slab thickness ds ' parallel floor beams of 

identical cross section and four square columns with identical column 
depth C. 

The lateral stiffness of the structure KL is defined as: 

(5.2) 
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where P = static lateral laod applied at the floor level ~ Pj2 at each 
column top and 6T = lateral displacement of top of slab. 

5.3.1 Finite Element Method 

In this method, the floor slab is modeled as two-dimensional finite 
elements and the floor beams and columns as uniaxial prismatic members. 
The beams are connected to the finite element mesh with rigid links as 
described in section 3.3. The column members are placed at the column 
centerline and extend from the building's base to the bottoms of floor 

beams AB and CD. The top of the column is connected to the finite 
element mesh with a rigid link (assuming the beam-column joint to be 
infinitely stiff). Figure 5.6 shows the finite element model described 
above. Notice. that the lateral load is applied at the slab's center
line which is customary in such analyses and is based on the assumption 
that the floor slab accounts for the major share of the floor mass and, 
hence, also shares the largest part of the inertial forces in seismic 
loading. 

Computer program SAP-IV, which ;s described in section 3.3, is 

used to analyze the finite element model, and the results from the pro
gram include the displacements and rotations of the finite element nodes. 
Assuming plane sections in the slab remain plane, the displacement at 
the top of slab is easily calculated where: 

and 

d 

6ToP of Slab = 6Center of Slab + 2~O [tan 8yyJ (5.3) 

8 = rotation of finite element node at which 
YY lateral displacement is calculated. 

Notice that in a finite element model of the structure shown in 

Fig. 5.5, the lateral displacements at points A and C are equal as are 
those of points Band D. Since the model includes membrane stresses 
and strains, however, there will be some axial strain in the plane of 
the slab and the lateral displacement of point A will be slightly greater 
than that at point B. The lateral displacement used to calculate the 
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lateral stiffness of the structure is the average of the two, so that 

6T used in eq. 5.2 becomes: 

(5.4) 

5.3.2 Equivalent Frame Method 

The equivalent frame method recommended in the 1971 ACI Building 
Code L3] is described fully in section 1.2. which also describes the diffi
culties of applying it for analyzing structures subjected to lateral 
loads. Figure 5.7 shows the equivalent frame model used to represent the 

single-panel. single-story structure shown in Fig. 5.5. Due to the 
symmetry of the structure, only one frame need be analyzed to determine 
the lateral stiffness. Notice that the lateral load ;s applied at the 
top of the slab to simplify the analysis and approximates loading at 
the centerline of the slab as was done in the finite element method. 
This difference has a negligible influence on the final results. A 
closed-form solution for the lateral stiffness of the equivalent frame 
shown in Fig. 5.7 is given in Appendix B. The physical and structural 
properties of the equivalent frame shown in Fig. 5.7 are given in Tables 
5.5(a) through 5.5(d). 

5.3.3 Model Based on Strength Requirements of ACI 318-71, Section 8.7. 

This method is described in section 1.2. Figure 5.8 shows the model 
based on this method for the single-panel, single-story structure shown 
in Fig. 5.5, and the member structural properties are given in Tables 

5.6(a) through 5.6(d). The columns are assumed rigid across the depths of 
beams AB and CD, and the lateral loads are applied at the neutral axes 
of the equivalent beams. Due to the symmetry of the structure and the 
loading. only one frame need be analyzed for the lateral stiffness of 
the model. 

The frame shown in Fig. 5.8 is analyzed with the use of computer 
program ETABS [26J. This is a general-use program for the linear 
structural analysis of frame and shear wall buildings subjected to both 
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static and earthquake loadings, in which 

The building is idealized by a system of independent frame and shear 
wall elements interconnected by floor diaphragms which are rigid in 
their own plane. Within each column, bending, axial. and shearing 
deformations are included. Beams and girders may be nonprismatic 
and bending and shearing deformations are included. 

Nonprismatic beams are defined by using their stiffness matrix with the 
building data as input for the program. This particular program, rather 
than SAP-IV, was used for its high efficiency in analyzing framed struc
tures. 

The equivalent beam of the frame shown in Fig. 5.8 will not have 
any torsional moments when analyzed for the lateral load P/2.0 shown 
in Fig. 5.5. Hence, a stiffness matrix for the two flexural degrees of 
freedom in the floor beams is sufficient for the analysis. The stiffness 
matrix used for the beams in this model is of the form: 

4.0 
2.0 

2.0 
4.0 

where lAB = moment of inertia of equivalent beam AB 

(5.5) 

The results from the computer program include the lateral displace
ment of the equivalent beam (6N.A.), the moment at the column base (MBC )' 
and the moment at the column top (MTC ) where the rigid section meets the 
column. Assuming plane sections in the beam remain plane, the lateral 
displacement at the top of slab (6T) can be calculated as: 

6T = 6N•A. + A (tan eTC) (5.6) 

where A = distance from top of slab to neutral axis 
of equivalent beam. 

eTC = 
H-D 

[MBC-MTC ] (5.7) 
2EIC 

5.3.4 Stiffness Matrix Method 

This method is described in section 5.2. Since the structure shown 
in Fig. 5.5 has only exterior members, the equivalent member stiffness 

matrices can be determined by following the procedure described in section 
5.2.1a. The model for the structure shown in Fig. 5.5, based on this 

method, is shown in Fig. 5.9 and the member structural properties are 
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given in Tables 5.7(a) through 5.7(d). The lateral load is applied at the 

neutral axis of the equivalent members AS and CD which is defined by the 
term t;. 

Due to the symmetry of the model and of the loading, equivalent 

members AB and CD are in pure flexure while equivalent members AC and BO 

are free to stress in the analysis. Hence~ the lateral stiffness of the 

whole frame can be determined by analyzing only one frame, such as frame 
E,L\BF. 

The frame is analyzed using computer program ETABS L26], which is 

described above, and the lateral displacement of the structure at the 
top of the slab is calculated according to eq. 5.6. 

5.4 Evaluation of Different Models Used to Compute Lateral Stiffness 
of Single-Panel. Single-Story Structures 

The accuracy of the results is necessarily the single most important 

characteristic of an analytical model. However, a good model must also 

be relatively simple to use, adaptable to different analytical methods 

(e.g., computer programs, moment distribution, etc.) and different loading 

conditions (e.g., gravity and lateral loads), and efficient in its re

quirement of computational effort. 

The four models used in this investigation each have some particular 
properties based on the assumptions used in developing the model and 

these different properties must be considered when evaluating the results. 

Following are some of these aspects: 

1. The equivalent frame method is the only one with a provision 
for the influence of the column depth on the stiffness of the structure. 
This provision modifies the moment of inertia of the equivalent beam 

across the depth of the column. The other three methods neglect this 

effect and consider the columns as uniaxial prismatic members along the 
column centerlines. Neglecting the increased stiffness of the floor 

across the column depth has the effect of underestimating the floor stiff

ness. The influence of the column on the floor stiffness increases as 
the ratio of the floor span to the column depth decreases. The increase 

of the lateral stiffness of the structure in the equivalent frame method 

due to accounting for the increased floor stiffness at the columns 
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will be evaluated in the discussion of the results. 

2. The finite element model is the only one which accounts for in

plane axial strains in the slab. The other three models assume the slab 
to be rigid in its own plane. Neglecting in-plane strains overestimates 
the lateral stiffness of the structure. 

3. The lateral load is applied at different points in each model: 
at the slab's centerline in model one, at the top of slab in model two, 
and at the neutral axis of the equivalent beams in models three and four. 
This has little effect in floors with thick slabs and shallow beams, but 

the effect increases with beam depth. If the lateral load is consistently 
applied at the slab's centerline, the net effect would be to increase the 
lateral stiffness of model two and decrease that of models three and four. 
The change, however, would be slight. 

4. Model three is the only one that totally neglects the torsional 

effects of the slab and beams AC and BO. Including the torsional effects 
would increase the lateral stiffness of the model 9 especially for the 

case where L,/L2 = 2.0. 

5. Tables 5.5a through 5.5d point out that in the equivalent frame 
method, the influence of the torsional beam decreases as a increases, re
flecting the diminished capacity of the slab to distribute the floor 
stresses as it becomes more flexible in relation to the beams (e.g., for 

L,/L2 = 1.0, ds = 6.5 in., and C = 15 in., Kec/Kc = 0.62 for a = 0.8 while 
Kec/Kc = 0.93 for a = 3.0). For the same reason, changing the size of 
the torsional beam has a greater influence on Kec for lower values of a 

(e.g., for Ll/L2 = 1.0, ds = 6.5 in., and C = 15 in., increasing S from 
0.064 to 0.160 increases Kec by 28.3% when a = 0.80 while the increase 
is only 0.8% when a = 8.0). 

6. Tables 5.6a through 5.6d point out that the model based on 
ACI-71 Section 8.7 neglects the influence of the torsional beam on the 
effective slab width b

f
, and that bf is fairly insensitive to a. For 

the range of values used in this section, Tables 5.6a through 5.6d show 
that bf is determined by L1 only (i.e., bf = L,/12). Accordingly, the 

effective width of slab remains at 20 in. when Ll/L2 = 1.0 and Ll = 240 
in. even when the moment of inertia of the flexural beam is increased 
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10 times (i.e" from a = O.BO to a = B.O). The same is true when L,/L2 
is changed and when the size of the torsional beam is changed. This 

further emphasizes the point made in section 1.2 that this method lacks 

any systematic theoretical basis for use in modeling the floor stiffness. 

7. Tables 5.6 and 5.7 point out that the method based on provisions 

of ACI-71 Section B.7 and the SMM, both give floor models independent 
of column size, This is clearly different from the models based on the 
equivalent frame method. 

The lateral stiffness determined by the four different models is 

given in Tables 5.Ba, 5.Bb, 5.Bc, and 5.Bd. The calculation for trans

forming the lateral displacements from the point of load application to 

the top of slab for the finite element model, the ACI-71 , Section B.7 
model, and the SMM model are given in Appendix C. Table 5.B also gives 

the Diff % where: 

(P/6T) model - (P/6T) finite element 
Diff. % = -------------- x 100 (5.B) 

(P/6T) finite element 

In this equation the finite element model is considered the most accurate 

representation of the actual structure and hence is used as the basis for 

evaluating the other models. 

The results of Tables 5.Ba through 5.Bd point out some very important 
characteristics of the three frame models when compared with the results 

of the finite element model. 

5.4. I Equivalent Frame Model 

The most important trend shown in the results of Table 5.B is the 
very poor correlation of the lateral stiffness based on the equivalent 

frame with that of the finite element method. This is the only method 
expressly recommended for use by the ACI 31B-71 Code, yet it produced the 

largest Diff. %, reaching as high as 169.4%. Beyond this general state

ment, t\'lO other more specifi c observati ons about thi s method are in 

order. First, the method gives inconsistent results as the floor-to-column 
stiffnesses are changed. While the method generally overestimates the 

lateral stiffness of the structure, the trend is reversed as the floor 
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stiffness, relative to the columns, is increased. This can be seen in 
Table 5.8a for the case where 15-in. columns and a 9-;n. slab are used. 
The lateral stiffness is overestimated by 10.5% for a = 0.8 and under

esti~ated by 11.4% for a = 8.0. The second trend observed in Tables 5.8a 
through 5.8d is that the results of the equivalent frame method have the 
largest Diff. % in cases with stiff columns and flexible floors. This 
trend holds whether the floors are kept the same and the columns increased 
in stiffness or vice versa. An example of the influence of increasing 
the column stiffness on the performance of the equivalent frame method 
is seen in Table 5.8b where, for a = 0.40, the method overestimates the 
lateral stiffness by 56.0% when 15-in. columns are used, and by 169.4% 
when 25-;n. columns are used. On the other hand, the floor stiffness 
can be decreased in any of four different ways: by decreasing slab 
depth, decreasing a, decreasing S, or by increasing L1/L2, Hence in 
Table 5.8a, for a = 0.8 and C = 15 in., the equivalent frame method over
estimates the alteral stiffness by 10.5% for a 9-;n. slab and by 31.5% 
for a 6.5-in. slab. In Table 5.8d for C = 15 in., it overestimates the 
lateral stiffness by 4.8% for a = 8.0 and by 63.1% for a = 0.80. In 
Table 5.8a, for C = 15 in. and a = 0.80, it overestimates the lateral 
stiffness by 22.0% for S = 0.160 and by 31.5% for S = 0.064. Finally 
in Tables 5.8b and 5.8d, for C = 15 in. and a = 8.0, it underestimates 
the lateral stiffness by 7.4% for L,/L2 = 0.5 and overestimates it by 
4.8% for L,/L2 = 2.0. As stated in section 5.4, some difference between 
the results of a finite element analysis and the equivalent frame method 
is due to the fact that the latter takes into account the influence of 

column size while the finite element method does not. To evaluate the 
significance of this difference in the two models, the increase in the 
beam-slab moment of inertia across the depth of the column was neglected 
in the equivalent frame analysis of the structure where Ll/L2 = 0.5, 
a = 0.4, and C = 25 in. This has the effect of assuming a zero column 
depth as is done in the finite element model. This change reduced the 
lateral stiffness of the structure from 1512.8 k/in. to 1474.0 k/in. 
(i.e., a reduction of only 2.6%). This shows that accounting for the 
influence of the column depth in the equivalent frame analysis is not 
the source of the high variance from the results of the finite element 
analysis shown in Tables 5.8a through 5.8d. 
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5.4.2 ACI 318-71 Method 

The results based on this method show good correlation with those 

of the finite element method, especially when compared with the equivalent 
frame method. The maximum Diff. % in the structures analyzed is 13.8% 
compared with 169% in the equivalent frame. The results shown in Tables 
5.8a, 5.8b, 5.8c, and 5.8d point out several problems with the use of 
this method. First, it neglects the contribution of the torsional beam 
to the overall floor stiffness. This is shown in Table 5.8a where 
changing S from 0.064 to 0.160, while all other factors are held constant, 
does not have any influence on the lateral stiffness of the structure. 

The results shown in Table 5.8a seem to indicate better correlation be
tween this and the finite element method as S increases. A closer in
spection, however, gives a different interpretation of the results. 
Tables 5.8a through 5.8d show that this method generally overestimates 
the lateral stiffness of structures. As the size of the torsional beam 
increases, so does the lateral stiffness of the structure as reflected 
by the finite element method. Since this method ignores the influence 
of the torsional beam, the 1ateral stiffness remains unchanged giving 
the illusion that this method gives better results for higher values of 
S. However, if S continues to increase, so will the lateral stiffness 
of the structure and this method will then underestimate the stiffness. 
This is seen in Table 5.8a where for C = 15 in. and a = 0.80, this 
method overestimates (P/6T) by 1.0% for S = 0.064 and underestimates it 
by') .1% for S = o. 160. 

Second, the method underestimates the rotational stiffness of floors 
with shallow beams by ignoring the slab's two-way action and assuming 
the slab to act only in the direction of the flexural beams. This is 
seen in Table 5.8b where this method underestimates (P/6T) by 3.4% for the 
case where C = 15 in. and a = 0.4. This margin of error decreases as 
the column size is increased due to the fact that the column stiffness 
begins to dominate the (P/6T) of the whole structure. 

Third, the method is inconsistent as a is increased. In Table 5.8a, 

with C = 15 in., d = 6.5 in., and S = 0.064, the Diff. % increases from 
s 

1.0% to 5.5% and then decreases to 4.5% as a goes from 0.80 to 3.0 to 

8.0. This inconsistency repeats itself in Table 5.8b for the case of 
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C = 15.0 in. It is difficult to attribute this erratic behavior to a 

specific cause. There is no sound theoretical reason to use the provi
sions of ACI 31S-71 to model floor stiffness. The net result of doing 

so is to neglect the torsional effects and to use a model which defines 

the effective slab width to be Ll/12 for all the cases analyzed herein, 

irrespective of slab depth~ beam size, or Ll/L2 ratio. Hence, it is not 

surprising that the results do not fit into a set pattern. 

5.4.3 Stiffness Matrix Method 

The results in Tables 5.Sa, 5.Sb, 5,8c, and 5.Sd show that this 

method gives the best correlation with the results from the finite element 

method. The SMM generally overestimates the lateral stiffness of the 

structure, with the maximum Diff. % registered for the cases analyzed 

being 6.1%. This method performs best for flexible structures, with 

the Diff. % increasing as the structure becomes stiffer. This trend 

holds whether the structure is stiffened by increasing the slab thickness, 
increasing a, increasing the column size, or by a combination of these 

factors. The trend is also consistent for the different values of L,/L2 
used. Taking the results of Table 5.Sd as an example, for C = 15 in. and 

ds = 6.5 in., the Diff. % increases from 0.20% to 3.S% as a goes from 
O.S to S.O. Keeping a equal to O,SO, the Diff. % increases from 0.2% 

to 1.5% as C increases from 15 in. to 20 in. In Table 5.Sa, with C = 20 in. 

and a = S.O, the Diff. % increases from 2.2% to 3.5% as ds increases from 

6.5 in. to 9.0 in. Also in Table 5.Sa, increasing C from 15 in. to 20 in., 

a from 3.0 to 8.0, and ds from 6.5 in. to 9.0 in. increases the Diff. % 

from 0.3% to 3.5%. The results in Table 5.8 also show that the Diff. % 

for this method is smallest for L,/L2 = 1.0, increasing as this ratio 

increases or decreases. Finally, Table 5.Se shows that in the case 

Ll/L2 = .75, where interpolation between the graphs of Figs. 5.3(a), 

5.3(b), 5.3(c), and 5.3(d) is necessary, the Diff % is basically the 

same as for the other L,/L2 ratios used. Hence, straight line interpo

lation between the graphs does not impair the accuracy of the SMM. 
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5.5 Effective Slab Width 

The widespread use of an effective slab width to model a floor 

system makes it useful to consider whether the results of this investiga
tion confirm the validity of this approach. In a seismic analysis of 

a structure, the effective slab width is required to be such that the 
lateral stiffness of the resulting plane frame is the same as that of the 

column-floor moment resisting frame. In the single-panel, single-story 
structures analyzed above (Fig. 5.5) the lateral load P produces equal 

clockwise rotations at the four floor supports. To match the lateral 
stiffness of these structures, it is sufficient that the stiffness of 
the two equivalent beams based on a unit clockwise rotation at each end 

6EI/L1, be equal to the moment necessary to produce a unit clockwise 
rotation at each floor support. This floor stiffness can be adequately 
estimated from the graphs of Figs. 5,3(a) through 5.3(d). Appendix E 
gives the equations and procedure to compute an effective slab width 
according to the criteria discussed above and the results are shown in 
Table 5.9. 

The results of Table 5.9 show the difficulty of seeking an 
effective slab width to model the floor stiffness. There is no definite 

pattern for the ratio of the effective slab width to the half-span 
b
f
/0.5L 2. This ratio is found to vary with each floor parameter (i.e., 

a, S, L,/L2 and ds/L1). The effective slab width seems to be most sensi

tive to the aspect ratio L,/L 2 where in the cases investigated bf /0.5L 2 
varied from 0.13 for Ll/L2 = 0.5 and a = 3.0 to 0.49 for L1/L2 = 2.0 
and a = 0.80. The variation of bf/0.5L2 with a, S, and ds/L, is incon
sistent and depends on each combination of these values in a specific 
floor. 

5.6 Lateral Stiffness of a Multi-Panel, Single-Story Structure 

The single-panel structures analyzed above give important insight 
into the adequacy of the different methods used to model two-way slab 
floors. Limiting the structures to one panel only made it possible to 
use finite element analyses for a large number of structures with 
moderate computational costs. Due to symmetry, the equivalent members 

AC and BD (Figs. 5.8 and 5.9) in the models using the SMM and the ACI-71, 
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8.7 method have no torsional moments. Hence, there remains the question 

of how well these models perform when there is torsion in the equivalent 

cross beams. Thus it would be ideal to conduct similar analyses of 

structures having a multi-panel floor system to evaluate the different 

methods when there are interior panels and when there is torsion involved 
in the equivalent cross beams. 

The multi-panel, single-stoy'y structure. shown in Fig. 5.10, is 

selected as an example to evaluate the different cases discussed above. 

It was necessary to limit this effort to one structure due to the high 

cost of a finite element analysis of a multibay structure. As shown in 

Fig. 5.10, the structure analyzed consists of a 3 x 3 panel floor, each 
panel being 16 ft x 20 ft. The floor slab is 8 in. thick, each beam 

is 15 in. x 30 in.; the single-story structure has 16 columns, each 

26 in. x 26 in. in cross section; and story height from top of slab to 

column base is 12 ft. The structural properties of the floor beam are: 

Ab 450.0 in 2 = 

IS = 33750.0 in 

J S 
= 20250.0 in 

The column structural properties are: 

A = 676.0 in2 
c 

4 

4 

(A h) = 563.3 in2 
s c 

I = 38081.33 in4 
c 

J
c 

= 91395.20 in4 

As shown in Fig. 5.10, lateral forces in only the y-direction are 
applied to the structure at the floor level. The 3 x 3 panel floor in

cludes corner, exterior, and interior panels and thus will enable evalua
tion of the effect of different boundary conditions along panel edges 

within the floor on the performance of each method used for the modeling. 
Also, since all the columns will not have the same rotation at their 

tops, torsion in the floor equivalent members must be included. 
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Five different methods are used to evaluate the lateral stiffness 

of the multi-panel structure. 

5.6.1 Finite Element Method 

The application of this method is similar to the procedure described 
in section 5.3.1 for the single-panel structure and the model shown in 
Fig. 5.6. The lateral displacements at the top of slab are evaluated 
according to eq. 5.3. Due to the symmetry of the structure and the 
loading, the model will give four different lateral displacements at the 

top of slab at the supports if in-plane axial strains are included. 
These are: 

l. Displacements at corner supports A, D, M, and R. 

2. Displacements at exterior supports B, C, N, and Q. 

3. Displacements at exterior supports E, H. I, and L. 

4. Displacements at interior supports F, G. J, and K. 

The lateral stiffness of the structure (P/~T) is defined as the average 

of these four values of ~T' The results of the finite element analysis 
are given in Table 5.14. 

5.6.2 Equivalent Frame Method 

Application of this method is similar to that described for the 

single-panel structure in section 5.3.2 and the model shown in Fig. 5.7. 

The structure is modeled by four equivalent frames: two exterior frames 
along column lines AM and DR. and two interior frames along column lines 

BN and CQ. The equivalent columns used in this method depend on the 

"equivalent torsional beams " framing into the column. Four different types 
of equivalent columns can be identified in the structure shown in Fig. 5.10: 
corner columns A, D, M, and R; exterior columns B, C, N, and Q; exterior 

columns E. I, H, and L; and interior columns F, G, J. and K. The struc
tural properties of the two types of frames are given in Table 5.10. 

As the equivalent frame method does not lend itself easily to 
available computer programs, it was found easier to develop a closed form 

solution for the case of a single-panel structure. However, a closed 

form solution cannot be readily developed for a multi-panel structure 
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and it was necessary to modify the program ETABS [26J (described in 
section 5.3.3) by changing the diagonal terms of the column stiffness 
matrix and replacing the rotational terms by the equivalent column 
stiffness (K ). The program modification was checked against the closed ec 
form solution for a single-panel structure and found to be exact. Notice 
that ETABS forces the lateral displacements at each floor level to be 
the same throughout the floor. Hence the different frames all have the 
same lateral translations, and since the model (Fig. 5.7) places the 
equivalent beams at the level of the top of slab, no translation of 
lateral displacements ;s necessary. The top of slab lateral displacement 
of the structure according to this method was: 

6
T 

= 0.0117 in. 

5.6.3 ACI 318-71 Section 8.7 Method 

Application of this method is similar to the procedure described 
for the single-panel structure in section 5.3.3, and the model shown 
in Fig. 5.8. The multi-panel structure is modeled as a three-dimensional 
frame with equivalent beams defined according to ACI 318-71, Section 8.7. 
Two types of equivalent beams are identified in the structure: L-shaped 
exterior beams and T-shaped interior beams. Structural properties of these 
equivalent beams are given in Table 5.11. Notice that these beams have 
their neutral axes at different distances (A) below the top of slab. 
However, the computer program used, ETABS, requires that all floor beams 
be along the same level. Hence, an average value of A is used to define 
the position of the neutral axis of all beams in the floor. 

The program gives the same lateral displacement throughout the floor 
(the floor is rigid in its own plane), but since the column top rotations 
are different, displacements at the top of slab will also be different. 
Due to symmetry of the structure and the loading, four different column 
rotations can be identified at the corner columns A, D, M, and R; ex
terior columns B, C, N, and Q; exterior columns E, H, I, and L; and 
interior columns F, G, J, and K. This is the same as in the case of the 
finite element method. The lateral displacements at the top of slab are 
given in Table 5.15 and are calculated according to eqs. C.5 and C.6 in 
Appendix C. The lateral stiffness of the structure (P/6T) is based on 
the average of these four displacements. 
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5.6.4 ACI 318-71. Sections 8.7 and 11.7 Method 

This method is exactly the same as that above with the exception 

that the equivalent beams in the x-x direction are defined according to 
the provisions of ACI 318-71. Section 11.7.2. This section of the ACI 
defines the maximum allowable flange width for torsional shear require
ments and states that for "flanged sections .. , the overhanging flange 
width used in design shall not exceed three times the thickness of 
the flange" [3J, thus: 

(5.9) 

This provision is used for the beams in the x-x direction because, 
due to the symmetry of the model and the loading. these beams are in 
pure torsion while those in the y-y direction are in pure flexure. 
Table 5.12 gives the structural properties of the equivalent beams of 
the model based on this method, and Table 5.16 gives the lateral dis
placements of the model. 

5.6.5 Stiffness Matrix Method 

Application of this method is similar to the procedure described 
in section 5.3.4 for the single-panel structure and the model shown in 
Fig. 5.9, except that the procedure of section 5.3.1b and Figs. 5.4{a) 
through 5.4(d) must be used for the computation of equivalent interior 
members. For the multi-panel floor of Fig. 5.10, six different floor 
members can be identified. 

1. Corner Member AB, CD, MN. and QR. 

2. Corner Member AE, DH, I~1 , and LR. 

3. Exterior Member BC and NQ. 

4. Exterior Member EI and HL. 

5. Inter; or r,1ember EF, FG, GH, IJ, JK, and KL. 

6. Interior Member BF, FJ, IN, CG, GK, and KQ. 
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The calculations for the structural properties of these members are 
given in Appendix D and the results of these calculations are summarized 
in Table 5.13. 

Similarly to the above methods, four lateral displacements at the 
top of slab based on eqs. C.5 and C.6 in Appendix C are identified in 
Table 5.17 and the lateral stiffness of the structure (P/~T) is based on 
the average of these displacements. 

5.7 Evaluation of Different Models Used to Compute Lateral Stiffness 
of a Multi-Panel, Single-Story Structure 

The lateral stiffness (P/~T) of the mUlti-panel structure shown in 
Fig. 5.10 is given in Table 5.18. The Diff. % in each model is based on 
comparing the results with those of the finite element method and is 
computed according to eq. 5.8. 

The two methods based on allowable widths of beam flange (i.e., the 
ACI 318-71,8.7 and the ACI 318-71, 8.7 and 11.7 methods) gave basically 
identical results for this structure. However, one case is not suffi
cient to show that the two provisions used to define effective slab 
widths will always give nearly equal results. The provisions of ACI 318-71, 
8.7 were used in both cases to define the equivalent beams in the y-y 
direction which are primarily in flexure for the loading shown in Fig. 
5.10, and the provisions of ACI 318-71, 8.7 and 11.7 were used to define 
the equivalent members in the x-x direction which are primarily in torsion. 
Had there been substantial torsional moments generated in the equivalent 
beams in the x-x direction, the difference in using the two code provisions 
would have been reflected in the lateral displacements of the structure 
as given by the two models. However, the results of the analysis show 
that the torsion, generated by the lateral loads used, is small (e.g., 
torsion in equivalent beam IJ is 1,2 k-in. while flexure in equivalent 
beam JF is 236.2 k-in.) and the contribution of the floor model was de
termined primarily by the flexural stiffness of the equivalent beams in 
the y-y direction which were identical in both cases. The Diff. % 
given in Table 5.18 for the different models, are in general agreement 
with those of comparable single-panel structures. indicating that the 
different models perform with approximately the same accuracy for interior 
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and exterior panels and that they also maintain their level of accuracy 

whether the equivalent cross beams undergo torsion or not. 

Finally, notice that the floor properties used were such that all 
the terms needed for the SMM had to be interpolated from the curves in 
Figs. 5.3 and 5.4. The fact that the Diff. % for this method remains 
within a range of 1% to 5% again confirms the fact that the method main
tains accuracy when interpolation between the curves is necessary. 

5.8 ~namic Response ofa Multistory Building 

The dynamic response of a l2-story building with a two-way slab 
floor system (Fig. 5.11) is also analyzed, using the SMM, the effective 
slab width method (ACT 318-71, 8.7), and the equivalent frame method. A 
finite element analysis could not be attempted due to prohibitive com
putational effort required. The building was adapted from that presented 
in reference 11. The beams were modified to have a 2:1 depth-to-w;dth 
ratio while maintaining the same moment of inertia as the beams given 
in reference 11. The dynamic response of the building ;s evaluated for 
8-in. and 12-in. thick floor slabs to assess the different models 
used as the values of a and ds/Ll are varied. Computer program ETABS 
is used for this part of the investigation. 

Tables 5.19 through 5.23b give the structural properties of the 
equivalent members to model this building as defined by the three methods 
used. The distributed masses at each story are assumed to be lumped at 
the center of mass of each floor. The mass used in the analysis of the 
building with an 8-in. floor slab is identical to that given in reference 
11. The mass for the l2-in. slab floor is equal to the above mass plus 
the increase in the mass of the slab only. This assumes that all other 
elements contributing to the mass (partition walls, fixtures, etc.) are 
the same for both cases. The value of the mass per floor used in the 
analysis is: 
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Floor Mass for 8 in. Sl ab ~lass for 12 in. Slab 
Level 2 2 

[K (s:c) _J [K (s~c) ] 
ln ln 

Roof 

Fl oors I 
5.43 6.74 

All other 5.69 7.00 

Table 5.24 gives the natural periods of vibration for the first 
four mode shapes in the longitudinal (x-x) direction. The table also 
includes the period of the building when the bare beams are used for 
the floor stiffness~ i.e., the mass of the system remains the same but 
the slab is neglected when formulating the stiffness of the building. 
Comparison of the periods based on each method with those of the bare 
beams structure helps to give an idea of each method's estimate of the 
contribution of the slab to the building's periods of vibration. 

The results in Table 5.24 show that for both the 8-in. and the 
l2-in. slab floors, the SMM gives the highest natural periods of vibra
tion and the equivalent frame method the lowest. This is consistent with 
previous results in this chapter establishing both the equivalent frame 
method and the effective slab width method as generally overestimating 
the lateral stiffness of the structure. The Diff. % between the SMM 
and each of the other two methods remains basically the same for the 
different mode shapes, and is higher for the equivalent frame method than 
the effective slab width method. The Diff. % between the SMM and each 
of the other two methods also decreases as the slab thickness increases. 

Notice that the periods of vibration based on all three methods 
increase as the slab thickness increases from 8 in. to 12 in. This means 
that the effect of the increase in stiffness of the building is less 
than the effect of the increase in mass. However, the increase in the 
period is smallest in SMM, which shows that this method gives a higher 
increase in building stiffness (per same increase in mass) as the slab 
thickness goes from 8 in. to 12 in. 

Table 5.25 gives the terms of the building's first mode shape vector 

< ¢l > in the longitudinal direction based on the four different models used. 
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These mode shape vectors are scaled such that the generalized mass in 

the first mode shape Mi' where: 

(5.10) 

and [M] = a diagonal 12 x 12 mass matrix 

is equal to 0.12 for the building with an 8-in. slab floor and to 0.15 
for the building with a 12-in. slab floor for each of the four methods 
used. Given the first natural period of vibration Tl and having compu
ted Mi. the building's generalized stiffness in the first mode Ki. 
where: 

(5.11) 

and [K] = 12 x 12 building lateral stiffness matrix 

and be shown to be: 

K* = 1 (5.12) 

The values of Ki are given in Table 5.26. Since the mass matrix used in 
the analysis is the same for all four methods used, the increase in ~* 

over that of the bare beams method reflects the contribution of the slab 
to the lateral stiffness of the building as estimated by each of these 
methods. The results of Table 5.26 show that for the building with an 
8-in. slab, the effective slab width method estimates the contribution 
of the slab to Ki as twice that estimated by the SM~1 and the equivalent 
frame method is more than three times that of the SMM. However, as the 
slab thickness is increased from 8 in. to 12 in., a different pattern 
emerges. The SMM estimates the increase in Ki due to the increased slab 
thickness as 16.7% while the effective slab width method and the equivalent 
frame method estimate the increase as 0.7% and 9.2% respectively. The 
performance of the effective slab width method (based on ACI 318-71, 8.7) 
is unrealistic as it implies that the lateral stiffness of the building 
as reflected by Ki remains basically the same even when the floor slab 
thickness is increased by 50%. The results of the equivalent frame 
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method show that the method highly overestimates the contribution of two
way slab floor systems to the lateral stiffness of moment-resisting frames 
and that this overestimation is higher for the more flexible floors. 

The dynamic response of a building to seismic motion depends on the 
dynamic properties of the buildin0 (natural periods, mode shapes, etc.) 
as well as on the characteristics of the particular earthquake considered 
(peak accelerations, frequen~y content, duration of severe pulses, etc.). 

Hence the difference in the dynamic properties of the building based on 
the different models is not sufficient to evaluate the difference in re
sponse (lateral displacements, story shears, etc.) due to using these 
models. As an illustration, the building of Fig. 5.11 was analyzed for 
the N-S recorded component of El Centro earthquake of 1940 [27J acting in 
the longitudinal direction (x-x only) and the analysis is based on the 
earthquake1s elastic response spectrum with 5% damping. Figure 5.12 
gives the envelope of maximum lateral displacements [based on modal super
position using square root of the sum of the squares (SRSS) valuesJ as 

estimated by three methods (SMM, effective slab width, and equivalent 
frame). Table 5.27 gives these displacements for the roof only and 
shows that the Diff. % between the SMM and the effective slab width 
method and the equivalent frame method is 13.10% and 24.17%, respectively, 
for an 8-in. floor slab and 3.44% and 23.73%, respectively, for a 12-in. 
floor slab. 

5.9 Summary and Conclusions 

This chapter develops the SMM to model the stiffness of two-way slab 
floors, a method based on the research presented and discussed in Chapters 
2 through 4. It consists of replacing the floor by a set of equivalent 
members connecting the vertical floor supports. The SMM does not define 
a physical shape (cross section) for these members~ but rather a 3 x 3 

stiffness matrix and the position of the member neutral axis in relation 
to the top of slab. The 3 x 3 member stiffness matrix is based on one 
torsional and two flexural degrees of freedom [Fig. 5.2{b)J. Two sets 

of tables and graphs are presented to describe a step-by-step procedure 
to calculate the stiffness matrix of equivalent edge and interior members, 

and the position of their neutral axis. 
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The rest of the chapter is devoted to evaluating the accuracy and 
practicability of the SMM for modeling two-way slab floors and comparing 
its performance to that of other models currently used. The lateral 
stiffnesses of 27 single-panel, single-story structures with different 
floor and column stiffnesses are calculated, each according to four 
models: the equivalent frame method, ACI 318-71, 8.7 method, SMM, and 
the finite element method. Results are compared with the latter method 
which, from the analytical point of view, is generally considered the 
most accurate. The lateral stiffness of the structure (P/6T) is based 
on the lateral deflection of the top of slab when a lateral load P is 
applied at the floor level. The lateral stiffness of one 3 x 3 panel 
floor, single-story structure is also calculated according to five 
different models in order to evaluate the performance of each model when 
interior panels are added to the floor and also when there is torsion 
in some floor beams. In addition to the four models used in the single
panel floors, another model is added in which the flexural and torsional 
properties of the equivalent beams are defined by effective slab widths 
based on the provisions of ACI 318-71, 8.7 and ACI 318-71, 11.7, respec
tively. The lateral stiffness of the structure (6T) is defined the same 
way as for the single-panel structures. 

The results from using the different models to evaluate the lateral 
stiffnesses of the 27 single-panel and one multi-panel structure show that: 

1. The equivalent frame method, besides being very complicated to 
use, is fairly inaccurate when compared with results of a finite element 
analysis. with the Diff. % reaching as high as 169%. The method is also 
inconsistent in that it overestimates the lateral stiffness of some 
structures and underestimates it for others. The error in the lateral 
stiffness based on the equivalent frame method increases as the floor 
becomes more flexible relative to the columns. These results point out 
the need to reassess the ACI 318-71 Code recommendations of using the 
equivalent frame method to analyze structures with two-way slab floors. 
As described in section 1.2, the research and development for this method 
was done for flat slabs, and its application to two-way slabs needs to be 

investigated further as the analytical results of this study do not justi
fy such application. 
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2. The method based on the ACI 318-71 provlslons for beam strength 
(i.e., ACI 318-71, sections 8.7 and 11.7) seems to perform better than 
the equivalent frame method with the maximum registered Diff. % being 
13.8%. However the results are erratic and a clear trend in the results 
is not evident. This, coupled with the fact that there is no sound 
theoretical basis for using these provisions to model two-way slab stiff
ness, leaves open the possibility that much higher margins of error could 
result for certain structures and loading conditions. 

3. The results of the SMM were consistently closer to those of a 
finite element method than were those of other methods, with the maximum 
registered Diff. % being 6.1%. The method maintained its level of 
accuracy when interpolation was used between the curves given in Figs. 
5.3 and 5.4. The SMM gave the best results in flexible structures and 
also improved as the floor became more flexible relative to the columns. 

4. The results of this investigation also show that the effective 
width approach does not adequately model the stiffness of a two-way 
slab floor, the composite beam-slab action is much too complex for this 
approach. 

5. The results of analyzing a 12-story building with a two-way 
slab floor system show that appreciable differences in the estimate of 
the dynamic characteristics of a building and its response to a particular 
earthquake can result from using different analytical models for the 
stiffness of the floor system. 
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary 

Studies have shown that the seismic analysis of buildings whose 
floor slab is part of a moment-resisting frame is sensitive to the 
assumed slab participation in the overall stiffness. Although some 
methods have been suggested for modeling the contribution of the slab 
to the stiffness of the floor system, at present their accuracy and 
reliability are highly questionable. Finite element models can be very 
accurate but their use requires computational effort that ;s prohibitive 
in practical applications. Currently used models based on some form of 

effective width of slab do not have a consistent theoretical basis, 
and they have not been rigorously studied to determine their accuracy 
for use in seismic analyses of buildings. 

In the study reported herein, the elastic stiffness of composite 
beam-slab reinforced concrete floor systems has been thoroughly studied. 
The floor rotational stiffness is defined by a stiffness matrix based on 
two rotational degrees of freedom in the plane of the slab at each of 
the floor's supports. The moments needed to produce a unit rotation at 
one degree of freedom, and restraining all others, make up the elements 

of one row of the matrix. 

Point supports are assumed, thus neglecting the increase in the 
floor stiffness across the column size. The effect of this assumption 
is to underestimate the floor stiffness, especially in buildings with 
short floor spans and wide columns. All floor beams have a 2:1 depth
to-width ratio, thus maintaining a 4~ (l+v) (see section 2.3.1) ratio 
between the flexural and torsional stiffnesses of each beam. Floors are 
assumed to have rectangular panels of identical span lengths and a slab 
of uniform thickness supported on beams between supports. The floors 
are also assumed to be of monolithic construction with homogeneous, 
elastic, and isotropic material properties. 

The floors are modeled as a mesh of two-dimensional linear curvature 
compatible triangular finite elements with cubic transv~rse displacement 
expansion and piecewise continuous derivatives, and uniaxial beam elements. 
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In the case of partial composite beam-slab action (i.e., beams 

symmetrical about mid-plane of slab), the beam elements are embedded in 
the slab. In the case of complete composite beam-slab action (i.e., 
beam and slab neutral axes not at the same level). a constant strain 
element is added to model the in-plane (membrane) slab stresses. and the 
uniaxial beams are connected to the finite element nodes by rigid links 
which maintain the condition that plane sections at the nodes re,Jlain 
plane. Several mesh sizes for each type of floor were attempted to 
establish the finite element mesh size needed for adequate convergence 

of the results. 

Single-panel floors with partial and full composite beam-slab action 
are analyzed to determine the influence of beam eccentricity of floor 
stiffness. An analysis of the many different parameters that can affect 
the stiffness of a two-way slab floor led to the identification of the 
following four main parameters: 

1. The ratio ds/Ll of slab thickness to panel span in the 
direction of the flexural beam. 

2. The ratio a of the flexural stiffness of the flexural beam 
to that of the half-width of slab. 

a = 
4EIFB/Ll 
4EIS/L, 

(6.1) 

3. The ratio S of the torsional stiffness of the torsional beam 
(beam orthogonal to flexural beam) to the flexural stiffness of the 
flexural beam. 

4. The aspect ratio of the panel L,/L2. 

Parametric studies are conducted to determine the influence of 
these four parameters on floor stiffness. 

(6.2) 

Varying boundary conditions along panel edges, as represented by 
interior, exterior, and corner panels, also are investigated for floors 

with full composite beam-slab action. 
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A SMM to model the stiffness of a two-way slab floor is developed 

from the results of this investigation. In this method, the elastic 
stiffness of a beam-slab floor is estimated as the stiffness of equiva
lent uniaxial members between supports, each with three degrees of 
freedom: one torsional and two flexural (one flexural degree of freedom 
at each end of the member). The SMM does not identify a physical cross 
section for these members; rather, it establishes a procedure by which 
the position of the neutral axis of the equivalent member in relation to 
the top of slab and its member stiffness matrix can be computed from a 
set of graphs. Each member stiffness matrix is added directly to obtain 
the structure's stiffness matrix which can then be used to analyze the 
building properties and response. The effect of shear on the floor 
stiffness is included in the terms of the equivalent member's stiffness 
matrix, hence no other terms to model shear effect are necessary. 

The SMM is evaluated by applying it to calculate the lateral 
stiffnesses of 27 single-panel structures and one mUlti-panel single
story structure, as well as the dynamic response of a multi-story building. 
Lateral stiffness for the single-story struct~res is defined as the force 
necessary to produce a unit lateral displacement of the top of slab. 
The structures analyzed include cases with floors of varying slab thickness 
and beam and column sizes. The lateral stiffness of each single-story 
structure is evaluated on the basis of four different methods: a finite 
element method, an equivalent frame method, an effective slab width 
method based on provisions of the ACI 318-71,8.7, and the SMM. The 
results from the last three methods are compared with those from a finite 
element analysis, and the Diff. % in the results is used as the basis 
to evaluate the accuracy of the method. 

6.2 Conclusions 

Detailed conclusions are presented at the end of each chapter. 
The most important of these, and some general overall conclusions, are 
presented here. 

1. The elastic rotational stiffness of a floor plnel is a function 
of ds/L" a, S, L,/L2, the boundary conditions along thE panel edges, 
and the degree of beam-slab composite action which is d~termined by the 
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extent of eccentricity between beam and slab neutral axes. 

The transition from partial to full composite action between beams 
and slab produces a marked increase in the rotational stiffness of the 
floor. This is caused by the shift of the floor neutral axis away from 
the neutral axis of the slab. The proportional increase in stiffness 
due to full composite action is more pronounced for larger values of a 

because of the accompanying increase in the eccentricity e. The in
crease in the contribution of the beams to the.floor stiffness (due to 

the eccentricity introduced by the slab) can be approximated by (Kll)~ 
which is the beam stiffness computed about an axis defined by~. This 
axis coincides with the composite neutral axis of the floor only at the 
supports. Since e is equal to zero in floors with partial beam-slab 

composite action (i.e., symmetric beams), (Kll)~ in such floors is equal 
to the prismatic bare beam stiffness (K11)B' 

The contribution of the slab to the overall panel stiffness can 

be defined by the ratio (Kll)S/(Kll)~' Over the range of the different 
parameters investigated, it was found that (Kll)S/(Kll)~ is primarily 
a function of a, L,/L2, and the boundary conditions along the panel 
edges. (K11 )S/(Kl1 ); approaches an asymptotic value of 1.0 as a in
creases, which shows that the relative slab contribution to the panel 
stiffness ;s higher in floors with shallow beams. This ratio approaches 
the 1.0 asymptote faster as the number of continuous edges in a panel 

increases and Ll/L2 decreases. Given the same ds/L" a, S. Ll /L2, and 
panel boundary conditions, the ratio (Kll)S/(Kl1)~ is very close in 
floors with partial or full composite action. Hence the graphs in Figs. 
5.3(b) and 5.4(b) can be used interchangeably for both types of floors. 

2. The two-way action of the floor theoretically couples the 
rotations of all the supports in a floor. However, the degree of coupling 
between diagonally placed panel supports and supports more than one panel 
away from each other was found to be very small. Hence, the usual practice 
of modeling the floor by uniaxial equivalent members, which only couple 
adjacent supports, can give adequate results. 
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3. The carryover factors (CF13 and CF 1S ) in a floor panel were 
found to be a function of a, S, L1/L 2, and the boundary conditions. 

The two-way action of the slab redistributes the stresses in the panel 
so that the moments carried by beams to orthogonal supports are more 
evenly distributed than would be the case in a floor with only bare 

beams. The effect of the slab in floors with very stiff torsional 
beams relative to the flexural beams (i .e., high values of L,/L2 and 
S) is to reduce the values of CF1S from that of the bare beams. This 
signifies that the slab redistributes moments away from the torsional 

beams to the flexural beams. The slab has the opposite influence in 

floors with stiff flexural beams relative to the torsional beams. The 
difference between the panel carryover factors CF13 and CF15 from those 

of the prismatic bare beams ~13 and ~15 increases as the contribution 
of the slab to the overall panel stiffness increases. Thus this differ
ence increases as a decreases. and L1/L2 and the number of continuous 
edges in the panel increases. This aspect of the behavior of two-\/ay 
slabs has hitherto been neglected by researchers. Currently available 
models seek equivalent members that will match the diagonal terms of 
the panel IS stiffness matrix and assume that carryover factors equal 
to those of prismatic beams can be used for these equivalent members. 
This investigation refutes that assumption and points out the need for 
models that will adequately approximate off-diagonal as well as diagonal 
terms of the floor panells stiffness matrix. 

There was some difference in the values of CF13 and CF1S in floors 
with symmetric or eccentric floor beams. Eccentric beams produced smal
ler values of CF13 and larger values of CF 1S reflecting a higher degree 
of slab participation in the floor's stiffness. Hence using the graphs 

in Figs. 5.3(c), 5.3(d) and S.4(c), 5.4(d) for modeling floors with 
symmetric beams will introduce a small error into the results of the 

analysis. CF15 was found to be a function of S, L1/L 2, and the boundary 

conditions except for floors with L1/L2 (panel aspect ratio) close to 
2.0 where the influence of a should also be accounted for. 

4. Changing the boundary condition of a floor panel from being 

completely free (single-panel floor) to continuous on all four sides 
(an interior panel) has an appreciable effect on its stiffness. A 

continuous panel is stiffer and the influence of the boundary conditions 

-101-



increases as L,/L2 is increased and a is decreased. The stiffness of 

floors with other boundary conditions falls between these two bounds. 

However, for practical purposes the 9raphs for an "interior panel and 
those for a single-panel are sufficient to estimate adequately the 

stiffness of the different panels in a floor. 

5. The accuracy and practicability of currently used methods to 
estimate the lateral stiffness of moment-resisting frames was investiga
ted by analyzing a large number of sinqle-story structures. The equiva
lent frame method, which is the only one suggested by the ACI 318-71 Code, 

was found to be complicated to use and gave poor results with a Diff. % 
as high as 169% when compared with analytical results obtained using a 
finite element model. This corresponds to a Diff. % of 39% in the struc

ture's period which can lead to substantially different estimates of 

the structure's dynamic responses. The error in the results from using 
this method increases as the relative column-to-floor stiffness increases. 
The equivalent frame method was also found to be inconsistent in that it 
overestimated or underestimated the lateral stiffness, depending on the 
individual case considered. 

The effective slab width method based on ACI 318-71, section 8.7 
fared better than the equivalent frame, with a 13.8% maximum Diff. %. 
However, this method is not based on reliable experimental or analytical 
studies, and the correlation of results from the effective slab width 

method with the finite element analysis was inconsistent and did not 
establish well-defined trends. This suggests that the effective slab 
width method could lead to much higher error in estimating the lateral 
stiffness than the 13.8% Diff. % registered in this investigation. 

A trial-and error procedure, used to compute an effective slab 
width that would yield the same lateral stiffness of the structure as 
from a finite element analysis, gave a wide range of values of the effec

tive slab width. This width varied with each of the floor parameters 
considered. This points out the difficulty of attempting to model the 
stiffness of a two-way floor system with just an effec~ive slab width 

method. 
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The analysis of a twelve-story building confirmed the conclusions 
based on analyzing the single-story structures. The equivalent frame 
method overestimated the floor stiffness, especially for relatively thin 
slabs. This led to lower natural periods of vibration with a Diff. % in 
the first period between this method and the SMM of 17.2% for the case 
of an 8-in. floor slab. The effective slab width method also overesti
mated the floor stiffness, although to a lesser degree than the equivalent 
frame method. However, the effective slab width method, based on the pro
visions of ACI 318-71, 8.7 proved inadequate in estimating the increase in 
floor stiffness as the slab thickness was increased from 8 in. to 12 in. 
(the generalized stiffness in the first mode Ki increased by less than 
1%). The envelope of the expected maximum lateral displacements (based 
on SRSS) also showed marked differences as different models for the floor 
stiffness were used. Applying the N-S component of the 1940 El Centro 
earthquake to the longitudinal (x-x) direction of the building resulted 
in maximum expected roof displacement of 8.4 in. and 6.4 in. for the SMM 
and the equivalent frame method, respectively (Diff. % of 24.2%). 

6. The analytical results of this investigation indicate the need 
for a careful study of the soundness of using the equivalent frame method 
to model buildings with two-way slab floors and subjected to lateral 
loads, as is suggested in present codes. Theoretically, the SMM seems 
to be a more accurate and consistent model. The SMM was found to be 
practical for use in that it does not require complex, time-consuming 
computations to calculate the structural properties of the equivalent 
members used to model the floor stiffness, and can be used directly in 
existing computer programs for frame analysis or for hand calculations 
(e.g. moment distribution procedures). The SMM not only proved accurate 
when compared with results of a finite element model but also the cost 
of the computations was a small fraction of the computer costs required 
to carry out a finite element analysis. 

6.3 Recommendations for Future Studies 

A large number of investigations and proper interpretation of their 
results are still necessary to reach the point where engineers will be 
able to ascertain, consistnetly, rationally and economically, the con
tribution of the floors to the stiffness, strength, and stability of 
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buildings. Following are some topics that need further attention: 

1. The influence of the column width on the floor stiffness should 
be studied to evaluate the error introduced by assuming point supports. 
The results of this investigation can then be used to modify the S~1M to 
account for the influence of the column size on the elastic stiffness of 
a two-way slab floor system. 

2. The studies reported herein should be repeated for floor beams 
having a depth-to-width ratio different than the 2:1 ratio considered in 
this investigation. Bounds of the values of this ratio should be con
sidered to evaluate the influence of this ratio on the floor stiffness. 

3. The procedure developed in this investigation can be extended 
to the analysis of the elastic stiffness of other slab systems (e.g., 
flat and waffle slabs), Such a study must identify the primary parameters 
affecting the stiffness of each type of floor system, and evaluate the 
existing models to determine whether they can be improved or whether 
completely new models need be developed. An integrated SMM for all the 
main floar systems encauntered in the field would be a pawerful taol 
far analysts and designers. 

4. Elastic analysis is nO' longer sufficient. It is well known 
that cracks in reinforced concrete develop during construction and then 
under excitations at service load levels. The knowledge of the floor 
behavior in the inelastic range, including yielding of the steel is an 
indispensible part of an aseismic design. Thus, the present investigation 
should be extended to the inelastic behaviar af twa-way slab systems as 
well as other flaar systems. 

Such inelastic studies are much mare invalved in that the behaviar 
af the slab system must be analyzed stepwise from the initial appearance 
of first cracks to' the farmatian af slab yield lines and praceed until 
a full mechanism develaps. Such investigations must madel degradatians 
of stiffness and strength due to bath increasing load levels and to stress 
reversals, as well as the camposite actian af reinfar:ing steel and con
crete in the flaar. The first step would be to' consider the effect of 
cracking under warking laad. To salve this prablem, i1tegrated analytical 

and experimental studies are necessary. 
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5. In parametric studies, computer programs based on finite ele
ment methods are the most powerful tools available. They require less 
time and are far cheaper than experimental studies. At present, the 
inelastic behavior of reinforced concrete structures subjected to combined 
states of stress and/or strain are not well understood. Thus present 
analytical studies are based on a number of assumptions and simplifica
tions which necessarily introduce a margin of error into the final results. 
Hence experimental studies remain the only conclusive method to study 
the elastic and inelastic behavior of a floor system. 
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3.0 

TABLE 2,2: STRUCTURAL PROPERTIES OF SQUARE 
SH1GLE-PANEL FLOOR SLABS 

e d s (in. ) Flexural Beam Torsional Beam 

6.5 7.53" x 15.15" 7.53" x 15.15" 
0.064 7.5 8.44" x 16.87" 8.44" x 16.87" 

9.0 9.67" x 19.34" 9.67" x 19.34" 

0.107 6.5 7.53" x 15.15" S. 61" x 17.22i1 

0.160 6.5 7.53" x 15.15" 9.53" x 19.05" 

6.5 S.39" x 16.77" S.39" x 16.77" 
0.064 7.5 9.34" x lS.67" 9.34" x IS. 67" 

9.0 10.71" x 21.41" 10.71" x 21. 41" 

0.107 6.5 8.39" x 16.77" 9.53" x 19.05" 

0.160 6.5 8.39" x 16.77" 10.55" x 21. 09" 

6.5 9.53" x 19.05" 9.53" x 19.05" 
0~064 7.5 10.61" x 21. 21" 10.61" x 21.21" 

9.0 12.16" x 24.32" 12.16" x 24.32" 

0.107 6.5 9.53" x 19.05" 10.S3" x 21. 65" 

0.160 6.5 9.53" x 19.05" 11. 98" x 23.96t1 

6.5 10.55" x 21. 09" 10.55" x 21. 09" 
0.064 7.5 11. 74" x 23.48" 11. 74" x 23.4S" 

9.0 13.4611 x 26.92" 13.46" x 26.92" 

0.107 6.5 10.55" x 21.09" 11. 98" x 23.96" 
9.0 13.46" x 26.92" 15.29" x 30.58" 

0.160 6.5 10.55" x 21.09" 13.26" x 26.52" 
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TABLE 2.3: SQUARE SINGLE-PANEL FLOOR SYSTEMS 

i3 Os (in.) (Kll ) S 
K-in 

(K11 )B 
K-in 

(K11l S/(Kn'B c rad rad 

6.5 199521.15 129383.71 1.54 
0.064 7.5 305250.31 198757.41 1.54 

9.0 524658.97 343452.80 1.53 
0.8 

0.107 6.5 209467.95 134579.98 1.56 

0.160 6.5 220458.55 141075.32 1.56 

6.5 269541. 78 194075.57 1.39 
0.064 7.5 412541.25 298136.11 1.38 

9.0 709219.86 515179.20 1.38 
1.2 

0.107 6.5 282645.56 201869.97 1.40 

0.160 6.5 297265.16 211612.98 1.40 

6.5 405515.00 323459.28 1.25 
0.064 7.5 621118.01 496893.52 1.25 

9.0 1068376.07 858632.00 1.24 
2.0 

0.107 6.5 424448.22 336449.95 1.26 

0.160 6.5 445632.80 352688.30 1.26 

6.5 571428.57 485188.91 1.18 
0.064 7.5 875656.74 745340.27 1.17 

9.0 1501501.50 1287947.99 1.17 
3.0 

0.107 6.5 597157.53 504674.93 1.18 
9.0 1571832.76 1339674.19 1.17 

0.160 6.5 626409.42 529032.45 1.18 
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TABLE 2.4: INFLUENCE OF d • as AND S ON STIFFNESS 
s * OF A SQUARE SINGLE-PANEL FLOOR SYSTEM 

dS (in.) 13 
K-in K-in 

(Kll ) sl (K
ll

) B a (Kll)S ~ (Kll)B rae 

1.5 66.67 0.122 140528.39 139659.57 1.01 

6.5 0.819 0.122 218531.47 1.39659.57 1.57 

:: 7.0 0.656 0.122 233644.86 139659.57 1.67 

g. 
8.0 0.439 0.122 267379.68 139659.57 1.92 0 

~ 
9.0 0.309 0.122 304878.05 139659.57 2.18 

10.0 0.225 0.122 I 349650.35 139659.57 2.50 

1.5 158.025 0.068 315346.82 315346.82 1.00 . 
IX) 
: 

g. 6.5 1.942 0.068 397772.47 315346.82 1.26 
0 
\.i 9.0 0.732 0.068 494559.84 315346.82 1.57 t!) 

" 

* For structural properties of the floors~ see Fig. 2.5. 
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TABLE 2.5: INFLUENCE OF ds ' a, AND S ON CARRYOVER FACTORS 
OF A SQUARE SINGLE-PANEL FLOOR SYSTEM 

a B as CF
12 

CF
13 CF:;"4 CF

1S 
CF

16 
CF

17 
CF

18 1/J13 (in~ 

6.5 -.035 .376 .019 -.037 -.017 .028 -.013 
0.064 7.5 -.036 .375 .019 -.037 -.018 .028 -.013 .470 

9.0 -.038 .374 .020 -.036 "':.019 .028 -.014 
0.8 

0.107 6.5 -.046 .372 .025 -.049 -.014 .033 -.016 .452 

0.160 6.5 -.056 .366 .031 -.064 -.009 .038 -.018 .431 

6.5 -.040 .397 .016 -.038 -.015 .027 -.013 
0.064 7.5 -.041 .396 .017 -.038 -.016 .027 -.013 .470 

9.0 -.043 .394 .017 -.037 -.016 .027 -.013 
1.2 

0.107 6.5 -.050 .390 .022 -.053 -.011 .032 -.016 .452 

0.160 6.5 -.058 .381 .028 -.073 -.006 .036 -.019 .431 

6.5 -.042 .417 .013 -.041 -.012 .024 -.013 
0.064 7.5 -.043 .416 .013 -.040 -.013 .024 -.013 .470 

9.0 -.044 .414 .014 -.040 -.013 .024 -.013 
2.0 

0.107 6.5 -.049 .408 .018 -.060 -.008 .029 -.016 .452 

0.160 6.5 -.054 .396 .022 -.086 -.004 .033 -.018 .431 

6.5 -.039 .428 .010 -.043 -.010 .022 -.013 
0.064 7.5 -.040 .427 .011 -.043 -.010 .022 -.013 .470 

9.0 -.041 .425 .011 -.042 -.010 .022 -.013 
3.0 

0.107 6.5 -.044 .417 .014 -.066 -.006 .026 -.015 .452 
9.0 -.046 .413 .015 -.066 -.006 .026 -.016 

0.160 6.5 -.047 .403 .017 -.096 -.003 .029 -.017 .431 
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TABLE 2.6: STRUCTURAL PROPERTIES OF SINGLE-P/~NEL FLOOR \~HERE 

Ll/L2 = 0.5, ds = 6.5 in., AND L1 = 120 in. 

0; B Flexu,=,a1 Beam Torsional Beam 

.032 6.37" x 12.74" 6.37" x 12.74" 
0.4 

.064 6.37" x 12.74" 7.58" x 15.15" 

0.8 .064 7.58" x 15.15" 9.01" x 18.02" 

.032 10.54" x 21. 09" 10.54" x 21. 09" 

3.0 .064 10.54" x 21. 09" 12.54" x 25.08" 

.128 10.54" x 21. 09" 14.91" x 29.82" 

TABLE 2.7: STRUCTURAL PROPERTIES OF S INGLE-PANEL FLOOR WHERE 

L,/L2 = 2.0, ds = 6.5 in., AND L1 = 240 in. 

a B Flexural Beam Torsional Beam 

.064 6.37 11 x 12.74" 5.36" x 10.72" 

0.8 .128 6.37" x 12.74" 6.37" x 12.74" 

.600 6.37" x 12.74" 9.37" x 18.74" 

.064 7.05" x 14.01" 5.93" x 11.86" 
102 

.600 7.05" x 14.01" 10.37" x 20.74" 

.064 B.01" x 16.02" 6.74" x 13.47" 
2.0 

.600 8.01" x 16.02" 11. 79" x 23.57" 

.064 8.87" x 17.73" 7.46" x 14.91" 

3.0 .128 8.87" x 17.73" 8.87" x 17.73" 

.600 8.87" x 17.73" 13.04" x 26.08" 
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TABLE 2.8: STIFFNESS OF A SINGLE-PANEL FLOOR WHERE 
L,/L2 = 0.5, ds = 6.5 in., AND L, = '20 in, 

B (K ) (K-ino) (K-ino) 
(K

ll
) S 

a (Kll)B r;d (K1l)B 11 s rad 

.032 194704.05 125480.16 1.55 
0.4 

.064 208942.75 129371.02 1.62 

O.B .064 351370.34 258742.04 1.36 

.032 1015228.43 941101.21 1.08 

3.0 .064 1065416.58 970282.64 1.10 

.128 1146000.46 1028645.51 loll 

TABLE 2.9: STIFFNESS OF A SINGLE-PANEL FL00R WHERE 
L,/L2 = 2.0, ds = 6.5 in., AND Ll = 240 in. 

B (Kll)S (K-in o
) (K ) (K-in.) 

(K11)S 
a rad 11 Brad (K11)B 

.064 122518.99 64685.51 1.89 . 
0.8 .128 128700.13 68589.06 1.88 

.600 164652.42 97271. 44 1.69 

.064 159591. 45 97028.26 1.64 
1.2 

.600 218092.99 145907.16 1.50 

.064 230840.26 230840.26 1.43 
2.0 

.600 321564.09 243178.61 1.32 

.064 317258.88 242570.66 1.31 

3.0 .128 334672.02 257161. 38 1.30 

.600 448149.14 364767.91 1.23 
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TABLE 2.10: DISTRIBUTION FACTORS FOR SINGLE-PANEL FLOOR WHERE 
L,/L2 == 0.50, ds = 6.5 in., AND Ll = 120 in, 

a B CF12 CPl3 CF14 
CF

15 
CF

16 
CF

17 
CF

18 1/113 

.032 -.031 .375 .034 -.003 -.004 .004 -.006 .484 
0.4 

.064 -.052 .372 .048 -.006 -.000 .006 -.011 .470 

0.8 .064 -.059 .40::' .046 -.009 .004 .008 -.014 .470 

.032 -.035 .437 .023 -.009 .004 .006 -.010 .484 

3.0 .064 -.047 .428 .034 -.024 .011 .012 -.017 .470 

.128 -.058 .410 .045 -.060 .020 .019 -.025 .443 

TABLE 2.11: DISTRIBUTION FACTORS FOR SINGLE-PANEL FLOOR WHERE 
L1/L2 = 2.00, ds = 6.5 in. sAND L, == 240 in. 

a i3 CF12 
CF

13 
CF

14 
CF

15 
CF

16 CF
17 

eF
18 1/113 

.064 -.040 .311 .005 -.133 -.053 .069 -.015 .470 

O.S .128 -.047 .306 .008 -.151 -.051 .071 -.016 .443 

.600 -.072 .268 .020 -.270 -.035 .072 -.017 .313 

.064 -.050 .334 .003 -.129 -.053 .062 -.015 .470 
1.2 

.600 -.072 .274 .017 -.294 -.032 .063 -.017 .313 

.064 -.059 .360 .000 -.121 -.051 .052 -.015 .470 
2.0 

.600 -.067 .279 .011 -.322 -.030 .051 -.016 .313 

.064 -.062 .377 .003 -.114 -.049 .046 -.016 .470 

3.0 .128 -.065 .363 .000 -.147 -.044 .047 -.017 .443 

.600 0.061 .281 .006 -.340 -.029 .043 -.0J.5 .313 
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TABLE 3.1: STRUCTURAL PROPERTIES OF SINGLE-PANEL FLOORS 
WHERE Ll/L2 = 1.0, Ll = 240 in. 

ex S ds (in.) Flexural 'Beam Torsional Beam 

0.4 .064 6.5 6.37" x 12.74" 6.37" x 12.74" 

6.5 7.58" x 15.15" 7.58" x 15.15" 
.064 

9.0 9.67" x 19.34" 9.67" X 19.34" 

0.8 .107 6.5 7.58" X 15.15" 8.61n X 17.22" 

.160 6.5 7.58" x 15.15" 9.53" X 19.05" 

1.2 .064 6.5 8.39" x 16.77" 8.39" x 16.77 11 

2.0 .064 6.S 9.53" x 19.05" 9.53" X 19.05" 

6.S 10.55" X 21. 09" 10.55" x 21.09" 
.064 

9.0 13.46" X 26.92" 13.46" X 26.92" 

3.0 -, 

.107 6.5 10.55" x 21. 09" 11.98" X 23.96" 

.160 6.5 10.5511 X 21. 09" 13.26" X 26.52 11 

8.0 .064 6.5 13.48" x 26.95" 13.48" x 26.95" 
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TABLE 3.2: STRUCTURAL PROPERTIES OF SINGLE-PANEL FLOORS 
WHERE L,/L2 = 2.0, L1 = 240 in. 

a B d (in. ) Flexural Beam Torsional Beam 
s 

0.4 .064 6.5 5.36" x 10.72" 4.51" x 9.01" 

.064 6.5 6.37" x 12.74" 5.36" x 10.72" 
0.8 9.0 8.13" x 16.27" 6.84" x 13.68" 

.256 6.5 6.37" x 12.74" 7.58" x 15.15" 

1.2 .128 6.S 7.05" x 14.10" 7.05" x 14.10" 

2.0 .128 6.5 8.01" x 16.02" 8.01" x 16.02" 

.064 6.5 8.87" x 17.73" 7.46" x 14.91" 
9.0 11.32" x 22.64" 9.52" x 19.03" 

3.0 
.128 6.5 8.87" x 17.73" 8.87" x 17.73" 

.256 6.S 8.87" x 17.73 10.54" x 21.09" 

8.0 .064 6.5 11. 33" x 22.66" 9.53" x 19.05" 

TABLE 3.3: STRUCTURAL PROPERTIES OF SINGLE-PANEL FLOORS 
WHERE L1/L2 = 0.5, Ll = 120 in. 

a B d s (in. ) Flexural Beam Torsional Beam 

.032 
6.5 6.37" x 12.74" 6.37" x 12.74" 

0.4 9.0 8 .13" x 16.27" 8.13" x 16.27" 

.128 6.5 6.37" x 12.74" 9.01" x 18.01" 

0.8 .064 6.5 7.58" x 15.15" 9.01" x 18.01" 

1.5 .064 6.5 8.87" x 17.73" 10.54" x 21. 09" 

.032 6.5 10.54" x 21.09" 10.54" x 21.09" 
9.0 13.46" x 26.92" 13.46" x 26.92" 

3.0 
.064 6.5 10.54" x 21. 09" 12,,53" x 25.07" 

.128 6.5 10.54" x 21.09" 14.91" x 29.81" 

8.0 .064 6.5 13.48" x 26.95" 16.02" x 32.03" 
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TABLE 3.7: CARRYOVER FACTORS FOR A SINGLE-PANEL FLOOR 
WHERE L,/L2 = 1.0, L, = 240 in. 

-
Il B Os CF

12 
CF

13 
CF

14 
CF

15 CP16 CF
17 

CF
18 

0.4 .064 6.5 -.057 .318 .023 -.030 -.034 .037 -.012 

6.5 -.063 .338 .020 -.029 -.037 .031 -.008 
.064 

9.0 -.064 .335 .021 -.033 -.035 .032 -.010 
O.B 

.107 6.5 -.077 .337 .027 -.039 -.041 .034 -.008 

.160 6.5 -.091 .335 .033 -.050 -.045 .038 -.009 

1.2 .064 6.5 -.065 .344 I .018 -.029 -.038 .028 -.007 

2.0 .064 6.5 -.063 .346 .016 -.028 -.037 .024 -.006 

6.5 -.060 .346 .013 -.029 -.036 .022 -.005 
.064 

3.0 
9.0 -.057 .339 .012 -.031 -.032 .023 -.007 

.1.07 6.5 -.069 .342 .018 -.045 -.040 .025 -.005 

.160 6.5 .,..077 .336 .021 -.067 -.043 .027 -.005 

8.0 .064 6.5 -.045 .345 .008 -.030 -.029 .018 -.004 

TABLE 3.8: CARRYOVER FACTORS FOR A SINGLE-PANEL FLOOR 
WHERE L,/L2 = 2.00, Ll = 240 in. 

(1 8 ds CF
12 

CF
13 

CF14 
CF

15 
CF

16 
CF

17 
CF

18 

0.4 .064 6.5 -.053 .264 .009 -.163 -.057 .076 -.007 

6.5 -.065 .301 .009 -.146 -.062 .066 -.005 

0.8 
.064 

9.0 -.065 .296 .008 -.153 -.060 .067 -.006 

.256 6.5 -.092 .291 .020 -.187 -.072 .069 -.002 

1.2 .064 6.5 -.080 .315 .014 -.149 -.067 .050 -.002 

2.0 .064 6.5 -.080 .332 .013 -.133 -.064 .052 -.0001 

6.5 -.070 .34.8 .007 -.100 -.058 .044 -.002 
.064 

9.0 -.071 .340 .005 -.107 -.056 .047 -.005 
3.0 

.128 6.5 -.076 .341 .012 -.122 -.060 .046 -.0004 

.256 6.5 -.082 .325 .016 -.166 -.060 .048 -.002 

8.0 .064 6.5 -.057 .359 .002 -.073 -.046 .036 -.003 
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TABLE 4.2: PHYSICAL PROPERTIES OF CORNER PANELS WITH NONCONSISTENT a 

WHERE ds = 6.5 in., L1/L2 = 2.0, Ll = 240 in. 

a 
B Beart'.s AC, GI Beams AG, BE, CI 

Edge Beams 
DF, 

0.4 .064 5.36" x 10.72" 4.51" x 9.01" 

3.0 .064 8.87" x 17.73" 7.46" x 14.91" 

3.0 .256 8.87" X 17.73" 10.54" X 21.09" 

8.0 .064 11. 33" X 22.66" 9.53" X 19.05" 
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16.0 

a 

0.4 

0.8 

2.0 

4.0 

TABLE 4.10: PHYSICAL PROPERTIES OF INTERIOR PANELS 
WHERE L,/L2 = , .0, L, = 240 in. 

B d s (in. ) Flexural Beams Torsional Beams 

.064 8.0 8.85" x 17.71" 8.85" x 17.71" 

6.5 9.01" x 18.02" 9.01" x 18.02" 
.064 

10.0 12.45" x 24.89" 12.45" x 24.89" 

.192 10.0 12.45" x 24.89" 16.37" x 32.75" 

.064 8.0 13.24" x 26.48" 13.24" x 26.48" 

6.5 14.91" x 29.82" 14.91" x 29.82" 
.064 

10.0 20.60" x 41. 20" 20.60" x 41.20" 

.096 10.0 20.60" x 41.20" 22.79" x 45.57" 

.192 10.0 20.60" x 41.20" 27.10" x 54.19" 

.064 8.0 22.27" x 44.53" 22.27" x 44.53" 

TABLE 4.11: PHYSICAL PROPERTIES OF INTERIOR PANELS 
WHERE L,/L2 = 0.5, L1 = 120 in. 

B ds (in. ) Flexural Beams Torsional Beams 

.064 8.0 8.85" x 17.71" 10.52" x 21.05" 

.032 10.0 12.45" x 24 .. 89" 12.45" x 24.89" 

6.5 9.01" x 18.02" 10.71" x 21. 42" 
.064 

10.0 12.45" x 24.89" 14.80" x 29.59" 

.128 10.0 12.45" x 24.89" 17.60" x 35.19" 

.064 8.0 13.24" x 26.48" 15.74" x 31.48" 

.064 8.0 15.74" x 31.49" 18.72" x 37.43" 
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a 

0.4 

0.8 

2.0 

4.0 

6.0 

16.0 

TABLE 4.12: PHYSICAL PROPERTIES OF INTERIOR PANEL 
WHERE L1/L2 = 2.0 

S d s (in. ) Flexural B~ams Torsional Beams 

.064 8.0 7.45 x 14.89 6.26 x 12.52 

6.5 7.58 x 15.15 6.37 X 12.74 
.064 

10.0 10.47 x 20.93 8.80 X 17.60 

.256 10.0 10.47 x 20.93 12.44 X 24.88 

.064 8.0 11.13 x 22.27 9.36 x 18.72 

.064 8.0 13.24 x 26.48 11.13 X 22.26 

6.5 12.54 x 25.08 10.54 X 21.08 
.064 

10.0 17.32 x 34.64 14.56 x 29.12 

.128 10.0 17.32 x 34.64 17.31 x 34.63 

.256 10.0 17.32 x 34.64 20.59 x 41.18 

.;064 8.0 18.72 x 37.45 15.74 X 31.48 
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TABLE 4.16: CARRYOVER FACTORS FOR AN INTERIOR PANEL 
WHERE Ll/L2 = 1.0~ L, = 240 in. 

--. -f-="'" 

S ds (in. ) CPU CF
15 _ L,CF17 

CF18 

.064 8.0 .l41 =.028 .012 =.010 

6.5 .164 =.024 .009 ~.008 

.064 
10.0 .157 -.025 .009 -.008 

.192 10.0 .157 -.037 .012 ~.O08 

.064 8.0 .157 -.019 .005 -.004 

6.5 .177 -.016 .003 ... 001 
.064 

10.0 .163 ... 017 .004 -.002 

.096 10.0 .162 -.024 0005 -.001 

.192 10.0 .154 ... 049 .006 -.001 

.064 8.0 .160 -.016 .003 -

TABLE 4.17: CARRYOVER FACTORS FOR AN INTERIOR PANEL 
WHERE L,/L2 == O.5~ Ll == '20 -in. 

a. B ds (in. ) CP
13 CP15 CP

17 
CF

1S 

0.4 .064 8.0 .159 -.003 .001 -.006 

.032 10.0 .159 -.002 - -.004 

6.5 .170 -.004 .001 -.006 
0.8 .064 

10.0 .162 -.004 0001 -.004 . 
.128 10.0 .163 -.008 • 003 ~.O09 

2.0 .064 8.0 .160 ~.006 0002 -.005 

4.0 .064 8.0 .147 -.009 .003 =.005 
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TABLE 4.18: CARRYOVER FACTORS FOR AN INTERIOR PANEL 

WHERE Ll/L2 = 2.0. Ll = 240 in. 

o ~~.- 0 

I -. 1161,033 ! . . , 
~o132 .033 -_ ... _- --~ 

I =0089 I .025 
- t 

I =<,066 ~0,?18 
, ~= 

-.054 I .~ 
~o056 I .016 

~·.O69 I 0016 
! 

i -.098 
L~~~ .. 

0016 
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TABLE 5.1: PHYSICAL PROPERTIES OF FLOORS ANALYZED 
WHERE L,/L2 = 1.0 3 Ll = 240 in., H = 180 in. 

C (lAB SAC d (in. ) DAB (in. ) D
AC 

(in. ) 
(in. ) 

s 

605 15.15 15.15 
.064 

15 0.2 9.0 19.34 19.34 

.160 6.5 15.15 19.05 
.-

15 3.0 .064 6.5 21.09 21.09 

21 3.0 .064 6.5 2L09 21.09 

6.5 26.95 26.95 
.064 

15 8.0 9.0 34.4C 34.40 

.160 6.5 26.95 33.87 

6.5 26.95 26.95 
.064 

20 8.0 
9.0 34.40 34.40 

.160 6.5 26.95 33.87 

27 8.0 .064 6.5 26.95 26.95 
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C 

15 

25 

TABLE 5.2a: PHYSICAL PROPERTIES OF STRUCTURES ANALYZED 
WITH L1/L2 = 0.5, Ll = 120 in., H = 144 in. 

~in. ) C!.AB SAC d (in. ) DAB (in. ) D
AC 

(in. ) s 

o .4 .064 6.5 12.74 15.15 

3.0 .064 6.5 21.09 25.07 . 

8.0 .064 6.5 26.95 32.03 

o .4 .064 6.5 12.74 15.15 

3.0 .064 6.5 21.09· 25.07 

8.0 .064 6.5 26.95 32.03 

TABLE 5.2b: PHYSICAL PROPERTIES OF STRUCTURES ANALYZED 
WHERE L,/L2 = 0.75, L, = 180 in., H = 144 in. 

C .(in. CiAB SAC d (in. ) DAB (in. ) fDAC 
(in. ) s 

25 0.8 .064 8.0 17.71 19.02 

25 3.0 .064 8.0 24.64 26.47 

25 8.0 .064 8.0 31.49 33.82 

-138-



TABLE 5.3: PHYSICAL PROPERTIES OF STRUCTURES ANALYZED 
WITH L,/L2 = 2.0, L, = 240 in., H = 144 in. 

C (in. ) (lAB SAC d (in. ) DAB (in. ) D
AC

· (in. ) s 

0.8 .064 6.5 12.74 10.72 

15 3.0 .064 6 0 5 17.73 14.91 

8.0 .064 6.5 22.66 19.05 

0.8 .064 6.5 12.74 10.72 

20 3.0 .064 6.5 17.73 14.91 

8.0 .064 6.5 22.66 19.05 

-139-



TABLE 5.4: STRUCTURAL PROPERTIES OF COLUMNS 

e (in. ) A (ih.) 2 ASH (in.) 2 Ie (in. )4 

15 225.0 187.5 4218.8 

20 400.0 333.3 13333.3 

21 441.0 367.5 16206.8 

25 625.0 520.8 32552.1 

27 729.0 607.5 44286.8 

-140-
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TABLE 5.6a: MEMBER STRUCTURAL PROPERTIES FOR ACI-71, 8.7 METHOD 
WHERE L,/L2 = 1.0, Ll = 240 in., H = 180 in. 

°AB SAC d s (in. ) b
f 

(in. ) A (in. . ) IB (in. ) 4 

6.5 20.0 5.28 3795.67 
.064 

0.8 9.0 20.0 7.14 9499.48 

.160 6.5 20.0 5.28 3795.67 

3.0 .064 6.5 20.0 7.85 13060.00 

6.5 20.0 10.78 32432.90 

8.0 .064 
9.0 20.0 14.24 81787.41 

.160 6.5 20.0 10.78 32432.90 

TABLE 5.6b: MEMBER STRUCTURAL PROPERTIES FOR ACI-71, 8.7 METHOD 
WHERE Ll/L2 = 0.5, L, = 120 in., H = 144 in. 

0A,B SAC d (in. ) b I 
(in. ) A (in. ) I (in. ) 4 

s B 

0.4 .064 6.5 10.0 4.98 1678.81 

3.0 .064 6.5 10.0 8.89 11142.84 

8.0 .064 6.5 10.0 11.92 27961.07 

-144-



TABLE 5.6c: MEMBER STRUCTURAL PROPERTIES FOR ACI-71, 8.7 METHOD 
WHERE L,IL2 = 0.75, L, = 130 in., H - 144 in. 

o,AB SAC d tin. ) b
f 

(in,. ) :\ (in. ) I (in. ) 4 
s B 

0.8 .064 8.0 15.0 6.75 6337.24 

3.0 .064 8.0 15.0 9.96 21955.27 

8.0 .064 8.0 15.0 13.46 54925.98 

TABLE 5.6d: MEMBER STRUCTURAL PROPERTIES FOR ACI-71, 8.7 METHOD 
WHERE L,/L2 = 2.0, L1 = 240 in., H = 144 in. 

o,AB SAC d (in. ) b
f 

(in. ) A (in. ) I (in.) 4 
s B 

0.8 .064 6.5 20.0 4.45 2042.83 

3.0 .064 6.5 20.0 6.32 6821.27 

8.0 .064 6.5 20.0 8.61 17077.72 

-145-



~
 

+:
> 

C
f)

 
I 

Ct
AB

 

0
.8

 

3
.0

 

8
.0

 

8 A
C

 
d 

.0
6

4
 

.1
6

0
 

.0
6

4
 

.0
6

4
 

.1
6

0
 

TA
BL

E 
5

. 7
a:

 
M

EM
BE

R 
ST

RU
CT

UR
AL

 
PR

O
PE

R
TI

ES
 

FO
R 

S
T

I F
FN

ES
S 

~'
1A
TR
IX
 

rvl
ET

HO
D 

W
HE

RE
 

L
,/

L
2 

=
 
1

.0
, 

L,
 

=
 

24
0 

in
.,

 H
 =

 
18

0 
in

. 

(K
 

) 
r 

(K
-i

n
.)

 
K

 
(i

n
. 

) 
y 

A
 

(i
n

o
) 

em
 

(
K

)
 

(K
-i

n
-;

 
s 

1
1

 
B

 
\ 

ra
d

 
(K
l
l

) 
~ 

em
 A

B 
ra

d
 

6
.5

 
5

.5
0

 
15

61
72

 .1
6

 
2

3
2

0
2

2
.7

9
 

9
.0

 
0

.4
8

 
7

.1
9

 
4

0
7

2
1

2
.2

3
 

1
.4

8
 

6
0

2
6

7
4

.1
0

 

6
.5

 
5

.5
0

 
1

6
8

4
3

4
.3

5
 

2
4

9
2

8
2

.8
4

 

6
.5

 
0

.3
6

 
7

.9
2

 
5

7
0

0
0

2
.4

9
 

1
.1

6
 

6
6

1
2

0
2

.8
9

 

6
.5

 
1

0
.4

1
 

1
4

8
2

8
5

3
.9

7
 

1
6

1
6

3
1

0
.8

3
 

9
.0

 
0

.3
0

 
1

3
.3

9
 

4
0

0
7

7
6

6
.8

1
 

1
.0

9
 

4
3

6
8

4
6

5
.8

2
 

6
.5

 
1

0
.4

1
 

1
5

9
9

4
4

6
.9

8
 

1
7

4
3

3
9

7
.2

1
 

(B
2

2
) A

D
 

(k
23

)A
B

 

0
.9

7
 

0
.9

7
 

.3
3

6
 

0
.9

5
 

0
.9

7
 

.3
4

0
 

0
.9

7
 

0
.9

7
 

.3
4

0
 

0
.9

0
 

I 



+::
:. 

-..
..J

 
I 

(l
A

B
 

0
.4

 

3
.0

 

I 8
.0

 

(lA
B

 

O
.B

 

3
.0

 

B
.O

 

TA
BL

E 
5.

7b
: 

ME
MB

ER
 S

TR
UC

TU
RA

L 
PR

OP
ER

TI
ES

 
FO

R 
ST

IF
FN

ES
S 

M
AT

RI
X 

ME
TH

OD
 

W
HE

RE
 

L
l/L

2 
=

 0
.5

, 
L,

 
=

 '2
0 

in
 .•

 H
 =

 '4
4 

in
. 

SA
C 

d 
(i

n
 

Y
 

,\ 
(i

n
) 

(K
 

)
r
 K

-i
n

 
1

1
 
B

ra
d

 
T(

 
I(K

 
)7

: 
x
· ...

 ~ 
n 

(S
2

2
) 

N
3

 
" 

em
 

1
1

 
B

 
(K

e
m

) 
A

B
 

';.,
d 

.0
6

4
 

6
.5

 
0

.4
2

 
5

.0
6

 
1

4
4

8
2

2
.1

4
 

1
. 5

1
 

2
1

8
6

8
1

.4
3

 
.9

9
 

.0
6

4
 

6
.5

 
0

.2
5

 
B

.7
2

 
1

0
5

2
1

0
1

. 9
3

 
1

.0
6

 
1

1
1

5
2

2
8

.0
4

 
.9

9
 

.0
6

4
 

6
.5

 
0

.2
0

 
1

1
.4

3
 

2
7

5
5

4
3

4
.3

3
 

1
.0

0
 

2
7

5
5

4
3

4
.3

3
 

-. 
.9

9
 

-
-
-
-
-
~
 

TA
BL

E 
5.

7e
: 

ME
MB

ER
 S

TR
UC

TU
RA

L 
PR

OP
ER

TI
ES

 
FO

R 
ST

IF
FN

ES
S 

M
AT

RI
X 

ME
TH

OD
 

W
HE

RE
 

L
,/L

2 
=

 0
.7

5
, 

L,
 

=
 1

80
 
in

.,
 

H
 =

 
14

4 
in

. 

SA
C 

d
s 

(i
n

 
y 

X
 

(i
n

) 
(K

 
)
r
 K

-i
n

 
1

1
 
B

ra
d

 
K

e
m

 /
(K
11
)~
 

K
-i

n
 

(S
22

)A
B

 
(K

e
m

)A
B

 
ra

d
 

.0
6

4
 

B
.O

 
0

.4
3

 
6

.7
7

 
3

7
1

9
7

0
.4

2
 

1
.3

9
 

5
1

7
0

5
0

.0
1

 
.9

8
 

.0
6

4
 

8
.0

 
0

.3
1

 
1

0
.3

7
 

1
3

5
5

0
1

4
.5

5
 

1
.1

1
 

1
5

0
4

0
6

6
.1

5
 

.9
8

 

.0
6

4
 

B
.O

 
0

.2
5

 
1

2
.8

1
 

3
5

3
1

2
6

0
.8

8
 

1
.0

5
 

3
7

0
7

B
2

3
.9

3
 

.9
8

 

(k
2

3
) 

A
B

 

.3
4

 
I 

.3
4

 

.3
3

 

(k
23

)A
B

 

.3
4

 

.3
4

 

.3
3

 



-P
> 

co
 

I 

a. AB
 

0
.8

 

3
.0

 

8
.0

 

'
-
-
-
-
-
-

6 A
C

 

.0
6

4
 

.0
6

4
 

.0
6

4
 TA

BL
E 

5.
7d

: 
ME

MB
ER

 S
TR

UC
TU

RA
L 

PR
OP

ER
TI

ES
 

FO
R 

ST
IF

FN
ES

S 
M

AT
RI

X 
ME

TH
OD

 
W

HE
RE

 
L

,/L
2 

=
 2

.0
, 

L1
 

=
 2

40
 

in
.,

 
H

 =
 1

44
 i

n
. 

(i
n

 .)
 

Y
 

A
 
(
in

.)
 

r-
K

-i
n

. 
K

 
/(

K
 

)
r
 

(
K

)
 

(K
..

;l
n

.)
 

d 
(K

l
l

) 
B

 
ra

d
 

s 
em

 
1

1
 

B
 

em
 A

B
 

ra
d

 

6
.5

 
.4

8
 

4
.8

7
 

7
4

7
7

4
.6

5
 

1
.8

6
 

1
3

9
0

8
0

.8
5

 

6
.5

 
.3

6
 

6
.8

4
 

2
7

8
1

5
9

.2
9

 
1

.3
4

 
3

7
2

7
3

3
.4

5
 

6
.5

 
.2

9
 

8
.9

9
 

7
2

4
9

3
2

.7
8

 
1

.2
1

 
8

7
7

1
6

8
.6

7
 

-
-
~
-
~
-
-
-
-
-
-

-
.
-
~
-
.
~
-
~
-
-
~
-
-
-
~
-
-

(S
22

)A
B

 
(k

2
3

) A
B

 

0
.0

5
 

0
.2

9
 

0
.9

0
 

0
.3

4
 

I 

0
.9

2
 

0
.3

6
 

-
-
-
-
-
-
-
-
-
-
-

-
-
-

~
-
-
-
-
-
-
-
-



..::
:. 

\.
0

 
I 

TA
BL

E 
5.

8a
: 

CO
M

PA
RA

TI
VE

 L
IS

TI
NG

 O
F 

LA
TE

RA
L 

ST
IF

FN
ES

S 
OF

 S
IN

GL
E-

PA
NE

L,
 

SI
NG

LE
-S

TO
RY

 S
TR

UC
TU

RE
S 

BA
SE

D 
ON

 
FO

UR
 D

IF
FE

RE
NT

 M
OD

EL
S, 

WH
ER

E 
L1

/L
2 

=
 1

.0
, 

L,
 

=
 2

40
 

in
.,

 H
 = 

18
0 

in
. 

~ 
~
 [

F
in

it
e
 E

1
. 
J 

E
q

u
i.

v
a1

en
t 

F
ra

m
e 

A
C

I-
71

, 
8

.1
 

S
M

M
 

C
 

(i
n

.)
 

O
lA

B 
/lA

C 
d

s 
(
i
n
~
 

P
ll
l T

 
K

 
D

if
f.

 
%

 
P

il
l 
~
 

D
if

f.
 

%
 

P
il
l 
~
 

D
if

f .
.
.
 

T
 
~
n
.
 

In
. 

T
in

. 
T

 
in

 

6
.5

 
7

9
.1

6
 

1
0

4
.1

2
 

3
1

.5
3

 
7

9
.9

3
 

0
.9

8
 

7
9

.0
7

 
-0

.1
1

 
.0

6
4

 
1

5
 

O
.S

 
9

.0
 

1
1

0
.3

6
 

1
2

1
.8

9
 

1
0

.4
5

 
1

1
0

.8
6

 
0

.4
5

 
1

1
1

.1
2

 
0

.6
9

 

.1
6

0
 

6
.5

 
8

0
.8

3
 

9
8

.2
6

 
2

1
.5

7
 

7
9

.9
3

 
-1

.1
1

 
8

0
.6

6
 

-0
.2

0
 

1
5

 
3

.0
 

.0
6

4
 

6
.5

 
1

1
5

.9
2

 
1

2
3

.5
2

 
6

.5
6

 
1

2
2

.2
7

 
5

.4
8

 
1

1
6

.2
0

 
0

.2
5

 

21
 

3
.0

 
.0

6
4

 
6

.5
 

2
7

6
.8

1
 

3
6

5
.1

8
 

3
1

.9
2

 
3

0
2

.4
1

 
9

.2
5

 
2

7
9

.0
4

 
0

.8
1

 

6
.5

 
1

4
9

.5
9

 
1

4
4

.9
5

 
-3

.1
0

 
1

5
6

.3
3

 
4

.5
0

 
1

5
1

.1
3

 
1

.0
3

 
.0

6
4

 
1

5
 

8
.0

 
9

.0
 

1
8

9
.3

4
 

1
6

7
.8

2
 

-1
1

.3
6

 
1

9
4

.2
5

 
2

.6
0

 
1

9
2

.0
1

 
1

.4
1

 

.1
6

0
 

6
.5

 
1

5
0

.3
1

 
1

4
4

.8
5

 
-3

.6
3

 
1

5
6

.3
3

 
4

.0
1

 
1

5
1

. 6
0

 
0

.8
6

 

6
.5

 
3

4
9

.5
5

 
3

9
3

.3
2

 
1

2
.5

2
 

3
8

2
.3

6
 

9
.3

9
 

3
5

7
.2

7
 

2
.2

1
 

.0
6

4
 

2
0

 
8

.0
 

9
.0

 
4

8
8

.7
8

 
4

8
5

.0
2

 
-0

.7
7

 
5

2
0

.4
9

 
6

.4
9

 
5

0
5

.7
7

 
3

.4
8

 

.1
6

0
 

6
.5

 
3

5
2

.9
6

 
3

9
0

.5
9

 
1

0
.6

6
 

3
8

2
.3

6
 

8
.3

3
 

3
5

9
.4

9
 

1
.8

5
 

2
7

 
8

.0
 

.0
6

4
 

6
.5

 
7

1
5

.8
1

 
9

7
4

.1
9

 
3

6
.1

0
 

8
1

1
.0

9
 

1
3

.3
1

 
7

4
1

. 2
9

 
3

.5
6

 
-
-
-
-
-
~
 

-
-
-
-

-
~
-

-
-
-
~
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

_
_

_
 ._

. _
_

 ~
.
 __ 

l 
_

_
_

_
_

_
 ~
 _

_
 
--

--
-



(J
1

 

o I 

TA
BL

E 
5.

8b
: 

CO
M

PA
RA

TI
VE

 
LI

ST
IN

G 
OF

 
LA

TE
RA

L 
ST

IF
FN

ES
S 

OF
 S

IN
G

EL
-P

A
N

EL
, 

SI
NG

LE
-S

TO
RY

 S
TR

UC
TU

RE
S 

BA
SE

D 
ON

 
FO

UR
 D

IF
FE

RE
NT

 M
OD

EL
S, 

W
HE

RE
 

L
,/L

2 
=

 
0.

5,
 

Ll
 

=
 

'2
0 

in
.,

 
H

 =
 1

44
 i

n
. 

E
q

u
iv

a
le

n
t 

F
ra

m
e 

A
C

I-
7

I
g 

8
.7

 
S

M
M

 
P 

S
A

C
 

~
 

[F
io

E
l.

l(
.K

j 
(i~

.) 
D

iH
. 

%
 

P 
(
"
(
)
 

D
if

f.
 

%
 

p 
( 

K
 

\ 
l 

D
if

f.
 

%
 

C
 

(i
n

.)
 

Ct
. 

d 
(i

n
.)

 
6 T

S 
A

S
 

S 
l.

n
. 

6 T
S 

In
. 

""'r
S 

. i
;
.)

 
s 

... 
,
,
-
~
 

0
.4

 
.0

6
4

 
6

.5
 

1
4

1
.2

3
 

2
2

0
.3

7
 

5
5

.9
9

 
1

3
6

.4
3

 
-3

.4
0

 
1

4
0

.0
6

 
.
.
.
 8

3
 

1
5

 
3

.0
 

.0
6

4
 

6
.5

 
2

5
4

.5
9

 
2

7
0

.3
0

 
6

.1
7

 
2

6
4

.4
0

 
3

.8
5

 
2

5
6

.8
3

 
.8

8
 

8
.0

 
.0

6
4

 
6

.S
 

3
2

8
.7

3
 

3
1

7
.2

7
 

-7
.3

9
 

3
4

0
.8

5
 

3
.6

9
 

3
3

5
.2

4
 

1
.9

8
 

0
.4

 
.0

6
4

 
6

.S
 

5
6

1
.5

0
 

1
5

1
2

.8
2

 
1

6
9

.4
 

5
5

6
.7

6
 

-0
.8

4
 

5
6

4
.3

9
 

.5
1

 

2
5

 
3

.0
 

.0
6

4
 

6
.5

 
9

2
3

.8
9

 
1

4
3

6
.1

5
 

5
5

.4
5

 
9

9
7

.6
8

 
7

.9
9

 
9

4
7

.7
3

 
2

.5
8

 

8
.0

 
.0

6
4

 
6

.5
 

1
3

2
4

.1
5

 
1

8
2

1
.0

4
 

2
0

.8
7

 
1

4
7

4
.1

7
 

1
1

. 
33

 
1

4
0

4
.5

5
 

6
.0

7
 

-
-
~
.
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
.
-
~
-
.
-

-
~
-
-
-
-
-

-
-
-
-
-

TA
BL

E 
5.

8e
: 

CO
M

PA
RA

TI
VE

 
LI

ST
IN

G
 O

F 
LA

TE
RA

L 
ST

IF
FN

ES
S 

OF
 S

IN
G

EL
-P

A
N

EL
, 

SI
NG

LE
-S

TO
RY

 S
TR

UC
TU

RE
S 

BA
SE

D 
ON

 
FO

UR
 D

IF
FE

RE
NT

 M
OD

EL
S, 

W
HE

RE
 

L1
/L

2 
=

 
0.

75
, 

L,
 

=
 

18
0 

in
.,

 H
 =

 
14

4 
in

. 

E
a
u

iv
a
1

e
n

t 
F

ra
m

e 
A

C
I-

7
1

, 
8

.7
 

S
M

M
 

~
 [

F
i.

E
l.

 J
(~
) 
~
 (

i~.
) 

P
 

. 
( 

K
 

) 
~
 

( 
v 

C
 

{L
nP

) 
a 

SA
C 

d 
(
i
n
~
 

D
if

f.
 

%
 
t\.

s 
in

. 
D

if
f.

 
%

 
i~

) 
D

if
f.

 
%

 
AB

 
s 

S 
l.

n6
 

6
· T
S 

0
.8

 
.0

6
4

 
8

.0
 

6
9

7
.6

1
 

1
4

2
3

.4
0

 
1

0
4

.0
4

 
7

1
0

.6
8

 
l.

8
7

 
7

1
0

.9
5

 
1

.9
1

 

2
5

 
3

.0
 

.0
6

4
 

8
.0

 
1

0
6

0
.4

9
 

1
5

2
7

.5
1

 
4

4
.0

4
 

1
1

5
7

.4
8

 
9

.1
5

 
1

0
9

4
.7

4
 

3
.2

3
 

8
.0

 
.0

6
4

 
S

.O
 

1
5

7
1

.1
9

 
1

9
6

7
.2

5
 

2
5

.2
1

 
1

7
4

8
.4

1
 

1
1

.2
8

 
1

6
5

6
.0

3
 

5
.4

0
 

_ .
..

 _-
-
-

-
-
-
-
-
-
-



C
 1
5

 

(J
1

 

2
0

 

TA
BL

E 
5

.8
d

: 
C

m
1P

AR
AT

IV
E 

LI
S

T
IN

G
 

OF
 

LA
TE

R
AL

 
S

TI
FF

N
E

S
S

 
OF

 
S

IN
G

LE
-P

A
N

E
L,

 
S

IN
G

LE
-S

TO
R

Y
 

ST
RU

CT
UR

ES
 

BA
SE

D 
ON

 
FO

UR
 D

IF
FE

R
E

N
T 

M
O

D
EL

S,
 

W
HE

RE
 

L
,/L

2 
=

 
2

.0
, 

L1
 

=
 2

40
 

in
.,

 H
 =

 1
44

 
in

. 

SA
C

 
p 

r~
' 

E
l 

] 
(i

~J
 

E
q

u
iv

a
le

n
t 

F
ra

m
e 

A
C

I-
7

L
 

8
.7

 
S

M
M

 
(i

n
. 

) 
<X

AB
 

d 
(i

n
. 

) 
-;

;-
-.

Ll
!~

. 
. 

6~~
' (

i~
J 

D
if

f.
 

%
 
~
 C
~.
) 

D
if

f.
 

\ 
P

 
(
"
)
 

s 
h

.-
-
~
 

T
S 

lS
'1

"'!
,; 

in
. 

0
.8

 
.0

6
4

 
6

.5
 

1
1

1
.8

6
 

1
8

2
.4

4
 

6
3

.0
9

 
1

1
4

.2
4

 
2

.1
3

 
1

1
2

.0
6

 

3
.0

 
.0

6
4

 
6

.S
 

1
7

0
.7

4
 

1
9

9
.1

2
 

1
6

.6
2

 
1

8
6

.0
4

 
8

.9
6

 
1

7
4

.2
8

 

8
.0

 
.0

6
4

 
6

.5
 

2
3

8
.4

3
 

2
4

9
.9

8
 

4
.8

4
 

2
6

1
.4

6
 

9
.6

6
 

2
4

7
.5

9
 

0
.8

 
.0

6
4

 
6

.5
 

2
4

3
.8

1
 

5
1

6
.4

2
 

1
1

1
.8

1
 

2
5

0
.1

2
 

2
.5

9
 

2
4

7
.5

2
 

3
.0

 
.0

6
4

 
6

.5
 

3
4

0
.2

6
 

4
7

4
.2

8
 

3
9

.3
9

 
3

7
3

.8
6

 
9

.8
8

 
3

4
9

.6
4

 

8
.0

 
.0

6
4

 
6

.5
 

4
8

7
.9

8
 

6
0

0
.0

8
 

1
0

.5
4

 
5

5
5

.2
5

 
1

3
.7

9
 

5
1

2
.0

7
 

-
-
-
-
-

-_
 ..

 
-
-
-
~
-
-
-
-
-
-
-

-
-
-
-

-
-

-
-
-
-
-

-
-
-

-
-
-
-
-

I
.-

-
-

L
.-

D
if

f.
 

%
 

.1
7

 

2
.0

7
 

3
.8

4
 

1
.5

2
 

2
.7

6
 

4
.9

4
 

I 



TABLE 5.9: EFFECTIVE SLAB WIDTH, bf , OF SINGLE-PANEL FLOORS 

L1/L2 a
AB SAC (in. ) 

Of 
d b

f 
(in.. ) 

0.5 L2 s 

I 
6.5 25.02 .21 

.064 
0.8 9.0 29.79 .25 

.160 6.S 29.25 .24 
1.0 
L

1
=240 in 3.0 .064 6.5 17.62 .15 

6.5 18.91 .16 
.064 

8.0 9.0 24.99 .21 

.160 6.5 19.90 .17 
>--, 

004 .064 6.S 18.18 .15 
0.5 
L

1
=120 in 3.0 .064 6.5 12.52 .10 

8.0 .064 6.5 13.49 .11 

O.B .064 B.O 22.20 .19 
0.75 
L1==lBO in 3.0 .064 8.0 17.15 .14 

S.O .064 B.O IS.71 .16 

I 2.0 

O.B .064 6.5 22.46 .37 

I 
3.0 .064 605 17.11 .29 

L
1

=240 in 

S.O .064 6.5 17.90 .30 

-152-



TABLE 5.10: STRUCTURAL PROPERTIES OF EQUIVALENT FRAME 
FOR THE MULTI-PANEL, SINGLE-STORY STRUCTURE 

(in ,4 (. ,4 K-in. K K-in. K 
K-in. 

Col. IB IBT ~n., K 
c rad ta r.:l.d ec~ 

A 70816.67 94737.47 8861595.30 108319729.66 8191455.48 

B 70816.67 94737.47 8861595.30 60186257.14 7724298.94 

E 82620.97 110529.08 8861595.30 252750681.38 8561426.39 

F 82620.97 110529.08 8861595.30 140437181.19 8335617.30 

TABLE 5.11: STRUCTURAL PROPERTIES FOR ACI 318-71. 8.7 MODEL 
OF THE MULTI-PANEL, SINGLE-STORY STRUCTURE 

BeaIII h f (in~ ). i.in~ I (in} J {inJ4 

AS 16.0 12.56 46490.80 21888.40 

AE 20.0 12.12 48885.30 22298.00 

EF 48.0 10.93 55290.77 23629.20 

SF 60.0 10.11 59670.00 24858.00 
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TABLE 5.14: LATERAL DISPLACEMENTS OF MULTI-BAY SINGLE-STORY STRUCTURE 
BASED ON FINITE ELEMENT METHOD 

d (in 0) I:::,cs (in. ) 8yy (rad) I:::,T (in J 
s 

Corner Col. 8.0 .0144 .000105 .0148 

Ext. Col. (X-X) 8.0 .0141 .000096 .0144 

Ext. Col. (Y-Y) 8 .• 0 .0140 .000074 .0143 

Int. Col. 8.0 .0139 .000067 .0139 

1.. r.6 
4 T 

.0144 

TABLE 5.15: LATERAL DISPLACEMENTS OF MULTI-BAY SINGLE-STORY STRUCTURE 
BASED ON THE ACI-71, SECTION 8.7 METHOD 

I:::, 
NA 

(in. ) X (in.) M.rc (K -in. ) Il]3C (K-inl I:::,T (in.) 

Corner Col. .0121 11.43 195.46 382.92 .0130 

Ext. Col. <X-X) .0121 11.43 223.57 398.42 .0130 

Ext. Col. (Y-Y) .0121 11.43 337.58 461.30 .0127 

Int. Col. .0121 11.43 371.01 479.73 .0126 

1 '4 I:6T 
.0128 
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TABLE 5.16: LATERAL DISPLACEMENTS OF MULTI-PANEL SINGLE-STORY STRUCTURE 
BASED ON THE ACI-71s SECTIONS 8.7 AND 11.7 METHOD 

Colum"'1 6 (in. ) A (in. ) M (K-in. ) M
BC 

(K-in. ) 6
T 

(in. ) NA TC 

A .C1215 10.97 194.71 382.98 .0131 

B .01215 10.97 222.89 398.58 .0130 

E .01215 10.97 337.35 461.94 .0128 

F .01215 10.97 370.99 480.56 .0127 

.1 rll 
4 T 

.0129 

TABLE 5.17: LATERAL DISPLACEMENTS OF MULTI-PANEL, SINGLE-STORY STRUCTURE 
BASED ON THE SMM 

Column , 
6

NA 
(in. ) A (in. ) M (k-it'l.) I-1

BC 
(K-in. ) 6

T 
(in. ) - TC .' 

A .01303 i 11.59 188.79 401026 .0141 

B .01303 11.59 205.06 410.22 .0141 

E .01303 11.59 328.24 478.06 .0138 

F .01303 11.59 348.93 489.45 .0138 

1 
'41:6'1' .0140 
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TABLE 5,18: . COMPARATIVE LISTING OF THE LATERAL STIFFNESS 
OF MULTI-PANEL, SINGLE-STORY STRUCTURE 

Model 
p 

(i~J Diff. % 
4r 

Finite Element 6950.67 -

Equiv. Frame 8335.83 19.93 

ACI-71, 8.7 7783.70 11.99 

ACI-71, 8.7 + 11.7 7763.79 11.70 

SMM 7164.98 3.08 

TABLE 5.19: STRUCTURAL PROPERTIES OF COLUMNS AND FLOOR BEAMS 
OF MULTISTORY BUILDING 

Member (' )2 2 (in.) 4 (in.) 4 A 1.d1 • ASh (in. ) I J 

Ext. Col. 400.0 333.3 13333.3 32000.0 

Int. Col. 676.0 563.3 38081.3 9139502 

ExL Bro. 33800 281. 7 19040.7 11424.4 

Int. Bm. 392.0 326.7 25610.7 15366.4 
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TABLE 5.20: VALUES OF PARAMETERS NEEDED TO DEFINE THE SMM 
EQUIVALENT MEMBERS FOR THE MULTISTORY BUILDING 

Equivalent 1 I ¢ f3 Member ILem/Lcm d (in. ) e (in. ) 0. 
s 

8.0 9.0 3.38 0.05 
dl-d2 L18 LO 

12.0 7.0 LOO 0.05 

8.0 9.0 2.86 0.08 
dl-c1 0.85 1.0 

12.0 7.0 0.85 0.08 

8.0 9.0 3.38 0.08 
d2~d3 1.18 0.5 

12.0 7.0 1.00 0.08 

8.0 9.0 2.86 0.11 
cl-bl 0.85 0.5 

12.0 7.0 0.85 0.11 

B.O 10.0 2.27 0.05 
c2-03 1.18 -

12.0 8.0 0.67 0.05 

8.0 10.0 1.92 0.08 
c2-b2 0.85 -

12.0 8.0 0.57 0.08 
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TABLE 5 .23a: EQUIVALENT BEAM PROPERTIES FOR t1UL TISTORY BU ILDING 
USING THE EQUIVALENT FRAME METHOD 

r Equi;. 
d (:LX). .) A Member $ 

(in.)2 I (in.) 4 J (in. ) 4 

Ext. Frame 
8.0 1342.0 44877.8 24275.6 

Beam 
12.0 1844.0 50638.9 54797.2 

. 8.0 2392.0 69053.3 28166.4 
Int. Frame 
Beam 12.0 3392.0 83799.4 101766.4 
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TABLE 50 23b: EQUIVALENT COLUMN PROPERTIES FOR THE MULTISTORY 
BUILDING USING THE EQUIVALENT FRAME METHOD 

- -

I 8 in. Slab 12 in. Slab 
CoL (K-in. ) (K-irl.,\ (K-in.) (K~i~') Story Col. End K 

rad 
K Orad ,I K K 

c ec c \ rad ec 

Cor Top 1498543.8 1268720.0 1452692.1 969011.1 

d2 Top 1498543.8 1138352.8 1452692.1 799359.5 
1st. 

cl Top 1570481.4 1480480.9 1522524.3 1317360.4 

Int. Top 4485451. 9 3685528.5 4348481. 7 2885067.5 

Cor. 
Top 2496794.7 2016110.1 2393318.5 1453895.2 
Bott. 1658637.4 1404260.8 1741418.3 1161604.5 

d2 Top 2496794.7 1762701.1 2393318.5 1162928.0 

2nd Bott. 1658637.4 1259966.1 1741418.3 95823403 

thru 
2670385.6 2469610.3 2560102.9 2125043.6 

11th cl 
Top 
Bott. 1690094.5 1593239.3 1775870.0 1536567.0 

Int. 
Top 7626888.3 5911120.8 7311909.8 4386796.1 

! Batt. 4827078.9 3966230.7 5072062.2 3365138.1 

Cor. 
Top 2496794.7 2183933.3 2393318.5 1741851.9 
Bott. 1658637.4 1339315.4 1741418.3 1057878.3 

d2 
Top 2496794.7 1997068.3 2393318.5 1484310.8 
Bott. 1658637.4 117097401 1741418.3 846165.8 

12th 

el Top 2670385.6 254373809 256010209 2284013.3 
Batt. 1690094.5 1563023.3 1775870.0 1474081. 9 

Int. 
Top 7626888.3 6475770.6 7311909.8 5246399.0 
Bott. 4827078.9 3741164.8 5072062.2 3042994.7 
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* TABLE 5.26: STIFFNESS PARTICIPATION IN THE FIRST ~ODE SHAPE (K1 ) 

Slab Thickness, ds % Increase in 

Method 8.0 in. 12.0 in. * Kl due to 
increase in ds 

Bare Beams 1.00 1.00 -
SMM 1.26 1.47 16.7 

Eff. Slab 
Width 1.50 1.51 0.7 

Equiv. Fr. 1.84 2.01 9.2 

TABLE 5.27: MAXIMU~ (SRSS) LATERAL ROOF DISPLACEMENT 
OF THE BUILDING OF FIG. 5.11 

8 in Slab 12 in Slab 
Method 

6y (in. ) 
Diff. % 6y (in'~ ) Diff. % 

SMM 8.40 - 9.02 -
Eff. Slab 
Width 7.30 -13.10 8.71 -3.44 

Equiv. Fr. 6.37 -24.17 6.88 -23.73 
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COLUMN ROTATIONS 
AT FLOOR LEVEL I NTERSTORY DRIFT 

(COLUMN TRANSLATION) 

Fi g. 1. 1 Deformations of r~oment-Resisting Frame 
Subjected to Lateral Loads 
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INTERIOR 
I PANEL I 

ROTATIONAL 
DEGREE OF FREEDOM 

FLOOR SYSTEM WITH OR WITHOUT BEAMS 

Fig. 1.2 Degrees of Freedom in Floor System 
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1 

(a) Area to be considered as equivalent frame 

c 
r-- I 

2 -, /ib /b -
-t2 

LI t L2 \r=OO 
~ ....... Ie 

(b) Equivalent interior frame 

Fig. '.3 Illustration of Equivalent Frame as Defined 
in ACI 318-71 Code, Section 13.4 
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1 4 Simplified Physical Model Fig. . 

1<*----- 12, -----11l>-1 
1
2

/2)CI-C2/i2, 12/2H1-C
2

/12-H 

(a) Beam-column combination 

(c) Twisting moment diagram 

(b) Distribution of unit twisting moment 
along column centerline 

Where G = modulus of elasticity or rigidity 

(d) Unit rotation diagram 

Fig. 1.5 Assumed Distribution of Unit Twisting Moment 
Applied Along Column Centerline, Twisting 
Moment Diagram, and Unit Rotation Diagram [10J 
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(a) Schematic Diagram of a Simply Supported Slab 
with Uniform Gravity Load [18] 
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(b) Moments, shears, and in-plane (membrane) 
forces in slab element 

Fig. 2.2 Load Carrying Mechanism in a Two-Way 
Reinforced Concrete Slab 
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"""'"0'- RESULTS OF TABLE 2.3 

2.5 ~ RESULTS OF TABLE 2.4, GROUP "A" 

)E RESULTS OF TABLE 2.4) GROUP"B" 
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Fig. 2.8 Contribution of Slab to Stiffness of a Square, 
Single-Panel Floor System as Function of a 
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Fig. 3.2 Schematic Illustration of Stresses along Flexural 
Beam 
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Fig. 3.3 Schematic Illustration of Rotation of Torsional 
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ELEMENTS 

Fig. 3.6 Rotations and Displacements at Support A 

(a) Cross Section 
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(b) Plan 
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Fig. 3.7 Cantilever T-Beam Model 
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Appendix A 

BEAM CARRYOVER FACTORS INCLUDING INFLUENCE OF SHEAR 
DISTORTION IN FLEXURAL BEAM 

The stiffness matrix of a prismatic member includin0 the influence 
of shear distortions is: 

where 

2EI 
K = -:-L -r.:0'---+ -:;2°-T-'-) 

[

2+T 

T = 
6EI 

GA L2 
sh 

l-T 

l-T] 
2+T 

(A.l) 

(A.2) 

Since all beams used in this study have a depth-to-width ratio of 2:1, 
and material properties as defined in section 2.3.1, T can be more 
easily defined as: 

T = 

02 
T = 1.404 2 

L 

The stiffness matrix of eq. A.l could also be rearranged so that: 

K = 4EI ( 2 + T) 
L 2 + 4T 

1.0 l-T 
2+T 

1.0 

(A.3) 

(A.4) 

Given eq. A.4, when the influence of shear distortions in the 
flexural beam is included, the following equations must be modified: 

A-l 



1. The flexural stiffness kF' as defined in eq. 2.1, is 

transformed to kr where: 

(2 + T 
2 + 4-r) 

2. The ratio 6, as defined in eq. 2.6, is transformed to 61 

\lJhere: 

61 = 6 (2 + 4T) 
2 + -r 

(A.5) 

(A. 6) 

3. Using eqs. A.4, A.5, and A.6, the stiffness of the bare beams 

(Kl1 )B' as defined in eq. 2.5, is transformed to (K11 )B' where: 

(1 -I- 61) 

and the bare beam carryover factor ~13' as defined in eq. 2.11, is 
transformed to ~13 where: 

1 = (1 - T) (1 ) 
~13 2 + T 1 + 6' 

Using eqs. A.3, A.6, and A.B, the values of $i3 for some of 
the floors analyzed in Chapter 3 are as follows: 

Ll/L2 D (in.) 
I 

S Ci. T S tiJ 13 

0.8 12.74 .004 .064 .467 

2.0 0.064 3.0 17.73 .008 .065 .464 
L, = 240 in. 8.0 22.66 .013 .065 .460 

0.8 15.15 .006 .065 .466 
1.0 0.064 3.0 21.09 .011 .065 .462 

Ll = 240 in. 8.0 26.95 .018 .066 .457 

0.8 15.15 .022 .066 .453 

0.5 0.064 3.0 21.09 .043 .068 .438 
Ll = 120 in. 8.0 26.95 .071 .071 .419 

A-2 

(A.7) 

(A.B) 



Appendix B 

CLOSED-FORM SOLUTION OF LATERAL DISPLACEMENT 
USING EQUIVALENT FRAME ANALYSIS 

The lateral stiffness KL of a single-story, single-panel frame 
(Fig. B.l) is the force P necessary to produce a unit lateral displace
ment ~ at the top of the frame. The solution to the problem of findin0 
P/~ can be found by superimposing the solution of the two frames shown 
in Figs. B.l(b) and B.l(c). In the frame shown in Fig. B.l(b), the 
solution relating the lateral force R to the beam end moments MB de
veloped as consequence of the applied external moment MF can be achieved 
by the use of Castigiliano·s Theorem: 

1 8U 0 
2" 8M

B 
= 

where U = complementary energy: 

where 
Kec = equivalent column rotational stiffness [Fig. B.2(a)] 

Ks = beam rotational stiffness [Fig. B.2(b)] 

1 8U 2MB 2MF 2MB 
-=---+-=0 

2" d~1B Ks Kec Kec 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

The moment in each of the columns in the frame shown in Fig. B.l(b) is 
(MF - MB) and can be related to the shear in the column by: 

B-1 



Superimposing the two frames shown in Figs. B.l(b) and B.l(c): 

Using eqs. B.4 and B.6: 

4MF 
P=-H-- R 

In the columns of the frame shown in Fig. B.l(c), the column 
moment MF and lateral displacement 6 can be related by: 

where KLR = lateral force needed to produce unit lateral 
displacement in column [Fig. B.2(c)] 

Using eqs. B.8 and B.9: 
P 4K + K KLR 

K = - = [s ec] __ 
1 6 Ks Kec H 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

(B.9) 

(B.10) 

Member Properties: The equivalent beam as defined by the ACI Code 
equivalent frame method (Fig. B.3) can be shown to have the following 
properties: 

and 
ELl 

K =s B (B.12) 

B-2 



where IB = moment of inertia of equivalent beam 

C = column width 

1 ds D 
n = A,+A~ [A,(D- ~) + A2 2J 

C ~ 2L - 4C 
B = F,(L1 - I) + F2(L, -~) + F3( '8· . ) 

The rotational stiffness Kec of the equivalent column (Fig. B.4) is 
defined by the ACI Code to be: 

(B.13) 

Using the conjugate beam method~ it can be shown that for the column 
shown in Fig. 8.4: 

(B.14) 

B-3 



where 

N == 

(H ) 2 
DH + c 

c 2 

2H 
([) + ~) 

The code also defines Kta as the torsional stiffness of torsional beam 
(Fig. B.5) where: 

(B.15) 

and 
4 d < B < 0 - d s - f - s 

For definitions of Is and Kt , see ACI 318-71 Code, section 13.4. 
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Appendix C 

CALCULATION OF LATERAL STIFFNESS OF SINGLE-STORY STRUCTURES 

C.l Single-Panel, Single-Story Structures 

Following are the detailed calculations of the lateral stiffness of 
the single-panel, single-story structures described in Tables 5.3 through 
5.6. The calculations are based on results of the computer analysis of 
the finite element model (Fig. 5.5), the ACI 318-71,8.7 model (Fig. 5.8), 
and the SMM (Fig. 5.9). 

1. Finite element model. - Given the symmetry of model and load 
shown in Fig. C.l, the lateral displacements ~ are such that: 

(C.l ) 

However, due to in-plane slab strains: 

(C.2) 

The computer program produces the lateral displacements at the 
mid-plane of the slab ~ and the rotation of the nodes e The lateral cs yy 
displacement of the top of the slab ~T' based on the assumption that 
plane sections in the slab remain plane (Fig. C.l), is: 

d 
~T = ~ + --2s (tan e ) (C.3) cs yy 

Taking the average of the lateral displacements at the four columns, 
the lateral stiffness of the structure becomes P/~Ta INhere: 

(C.4) 

C-1 



The values of ~Ta based on eq. C.4 for the structures analyzed in 

Chapter 5 are given in Tables C.la through C.ld. 

2. The ACI 318-71,8.7 and the SMM. - These tv.'O models are similar, 

as shown in Fig. C.2. The computer program used gives the lateral dis

placement of the equivalent beam1s neutral axis 6
N

•A., the moment at 

the top of the column MTC ' and the moment at the base of the column MBC 
(Fig. C.2). Given that plane sections in the beam remain plane, the 

lateral displacement at the top of the slab ~T' as shown in Fig. C.2(b), 
can be calculated as: 

(C.5) 

and the rotation at the top of column 8CT can be found by integrating 

the curvature along the length of the column, where: 

The values of ~T based on eq. C.6 for the structures analyzed in 

Chapter 5 are given in Tables C.2a through C.3d. 

C-2 

(C.6) 
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TABLE L2b: LATERAL DISPLACEMENTS OF A SINGLE-PANEL 9 

SINGLE-STORY STRUCTURE BASED ON ACI-71, 
8.7 METHOD WHERE L,/L2 = 0.5, L, = 120 in., H = 144 in. 

C(in) (l 
SAC as (in.i !!.NA (in.! A (in.) MTC(K-in.) ~c(K-in.) AB 

0.4 .064 6.5 1. 417 4.983 2235.51 4327.34 

15 0.8 .064 6.5 .737 8.894 2823.82 3321. 98 

3.0 .064 E.5 .575 11. 921 2804.09 3048.41 

0.4 .064 6.5 .343 4.983 517.94 6044.91 

25 0.8 .064 6.5 .188 8.894 1790.93 4354.87 

3.0 .064 6.5 .127 11.921 2215.92 3636.58 

TABLE C.2c: LATERAL DISPLACEMENTS OF A SINGLE-PANEL, 
SINGLE-STORY STRUCTURE BASED ON ACI-71, 

t>T(inj 

1.466 

.757 

.587 

.359 

.201 

.136 

8.7 METHOD WHERE Ll/L2 = 0.75, L, = 180 in., H = 144 in. 

C(in) (lAB SAC ds (in.: 6NA (in~ X(in.) MTC(K-in) M13C (K-in.) llT(in.) 

0.8 .064 8.0 .265 6.749 1094.08 5220.42 .281 

25 3.0 .064 8.0 .161 9.963 1922.32 4045.69 .173 

8.0 .064 8.0 .106 13.455 2247.77 3378.23 .114 
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TABLE C.3a: LATERAL DISPLACEMENTS OF A SINGLE-PANEL, SINGLE-STORY 
STRUCTURE BASED ON THE STIFFNESS MATRIX METHOD 

WHERE Ll/L2 = 1.0, L, = 240 in., H = 144 in. 

C (in) (lAB SAC d s (in.) I!NA (in.) :\ lin.) M.rc (K-in.) ~c(K-in.) {, T(in.) 

6.5 2.464 5.500 3106.49 5136.01 2.529 
.064 

15 O.B 9.0 1. 761 7.189 3547.98 4485.02 1.800 

.160 6.5 2.417 5.500 3149.96 5092.54 2.480 

15 3.0 .064 6 .. 5 1.682 7.918 3536.98 4408.52 L 721 

21 3.0 .064 6.5 .686 7.918 2657.68 5287.82 .717 

6.5 1.301 10.406 3624.98 4027.52 1. 323 
.064 

15 S.O 9.0 1.030 13.389 3554.30 3725.70 1.042 

.160 6.5 1.297 10.406 3628.57 4023.93 1.319 

6.5 .539 10.406 3250.94 4401.56 .560 
.064 

20 B.O 9.0 .384 13.389 3386.99 3893.01 .395 

.160 6.5 .536 10.406 3260.47 4392.03 .S56 

27 8.0 .064 6.5 .254 10.406 2349.01 5303.49 .270 
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TABLE C.3b: LATERAL DISPLACEMENTS OF A SINGLE-PANEL, SINGEL-STORY 
STRUCTURE BASED ON THE STIFFNESS MATRIX METHOD 
WHERE L,/L2 = 0.5, L1 = 120 in., H = 144 in. 

C(in:) (lAB £lAC d s (in.) llNA (in.) A (in~ HTC(K-in.) ~c(K-in.) liT{in~ 

0.4 .064 6.5 1.381 5.060 2287.34 4275.66 1.428 

15 0.8 .064 6.5 .757 S.720 2792.85 3352.65 .780 

3.0 .064 6.5 .384 11.429 2790.33 3062.18 .597 

0.4 .064 6.5 .338 5.060 569.10 5993.90 .354 

25 0.8 .064 6.5 .197 8.720 1677.94 4467.57 .212 

3.0 .064 6.5 .133 11. 429 2142.91 3709.59 .143 

TABLE C.3c: LATERAL DISPLACEMENTS OF A SINGLE-PANEL. SINGLE-STORY 
STRUCTURE BASED ON THE STIFFNESS MATRIX METHOD 
\~HERE L,/L2 == 0.75, L, = '80 in., H = 144 in. 

C(in~ (lAB ~AC ds (in.) ~A (in.) )..(in.: ~c(K-in~ ~c(K-in.) liT (in.) 

0.8 .064 ~.O .265 6.766 1093.41 5221.09 .281 

25 3.0 .064 8.0 .1.69 10.371 1814.60 4153.41 .183 

8.0 .064 S.O .112 12.808 2177.34 3448.16 .121 
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Appendix 0 

CALCULATION FOR SMf~ OF THE r~ULT I -PANEL, S INGLE-STORY STRUCTURE 
SHOWN IN FIG. 5.10 

Since all beams in the floor are identical and slab thickness, ds ' 
is constant, the following values apply for all members of the model: 

18 
15(30)3 = 33750.0 in4 12 

J B = 30 (15) 3 = 20250.0 in4 5 
A = 15(30) = 450.0 in.2 

e = 30 - 8 11.0 in. 2 
E = 3320.6 ksi 
\J = 0.17 
I' = 1419.1 ksi l:l 

Six different types of equivalent members are sufficient to model 

this floor system according to the SMM. These members are: 

l. Corner member AS. CD, MN, and QR. 

2. Corner member AE. DH. H1, and LR. 

3. Exterior member BC and NQ. 

4. Exterior member EI and HL. 

5. Inter; or member EF, FG. GH, IJ, JK, and KL. 

6. Interior member BF, FJ, IN, CG, GK. and KQ. 

The stiffness matrices of the first four are determined according 
to the procedure given in section 5.2.1(a) and those of the last two 

according to the procedure given in section 5.2.1(b). Table D.l gives 
the results of following the first five steps in the procedure defined 

in sections 5.2.1(a) and 5.2.1(b). Following are the results of the 
1 ast two steps: 

1. Corner member AB 

S 1.0 (2531423.80) (0.07) 0 06 
11 = 2903798.12 = . 

D-1 



S22 = l.0 1.0 [(2531423.80)(0.02)J = 0.98 - 2903798.12 

2. Corner member AE 

511 = 1.0 (2903798.12) (0 02) 
. 2531423.80 . = 0.02 

S22 ::: 1.0 - 1.0 [(2903798.12)(0.06)J ::: 0.93 2531423.80 

3. Exteri or membe r Be 

S" 
::: 0.5 (2897475.46) (0 05) ::: 0.03 2829421.57 • 

S22 ::: 1.0 0.5 [(2897475.46) (0.03) J ::: 0.98 - 2829421.57 

4. Exterior member E1 

S11 = 0.5 (3207014.41) (0 01) ::: 0.01 2448356.87 • 

S22 ::: 1.0 0.5 [(3207014.41)(0.07)J ::: 0.95 - 2448356.87 

5. Inter; or member EF 

S" 
:::: 0.5 [(2.0)(2897475.46)J (0 07) 

3207014.41 . = 0.07 

S22 ::: 1.0 - 0.5 [(2.0)(2897475.46)(.03)J 
3207014.41 = 0.97 

6. Interior member SF 

S11 = 0.5 [(2.0)(3207014.41)J (0.03) = 0.03 3897475.46 

S22 = 1.0 0.5 [(2.0)(3207014.41)(.07)J ::: 0.92 - 2897475.46 
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Appendix E 

EFFECTIVE SLAB WIDTH FOR SINGLE-PANEL FLOORS 

The symmetry of the loading and the structure shown in Fig. 5.5 

indicates that the rotations at all the column-floor joints are identical, 

and a point of counterflexure exists along the x-x floor centerline. 

Hence the floor contribution to the lateral stiffness of the frame can 
be modeled by blo identical equivalent beams (AS and CD), provided that 

the moment needed to produce a unit rotation at the two ends of the 

equivalent beams Kb (Fig. E.l) is the same as Ks required to produce 
a unit rotation at the four column-floor joints. 

Term Ks can be computed from the results of this investigation 
where: 

8 
Ks = (K11 ) (1 + CF, .) 

S j:::2 J 

Since the value of the carryover factors CF12 , CF'4' CF16 , CF 17 , 
and CF 18 has been shown to be smal1, eq. E.1 can be estimated by: 

(E. 1 ) 

(E. 2) 

It can be shown that Ks as defined in eq. E.2 can be computed from 
the terms of the stiffness matrix of the equivalent members AB and CD 
in the SMM, where: 

(E.3) 

The stiffness, Kb, of a prismatic beam consisting of the floor beam 
and an effective slab width, bf , (Fig. E.2) is: 

where 

6EI B 
Kb = T-

E-1 

(E.4) 



and 

Since we want Ks ::: Kb, using eqs. E.3 and E.4: 

L(Kem) (S22 + k23) 
IS ::: 6E (E.6 ) 

Using eqs. E.5 and E.6, the effective slab width, bf , can be com
puted by a trial-and-error procedure. 
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8=1.0 

Fig. E.l Equivalent Beam Stiffness 

.LJ Of ~I 

ds N.A. ;1 
t f 1) D 

Ow II t 
~ B ~ 

Fig. E.2 Effective Slab Width b
f 
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