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ABSTRACT

Results are reported of esarthquake simulation tests on
a model frame with a partial base isolation system that
includes energy-absorbing devices. The isclation system
was modeled on a stepping bridge concept developed for the
New Zealand Raillways, and the energy-absorbing devices,
based on the plastic torsion ¢f rectangular mild steel bars,
functioned only when the frame base 1ifted off the foundation.
Two series of tests using scaled accelerations from the El
Centro N-S 1940 and Pacoima Dam 1971 earthquake ground motion
records were used as input to the shaking table on which the
tests were performed. Results from these tests are compared
to those from earlier tests on an identical frame with the
foundation (1) anchored as in conventional design, and
(2) permitted to uplift freely. The response of the frame
with the energy-absorbing devices installed was Improved
over that of both the fixed frame and the frame allowed
to uplift freely for the El Centro accelerations. Although
the results are not as favorable for the Pacoima Dam input,
the feasibllity of the energy-absorbing devices assceclated
with a partial base isolation system 1s esgtablished as an
alternative to anchored frames and frames allowed to uplift

freely.
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1. INTRCDUCTION

Normally, structural elements that support.pseudo-
static loads must also absorb dynamic loadings from lateral
force-producing phenomena such as earthquakes. DBoth the
normal load-carrying capacity and the seismic resistance of
such elements may be reduced during an e=arthquake by struc—‘
tural mechanisms such as yilelding of beam-~column jolnts,
buckling or inelastic deformation of structural members,
and crackilng of partitions or walls. Repaired structural
elements cannot be assumed to have recovered original
strength properties.

In the work reported here, a different approcach is
proposed in which structural ecarthquake and load-carrying
capacity may be provided separately. A structure would be
designed to resist gravity and wind leoads, and seismic
reslistance would be provided by energy-absorblng devices
associated with a partial isolation system. When an
earthquake occurs, the structure itself will be protected
at The expense of energy-absorbing devlices that can easlly
and inexpensively be replaced if damaged. The effectiveness
of such devices is enhanced when they are incorporated into
a base isolation system [1,2] that not only lsolates a
structure from seismice forces, but also channels sueh

energy into the devices.



A partial 1solation system that can accommodate energy-
absorbing devices [3,4] is the stepping support foundation
system, generalized from the stepping bridge concept devel-
oped by Beck, Skinner, ¢t al., for a viaduct of the
New Zecaland Railways [5]. 1In this system relatively light
mechanical devices serve as the only means of restraint
against uplift of the railway bridge piers during intense
ground shaking. The mechanical devices absorb energy
during uplift by mechanical moment arms coupled to the base
of each piler. Thils partial isolation system can also be
applied to general structural frames not designed to be
bolted to foundations, but allowed to step off their footings.
The primary purpose of such a design is to minimize the cost
of providing the down anchorage necessary to resist over-
turning forces that can develop under specified ground
accelerations.

As a result of interest in the stepping bridge concept,
a feasibility study on energy-absorbing devices was carried
out by Kelly, Skinner, and Heine [6,7,8]. Among the mechan-
isms of energy absorption investigated in that study, the
more lmportant were found to be load displacement relation-
ship, energy-absorption capacity, and low-cycle fatigue
resistance. Steel bars with a rectangular cross section
to facilitate external clamping without slippage were used
to show that the plastic torsicon of mild steel 1s an extremely

efficient mechanism for absorbing energy and that the mode of



failure in forsion is favorable for use in an energy-absorbilng
device because it takes the form of a gradual decay.

Later work by Kelly, Tsztoo, and Ozdemir [9,10,11]
more accurately defined the energy-absorption mechanism of
the torsion devices experimentally and analytically. The
devices were shown not only to have a substantial damping
capaclity over a prolonged service life, but also to deterio-
rate very gradually and in a predictable manner independent
of loadling rate. A correlation between device response to
sinusoldal and random loading was found, allowling sinuscidal
loading input to be used as the basis for designing an
energy-absorbing device. Most importantly, 1t was noted
that the useful life of such devices was in excess of
300 cycles, far exceeding any loading anticipated from an
earthquake.

In this report, experiments designed to establish the
feasibility of the energy-absorbing device-stepping frame
system under earthquake excitations are described. In a
recent series of tests, a three-story, four column model
steel frame [3,4,12,13] designed to uplift from its footings
was fitfed with energy-absorbing devices and subjected to
several earthguake simulation loadings on the twenty-foot
square shaking fable at the Earthquake Simulator Laboratory
at the FEarthquake Engineering Research Center, University
of California, Berkeley. The El Centro N-S 1940 horizontal

record and a horizontal component of the Pacoima Dam records



~from the 1971 San Fernando Valley Earthquake, each scaled to

various amplifications, were used as input to the shaking

table, Results from these tests are compared to those for

similar El Centro and Pacoima Dam tests on the frame with

the base anchored, and with the frame free to uplift [5,14].
The tests were intended to show that overturning moment

and column tension force when the energy-absorbing devices

- were installed were reduced as opposed to response when the

frame was bolted down. Uplift and lateral story displacement

were also reduced with the devices installed when compared

to the case where the frame was [Iree to uplift. It is

proposed that the use of the energy-absorbing devices be

conslidered as a compromise between the concepts of a fixed

base frame and a frame totally free to uplift.



2, MODEL FRAME

A steel frame [3,4,12,13] designed to rest on either a
conventional fixed base fully anchored to foundation supports
(Fig. 1) or on a base support permitting vertical uplift and
decoupling of the frame from the foundation (Fig. 2) was
used in the present study. The A36 steel frame, standing
18 feet high and measuring 12 feet longitudinally and 6 feet
transversely between column centerlines, was approximately
a half-scale model of an actual structure. The frame con-
sisted of three stories with floor diaphragms of W6xl2 beams
and girders, and four columns wlth Whxl6 steel sections. To
simulate structural dead weight, cach floor was loaded by
concrete blocks to 80060 1b (3630 Kg), yielding a total
welilght of approximately 27,500 1b (12,500 Kg). The structure
had an overall moment of inertia of 190;600 lb-ftmsec2
(2,635,000 Kg-cm-sec) about the lower 6-foot transverse
edge, or 21,900 lb—ft—sec2 (30,400 Kg—cm—secg) about the
centroid of the frame when tested in the longitudinal
direction.

The uplift feoting design is shown in detail in
Fig. 3. Stiffened wide flanges provided the main supports
under the column footings. Stiff laminated pads were placed
directly under each column foot to cushion the supports from
the impact following each uplift. The pads were constructed
of alternate layers of steel plate and neoprene rubber

epoxled together, ylelding a composite vertical stiffness of



about 400 kips/in (71,000 Kg/cm) per pad. Each column shoe
was fitted with a metal shoe and ankle that allowed full
surface contact on the bearing pads while providing a
momentary rotational hinge as the frame rocked. Restraints
alongveach column coupled the frame with the horizontal
motion of the shaking table, but did not prevent free vertical
uplift displacement. Roller guides centered each foot on 1ts
support and restricted uplift so that vertical displacement
could be measured easily.

In the later phase of the testing program, ixtures
-were attached to the column support interface to permit the
energy—absorbing‘devices to be installed (Fig. 4). These
Tixtures were T-shaped tabs bolted to the exterior side of
each column shoe and fixed outer arms welded to the supporting
wide flange beams. The devices were bolted in place between
the outer arms and pin-connected to the tabs that moved with
each uplift of the columns. Thus, the uplift displacement

of the columns lcaded the devices,



3. ENERGY-ABSORBING DEVICES

The key element in the energy-absorbing device used
in the present study (Fig. 5) is a mild steel torsion bar
with ductility characteristics enabling the device to with-
stand large plastic deformation and to absorb selsmic forces.
The rectangular cross section of the torsion bars used in the
device facilitates external clamping of the bar to frame
models [6,7]. Torgue is transferred to the bars by means of
outer moment arms that clamp the bar ends in a stationary
position relative to torque action. The inner moment arms
are pin-connected to active frame elements by a 1l-in. (2.54 cm)
diameter high-strength steel pin, thereby achieving bar forgue
without displacing the pin out-of-plane. The device is inte-
grated with foundation and/or structural frame elements by
means of 3/4-in. (1.91 cem) diameter high-strength nuts and
bolts on the outer arms.

Three-eighths-inech (.95 em) diameter fillet welds were
used to connect all device elements (Fig. 5), since screwed
connections would not have ensured contact interaction
between torsion bars and the moment arm and clamp pieces,
and heavier fillet welds might have led to cracking in
welds due to increased concentration of stress and/or jolint
stiffness [9,10]. The device was designed to be flat in
order to minimize overall dimensions and simplify design.
Common centerlines of symmetry coupled with the fact that

device elements can be cut from a single thickness of A36



mild rolled steel plate facilitate and minimize the cost
of fabricating the device.

Tests on the energy-absorbing device [9,10] indicated
its feasibility under both sinusoidal and random loadings.
The device was shown not only fo have substantial energy-
absorbing capacity over an extended pericd of time, but alsc
To detericrate in a gradual, predictable manner independent
of loading rate. The useful 1life of the device was estimated
to be in excess of 300 cycles, far exceeding any anticipated
selsmic loading.

In tests on an ldentical device under similar conditions,
the hyéteresis locops that developed under sinusoidal loading
effectively bounded those that developed under random loading.
Sinusoidal lbading was therefore deemed to be satisfactory
for use as a basis for design, with a reasonable safety
factor for rating lcading and damping characteristics.

The typical pin displacement vs. force hysteresis diagrams
.shown in Figs. 6 and 7 for the torsion devices used in these
tests were produced using sinusolidal loading callbrated to
displace the pin position + 1/2 in.(jrl.ZT em) out-of-plane.
The device hysteresis prior to testing is shown in Fig. 6,
while that for the device after ten earthquake simulations is
shown in Fig. 7.

Comparison of the hysteresis loops in these two figures
indicates that no deterioration of the devices resulted from

the very substantial plastic deformation that they sustained



during the ten simulated earthquakes of the test program.

The area of the hysteresis loop, representing the energy
displaced per cycle, is in fact slightly larger after the

test program than before. This result is the more note-
worthy when it is realized that the maximum displacement of

the device durlng the test program was approximately 2-1/4 in.,
representing a plastic shear strain in excess of 10%.

After the test program had been completed, a lateral
bending deformation (Fig. 8) of approximately 1/8 in. (.32 cm)
parallel to the axis of the inner moment arms was noted. This
additiocnal lateral deformation occurred when the inner moment
arms rotated sufficiently to cause the torsion bars to bend.
The devices were nonetheless able to dissipate energy with
no signs of cracking or deterioration at these large displace-

ments.
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L. TESTING PROGRAM

Two earthquake records were used to produce the ten
ground moticn simulations used in the testing program:
six scaled signals based on the El1 Centro N-S 1940 horizontal
component, and four based on a horizontal component of the
Pacoima Dam record of the 1971 San Ferngndo Valley Earth-
guake. The maximum acceleration of the scaled E1 Centro
records was 0.786g, and that for the Pacolima Dam records
was 0.955g. In order to simplify input loading and thus
anaiysis and interpretation of test results, no vertical
component was used. An effort was made to duplicate the
command signals used in the earlier tests on the fixed frame
and the frame free to uplift [3]. Thus, results from the
present series of tests with the energy—abéorbing devices
installed in the frame could be compared easily to those
obtained in the carlier tests.

The shaking table functions and frame response were
monitored by 128 separate data channels 1in discrete sampling
intervals, and the digital data were stored on the disk of
a mini-computer [15]. Thirty-six table functions and ninety
transducer and two blank reserve channels on the frame were
monitored with a sampling rate of approximately 50 points
per second for each channel. The data were later ftransferrad

from disk to magnetic ftape for reducticn and znalysis.
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Electrical transducers used during testing and their

functions were as follows:

1.

Accelercometers monitored the shaking table and
horizontal accelerations at each floor of the
frame.

Potentiometers and Direct Current Linear Varying
Displacement Transducers (DC LVDT's) monitored
table displacements, horizontal displacements of
cach floor relative to fixed references off the
table, vertical uplifts or displacements at each
column foot relative to the table, and selected
frame member and joint displacements.

Strain gages epoxled to varicus frame members
monitored strain distribution throughout the
frame, enabling the complete force distribution
and levels of column tension to be determined.
Electrical contact switches embedded in each
support pad monitored each upllift when the
bearing surface of the column foot was completely

free of the support pad,
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5.. EXPERIMENTAL RESULTS

In this section, results of tests run using the scaled
accelerations from the El1 Centro and Paccima Dam ground motion
records are compared for the three model frame base conditions
considered in this report: fixed, free to uplift, and free to
uplift with energy-absorbing devices installed. For zll earth-
quake intensities up to the respective peak accelerations used
in the tests, the uplift of the frame footings was significantly
less than that when the frame was unanchcred. In Figs. 10 and
11, where the rocking motion of the frame is shown with the
uplift of the north side of the frame in the teop grid and that
of Cthe south side In the bottom grid, the effect of the energy-
absorbing devices 1s clearly apparent.

For the El Centro test with peak input acceleration
of 0.768g, third floor displacements were substantially
less with the devices installed than when the frame was free
to uplift (Fig. 12). The relative story displacements of
the frame with devices were similar to those when the base
frame was fixed exceplt that Lhe peak displacements were
slightly larger with the devices. The influence of the
devices on the overall displacement history is, however,
apparent in that considerably more damping of the motion i1s
shown.

The greatest third floor displacement for the Pacoima
Dam test with peak input acceleration of 0.955g (Fig. 13)

oceurred in the frame with the devices installed, the next
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largest 1in the unanchored frame, and the least 1n the fixed
base frame. Although thils result 1s clearly not in favor

of the device application, top story displacements, especially
in the latter portion of the time history following the most
intense portion of the input motion, do show the benefiecial
effect of device damping.

First floor column tension in the frame with devices
for both earthquake series was greater than in the unanchored
frame, but substantislly lesz than that in the fixed bhase
frame Tor both north and south columns (Filgs. 14-17). First
floor column compresgsion during these tests was not critical
(Figs. 14-17). Because column force histories were not
corrected for a static compression of approximately -7000 1b
(-3200 Xg) in each column, all tension levels shown in
Figs. 14-17 should be reduced and all compression levels
increased by 7.0 kips. In the fixed frame, remalning
tenslon was due to the column foundation anchorages, while
such tension in the frame with devices was primarily due to
the restraint oflered by the devices. Tensilon in the unan-
chored frame was probably due to a combination of imperfect
base conditions and inertial effects during dynamic uplift.

Base and upper level story shears in the frame with
devices were far lower than in the fixed frame {Figs. 18 and
19). 1In some cases, the peak shear values in the frame with
devices were conmparable to 1f not smaller than those for

the unanchored frame. The preceding comments apply equally
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to base and story overturning moments for the three cases
(Figs. 20 and 21).

| Test results are summarized for both the El Centro and
Paccima Dam series of earthguake simulations in Tables 1 and
2, respectively. Peak response for average column uplift,
relative third floor displacement, first floor column axial
force, base shear, and base overturning moment are given for

the three test conditions considered in this report.
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6. SUMMARY AND CONCLUSIONS

Comparisons of results from the E1 Centro and Pacoima
Dam earthquake simuiations for the fixed frame and for
the frame free to uplift to results for the frame with the
energy-absorbing devices installed indicate that the concept
of such devices associated with a partilial 1solation system
as a form of aseismic design should be considered as an
alternative to the concepts of fixed base design and design
in which structures are uncoupled vertically from foundations.

In the E1l Centroc tests the devices offered sufficient
base restraint to reduce uplift substantially from levels
observed when the frame was free to uplift. Relative story
displacements were at a level similar to that observed in
the fixed base case, but were substantlially lower than when
fthe frame was uncoupled vertically from its foundation.
At the same time, the devices absorbed significant amounts
of energy and permitted partial base uncoupling, resulting
in reductions of column forces, especlally column tension,
to levels far lower than those for the fixed base case and
comparable to those for the unanchored case. The base and
story shears and story overturning moments were reduced when
the devices were installed tc values less than those recorded
for both the fixed and unanchored cases.

On the other hand, results obtalined usging the peak
acceleration scaled from the Pacoima Dam records were

congpicuously less favorable. TFor certain critical responses,
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such as base uplift and relative f{loor displacement, the
frame with devices installed did not perform better than did
the frame free to uplift without devices. However, other
responses, such as first floor column axial force, base and
story level shear, and base and story overturning moment,
were noticeably improved when the devices were installed as
opposed to results cbtained when the frame was permitted to
uplift freely.

The discrepancy between the results for the El Centro
and Pacoima Dam execitations can perhaps be explained by
the dissimilarity of the records. The Pacolima Dam records
represent an unusual type of earthquake with impulsive
loading oﬁ the order of 1.0g acceleration. The energy-
abscrbing devices act to dissipate energy and to prevent
increasing resonance. Under impulsive loading such as
that in the Pacoima Dam record, the devieces will be rendered
less effective and maximum struétural response will be
determined primarily by inertial characteristics of the
system. Thus, the peak displacement response of the frame
during the Pacoima Dam inputs was not effectively damped
by the devices. The devices did, however, damp frame
response after the initlal impulse, thus mitigating overall
damage.

The initial tests of the energy-absorbing device
desecribed in thls report have established the feasibility

of such devices for aseismic design., EFEnergy-absorbing
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devices incorporating stainless steel alloys, and isolation
systems with natural rubber bearing pads that allow partial
horizontal isolation cf structural frames from earthquakes
are being designed and tested in an attempt to improve on

the results reported herein.
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FIG. 3. COLUMN FOOT ROLLER GUIDE DETAIL,

FIG. 4. COLUMN FOOT/DEVICE INTEGRATION.
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T-Beams," by §.-Y.M. Ma, E.P. Popov and V.V. Bertero -~ 1976 (PB 260 843}al2

"Dynamic Behavior of a Multistory Triapgular-Shaped Building," by J. Petrovski, R.M., Stephen, E. Gartenbaum
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