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Introduction and Summary

One of the aims of earthquake engineering is the design of structures
whose survival at their locations can be guaranteed with a fairly definite
degree of confidence, and whose resistance to damage on various levels
can be similarly guaranteed (though possibly with lesser assurance). The
object of the researchunder this grantwas to continue the developme'nt of a
method which would ultimately enable earthquake engineers to make such
guarantees. The evidence, as of this writing, is that this object is being
achieved. A method whose development was begun under an earlier grant
has now been carried to the point at which it can be applied, and in"fact
has been applied, to existing structures. It leads to assessments of their
earthquake resistance which appear to be somewhat conservative but quite
consistent with the design practices among experienced engineering firms.

The evidence on which this remarks are Based was developed
under this grant, and it is summarized in this final report, Its implica-
tion is felt to be that perhaps the method to be described here or, more
likely, some modifications and estimations of it will often be relied on
by civil engineers in the design, and in design reviews, of structures in
seismic region, Several such modifications and extensions are possible,
In fact, thé theory of some major ones (é, g. the generalization of the
method from elastic to inelastic structures) were developed under this
grant., Their application in practice is likely to be most appropriate for
structures whose social or economic value invites conservative design,

and some care and investment.in the way it is achieved.
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Comment
A proposal was submitted to NSF/Ranu in January 1976 for
support for a continuation of this research.,

The Critical Excitation Concept

In order to guarantee the earthquake resistance of a structure and
to do so on é certain level of confidence, one should be able to demon-
strate two things, First, one must show that the structure will survive
all ground motions that can be expected at that location, on that level of
confidence; and second, onhe should show witﬁ comparable confidence that
it will escape damage beyond some accepté.ble limit, The approach taken
under this grant {and under an earli-er one, No, GK 14550) seeks.to come
up with such assurances by relying oﬁ a concept which has come to be
called a "critical ekc;_itation" and which is new to civil engineering,

An excitation of a structure is called “critical" for it, among some
designated class of excitations, if it drives one of the structural variables
to a larger response.peak than any other excitation in that élass:.

A rough idea of how this concept is.used in the prediction of earth-
quake resistance is then the following. Suppoée that the erection of a
new structure is planned for some site in an earthquake-prone region,
or that the safety of an already existing one. 'is to be reviewed. Suppose-
further that it has been possiblé to isolate a class of excitations which
consists of all ground motion that can realiétically be expected at that
location. Among the excitations in this clas s, there will then be some that
genérate the highest response peaks in variables, such as the fo:ll:ces,

moments, and displacements of the structure. If these peaks are
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found to lie within the tolerances of the design,. the structure can be
guaranteed as corre Spondingly safe againstdamage and/or failure due to
any of the excitations under consideration.

The procedure by which such a guarantee is arrived at, consists
of three major steps. The question of how to take each of these repre-
sents a problerh in its own right, The first step is the isolation of a
class of excitations which are ''realistic’ potential ground notions at a
given location. The second is the determination of those among them that
are critical for a given structure. And the last is the computational prob-
lem of calculating the peaks of the critical.responses, and the engineering
problem of assessing their seriousness.

None of these problems have been precisely formulated here. In
fact, each has maay formulations and corres-pondingly many svolutions.
Some earthquaice engineers may prefer one, a.ndv others another, The
objective of the research under this grant was to formulate them in one
particular and, it is hoped, realistic way; and to show that the approach
leads to equally realistic solutions. This was in fact done. The formula-
tion, as weld as the three-step procedure to which it led, is described ’
in the next section., It might bé added here that other, and in some re=-
spects more attractive, formulations are possible. Indications are tha‘f:
they lead to similarly realistic results, They were rot inve‘stigated under
this grant however.

A Procedure for the Prediction of Earthquake Resistance

The prediction of the earthquake ‘resistance of a structure, by way

of its critical excitations, proceeds in three steps, as has just been ex-
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plained, namely these.

(2) Isolation of a class of realistic ground motions

 (b) Determination of the critical excitations in that class

(c) Calculation and engineering assessment of the critical response

peaks, .
.The approach taken under this grant was the following.

The first of these problems was initially formulated as follows. It
was assumed that, among the statistical iﬁformation available regar&ing
possible ground motions at the geogr‘a'phica.l location of a structure, only
one item was known on the level confidence with which the prediction
was to be made., This was the distribution of the ground motion inten-
sities. A design engineer, in other words, who guaranteed a structure
as 90% safe against ground motions up to a certain intensity could be
quite certain that there was only one chance in ten of the actual ground
motion exéeeding that intenéity limit. (The square-integral of the
ground\ acceleration was used as intensity measure, though others could
have been used as well,)

This assumption in effect constitutes a solution to the first prob-.
lem listed ahove: The intensity limit set by the designer isolates a class
of graund motions, namely, all those with intensities not exceeding that
limit, One could therefore proceed directly to the next problem listed
above, and this was in fact done under a previous. grant. It was thever .
found that this class is too large., It contains many excitations that are |
quite unlike any grouﬁd motions that have ever been recorded, and the

critical excitations for structures unfortunately often are among those.
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One can put this in other words by saying that the distribution of inten~
sities is not in fact all that is known about all forseeablé ground motions,
Other information ig available, and on 2 comparable level of confidence.
This information must accordingly be utilized and those excitations elimina-
ted from consideration which are as unlikely as those of very high inten-
sities,

Such elimination is quite possible and can be effected in a number
of ways. Howevér, in the ‘procedure that was used under this grant, com-
putational simplicity suggested another solution, It consisted of tworsteps.
First, the critical excitation was determined relative to the large class
of ground motions that has just begn described, i.e. the one defined only
by an intensity limit, This determination is easy, at least for elastic
st::uctures, and has been described on several océasions, (e.g.[1])s The
theory behind it was extended under the present'grant also to inelastic
structures. In either case, however, it often leads to critical excitations
which are quite unrealistic, as has just been meéntioned. To eircumvent
this difficulty, these excitations were replaced with others, called "sub-
critical, * which were related to the critical ones but were more "realistic"
in thé following sense.

. In defining what meaﬁing to attach to the term "realistic!' it was de-
cided thatany already r‘e_corded ground gxiot;lon was patently.realistic (fhough
not necessarily for vall locations). Accordingly, a set of such records
was chosen as a representatiﬁe basis. Beyond these, all linear super-
positions 'ﬁmong them were added as being presufnably equally realistic,

The superposition which differed least from a critical excitation, in the
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least-squares sense, was then used as its sub~critical replacement. In
more mathematical language, the sub-critical excitation is the projection
of the criticla'l one into the space spanned by the chosen basis of recorded
ground motions, The numerical execution of the projection is performed
easily and quickly by computer, which is the main reason for the choice
of this approach., It does, at any rate, represent a solution to problems
“{a) and (b).
| The calculation of the response peaks generated by the subecritic al
excitation is also straightforward, though soﬁlewhat time-consuming even
for elastic structures. In fact, no caleulations were performed for realis-
tic inelastic structures under this grant. The risk to a structure, as a
consequence of having one of its variables driven to a high peak, was
finally assessed by strength calculations fortypical structural nurnbmers,‘
a.nﬁ by dete rmiﬁing the ductility ratios induced in them by the response peaks,
In this way, a solution was arrived at to the last of the three
problems mentioned above,
The result obtained with this approach are briefly described and
discussed in the next section, |

Predictions of Earthquake Resista.nce

The procedure for the prediction of structural earthquake resis-
tance which was sketched in the preceding section was applied to eight
existing structures, four high-rise buildingé, a hospital pavillon, two
structures associated_ with nuclear reactor s-, aﬁd a tall,' ré-—inforCed‘
concrete chimney., The results of the ‘a.nalyses are described in detail

in the papers which form the appendices to this report, notably in
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Appendices A and B. In summary, the following was found.

Two high rise buildings, both designed by a well-known and ex-
perienced engineeriﬁg. firm (H. J. Degenkolb and Ass/s, Sa.n Francisco)
were analyzed and are judged to be fully resistant to any kind of gfound
shaking with an intensity up to that recorded during the 1940 El Centro
’ éarthquake. By contrast, another high rise (building, namely Bldg, 180
of the Jet Propulsion laboratory in Pasadena, California) was judged to
have inadequate earthquake resistance, This appraisal apparently is con-
sistent with one arrived at independently by the Laboratory management
which has contracted for a general strengthening of the frame. A fourth
building was analyzed as well. In this case however the building was non-
existant and its design could be drawn up, based on the approach described
here, This was done. .it was found to lead to vstrength specifications that
wezre consistent with good design practice.

The hospital facility was was studied was the péychia!:ric pav*illon '
of the Olive View Hospital in Sylmar, California, The study showed that
it was not survivable under ground rhotions of intensities of the 1940 El1-
Centro earthquake. The ground shaking it experienced during the San
Fernando earthquake of 1971 may have exceeded that intensity since it
collapsed on that oclcasion. The tall chimney, on the other hand, was
found to be safe under such excitation intensities. It had been designed
- by A@mann and Whitney, Consulting Engineers, with this in mind.

The two nuclear facilities were analyzed from dynamical equations
- which had been prepared elsewhere, In one case, they were obtained from

the literature [2] and .charalcteri'zed a rigid reactor-soil combination,



In the second, they were supplied by a New York engineering consulting
firm. This information was adequate for the derivation of the critical.re-
sponse peaks of fhe two structures but not for any strength calculations.
The results of the‘ analysis nevertheless indicated the earthquake resis-
‘tance to be adequate for the first structure. The evidence regarding
 the second was not equally reassuring,

In summary, the result obtained under this grant indicate that the
new approach leads to fairly reliable, if somewhat conservative, pre~
dictions of the earthquake resistance of structures. One can therefore
conclude that this method is well suited to such predictions, especially
when the economic or social value of the structure is high enough to
invite some conserx;rati sm and to justify the investment in the necessary
analyses,

The best prognosis as of this writing is that ﬁltimately varia-
tions on this method, rather the method itself, will be adapted b‘y.earth-
quake engineers, The present transiﬁon from the critical to the sub-criti-
cal excitation seems to lead to some inconsistencies in the assessments
.of structural safety which are considered undesirable and which can prob-
ably be eliminated if the method is suitably modified, Moreover, the
computational 'éffbrt that is now needed before a comprehensive assess=~
ment can be made seems unnecessarily large, and it will no doubt become
larger when ground motion in three or more dimensions, interaction
with water, and inelasticities are allowed for. The theory which governs
such allowances has been largely developed under this grant but no |

applications to existing structures were attempted. It is however already



clear that these extensions entail greater computational effort which will
discourage many practicing design engineers, It is therefore important

to develop simplified procedures which avoid some of that effort.

Report‘s and Publicatiohs

As of this writing, the research supported by this grant has led
to six papers, all but one accepted for publication, and two already pub-
1isb;ed. Three others are in various stages of preparation, In addition,
memoranda and interim reports were prepared for limited distribution,
at the suggestion of NSF/RANN.

Reprints and pre-prints of these pé.pers are added to this report
as Appendices,

Appendix A: Critical Excitation and Response of Free Standing
Cﬁimﬁefré, bir P. G; Wa.ng, W. Wang, R. F. Drenick and J. Velozzi;
Proc, of the International Symposium on Earthquake Structural Engineer-
ing, St. Louis., Mo. , August 1976,

Appendix B: On a Class of Non-Robust Problems in Stochastic
Dynamics, by R, F, Drenick, Proc. of the Symposium on Stochastic
Problems in Dynamics, sponsored by the International Union on Theoreti-
" cal and Applied Mechanics, Southampton, UK, July 1976.

Appendix' C: The Critical Excitation of Nonlinear Systems, by
R. F., Drenick, accepted for publication in the Journal of Applied Mechanics.

Appendix D: Critical Excitation and Response of Structures, by
P. C. Wang and R, F. Drenick, accepted for publication in the Proc. of
the 6th World Conference on Earthquake Engineering, New Delhi, India,

January 1977,
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Appendix K ; The Critical Excitation of Inelastic Structures, by
R. F. Drenick and H. Kano, accepted for publication in the Proc. of the
6th World Conference on Earthquake Engineering, New Delhi, India,
January 1977. |

Appendix F: The Critical Excitation and Response of High-Rise
Buildings by P, C. Wang and W. Y, L.' Wang, submitted for publication
in i:he ASCE Journal for Structures.

The three pa;pers under preparation are;

(1) The infegrity of nuclear reactor sfructures during earthquakes,
by P, C. Wang and W. Y. L. Wang, |

(2) The time interval of effective ground shaking, by P, C. Wang
and R, F. Drenick. N

(3) Critical response spectra of inelastic structures, by H, Kano
and R. F. Drenick, |

The limited-distribution memoranda and reports prepared under
this grant were:

(2) Case study of Critical Excitation and Response of Structures,
Preliminary Report, by R. F. Drenick, July 15, 1975,

(b) Case study of Critical Fxcitation and Response, Second Pre-
liminary Report, by R. F. Drenick, August5, 1975,

(¢} Case study of Critical Excitation and Response of Structures,

Interim Report, by P.. C, Wang, W. Wang, R. F. Drenick, Nov. 1, 1975,
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CRITICAL EXCITATION AND RESPONSE
OF FREE STANDING CHIMNEYS

P. C. WANG, Prof. of Civil Engineering, Polytechnic Institute of N. Y.
W. WANG, Assist. Prof. of Civil Engineering, Polytechniculnstitute ofN. Y,
R. DRENICK, Prof. of System Engineering, Polytechnic Institute of N. Y.
J. VELLOZZI, Assoc., Ammann & Whitney, N. Y.

UI SI AQ
SUMMARY

This paper deals with the problem of the seismic design of free stand-
ing chimneys, of constant as well as tapered cross sections. It is more
particularly shown that seismic deisgns based on the so-called eritical
excitations of these structures are conservative, but not overly conserva-
tive, and that they should be appropriate either for localities in which
ground motion records are scarce or for structures whose loss would have
serious consequences, economically or socially. This conclusion is based
on computed "critical design factors™ which are the ratios of the response
peaks generated by a critical excitation to those produced by an actual
ground acceleration of same intensity., These factors were found to be in
the order of 0.93 to 1.3 {or at least one structural design variable of each
of the two structures, implying the conclusion that design based on the
c¢ritical excitation methed would be more, but not greatly more, conser-
vative than one based on an already observed ground motion. Design cal-
culations for the additional steel reinforcement implied by those factors
confirm this conclusion, :

" INTRODUCTION

Free standing chimney are comparatively susceptible to seismic
damages due to their inherent weak supporting condition and lack of struc-
tural redundancy. The most damaging {critical} ground excitation for an
assigned design variable (moments, shears, or deflections) possesses
characteristic frequency contents, duration, and energy level. The first
two characteristics are dependent on the structural properties while the
other depends on the nature and intensity of the ground motion.

Structural response is characterized by the frequencies of the modes
of its free vibrations. Intuitively, one should expect the most damaging
-{i. ., the critical) excitation of a-structure to have a frequency spectrum
that matches that of the structure. This is aciually the case, as experience
,indicated. It is known, for instance, that ground motion matching in
.frequency with the lower vibration modes of a structure is likely to cause



13

severe damage in it. It is also well known that excitations at short dis-
tances from the epicenter which exhibit intense vibrations at high frequen-*
cies may induce damage in apparently strong but rigid structures, yet light
or no damage to seemingly weaker but flexible structures. Mathematical
confirmation [ 3] of these observations shows that the critical excitation of
an elastic structure, for a given intensity and relative to one of the design
variables, is the time-reversed impulse response of that variable,

It develops however, that the kind of precise frequency matching which
is afforded by the time-reversed impulse response is not in general achiev-
ed by realistic gronnd motions. In other words, the response peaks to
which it leads are typically much too large, and the designs that would es-
cape damage, much too conservative to be useful. It has accordingly been
necessary in this study to modify the time-reversed impulse response and
to treat the modified excitation as the critical. To distinguish the original
and its modification, they are called the "first-class' and the second-
class' critical excitations in what follows.

o

This paper starts with a discussion of the {irst-class critical excitation
_for structures with a single-degree-of-freedom, as well as some assump-
tions and concepts that are pertinent to it, and then proceeds to the case of
multi-degree-of-freedom systems. The idea of the second-class critical
is introduced next. The succeeding sections present the methods and the
results of the analyses of the two types of chimney, namely one with con-
stant and the other with tapered cross sections. A critical discussion of
the results is contained in the concluding section.

EFFECTIVE DURATION AND INTENSITY OF GRQUND EXCITATION

The response y{t) of 2 design variable of an elastic structure to a
ground acceleration Sig(t) is given by the Duhamel integral

y(t) = jx (7} h(t-7) dr | (1)
c & .

in which hkt-?} is the unit impulse response at a time {t-7). For a structure
with a single degree of freedom it is given by

.

h(t-7) = “’ll-)- o -BW(t=T) 4 g (t=7) (2)

where wq =WV 1-§?‘ is the damped frequency, w is the undamped frequen :y,
and £ is the damping ratic. Thus, if the maximum response of a structure
-occurs at time ts, the duration of excitation needs not be taken longer than
the value of (te-tg) so that h{ta-tg)= 0, or more practically hite-ty) decays
to a.certain percentage of the maximum of hit), The decay percentage can
often be left to the judgment of the designers. For example, if the decay
to a ten percent was assigned to a structure based on its fundamental
period of vibration of 2 seconds, with a damping ratio of 5% then the dura-
tion of excitation need not be taken greater than .

-no0.1 _ 2.3

{tyot,) = m = 14. 6 seconds {2a)
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The definition of the intensity of ground excitation has been the subject
of extensive discussions. In this paper, following the derzvatxon of refer-
ence [3], the intensity of an exc1tatzon was defined as

i
F]

E= [f % 2 (t) at] (3)
0

Since the duration of excitation (fg-t,) used for the critical excitations and
the comparative recorded excitations, as will be seen in the later discus-
sions, are the same, the intensity of excitation defined here is similazr to
that defined by Housner [6].

1 f.2
;:,t oxg (tydt . | o 4)

FIRST~-CIL.ASS CRITICAL EXCITATION

The maximum response of a multi-degree-of- freedom syatem repre-
sented by modal superposition is as follows:

t
Viltg) = ¢k1n1(t )= f %y (7 chhp hylt,-7) a7
o
te B
= { kg(-r) h(te--r) d7 _ 3(5)
o
where y (t Yis the k response variable, ¢, is the Kt th element of t 1th

mode shape ny {t )isthe normal coordinate o} ith mode, P;= ¢>TM I/4> Moy
is the ith mode paruczpatmn factor with M as the mass matr:.x and
1 is a vector with 1's or o's to indicate the existence or not of excitation in

the vector elements of y. Squarmg the response yp and setting up the in-
equahty, the following relation is obtained,

. .t
e —

Yi(te) = [_[ % ()R (t,-7) d7] 2
[+]

IA

t t .
. [} e_
[ f Sig (myar] [ [ Bt -nar]
£ t
© o
< Efn° ’ ' (6)

or  yilte) < EN

wheré E is the intensity of excitation as defined in Eq. (3) and N° is the
square integral of the unit impulse response. The maximum respoénse is
the product EN and can be obtamed by applying a first-class critical exci-

tation R.(t), so that
fo1(m) = ER e -m) (7
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L

The shape of the unit impulse h(t) and R, q(t) are shown in Fig. 1. ‘ )

sto.::l

A

PN N,

Rl(t)
~

' Y
S 7 \_/ >
\/ ot | % U
I
Fig. 1. SHAPE OF h(t) AND k_,
The maximum response due to the first class critical excitation is '
, '
= E Bt -7« B (¢ -
Vo1 = & { Rt -7) ~ R (¢ -nar
\ o , .

The intuitive interpretation of this result was already mentioned in the
Introduction. It indicates that the frequency content of the first class
critical excitation matches exactly with that of the structural vibration
and therefore that the corresponding critical response y.] is the maxi-
mum peak among those produced by all the excitations with same inten-
sity E,

- SECOND-CLASS CRITICAL EXCITATION

It has been mentioned in the introduction, that the response peaks pro-
duced by the first-class critical excitations often are too large to be real-
istic, and the results reported below for two free-standing chimney will be
seen to confirm this. It has tharefore been found necessary to introduce a
modification which is called the "second-class critical excitation" here.

The second-class critical excitation is obtained by superposition of a
number of recorded groung excitations (or artificially generated excitations)
and least-square fitted with the first class critical excitation-as follows:

n ' .
%eplt) =&, ¢, %,(t) o -

and t
-]

tf (%, - secz(‘t)]'zd: = minimum
[+]
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The response to the second-class critical excitation is

o+

e _ . ‘
Yoy = _{ R (t,-7T) %, (7) &7 (10)
[+

The second-class critical excitation ¥_, resembles the recorded
excitations more closely thanthe first-cla$§ one and the peak of its re-
sultant response y . is more reasonable. However it is still larger than

_that of any of the réSponses due to the component excitations used for the
least-squares of it. '

In order to find the first-class critical excitation % and the cor-
responding response y ., for a particular structural descign variable based
on the time-reversed uhit impulse response, the designer only needs the
specification of a reference ground motion intensity E. However, in order
to obtain the second-class critical excitation %_., which is a least-squares
fit, a number of appropriate ground motions must be selected to make the
combination as shown by Eq. (9). 'Finally, in order to have a basis of
comparison, a few recorded accelerograms must be seledted and struc-
tural responses calculated for them as welle This section describes the
choices that were made for these purposes, :

In regard to the first requirement of obtaining the least-squares fitted
excitation x.», twelve accelerograms were selected including two of the
_three selected for comparative studies. These accelerograms were chosen
with the following stipulations: '

L. The ground excitations are characterized by relatively short
epicentral distances, say 25 to 30 kilometers.

2. The shape of the accelerogram should have a gradual build-up-
period.

3. The site conditions of the selected earthquakes should re-
‘'semble as much as possible the condition prevailing at the
location of the structure. :

The third stipulation may be difficult to satisfy unless a choice can be
made from a rather large variety of accelograms, probably larger than
now exists. At any rate, in the present study twelve ground motions re-
corded in Southern California were chosen and assumed to be representa-
tive for the locations of the chimneys to be analyzed below. Appendix 1
lists these twelve earthquakes and their intensities E. '

¢ Typical examples of second-class critical excitation obtained in this
way are shown in Fig. 2.
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For comparative studies, three accelerograms were selected from
the published results I2]., namely, (1) 1971 San Fernando, Pacoima S14W,
(2) 1940 Imperial Valley, El Centro S00E, (3) 1954 FEureka N79E. Each of
these three accelerograms has certain special characteristics: the first
is the strongest (1. 17g) that has ever been recorded, the second one is
strong and of relatively long duration, while the third one is moderately
intense and of relatively short duration.

CHIMNEYS WITH CONSTANT CROSS SECTIONS

Chimbeys with constant cross sections are simple prismatic canti-
levers. Its natural frequency of vibration of the ith mode is given by [1]:

w, = ol [EL . (11)
_ mL T

“where 'ai is obtained from the transcendental equation
¢cos a, cosh a, = -1 ‘ (12)
i i : o
The mode shapes are given by
x x

xX . . X X
¢i(-1-:) =sina, T - sinh T + Ai(cosh @ T, - cos ai-L)

with sin o + sinh a;

i~ cos ay + cosh a; (13)

In the above expressions, E is the modules of elasticity, I is the moment
of inertia, m is the distributed mass per unit height, L is the height of the
chimney, and x is the distance from the base of the chimney. .
For a reinforced concrete chimney of 304. 80 m in height, 18. 288 m in
outside diamete‘x_‘ and 0.4572m in thickness, the mass per unit height is .
1910.677 Kg-seczlmz. ‘Based on modulus of elasticity 2,9489x 109 kg/rn2 and
moment of inertia 1018.5m#%, the period of vibration in seconds of the first
8ix modes are 2.400, 0.383, 0.137, 0.070, 0.042 and 0.028. The participation

factors jL¢i ax/ f,%fdx are 0.783, 0.434, 0,251, 0,001 for the first
o o . :
four modes, The design variables selected are top deflection A, base
moment M, and base shear V. The results of the dynamic analysis for
the three reference earthquakes are shown in Table 1, The entries in the
table are more specifically the response peaks generated by these excita-
tions shown in the left column, The peaks to which the first-class critical
excitation leads are seen to be consistently much higher than those due to
the,actual ground motion, ‘ '

. ~-Those produced by the second-class critical are however much more
realistic. The ratios of those peaks to the ones generated by the actual
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- ground motions are listed in Table 2, under the heading . of Teritical.design
factors. These factors are seen to range over values from i td 3.

TABLE 1. RESPONSE PEAKS OF CHIMNEY WITH
CONSTANT CROSS SECTION

Excitations Intensity Response Variables
E Top Deflection Basel\lzloment Base_\}ihear
(em/sec’dy | . (&) (10°Kg-m) | (10°Kg)
Pacoima Dam |. 0,676 10288, 8 1280. 2
1st cl. critical 6,471 2,396 26151, 1 1194, 3
2nd cl. critical | 5,101 59678, 2 3565.7
El Centro 0,432 4967, 4 349. 9
lst cl. critical 2.572 0.953 10394. 4 474.7
_2nd cl. critical . 2,028 23720.6 (1417, 3
Eureka - 0. 243 - 3423.3 286. 6
1st cl. critical 2.008. - 0,744 8115.5 370.6
2nd cl. critical |- 1,583 ' 18519.9 1106.5

TABLE 2. CRITICAL DESIGN FACTORS OF THE
CHIMNEY WITH CONSTANT CROSS SECTIONS

 Excitations Top Deflection A Base Moment M | Base Shear V
Pacoima Dam 3.54 2.54 ) 0. 93
El Centro 2.21 2.09 . 1. 36
Eureka - 3..06 2.37 1. 29

TAPERED CHIMNEYS

Most chimneys have tapered shapes. Although expressions similar to
{11} and {13) for frequency and mode shapes can be derived, it is simpler
to use discrete lumped mass approach. .

The chimney selected for this study is a 304.8m free standing tapered
reinforced concrete cylinder, The bottom cutside diameter is 25.298m
with wall thickness of 0.889m. The top outside diameter is 10. 262 m with
a thickness of 0. 216m. The 0, 64 cm steel lining is not considered as the
integrated structural element. The detailed vertical chimney v/all cross
section is shown in Figure 3. - . )

A discrete {inite element method was used to find the free vibration as
well as dynamic analysis. The height of the chimney is divided into 17
sections with the respective horizontal ¢ross sectional area and moment
of inertia computed as shown in Table 3. The lumped masses at the nodal

~points are also shown.in Table 3. The condensed stiffness matrix refers
to the horizontal displacerncnts at the nodal points corresponding to each
mass peint. The mode shapes and pericds of vibration are shown in
Figure 4. Tho design variables selected for study ave again the top de-
flection A, the baso moment M, and the base shear V, The dynamic
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TABLE 3. AREA, MOMENT OF INERTIA AND ¢
LUMPED MASSES OF TAPERED CHIMNEY

Aria Moment .‘f’f Inertia Lumped 2I\/Ia.s&z .

Element {m*%) {m*) Node (Kg-sec?/m)
17 7. 005 93,420 18 ° 10119.08
16 7.505 114. 90 17 27976. 28
15 8.125 145,791 ° 16 37648.93
14 8. 999 . 186.856 - 115 40476, 32
13 10. 448 24, 652 14 45535.86

12 12,293 - 330. 866 . 13 . 53571.6
11 14.888 450,039 12 62053. 77
10 18,334 617.540 11t 76934, 77
9 22.956 823,209 10 93006. 25
8 - 25,348 1044.520 9 110268, 21
7 28. 108 1274.539 8 122321.82
6 31.010 1540.536 7 134970, 67
5 34,056 1846, 109 6 148363.57
4 37.242 - 2194.955 ‘5 162351. 71
3 41,448 2644, 194 4 176935, 09
.2 54,024 - 3684. 179 3 200149, 45
1 66. 189, 4788.865 2 290477.12

1
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analyses of this chimney led to results which are summarized in Tables 4
and 5. Table 4 lists the response peaks that were-generated by the actual -
ground motions, along with those due to the first-class and second-class
critical excitations of the same intensities. Table 5 presents the critical
design factors. ' '

TABLE 4. RESPONSE PEAKS OF CHIMNEY WITH
TAPERED CROSS SECTIONS
- Excitation Intensity ) Response Variables
E Top Deilectior | Base Moment | Base Sheay
M v

(m/sec/? &) (1°Kg-m) | (10%Kg)
Pacoima Dam 1,383 5536, 6 703. 6
1st cl. critical 6.996 3.849 10930. 4 1044, 0
2nd cl. critical 21.924 58122.5 5191.0
E1 Centro 0. 694 2134, 7 313.3
ist ¢l. critical 2.895 1.594 4523, 7 432.1
2nd cl. critieal 9.074 22684.8 2148, 4
Eureka . 0.448 1580. 3 2307.4
1st cl. critical 2. 034 1,119 3177.9 3035.3
2nd cl. critical 6.373 15935.9 15092, 2

TABLE 5. CRITICAL DESIGN FACTORS OF THE
CHIMNEY WITH TAPERED CROSS SECTIONS

Excitations Top Deflection A Base Moment M -Base Shear V
Pacoima Dam 2.78 1.97 1.48
El Centro 2.51 2.12 1.33
Eureka 2. 50 2.01 1,32

. A design of the base cross section of the chimney was also made,
based on the elastic design approach as well as on an inelastic one with
ductility factor of p'= 4. The results are shown in Table 6. The re-
inforcing that would be required for adequate strength against the second-
class critical is considered to be rather high, but not beyond reason, when
compared with that needed against the El Centro ground motion.

CONCLUSICNS

The proposed method of assessing seismic resistance of structures,
based on the second-class critical excitation, was applied to uniform
cross sectional and tapered chimneys. The conclusions from this study
are as follows.

1. The method proposed here is an upper bound analysis in view of
the fact that precise nature of earthquake, frequency of cccurrence, inter-
action of structure and soil, and other earthquake related factors are not
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»

readily available.
r

2. In the structural design of the two chimneys, the method appears
to be effective, though still somewhat conservative, If desired, further
reduction of the bound can be achieved by the judgment of the design en~
gineer in reducing the specified intensity E, or in eliminating some of the
selected component earthquakes in the least-squares fitting process. By
observation of the coefficient of the least-squares fitting process, it appears
that the earthquakes which most resemble the shape of the time-reversed
unit impulse response excitation are the ones which may cause larger re-
sponse. If these earthquakes are not likely to occur at a given location,
they can be profitably cmitted,

3. DBoth the intensity of the earthquake E, and the square integral N
depend on the effective duration tg-tg used in the integration process, In
general, the duration depends on the fundamental period of vibration and

- the damping of the structure, being shorter for shorter period and larger
damping. It is suggested that one may use the duration of decay of the unit
impulse response to a judiciously selected percentage (say 20%) of the peak.

4. When plastic behavior is considered by using a ductility factor of
3 for a recorded earthquake, a ductility factor of roughly 6(=2x3) is re-
quired for the same structural strength against the least-squares fitted
excitation. This ductility factor appears somewhat on the high side but
not entirely out of proportion. ‘

5. Based on the above discussions, it is suggested that the assess-
ment of seismic resistance based on critical excitation be used for struc-
tures with major importance the destruction of which would cause severe
human and economic losses. Another instance for adopting this approach
is for those localities where seismicity is actxve but reliable ground
motion data are scarce.

6. The practicality of the method is still undergoing examination by
applying to various realistic structures at the time of this writing. Hope-
fully, consistent comprehensive recommendatmns can be drawn from these
results in the near future.
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. . APPENDIX B

' ON A CLASS OF NON-ROBUST PROBLEMS IN STOCHASTIC DYNAMICS , ‘

3

‘

© BY

SYNQOPSIS .

H ' ’ . R. F. Dreniok (Uc s.A.)

»

The stochastic treatment of dynamical systems frequently assumes that the excltations and responses

form random processes whose probabilistic structure is completely known.

This is rarely true in prac-

tice, but not really objectionable unless the quantity of interest is very sensitive to small changes in that

siructure.
cualities,

it combines probabilistic and worst-case analyses to obtain bounds on the desired quantity.

Evidence is presented that shows that the failure probability of a system is among those
A method is suggested for the treatment of problems in which such quantities are of interest,

The estima=

tion of the earthquake resistance of elastic and inelastic structures ia presented as an example of the

method.,

INTRODUCTION

This paper deals with certain problems in the
reliability or safety of mechanical systems which
wiil fail if the magnitude of the response exceeds
a certain limit, These problems are often treated
by probability theory, It is then assumed that the
system responses are sample functions from a
random process, usually a Gaussian one, and an
attempt is made at calculating or at least estima-~
ting the exceedance probability of that limit,

The {irst point of this paper is that this proces=

‘+ -dure is not robust, and that it can easily lead to

v

very misleading results. The supporting evidence
is presented in Sect. 2. The conclusion that is
reached there should not be overly surprising.
Failures are, or had better be, rare events in most
‘instances. They are therefore events whose prob-
abilities are strongly dependent on the shapes of
the tails of the underlying distributions which are

- ugually the least known portions, and those least |

..accessible to statistical estimation. The failure

. - probabilities that are calculated fromthemare sub-

rject to large errors,
Sect. 3 raises the question of what one should
~do in such problems. The answer that is reached

| there is, by what seems to be a fairly generally

. that possesses the desired level of assurance,

valid argument, that one should perform a combi-
n2tion of probabilistic and worst-case analyses.
The probabilistic portion should more particularly
utilize all information that is available regarding
- the statistics of the underlying random process and
The
. worsescase analysis is then used to obtain bounds
-on the failure probability that are consistent with
that information,

" Sect.'s 4 and 5 present an example taken from
earthquake engineering, which, according torather

'recent work, appears to be producing practical re-
sults, Thir is the assessment of the seismic re-
sistance of structures. The ground motions during
earthquakes probably form a very good example of
a4 random process whose probabilistic structure is
poorly known, expecially on the tails of ite distri~

~butions: It is therefore naturaltoapply the general
ideas pregented in Sect. 3, Thisisdone for elastic
Btructures in Sect. 4 and for inelastic ones in
Sect. 5. '

-
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NON-ROBUSTNESS PROBLEMS

The kind of problem to be discussed in this
paper is one in which a failure of a system is
trought about by an excessively severeresponse.
It will be convenient to assume that the "severity"
of a response variable y is measured by the norm
yll. The norm that seems most useful in practice
is '

iyl ?supt ly)] (2.1)

where t ranges over the interval T of interest.
One can then define system failure as an event of
the form {“y“ > L} where L is some failure limit.

In the stochastic treatment of the problem one
seeks to determine the probability:

P{liyll >} = p{sup,|y(t)] >L}

of the event of failure. In order to do so one
assumes that the response variable y forms a rane
dom process with a completely known probability
measure. {For simplicity, the symbol y will be
used in what follow to denocte the random process
ag well as an individual sample function; the word=
ing of the text will, it is hoped, avoid misunder-
standings due to this imprecise notation.} It is in
fact usually assumed that the probability measure .

,.is Gaussian, and the probability in (2. 2) is then
c¢alculated, or at least estimated, on that assump-
tion.

The point to be made in this section is that the
value of the failure probability (2. 2) is very sensi~
tive to the assumption of Gaussianity ("ill-condi-
tioned," in the language of numerical analysis)s
small changes away from it can produce very largae
changes in the value of the failure probability. The
evidence to be presented indicates more particularly
that the failure probability is most sensitive to
those characteristics of the underiying random
process y that are least likely to be well known,

(2. 2)



namely the behavior for large |y(t}].
With a few exceptions, closed expressions for
. the distribution of {|y|| in (2. 1) are known only
when the random process y is stationary and
Gaussian. One that was derived fairly recently by
Pickands [1] is typical of most others. It is of
the familiar double exponantial form

f=~ L 1
P{ilyll >L} sexp{-exp[ - (210g 20/ +n}} @.3a)

in which n and n are constanta. The firstis more
specifically a coefficient in the Maclauzin series
for the autocovariance RY('r) of y i o,

R (m=R (0)[1-n|g| +0 (3)]. {2 3b)
and the second ia ‘
ned iog 2n + $(log r - log log 2n) (2. 3¢)

Formulae (2. 3) are asymptotically valid for large

L and large n. in the gense that terms of order
O(L/s)-1 and O(log n)-1 are neglected. It is of
interest that the expreassion (2. 3a)

is essentially the same as for the
exceedance probability of n indepen-
dent Gaussian variables, each with
the same density as y(t}. (The only-
discrepancy is in the factor of log

r in (2. 3c). '

The derivation of (2. 3) rests very heavily on
the Gaussian nature of the process y. Accordingly
no similar expressions are known for non-Gaussian
processes, to the writer's knowledge. However,
it may be at least plausible to expect an equiva-
lence to exist. between non-Gaussian processes
and a suitable number n of independent non-
Gavssian variables, which is of the kind that has .
just been described for Gaussian ones. There
exists no mathematical proof of the equivalence,
‘but it is difficult to think of any reasons why it
should fail to hold, at least if all conditions are
satisfied under which (2. 3} is valid and if the de-
parture from Gaussianity is small. -

If one can accept this equivalence, one can
proceed further. This will be done here, at any
rate. To be more specific., a non Gaussian ran-
dom process will be considered whose one-dimen-
slonal probability density p(y) has the following
properties. . ' '
(1) Between two limits (¥ yo). ply) is Gauasiar

a; 2
ply) = — exp(-i;—z). . (lyl<yg)e - (2.4a)

{2) Beyond these two limits. p(y} is "of the
exponential type" (in the terminolegy of .
Gumbel [2,p.120])s : :

a, ¥ m 1y r _
ply) ===1L] expl-2{L]) (y]>yy r>l)(2.4b)

(3) At I'yl-:yo. ply) is continuocus.

(4) n is large.

(50 L is large.
The last two assumptions are fairly traditional in
the theory of extremes [ 3, p.374]. The firstthree
are made here in order to be able to postulate a
random procesa which isa Gaussian in a region in
which observational data are available (namely for -
y{t) values which are not very large) but whichmay
depart from Gaussianity where such data are
scarce and where such a departure would be dif-
ficult to ascertain statistically, The case of no
departure is includedt one merely sets

r=2, me0, a,wa = (2w} 4, wwe, (2.5,

Suppose now also, as su gested above, thattne

exceedance probability P{|] yﬁ> L} in (2. 2) for the

random process y is the game as of n independent

variables yj, ya, ... yn., each with the density

(Z. 4)- .
Under these assumptions. one can derive a

"formula for the exceedance probability

P{|lyl| >L} which ie analogous to {2.3). The
derivation is laborious but straightforward. It ias-
simplified if one can made a sixth assumption,
namely L>y,>se, which is not unreasonable and
which will be made here. One then finds

1= r-1

Py} > L} =pxp{-exp[ - Xrlogzaf + ']} (2.6a)

with

m-r+l
T

n'slog aj+r log2n + (log r+loglog2n) (2. 6h)

‘This is again valid assymptotically for large (L/8)
and large n, but in the sense that terms of orders

- O(L/8)"T and Oflog n)'l are negligibly small.

Expression {2.5) for the exceedance probability
is of roughly the same double exponential {orm ase
its counterpart (2.5). Since all parameters of
‘the underlying density p{y) enter into the second
exponent, and some even exponenticlly so, the
probability is very sensitive to even small changes
in them.

The changes that are of interest here are those
in the parameters a;, a;. 8, m, and r, away from
the values {2.5) which they take if the random proe
cess. y is Gaussian, Their effect on the failure
probability P{||y[|>L} can be evaluated by a con-
tentional perturbation caleulation. If py is used
to denote the value of this probability when y is
Gauseian, and‘'ép the chuange induced by small de-
parture 84,6, and ém, from Gaussianity one finde

sp 38 L M. |
» ..[M1 = + M26m+M36;j].loghpg (2. 7)
where’ . .

Y, i

Ml'(_o'?' )2-1- -‘%,‘-(znagz_n)3
Yo .y '
Mz- log == +3(log2 + loglogen)
{2.8)

Y y
My=b (-2 (1-2l0g~2 ) +1log 2a

L L 5 '
+% ;—(Zloan) (l-log2-4loglog2n)
- (1 +1og2 + 4 loglog2n)

The expressions are valid if, as before,terms of
orders O(L/s)~1 and O(logn)~1l are conaidered
negligible relative to 1, and if the same is true of
terms of order Oly,/v )2, .

A mervre inspection of (2. 7) and (2. 8) showe
that even small changes in the one-dimensional
density of the process y are prone to produce
large changes &, in the failure probability.
Numerical work confirms this, Suppose, for exs
ample, that a system had been designed on the
assumption that y is Gaussian, and for a failure
probability of p_=.05. This would mean that L/s
would have been set at L/r=1.64. In order to
simplify the formulae (2.8), suppose further th-
Yo=L (i, e. that the departure from Gaussianity
most pronounced beycnd the failure limit L), and
‘that n =20 (i, e, that the random process is equiva
lent to 20 independant random variables). In that

f



excitation process x. The transformation from
one to the other can be difficult. By contrast, the
question of whether the value of 0 applies in (3. 3}
or l, seems relatively easy to settle in practice.
The example to be treated in the next two
sections will, it is hoped, bear outthese comments.

THE CRITICAL EXCITATIONS AND RESPONSES
OF LINEAR SYSTEMS

An example which illustrates the general re-
marks just made will be discussed in this section
and the next. It arose from a problem in earth-
quake engineering,

The ground motions during earthquakes form
an almost ideal example of a random process whose
precise statistics are very imperfectly known and
unlikely to be well-known in the near future. It
has been customary in recent years to make the
assumption that the ground motions form a Gaussian
random process. However, very little evidencein
this direction has ever been presented and what
evidence exists, apparently does not support the
assumption [5]. This uncertainty, of course, is
transmitted to the response. As a consequence,

- and as explained in Sect. 2, any statement regard-
ing structural failure or survival is liable to be in
serious error. .

Based on the above remarks, one should next
inquire what information concerning the statistics
of ground motion during earthquakes is well encugh
established, to be used tewards the prediction of
structural failure. One can perhaps say that the
distribution of ground motion intensities is based
on a sample of sufficient size to qualify in this re-
spect. Such information has been accumulated
over many years, as pointed out by Housner {6,

p. 97-99]. There are admittedly many possible
definitions for the term "intensity." In this paper
it will be convenient to define it as the Lj-norm
lIx} of the ground acceleration x, i.e, by

2
1=l = [ xPwat.
-

(Other norms, in particular the maximum ground
acceleration, could be used equally well and might
even seem more natural here.) One can then per-
haps assume that the distribution of ||x|| can be
equally well documented no matter which definition
is adopted and in fact that it is of the roughly ex-
ponential form that has been pointed out by
Housner [6, ibid.]. .

Suppose now that the distribution of qu is
actually all that is reliably known regarding the
stochastic nature of the ground motion. Suppose,
further that the response of a variable, such asthe
base shear or base moment is of interest in an
elastic structure. This response is then related
to the ground acceleration by the Duhamel integral

. o :
y(t) = [ hit-m)x(t) at. (4.1)
-or

in which h is the impulse response of the variable.
The sets S introduced in the preceding section are
" of a special form in this example, namely

-

: @
S={yty(t) = [hit-nx(tiat; x| <M} . (4.2
. o »
Each consists of all responses that are generated
by ground motiona with intensities =i S M. . The
probability measure of each S is .
P(s) = P{||x}| < M} (4. 3)

which, as was just assumed, is all that is known
regarding the statistics of the ground motions.
The question now,.according to (3. 3), is
whether or not there are any responses in S whose
peaks |ly|l exceed the failure limit L. The answer
can be given quite easily, by a straightforward uase
of the Schwarz inequality [7]. One finds that a re-

%7'

-sponse in S with the highest peak Iyl is

M oC
y*(t) = & [hit-nh{-ndt .
-0C

and that all others differ from y* only by time
shifts or by a change in sign. Here, N has been
used for
N = | nZwae <e.
~0c
The peak of y* , namely
y*(0) = MN ., (4. 4)

occurs at t=0. It is generated by the excitation

x*(t) = %‘h(-t)

which is, except for the constant factor, (M/N). the

.. time-reversed impulse response of the variable

under consideration. The pair x*, y* have been
called the "critical excitation™ - and the "critical
response" of the strucutral variable; relative to
the set S. Hence, the title of this section.

-It should be added that the set 5, as defined
in (4. 2) developed to be too large in many cases in
practice: the critical response peaks (4.4) were
often unrealistically large. However, the fact that
the term "unrealistic" can be used here at all im-
plies that some information is available regarding
ground motions, other than merely the distribution
(4. 3) of their intensities, as has been assumed here.
For, if that were really all that is known it would
not be possible to disqualify some of the response
peaks as being excessively large. There has been
some speculation of what this additional information
might be. Shinozuka [8] has suggested the envelope
of the Fourier amplitude spectrum as one possible
item, and Iyengar [9] the envelcope of the time
history of the ground acceleration as another.
Either suggestion amounts to a restriction of the
sets (4. 2) or, equivalently, a refinement of the
kind that has been advocated in Sect. 3 for Z', as
being helpful towards the reduction of excessive
conservatism. The writer and his colleagues have
experimented with yet another restriction., which
seems to be successful in that the residual con-
servatism is quite well consistent with good struc-

- tural design practice [ 10].

All of the resgtrictions mentioned here, however,
suffer from the same defect, namely, thatitis very
difficult to say just what the probabilities P(S) of
the resulting sets S are. Beyond that, the approach
has been criticized on several counts, forinstance,
the fact that each structural variable has its own
critical excitation and response and hence must in
principle be analyzed individually, or the implicit
assumption that all uncertainties in the response
statistics are imputed to the ground motion and
none to the structure. . Work is under way which
will, it is hoped, meet these and other objections.
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82215.38%. 22,4 6r - 4.50 om,
g

This shows that merely a change in m alone from..

0 to 1, produces a change in the failure probability
by a factor of 4.5.

Such a change would be extremely difficult to
detect statistically, on the level of confidence
which one would often wish to attach to an estimate
of the failure probability. The usual statistical
tests in particular which aim at the estimation of

. certain mean values of the density p(y) of v, are
known to yield no information regarding the be-
havior for large values of y [4].

The evidence presented here therefore indi-
cates that a reliable estimation of the failure
probability will often be very difficult,basically of
course because it depends on the behavior of the
underlying random process for large values of its
sample functions. That, however, is the region
that is the least accessible to robust statistical
tests, ’

PROBABILISTIC AND WORST-CASE ANALYSIS
COMBINED

The discussion in the preceding section has,
it is hoped, made a reasonably persuasive case

for the non-robust nature of the probability of a
system failure which is induced by the magnitude
of its response. Unless the stochastic character-
istics of the latter are very well known precise
pronouncements regarding the former will often be
impossible. Under the circumstances, one may -

* have to settle for weaker statements regarding this
probability, especially upper bounds, and seek to
make these as robust as possible. In order to do
so, onewmay have to follow a line of reascning
which seems to be quite generally valid and which,
the writer believes, will frequently be inevitable."
It leads to a cross between probability theory and
worst-cage analysis. )

In this procedure, one would first of allutilize
any information which is known on the desiredlevel
of statistical confidence and which bears on the
probabilistic structure of the random process y
under study. It is possible in principle that this
information characterizes the random process .
completely. This is unlikely however, for in that
case it would have to specify the probability mea-
gure on the sigma algebra Z of all (measurable)
gets of sample functions of the process. More
often, the reliable information will be incomplete,
in the sense that it specifies with the desired as-
surance the probability measure only on the sets
of a family Z' within Z (Z' will in fact either be
a coarser subsigma algebra of &, or else will have
to be embedded in one.) ;

. What matters here is that, so far as any state-

"ment regarding the random process y are con-
cerned, they cannot be made on the sets in Z but
only on those in the coarser Z', They will be
correspondingly weaker statements, and the best
thing to do is to make Z' as fine as it can be madae,
consistently with the available information.

"The next question is how to arrive at those
weaker statements. One can, and may even be
forced to, proceed as follows.

Suppose that S is a set in Z', and more
particularly one that consists of, or at least con-
tains, 'all sample functions that are of interest in 2
particular problem. The question that is consider-
ed in this paper is the probability that some among
those sample functions induce failure., In other
words, it is desired to know the probability of the

intersection

fFelylPLt~ {yes} . 3/

using the somewhat imprecise notation introduced
above. This probability clearly obeys the inequality

{3. 2)

(3. 1)

0 < P{lly[>L] ye 8} P(S)< B(S)

The upper bound is attained if almost all sample .

- functions y € S of the process exceed the failure

limit L, i.e., if the intevsection (3,1) is essen=
tially equal to S; the lower bound applies if almost
none do, i.e., if the intersection is essentially
empty.

One can now use these two bounds towards
statements such as "the failure probability of a
system will not exceed P(S) when v€S5." or "the
system will not fail under this condition." More-
over, these statements will carry the same degree
of assurance as the information that led to the
definition of the set S in the first place. They
may however, be rather extreme. The first one
in particular may be extremely conservative, in
fact, even pessimistic. in many cases: the upper
bound P{S), as just mentioned, is attained only if
easentially all sample functions in § produce fail-
ure. The second one will, for similar reasons, be
attained only rarely.

The point to be made here is that, pessimistic
or not, it often is impossible to do much better.
There will, of course,be the temptation of reducing
the conservatism of these statements or, which is

" saying the same thing, of estimating the magnitude

of the factor P{|y[|[>L |y € S} in (3.2). This is
actually usually done. The tacit argument in such
cases is that it is better to avoid excessive con-
servatism than to avoid unreliable information.
Consequently, various assumptions are made which
are thought to be reasonable and which allow a cal-
culation, or at least an estimation, of

P{|jyll >L|yeS}. The moral of the discussion of
the proceding section, however, is that this is
risky business: it will often be better to make only
those statements that can be make on 2 level of
confidence that is consistant with the one attached
to the data, and to let the resulting conservatism
fall where it may. These are then statements of

o

the kind that have been suggested above. They
amount to setting
P{llyl>Liye st =0or1, (3. 3)

depending on whether the intersection (3.1) is. or
is not empty. :

The problem then becomes one of first making
the family Z' as fine as possible, i.e., of utilizing ¢
all information that is considered to be reliable
enough to be used., In this way, the upper bound
P(S) in (3. 2) will be tightened as much as possible.
Also, the achievement of the lower bound, namely
zero, will be made nore likely. Secondly, the
intersection (3. 1) must be studied: if it is found
empty, the lower bound applies; if not, the upper,

This procedure is in effect a combination of
probability theory with worst-case analysis:
probability theory is used in setting the measures |,
P(S) of the sets S¢ Z'; the worst-case analysis

.complements it, via (3. 3), by allowing no proba-

bilities other than 0 and 1.

In practice, the probabilistic part seemas to be
more difficult than the second. It is often doubtful
just what information is available, and also reliable
enough to be used in the determination of the sets
S. A further complication often is that the infor-
mation which is available does not pertain directly

. t0 the response process y of a system, but to the
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THE CRITICAL EXCITATIONS AND RESPONSES
OF NONLINEAR SYSTEMS :
A'recent generalization [11] of the result
mentioned in the preceding section from linear to
nonlinear systems may be of sufficient interest to

be reported on here briefly.

. What has been shown more apecifically is this
The critical excitation x* and response y* of a non-
linear system obey to sets of simultaneous equa-
tions. One is, of course, the set which defined the
systern under consideration. The second set is
obtained from the first by

(a) linearizing it about x* and y*,

{b) replacing x with ké where & is the unit
impulse function and where k is go de-
termined that ||x| = M, and

(¢) reversing time, i.e., replacing t with
(-t).

For exdmple, if the system under consideration is
given by a single differential equation of the form
&y atly
gl n ' ,.n-1
dt dt
the critical excitation and response cbey two dif-
ferential equations, namely

R Y)=x, (501)

{5. 2)

which merely expresses the fact that y* is the re-
sponse to x*, and .

n-1

d Txk -
T to..ta (t)=ké (S. 3)

d%xc%
tn

2 +.an_1(t)

3n‘ (t)
whgre .

e

k) d Yy
(k) . (Y( -

LY
k
a ()= (-1 )
_ — -dt

which is necessary for the criticality of x* and y*,

Another way of stating this result whichbrings
out the parallel with linear systemas is the following
The critical excitation x* is again, except for the
constant factor k, a time-reversed. impulse re-
sponse. However, by contrast to linear systems,
it is not the impulse response of the given system
but of a linearized version of it. The linearization
must more particularly be around the critical
excitation/ response pair.

The result holds not only for systems that are,
ofr can be, defined by a single differential equation,
such as (5.1). On the contrary, substantially more
general excitation/response relationships are ad-
missible than nonlinear differential equaticons. In
particular history-dependent failure mechanismas,
such as material fatigue, are subsumed under it.

The result is derived in roughly the following
way., The system is first assumed to be specified
by its Volterra series [12], rather than by its dif-
ferential equations. This is done partly for sake
of greater generality and partly to preserve the
analogy to the Duhamelintegralin (4. 1). The re-
sult then follows very quickly by a variational
argument. Some attention must be paid to the fact
that Volterra series frequently have small radii of
convergence, and to the transition from those
series to other system representations, such as -
(5.1}, '

The solution that is obtained in this way is
valid under fairly general conditions. It has, how-
ever, certain drawbacks as well, Among those
are, to begin with, all those mentioned in the pre- .
ceding section in connection with linear systems, '

In addition, the solution for nonlinear ones need
not be unique. There may, in other words, be
more than one excitation/ response pair that
satisfies eq.'s (5. 2} and (5. 3), or others like these.
Finally, and perhaps most importantly, these
equations unfortunately cannot be solved simulta-
neously; the obstacle develops to be time-reversaal
in the second equation, as one recognizes quite
easily. The solution can often be carried out by
successive approximnation, however. On the basis
of some limited computational experience, there

is in fact hope that the approximation will con-
verge quite rapidly in many problems of practical
interest. '
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THE CRITICAL EXCITATION OF NONLINEAR SYSTEMS

R.F. Drenick
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ABSTRACT

The criﬁcal.excita.tion of a mechaﬁical system, in the terminology of
“this paper, is one that drives the systém to a larger response peak than
any other in some class of allowed excitations, The critical excitation is
of interest in questions related to the rélia.bility and safety because the
magnitude of the response peak is frequently an indicator of the survivabil-
ity of the system. The problem of finding it has been solved for linear sys-
tems some time ago, Thi:s‘ paper deals with the generalization of the prob-
lem to nonlinear systems, Itis shown that its solution is in many ways

analogous to its earlier counterpart.

i, Introduction

This paper deals with 2 problem that is enco;m'tered in questions of the
‘reliability or safety of me chanical systems. It is then often important to
know what the largest response pea.lg is to which the system can be driven
by any of some class of possible excitations. The idea is that the magnitude
of that maximum response peak will indicate whe£hér or not one should be
prepared for a possible sysltem failure. The excit;ttion that achieves this
peak has been called the "critical excitation" of the system, and the res-
ponse which it gene'ra.tels the "critical response." The terminology is used
also here.

The problem is patently undefined unless é. class of excitations is speci-
fied among which the critical is to be found. " In this paper, that class is

assumed to consist of all excitations whose square-integral is limited to a

-
i
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certain value. This assumption is often appealing because the square-
integral can be interpreted as representing the energy, or the intensity
of the excitation,

As it happens, the assumption is appealing for another reason as well:
for it develops that it leads to a particularly neat solution when the system
under consideration is linear. The excitation that is critical u_nder thié as-
sumption is, except for a constant fa.ctor; the impulse response of the sys-
- tem, reversed. in time [ 2].

The restriction to linearity is, however, quite inappropriate to prob-
lems that touch on system failures, Nonlinearities are virtually inevitable
as failure is approached,  and fa.ilure.itself is patently a nonlinear pheno-
menon as well, The generalization of the problem to nonlinear systems is
therefore highly de sirabie. It is the subject of this paper.

The,rria.in result is derived in Section 3. It is shown there fha.t an in-
teresting parallel exists between the solutions foi' linear and for nonlinear
systems, The critical excitation of a nonlinear system is found to be again,
excvept for a constant factor, a time-reversed impulse response, and more
particularly that of a certain linearization of the given system,

Section 4 discusses some supplementary questions, The non-unique-
ness of the solution is emphasized firsf; Relations to earlier work are re-
viewe& next, In particular, the possibility of arriving at a very similar
result through optimal control-theory is pointed out. A computational pro-
cedure, its convergence and divergence, are discussed. The application
is illustrated by a simple example,

The solution derived in this paper uses some concepts from functional

analysis which.are collected and briefly explained in Section 2,
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2. Preliminaries

This paper considers systems which transform excitations x, subject

to

= o] N |
(2. 1a) [ =%(tiat < o

e

into responses y which obey
(2. 1b) _ s'upbly(t)l <w " (-0<t<cw),

Such systems can be repre sented in many ways, and several will in fact be
" used below. One representation is in terms of an operator H which car-

. . or s =1l .
ries X into y, or its inverse G=H °, Le.,

(2. 2) y= Hx), x= Gly)

Most physical systems have the prope;rty that no excitation x by*.itself
determines a response y, and that an additiona.llva.riable (the "initial state"
q) must be added to define y uniquely. H is t}.J.e'n 2 function of x and q. In
this paper, this cdﬁplica tion will be avoided by the convention that the sys-
tem is initially at rest and that the initial state is fixed accord1ng1y. The
same assumption, if needed, will be understood to apply to G.

Under certain further assumptions, operators such as H and G can be
expa.ndeci into series which have prop>erties‘ similar to Taylor series in the

elementary calculus, In fact, one writes them in the same form, namely

(2. 3)  y= HE=HE FHE (=-%) + 50 BE x-0)7 ..

(2.4) x= Gly) = G(Y) +G'y) (y-¥) + 5 G"(3¥) ly- 2w,

The interpretation of the terms in such series, conditions for their exis-

tence, and regions of convergence are known (e.g., [4) p. 112). It is
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further known that these conditions in general insure the existence of simi-

lar series for the "derivatives" H(k)(x) and G(k)(x). For instance,
(2. 5) H'(x) = H'(Z) + H" (%) (x-%) +4r B &) (-0 4., .

Furthermore, since H and G are each other's inverses, the derivatives in _

the series' (2. 4) and (2. 5) are related. Thus, if
y=HE), x=G()

thélfirst derivatives in (2, 4) and (2. 5) obey ([6], p. 36)

(2. 6) H'({x) G {y)= G'{y) H'(x)= I .

where I is the identity operator,

For many purposes, itis inconvenient to represent a system by an
operator which characterizes the response y for all times t, in terms of
the excitation x, or vice ve‘rsa... It is often more ‘a.ppropria.té to have a
representation which defines the response y(t) at only specified time t,
or conversely, The restriction to -suchl specified times leads to two func-
tionals h and g, which are the counterparts to the operators H and G,

and for which -

(2.7) : y(t) = hit; x),  =(t)=-g(t; y)

in place of (2. 2)
The Taylor series (2. 4) and (2. 5), too, have their analogs for the
functionals f and g. One can show more specifically that, under the

condition (2.1), a2 series expansion is possible for the functional h., Itis
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y(t) = y(t) +:[:: d'rhi (J-t;t-'l'i) [X(Tl) - J--:('r1 )] +aae
(2. 8) ©0 0
+;£° am, :Ld‘rzhz(i; t-T s t-T,) [X(Ti) -}-C(Tl)][x(1‘2~}-c(Tz)]
+eoo
and it reduces to the v;rell—known Volterra series ([8], p. 21) when the refer - _
ence excitation and response x(t) = y(t) = 0.
The series for the functional g is not in general of the same form as
(2. 8) under the condition (2.1). Inv fact, (Z. 7b) is frequently a d'ifferential

equation in y, say
(2. 9) x=‘g(y(n), (n- 1),..., y).
The Taylor series for g is then a conventional one, namely

x(t) = x(t) + Zi _a_a(gl_; [Y(i)(t) - ;,.(i)(t)]
(2.10) | 4 |
+9r Ts s ;T)‘g'm y®e) - 7wy - 590w
y 9
in which the derivatives of g are evaluated at y(t) = y(t). Mechanical -
systems are not usually defined by single differential equations of the
form (2,10). Nevertheless, series expansions are typically possible.
They are then often certain combinations of the forms (2.8) and (2.10) U
The operator equations (2,5) and (2,6) have thel.ir counterpart
for the functionals h and g, as well.- Thus, the analog of (2.5)

1s

. : e
(2.11) b, Gxt) = by (Gt) +p J dmBy st temy)fxlry) Ry

and the analog of (2. 6), assuming g to be the simple differential equation

(2.9), -

.
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(2.12) Vs a—jfi—) h, (x;t) = & (t),

with the derivatives evaluated at y(t) = y(t) and with §(t) the unit impulse

function. The latter is a linear differential equation with time-variable

(n)

coefficients and certainly has a solution if 8g/8y" ' # 0 for y= ¥ and all .

The solution, namely hi’ is therefore the unit impulse response, This
last observation applies also if g is of a more complicated form than (2. 9),

as one easily recognizes,
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3, Critical Excitations

The objective in this section is to derive the main result of this paper
namely, a characterization of the critical excitation of 2 nonlinear system,
This is the excitation which drives the system to a larger response peak
than any other, of some given class of admissible excitations., Which exci-
tation turns out to be critical evidently depends on the class that is consi- -

dered admissible in the first place. In this paper, all excitations will be

considered admissible which obey

o
(3. 1) fx(t)dt.. M?,

~00
for some given "intensity" MZ. (A comme_nf on the poséibility* of replacing
{3. 1} with the more aﬁp;‘opriate inequality constraint is made below in
Section 4. 3.) |

For a linear system, the characterization of the critical excité.ﬁon x

under the constraint (3.1) is known [2]: if the syétem has the impulse res-
ponse h, the critical excitation is, up to a constant factor, the time- |

reversed version h(-t) of h(t). To be more specific,

(3. 22) x'(t) = + 3 h(-t)
where
' )
(3. 2b) N= [ ni(m)ar,
~00

provided only this quantity is finite (as it is for any stable linear system),
It will be shown here that a very similar result holds also for a non-
linear system. Its critical excitation is again the time-reversed version

of an impulse response, but it is not that of the given system but of a cer-
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tain linearized version of it. A proviso similar to (3. 2b) develops to be
necessary as well,

The first result to be derived here is the following.

Theorem 3.1. lLeta system of the type described in Section 2 be given.

An excitation x that is critical under the constraint (3.1) is then the time- ~
reversed impulse response of the impulse response of a linear system,
namely of the linearization of the given system at x= x, provided this

linearization is stable in the sense that

© 5
(3.3) ‘_}11 (x ;7)dr < »,
20

Here, hi is the kernel in the Volterra.-Ta.ylor representation (2, 8) of the

system operator,

Proof. Since the given systemn is assumed %o_ be tirne'-inva.ria.nt, it is
no restriction to specify the time t, ot which the response peak is to oc-
cur, and to set that time tm = 0, This will be dolne'here. It is then de-~
sired to maximize, | with respect to all excitations obeying (3.1) the magni-

tude of

' ' 0
y(0)= ¥(0) + [ dr kG-, )x(v,) - X(7,)]
-00
(3. 4) '

I RQEA e -
+-21—!-de1 f d-rzhz(i;-'ri, -T‘Z)[X(Ti)-;C(Ti)][X(TZ)-;((TZ)] :
oo e
S S,

and where x is a suitable reference input to be specified later on. For the
moment, one need only require that X leads to a response y with |¥(0)] <co,
The critical excitation will then be among those for which the first variation

8y(0) of y(0) vanishes, with respect to all varia.t_iohs §x{7) that are consistent

-

-
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with the constraint (3.1{). It is, as always, helpful to introduce this con-
straint into the variation of y(0) by way of a Lagrange multiplier A. A
necessary condition for x  to be critical under the constraint (3.1) is then

that
w -
0= 8y(0) + A6 [ x°(r) dr
-00
. [52] - 1 -60 - " *
= -L éx(7)dT [h1 (x;-71) T .{ohz(X;—T, m‘rz)x (-rz)d"'rz-h ce+ 2Ax (7)]

should hold identically for all §x(). _ In writing this expreséion it has been
assumed that the kernels hz, h3, «ss are symmetric functions of their time-
argument, which is alright, as is well known [8, p. 19]. The identity can
however hold only if '
_— o0 :
2Ax (T) '*‘hi(?_!;-‘f) + 11—5° f hz(;l::-'r, —Tz)x*(TZ)de-i-. eet= 0,

-0

The terms beyond the first, as a comparison with (2. 11) shows, represent

: *
the linearization of the system operator H at x i That is,

1

by (;-1) +77

[ b Gy <)% (r)d7s +one = by (s
:[n 2 x}fTs "Tz)x (Tz) Tz e 0w - 1(x y"T)o

Equation (3. 3) can therefore be written
¥ £
{3. 5) . “2Ax%x (7)) = hi(x =), -

and bears out the main assertion of the theorem., The reference excitation
- . . .. . b .

x, as this result shows, is best chosen to coincide with x . Inparticular,

convergence is then assured when "5::" is small, The factor (~-2X) in {3. 5)

must now be so determined that (3. {) holds, i,.e., so that

. w0 )
(3. 6) I hf (x"sr)dT = 4\ SMZ
200
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[ 4

which is ciearly possible if (3. 3) holds. | The proof of the theorem is thus
complete.

The proof assumes the system under consideration to be specified by
a Taylor series of‘the form (2. ‘8), preferably around x* as reference exci-
tation. In practice, however, a system is typically specified not by such a
series but by a set of differential or similar equations, It is of interest to
inguire what form the result above takes iu such‘a. case, Itwill be conven-
ient to start by assuming that the system is specified by a single differen- .

tial equation of the form (2,9), i.e.,

{3.7) g(y(n)a Y(n-i): eeey Y) =X

in which y(#) stands for the n-th derivative of y, and g is such that the
eqguation is meaningful and has a unique solution y either for every ad-
missible x or for at least an interesting subset of these, In such a case,

the following‘ can be said,

Corollary 3,1. Leta system be described by an equation of the form

&
(3.7). Its critical excitation x then differs by only a constant from the
time-reversed impulse response of the linear system

(3. 8) g @, %  (n-1)

9g ..
S v=1u
ay(™ 5y (n-1) oy

)

in which the derivatives 9g/dy' ' are evaluated for the critical response

#*
Y=Y .

Proof. It merely needs to be shown here that the impulse response
of the system (3. 8) is h1 (x*, 7)s The assertion of the corollary then fol-
lows from (3. 5). Recall from the discussion in Section 2 that (3.7) can be

considered the representation of an operator G which transforms the

-

v
-



44

response 'y into the excitation x, as in (2.1{b), and which is therefore the
inverse of H, Their first derivatives are then related by (2. §) or, if
written in terms of the functionals g and h by (2.12). Restated here, for

convenience, the relation is

(3.9) ——al(gn)—.hgl_’)+——?f_—r)- hgn'“+...+ -g-%hl =6
ay oy

whgre h1 has been written for h1 (x*;t) and where the derivatives of g are
evaluated at y = y*. According to this equation, h1 (x*; t) is indeed the im-
pulse response of the system (3. 8), and the corollary is proven,

It may be noticed that no essential use has been made in this proof of
the fact that the system is described by a single differential equation, o
namely (3. 7). The functional g in that e?;uation could actually have been
assumed to be of a m’ore; general kind, Thus, instead of depending merely
on y and its derivatives at one and the same time t, as g does in (3. 7),
the dependence. could be on y as well as its derivatives at times other than
t. In particular, therefore, the single differential equation could be re-
placed with a set of simultaneous ones, involving along with the response y
other auxiliary variables, for instance, the compohents of some state vec-
tor, Moreover, these variables ﬁeea not enter only through their values at
one and the same time t. They could also do so by way of the history of
their values in the past (2s they would, e, g.,, for a system with hysteresis

effects). These observations are summarized as

Corollary 3. 2. The preceding corollary remains valid if the differen-

tial equation (3.7) is replaced with a system of simultaneous differential or
functional equations which relate the response y of the system to the exci-

tation % in a one-to-one fashion,
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4, Discussion

It may be useful to supplement the results derived in the preceding sec-
tion with some remarks which relate them to those obtained by others in
the same and in other fields;, and indicate how the results might be used and

interpreted. This is done below, Also, an example is presented.:

4.1 Unigueness Questions

As is well known, variational arguments of the kind used té prove
Theorem 3.1 merely lead to necessary conditions: the critical excitation
. x* satisfies the condition (3. 5) but other excitations may do the same,
Those others may generate responses whose response peaks Yo repres;ent
local maxima, rather than the gloBa.l one that is of interest., For that
matter, y(0) may even be a minimum or some other stationary value, -
The condition (3. 5), in other words, does n.ot in general characterize the
critical excitation uniquely.

It would be desirable to have criteria which distinguish maxima from
other stationary solutions, and the global one from local one s, if any.
Criteria which do the former are known ({11, p. 177). One can also set
up sufficient conditions for the latter., Those, however, seem to be ciif-

ficult to verify in practice,.

4,2 Connection with Earlier Work

As mentioned in the Introduction, the problem of determining the criti-
-cal excitation is a problem in optim§.1 control theory. In fact, this theory
is directly applicable if the system is rep;e;sented by one or more differen- )
tial equations (see, e. g., [1], p.. 47). However, the straightforward use of
the maximum principle of that theory leads toa cha.ract'e.rization of the cri-

tical excitation, namely in terms of the so-called adjoint system (ibid., or

-
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[7]1, p. 85) that differs from the one obtained in Section 3, The adjoint sys-
tern is a system of linear differential equations which are analogous, but

not identical, to (3. 5) and which are solved with a different set of initial

{
i

conditions, Moreover, the parallel to the result (3. 2) for linear s“ysten'ls is
partly lost., This reaéon, and its slightly greater generality, suggested the ™
approach that has been used in this paper. |

The solutim;x obtained from the maxifnum principle is more general in _
one respect than the one that is obtained here: it allows the constraint (3.1)

to be changed from an equality to the more appropriate inequality

2 2 2

) :
It is not difficult to convince oneself, however, that this generalization can
also be incorporated in the approach used in this paper, without major
changes in the proof and without a change in the result, One merely needs
to argue that if x* 1a.y in the interior of the region (4.1), A could be set

equal to zero in the proof of Theorem 1,1, In that case, however,
o
6x(t)= € h {x ;7)

would lead to an increase §y(0), and y(0) could not have been a maximum,

The critical excitation, in other words, always obeys the equality constraint

(3.1).

The problem of finding the critical excitation for a nonlinear system

was also treated by Iyengar [5]. His solution unfortunately does not in
general lead to an excitation that generates a maximum response peak or,
for that matter, to a value with extremal properties of any kind, local or

otherwise. This was pointed out later on in a discussion of that paper [5].

bl
v

Lo



4, 3 Computational Questions

The characterization of the critical excitation which is most likely to
be of interest in practice is the one contained in the corollaries to Theorem
3.1. Considering the one in Corollary 3.1, for instance, the critical exci-

¥ - ’ * . . ] )
tation x and the critical response y are jointly determined by two differ-

ential equations, namely (3,7) and (3. 8). They could therefore be calcula-
ted by solving them simultaneously if it were not for the time-reversai and
the c?msta.nt factor ﬁat have to be applied to the solution of the latter before
it can be used in the former. Under the circumstances, a simultaneous
solution unfortunately is not possible, The situation is reminiscent of, and
in fact equivalent to, the two-point bounda.ry'vé.lue problems with split
boundary conditions to which one is led by a solution via the maximum
principle of optimal con;;'ol theory.

There are several computational prdcedures that can be considered
for the determination of x* and y*. One that suggests itself, and which
incidentally avoids the numerical instabilities of boundary value problems,
is a successive approximation method which proceeds as follows. Start
with an excit;.tion X, preferably with one that is suspected of being at least
similar to x*, and determine the response to it by solving the equations
defining the system, for instance (3.7). It is of course possible that x in
fact is critical: i.e., 5:.= x*. In that case, the response y will be critical
also, y= y*., Equation (‘3. 9), with the de rliva.tives Bg/ay(i) evalia ted at
this response, will then have a solution h1 which differs from x = x* by
only a time-reversal and a constant factor which insul'-esﬂ “t3. 1). More often,
howevelf; the initial X will not be critical, and neither will be the response
¥ to it that is ob&ined by solving (3.7). One can neverth‘evless evaluate the

derivative_s ag/ay(l) for that response and solve (3. 9). T'he solution h1

-

[
-



. 43

found in this way, reversed in time and modified by a constant factor to
enforce {3.1), can now be used as an excitation in place of %X, and the same
procedure started all ovef again,

One can expect that the successive approximations process which is
generated in this way ;\vvill often converge on the critical excitation x*, and

in'practice this in fact frequently happens (see Sect. 4.5 below).

4.2 Divergence

The approximation procedure described above will often converge on a
critical excitation that generates at least a local maximum in the magnitude
of the response peak y(0). It can, however, happen that the succession of

solutions h1 that are obtained in this process from (3.9} have square inte-

grals
| - 2
(4.2) :Lhi (x:t) dt = N“(x)

which grc;w suc'c-essively largerand t.yiivw:rergé“to”in.f.i‘ﬁity.. In the limit, there-
fore, i:he proviso (3. 3) of Theorem 3.1 and of its corollaries is violated and
the result invalid. One can surmise that in such a case the physical system
is driven to a failure by its critical excitation, As a partial mathematical
confirmation one can mention that the Taylor series (3. 4) for y(0) is con-

" sidered to be divergen‘t near the excitation x if Nz(x) in (4. 2) is not finite.

4,8 Example

As an illustration of the ideas developed above consider a system with
a single degree of freedom,

(4.32) T +2¢ wo& + fly) = x,
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with a bi-linear spring
wiy for ly} < B,
(4. 3b) fly) =

2 2 2
w, ¥+ (wo - wi) B for 'yl > B, m°>w1 > 0.

The linearization of (4. 3) in the neighborhood of an excitation/response

‘pair (%, y) is then

(4.4a) | y+2eFH+L)=x
where ,
z 7] <
w Yy when |y _B,
(4. 4b) f,(y)=
. : 2 -
W'y when I7] >8.

It is desired to find a2 pair (x,y) such that x is the time-reversed solution
y of (4. 4) with x = ké; 5§ being the unit impulse and k so chosen that (3.1) .
is satisfied, |

Suppose that the lsuccessive approximation procedure which has been

described (in Section 4, 3) is used, and that |
(4. 5) 5 ()= o expl-fwt) sinwt (Wl=u? (1-£2), t>0)
° Yo n*P o n n o ?

is used as starting solution.l To obtain its companion ;:o’. one determines
the impulse re._sponse'» h_ of (4. 4), fornlg-r: 5-0’ and the constant k so that
kho obeys (3. 1). Both are done by numerical integration. Then 5::0 is the
time reversed versibn of kho. This excitation is next used in (4. 3) and a

response y = ;1 is calculated, The companion x, to fri is now obtained

1
by the same procedure as :-:0 from }-fo. The process is repeated, and a
succession of pairs (:Eo, fro), (ii. 3-’1 ... derived. The response peaks
90(0), ;'i (0),++., should increase monotonely, if the procedure works as

desired. It is stopped, when the increase does.

L 4
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Computational experiience with this type of exampIe: has been quite good
over a fairly wide range of the parameters w s ui; and B, Some tact and
thoughtfulness in the choice of'f}o, tended to produce large returné in speed
of convergence., (4.5) in particular is not always a good choice. %The pro-
cedure then converged in less than ten s'ucéé.ssive approxirnations!in all

\ .

cases.
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APPENDIX D
CRITICAL SEISMIC EXCITATION AND RESPONSE OF STRUCTURES
by
X . . II
P.C. Wang , and R.F. Drenick
SYNOPSIS

The practicality of the critical excitation method for the design of
structures is investigated. 1In the terminology of this paper, an excita-
tion is critical for a structure if it generates a larger response peak
in one of the design variables than any other possible excitation in some
given class. The basic idea of the method is to draw up the design in
such a way that the structure has sufficient reserve strength to sustain
its own critical excitations up to a certain maximum intensity. This
paper investigates more specifically a modification of the idea. It is
shown, by an analysis of several existing and planned structures, that the
modification leads to fairly realistic, if somewhat conservative designs.
The results encourage the conclusion that the modified mehtod, or a simi-
lar one, may become a useful design tool of structures whose impostance
justifies conservative design.

INTRODUCTION

The design of stiructures against seismic excitation is a process of
decision-making under uncertainty¥. In most seismically active sites in
the world, few recorded accelerograms and little reliable geological infor-
mation are availahle. Someone entrusted with the design of an important
structure must neverthelesss decide what kind of ground acceleration it is
to withstand. Under the circumstances, hs may study the records obtained
elsewhere, at localities with similar geological features, and base his
design on one of these racords. He would do so in the hope that this
accelerogram or response spectrum represents an excitation likely to hap~
pen at that site.

1)

A somewhat more rational procedure was proposed sometime ago . A
designer who follows it would select not a single accelerogram but a cer-
tain class of excitations which he considers to be realistic for the local-
ity in question, and would then determine those in that class which gen-~
erate the largest response peaks in each structural variable, such as a
joint displacement or a wember force. These excitations have been called
"eritical”, and so have the responses of the structure. The idea is
that the designer would draw up the design in such a way that it would
have sufficient reserve strength to sustain its own critical excitations.

This design procedure can be cast in many forms. The paper begins .
by describing two. The first is one that is intuitively and conceptually
appealing but tunfortunately often leads t?zgverly conservative designs.
The second is a modification of the first » Intended to avoid excessive
conservativeness without introducing excessive computation complexity.

I Professor of Civil Engineering, Polytechnic Institute of New York
II Professor of Systems Engineering, Polytechnic Insitute of New York
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The main purpose of the paper is to present results that were ob-
tained using the modified procedure. 1In order to verify its practical-
ity, a number of realistic structures were analyzed. The rasponse peaks
were calculated in each case for the modified critical excitation, along
with those generated by several recorded ground motions of the same in-
tensity. The ratios of the peaks, clled the "ecritical design factors"
in this paper, are indicators of the degree of conservativeness of the
procedure. These factors are shown to fall into the range of 1.1 to 2.9.
There are two reasons for believing that factors in that ordex represent a
reasonable degree of conservativeness. For one, the modified critical
excitations appear to be fairly realistic samples of possible ground mo-
tions that cannot be disregarded out of hand. Secondly, as a fairly
broad sample of strength calculations shows, designs by experienced engi-
neering firms frequently have suff1c1ent reserve strength to sustain
these excitations,

The results suggest the conclusion that the modification of the crit-
ical excitation method, or some similar procedure, may become a practical
engineering design tool for siructures whose importance justifies some
conservativeness,
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CRITICAL EXCITATION

In the case of forced vibration, the most damaging excitation on a
structure can be expected to have a frequency content that closély match-
es that of the structure, This is actually so, under certain assumptions.
As has been demonstrated before 1), the critical excitation x, (t) for a
linear system is the time-reversed impulse response, multlplled by an
intensity modification factor,

* E )
= h =¥ X
X_(t) = £ h(-), ,
if E, the reference intensity of the ground acceleration is defined as
s ) .
e .

2 -2

= =Y dt

E IO xg (£) | | (2)

and N is tlhie square integral of the unit impulse response

t
2 e 2 :
N = h d
. [o B, )
‘In both Eqs. (2) and (3), the "effective duration" tg of a ground
excitation is the period over which the excitation contributes signifi-
cantly to the maximum response oI the structure. tg depends on the

modes as well as the damping of the structure. The response peak under
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the critical excitation always occurs at the end of that period. It is

o ' .
y_(t) = BN )

The frequency content of xZ(t) is the same as that of the structure,
in the sense that its Fourier amplitude spectrum differs from that of
the structure only by the factor (E/N). A plot of the typical critieal
exeitation with El Centro intensity is shown in Fig. 1.

MODIFICATION OF CRITICAL EXCITATION

The response peak (4} is often found to be unrealistically high.
T%e intuitive reason for this is quite plain. The frequency content of
xc.0ften differs greatly from that of any realistic ground acceleration.
It is therefore necessary to exclude from the class of excitations that
are being considered, all those with frequency contents that are unlike
those of realistic ground motions. This can be done in many ways. Oine
that seems particularly simple is the following. :

Among the ground motions that are considered realistic for a particular
site, one should presumably include a number n of recorded ones, x, (i =
1, 2,..n), preferably those that have occcurred at locations with similar
geological features, In addition, all linear superpositions of the x,
might be considered to be realistic as well, provided only that their
combined intensity does not exceed a prescribed maximum. This, at any
rate, was done in the study reported here. Moreover, in order to avoid
computational complication, it was not the critical ex01tat1$n among these
superpositions that was determined. Rather, an excitation x ,was calcu-
lated which differed least (in the leastusquares sense)  from xc. In
symbols n

% EE ' . '
XL = aixi _ ' (3)
=1
so that
jte(x*- %324t = Minim - 6
R A ®
and )
t
e *. 2
Jo =, (0t =E %))

A plot of a typical modified critical excitation x* with El1 Centro
intensity is shown in Fig. 2. It is, by all appearances, a sample of a
perfectly realistic ground motion during an earthquake, One cannot, in
other words, 1gnore it in the process of a design on grounds of its being

"unrealistic" or "unlikely',

APPLICATION TO REALISTIC STRUCTURES

Several realistic structures were analyzed and some of the struc-
tural members were investigated by the critical excitation and response
approach. The essential results are summarized in Tables 1 and 2,

T

Table 1 shows the "eritical design factors" of some of the design:
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variables of seven structures, The "eritical design factors' are based
on the ratio of the response of the second class critical excitation with
that of the reference excitation of same intensity. The reference exci-
tations are 1971 Pacoima dam Sl4w, 1940 E1 Centro SO00E, and 1954 Eureka
N79E. These factors range from 1,14 to 2,88,

Table 2 shows strength requirement for a modified critical excitation
of El Centro intensity. The approximate ductility requirements for soma
of the members as they were désigned are shown in the last column,

CONCLUSIONS

1. A modification of the critical excitation method is applied to
several realistic structures., From the "critical design factos" cal-
culated for each, and from strength checking on already designed ones,
it appears that the method leads to results which are on the safe side.
but not overly conservative. This conclusion is further supported by
plots of many of the modified critical excitations which are, by all indi-
cations, quite realistic samples of possible ground motions during earth-
quakes,

2, The modified mehtod, or some similar procedure, seems to have
promise as a practical and useful tool for the design of structures in
cases in which conservative design is desirable. This is likely to apply
to structures ol major importance, the destruction of which would cause
severe human or economic lgsses.

3. 1Its attraction in such cases may lie in its ability to spot weak
points in a design, and the fact that it eliminates much of the arbitra-
riness from the choice of the excitation on which designs now often are
based.
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Table 1. CRITICAL DESIGN FACTORS

Structure Fund. Period Comparison Design Struct. Critical Design Source
(sec) Grd. Motion Variable Factor :
" R.C. Flat 4.93. Pacoima Dsm Base M of 1.59 J. Yellozzi
Plate Bldg. El Centre Ext. Col. 1.24 Amman &
le stories - 1.50 Whitney .
Tapered 3.40 Pacoima Dam Base V 1.48 J. Vellozzi
R.C. Chimney El Centro 1.33 Amman &
1000 fre. Eureka 1.32 Whitney
Rezctor Shell 0.416 Pacoima Dam Centroidal 1.39 Miller & ..
Eureka D=£fl. 1.14 (:osl:am:iné3J
Steel Struc. 0.21a Pacoima Dam Top Defl. 2.29 Stone &
on Conc. Dike Eureka 2.50 Webster
Bank of Cal. 3.6584 Pacoima Dam Base M of 2.33 Dagenkolb
(steel framz) El Centro Col. 2.86 & Assoc,
24 stories Eureka . 2.13
JPL 1.488 Pacoima Dam ‘Base M of 1.97 Wood{(4)
Bldg. No. 130 JFL Basement Col. . 2.88
Inc'l Rldg. 1.456 Pacoima Dam Top Defl. 1.23 Dagankolb
(steal frame) £l Ccentre 2.61 & Assoc.
24 stories Bureka 2.69
Table 2. STRENGIH REQUIREMENT FOR THE CRITICAL
EKCIT{TION OF EL CENTRO INTENSITY
Structure Structural Requirements or Approxinata
Element Secs. Providad Ducciliey Rea'd
X.C. Flat Bottom Story |20"x20"col.f =3ksi i
. Plate Bldg.  |Ext. Col. £,460ksl, 1
’ 12-#14
#6 Ties @3"
R-C. Chimney Bottom Sec. E.~3%ksi, £ _=50ski,
45 vert. inf.@ey" &
both faces
Bank of Ground Floor ' |1l4WF456
California Ext. col. AG4) Steel 3.75
JPL, Bldg. 180 2nd Story Col, |14WF158
A36 Steel 5
Int'l Building |{ Bottom Ext. 14WF320+2P1.24x3%
Columa A7 Steal 1.4




| APFENDIX E - vpo
- THE CRITICAL EXCITATION OF INELASTIC STRUCTURES ‘/K; %
. oy
R.F. DrenickI, and H. Kanoll :
SYNOPSIS

A critical excitation of a structure drives one of its variables to a
higher response peak than any other among some class of allowed excitatioms.
This paper reports on the generalization of earlier results from elastic to
inelastic structures. :

PROBLEM AND SOLUTION

A question of importance in earthquake engineering which is rarely
answered is this. Suppose that a structure is to be certified as resistant
to earthquakes of some given intensity; what particular ground motions
should it be able to withstand? In most current work, this question would
probably be answered by saying that it should be able to withstand certain
already recorded ground motions, or else certain artificially ones that are
randomly generated. A third possible answer is an excitation which has -
been called "critical'. It is an artificial ground motion also, but one
" which drives the structure to a higher response peak than any other of some .
designated class of allowed ground motions.

As has been shown previously, critical excitations are rather easily
calculated if all ground motions up to a certain intensity are allowed, and
if the structure is treated as elastic. If the intensity is measured by
the square-integral of the ground acceleration, the critical excitation is
.more .particularly found to differ by only a constant factor from the time-
reversed impulse response of the structural variable of interest.

This result has recently been generalized to inelastic structures. It
was found that the critical excitation is again a time-reversed impulse re-
sponse. However, it is not the one of the structural variasble itself but
of one defined by a linearized set of equations. The linearization is more
specifically the one that applies in the mneighborhood of the critical exci-
tation and response pair. . '

In order to determine such a pair, two sets of equations must be solved
simultaneocusly: the nonlinear equations defining the inelastic structure
and the linear ones defining the critical pair. It develops that, because

.of the time reversal, the solution can only be carried out by successive
approximation. Moreover, the solution need not be unique: there may be
more than one excitation/response pair that satisfies the equations.

Limited experience with numerical work indicates that the approxima-
tion process coaverges qu1te quickly.
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APPENDIX F

The Critical Excitation And Response Of
High-Rise Buildings

by
I _
P, C. Wang , F, ASCE and Warren Y, L., Wa.ng2

INTRODUCTION

High-rise building construction is the result of intensive land usage of
urban area. Ac the population of a city grows, itis ;a natural trend to con-
struct buildings upward to save space., Thése buildings represent heavy
investment not only in economical sense but also in human life, Futher-

" more if these buildings house communication centers or military facilities,
they become also irmmportant for national security. In view of these fa;:tors,'
it appears that large safe margins should be piaced in the design of ﬂigh- |
rise buildings especially when seismic excitation is a major consideration
in regions of high seismic activities, This paper discusses a ''critical ex-~

"approach to design important high-rise buildings.

citation and response’
It will also demonstrate that the method is conservative but not overly so

by the application of the method to several realistic or already built strut.;-
tures;

In the past, most practicing engineers approach to aseismic design of
}iigh-rise buildings is based on thel applicable building codes, These codes
in general treat ground excitaj:ion as pseudo static loads acting in the lateral
directions of the building.: Thé basis of this approach is originated from the
response behavior of a single-degree-of-freedom elastic system with some
consideration of ductility of the construction material {9}, (2). The re-~

sultant elastic responses due to these pseudo static loads are in general

srnaller than those obtained from a dynamic analysis using the recorded

1 Prof. of Civil Engineering, Polytechnic Institute of New York, N. Y,

Research Assistant Prof,, Polytechnic Institute of New York, N. Y.
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ground excitation such as 1940 E1 centro N-S component, Recent proposed
revisions of the building codes suggested using response spectra {8}, (1) in-
cluding the effects of higher modes of vibration and ductility of buildirig
materials. However, it is also well known that response speétrum analysis
of seismic design is not an exact method and may be used at the preliminary
design phase. For final analysis, it is desirable to perform an exact time-~
history analysis based on “properlf" selected ground 'excitations. In the
past, ‘these "properly" selécted ground excitations aré either taken from
the recorded seismographs or generated artificially basad on the principles
of random process. There is ho assurance as to' whether these excitations
will cause the worst responses of the stfucturé.l design variables such as
moments,shears of the mg_l_fnbers,or story drifts,

Thé term critical excitétipn used herein is defined a$ the excitation
among a certain class o-.‘t' excitations with an intensity limitation E(défined
"in a later section) that will drive a designated response variable to its max-
imum. To achieve this end, an unconstraind Ycritical excitation is ﬁrst
obtaiﬁ base on Drenick's (4) approach where the clé.ss of excitations a;re
unlimited. This critical excitation is essentially the time-reversed unit
impluse response of the design variable multiplied by an intensity mo;:iifica-
tion factor. To make the shape of the exéitation more realistic, a con-
strained Ycritical’ excitation is next Obt‘é'.i:t‘led by a least-squares fitting of
a number of recorded excitations with the unconstrained one.

The proposed method Was-app‘i‘ied to séve'ral already designed or ex-
isting buildings. The required strength of some of the members based on
this method were compé.red with that obtained by conventional approach
(either by Building code or dynamic analysis using record;ad ground excita-

tions). The results show that a safe but not overly conservative approach to
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design high-rise buildings against seismic excitation is indeed achieved.
THE UNCONSTRAINED CRITICAL EXCITATION |

It is well known that tl';e most damaging grouhd excitation on a struc-
ture among an uncénstrained class of excitations with a limiting intenéity
{(as defined in a later section) is the one that has the freéuency spectrum
closely matching that of the structural design variable. Such an uncon-

strained critical excitation was derived by‘Drevnick {4) as
% 1(t)=K h(-t) ' (1)

wher K is an excitation intensity modification factor as described in re-~
ference 4 and h(-t) is the time-reversed unit inpuse response. ¥or a sin--
gle-degree-of-free system,h(t) is given by

1 - ,

hit)= —— e At sin wt ' : (2)
w : D .

D
where w and Wy are undamped and damped frequencies of vibration and \ is
the ratio to critical damping of the structure, For a multi~-degree-of free~
dom system the unconstrained critical excitation can be obtained By modal

superposition., First, consider the maxdimum response due to a general

excitation :'Eg.

Vi (6= B ¢ m,(t)= _£ 2 (T 4y Py hy(t-r)dr
= & {r)R {t-7)av . - 43)
R & g ,

where yk(t) is the kth response variable, ¢, . is the kth element of the ith
mode shape;’ ni(t) is the normal coordinate of the i h mode,
Pi= ¢'f M I/¢f M ¢i is the ith mode participation factor with M as the mass

.
[ 4
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matrix and I is a vector with 1's or o's to indicate the existence or not of
excitation of the vector elements of y. By squaring the response Vi and

setting up the inequality, the following relationship is obtained

z(t)—[ft:'c' (v ] (t-7)ar]?
Yk - 0‘g -

't

t ' t '2
5_[_[ % Z(T)dT] [ f B (ter)dr ]
o & o
<e?n* | (4)
or

y () < EN | 6

2 2 . ch s .
where E~ and N~ are square integrals of the ground excitation and the unit
impulse response respectively in the time duration t.

The most damaging or critical ground excitation is

% y(7)= =B (t-7) S G

and is based on the fact that when it is substituted into (4), the response
becomes

y,EFEN a m

t ‘ .
The quantity E2= f :-'ig('r )dT is defined here as the excitation intensity mea~
o
sure. The upper limit of the integral was set at infinity in the mathematical

derivation of reference(4). However, in: real problems, the choice of the
upper limit pre;sents a difficult consideration and will be discussed indetail
as an effective duration in a later section.,

| If this definition of excitation intensity is ado;;ted, fhen the unconstrained

critical excitation with this intensity for a designated design variable is pre-~

cisely and conveniently given by Eq. (6) while the corresponding response is
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given by Eq. (7) with equal convenience.
: CONSTRAINEDi CRITICAL EXCITATION AND RESPONSE

Although the unconstrained critical excitation and response as given in
Egs. (6) and (7) are simple and can be conveniently used to access seis-
mic resistance of structures in an unconstrained or gross maximal sense
(5), it often gives responses too high for practical application. The over-
conservativeness becomes even more prohounced as the structure or
building increases in its flexibility. This departure from realistic re-
sponse obviously lies in the fact that the unconstrained critical excitation
matciles in the frequency content with the response charater of the struc-
tural variable closely,and‘Since most high-rise buildings have the founda-
mental period of 1 to 5 seconds, while earthquaike excitations have pi:e-
domiﬁant frequences less than 1 second'(G), it can be concluded that the
unconstrained critical excitation is not a realisi;ic_ ground egcitation. The
question then is what kind of ground excitations are considered realistic
and also critical. There are various ap?roaches-to modify the uﬁcon-
strained critical one to be more realisticc The approach adopted in this
paper is as follows: | | |

The class of excitations can be constrained to those that have been re-
corded at sites with similar epic’:entegial disténce, geoclogical feature,
etc., as that of the site of the structu;'é to be built or already built, In
addition,the linear superpositions of these recorded excitations can also
be included into this class, provided that their combined intensity remains
within the limitation. Furthermbre, in order to avoid cbmputatio-nal com-
plication, it was not the critical excitation among these superposi‘tions
that was determined,. Rather; an excitation i‘:cz was cé}'culated which

differed least (in the least - squares sence) fro_m :::‘Cl. :‘f:cz is called the

LA
s
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constrained critical excitation. In symbols

n !
= T a X, | (8)
1=} . - i
so that L \
t 2 . .
fo (:'c'cz - }i’cl) dt = minimum o {9) -
and
t 2 2 .
J 25 wat=E | (10)
- » .

the constrained critical excitations thus obtained are more realistic and
resembles observed ground excitations more closely as will be shown in
the following practical examples, Once the constrained critical excitation

of a design variable has been obtained, the corresponding response can be

calculated by cérrying out the Duhamel integral since the unit impulse re-

sponse function has already-been obtained in the process. In general, the maxi-

mum response always occurs at the end of the effective duration (defined
in the next section) since partial frequency matching has been incorporated

in the prc:edur.e;
Yoplt) = { B (t-7) € _,(r)dr ()

EFFECTIVE DURATION AND INTENSITY OF EARTHQUAKES

Recorizd earthquakes have durations varies from few second to few
minutes. However, the effective duration on a particular structure is con- ‘
trolled t+ the stiffness and the damping of the structuré. It can be dbta’lined‘
by insps:=ion of the Duha;mal integral relating the response y(t) to the ex-

citation ¥{t) as follows: :

t M
y&)= [ Z(r)h{t-T)ar o (12)
0. : - : .

v
.-
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where h(t-T) is the response at time t due to a'gnit impulsive ground
motion at time T as discussed previously., Thus from Eq. (lz)if the peak
response occurs at t, thgn the excitation occured at and before t, so that
h(te—to) is zero need not be considered, In another words, (te-to) is the
effec:'tive duration. In practice, the duration (te-—to) can be judiciary
chosen so that h(te-to)'decays to a certain percentage of the peak value of
h(t)., For example, if the decay to a ten percent was assigned, and the
period of the system is 2 seconds with a damping ratio of 5%, the effective

duration is (te-to)= __gg_o%__ = 14,6 seconds. For multi-degree-;of-

| 0.05 x - o
freedom systems, the fundment mode can be used as the basis- of. compet-
ing the effective duration.. The intensity of groﬁnd motion has been sub-
_jected to many discussions (7)., Commeonly used criteria are the Richter
scale, modified Mercalli intensity number, the peak acceleration, etc. In
this paper, the intensity of excitation is expressed as the Squaré integral

of the ground acceleration during the effective duration, i.e.

t
e

%= | [ ximar @ 3)

t
o

This expression of intensity is believed to be more meaningful since it re-
- present a sort of energy and also it mathematical leads to the unconstrained

critical excitation in Reference (4).
PRACTICAL APPLICGATION

The critical excitation method has been applied to three existing office
buildings and one conventionally designed appartment house. (sce also
reference(10). For each structure, a typical bent was selected for analysis,

Based on the dimension of the structure and the co;wenﬁbnally designed
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member sizes, the unit impulse responses of selected design variables
were computed by the computer program XTA.BS(II). The efieqtive dura-~
tions of grounld excitation based on 66.7 per cent decay were computed and
the intensity of 1940 El Centro N-S accelerogram based on the effective
durations were used as reference, The time-reversed unit impulse re-
sponse with the effective duration and adjusted to the reference intensity is
used as the critical ekcité_.tion % 10 In the process of least-squares fitting,
twelve recorded excitations were selected as the basés x;S, and théy are
listed in Appendix I {3}. After the constrained critical excitation ifzcz was
obtained by least-squares fitting of X and the superpositions of xi's s the‘
corresponding constrained critical response y_, was computed by the
Duhamal integral. The r.e-t-tio of the constrained critical response and the |
reéponse from ;the above mentioned El Centro excitation was listed as th'e .
critical design ratio. It is one of the indicators of the conservativeness of
the method, being more conservative when this ratio is larger. The s-econd
indicator of conservativeness is oiatained by carryix;g out the actual design
of some of the numbers based on thé results of the responses from thé. con-
strained critical excitation and comparing with those from the El Centro ex-
citation, A brief discgssion of each .strucmre follows.
THE BANK OF CALIFORNIA BUILDING, SAN FRANCISCO

This building consists of steel ﬁrames and reinforced concrete core
walls and was designed by Henry J..Degenk}gib and Associates, Ashen and
Allen are the architects.l The building is twer;fy four stories high with bat~
tom three stories below ground, Although the seismic resisténce was pro-
-vided by the combined action of the reinforced concrete co?e wall and thé

steel frames, a single frame in the north-south direction was isolated for

-
L4



analysis (Fig. 1), This departure from real structural system was adopted

to simplify the analysis and since the comparative results are based on the

same system, the conclusions drawn from the comparison may be con~

sidered valid. The members selected for strength checking are twqg col-
. S i |

umns above the ground floor and one beam on the second floor. The lateral

4

deflection on the the top- floor was also selected for comparison. Following

are the essentizl results:

a)

b)

c)

d)

e)

f)

Periods_ in seconds of the first three modes. of vibration: 3. 364,
1, 125 and 0, 695.

Effective .du'ra.tion: 11,9 seconds

Damping ratio: 5%

The unconstrained critiéal excitations of the top floor displacement
with E} Centro inﬁensity is shown in Fig. 2.

The constrained critical excit;tion 6£ the top floor displacement
with the same iﬁtensity is shown in Fig, 3';

The responses due to El Centro and the constrained critical exci-

tations are summarized in Table 1,

Table 1 Summary of Responses of The Bank of California Building

: _ Constrained Critical Design
Design Variable El Centro Critical Ratio
Top Floor Disp (it} - 1,362 3.414 2.51
Bottom Mom, (ft-k) -

{Column 1 ¥ 975 2785 . 2486
1Column 2 . 1046 3003 . 2,87
Axial Force (k) '
Column 1- 952 2500 2.63
Column 2 168 421 ' : 2,51
Right End Mom, ft-k) -
Beam 1 1076 2979 2,77
Beam 2 636 1869 2.94
1 ft= 0,3048m, lk = 4,45 kN, 1 ft-k = 1, 356 m-kN

(7

-
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g) ‘The strength checking was made for the columns and beams as sum-

marized in Table 2.

In Table 2, the strength checking is based on AISC 1963 specification,
The ratio between yield point stress and allowable working stress is 1, 67,
For the columns, under El Centro excitations, the stresses are slightly
higher th.an yielding while under constrained critical excitation they are
4,17/1,67 = 2.5 and 3.25/1,67 = 2.0 times the yielding, For the beam,
the bending stress is 2.87/ 1,67 = 1.72 times the yield stress undér El
Centro and 7. 14/ 1,67 = 4,28 times the yeild stress under the constrained
critical excitation, Due to the fact that tixe fraﬁe is assumed to take its
entire tributary earthquake forces without the participation of the core wall,
it appears that the structure as it is designed will have er;ough ductility to re-~
sist the constrained critical excitation. Some interesting observations can
be drawn from the study: First, base on the sam-e excitation intensity Ez,
‘the constrained criticai excitatioﬁ dri'ves' the structure to responses. between
2.5 to 3 times those driven by the El Centro excitation, although thé peak
acceleration of the former is slightly less than tha‘c-of the latte-r. It proves
that peak acceleration is not a suitable measure of intensity of ground mo- |
tion. Also, since the shape of the constréined critical excition shown in
Fig. 3 appears realistic, certainly it s};ouid not be excluded from the design
consideration. Second, for im;.)ortant structures such as the Bank of Cali-~
fornia building designed by experienced engineers, it appears that safe mar-
gins were already considered so thé.t it can even withstand severe excitations

such as the constrained critical one.

-J! v
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THE INTERNATIONAL BUILDING, SAN FRANCISCO
This building.consists also of reinforced concrete core walls and steel
frames and was designed by the same team of architects and engine:_ars., It
“has also twenty four stories but with only one floor under ground, _ﬂlx frame
in the ﬂorﬂ)—sout}x direction is again isolated for analysis (Fig. 4). How-~
ever, different from the first structure, the core wall was incorporated in
the second, third and fourth bays of the fréme. In modelling the structure,
core walls are as surﬁed as shear pé,nels connected to the beams and col-
umns on the four sides of the panel within each bay and between floors.
Same dynamic analysis as d‘escribed for the first structure- was~ carried
out and following are the essential résults:
a) Periods in seconds of the first three modes: 1. 456, 0.423, 0. 206.
b) Effective duration: 5.6 seconds |
¢} Damping ratio: 5%
d) & e) | The unconstrained critical and constrained critical excitatio_n are
" in the same shape as Fig. 2 and 3 except with shorter-duration.
f} The responses due to E]l Centro and constrained critical excita-
 tions are summarized in Table 3.
g) The strength checking was made {for the columns, beams and the
shear wall panels as summariz_cd_ in Table 4. |

Observations araxvn from this study are: First, critical design factors
a re smaller for this building than the first building and appears to orginated
from the smaller fundamental periods. Seconé, well designed structures by
experienced engineers can withstand critical excitation without relying on

large ductilities,
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Table 3. Summary of R.espohses of the International Building

Constrained Critical Deswn

Design Variable El Centro Critical Ratio
Top Floor Disp (ft) 0.458 1,196 2. 61\
Bottom Mom. (ft-k) Lo
Column 1 721 1123 1. 56
Column 2 522 810 1.55
Axial Force (k) o ‘ '

Column 1 1096 : 2073 1. 8¢9
Column 2 1463 2770 1. 89
R:Lght End Mon. (ft k) _
Beam 1 413 657 1.59
Beam 2 _ . 843 ‘1314 . 1. 56
Shear Panel
Axial Force (k) 43 106 2. 45
Bott. Mom. (ft-k) 22842 40720 1.78

1 ft=0.3048m. 1k =4.45 kN, 1 ft-k = 1,356 m-kN

JET PROPULSION LABORATORY BU_ILDING 180

The JPL building 180 is a nine-story steel frame structure \ﬁth 5 inches
lighweight concrete slab. The twelve steel frames in the north-south di-
rection are constructed with trusses at the floor levelé and wide flange col-
umns embedded in concrete protection. A typical north-south direction
" frame was isolated for analysis (Fig. 5) The equivalent beam stiffness of
the truss and the composﬁ:e stiffness of the colurmns were modelled accord—
ing to Wood (12). The same dynamic analysis as discribed for the first
structure was carried out and the esséntial results are as follows:

a) Periods in seéonds of the first three mode: 1.488, 0. 472, 0.259

b) Effective duration: 9.1 seconds

¢} Damping ratio: 5%
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d) The unconstrained critical excitation of the top floor displace ment
with El1 Centro intensity is shown in Fig. 6. |

e} The constrained critical excitation of the top floor displacezljnent
with the same intensity is shown in Fig. .7. | |

f) The responses due to El Centro and constrained critical excita-

tions are summarized in Table 5.

Table 5. Responses of the JPL Building 180

‘ ‘ - Ccenstrained |  Critical Design
Design Variables El Centro Critical Ratio
Top Floor Disp (ft) 0. 529 1.865 1 - 3,53
Bott. Mom. (ft-k} ' : .
of Column ..1021 3334 : - 3,27
Bott. Shear (k) )
of Column 109 327 2.99
1ft=0,3048m, 1k = 4,45 kN, 1 ft-k = 1. 356 m-kN

g) The strength checking was made for the bottom story column as
summarized in Table 6.

The strength checking shows that the bottom story column will stressed to

3,06/ 1.67 = 1,83 times the yield stress under the El Centro excitation and

8.31/1.67

i

4, 98 times the. yield stress_un_der the constrained critical ex-
citation. It appearrs that the structure under the present‘ designed condition
needs strengthening if it is to sustain an ground excitation of EL Cenf;ro ine
tensity, especially if constrained critical excitation is cousidered,
FLAT PLATE APARTMENT BUILDING

This building is a conventional flat plate reinforced concrete building
without shear walls. It has 16 sfories with 6 in. (15.24 c:rr}) typical floor slab.

The column sizes varies from 20' x 20" {0, 5Im x 0. 51my} to 12" =x 12" .

r
-
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Table 6. Strength Checling For JPL Building 180

: Bottom Story Column ) 5
Member Forces 14 W =158 (A36) ‘q
Or Stresses El Centro Constrained Critic%xl
Axial Load (k) (D+L) 483 k | 483 k
Axial Load (k) (EQ) , 369 k | 1144 k
Combined P (k) ‘ 852 1627
Bottom Mom (ft-k} (D+L) 176 176
Bottom Mom (ft-k) (EQ) - 1021 3334
Gombined M, (ft-k) . 1197 ' 3510
2 | | | |
A (in") 46..5 . 46.5
S (in°) . 253 253
r_ (in) ' 10. 32 _ 10. 32
Ar : 7.01 7. 01
y | ‘ . L
£, =P/ A (ksi) 18. 32 ‘ 34,99
£, = M, S(ksi) 56,77 ; _ 166. 5
F, (ksi) 20. 15 20. 15
i
s .
Fy (ksi) 24.0. . 24.0
F,_ (ksi) | 338.63 P 338. 63
’ | ' . ‘ -‘ . 3
ia_+ c | 3, 06 : - 8.31
Fa Fb(1~fa/ Fe )

1k =4.45 kN, 1 fi-k = 1,356 m-kN, 1 in = 25.4 mm. 1 ksi = 6,9 MN/ M~
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{(.31m x .3lm). A typical transverse frame cohsists of two bays was iso-
lated for analysis (Fig. 8). The dynamic analysis sirﬁilar to that des-
cri.bed for the first structure was carried out and the essential results are
summarized as follows:
a) DPeriods in second of the first three modes: 4.95, 1.743, L 001.
b) Effective duration: 14.0 seconds
- ¢} Damping ratio: 5%
d) Thé unconstrained critical excitations has the same shape as the
cothers.
e} The constrained eritical excitation of the top floor displa.cément
with the same in’cenﬁity as El Centro'is shown in Fig. 9.

f) The responses of the design variables are summarized in Table 7.

Table 7. Responses of the Flat Plate Building

T
Constrained g Critical Design

Design Variables El Centro Critical Ratio -

Top Floor Disp (ft) 2. 38 3.02. - 1. 27

Ext. Column 640 . 796 1,24

Bott. Shear (k) :

Ext. Column ~ 46.8 57. 5 1.23

1 £t = 0.3048m, 1k = 4.45 kN, 1 ft-k = 1. 356 m-kN

g) The strength checking of the bottom story exterior column was

‘carried out and summarized in Table 8.



76

Table 8. Strength Checking of the Flat Plate Building

Ext. Column 20in x 20in fc= 5 ksi,fv= 60 ksi
Member Forces El Centro Constrained Critical
Axial Load (k) (D+L) 446 446
Bott, Mom. (ft-k) (D+L) 16 . - 16
Bott. Mom. (ft-k) (EQ) 816 ' _ 1014
Combined M, (ft-k) | 832 1030
Required Vert Reinf 12 - #10 12 - #14

1k = 4.45 kN, 1 ft-k = 1,356 m-kN, 1 in = 25.4 mm, Llksi = 6.9 MN/in?%

In the strength ’checkix;g, the loads have‘been multiplied by the ultimated
load factor as specified by the ACI Building Code. The columns thus de-
signed does not need any reserved ductility factor to sustain either the El
Centro excitation or the constrained critical excitation. Propel;ly' des:i'gn.ed
ties acting as shear stirrups are required to nresigt shear. The slab rein-
forcing has also to be properly designed to resist ground excitations. But
it appears that for a new design, the details can be worked out without over-
ly excessive reinforcement to sustain the constrained critical excitation.
CONCI.USION |

1. The method proposed here is an upper bound approach applicable
to buildings of major importance,the destruction of which would cause se-
vere human and economic losses.

2. V‘The motivation behind the method is based on the fact that precise
nature of earthquake, fre;quency of occurrence‘,v interaction between struc-

" ture and soil and other earthquake related factors are not readily available.
3. The practical application on existing—'buildings shA'ows that the meth-

od is on the safe side but not overly conservative.
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4. Although the constrainea critical excitation derived here 1is
base on elastic behavior but it may also be used as a first approximation
in the piece wise linearizatign of non-linear responses of a structure.

5. Additional studies are required t@ evaluate the effect on %he re-
sultant constrained critical excitation by using different sets of rec“orded
excitations as well as the numbers of excitations in the Ieast—squar“es fit-

ting procedure,
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APPENDIX 1II - NOTATIONS

.The following symbols are used in this paper:

A = area of a member
Cm = coefficient applizd to bending term in interaction formula of
columns

D&L = dead plus live load

}-"_..2 = intensity measure of ground excitation

EQ =  earthquake load

fa =  axial compressive stress

fb =  Dbending stress

Fa =  allowable axial compressive stress

'Fb = allowable be};ding stress

Fe =  Euler stress divided by a factor of safety
ht) =  unit impulse response

) t 1.

1 = a column vector of 1's and o's

Ix’ IY = moments of inertia about x and y axes
.M =  mass matrix

Mb = bending moment

N =  square integral of the critical excitation

= axial force
5 = -participation factor of the ith mode

T rY = radii of gyration about x and y axes
t = time .
t -t = effective duration o ’ -
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unconstrained critical excité.tion
constrained critical excitation
h'istoric gro;md excitation
response to unconstrained critical excitation
response to cunstrained critical excitation

ratio to the critical excitation

- undamped frequency of vibration

damped frequency of vibration
i-th modal coordinate

i-th mode shape
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