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ABSTRACT

As a part of a continuing program to evaluate the dynamic

response of actual structures and to accumulate a body of information on

the dynamic properties of structures, especially when these structures

have novel design features, a dynamic test program was conducted on the

forty-story Century City Theme Tower building.

The dynamic tests of the building included both a forced

vibration study and an ambient vibration study. These results are

compared and in general show very good correlation. A mathematical

computer model of the Theme Tower was formulated and the results of the

analysis are presented and compared to the experimental results. Again

in general the results compare very favorably.
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1. INTRODUCTION

1.1 General

The design of multistory structures subjected to dynamic forces

resuiting from foundation motions requires a consideration of both the

characteristics of the ground motion and the dynamic properties of the

structure. Ground motions as caused by an earthquake are random and

although not prescriptible for aseismic design have been fairly well

studied for certain well known past earthquake. The engineer is there­

fore mainly interested in the dynamic properties of the structure when

designing for earthquake forces and is only indirectly concerned with the

ground motion characteristics.

The availability of high speed digital computers and the

sophistication of the idealization of structures and the computer model

formulation of the structure have made available the elastic, and in

certain structural systems, the inelastic response of structures when

subjected to earthquakes. However, the accuracy of the results in large

measure depend upon the computer model formulation of the structure and

its foundation. In order to determine the accuracy of the calculated

results and to accumulate a body of information on the dynamic properties

of structures, especially when these structures have novel design

features, a number of dynamic tests have been conducted on full-scale

structures (1).

For the above reasons dynamic tests, using forced and ambient

methods, were performed on the Century City South-Theme Tower in Los

Angeles. Because of the favorable advantage of the ambient vibration method

in dynamic testing of full-scale structures it was desirable to compare

both methods in order to assess the accuracy of each method in evaluating

the dynamic properties of the structural systems.



The building is described in Chapter 2 and the results of the

dynamic tests, from forced as well as ambient vibration study, are given

in Chapters 3 and 4, respectively. Comparison of the dynamic properties

of the building from both studies is presented in Chapter 5. A mathematical

model of the structural system was formulated,and the calculated and

experimental dynamic properties were compared. The formulation of the

mathematical model and the analytical dynami.c properties obtained are

described in Chapter 6.

1.2 Acknowledgement

The authors gratefully acknowledge the financial support

provided by the National Science Foundation under Grant AEN73-07732 AOZ.

They also wish to thank the owner, Delta Towers Joint Venture; the

managing agent, Century City, Inc., especially Mr. Robert D. Burford

and Mr. John F. O'Laughlin; the general contractor, Tishman Realty

Construction Co. Inc.; and the Structural Engineers, Skilling, Helle,

Christiansen, Robertson, for their help and cooperation in coordinating

and carrying out the test program.
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2. THE CENTURY CITY THEME TOWERS

2.1 General

The Century City Theme Towers~ located in Los Angeles~ California~

are built as twin South and North Towers. Both buildings from the

structural and architectural point of view are practically identical. The

dynamic tests were performed on the South Tower during November 1974

and March, 1975. The building is a multi-story structure; forty-four

stories in height above the plaza level, and six under ground parking

levels. The height of the building above the plaza level is about 575

feet, with the equilateral triangular floor plan having sides of 254 feet.

Figure 2.1 shows both buildings looking from North-West and Fig. 2.2 shows

South Theme Tower.

2.2 Structural Systems and Structural Elements

The steel frame structure extends from B level to the roof and

consists of core triangular frames with three corner columns connected

with deep beams at the second floor of the building. From the second

floor to the roof, the core steel framing continue like in the lower

floors whereas the exterior walls are constructed as three identical

moment resistant frames with twenty-three bays of 10 feet 2 inches

(Fig. 2.5). A deep steel girder covering the top two floors is rigidly

connected to all three exterior frames. Thus~ the structural system

consists of the equilateral triangular core and exterior moment resistant

frames (Figs. 2.3~ 2.4 and 2.5) connected at each floor with shear end

connected beams. The floor slabs in the core part are 4 1/2 inches deep

without steel decking and the exterior slabs are 4 1/2 inches over 18

gage steel deck.

3



A typical floor plan of the building from the second to forty­

fourth floor is given in Fig. 2.5 showing the basic structural elements.

The floor plan on the plaza level is given in Fig. 2.6 showing the core

structural elements and corner columns. A typical cross-section of the

corner columns from level B to second floor is shown in Fig. 2.8 as well

as architectural finish line forming the final shape of the carner column

at the plaza level.

The core frame columns are rolled sections of W14 shape, and the

care beams are in general rolled sections, mostly wide flange shape

varying from W12 to W36. Exterior columns consist of standard wide

flange sections and built-up sections. Exterior frame spaced beams are

built-up girders with a constant depth of four feet and changeable

plate thickness. Deep exterior beam on the top of the building and the

second floor are also built-up sections with a depth of twenty-eight

feet, and seven feet, respectively.

The structural steel used in the building for both the beams and

the columns is A36 and A50, the latter high strength steel being used in

general in the lower floors.

From the B level down to the foundation (F level) the structural

system consists of reinforced concrete elements, forming periferial

core walls with a'thickness of 20 inches, and core reinforced concrete

columns connected with rigid slabs on each parking level. The corner

columns are also reinforced concrete with the dimensions at the F level

of twenty by twenty feet. A partial plan of the building on the F level

is given by Fig. 2.7.

The core part of the building rests on a triangular shaped

mat eight feet thick about sixty-six feet below the plaza level.

4



The corner columns are resting on individual foundation mats with

thicknesses of fourteen feet and plan dimensions of about 40x45 feet

for the north and 40x49 feet for the south columns. The foundation mat

is placed in a silty sand layer.
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FIG. 2.1 GENERAL VIEW OF THE THEME TOWER
BUILDINGS FROM NORTH -WEST
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FIG.2.2 SOUTH THEME TOWER
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3. FORCED VIBRATION STUDY

3.1 General

The forced vibration study was carried out and completed

during November 1974. The building was structurally completed prior

to the experimental work,and all of the facing cover with glass and

aluminum, as well as, partition walls and installations in the core

part of the building were in place. The experimental apparatus employed

in the dynamic test is described below. The general experimental

procedures, equipment used, and procedures for data reduction applied,

for forced vibration study conducted are also described. Finally,

the experimental results are presented and discussed.

3.2 Experimental Apparatus

The experimental apparatus employed in the tests were two

vibration generators, twelve accelerometers and equipment for

the measurement and recording of the frequency responses. The

apparatus is described in the following sections.

3.2.1 Vibration Generators

Forced vibrations were produced by two rotating-mass vibration

generators or shaking machines, one of which is shown in Fig. 3.1.

These machines were developed at the California Institute of

Technology under the supervision of the,Earthquake Engineering Research

Institute for the Office of Architecture and Construction, State of

California. Each machine consists of an electric motor driving two

pie-shaped baskets or rotors, each of which produces a centrifugal

force as a result of the rotation. The two rotors are mounted on a

common vertical shaft and rotate in opposite directions so that the

14



resultant of their centrifugal forces is a sinusoidal rectilinear

force. When the baskets are lined up, a peak value of the

sinusoidal force will be exerted. The structural design of the

machines limits the peak value of force to 5,000 lbs. This maximum

force may be attained at a number of combinations of eccentric mass

and rotational speed, since the output force is proportional to the

square of the rotational speed as well as the mass of the baskets

and the lead plates inserted in the baskets. The maximum force of

5,000 lbs. can be reached for a minimum rotational speed of 2.5 cps

when all the lead plates are placed in the baskets. At higher

speeds the eccentric mass must be reduced in order not to surpass the

maximum force of 5,000 lbs. The maximum operating speed is 10 cps,

and the minimum practical speed is approximately 0.5 cps. At 0.5 cps

with all lead plates in the baskets, a force of 200 lbs. can be

generated. The relationship between output force and frequency of

rotation of the baskets for different basket loads is shown in Fig. 3.2.

Although, the rotating mass vibration generators are very difficult to

accurately generate at frequencies lower than 0.5 cps and at the same

time develop SUfficiently large forces to record the motion of the

building, in this dynamic test with extremely careful performance, it

was possible to obtain frequency response for the first modes. The

frequencies excited were in the range of 0.2 to 0.4 cps and the

exciting resonant force was within 115 and 204 lbs.

The speed of rotation of each motor driving the baskets is

controlled by an Electronic Amplidyne housed in a control unit. The

control unit allows the machines to be synchronized or operated 180 0

out-of-phase. This makes it convenient to excite, in structures with

a line of symmetry, either torsional or pure translational vibrations

15



without changing the position of either machine. A complete

description of the vibration generators is given in (7).

The vibration generators were mounted on the 42nd floor at

the south end and north core corner on an equal distance (69 ft)

from the centroid, along the north-south angle symmetry line of the

bUilding. Associated vibration control and recording equipment

was also placed on the 42nd floor (Fig. 2.5 and 3.1).

3.2.2 Accelerometers

The transducers used to detect horizontal floor accelerations

of the building were Statham Model A4 linear accelerometers, with a

maximum rating of ± 0.25g.

3.2.3 Equipment for Measurement of Frequency

For the vibration generators the vibration excitation

frequencies were determined by measurement of the speed of rotation of

the electric motor driving the baskets. A tachometer, attached to a

rotating shaft driven by a transmission belt from the motor, generated

a sinusoidal signal of frequency 300 times the frequency of rotation

of the baskets. Hence, the maximum accuracy of frequency measurements

was ± 1 count in the total number of counts in a period of 1 second

(the gating period), i.e., ± 1/3 of 1% at 1 cps and ± 1/9 af 1% at 3 cps.

3.2.4 Recording Equipment

The electrical signals for all accelerometers were fed to

amplifiers and then to a Honeywell Model 1858 Graphic Data Acquisition

System with 8" wide chart. In frequency-response tests, the digital

counter reading was observed and recorded manually on the chart along­

side the associated traces.

16



3.3 Experimental Procedure and Data Reduction

The quantities normally determined by a dynamic test of a

structure are: resonant frequencies, mode shapes, and damping

capacities. The experimental procedures and reduction of data

involved in determining these quantities are described in the next

section.

3.3.1 Resonant Frequencies

With the equipment described on the previous page resonant

frequencies are determined by sweeping the frequency range of the

vibration generators from 0.2 to 10 cps.

In the case of the vibration generators the exciting

frequency is increased slowly until acceleration traces on the

recording chart are large enough for measurement. Above this level

the frequency is increased in steps until the upper speed limit of

the machine is reached. Near resonance, where the slope of the

frequency-response curve is changing rapidly, the frequency-interval

steps are as small as the speed control permits. These steps are

relatively large in regions away from resonance. Each time the

frequency is set to a particular value, the vibration response is

given sufficient time to become steady-state, before the acceleration

traces are recorded. At the same time, the frequency of vibration

as recorded on a digital counter, is observed and written on the chart

with its corresponding traces. Plotting the vibration response at

each frequency step results in a frequency-response curve.

Frequency-response curves, in the form of acceleration

amplitude versus exciting frequency, may be plotted directly from the

data on the recording chart. However, the curves are for a force which

17



increases with the square of the exciting frequency, and each

acceleration amplitude should be divided by the corresponding square

of its exciting frequency to obtain so-called normalized curves

equivalent to those for a constant force (assuming linear stiffness

and damping for the structural system). If the original acceleration

amplitudes are divided by the frequency to the fourth power, displace­

ment frequency-response curves for constant exciting forces are

obtained. In cases of fairly low damping (under 5%), there is little

difference between results obtained for resonant frequencies and

damping capacities measured from the different curves.

3.3.2 Mode Shapes

Once the resonant frequencies of a structure have been found,

the mode shapes .at each of these frequencies may be determined.

Generally, there are insufficient accelerometers, or insufficient

recorder channels, to measure the vibration amplitude of all the

required points simultaneously. Thus, it is necessary, after recording

the amplitudes of a number of points, to stop the vibration, shift the

accelerometers to new positions, and then vibrate the structure at

resonance once more. This procedure is repeated until the vibration

amplitude of all required points has been recorded.

The structure may not vibrate at exactly the same amplitude

in each test run because it is impossible to vibrate the structure at

precisely the same frequency each run. Therefore, it is'necessary to

maintain one reference accelerometer (preferably at a point of

maximum displacement) during all the mode shape measurements for a

particular mode. Subsequently, all vibration amplitudes can be

adjusted to a constant modal amplitude.

18



In addition it is necessary to make corrections to the

recorded amplitudes to compensate for differences between calibration

factors. Absolute calibration is not required for mode shapes and

cross-calibration is sufficient. The accelerometers and all

equipment associated with them in their respective recording channels

are cross-calibrated simply by placing them all together so that they

measure the same vibration. Cross-calibration is generally carried out

at the beginning and end of each day. The average calibration factors

as derived from the pre- and post-test cross-calibration runs are

used to adjust the recorded amplitudes.

The number of points required to define a mode shape

accurately depends on the mode and the number of degrees of freedom in

the system. For example, in a dynamic test on a 15-story building (12)

four points were sufficient to define the first mode, whereas it

required measurements of the vibration of all 14 floors and the roof

to define the 5th mode shape accurately.

3.3.3 Damping Capacities

Damping capacities may be found from resonance curves in the

normalized frequency-response curves by the formula:

where

~ = damping factor,

f = resonant frequency,

~f = difference in frequency of the two points on the
resonance curve with amplitudes of l/fftimes the
resonant amplitude.

19



Strictly, the expression for ~ is only applicable to the displacement

resonance curve of a linear, single degree of freedom system with a

small amount of viscous damping. However, it has been used widely for

systems differing appreciable from that for which the formula was

derived, and it has become accepted as a reasonable measure of damping.

In this respect it should be remembered that in the case of full-size

civil engineering structures it is not necessary to measure damping

accurately in a percentage sense. It is sufficient if the range

in which an equivalent viscous damping coefficient lies is known.

Meaningful ranges might be defined as: under 1%, 1-2%, 2-5%, 5-10%,

over 10% (1,10).

The bandwidth method described above is extremely useful when

damping factor lies in the range 1-10% of critical. However, if the

damping lies below 1%, difficulties may be encountered in observing

sufficient points on the resonance curve. Also the small frequency

difference between two relatively large frequencies becomes difficult

to measure accurately. Above 10% of critical damping, resonance

curves often become poorly defined due to interference between modes

and the results from the bandwidth method have little meaning.

3.4 Experimental Results

The vibration equipment was bolted to the 42nd floor through

the test program as shown in Fig. 2.5 and with the appropriate

adjustments to the vibration generator eqUipment it was possible to

produce translational or torsional vibrations of the building. The

first six and five translational modes, respectively in E-W and N-S

direction were excited, as well as, the first six torsional modes.

Frequency response curves, in the region of the resonant frequencies

20



for all excited translational and torsional modes, are shown

successively in Figs. 3.3 through 3.19. The curves are plotted in

the form of normalized displacement amplitude versus exciting

frequency. The ordinates were obtained by dividing the recorded

acceleration amplitude by the square of the exciting frequency to

obtain acceleration amplitudes for a constant equivalent force amplitude.

The values thus obtained are divided by the square of the circular frequency

(rad/sec) to obtain normalized displacement amplitudes. For convenience the

actual exciting force (Fr ) and displacement amplitude (u r ) for each

of the excited resonancies are given in Figs. 3.3 through 3.19, as well as,

calculated damping factors.

The resonant frequencies and damping factors evaluated from

the response curves are summarized in Tables 3.1 and 3.2, respectively. The

generated exciting force by both shaking machines and corresponding

resonant displacement amplitude for each resonant frequency are given

in Tables 3.3 and 3.4. respectively.

TABLE 3.1 RESONANT FREQUENCIES (c.p.s.)

Mode
Excitation

1 2 I 3 4 ... 6::l

E-W 0.267 0.76 1. 317 1.89 2.74 3.133

N-S 0.267 0.783 1.373 1. 973 2.85 -

I Torsional 0.357 0.99 1.69 2.47 3.317 4.133
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TABLE 3.2 DAMPING FACTORS (%) FROM RESONANCE CURVES

Mode
Excitation

1 2 3 4 5 6

E-W 2.62 1.57 1.18 1.27 1. 73 2.39

N-S 4.34 1.60 1.64 1.72 1.49 -
Torsional 1.34 0.81 0.95 1.01 1.36 1. 51

TABLE 3.3 RESONANT FORCE AMPLITUDES (lb)

Mode
Excitation

I1 2 3 4 5 6

E-\~ 115 930 2790 5748 7298 6708

N-S 115 986 3033 6264 7896 -
Torsional 204 1577 4596 . 7692 4342 1817

TABLE 3.4 RESONANT DISPLACH1ENT AMPLITUDES (x 10-2 in.) 42nd FLOOR

Excitation t~ode

1 2 3 4 5 6

E-\~ 1.65 1.03 0.588 0.311 0.057 0.023

N-S 1.51 1.03 0.584 0.304 0.064 -
Torsi anal I 2.883 3.028 0.909 I 0.465 0.064 0.014

I

The mode shapes for the translational and torsional modes

that were excited are shown in Figs. 3.20 through 3.36. Particular

attention has been given to observe in plane deformations on the 42nd

and 2nd floor for each of the excited resonances. The horizontal
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in-plane floor vibrational mode associated with each of the translational

and torsional modes of vibration~ as well as the resonant displacement

amplitudes of the floor center and the rotational amplitudes about

the center~ are given in Figs. 3.20 through 3.36. Resonant rotation

amplitudes for the 42nd and 2nd floor are summarized in Tables 3.5 and

3.6, respectively.

TABLE 3.5 RESONANCE ROTATION Ar~PLITUDES

42nd FLOOR (x 10-7 rad.)

Excitation ~~ode

1 2 3 4 5 6

E-W 4.991 2.536 1.047 0.282 2.375 1.811

N-S 0.036 0.107 0.143 0.'78 0.003 -
Torsional 113.2 185.8 92.4 24.4 17.3 0.76

TABLE 3.6 RESONANCE ROTATION AMPLITUDES
2nd FLOOR (x 10-7 rad.)

Excitati on Mode, 2 3 4 5 6

E-\·J - 0.123 1.543 1.296 0.488 0.426

N-S - 0.819 0.891 1.211 0.317 -

Torsional 9.20 34.3 47.7 20.5 20.5 1.22
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3.5 Discussion of Experimental Results

The forced-vibration study of the building was conducive to

obtaining accurate resonant frequency for the first five translational

modes of vibration in N-S direction, along one of the symmetry lines

of the floor plane, and the first six translation modes in orthogonal E-W

direction, as well as the first six torsional modes of vibration. The

resonant frequencies were well separated, and it was of interest to note

the rati os of the observed hi gher mode frequenci es \'Ii th respect to

the fundamental one. These ratios are given in Table 3.7 for all

three directions of excited vibrations, and they indicate a type of

over-all structural response.

TABLE 3.7 RATIO OF RESONANT FREQUENCIES

Trans 1at ional Trans 1ati ana1 TorsionalE-W N-S
r~ode

fi fi l fi fi
l

fi fi
l

(cps) f 1 (cps) , f l (cps)
f l

1 0.267 1.0 0.267 1.0 0.357 I 1.0

2 0.76 2.85 0.783 2.93 0.99 2.77

3 1.317 4.93 1.373 5.14 1.69 4.73

4 1.89 7.08 1.973 7.39 2.47 6.92

5 2.74 10.26 2.85 10.67 3.317 9.29

6 3.133 11.73 I - - 4.133 11.58

From these results it may be concluded that the

building vibration in both translational directions as well as torsional

vibration are predominantly of the shear type, because the determined

frequency ratios follow closely the ratios 1, 3, 5, 7, 9,11,

which apply for the uniform shear beam.
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For equilateral triangular floor plan of the building it

should be expected that the translational modes will exist in the

direction of the lines of symmetry (Fig. 2.5). One of the

translational direction of vibration excitation was selected along

the N-S line of symmetry and the second orthogonal to this one in

E-W direction. It has been found that amplitudes of rotation on

the 42nd and 2nd floor for both directions are of the same order of

magnitude (Table 3.5 and 3.6, and Figs. 3.20 through 3.31) and

comparing them with the amplitudes of rotation in the torsional

modes they are about two order of magnitude smaller. Thus, it could

be concluded that the modes of vibrations excited along the line

of symmetry (N-S) and orthogonal to it (E-W) are actual translational

modes, with practically the same resonant frequencies and mode shapes

(Table 3.1 and Figs. 3.20 through 3.31). In the torsional modes of

vibration it appears that for all excited modes the line of rotation

is crossing the floor plane centroid (Figs. 3.31 through 3.36). From these

results it could be concluded that the mass and stiffness center

coincide with the geometric center, and that the floor slabs are practically

rigid in their plane.

Damping coefficients varied within 1 and 2% of

critical damping in all modes, except for the first mode in N-S

and E-W direction. It should be mentioned that the damping coefficients

for the first mode in both the translational directions are probably higher

due to difficulties in properly controlling the buildin9 vibration at such

low frequencies (0.2 and 0.4 cps) and at a very low exciting force amplitude

(115 lb). Similar damping values have been reported from the other

full-scale forced vibration studies of steel frame high-rise buildings

(13, 14, 15).
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4. AMBIENT VIBRATION STUDY

4.1 General

In recent years a method for testing of full-scale structures

based on wind and microtremor-induced vibrations has been developed.

Although the method has been in use for almost 40 years by the United

States Coast and Geodetic Survey (16) to measure fundamental

periods of the buildings, it was not until recently that this was

extended to higher modes (5, 8,9, 13, 14, 17).

The ambient vibration study of the dynamic properties of

the structures is a fast and relatively simple method of field

measurements. It does not interfere with normal bUilding function,

and the measuring instruments and equipment can be installed and

operated by a small crew.

The objective of performing the ambient vibration study was to

obtain dynamic properties of the building, and then compare these

results with those obtained from the forced vibration study to assess

efficiency of both techniques.

The ambient vibration, experimental and analytical

procedures were first suggested by Crawford and Ward (5,17). An

assumption in the analysis technique is that the exciting forces are

stationary random process, possessing reasonably flat frequency

spectrum. For multistory buildings and other large above ground

structures the largest ambient vibrations are produced by wind. If the

frequency spectrum of the vibrational exciting forces is reasonably flat, a

structure subjected to this input will respond in all its normal modes.

The ambient vibration study of the Century City South-Theme

Tower was carried out on March 19, 1975. The building was practically

in the same condition as it was during the performance of forced vibration
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study in November 1974. Wind direction and velocity on the day of

dynamic test measured at nearby Santa Monica airport are given in

Table 4.1. The direction of the wind was almost constant at

aximuth 200-230°, and velocity of 9-14 mph.

TABLE 4.1 WIND DIRECTION AND VELOCITY
(at Santa Monica Airport, March 19, 1975)

Time Wind Blowing Di recti on Velocity
(0 ) (mph)

10:40 200 11.50

11: 42 230 10.36

12 :40 210 9.21

1: 40 230 13.82
I

The vibration measuring equipment employed in the ambient

vibration-dynamic test is described below. The general experimental

procedures and procedures for data analyses applied are also described.

Finally, the experimental results are presented and discussed.

4.2 Field Measurements

4.2.1 Measuring Equipment

The wind induced vibrations were measured using Kinemetrics

Ranger Seismometers, Model 55-1. The seismometer has a strong

permanent magnet as the seismic inertial mass, moving within a

stationary coil attached to the seismometer case. Small rod magnets

at the periphery of the coil produce a reversed field which provides a

destabilizing force to extend the natural period of the mass and its

suspens ion.

63



The resulting seismometer frequency was 1 Hz. Damping was

set at 0.7 critical. The output for a given velocity is a constant

voltage at all frequencies greater than 1 Hz and falls off at 12 dB/octave

for frequencies less than 1 Hz.

The Kinemetrics Signal Conditioner, Model SC-l (Fig. 4.1)

was used to amplify and control simultaneously four seismometer

signals. The four input channels have isolated circuitry to integrate

and to differentiate the amplified input signal. All outputs are

simultaneously or independently available for recording. Each channel

provides a nominal maximum gain of 100,000. An 18 dB/octave low

pass filter is available with a cut-off frequency continuously

selectable between 1 Hz and 100 Hz, for each channel.

The amplified analogue signals were recorded and directly

converted to digital format using the Kinemetics Digital Data System,

Model 00S-1103. A direct recording oscillorgraph was provided to

display and monitor the four signal levels during tape recordings

(Fig. 4.1). The data was digitized at 10 samples per second. The

00S-1103 1s rate of scan across multiple input channels is 40,000 Hz.

This rapid scan rate is sufficient to retain the phase relationship

between channels.

4.2.2 Measurement Procedures

When measuring ambient and forced vibrations of the buildings,

it is usually assumed that the structure can be approximated by a

one-dimensional, damped discrete or continuous system. In most of the

cases (11,13,14) measurements indicate that for the level of

excitations applied, floor structures are sufficiently stiff so that the

above assumption is acceptable. In the case of Century City South-Theme

Tower, it is assumed that the structural behavior may be approximated
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by a linear one-dimensional model.

In the experimental study of building vibration which is

based on the linear model, it is assumed that the resulting motions

can be expressed as the superposition of modes associated with the

discrete frequencies (2,3). This approach then requires a simultaneous

measurement of motion in a given direction at at least two different

floors to obtain their relative amplitude and phase, the two

quantities needed to determine mode shapes. During the measurements

of wind induced vibrations, it is not necessary to find the actual

amplitudes that are recorded, because all that is ever used in

determining mode shapes is the relative amplitude of the same two

instruments.

The first field measurements was a calibration run at the

42nd floor. All four seismometers were at the center of the floor

oriented South to record in parallel the identical structure motion.

This measurement provides a relative amplitude and phase calibration

be~/een channels which includes the entire seismometer, amplifier,

filter, tape recorder and analogue-to-digital conversion system. To

obtain translational mode frequencies two pair of seismometers were

located at the floor center oriented in South and West direction,

respectively, and recorded the vibrations for 840 seconds (Fig. 4.2a and

Table 4.2). To obtain information about the torsional frequencies

the experiment was conducted at the 42nd floor with two pairs of

seismometers each of them located at the south end and the floor center,

oriented parallel in South direction. The recording in this test lasted

300 seconds (Fig. 4.2 b and Table 4.2).
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TABLE 4.2 LOCATION OF SEISMOMETERS

Run Excitation Duration Floor, Direction
No. Measured (Sec)

Seis. Seis. Seis. Seis.
No .1 No.2 No.3 No.4

1 CAL 20 42S 42S 42S 42S

2 T* 840 42S 42W 42S 42W

3 .g.* 300 42H 42W 42W 42W

4 T 60 425 42W RS Rl~

5 .g. 60 42W 42W RW RW

6 T 60 42S 42W 40S 40W

7 .g. 60 42W 42W 40W 40W

8 T 60 42S 42W 35S 35W

9 .g. 60 42W 42W 35W 35W

10 T 60 425 42W 30$ 30W

11 G- 60 42H 42W 30W 30W

12 I T 60 425 42W 28S 28W

13 G- 60 42W 42W 28W 28W

14 I T 60 42S 42W 25S 25W

15 I .g. 60 42W 42W 25W 25W
l- ".

* T = translation

.g. = tors ion
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TABLE 4.2 LOCATION OF SEISMOMETERS
(Continued)

Run Excitation Duration Floor, Direction
No. t~easured (Sec)

Seis. 5eis. Seis. Seis.
No.1 No.2 No.3 No.4

16 T 60 425 42W 22S 22H

17 B- 60 42W 42~J 22W 22W

18 T 60 42S 42H 205 20W

19 B- 60 42W 42W I 20W 20W

20 T 60 42S 42W 15S 15H

21 B- 60 42W 42~J 15W 15W

22
I

T 60 425 42W lOS lm~

23 B- 60 42W 42W lOW lOW

24 T 60 42S 42W 5S 5W

25 .g. 60 42W 42W 5W 5W

26 T 60 42S 42W 2S 2W

27 I .g. 60 42W 42W 2~J 2W

28 T 60 42$ 42W PS PW

29 .g. 60 42~J 42W PH PH

30 CAL 120 42S 42S 425 425
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For measurement of the translational modes it would be ideal

to place the seismometers in the center of torsion. This was available

because the center of stiffnesses and masses coincide with the floor

center, which was already established from the previous forced vibration

test. Thus, for measurement of the translational modes two of the

seismometers remained at the 42nd floor placed in the floor center

and oriented South and West, respectively. The other two seismometers

were oriented in the same way and relocated in approximately five floor

increments for simultaneous measurements of motion along the height of

the building (Fig. 4.3 a and Table 4.2). For the torsional modes one

of the seismometers on the 42nd floor remained at the floor center,

and the other one was moved at the South end position, both oriented

parallel to the West direction. The other two seismometers were

oriented in the same way and relocated along the height of the

building like in the translational modes (Fig. 4.3 b and Table 4.2). Each

mode shape run was recorded continuously for 60 seconds. The low pass

filter was set on each channel at 5Hz to attenuate all higher

frequencies, thus completely removing electrical noise and other

possible high frequency vibrations. The maximum system output was at

0.6 Hz frequency, and is normalized to a relative gain of 1.0 at this

frequency. The voltage output to the recorder was adjusted to not

exceed about ± 1.4 volts. This resulted in a system sensitivity of

12 volts/in/sec2 for most of the measurements. Corresponding first

mode acceleration and displacement were about ±.03xlO-5g and ± 4xlO-5

inches respectively.

4.3 Data Analysis

4.3.1 Fourier Analvsis.

It is convenient to use Fourier transforms to analyze low

68



level structural vibrations. They may be used to exhibit the frequency

content of the recorded vibration, thus identifying modal frequencies

when the input force frequency spectrum is reasonably flat. Comparing

measured amplitude and phase between various points on the structure

provides an estimate of the mode shape.

A measured time-series signal x(t), can be transformed to

the frequency domain, with certain restrictions using the integral

00

X(f) = f x(t)e-2~ ift dt
_00

where X(f) represents the frequency domain function, f ;s

frequency and i = ;:r .

The time-series x(t) can be recovered by the inverse

transformation

00

X(f) = f X(f)e2~ ift dt

(4-1)

(4-2)

Equations 4-1 and 4-2 may be expressed in functional notation

as

X(f) = F [x(t)]

x{t) = F- l [X(f)]

(4-3)

(4-4)

Equation 4-3 is the direct transform and Equation 4-4 is the

inverse transform. Together they are calied a Fourier Transform Pair.

The direct transform maps a time-series (time domain) into a function

of f (frequency domain). The inverse transform reverses the process.

X(f) is a complex number with both amplitude and phase.
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IX(f)1 is known as the amplitude spectrum of x(t). The

function IX(f)1 2 is known as the power spectrum of f(t).

Consider the elastic structure representing a multistory

building. The set of time-series xl(t), x2(t), ... xi(t) ... , xn(t)

recorded for corresponding floor level are transformed to the

frequency domain,

(4-5)

Modal frequencies of the structure appear as peaks in the

plots of amplitude spectra IXn(f)l. The i 'th mode shape coefficient

aij at each natural frequency f j , normalized to the value at

coordinate 1, is simply:

a.. =
lJ

(4-6)

The relative phase of the complex product Xl(f) Xi(f) gives

the mode shape direction.

Actual calculations are based on a limited time measurement of

X(t). In the time interval T, the Fourier transform (4-1) becomes
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T/2
X(f) = f x(t)e-2~ ift dt

-T/2

(4-7)

The Hanning time window is one of the simplest methods used

to minimize the spectral spreading effect caused by the finite record

length. It is used for the routine Fourier amplitude spectrum

calculations in this report. The standard Fourier amplitude spectrum

is smoothed by 1/4, 1/2, 1/4 weights as follows

(4-8)

Estimates of equivalent viscous damping are obtained from

the width of the peak corresponding to the modal frequency of interest

'"4-9 )

where ~ is the critical damping ratio and ~f is the peak width

(bandwidth in Hz) measured at 1/12 of the amplitude spectrum value

1X(f.) I·
1

4.3.2 Data Processina..
Four simultaneous outputs were recorded on magnetic

tape during each of the 30 runs listed in Table 4.2. Each run was

on a digital system and converted to 10 discrete points per second.

Because of the high frequency filtering present in the field

instrumentation, no significant frequencies above 5 Hz were found in

the recordings. This gave a final sample rate of 10 samples per second

corresponding to a Nyquist frequency, f n = 5.0 Hz. For the resonant

frequencies runs 8,192 and 2048 data points were selected for the

translational and torsional modes, respectively.
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For each mode shape run 1024 data points were selected

corresponding to about 60 seconds of record. The Fourier amplitude

spectrum was computed giving 1024 spectral estimates and an equal

number of phase angles.

The spectral estimates were smoothed by 1/4, 1/2, 1/4 weights.

The 1024 spectral estimates are uniformly distributed between 0 Hz and

5 Hz giving a frequency resolution of 5/1024, or about 0.0049 Hz.

Relative phase angles were used to determine the positive

(in phase) or negative (180 degrees out of phase) sign of the mode

amplitude. The phase angle calculated for each component at each

modal frequency were taken from a computer output listing. Subtracting

the phase angle in degrees at each floor from the corresponding

phase angle at the reference instrument gave relative phase.

4.3.3 Frequencies and Modes of Vibration

The natural frequencies of vibration for six E-W and N-S

translational modes and for four torsional modes are given in Table 4.3.

TABLE 4.3 RESONANT FREQUENCIES (cps)

Excitation Mode

1 2 3 4 5 6

E-W .263 .76 1.338 1.914 2.695 3.096

N-S .273 .791 1.397 2.015 2.852 3.15

Torsional .347 1.00 1.70 2.49 - -

The natural frequencies were determined considering the

distribution of all peaks in the Fourier spectra for all 30 runs.

The ratios of the higher mode frequencies with respect to

fundamental ones are given in Table 4.4. The values obtained are closely
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to the ratios 1,3,5,7,9,11 ... , indicating that the bUilding

vibration in all studied directions are predominantly of shear type.

TABLE 4.4 RATIO OF RESONANT FREQUENCIES

Translational, E-W Translational, N-S Torsional

Mode fi fi l fi fi l fi fi
(cps) f, (cps) f

l (cps) I f 1

1 .263 1.00 .273 I 1.00 .347 1.00

2 .76 2.89 .791 2.90 1.00 2.88

3 1.338 5.09 1.397 5.11 1. 70 4.90

4 1.914 7.28 2.015 7.38 2.49 7.18

5 2.695 10.25 2.852 10.45 - -

6 3.096 11.77 3. 15 11.54 - -

Mode shapes were calculated fo~ five and four modes in

E-W and N-S translational direction, respectively, as well as, three

torsional modes. All determined modes of vibration are given in

Figs. 4.4 through 4.15. From the calculated Fourier response spectra it

was very difficult to separate structural spectral values from the noise

above the frequency of 2.0 cps. This is mainly due to low density of

the recorded data and the instrument response characteristic used to

provide maximum signal for the lowest frequency modes. It appeared that

10 data points per second are insufficient to obtain clearly higher

frequency modes. It would require a minimum of 50 data points per

second in order to obtain results as good as durina the forced vibration

study

4.3.4 Damoing

In the case of force vibration study damping in the
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structure can be determined in several ways; by band-width method, by

measuring relative peak amplitudes, or when there is no wind by

measuring a free vibration response.

During the ambient vibrations, strictly speaking all

these methods fail unless measurements can be taken during the period

when wi nd exci tations are random and stationary in time (17).

According to the criteria described in (17), during the ambient vibration

study of Century City South-Theme Tower, wind excitation could be

considered in most of the runs as random and nearly stationary in time.

There was also reasonably good separation of the translational and

torsional modes and no overlaping in the peak areas was noticed.

Estimation of the equivalent viscous damping factors from

this study are given in Table 4.5. The damping for the translational

and torsional modes were calculated from the average' spectra of all

records for corresponding direction on the 42nd floor.

TABLE 4.5 DAMPING FACTORS (%)

Mode
Excitation

1 2 3 4 5 6

E-W 2.37 1.33 .35 .26 .17 -
N-S 3.30 1.28 1.17 .74 .55 .15

Torsional .90 .43 .16 .13 - -

It appears that estimated damping values are too low, except

for the first translational and torsional modes, most probably due to

insufficient density of the recorded data.

74



FIG. 4.1 AMBIENT VIBRATION EQUIPMENT
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FIG. 4.2 LOCATION OF RANGE SEISMOMETERS ON THE 42 TH
FLOOR FOR RESOf\lANT FREQUENCY RESPONSE
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5. COMPARISON OF FORCED AND ~~BIENT VIBRATION STUDIES

The dynamic properties: resonant frequencies, modes of

vibration and damping values, were determined by full-scale dynamic

test using forced and ambient vibration methods. Resonant frequencies

and damping factors from both studies are summarized and compared in

Table 5.1.

The resonant frequencies from both studies are in very good

agreement in all separated modes of vibration with the maximum difference

smaller than 2%. The ratios of the observed higher mode frequencies

with respect to the fundamental one from both dynamic studies of the

building are plotted in Fig. 5.1. These ratios for both translational

directions as well as the torsional direction indicate that over-all

structural response is predominatly of the shear type. Equivalent

viscous damping factors for the reasons discussed in Chapter 4 show

significant difference. It appears that it is rather difficult to

obtain appropriate damping values from the ambient vibration study,

particularly in cases when equivalent viscous damping is expected to

be rather low.

Mode shapes for the translational (E-W and N-S) directions

as well as torsional ones, are compared in Figs. 5.2 through 5.13.

All presented mode shapes are in good agreement from both studies.

Comparison of the forced and ambient vibration experiments of

Century City South-Theme Tower demonstrate the consistency of the

two method in determining with adequate accuracy the natural frequencies

and mode shapes of a typical modern building. Difficulties in the

evaluation of equivalent viscous damping factors from ambient vibrations

studies are present and probably it will be more realistic from this

type of study to expect assessment of the range of damping factors,
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TABLE 5.1 COMPARISON OF RESONANT FREQUENCIES AND DAMPING FACTORS

Translational E-W Translational N-S Torsional
.

a
z

Forced Ambient Forced Ambient Forced AmbientOJ
-0
a

:;;: f ~ f f, f ~ f ~ f ~ f ~
(cps) (%) (cps) (%) (cps) (%) (cps) (%) (cps) (% ) (cps) (%)

1 0.267 2.62 0.263 2.37 0.267 4.34 0.273 3.30 0.357 1.34 0.347 0.90

2 0.76 1.51 0.76 1.33 0.783 1.60 0.791 1.28 0.99 0.81 1.0 0.43

3 1. 317 1. 18 1.338 0.35 1.373 1.64 1.397 1. 17 1.69 0.95 1. 70 O. 16

4 1.89 1.27 1.914 0.26 1.973 1.72 2.015 0.74 2.47 1.01 2.49 0.13

5 2.74 1. 73 2.695 0.17 2.85 1.49 2.852 0.55 3.317 1.36 - -
6 3.133 2.39 3.096 - - - 3.15 0.15 4.133 1. 51 - -



rather than damping values associated with each mode of vibration.

The field effort involved in the ambient vibration study was

significantly smaller than for the forced vibration experiment because

the measuring equipment used for ambient vibration tes~ is much lighter

and has fewer components. A group of three people required for both

ambient and forced vibration experiments can perform necessary

measurements for the ambient test in 1 to 2 days. The time necessary

to complete forced vibration test was about two weeks. The total

number of necessary measurements in ambient test is significantly

smaller, and also each individual measurement requires a shorter time

interval. On the other hand, data analysis is slightly more complicated

because it requires Fourier analysis using digital computers.

Both ambient and forced vibration studies may lead to the

determination of up to six and mor~ modes of vibration. The number of

mode shapes resolved depends mainly on the level of the high-frequency

noise and the number of measuring stations in the building. Although

both methods of dynamic testing of full-scale structures are based on

small levels of excitation, compared to strong earthquake ground motion,

the derived dynamic properties of the structural systems are

invaluable since they offer a sound basis for rational improvements of

the formulation of the mathematical models in the elastic range of

behavior of the structural systems.
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6. FORMULATION OF MATHEMATICAL MODEL

6.1 General

A mathematical computer model of the South theme tower was

formulated to assess the dynamic properties for the N-S, E-W and

rotational characteristics. In this particular formulation the motion

of each component was studied individually by restraining all other

degrees of freedom. The model and the computer program employed for the

analysis are described below.

6.2 Computer Program

MACTUB a special purpose computer program developed in the

Division of Structural Engineering and Structural Mechanics of the

Department of Civil Engineering at the University of California, Berkeley

was used to compute the mode shapes and frequencies of the building.

A complete description of the program is given in reference (19).

Employing an extension of the finite element concept, r~CTUB was

created for the analysis of multistory tube structures consisting of an

assembly of plane frames. Each element incorporates a rectangular portion

of a frame consisting of a number of columns and a number of beams.

Elements are interconnected at nodes along their sides. Both static and

dynamic analysis can be performed, assuming linear material behavior.

The analysis was performed by a CDC 6400 digital computer ~sing

the aforementioned program.' The program is based on the direct stiffness

method which first generates the element stiffness matrices in their local

coordinates and then performs the transformation into the global coordi­

nates of the complete structural system giving by summation an overall

structural stiffness. Since the total number of joints modeled are less
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than the actual number of beam column joints, the computer solution time

required is greatly reduced. In addition each floor is assumed to displace

as a rigid system.

The computer time required for a typical modal extraction (5

modes) was in the order of 2.5 minutes. The basic computer performance

for the solution portion of the problem is shown below.

FORM ELEMENT STIFFNESS

ASSEMBLE &REDUCE GLOBAL STIFFNESS

DYNAMIC ANALYSIS

TOTAL SOLUTION TH1E

8.466 sec.

68.789 sec.

20.418 sec.

97.653 sec.

6.3 Formulation of Mathematical Model

The building was modeled as a structural system composed of

three planar frames forming the exterior face of the building. A typical

frame shown in Fig. 6.1 consists of a series of macroelements connected

at the nodal points. Each element represents an average stiffness of

the beams and columns in the actual structure over a segment of floors

and bays. In addition corner elements were employed to simulate the

stiffness properties of the corner columns. The core was represented

by a column with equivalent bending and axial stiffness placed at the

geometrical center of the building. In the modeling all secondary

framing existing between the exterior face and the core have been

neglected since their effect on the overall structural stiffness is

minimal.

The floor dead load was distributed by a lumped mass system.

These masses were assumed to be located at the geometric center of the

building, and at the corner and mid-side points of the interior and

exterior frames.
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The analysis was carried out by treating the modal response of

each degree of freedom independently from the other. The assumption seems

reasonable due to the symmetry of the building.

6.4 Results of Mathematical Model

Under the idealizations and as~umptions described in the previous

section, a dynamic analysis of the mathematical model was performed. The

results of the resonant frequencies for the translational and torsional

motions for the first five modes are outlined in Table 6.1. Because of

the building symmetry the N-S and E-W resonant frequencies and modes are

the same. The first five translational modes and first three torsional

modes are shown in Figs. 6.2.

Table 6.1 RESULTS OF MATHEMATICAL MODEL
RESONANT FREQUENCIES (cps)

MODE
EXCITATION 1 2 3 4 5

E-W .276 .725 1.267 1.821 2.394

N-S .276 .725 1.267 1.821 2.394

TORSIONAL .403 1.089 1.840 2.625 3.465
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7. COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS

The resonant frequencies and damping factors obtained from the

full-scale tests are summarized and compared in Table 7.1. The

analytical results for the E-W translational were the same as the

N-S translational and are only listed once. The mode shapes for the

translational as well as the torsional motions are compared in Fig. 7.1.

A comparison of the translational analytical results show very

good agreement with the experimental studies, the maximum difference

ranging from about 3% at the first mode to about 14% at the higher modes.

It would appear from the first translational mode shape that the actual

building is slightly more flexible than what the analysis indicates. In

comparing the torsional analytical results with the experimental the

differences are in the range of 10%.
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TABLE 7.1 COMPARISON OF RESONANT FREQUENCIES AND DAMPING FACTORS

---

Translational E-W Translational N-S Torsional

0
z

Ambient Anal.
(j) Forced Ambient Forced Ambient Anal. Forced
"0
0
z f E;, f E;, f E;, f E;, f f E;, f E;, f

(cps) (%) (cps) (%) (cps) (%) (cps) (%) (cps) (cps) (%) (cps) (%) (cps)
---

1 0.267 2.62 0.263 2.37 0.267 4.34 0.273 3.30 .276 0.357 1.34 0.347 0.90 .403

2 0.76 1.51 0.76 1.33 0.783 1.60 0.791 1. 28 .725 0.99 0.81 1.0 0.43 1.089

3 1.317 1. 18 1.338 0.35 1. 373 1.64 1.397 1.17 1.267 1.69 0.95 1. 70 0.16 1.840

4 1.89 1.27 1.914 0.26 1. 973 1. 72 2.015 0.74 1.821 2.47 1.01 2.49 0.13 2.625

5 2.74 1. 73 2.695 0.17 2.85 1.49 2.852 0.55 2.394 3.317 1. 36 - - 3.465

6 3.133 2.39 3.096 - - - 3.15 0.15 - 4.133 1. 51 - - -
'--
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8. GENERAL CONCLUSIONS

The dynamic properties of the translational modes in the N-S

and E-W directions, as well as the torsional modes of the Century City

South-Theme Tower, were determined by forced vibration and ambient

vibration studies.

The resonant frequencies from both studies are in very good

agreement in all separated modes of vibration with the maximum difference

smaller than 2%. The ratios of the observed higher mode frequencies with

respect to the fundamental one from both dynamic studies of the building

indicate that the overall structural response is predominantly of the

shear type.

Comparision of the forced and ambient vibration experiments

demonstrate that it is possible to determine with adequate accuracy the

natural frequencies and mode shapes of typical modern buildings using the

ambient vibration method. Difficulties in evaluation of equivalent

viscous damping factors from ambient vibrations studies are present and

probably it will be more realistic from this type of study to expect

assessment of the range of damping factors~ rather than damping values

associated with each mode of vibration.

A comparison of the analytical results with the experimental

results show very good agreement in the translational motion especially

in the lower modes and fair agreement in the torsional modes.
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