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Introduction and Sumrn.ary

One of the aims of earthquake engineering is the design of structures

whose survival at their locations can be guaranteed with a fairly definite

degree of confidence, and whos.e resistance to damage on various levels

can be similarly guaranteed (though possibly with lesser assurance). The

object of the research under thil? grant was to continue the development of a

method which would ultimately enable earthquake engineers to make such

guarantees. The evidence, as of this writing, is that this object is being

achieved. A method whose development was begun under an earlier grant

has now been carried to the point at which it can be applied, and in 'fact
I

has been applied, to existing structures. It leads to assessments of their

earthquake resistance which appear to be somewhat conservative but quite

consistent with the design practices am.ong experienced engineering firm.s.

The evidence on which this rem.arks are based was developed

under this grant, and it is sumrn.arized in this final report. Its implica-

tion is felt to be that perhaps the method to be described here or, more

likely, some modifications and estimations of it will often be relied on

by civil engineers in the design, and in design reviews, of structures in

seismic region. Several such modifications and extensions are possible.

In fact, the theory of some major ones (eo g. the generalization of the

method from elastic to inelastic structures) were developed under this

grant. Their application in practice is likely to be most appropriate for

structures whose social or economic value invites conservative design,

and some care and investment,in the way it is achieved.
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Comment

A proposal was submitted to NSF /Ranu in January 1976 for

support for a continuation of this research.

The Critical Excitation Concept

In order to guarantee the earthquake resistance of a structure and

to do so on a certain level of confidence, one should be able to demon

strate two things. First, one must show that the structure will survive

all ground motions that can be expected at that location, on that level of

confidence; and second, one should show with comparable confidence that

it will escape damage beyond some acceptable limit. The approach taken

under this grant (and under an earlier one, No. GK 14550) seeks to come

up with such assurances by relying on a concept which has come to be

called a "critical exc~tationfl and which is new to civil engineering.

An excitation of a structure is called IIcriticalft for it, among some

designated class of excitations, if it drives one of the structural variables

to a larger response ,peak than any other excitation in that class.

A rough idea of how this concept is used in the prediction of earth

quake. resistance i'S then the following. Suppose that the erection of a

new structure is planned for some site in an earthquake-prone region,

or that the safety of an already existing one is to be reviewed. Suppose

further that it has been possible to isolate a class of excitations which

consists of all ground motion that can realistically be expected at that

location. Among the excitations in this class, there will then be some that

generate the highest response peaks in variables, such as the forces,

moments, and displacements of the structure. If these peaks are



-3-

found to lie within the tolerances of the design" the structure can be

guaranteed as corre spondingly safe against dam.age and/or failure due to

any of the excitations under consideration.

The procedure by which such a guarantee is arrived at, consists

of three major steps. The question of how to take each of these repre

sents a problem in its own right. The first step is the isolation of a

class of excitations which are Jl realistic l1 potential ground notions at a

given location. The second is the determination of those among them that

are critical for a given structure. And the last is the computational prob

lem of calculating the peaks of the critical responses, and the engineering

problem of assessing their seriousness.

None of these problems have been precise 1y formulated here. In

fact, each has many formulations and correspondingly many solutions.

Some earthquake engineers may prefer one, and others another. The

objective of the research under this grant' was to formulate them in one

particular and, it is hoped, realistic way; and to show that the approach

leads to equally realistic solutions. This was in fact done. The formula

tion, as we1-1 as the three-step proc-edure to which it led, is de'scribed .

in the next section. It might be added here that other, and in some re

spects m.oreattractive, formulations are possible. Indications are that

they -lead to 'simi1arly realistic results. They were riot investigated under

this grant however.

A Procedure for the Prediction of Earthquake Resistance

The prediction of the earthquake 'resistance of a structure, by way

of its critical excitations, proceeds in three steps; as has just been ex-
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plained, namely the,se.

(a) Isolation of a class of realistic ground motions

(b) Determination of the critical excitations in that class

(c) Calculation and engineering assessment of the critical response

peak~.

,The approach taken under this grant was the following•

. The first of these problems was initially formulated as follows. It

was assumed that, among the statistical information available regarding

possible groundmpti0DS at the geographical location of a structure, only

one item was known on the level confidence with which the prediction

was to be made. This was the distribution of the ground motion inten

sities• .f:. design engineer, in other words, whoguaranteeci a structure

as 900/0'safe against ground motions up to a certain intensity could be

quite certain that there was only one chance in ten of the actual ground

motion exceeding that intensity limit. (The square-integral of the

ground acceleration was used as intensity measure, though others could

have been used as well. )

This assumption in effect constitutes a solution to the first prob

lem listed above: The intensity limit set by the designer isol~tes a class

of ground motions, namely, all those with intensities not exceeding that

limit. One could therefore proceed directly to the next problem listed

above, and this was in fact done under a previous grant. It was however

found that this class is too large. It contains many excitations that are

quite unlike any ground motions that have ever been recorded, and the

critical excitations for structures unfortunately often are among those.
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One can put this in other words by saying that the distribution of inten

sities is not in fact all that is known about all forseeable ground motions.

Other information is available, and on a comparable level of confidence.

This information must accordingly be utilized and those excitations elimina

ted from consideration which are as unlikely as those of very high inten

sities.

Such elimination is quite possible and can be effected in a number

of ways. However, in the procedure that was used under this grant, com

putational simplicity suggested another solution. It consisted of two steps.

First, the critical excitation was determined relative to the large class

of ground motions that has just been described, i. e. the one defined only

by an intensity limit. This determination is easy, at least for elastic

structures, and has been described on several occasions, ( e. g. [1 J)•. The

theory behind it was extended under the present· grant also to inelastic

structures. In either case, however, it often leads to critical excitations

which are quite unrealistic, as h~s just been mentioned. To circumvent

this difficulty, these excitations were replaced with others, called fJsub

critical, If which were related to the critical ones but were more "realistic ll

ip the following sense.

In defining what meaning to attach to the term "realistic" it was de

cided that any already recorded groundplOtion was patently, realistic (though

not necessarily for all locations). Accordingly, a set of such records

was chosen as a representative basis. Beyond these, all linear super

positions among them were added as being presumably equally realistic.

The superposition which differed least from a critical excitation, in the
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least-squares sense, was then used as its sub-critical replacement. In

more mathematical language, the sub-critical excitation is the projection

of the critical one into the space spanned by the chosen basis :0£ recorded

ground motions. The numerical execution of the projection is performed

easily and quickly by computer, which is the main reason for the choice

of this approach. It does, at any rate, represent a solution to problems

(a) and (b).

The calculation of the response peaks generated by the sub-critical

excitation is also straightforward, though somewhat time-consuming even

for elastic structures. In fact, no calculations were performed for realis

tic inelastic structures under this grant. The risk to a structure, as a

consequence of having one of its variables driven to a high peak, was

finally assessed by strength calculations for typicalvstructural numbers,

and by determining the ductility ratios induced in them by the response peaks.

In this way, a solution was arrived at to the last of the three

problems mentioned above.

The result obtained with this approach are briefly described and

discussed in the next section.

Predictions of Earthquake Resistance

The procedure for the prediction of structural earthquake resis

tance which was sketched in the preceding section was applied to eight

existing structures, four high-rise buildings, a hospital pavilIon, two

structures associated with nuclear reactors, and a tall, re-in£orced

concrete chimney. The results of the analyses are described in detail

in the papers which form the appendices to this report, notably in
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Appendices A and B. In summary, the following was found.

Two high rise buildings, both designed by a well-known and ex

perienced engineering firm (H. J. Degenkolb' and Ass! s, , San Francisco)

were analyzed and are judged to be fully resistant to any kind of ground

shaking with an intensity up to that reco rded during the 1940 El Centro

earthquake. By contrast, another high rise (building, namely Bldg. 180

of the Jet Propulsion laboratory in Pasadena, California) was judged to

have inadequate earthquake resistance. This apprai!:lal apparently is con

sistent with one arrived at independently by the Laboratory management

which has contracted fora general strengthening of the frame. A fourth

building was analyzed as well. In this case however the building was non

existant and its design could be drawn up, based on the approach described

here. This was done.. It was found to lead to strength specifications that

were consistent with good design practice.

The hospital facility was was studied was the psychiatric pavillon

of the Olive View Hospital in Sylmar, California. The study showed that

it was not survivable under ground motions of intensities of the 1940 EI .

Centro earthquake. The ground shaking it experienced during the San

Fernando earthquake of 1971 may have exceeded that intensity since it

collapsed on that occasion. The tall chintney, on the other hand, was

found to be safe under such excitation intensities. It had been designed

by Ammann and Whitney, Consulting Engineers, with this in mind.

The two nuclear facilities were analyzed from dynamical equations

which had been prepared elsewhere. In one case, they were obtained from

the literature [2] and characterized a rigid reactor-soil combination.
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In the second, they were supplied by a New York engineering consulting

firm. This information was adequate for the derivation of the critical.re

sponse peaks of the two structures but not for any strength calculations.

The results of the analysis nevertheless indicated the earthquake resis-

·tance to be adequate for the first structure. The evidence regarding

the second was not equally reassuring.

In summary, the result obtained under this grant indicate that the

new approach leads to fairly reliable, if somewhat conservative, pre

dictions of the earthquake resistance of structures. One can therefore

·conclude that this method is well suited to such predictions, especially

when the economic or social value of the structure is high enough to

invite some conservatism and to justify the inv.es.tment in the necessary

analyses.

The best prognosis as of this writing is that ultimately varia-

tions on this method, rather the method itself, will be adapted by earth

quake engineers. The present transition from the critical to the sub-criti

cal excitation seems to lead to some inconsistencies in the assessments

of structural safety which are considered undesirable and which can prob

ably be eliminated if the method is suitably modified. Moreover, the

computational, ,effort that is now needed before a comprehensive assess

ment can be made seems unnecessarily large, and it will no doubt become

larger when ground motion in three or more dimensions, interaction

with water, a.;nd inelasticities are allowed for. The theory which governs

such allowances has been largely developed under this grant but no

applications to existing structures were attempted. It is however already
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clear that these extensions entail greater computational effort which will

discourage many practicing design engineers. It is therefore important

to develop simplified procedures which avoid some of that effort.

Reports and Publications

As of this writing, the research supported by this grant has led

to six papers, all but one accepted for publication, and two already pub-

lished. Three others are in various stages of preparation. In addition,

memoranda and interim reports were prepared for limited distribution,

at the suggestion of NSF /RANN.

Reprints and pre-prints of these papers are added to this report

as Appendices.

Appendix A: Critical Excitation and Response of Free Standing

Chimneys, by P. C. Wang, W. Wang, R. F. Drenick and J. Velozzi;

Proc. of the International Symposium on Earthquake Structural Engineer-

ing, St. Louis, Mo. ,August 1976.

Appendix B: On a Class of Non-Robust Problems in Stochastic

Dynamics, by R. F. Drenick, Proc. of the Symposium on Stochastic

Problems in Dynamics, sponsored by the International Union on Theoreti-

cal and Ap:plied Mechanic s, Southampton, UK, July 1976.

Appendix C: The Critical Excitation of Nonlinear Systems, by

R. F. Drenick, accepted for publication in the Journal of Applied Mechanics.

Appendix D: Critical Excitation and Response of Structures, by

P. C. Wang and R. F. Drenick, accepted for publication in the Proc. of

the 6th World Conference on Earthquake Engineering, New Delhi, India,

January 1977.
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Appendix E: The Critical Excitation of Inelastic Structures, by

R. F. Drenick and H. Kana, accepted for publication in the Proc. of the

6th World Conference on Earthquake Engineering, New Delhi, India,

January 1977.

Appendix F: The Critical Excitation and Response of High-Rise

Buildings by P. C. Wang and W. Y. I.... Wang, submitted for publication

in the ASCE Journal for Structures.

The three papers under preparation are:

(1) The integrity of nuclear reactor structures during earthquakes,

by P. C. Wang. and W. Y. L. Wang.

(2) The time interval of effective ground shaking, by P. C. Wang

and R. F. Drenick. ~

(3) Critical response spectra of inelastic structures, by H. Kana

and R. F. Drenick.

The limited-distribution memoranda and reports prepared under

this grant were:

(a) Case study of Critical Excitation and Response of Structures,

Preliminary Report, byR. F. Drenick, July 15, 1975.

(b) Case study of Critical Excitation and Response, Second Pre

liminCl,ry Report, by R. F. Drenick, August 5, 1975.

(c) Case study of Critical Excitation and Response of Structures,

Interim Report, by P. C. Wang, W. Wang,R. F. Drenick, Nov. 1, 1975.



-ll-

Scientific· Collaborators

P. C. Wang, Professor of Civil Engineering

w. Y.. L. Wang, Visiting Assistant Research Professor in Civil Engineering

H. Kano, Graduate student

Y. Devadas, Graduate student

References

1. R. F. Drenick, Model-Free Design of Aseismic Structures, Jour. Eng.
Mech., ASCE, Vol. 96 (1970) p. 483.

2. C. A. Miller and C. J. Costantino, Structure-Foundation Interaction
of a Nuclear Power Plant with aSeismic Disturbance, Nuclear Eng.
and Design, Vol. 14 (1970) p. 332.



APPENDIX A
INTERNATIONAL SYMPOSIUM ON

EARTHQUAKE STRUCTURAL ENGINEERING
$1. Louis, Missouri. USA, August. 1976

CRITICAL EXCITATION AND RESPONSE
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SUMMARY

This paper deals with the problem of the seismic design of free stand
ing chimneys, of constant as well as tapered cross sections. It is more
particularly shown that seismic deisgns based on the so-called critical
excitations of these structures are conservative. but not overly conserva
tive, and that they should pe appropriate either for localities in which
ground motion records are scarce or for structures whose loss would have
serious consequences, economically or socially. This conclusion is based
on computed "critical design factors" which are the ratios of the response
peaks generated by a critical excitation to those produced by an actual
ground acceleration of same intensity. These factors were found to be in
the order of 0.93 to 1. 3 'for at least one structural design variable of each
of the two structures, implying the conclusion that design based on the
critical excitation method would be more, but not greatly mo're, conser
vative than one based on an already observed ground motion. Design cal
culations for the additional steel reinforcement implied by those factors
confirm tnis conclusion.

INTRODUCTION

Free standing chimney are comparatively susceptible to seismic
damages due to their inherent weak supporting condition and lack of struc
tural redundancy. The most damaging (critical) ground excitation for an
assigned design variable (moments, shears, or deflections) possesses
characteristic frequency contents, duration. and energy level. The first
two characteristics are dependent on the structural properties while the
other depends on the nature and intensity of the ground motion.

Structural response is characterized by the frequencies of the modes
of its free vibrations. Intuitively, one should expect the most damaging
(i. e•• the critical) excitation of a structure to have a frequency spectrum .
that matches that of the structure. This is actually the case, as experience

,indicated. It is known. for instance, that ground motion matching in
. frequency with the lower vibration modes of a structure is likely to cause
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severe damage in it. It is also well known that excitations at short dis
tances from the epicenter which exhibit intense vibrations at high frequen=f
des may induce damage in apparently strong but rigid structures, yet light
or no damage to seemingly weaker but flexible structures. Mathematical

I confirmation [3] of these observations shows that the critical excitation of
" an elastic structure, for a given intensity and relative to one of the design
\, variables, is the time-reversed impulse response of that variable.

It develops however. that the kind of precise frequency matching which
is afforded by the time -reversed impulse response is not in general achiev
ed by realistic grcl1tnd motions. In other words, the response peaks to
which it le1.ds are typically much too large, and the designs that would es=
cape damage, much too conservative to be useful. It has accordingly been
necessary in this study to modify the time-reversed impulse response and
to treat'the modified excitation as the critical. To distinguish the original
and its modification, they are called the "first-class" and the second-
clas s" critical excitations in what follows.

This paper starts with a discussion of the first-class critical excitation
,for structures with a single-degree-of-freedom,' as well as some assump=
tions and concepts that are pertinent to it, and then proceeds to the case of
multi-degree-of-freedom systems. The idea of the second-class critical
is introduced 'next. The succeeding sections present the methods and the
results of the analyses of the two types of chimney. namely one with con
stant and the other with tapered cross sections. A critical discussion of
the results is contained in the concluding section.

EFFECTIVE nURATION AND INTENSITY OF GROUND EXCITATION

The response yet) of a design variable of an elastic structure to a
ground acceleration xg(t) is given by the Duhamel integral

'yet) .,;1x (7) h(t-7) dT
o g ,

in which h(t-T) is the unit impulse response at a time (t='T). For a structure
with a single degree of freedom it is given by

h(t=7) =1... e =~W(t=7) sm W
n

(t=7) (Z)
, wn

where wD =wQ is the damped frequency. wis the undamped frequen :y,
and S is the damping ratio. Thus, if the maximum response of a structure
occurs at time t e , the duration of excitation needs not be taken longer than
the value of (te-to ) so that h(te-to) = O. or more practically h(te-to ) decays
to a certain pe'rcentage of the maximum of h(t). The decay percentage can
often be left to the judgment of the designers. For example, if the decay
to a ten percent was assigned to a structure based on its fundamental
period of vibration of 2 seconds, with a damping ratio of 5% then the dura=
tion of excitation need not be taken greater than

(t -t ) = =In O. 1 =
e 0 'W 2. 3 = 14. 6 seconds

0.05 2;
(2a)
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The definition of the intensity of ground excitation has been the subject
of extensive discussions. In this paper, following the derivation of refer
ence [3], the intensity of an excitation was defined as

, t
e 1

E = rJ x2
(t) dtra (3)

t g
o

Since the duration of excitation (te -to) used for the critical excitations and
the comparative recorded excitations, as will be seen in the later discus
sions, are the same, the intensity of excitation defined here is similar to
that defined by Housner [6].

E =1.. Jx2
(t) dt (4)

. tog

FIRST-CLASS CRITICAL EXCITATION

The maximum response of a multi.;.degree-of-freedom system repre-
sented by modal superposition is as follows: .

. t e
yk(t ).= ~ ~"T/.(t )=J x ('1} ~cj>kiP"h.(t -T)dT

e i lle t g i lle
. 0

,
i,
j

t e '

= J X (T) h(t -T) d7
t g e
o

(5)

where Yk(t ) is the k
th

response variable, cj>k" is the kth element oI t~ i
th

mode sliap~. 7'/.(t )isthe normal coordinate ot i th mode, Pi=cj>tM I/cj>iMcj>i
is the i th modJ p1trticipation factor with M as the mass matrix and
I is a vector with l's or 0' 5 to indicate the existence or not of excitation in
the vector elements of y. Squaring the response Yk and setting up the in
equality, the following relation is obtained.

• _ t

Yk2(t )= rJ e
x (T)h(t -T) dT]2

e t g e
o

t e
< [J xl (T) dT]

t g
o

( 6)

or Yk(te ) ~ EN

where E is the intensity of excitation as defined in Eq. (3) and N 2 is the
square integral of the unit impulse response. The maximum respOnse is
thcprodud EN ,and can be obtained by applying a first-class critical exci-
tation.Xcl(t), so that -E-

XcI (T) a ~ h (to -T) (7)

•.
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The shape of the unit i~pulse h (t) and xel (t) are shown in Fig•. 1.

Fig. 1. SHAPE OF h(t) AND xel

h(t -T) G· h (t -ory dT
e e

The maximum response due to the first class critical excitation is

t
_ ~ fe
- N

t o

=EN ~8)

The intuitive interpretation of this result was already mentioned in the
Introduction. It indicat~s that the frequency content of the first class
critical excitation matches exactly with that of the structural vibration
and therefore that the corresponding critical response Yc 1 is the maxi
mum peak among those produced by all the excitations with same inten
sity E.

SECOND-CLASS CRITICAL EXCITATION

It has been mentioned in the introduction, that the response peaks pro
duced by the first-class critical excitations often are too large to be real
istic. and the res}llts reported below for two free -standing chimney will be
seen to confirm this. It has th~refore been found necessary to introduce a
modification which is called the II second -class critical excitation n here.

(9)

The second-class critical excitation is obtained by superposition ofa
number of recorded groung excitations (or artificially generated excitations)
and least-square fitted with the first class critical excitation'as follows:

n
x z(t) =.:l:l c.x.(t)c 1= 1 1

t

Feex 1(t) - xcZ(.t)]2dt = minimum
t C
o

and

•
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The response to the second-class critical excitation is

(10)

The second-class critical excitation x 2 resembles the recorded
excitations more closely than the first-cla~s one and the peak of its re
sultant response y 2 is more reasonable. However it is still larger than
that of any of the r~sponses due to the component excitations used for the
least-squares of it. '

In order to find the first-class critical excitation x 1 and the cor
responding response y 1 for a particular structural deJign variable based
on the time -reversed u<fut impulse response. the designer only needs the
specification of a reference ground motion intensity E. However. in order
to obtain the second-class critical excitation xc 2 which is a least-squares
fit. a number of appropriate ground motions must be selected to make the
combination as shown by Eq. (9)•. Finally. il1 order to have a basis of
comparison. a few recorded accelerograms must be selected and struc
tural responses calculated for them as well. This section describes the
choices that were made for these purposes.

In regard to the first requirement' of obtaining the least-squares fitted
excitation x c 2' twelve accelerograms were selected including two of the
three selected for comparative studies. These accelerograms were chosen
with the following stipulations:

h The ground excitations are characterized by relatively short
epicentral distances. say 25 to 30 kilometers.

2. The shape of the accelerogram should have a gradual build-up'
period.

3. The site conditions of the selected earthquakes should re
.semble as much as pos sible the condition prevailing at the
,location of the structure.

The third stipulation m'ay be difficult to satisfy unless a choice can be
made frpm a rather large variety of accelograms. probably larger than
now exists. At any rate. in the present study twelve ground motions re
corded in Southern 'California were chosen and assumed to be representa
tive for the locations of the chimneys to be analyzed below. Appendix 1
lists these twelve earthquakes and their intensities E.

Typical examples of second-class critical excitation obtained in this
way are shown in Fig. 2.

..
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For comparative studies, three accelerograms wer'e selected from
the published results 12], namely, (1) 1971 San Fernando, Pacoima S14 W,
(2) 1940 Imperial Valley, El Centro SOOE, (3) 1954 Eureka N79E. Each of
these three accelerograms has certain special characteristics: the first
is'the strongest (1. 17g) that has ever been recorded, the second one is
strong and of relatively long duration, while the third one is moderately
intense and of relatively short duration.

CHIMNEYS WITH CONSTANT CROSS SECTIONS

Chimneys with constant cross sections are simple prismaticcanti
levers, lts~natural frequency of vibration of the ith mode i,s given by [lJ:

w. =Q~~ E\
1 ,~mL

. where Q. is obtained from the transcendental equation
1

cos Q. cosh Q. = -1
1 1 .

The mode shapes are given by

(11)

(12)

with sin Q. + sinh a.
~ 1

Ai = cos a. + cosh a.
1 1

(13)

In the ,above expressions. E is the modules of elasticity, I is the moment
of inertia. m is the distributed mass per unit height. L is the height of the
chimney, and x is the distance from the base of the chimney.

For a reinforced concrete chimney of 304.80 m in height. 18.288 m in
outside diaInete~ and O. 4572m in thickness. the mass per unit height is .
1910.677 Kg-sec 1m2 , 'Based on modulus of elasticity 2.9489x 109 kg/m2 and
moment of inertia 1018.5m4 , the period of vibration in seconds of the first
six modes are 2.400,0.383,0.137,0.070,0.042 and 0.028. 'The participation

JL JL2facto_rs '1>i dxl , '1>i dx are 0.783, 0.434, 0.251, 0.001 for the first
00, .

four modes. The design variables selected are top deflection 1:::., base
InOInent M, and base shear V. The results of the dynamic analysis for
the three reference earthquakes are shown in Table 1. The entries in the
table are more specifically the response peaks generated by theseexcita
tions shown in the left coluInn. The peaks to which the first-class critical
excitation leads are seen to be consistently Inuch higher than those due to
the.. actual ground motion.

-·".Those produced by the second-class critical are however much Inore
realistic. The ratios of those peaks to the ones generated by the actual

..
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ground motions are listed in Table 2, under the heading ,of ·critical.design
factors. II These factors are seen to range over 'values from 1 to 3.

TABLE 1. RESPONSE PEAKS OF CHIMNEY WITH
CONSTANT CROSS SECTION

Excitations Intensity Res! onse Va riables
E Top Deflection Base Moment Base Shear
/3/2 (~) 5 M (103~)(cm sec ) (10 Kg-m)

Pacoima Dam 0.676 10288.8 1280.2
1st d. critical 6.471 2.396 26151.1 1194.3
2nd cl. critical 5. 101 59678.2 3565.7

El Centro 0.432 4967.4 349.9
1st d. critical 2.572 0.953 10394.4 474.7
2nd cl. critical 2.028 23720.6 1417.3

Eureka 0.2.43 3423.3 286.6
1st d. critical 2.008. 0.744 8115.5 370.6
2nd d. critical . 1.583 18519.9 1106.5

TABLE 2. CRITICAL DESIGN FACTORS OF THE
CHIMNEY WITH CONSTANT CROSS SECTIONS

Excitations

Pacoima Dam
E1 Centro
Eureka

T.op Deflection t::.

3.54
2.21
3.·06

Base MomentM

2.54
2.09
2.·37'

- Base Shear V

0.93
1.36
1.29

TAPERED CHIMNEYS

Most chimneys have tapered shapes. Although expressions similar to
(ll) and (13) for frequency and mode shapes can be derived, it is simpler
to use discrete 1umpe~ mass approach.

The chimney selected for this study is a 304.8 m free standing tapered
reinforced concrete cylinder. The bottom outs~de diameter is 25. 298 m
with wall thickness of 0.889 m. The top outsidediamete,r is 10.262 m with
a thickness of O. 216m. The 0.64 cm steel lining is not considered as the
integrated structural element. The detailed vertical chimney \lall cross
section is shown in Figure 3.

A discrete fiziite element method was used to find the free vibration as
well as dynamic analysis. The height of the chimney is divided into 17
sections with the respective horizontal cross sectional area and moment
of inertia computed as shown in Table 3. The lumped masses at the nodal

• points are als'o shown in Table 3. The condensed stiffness matrix refers
to the horizontal displacements at the nodal points corresponding to each
masll point. The mode tihn.pes and periods of vibration arc shown in
F~gure 4. Tho clesign variables selected for study aro again the top de
flection 6, the baso moment M, and the base shear V. The dynamic
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TABLE 3. AREA. MOMENT OF INERTIA AND
LUMPED MASSES OF TAPERED CHIMNEY

Ar2a Moment of Inertia Lumped Mass
Element (m ) . (m4 ) Node (Kg-sec 2/m)

17 7.005 93.420 18 10119.08

16 7.505 114.90 17 27976.28

15 8.125 145.791 16 37648.93

14 8.999 186.856 15 40476.3Z

13 10.448 24.652 14 45535.86

12 12.293 330.866 13 53571. 6.
11 14.888 450.039 12 62053.77

10 18.334 617.540 11 76934.77

9 22.956 823.209 10 93006.25

8 25.348 1044.520 9 110268.21

7 28.108 1274.539 8 122321. 82

6 31. 010 1540.536 7 134970.67

5 34.056 . 1846.109 6 148363.57

4 37.242 2194.955 '5 162351.71

3 41.448 2644.1:"94 4 176935.09

.2 , 54.024 3684.179 3 200149.45

1 66.189 4788.865 2 290477.12

1

•
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,analyses of this chimney led to results which are summarized in Tables 4
and 5. Table 4 lists the response peaks that were'generated by the 'actual'
ground motions, along with those due to the first-class and second-class
critical excitations of the same intensities. Table 5 presents the critical
design factors. '

TABLE 4. RESPONSE PEAKS OF CHIMNEY WITH
TAPERED CROSS SECTIONS

E RxCltatlon Intensity eSl:onse Variables
E Top Deflectior Base Moment Base Shear

(m/sec3l1 M V
(~) (l<fKg-m) (10

4
Kg)

Pacoima Dam 1. 383 5536.6 703.6
1st cl. critical 6.996 3.849 10930.4 1044.0
2nd cl. critical 21.924 58122.5 5191. 0

El Centro 0.694 2134.7 313.3
fst cl. critical 2.895 1. 594 4523. 7 432.1
2nd cl. critical 9.074 22684.8 2148.4

Eureka . 0.448 1580.3 2307.4
1st cl. critical 2.034 1.119 3177.9 3035.3
2nd cl. critical 6.373 15935.9 15092.2

TABLE 5. CRITICAL DESIGN FACTORS OF THE
CHIMNEY WITH TAPERED CROSS SECTIONS

Excitations Top Deflection t::. Base Moment M . Base Shear V

Pacoima Darn
El Centro
Eureka

2.78
2.51

'2.50

1.97
2.12
2.01

1.48
1.33
1.32

A design of the base cross section of the chimney was also made,
based on the elastic design approach as well as on an inelastic one with
ductility factor of f.I. =4. The results are shown in Table 6. The re
inforcing that would be required for adequate strength against the second
class critical is considered to be rather high. but not beyond reason. when
compared with that needed against the El Centro ground motion.

CONCLUSIONS

The propo~ed method of assessing seismic resistance of structures,
based on the second-class critical excitation. was applied to uniform
cross sectional and tapered chimneys. The conclusions from this study
are as follows.

1. The method proposed here is an upper bound analysis in view of
the fact that precise nature oJ earthquake, frequency of occurrence, inter
action of structure and soil, and other earthquake related factors are not
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readily available.

. 2. In the structural design of the two chimneys. the method appears
to be effective, though still somewhat conservative. If desired. further
reduction of the bound can be achieved by the judgment of the design en
gineer in reducing the specified intensity E, or in eliminating some of the
selected component earthquakes in the least-squares fitting process. By
observation of the coefficient of the least-squares fitting process, it appears
that the earthquakes which most resemble the shape of the time-reversed
unit impulse response excitation are the ones which may cause larger re
sponse. Ii these earthquakes are not likely to occur at a given location,
they can be profitably omitted. .

3. Both the intensity of the earthquake E, and the square integral N
depend on the effective duration te-to used in the integration process. In
general, the duration depends on the fundamental period of vibration and

. the damping of the structure, being shorter for shorter period and larger
damping. It is suggested that one may use the duration of decay of the unit
impulse response to a judiciously selected percentage (say 20%) of the peak.

4. When pIa sUe behavior is considered by using a ductility factor of
3 for a recorded earthquake, a ductility factor of roughly 6(=2x3) is re
quired for the same structural strength against the least-squares fitted
excitation. This ductility factor appears somewhat on the high side but
not entirely out of proportion.

S. Based on the above discussions, it is suggested that the assess
ment of seismic resistance based on critical excitation be used for struc
tures with major importance the destruction of which would cause severe
human and economic los.ses. Another instance for adopting this approach
is for those lo.calities where seismicity is active but reliable ground
motion data are scarce.

6. The practicality of the method is still undergoing examination by
applying to. various realistic structures at the time of this writing. Hope
!~l1y. consistent comprehensive recommendations can be drawn from these
resultS in the near future.
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APPENDIX B
ON A CLASS OF NON-BOBUST PROBLEMS I'l'i STOCHASTIC DYNAMICS

..
,,

BY

B.P. Drenlok (U.S.A.)

S"NOPSlS
'I'he stochastic treatment of dynamical systems frequently assumes that, the exc~tations and responses

(orm ra.ndom processes whose probabilistic structure is completely kno~n. This is rarely true,in prac
tice. but not really objectionable unless the quantity of interest is very sensitive to small changes in that
., ruclure. Evidence is presented that shows that t.he failure probability of a system is among those
au.liUes. A method is suggested for the treatment of problems in which such quantities are of interest.
11 combines probabilistic and worst'-case analyses to obtain bounds on the desired quantity. The estima
tion of the earthquake resistance of elastic and inelastic structures is presented a8 an example ot the
method. '

INTRODUCTION
This paper deals with certainproblems in the

reliability or safety of mechanical systems which
".ill fail if the magnitude of the response exceeds
a certain limit. These problems are often treated
by probability theory. It is then assumed that the
• ~·lltem responses are sample functions from a
random process, usually a Gaussian one, and an
attempt is made at calculating or at least estima
ting the exceedance probability of that limit.

The first point of this paper is that this proce
"dure is not robust. and that it can easily lead to

" very misleading results. The supporting evidence
ill presented in Sect. 2. The conclusion that is
reached there should not be overly surprising.
Failures are, or had better be, rare events in most

. instances. They are therefore events whose prob-
abilities are strongly dependent on the shapes of

, the tails of the underlying distributions which are
, usually the least known portions. and those least
.. accessible to statistical estimation. The failure
"probabilities that are calculated from them are sub-.
'ject to large errors.
.; , Sect. 3 raises the question of what one should
:·do in such problems. The answer that is reached
there is, by what seems to be a fairly generally
valid argument. that one should perform a combi
nation of probabilietic and worst-case analyses.
The probabilistic portion should more particularly
utilize Clll information that is available regarding
the statistics of the underlying random process and
that possesses the desired level of assurance. The
worse-case analysis is then used to obtain bounds

, on the failure probability that are consistent with.
that information.

Sect. IS 4 and 5 present an example taken from.
earthquake engineering. which. according to rather
'recent work. appears to be producing practical re
sults. This is the assessment of the seismic re
sistance of structures. The ground motions during
earthquakes probably form a very good example of
a. random process whORe probabilistic structure is
poorl}' known, expecially on the t.ails of its distri-

_ butions. It is therefore natural to apply the general
ideas presented in Sect. 3. This is done f.or elastic
structures in Sect. '" and for inelastic ones in'
Sect. S. .

..
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NON-ROBUSTNESS PROBLEMS
The kind of problem to be discussed in this

paper is one in which a failure of a system is
brought about by an excessively severeresponse.
It will be convenien~ to, as sume that the n severity"
of a. response variable y is measured by the norm
II y II. The norm that seems most useful in practice
is

II y II = SUPt Iy(t) I (2. 1)

where t ranges over the interval T of interest.
One can then define system failure as an event of '
the form {II y II > L} where L is some failure limit.

In the stochastic treatment of the problem one
seeks to dete rmine the probability

p{llyll > L} a p{suPtly(t)! >L} (2.2)

of the event of failure. In order to do so one
assumes that the response variable y forms a ran
dom process with a completely known probability
measure. (For simplicity. the symbol y will be
used in what follow to denote the random process
as well as an individual sample function; the word
ing of the text will. it is hoped, avoid misunder
standings due to this imprecise notation.) It is in
fact usually assumed that the probability measure ,

, is Gaussian. and the probability in (Z. Z) is then
• calculated, or at least estimated, on that aS6ump

, tion.
The point to be made in this section is that the

value of the failure probability (Z. 2) is very sensi
tive to the assumption of Gaussianity (llill-condi
tioned, " in the language of'numerical analysis):
small chan~e6 away from it can produce very large
changes in the value of the failure probability. The
evidence to be presented indicates more particularly
that the failure probability is most sensitive to
those characteristics of the underlying random
procees y that are least likely to be well knoWn.



in which n and ,., are constants. The firstis more
specifically a coefficient in the Maclaurin series
ior the autocovarlance Ry(T) of y. i, e,'

Ry(T):sRy(O)( I-nlo;f I + 0 (~)J. (2.3b)

and the second is

namely the behav'ior for large Iy(t) I.
With a few exceptions, closed expressions for

',the distribution of II y II in (2. 1) are known only
when the random process y is stationary and
Gaussian. One that was derived fairly recently by
Pickands (1] is typical of most others. It is of
the familiar double exponential form

1- -- ,
" L Ap{ II yll >L) D(exp{-exp( -c; (~log 2n)'l+,.,] } (Z.3a)

;Formulae (2.3) are asymptotically valid for large
L and large n, 'in the sense that terms of order
O(L/rr )-1 and O(log n)-l are neglected, It is of
interest that the exprellllion (2,3a)
is essentially the same al for the
ex c e e dan c e pro b a b il i t Y 0 f n in de pen
dent Gaussian variables, each with
the same density as yIt), (,The only-'
di';crepancy is in the factor of log
If in (2.3c). .

The derivation of (2. 3) rests very heavily on
the Gaussian nature of the process y: Accordingly
no similar expressions are known for non-Gaussian
processes, to the writer's knowledge. 'However,
it may be at least plausible to expect an equiva
lence to exist; between non-Gaussian processes
and a suitable number n of independent non
Ga'ussian variables, which is of the kind that has
just been described for Gaussian ones. There
exists no mathematical proof of the equivalence,

,but it is difficult to think of any reasons why it
should fail to hold, at least if all conditions are
satisfied under which (2. 3) is valid and if the de-
parture from Gaussianity is small. '

If one can accept thi,s equivalence, one can
proceed furthe~. This will be done here, at any
rate. To be more specific, a non Gaussian ran
dom process will be considered whose one -dimen
sional probability density p(y) has the following
properties. ,.

(1) Between two limits (+ y ). p(y)'iI Ciaussiar.a
- 0

a
l

2
p(y)-v exp(-Lz), (Iyl < yo)" (Z.4a)

2rr

(Z) Beyond these two limits. p(y) is "of the
exponential type" (in the terminology of
Gumbel (2.p.1ZO]):

a 2 mi. r
p(y) =..1;'1 exp(--;l;l) (Iyl>yo' r>I).(Z. 4b)

(3) At Iy I=Yo' p(y) is continuoul. ' ,
(4) n is large.
(5~ L is large.

The last two assumptions are fairly traditional in
the theory of extremes (3, p. 374J. The first three
nre made here in order to be able to postulate a
random process which is Gaussian in a region in
which observational data are available (namely for
y(t) values which are not very large) but which may
depart from Gaus eianity whe re such data are
IIcarce and where such a departure wou,ld be dif
ficult to alcertain statistically. The case of no
departure i. included. one merely leta

~.l. maO. -1 ••~ • (a" r i • aaG'. (2.5'1,

The expressions are valid if. aa befO'l'e.terms of
orders O(L/<T )-1 and O(log n)-l are considered
negligible relative to I, and if the same is true of
terms of order O(yo/rr )-Z. •

A ~ere inspection of (Z. 7) and (Z. 8) shows
that even small changes in the one -dimensional
density of the process yare prone to produce
large changes op in the failure probability.
Numerical work confirms this. Suppose, for ex
ample. that a system had been designed on the
assumption that y is Gaussian. and for a failure
probability of Pg",.05. This would mean that L/6"
would have been set at L/<T =1.64. In order to
simplify the formulae (2.8). suppose further th.'
Yo= L '(i. e. that the departure from Gaussianity
most pronounced beyond the failure limit L). anti

'that n. ZO (i. e. that the random process ia ectuiva
\en~ to 20 1ndapendent .-anc1c>m va#iabl.a). In that

(2.8)

(2. "I)!Eo_ (M A!. + M.6m+M O~] log Pp 1 ~ -'~ 3' • i
g . ."

where'

Yo 2 L 1.
M 1-(7) -1- iT(~og~n)a

Yo .!
M Z·log cr +a(logZ +10glog2o)

1 Yo 2 Yo
M3-.(g.-) (l-~ogv ) + log 2.n

J.L .!+.. 0:-(Zlog2o)i1(1-10g2-410g10g2n)

- ~(l +logZ + 410g10g2n)

Suppose now also. as su&gested above. that tne
exceedance probability p{1I Y II> L} in (2. Z) for the
random process y is the same as of n independent
variables 11, Y2' ••• Yn' each with the density
(2.4). .

Under these assumptions, one can derive a
formula for the exceedance probability
p{ IIYII >L} which is analogous to (2.3). The
derivation is laborious but straightforward. It is
simplified if one can made a sixth assumption.
namely L~yo>s. which 18 not unreasonable and
which will be made here. One then linds

l-/ cl
p{lIyll >L}-~xp{-exp[_~rlogzn)r+ r,']}(Z. 6a)

with

m-r+l ) 61")' ..log a 2 + r 10gZn + r (log r+log10gZn (2. b)

This is again valid as symptotically for large (L/ s)
and large n. but in the sense that terms of orders
O(L/s)-r and O(lo'g n)-1 are negligibly small.

Expression (2.5) for the exceedance probability
is of roughly the same double exponential,form aa
its counterpart (2. 5). Since all parameters of
'the underlying density p(y) enter into the second
exp'onent, and some even exponentir,l1y so. the
probability is very sensitive to even small changes
in them.

The changes that are o['iil.ferest here are those
in the parameters aI' a2' a, m. and r, away from
the values (Z. 5) which they take if the random pro-.
cess, y is Gaussian. ,Their effect on the failure
probability p{ II y II> rl can be evaluated by a con
tentional perturbation calculation. 1£ Pg is uaed
to denote the value of this probability wlien y is
Gaussian. ana lOp the change induced by small de
parture 0 a' 0 r' .and 6rn. irom Gausaianity one find a

(2. 3c),., r: Z iog Zn + 1(10g If - log log Zn)

"



in which h is the impulse response of the variable.
The sets S introduced in the preceding section are
of a special form in this example. namely

Each consists of all responses that are generated
by ground motions with intensities IIxll.s. M•. The
probability measure of each 5 is

P(S) '" p{ IIx II .s. M} (4.3)

excitation process x. The transformation from
one to the other can be difficult. By contrast, the
que~tion of whether the value of 0 applies in (3. 3~
or'l. seems relatively easy to settle in practice.

The example to be treated in the next two
sections will. it is hoped, bear out these comments.

THE CRITICAL EXCITATIONS AND RESPONSES
OF LINEAR SYSTEMS

An example which illustrates the general re
marks just made will be discussed in this section
and the next. It arose from a problem in earth
quake engineering. '

The ground motions during earthquakes form
an almost ideal example of a random process whose
precise statistics are very imperfectly known and
unlikely to be well-known in the near future. It
has been customary in recent years to make the
assumption that the ground motions form aGaussian
random process. However. very little evidence in
this direction has ever been presented and what
evidence exists. apparently does not support the
assumption [5]. This uncertainty. of course, is
transmitted to the response. As a consequence.
and as explained in Sect. 2. any statement regard
ing structural failure or survival is liable to be in
serious error. .

Based on the above remarks, one should next
inquire what information concerning the statistics
of ground motion during earthquakes is well enough
established, to be used towards the prediction of
structural failure. One can perhaps say that the
distribution of ground motion intensities is based
on a sample of sufficient size to qualify in this re
spect. Such information has been accumulated
over many years, as pointed out by Housner [6.
p. 97-99]. There are admittedly many possible
definitions for the term II intensity." In this paper
it will be convenient to define it as the LZ-norm
IIxn of the ground acceleration x, i. e. by

II xII Z = j x 2(t)dt.
-CIC

(Other norms. in particular the maximum ground
acceleration. could be used equally well and might
even seem more natural here.) One can then per
haps as sume that the distribution of II x II can be
equally well documented no matter which definition
is adopted and in, fact that it is of the roughly ex
ponential form that has been pointed out by
Housner [6. ibid.].

Suppose now that the distribution of IIxll is
actually all that is reliably known regarding the
stochastic nature of the ground motion. Suppose.
further that the response ofavariable, such as the
base shear or base moment is of interest in an
elastic structure. This response is then related
to the ground acceleration by the Duhamel iptegral

(4.4)y*(O) .. MN •

and that all others differ from y* only by time
shifts or by a change in sign. Here~ N has been
used for

N2 .. 1hZ(t) dt < CIC.
-CIC

The peak of y* • namely

Mx*(t) = Iii h( -t)

which is, except for the constant factor. (MIN), the
time-reversed impulse response of the variable
under consideration. The pair x*. y* have been
called the "criUcal' excitation" _. and the "c ritical
response" of the strucutral variable; relative to
the set S. Hence. the title of this section.

It should be added that the set S , as defined
in (4. 2) developed to be too large in many cases in
practice: the critical response peaks (4.4) were
often unrealistically large. However, the fact thaI:
the term "unrealistic" can ,be used here at all im
plies that some information is availablf! regarding
ground motions. other than merely the distribution
(4. 3) of their intensities. as has been assumed here.
For. if that were really all that is known it would
not be possible to disqualify some of the response
peaks as being excessively large. There has been
some speculation of what this additional information
might be. Shinozuka [8] has suggested the envelope
of the Fourier amplitude spectrum as one possible
item. and Iyengar [9] the envelope of the time
history of the ground acceleration as another.
Either suggestion amounts to a restriction of the
sets (4. 2) or. equivalently, a refinement of the
kind that has been advocated in Sect. 3 for:!:' • as
being helpful towards the reduction of excessive
conservatism. The writer and his colleagues have
experimented with yet another restriction, which
seems to be successful in that the residual con
servatism is quite well consistent with good struc
tural design practice [10].

All of the restrictions mentioned here. however,
suffer from the same defect. namely. that it is very
difficult to say just what the probabilities P(S) of
the resulting sets S are. Beyond that. ,the approach
has been criticized on several counts, for instance.
the fact that each structural variable has its own
critical excitation and response and hence must in
principle be analyzed individually. or the implicit
assumption that all uncertainties in the response
statistics are imputed to the ground motion and
none to the structure•. Work is under way which
will. it is hoped, meet these and other objections.

occurs at t1OO. It is generated by the excitation

which, as was just assumed. is all that is known n
regard.ing the statistics of the ground motions. W

The question now •. according to (3.3). is '<-7'

whether or not there are any responses in S whose
peaks II y II exceed the failure limit L. The answe r
can be given quite easily. by a straightforward use
of the Schwarz inequality [7]. One finds that a re-

, sponse in S with the highest peak ny 1\ is

• CIC

y* (t) = Wf h(t-T) h( -T) dt ,
-CIC

(4. 1)

(4. Z)

CIC

y(t) =f h(t -T)X(t) dt.
-CIC

CIC

5= {y: y(t) .. fh(t-T)x(t)dt; IIxll.s.M} •
-CIC

•



using the somewhat imprecise notation introduced
above. This probability clearly obeys the inequality

The upper bound is attained if almost all sample
functions y t: S of the process exceed the failure
limit L. i. e., if the inteuection (3.1) is essen
tially equal to S; the lower bound applies if almost
none do. i. e., if the intersection is essentially
empty.

One can now use these two bounds towards
statements such as "the failure probability of a
system will not exceed P(S) when y t: S. I' Or "the
system will not fail under this condition. II More
over, these statements wiil carry the same degree
of assurance as the information that led to the
definition of the set S in the first place. They
may however, be rather extreme. The first one
in particular may be extremely conservative. in
fact, even pe·ssimistic in many cases: the upper
bound P(S), as just mentioned, is attained only if
essentially all sample functions in S produce fail
ure. The second one will, for siInilar reasons. be
attained only rarely.

The point to be made here is that, pessimistic
or not. it often is impossible to do much better.
There will. of course.be the temptation of reducing
the conservatism of these statements or. which is
saying the same thing, of estimating the magnitude
of the factor p{ II y II >L I y € S} in (3. Z). This is
actually usually done. The tacit argument in such
cases is that it is better to avoid excessive con
servatism than to avoid unreliable information.
Consequently, various assumptions are made which
are thought to be reasonable and which allow a cal
culation. or at least an estimation. of
p{ II y II >L Iy €s} • The moral of the discus sion o£
the proceding section, however. is that this is
risky busin.ess: it wil.1 often be better to make only
those statements that can be make on a level of
confidence that is consistant with the one attached
to the data, and to let the resulting conservatism
fall where it may. These are then statements o£
the kind that have been suggested above. They
amount to setting

p{ IIYlI >L\ yt: s} = 0 or 1 • (3.3)

depending on whether the intersection (3. 1) is, or
. is not empty.

The problem then becomes one of first making
the family 2::' as fine as pos sible, i. e •• of utilizing ,
all information that is considered to be reliable
enough to be used. In this way. the upper bound
P(S) in (3. Z) will be tightened as much as possible.
Also, the achievement of the lower bound, namely
zero, will be made r:nJre likely. Secondly, the
intersection (3. 1) must be stuc1ied: if it is found
empty, the lower bound applies; if not. the upper.

This procedure is in effect a combination of
probability theory with worst-case analysis:
probability theory is used in setting the measures
P(S) of the sets Se 2::' ; the worst-case analysis

,. complements it. via (3.3), by allowing no proba
bilities other than 0 and 1.

In practice, the probabilistic part seems to be
more difficult than the second. It is often doubtful
just what information is available. a nd also reliable
enough to be used in the determination of the sets
S. A further complication often is that the infor
mation which is available does not pertain dire.ctly

, to the response process y of a .yatem. ,but to the

os. p{1l y II> LI y€ S} P(S)So P(S)

"

Case one finds

£:E.,.. 15. 3 ~s - ZZ.4 or - 4.50 bm.
Pg

This shows that merely a change in m alone from"
o to 1. produces a change in the failure probability
by a factor of 4. 5.

Such a change would be extremely difficult to
detect statistically, on the level of confidence
which one would often wish to attach to an estimate
of the failure probability. The usual statistical
tests in particular which aim at the estimation of
certain mean values of the density p(y) of y, are
known to yield no information regarding the be
havior for large values of y [4] .

The evidence presented here therefore indi-,
cates that a reliable estimation of the failure
probability will often be very di££icult,basically of
course because it depends on the behavior of the,
underlying random process for large values of ita
sample functions. That. however. is the region
that is the least accessible to robust statistical
tests.

PROBABILISTIC AND WORST-CASE ANALYSIS
COMBINED

The discussion in the preceding section has.
it is hoped, made a reasonably persuasive case
for the non-robust nature of the probability of a
system failure which is induced by the magnitude
of its response. Unless the stochastic character
istics of the latter are very well known precise
pronouncements regarding the former will often be
impossible. Under the circumstances, one may
have to settle for weaker statements regarding this
probability. especially upper bounds, and seek to
make these all robust as possible. In order to do
so, one-.rnay have to follow a line of reasoning
which seems to be quite generally valid and which.
the writer believes, will frequently be inevitable.
It leads to a cross between probability theory and
worst-ca;se analysis.

In this procedure, one would first of all utilize
any information which is known on the desired level
of statistical confidence and which bears on the
probabilistic structure of the random process y
under study. It is pos sible in principle that this
information characterizes the random process,
completely. This is unlikely however, for in that,
case it would have to specify the probability mea
sure on the sigma algebra 2:: of all (measurable)
sets of sample functions of the process. More
often, the reliable information will be incomplete,
in the sense that it specifies"with the desired as
surance the probability measure only on the sets
of a family 2::' within :r.. (2::' will in fact either be
a coarser subsigma algebra of I:. or else will have
to be embedded in one. ) .

What matters here is that, so far as any state
~'ment regarding the random process yare con-

I cerned, they cannot be made on the sets in 2:: but
only on those in the coarser 2:'. They will be
correspondingly weaker statements. and the best
thing to do is to make 2:' as fine as it can be made.
consistently with the available information.

, The next question is how to arrive at those
weaker statements. One can, and may even be
forced to, proceed as follows.

Suppose that S is a set in 2:'. and more
particularly one that consists of. or at least con
tains, 'all sample functions that are of interest in a
particular problem. The question that is consider
ed in this paper is the probability that some among
those sample functions induce failure. In other
worda. it i. de.ired to know the probability of the

intersection

{YtllYlI>L}"'" {yt: S}
3/

(3. 1)

(3. Z)



(5. 1)

THE CRITICAL EXCITATIONS AND RESPONSES
OF NONLINEAR SYSTEMS

A" recent generalization [11] of the result
mentioned in the preceding section from linear to
nonlinear systems may be of suf£icientinterest to
be reported on here briefly.

. What has been shown more specifically is this.
The critical excitation x* and response y* of a non
linear system obey to sets of simultaneous equa
tions. One is, of course, the set which defined the
system under consideration. The second set is
obtained from the first by

(a) linearizing it about x* and y*,
(b) replacing x with k6 where' 0 is the unit

impulse function and where k is so de
te rmined that II x II = M, and

(c) reversing time, i. e., replacing t with
( -t).

For example, if the system under consideration is
given by a single differential equation of the form

dn dn - 1
g(£..L.~ .... y) =x ,

dtn dtn -

In addition, the solution for nonlinear ones need 3,,~
not be unique. There may. in other words, be "'"
more than one excitation! response pair that
satisfies eq. IS (5.2) and (5. 3). or others like these.
Finally. and perhaps most importantly, these
equations unfortunately cannot be solved simulta- "
neously; the obstacle develops to be time-reversal
in the second equation, as one recognizes quite
easily. The solution can often be carried out by
successive approximation, however. On the basis
of some limited computational experience, there
is in fact hope that the approximation will con-
verge quite rapidly in many problems of practical
interest.
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the critical excitation and response obey two dif
ferential equations, namely

d
n * d

n
-

1 *g(£....Y: • l, ... y*) =x"
dtn dtn - .

which is necess.ary for the criticality of x* and y*.
Another way of stating this result whic:hbrings

out the parallel with lin~r systems is the following.
The critical excitation x* is again. except for the
constant factor k. a time-reversed. impulse re
sponse. However, by contrast to linear systems.
it is not the impulse response of the given system
but of a linearized version of it. The linearization
must more particularly be around t.he" critical
excitation! response pair.

The result holds not only for systems that are,
or can be. defined by a single differential equation.
such as (5.1). On the contrary, substantially more
general excitation/ response' relationships are ad
missible than nonlinear differential equations. In
particular history -dependent failure mechanisms.
such as material fatigue, are subsumed under it.

The result is derived in roughly the following
way. The system is first assumed to be specified
by its Volterra series [12]. rather than by its dif
ferential equations. This is done partly for sake
of greater generality and partly to preserve the
analogy to the Duhamel integralin (4.1). The re';
suIt then follows very quickly by a variational
argument. Some attention must be paid to the fact
that Volterra series frequently have small radii of
convergence, and to the transition from those "
series to other system representations, such as
(5. 1).

The solution that is obtained in this way is
valid under fairly general conditions. It has. how
ever, certain drawbacks as well. Among those
are, to begin with. all those mentioned in the pre
ceding section in connection with linear syste~s. '

which merely expresses the fact that y* is the re
sponse to x*, and

dnx* ." dn - 1x*
a (t)-+a l(t)--r-+••• +ao(t)=ko (5.3)

n dtn n- dtn-

where
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APPENDIX C

THE CRITICAL EXCITATION OF NONLINEAR SYSTEMS

R. F. Drenick
Professor of System Engineering
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333 Jay Street, Brooklyn, NY 11201

ABSTRACT

o The critical excitation of a mechanical system, in the terminology of

this paper, is one that drives the system to a iarger response peak than

any other in some class of allowed excitations. The critical excitation is

of interest in questions related to the reliability and safety because the

magnitude of the response peak is frequently an indicator of the survivabil-

ity of the system. The problem of finding it has been solved for linear sys-

tems some time ago. This paper deals with the generalization of the prob-

lem to nonlinear systems. It is shown that its solution is in many ways

analogous to its earlier counterpart.

1. Introduction

This paper deals with a problem that is encountered in questions of the

reliability or safety of mechanical systems. It is then often unportant to

know what the largest response peak is to which the system can be driven

by any of some class of possible excitations. The idea is that the magnitude

of that maximum response peak will indicate whether or not one should be

prepared for a possible system failure. The excitation that achieves this

peak has been called the It critical excitation" of the system, and the res-

ponse which it generates the "critical response." The terminology is used

also here.

The problem is patently undefined unless a class of,excitations is speci-

ned among which the critical is to be found. In this pape,r, that class is

assumed to consist of all excitations whose square-integral is limited to a
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ce rtain value.
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This assumption is often appealing because the square-

integral can be interpreted as representing the energy, or the intensity

of the excitation.

As it happens, the assumption is appealing.for another reason as well:

for it develops that it leads to a particularly neat solution when the system

under consicieration is linear. The excitation that is critical under this as-

sumption is, except for a constant factor, the impulse response of the sys-

tern, reversed in time [2].

The restriction to linearity is, however, quite inappropriate to prob-

lems that touch on system failures. Nonlinearities are virtually inevitable

as failure is approached,· and failure itself is patently a nonlinear pheno-

menon as well. The. geperalization of the problem to nonlinear systems is

therefore highly de sirable. It is the subject of this paper.

The main result is derived in Section 3. It is shown there that an in-

teresting parallel exists between the solutions for linear and for nonlinear

systems. The critical excitation of a nonlinear system is found to be again,

except for a constant factor, a time-reversed impulse response, and more

particularly that of a certain'linearization of the given system.

·Section 4 discusses some supplementary questions. The non-unique-

ness of the so1ution is emphasized first. Relations to earlier work are re-

viewed next. In particular, the possibility of arriving at a very similar

result through optimal control-theory is pointed out. A computational pro-

cedure, its convergence and divergence, are discussed. The application

is illustrated by a. simple example.

The solution derived in this paper uses some conceptp from functional
'" ..,' .. -

analysis which.are collected and briefly explained in Section 2•.
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2. Preliminaries

This paper considers systems which transform excitations X, subject

to

(2. 1a)
00 •

J x 2(t)dt < 00,

-00

into responses y which obey

(2. 1b)

Such systems can be represented in many ways, and several will in fact be

used below. One repre sentation is in terms of an operator H which car

, -1
rie s x into y, or its inverse G = H , i. e. ,

(2. 2) y = H(x), x = G{y).

Most physical systems have the property that no excitation x by itself

determines a response y, and that an additional variable (the ttinitial state"

q) must be added to define y uniquely. H is then a function of x and q. In

this paper, this complica Hon will be avoided by the convention that the sys

tem is initially at re'st and that the initial state is fixed accordingly. The

same assumption, if needed, will be understood to apply toG.

Under certain further assumptions, operators such as Hand G can be

expanded into series which have properties' similar to Taylor series in the

elementary calculus. In fact, one writes them in the same form, namely

(2. 3)

(2.4)

y = H{x) ='-H{x) + HI (x) (x - x) + 2~ Htt (x) (x _ x)2 +•••

- - - 1 - -2x= G(y) =G(y) f GI(y) (y-y) + 2r Gtt(y) (y-y) +••••

The i~terpretationof the terms in such series, conditions for their exis-

tence, and regions of conve:rgence are known (e. g., [4], p. 112). It is
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further knpwn that these conditions in general insure the existence of simi

lar series for the "derivatives" H(k)(x) and G(k)(x). For instance,

(2. 5) H' (x) =H' (x) + H" (x) (x - x) + i: Hm (x) (x _ x)2 +••• •

Furthermore, since Hand G are each other's inverses, the derivatives in

the series (2. 4) and (2. 5) are related. Thus, if

y=H(x), x= G(y)

the first derivatives in (2.4) and (2.5) obey ([6], p. 36)

(2. 6) H' (x) G' (1'):: G' (y) H' (x) = I

where I is the identity operator.

For many purposes, it is inconvenient to represent a system by an

operator which characterizes the response y for all times t, in terms of

the excitation X, or vice versa. It is often more appropriate to have a

representation which defines the response yet) at only specified time t,

or conversely. The restriction to such specified times leads to two func-

tionals hand g, which are the counterparts to the operators Hand G,

and for which

(2.7)
-
yet) = h(t; x), x(t) =- get; y),

in place of (2. 2).

The Taylor series (2. 4) and (2. §>.' too, have their analogs for the

functionals f· and g. One can show more specifically that, under the

condition (2.1), a series expansion is possible for the functional h. It is

. ~
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co
y{t) = yet} + J dTh

t
{Xi t - T

1} [X{Tt }-X{T
1

)] +••• +
-co

(2.8) co co
+ J dT1 J dTl h 2{x;t-T1, t-T2)[X{T1)-X(T1)][X(Tt-X(T2)J

-co -co

+•••

and it reduces to the well-known Volterra series ([8J~ p. 21) when the refer -_.

ence excitation and response x(t) = yet) :: o.

The series for the functional g is not in general of the same form as

(2. 8) under the condition (2. 1). In fact, (2. 7b) is frequently a differential

equation in y, say

(2.9) (n) (n-1)x =.g{y ~ y , ••• , y).

The Taylor series for g is then a conventional one, namely

X(t) = x(t) + J.: 0 ...£L(O) [y(i)(t) - y{i)(t)]
1 ay 1

(2. 10)

1 ~ ~ a2
g [Ci)() -Ci)( )][ (j){) -O)()]+-2' 6 0 1-1" CO) 4') Y t -: y t Y t - Y t +•••

• . 1 J a 1 a .\Jy Y

in which the derivatives of g are evaluated at yet) = yet). Mechanical

systems are not usually defined by single differential equations of the

form (2.10). Nevertheless, series expansions are typically possible.

They are then often certain combinations of the forms (2. 8) and (2. 10)

The operator equations (2. 5) and (2.6) have their counterpart

for the functionalsh and .g, as well. Thus, the analog of (2. 5)

is

(2. 11)
co

h 1 (Xit ) = h 1 (Xit) + 1
1! J dT2 h 2 (Xit, t-T2}[X~T2) - X(T2)]+···

-co

and the analog of (2. 6), assuming g to be the simple differential equation

(2. 9),
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~ ~ (-
~i ay{i) hi x;t) = 0 (t),

with the derivatives evaluated at yet) = yet) and with 0 (t) the unit impulse

function. The latter is a linear differential equation with time-variable

coefficients and certainly has a solution if ag/ay(n) ~ 0 for y =y and all t.

The solution, namely hi' is therefo~e the unit impulse re sponse. This

"
last observation applies also if g is of a more complicated form than (2.9),

as one easily recognizes.

. ,
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3. Critical Excitations

The objective in this section is to derive the main result of this paper

namely, a characterization of the critical excitation of a nonlinear system.

This is the excitation which drives the system to a larger re sponse peak

than any other, of some given class of admissible excitations. Which exci-

tation turns out to be critical evidently depends 'on the class that is consi-

dered admissible in the first place. In this paper, all excitations will be

considered admissible which obey

(3. 1)
co 2 2J x (t) dt =M ,

-co

for some given If intensity" M 2• (A com.ment on the possibility of replacing

(3. 1) with the more appropriate inequality constraint is made below in

Section 4. 3. )

For a linear system, the characterization of the critical excitation x*
under the constraint (3. 1) is known [2]: if the system has the impulse res-

ponse h, the critical excitation is, up to a constant .factor,· the time-

reversed version h(-t) of h(t). To be more specific,

(3.2a)

where

(3.2b)

* Mx (t) = :t" N h(-t)

2 co 2
N = J h (T) dT ,

-co

provided only this quantity is finite (as it is for any stable linear system).

It will be shown here that a very similar result holds also for a non-

linear system. Its critical ~xcitation is again the time,-reversed version

of an impulse response, but it is not that of 'the given sy;;tem but of a cer-
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tain linearized ve rsion of it. A proviso similar to (3. 2b) develops to be

necessary as well.

The first result to be derived here is the following.

Theorem 3.1. Let a system of the type described in- Section 2 be given.
...

An excitation x... that is critical under the constraint (3. 1) is then the time- _.

reversed impulse response of the impulse response of a linear system,
...

namely of the linearization of the given system at x = x"', provided this

linearization is stable in the sense that

(3. 3) - 00 2 *LJlt (x iT) dT < 00.

-00

Here, h
t

is the kernel in the Volterra-Taylor representation (2. 8) of the

system operator.

Proof. Since the given system is assumed to be time-invariant, it is

no restriction to specify the time tm at which the response peak is to oc

cur, and to set that time t = O. This will be done here. It is then dem

sired to maximize, with respect to all excitations obeying (3. t) the magni-

tude of

00

y(O) =yeO) + f dTt ht(Xi-Tt)[X(Tt )- X(Tt )]
-00

(3.4)

+•••

and where x is a suitable reference input to be specified later on. For the

moment, one need only require that x leads to a respon,se y with ly(O)1 <00.

The critical excitation will then be among those for whic4 the first variation

6y~O) of yeO) vanishes, with respect to all varia~ions OX(T) that are consistent
..
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with the constraint (3. 1). It is', as always, helpful to introduce this con-

straint into the variation of i(O) by way of a Lagrange multiplier A. A
......

necessary condition for x to be critical under the constraint (3.1) is then

that

co '2
o = 6y(O) + A6 .f x (T) d,.

-co

should hold identically for all ox(T). In writing this expre s sion it has been

assumed that the kernels h 2, h
3
, ••• are symmetric functions of their time

argument, which is alright, as is well known [8, p. 19]. The identity can

however hold only if

The terms beyond the first, as a comparison with (2. 11) shows, represent

the linearization of the system operator H at x *. That is,

Equation (3.3) can therefore be written

(3. 5)

and bears out the main assertion of the theorem. The reference excitation

it as this result shows, is best chosen to coincide with x*. In particular,

convergence is then assured when II ox" is small. The factor (-2),) in (3.5)

must now be so determined that (3. 1) holds, i•.e., so that

(3. 6) J
co 2 * ' 22

hi (x iT)dT = 4>" M
-co

..
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which is clearly possible if (3. 3) holds. The proof of the theorem is thus

complete.

The proof assumes the system under consideration to be specified by

a Taylor series of the form (2. 8), preferably around x * as reference exci-

tation. In practice, however, a system is typically specified not by such a

series but by a set of differential or similar equations. It is of interest to

inquire what form the result above takes lli such a case. It will be conven-

ient to start by assuming that the system is specified by a single differen

tial equation of the form (2.9), i. e.,

(3.7)
(n) (n-1)

g(y ,y , ••• , y) = x

in which yen) stands for the n-th derivative of y, and g is such that the

equation is meaningful and has a unique solution y either for every ad-

missible x or for at least an interesting. subset of these. In such a easel

the following can be said.

Corollary 3.1. Let a system be described by an equation of the form

(3.7). Its critical excitation x* then differs by only a constant from the

time -reversed impulse re sponse of the linear system

(3. 8) (n-1) .£g
v +••• + ay v = u

in which the derivatives ag/ay(i) ~re evaluated for the critical response

*y= y •

Proof. It merely needs to be shown he re that the impulse re sponse

of the system (3. 8) is hi (x*, T). The assertion of the corollary then fol

lows from (3. 5). Recall from the discussion in Section 2 that (3. 7) can be

considered the representation of an operator G which transforms the
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response y into the excitation x, as in (2. 1b), and which is therefore the

inverse of H. Their first derivatives are then related by (2. 6) or, if

written in terms of the functionals g .and h by (2. 12). Restated here, for

convenience, the relation is

(3.9) ag hen) + ag h(n-1) + + .£.g, h _ 6
ay(n) 1 ay(n-O 1 ••• ay 1

where h
1

has been written for h
1

(x*;t) and where the derivatives of ~ are

evaluated at y = y *. According to this equation, hi (x*; t) is indeed the im

pulse response of the system (3. 8), and the corollary is proven.

It may be noticed that no essential use has been made in this proof of

the fact that ~he systemis described by a single differential equation,

namely (3.7). The functional g in that equation could actually have been

assumed to be of a more general kind. Thus, instead of depending merely

on y. and its derivatives at one and the same time t, as g does in (3.7),

the dependence could be on y as well as its deriva.tives at times other than

t. In particular, therefore, the single differential equation could be re-

placed with a set of simultaneous ones, involving along with the response y

other auxiliary variables, for instance, the components of some state vec-

tor. Moreover, these variables need not enter only through their values at

one and the same time t. They could also do so by way of the history of

their values in the past (as they would,- e~ g., for a system with hysteresis

effects). These observations are summarized as

Corollary 3. 2. The preceding corollary remains valid if the differen

tial equation (3.7) is replaced with a system of simultaneous differential or

functional equations which relate the response y of the system to the exci-

tation x in a one -to-one fashion.

•
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4. Dis cus s ion

It may be useful to supplement the results derived in the preceding sec-

tion with some remarks which relate them to those obtained by others in

the same and in other fields, and indicate how the results might be used and
. \

interpreted. This is done below. Also, an example is presented.

4.1 Unigueness Questions
~ .

As is well known, variational arguments of the kind used to prove

Theorem 3. 1 merely lead to necessary conditions: the critical excitation

x * satisfies the condition (3. 5) but other excitations may do the same.

Those others may generate responses whose response pea'ks y represento .

local maxima, rather than the global one that is of interest. For that

matter, y(O) may even be a. minimum or some other stationary value•.

The condition (3. 5), in other words, does not in general characterize the

critical excitation uniquely.

It would be desirable to have criteria which distinguish maxima from

other stationary solutions, and the global one from local ones, if any.

Criteria which do the former are known ([1], p. 177).. One can also set

up sufficient conditions for the latter. Those, however, seem to be dif-

ficult to ve rify in practice.

4.2 Connection with Earlier Work

As mentioned in the Introduction, the problem of determining the criti-

-cal excitation is a. problem in optimal c~:mtrol theory. In fact, this theory

is directly applicable if the system is represented by one or more differen-

tial equations (see, e. g., [1], p. 47). However, the straightforward use of

the maximum principle of that theory leads to a characterization of the cri

tical excitation, namely in terms of the so-called a.djoint system {ibid., or

..
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[7], p. 85) that differs from the one obtained in Section 3. The adjoint sys-

tern is a system of linear differential equations which are analogous, but

not identical, to (3. 5) and which are solved with a different set of initial
" I

\ '

conditions. Moreover, the parallel to the result (3. 2) for linear systems is

partly lost. This reason, anc its slightly greater generality, suggested the _.

approach that has been used in this paper.

The solution obtained from the maximum principle is more general in_

one respect "tha.n. the one that is obtained here: it allows the constraint (3. 1)

to be changed from an equality to the more appropriate inequality

(4. 1)
00J x 2

{t) dt < M
2

•
-00

It is not difficult to convince oneself, however, that this generalization can

also be incorporated in the approach used in this paper, without major

changes in the proof and without a change in the result. One merely needs

to argue that if x* lay in the interior of the regio.n (4. 1), X. could be set

equal to zero in the proof of Theorem 1. 1. In that case, however,

would lead to an increase ~y(O), and yeO) could not have been a maximum.

The critical excitation, in other words,' always obeys the equality constraint

(3. 1).

The problem of finding the critical excitation for a nonlinear system
•

was also treated by Iyengar [5]. His solution unfortunately does not in

general lead to an excitation that generates a maximum response peak or,

for that matter, to a value with extremal properties of any kind, local or

otherwise. This was pointed out later on in a disc,?-ssion of that pape: [5]•

..
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4. 3 COInputational Questions

The characterization of the critical excitation which is Inost likely to

be of interest in practice is the one contained in the corollaries to Theorem

3. 1. Considering the on~ in Corollary 3. 1, for instance, the critical exci-

w . *
tation x'" and the critical response y are jointly determined by two differ-

ential equations, naInely (3. 7) and' (3. 8). They could therefore be calcula-

ted by solving theIn simultaneously if it were not for the time-reversal and

the constant factor that have to be applied to the solution of the latter before

it can be used in the forIner. Under the circmnstances, a simultaneous

solution unfortunately is not possible. The situation is reminiscent.of, and

in fact equivalent to, the two-point boundary value problems with split

boundary conditions to which one is led by a solution via the ma.ximmn

p'rinciple of optiInal control the ory.

There are several computational procedures that can be considered

for the determination of x* and y *. One that suggests itself, and which

incidentally avoids the nmnerical instabilities of boundary value problems,

is a successive approxlInation method which proceeds as follows. .Start

with an excitation X, preferably with one that is suspected of being at least
w

similar to x ..·, and determine the response to it by solving the equations

defining the system, for instance (3.7). It is of course possible that i: in

fact is critical, i. e., i = x *. In that case, the response y will be critical

also, y= y *. Equation (3.9), with the derivatives ag/ay(i) evalla ted at
...

.this response, will then have a solution hi which differs from i = x ... by
. .

only a time-reversal and a constant factor which insures (3. 1). More often,

however, the initial i: will not be critical, and neither will be the response

y to it that is obfained by solving (3. 7). One .can nevertheless evaluate the

derivatives ag/ay(i) for that response and solve (3.9). The solution ~1
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found in this way, reversed in time and modified by a constant factor to

enforce (3. 1), can now be used as an excitation in place of X, and the same

procedure started all over again.

One can expect that the successive approximations process which is

*generated in this way will often converge on the critical excitation x , and.
in ·practice this in. fact frequently happens (see Sect. 4.5 below).

4.4 Divergence

The approximation procedure described above will often converge on a

critical excitation that generates at least a local maximum. in the magnitude

of the re·sponse peak yeO). It can, however~ happen that the succession of

solutions hi that are obtained in this process from (3.9) have square inte

grals

(4.2)
00 2. 2f hi (x;t) dt = N (x)

-00

which grow su~cessivelylarger and diverge to i~inity. In the limit, there

fore, the proviso (3. 3) of Theorem 3. 1 and· of its corollaries· is violated and

the result invalid. One can surmise that in such a case the physical system

is driven to a failure .by its critical excitation. As a partial mathematical

confirmation one can mention that the Taylor series (3.4) for yeO) is con-

. sidered to be divergent near the excitation x if N 2 (x) in (4.2) is not finite.

4. 5 Example

As an illustration of the ideas developed above consider a system with

a single degree of freedom,

(4.3a) , + 2~ tAl Y+ fey) = X-
o
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with a bi-linear spring
Z for Iyl ~ (3,roY(4.3b) fey) =
z z Z for Iyl > {3, W >w

1
> o.W t y + (w 0 - wi) {3 o -

The linearization of (4. 3) in the neighborhood of an excitation/response

pair (X, y) is then

(4. 4a) .

where

(4.4b)

w~en Iyl ~ {3,

whe n fyI > {3 •

It is desired to find a pair (i, y) such that x is the time-reversed solution

Y of (4. 4) with x = ko, 0 being the unit impulse and k so chosen that (3. 1)

is satisfied.

Suppose that the successive approximation procedure which has been

described (in Section 4. 3) is used, and that

(4. 5) Y (t) = w exp{-~ w t) sin w to non
z z z

{wn =W o (1-~ ), t > 0)

is used as starting solution. To obtain its companion xo' one determines

the impulse response. h o of (4.4), for _y = Yo' and the constant k so that

kh obeys (3. 1). Both are done by nume rical integration. Then x is the
o . 0

time reversed version of kho• This excitation is next used in (4. 3) and a

response y = Yi is calculated. The companion xi to Y1 is now obtained

by the same procedure as x from y. The process is repeated, and ao 0

succession of pairs (xo' Yo), (xt ' Yl)' ••• derived. The ;response peaks

yoCO), Y1 CO), • • ., should increase monotonely; if the procedure works as

de sired. It is stopped, when the increase doe s•
..



50

Computational experience with this type of example has been quite good

over a fairly wide range of the parameters wo' wi' and f3. Some tact and

thoughtfulness in the choice of y , tended to produce large returns in speed
o

of convergence. (4. 5) in particular is not always a good choice. ,The pro-
I
!

cedure then converged. in less than ten successive approximations in all

cases.
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APPENDIX D

CRITICAL SEISMIC EXCITATION AND RESPONSE OF STRUCTURES

by
I II

P.C. Wang , and R.F. Drenick

SYNOPSIS

The practicality of the critical excitation method for the design of
structures is investigated. In the terminology of this paper, an excita- _
tion is critical for a structure if it generates a larger response peak
in one of the design variables than any other possible excitation in some
given class. The basic idea of the method is to draw up the design in
such a way that the structure has sufficient reserve strength to sustain
its own critical excitations up to a certain maximum intensity. This
paper investigates more specifically a modification of the idea. It is
shown, by an analysis of several existing and planned structures, that the
modification leads to fairly realistic, if somewhat conservative designs.
The results encourage the conclusion that the modified mehtod, or a simi
lar one, may become a useful design tool of structures whose impostance
justifies conservative design.

INTRODUCTION

The design of structures against seismic excitation is a process of
decision-making under uncertainty. In most seismically active sites in
the world, few recorded accelerograms and little reliable geological infor
mation are available. Someone entrusted with the design of an important
structure must nevertheless decide what kind of ground acceleration it is
to withstand. Under the circumstances, he may study the records obtained
elsewhere, at localities with similar geological features, and base his
design on one of these records. He would do so in the hope that this
accelerogram or response spectrum represents an excitation likely to hap
pen at that site.

A somewhat more rational procedure was proposed sometime ago (1) • A
designer who follows it would select not a single accelerogram but a cer
tain class of excitations which he considers to be realistic for the local
ity in question, and would then determine those in that class which gen
erate the largest response peaks in each structural variable, such as a
joint displacement or a member force. These eXditations have been called
"cri tical", and so have the responses of, the structure. The idea is
that the designer would draw up the design in such a way that it would
have sufficient reserve strength to sustain its own critical excitations.

This design procedure can be cast in many forms. The paper begins :.
by describing two. The first is one that 'is intUitively and conceptually
appealing but unfortunately often leads t?2~verly conservative designs.
The second is a modification of the first ,intended to avoid excessive
conservativeness Without introducing excessive computation complexity.

I Professor of Civil Engineering, Polytechnic Institute of New York
II Professor of Systems Engirteering, Polytechnic Insitute of New York
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The main purpose of the paper is to present results that were ob
tained using the modified procedure. In order to verify its practical
ity, a number of realistic structures were analyzed. The response peaks
Were calculated in each case for the modified critical excitation, along
with those generated by several recorded ground motions of the same in
tensity. The ratios of the peaks, clled the "critical design factors"
in this paper, are indicators of the degree of conservativeness of the
procedure. These factors are shown to fall into the range of 1.1 to 2.9.
There are two reasons for believing that factors in that order represent a
reasonable degree of conservativeness. For one, the modified critical
excitations appear to be fairly realistic samples of possible ground mo
tions that cannot be disregarded out of hand. Secondly, as a fairly
broad sample of strength calculations shows, designs by experienced engi
neering firms frequently have sUfficient reserve strength to sustain
these excitations.

The results suggest the conclusion that the modification of the crit~

ical excitation method, or some similar procedure, may become a practical
engineering design tool for structures whose importance justifies some
conservativeness.
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CRITIC~L EXCITATION
In the case of forced vibration, the most damaging excitation on a

structure can be expected to have a frequency content that closely match
es that of the structure. Tnis is actually so, under certain assumptions.
As has been demonstrated before(l), the critical excitation x~(t) for a
linear system is the time-reversed impulse response, multiplied by an
intensity modification factor,

* EX (t) = - h(-~)
c N '

(1)

if E, the reference intensity of the ground acceleration is defined as
t

2 e 2
E = So X

g
(t)dt (2)

and N is the square integral of the unit impulse response

2 t e 2
N = So h (t)dt, (3)

In both Eqs. (2) and (3), the "effective duration" t e of a ground
excitation is the period over which the excitation contributes signifi
cantly to the maximum response of the structure. t e depends on the
modes as well as the damping of the structure. The response peak under
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the critical excitation always occurs at the end of that period. It is

*Y (t ) = EN (4)
c e

*The frequency content of xc(t) is the same as that of the structure,
in the sense that its Fourier amplitude spectrum differs from that of
the structure only by the factor (E/N). A plot of the typical critical
excitation with El Centro intensity is shown in Fig. 1.

MODIFICATION OF CRITICAL EXCITATION

The response peak (4) is often found to be unrealistically high.
The intuitive reason for this is qUite plain. The frequency content of
x~often differs greatly from that of any realistic ground acceleration.
It is therefore necessary to exclude from the class of excitations that
are being considered, all those with frequency contents that are unlike
those of realistic ground motions. This can be done in many ways. One
that seems particularly simple is the following.

Among the ground motions that are considered realistic for a particular
site, one should presumably include a number n of recorded ones, xi (i =
1, 2, •• n), preferably those that have occurred at locations with similar
geological features. In addition, all linear superpositions of the x.
might be considered to be realistic as well, provided only that their~
combined intensity does not exceed a prescribed maximum. This, at any
rate, was done in the s~udy reported here. Moreover, in order to avoid
computational complication, it was not the critical excitati~n among these
superpositions that was determined. Rather, an excitation X'tw*s calcu
lated which differed least (in the least-squares sense) ,from x. In
symbols Ii c

x: =I a.x. (5)
"V 1=1 ~ ~

so that

and

Jo
t e *'?- 2

x
t

(t)dt = E

(6)

(7)

*A plot of a typical modified critical excitation x with El Centro
intensity is shown in Fig. 2. It is, by all appearances, a sample of a
perfectly realistic ground motion during an earthquake. One cannot, in
other words, ignore it in the process of a design on grounds of its being
"unrealistic" or "unlikely".,

APPLICATION TO REALISTIC STRUCTURES

Several realistic structures were analyzed and some of the struc
tural members were investigated by the critical excitation and ~esponse

approach. The essential results are summarized in Tables 1 and 2.

Table 1 shows the "critical d-esign factors" of some of the design

"
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variables of seven structures. The "critical design factors" are based
on the ratio of the response of the second class critical excitation with
that of the reference excitation of same intensity. The reference exci
tations are 1971 Pacoima dam S14W, 1940 El Centro SOOE, and 1954 Eureka
N79E. These factors range from 1.14 to 2.88.

Table 2 shows strength requirement for a modified critical excitation
of El Centro intensity. The approximate ductility requirements for some
of the members as they were designed are shown in the last column.

CONCLUSIONS

1. A modification of the critical excitation method is applied to
several realistic structures. From the "critical design factos" cal
culated for each, and from strength checking on already designed ones,
it appears that the method leads to results which are on the safe side.
but not overly conservative. This conclusion is further supported by
plots of many of the modified critical excitations which are, by all indi
cations, quite realistic samples of possible ground motions during earth
quakes.

2. The modified mehtod, or some similar procedure, seems to have
promise as a practical and useful tool for the design of structures in
cases in which conservative design is desirable. This is likely to apply
to structures of major importance, the destruction of which would cause
severe human or economic 19sses.

Its attraction in such cases may lie in its ability to spot weak
in a design, and the fact that it eliminates much of the arbitra
from the choice of the excitation on which designs now often are

BIBLIOGRAPHY

1. R.F. Drenick, Aseismic Design by Way of the Critical Excitation, Proc.
ASCE, Jour. Eng. Mechanic Div., Vol. 99 (1973), p. 649.

2. P.C. Wang, W. Wang, and R.F. Drenick, Case study of Critical Exci
tation and Response of Structures, Interim Report to the National Science
Foundation, Nov. 1975.

3. C.A. Miller, and C J. Costantino, Structure-Foundation Interaction
of a Nuclear Power Plant with a Seismic Disturbance, Nuclear Eng. & Design,
Vol. 4 (1970), p. 332.

4. J.W. Wood, Analysis of the Earthquake Response of a Nine-Story Steel
Frame Building During the San Fernando Earthquake, Cal. Inst. Tech., 1972.



.....

co

<0

......
0
~ ...r
til-0(!)

C'Jtil-oW
~
"-J

00
0
-<

C'J

•
V
•

to. I

~l

N,..
0,..

co

<0

CD•
co,
o
1"

56

·,'Fig. 1.

Fig. 2

*Critical Excitation x of. - c
Top Disp. of JPL.

Hodified Critical Excita
tion x; of To? Disp. of
JPL.

N'+----.,.-----r----r----:r------r-----,---_~T-
t .00 2.00 ' LJ.on O.on El.OO ,10.00 12.00 14.00

TIME (SEC)



57

Table I. CRITICAL DESIG~ FACTORS

IStructure fund. Period Com;>arison Design Struct. I Critical Design Source
(sec) Grd. Motion Variable Factor

R.C. Flat 4.95. Pacoima Dam Base 101 of 1.59 .1. Vellozzi
Plate Bldg. El Centro Ext. CoL 1.24 Amman &
lb stories LSO t~hitney .

Ta;>ered 3.40 Pacoima Dam Base V 1.48 .1. Vellozzi
R.C. Chimney El Centro 1.33 AIllo'"tlan &
1000 ft. Eureka 1.32 Ilhitney
Reactor· Shell 0.416 Pacoima Dam Centroidal 1.39 Hiller Co l,3'

Eureka Defl. 1.14 Costantin
Steel Struc. I 0.214 Pacoima Dam TOp Defl. 2.29 Stone Co
on COnc. Dike I Eureka 2.50 l.rebster
Bank of CaL 3.664 Pacoima Dam Base 101 of 2.33 Degenko1b
(s tee 1 frama) E1 Centro Col. 2.86 & Assoc.
24 stories Eureka 2.13
.11'L I 1.488 Pacoina Dam Base M of 1.97 Wood(4)
Bldg. No. 180 I J1'L Basement Col. 2.88

Int'l Bldg'. I 1.456 Pacoima Dam Top DeiL 1.23 IDegenkolb
(s tee 1 frame) I £1 Centro 2.61 & Assoc.
24 stories Eureka 2.69

Table 2. STRE~GTH REQUIRENE:NT fOR THE: CRITICAL
EXCIT<\TION OF EL CE~TRO INTENSITY

Structure Struc tura 1 Requirements or Approxicate
Element Secs. Provided Ductility Re~'d

R.C. Flat Botto:n Story 20"x20"co1. f~-3ksi I

Plate Bldg. Ext. Col. f v=60ksi, 1
12-#14
#6 Ties @8"

R.C. Chimney Bottom Sec. i~-3ksi, f =SOski,
#9 Vert. R~inf.@6'2" 4
both faces

Bank of Ground Floor 14~{F456

California Ext. col. A44l Steel 3.75
JPI,. Bldg. 180 2nd Story CoL l4lolFl58

A36 Steel 5
Int'l Building Bottom Ext. l4Wf320+2Pl.24x3~ I !Column A7 Steel 1.4

..



APPENDIX E
THE CRITICAL EXCITATION OF INELASTIC STRUCTURES

by

R.F. DrenickI , and H. KanoII

SYNOPSIS

A critical excitation of a structure drives one of its variables to a
higher response peak than any other among some class of allowed excitations.
This paper reports on the generalization of earlier results from elastic to
inelastic structures.

PROBLEM AND SOLUTION

A question of importance in earthquake engineering which is rarely
answered is this. Suppose that a structure is to be certified as resistant
to earthquakes of some given intensity; what particular ground motions
should it be able to withstand? In most current work,. this question would
probably be answered by saying that it should be able to withstand certain
already recorded ground motions, or else certain artificially ones that are
randomly generated. A third possible answer is an excitation which has·
been called "critical". It is an artificial ground motion also, but one
which drives the structure to a higher response peak than any other of SOme
designated class of allowed ground motions.

As has been shown previously, critical excitations are rather easily
calculated if all ground motions up to a certain intensity are allowed, and
if the structure is treated as elastic. If the intensity is measured by
the square-integral of the ground accele~ation, the critical excitation is

.moreparticularly found to differ by only a constant factor from the time
reversed impulse response of the structural variable of interest.

This result has recently been generalized to inel~stic structures. It
was found that the critical excitation is again a time~reversed impulse re
sponse. However, it is not the one of the structural variable itself but
of one defined by a linearized set of equations. The linearization is more
specifically the one that applies in the neighborhood of the critical exci
tation and response pair.

In order to determine such a pair, two sets of equations must be solved
simultaneously: the nonlinear e.quations defining the inelastic structure
and the linear ones defining the critical pair. It develops that, because

.of the time reversal, the solution can only be carried out by successive
approximation. Moreover, the solution need not be unique: there may be
more than one excitation/response pair that satisfies the equations.

Limited experience with numerical work indicates that the approxima
tion process converges quite quickly.
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APPENDIX F
The Critical Excitation And Response Of

High-Rise Buildings

INTRODUCTION

--High-rise building construction is the result of intensive land usage of

urban area. A..:. the population of a city gro\~ s, it is a natural trend to con-

struct buildings upward to save space. These buildings represent heavy

investment not only in economical sense but also in human life. Futher-

more if these buildings house communication centers or military facilities,

they become also important .for national security. In view of these factors,·

it appear.s that large safe margins should be placed in the design of high

rise buildings especially when seismic excitation is a major consideration

in regions of high seismic activities. This paper discusses a "critical ex-

citation and response" approach to design important high-rise buildings.

It will also demonstrate that the method is conserva~ve but not overly so

by the application of the method to several realistic or already built struc-

tures.

In the past, most practicing engineers approach to aseism.ic design of

high-rise buildings is based on the applicable building codes. These codes

in general treat ground excitation as pseudo static loads acting in the lateral

directions of the building. The basis of this approach is originated from the

response behavior of a single-degree-of-freedom elastic system with some

consideration of ductility of the construction m.aterial (9), (2). The re-

sultant elastic responses due to these pseudo static loads are in general

smaller than those obtained from a dynami~ analysis using the recorded

I Prof. of Civil Engineering, Polytechnic Instit~te of New· York, N. Y.

2· Research Assistant Prof., POlytechnic Institute of New York, N. Y.
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ground excitation such as 1940 El centro N-S component. Recent proposed

revisions of the building codes suggested using response spectra (8)~ (1) in-

eluding the effects of higher modes of vibration and ductility of building

materials. However, it is also well kno\vn that response spectrum analysis

of seismic design is not an exact method and may be used at the preliminary

design phase. For final analysis, it is desirable to .perform an exact time-
.

history analysis based on tlproperlyJl selected ground excitations. In the

past, these "properly" selected ground excitations are either taken from

the recorded seismographs or generated artificially based on the principles

of random process. There is no assurance as to whether these excitations

will cause the worst.responses of the structural design variables such as

moments~shearsof the members~or story drifts.

The term critical excitation used herein is defined as the excitation

among a certain class of excitations with an intensity limitation E{defined

in a later section) that will drive a designated response variable to its max-

imum. To achieve this end~ an unconstraind "criticaltl excitation is first

obtain base on Drenick's (4) approach where the class of excitatio;"s are

unlimited. This critical excitation. is essentially the time-reversed unit

impluse response of the design variable multiplied by an intensity modifica-

tion factor. To:nake the shape of the excitation more realistic~ a con

strained "critical" excitation is ·next obtained by a least-squares fitting of

a number of recorded excitations with the unconstrained one.

The proposed method was applied to several already designed or ex-

isting buildings. The required strength of some of the members based on

this method were compared with that obtained by conventional approach

(either by building code or dynamic analysis using recorded ground excita-

tions). The results show that a safe but not overly conservative appro~ch to. ...
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d(~sign high-rise buildings against seismic excitation is indeed achieved.

THE UNCONSTRAINED CRITICAL EXCITATION

It is well known that the most damaging ground excitation on a struc-

ture among an unconstrained class of excitations with a limiting intensity

(as defined in a later section) is the one that has the frequency spectrum

closely matching that of the structural design variable. Such an uncon-

strained critical excitation was derived by Drenick (4) as

(1)

(2)

wher K is an excitation intensity modification factor as described in re-

ference 4 and h(-t) is the time-reversed uni~ inpuse response. For a sin- .

gle-degree-of-free system,h(t) is given by

1 -).. wt .
h(t)= - e sln "'nt

WD .

where", and '1J are undamped and dalnped frequencles of vibration and A is

the ratio to critical damping of the structure. For. a multi-degree-of free-

dom system the unconstrained critical excitation can be obtained by modal

superposition. First, consider the rnaximum response due to a general

excitation x •
g

.t
Y (t) - L <Pk " r). (t)= J 'x (T):E <Pk. P. h. ( t-T )d,k - 1 1 . g .1 1 1

o

h (. \ th k th .' . bI ,.l,. • th k th 1 f h . thwere Yk t) is e ~ response varla e, Yki 1S e - e ement 0 tel

nl0de shape.· n. (t) is the norn'lal coordinate of the i th mode,
1 .

TAT th
P.= <p. M II <l>" M <p. is the i mode participation factor with M as the mass

1 1 1 l '

•
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...
matrix and r is a vector with 1's or 0 rs to indicate the existence or not of

excitation of the vector elements of y. By squaring the response Yk and

setting up the inequality, the following relationship is obtained

2
X (T )dT ]

g

2 t - 2
Yk(t)= [f x (T) h (t-T )dT]

o .g

2
h (t -T )dT ]

t
<[J

o

(4)

or

(5 )

2 2 •
where E and N are square integrals of the ground excitation and the unit

impulse response respectively in the time duration t.

The most damaging or critical ground excitation is

. E-
X cl(T)= N h (t-T )

and is based on the fact that when it is substituted into (4), the response

becomes

Ycl(t);::EN (7)

t
The quantity E 2;:: J. x (T )dT is defined here as the excitation intensity mea

o g
sure. The uppe,r limit of the integral was set at infinity in the mathematical

derivation of reference(4). However, in real problems, the choice of the

upper limit presents a difficult consideration and "\vi11 be discussed in detail

as an effective duration in a later section.

If this definition of excit~tion intensity is adopted, then the unconstrained

.critical excitation with this intensity for a designated des~gn variable is pre

cisely and conveniently given by Eq. (6) while -the corresp~nding response is

.. .
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given by Eq. (7) with equal convenience.

CONSTRAINED CRITICAL EXCITATION AND RESPONSE

Although the unconstrained critical excitation and response as given in

Eqs. (6) and (7) are simple and can be conveniently used to access seis-

mic resistance of structures in an unconstrained or gross maximal sense

(5), it often gives responses too high for practical application. The over-

conservativeness b~comes even more pronounced as the structure or

building increases in its flexibility. This departure from realistic re-

s ponse obviously 1ies in the fact that the unconstrained critical excitation

matches in the frequency content with the response charater of the struc-
.

tural variable closely,and since most high-rise buildings have the founda-

mental period of ·1 to 5 seconds$ while earthquake excitations have pre-

dominant frequences less than "1 second (6), it can be concluded that the

unconstrained critical excitation is not a realistic ground excitation. The

question then is what kin"d of ground excitations are considered realistic

and also critical. There are various approaches to modify the uncon-

strained critical one to be more realistic. The approach adopted in this

paper is as follows:

The class of excitations can be constrained to those that have been re-

corded at sites with similar epicenterial distance$ geological feature,

etc., as that of the site of the structure to be built or already built. In

addition,the linear superpositions of these recorded excitations can also

be included into this class, provided that their combined intensi~y remains

within the limitation. Furthermore$ in order to avoid computational com.-

plication., it was not the critical excitation among thes~ superpositions

that was determined. Rather, an excitation xc2 was ca~culatedwhich

differed least (in the least - squares sence) from xcl. xc2 is called the
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constrained critical excitation. In symbols

a. X.
1 1

(8)

so that
tJ (Xc2 - X

C
!)2dt ::: minimum

o

and
t

J x 2 (t)dt::: E 2
c2

o

(9)

(10)

the constrained critical excitations thus obtained are more realistic and

resembles observed ground excitations more closely as will be shown in

the following practical examples. Once the constrained critical excitation

of a design variable has-.been obtained, the corresponding response cari be

calculated by carrying out the Duhamel integral since -t4e unit impulse re-

sponse function has already·been obtained in the process.· In general, the maxi-

mum response always occurs at the end of the effective duration (defined

in the next section) since partial frequency Inatching has been incorporated

in the prccedure.

t
Yc2(t} = J h (t-T) xcZ{T}dT

o

EFFEC'2:":VE DURATION AND INTENSITY OF EARTHQUAKES

(11)

Reco::--::ed.earthquakes have durations varies from few second to f.~w

:minutes. However, the effective duration on a particular structure- is con- _

trolled t:-- the stiffness and the damping of the structure. It can be o·btained

by insp,;:--:ion of the Duhamal integral relatin:g the response Yet) to the ex-

citation :'t~t) as follows:

t
y(t)= J x(T)h(t-T )dT

0_

".

-.

(12)
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where h(t-1" ) is the response at time t due to a unit inlpulsive ground

moti011 at time 1" as discussed previouslyo Thus from Eq. (lZ)if the peak

response occurs at t then the excitation. occured at and before t so that
e 0

h(t -t) is zero need not be considered. In another words, (t -t ) is the
eo· e 0

effective duration. In practice, the duration (t -t ) can be judiciary
e 0

140 6 seconds. For multi-degree-of-

'.'lith a damping ratio of 5 %, the effec tive

chosen so that h(t -t )' decays to a certain percentage of the peak value of. e 0

h(t). For example, if the decay to a ten percent was assigned, and the

period of the system is 2 seconds

d t " " (t t) 1. (l O. 1ura lon lS -:: 2 =
e 0 0.05 X 2Tr

freedom systems, the fundment mode can be used as the basis of compet-

ing the effective duration. The intensity of ground motion has been 5ub-

jected to many discussions (T). Commonly used criteria are the Richter

scale, modified Mercalli intensity number, the peak acceleration, etc. In

this paper, the intensity of excitation is expressed as the square integral

of the ground acceleration during the effective duration, i. eo

This expression of intensity is believed to be more meaningful since it re-

present a sort of energy and also it mathematical leads to the unconstrained
:

critical excitation in Reference (4).

PRACTICAL APPLIGATION

The critical excitation method has been applied to three existing office

buildings and one conventionally designed appartment house. (see also

reference(lO). For each structure, a typical bent was selected for analysis.

Based on the dimension of the structure and the conventionally designed

" .
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member sizes, the unit in1pulse responses of selected design variables

were computed by the computer program XTABS (11). The effective dura-

tions of ground excitation based on 66.7 per cent decay were computed and

the intensity of 1940 El Centro N-S accelerogram based on the effective

durations were used as reference. The time-reversed unit impulse re-

sponse with the effective duration and adjusted to the reference intensity is

used as the critical excitation xcI. In the process of leas t-squares fitting,

twelve recorded excitations were selected as the bases x.1 s, and they are
1

listed in Appendix I (3). After the constrained critical excitation x
c2

was

obtained by least-squares fitting of if. 1 and the superpositions of x!s, the. c 1

corresponding constrained critical response yc2 was computed by the

Duhamal integral. The ratio of the constrained critical response and the

response from the above mentioned El Centro excitation was listed as the

critical design ratio. It is one of the indicators of the conservativeness of

the method, being more conservative when this ratio is larger. The second

indicator of conservativeness is obtained by carrying out the actual design

of some of the numbers based on the results of the responses from the con

strained critical excitation and comparing with those from the El Centro ex-

citation. A brief discussion of each structure follows.

THE BANK OF CALIFORNIA BUILDING, SAN FRANCISCO

This building consists of steel frames and reinforced concrete core
. 0

walls and was designed by Henry. J •. Degenk~lb and Ass.ociates. Ashen and

Allen arc the architec ts. The building is twenty four stories high with bot-

tom three stories below ground. Although the seismic resistance Zvas pro-

vided by the cOlnbined action of the reinforced .concrete core wall and the

steel frames, a single frarne in the north-south direction was isolated for

.
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analysis (Fig. 1). This departure from real structural system was adopte'd ~7
to simplify the analysis and since the comparative results are based on the

same system, the conclusions drawn from the cOlnparison may be con-

sidered valid. The members selected for strength checking are twq col
I

umns above the ground floor and one beam on the second floor. The lateral

deflection on the the top floor was also selected for comparison. Following

are the essential results:

a} Periods in seconds of the first three modes of vibration: 3.364,

1. 125 and 0.695.

b)· Effective du"ration: 11. 9 seconds

c) Damping ratio: 5%.
d) The unconstrained critical excitations of the top floor displacement

with El Centro intensity is shown in Fig. 2.

e) The constrained critical excitation of the top floor displacement

with the same intens ity is shown in Fig. 3.

f) The responses due to El Centro and the constrained critical exci-

tations are summarized in Table 1.

Table 1 Sum.mary of Responses of The Bank of California Building

IDesign Variable I EI Centro 1
Constrained Critical Design. Critical RatioI

I ~
Top Floor Dis p (it) 1.362 i 3.414 2.51

1 !
I

1
I

. Bottom Mom. (it-k) IColumn 1 975 2785 2.861
Column 2

·1
1046 I 3003 .2!""87

IAxial Force
I I(k) I

I
I,Column 1· 952 I 2500 2.63IColumn 2 169 423 2.51 Ir I- .

Right End ~v'rom. ft-k)
I I .

IBeam 1
I .

1076 2979 2.77
Beam 2 (>36 1869 2 0 94,

1 ft = 0.3048m, lk =
..

4.45 kN. 1 ft-k = 1.356 m-kN
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g) The strength checking was made for the columns and beams as surn-

marized in Table 2.

In Table 2, the strength checking is based on AISC 1963 specification.

The ratio between yield point stress and allowable working stress is 1,. 67.

For the columns, under El Centro excitations, the stresses are slightly

higher than yielding while under constrained critical excitation they are

4. 17/ 1.67 = 2.5 and 3.25/ 1.67 = 2.0 times the yielding. For the beam,

the bending stress is 2.87/ 1.67 = 1.72 times the yield stress under El

Centro' and 7. 14/ 1.67 = 4.28 times the yeild stress under the constrained

critical excitation. Due to the fact that the frame is assumed to take its

entire tributary earthquak~ forces without the participation of the core wall,

it appears that the structure as it is designed will have enough ductility to re-

sist the constrained critical excitation. Some interesting observations can

be drawn from the stu~y: First, base on the sam'e excitation intensity E 2,

the constrained critical excitation drives the structure to responses. between

2.5 to 3 times those driven by the El Centro excitation, although the peak

acceleration of the former is slightly less than that of the latter. It proves

that peak acceleration is not a suitable measure of intensity of ground' mo-

tion. Also, since the shape of the constrained critical excition shown in

Fig. 3 appears realistic, certainly it should not be excluded from the design

consideration. Second, for important structures such as the Bank of Gali-

fornia building designed by ex.perienced engineers, it appears that safe mar-

gins were already consi,dered so that it can even withstand severe excitations

such as the constrained critical one.
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THE INTERNATIONAL BUILDING~ SAN FR-A-NCISCO

This building consists also of reinforced concrete' core walls and steel

frames and was designed by the same team of architects and engineers o It

has also twenty four stories but with only one .floor under ground. \
A frame

in the north-south direction is again isolated for analysis (Fig. 4)0 ~ow

ever, different from the first structure. the core wall was incorporated in

the second, third and fourth bays of the frame. In modelling the structure.

core walls are assumed as shear panels connected to the beams and col-

umns on the four sides of the panel withL.,. each bay and between floors.

Same dynamic analysis as described for the first structure- was carried

out and following are' the essential results:

a) Periods in seconds of the first three modes: 1. 456, 0.423" 0.206.

b) Effective duration: 5.6 seconds

c) Damping ratio: 5%

. d) & e) The unconstrained critical and constrained. critical excitation are

in the same shape as Fig. 2 and 3 except with shorter' duration.

f) The responses due to El Centro and constrained critical excita-

Hons are summarized in Table 3.

g) The strength checking was made for the columns. beams and the

shear wall panels as summariz,cd in Table 4.

Observations drawn from this study are: First, critical design factors

a re sm.aller for this building than the first building and appears to orginated

from the smaller fundam.ental periods. Second, well designed structures by

experienced engineers can withstand critical excitation without relying on

1arge duc tilitie s 0
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Table 3. Summary of Responses of the International Building

Constrained Critical Design
Design Variable El Centro Critical Ratio

Top Floor Disp (it) 0.458 1.196 2.61

Bottom Mom. (ft-k) \

Column 1 721 1123 1. 56
Colmnn 2 522 810 1. 55

Axial Force (k)
Column 1 1096 2073 1. 89
Column 2 1463 2770 1. 89

Right End Mon. (it-k)
Beam 1 413 657 1. 59
Beam 2 . 843 1314 1. 56.
Shear Panel
Axial Force .(k)

'. 43 106 2.45
Bott. Mom. (ft-k) 22842 40720 1. 78

1 ft =O. 3048m. 1 k =4.45 kN. 1 ft-k ~ 1. 356 m-kN

JET PROPULSION LABORATORY BUILDING 180

The JPL building 180 is a nine- story steel frame structure 'with 5 inches

lighweight concrete slab. The twelve steel frames in the north-south di-

rection are constructed \vith trusses at the floor levels and \vide flange col-

urnns embedded in concrete protection. A typical north-south direction

frame was isolated for analysis (Fig. 5). The equivalent beam stiffness of

the truss and the composite stiffness of the columns were Inodelled accord-

ing to 'Vood (12). The saIne dynamic analysis as discribed for the first

structure was carried out and the essential results are as follows:

a) Periods in seconds of the first three mode: 1.488. O. 47 2~ O. 259

b) Effective duration: 9.1 seconds
.'

c) Damping ratio: 5%
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d) The unconstrained critical excitation of the top floor displace ment

with El Centro intensity is shown in Fig. 6.

e) The constrained critical excitation of the top floor displacement

with the same intensity is shown in Fig..7.

f) The responses due to El Centro and constrained critical excita-
\

tions are summarized in Table 5.

Table 5. Responses of the JPL Building 180

I
I

Constrained Critical Design
Design Variables El Centro Critical Ratio

Top Floor Disp (it) 0.529 1. 865 . 3.53'.
Batt. Mom. (it-k)
of Column _1021 3334 3.27

Bott. Shear (k)
of Column 109 327 2.99

1 It = o. 3048m, 1 k = 4.45 kN, 1 ft-k = 1. 356 m'-kN

g) The strength checking was made for the bottom story column as

summarized in Table 6.

The strength checking shows that the bottom story colunm will stressed to

3.06/1. 67 = 1.83 times the yield stress under the El Centro excitation and

8.31/1. 67 = 4.98 tim.es the yield stress under the constrained critical ex-

citation. It appears that the structure under the present desigp.ed condition

needs strengthening if it is to sustain an ground excitation of EL Centro in-

tensity, especially if constrained critical excitation is cOn/:>idered"

FLAT PLATE APARTMENT BUILDING

This building is a conventional flat plate reinforced concrete building

without shear walls. It has 16 stories with 6 In. (15.24 c"n:) typical floor slab.

The column sizes varies from 20 n x 20" (0. 51m. x .0. 51m) to 12f1 x 12"
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Table 6. Strength Chec~dng For JPL Building 180

Bottom Story Column
14 W =158 (A36) \

El Centro Constrained Critical

, _.
483 k 483 k

369 k 1144 k

852 1627
.

176 176

1021 3334-

1197 3510

46./5 46.5

253 253

10.32 10.32

I
7.01

j
7.01I

i -I
I

18.32
I

34.99!
!
:.

56.77 , 166. 5
I

20.15
:

20.15I

j

i
I

24. 0__
j
; 24.0- . -

I

338.63 ! 338.63l

t

3.06 .... 8.31

Fb{l-f 7F )a e

F' (ksi)
e

F
b

(ksi)

f b =~ S(ksi)

Member Forces

Or Stresses

Combined P (k)

A."'Cial Load (k) (D+L)

Axial Load (k) (EQ)

Bottom Mom (ft-k) (D+L)

Bottom Mom (ft-k) (EQ)

Combined ~ (ft-k) •

A (in2)

S (in3
)

rein)x

if+
I~

IFa
i-----:..----'------.-.---------,--..:.------~-----_1

r y

. fa = P / A (ks i)

1 k = 4. 45 k.J.~, 1 it-k = 1.356 m-kN, 1 in = 25~ 4 mm. 1 ksi = 6.9 MN/ M
2

r.
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c. 31m x .3hn). A typical transverse frame consists of two bays was iso-

lated for analysis (Fig. 8). The dynamic analysis similar to that des-

cribed for the first structure was carried out and the essential results are

smnmarized as follows:

a) Periods in second of the first three modes: 4.95" 1. 743. 1. 001.

b) Effective duration: 14. 0 seconds

c) Darrlping ratio: 5%

d} The unconstrained critical excitations has the sarrle shape as the

others.

e) The constrained critical excitation of the top floor displacement

with the sarrle intensity as EI Centro is shown in Fig. 9•.
f) The responses of the design variables are su~arized in Table 7.

Table 7. Responses of the Flat Plate Building

I . ,
i Constrained Critical Design.

Design Variables El Centro Critical Ratio

.
Top Floor Disp (ft) 2.38 3.02. 1. 27

Bott. Mom. (ft-k) IE>..'t. Column 640 796 1.24.
Bott. Shear (k)
E>..'t. Column 46.8 57. 5 1. 23

1 f~::: O. 3048m J 1 k :: 4.45 1Q{" 1 it-k ::. L 356 m-kN
. --_.

g) The strength checking of the bottom story exterior column was

carried out and summarized in Table 8.
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Table 8. Strength Checking of the Flat Plate Building

Ext. Column 20in x 20in f =5 ksi.£ =60 ksi
c v

1tlember Forces IEl Centro Constrained Critical

Axial Load (k) (D+ L) 446 446

Bott. Mom. (ft-k) (D+ L)l 16 16

Bott. Morn. (ft-k) (EQ) 816 1014

Combined lv~ (ft-k) 832 1030

'Required Vert Reinf 12 - #10 12 - #14

lk =4.45 kN. 1 £t-k =1. 356 m-kN. 1 in =25.4 rnrn, 1 ksi =6. 9 MN/ in
2

In the strength ·checking. the loads have been multiplied by the ultimated

load factor as specified by the ACI Building Code. The columns thus de-

signed does not need any reserved ductility factor to sustain eit4er the El

Centro excitation or the constrain.ed critical excitation. Properly designed

ties acting as shear stirrup~ are required to .resist shear. The slab rein-

forcing has also to be properly designed to resist ground excitations. But

it appears that for anew design, the details can be worked out without over-

ly excessive reinforcement to sustain the constrained critical excitation.

CONCLUSION

1. The method proposed here is ~nupper bound approach applicable

to buildings of major importance, the destruction of which would cause se-

vere htunan and economic losses.

2. The motivationbehinathe method is 'based on tbefact that precise

nature of earthquake, frequency of occurrence. interaction between struc-

ture and soil and other earthquake related factors are not 'readily available.

3. The practical application on existing buildings sh"ows that the .m.eth-

od is on the safe side but not overly conservative.
r
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Although the constrained critical excitation derived here i$

base on elastic behavior but it may also be used as a first approximation

in the piece wise linearization of non-linear responses of a structure.

5. Additional studies are required to evaluate the effect on ~he re-

sultant constrained critical excitation by using different sets of recorded
'.

excitations as well as the numbers of excitations in the least-squafes fit-

ting procedure.

Ackno\vledgement

The research on which this paper is based was supported by the

National Science Foundation under Grant No. AEN72-00219 Aol. This sup-

port is gratefully acknowledged. The writers are deeply indebted to the

constant advise of Prof.' ·R. F.Drenick and technical consultant of Joseph

W. Vellozzi.

..



j,

A
P

P
E

N
D

IX
..

I

!2
E

A
R

T
H

Q
U

A
K

E
S

U
S

E
D

F
O

R
L

E
A

S
T

..S
Q

U
A

R
E

S
F

IT
T

IN
O

-..
..J 0
0 ---

1
/2

(c
m

l
se

c

F
il

e
N

u
m

b
e
r

14
2

11
2

I
1

/2
In

R
e
f.

B
Q

u
ak

e
R

e
c
o

rd
C

o
m

p
E

=(
J

x
'

d
t)

I
E

(i
tl

se
c

o
g

II
A

1
Im

p
e
ri

a
l

V
a
ll

e
y

E
l

C
e
n

tr
o

SO
O

E
.2

8
9

.5
2

6
4

9
.4

9
9

Il
A

10
S

an
Jo

se
S

an
Jo

se
N

3
1

W
,

6
6

.0
0

6
2

2
.

1
6

6

1
.

1
1

6
.,

II
A

13
S

a
n

F
ra

n
c
is

c
o

S
an

F
ra

n
c
is

c
o

N
4

5
E

3
4

.0
2

3
2

II
A

14
S

a
n

F
ra

n
c
is

co
S

an
F

ra
n

c
is

c
o

N
0

9
W

2
9

.3
4

8
i

I
0

.9
6

3
,

II
A

15
S

an
F

ra
n

c
is

c
o

S
an

F
ra

n
c
is

c
o

N
1

0
E

3
9

.6
9

0
9

.
1

.3
0

2
i I

II
A

16
S

an
F

ra
n

c
is

c
o

S
an

F
ra

n
c
is

co
S

0
9

E
5

4
.2

8
9

1
1

.7
8

1

II
A

17
S

a
n

F
ra

n
c
is

c
o

S
an

F
ra

n
c
is

c
o

N
2

6
E

2
3

.4
3

9
1

'
0

.7
6

9
.

Ir
A

18
H

o
ll

is
te

r
H

o
ll

is
te

r
.,

S
O

lW
8

3
.7

6
3

5
2

,,
7

4
8

II
A

19
B

o
rr

e
g

o
M

t.
,

E
l

C
e
n

tr
o
.

SO
O

W
8

7
.

5
4

0
6

2
,,

8
7

2

IT
A

41
S

an
F

e
rn

a
n

d
o

P
ac

o
in

'1
a

S
1

4
W

6
9

9
.6

1
5

2
2

2
.9

5
2

(

II
A

4
8

.S
an

F
e

rn
a
n

d
o

L
o

s
A

n
g

e
le

s
N

O
O

W
2

5
6

.
5

2
3

9
8

.4
1

6

II
D

56
S

an
F

e
rn

a
n

d
o

C
a
st

a
ic

N
2

1
E

1
9

2
.8

5
8

4
6

.3
2

7

,
,



79

APPENDIX II - REFERENCES

·1. Applied Technology Council, An Evaluation of a Response Spectrum
Approach to Seismic Design of Buildings, Report for Center for
Building Technology, National Bureau of Standards, 1974.

\
2. Berg, G., ltDesign Procedure, Structural.Dynamics, and the Be-

havior of Structures in Earthquake, 11 Preceedings of the U.S. Na
tional Conie renee on Eartr. quake Enginee ring, Anne Arbor, Mich.,
June 1975.

3. California Institute of Technology, Strong Earthquake Accelerogram,
Vol. II; Corrected Accelerogram.

4. Drenick, R. F., ItModel - Free Design of Aseismic Structure, 11

Journal of the Engineering Mechanics Division, ASCE, Vol. 96, No.
EM4, August 1970, pp. 483-493.

5. Drenick, R. F., lIAseismic Design by Way of Critical Excitation, It

Journal of the Enginee'ring Mechanics Division, ASCE,· Yolo 99, No.
EM4, August, 1"973, pp. 649-667.

6. Housner, G. W., 1IEarthquake Ground Motion, II Proceeding of the
International Conference on Planning and Design of Tall Buildings,
ASCE, Vol. Ib, pp. 159-176. .

7. ~.ousner, G. vV. $ 1INIeasures of Senerity of Earthquake Ground Shak
ing~ 11 Proceedings of the U. S. National Conference on Earthquake
Engineering, Ann Arbor, Mich., June 1975, pp. 25-31.

8. Newmark, N. M. and Hall, 'V. J., 1IProcedures and Criteria for
Earthquake Resistant Design, It Building Practices for Disaster
Mitigation, Building Science Series 46, National Bureau of Standards,
February 1973, pp. 209-237.

9. UNIFORlv1 BUILDING CODE, International Conference of Building
Officials, Whittier, California Library of Congress Card Catalog
No. 73-7927.

10. Wang, P. C., ·\Vang, \V. and Drenick, R. F' 1I Case Study of Critical
Excitation and Response of. Structures. Interim Report to the Na
tional Science Foundation.

11. Building Systelns - XTABS, Earthquake Engineering Research Center,
Unive rsity ofCaliforhia.

12. W·ood, J. H., Analysis of the Earthquake Response of a Nine-Story
Frame Building during the San Fernando Earthquake, Report to
National Science Foundation, Octobe>" 1972, .

. .
.,



j

/
80

APPENDIX III - NOTATIONS

The following symbols are used in this paper:

A

C
m

=

=

area of a membe r

coefficient applied to bending te rm in inte raction formula of
columns

F
a

F
e

h(t)

I , I
x y

. 1\.1

p

P.
- -1

r , rx y

-t

t -t
e 0

= dead plus live load

= intensity measure of ground excitation

= earthquake load

= axial compressive stress

= bending stress

= allowaBle axial compressive stress

..
= allowable be~ding stress

= . Euler stress divided by a factor of safety

= unit impulse response

= a column vector of 1 's and o's

= moments of inertia about x and y axes

= mas s matrix

= bendin.g mom.ent

.
= square integral of the critical excitation

= axial force

- 'participation factor of the Hh mode

= radii of gyration about x and y axes

= time

= effective duration

..
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