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ABSTRACT

A practicable and sufficiently accurate stiffness matrix method
for estimating the contribution of a floor system to the overall elastic
stiffness of moment-resisting space frames is developed. The floor
system considered consisted of a two-way reinforced concrete slab sup-
ported on beams between columns. This stiffness matrix method is achieved
by performing extensive parametric finite element analyses to identify
the main parameters affecting and, therefore, controlling the stiffness
of individual floor panels of the floor system. The stiffness of a two-
way slab floor panel has been investigated by establishing an 8 x 8 panel
stiffness matrix based on two rotational degrees of freedom (DOF) at each
panel support. Stiffness matrix elements are determined by computing
the moments necessary to produce a unit rotation at one support DOF
while restraining the other seven DOF in the panel. Existing finite
element computer programs are used in these computations. A series of
rectangular finite elements models the bending and membrane stress-strain
relations of the floor slab. The beams are modeled as uniaxial, prismatic
members, connected by rigid Tinks to the slab finite element nodes along
the beam's centerline. Analytical tests confirm this method's accuracy
in estimating the beam-slab composite action in flexible floors.

Floor panels are classified in different categories according to
their location in the floor system. To identify the principal parameters
controlling the stiffness of these different types of floor panels, a
total of 122 two-way slab floor panels, including 70 single panels, 14
corner panels, 28 interior panels and 1 exterior panel, are analyzed.

The range of parameters included in the investigation encompasses most
of the two-way reinforced concrete floors to be encountered in practice.

The stiffness matrix method, which is based on the results of
parametric studies, estimates the elastic rotational stiffness of a
floor as tHat of equivalent, uniaxial members between adjacent column
floor supports. This method does not identify a physical cross section
for the equivalent members; rather, it establishes a preccedure by
which the position of the neutral axis of the member in relation to
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the top of the slab and the member stiffness matrix is computed directly
from a set of graphs. Each equivalent member has a 3 x 3 stiffness
matrix based on one torsional and two flexural DOF.

The accuracy and practicability of the stiffness matrix method as
well as of those methods currently in use, such as the ACI 318-71
equivalent frame method and an effective slab width method for predicting
the lateral stiffness of moment-resisting space frames, are evaluated by
applying all these methods to 27 single-story, single-panel structures
and 1 single-story, multi-panel structure. The results are compared
with those from analyses using a finite element method. These methods,
with the exception of the finite element method, are also used to pre-
dict the dynamic response of two multistory buildings. The results
obtained raise serious questions as to the accuracy of equivalent frame
and effective slab width methods for such predictions. The developed
stiffness matrix method is found to be not only sufficiently accurate,
but also simple and economical to use in practice because it can be
applied directly in existing frame analysis computer programs or in
manual calculations using techniques such as moment distribution. A
number of recommendations for improving the method developed herein as
well as for extending it to other reinforced concrete floor systems are

also suggested.
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1. INTRODUCTION

1.1 Statement of Problem

Improvement of currently available earthquake response anaiysis
capabilities and construction techniques assumes added urgency as more
tall buildings, nuclear facilities, and other critical structures are
being built in seismically-active regions. Such structures are required
to have sufficient lateral stiffness and strength to avoid structural
damage during minor and moderate earthquake shaking and to avoid
structural collapse during severe earthquake ground motions. A rational
seismic design must include a realistic estimate of the magnitude and
character of the seismic forces that the structure might experience,
and of the structure-soil interaction in order to be able to formulate
a practical analytical model of the building-soil system.

Reinforced concrete buildings employing a moment-resisting frame
usually have floor slabs that are cast monolithically with the beams or
joists. Such slabs become an integral part of the moment-resisting
frame. The most commonly used floor systems in reinforced concrete
buildings are flat slabs and two-way slabs.

A flat slab floor system consists of a flat slab reinforced for
flexure in more than one direction, with or without drop panels and
column capitals. The flat ceiling surface and economy in the formworks
make such floors especially attractive to architects and builders.
However, there are problems with shear transfer between the floor slab
and columns (even when drop panels and column capitals are used). These
floors have fared poorly during recent severe earthquakes. In some
cases, brittle shear failures at the floor supports have occurred, as
in the Olive View Medical Center during the 1971 San Fernando Earthquake
[1], and in other cases, the flexibility of this type of floor has been
attributed as the cause of excessive nonstructural damage. These prob-
lems have prompted an increasing number of experts to recommend 1imita-
tions on the use of flat siab floors. The 1973 Uniform Building Code
[2] and the 1971 ACI Building Code [3] have both adopted provisions
 that 1imit the slab width through which moments can be transferred from
the floor system to the columns. The provisions of the 1973 code
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recommended by the Structural Engineers Association of California [4]
are much more explicit as the commentary on section 2630-d.1 states:

This provision 1imits the use of flat slab (plate)

floor framing with a wide portion of the slab or

even the entire column strip being considered as

the framing member. Transfer of moments in struc-

tures such as these may involve relatively high

shear and torsional stresses which should in

general be avoided since these do not exhibit

ductile characteristics.

Two-way slab floor systems consist of a slab reinforced for
flexure in more than one direction and supported on beams spanning the
columns. This type of floor has been found to be very suitable for
construction in seismic regions. The beams, with proper web reinforce-
ment, relieve the problem of shear transfer between the floor and
columns, which minimizes the probability of shear failures around the
columns and ensures more ductile behavior during an earthquake. The
beams also contribute considerably to the lateral stiffness of the build-
ing as well as help 1imit the amount of cracking in the slab, thus re-
ducing earthquake-related damage to the floor. The slab contributes to
the rotational stiffness and strength of the beams, and also acts as a
rigid diaphragm in its own plane which ties the planar building frames
together and helps distribute the'latera1 loads among them. These
favorable characteristics of two-way slab floor systems have increased

the incidence of their use in buildings in seismically-active regions.

The overall lateral stiffness of moment-resisting frame buildings
is primarily governed by the lateral and rotational stiffness of the
columns, and the rotational stiffness of the floor system at the supports
(Fig. 1.1). The degree to which the floor restrains the column rotations
at the floor levels has a considerable influence on the overall lateral
stiffness of a building. This influence becomes clear considering that
the lateral stiffness of a column fixed at both ends is four times greater
than that of a cantilever column, and hence it is usually more efficient
to increase a building's lateral stiffness by increasing the stiffness
of the floor rather than that of the columns.

In buildings where the floor siab is poured monolithically with
beams or joists, studies have shown [5,6] that the lateral stiffness of

.



moment-resisting frames, which is an essential parameter in determining
the dynamic response of the structure, is very sensitive to the assumed
participation of the floor slab. Hence an accurate estimation of a
building's response to dynamic lcading requires accurate analytical
models for the contribution of the floor slab to the lateral stiffness
of the structure.

In the direct stiffness method, the overall building stiffness
matrix can be assembled by appropriately adding the individual column
and floor stiffness matrices. Currently, there are accurate and effi-
cient formulations for the elastic and inelastic stiffness matrices of
prismatic members [6] which can be used for the individual column stiff-
ness matrix. If, as is usual, the slab is assumed rigid in its own plane,
thus neglecting the influence of axial strains and in-plane rotations,
and if the floor contribution to the overall building stiffness due to
the uneven settlement of supports (column shortening) is also neglected,
then the stiffness matrix of the floor can be defined by two rotational
degrees of freedom at each support, as is shown in Fig. 1.2. Notice
that due to the two-way action and continuity of the floor slab, all
these floor degrees of freedom are coupled. As the floor moves into
the inelastic range, the stiffness matrix at any loading interval will
depend on the pattern and extent of cracking and yield Tines in the floor
slab.

1.2 Current Floor Stiffness Models

Despite the critical need for analytical models of these different
floor types very few are available. Furthermore, most of the available
research, both theoretical and experimental, concerns flat slabs. This
is partially due to the complexity of analyzing floors which combine “
the composite action of siabs and beams.

Ideally, an analytical floor model must accurately represent the
steel-concrete composite action, the composite beam-slab action, and
the slab continuity and its capacity to distribute stresses in more than
one direction. The finite element method comes closest to fulfilling
these criteria. Some of the available finite elements have great versa-
tility in modeling complex states of stress and strain, and the elasto-



plastic material properties of the slab, and some can even handle the com-
posite action of the concrete and reinforcing steel. Finite element models
are the most accurate models available, provided a fine enocugh mesh is
used. However, even a coarse mesh increases the degrees of freedom in

the model to such an extent that the cost of a dynamic analysis is pro-
hibitive for tall buildings.

At present this problem is handled by modeling the two-dimensional
floor system with prismatic equivalent beams between the supports. Two
such currently used models are the Equivalent Frame Method and the
Effective Slab Width Method.

The ACI 318-71 Code [3] recommends the Equivalent Frame Method for
analyzing buildings with floors consisting of slabs reinforced for flex-
ure in more than one direction with or without beams between supports.
The equivalent frame method is based on studies conducted at the Univer-
sity of I1linois [7,8,9] and was to provide a better representation than
other available models of the torsional and flexural rotations of the
slab as well as the influence of the column size. This method models a
structure as two-dimensional equivalent frames on column lines taken
longitudinally and transversely through the building which are then
analyzed for loads, vertical or horizontal, acting in the plane of the
frames. These frames (Fig. 1.3) consist of slab-beam strips bounded
laterally by the centerline of the panel on each side of the column line.
The moment of inertia of the slab-beam strip is based on the gross cross
section of the slab and beam except at the ends where this moment of iner-
tia is increased [Fig. 1.3(b)] to account for the additional stiffness
introduced by the column [10].

According to the ACI 318-71 Code [3] the equivalent columns (Fig. 1.4)
are assumed to consist of the actual column above and below the slab-beam
plus an attached torsional member transverse to the direction in which
moments are being determined, and extending to the bounding lateral panel
centerlines on each side of the column. The column is assumed to be rigid
from the top to the bottom of the slab-beam at the joint. The flexibility
of the equivalent column is defined as the sum of the flexibility of the
columns above and below the floor and the flexibility of the torsional
member.



Several assumptions are made in defining the way that the column
and the torsional beam interact to produce the stiffness (inverse of
flexibility) of the equivalent column. This is illustrated in the
simplified physical model of Figs. 1.4 and 1.5[10],

which represents a Column AB, extending above and below

the slab, with a portion of the slab CD attached thereto.

A moment M applied along CD will cause a torsional rota-

tion of the 'cross beam' CD as well as a flexural rota-

tion of column AB. Thus the rotational restraint on the

slab-beam which spans in a direction perpendicular to

AB and CD, depends on both the torsional rotation of

CD and the flexural rotation of AB.
The overall flexibility "I/Kec of the equivalent column is assumed to
be the sum of the column flexibility ‘I/ZKC and the torsional flexibili-
ty of the "beam" 1/Kt. The stiffness KC is based on the length of the
column from centerline to centerline of slab and including the area of
infinite moment of inertia from top to bottom of the slab-beam. The
torsional stiffness Kt of the "beam" is based on several simplifying
assumptions. These include the definition of an "equivalent torsional
beam," and a Tinear moment distribution along the torsional beam which
is assumed to vary from a maximum at the column to zero at the middle
of the panel. Figure 1.5 shows the assumed linear distribution of the
twisting moment applied along the column centerline, the resulting
twisting moment diagram of the "torsional beam," and the resulting
unit rotation diagram. Notice alsc that torsional rotation is assumed
to be absent in the beam over the width of the support. The development
of the expressions to calculate Kt’ the assumptions on which they are
based, and the justification for their use are discussed in references

7, 8, and 9.

Notice that the method does not explicitly state the Tevel at
which the slab-beam joins the column. However, the code’s commentary
[10] impiicitly places the joint at the mid-plane of the slab when it
defines the column height as being "from middepth of slab above to
middepth of slab below."

As seen from the above discussion the model defined by this
method is very complicated and its use in an analysis is by no means

-5-



simple. The method lends itself, though with some difficulty, to a
moment distribution type of analysis, but it cannot be directly used
with most existing computer programs. Such programs usually assign a
column stiffness matrix based on prismatic beam theory. However, due
to the rigid sections assumed at the top and bottom of the columns, the
torsional beam that is attached to the column (Fig. 1.4) only changes
the rotational stiffness KC [Fig. 1.3(c)] to a value of KeC but does
not influence the terms associated with the lateral stiffness K]C

[Fig. 1.3(c)] or the off-diagonal terms of the column stiffness matrix.
Hence, most frame analysis computer programs must be modified such
that only the diagonal terms of the column stiffness matrix associated
with the rotational degrees of freedom at the two column ends will be
modified from KC to Kec‘

It should also be noted that this method was developed on the
basis of experiments on the behavior of flat slabs under gravity loads.
The method was then generalized to apply to all floor systems employing
two-way slabs under gravity and lateral loads. This generalization has
not been tested and its applicability is yet to be proven.

The widely-~used Effective Slab Width Method models a structure as
a series of plane frames where the floor system is considered as uni-
axial, prismatic equivalent beams between supports. The equivalent
beams are defined as the floor beams or joists plus an effective sliab
width. Several effective slab width ratios have been suggested [11],
ranging from 0.50 of the half panel width on each side of the column
line to values greater than unity. There are some studies of flat
stabs [12, 13], and others on compasite slab-beam floors [14, 15, 16],
but most of these deal with defining an effective slab width for de-
signing floors with sufficient strength to carry static gravity loads
rather than for defining the contribution of the floor to the lateral
stiffness of a moment-resisting frame.

Often the effective slab width in floors with a two-way slab sup-
ported on beams between supports is assumed to be equal to that defined
for strength design by the ACI 318-71 Code [3], sections 8.7.2 and
8.7.4a, which state:



8.7.2 - The effective flange width to be used in
the design of symmetrical T-beams shall not exceed
one-fourth of the span length of the beam, and its
overhanging width on either side of the web shall
not exceed eight times the thickness of the slab
nor one-half the clear distance to the next beam.

and

8.8.4a - For beams having a flange on one side
only, the effective overhaning flange width shall
not exceed 1/12 of the span length of the beam,
nor six times the thickness of the slab, nor one-
half the clear distance to the next beam.
As noted in the 1963 edition of the UBC [17],»these requirements are the
same as in the 1928 code. The Timitations on the flange width are
empirical but were originally determined by experimental studies of
T-beams. The provisions are intended tc reflect the fact that shearing
deformations relieve the sections of flange farthest from the web of
some of the normal stresses due to flexural moments. This relieving
Timits the flange width that can be considered to participate with the

web in resisting the applied flexural moments.

The code is very clear that these flange widths are intended for
use in the strength design of T- and L-shaped beams. However, due to
the complexity of the equivalent frame analysis and the Tack of better
alternatives, some analysts extend the application of this code pro-
vision to estimate the stiffness of two-way slab floors. An effective
slab width equal to the maximum allowable flange width is used along
with the beams to represent the composite action of the floor system.
Thus, a two-way slab floor is modeled as a series of interior T-beams
and edge L-beams. ‘

This and other effective slab widths used are as much a product
of tradition as of results of studies on design requirements for floor
strength under gravity loads. This method greatly simplifies the
analysis but is open to serious questions as to its underlying assump-
tions and to its accuracy in predicting building responses.



1.3 Objectives of Investigation

Section 1.1 discusses the importance of formulating accurate
analytical models for floor systems to estimate adequately the dynamic
response of moment-resisting frame structures. Section 1.2 further ela-
borates that currently available models either require prohibitive com-
putational effort, such as the finite element model, or else are of
questionable applicability and accuracy. This investigation was intended
to study the stiffness of floors consisting of two-way slabs supported
on beams between columns (Fig. 1.6) with the following specific objec~
tives: ‘

1. The methodoloqy should be general enough to cover the vast
majority of such floors encountered by engineers in practice.

2. To identify and study ail the floor structural parameters that
have a primary influence on the stiffness.

3. To develop an accurate and practicable stiffness model based
on the results of this investigation which would also be suitable for
use by practicing engineers.

4, To assess the accuracy of this model and other currently
available models in estimating the lateral stiffness of moment-resisting
frames. This would be accomplished by comparing the results from using
the different models with those from a finite element analysis which
is considered to be the most accurate analytical tool available for such
studies.

1.4 Scope of the Investigation

The investigation considered the above objectives with the following
limitations:

1. Only the initial elastic stiffness of two-way slab floors was
considered.

2. A1l floors studied were considered to consist of rectangular
panels, with a siab of uniform thickness and cast monolithically with the
beams of an homogeneous, isotropic, and linear-elastic material.



3. In defining the floor stiffness, only two rotational degrees
of freedom are considered at each support (Fig. 1.2). This is based
on the assumption that the sTab is rigid in its own plane and hence
the contribution of in-plane bending and axial strains in the slab can
be neglected, as well as the assumption that the slab's contribution to
the building stiffness due to uneven settlement of the supports (column
shortening) can also be neglected.

4. The floor is assumed to have point supports which neglects
the increased stiffness of the floor across the width of the column.
The corners of the two-way slab floor panels investigated herein are
fairly stiff due to the intersection of the two orthogonal floor beams.
Hence the influence of the column in increasing the rotational stiffness
of the floor will not be as significant as in the case of flat slabs.
However, this assumption might not be justified in buildings with very
short spans and wide columns.






2. ELASTIC PARTIAL COMPOSITE ACTION IN A TWO-WAY SLAB FLOOR SYSTEM

2.1 Introduction

Floors consisting of a two-way slab supported on beams between the
columns are usually cast monolithically, hence, the slab and the beams
resist the applied loads as a single unit which is generally referred
to as "composite action” [14]. "Full composite action" between the
slab and the beams takes place when there is an eccentricity between
the beam neutral axis and the slab neutral surface and then both verti-
cal and horizontal shears are transmitted between the edges of the slab
and beams. "Partial composite action" is a special case and occurs when
the beam and slab neutral surfaces coincide (Fig. 2.1) and only vertical
shears are transmitted between the beams and the slab. This greatly
simplifies the analysis especially since membrane forces in the slab
can be neglected.

This chapter deals with the elastic stiffness of a single-panel
two-way slab floor with partial composite action, i.e., the beams are
cast symmetrically above and below the slab neutral surface. Using a
single-panel floor further simplifies the analysis as it avoids the
problem of modeling the continuity conditions at the panel edges.

2.2 Parameters Affecting Stiffness of a Two-Way Floor System

It is clear that many different parameters can affect the stiffness
of a two-way floor system, and that some of them have a greater influence
than others. It is necessary in an investigation such as this to identi-
fy those parameters that have a primary effect and to 1imit the investi-
gation to them. Given that this investigation is restricted to the ini-
tial elastic rotational stiffness {to first cracking of the floor system),
the following parameters are identified as the primary ones to be studied:

1. Slab Thickness-to-Span Ratio (ds/L1)° - Thickness and span are

certainly primary parameters in determining the‘stiffness of the slab.
A thick slab will be stiffer than a thin one. Also, the Targer the span
the more flexible will be the slab.
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2. Lenath-to-Width Ratio of Slab (L1/L2)' - A slab reinforced for

flexure in two directions carries the Toad, in the small deflection
elastic range, mainly by internal flexure and torsion in two directions
(Fig. 2.2). To visualize the performance of such a slab, it is con-
venient to think of it as consisting of two intersecting sets of paraliel
strips [Fig. 2.2(a)]. Each strip carries part of an applied load by a
combination of flexural and torsional moments. These sets of internal
stresses are necessary to maintain strain compatibility within the slab.
The stiffnesses of the strips are inversely proportional to their spans
(L] and L2), so that when one span is shortened, the strips in that
direction become stiffer in both flexure and torsion and carry a higher
proportion of the applied load. Thus the ratio L]/L2 has an important
and direct bearing on the distribution of stresses within a floor slab
and in the latter's overall contribution to the stiffness of the entire
floor system.

The ratio L]/L2 is also a factor in determining the relative stiff-
nesses of the flexural and torsional beams. This is important inasmuch
as these beams determine the boundary conditions along the edges of the
slab and thus influence the overall floor stiffness.

3. Flexural and Torsional Stiffnesses of Edge Beams (kF and kT).

Since a two-way slab floor system consists of a floor slab and a set of
beams (Fig. 2.1), the stiffness and strength of the floor can be con-
sidered to be made up of the contribution of the slab plus that of the
beams. A moment applied to a column (Fig. 2.3) will primarily cause
bending in one set of beams and twisting in the orthogonal set of beams.
The contribution of the beams to resisting the applied moment depends
on the flexural and torsional stiffnesses of the beams which are deter-
mined by material properties, cross-sectional geometry, and span length.
The stiffnesses are usually defined as:

4E1

_"Hp
ke = T (2.1)
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and
GJ

- _ B
kT =T (2.2)

The relative slab-beam stiffness in a floor system (i.e., dS Vs.
kF and kT) has an important bearing on the behavior of the floor. It
is clear that if a set of very stiff beams is covered by a thin slab,
the overall stiffness and strength of the floor will consist mainly of
the beam's contribution. On the other hand, a set of flexible beams
supporting a very thick slab will have very Tittle to contribute, and
the floor will essentially act as a flat slab.

Another important aspect of the beam stiffnesses is the ratio of
kF of the flexural beam (AB in Fig. 2.3) to kT of the cross beam (CD 1in
Fig. 2.3). If the flexural stiffness of beam AB is very large compared
to the torsional stiffness of beam CD, then the applied moment will be re-
sisted primarily by flexure in beam AB which will in turn transmit the
moments to the slab along its length. If the opposite were true, then

the applied moment will be resisted primarily by twisting in beam CD.

The ratio of the two stiffnesses kF/kT has an important influence
on the distribution of stresses in the slab since the beams have a major
bearing on the degree of slab restraint at the edges (i.e., the boundary
conditions of slab along orthogonal edges).

2.3 Method of Analysis and Computer Program Used

The contribution of a single-panel floor system to the lateral
stiffness of a moment-resisting frame, as defined by the objectives
and scope of this investigation (sections 1.3 and 1.4), is sufficiently
defined by considering eight rotational degrees of freedom at the sup-
ports (Fig. 2.1). The direct method to establish the panel stiffness
matrix is to determine the terms of each row by applying a unit rotation
at the appropriate degree of freedom while restraining the other seven.
The external moment to produce the unit rotation gives the diagonal term
K.. while the support moments give the rest of the terms of a row of the

i
stiffness matrix.
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This part of the investigation was conducted using the finite-
element program PLATE [19]. The program analyzes bending in thin and
moderately thick plates using linear curvature compatible triangular
finite elements, which have a cubic transverse displacement expansion
with piecewise-continuous second derivatives. The program also has a
beam element so that it admits beams embedded in the plane of the slab.

The program PLATE refers the slab to a global right-handed Cartesian
system x-y-z, with the x-y coordinates in the undeformed midsurface.
The basic slab mesh unit used is the Q-19 quadrilateral [20] which is
assembled with four LCCT-11 triangles [Fig. 2.4(a)]. Each has eleven
bending degrees of freedom and five nodal points. The seven internal
bending degrees of freedom are eliminated by a static condensation pro-
cess. The program also contains a triangular mesh element [Fig. 2.4(b)],
the LCCT-9, which has three nodal points and nine bending degrees of
freedom.

When shear distortions are considered, six more internal degrees
of freedom are added to each triangle corresponding to a Tinear kinematic
expansion of the two mean shear distortion components.

Prismatic beam elements [Fig. 2.4(c)] used in the program are
assumed to bend on the neutral axis of the slab. This has the effect
of neglecting any in-plane bending interaction between slab and beam.

Two reservations might be raised in using this particular program:
first, it considers homogeneous material properties for analyzing rein-
forced concrete structures; and secondly, it does not have a plane stress
element that could model membrane forces in the slab. However, since
this investigation is limited only to the initial elastic stiffness,
the assumption of a homogeneous isotropic material for the floor is
acceptable. Also, since the beams in this section of the investigation
are symmetrical with respect to the mid-plane of the slab, the membrane
stresses in the slab will be small.

2.3.1 Modeling of Flioor System

The floor system shown in Fig. 2.5 was modeled of homogeneous,
elastic, isotropic material where:

-13-



fc = 3.0 ksi
1.5 __ (This is based on

E =w" 33/TC = 3320.56 ksi  recommendations of
the Uniform Build-
ing Code [2]).

in which
fé = concrete compressive
strength (in psi)

v =0.17

S = 1419.06 ksi

| 2(-!__!_\) . LY

The beams were all of a rectangular cross-section (Fig. 2.1), and
the following properties were used in the analysis:

p°b
Moment of Inertia (IXX) = 7

Db>
Polar Moment of Inertia (J) = =%
Gross Area (Ag) = Db

oy
Shear Area (Ash) = =

The values for the flexural and torsional moments of inertia and the
shear area are based on standard derivations that satisfy equilibrium
and compatibility conditions [21].

The plate was modeled as a set of quadrilateral and triangular
finite elements of uniform thickness. After a study of several meshes
it was found that a relatively fine mesh close to the unrestrained
degree of freedom, becoming coarser farther away from that degree of
freedom, resulted in fairily good convergence.
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Three sets of floors were analyzed corresponding to L]/L2 equal
to 0.5, 1.0, and 2.0. In the case of L]/L2 equal to 1.0, the symmetry
of the floor can be used to construct the full 8 x 8 stiffness matrix
of each panel from the first row of the matrix alone. In rectangular
floors with L1/L2 not equal to 1.0, the first two rows are necessary
to construct the full stiffness matrix. In the case of panels with
L]/L2 equal to 0.5 and 2.0, however, the first row of the stiffness
matrix of one can be used to define the second row of the other. As
an example, rearranging the terms of the first row of the matrix for

LT/L2 equal to 2.0 as follows:

Kig Kyg >

< Kyop Ky Kyp Kz Ky K 17

12 711 716 715 714 713 718

yields the second row of the matrix for L1/L2 = 0.5.

2.3.2 Rotational Stiffness of Two-Way Slab Floors with Beams Symmetrical

About Mid-Plane of Slab

Analyzing the single-panel floor system shown in Fig. 2.5 according
to the method described in section 2.3.1 yields an array of eight terms
which make up the top row of the complete (8 x 8) rotational stiffness
matrix of the floor system:

K., Kig Kig > (2.3)

Kig K15 Ky K7 Kig

Ki3 Kig Ky

<Kg > T <Ky K

This can be normalized by dividing all terms by (K”)S to yield seven
carryover factors. Hence the first row of the stiffness matrix can

be presented as:

< K. >y = (K < 1.0 CF CF]3 CF]4 CF,. CF,. CF

s 1 11)8 12 15 716 717

2.3.3 Influence of Structural Parameters on Floor Stiffness

a) Influence of dS/L1° - To determine the influence of ds/L] on

the value of (Kli)S’ a series of 240 in. x 240 in. slabs (Fig. 2.5)
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*
supported on beams with the following structural properties was
analyzed:

= 2250.0 in.*
XX
J = 2560.0 in.?
for D = 14.07 in.
A = 136.34 in.°
9 b= 9.69 in.
_ . 2
Ash = 113,62 in.

Only the depth of slab d5 was varied. The results of the analysis are
given in Table 2.7.

Another set of floor slabs with 240 in. x 240 in. spans and uniform
beams with the following beam properties were analyzed:

- .4
I, = 5333.33 in.
_ .4
J = 3413.33 in.
for D = 18.76 1in.
A = 181.78 in.°
g b= 9.69 in.
_ .2
Ay, = 151.49 in,

The results of the analysis with this second set of beams are
also shown in Table 2.1. They clearly indicate that for both sets of
beams, (K]])S increases as the slab depth is increased. It is of
interest to find the contribution of the siab to the total stiffness
of the floor system, and how this contribution is affected by changing
dS/L]. If the slab in the floor system is neglected, then the rota-
tional stiffness of the bare beams at the columns (K”)S will consist
of the flexural stiffness of the flexural beam plus the torsional
stiffness of the cross-beam, thus:

This is the only set where a 2:1 depth-to-width of beam ratio was
not maintained.
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) = E.EE + %_
11’8 L1 L2

(K (2.5)
If the total stiffness (K”)S is now divided by (K11)B’ the
results will reflect the slab contribution. The ratio (K11)S/(K11)B
is given in Table 2.1 and also plotted in Fig. 2.6. Notice that since
the beams for each set maintain their structural properties, (K11)B
remains constant, and the plots in Fig. 2.6 have the same shape as
that of (KT1)S VS. ds/L1' These plots show that the contribution of
the slab picks up dramatically as its depth increased beyond certain
values, as evidenced by the sharp increase in the slope of the plots.
This could be explained qualitatively in that for slabs that are shal-
low relative to beam depth, floor stiffness comes mainly from the value
of (K]])Bg while as the slab depth increases the contribution of the
slab dominates. This latter portion of the plot is very close to a
cubic equation, as to be expected since the stiffness of the slab is
directly proportional to ds3/L1' This relationship is confirmed in
Fig. 2.7 where plotting (K11)S VS, ds3/L] yields a straight Tine beyond
values of d53/L1 equal to 1.5.

The plots in Fig. 2.6 also show that the relationship between
(K11)S/(K]1)B and dS/L] is not unique, but is dependent on the relative
stiffness of the beams used. This indicates that the influence of slab
thickness on the total floor stiffness is coupled with the relative size
of the beams.

Hence, the results of this section clearly show that:

1. Beyond a certain slab thickness the slab contribution dominates

the value of (K]]

proportional to ds3/L1°

)S and the total stiffness coefficient becomes directly

2. The exact relationship between (K11)S and ds/Ll is strongly
dependent on the size of the floor beams, and for quantitative relation-
ships the two variables (floor beam size, and dS/L]) must be studied
together.

b) Influence of ds/L]’ a, and B. - In this section, a 240 in. x

240 in. two-way slab floor (Fig. 2.1) is analyzed by varying slab
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thickness and beam flexural and torsional stiffnesses. In each case,
paraliel beams are assumed to have the same structural properties, and
a 2:1 depth-to-width ratio. It is clear that in this analysis, where
the first degree of freedom (Fig. 2.1) is the only one unrestrained,
beam AB will be predominantly in bending while beam AC will be pre-
dominantly in torsion. Thus it will be convenient to call AB the
flexural beam and AC the torsional beam. The importance of the ratio
of the torsional stiffness of the torsional beam to the flexural stiff-
ness ot the flexural beam has already been discussed in section 2.2¢c,
and this ratio will be labeled 8 herein, where:

- .Jorsional Stiffness of Torsional Beam

8 Flexural Stiffness of Flexural Beam
P 2.
FB/ -1
In the special case where L] = LZ’ eq. 2.6 reduces to:
3
G (Db )TB/S
B = 3
4E(bD )FB/12
Given that in all the beams used b = 23 then
4
Drg
B = 0.256 —— For L, =L (2.7)
D4 1 YA
FB

v = 0.17

Another variable, a, is defined as the ratio of the flexural
stiffness of the flexural beam to the stiffness of a strip of slab along
the Tength of the beam. The width of the slab strip is defined as half
a panel width when the siab extends to only one side of the beam and
from centerline to centerline of adjacent panels when the slab extends
to both sides of the beam. Thus:

.- 4EIFB/L1 (2.8)

4EIS L1
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and in the case of a'sing1e-pane1 floor, with a 2:1 depth-to-width

beam ratio:
4
~(8E/L)[(Dgg) /28]

a = 5 (2.9)
(4E/L1)(L2dS /24)
4

i :
L2ds

The variable o, defined above, can be viewed as a measure of the
relative stiffnesses of the slab and flexural beam and, together with
the variable B, relates three primary factors in the stiffness of the
floor (slab thickness, flexural stiffness of the flexural beam, and

torsional stiffness of the torsional beam).

A total of 21 floor systems with varying values of o, B, and ds
(Fig. 2.1), whose dimensions are given in Table 2.2, were analyzed.
Notice that as o is a ratio involving slab thickness and flexural beam
depth, it will be constant only if an increase in slab thickness is
related to a proportional increase in beam size. This is also similar
to the case of B where to keep a constant value of B any increase in
the size of the flexural beam should be coupled with a proportional
increase in the size of the torsional beam. It should also be noted
that for the different values of B used, the following relationships
hold true for square slab floors:

8 e/ Trg
0.064 1.00
0.107 1.67
0.160 2.50

Considering that when 8 = 0.160 the flexural moment of inertia of
the cross-beam is 2.5 times that of the flexural beam, the range of B
chosen for the analysis covers the range usually encountered in square

panels.
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The results of analyzing the floor systems mentioned above are
given in Table 2.3. The results of the previous section (Table 2.1)
are presented in Table 2.4 in terms of the variables dSa o, and B.

The most important result shown in Table 2.3 is that the ratio
(KiT)S/(KT1)B’ for the ranges of o, 8, and ds studied, is primarily
dependent on o, the relative beam-to-slab flexural stiffness.. If the
stab depth is kept constant and B is varied, the ratio (KH)S/(K”)B
for a given value of o will be fairly stable with a variation of less
than 2%. This is clear in Table 2.3 for floors with dS equal to 6.5
in. or 2.0 in.

Table 2.3 also shows that the ratio (K”)S/(K.H)B remains stable
as o and B are held constant and dS is varied. This is a very important
relationship since the values of (K]T)B and o are readily available for
any given floor and, by using a plot of o vs. (K11)S/K11)B’ the value
of (K]1)S can be obtained directly. Such a plot is given in Fig. 2.8,
which includes the results shown in Tables 2.3 and 2.4.

2.3.4 Influence of Structural Parameters on Carryover Factors

The first term of the rotational stiffness matrix of a floor sys-
tem (KT1)S’ which was discussed in the previous section, is very impor-
tant in the analysis and design of structures and perhaps the single
most important term in the total stiffness matrix. However, it alone is
not sufficient and the values of at least several other terms are also ne-
cessary for a rational design. This section will deal with the influence
of the three structural factors studied (ds, a, and B) on the "Carryover
Factors" CFij° which are the normalized terms of the stiffness matrix
where: ‘

(K. )
CFy5 = Wﬁi (2.10)

The present practice is to use carryover factors based on prisma-
tic beam theory so that in the floor shown in Fig. 2.1 term CF13 would
be equal to 0.50 and CF37 and CF18 would be equal to zero. The Commen-
tary to the 1971 ACI Code [10] has two tables (13-1 and 13-2) which
attempt to correct the carryover factors for the added stiffness due



to a rigid joint across the width of the column as compared to a point
support. This method for assigning carryover factors totally neglects
the effect of the slab, which distributes the moments in two, rather

than one, orthogonal directions. 1In the case of a floor system with a
stab fairly stiff relative to the beams (i.e., floors with small values
of a), there will be considerabie divergence in the carryover factors
from those assuming prismatic members between the columns. Besides the
influence of the relative slab-to-beam stiffnesses, the carryover fac-
tors also depend on the relative stiffnesses of the torsional and flexural
beams (i.e., the value of 8). As the size of the torsional beam is in-
creased relative to the flexural beam the carryover factors are also ex-
pected to change, with CF]3 decreasing and CFT511ncreasing, This means
that more of the moment applied in the first degree of freedom (Fig. 2.1)
is transferred in torsion along the torsional beam than in flexure along
the flexural beam. As we approach the Timit B » o, C,F]3 approaches

zero while CF]5 approaches 1.0.

Previous sections dealt with the influence of ds/L1’ a, and B
on (KTT)S through studying the results for the 21 floors given in
Table 2.2. 1In each of these cases the carryover factors CF12 through
CF18 were also calculated according to eq. 2.10, and the results are
given in Table 2.5. These results bring out several important aspects
about the carryover factors, in general, and the influence of the three
parameters studied {a, 8, and dS/L1) in particular. Most striking is
the fact that for the range of parameters studied, CF]3 is by far the
largest and hence the most important. In a descriptive sense this
means that of the moment (K.”)S applied at the first degree of freedom,
over 35% is transferred along the flexural beam and slab to the third
degree of freedom (Fig. 2.1), while less than 10% is transferred through
the slab and torsional beam to the fifth degree of freedom. Also im-
portant is the fact that within the range of parameters studied, CF]7
and CF18 are fairly small (less than 4%), which means that the cross
coupling between columns along a diagonal is small. Hence, the practice
of modeling a moment-resistant structure with a two-way slab floor as
a series of planar frames is adeguate.
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Since CF73 and CF15 are the larger of the factors given in
Table 2.5, and as they represent the amount of moment transferred along
the flexural and torsional beams, a more detailed discussion of these
factors foliows.

a) Influence of ds/L1* a, and B on CF73: Within the range of

parameters studied, Table 2.5 shows that CF]3 varies Tittle with respect
to dS/L] and B, and that its value is primarily dependent on o. It is
important to note here that, as mentioned previously, CF]3 will approach
zero as B » ». This is confirmed by the results on Table 2.5 where

the values of CF]3 decrease as dS/L] and o are constant and B is increased.
However, in the range used, which includes the range most 1ikely to be
encountered in the field (see section 2.3.3) the influence of B is not
predominant. It should be noted that the values of CF]3 are more sensi-
tive to variations in B as o is increased. This can be explained quali-
tatively considering that o approximates the relative stiffnesses of

the flexural beam and slab, and B is the ratio of the torsional stiff-
ness of the torsional beam to the flexural stiffness of the flexural
beam. In cases with small values of a, the slab is considerably stif-
fer than the beams and dominates the behavior. Thus, changes in the
relative stiffnesses of the torsional and flexural beams do not have

a major influence on the value of CF13. This is reversed in floors

with Targer values of o where the beams dominate the behavior. Figure
2.9 gives a plot of CF]3 vS. o, and as seen in this figure the curve
becomes flatter as o increases. For large values of o the curve will
approach asymptotically the value ¢13, which is the carryover factor if
the slab is neglected. If shear distortions in beams are not taken

into account:

2ET /Ly
Uyq = (2.11)
13 (4EIFB/L]) + (G 5/L,)
_ 0.5
Y13 7 Teg
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The difference between CF13 and w]3 is due to the effect of the slab
in redistributing the moments.

The results of the analysis also show the inadequacy of computing
carryover factors on the basis of prismatic members (W13) and that the
error in doing so can be substantial for Tow values of o. AS an example,
there is a 20% difference between the values of W]3 and CF?B in the first
case given in Table 2.5.

b) Influence of ds/Ll’ o, and B on CF]S: The values of CF]5 given

in Table 2.5 are much smaller than those of CF13. This is especially
true for Tow values of o and B {i.e. shallow beams). In such cases,
modeling the structure as independent parallel frames with the floor
stiffness properties based on (K11)S and CFy5 will give adequate results.
However, as o and B are increased, values of CF]5 also increase making

it necessary to take into account cross-frame coupling through the action
of slab and torsional beam.

The results of Table 2.5 shows that for the range of parameters
studied, CF]5 is not sensitive to variations in dS/L], but rather depends
on both of the values of o and B, unlike (Kll)s/(K11)B and CF13 studied
above which were found to vary primarily with a. When B equals 0.160,
CF15 goes from -0.064 to -0.096 as o is increased from 0.80 to 3.0.

This phenomenon is clearly shown in Fig. 2.10, where the spread of
values of CF15 due to changes in o increases with B. To interpret this
behavior, consider that as o approaches infinity the value of CF15 will
approach w159 which is the carryover factor based on a floor having four
beams and no slab. If shear distortions in beams are neglected,

G7p/Ly
Yip = (2.12)
15 (4EIFB/L]) + (GJTB/LZ)

B
Y15 = T+
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The Timiting values byp are represented in Fig. 2.10 by the dashed
15 depends solely on B which defines the
relative stiffnesses of the torsional and flexural beams. On the other

line. As shown in eq. 2.12, CF

hand, o determines the rate of convergence of CF.. toward its Timit b5

15
The Targer o gets, the closer the results will approximate the case of a
four-beam floor with no slab. This is clear in Fig. 2.10 where the curves
for larger values of o are closer to the Timiting value given by the

dashed line.

Despite the divergent values of CF 5 it should be noted that in

square slabs it is not very common to fgnd a cross-beam with a moment of
inertia more than double that of the flexural beam (i.e., B = 0.128), and
for this value of B, CF15 varies between -0.055 and 0.113 when o goes

from 0.8 to infinity. As this divergence is not very large, linear
interpolation based on the value of a will yield an adequate approximation

of CF]5 to be used in an analytical model of the floor system.

2.3.5 Influence of L]/L2 on Stiffness and Carryover Factors of a Single-

Panel Floor.

The importance of L.'/L2 to the stiffness and carryover factors of
a two-way slab were discussed in section 2.2b. To study the significance
of this parameter, two sets of single-panel floors with L]/L2 equal to
0.5 and 2.0 were analyzed. These two values of Ll/LZ can be considered
as upper and Tower bounds since accepted practice is to consider floors
with span ratios larger than 2:1 as one-way slabs. The structural pro-
perties of the floors analyzed are given in Tables 2.6 and 2.7. The
values of B used in each set of slabs reflect the following relations
between the flexural and torsional beams for Li/Lo = 0.5:

g I/ Trg
0.032 1.0
0.064 2.0
0.128 4.0
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and for L1/L2 = 2.0,

8 e’
0.064 0.50
0.128 1.00
0.600 4,68

a) Effect on Floor Stiffness. - The first term (K11)S of the
stiffness matrix and the ratio (K”)S/(K”)B for these two sets of floors
are given in Tables 2.8 and 2.2. It is important to note that, just as
in the case of a square panel, the ratio (K11)S/(K11)B is primarily de-
pendent on a. Varying the size of the torsional beam (i.e., varying 8)
‘causes only small variations in the ratio (K11)S/(K11)B° To study the
effect on the stiffness of the floor by changing L1/L2’ the results of
Tables 2.8 and 2.9 along with those for a square floor from Tables 2.3
and 2.4 are all plotted in Fig. 2.11. This plot makes it clear that
the general behavior of the floors for all three L1/L2 ratios studied is
the same, where the participation of the slab as reflected by (K]1)S/
(K11)B increases as o decreases and this ratio approaches a value of
1.0 as o approaches infinity. The difference in the three curves of
Fig. 2.11 is the degree of slab participation, which increases with
L]/Lz, To show that this behavior is structurally consistent, consider
the three panels shown in Fig. 2.12 where a, ds’ and L] are held constant
and L2 is varied. As L1/L2 goes from 2.0 to 0.5, the following takes
place: (1) the value of L2 increases by a factor of 4, and (2) to
maintain a constant a, ds, and L], the flexural stiffness of beam AB
must also increase by a factor of 4 (see Eq. 2.8).

The results of Fig. 2.11, where (KH)S/(K”)B is found to decrease
with L]/L2 as o is held constant, indicate that the increase in beam
flexural stiffness described above is not matched by a proportional
increase in slab stiffness. Hence, as L]/L2 decreases, the relative
slab-beam stiffnesses also decrease resulting in a higher relative con-
tribution from the beams to the total stiffness of the floor.



Finally, it is of interest in Table 2.9 to examine the influence of
B The four
floors with values of 8 equal to 0.60 include torsional beams with moments
of inertia 4.68 times larger than that of the flexural beams. Since the

an extremely stiff torsional beam on the ratio (KII)S/(K]])

flexural beam of a floor with LT/LZ = 2.0 is twice as long as the torsional
beam, the usual case would be for the flexural beam to be the Targer.
Hence, the case of B = 0.60 has a much stiffer torsional beam than is to

be expected in practice. HNevertheless, the influence on the ratio (K11)S/
(K”)B vs. o is not very large. The largest difference in this ratio for
o = 0.80 is only 10.6% and decreases to 6.1% for o = 3.0. These differences
indicate that as the torsional beam becomes stiffer, it forces more of the
slab to participate in resisting a rotation at the corner support and

hence increases the total stiffness of the floor. However, this increase

B due to the stiffer
torsional beam; hence, the ratio (K]1)S/(K11)B drops as B is increased.

in (KI1)S is at a lower rate than the increase in (K]1)

As o increases, the beams dominate the stiffness of the floor and the in-
fluence of a larger slab participation due to stiffer torsional beams
becomes less important. These results point out that even for floors with
fairly stiff, short cross-beams, the stiffness of the floor can be ade-
guately approximated from such plots as shown in Fig. 2.11.

b) Effect on Carryover Factors. - The carryover factors CF.., through

12
CF]8 for single-panel floors with L1/L2 equal to 0.5 and 2.0 are given in

Tables 2.10 and 2.11, respectively. These tables confirm the basic con-
clusions about the carryover factors arrived at in the case of L]/L2

= 1.0, i.e., that the most significant carryover factors are CF]3 and
CF15- Notice that CF]7 and CF]8 are well below 10% in all cases studied,
which further confirms the acceptability of modeling structures as a series
of planar frames since the coupling along a diagonal is not very large.
Notice also that CF17 falls off sharply with L?/LZ’ so that it is less
than 2% for L]/L2 = 0.5 while it rises to over 7% for L]/L2 = 2.0. This
is due to the fact that as Ly/L, increases (Fig. 2.12), the floor has
shorter, hence stiffer, torsional beams which force more of the slab
along beam AC to rotate due to a rotation at the corner support. This
distributes more of the moments and rotations through the slab. On the

other hand, the stiff flexural beams due to Tower values of L]/L2 force
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most of the floor action to be concentrated atong the flexural beam,
resuiting in high values of CF13 and Tow values for the other carry-
over factors.

Influence of L,/L, on CFy,. ~ The results shown in Tables 2.10

and 2.11 generally confirm the conclusion reached in section 2.3.5, that
given L]/LZ’ the primary factor is a, while the variations in B8 have
only secondary effects on CF]3. Notice that in the case L1/L2 = 2.0,
when B increases from 0.064 to 0.60, the variation of CF13 for a given
value of o can be as high as 25%. It should be pointed out, however,
that this high variation occurs when the stiffness of the torsional beam
is increased to ten times that expected in usual cases. Theoretically,
if B approaches infinity the value of‘CF]3 will approach zero. The
values of CF]3 for the three sets of floors analyzed are plotted in Fig.
2.13. The three are similar in that they level off into fairly flat
curves for a > 1.0 and very gradually approach ¢]3 asymptotically. The

plot also shows that the value of CF,, varies inversely with L.]/L2 (CF]3

13
increases as L]/L2 decreases). Hence, the curve of CF] as a function of

o, approaches its asymptote w]3 faster for lower values 30f Ll/LZ' The
reasons for this behavior are the same as those given in section 2.3.6a.
Notice that in eq. 2.11, the asymptote w13 is independent of L1/L2.
Tables 2.10 and 2.11 and Fig. 2.13 further clarify the observation made
in section 2.3.5a about the inadequacy of assigning values for CF]3 based
on prismatic member theory (wlg). For low values of o and L]/L2 = 2.0,

the difference between CF]3 and b3 can be more than 30%.

Influence of L]/L2 on CF - The values of CF]5 for the three sets

15°
of floors analyzed are plotted in Fig. 2.14. These results again confirm

the observations made above in the case of L]/L2 = 1.0 where it was found
that CF15 is dependent on both o and g with the latter being the more
important. Figure 2.14 shows that for L]/L2 = 0.5, CF]5 is very small

for the range of values studied, and could be neglected for most of these
cases. This is also true for L1/L2 = 1.0 where the torsional beams are
the same size as the flexural beams or smaller. CF]5 increases when Ll/LZ
= 2.0, where the torsional beams are short relative to the flexural

beams and, as expected, more of the moments will be resisted by these
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torsional beams. Along with the results from Table 2.11, Fig. 2.14 also
shows the 1imiting values ¢15 (see eq. 2.12). Notice that for L]/LZ = 2.0
and Tow values of g, CF]5 is Targer than V15 but that this relationship is
reversed as B8 increases. This means that for Tow values of g (flexible tor-
sional beams) a greater amount of moment reaches the corner supporting the
torsional beams than would be the case if the beams acted without the slab.
This sheds some Tight on the complex interaction of the beams and slab.
When the torsional beams are very flexible, the torsional stiffness of

the slab in the short span dominates the behavior of the floor and brings
a greater amount of torsion to the support than would be the case with
beams alone. However, as the torsional beams become stiffer, the slab
acts as an elastic support distributing the torsion away along the length
of the beam and redistributing it toc the other supports. Thus, the slab
acts as a redistributing element which distributes torsional moments to
support C (Fig. 2.1) when the torsional beams are very flexible, and
redistributes torsional moments away from support C when the torsional
beams are very stiff.

Figures 2.13 and 2.14 also show that as L]/L2 increases, a Struc-
ture cannot in general be adequately modeled as a series of parallel
planar frames since the moments transferred along the torsional beams can
be even larger than those transferred along the flexural beams. In this

case, a series of intersecting orthogonal planar frames would be a much
more realistic model.

2.4 Summary and Conclusions

To make a scientific assessment of existing models for the contri-
bution of a floor system to the overall Tateral stiffness of a building,
and to develop new and more realistic models, it was necessary to study
a fairly simple two-way floor slab. This chapter has investigated the
stiffness properties of a singie-panel rectangular floor supported at its
four corners. The two-way slab floor was further simplified by:

1. Considering only point supports, thus eliminating the effect
of varying column sizes.

2. Considering only beams symmetrical about the centerline of the
slab, thus eliminating the effects of beam-slab eccentricity and the re-
sulting in-plane slab stresses.
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3. Fixing the depth-to-width ratio of the beams at 2:1, thus
fixing also the relationship between the flexural and torsional stiff-

nesses of the individual beams.

The stiffness of the floor is defined by an 8 x 8 stiffness matrix
based on two orthogonal rotational degrees of freedom in the plane of
the slab at each of the four supports (Fig. 2.1). Due to the two axes of
symmetry in a rectangular single-panel floor, the stiffness matrix is
fully defined by the first two rows and, in the special case of a square

bay, by Jjust the top row.

The floors were modeled as a series of rectangular two-dimensional
finite elements for the slab, and uniaxial prismatic elements for the
beams. The program PLATE, used to solve the equations, utilizes linear
curvature compatibie triangular finite elements which have a cubic trans-
verse displacement expansion with piecewise continuous derivatives, and
uniaxial beam elements embedded in the slab.

The study considers the influence of the foilowing floor parameters
on the values of the coefficients of the stiffness matrix:

1. The slab depth-to-span ratio (ds/L1).

2. The ratio B of the torsional stiffness of the torsional beam
to the flexural stiffness of the flexural beam, as given in eq. 2.6.

3. The ratio a of the flexural stiffness of the flexural beam to
the flexural stiffness of a half span strip of slab along the flexural
beam, as given in eq. 2.8.

4, The ratio of the span of the flexural beam to that of the
torsional beam L]/L2 (Fig. 2.1).

A total of 46 single-panel fioors was analyzed for different combinations
of the above four parameters. A wide enough range of ds/L1’ B, and a
was used to establish a pattern of the influence of these parameters on
the filoor stiffness. The ratios 0.5 and 2.0 were used as 1imits for
L1/L2, as it is customary to consider slabs beyond these 1limits as one-
way slabs in the short direction. The following conclusions can be made

based on the results given in this chapter:
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1. The first term of the stiffness matrix (K]1)S increases as
ds/Ll’ o, Or B are increased, or as L1/L2 is decreased.

2. The ratioL(K1])S/(K11)B, where (KH)B is as defined in eq.
2.5, is primarily dependent on o and Li/LZO The influence of dS/L] and
B on this ratio for the range of parameters studied is small enough to
be neglected. This is a very important relationship since L1/L2’ o, and
(KT1)B can be calculated easily for any given floor and this information
aleng with the plots of Fig. 2.11 allow a fairly accurate approximation
of (KTT)S’
3. The ratio (KH)S/(KH)B converges rather rapidly toward its
1imiting value 1.0 as o increases, and the rate of convergence is faster

for lower values of L1/L2.

4. The carryover factors CF, through CF{8, as defined in eq. 2.10,
are all sensitive in varying degrees to changes in the four parameters
studied.

5. The carryover factors other than CF13 and CF15 were generally
considered small enough to be neglected. Especiaily important are the
low values of CF17 and CF]S which show relatively low coupling via the
slab between diagonally opposite supports. This reaffirms the usual
practice of modeling buildings as a series of planar frames.

6. In floors with ratios of B8 around those expected in practice,
CF]3 is primarily dependent on the values of o and L]/Lz, and can be
adequately approximated from plots in Fig. 2.13. However, these values
can be off by more than 20% in floors with exceptionally stiff torsional
beams (high values of g). CF13 decreases as 3 increases.

7. The value of CF13 can vary substantia]]y from the carryover
factor based on prismatic beams, bygs 28 defined in eq. 2.11. This is
especially true in floors with high ratios of Li/LZ and Tow a. Thus
the usual practice of estimating (KH)S and then using a CF.!3 value of
0.5 or one based on w]3 can result in substantial errors.

8. CF15 was found to depend primarily on L1/L2 and B. But o,
especially in its upper ranges, also showed a marked influence on CF15
so that this parameter could not altogether be neglected. Figure 2.14
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shows CF]5 as a function of o, B, and L]/Lz.

9. In general, CF15 increases with increases in «, B, and L1/L2.

In floors with L]/L2 close to 0.5 or in square panels with very flexible
torsional beams, CF]5 is small enough to be neglected. In buildings with
L]/L2 close to 2.0, CF15 can be as large or larger than CF]3. This means
that in buildings where adjacent columns do not undergo exactly the same
rotations, thus introducing torsion in the cross-beams, the usual practice
of modeling the building as a series of independent parallel planar frames
is not always adequate. Also buildings with L1/Lo ratios close to 2.0,
regardless of slab depth, should be modeled as a series of intersecting
orthogonal planar frames.

10. The slab contributes relatively more than the beam to the stiff-
ness of the floor for low values of o. This means that as the beams become
stiffer, instead of causing comparably larger slab participation, they end
up dominating the stiffness of the floor so that the relative slab contri-

bution becomes less.

11. The slab redistributes stresses among the supports by acting
as a continuous elastic support for the flexural beam, thus reducing the
moments carried by the beam to one support due to a rotation at the other
support--an effect which increases with decreases in a. This is reflected
in the increased rate of divergence of (‘,F]3 from Y13 for lower values of
a. The slab also redistributes torsional moments along the torsional

beams, especially when L]/L2 is large (near 2.0).
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3. FULL COMPOSITE ACTION IN A TWO-WAY SLAB FLOOR SYSTEM

3.1 Introduction

The analysis of floors with partial composite action (beams symmetric
about the slab mid-plane) is useful theoretically because the coincidence
of the beam and slab neutral axes simplifies the structure tremendously
as in-plane slab stresses can be neglected and thus appreciably reducing
the computational effort needed to establish the floor stiffness matrix.
These simplifications facilitated parametric studies to establish the
main parameters controlling the basic beam-slab interaction and their
contribution to terms of the floor stiffness matrix.

Unfortunately, such floors are rarely encountered in practice as
usually the top of the slab is flush with the top of the beam, resulting
in an eccentricity e between the neutral axes of beam and slab (Fig.
3.1). This eccentricity has a substantial influence on the mechanism
determining beam-slab interaction in the flcor. The neutral plane of
the floor is no longer a plane surface coinciding with the mid-plane of
the slab, but rather a curved surface whose location at any point depends
on the coordinates of that point within the floor and the relative beam-
slab stiffneses. The neutral plane of a single-panel floor (Fig. 3.1)
starts at the edges of the floor somewhere between the neutral axes
of the beam and slab, then gradually rises to approach the siab neutral
axis as it proceeds toward the center of the floor. The location of the
neutral plane at the edge and its slope as it proceeds toward the center
of the floor depends on the relative stiffnesses of the slab and beams
(values of a and B). In floors where o is small (the beams are flexible
relative to siab), the vertical intercept at the edge will be close to
the neutral axis of the slab, while for higher values of o it will be
closer to the beam neutral axis.

The eccentricity e between the neutral axes of floor and siab
means that normal stresses within the slab are not symmetrical and that
there is a net normal stress witnin the slab per unit area. Hence, net
vertical as well as horizontal shears have to be transferred between siab
and beam {full composite action). This is shown in the schematic dia-
gram of Fig. 3.2, where as a moment is introduced along the flexural beam,
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part of the slab acts as a flange of a combined beam-slab section pro-
ducing in-plane slab stresses. The maagnitude of these stresses changes
in proportion to the distance between the neutral pilane of the floor and
the slab mid-plane, which is a maximum at the edge of the floor and a

minimum at the center.

The structural behavior of the floor along the torsional beams is
similar to, but more complex than, that along the flexural beams. When
a member with a symmetric section is twisted, it rotates around its shear
center which coincides with the intersection of its two orthogonal neutral
axes. Hence, in members with symmetric sections, torsional moments are
uncoupled from flexure in either direction. In the floors analyzed in
this chapter, part of the slab acts as a flange of a combined beam-slab
torsional section. T1his interaction produces a center of shear of the
combined beam-slab section which, as shown in Fig. 3.3(a), does not coin-
cide with the shear center of the beam. As the torsional beam rotates
about the combined shear center, it also undergoes vertical and lateral
translations. The magnitudes of these translations are based on the
location of the combined section's shear center and the angle of twist.
The location of the shear center is determined by the flange width of the
combined section which is dependent on the relative stiffnesses of beam
and slab. The angle of twist is dependent on loading, floor stiffness,
and boundary conditions.

Given the boundary conditions and loading used in this analysis,
the angle of twist will vary along the torsional beam from a maximum at
point A to zero at point C (Fig. 3.1). Hence the Ax and Az translations
of the beam geometric center will also vary between these two points pro-
ducing flexural moments in the x and z direction along beam AC [Fig. 3.3
(a)]. Similarly, flexure in the x and z direction are coupled with torsion
along the flexural beam AB.

The interaction between the slab and the torsional beams contributes
to the slab in-plane stresses in two ways. First, the flexural moments
along the length of the torsional beams will produce in-plane slab stresses
in exactiy the same manner explained above for the case of flexural beams
(Fig. 3.2). Secondly, as the composite beam-slab section twists, there



is a net Ax translation at the slab mid-plane [Fig. 3.3(a)] whose value
is determined by the degree of torsion at the section. Consider a slab
strip jk [Fig. 3.3(b)] parallel to the flexural beams. The axial dis-
placements, due to torsion, at the two ends of this strip (ij and Axk)
are not equal since the torsion at point j and k is different. Hence
there is a net in-plane stress in the strip due to the torsion in beams
AB and CD.

Besides the complex beam-slab interaction, the beam-slab eccentricity
adds yet another complication to the floor model to be analyzed, the
point of load application. In floors with partial composite action,
studied in Chapter 2, the degrees of freedom were located at the neutral
plane of the floor which coincided with the mid-plane of the siab. How-
ever, in the case of floors with full composite action (eccentric beams),
the position of the neutral axis of the combined beam-slab section is
not known and there are no convenient analytical methods to locate it.
Applying the rotation at any other point, such as the centerline of the
slab, will require application of other appropriate forces to compensate
for the effect of the eccentricity between the point of load application
and the neutral axis of the floor at the supports.

These and other complications are perhaps some of the reasons that
experimental rather than analytical methods have predominated the research
of the behavior of two-way slab systems. However, the expense of experi-
mental studies and the time they require has Timited the extent and
scope of those studies. The development of new and efficient computer
programs capable of producing acceptable approximations for the solution
of these problems is making analytical studies on the behavior of two-way
slab systems more feasible.

3.2 Floors and Parameters Considered

A1l the floors considered in this chapter are of a single-panel with
point supports at the corners. The parameters investigated are the same
four (dS/L]s a, B, and L1/L2) that were studied in the previous chapter.
Equations 2.6 and 2.8 define the values of B and a.
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A1l floors analyzed (Fig. 3.1) involve beams with a 2:1 depth-to-
width ratio, which fixes the ratio of the flexural to torsional stiffness
of all beams to be 13.33 (1 + v). Different depth-to-width ratios
will change the relative flexural to torsional stiffness of the individual
beam and this would affect the resulis of this analysis in that torsion
and flexure in the floor beams have been shown to be cbupTed (section 3.1).
Having the top of beams flush with the top of slab fixes the beam-slab
eccentricity e to be:

e = (D—ds) (3.1)

N[ —

3.3 Modeling and Computer Program Used

It is clear from the above discussions that the best analytical
model for the problem at hand is a three-dimensional finite element, which
would most adequately account for the beam eccentricity and the resulting
in-plane slab stresses. Such programs do in fact exist, but the required
computational effort and cost would be prohibitive. Hence, a model ‘
utilizing planar finite elements and uniaxial prismatic beam elements
was developed. Several such models have been suggested and used by
analysts with reasonably acceptable accuracy, especially when used in
studies of ribbed concrete bridge decks. One such model is that shown
in Fig. 3.4 where the slab is represented by a planar finite element
along the neutral axis of the siab and the beams are represented by uni-
axial prismatic members located a distance of D/2 below the finite ele-
ments. Notice that as the finite element mesh extends to the edge of
the floor [Fig. 3.4(b) and 3.4(c)], the beam element models only the part
of the floor beam extending below the slab. This is necessary so that
the overlapping section between slab and beam will not be accounted for
twice. The beam ends are connected to the slab by rigid links at the
finite element nodes, satisfying compatibility conditions there.

The section of the investigation presented in this chapter was con-
ducted using the computer program SAP-IV [22], a general-use program for
the static and dynamic analyses of linear structural systems developed
at the University of California over a period of many years. The program
contains eight structural elements that can be used separately, or in
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combination, to model structures. The Thin Plate and Shell Element, and
the Three-Dimensional Beam Element were used for the work of this
chapter.

The thin plate element used in the program is a quadrilateral of
arbitrary geometry formed from four compatible triangles. The LCCT9
element described in section 2.3.1 is used to represent the bending
behavior of the plate. A constant strain triangle, whose plane stress
properties are described in reference 23, is used to represent the mem-
brane behavior of the plate. The thin plate quadrilateral element has a
total of 24 degrees of freedom in the global coordinate system (i.e.,
six degrees of freedom per node), after six interior degrees of freedom
in the triangular elements are eliminated by static condensation prior
to assembly. The stiffness of the quadrilateral element associated with
the rotation vector normal to the plate surface is not defined; there-
fore, the in-plane moments and rotations are neglected in SAP-IV.

The prismatic beam element included in SAP-IV considers torsion,
bending about two axes, and axial and shearing deformations. The develop-
ment of its stiffness properties is standard and is given in reference
24. A unigue option is that the end nodes of the beam element (slave
nodes) can be geometrically constrained to a master node. Slave degrees
of freedom at the end of the beam are eliminated from the formulation
and replaced by the transformed degrees of freedom of the master node,
based on the geometry of the master and slave joints as defined in Fig.
3.5. The rotations and displacement of the slave node is defined by the
following set of equations:

0,. = 6

Xs ~ Uxm

Oys = Oym

0, = 0, (3.2)
Uys ™ Uym ¥ (Zs"zm)eym - (ys-ym)ezm

Yys = Yym * (anzm)exm * (Xs'xm)ezm

Uyg = Ugp ¥ (ys“ym)exm - (Xs'xm)eym
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This option in SAP-IV efficiently models rigid links between slave and

master nodes.

The method of modeling the floors by a mesh of two-dimensional
finite elements connected by rigid 1inks to'prismatic uniaxial beam
elements, and the specific computer program SAP-IV used, present some
limitations to the accuracy of the results. These are summarized below:

1. Beam-slab compatibility is not maintained continuously along
the full length of the beams; it is only maintained piecewise at the
nodes where the rigid Tinks between the slab and beams are added.

2. In-plane bending of slab is neglected as the stiffness associa-
ted with it is not defined in the plate element used. However, it is
generally accepted that due to the great slab stiffness associated with
in-plane bending, neglecting the rotational degree of freedom normal to
the surface of flat plates has a negligible effect on the solution [23].

3. The use of a constant strain element to model the membrane action
of the slab results in stepwise, rather than continuous, variation of the
membrane stresses across the slab.

4. The three rotational degrees of freedom in the beam element used
in SAP-IV are uncoupled. The rigid 1inks connecting the beam ends to the
finite element mesh force some coupling between these degrees of freedom.
Consder the model shown in Fig. 3.6. The x and y rotations of the finite
element nodes B and C are coupled. Hence, as the finite element mesh is
subjected to stresses, nodes B and C will undergo x and y rotations.
Since the beam nodes b and ¢ are connected to the finite element nodes
B and C by rigid links, the beam nodes will also undergo both x and y
rotations (see eq. 3.2). Hence, while torsion and flexure are uncoupled
in the beam element used, the rigid Tinks to the finite element nodes have
the effect of coupling the x and y rotations of the beam nodes. This
only approximates the actual beam-slab composite action which has been
described in section 3.1.

The overall accuracy of the model suggested above was checked by
using it to calculate the stiffness of a 15-ft cantilever T-beam
with a moment applied at its free end. The beam section, finite element
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mesh, and the boundary conditions used are shown in Fig. 3.7. The model
also includes uniaxial prismatic beam elements located 8 in. below the
finite element mesh and their end nodes slaved to those of finite elements.
The moment was applied to node B and very stiff beams were added between
nodes C and B and between nodes A and B, to force equal rotations and
displacements of these three nodes.

The resuits sought are the x-rotation and y-displacement of node B.
The moment applied to the beam divided by this rotation yields the beam
stiffness, while the y-displacement divided by the tangent of the x-
rotation at B gives the position of the neutral axis below the centerline
of the slab (Fig. 3.6). Comparison of these results to those from pris-
matic beam theory were as follows:

K (K—in.) N.A. below

rad Top of Slab
Beam Theory 80987.59 5.857"
Model 80987.40 5.857"

This clearly shows that, for the purpose used, the model is adeguate
despite the limitations mentioned above. Another calculation for the
same beam section but with a span of 4 ft was attempted and the results
deviated from the theoretical solution by as much as 17%. Reducing the
depth-to-~shear span ratio to 1:3 changed the beam from a predominantly
flexural to a predominantly shear beam, and the results clearly show that
the model is good in flexible beams but fails as shear predominates.

3.4 Stiffness of a Single-Panel Floor with Full Composite Action

The method of analysis followed in this chapter is similar to that
used in Chapter 2 for the case of symmetrical beams. A difficulty arises
in that the rotation at the first degree of freedom (Fig. 3.1) must be
applied at the neutral axis of the floor at support A, whose location,
as previously mentioned, is not readily available. Applying the rotation
at the floor neutral axis, which lies between the neutral axes of slab
and beam, means that the mid-plane of the siab will undergo a Ax transla-
tion. This is different from the case of floors with symmetric beams in

-38-



Chapter 2 where a rofation at the support is not coupled with a transla-
tion of the siab mid-plane. If in the model used in this investigation
the moment is appiied at the slab mid-plane (Fig. 3.6), and the beam and
slab are free to undergo Ax translation at support A, then the floor will
rotate about the actual floor's axis of rotation. Furthermore, since only
a moment is applied at joint A, then the neutral axis and the axis of
rotation at the joint coincide. If the two ends of the rigid Tink Aa
(Fig. 3.6) are free to undergo ey rotations and Ax translations, then By
will be the same regardless of where the moment is applied along the
rigid link. The values of ey and Ugp are both used as program output and
the distance § between the neutral axis of slab and floor is easily
established where:

u
_ xA
S = fan ey (3.3)

and using eq. 3.1, the distance £ between the neutral axes of flexural
beam and floor is: '

D-d u

g: 2 -
.0 tan ey

Following this procedure, the stiffness of the single-panel floors
investigated was established by applying a moment at support A at the
level of the slab mid-plane while restraining all degrees of freedom at
the support except 6y rotation and Ax translation at support A.

The material properties used are the same as those given in section
2.3.1. The mesh size is chosen on the basis of adequate convergence of
the values of (K11)S and £ (e.g., Fig. 3.8 for the case Li/Ly = 0.5).
Tables 3.1 to 3.3 give the dimensions of all the floors analyzed and the
relationship between the torsional and flexural beams based on the values
-of B chosen is the same as explained in sections 2.3.3 and 2.3.5.

The resu1ts'of the analysis are given in Tables 3.4, 3.5, and 3.6.
The values of (K1])B are as defined in eqg. 2.5 and are independent of
the position of the beams relative to the siab. The ratio (K11)S/(K11)B

given in the tables follow a similar pattern to those for the symmetrical
beams in Chapter 2: they depend primarily on the value of a, but the
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variation due to changes in dg/Ly and B are more significant than in the
case of the symmetrical beams. In the latter case, the ratio (Kll)S/(K11)B
can be considered a fairly good measure of the slab contribution to the
stiffness of the floor, since the value of (K”)Bs as defined in eq. 2.5,
is theoretically the actual stiffness of the beams, and the increase of
(K11)S over that is due to the contribution of the slab. This is not
true in the case of eccentric beams because, as explained in section 3.1,
the neutral axis of the floor does not coincide with that of the beams.
Hence, a more accurate measure of the contribution of the beams to the
overall stiffness of the floor (K”)S would require that the beam stiff-
ness (K11)B be transformed from the neutral axis of the beams to that of
the floor.

If in-plane distortions in a beam are neglected, the torsional stiff-
ness is equal to GJ/L irrespective of the positicn of the axis of rota-
tion. The flexural stiffness can easily be transformed by transforming
the moment of inertia to the new axis of rotation. The axis of rotation
at the support is identified in the previous section (Fig. 3.6), but as
slab participation varies along the length of the beam, so does the posi-
tion of the neutral axis. Assuming a shifted beam neutral axis a distance
of £ above the original beam neutral axis (the shifted axis coincides with
the floor neutral axis at the supports only), then the transformed bare
beam stiffness (K1])g is defined as:

GJ
r _ 4E ;r TB
()g =1 Trs * T (3.5)
where
r _ 2
Irg = Ipp ¥ Apg €

(K]])E is not the actual contribution of beams to the total floor stiff-
ness (K11)S’ but is closer to the actual value than (K11)B°

Tables 3.4, 3.5, and 3.6 give the values of (K;;){ and the ratio
(K]])S/(K]1)E for each floor analyzed. Notice that this ratio follows
much more closely the pattern set by (KH)S/(K”)B in the case of
symmetrical beams. (K11)S/(K11)E primarily varies with o and L,/L,
and the effect of B and dS/L1 on it are negligible for the range of
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parameters used in this investigation. Figure 3.9 plots the values of
(KII)S/(K11)E vs. o and the three curves follow very closely those of
Fig. 2.11 for the case of symmetrical beams. The discussions of sections
2.3.3 and 2.3.5 about the structural significance of a, B, dS/L], and
L]/L2 on the stiffness of the floor apply also to the case of eccentric
beams.

Comparing the results of Tables 3.4 through 3.6 with those of Tables
2.3, 2.8, and 2.9 to identify the effect of the beam eccentricity, it is
clear that moving the neutral axis of the beam away from that of the slab
significantly increases the stiffness of the floor. This is to be expected
since this eccentricity shifts the neutral axis of the floor to somewhere
between that of the beam and the slab and hence increases the contribution
of both to the stiffness of the floor. The increase in (K11)S is of the
order of 20% for L]/L2 = 1.0 and less for L]/L2 = 2.0 and 0.5. A very
interesting result, however, is that for the cases studied, the ratio of
(K11)S/(K11)E’ case for case, is very close to (K11)S/(K11)B for symmetrical
beams. Thus it appears that the relative contribution of the slab and beams
to the total floor stiffness (K”)S is basically the same whether the beams
are symmetric with the slab mid-plane or not.

3.5 Neutral Axis of Floor at Supports

The effect of beam eccentricity on the position of the neutral
axis of the floor system is discussed fully in section 3.1. Later dis-
cussions have also explained how the results of the computer program can
be utilized to establish the position of the neutral axis of the floor
at the support, and the importance of this information in determining
(K]1)E. Tables 3.4, 3.5, and 3.6 give the distance £ between the neutral
axis of the flexural beam and that of the floor for all cases analyzed.
These tables also give the value of vy where:

Y=g (3.6)

These values of y vs. a are plotted in Fig. 3.10. It is clear from the
definition of y in eq. 3.6 that as o increases, the influence of the

beams in determining the location of the floor neutral axis at the edge
increases. Therefore, the value of £ and vy will decrease so that vy -~ 0
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as a -+ « . The results shown in Tables 3.4 through 3.6 confirm this
trend and also show that variation in 8 has only a minor effect on the
value of y for the range of B investigated. Variation in ds/L1 has a
more pronounced effect on y than variation in g. However, for the range
of ds/L] most prevalent in practice, y can be considered as being pri-
marily dependent on o and L]/LZ. Figure 3.10 shows that for any given

a there is a significant increase in y as L]/L2 goes from 0.5 to 1.0,
but very little change for L1/L2 greater than 1.0. It has already been
shown (section 2.3.5) that increasing L]/L2 also increases the degree of
slab participation in the floor stiffness, which should in turn move the
floor neutral axis up toward the slab mid-plane (i.e., vy should increase
with L1/L2)' There is a slight deviation from this trend in the results
shown in Fig. 3.10. The reason is that a coarser finite element mesh was
used for the case of L]/L2 = 1.0 than for the case of L]/L2 = 2.0. The
coarser mesh results in higher values of vy (Fig. 3.8) which, given how
close the values of vy for the two cases are to each other, accounts for
the discrepancy.

3.6 Carryover Factors of a Single-Panel Floor with Eccentric Beams

The carryover factors as defined in eq. 2.10 are given in Tables 3.7,
3.8, and 3.9 for the three L]/L2 ratios studied. The basic pattern of
the carryover factors in these tables is similar to that of the comparable
factors for floors with symmetric beams discussed in section 2.3.5b. The
values of CF]7 and CF]8 in Tables 3.7 through 3.9 are almost identical
to those given in section 2.3.5b and confirm once again that, for the
range of parameters studied, there is only a small coupling of support
moments across the floor's diagonal and, as such, modeling a structure
as a series of intersecting orthogonal frames is justified.

The carryover factors given in Tables 3.7 through 3.9 also confirm
the conclusions of Chapter 2 that CF]3 is the largest and the most sig-
nificant carryover factor in a floor. The others, except for CF]5 when
L]/L2 is greater than 1.0, are small enough to be neglected in modeling
a two-way siab floor.

a) CFy3 of a Single-Panel Floor with Eccentric Beams: The values

of CF]3 given in Tables 3.7 through 3.9 clearly show that this factor is
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not very sensitive to changes in dS/L] and B for the range or parameters
studied. This pattern of CF]3 is discussed thoroughly in sections 2.3.4a
and 2.3.5b. The influence of o and L]/L2 on CF]3 in a single-panel floor
with eccentric beams is better shown in Fig. 3.11. Notice that the three
curves cross at about o equal to 3.0. This seems to be in conflict with
the discussions of section 2.3.4a and 2.3.5b where an asymptotic value
P13 independent of L1/L2 and a was established and it was shown that CF13
approached that asymptote faster as L]/L2 decreased. This argument is
still applicable to the results of Fig. 3.11 if the definition of P13 is
modified from that of eq. 2.11 to include the influence of shear in the
beams. This is necessary for cases with o larger than 3.0 where the
beam's depth-to-shear span ratio increases (especially for low values

of L]/Lz) and shear effects cannot be neglected. The stiffness matrix

of a prismatic member with inclusion of shear distortion [25] is:

oF1 2+t 1-1 ( )
K = 3.7
UG
where
T = _EEE_.E? (3.8)
GA, pel

Using the above equation, a new relationship for w]3 can be defined
which takes into account the shear distortions in the flexural beam. This
development is given in Appendix A where b3 is shown to be not only de-
pendent on B, but also on the size of the flexural beam. Following is a
chart which compares the values of CF]3 from Tables 3.7 through 3.9 with
those of ¢]3, as defined in Appendix A for three values of o and Ll/LZ’
with ds equal to 6.5 in., and B equal to 0.064,

] 7L, = 2.0 7L, = 1.0 [/L, = 0.5

Viz | CRyg/¥z | Wy | CFyafigg | ¥q3 | CFpa/iyg
0.8 | 0.467 | 0.645 | 0.466 | 0.725 | 0.453 0.777
3.0 | o.464 | 0.750 | 0.462 | 0.749 | 0.483 0.789
8.0 | 0.460 | 0.780 | 0.457 | 0.755 | 0.419 0.792
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Now that shear distortions are taken into account we find that, indeed,
the values of CF]3
as L]/L2 decreases. The above table also shows that shear distortion

do approach ¢13 and that they do so at a faster rate

influences W13 significantly as o increases (i.e. deeper beams), and
also as the span of the flexural beams decreases (as a result of Tower
values of L1/L2)’

Comparing the results given in Tables 3.7 through 3.9 with those of
Chapter 2, we find that (:F13 is smaller in floors with eccentric beams
than in floors with symmetric beams. This is due to the added stiffness
of the slab in floors with eccentric beams due to the membrane action.
The added slab stiffness results in a higher degree of moment redistribu-
tion by the slab, hence Tower values of CF13.

b) CF15 of a Single-Panel Floor with Eccentric Beams: Similar to

those of Chapter 2, the values of CF]5 given in Tables 3.7 through 3.9
are primarily dependent on # and L1/L2. The influence of dS/L] is small
enough to be neglected but the influence of a, though Tess than that of
B and L]/Lz, is substantial for larger values of B. The values of CF
from the tables are plotted in Fig. 3.12. As the figure shows, the

15

pattern established by these curves is similar to that of Fig. 2.14 of
floors with symmetric beams, and the reasons for this pattern are pre-
sented in sections 2.3,4b and 2.3.5b. Notice that there is some incon-
sistency in these results (Fig. 3.12) as the values of CF15 for B equal
0.2 to 0.4 seem to approach the Timit w15 as o gets smaller. This
indicates that the three curves should cross at the same point to be
consistent theoretically, and the deviation from this is a function of
the approximations inherent in the modei. Nevertheless, the relative
relationship between the three curves for L]/LZ = 2.0, outside the area
where they cross each other, is consistent with the theoretical consider-
ations of section 2.3.5b.

The infliuence of beam eccentricity is to reduce the values of CF]5
from those for symmetric beams, and this is explained by the increased
slab capacity to redistribute moments noted in the previous section.
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3.7 Summary and Conclusions

This chapter investigates the effect of full composite action (i.e.,
the neutral axis of the beam does not coincide with that of the slab)
on the terms of the stiffness matrix of a single-panel floor. The stiff-
ness matrix of the floor is defined in section 2.3.2. Beam eccentricity
produces much more complex Stress patterns which increase the difficulty
of the analysis and the required computational effort. The difficulty is
primarily that of developing an efficient analytical model to represent
accurately the compatibility requirements between beam and slab and the
in-plane slab stresses which develop.

The slab is modeled as a series of rectangular finite elements,
where an LCCT9 element formed from four compatible triangles is used to
represent the bending behavior of the slab and a constant strain element
with plane stress properties is used to represent its membrane behavior.
The beams were modeled as uniaxial, prismatic members, connected at both
ends by rigid Tinks to the plate finite element nodes along the beam's
centerline. This model's applicability was checked by using it to cal-
culate the stiffness of a T-shaped cantilever beam and the results show
that the model is very accurate for flexible beams under predominantly
flexural stresses. This accuracy falls off rapidly as the depth-to-shear
span ratio increases and shear stresses predominate. The results from
the model can also be interpreted in a way that gives a reasonable approxi-
mation of the position of neutral axis of the floor at the supports.

Thirty-three single-panel floors are analyzed in this chapter to
study the influence of a, B8, dS/L], and L]/L2 on floors with eccentric
beams. In all these floors the beams are considered to be flush with the
top of slab and to have a 2:1 depth-to-width ratio. The material pro-
perties are the same as those of Chapter 2, allowing a comparison between
the results to determine the effect of beam eccentricity.

The results of the analyses show that:

1. The ratio (K11)S/(K11)B is primarily dependent on o and L]/Lz,
but is more sensitive to variations in B and dS/L1 than is the case with
symmetric beams. However, the ratio (Kll)S/(K11)E’ where (K1])E is de-
fined by eq. 3.5, is much less sensitive to variations in g and ds/L.i
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and can be approrimated on the basis of « and L1/L2.

2. Shifting the neutral axis of the floor away from that of the
slab increased the stiffness of the floor (Ki;)g. The value of (Kyy)g/
(K]])g, for a given L1/L2 and a was basically the same as the value of
(K”)S/(KH)B in a floor with symmetrical beams.

3. The ratio (K1])g/(K11)g approached 1.0 as « increased and
approached its Timiting value at a faster rate as L]/L2 decreased. This
behavior was identical to that of floors with symmetric beams.

4. The relative position of the neutral axis at the supports as
defined by the value of vy (Fig. 3.10) for the range of parameters con-
sidered was not found to be very sensitive to variations in B, but was
mainly dependent on o and L]/L2 with some influence from dS/L].

5. As in the case of floors with symmetric beams, there was very
small coupling between the floor supports along a diagonal. CF]3 was the
most significant carryover factor and CF]5 increased rapidly as L]/LZ
became greater than one.

6. CF13 is primarily dependent on o and L]/Lz, while CF]5 is
mainly determined by 8 and L]/L2 with some influence by o. This behavior
was similar to that of floors with symmetric beams.

7. The carryover factors were smaller in floors with eccentric
beams than in symmetric ones. This indicates a higher degree of moment
redistribution by the slab in floors with eccentric beams.
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4. EFFECT OF BOUNDARY CONDITION ON FLOOR STIFFNESS

4.1 Introduction

The parametric study of single-panel floors with either full or
partial composite‘action has established the relationship between the
main floor parameters and stiffness. In a multi-panel floor it is also
necessary to consider the different boundary conditions which exist in
the floor due to varying slab continuity conditions. In a rectangular
floor, such as shown in Fig. 4.1, at Teast three basic different boundary
conditions can be identified: a corner panel, free along two adjoining
edges and continucus along the other two; an exterior panel, with one
free edge and continuous along the other three; and an interior panel,
continuous along all four edges.

In analyzing framed structures by the direct stiffness method, each
element stiffness matrix is added directly into the overall structure
stiffness matrix. The element stiffness matrix is independent of the
position of the element within the structure; i.e.., given the beam's
properties, its element stiffness matrix will be the same whether the
beam is located at the edge or the middle of the frame. Hence, a standard
stiffness matrix can be established for prismatic members irrespective of
where the member 1ies within the structure. The boundary conditions of
the element are accounted for in the type of support specified for each
end of the element, i.e., the stiffness matrix used in the direct stiff-
ness matrix for cantilever and continuous beams is the same and only
their support conditions are different. This procedure cannot be used
for two-way fleoor systems. The stiffness of a floor panel as defined
in section 2.3.2 depends on the composite action between the slab and
beams in the panel. This composite action depends on the relative stiff-
nesses of slab and beams as well as on the continuity conditions of the
slab at the edges. 1In the interaction between the beams and slab, two
aspects are especially relevant to this discussion. First, in the beam-
slab composite action, the slab acts as a partial support along the Tength
of the beams, much as an elastic foundation. The degree of restraint
offered by the slab is higher when the slab continues across the beams
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than when it does not. Hence, an interior panel will be stiffer than a
single-panel floor due to the continuity of the slab along the four edges.
Second, the shape of the effective beam-slab section produced by the
composite action is different dependina on whether the slab is continuous
or not. Section 3.7 presents a detailed discussion of the interaction
between the slab and the flexural and torsional beams in a single-panel
floor, where the slab obviously extends along one side of the beams

only. It showed the characteristics of the resulting L-shaped composite
section (Figs. 3.2, 3.3) in terms of the coupling between torsion and
flexure in the x and z directions due to the section's lack of symmetry.
This mechanism is totally different when the slab continues across the
beam and forms with it a T-shaped composite section. The coupling
between torsion and flexure in T-shaped composite sections is much

weaker and in cases where the flange extends equally on both sides of

the beam, the two are totally uncoupled. Hence in an interior panel

such as that shown in Fig. 4.1, if complete symmetry about column 1ines

C and 3 is assumed (i.e., equal number of bays extend on each side of
the interior panel as well as having identical support conditions and floor
properties on the opposite sides of the lines of symmetry), and a unit
rotation corresponding to degree of freedom 5 is imposed then beams

C2-C3 and C3-C4 will be in pure torsion and beams B3-C3 and C3-D3 will

be in pure flexure due to compatibility requirements. On the other

hand, torsion and flexure are always coupled in the edge beams.

The multi-panel floor shown in Fig. 4.1 shows many different com-
binations of boundary effects in the three different types of panels.
The corner panel and the interior panel represent respectively the Teast
and most stiff panels in the floor. A rotation in the sense of the
second degree of freedom (Fig. 4.1) tends to induce primarily two tor-
sional L-shaped sections and one flexural T-shaped section, while the
third degree of freedom puts the T-shaped section in torsion and the L-
shaped sections in flexure.

Another important consideration is the infiuence of the slab con-
tinuity on the carryover factors in the panel. Applying a rotation in
the sense of the fourth degree of freedom shown in Fig. 4.1 will transfer
different moments to supports A2 and B1 from those transferred to
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supports C2 and B3 due to the different slab continuity conditions at
the two sets of supports.

This chapter is devoted to determining quantitatively the influence
of these boundary conditions on the stiffness matrix of each panel in
order to develop a realistic stiffness model for the floor.

4,2 Floor Parameters Considered and Computer Program Used

The same parameters as in the case of single-panel floors (i.e.,
dS/L]s a, B, and L1/L2) are considered in this chapter to determine
whether changes in boundary conditions change the basic relationships
established for sinale-panel floors, especially the case of the interior
panel where the boundary conditions differ most from those of a single-
panel floor.

The computer program and modeling techniques utilized in this
chapter are the same as those described in section 3.3.

4.3 Corner Panel of a Multi-Panel Floor

In investigating the stiffness of the corner panel shown in Fig. 4.2,
two considerations should be taken into account. First, the moment needed
to produce a unit rotation at each of the four supports will be different
due to the different slab continuity conditions at the edges as dis-
cussed in the previous section. The stiffness at support Al will be
closer to that of a single-panel floor and at support B2 to that of an
interior panel. Secondly, a single value of o is used to describe the
beams in a panel. This is possible in the case of a single-panel floor
where the width of slab used to define o (eq. 2.8) is the same for
both parallel beams. However, in a corner siab this does not hold true.
The slab width defining a for beam B1-B2 in Fig. 4.2 is twice that which
defines o for beam A1-A2. Hence, while a constant o in a single-panel
floor produces identical parailel beams, in a corner panel it produces
interior beams (B1-B2 in Fig. 4.2) with twice the stiffness of edge beams
(A1-A2 in Fig. 4.2). Consequently, corner panels with identical parallel
beams will have different values of a in the same panel. In practice,
the size of the edge beams could vary from a 1ittle above half that of
parallel interior beams toc equalling them. This difference in the size
of parallel beams in a corner panel could influence the terms of the
panel stiffness matrix.
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4.3.1 Scope of Investigation of Corner Panels

The investigation of the corner panel shown in Fig. 4.2 is Timited
to the following considerations:

1. Establishing the panel stiffness matrix defined by the eight
degrees of freedom shown in Fig. 4.3, and the influence of L]/LZ’ ds/L]’
o, and B on the terms of the matrix.

2. Determining the influence of different-sized edge and interior
beams by comparing the results of changing the moment of inertia of the
interior beams from equal to, to twice that of the edge beams.

3. Comparing the results of the corner panel with those of a single-
panel floor established in Chapter 3. This comparison permits first,
to determine the influence of the different boundary conditions along
two edges of the panel and, secondly, to decide whether this influence
is large enough to require different graphs for determining (K11)S’ Ys
and the carryover factors from those established in Chapter 3.

4.3.2 Modeling of a Corner Panel

The computer program (SAP-IV) and the modeling techniques used are
exactly the same as those described in section 3.3. The only outstanding
question is the number of panels needed to accurately model the influence
of slab continuity along two edges of the corner panel. A four-panel
model with 18 degrees of freedom, as shown in Fig. 4.3, is found adequate.
This is established by comparing the results of a case where the slab is
assumed fixed along edges GI and IC with another case where these edges
are free. The results of these two cases are almost identical. The
model used for the study of the corner panel considered edges GI and IC
free.

The number of finite elements used for each of the three sets of
floors (i.e., L]/L2 = 1.0, 0.5, and 2.0) was established by convergence
studies, similar .to those described in section 3.4. It was found that
a coarser mesh in the three panels adjacent to the corner panel gave
adequate results. Figure 4.3 shows the finite element mesh pattern used
for the case L]/L2 = 1.0.
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The corner panels analyzed fall into two basic categories. First
are those which have interior beams (e.g., beams B1-B2 and C1-C2 1in
Fig. 4.2) with twice the flexural stiffness of the edge beams parallel
to them (i.e., beam A1-A2 in Fig. 4.2), meaning that the value of o is
constant for all parallel beams in the floor. The reason for choosing
this relationship between the interior and edge beams in this section
of the analysis is that it defines corner panels with the largest
expected differences from the single-panel floors of Chapter 3, thus
establishing the higher limits of variance in the stiffness values
and carryover factors in the two cases. These corner panels are referred
to in this chapter as floors with "consistent values of o." The term
"consistent" is used since one value of a is sufficient to define both
parallel flexural beams (i.e., beams AD and BE in Fig. 4.3). The physi-
cal dimensions of the panels analyzed are given in Table 4.1.

The second set of corner panels has identical parallel beams (e.g.,
beams A1-A2, B1-B2 and C1-C2). Comparing the results of this set of
floors with those described above will establish the influence of varying
the size of the interior beams on the stiffness and carryover factors
of corner panels. This comparison is only carried out for the case of
L1/Lé = 2.0 inasmuch as Chapter 3 established that the influence of
the slab is most significant for that value. Furthermore, the influence
of the interior beams on the stiffness at the corner support is dependent
on the influence of the slab in interrelating all these beams. Hence,
the higher the slab participation (i.e., larger L1/L2) the more the
change in the interior beams will affect the stiffness at the corner
support. Corner panels with equal parallel beams analyzed in this section
are referred to in this chapter as "floors with nonconsistent o," and
their physical dimensions are given in Table 4.2.

4,3.3 Stiffness, Carryover Factors and Neutral Axis Location of a
Corner Panel

The results given in this section correspond to the degrees of
freedom shown in Fig. 4.3 and are evaluated in exactly the same fashion
as described in sections 3.4, 3.5 and 3.6 of Chapter 3.

The stiffness (KH)S of a corner support and the position of the
neutral axis & for floors with a consistent value of o are given in
Tables 4.3, 4.4, and 4.5, and those for floors with nonconsistent values
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of o are given in Table 4.6, These results agree with the basic patterns
established in Chapter 3. R

Cbmparing the results of Tables 4.5 and 4.6 shows the influence of
changing the cross section of the interior beams to be negligible. Re-
ducing the stiffness of the interior beams by one-half resulted in a
maximum variation of 0.64% in the value of (K1])S[ﬁK1])E and 0.36% in
the values of y. These smail variations become even smaller as the a
of the edge beams. increases, thus reducing the relative contribution of
the slab.

. The carryover factors for floors with consistent values of o are
given in Table 4.7 and those for floors with nonconsistent values in
Table 4.8, using degrees of freedom shown in Fig. 4.3. Again the results
agree ‘with the basic patterns established in Chapter 3.

Compariné the results of Tables 4.7 and 4.8 agafh shows the influence
of varying interior beam size to be small. The maximum variation in CF13
is 2.15% while that in CF15 is 8.17%. Notice that the variation in CF]5
is:far-less significant than the percentage variations make it appear. ' The
maximum difference occurs when o = 0.4 and CF]5 in the two types of
floors -is ~0.225 vs. -0.208. The variation in carryover values falls
off quickly so that for edge beams with o equal to 8.0 the maximum varia-
tion in CF]3 is only 0.85% and for CF15, 1.19%. This Targer influence
on ‘the: carryover factors than on (K11)S and v is to be expected since
doubling the stiffness of the interior beams will have its maximum effect
around the support into which these beams frame.

It can be ‘concluded from this that the stiffness, the position of
thelf100r neutral axis, CF]3 and CF]5 at a corner support can be adequate-
ly evaluated from the slab thickness and structural properties of the
edge beams framing into the support, whether or not identical parallel
beams are used in the floor.

Tables 4°7 and 4.8 aiso show values of CF]g, CF1 13 and CF] 17°
These reflect the coupling between supports more than one panel apart
reSUTtiﬁg from continuity of the floor slab. The very small amount of
coupling reflected by these three carryover factors confirms the established
practice of neglecting such coupling and modeling the building as a series
of intersecting orthogonal planar frames.
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4.3.4 Influence of Boundary Conditions on (K]1)Sg v, and Carryover

Factors of a Corner Panel

Table 4.9 presents a comparative summary of the stiffness (Kll)S’
position of the neutral axis v, CF13 and CF15 of a corner panel and a
single-panel floor. The percentage differences (Diff. %) reflect the
influence that changing the boundary conditions along the two edges of
a panel farthest from where the moment is applied has on these terms.
A careful study of Table 4.9 shows the following:

1. Slab continuity makes the corner panel stiffness (K.H)S
higher than that of a single-panel floor, but the increase is small
(the maximum difference in these floors is 4.5%) with the increase being
larger for lower values of o and for higher values of L1/L2. This is
consistent since decreasing o and increasing L1/L2 both have the effect
of increasing the relative contribution of the stab to the total stiffness
of the floor (K11)S'
edges of the slab is expected to have its maximum effect in flioors with

Hence, changing the boundary conditions along the

Tower values of a and with higher values of L]/LZ'

2. The percentage difference in vy is higher than that for (K]])S,
but is not substantial. In the cases L]/L2 = 1.0 and 0.5, this difference
falls off as a increases (e.g., goes from 7.87% for o = 0.8 to 0.5%

for o = 8.0 when L]/L2 = 0.5). Notice that y, as defined in eq. 3.6,
defines the position of the neutral axis somewhere between that of the
slab and the beam. Hence, for shallow beams (i.e., lTow a), the eccentri-
city e 1is already small and even larger differences in percentage than
those registered in Table 4.9 for the value of y will transiate into

only small shifts of the position of the neutral axis. This trend is
reversed for L1/L2 = 2.0 where the difference increases as o is increased.
Furthermore, the change of boundary conditions results in moving the
floor's neutral axis in a different direction for L]/L2 = 2.0 than for
L1/'L2 = 1.0 or 0.5. Hence, while the slab continuity moves the floor
neutral axis closer to that of the beam for L]/L2 = 1.0 and 0.5, it

moves the floor neutral axis up toward the neutral axis of the slab for
L]/L2 = 2.0 (i.e., vy for a corner panel decreases for L1/L2 = 1.0 and

0.5, and increases for LT/LZ = 2.0). This indicates that the influence
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of slab continuity of a corner panel depends on the value of L1/L2' In
the case of short flexural beams (Ll/LZ = 0.5), the primary effect of
slab continuity is to increase the restraint at the top of the beam,
thus increasing its stiffness and sending the neutral axis of the floor
closer to that of the beam. In floors with long flexural beams (L]/L2 =
2.0) the primary influence of the slab continuity is to increase the
effective slab width acting as a flange of the composite beam-slab sec-
tion. This larger "flange" of the combined effective section brings

the floor's neutral axis closer to that of the slab {(i.e., larger v).

3. The influence of slab continuity on CF]3 and CF]5 is extremely
small for L]/L2 = 1.0 and 0.5. The Diff. % for L]/L2 = 2.0, however,
can be substantial as it reaches 38% tor CF]5 when o = 0.4. These
differences fall off as o and B are increased. It should also be noted
that as large as the Diff. % are, the differences in absolute values
are not as dramatic. The largest difference between a corner panel
and a single-panel floor was CF]5 = -0.16 vs. -0.23 when o = 0.4 and
B = 0.064.

4.3.5 Summary and Conclusions

The influence of continuing the slab across two edges of a corner
panel as compared with a single-panel floor is a small increase in (K11)S
at the corner support, a small shift in the position of the fioor's
neutral axis, and for L]/L2 > 1.0 some effect on the carryover factors
CF]3 and CF15.
aspect ratio, slab thickness, and size of beams framing into the corner
support. Varying the size of the other beams in the fioor has a negli-

These variations are primarily determined by the panels,

gible influence on the results.

Given the small change due to the difference in boundary conditions,
the graphs and tables developed for single-panel floors in Chapter 3
adequately model the stiffness of a corner panel.

4.4 Interior Panel of a Multi-Panel Floor

It is the accepted practice in analyzing interior panels of a floor
to assume an unlimited number of panels extending in all directions.
Beside this condition, the interior panels analyzed here are assumed
to be within floors with a constant slab thickness ds’ identical beam
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cross sections for all parallel interior beams, and identical span
lengths for all the panels in the floor. It should also be noted here
that in an interior panel such as that shown in Fig. 4.1, it is assumed
that a unit rotation at a support is resisted by four surrounding panels
and the term (K]])E is twice that defined by eq. 3.5, since two identical
sets of flexural and torsional beams frame into the support. Hence, in
the section dealing with interior panels:

4E1
L

r
GJ
g [ FB LTB ]
1 2

(4.1)

Furthermore, there are now eight supports one panel length away from

an applied rotation aswgqmpared with only three in previously considered
cases, and hence more carryover factors become. relevant in the case of
an interior panel.

4.4.17 Modeling of an Interior Panel

The computational effort for analyzing an interior panel can be
greatly reduced by utilizing symmetry conditions in the floor. Given the
conditions of a uniform slab;thickness,‘identical parallel beams, and
identical panel spans, the floor shown in Fig. 4.4 has two axes of
symmetry. Compatibility conditions along these two axes require that
when a rotation eyy is applied at support C3 while all other supports are
fixed, the floor is in pure torsion along column Tine C and in pure
flexure along column 1ine 3. Hence, the analysis could be carried out
using only a quarter of the number of panels (cutting the floor along
the axes of symmetry, and using only half of the stiffness of the beams
along column lines C and 3). In this case only eyy rotations are allowed
along column line C, and only AZ displacements and eyy rotations are
allowed along column line 3. These boundary conditions along column lines
C and 3 apply at the neutral axis of the floor. However, the analytical
model used (Figs. 3.4 and 3.7) applies all boundary conditions and loads
at the finite element nodes situated along the slab mid-plane. Translat-
ing the above boundary conditions from the floor neutral axis produces
the following boundary conditions at the finite element nodes (Fig. 4.4):
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The discussion of the use of symmetry presented above is theoretical-
ly sound. However, there remains a question of whether the inherent
inaccuracies of the modeling and computer program used (see section 3.3)
will not be exaggerated by the use of symmetry to the point of introducing
unacceptable errors into the results. To check for this, a sample case
was run starting with a four-panel floor and comparing the results with
those using only one panel with appropriate boundary conditions. The
floors used and the finite element mesh utilized are shown in Fig. 4.5.
The ‘structural properties of beams EH and EF used in the quarter model
were only half those of the actual floor. The results of the two analyses
are:

. K-in . .

(Kyy)evad | Y |SFiz| CFrs| CFra| CFis | CFyg | CFyy | CFyg
Full Floor | 3755.88 |0.66| 0 |.1585|.001 | .0212] o | .o127 | .oosa
1/4 Floor | 3756.60 |0.66| 0 |.1588| 0 |.0212| o | .0127 | .0083
Diff. % _.02 - Tae |- - Y

Notice that in the quarter floor model, the applied moment is a quarter of
that in the actual floor. The rotation at support E will be the same for

the full floor and quarter floor model used. A correct interpretation of

the quarter floor model would be as follows:

0.25 (M (4.2)

My )y 1'f

[(Kyp)e] = 0 o U (4.3)
17s TM :

—

l

]
—-—l
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[CF,.] Uy for j = 2,7.8 (4.5)

: =Ty or J = £,/ .
17 (M ly

These results clearly show that the finite element model and the compu-
ter program used maintain accuracy when structural symmetry is utilized,
provided that correct boundary conditions are used and the results
adequately interpreted.

While symmetry reduces tremendously the computational effort
required to analyze an interior panel, it is necessary to determine the
number of panels to be included in the analysis to determine the influence
of the floor continuity along all four edges. The 16-panel floor shown
in Fig. 4.4 was analyzed for the stiffness (K]1) at support C3 and the
carryover factors to adjacent supports with the outer edges of the
floor either fixed or free. The 16 panels were all square with dS = 10.0
in., o = 0.8, B = 0.065, and L] = 240.0 in. The results of these two
analyses were:

K-1in
(K11)s vad | ¥ CFig | CFyg

Free Qutside Edges 3543510.77 | 0.438 | 0.314 | -0.050

Fixed Outside Edges 3544628.65 | 0.436 | 0.316 | -0.050
Diff. % -0.03 0.46 | -0.64 ~

The number of finite elements needed for each set of interior panels
(i.e., L]/L2 = 1.0, 0.5, and 2.0) was established through convergence
studies such as those described in section 3.4. The convergence studies
showed that the outside panels required a coarser mesh than the interior
panels where the rotations are applied.
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The physical dimensions of the interior panels analyzed are given
in Tables 4.10, 4.11 and 4.12. The significance of the chosen values of
a and B is similar to that described in Table 2.2a with the primary
consideration being to include the bounds of values most commonly ex-
pected in practice.

4.4.2 Stiffness, Carryover Factors and Position of Neutral Axis of
an Interior Panel

Considering a support in an interior panel of a floor, such as
support E in Fiqg. 4.6, (K11)S is the moment necessary to produce a unit
rotation in the sense of the first degree of freedom shown in the figure
while all other rotational degrees of freedom at the floor's supports
are fully restrained. Following the procedures of previous chapters,
Fig. 4.6 clearly shows that 16 carryover factors should be considered.
However, due to the symmetry of the floors described in section 4.4.1,
the following relationship between these carryover factors exists:

[CFygl = [CFygl (4.6)
[CFygl 1CFy ol (4.7)
ICFygl 1CFy 13 (4.8)
ACFgl ICFy 4l (4.9)
[CFyz 1 TCFy 1 = ICFy 5l = ICFy 4yl (4.70)
[CFigl  1CFy 401 = 1CFy 46l = [ICFy gl (4.11)

Hence the first eight carryover factors are sufficient to establish all
sixteen.

The floor stiffness at an interior support (K11)S and the position
of the neutral axis y are given in Tables 4.13, 4.14, and 4.15. The
results in these tables confirm the general conclusions of Chapter 3 as
to the influence of the four structural parameters o, B, ds/L1, and L]/L2
on (Kll)S and y, and establish the fact that these relationships are
practically independent of the boundary conditions.



The influence of slab continuity on the stiffness of an interior
panel canh best be displayed by the plots shown in Figs. 4.7, 4.8, and
4.9 where values of (K11)5/<K11>E for a single-panel and an interior
panel are presented together for the three L1/L2 ratios investigated.

As expected, the interior panels are consistently stiffer as the slab
continuity adds a partial restraint along the edges of the panel. There

is a discrepancy in the case of L]/L2 = 0.5 (Fig. 4.8) and o > 3.0 where
r

B

panel floors. This is due to the error introduced into the model of

the interior panel has a tower value of (K11)S/(K11) than the single-
the interior panel from using flexural beams with short shear spans and
large moments of inertia where shear dominates the behavior. As an
example, for L]/L2 = 0.5, L1 = 120 in., and o = 4.0, Table 4.11 shows
the flexural beams to have a depth of 31.5 in. resulting in a depth-to-
shear span ratio of larger than 1:4. As shown in section 3.3, the beam-
slab model used in this investigation is accurate for slender beams, but
degrades as the beam depth-to-shear span ratio increases. Notice that
shear effects become predominant in an interior panel for smaller values
of o than in a single-panel floor. The reason is that the width of slab
used to define o (eqg. 2.8) is larger in an interior panel, as the slab
extends on both sides of the beam and, hence, the same vaiue of o pro-
duces deeper beams (i.e., larger depth-to-shear span ratio) in an interior
panel than in a single-panel floor.

Figures 4.7, 4.8, and 4.9 also show that the increase in the floor
stiffness due to slab continuity in an interior panel over the stiffness
of a single-panel floor is small for low values of L1/L2 (e.g., an
increase of 6.1% in the value of (Kll)s/(K]7)g for L]/L2 = 0.5 and o
= 0.4). The increase in stiffness becomes sizable as L]/L2 increases
(e.g., an increase of 15.9% in (K]])S/(K]1)g for L1/L2 = 2.0 and o =
0.4). This trend is consistent theoretically as it has already been
shown that the relative contribution of the slab to the overall stiff-
ness of the floor gets higher as L]/L2 increases and consequently the
effect of changing the slab boundary conditions from a single-panel floor
to an interior panel will also be higher as L]/L2 increases. Hence,
while the boundary conditions of a corner panel did not produce a
significant increase in the stiffness over that of a single-panel floor,
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the increase due to sTab continuity on all four sides as in an interior
panel cannot always be neglected. This is especially true when o is
Tow and LT/L2 > 1.0.

Figures 4.10, 4.11, and 4.12 show plots of v for a single-panel floor
and for an interior panel. Here, the influence of the boundary conditions
is not as easily discernible. As explained in section 3.5 above, the
value of y is primarily dependent on o and L]/Lz, but can be signifi-
cantly influenced by varying ds/Ll and to a lesser extent by varying B.

In the case of L]/L2 < 1.0 (Fig. 4.10 and 4.11) the difference in the
values of vy for a single-panel floor and an interior panel are close
enough that a single curve can be used for both cases. Comparing the
values of I;B (eq. 3.5) based on the values of vy from the analysis
with those based on values of y from the curve in Fig. 4.11 gives a
maximum variation of 5.0% which occurs for the case where L]/L2 = 0.5
and o = 0.8.

The difference in vy for the case of L1/L2 = 2.0 (Fig. 4.12) is more
significant with v being larger in interior panels reflecting the influ-
ence of slab continuity along the edges of the interior panel. Notice
that the values of vy (Fig. 4.12) diverge as a increases. The reason is
that as o gets smaller, the beams become shallow and the eccentricity e
between the neutral axes of slab and beam is small so that a larger slab
participation in the overall stiffness has a small effect on shifting the
floor neutral axis. An analogy with a T-beam could be drawn here where
if the flanges of the beam are very wide relative to the web, an increase
in the flange width will increase the stiffness more appreciably than it
will move the location of the neutral axis which is already close to the
flange centerline. Conversely, a T-beam with a relatively narrow flange
will undergo a more significant shift in the location of its neutral axis
away from the web's centerline as the flange width increases. Thus the
results of Figs. 4.9 and 4.12 show that the increased "flange width" of
the effective section in an interior panel has its higher influence on
vy for higher values of o (i.e., deep web) and higher influence on (KH)S
for lower values of o (i.e., shallow beams).
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The carryover factors, as defined by the degrees of freedom shown
in Fig. 4.6, are given in Tables 4.16, 4.17, and 4.18. These carryover
factors are as defined by eq. 2.10 where CFij is the ratio of the
moment needed to restrain support j to the moment necessary to produce a
unit rotation at support i. However, a rotation at an interior support
such as rotation 911 at support E (Fig. 4.6) is resisted by four adjacent
interior panels and the contribution of each interior panel to the support
stiffness (K11)IP is equal to 1/4 (K11)S' On the other hand, the number
of interior panels contributing to the moments at the other supports is
less than four (i.e., imposing a unit rotation in sense of the first
degree of freedom, two panels contribute to moments at supports B, D, F,
and H, while only one panel contributes to moments at supports A, C, G,
and I in Fig. 4.6). If each of the interior panels considered were to be
isolated along the column centerlines, splitting the beams equally between
adjacent panels, then the interior panel contribution to the carryover

factors (CFij)IP would be as follows:
(K. :)

. - ij'IpP

(CFij)IP (R;;T;; (4.14)

(K )
_Mw (4.15)
0'25(K11)S

(CFy5)1p

. 0-5(K5)s
RGP (o L A I UAL

simitariy:

it

(CF 2.0 (CF]5) (4.17)

15)IP

These panel carryover factors can now be compared to the single-panel
floor carryover factors to identify the infiuence of slab continuity along
the four edges of a panel. Figures 4.13, 4.14 and 4.15 give comparative
plots of CFy, for a single-panel floor and (CF]3)IP of an interior panel.
Figure 4.16 gives a similar plot for CF]S' These figures show that the
increased stiffness of an interior panel slab, due to its continuity at
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the edges, results in a higher capacity to redistribute the moments
away from the flexural beams (i.e., Tower values of CF13) and toward
the torsional beam (i.e., higher values of CFJS). This influence is
most significant for L1/L2 = 2.0 as the slab participation increases
with the panel aspect ratio.

The values of CF]7 and CF18 shown in Tables 4.16, 4.17, and 4.18
confirm earlier findings that coupling between diagonal supports in a
floor panel is very weak. Notice that CF12 = CF14 = CF}G = 0.0 and are

not given in the tables.

The values of (K;q)s/(Kyq)g given in Tables 4.13, 4.14, and 4.15
are also for an interior support and include the contribution of the

four panels sharing that support. Unlike the carryover factors, however,
this ratio remains the same when the contribution of only one interior
panel is considered since both (K]1)S and (K11)g would have to be divided

by 4.0.

4.4.3 Summary and Conclusions

The boundary conditions created by slab continuity along the four
edges of an interior panel markedly influenced the stiffness when com-
pared with a single-panel floor. The restraint along the edges increased
the stiffness of the panel which was more pronounced as L1/L2 increased
and o decreased.

The position of the neutral axis was not affected substantially
except for floors with L1/L2 > 1.0. The influence of the boundary
restraint was to shift the neutral axis closer to the slab centerline
reflecting a wider slab participation along the beam span.

Carryover factors CF]Z’ CF}4, and CF16 are equal to zero in an
interior panel. The interijor panel carryover factor CF13 was Tower than
that of a single-panel floor with the Targest drop being for L1/L2 = 2.0
and for lower values of ao. On the other hand, CF,5 was higher in an
interior panel which reflected an increased role of the slab in redis-

tributing the moments.

The variations in the values of (K11)S/(K11)E and the carryover
factors due to the boundary conditions of an interior panel were large

enough to make desirable an independent set of curves for these values
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rather than use those established for a single-panel floor. In the
case of vy, this was only true for L1/L2 > 1.0,

4,5 Exterior Panel of a Multi-Panel Floor

The single-panel floor and an interior panel represent the two ex-
tremes in boundary conditions that are encountered when dealing with
floor stiffnesses. A single-panel floor, discontinuous along all four
edges, is the most flexible while an interior panel continuous along all
four edges, represents the stiffest panel. These two limiting cases have
been presented above and divergence between them illustrated in Figs.
4.7 through 4,16. However, in the multi-panel floor shown in Fig. 4.1
there are other panels with boundary conditions that would place their
stiffness matrix somewhere between these two bounds. The stiffness at
supports Bl and B2 and the carryover factors associated with them are
good examples of this.

The divergence between the two Timiting cases (Figs. 4.7 through
4,16) is distinguishable but not very Targe. This raises the question
of whether developing three more intermediate sets of curves for exterior
panels is necessary. Increasing the number of different panels to be
considered when analyzing a floor substantially increases the complexity
of modeling without necessarily enhancing the accuracy of the final re-
sults. Furthermore, the computational effort required to analyze an ex-
terior panel far exceeds that for others., The symmetry conditions of an
interior panel make it possible to analyze only a quarter of the floor
and thus reduce the computational effort required. This is not so with
the exterior panels where a Targer number of panels must be included in
the analysis. Nevertheless, one of these intermediate cases is analyzed
below to illustrate the validity of the above arguments. Figure 4.17
gives the case analyzed and the degrees of freedom studied. The floor
had the following structural properties:

L1 = L2 = 240 1in.

dS = 6,5 in,

a = 0.8

B = 0.064

DFB = DTB = 18.021 in.

(Ky7)g = 517534.84 K-in/rad.
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Notice that bays EFJI, FGKJ, IJNM, and JKPN all require fine grids of
finite elements to give adequate results as all four frame into support

J where the rotation is applied. 1In this particular case, 672 finite
elements, 232 beam elements, and a total of 967 nodes were used to model
the floor. This was not arrived at through convergence studies but was
rather based on experience from previous analyses in the thesis. This
was necessary due to the prohibitive cost of a convergence study. The
slab-beam model and computer program used are the same as those described
in Chapter 3.

4.5.1 Stiffness, Position of Neutral Axis, and Carryover Factors of an
Exterior Panel

The stiffness of the exterior panel and the position of the neutral
axis resulting from the analysis are:

, K-1n r K-in | ; \r
Y (Ky)s vad | K31)p vad | Kpp)ds/ (Kypdg i (Kyqds/ (Kyq g

0.536 | 10066662.11 689196.57 2.061 1.548

L.

The carryover factors corresponding to the degrees of freedom shown in

Fig. 4.17 are:
CFig{ CFyg [CFyg | CFyg | CFyg | CFyy | CFyg | CFyg | CFy 90| CFy 17 | CFy 42
- eal - o027 | 001 | .oos | .oo7 | .1e2| - [.o09 | .o02

These are support carryover factors, as distinguished from panel

carryover factors, of an exterior panel. The distinction is explained
in section 4.4.2. It should be noted that, despite the fact that the

sTlab was continuous across column 1ine GK and was discontinuous along IE,
the carryover factors CF]3 and CF19 were very close as were CF]7 and CF] 11°
This shows that the change of boundary conditions one panel length away
from where the rotation is applied, does not appreciably change the carry-
over factors. The carryover factors at supports M, N, and P (Fig. 4.17)
are the same as those at supports E, F, and G, respectively.
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The following table compares the stiffness and CF13 for a single-
panel floor with an exterior and an interior panel. Notice that the
CF13 used is for a panel and not a support.

! X . r
Panel (Ky7)g/ (Kyqpdg CFy3
Single 1.476 .338
Exterior 1.548 .328
Interior _ 1.578 .328

The values in the table confirm that the exterior panel has stiffness

and carryover factors intermediate between the two limiting cases of a
single-panel floor and an interior panel. However, the values of the

main terms of the stiffness matrix of an exterior panel are shown here
to be closer to those of an interior panel.

4.6 Summary and Conclusions for the Influence of Boundary Conditions
on the Stiffness Matrix of a Floor Panel

The influence of boundary conditions on (K11)S’ position of the
neutral axis vy, and the carryover factors of a floor panel is determined
by analyzing corner, exterior, and interior panels. The results are
compared with those of a single-panel floor. The slab-beam model and
the computer program used in the analysis are the same as those described
in Chapter 3. The findings of the investigation carried out in this
chapter can be summarized as follows:

1. Slab continuity along any of a panel's edges produced an
increase in the rotational stiffness (K]])S, and consequently a higher
value of the ratio (K]1)S/(K]1)E
it is partially restrained along the continuous edges and thus increases

its contribution to the overall stiffness of the panel.

, due to the stiffening of the slab as

2. The carryover factor CF,, decreased and CF,. increased as the

13 15
number of continuous edges in a panel increased. The higher slab stiff-
ness due to the partial restraint at the edges increased the siab’s capa-

city to redistribute floor moments.
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3. In general, the influence of slab continuity across the panel
edges was to shift the floor neutral axis higher toward the slab mid-
plane and therefore to increase y. The increase in y was proportional
to the number of continuous edges in the panel. Nevertheless, the change
in v was small and was significantly different from that of a single-
panel floor only in the case of an interior panel with LT/LZ = 2.0.

4, It was necessary in interior and exterior panels to distinguish
between "support" and "panel" stiffness and carryover factors. The dis-
tinction is between the total support stiffness and the contribution of
each panel framing into the support. The "support stiffness matrix"
terms are defined as the moments necessary to impose a unit rotation at
a support while restraining all other supports. The "panel stiffness
matrix" is the contribution of a panel to the support stiffness (e.g.,
at an interior support, four interior panels contribute to the stiffness
at the support).

5. The panel stiffness increased with the number of continuous
edges. Thus, interior panels and single-panel floors set the upper and
lTower bounds of a panel stiffness. All the terms of the stiffness matrix
of a single-panel floor and a corner panel were close enough that they
could be used interchangeably for analytical models.

6. The terms for the stiffness of an exterior panel fell between
those of corner and interior panels. The stiffness of edge supports of
an exterior panel is closer to fhat of a corner support and the stiffness
of an interior support of an exterior panel is closer to the stiffness
of an interior panel support. Hence, the values for the stiffness matrix
of corner and interior panels can be used to approximate the stiffness of
an exterior panel.
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5. "STIFFNESS MATRIX METHOD" OF MODELING ROTATIONAL
STIFFNESS OF TWO-WAY SLAB FLOORS

5.1 Introduction

The previous three chapters present a detailed investigation of the
rotational stiffness of a two-way floor slab as determined by the panel's
main structural parameters (i.e., ds/L], as Bs LT/LZ) and the possible
different boundary conditions of a panel according to its position with-
in a multi-panel continuous fioor system. The objective of this investi-
gation, as already stated in Chapter 1, is to develop a practical and
accurate model of the rotational stiffness of a floor slab for use in
analyzing multistory moment-resisting frame structures having as a
floor system two-way slabs (Fig. 5.1).

Presently used models, which are described in section 1.2, seek
to establish the physical properties of an equivalent structure that
will accurately model the rotational and translational stiffness of the
column-floor moment-resisting frame. In general this is accomplished
by establishing a certain "effective slab width" to be considered as
a flange of an equivalent beam. This L~ or T-shaped beam is then con-
sidered to define the approximate contribution of the floor to the over-
all stiffness of the structure  The ACI 318-71 equivalent frame method,
which is described in section 1.2, goes further in also modifying the
rotational stiffness of the column in an attempt to upgrade model
representation of the floor's structural behavior.

In the elastic analysis of a structure using the direct stiffness
method, the stiffness matrix of equivalent members, which models the
floor contribution, is alone sufficient. Defining an actual physical
shape for these eiements is not only unnecessary but can add restric-
tions on the versatility of the model as described in section 1.2. The
Stiffness Matrix Method (SMM) is developed in this chapter from the
results of this investigation. In this method, the elastic stiffness
of a floor panel is modeied by a set of uniaxial members, each with
three degrees of freedom. The SMM does not identify a physical shape
for these members; rather, it establishes a procedure by which the posi-
tion of the neutral axis of the equivalent member in relation to the top
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of slab and its member stiffness matrix can be computed directly from a

set of graphs based on the boundary conditions and the main physical
parameters (ds’ a, B, and L]/Lz) of the panel under consideration.

The rest of the chapter is devoted to applying the stiffness matrix
method in analyzing lateral stiffness of some structures. The results
are then compared with those derived from other currently used models
and with those based on a finite element model whenever this is possible.
This comparison allows an objective evaluation of the accuracy and
practicability of the various models.

5.2 Stiffness Matrix Method for Modeling Rotational Stiffness of a
Two-Way STab Floor

The results obtained in the studies of individual panels and the
evaluation and discussion of these results presented in the previous
chapters have allowed the determination of the main parameters controll-
ing the rotational stiffness of a two-way slab floor which is the basis
for the SMM. The results clearly show that coupling between supports
along a diagonal and supports more than one span length from each other
is very weak. Hence, it is concluded that the currently used method of
replacing the floor by equivalent members which only couple adjacent
supports is adequate in an elastic analysis.

The investigation also shows that while coupling between supports
is higher along a flexural beam, the coupling along a torsional beam
cannot always be ignored. Hence the equivalent members in the SMM are
defined with three degrees of freedom [Fig. 5.2(b)], one torsional and
two flexural (one flexural degree of freedom at each end of the member).
The torsional degree of freedom is uncoupled from the flexural one, and
the stiffness matrix of the equivalent member, [k] (equivalent member),

has the form: B S]] 0 0
[k] (equivalent) ~ (K)em 0 522 ko3 (5.1)
member
i 0 K32 333

where (K)em is a scalar, 322 = 533 and k23 = k32



The symmetry conditions (i.e., 522 = 533 and k23 = k32) given in
eq. 5.1 are theoretically correct in interior panels (as defined in
section 4.4) only. In other panels there is some difference in the
value of these terms. As an example, the contribution of the corner
panel (Fig. 5.1) to resisting a eyy rotation at support B is a Tlittle
higher than at support A due to the different slab continuity conditions
along column lines AE and BF. Hence 522 and 533 in equivalent member
AB [Fig. 5.2(a)] should be different. However, the results presented
in Chapter 4 show that this difference is very small and does not justify
the complication resulting in the model if these differences were to be
included. A compromise between accuracy and simplicity is necessary for
practical applications.

The investigation of the floor stiffness presented in previous
chapters was based on support degrees of freedom and the stiffness terms
reflected the contribution of the flexural and torsional beams of all
the panels that framed into a subport. Hence, it is necessary that the
stiffness matrix of the equivalent members be such that as they are
added together they will produce the same support stiffnesses as those
found in the investigation.

The SMM identifies two types of equivalent members: edge members
[e.g., members BC and AE in Fig. 5.2(a)] and interior members [e.g.,
members BF and FJ in Fig. 5.2(a)]. Both have a 3 x 3 stiffness matrix
(eq. 5.1) and differ only in the equations and graphs used to determine
the matrix elements. Again it can be shown that the stiffness of the
exterior panel (Fig. 5.1) along beam BC is higher than that of the corner
panel along beam AB as well as that along beam BF being different from
the stiffness of the interior panel along beam FJ. However, these dif-
ferences were found to be small (see Chapter 4) and using one set of
equations and graphs for all edge members and another for all interior
members 1is justified.

Figures 5.3(a), 5.3(b), 5.3(c), and 5.3(d) give all the graphs
necessary to locate the neutral axis and calculate the stiffness matrix
of equivalent edge members; and Figs. 5.4(a), 5.4(b), 5.4(c), and 5.4(d)
are sufficient for calculating equivalent interior members. These figures
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are derived from the fesu1ts of the investigation presented in the previous

three chapters as follows:

1. Figures 5.3(a) and 5.4(a) define the position of the neutral axis of
equivalent edge and interior members respectively. Figure 5.3(a) is derived
from the results for a single-panel floor (Fig. 3.10) after the curves
for L]/L2 = 1.0 and 2.0 were merged due to the very small variation between
them. Figure 5.4(a) is an exact reproduction of the results of an interior
panel (Figs. 4.10, 4.11, and 4.12).

2. Figures 5.3(b) and 5.4(b) define the stiffness matrix term (K)em
for equivalent edge and interior members respectively. Figure 5.3(b) is
derived from the results of a single-panel floor (Fig. 3.9) and Fig. 5.4(b)
from the results of an interior panel (Figs. 4.7, 4.8, and 4.9). In the
SMM, the value of (K11)S of a floor panel as defined in previous chapters
is proportioned between orthogonal equivalent members such that the flexural
stiffness of one equivalent member plus the torsional stiffness of the
orthogonal equivalent member will equal the (K”)S of the panel. As an
example, if the single-panel floor shown in Fig. 3.1 is modeled by four
equivalent members between the supports, then:

[(K 6] = DK (Spp) T + LK) (5170 ]ac

where (K11) = single panel floor stiffness as defined
in Chapter 3

[(K)em (522)]AB = terms of stiffness matrix of equivalent
member AB as defined by eq. 5.1.

[(K) . (S”)]AC = terms of stiffness matrix of equivalent
e member AC as defined by eq. 5.2.

3. Figures 5.3(c) and 5.4(c) define the off-diagonal matrix terms
k23 and are identical to the graphs for CF]3 vs. a of a singlie-panel floor
(Fig. 3.11) and those of an interior panel (Figs. 4.13, 4.14, and 4.15).
CFy3 in the actual floor panel and k23 in the equivalent member both
define the moment necessary to restrain a floor support when a unit
rotation is applied to the adjacent support (the rotation vector being
orthogonal to the column line connecting the two supports).
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4, Figures 5.3(d) and 5.4(d) define a factor S which is to be used
in computing the value of 311 of the equivalent member stiffness matrix.
The product 51] (K)em
equivalent member, and can be derived from the results of the analysis

in eq. 5.1 defines the torsional stiffness of the

reported in previous chapters.

Consider the single-panel floor shown in Fig. 3.1. The product
(CF]S) (KH)S is the torsion carried by the floor along beam AC due to a
unit rotation at A in the sense of the first degree of freedom. This is
analogous to the torsional stiffness of the equivalent member AC to be
used in modeling the floor. Hence, the values of CF15 given in Figs.
3.12, 4.16 and Tables 4.16 through 4.18 can be used to determine S
as follows:

11
a) In the figures and tables of CF]5 mentioned above, the values

of L]/L2 are based on L being the span of the flexural beam (Fig. 3.1).
In the SMM it is found more convenient to work with a value Lem which

is the span of the equivalent member being considered and LCm as the
orthogonal span (cross member). This means that Lm/LCm used in Figs.
5.3(d) and 5.4(d) are the reciprocals of L]/L2 used in Figs. 3.12 and 4.16
and in Tables 4.16 through 4.18. Notice that this is only necessary in
dealing with the torsional stiffness of the equivalent member since in
computing the flexural stiffness terms (i.e., (K)em, 522, 533, k23 and

k32 in eq. 5.1) the eguivalent member and the flexural beam in the panel
coincide. Changing the values of L]/L2 in Figs. 3.12 and 4.16, and

Tables 4.16 through 4.18 to their reciprocals gives the curves shown in

Figs. 5.3(d) and 5.4(d) for the term S.

b) The torsional moment at C due to a unit rotation at A (Fig. 3.1)
was defined above as CF15(K]])S. Notice that (K]1)S is the panel stiff-
ness term which has been assigned to equivalent member AB in the SMM
(see point 2 above). Hence the torsional stiffness of equivalent member

AC in this floor is equal to S[(K)em]AB. Thus, given the definition of
SH in eq. 5.1, it is clear that
[{x)_ 1
; _ em”AB
Sidac = 100 Tpe Pac (5.1a)

-71-



5. In the computations of the stiffness matrix of edge members, a
parameter ¢ is defined such that ¢ = 1.0 for all equivalent members fra-
ming into a corner support (AB, AE in Fig. 5.2) and ¢ = 0.5 for all other
equivalent edge members (BC, EI in Fig. 5.2). This is based on assuming
that when computing the stiffness of an equivalent edge member such as
CD (Fig. 5.1), only half of floor beam CG acts with it as part of
exterior panel CGHD while the other half of beam CG acts with the adja-
cent panel. Similarly, in the case of computing the stiffness of an
interior equivalent member (e.g., GK in Fig. 5.2) only half of the
orthogonal floor beams are considered to contribute; i.e., only half of
floor beams GH and GF of Fig. 5.1 contfibutes to the stiffness of
equivalent member GK and the other half contributes to equivalent member
GC.

5.2.1 Equations for Calculating Member Stiffnesses for the Stiffness
Matrix Method

This section describes in detail the step-by-step procedure to
locate the neutral axes and to compute the value of the terms of the
stiffness matrix of equivalent edge and interior members.

a) Procedure to Calculate Stiffness of an Equivalent Edge Member*

1. Calculate panel parameters ¢, a, 5, €, and Lem/LCm where:

¢ = member parameter equal to 1.0 for members framing into a corner
support and assumed equal to 0.5 for all other edge members.

a = ratio of flexural stiffness of floor beam in the direction of
edge member being considered to the slab stiffness as given by
eq. 2.8.

R = torsional stiffness of floor beam in direction of member

¢ [flexural stiffness of orthogonal floor beam]

e = eccentricity between siab mid-plane and the neutral axis
of the floor beam in the direction of member being considered
(Fig. 5.3).

L /L

e — panel aspect ratio with Lem being the span of the equivalent

member being considered.

A detailed application of this procedure to model a 3 x 3 panel two-way
slab floor 1is given in Appendix D.

~72-



2. Enter Fig. 5.3(a) with o and Lem/LCm and determine y. Then
calculate the position of the member neutral axis & where:

£ = e

3. Calculate (K]1)E at support where:
4r1) Gd
e D I
(Kpplg =T *+o1
em cm

and
L= I + (AED)
FB F8 FB
A = area of floor beam cross section

Notice that flexural beam (FB) here refers to the floor beam in the
direction of the equivalent member and the torsional beam (TB) is the
orthogonal floor beam.

r

4. Enter Fig. 5.3(b) with o and Lem/Lcm and determine (K) /(K11)B'

r em
B
5. Enter Fig. 5.3(c) with o and Lem/Lcm and determine k23. From

eq. b.1, k32 = k23.

6. Enter Fig. 5.3(d) with B8, o, and Lem/LCm (as computed in step 1)

Given (K1]) from step 3, compute (K)

em’

and determine S. Then compute 511 where:

¢ [(K)em] orthogonal member

S (S)

11~ [(K)emj member being considered

7. Compute 522 where:

¢ [(K) S}]] orthogonal member
S,, = 1.0 - e i i
22 [(K)em] member being considered

(Notice that for Lem/LCm > 1.0, the fraction is very small and 522 could
be taken to be 1.0. However for small panel aspect ratios and high values
of B of the orthogonal member, the fraction should not be neglected,)
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From eq. 5.7, 533 = 522.

*
b) Procedure to Calculate Stiffness of an Equivalent Interior Member

1. Calculate panel parameters o, B, €, and Lem/LCm where o, e, and
Lem/LCm are computed the same as for an edge member, and

g = torsional stiffness of floor beam in direction of member
0.5 2 flexural stiffness of orthogonal beams

2. Enter Fig. 5.4(a) with o and Lem/LCm and determine y. Then
calculate the position of the member neutral axis where:

£ = vye

3. Calculate (K]])g at support where:

4E1 GJTB

(K]])E =T FB 4+ 0.5 [z r 1 orthogonal members
em cm

. 2,
Igg = Ipg + (A2 )

A = area of floor beam cross section.

[Notice that the flexural beam (FB) and torsional beam (TB) are the
same as defined for an equivalent edge member. ]

4. Enter Fig. 5.4(b) with o and L_ /L __ and determine (K)em/(K11)

r
M em’ “cm B*
Given (KT])B from step 3, compute (K)

em’
5. Enter Fig. 5.4(c) with o and Lem/Lcm and determine k23. From

eq. 5.1, k32 = k23°

6. Enter Fig. 5.4(d) with B, o, and Lem/LCm (as computed in step 1)
and determine S. Then compute 511 where:

0.5 ¢ L(K)em] orthogonal member
1 [(K)emj member being considered (s)

S

A detailed application of this procedure to model a 3 x 3 panel two-way
slab floor is given in Appendix D.
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7. Compute 522 where:

0.5 ¢ [(K)em S]]] orthogonal member

Syp = 1.0 - [(K)em member being considered

From eq. 5.1, 833 = 522. Similar to the case of edge members, 522

can be assumed to be 1.0 for Lem/LCm > 1.0,

Once the stiffness matrix and position of the neutral axis of each
member are determined, the structure can be analyzed as a three-dimen-
sional frame. The effects of shear on the floor stiffness are already
included in the terms of eq. 5.1; hence, no other terms to model shear
effects are necessary. Furthermore, if the floor is considered rigid
in its own plane, as is usual 1in such analyses, then the axial areas
of the equivalent members are not necessary and the 3 x 3 element stiff-
ness matrix is sufficient.

5.3 Application of Different Models to Compute Lateral Stiffness of
Single-Panel, Single-Story Structures

The SMM as well as other currently used methods (see section 1.2)
is applicable for modeling a floor under combined loading conditions.
This section, however, is limited only to investigating structures under
lateral loads and is intended to evaluate the accuracy and practicabili-
ty of the different models for use in analysis of structures under
lateral forces (wind or due to seismic excitations).

Four different models are used to evaluate the lateral stiffness of
a set of single-panel, single-story structures shown in Fig. 5.5 and de-
scribed in Tables 5.1 through 5.4. These structures are monolithic,
with material properties as those given in section 2.3.1, and have
rectangular floors of uniform slab thickness ds’ parallel floor beams of
identical cross section and four square columns with identical column
depth C.

The lateral stiffness of the structure KL is defined as:
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where P = static lateral laod applied at the floor level, P/2 at each
column top and AT = lateral displacement of top of slab.

5.3.1 Finite Element Method

In this method, the floor slab is modeled as two-dimensional finite
elements and the floor beams and columns as uniaxial prismatic members.
The beams are connected to the finite element mesh with rigid links as
described in section 3.3. The column members are placed at the column
centerline and extend from the building's base to the bottoms of floor
beams AB and CD. The top of the column is connected to the finite
element mesh with a rigid link (assuming the beam-column joint to be
infinitely stiff). Figure 5.6 shows the finite element model described
above. Notice that the lateral load is applied at the slab's center-
Tine which is customary in such analyses and is based on the assumption
that the floor slab accounts for the major share of the floor mass and,
hence, also shares the largest part of the inertial forces in seismic
lToading.

Computer program SAP-IV, which is described in section 3.3, is
used to analyze the finite element model, and the results from the pro-
gram include the displacements and rotations of the finite element nodes.
Assuming plane sections in the slab remain plane, the displacement at
the top of slab is easily calculated where:

d
= _S
Mop of Slab = Acenter of stab * 7.0 [tan 8,,] (5.3)
and 6 . = rotation of finite element node at which

Y tateral displacement is calculated.

Notice that in a finite element model of the structure shown in
Fig. 5.5, the Tateral displacements at points A and C are equal as are
those of points B and D. Since the model includes membrane stresses
and strains, however, there will be some axial strain in the plane of
the slab and the lateral displacement of point A will be slightly greater
than that at point B. The lateral displacement used to calculate the
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lateral stiffness of the structure is the average of the two, so that

A used in eq. 5.2 becomes:

T

A =

1 .
1= 2 B * 81t of s1ab (5.4)

5.3.2 Equivalent Frame Method

The equivalent frame method recommended in the 1971 ACI Building
Code 3] is described fully in section 1.2, which also describes the diffi-
culties of applying it for analyzing structures subjected to lateral
loads. Figure 5.7 shows the equivalent frame model used to represent the
single-panel, single-story structure shown in Fig. 5.5. Due to the
symmetry of the structure, only one frame need be analyzed to determine
the lateral stiffness. Notice that the lateral load is applied at the
top of the slab to simplify the analysis and approximates loading at
the centerline of the slab as was done in the finite element method.
This difference has a negligible influence on the final results. A
closed-form solution for the lateral stiffness of the equivalent frame
shown in Fig. 5.7 is given in Appendix B. The physical and structural
properties of the equivalent frame shown in Fig. 5.7 are given in Tables
5.5(a) through 5.5(d).

5.3.3 Model Based on Strength Requirements of ACI 318-71, Section 8.7.

This method is described in section 1.2. Figure 5.8 shows the model
based on this method for the single-panel, single-story structure shown
in Fig. 5.5, and the member structural properties are given in Tables
5.6(a) through 5.6(d). The columns are assumed rigid across the depths of
beams AB and CD, and the lateral loads are applied at the neutral axes
of the equivalent beams. Due to the symmetry of the structure and the
loading, only one frame need be analyzed for the lateral stiffness of
the model.

The frame shown in Fig. 5.8 1is analyzed with the use of computer
program ETABS [26]. This is a general-use program for the Tinear
structural analysis of frame and shear wall buildings subjected to both
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static and earthquake Toadings, in which

The building is idealized by a system of independent frame and shear
wall elements interconnected by floor diaphragms which are rigid in
their own plane. Within each column, bending, axial, and shearing
deformations are included. Beams and girders may be nonprismatic
and bending and shearing deformations are included.
Nonprismatic beams are defined by using their stiffness matrix with the
building data as input for the program. This particular program, rather
than SAP-IV, was used for its high efficiency in analyzing framed struc-

tures.

The equivalent beam of the frame shown in Fig. 5.8 will not have
any torsional moments when analyzed for the lateral load P/2.0 shown
in Fig. 5.5. Hence, a stiffness matrix for the two flexural degrees of
freedom in the floor beams is sufficient for the analysis. The stiffness
matrix used for the beams in this model is of the form:
EI

AB 4.0 2.0
[Klpp = =—— (5.5)
AB L 2.0 4.0

where IAB = moment of inertia of equivalent beam AB

The results from the computer program include the lateral displace-
ment of the equivalent beam (AN.A.)’ the moment at the column base (MBC)’
and the moment at the column top (MTC) where the rigid section meets the
cotumn. Assuming plane sections in the beam remain plane, the lateral
displacement at the top of slab (AT) can be calculated as:

Ay = AN,A. + X (tan eTC) (5.6)
where A = distance from top of slab to neutral axis
of equivalent beam.
_ H-D :
o1¢ 7 2ET, (Mg trcd (5.7)

5.3.4 Stiffness Matrix Method

This method is described in section 5.2. Since the structure shown
in Fig. 5.5 has only exterior members, the equivalent member stiffness
matrices can be determined by following the procedure described in section
5.2.1a. The model for the structure shown in Fig. 5.5, based on this
method, is shown in Fig. 5.9 and the member structural properties are
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given in Tables 5.7(a) through 5.7(d). The lateral load is applied at the
neutral axis of the equivalent members AB and CD which is defined by the
term £.

Due to the symmetry of the model and of the joading, equivalent
members AB and CD are in pure flexure while equivalent members AC and BD
are free to stress in the analysis. Hence, the lateral stiffness of the
whole frame can be determined by analyzing only one frame, such as frame
EABF.

The frame is analyzed using computer program ETABS |26], which is
described above, and the lateral displacement of the structure at the
top of the slab is calculated according to eq. 5.6.

5.4 Evaluation of Different Models Used to Compute Lateral Stiffness
of Single-Panel, Single-Story Structures

The accuracy of the results is necessarily the single most important
characteristic of an analytical model. However, a good model must also
be relatively simple to use, adaptable to different analytical methods
(e.g., computer programs, moment distribution, etc.) and different loading
conditions (e.g., gravity and lateral loads), and efficient in its re-
quirement of computational effort.

The four models used in this investigation each have some particular
properties based on the assumptions used in developing the model and
these different properties must be considered when evaluating the results.
Following are some of these aspects:

1. The equivalent frame method is the only one with a provision
for the influence of the cclumn depth on the stiffness of the structure.
This provision modifies the moment of inertia of the equivalent beam
across the depth of the column. The other three methods neglect this
effect and consider the columns as uniaxial prismatic members along the
column centeriines. Neglecting the increased stiffness of the floor
across the column depth has the effect of underestimating the floor stiff-
ness. The influence of the column on the floor stiffness increases as
the ratio of the floor span to the column depth decreases. The increase
of the lateral stiffness of the structure in the equivalent frame method
due to accounting for the increased floor stiffness at the columns



will be evaluated in the discussion of the results.

2. The finite element model is the only one which accounts for in-
plane axial strains in the slab. The other three models assume the slab
to be rigid in its own plane. Neglecting in-plane strains overestimates
the Tateral stiffness of the structure.

3. The Tlateral load is applied at different points in each model:
at the slab's centerline in model one, at the top of slab in model two,
and at the neutral axis of the equivalent beams in models three and four.
This has 1ittle effect in floors with thick slabs and shallow beams, but
the effect increases with beam depth. If the lateral load is consistently
applied at the slab's centerline, the net effect would be to increase the
lateral stiffness of model two and decrease that of models three and four.
The change, however, would be slight.

4. Model three is the only one that totally neglects the torsional
effects of the slab and beams AC and BD. Including the torsional effects
would increase the lateral stiffness of the model, especially for the
case where L1/L2 = 2.0.

5. Tables 5.5a through 5.5d point out that in the egquivalent frame
method, the influence of the torsional beam decreases as a increases, re-
flecting the diminished capacity of the slab to distribute the floor
stresses as it becomes more flexible in relation to the beams (e.g., for
L]/L2 = 1.0, dS = 6.5 in., and C = 15 in., Kec/Kc = 0.62 for o = 0.8 while
Kec/Kc = 0.93 for o = 3.0). For the same reason, changing the size of
the torsional beam has a greater influence on KeC for lTower values of o
(e.g., for L]/L2 = 1.0, dS = 6.5 in., and C = 15 in., increasing B from
0.064 to 0.160 1ncreases KeC by 28.3% when o = 0.80 while the increase
is only 0.8% when o = 8.0).

6. Tables 5.6a through 5.6d point out that the model based on
ACI-71 Section 8.7 neglects the influence of the torsional beam on the
effective slab width bf, and that bf
the range of values used in this section, Tables 5.6a through 5.6d show
that bf is determined by L] only (i.e., bf = L1/12). Accordingly, the
effective width of slab remains at 20 in. when L]/L2 = 1.0 and L] = 240
in. even when the moment of inertia of the flexural beam is increased

is fairly insensitive to a. For
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10 times (i.e., fromo = 0.80 to o = 8.0). The same is true when L]/L2
is changed and when the size of the torsional beam is changed. This
further emphasizes the point made in section 1.2 that this method lacks
any systematic theoretical basis for use in modeling the floor stiffness.

7. Tables 5.6 and 5.7 point out that the method based on provisions
of ACI-71 Section 8.7 and the SMM, both give floor models independent
. of column size. This is clearly different from the models based on the
equivalent frame method.

The lateral stiffness determined by the four different models is
given in Tables 5.8a, 5.8b, 5.8c, and 5.8d. The calculation for trans-
forming the lateral displacements from the point of load application to
the top of slab for the finite element model, the ACI-71, Section 8.7
model, and the SMM model are given in Appendix C. Table 5.8 also gives
the Diff % where:

(P/AT) model - (P/AT) finite element
Diff. % = - x 100 (5.8)
(P/AT) finite element

In this equation the finite element model is considered the most accurate
representation of the actual structure and hence is used as the basis for
evaluating the other models.

The results of Tables 5.8a through 5.8d point out some very important
characteristics of the three frame models when compared with the results
of the finite element model.

5.4.1 Equivalent Frame Model

The most important trend shown in the results of Table 5.8 is the
very poor correlation of the lateral stiffness based on the equivalent
frame with that of the finite element method. This is the only method
expressly recommended for use by the ACI 318-71 Code, yet it produced the
largest Diff. %, reaching as high as 162.4%. Beyond this general state-
ment, two other more specific observations about this method are in
order. First, the method gives inconsistent results as the floor-to-column
stiffnesses are changed. While the method generally overestimates the
lateral stiffness of the structure, the trend is reversed as the floor
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stiffness, relative to the columns, is increased. This can be seen in
Table 5.8a for the case where 15-in. columns and a 9-in. slab are used.
The lateral stiffness is overestimated by 10.5% for o = 0.8 and under-
estimated by 11.4% for o = 8.0. The second trend observed in Tables 5.8a
through 5.8d is that the results of the equivalent frame method have the
largest Diff. % in cases with stiff columns and flexible floors. This
trend holds whether the floors are kept the same and the columns increased
in stiffness or vice versa. An example of the influence of increasing
the column stiffness on the performance of the equivalent frame method
is seen in Table 5.8b where, for a = 0.40, the method overestimates the
lateral stiffness by 56.0% when 15-in. columns are used, and by 169.47%
when 25-in. columns are used. On the other hand, the floor stiffness
can be decreased in any of four different ways: by decreasing slab
depth, decreasing o, decreasing 8, or by increasing L]/Lza Hence in
Tabie 5.8a, for o = 0.8 and C = 15 in., the equivalent frame method over-
estimates the alteral stiffness by 10.5% for a 9-in. slab and by 31.5%
for a 6.5-in. slab. In Table 5.8d for C = 15 in., it overestimates the
lateral stiffness by 4.8% for o = 8.0 and by 63.1% for o = 0.80. In
Table 5.8a, for € = 15 in. and o = 0.80, it overestimates the lateral
stiffness by 22.0% for B = 0.160 and by 31.5% for g = 0.064. Finally

in Tables 5.8b and 5.8d, for C = 15 in. and o = 8.0, it underestimates
the lateral stiffness by 7.4% for L]/L2 = 0.5 and overestimates it by
4.8% for L1/L2 = 2.0. As stated in section 5.4, some difference between
the results of a finite element analysis and the equivalent frame method
is due to the fact that the latter takes into account the influence of
column size while the finite element method does not. To evaluate the
significance of this difference in the two models, the increase in the
beam-slab moment of inertia across the depth of the column was neglected
in the equivalent frame analysis of the structure where L]/L2 = 0.5,

a = 0.4, and C = 25 in. This has the effect of assuming a zero column
depth as is done in the finite element model. This change reduced the
jateral stiffness of the structure from 1512.8 k/in. to 1474.0 k/in.
(i.e., a reduction of only 2.6%). This shows that accounting for the
influence of the column depth in the equivalent frame analysis is not
the source of the high variance from the results of the finite element
analysis shown in Tables 5.8a through 5.8d.
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5.4.2 ACI 318-71 Method

The results based on this method show good correlation with those
of the finite element method, especially when compared with the equivalent
frame method. The maximum Diff. % in the structures analyzed is 13.8%
compared with 169% in the equivalent frame. The results shown in Tables
5.8a, 5.8b, 5.8¢c, and 5.8d point out several problems with the use of
this method. First, it neglects the contribution of the torsional beam
to the overall floor stiffness. This is shown in Table 5.8a where
changing 8 from 0.064 to 0.160, while all other factors are held constant,
does not have any influence on the lateral stiffness of the structure.
The results shown in Table 5.8a seem to indicate better correlation be-
tween this and the finite element method as B increases. A closer in-
spection, however, gives a different interpretation of the results.
Tables 5.8a through 5.8d show that this method generally overestimates
the Tateral stiffness of structures. As the size of the torsional beam
increases, so does the lateral stiffness of the structure as reflected
by the finite element method. Since this method ignores the influence
of the torsional beam, the lateral stiffness remains unchanged giving
the illusion that this method gives better results for higher values of
B. However, if B continues to increase, so will the lateral stiffness
of the structure and this method will then underestimate the stiffness.
This is seen in Table 5.8a where for C = 15 in. and a = 0.80, this
method overestimates (P/AT) by 1.0% for 8 = 0.064 and underestimates it
by 1.1% for g = 0.160.

Second, the method underestimates the rotational stiffness of floors
with shallow beams by ignoring the slab's two-way action and assuming
the siab to act only in the direction of the flexural beams. This is
seen in Table 5.8b where this method underestimates (P/AT) by 3.4% for the
case where C = 15 in. and o = 0.4. This margin of error decreases as
the column size is increased due to the fact that the column stiffness
begins to dominate the (P/AT) of the whole structure.

Third, the method is inconsistent as o is increased. In Table 5.8a,
with C = 15 in., dS = 6.5 in., and B = 0.064, the Diff. % increases from
1.0% to 5.5% and then decreases to 4.5% as o goes from 0.80 to 3.0 to
8.0. This inconsistency repeats itself in Table 5.8b for the case of
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C=15.0 in. It is difficult to attribute this erratic behavior to a
specific cause. There is no sound theoretical reason to use the provi-
sions of ACI 318-71 to model floor stiffness. The net result of doing
so is to neglect the torsional effects and to use a model which defines
the effective slab width to be L1/12 for all the cases analyzed herein,
irrespective of stab depth, beam size, or L]/L2 ratio. Hence, it is not
surprising that the results do not fit into a set pattern.

5.4,3 Stiffness Matrix Method

The results in Tables 5.8a, 5.8b, 5.8c, and 5.8d show that this
method gives the best correlation with the results from the finite element
method. The SMM generally overestimates the lateral stiffness of the
structure, with the maximum Diff. % registered for the cases analyzed
being 6.1%. This method performs best for flexible structures, with
the Diff. % increasing as the structure becomes stiffer. This trend
holds whether the structure is stiffened by increasing the slab thickness,
increasing o, increasing the column size, or by a combination of these
factors. The trend is also consistent for the different values of L]/L2
used. Taking the results of Table 5.8d as an example, for C = 15 in. and
dS = 6.5 in., the Diff. % increases from 0.20% to 3.8% as a goes from
0.8 to 8.0. Keeping a equal to 0.80, the Diff. % increases from 0.2%
to 1.5% as C increases from 15 in. to 20 in. 1In Table 5.8a, with C = 20 in.
and o = 8.0, the Diff. % increases from 2.2% to 3.5% as dS increases from
6.5 in. to 9.0 in. Also in Table 5.8a, increasing C from 15 in. to 20 in.,
o from 3.0 to 8.0, and dS from 6.5 in. to 9.0 in. increases the Diff. %
from 0.3% to 3.5%. The results in Table 5.8 also show that the Diff. %
for this method is smallest for L]/L2 = 1.0, increasing as this ratio
increases or decreases. Finally, Table 5.8c shows that in the case
L]/L2 = .75, where interpolation between the graphs of Figs. 5.3(a),
5.3(b), 5.3(c), and 5.3(d) is necessary, the Diff % is basically the
same as for the other L}/L2 ratios used. Hence, straight Tine interpo-
lation between the graphs does not impair the accuracy of the SMM.
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5.5 Effective Slab Width

The widespread use of an effective slab width to model a floor
system makes it useful to consider whether the results of this investiga-
tion confirm the validity of this approach. 1In a seismic analysis of
a structure, the effective slab width is required to be such that the
Tateral stiffness of the resuiting plane frame is the same as that of the
column~fioor moment resisting frame. In the single-panel, single-story
structures analyzed above (Fig. 5.5) the lateral load P produces equal
clockwise rotations at the four floor supports. To match the Tateral
stiffness of these structures, it is sufficient that the stiffness of
the two equivalent beams based on a unit clockwise rotation at each end
6EI/L], be equal to the moment necessary to produce a unit clockwise
rotation at each floor support. This floor stiffness can be adequately
estimated from the graphs of Figs. 5.3(a) through 5.3(d). Appendix E
gives the equations and procedure to compute an effective slab width
according to the criteria discussed above and the results are shown in
Table 5.9.

The results of Table 5.9 show the difficulty of seeking an
effective slab width to model the floor stiffness. There is no definite
pattern for the ratio of the effective stab width to the half-span
bf/O.SLZ.
a, B, L]/L2 and ds/Ll)' The effective slab width seems to be most sensi-

This ratio is found to vary with each floor parameter (i.e.,

tive to the aspect ratio L1/L2 where in the cases investigated bf/O.SL2
varied from 0.13 for Li/LZ = 0.5 and o = 3.0 to 0.49 for LT/LZ = 2.0
and o = 0.80. The variation of bf/O‘.SL2 with o, B, and dS/L] is incon-
sistent and depends on each combination of these values in a specific
floor.

5.6 Lateral Stiffness of a Multi-Panel, Singie-Story Structure

The single-panel structures analyzed above give important insight
into the adequacy of the different methods used to model two-way slab
floors. Limiting the structures to one panel only made it possible to
use finite element analyses for a large number of structures with
moderate computational costs. Due to symmetry, the equivalent members
AC and BD (Figs. 5.8 and 5.9) in the models using the SMM and the ACI-71,
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8.7 method have no torsional moments. Hence, there remains the question
of how well these models perform when there is torsion in the equivalent
cross beams. Thus it would be ideal to conduct similar analyses of
structures having a multi-panel floor system to evaluate the different
methods when there are interior panels and when there is torsion involved
in the equivalent cross beams.

The multi-panel, single-story structure, shown in Fig. 5.10, is
selected as an example to evaluate the different cases discussed above.
It was necessary to 1imit this effort to one structure due to the high
cost of a finite element analysis of a multibay structure. As shown in
Fig. 5.10, the structure analyzed consists of a 3 x 3 panel floor, each
panel being 16 ft x 20 ft. The floor slab is 8 in. thick, each beam
is 15 in. x 30 in.; the single-story structure has 16 columns, each
26 in. x 26 in. in cross section; and story height from top of slab to
column base is 12 ft. The structural properties of the floor beam are:

A, = 450.0 in

I = 33750.0 in"

J, = 20250.0 i’

The column structural properties are:
A, = 676.0 in”
- 1 2

(Ash)C 563.3 in

4

I = 38081.33 in
J, = 91395.20 in®

As shown in Fig. 5.10, lateral forces in only the y-direction are
applied to the structure at the floor level. The 3 x 3 panel floor in-
cludes corner, exterior, and interior panels and thus will enable evalua-
tion of the effect of different boundary conditions along panel edges
within the floor on the performance of each method used for the modeling.
Also, since all the columns will not have the same rotation at their
tops, torsion in the floor equivalent members must be included.
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Five different methods are used to evaluate the lateral stiffness
of the multi-panel structure.

5.6.1 Finite Element Method

The application of this method is similar to the procedure described
in section 5.3.1 for the single-panel structure and the model shown in
Fig. 5.6. The Tlateral displacements at the top of slab are evaluated
according to eq. 5.3. Due to the symmetry of the structure and the
Toading, the model will give four different lateral displacements at the
top of slab at the supports if in-plane axial strains are included.

These are:

1. Displacements at corner supports A, D, M, and R.

2. Displacements at exterior supports B, C, N, and Q.
3. Displacements at exterior supports E, H, I, and L.
4. Displacements at interior supports F, G, J, and K.

The lateral stiffness of the structure (P/AT) is defined as the average
of these four values of AT. The results of the finite element analysis
are given in Table 5.14.

5.6.2 Equivalent Frame Method

Application of this method is similar to that described for the
single-panel structure in section 5.3.2 and the model shown in Fig. 5.7.
The structure is modeled by four equivalent frames: two exterior frames
along column lines AM and DR, and two interior frames along column lines
BN and CQ. The equivalent columns used in this method depend on the
"equivalent torsional beams" framing into the column. Four different types
of equivalent columns can be identified in the structure shown in Fig. 5.10:
corner columns A, D, M, and R; exterior columns B, C, N, and Q; exterior
columns E, I, H, and L; and interior columns F, G, J, and K. The struc-
tural properties of the two types of frames are given in Table 5.10.

As the equivalent frame method does not lend itself easily to
available computer programs, it was found easier to develop a closed form
solution for the case of a single-panel structure. However, a closed
form solution cannot be readily developed for a multi-panel structure
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and it was necessary to modify the program ETABS [26] (described 1in
section 5.3.3) by changing the diagonal terms of the column stiffness
matrix and replacing the rotational terms by the equivalent column
stiffness (Kec)° The program modification was checked against the closed
form solution for a single-panel structure and found to be exact. Notice
that ETABS forces the lateral displacements at each floor level to be

the same throughout the floor. Hence the different frames all have the
same lateral translations, and since the model (Fig. 5.7) places the
equivalent beams at the level of the top of slab, no translation of
lateral displacements is necessary. The top of slab lateral displacement
of the structure according to this method was:

AT = 0.0117 1in.

5.6.3 ACI 318-71 Section 8.7 Method

Application of this method is similar to the procedure described
for the single-panel structure in section 5.3.3, and the model shown
in Fig. 5.8. The multi-panel structure is modeled as a three-dimensional
frame with equivalent beams defined according to ACI 318-71, Section 8.7.
Two types of equivalent beams are identified in the structure: L-shaped
exterior beams and T-shaped interior beams. Structural properties of these
equivalent beams are given in Table 5.11. Notice that these beams have
their neutral axes at different distances ()\) below the top of slab.
However, the computer program used, ETABS, requires that all floor beams
be along the same level. Hence, an average value of XA is used to define
the position of the neutral axis of all beams in the floor.

The program gives the same lateral displacement throughout the floor
(the floor is rigid in its own plane), but since the column top rotations
are different, displacements at the top of slab will also be different.
Due to symmetry of the structure and the loading, four different column
rotations can be identified at the corner columns A, D, M, and R; ex-
terior columns B, C, N, and Q; exterior columns E, H, I, and L; and
interior columns F, G, J, and K. This is the same as in the case of the
finite element method. The lateral displacements at the top of slab are
given in Table 5.15 and are calculated according to eqs. C.5 and C.6 in
Appendix C. The lateral stiffness of the structure (P/AT) is based on
the average of these four displacements.
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5.6.4 ACI 318-71, Sections 8.7 and 11.7 Method

This method is exactly the same as that above with the exception
that the equivalent beams in the x-x direction are defined according to
the preovisions of ACI 318-71, Section 11.7.2. This section of the ACI
defines the maximum allowable flange width for torsional shear require-
ments and states that for "flanged sections ... the overhanging flange
width used in design shall not exceed three times the thickness of
the flange" [3], thus:

bf <3 ds (5.9)

This provision is used for the beams in the x-x direction because,
due to the symmetry of the model and the loading, these beams are in
pure torsion while those in the y-y direction are in pure flexure.
Table 5.12 gives the structural properties of the equivalent beams of
the model based on this method, and Table 5.16 gives the lateral dis-
placements of the model.

5.6.5 Stiffness Matrix Method

Application of this method is similar to the procedure described
in section 5.3.4 for the single-panel structure and the model shown in
Fig. 5.9, except that the procedure of section 5.3.1b and Figs. 5.4(a)
through 5.4(d} must be used for the computation of equivalent interior
members. For the multi-panel floor of Fig. 5.10, six different floor
members can be identified.

1. Corner Member AB, CD, MN, and QR.

2. Corner Member AE, DH, IM, and LR.

3. Exterior Member BC and NQ.

4, Exterior Member EI and HL.

5. Interior Member EF, FG, GH, IJ, JK, and KL.

6. Interior Member BF, FJ, JN, CG, GK, and KQ.
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The calculations for the structural properties of these members are
given in Appendix D and the results of these calculations are summarized
in Table 5.13.

Similarly to the above methods, four lateral displacements at the
top of slab based on eqs. C.5 and C.6 in Appendix C are identified in
Table 5.17 and the lateral stiffness of the structure (P/AT) is based on
the average of these displacements.

5.7 Evaluation of Different Models Used to Compute Lateral Stiffness
of a Multi-Panel, Single-Story Structure

The Tateral stiffness (P/AT) of the multi-panel structure shown in
Fig. 5.10 is given in Table 5.18. The Diff. % in each model is based on
comparing the results with those of the finite element method and is
computed according to eq. 5.8.

The two methods based on allowable widths of beam flange (i.e., the
ACI 318-71, 8.7 and the ACI 318-71, 8.7 and 11.7 methods) gave basically
identical results for this structure. However, one case is not suffi-
cient to show that the two provisions used to define effective slab
widths will always give nearly equal results. The provisions of ACI 318-71,
8.7 were used in both cases to define the equivalent beams in the y-y
direction which are primarily in flexure for the loading shown in Fig.
5.10, and the provisions of ACI 318-71, 8.7 and 11.7 were used to define
the equivalent members in the x-x direction which are primarily in torsion.
Had there been substantial torsional moments generated in the equivalent
beams in the x-x direction, the difference in using the two code provisions
would have been reflected in the lateral displacements of the structure
as given by the two models. However, the results of the analysis show
that the torsion, generated by the lateral loads used, is small (e.g.,
torsion in equivalent beam IJ is 1.2 k-in. while flexure in equivalent
beam JF is 236.2 k-in.) and the contribution of the floor model was de-
termined primarily by the flexural stiffness of the equivalent beams in
the y-y direction which were identical in both cases. The Diff. %
given in Table 5.18 for the different models, are in general agreement
with those of comparable single-panel structures, indicating that the
different models perform with approximately the same accuracy for interior
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and exterior panels and that they also maintain their level of accuracy
whether the equivalent cross beams undergo torsion or not.

Finally, notice that the floor properties used were such that all
the terms needed for the SMM had to be interpolated from the curves in
Figs. 5.3 and 5.4. The fact that the Diff. % for this method remains
within a range of 1% to 5% again confirms the fact that the method main-
tains accuracy when interpolation between the curves is necessary.

5.8 Dynamic Response of a Multistory Building

The dynamic response of a 12-story building with a two-way slab
floor system (Fig. 5.11) is also analyzed, using the SMM, the effective
slab width method (ACI 318-71, 8.7), and the equivalent frame method. A
finite element analysis could not be attempted due to prohibitive com-
putational effort required. The building was adapted from that presented
in reference 11. The beams were modified to have a 2:1 depth-to-width
ratio while maintaining the same moment of inertia as the beams given
in reference 11. The dynamic response of the building is evaluated for
8-in. and 12-in. thick floor slabs to assess the different models
used as the values of o and ds/Ll are varied. Computer program ETABS
is used for this part of the investigation.

Tables 5.19 through 5.23b give the structural properties of the
equivalent members to model this building as defined by the three methods
used. The distributed masses at each story are assumed to be Tumped at
the center of mass of each floor. The mass used in the analysis of the
building with an 8-in. floor siab is identical to that given in reference
11. The mass for the 12-in. slab floor is equal to the above mass plus
the increase in the mass of the slab only. This assumes that all other
elements contributing to the mass (partition walls, fixtures, etc.) are
the same for both cases. The value of the mass per floor used in the

analysis is:
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Floor Mass for 8 in. Slab Mass for 12 in. Slab
Level [k L§$%)E_ [« L§$%lgi
Roof 5.43 6.74

A1l other Floors 5.69 7.00

Table 5.24 gives the natural periods of vibration for the first
four mode shapes in the longitudinal (x-x) direction. The table also
includes the period of the building when the bare beams are used for
the floor stiffness, i.e., the mass of the system remains the same but
the slab is neglected when formulating the stiffness of the building.
Comparison of the periods based on each method with those of the bare
beams structure helps to give an idea of each method's estimate of the
contribution of the slab to the building's periods of vibration.

The results in Table 5.24 show that for both the 8-in. and the
12-in. slab floors, the SMM gives the highest natural periods of vibra-
tion and the equivalent frame method the lowest. This is consistent with
previous results in this chapter establishing both the equivalent frame
method and the effective slab width method as generally overestimating
the Tateral stiffness of the structure. The Diff. % between the SMM
and each of the other two methods remains basically the same for the
different mode shapes, and is higher for the equivalent frame method than
the effective slab width method. The Diff. % between the SMM and each
of the other two methods also decreases as the slab thickness increases.

Notice that the periods of vibration based on all three methods
increase as the slab thickness increases from 8 in. to 12 in. This means
that the effect of the increase in stiffness of the building is less
than the effect of the increase in mass. However, the increase in the
period is smallest in SMM, which shows that this method gives a higher
increase in building stiffness (per same increase in mass) as the slab
thickness goes from 8 in. to 12 in.

Table 5.25 gives the terms of the building's first mode shape vector

< ¢7 > in the Tongitudinal direction based on the four different models used.
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These mode shape vectors are scaled such that the generalized mass in
the first mode shape MT, where:

M? = < ¢ ST [M] < o7 > (5.10)
and [M] = a diagonal 12 x 12 mass matrix

is equal to 0.12 for the building with an 8-in. slab floor and to 0.15

for the building with a 12-in. slab floor for each of the four methods

used. Given the first natural period of vibration T] and having compu-
ted MT, the building's generalized stiffness in the first mode K%,

where:
K¥ = < ¢ ST [K] < ¢, > (5.11)
1 1 1
and [K] = 12 x 12 building lateral stiffness matrix
and be shown to be:
(2r)° ()
Kf’l‘ = ““—‘—“—2-— (5.]2)
(T,)

1

The values of K? are given in Table 5.26. Since the mass matrix used in
the analysis is the same for all four methods used, the increase in H*
over that of the bare beams method reflects the contribution of the slab
to the lateral stiffness of the building as estimated by each of these
methods. The results of Table 5.26 show that for the building with an
8-in. slab, the effective slab width method estimates the contribution
of the slab to KT as twice that estimated by the SMM and the equivalent
frame method is more than three times that of the SMM. However, as the
stab thickness is increased from 8 in. to 12 in., a different pattern
emerges. The SMM estimates the increase in KT due to the increased slab
thickness as 16.7% while the effective slab width method and the equivalent
frame method estimate the increase as 0.7% and 9.2% respectively. The
performance of the effective slab width method (based on ACI 318-71, 8.7)
is unrealistic as it implies that the lateral stiffness of the building
as reflected by K? remains basically the same even when the floor slab

thickness is increased by 50%. The results of the equivalent frame



method show that the method highly overestimates the contribution of two-
way slab floor systems to the lateral stiffness of moment-resisting frames
and that this overestimation is higher for the mcre flexible floors.

The dynamic response of a building to seismic motion depends on the
dynamic properties of the building {natural periods, mode shapes, etc.)
as well as on the characteristics of the particular earthquake considered
(peak accelerations, frequengy content, duration of severe pulses, etc.).
Hence the difference in the dynamic properties of the building based on
the different models is not sufficient to evaluate the difference in re-
sponse (lateral displacements, story shears, etc.) due to using these
models. As an illustration, the building of Fig. 5.11 was analyzed for
the N-S recorded component of E1 Centro earthquake of 1940 [27] acting in
the Tongitudinal direction (x-x only) and the analysis is based on the
earthquake's elastic response spectrum with 5% damping. Figure 5.12
gives the envelope of maximum lateral displacements [based on modal super-
position using square root of the sum of the squares (SRSS) values] as
estimated by three methods (SMM, effective slab width, and equivalent
frame). Table 5.27 gives these displacements for the roof only and
shows that the Diff. % between the SMM and the effective slab width
method and the equivalent frame method is 13.10% and 24.17%, respectively,
for an 8-in. floor slab and 3.44% and 23.73%, respectively, for a 12-1in.
floor slab.

5.9 Summary and Conclusions

This chapter develops the SMM to model the stiffness of two-way slab
floors, a method based on the research presented and discussed in Chapters
2 through 4. It consists of replacing the floor by a set of equivalent
members connecting the vertical floor supports. The SMM does not define
a physical shape (cross section) for these members, but rather a 3 x 3
stiffness matrix and the position of the member neutral axis in relation
to the top of slab. The 3 x 3 member stiffness matrix is based on one
torsional and two flexural degrees of freedom [Fig. 5.2(b)]. Two sets
of tables and graphs are presented to describe a step-by-step procedure
to calculate the stiffness matrix of equivalent edge and interior members,
and the position of their neutral axis.
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The rest of the chapter is devoted to evaluating the accuracy and
practicability of the SMM for modeling two-way slab floors and comparing
its performance to that of other models currently used. The lateral
stiffnesses of 27 single-panel, single-story structures with different
floor and column stiffnesses are calculated, each according to four
models: the equivalent frame method, ACI 318-71, 8.7 method, SMM, and
the finite element method. Results are compared with the latter method
which, from the analytical point of view, is generally considered the
most accurate. The lateral stiffness of the structure (P/AT) is based
on the lateral deflection of the top of slab when a lateral load P is
applied at the floor level. The lateral stiffness of one 3 x 3 panel
floor, single-story structure is also calculated according to five
different models in order to evaluate the performance of each model when
interior panels are added to the floor and also when there is torsion
in some floor beams. In addition to the four models used in the single-
panel floors, another model is added in which the fiexural and torsional
properties of the equivalent beams are defined by effective slab widths
based on the provisions of ACI 318-71, 8.7 and ACI 318-71, 11.7, respec-
tively. The lateral stiffness of the structure (AT) is defined the same
way as for the single-panel structures.

The results from using the different models to evaluate the lateral
stiffnesses of the 27 single-panel and one multi-panel structure show that:

1. The equivalent frame method, besides being very complicated to
use, is fairly inaccurate when compared with results of a finite element
analysis, with the Diff. % reaching as high as 169%. The method is also
inconsistent in that it overestimates the lateral stiffness of some
structures and underestimates it for others. The error in the lateral
stiffness based on the equivalent frame method increases as the floor
becomes more flexible relative to the columns. These results point out
the need to reassess the ACI 318-71 Code recommendations of using the
equivalent frame method to analyze structures with two-way slab floors.
As described in section 1.2, the research and development for this method
was done for flat slabs, and its application to two-way slabs needs to be
investigated further as the analytical results of this study do not justi-
fy such appliication.
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2. The method based on the ACI 318-71 provisions for beam strength
(i.e., ACI 318-71, sections 8.7 and 11.7) seems to perform better than
the equivalent frame method with the maximum registered Diff. % being
13.8%. However the results are erratic and a clear trend in the results
is not evident. This, coupled with the fact that there is no sound
theoretical basis for using these provisions to model two-way slab stiff-
ness, leaves open the possibility that much higher margins of error could
result for certain structures and Toading conditions.

3. The results of the SMM were consistently closer to those of a
finite element method than were those of other methods, with the maximum
registered Diff. % being 6.1%. The method maintained its Tevel of
accuracy when interpolation was used between the curves given in Figs.
5.3 and 5.4. The SMM gave the best results in flexible structures and
also improved as the floor became more flexible relative to the columns.

4. The results of this investigation also show that the effective
width approach does not adequately model the stiffness of a two-way
slab floor, the composite beam-slab action is much too complex for this

approach.

5. The results of analyzing a 12-story building with a two-way
stab floor system show that appreciable differences in the estimate of
the dynamic characteristics of a building and its response to a particular
earthquake can result from using different analytical models for the
stiffness of the floor system.
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

Studies have shown that the seismic analysis of buildings whose
floor slab is part of a moment-resisting frame is sensitive to the
assumed slab participation in the overall stiffness. Although some
methods have been suggested for modeling the contribution of the siab
to the stiffness of the floor system, at present their accuracy and
reliability are highly questionable. Finite element models can be very
accurate but their use requires computational effort that is prohibitive
in practical applications. Currently used models based on some form of
effective width of slab do not have a consistent theoretical basis,
and they have not been rigorously studied to determine their accuracy
for use in seismic analyses of buildings.

In the study reported herein, the elastic stiffness of composite
beam-siab reinforced concrete floor systems has been thoroughly studied.
The floor rotational stiffness is defined by a stiffness matrix based on
two rotational degrees of freedom in the plane of the slab at each of
the floor's supports. The moments needed to produce a unit rotation at
one degree of freedom, and restraining all others, make up the elements

of one row of the matrix.

Point supports are assumed, thus neglecting the increase in the
floor stiffness across the column size. The effect of this assumption
is to underestimate the floor stiffness, especially in buildings with
short floor spans and wide columns. A1l floor beams have a 2:1 depth-
to-width ratio, thus maintaining a gg-(1+v) (see section 2.3.1) ratio
between the flexural and torsional stiffnesses of each beam. Floors are
assumed to have rectangular panels of identical span lengths and a slab
of uniform thickness supported on beams between supports. The floors
are also assumed to be of monolithic construction with homogeneous,

elastic, and isotropic material properties.

The floors are modeled as a mesh of two-dimensional linear curvature
compatible triangular finite elements with cubic transvarse displacement
expansion and piecewise continuous derivatives, and uniaxial beam elements.
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In the case of partial composite beam-slab action (i.e., beams
symmetrical about mid-plane of slab), the beam elements are embedded in
the slab. In the case of complete composite beam-slab action (i.e.,
beam and slab neutral axes not at the same level), a constant strain
element is added to model the in-plane (membrane) slab stresses, and the
uniaxial beams are connected to the finite element nodes by rigid Tinks
which maintain the condition that plane sections at the nodes remain
plane. Several mesh sizes for each type of floor were attempted to
establish the finite element mesh size needed for adequate convergence

of the results.

Single-panel floors with partial and full composite beam-slab action
are analyzed to determine the influence of beam eccentricity of floor
stiffness. An analysis of the many different parameters that can affect
the stiffness of a two-way slab floor led to the identification of the
following four main parameters:

1. The ratio dS/L] of slab thickness to panel span in the
direction of the flexural beam.

2. The ratio a of the flexural stiffness of the flexural beam
to that of the half-width of slab.

4EIFB/L] :

o F FET T (6.1)
4EIS/L1

3. The ratio B of the torsional stiffness of the torsional beam
(beam orthogonal to flexural beam) to the flexural stiffness of the
flexural beam.

ek (5.2
FB" 1

4. The aspect ratio of the panel L,/L,.

Parametric studies are conducted to determine the influence of
these four parameters on floor stiffness.

Varying boundary conditions along panel edges, as represented by
interior, exterior, and corner panels, also are investijated for floors
with full composite beam-sliab action.
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A SMM to model the stiffness of a two-way slab floor is developed
from the results of this investigation. In this method, the elastic
stiffness of a beam-slab floor is estimated as the stiffness of equiva-
lent uniaxial members between supports, each with three degrees of
freedom: one torsional and two flexural (one flexural degree of freedom
at each end of the member). The SMM does not identify a physical cross
section for these members; rather, it establishes a procédure by which
the position of the neutral axis of the equivalent member in relation to
the top of slab and its member stiffness matrix can be computed from a
set of graphs. Each member stiffness matrix is added directly to obtain
the structure's stiffness matrix which can then be used to analyze the
building properties and response. The effect of shear on the floor
stiffness is included in the terms of the equivalent member's stiffness
matrix, hence no other terms to model shear effect are necessary.

The SMM is evaluated by applying it to calculate the lateral
stiffnesses of 27 single-panel structures and one multi-panel single-
story structure, as well as the dynamic response of a multi-story building.
Lateral stiffness for the single-story structures is defined as the force
necessary to produce a unit lateral displacement of the top of slab.

The structures analyzed include cases with floors of varying slab thickness
and beam and column sizes. The lateral stiffness of each single-story
structure is evaluated on the basis of four different methods: a finijte
element method, an equivalent frame method, an effective slab width

method based on provisions of the ACI 318-71, 8.7, and the SMM. The
results from the last three methods are compared with those from a finite
element analysis, and the Diff. % in the results is used as the basis

to evaluate the accuracy of the method.

6.2 Conclusions

Detailed conclusions are presented at the end of each chapter.
The most important of these, and some general overall conclusions, are
presented here.

1. The elastic rotational stiffness of a floor pianel is a function
of ds/L1’ o, Bs L]/Lz, the boundary conditions along the panel edges,
and the degree of beam-slab composite action which is d2termined by the
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extent of eccentricity between beam and slab neutral axes.

The transition from partial to full composite action between beams
and slab produces a marked increase in the rotational stiffness of the
floor. This is caused by the shift of the floor neutral axis away from
the neutral axis of the slab. The proporticnal increase in stiffness
due to full composite action is more pronounced for larger values of o
because of the accompanying increase in the eccentricity e. The in-
crease in the contribution of the beams to the .floor stiffness (due to
the eccentricity introduced by the slab) can be approximated by (K]])E
which is the beam stiffness computed about an axis defined by £. This
axis coincides with the composite neutral axis of the floor only at the
supports. Since e 1is equal to zero in floors with partial beam-slab
composite action (i.e., symmetric beams), (K1])g in such floors is equal
to the prismatic bare beam stiffness (K11)B'

The contribution of the slab to the overall panel stiffness can
be defined by the ratio (K]])S/(K1])g. Over the range of the different
parameters investigated, it was found that (K11)s/(K1])g is primarily
a function of o, L1/L2’ and the boundary conditions along the panel
edges. (K11)5/(K1])g approaches an asymptotic value of 1.0 as a in-
creases, which shows that the relative slab contribution to the panel
stiffness is higher in floors with shallow beams. This ratio approaches
the 1.0 asymptote faster as the number of continuous edges in a panel
increases and L]/L2 decreases. Given the same ds/L1’ as B L]/Lz, and
panel boundary conditions, the ratio (K11)5/<K11)§ is very close in
floors with partial or full composite action. Hence the graphs in Figs.
5.3(b) and 5.4(b) can be used interchangeably for both types of floors.

2. The two-way action of the floor theoretically couples the
rotations of all the supports in a floor. However, the degree of coupling
between diagonally placed panel supports and supports more than one panel
away from each other was found to be very small. Hence, the usual practice
of modeling the floor by uniaxial equivalent members, which only couple
adjacent supports, can give adequate results.
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3. The carryover factors (CF13 and CF]S) in a floor panel were
found to be a function of o, B, LT/LZ’ and the boundary conditions.
The two-way action of the slab redistributes the stresses in the panel
so that the moments carried by beams toc orthogonal supports are more
evenly distributed than would be the case in a floor with only bare
beams. The effect of the slab in floors with very stiff torsional
beams relative to the flexural beams (i.e., high values of L]/L2 and
8) is to reduce the values of CFy5 from that of the bare beams. This
signifies that the slab redistributes moments away from the torsional
beams to the flexural beams. The slab has the opposite influence in
floors with stiff flexural beams relative to the torsional beams. The
difference between the panel carryover factors CF]3 and CF15 from those
of the prismatic bare beams by 3 and Vs increases as the contribution
of the slab to the overall panel stiffness increases. Thus this differ-
ence increases as a decreases, and L]/L2 and the number of continuous
edges in the panel increases. This aspect of the behavior of two-way
slabs has hitherto been neglected by researchers. Currently available
models seek equivalent members that will match the diagonal terms of
the panel's stiffness matrix and assume that carryover factors equal
to those of prismatic beams can be used for these equivalent members.
This investigation refutes that assumption and points out the need for
models that will adequately approximate off-diagonal as well as diagonal
terms of the floor panel's stiffness matrix.

There was some difference in the values of CF13 and CF]5 in floors
with symmetric or eccentric floor beams. Eccentric beams produced smal-
ler values of CF13 and Targer values of CF15 reflecting a higher degree
of slab participation in the floor's stiffness. Hence using the graphs
in Figs. 5.3(c), 5.3(d) and 5.4(c), 5.4(d) for modeling floors with
symmetric beams will introduce a small error into the results of the
analysis. CF.l5 was found to be a function of B, Ll/LZ’ and the boundary
conditions except for floors with L]/L2 (panel aspect ratio) close to
2.0 where the influence of o should also be accounted for.

4, Changing the boundary condition of a floor panel from being
completely free (single-panel floor) to continuous on all four sides
(an interior panel) has an appreciable effect on its stiffness. A
continuous panel is stiffer and the influence of the boundary conditions
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increases as L]/L2 is increased and o is decreased. The stiffness of
floors with other boundary conditions falls between these two bounds.
However, for practical purposes the graphs for an interior panel and
those for a single-panel are sufficient to estimate adequately the
stiffness of the different panels in a floor.

5. The accuracy and practicability of currently used methods to
estimate the lateral stiffness of moment-resisting frames was investiga-
ted by analyzing a large number of single-story structures. The equiva-
lent frame method, which is the only one suggested by the ACI 318-71 Code,
was found to be complicated to use and gave poor results with a Diff. %
as high as 169% when compared with analytical results obtained using a
finite element model. This corresponds to a Diff. % of 39% in the struc-
ture's period which can lead to substantially different estimates of
the structure's dynamic responses. The error in the results from using
this method increases as the relative column-to-floor stiffness increases.
The equivalent frame method was also found to be inconsistent in that it
overestimated or underestimated the Tateral stiffness, depending on the
individual case considered.

The effective slab width method based on ACI 318-71, section 8.7
fared better than the equivalent frame, with a 13.8% maximum Diff. %.
However, this method is not based on reliable experimental or analytical
studies, and the correlation of results from the effective slab width
method with the finite element analysis was inconsistent and did not
establish well-defined trends. This suggests that the effective slab
width method could lead to much higher error in estimating the lateral
stiffness than the 13.8% Diff. % registered in this investigation.

A trial-and error procedure, used to compute an effective slab
width that would yield the same lateral stiffness of the structure as
from a finite element analysis, gave a wide range of values of the effec-
tive slab width. This width varied with each of the floor parameters
considered. This points out the difficulty of attempting to model the
stiffness of a two-way floor system with just an effective slab width
method.
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The analysis of a twelve-story building confirmed the conclusions
based on analyzing the single-story structures. The equivalent frame
method overestimated the floor stiffness, especially for relatively thin
slabs. This led to Tower natural pericds of vibration with a Diff. % in
the first period between this method and the SMM of 17.2% for the case
of an 8-in. floor slab. The effective slab width method also overesti-
mated the floor stiffness, although to a lesser degree than the equivalent
frame method. However, the effective slab width method, based on the pro-
visions of ACI 318-71, 8.7 proved inadequate in estimating the increase in
floor stiffness as the slab thickness was increased from 8 in. to 12 in.
(the generalized stiffness in the first mode K? increased by less than
1%). The envelope of the expected maximum lateral displacements (based
on SRSS) also showed marked differences as different models for the floor
stiffness were used. Applying the N-S component of the 1940 E1 Centro
earthquake to the longitudinal (x-x) direction of the building resulted
in maximum expected roof displacement of 8.4 in. and 6.4 in. for the SMM
and the equivalent frame method, respectively (Diff. % of 24.2%).

6. The analytical results of this investigation indicate the need
for a careful study of the soundness of using the equivalent frame method
to model buildings with two-way slab floors and subjected to lateral
loads, as is suggested in present codes. Theoretically, the SMM seems
to be a more accurate and consistent model. The SMM was found to be
practical for use in that it does not require complex, time-consuming
computations to calculate the structural properties of the equivalent
members used to model the floor stiffness, and can be used directly in
existing computer programs for frame analysis or for hand calculations
(e.g. moment distribution procedures). The SMM not only proved accurate
when compared with results of a finite element mode? but also the cost
of the computations was a small fraction of the computer costs required
to carry out a finite element analysis.

6.3 Recommendations for Future Studies

A large number of investigations and proper interpretation of their
results are still necessary to reach the point where engineers will be
able to ascertain, consistnetly, rationally and economically, the con-
tribution of the floors to the stiffness, strength, and stability of
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buildings. Following are some topics that need further attention:

1. The influence of the column width on the floor stiffness should
be studied to evaluate the error introduced by assuming point supports.
The results of this investigation can then be used to modify the SMM to
account for the influence of the column size on the elastic stiffness of
a two-way slab floor system.

2. The studies reported herein should be repeated for floor beams
having a depth-to-width ratio different than the 2:1 ratioc considered in
this investigation. Bounds of the values of this ratio should be con-
sidered to evaluate the influence of this ratio on the floor stiffness.

3. The procedure developed in this investigation can be extended
to the analysis of the elastic stiffness of other slab systems (e.g.,
flat and waffle slabs). Such a study must identify the primary parameters
affecting the stiffness of each type of floor system, and evaluate the
existing models to determine whether they can be improved or whether
completely new models need be developed. An integrated SMM for all the
main floor systems encountered in the field would be a powerful tool
for analysts and designers.

4, Elastic analysis is no longer sufficient. It is well known
that cracks in reinforced concrete develop during construction and then
under excitations at service load levels. The knowledge of the floor
behavior in the inelastic range, including yielding of the steel is an
indispensible part of an aseismic design. Thus, the present investigation
should be extended to the inelastic behavior of two-way slab systems as

well as other floor systems.

Such inelastic studies are much more involved in that the behavior
of the slab system must be analyzed stepwise from the initial appearance
of first cracks to the formation of slab yield lines and proceed until
a full mechanism develops. Such investigations must model degradations
of stiffness and strength due to both increasing load levels and to stress
reversals, as well as the composite action of reinfor:zing steel and con-
crete in the floor. The first step would be to consider the effect of
cracking under working load. To solve this problem, integrated analytical

and experimental studies are necessary.
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5. In parametric studies, computer programs based on finite ele-
ment methods are the most powerful tools available. They require less
time and are far cheaper than experimental studies. At present, the
inelastic behavior of reinforced concrete structures subjected to combined
states of stress and/or strain are not well understood. Thus present
analytical studies are based on a number of assumptions and simplifica-
tions which necessarily introduce a margin of error into the final results.
Hence experimental studies remain the only conclusive method to study
the elastic and inelastic behavior of a floor system.
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TABLE 2.2: STRUCTURAL PROPERTIES OF SQUARE

SINGLE-PANEL FLOOR SLABS

a B dg (in.) Flexural Beam Torsional Beam
6.5 7.53" x 15.15" 7.53" x 15.15"
0.064 7.5 8.44"™ x 16.87" 8.44" 16.87"
9.0 9.67" x 19.34" 2.67" 18.34"
0.8
0.107 6.5 7.83" x 15.15" 8.61" 17.22"
0.160 6.5 7.53" x 15.15" 9.53" 19.05"
6.5 8.39" x 16.77" 8.39" 16.77"
0.064 7.5 9.34" x 18.67" 9.,34" 18.67"
9.0 10.71" = 21.41" 10,71" 21.41"
1.2
0.107 6.5 8.39" x 16.77" 9.53" 19.05"
0.160 6.5 B.39" x 16.77% 10.55" 21.09"
6.5 9.53" x 19.05" 9.53" 19.05"
0.064 7.5 10.61" % 21.21" 10.61" 21.21°
S.0 12.16™ x 24.32" 12.16" 24,.32%
2.0
0.107 6.5 9.53" x 19.05" 10.83" 21.65"
0.160 6.5 9.53" x 19.05" 11.98" 23.96"
6.5 10.55" x 21.098" 10.55" 21.09"
0.064 7.5 11.74" = 23.48"% 11.74% 23.48"
9.0 13.46" % 26.092" 13.46" 26.,92%
3.0 . '
0.107 6.5 10.55" x 21.09" 1i.98" 23.96"
8.0 13.46" x 26.92" 15.29" 30.58"
0.160 6.5 10.55" % 21.09" 13.26" 26.52"
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TABLE 2.3: SQUARE SINGLE-PANEL FLOOR SYSTEMS
, K~in K-in
e 8 dg (in) ®i's T3 | ®uls mma | Kute/uls
6.5 199521.15 129383.71 1.54
0.064 7.5 305250.31 198757.41 1.54
9.0 524658.97 343452.80 1.53
0.8
0.107 6.5 209467.55 134579.98 1.56
0.160 6.5 220458.55 141075.32 1.56
6.5 269541.78 194075.57 1.39
0.064 7.5 412541.25 208136.11 1.38
9.0 709215.86 515179.20 1.38
1.2
0.107 6.5 282645.56 201869.97 1.40
0.160 6.5 297265.16 211612.98 1.40
6.5 405515.00 323459.28 1.25
0.064 7.5 621118.01 49689352 1.25
9.0 1068376.07 858632.00 1.24
2.0
0.107 6.5 424448.22 336449.95 1.26
0.160 6.5 445632.80 352688.30 1.26
6.5 571428.57 485188.91 1.18
0.064 7.5 875656.74 745340,27 1.17
9.0 1501501.50 1287947.99 1.17
3.0
0.107 6.5 597157.53 504674.93 1.18
9.0 1571832.76 1339674.19 1.17
0.160 6.5 626409.42 529032.45 1.18
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TABLE 2.4: INFLUENCE OF ds9 a, AND g8 ON STIFFNESS
OF A SQUARE SINGLE-PANEL FLOOR SYSTEM

ds lima) o 8 T e I Eiig ) g/ X0
1.5 | e6.67 | 0.122 | 140528.39 | 139659.57 1.01
6.5 0.819 | 0.122 | 218531.47 139659.57 1.57
= | 7.0 0.656 | 0.122 | 233644.86 | 139659.57 1.67
g 8.0 0.439 | 0.122 | 267379.68 | 139659.57 1.92
1 s 0.309 | 0.122 | 304878.05 | 139659.57 2.18
10.0 0.225 | 0.122 | 349650.35 | 139659.57 2.50
= | 1.5 |1se.025 | 0.068 | 315346.82 | 315346.82 1.00 -
2? 6.5 1.942 | 0.068 | 397772.47 | 315346.82 1.26
g1 s 0.732 | 0.068 | 494559.84 | 315346.82 1.57

For structural properties of the floors, see Fig. 2.5,
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TABLE 2.5: INFLUENCE OF ds’ o, AND B ON CARRYOVER FACTORS
OF A SQUARE SINGLE-PANEL FLOOR SYSTEM

ds e ‘
¢ B imy| a2 |13 [TFia [TFis [TFie | “Fay {Fas | Y13
6.5 |-.035 | .376 |.019 |-.037 | -.017 | .028 |-.013
0.064 | 7.5 |-.036 | .375 | .019 |-.037 | -.018 | .028 |-.013 | .470
9.0 |-.038 | .374 |.020 |-.036 | .01 | .028 |-.014
0.8
0.107 | 6.5 |-.026 | .372 | .025 | ~.049 | ~.014 | .033 |-.016 | .452
0.160 | 6.5 {-.056 | .366 [ .031 | -.064 | ~.009 | .038 [-.018 | .431
6.5 | -.040 | .397 | .016 | -.038 | -.015 | .027 |-.013
0.064 | 7.5 | ~.041 | .396 |.017 | -.038 | -.016 | .027 |-.013 | .470
9.0 |-.043 | .394 | .017 | -.037 | -.016 | .027 |-.013
1.2
0.107 | 6.5 | -.050 | .3%0 | .022 {-.053 | -.011 | .032 |-.016 | .452
0.260 [ 6.5 | -.058 | .381 |.028 | -.073 | -.006 | .036 |-.019 | .431
6.5 |-.042 | .417 |.013 | -.041 | -.012 | .024 [-.013
0.064 | 7.5 |-.043 | .416 | .013 | -.040 | -.013 | .024 | -.013 | .470
9.0 |-.044 | .414 |.014 | -.040 | -.013 | .024 | ~.013
2.0
0.107 | 6.5 | -.049 | .408 | .018 | ~.060 | -.008 | .029 | -.016 | .452
0.160 | 6.5 | -.054 | .396 | .022 | -.086 | -.004 | .033 |-.018 | .43
6.5-.039 | .428 |.010 | -.043 | -.010 | .022 |-.013 :
0.064{ 7.5 | ~.040 | .427 | .011 | -.043 ] -.010 | .022 | -.013 | .470
9.0 |-.041 | .425].011 | -.042]| -.010 | .022 |-.013
3.0
0.107] 6.5 | -.084 | .417| .014 | -.066 | -.006 | .026 | -.015 | .452
9.0 |-.046 | .413 | .015 | -.066 | -.006 | .026 | ~.016
0.160 | 6.5 | -.047 | .403 ! .017 | -.096| -.003 | .020 | ~.017 | .43
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TABLE 2.6: STRUCTURAL PROPERTIES OF SINGLE-PANEL FLOOR WHERE
L1/L2 = 0.5, ds = 6.5 in., AND L] = 120 1in.

o 8 Flexural Beam | Torsional Beam

.032 6.37" x 12.74% ég37" g 12.74"

0t . 064 6.37" x 12.74" | 7.58" X 15.15"

0.8 .064 7.58" x 15.15" { 9.01" x 18.02"
.032 10.54™ x 21.09" { 10.54" x 21.09"

3.0 . 064 10.54" x 21.09™ | 12.54" x 25.08"
.128 10.54™ x 21.09" | 14.91" x 29.82"

TABLE 2.7: STRUCTURAL PROPERTIES OF SINGLE-PANEL FLOOR WHERE
L]/L2 = 2.0, ds = 6.5 in., AND L] 240 in.

a B8 Flexural Beam Torsional Beam
.064 6.37" % 12,74" 5.36" x 10.72"
0.8 .128 6.37" x 12.74" 6.37" x 12.74"
. 600 6.37" x 12.74" | 9.37" x 18.74"
.064 7.05% x 14.01" 5.93" x 11.86"
2 . 600 7.05" % 14.01" ] 10.37" x 20.74"¢
.064 8.01" x 16.02" 6.74" x 13.47"
20 .60C 8.01" % 16.02" {11.79" x 23.57"%
. 064 8.87" x 17.73" 7.46" x 14.91"
3.0 .128 8.87" x 17.73" 8.87" x 17.73"
. 600 8.87" x 17.73" {13.04" x 26.08"
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TABLE 2.8:

STIFFNESS OF A SINGLE-PANEL FLOOR WHERE

L1/L2 = 0.5, dS =6.5 in., AND L.I = 120 in.
. (X,.)
¢ B (Ky9)s (K;;gg) (K108 (K;;g'> (Kii)z
.032 194704. 05 125480.16 1.55
o . 064 208942.75 129371.02 1.62
0.8 .064 351370.34 258742.04 1.36
.032 1015228. 43 941101.21 1.08
3.0 . 064 1065416.58 970282. 64 1.10
.128 1146000. 46 1028645.51 1.11
TABLE 2.9: STIFFNESS OF A SINGLE-PANEL FLOOR WHERE
L]/LZ = 2.0, dS = 6.5 in., AND L] = 240 in.
K-in. k-in.\| Fi1’s
o 8 K110 g (‘ZEE—) K15 ( rad ) ® )y
.064 122518.99 64685.51 1.89
0.8 .128 128700.13 68589. 06 1.88
.600 164652.42 97271.44 1.69
.064 159591.45 97028.26 1.64
o . 600 218092.99 145907. 16 1.50
.064 230840. 26 230840.26 1.43
*0 . 600 321564.09 243178.61 1.32
. 064 317258.88 242570.66 1.31
3.0 .128 334672.02 257161.38 1.30
.600 448149.14 364767.91 1.23
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TABLE 2.10:

DISTRIBUTION FACTORS FOR SINGLE-PANEL FLOOR WHERE

L]/L2 = 0,50, d_ =6.,5 in., AND Ly = 120 in.
s 1
a B CFip | CFy3 |CFy4 | CFy5 CFy ¢ CF 5 | CFyg wlz
.032 }-.031 ] .375 | .034 | -.003 | ~.004 | .004 | ~.006 | .484
o4 .064 | -.052 |.372 |.048 | -.006 | ~-.000 | .006 | -.011 | .470
0.8 .064 | -.059 |{.401 |.046 | -.009 .004 | .008 | -.014 | .470
.032 | =-.035 | .437 {.023 | -.009 .004 | .006 | ~.010 | .484
3.0 064 |-.047 |.428 |.034 | -.024 .011 | .012 { -.017 | .470
.128 | -.058 | .410 | .045 | -.060 .020 | .019 | -.025 | .443

TABLE 2.11:

DISTRIBUTION FACTORS FOR SINGLE-PANEL FLOOR WHERE
L]/L2 = 2.00, dS = 6.5 in., AND L1 = 240 in.

o 8 g |Fi3 [Fyg [CFys {CFyg | CFyq | CFyg V15
,064 |-.040 |.311 |.005 |-.133 |-.053 | .069 | -.015 |.470
0.8 .128 |~.047 |.306 |.008 |-.151 |-.051 | .071 | -.016 | .443
.600 |-.072 |.268 |.020 | ~.270 |-.035 | .072 | -.017 |.313
.064 |-.050 |.33¢ |.003 |-.129 |-.053 | .062 | -.015 |.a70
t2 .600 |~-.072 |.274 |.017 | -.294 |-.032 | .063 | -.017 |.313
.064 |-.059 |.360 |.000 |-.121 |-.051 | .052 | -.015 |.470
2 .600 |~.067 |.279 |.o11 |-.322 |-.030 | .051 | -.016 |.313
.064 |-.062 |.377 F.003 | ~.114 | -.049 | .046 | -.016 | .470
3.0 .128 | -.065 |.363 |.000 |-.147 | -.044 | .047 | -.017 | .443
.600 | -.061 |.281 |.o06 | -.340 | -.029 | .0a3 | -.015 [.313
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TABLE 3.1:

STRUCTURAL PROPERTIES OF SINGLE-PANEL FLOORS

WHERE L]/L2 = 1.0, L

1

= 240 1in.

a B dg (in.) Flexural Beam Torsional Beam

0.4 0G4 6.5 6,37" x 12.74" 6.37" x 12.74"
‘ . 7.58" x 15.15"% 7.58" x 15.15"%

. 064
9.0 ©.67" x 19,.34" 9,.67" x 19.34"
0.8 107 6.5 7.58" x 15.15" 8.61" x 17.22"
- 160 6.5 7.58" x 15.15" 9.53" x 19.05%
1.2 . 064 6.5 8.3%8" x 16.77" 8.39" x 16.77"
2.0 . 064 6.5 9.53" % 19,05 9.53" x 12.05"
es | &5 | 10-55" x21.09" | 10.55" x 21.00"
) 9.0 | 13.46" x 26.92" 13.46" x 26.92"
3.0 - 107 €.5 16055" x 21.09°" 11.98" x 23.96"
. 160 6.5 10.55%" x 21.09" 13.26" x 26.52"
8.0 . 064 6.5 13.48" x 26.95" 13.48" x 26.95"
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TABLE 3.2: STRUCTURAL PROPERTIES OF SINGLE-PANEL FLOORS
WHERE L1/L2 = 2.0, L] = 240 in.
N 8 {in.) Flexural Beam Torsional Beam
0.4 . 064 6.5 5.36" x 10.72% 4.51" = 9.01"
064 6.5 6.37" x 12.74" 5.36" x 10.72"
0.8 9.0 8.13" x 16.27% 6.84" % 13.68"
.256 6.5 6.37" x 12.74" 7.58" x 15.15"
1.2 .128 6.5 7.05" x 14.10" 7.05" x 14.10%
2.0 .128 6.5 8.01" x 16.02" 8.01" x 16.02"
064 6;5 8.87" x 17.73" 7.46" x 14.91"
9.0 11.32" x 22.64" 9.52" x 19.03"
30 .128 6.5 8.87" x 17.73" 8.87" x 17.73"
«256 6.5 8.87" x 17.73 10.54% x 21.09"
8.0 .064 6.5 11.33% x 22.66" 9.53" x 19.05"
TABLE 3.3: STRUCTURAL PROPERTIES OF SINGLE-PANEL FLOORS
WHERE L]/L2 = 0.5, L1 = 120 1in.
a B (in.) Flexural Beam Torsional Beam
032 6.5 6.37" x 12.74% 6.37" x 12.74"
0.4 2.0 8.13" x 16.27" 8.13" x 16.27"
.128 6.5 6.37" x 12.74% 9.01" x 18.01"
0.8 . 064 6.5 7.58" x 15.15" 9.01" x 18.01"
1.5 .064 6.5 8.87" x 17.73" 10.54" % 21.09"
032 6.5 10.54" x 21.09" 10.54" x 21.09"%
5.0 13.46" x 26.92" 13.46" x 26.92"
>0 .064 6.5 10.54" x 21.09" | 12.53" x 25.07"
.128 6.5 10.54" x 21.09" 14.91%" x 29.81"
8.0 . 064 6.5 13.48" x 26.95" 16.02" x 32.03"
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TABLE 3.7: CARRYOVER FACTORS FOR A SINGLE-PANEL FLOOR
WHERE L,/L, = 1.0, L, = 240 in.
1772 1
a 8 dg CF,, CPiy | CFyy | CFyg CFy . CFy5 | CFiqg
0.4 .064 6.5 -.057 .318 | .023 | -.030 | -.034 | .037 | -.012
6.5 -.063 .338 | .020 | ~.029 { -.037 | .031 | -.008
. 064
2.0 ~.064 .335 | .021 | -.033 | -.035 | .032 | -.010
0.8
107 6.5 -.077 .337 } .027 | -.039 | -.041 | .034 | -.008
-160 6.5 -.091 .335 | .033 | -.050 | -.045 | .038 | -.009
1.2 . 064 6.5 ~.065 .344 | .018 | -.029 | -.038 | .028 | -.007
2.0 .064 6.5 -.063 .346 | .016 | -.028 | -.037 | .024 | -.006
6.5 -.060 .346 | .013 | -.029 | -.036 | .022 | -.005
.064
3.0 9.0 -.057 .339 | .012 | -.031 | -.032 | .023 | -.007
107 6.5 -.069 .342 | .018 | ~-.045 | -.040 | .025 | ~.005
160 6.5 -.077 .336 | ,021 | ~.067 | -.043 | .027 |} -.005
8.0 - 064 6.5 -.045 .345 | 008 | -.030 | -.029 | .018 | -.004
TABLE 3.8: CARRYOVER FACTORS FOR A SINGLE-PANEL FLOOR
WHERE L1/L2 = 2.00, Ly = 240 in.
a B dg CFi, 1€y |CFy | CF e | CFpg CF, | CF g
0.4 .064 6.5 | -.053 | .264 | .009 | -.163 | -.057 | .076 | -.007
6.5 | ~.065 | .301 | .009 | ~.146 | ~.062 | .066 | =.005
0.8 064
’ 8.0 | -.065 | .296 | .008 | ~.153 | -.060 | .067 | =.006
256 6.5 | =.092 | .291 | .020 | -.187 | -.072 | .069 | -.CO2
1.2 .064 6.5 | -.080 | .315 | .014 | -.1438 | -.067 | .060 | -.002
2.0 064 6.5 | -.080 | .332 | .013 | -.133 | ~,064 | .052 | -.0001
6.5 § -~.070 | .348 | .007 | -.100 | ~.058 | .044 | ~.002
.064
$.0 { -.071 | .340 | .005 | -.107 | ~.056 | .047 | ~-.005
3.0
.128 6.5 | -.076 | .341 { .012 } -.122 | -.060 | .046 | -.0004
256 6.5 | ~.082 | .325 | .016 | -.166 | -.060 | .048 | -.002
8.0 -064 6.5 | ~.057 | .359 | .002 | -.073 | ~.046 | .036 | -.003
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TABLE 4.2: PHYSICAL PROPERTIES OF CORNER PANELS WITH NONCONSISTENT o

WHERE dS = 6.5 in., L]/L2 = 2.0, L1 = 240 in.

- dge“Beams B Beans AC, DF, GI Beams AG, BE, CI
0.4 .064 5.36" x 10.72" 4.51" x 9.01"
3.0 .064 8.87" x 17.73" 7.46" x 14.91"
3.0 .256 8.87" x 17.73" 10.54" x 21.09"
8.0 .064 11.33" x 22.66" 9.53" x 19.05"
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TABLE 4.10:

PHYSICAL PROPERTIES QF INTERIOR PANELS

WHERE L/L, = 1.0, L, = 240 in.
o] 8 dg (in.) Flexural Beams Torsional Beams
0.4 . 064 8.0 8.85" x 17.71" 8.85" x 17.71"
6.5 9.01" x 18.02" 9.01" x 18.02"
.064
0.8 10.0 12.45" x 24.89" 12.45" x 24.89"
.192 10.0 12.45" x 24.89" 16.37" x 32.75"
2.0 . 064 8.0 13.24" x 26.48" 13.24" x 26.48"
6.5 14.91" x 29.82" 14.91" x 29.82"
. 064
10.0 20.60" x 41.20" 20.60" x 41.20"
6.0
.096 10.0 20.60" x 41.20" 22.79™ x 45.57"
.192 10.0 20.60" x 41.20" 27.10" x 54.19"
16.0 .064 8.0 22.27" x 44.53" 22.27" x 44.53"
TABLE 4.11: PHYSICAL PROPERTIES OF INTERIOR PANELS
WHERE L]/L2 = 0.5, L] = 120 in.
a 8 dg (in.)|{ Flexural Beams Torsional Beams
0.4 . 064 8.0 8.85" x 17.71" 10.52" x 21.05"
.032 10.0 12,45" x 24.89" 12.45" x 24.89%
6.5 9.01" x 18.02" 10.71" x 21.42"
0.8 . 064
10.0 12.45" x 24.89" 14.80" x 29.59"
.128 10.0 12.45" x 24.89" 17.60" x 35.19"
2.0 .064 8.0 13.24" x 26.48" 15.74" x 31.48"
4.0 .064 8.0 15.74" x 31.49" 18.72" x 37.43"
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TABLE 4.12: PHYSICAL PROPERTIES OF INTERIOR PANEL
WHERE L]/L2 = 2.0

a B dg (in.)] Flexural Beams Torsional Beams
0.4 . 064 8.0 7.45 x 14.89 6.26 x 12.52
6.5 7.58 % 15.15 6.37 x 12.74

0.8 .064
: 10.0 10.47 x 20.93 8.80 x 17.60
.255 ' 10.0 10.47 x 20.93 12.44 x 24.88
2.0 . 064 8.0 11.13 x 22.27 9.36 x 18.72
4.0 .064 8.0 13.24 x 26.48 11.13 x 22.26
6.5 12.54 x 25.08 10.54 x 21.08

6.0 . 064
- 10.0 17.32 % 34.64 14.56 x 29.12
.128 10.0 17.32 x 34.64 17.31 X 34.63
. 256 10.0 17.32 x 34.64 20.59 x 41.18
16.0 . 064 8.0 18.72 x 37.45 15.74 x 31.48
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TABLE 4.16:

CARRYOVER FACTORS FOR AN INTERIOR PANEL

WHERE L]/L2 = 1.0, L1j = 240 in,
o B ldg (in)| CFyq “Fis “F1y CFrg
0.4 .064 8.0 .141 ~,028 .012 -.010
6.5 .164 -.024 .009 -.008
.064 :
0.8 10.0 .157 -, 025 . 009 -,008
.192 | 10.0 .157 -, 037 .012 -.008
2.0 .064 8.0 .157 -,018 . 005 ~.004
6.5 L177 -.016 .003 -.001
. 064
6.0 10.0 .163 -, 017 .004 -.002
.096 | 10.0 .162 -, 024 .005 -,001
.192 | 10.0 .154 =.049 .006 -.001
16.0 .064 8.0 .160 -.016 .003 -
TABLE 4.17: CARRYOVER FACTORS FOR AN INTERIOR PANEL
WHERE L1/L2 = 0.5, L1 = 120 in.
o B ds (in.) CF13 CFlS CF17 CFlg
0.4 . 0684 8.0 .159 -.003 .001 -.006
.032 | 10.0 .159 -.002 - -.004
6.5 .170 -, 004 001 ~-.006
0.8 .064
10.0 .162 -.004 .001 -.004
.128 | 10.0 .163 -.008 . 003 -. 009
2.0 .064 8.0 .160 -. 006 .002 -.005
4.0 . 064 8.0 .147 -, 009 . 003 -.005
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TABLE 4.18: CARRYOVER FACTORS FOR A
WHERE L. /L

N INTERIGR PANEL
= 2.0, Ly = 240 in.

2 1
Q L] . g :1;:% = A‘. vil
8 d {in.) &‘513 ¢ 15 Cfl? C‘Eig
3.4 L0864 8.0 . 85 - ,124 L0324 -, 0%
6.5 . 1056 =,118 032 =, 005
. 354
10,0 . 302 -, 116 0333 -, 005
256 10,0 . 100 =,132 .033 =, 006
. 064 8.0 .133 - =, 089 025 -,0305
064 8.0 .146 =, 008 .018 =, 004
6.8 . 158 =.054 014 =,003
. 064
10.0 145 -, 056 016 =, 004
.128 10,0 142 =, 06% .01l6 -, 003
. 258 16.D 134 =,098& 016 -, 002
- D64 8.0 . 158 =,034 - 00% =, 002




TABLE 5.1: PHYSICAL PROPERTIES OF FLOORS ANALYZED
WHERE L]/L2 = 1.0, L1 = 240 in., H =180 1in.
‘C Onp EAC ds {(in.) DAB {in.) DAc {(in.)
(in.)
6.5 15.15 15.15
. 064
15 0.8 S.0 18.34 18.34
. 160 6.5 15.15 19.05
15 3.0 . 064 6.5 21.09 21.09
21 3.0 .064 6.5 21.0% 21.09
6.5 26.95 26.95
. 064
15 8.0 8.0 34.40C 34.40
.160 6.5 26.95 33.87
6.5 26.95 26.95
. 064
20 8.0 9.0 34.40 34.40
. 160 6.5 26,95 33.87
27 8.0 .064 6.5 26.95 26.95




TABLE 5.2a: PHYSICAL PROPERTIES OF STRUCTURES ANALYZED
WITH Ly/Ly = 0.5, Ly = 120 in., H = 144 in.
C  (in.) Cap Bac d;  Un.) D, (in.) D,o (in.)
0.4 . 064 6.5 12.74 15.15
15 3.0 . 064 6.5 21.09 25.07 .
8.0 . 064 6.5 26.95 32.03
0.4 .064 6.5 12.74 15.15
25 3.0 .064 6.5 21.09 - 25.07
8.0 . 064 6.5 26.95 32.03
TABLE 5.2b: PHYSICAL PROPERTIES OF STRUCTURES ANALYZED
WHERE Ly/L, = 0.75, L, = 180 in., H = 144 in,
C (in.)] o,p Bac dg (in)p, . (in.) DAé (in.)
25 0.8 064 8.0 17.71 19.02
25 3.0 . 064 8.0 24.64 26.47
25 8.0 .064 8.0 31.49 33.82
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TABLE 5.3:

1

PHYSICAL PROPERTIES OF STRUCTURES ANALYZED
WITH L]/L2 = 2.0, L

= 240 in., H = 144 in.

c (ina) IS BAC dS (in.) Dug {in.) Dac -(in.)
0.8 .064 6.5 12.74 10.72

15 3.0 064 6.5 17.73 14.91
8.0 .064 6.5 22.66 19.05
0.8 .064 6.5 12.74 10.72

20 3.0 .064 6.5 17.73 14.91
8.0 . 064 6.5 22.66 19.05
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TABLE 5.4: STRUCTURAL PROPERTIES OF COLUMNS
C (in.) | A (in.)?2 Agy  (in.)? (in.)*
15 225.0 187.5 4218.8
20 400.0 333.3 13333.3
21 441.0 367.5 16206.8
25 625.0 520.8 32552.1
27 729.0 607.5 44286.8
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TABLE 5.6a:

MEMBER STRUCTURAL PROPERTIES FOR ACI-71, 8.7 METHOD
WHERE L]/Lz = 1.0, L1 = 240 in., H = 180 in.

Am e 4, Gna)| b, Gnad | A @) I, (in.)?
6.5 20.0 5.28 3795.67

.064
0.8 9.0 20.0 7.14 9499.48
.160 6.5 20.0 5.28 3795.67
.0 .064 6.5 20.0 7.85 13060.00
6.5 20.0 10.78 32432.90

8.0 .064
. 9.0 20.0 14.24 81787.41
.160 6.5 20.0 10.78 32432.90

TABLE 5.6b: MEMBER STRUCTURAL PROPERTIES FOR ACI-71, 8.7 METHOD
WHERE L1/L2 = 0,5, L] = 120 in., H = 144 in,

AB Bac d, (n.)| b, (in.) A (in.) I, (in.)
0.4 .064 6.5 10.0 4.98 1678.81
3.0 .064 6.5 10.0 8.89 11142.84
8.0 .064 6.5 10.0 11.92 27961.07
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TABLE 5.6¢:

MEMBER STRUCTURAL PROPERTIES FOR ACI-71, 8.7 METHOD

WHERE Lq/L, = 0.75, Ly = 130 in., H - 144 in.

; b (in.) X (in.) I (inn?
aA‘B BAC ds tin.) £ in,. A in. B in.
¢.8 064 8.0 15.0 6.75 6337.24
3.0 . 064 8.0 15.0 9.96 21955.27
8.0 . 064 8.0 15.0 13.46 54925.98

TABLE 5.6d: MEMBER STRUCTURAL PROPERTIES FOR ACI-71, 8.7 METHOD
WHERE L,/L, = 2.0, Ly = 240 in., H = 144 in.

a 8 : : A (in.) T (inn?
AB ¥e ds (in.) bf (in.) in. B n.
0.8 .064 6.5 20.0 4.45 2042.83
3.0 . 064 6.5 20.0 6,32 6821.27
8.0 . 064 6.5 20.0 8.61 17077.72
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TABLE 5.9:

EFFECTIVE SLAB WIDTH, bfg OF SINGLE-PANEL FLOORS

bf
Ll/LZ ®in BAC ds (in.) f (in.) 0.5 L
6.5 25.02 .21
0864
0.8 9.0 28,79 .25
- 160 &.5 29.25 - 24
1.0
L1=24o in 3.0 . 064 6.5 17.62 .15
6.5 i8.97 .15
.064
8.0 8.0 24,99 .21
- 160 6.5 19.%0 .17
0.4 . 064 6.5 18.18 .15
0.5
Ll=120 in 3.0 . 064 6.5 12.52 .10
8.0 .0864 6.5 13.4%9 <11
0.8 . 064 8.0 22.20 .18
0.75
Ll=18° in 3.0 . 064 8.0 17.15 .14
8.0 . 064 8.0 i8.71 .16
0.8 . 064 6.5 22.46 .37
2.0
L,=240 in 3.0 . 064 5.5 17.11 .29
8.0 . 064 6.5 17.20 .30
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TABLE 5.10:

STRUCTURAL PROPERTIES OF EQUIVALENT FRAME

FOR THE MULTI-PANEL, SINGLE~STORY STRUCTURE

col- | Iy (in* Igp (in) Ke i;éna ta %i%ﬂ' ec %ﬁ%&-
A 70816.67 34737.47 8861505.30 108319729, 66 8191455.48
B 70816.67 94737.47 8861595.30 60186257.14 7724298.94
E 82620.97 | 110529.08 §861595. 30 252750681.38 §561426.39
F 82620.97 | 110529.08 8861595. 30 140437181.19 8335617.30

TABLE 5.11¢

STRUCTURAL PROPERTIES FOR ACI 318-71, 8.7 MODEL
OF THE MULTI-PANEL, SINGLE-STORY STRUCTURE

Beam b, {in} X dny 1 Gn? 7 o)

aB 15.0 12.56 46490.80 21888.40
AE 20.0 12.12 48885.30 22298.00
EF 48.0 10.93 55290.77 23629.20
BF 60.0 10.11 59870.00 24858.00
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TABLE 5.14:

BASED ON FINITE ELEMENT METHOD

LATERAL DISPLACEMENTS OF MULTI-BAY SINGLE-STORY STRUCTURE

-155-

d, (in.) Bog (Ano) | O,y (rad)} A, (in)
Corner Col. 8.0 0144 .000105 .0148
Ext. Col. (X-X)| 8.0 .0141 .0000%96 .0144
Ext. Col. {(¥Y-¥Y)| 8.0 .0140 .000074 .0143
Int. Col. 8.0 .0139 . 000067 .013%
1l
7 ZAT .0144
TABLE 5.15: LATERAL DISPLACEMENTS OF MULTI-BAY SINGLE-STORY STRUCTURE
BASED ON THE ACI-71, SECTION 8.7 METHOD
ANA (in.) IX (in.) Moo (R-in. )Mo (K-in) AT (in.)
Corner Col. .0121 11.43 195.46 382.92 .0130
Ext. Col. (X=-X) .0121 11.43 223.57 398.42 .0130
Ext. Col. (Y-Y) .0121 11.43 337.58 461.30 .0127
Int. Col. .0121 11.43 371.01 479.73 .0126
1
Z-ZAT .0128




TABLE 5.16: LATERAL DISPLACEMENTS OF MULTI-PANEL SINGLE-STORY STRUCTURE
BASED ON THE ACI-71, SECTIONS 8.7 AND 11.7 METHOD

Column by Gne) P ino) o (K=in.)ju (k=in.)i A (in.)
A .C1215 | 10.97 | 194.71 382.98 .0131

B .01215 | 10.97 | 222.89 398.58 .0130

E .01215 | 10.97 | 337.35 461.94 .0128

F .01215 | 10.97 | 370.99 480.56 .0127
%aZAT .0129

TABLE 5.17: LATERAL DISPLACEMENTS OF MULTI-PANEL, SINGLE-STORY STRUCTURE
BASED ON THE SMM

Column |p - (in)| A (in.) Ju_. Ge-imdfa  (k=in.)| A (in.)
3 .01303 | 11.59 | 188.79 401.26 .0141
B 01303 | 11.50 | 205.06 410.22 .0141
£ .01303 | 11.59 | 328.24 478.06 .0138
F 01303 | 11.59 | 348.93 489.45 .0138
%»ZAT .0140
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TABLE 5.18: * COMPARATIVE LISTING OF THE LATERAL STIFFNESS
OF MULTI-PANEL, SINGLE-STORY STRUCTURE

Model k. ( K ) Diff. %
AT in,

Finite Element 6950.67 -

Equiv. Frame 8335.83 19.93

ACI-71, B.7 7783.70 11.99

ACI-71, 8.7 + 11.7 7763.79 11.70

SMM 7164.98 3.98

TABLE 5.19: STRUCTURAL PROPERTIES OF COLUMNS AND FLOOR BEAMS
OF MULTISTORY BUILDING

Member A (in.)?2 a,  no? ) 1 no? |5 (ino?
Ext. Col. 400.0 333.3 13333.3 32000.0
Int. Col. 676.0 563.3 38081.3 91395.2
Ext. Bm. 338.0 281.7 19040.7 11424.4
Int. Bm. 392.0 326.7 25610.7 15366.4
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TABLE 5.20:

VALUES OF PARAMETERS NEEDED TO DEFINE THE SMM

EQUIVALENT MEMBERS FOR THE MULTISTORY BUILDING

Egquivalent 6 . o 8
Member em/Lcm da {(in.) e (in.)

8.0 9.0 3.38 0.05
di-4z2 1.18 1.0

12.0 7.0 1.00 Q.05

8.0 8.0 2.86 .08
dl-cl 0.85 1.0

12.0 7.0 0.85 0.08

8.0 9.0 3.38 ¢.08
42-d3 1.18 0.5

12.0 7.0 1.00 0.08

8.0 9.0 2.86 0.11
cl-bl .85 0.5

12.0 7.0 0.85 0.11

8.0 10.0 2.27 0.05
c2=-c3 1.18 -

12.0 8.0 0.67 0.05

8.0 10.0 1.92 0.08
c2=b2 0.85 -

12.0 8.0 0.57 0.08
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TABLE 5.23a:

USING THE EQUIVALENT FRAME METHOD

EQUIVALENT BEAM PROPERTIES FOR MULTISTORY BUILDING

Equiv. . .
Membery & (l-'n‘) A (lne)z I (ll’lo)4 J (ln°)4
8.0 1342.0 44877.8 24275.6
Ext. Prame
Beam 12.0 1844.0 50638.9 54797.2
8.0 2392.0 69053.3 28166.4
Int. Frame
Beam 12.0 3392.0 83799.4 | 101766.4
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TABLE 5.23b: EQUIVALENT COLUMN PROPERTIES FOR THE MULTISTORY
BUILDING USING THE EQUIVALENT FRAME METHOD

8 in.

Slab 12 in. Slab
Col. . L for s .
K=in. K“lp%\ IK~1n, K-in.
Story Col. End K, ( rad ) Keo ('réd } c % rad ) Kec ('rad )
Cor Top 1498543.8 1268720.0 14526%92.1 969011.1
dz Top 1488543.8 1138352.8 1452692.1 799359.5
ist.
cl Top 1570481.4 1480480.9 1522524.3 1317360.4
Int. Top 4485451.9 3685528.5 4348481.7 2885067.5
cor Top 24%86794.7 2016110.1 2393318.5 14538%85.2
° Bott. | 1658637.4 1404260.8 1741418.3 1161604.5
a2 Top 2496794.7 1762701.1 2393318.5 1162928.0
ond Bott. | 1658637.4 1259966.1 1741418.3 858234.3
thru
11th cl Top 2670385.6 2469610.3 2560102.9 2125043.6
Bott. | 1690084.5 1593232.3 1775870.0 1536567.0
Tnt Top 7626888.3 5911120.8 7311209.8 4386796.1
¢ Bott. | 4827078.9 3966230.7 5072062.2 3365138.1
Cor Top 2496794.7 2183933.3 2393318.5 1741851.9
‘ Bott. | 1658637.4 13398315.4 1741418.3 1057878.3
as Top 24967%4.7 1897068.3 2393318.5 1484310.8
Bott. | 1658637.4 1170974.1 1741418.3 846165.8
12th
el Top 2670385.6 2543738.9 2560102.9 2284013.3
Bott. | 1690094.5 1563023.3 1775870.0 1474081.¢9
Tnt Top 7626888.3 6475770.6 731190¢9.8 5246399.0
? Bott. | 4827078.9 3741164.8 5072062.2 3042994.7
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TABLE 5.26: STIFFNESS PARTICIPATION IN THE FIRST MODE SHAPE (K]*)

Slab Phickness, dg % Increase in

Method 8.0 in. [ 12.0 in. | K] due to
increase in dg

Bare Beams 1.00 1.00 -
SMM 1.26 1.47 16.7
Eff. Slab

Width 1.50 1.51 . 0.7
Equiv. Fr. 1.84 2.01 9.2

TABLE 5.27: MAXIMUM (SRSS) LATERAL ROOF DISPLACEMENT
OF THE BUILDING OF FIG. 5.11

8 in Slab 12 in Slab
M ‘f L) . v, i L2
ethod AY (in.) Diff. % AY in’) Diff. %
SMM 8.40 - 9.02 -
Eff. Slab
Width 7.30 -13.10 8.71 ~-3.44
Equiv. Fr. 6.37 =24 .17 6.88 -23.73
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COLUMN ROTATIONS
AT FLOOR LEVEL INTERSTORY DRIFT

(COLUMN TRANSLATION)

COLUMN

FLOOR SYSTEM

Fig. 1.1 Deformations of Moment-Resisting Frame
Subjected to Lateral Loads
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CORNER | EXTERIOR .
PANEL | PANEL

INTERIOR
PANEL .

ROTATIONAL
DEGREE OF FREEDOM

FLOOR SYSTEM WITH OR WITHOUT BEAMS

Fig. 1.2 Degrees of Freedom in Floor System
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(b) Equivalent interior frame
Fig. 1.3 Illustration of Equivalent Frame as Defined

in ACI 318-71 Code, Section 13.4
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Panel

EK\\\Transvers@ span, fp

e Cp

Fig. 1.4 Simplified Physical Model

— 4, N

L/zxzxrcz/zzw (324!2/2)(1-%/[2;’

P i &
11 | | A2

L
nati (b) Distribution of unit twisting moment
(a) Beam-column combination N org eolum centerline

N ¥ % ] — (|-112>
SRV , 2CG

(c) Twisting moment diagram Where G = modulus of elasticity or rigidity

(d) Unit rotation diagram

Fig. 1.5 Assumed Distribution of Unit Twisting Moment
Applied Along Column Centerline, Twisting
Moment Diagram, and Unit Rotation Diagram [10]
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Section A-A

Fig. 1.6 Floor System with Two-Way Slab
Supported on Beams Between Columns
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. L »|\ DEGREE OF
FREEDOM
(TYP)

Section A-A

Fig. 2.1 Typical Single-Panel Floor with Beams Sym-
metric around Slab Neutral Surface
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— — — STRIPS BEFORE LOADING

————DIFLECTED SHAPE OF
STRIPS

(a) Schematic Diagram of a Simply Supported S]éb
with Uniform Gravity Load [18]

Viy—
’ﬁ//ﬁ<; Vxz

Tx

(b) HMoments, shears, and in-plane (membrane)
forces in slab element

Fig. 2.2 Load Carrying Mechanism in a Two-Way

Reinforced Concrete Slab
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Fig. 2.3 Schematic I1lustration of Beam Internal Moments
Due to Applied Column Moment
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Fig. 2.5 Effect of dS/L] on Stiffness of Single-Panel
Floor System
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(KII)SP KQE XEQ

5.0+
4.0+

ze/
3.0f
2.0" : GROUP nAu

ol - GROUP"B"
1.0+

4.0 6.0 8.0 10.0 ds, in

0 0 20 30 404 3/1-.

Fig. 2.7 Effect of ds3/l‘1 on Stiffness of Single-Panel Floor
with Beams Symmetric around Mid-Plane of Slab
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(Kn)s/(KI)B - RESULTS OF TABLE 2.3

251 & =r== RESULTS OF TABLE 2.4, GROUP "A"
==j¢== RESULTS OF TABLE 2.4, GROUP"B"
207t
1.5t
1.07
0.5¢
t . + + t A
0 0.5 1.0 1.5 20 25 30 a

Fig. 2.8 Contribution of Slab to Stiffness of a Square,
Single-Panel Floor System as Function of o
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Fig. 2.11 (K11)S/(K]1)B vs. o for a Single-Panel Floor with
Beams Symmetric around Slab Neutral Axis.

-181-
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Fig. 2.12 Schematic Diagram of Physical Layout
of Floor as L]/L2 Varies
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Fig. 3.1 Single-Panel Floor with Eccentric Beams
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Fig. 3.2 Schematic Illustration of Stresses along Flexural
Beam

COMBINED SECTION
CENTER OF SHEAR

O, / Aj\\

B i L Z RS ~
. A jq_ ~ Ty

NETJ;K\‘

VERTI
CAL DIS- D~Y
PLACEMENT

Ax-4+g NET LATERAL DISPLACEMENT
OF BEAM DUE TO TORSION

(a) Cross Section through (b) Plan View through Slab
Torsional Beam Mid-Plane

Fig. 3.3 Schematic IT1lustration of Rotation of Torsional
Beam and Slab
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L BEAM ELEMENTS

(b)

4 | “MODELED BY FINITE ELEMENTS

RIGID “SSECTION OF BEAM MODELEL BY
LINK BEAM ELEMENT

(c)

Fig. 3.4 Modeling of Floors with Eccentric Beams
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Fig. 3.5 Geometry of Slave and Master Nodes
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Fig. 3.6 Rotations and Displacements at Support A

N

|
ls" 8
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Fig. 3.7 Cantilever T-Beam Model
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Fig. 4.1 Schematic of Multi-Panel Floor
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Fig. 4.2 Corner Panel
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Fig. 4.3 Modeling of Corner Panel
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Fig. 4.4 Schematic Plan of a Multi-Panel Floor
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(b) Quarter of floor with impnsed boundary conditions

Fig. 4.5 Example of Structural Symmetry
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Fig. 5.5 Single-Panel, Single-Story Structure
under Lateral Loading
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Appendix A

BEAM CARRYOVER FACTORS INCLUDING INFLUENCE OF SHEAR
DISTORTION IN FLEXURAL BEAM

The stiffness matrix of a prismatic member including the influence
of shear distortions is:

2+t 1-1
_ 2E]
K = T + 247 (A.1)
T-1 2+T
where
.= __QELT? (A.2)
GASh L

Since all beams used in this study have a depth-to-width ratio of 2:1,
and material properties as defined in section 2.3.1, T can be more
easily defined as:

D4
T = 2
5D% | 2
12
(A.3)
2
v = 1.404
L
The stiffness matrix of eq. A.1 could also be rearranged so that:
1-1
1.0 5—
- 2+t
4E1 , 2 + 1
k=T Gva) (A.-4)
1-1
i 1.0

Given eq. A.4, when the influence of shear distortions in the
flexural beam is included, the following equations must be modified:

A-1



1. The flexural stiffness kF’ as defined in eq. 2.1, is

transformed to k% where:
4F1

[ B 2+’E
kF L (2 T g

) (A.5)

T

2. The ratio B, as defined in eq. 2.6, is transformed to 8'

where:

B' = 8 (5110 (A.6)

3. Using eqs. A.4, A.5, and A.6, the stiffness of the bare beams
(K11)B’ as defined in eq. 2.5, is transformed to (K]])é, where: '

4EI GJ

. FB ,2 + 1 TB
(Kyydg = » G770 »
4F1
" FB 2 + T ’ 1
(K”)B - L] (2 + 4T) (1 1 B ) (A7)

and the bare beam carryover factor w]3, as defined in eq. 2.11, is
transformed to wis where:

vy = GFD (40 (h.8)

Using egs. A.3, A.6, and A.8, the values of wi3 for some of
the floors analyzed in Chapter 3 are as follows:

Li/L, 8 a D (in)} = 8 w;3
0.8 | 12.74 | .004 | .064 | .467

2.0 0.064 | 3.0 | 17.73 | .008 | .065 | .464

Ly = 240 in. 8.0 | 22.66 | .013 | .065 | .460
0.8 | 15.15 | .006 | .065 | .466

1.0 0.064 | 3.0 | 21.09 | .011 | .065 | .462

Ly = 240 in. 8.0 | 26.95 | .018 | .066 | .457
0.8 | 15.15 | .022 | .066 . 453

0.5 0.064 | 3.0 | 21.09°| .043 | .068 | .438

Ly =120 in, 8.0 | 26.95 | .071 | .07 | .419

A-2



Appendix B

CLOSED-FORM SOLUTION OF LATERAL DISPLACEMENT
USING EQUIVALENT FRAME ANALYSIS

The Tateral stiffness KL of a single-story, single-panei frame
(Fig. B.1) is the force P necessary to produce a unit lateral displace-
ment A at the top of the frame. The solution to the problem of finding
P/n  can be found by superimposing the solution of the two frames shown
in Figs. B.1(b) and B.1(c). In the frame shown in Fig. B.1(b), the
solution relating the lateral force R to the beam end moments MB de-
veloped as consequence of the applied external moment MF can be achieved
by the use of Castigiliano's Theorem:

NV g (8.1)

where U = complementary energy:

MB (MF—MB)
U = 2Mg (Efo + 2 (MF-MB) X (B.2)
s ec
where
Kee = equivalent column rotational stiffness [Fig. B.2(a)]
KS = beam rotational stiffness [Fig. B.2(b)]
1 oy _ Mg Mg 2Mp
P e S S S (B.3)
B S ec ec
My = Mo\ o——— (B.4)
B F Ks + Kec

The moment in each of the columns in the frame shown in Fig. B.1(b) is

(MF - MB) and can be related to the shear in the column by:

B-1



3(M_ - M)
R SWMp - Mg
T (8.5)
3(M. - M)
R = FH B (B.6)

4MF
P=T_R (8.7)
Using eqgs. B.4 and B.6:
Mo 4K + K
F S ec
P= [+ (B.8)
H [ Ks Kec

In the columns of the frame shown in Fig. B.1(c), the column
moment MF and lateral displacement A can be related by:

MF
KLR = ‘A—— (B.9)
where KLR = lateral force needed to produce unit Tateral
displacement in column [Fig. B.2(c)]
Using eqs. B.8 and B.9:
4K+ K K
P S ecy LR
Ky = x=1 1 (B.10)
1 A KS KeC H

Member Properties: The equivalent beam as defined by the ACI Code

equivalent frame method (Fig. B.3) can be shown to have the following

properties:
3
d L d 4 2
-5 (2_.D .S 24D D7D 43
g1 (g -+ A -+t G -n) (B1)
and
EL1
KS = —B-— (812)
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where IB = moment of inertia of equivalent beam

C = column width
L
_ 2D
Av= dg (5 -7
. D
2 2

2L, - 4C

] ¢ ¢ ]
B = Fylly - 3) + Folly - 3) + F3l—5—)
Fy = 4IC (- LE_C)

BT 1
Fp = 21C (LE-C)
BT L
1 (L1'C)2
B 4L,

1 = 5

LY
Lo

The rotational stiffness Kec of the equivalent column (Fig. B.4) is
defined by the ACI Code to be:

(k) (K )

K =
+KC

(B.13)
ec Kta

Using the conjugate beam method, it can be shown that for the column
shown in Fig. B.4:

EI,
K. = (B.14)
C 2

H, - NDH, + (H)%/2]

B-3



where

DH_ + (HC)Z
N = c 2 >
DH (D + Ec_\ + ) (0 + EH_C)
e 27’ 2 3

The code also defines Kta as the torsional stiffness of torsional beam
(Fig. B.5) where:

K. =K B (B.15)

and

4 dS <B D - dS

£ <

For definitions of Isfand Kt’ see ACI 318-71 Code, section 13.4.
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Appendix C

CALCULATION OF LATERAL STIFFNESS OF SINGLE-STORY STRUCTURES

C.1 Single-Panel, Single-Story Structures

Following are the detailed calculations of the lateral stiffness of
the single-panel, single-story structures described in Tables 5.3 through
5.6. The calculations are based on results of the computer analysis of
the finite element model (Fig. 5.5), the ACI 318-71, 8.7 model (Fig. 5.8),
and the SMM (Fig. 5.9).

1. Finite element model. - Given the symmetry of model and Toad
shown in Fig. C.1, the lateral displacements A are such that:

AA = A

AB = A

C

However, due to in-plane slab strains:

(C.2)

The computer program produces the lateral displacements at the
mid-plane of the slab Acs and the rotation of the nodes eyy' The Tateral
displacement of the top of the slab Ao based on the assumption that
plane sections in the slab remain plane (Fig. C.1), is:

d
s
= + =
AT Acs 5 (tan eyy) (C.3)
Taking the average of the Tateral displacements at the four columns,
the lateral stiffness of the structure becomes P/ATa where:

™

A =

Ta (ap)y *+ (7)1 (C.4)

[ENTE
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The values of ATa based on eq. C.4 for the structures analyzed in

Chapter 5 are given in Tables C.la through C.1d.

2. The ACI 318-71, 8.7 and the SMM, - These two models are similar,
as shown in Fig. C.2. The computer program used gives the lateral dis-
placement of the equivalent beam's neutral axis AN.A.’ the moment at
the top of the column MTC’ and the moment at the base of the column MBC
(Fig. C.2). Given that plane sections in the beam remain plane, the
lateral displacement at the top of the slab AT’ as shown in Fig. C.2(b),
can be calculated as:

A = A + X tan 8 (C.5)

T N.A. CT

and the rotation at the top of column eCT can be found by integrating
the curvature along the length of the column, where:

6. =00 ry (C.6)

BC TC]

The values of AT based on eq. C.6 for the structures analyzed in
Chapter 5 are given in Tables C.2a through C.3d.
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TABLE C.2b: LATERAL DISPLACEMENTS OF A SINGLE-PANEL,
SINGLE-STORY STRUCTURE BASED ON ACI-71,
8.7 METHOD WHERE L]/L2 =0.5, Ly = 120 in., H = 144 in.

1
.y T i . s iy s .

C{in; %5 BAC dg (in; ANA(J.n.) A (in) M’I‘C(K in} MBC(K in) AT(m.)
0.4 064 6.5 1,417 4.983 2235.51 4327.34 1.466

15 0.8 . 064 6.5 .737 8.894 2823.82 3321.98 .757
3.0 . 064 €.5 .575 11.821 2804.09 3048.41 . 587

0.4 . 064 6.5 .343 4.983 517.94 6044.91 .359

25 0.8 .064 6.5 .188 8.894 1790.83 4354.87 .201
3.0 . 064 6.5 .127 11.921 2215.92 3636.58 .136

TABLE C.2c: LATERAL DISPLACEMENTS OF A SINGLE-PANEL,
SINGLE-STORY STRUCTURE BASED ON ACI-71,
8.7 METHOD WHERE L1/L2 = 0.75, L] = 180 in., H = 144 in.

. L in . ; ind| ™ —in .
C{in) @i BAC ds (in ANA(J.n) %{in.) NTC(K in) BC(K in.} AT(ln,‘)
0.8 .064 8.0 . 265 6,749 1094.08 5220.42 .281

25 3.0 .064 8.0 .16l 3.963 1922.32 4045.69 173
8.0 . 064 8.0 .106 13.455 2247.77 3378.23 .114
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TABLE C.3a: LATERAL DISPLACEMENTS OF A SINGLE-PANEL, SINGLE-STORY
STRUCTURE BASED ON THE STIFFNESS MATRIX METHOD
WHERE L1/L2 = 1.0, L] = 240 in., H = 144 in.

. N N N . P s =
C {in) ®n BAC dg (inl “NAhn" A{in) MTC(K in} MBC(K in} AT(:Ln./
6.5 2.464 5.500 | 3106.49 513¢.01 2.529

.064
15 0.8 8.0 1.761 7.189 | 3547.98 4485.02 1.800
.160 6.5 2.417 5.500 | 3149.96 50922.54 2.480
15 3.0 . 064 6.5 1.682 7.918 | 3536.98 4408.52 1.721
21 3.0 .064 6.5 . 686 7.918 | 2657.68 5287.82 .717
6.5 1.301 10.406 | 3624.98 4027.52 1.323

.064
15 8.0 9.0 1.030 13.389 | 3554.30 3725.70 1.042
.160 v 6.5 1.297 10.406 | 3628.57 4023.93 1.319
6.5 .539 10.406 | 3250.94 4401.56 . 560

.064 .

20 8.0 9.0 .384 13.389 |3386.99 3893.01 . 395
.160 6.5 .536 10.406 | 3260.47 4392.03 .556
27 8.0 .064 6.5 .254 10.40€ | 2349.01 5303.49 .270
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TABLE C.3b: LATERAL DISPLACEMENTS OF A SINGLE-PANEL, SINGEL-STORY
STRUCTURE BASED ON THE STIFFNESS MATRIX METHOD
WHERE L1/L2 = 0.5, Ly = 120 in., H = 144 in.

1
. (in) in. = —in. —in .

C{iny %5 SAC dg{in ANA(lP) A (in) D%C(K in MBC(K inJ ATian
0.4 . 064 6.5 1.381 5,060 2287.34 4275.66 1.428

15 0.8 .064 6.5 . 757 8.720 2792.85 3352.65 .780
3.0 . 064 6.5 .384 11.429 2790.33 3062.18 .597

0.4 .064 6.5 .338 5.060 569.10 5993.90 .354

25 0.8 . 064 6.5 .197 8.720 1677.94 4467.57 .212
3.0 . 064 6.5 .133 11.429 2142.91 3709.59 .143

TABLE C.3c: LATERAL DISPLACEMENTS OF A SINGLE-PANEL, SINGLE-STORY
STRUCTURE BASED ON THE STIFFNESS MATRIX METHOD

WHERE L1/L2 = 0.75, L1 =180 in., H = 144 1in.

Clin} | a,p Bac ds(ln? ANA(ln) a(ing MTC(K—an MBC(K—ln) AT(Ln)
0.8 . 064 8.0 . 265 6.766 1093.41 5221.09 .281

25 3.0 .064 8.0 .169 10.371 1814.60 4153.41 .183
8.0 .064 8.0 .112 12.808 2177.34 3448.16 .121
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Aspendix D

CALCULATION FOR SMM OF THE MULTI-PANEL, SINGLE-STORY STRUCTURE
SHOWN IN FIG. 5.10

Since all beams in the floor are identical and slab thickness, ds9
is constant, the following values apply for all members of the model:

_15(30)3 .
1, = 2307 - 33750.0 in
3
iy = 30(18)° - ,0250.0 ind
A = 15(30) = 450.0 in.?
e = 30 > 8 - 11.0 in.
E = 3320.6 ksi
v = 0.17
6 = 1419.1 ksi

Six different types of equivalent members are sufficient to model
this floor system according to the SMM. These members are:

1. Corner member AB, CD, MN, and QR,

2. Corner member AE, DH, IM, and LR.

3. Exterior member BC and NQ. '

4, Exterior member EI and HL.

5. Interior member EF, FG, GH, IJ, JK, and KL.
6. Interior member BF, FJ, JN, CG, GK, and KQ.

The stiffness matrices of the first four are determined according
to the procedure given in section 5.2.1(a) and those of the Tast two
according to the procedure given in section 5.2,1(b). Table D.1 gives
the results of following the first five steps in the procedure defined
in sections 5.2.1(a) and 5.2.1(b). Following are the results of the
lTast two steps:

1. Corner member AB

_ 1.0 (2531423.80)

511 7 T5903798.12

(0.07) = 0.06
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' 1.0 [(2531423.80)(0.92)] _
1.0 - 7903798, 12 = 0.98

S

22

Corner member AE
1.0 (2903798.12)

S;7v 7 TUm3Tmzes o (0.02) = 0.0z
i 1.0 [(2903798.12)(0.06)] _
Spp = 1.0 - S53TA23.90 = 0.93

Exterior member BC
0.5 (2897475.46)

S;1 = TmpomTsy - (0.05) = 0.03
i 0.5 [(2897475.46)(0.03)] _
Syp = 1.0 - 282007 T.57 0.98

Exterior member EI
0.5 (3207014.41)

S\v T Tagmmesy - (0.01) = 0.01
) 0.5 [(3207014.41)(0.07)] .
Spp = 1.0 - 5118356 87 0.95
Interior member EF
0.5 [(2.0)(2897475.46)] )
ST 3267014 .47 (0.07) = 0.07
) 0.5 [(2.0)(2897475.46)(.03)] _
Spp = 1.0 - 3207074, 71 = 0.97
Interior member BF
0.5 [(2.0)(3207014.41)] )
S11 3897075 46 (0.03) = 0.03
) 0.5 [(2.0)(3207014.41)(.07)]
Spp = 1.0 3897475 .46 = 0.92
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Appendix E
EFFECTIVE SLAB WIDTH FOR SINGLE-PANEL FLOORS

The symmetry of the Toading and the structure shown in Fig. 5.5
indicates that the rotations at all the column-floor joints are identical,
and a point of counterflexure exists along the x-x floor centerline.
iience the floor contribution to the lateral stiffness of the frame can
be modeled by two identical equivalent beams (AB and CD), provided that
the moment needed to produce a unit rotation at the two ends of the
equivalent beams Kb (Fig. E.1) is the same as Ks required to produce
a unit rotation at the four column-floor joints.

Term KS can be computed from the results of this investigation
where:

8

(1 + CF,.) (E.1)

Ko = (Kq9)
117s j=2 13

S

14° CFygs CFy7

and CF]S has been shown to be small, eq. E.1 can be estimated by:

Since the value of the carryover factors CF}Z’ CF

K. = (K

. 1+ CFy, + CFq,) (E.2)

s 13 15/

It can be shown that KS as defined in eq. E.2 can be computed from
the terms of the stiffness matrix of the equivalent members AB and CD
in the SMM, where:

Kg = Kgp (Spp * ky3) (E.3)

The stiffness, Kb’ of a prismatic beam consisting of the floor beam
and an effective slab width, bf, (Fig. E.2) is:

6E1,
K, = T (E.4)

where
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and

2
- dg B(Dw)

1
" * by oy [Peld (02

Since we want Ks = Kb’ using egs. E.3 and E.4:

o M) (Sgp * Kp3)
B 5

(E.6)

Using eqs. E.5 and E.6, the effective slab width, bf, can be com-
puted by a trial-and-error procedure.
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Fig. E.1 Eguivalent Beam Stiffness
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"Earthquake Analysis of Multi-Story Buildings
Including Foundation Interaction," by A. K. Chopra
and J. A. Gutierrez - 1973 (PB 222 970)

"ADAP: A Computer Program for Static and Dynamic
Analysis of Arch Dams," by R. W. Clough, J. M.
Raphael and S. Majtahedi - 1973 (PB 223 763]

"Cyclic Plastic Analysis of Structural Steel Joints,”
by R. B. Pinkney and R. W. Clough - 1973 (PB 226 843)

"QUAD-4: A Computer Program for Evaluating the

Seismic Response of Soil Structures by Variable
Damping Finite Element Procedures," by I. M. Idriss,
J. Lysmer, R. Hwang and H. B. Seed - 1973 (PB 229 424)

"Dynamic Behavior of a Multi-Story Pyramid Shaped
Building," by R. M. Stephen and J. G. Bouwkamp - 1973

"Effect of Different Types of Reinforcing on Seismic
Behavior of sShort Concrete Columns,” by V. V.
Bertero, J. Hollings, O. Kustu, R. M. Stephen and

J. G. Bouwkamp - 1973

"Olive View Medical Center Material Studies,
Phase I," by B. Bresler and V. V. Bertero - 1973
(PB 235 986)

"Linear and Nonlinear Seismic Analysis Computer
Programs for Long Multiple—~Span Highway Bridges,"”
by W. S. Tseng and J. Penzien - 1973

"Constitutive Models for Cyclic Plastic Deformation
of Engineering Materials," by J. M. Kelly and
P. P. Gillis - 1973 (PB 226 024)

"DRAIN - 2D User's Guide,” by G. H. Powell - 1973
(PB 227 016)

"Earthquake Engineering at Berkeley - 1973" - 1973
{PB 226 033)

Unassigned

"BEarthquake Response of Axisymmetric Tower Structures
Surrounded by Water," by C. Y. Liaw and A. K. Chopra -
1973 (aD 773 052)

"Investigation of the Failures of the Olive View
Stairtowers during the San Fernando Earthquake and
Their Implications in Seismic Design," by V. V.
Bertero and R. G. Collins - 1973 (PB 235 106)
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EERC 73-27 "Furthexr Studies on Seismic Behavior of Steel Ream~
Column Subassemblages,” by V. V. Bertero,
H. Krawinkler and E. P. Popov ~ 1973 (PB 234 172)

EERC 74-1 "Seismic Risk Analysis,” by C. S. Oliveira - 1974
(PE 235 920}

EERC 74-2 "Settlement and Liguefaction of Sands under
Multi-Directional Shaking,” by R. Pyke, C. K. Chan
and H. B, Seed = 1974

EERC 74-3 "Optimum Design of Earthguake Resistant Shear
Buildings,” by D. Ray, K. S. Pister and A. K. Chopra -
1974 (PB 231 172)

EERC 74-4 "LUSH - A Computer Program for Complex Response
analysis of Soil-Structure Systems," by J. Lysmer,
T. Udaka, H. B. Seed and R. Hwang - 1974 (PB 236 796)

EERC 74-5 "Sensitivity Analysis for Hysteretic Dynamic Systems:
Applications to Earthquake Engineering," by D. Ray -
1974 (pB 233 213)

EERC 74-6 "Soil-Structure Interaction Analyses for Evaluating
Seismic Response," by H. B. Seed, J. Lysmer and

R. Hwang - 1974 (PB 236 519)

EERC 74-7 Unassigned

EERC 74~8 "Shaking Table Tests of a Steel Frame - A Progress
Report," by R. W. Clough and D. Tang - 1974

EERC 74

]
w

"Hysteretic Behavior of Reinforced Concrete Flexural
Members with Special Web Reinforcement," by V. V.
Bertero, E. P. Popov and T. Y. Wang — 1974

{(PB 236 797)

EERC 74-10 "Applications of Reliability~Based, Global Cost
Optimization to Design of Earthguake Resistant
Structures," by E. Vitiello and K. S. Pister -~ 1974
(PR 237 231}

EERC 74-11 "Ligquefaction of Gravelly Soils under Cyclic Loading
Conditions,”" by R. T. Wong, H. B. Seed and C. X. Chan -
1974

EERC 74-12 "site-Dependent Spectra for Earthguake-Resistant
Design,”™ by H. B. Seed, C. Ugas and J. Lysmer - 1374
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75-33

75-34

75-35

75-36

75-37

"Testing Facil
Structural Sys
T. Endo - 1975

"Influence of
Characteristic

ity for Subassemblages of Frame-Wall
tems," by V. V. Bertero, E. P. Popov and

Seismic History of the Liguefaction
s of Sands," by H. Bolton Seed, Keniji Mori

and Clarence K. Chan - 1975

"The Generatio
during Soil Li
P. Martin and

"Identificatio
Design of Buil

"Evaluation of
quakes," by H.
1975

"Representatio
Equivalent Uni
by H. Bolton S
1975

n and Dissipation of Pore Water Pressures
guefaction,” by H. Bolton Seed, Phillippe
John Lysmer - 1975

n of Research Needs for Improving a Seismic
ding Structures," by V. V. Bertero - 1975

Soil Liguefaction Potential during Earth-
Bolton Seed, I. Arango and Clarence XK. Chan

n of Irregular Stress Time Histories by
form Stress Series in Liquefaction Analyses,”
eed, I. M. Idriss, F. Makdisi and N. Baneriee

"FLUSH - A Computer Program for Approximate 3-D Analysis
of Soil-Structure Interaction Problems," by J. Lysmer,

T. Udaka, C.-F

. Tsali and H. B. Seed - 1975

"ALUSH - A Computer Program for Seismic Response Analysis

of Axisymmetri
J. Lysmer and

¢ Soil-Structure Systems,” by E. Berger,
H. B. Seed - 1975

"TRIP and TRAVEL - Computer Programs for Soil-Structure

Interaction An
by T. Udaka, J

"Predicting th

alysis with Horizontally Travelling Waves,"
. Lysmer and H. B. Seed = 1975

e Performance of Structures in Regions of

High Seismicity,” by Joseph Penzien = 1975

"Efficient Fin
Soil - Directi

ite Element ZAnalysis of Seismic Structure -
on," by J. Lysmer, H. Bolton Seed, T. Udaka,

R. N. Hwang and C.-F. Tsai - 1975

"The Dynamic B
Story Steel Fr
Ray W. Clough

ehavior of a Firét Story Girder of a Three-
ame Subjected to Earthquake Loading," by
and Lap-Yan Li - 1975

"Earthquake Simulator Study of a Steel Frame Structure,

Volume II - An

alytical Results," by David T. Tang - 1975

"ANSR-I General Purpose Computer Program for Analysis of

Non-Linear Str
and Graham H.

ucture Response,” by Digambar P. Mondkar
Powell ~ 1975
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75-38

75-39

75-40

75-41

76-2

76-3

76-4

76-5

76-6

76-8

76-9

76-10

"Nonlinear Response Spectra for Probabilistic Seismic
Design and Damage Assessment of Reinforced Concrete
Structures,” by Masaya Murakami and Joseph Penzien - 1975

"Study of a Method of Feasible Directions for Optimal
Elastic Design of Framed Structures Subjected to Earthquake
Loading," by N. D. Walker and K. S. Pister -~ 1975

"An Alternative Representation of the Elastic-Viscoelastic
Analogy," by Gautam Dasgupta and Jerome L. Sackman - 1975

"Effect of Multi-Directional Shaking on Liguefaction of
Sands," by H. Bolton Seed, Robert Pyke and Geoffrey R.
Martin -~ 1975

"Strength and Ductility Evaluation of Existing Low-Rise
Reinforced Concrete Buildings -~ Screening Method," by
Tsuneo Okada and Boris Bresler -~ 1976

"Experimental and Analytical Studies on the Hysteretic
Behavior of Reinforced Concrete Rectangular and T-Beams,"
by Shao-Yeh Marshall Ma, Egor P. Popov and Vitelmo V.
Bertero -~ 1976

"Dynamic Behavior of a Multistory Triangular-Shaped
Building,"” by J. Petrovski, R. M. Stephen, E. Gartenbaum
and J. G. Bouwkamp - 1976

"Earthquake Induced Deformations of Earth Dams,"” by Noxrman
Serff and H. Bolton Seed - 1276

-"Analysis and Design of Tube-Type Tall Building Structures,"

by H. de Clercq and G. H. Powell - 1976

"Time and Frequency Domain Analysis of Three-Dimensional
Ground Motions, San Fernando Earthquake," by Tetsuo Kubo
and Joseph Penzien -~ 1976

"Expected Performance of Uniform Building Code Design Masonry
Structures,” by R. L. Mayes, Y. Omote, S. W. Chen and
R. W. Clough ~ 1976

"Cyclic Shear Tests on Concrete Masonry Piers, Part I -
Test Results,” by R. L. Mayes, Y. Omote and R. W. Clough
1976

“A Substructure Method for Earthquake Analysis of Structure -
Soil Interaction,”" by Jorge Alberto Gutierrez and Anil K.
Chopra - 1976

"Stabilization of Potentially Liquefiable Sand Deposits

using Gravel Drain Systems," by H. Bolton Seed and John R.
Booker - 1976
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EERC 76-11 "Influence of Design and Analvsis Assumptions on Computed
Inelastic Response of Moderately Tall Frames,” by
G. H. Powell and D. G. Row - 1976

EERC 76-12 "Sensitivity Analysis for Hysteretic Dynamic Systems:
Theory and Applications,” by D. Ray, K. S. Pister and
E. Polak - 1976 )

EERC 76-13 "Coupled Lateral Torsional Response of Buildings to Ground
Shaking,"” by Christopher L. Kan and Anil X. Chopra -~ 1976

EERC 76-14 "Seismic Analyses of the Banco de America,” by V. V. Bertero,
S. A. Mahin, and J. A. Hollings - 1976

EERC 76-15 "Reinforced Concrete Frame 2: Seismic Testing and Rnalytical
Correlation,” by Ray W. Clough and Jawahar Gidwani ~ 1976

EERC 76-16 "Cyclic Shear Tests on Masonry Piers, Part ITI - Analysis of
Test Results,” by R. L. Mayes, Y. Omcte and R. W. Clough
1976

FERC 76-17 "Structural Steel Bracing Systems: Behavior Under Cyclic
Loading,”™ by E. P. Popov, K. Takanashi and C. W. Roeder
1876

EERC 76-18 "Experimental Model Studies on Seismic Response of High

Curved Overcrossings,” by David Williams and William G.
Godden -~ 1976

EERC 76-19 *Effects of Non-Uniform Seismic Disturbances on the Dumbarten
Bridge Replacement Structure," by Frank Baron and Raymond E.
Hamati - 1976

EERC 76-20 "Investigation of the Inelastlc Characteristics of a Single
Story Steel Structure using System Identification and Shaking
Table Experiments,” by Vernon C. Matzen and Hugh D. McNiven
1976 '

EERC 76-21 “Capacity of Columns with Splice Imperfections," by E. P. Popov,
R. M. Stephen and R. Philbrick - 1976

EERC 76-22 "Response of the Olive View Hospital Main Building during the
San Fernando Earthgquake,” by Stephen A. Mahin, Robert Collins,
Anil X. Chopra and Vitelmo V. Bertero - 1976

EERC 76-23 "A Study on the Major Factors Influencing the Strength of
Masonry Prisms," by N. M. Mostaghel, R. L. Mayes, R. W. Clough
and S. W. Chen - 1976

EERC 76-24 "GADFLEA - A Computer Program for the Analysis of Pore
' Pressure Generation and Dissipation during Cyclic or Earth-
quake Ioading," by J, R. Booker, M. S. Rahman and H. Bolton
Seed - 1976
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76-25

76-26

76-27

76-28

76-29

76-30

"Rehabilitation of an Existing Building: A Case Study,”
by B. Bresler and J. Axley - 1976

“Correlative Investigations on Theoretical and Experimental
Dynamic Behavior of a Model Bridge Structure,” by Kazuhiko
Kawashima and Joseph Penzien -~ 1976

"Earthquake Response of Coupled Shear Wall Buildings," by
Thirawat Srichatrapimuk - 1976

"Tensile Capacity of Partial Penetration Welds," by Egor
P. Popov and Roy M. Stephen - 1976

"Analysis and Design of Numerical Integration Methods in
Structural Dynamics,"” by Hans M. Hilber - 1976

"Contribution of a Floor System to the Dynamic Charac-

teristics of Reinforced Concrete Buildings," by L. E. Malik
and V. V. Bertero
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