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CHAPTER 1

INTRODUCTION

1.1 Object and Scope

This report describes a study aimed at developing an understanding

of the response of reinforced concrete coupled wall systems to seismic

loading. The study had analytical and experimental phases as described

below.

Five test structures (approximately one-twelfth scale) were subjected

to one component of the earthquake base motion measured at El Centro,

California (1940). The base motions were strong enough to cause yielding

of the test structures. A sixth test structure was subjected to slowly

applied cyclic lateral loading. The experimental program is outlined in

chapter 2, while the results are. presented in chapter 3. The details of

experimental procedures, along with the characteristics of the test

specimens and materials, are given in appendix A.

An analytical study of the static hysteretic response of the test

structures was undertaken. The effect of the hysteresis relations of the

members on the overall hysteresis relation of the structure was studied.

Equivalent viscous damping factors, consistent with the calculated overall

structure hysteresis relation, were determined. The variation of damping

factor with response mode and response amplitude was studied. The study

of static hysteretic response is presented in chapter 5.

The feasibility of simulating the observed dynamic responses with a

linear viscously damped analytical model was investigated. Both response-
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spectrum analyses and response-history analyses were performed. The study

is presented in chapter 7.

Finally, the experimental results were compared with the results of

the analytical studies. The comparison is described in chapter 8.

1.2 Previous Research

Most previous research in the response of reinforced concrete coupled

wall systems to lateral loading has been analytical in nature. Recently,

several experimental studies have been undertaken.

One class of analytical models for the response of coupled wall

systems to lateral loading considers the connecting beams to be replaced

by a continuous lamina. Several papers discussing the application of this

model to planar structures are Beck (1962), Coull and Choudhury (Feb.

1967), Coull and Choudhury (Sept. 1967), Coull (1971) and Rosman (1964).

The concept was extended to three dimensional buildings by Rosman (1970).

Several limitations of the laminar models are discussed by Macleod (1970).

The laminar concept of analysis is modified to account for piers of

grossly unequal width by Arvidsson (1974).

A method for calculating the strength of coupled wall systems is

presented by Winokur and Gluck (1968). Paulay (1970) applies the laminar

approach in a step-by-step manner, considering elasto-plastic member

behavior,to determine the failure load and mechanism for a coupled wall

system. Consideration of ductility requirements are emphasized. Gluck

(1973) also applies the laminar method to determine a failure mechanism,

and also considers ductility requirements.
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Mahin and Bertero (1976) report an analytical study of the nonlinear

behavior of an l8-story coupled wall structure under earthquake base

motion. The importance of the strength and stiffness of the coupling

beams on dynamic behavior is emphasized.

A number of experimental studies are described in the literature.

A study is described by Aristizabal and Sozen (1976), in which ten

story coupled wall systems were tested under earthquake base motion and the

results compared to a linear dynamic response model.

Paulay (1971) reports tests of isolated coupling beams with various

amounts of longitudinal and shear reinforcement. Tests of small-scale

coupling beams are reported by Irwin and Ord (1976), in which variables

include depth and reinforcement ratio. Paulay and Binney (1974) report

further tests of coupling beams in which the concept of diagonally placed

reinforcement is presented as a means for avoiding shear failure.

Test of coupled wall systems, with diagonally reinforced coupling

beams, are reported by Paulay and Santhakunar (1976).
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CHAPTER 2

OUTLINE OF EXPERIMENTAL PROGRAM

A series of five reinforced concrete coupled wall systems

were subjected to earthquake base motions on the University of

Illinois Earthquake Simulator. An additional specimen 'was subjected

to statically applied lateral loading. Each test structure con

sisted of two walls fastened to the earthquake simulator parallel

to each other, such that earthquake motion would result in bending

of the walls in their strong direction. Each wall consisted of two

piers coupled at six levels by deep beams. Each pier had a nominal

depth of seven inches and a nominal thickness of one inch, and was of

uniform section throughout the height of the wall (Fig. A.17). The

reinforcing steel was uniformly distributed over the cross-section

for a steel ratio of one percent (Fig. A.18-20). The beams were

spaced uniformly along the height of the wall nominally at nine in.

center to center and had a nominal span of four in. and a nominal

thickness of one in. Hence, the test structure had a total height of

approximately 60 in. The beams were doubly reinforced, with equal

steel areas at the top and at the bottom. The longitudinal steel

ratio (each layer) varied from 2.2% to 0.59%, while the depth varied

from 2.25 to 1.5 in. In a given test structure all beams were

identical. Dead load was simulated by 2000 lb. of steel placed at

the levels of the second, fourth and sixth connecting beams. This

provided a total of 6000 lb. of dead load on a test structure. The
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weights were connected at four points, such that the vertical load

was applied through the centerline of the four piers, so as not to

induce moments in the piers or beams. The connection was also such

that rotation of the piers about their strong axis was not restrained.

Failure of the test structure about the weak axis of the piers was

prevented by steel diaphragms bolted at top and bottom to the steel

weights (Fig. A.28). The specimen-to-simulator connection was

designed to simulate a fixed base condition for the test structure.

The principal variable in the series was the strength and

stiffness of the connecting beams. The specimens were grouped into

three classes according to their beam cross-section. For Specimen

Type A, the depth was 2.25 in. with a longitudinal steel ratio of

2.2%; for type B, 1.5 in. and 1.02%; and for type C, 1.5 in. and

0.59%. Designations of test structures of different types are

recorded in Fig. 2.1. Dynamic and static tests have the prefix D

and S.

All dynamic tests used the north-south component of the base

motion measured at El Centro, California in the 1940 Imperial Valley

Earthquake. The time scale of the earthquake was compressed by a

factor of 5.0 to be compatible with the test structure. The

acceleration level was magnified to suit the needs of the particular

test run. Each dynamic test consisted of several test runs. In

essence, the test structure was subjected to the earthquake motion

several times, the acceleration levels of the base motion being

increased in successive runs for a given structure. Each specimen

was tested to failure. During each test run, continuous measurements
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of the lateral deflection and acceleration at the level of each weight, in

the direction of simulator motion, were recorded. A continuous recording

was also made of the acceleration at the base of the test structure (Fig.

A.29).

The static test was carried out with the specimen mounted on the

earthquake-simulator platform and the simulator restrained from motion.

This was done to provide base conditions similar to that in the dynamic

tests. The loading was applied to the test structure, along the axis of

dynamic test simulator motion by two-way hydraulic rams at the levels of

the three weights. Several times the test structure was loaded into the

inelastic range, unloaded, loaded into the inelastic range in the opposite

direction and then unloaded again. The loads in the three rams were main

tained in a constant ratio given by the shape of the computed first mode

of the test structure. Continuous measurements were recorded of the lateral

deflections at the levels of the weights and of the loads in the rams.

Detailed information on the test structures, testing procedures,

instrumentation and data reduction is provided in Appendix A. The test

results are presented in Chapter 3. Figure 2.1 illustrates the organization

of the experimental program.
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CHAPTER 3

OBSERVED RESPONSE

3.1 General Comments

(a) Organization of Presentation

The results of the experimental program outlined in the previous

chapter are presented here. The organization of the presentation is

such that the results are first grouped according to specimen type.

Several important classes of results are described for each specimen

type, all test runs for the particular specimen type being included

under each class.

(a) The condition of the specimen at the start of the initial

test run of each test is discussed. Comments are made concerning

whether it was damaged in removing the forms after casting, in trans

porting the specimen from forms to simulator, or in placing the test

weights and completing the test setup.

(b) The earthquake base motions are discussed. As described

in Appendix A, the north-south component of the 1940 Imperial Valley

Earthquake measured at El Centro, California is used for all test

runs. However, the maximum acceleration was varied from test run to

test run. Elastic response spectra computed from the observed base

motion for a single degree of freedom system are provided for several

values of viscous damping coefficient. The usual tripartite plot

format is first provided, showing all relations plotted together in

a compact manner. This format, however, has its disadvantages for
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qualitatively observing or quantitatively measuring the variation of

acceleration or displacement with frequency. The logarithmic scale

of the tripartite plot format make variations in response with

frequency less obvious and considerably more difficult to measure.

Hence. the response spectra for each test run are also plotted with

the acceleration and displacement on a linear scale. In general.

response spectra are provided for the north wall only. However. for

one run in each test. linear response spectra are provided for both

wa 11 s.

(c) The natural frequencies of the specimen measured in free

vibration tests before each test run are discussed. The natural

frequency observed during the final two seconds of specimen response

is also provided. In most cases. it was possible to excite and

measure the frequencies of both the first and second modes.

(d) The observed horizontal displacements and accelerations

are discussed. At this point. some clarification of the plot format

is in order. The accelerometers and differential transformers were

placed two to each test weight. along the axes of the two walls of

the test structure. Therefore. for each type of instrument. it is

possible to think of two groups of three instruments each. a group

along the axis of the south wall and a group along the axis of the

north wall. The response histories are plotted three to a page.

each page representing the response measured from either the south

group of instruments or the north group of instruments. The lowest

plot on the page is associated with the instrument attached to the

lower test weight. the middle plot with the instrument attached to
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the middle weight, and the top plot with the instrument attached

to the top weight. The plots of observed horizontal displacements

and accelerations are presented for the north wall only.

(e) The observed base shear and base moment aY'e discussed.

The observed accelerations were used to calculate the response

histories for base shear and base moment on a point-by-point basis,

resulting in a response history for the north wall and a response

history for the south wall for each of the two functions. These

were plotted along with observed base acceleration, each page of

plots consisting of base acceleration, base shear, and base moment

for a wall. In most cases these plots are provided for the north

wall only. For one run in each test, they are provided for both

walls.

(f) The distribution and development of the cracks are

illustrated in figures and described. Along, with this the failure

mechanism is described. The yielding and other alterations in

specimen behavior with successive test runs is illustrated by

comparing maximum observed responses to spectrum intensity of

observed base motions.

(g) The deflected shape is illustrated by plotting the observed

deflections at the levels of the three weights one above the other,

at several predetermined times. The times were chosen to correspond

to either positive relative maxima or negative relative maxima in

the response history.
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Results of dynamic tests are summarized in Tables 3.1 through 3.7.

As mentioned in the introduction, the response histories and response

spectra are included in Volume II of this report.

(b) Terminology

Additional comments need to be made concerning certain terminology

on the figures and in the text. In several places, for example, the

figures depicting variation of response with spectrum intensity,

reference is made to average maximum response. This refers to the average

of the maximum response observed for the two instruments attached to a

particular test weight. This is reasonable in many cases because the

two response histories measured at a given test weight are almost

identical.

Another qualification made in several places is maximum double

amplitude displacement, as opposed to maximum single-amplitude displace

ment. Maximum double-amplitude displacement is the largest total of a

positive relative maximum and a negative relative maximum which are

parts of the same cycle of response. In cases of significant residual

plastic deformation, or permanent set, this is a more useful measure

of displacement than single-amplitude maxima.

Reference is made to response in a given mode. By "first mode"

it is meant that the responses at the three levels at a given time are

phased and occur at a frequency that would be compatible with the first

mode of the structure of which dynamic characteristics change during a

given test.
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(c) Spectrum Intensity and Maximum Base Acceleration

In describing the behavior of the system to increasingly intense

base motions, it is necessary to choose some function or parameter to

represent this base motion intensity. Two parameters often used are

maximum base acceleration and Housner's spectrum intensity (Ref. 17 ).

Figure 3.1 compares these two parameters for each test run in the dynamic

test program.

Points are reported for records observed at the bases of both the

north and south walls. Where results are the same for both north and

south walls, only one point is plotted. The two parameters are pro

portional for tests 01, 04, and 05, although Dl-5 deviates somewhat

from the pattern set by earlier runs in the same dynamic test. Similar

results would be obtained comparing either parameter to the maximum

observed responses. Thi s proporti ona 1i ty is not present, holt/ever, for

the tests 02 and 03. It was decided to use spectrum intensity for the

response comparisons. Maximum base acceleration was judged to be more

sensitive to high frequency components or narrow, isolated peaks in

the base acceleration response history. These isolated peaks \'Iould

have little effect upon an integrated quantity such as spectrum intensity.

3.2 Dynamic Tests of Specimen Type A

(a) State Before Test

The only cracks observed in the test structure were those due to

shrinkage. The pattern of shrinkage cracks is depicted in Fig. 3.7.
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(b) Loading

The maximum base acceleration ranged from 0.12 G for test run Dl-l

to 2.2 G for test run 01-5, the intention being to double the maximum

base acceleration successively for each test run, as listed in Table

3.5. The measured response histories for base accelerations are plotted

in Fig. 3.6. There are some high-frequency noise components in the

response for test runs 01"'-1 and 01-2. This ""as due to the low amplitude

of the base motion. The level of the base acceleration was rather close

to the level of accuracy of the accelerometer. Linear response spectra

are provided in Fig. 3.2 and 3.3.

(c) Frequencies

The observed first-mode frequency (very small amplitude, free

vibration) varied from 12 Hz before test run Dl-l to 3.3 Hz at end of

test run Dl-5. The second mode of the test structure was not excited

in its undamaged state. It was possible, however, to obtain an

observation before test run 01-2. At this stage, the frequency was

32 Hz and decreased to 20 Hz after test run 01-5. The observed frequencies

are listed in Table 3.6.

Because of the amplitude difference, the frequency at the end of a

test run should not be compared directly with the frequency measured

before the following test run.

(d) Accelerations

The response histories for horizontal accelerations are shown in

Fig. 3.4. The maximum observed horizontal accelerations are listed in

Table 3.1 During runs Dl-l through Dl-3, the acceleration response was
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primarily in the first mode. Despite the high-frequency content of the

floor 2 record, the phasing and variation over the height of the

acceleration amplitudes were consistent with the first mode.

The character of the lower level acceleration for test runs 01-4

and 01-5 is due to the fact that the base accelerations constitute a

visibly large portion of the absolute acceleration.

In general the acceleration response histories exhibit very little

noise. There is some noise in test run 01-1, but this is not surprising

considering the low amplitude level of the test run.

Finally, it should be noted that the accelerations of the north and

south walls were almost identical. Torsional response does not appear

to have been significant.

(e) Displacements

The response histories for displacement are shown in Fig. 3.5.

The maximum single-amplitude displacements at the level of the top

weight range from 0.059 in. in test run 01-1 to 1.05 in. for test run

01-5. The maximum observed responses are listed in Tables 3.2 and 3.3.

Again, due to the low amplitude of response, high frequency noise

is present in the records for test runs 01-1 and 01-2. To some extent,

this is also true for test run 01-3.

The records exhibit first-mode phasing for all test runs. There

is no evidence of higher mode components in the response histories,

not even in the final test run.
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The residual displacements in the test structure are listed for each

test run in Table 3.4. No significant permanent displacement developed

during test runs 01-1 through Dl-3. During test run Dl-4, however,

permanent inelastic displacement did begin to develop and eventually

attained a value of 0.21 in. at the top level at the close of test run

01-5. It should be noted that residual displacements for the north and

south walls differed in the last two runs. However, the observed

maximum responses (Table 3.2 and 3.3) indicated negligible torsional

component.

(f) Base Shear

The response histories for base shear are provided in Fig. 3.6.

The response varies from 0.5 kip in test run Dl-l to 3.5 kips in test

run 01-5. The maxima are listed in Table 3.5.

The base shear response, although dominated by the first mode, does

appear to contain a higher mode component that becomes stronger with

succeeding test runs. This component had a frequency of approximately

20 Hz in test run 01-5, and is most likely associated with the second·

mode. There is no evidence of torsion in the base shears calculated

for the two walls.

(g) Base Moment

The response histories for base moment are provided in Fig. 3.6.

The maxima vary from 20 k-in. in test run 01-1 to 105 k-in. in test

run Dl-5 (Table 3.5).
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The base moment also exhibits a higher mode component that becomes

increasingly obvious in successive test runs. The component does not,

however, become nearly as strong as in the base shear response. Again

its frequency during test run Dl-5 appears to be approximately 20 Hz.

There is no torsion apparent in the response histories for base moment.

(h) Failure Mechanism

The crack patterns are depi cted for each wa11, at the end of each

test run, in Fig. 3.7. Several of the sketches include two successive

runs. The crack pattern at the end of the earlier run of the set is

shown by solid lines. The additional cracks due to the later run of

the set is shown by dashed lines.

The failure mechanism for the test structure was characterized by

the bases of the piers attaining their maximum axial tension capacity.

None of the connecting beams appears to have yielded.

The variation of observed response with spectrum intensity is

depicted in Fig. 3.8 through 3.10. Fig. 3.11 illustrates the variation

of base shear and base moment with displacement. The responses plotted

are the average of the maxima measured for the north and south walls.

The variation of top level acceleration with spectrum intensity indicates

a decrease in slope with increasing spectrum intensity, until the slope

becomes quite small. Similar trends are observed in the variation of

base moment with spectrum intensity and base moment with top level dis

placement. This indicates the yielding experienced by the test structure

in later test runs. This effect may also be observed in the ~ariation

of deflection with spectrum intensity (Fig. 3.9). The increase in

deflection with increasing spectrum intensity becomes more rapid after
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test run 01-4. It may also be observed that the lower level accelera

tion (Fig. 3.8) does not exhibit a decrease in slope ~Iith increasing

spectrum intensity. For the middle level acceleration, the decrease

in slope is much less dramatic than for top level acceleration. This

is related to the change in the relative strengths of the first and

second modes that occurs with successive test runs. A similar comment

may be made concerning the observation that neither the increase in

base shear with spectrum intensity nor the increase in base shear with

top level displacement is decreased for high values of spectrum intensity.

(i) Deflected Shape

The deflected shape of the test structure was observed at several

predetermined times corresponding to positive or negative peaks in the

deflection response histories. For each particular time, the deflec

tion was taken off the observed response history for each of the

three levels and plotted in Fig. 3.12. Measurements were taken at six

different times for each test run for the south ~all only. An

examination of Fig. 3.12 shows the results to be quite consistent.

The deflected shape is almost linear, with a concentration of rotation

near the base of the test structure.

3.3 Dynamic Tests of Specimen Type B

(a) State Before Test

As with the type A specimen, the only cracks observed were those

due to shrinkage. These are shown in Fig. 3.23a for structure 02 and

Fig. 3.24a for structure D3.
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(b) Loading

The maximum base acceleration ranged from 1.1 G to 4.1 G., as listed

in Table 3.5. The measured response histories for base acceleration

are plotted in Fig. 3.17 for test D2 and Fig. 3.22 for test 03. The

high frequency noise components observed in test 01 did not occur in

tests 02 and 03. There were no runs of such low amplitude that the

response level was close to the level of accuracy of the instrumenta

tion. Linear response spectra are provided in Fig. 3.13 and 3.14 for

test 02 and in Fig. 3.18 and 3.19 for test 03. The spectrum intensities

are listed in Table 3.7.

(c) Freguencies

The observed first-mode frequency, measured in the same manner

as for the type A specimen, varied from 7.8 Hz before test run 02-1

and 7.6 Hz before test run D3-1 to 2.2 Hz at the end of test run 02-2

and 2.1 Hz at the end of test run 03-2. The observed second mode

frequency varied from 39 Hz before test run 02-1 and 35 Hz before test

run D3-1 to 16 Hz at the end of test run D2-2 and 12 Hz at the end of

test run D3-2. The observed frequencies are listed in Table 3.6. As

for specimen type A, the frequency measured at the end of a test run

should not be compared directly with the free-vibration frequency

measured before the following test run because of the difference in

amplitude.

(d) Accelerations

The response histories for horizontal accelerations are shown in

Fig. 3.15 for test 02 and Fig. 3.20 for test 03. The maximum observed

horizontal accelerations for both tests are listed in Table 3.1
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For all test runs, the horizontal accleration appears to have a

very strong higher mode component. The frequency of this component is

consistent with the second mode. The phasing of the horizontal

accelerations is also consistent with the second mode.

Torsional response does not appear to have been significant for the

horizontal accelerations in either test.

(e) Displacements

The response histories for displacement are shown in Fig. 3.16

for test D2and Fig. 3.21 for test D3. Maximum single-amplitude

displacements for type B specimens at the level of the top weight ranged

from 0.43 in. in test run D2-1 to 1.36 in. in test run 02-2. The

maximum observed responses are listed in Tables 3.2 and 3.3.

For all test runs, the phasing and variation over the height of

the displacement amplitudes is consistent with the first mode. There

is evidence, however, of a small, but visible higher mode component.

The frequency of this component is consistent with the second mode.

Residual displacements developed during the second run of both

tests 02 and D3. The residual displacements of the north and south

walls differed significantly, however, the observed maximum displace

ments (Table 3.2 and 3.3) indicated negligible torsional component.

(f) Base Shear

The response histories for base shear are provided in Fig. 3.17

for test 02 and Fig. 3.22 for test D3. The maximum reSDonse varies

from 1.54 kips in test run 02-1 to 2.5 kips in test runs 02-2 and

and 03-2. The maxima are listed in Table 3.5.
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The base shear response exhibits a strong higher mode component,

the frequency of which is consistent with the second mode.

As for specimen type A, there is no evidence of torsion in the

base shears calculated for the two walls.

(g) Base Moment

The response histories for base moment are provided in Fig. 3.17

for test D2 and Fig. 3.22 for test 03. The maxima vary from 56 kip-in.

in test run D3-1 to 65 kip-in. in test run 03-2 (Table 3.5).

The base moment response also exhibits a higher mode component,

although not so strongly as the base shear. Again, the frequency of

the component is consistent with the second mode.

As for specimen type A, there is no torsion apparent in the

response histories for base moment.

(h) Failure Mechanism

The crack patterns are depicted in Fig. 3.23 for structure 02 and

in Fig. 3.24 for structure 03. Each figure shows the crack patterns

for both the north and south walls. One illustration shows the

shrinkage cracks before the first test run. The other illustration uses

solid lines to denote the crack pattern at the end of the first test

run. The dashed lines denote additional cracks that appear during the

second test run.

The failure mechanism in both tests consisted of flexural yielding

of the beams at their ends, followed by flexural yielding of the piers

at their bases.
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After the first test run all connecting beams had very fine

(approx. 0.002 in.) cracks at their ends and there were no visible

residual cracks at the base-pier interfaces (Fig. 3.23 and 3.24).

However, there were very fine cracks in the piers between the base

and the first-level beam. These cracks could be seen only with the

help of the detection ink and were smaller than 0.001 in. The cracks

in the connecting beams had enlarged almost uniformly to widths of

approximately 0.03 in. after test run 2. The cracks in the pier

bases had residual widths of approximately 0.02 in. No spalling of

the concrete was observed in any part of the structure.

The variation of observed response with spectrum intensity is

depicted in Fig. 3.25 through 3.28. As for specimen type A. the yielding

of the test structure is apparent in the variations of displacement and

base moment with spectrum intensity. The variation of base moment with

top level displacement also suggests the yielding of the test structure

(Fig. 3.29). The variation of horizontal acceleration and base shear

with spectrum intensity, by not exhibiting a decrease in slope at

higher spectrum intensities, show the increasing effect of the second

mode.

(i) Deflected Shapes

The deflected shape of the test structure was observed at six

predetermined times for each test run in a manner identical to the

method used for specimen type A. The deflected shapes are plotted in

Fig. 3.29 for test 02 and in Fig. 3.30 for test D3. In a manner

similar to that for specimen type A, rotation appears to be concentrated

below the lower level weight.
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3.4 Dynamic Tests of Specimen Type C

(a) State Before Test

As with both the type A and type B specimens, the only cracks ob

served were those due to shrinkage. These are shown in Fig. 3.41a for

structure 04 and in Fig. 3.42a for structure D5.

(b) Loading

The maximum base acceleration ranged from 1.1 G to 2.4 G, as

listed in Table 3.5. The measured response histories for base

acceleration are plotted in Fig. 3.35 for test 04 and in Fig. 3.40 for

test D5. As for tests 02 and 03, high frequency noise components were

not present in any response histories. Again, there are no extremely

low amplitude test runs. Linear response spectra are provided in

Fig. 3.31 and 3.32 for test 04 and in Fig. 3.36 and 3.37 for test 05.

The spectrum intensities are listed in Table 3.7.

(c) Frequencies

The observed first mode frequency, measured in the same manner as

for specimen types A and B, varied from 6.9 Hz before test run 04-1

and 8.4 Hz before test run 05-1 to 2.2 Hz at the end of test run 04-2

and 2.1 Hz at the end of test run 05-2. The observed second mode

frequency varied from 31 Hz before test runs 04-1 and 05-1 to 13 Hz

at the end of test runs 04-2 and D5-2. The observed frequencies are

listed in Table 3.6. As for specimen types A and B,. the frequency

measured at the end of a test run should not be compared directly with

the free-vibration frequency measured before the following test run

because of the difference in amplitude.
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(d) Accelerations

The response histories for horizontal accelerations are shown in

Fig. 3.33 for test D4 and in Fig. 3.38 for test D5. The maximum

observed horizontal accelerations for both tests are listed in Table

3.1.

For all test runs, a higher mode c0m~onent is quite visible in the

horizontal accelerations. The frequency of this component is consistent

with the second mode. Again, the phasing of the horizontal accelera

tions is consistent with the second mode.

Torsional response does not appear to have been significant for

the horizontal accelerations in either test.

(e) Displacements

The response histories for displacement are shown in Fig. 3.34

for test 04 and in Fig. 3.39 for test 05. r~aximum single amplitude

displacements at the level of the top weight ranged from 0.48 in. in

test runs 04-1 and D5-1 to 1.23 in. in test run 05-2. The maximum

observed responses are listed in Tables 3.2 and 3.3.

For all test runs, the phasing and variation over the height of

the displacement amplitudes is consistent with the first mode. A

higher mode component is barely visible. The frequency of this

component is consistent with the second mode.

Residual displacements developed during the first run of both

tests and increased during the second run. In contrast to specimen

types A and B, the residual displacements of the north and south walls
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did not differ significantly. Similarly, the observed maximum dis

placements (Table 3.2 and 3.3) indicated negligible torsional

component.

(f) Base Shear

The response histories for base shear are provided in Fig. 3.35

for test 04 and in Fig. 3.40 for test 05. The maximum base shear

response varies from 1.35 kips in test run 04-1 to 2.6 kips in test run

04-2. The maxima are listed in Table 3.5.

The base shear response exhibits a strong higher mode component,

the frequency of which is consistent with the second mode .

. As for specimen types A and B, there is no evidence of torsion in

the base shears calculated for the two walls.

(g) Base Moment

The response histories for base moment are provided in Fig. 3.35

for test 04 and in Fig. 3.40 for test 05. The maximum response varies

from 51 kip-in. in test run 05-1 to 63 kip-in. in test run 05-2

(Table 3.5).

The base moment response also exhibits a higher mode component,

however, in general, this component is not so strong as in the base

shear. Again, the frequency of the component is consistent with the

second mode.

There is no torsion apparent in the response histories for base

moment.
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(h) Failure Mechanism

The crack patterns are depicted in Fig. 3.41 for structure 04 and

in Fig. 3.42 for structure D5. The format of the illustrations is the

same as for the type B specimens.

Similarly to specimen type B, the failure mechanism in both tests

consisted of flexural yielding of the beams at their ends, followed by

flexural yielding of the piers at their bases. The cracking pattern

for structures 04 and 05 were also fairly similar to that for the type

B structures. After the first test run, all connecting beams had very

fine (approx. 0.002 in.) cracks at their ends and for structure 04,

there were no visible residual cracks at the base-pier interfaces.

Structure 05, however, did exhibit some visible cracking in this area.

(Fig. 3.41 and 3.42). For structure 04 there were extremely fine cracks

in the piers between the base and the first-level beam. These couid

be seen only with the help of detection ink and were smaller than 0.001

in. For structure 05, however, these cracks were considerably larger

(approx. 0.004 in.) and were visible with the unaided eye. At the end

of test run 2, the cracks at the ends of the beams had enlarged to approx

imately 0.03 in. The cracks at the bases of the piers had residual

widths of approximately 0.02 in. These test structures had some spalling

at the end of test run 2. This was present at the ends of the upper

three beams and at the outside edges of the piers (edges farthest from

the connecting beams).

The variation of observed response with spectrum intensity is

depicted in Fig. 3.43 through 3.45. As for previous specimens, the
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yielding of the test structure is apparent in variation of displacement

and base moment with spectrum intensity. The variation of base moment

with top level displacement also suggests the yielding of the test

structure (Fig. 3.46). Again the variation of horizontal acceleration

and base shear with spectrum intensity do not exhibit a decrease in

slope at higher spectrum intensities~ showing the increasing effect of

the second mode.

(i) Deflected Shapes

The deflected shape of the test structure was again observed at

six predetermined times during each test run in a manner identical to

that for specimen types A and B. The deflected shapes are plotted in

Fig. 3.47 for test 04 and in Fig. 3.48 for test 05. In a manner

similar to that for specimen types A and B~ rotation appears to be

concentrated below the lower level weight.

3.5 Static Test of Specimen Type B

(a) General Comments

It was mentioned in Chapter 2 that a type B specimen was tested

under statically applied lateral loading as part of the experimental

program. The results of that test are presented in this section.

The loads were applied to the test structure by three hydraulic

rams~ one at the level of each test weight. The rams were positioned

such that the loads were applied along an axis parallel to and midway

between the axes of the two walls that comprised the test structure~

causing the test structure to bend about its strong axis. The test
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setup is shown in Fig. A.33, A.34 and A.35. Using mechanical dial

gages, horizontal deflections of each of the two walls were observed

at the levels of the three test weights. Differential transformers,

built into each of the three hydraulic rams, measured horizontal

deflections along the loading axes. Dial gages were also used to

measure horizontal and vertical deflections of the bases of the test

structure. The differential transformers operated throughout the

test, while the dial gages were operative only during a portion of the

first one-quarter cycle of loading. The instrumentation scheme is

illustrated in Fig. A.34. Appendix A describes the test setup and

test procedure in detail.

(b) Loading

The hydraulic rams were programmed to maintain a predetermined

ratio among the three lateral loads. This ratio is shown in Fig. 3.49.

The load ratio corresponds to the shape of the first mode of the test

structure, computed as described in Chapter 4. The test was conducted

by applying certain predetermined increments of top level deflection.

The bottom and middle rams would simultaneously load to the appropriate

ratio of the load in the top ram. The schedule of top level deflections

is shown in Fig. 3.49.

(c) Deflections Measured by Mechanical Dial Gages

The observed horizontal deflections are shown for each of the

north and south walls at the levels of the botto~, middle, and top

weights in Fig. 3.50. In the figure, each dot corresponds to a point
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at which the test was stopped and the dial gages were read. These

measurements include rotation and sliding of the base of the wall.

Vertical and horizontal deflections are shown in Fig. 3.51. The labelling

of Fig. 3.51 may be explained in relation to Fig. A.34. The labels

N-horiz. and S-horiz. refer to the horizontal deflection of the bases

of the north and south walls. The labels NE and NW refer to vertical

deflections measured at the east and west edges of the north wall. The

labels SE and SW refer to similar gage locations for the south wall.

The horizontal measurements are shown as positive in Fig. 3.51 for

deflection to the west. The ram loads were also being applied in a

westward direction. The base moved in the direction of load applica

tion. The NE and SE deflections are positive upward while the NW

and SW deflections are positive downward. The bases tend to rotate

,in a aense consistent with the direction of wall bending. Fig. 3.52

illustrates the method of correcting the observed deflections for

these base motions. The corrected deflections for each of the north

and south walls at the bottom, middle, and top levels are shown in

Fig. 3.53. It should also be noted that the torsional motion of the

test structure was negligible.

(d) Deflections Measured by Differential Transformers

The deflections observed at the bottom, middle, and top levels

are shown in Fig. 3.54. Note that after the first one-eighth cycle,

these are the result of a continuous recording. The test was halted

only when it was desired to reverse the direction of loading. It

should also be noted that since these observations were taken midway

between the north and south walls, they may be thought of as an
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average deflection of the two walls. Finally, the deflections are not

corrected for base deflections. However, considering the magnitude

of the correction applied to the dial gage readings (its effect on

the initial slope was less than one percent for the top-level deflec

tions), this is not critical.

The salient feature of the observed hysteresis is its low stiff

ness at low loads. As the load increases, the load-deflection

relation stiffens and eventually reaches the same maximum load

attained in the first one-quarter cycle. The result, however, is that

with each successive cycle of loading, the test structure must reach

a higher and higher deflection to attain its maximum load capacity.

The small loops were intentional.
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CHAPTER 4

STRENGTH AND DEFORMATION PROPERTIES

4.1 Transformed Sections

(a) Un cracked

The section stiffnesses of the beams and piers based on linearly

elastic behavior (no cracking in concrete) were computed using a trans

formed section, in which the reinforcement was transformed into concrete

through the modular ratio, n = Es/Ec. The sections, for the beams and

piers, are shown in Fig. 4.1. The transformed moments of inertia and

areas were computed for each test structure using the Dec System 10

computer of the Digital Computation Laboratory of the University of

Illinois. The mean measured dimensions of the test structures (Tables

A.6 through A.11), along with reinforcement areas obtained from measured

diameters (Table A.3) and the mean secant modulus of concrete (Table A.1)

were used in the computations. Young's modulus for reinforcement was

assumed equal to 29000 ksi.

Referring to Fig. 4.1 (a), the transformed area of the beams is

gi ven by,

(4. 1)

The transformed moment of inertia is given by.
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The results. for each test structure. are listed in Table 4.1.

Referring to Fig. 4.1 (b). the transformed area of the piers

was gi ven by.

(4.3)

The transformed moment of inertia is given by.

(4.4)

The results for each test structure are listed in Table 4.2.

(b) Cracked

For each test structure, the section stiffnesses were also computed

for a fully cracked state. The concrete was assumed to be linearly

elastic in compression and to have no tensile strength. A linear strain

distribution was assumed. Again measured section dimensions (Tables A.6

through A.ll) along with measured steel area (Table A.3) and measured

concrete modulus (Table A. 1) were used. Young's Modulus of steel was

assumed equal to 29000 ksi. As for the uncracked sections. steel was

transformed into concrete through the modular ratio and calculations

were performed on the Dec System 10 computer.

The approach for the connecting beams is illustrated in Fig. 4.2.

Since the section is linearly elastic and there is no axial load, the

neutral axis corresponds to the centroid of the section. Assuming that

only one steel layer is subjected to tensile force (Fig. 4.2 (a)). the

transformed area is given by.

Acr = be + (2n-l) As (4.5)
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From the definition of a centroid,

- 1 -2 ( )'c Acr =2 bc + n-l As d' + n Asd

After combining with equation 4.5 and algebraic manipulation, a

quadratic equation in e was obtained,

(4.6)

The above quadratic equation was solved for e, and the transformed

area was computed from equation 4.5. The transformed moment of inertia

was then obtained from,

I = 1 be3 + (n-l) A (e_d , )2 + nA (d_e)2
cr 3 s s (4.8)

The fully cracked section may also be characterized by both reinforce-

ment layers being in tension. This is illustrated in Fig. 4.2 (b).

The transformed area is given by,

A = be + 2n Acr s

The centroid of the section is given by,

- 1 -2 (c A = 2 bc + nA d'+d)cr s ,

The resulting quadratic equation is,

-2 + 4n A - 2n A (d'+d) 0c - c -- =b s b s

The transformed moment of inertia is given by,

(4.9)

(4.10)

(4.11)
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For each test structure four calculations were needed. Both states,

discussed above, were investigated. However, the measured dimensions

did not characterize a symmetrical section. The upper and lower rein

forcement layers were not symmetric about the midheight of the section.

Calculations were performed for compression at the top edge of the beam

section and for compression at the bottom edge of the section. The two

results were averaged.

There was some variation among test structures concerning the

number of steel layers subjected to tension. In several test structures,

this characteristic was even altered by reversing the sense of the

applied moment on the section. For test structures 02 and 05, both

reinforcement layers were in tension for both directions of loading.

For test structure 01, for both directions of loading, only one reinforce

ment layer was subjected to tension. For test structures 03, 04 and 51,

the number of steel layers in tension was dependent upon the direction

of loading. The results are presented in Table 4.1.

The calculation of fully cracked section stiffnesses for the piers

involved assumptions similar to those for the beams. The approach was

complicated, however, by the presence of axial load. Both the cracked

transformed area and cracked transformed moment of inertia are functions

of the axial load. The presence of axial load further causes the two

above parameters to become functions of the moment applied to the section.

Hence, computations were performed at several values of axial load and

applied moment, both senses for the applied moment being considered.

The basis for the calculations is illustrated in Fig. 4.3. The

neutral axis does not correspond to the centroid of the section, hence,
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equations are derived directly from considerations of axial load

equilibrium. Also, the derivation is general with respect to the

number of reinforcement layers in compression. This quantity is denoted

by the integer, k. Referring to Fig. 4.3, the cracked transformed area

is given by,

A = c b + k (n-l) A + (6-k) nAcr 0 s s

The cracked transformed moment of inertia is given by,

(4.13)

13 c 2 k 2 6 2/
I cr = l2bco + (-9.. - c) bc + (n-l) A [(c-d.) + nA [(c-d.[.(4.14)

2 0 Si=l 1 Si=k 1

Rearranging,

c 6 k
Icr = 1 bc3 + (-9.. - c)2 bc + (6n-k) Asc

2 - 2A c [n [ d.- [ d.]
12 0 2 0 s i=l 1 i=l 1

6 k
+ A [n [ d~ - [d~]

s i=l 1 i=1 1

The centroid of the section is given by,

1 bc2 + nA P A ~
2 o s. ld. - s. ld.

1= 1 1= 1C = .::---....::_---;:---'---:.......-'--_-'-...0.-
Acr

Also,

(4.15)

(4.16)

(4. 17)

From simple bending theory, the applied moment may be expressed as,

a I
M = a cr

c-c
o

(4.18)
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Solving equation 4.18 for c ,
o

eM - ° Ia cr
M (4.19)

The position of the neutral axis, co' is determined iteratively using

equations 4.13 through 4.19. First, a value of k is guessed. An

initial guess for c is also made. The values for the variables A ,o cr
Icr ' c and 0a are then computed from equations 4.13, 4.15, 4.16 and

4.17. Equation 4.19 is used to compute a new value for c. The
o

difference between the new value and the initial guess is compared with

a predetermined tolerance, indicative of the desired level of accuracy.

If the difference is too great the calculation procedure is repeated,

using the new value of co. When the difference between two successive

values of Co is acceptable, the value is compared with the assumed value

of k. If c is not consistent with k, a new value of k is assumed ando
the process is repeated. If they are consistent, the most recent values

of A and I are taken as the section properties.cr cr
Calculations were performed for each test structure for axial

loads of 0.0, 0.5 kip, 1.5 kips, and 3.0 kips compression, in addition

to 0.5 kip tension. For each test structure these calculations were

performed for the cracking moment of the pier section of the particular

structure, the ultimate moment of the pier section for test structure Sl,

and the average of the two. For each moment-load combination, bending

in both senses was considered. Hence, 30 calculations were performed

for each test structure. The cracked transformed areas and moments of

inertia are presented in Table 4.2. The values tabulated represent

the averages obtained for the two directions of moment application. The

variations of section stiffness with axial load and applied moment,
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although considerable for the transformed area, is insignificant for the

transformed moment of inertia.

4.2 Structure Deformation Properties

(a)· Frequenci es .and· Mode Shapes

The natural frequencies and mode shapes for each test structure

were computed from the model illustrated in Fig. 4.4. The structure has

been cut in half at the midspan of the beams. A roller is idealized at

this point. The implicit assumption is that there is a point of inflec

tion at the midspan of the beams, hence, a bending pattern in the beams

anti-symmetric about the midspan, with the two piers experiencing

identical bending patterns. In addition to flexural deformation, axial

deformation in the piers is considered. The finite joint sizes are

modelled by the infinitely rigid blocks, shown hatched in the figure.

The mass is concentrated along the centerline of the pier, at the center

lines of the second, fourth and sixth level beams, as shown at the right

side of Fig. 4.4. The section properties used are those computed in

Section 4.1 and listed in Tables 4.1 and 4.2. The secant modulus of

concrete for each test structure is taken as the mean from Table A.l.

The calculations were performed using a computer program written in the

Fortran IV Language for the 360/75 computer of Digital Computer Laboratory

of the University of Illinois. The program used is described in Appendix

D.

Computations were performed for test structures Dl through D5 and

Sl. For each test structure, calculations were performed for five cases.
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The symbols used in the following expressions are illustrated in

Fig. 4.4.

(1) Uncracked: Ipi = Itr,Api = Atr,i = 1 through 6

Ib; = Itr,i = 1 through 6

(2) Beams cracked: I . = It ,A . = A ,i = 1 through 6pl r pl tr

Ib. = I ,i = 1 through 6
1 cr

(3) Beams and lower pier cracked:

I . = I A. = A =pl cr' pl cr'

I .
Pl

Ibi = Icr ' i = 1 through 6

(4) Uncoupled piers, uncracked:

Ibi = 0, i = 1 through 6

(5) Uncoupled piers, lower pier cracked:

I = I ,A . = Acr' =pi cr pl

I = It ,A . = Atr , i = 2 through 6pi r Pl

Ibi = 0, i = 1 through 6
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The first and second mode natural frequencies for each test struc

ture for each of the above cases are listed in Table 4.4. The shapes

of the first and second modes are given in Table 4.5. The organization

of Table 4.5 is not by test structure. One value of first mode shape is

provided for each calculation case. The shape of the first mode was

identical for all test structures. The shape of the second mode is

provided for each case for the type A test structure, then for the types

Band C test structures. Although the statistical variation in dimensions

and material properties did not affect the mode shapes, the difference

in beam depth between the type A structure and the types Band C struc

tures did affect the shape of the second mode (Fig. A.17).

(b) Initial Stiffness

The stiffness of each test structure was computed using the

same model, with the same assumptions, as for modal analysis. The

calculations were performed, however, using the computer program

STRUDL-II of the ICES System developed at Massachusetts Institute of

Technology. The model was subjected to lateral loads applied to the

joints as shown in the inset of Fig. 4.4. The ratios between the lateral

loads were chosen to correspond to the computed first mode shape of

the test structures,andiare identical to the ratios used in the static

test (Chapter 3). Th~lrltionale for this choice, as described in

Chapter 3, was that the structure responds primarily in flexure and that

the first mode is dominant in the response history for base moment

during the interval of highest amplitude response.

Stiffnesses were calculated for each test structure for'the

same cases as in the modal analysis. However, direct analyses of the
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model of Fig. 4.4 were done only for the completely uncracked state

(Case (1)). The stiffnesses for the other four cases were computed

using the uncracked stiffness as a reference stiffness and using the

ratios of the first mode frequencies calculated previously in this

section. The implicit assumption is that the structure responded as a

single degree of freedom system. Considering two cases, Case (a) and

Case (b) for a single-degree-of-freedom system,

(4.20)

Hence,

(4.21 )

Rearranging,

(4.22)

where,

k = system stiffness for Case (a) .a
k = system stiffness for Case (b) .b

fa = system frequency for Case (a).

f b
= system frequency for Case (b).

Knowing the stiffness for the case of the uncracked structure and

knowing the first mode frequencies for all five cases, the stiffnesses

for the remaining four cases were calculated.
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The stiffnesses for each test structure, for each of five cases,

were expressed as the ratio of base moment to top level deflection,

and are presented in Table 4.6.

4.3. Moment-Load-Curvature Relations

(a) Cracking Homent

Cracking moments were computed for the beams and piers of each

test structure. The moments were computed using simple bending theory

referring to Fig. 4.1,

(4.23)

where,

P = the axial load on the section (positive
for compression)

The cracking moment for the pier section, a function of axial load,

was computed for several axial loads. The values for the uncracked

transormed moments of inertia were those from Table 4.2. The tensile

strength of concrete was taken as the mean splitting stress from Table

A.2. The cracking moment varied, depending upon the direction in which

bending was assumed to occur. This was due, again, to the fact that the

measured sections were not symmetric. The distance to the center of

gravity depended upon which edge was assumed to be in compression. The

results are presented for each test structure, at several values of axial

load,·in Table 4.3.
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The cracking moment for the beam section was computed for each

test structure using the uncracked transformed moments of inertia from

Table 4.1. As for the pier sections the tensile strength for the

concrete for each test structure was taken as the mean splitting stress

from Table A.2. Again the value of the cracking moment was dependent

upon the direction in which bending was assumed to occur. The results

for the two directions were averaged, and are presented, for each test

structure, in Table 4.1.

The calculations, for both the beams and the piers, were performed

on the Dec System 10 computer of the Digital Computer Laboratory of the

University of Illinois.

(b) Stress-Strain Idealization

In order to compute the moment-curvature relations and moment

axial load interaction for the cross-sections of the members in the test

structures, it was necessary to idealize the measured stress-strain

relations for the concrete and for the reinforcement.

The idealized stress-strain relation for the concrete is shown

in Fig. 4.5 (a). The ascending portion of the compressive region of

the relation is the parabola used by Hognestad ( 16 ) and applied in

several previous studies in the laboratory ( 15, 25 ). This is given

by,

O<E: <E:
- C - 0

(4.24)

For strains greater than E:o' the stress is taken equal to the maximum

stress, in essence,
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E > E
C - 0

(4.25)

The flat portion of the relation is assumed to extend to infinity.

In essence, the concrete is considered to be well confined by the

helical reinforcement of the piers and the closely spaced stirrups of

the beams. For each test structure, the values of f~ and EO' were the

means presented in Table A.1. The tensile region of the relation was

given by,

E
fc = 2f' (-.£) Et '::'E c .::. 0 (4.26)c EO

fc = 0 E
C < Et (4.27)

This is a linear relation with a slope equal to the initial slope of the

compressive portion of the relation. The tensile strength of the concrete

for each test structure, f t , was taken as the mean splitting stress

presented in Table A.2. The value of E: t was derived from the tensile

strength and the initial slope of the parabola.

The idealized stress-strain relation for the reinforcement is shown

in Fig. 4.5 (b). The idealization is of the same form all three sizes

of reinforcement and is assumed to be identical for tension and compression.

The value for Young's modulus is assumed to be 29000 ksi, it being judged

that the measured values, from Appendix A. exhibited too much scatter

for use in analyses. The steel is assumed to maintain its maximum stress

to an infinite strain.

In summary.

-E < E < Esy - S - sy (4.28)
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-£ h < £ < -£ or £ < £ < £ hs - s - sy sy - s - s

-£ < £ < -£ h or £ h < £ < £su - S - S S - S - su

£s ~ £su or £ >-£S - su

(4.29)

(4.30)

(4.31)

The values of £sh and E
SU

for each size of reinforcement are taken

from the means in Table A.4. The value of f sy for each size of rein

forcement in each test structure was taken equal to the mean in Table

A.5. The value for fsu for each size of reinforcement in each test

structure was obtained by multiplying the mean ratios of ultimate stress

to yield stress for each size of reinforcement (Table A.4) by the mean

yield stresses for the reinforcement in each test structure (Table A;5).

(c) General Calculation Method

The main calculation procedure was identical for both the moment

curvature relations and the moment-axial load interaction relations.

The calculation procedure was also generalized to accomodate both the

beams and the piers. The method of calculation is illustrated in Fig.

4.7. Given a rectangular section, consisting of a specific number of

piers, q, with openings, with the positions of several concentrated steel

layers defined, the compressive strain in concrete at the compression

edge of the section, £ ,defined, and the axial load on the section, P,cm
defined, the p~oblem was to compute the bending moment about the plastic

centroid. By performing the calculations for various combinations of
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E and P, both the moment-curvature relations and the moment-loadcm
interaction relations were constructed.

A linear strain distribution was assumed, in essence, the individual

piers were perfectly coupled, to behave as a single section. The stress

strain idealizations were those presented in the previous section. The

explanation will be general with respect to the number of reinforcement

layers, m, and the number of distinct piers, q. Each pier constitutes a

rectangular section.

It is desired that the moments computed be with respect to the

plastic centroid, defined as the point of application of load when the

section is subjected to its maximum axial compressive load and no moment.

This is illustrated in Fig. 4.6. The first step was to compute the

distance dp of this point from the edge of the section in maximum com

pression (Fig. 4.6). The maximum compressive load, in the absence of

moment, is given by,

q m
~ f'bh. + ~ A (f -f ' )

i=l c i=l s su c
(4.32)

The position of the plastic centroid is described by equating the moments

of the distributed loads and equivalent axial force in Fig. 4.6,

q
d P = ~

p m i=l

Rearranging,

f' bh.d.c 1 1

m
+ ~

i =1
A (f -f' )d.s su c 1

(4.33)
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q _ m
fib E h.d. + A (f -f l

) E d.
c i=l 1 1 s SU .c i=l 1

d =-------------'---p q
fib E h. + rnA (f -f l

)

c i=l 1 s SU C

(4.34)

The next step was to compute the position of the neutral axis (Fig. 4.7).

(4.35)
k m
E A (f .-f .) + E A f . = P

i=l S S1 C1 i=k+l S S1

q
!

i=l

From axial load equilibrium,
c2 .

I 1 fcbdc +

cl i

where c is zero at the neutral axis and positive in. the region of the

section subjected to compression. Stresses, strains, and loads are

positive for compression. Since the strain distribution is linear,

c
o

dc = Ecm dEc
(4.36)

Finally,

c q r k m
b~ E fcdE c + As E (f .-f .) + A E f . = P (4.37)E S1 C1 S S1

cm . 1 i=l i=k+11=
Eli

An initial value for the neutral axis distance, c , is guessed. Theo
left hand side of equation 4.37 is evaluated and compared to the given

axial load, P. An algorithm is applied to adjust c in successiveo
repetitions until equation 4.37 is satisfied to within a specified

tolerance. The moment, referenced to the plastic centroid is then

computed from,
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(4.38)

q
M= L:

i =1

m
+ L: A f . (c . -c )

i = k+1 s S 1 S1 P

Since the strain distribution is linear,

Hence,

(4.39)

k
+ L: As(fsi-fci)(cSi-Cp)

i=l

The curvature was computed from,

m
+ L: A f .(c .-c )S S1 S1 P

i=k+1

(4.40)

(4.41 )

The calculations were performed on the IBM 360/75 computer of

the Digital Computer Laboratory of the University of Illinois. The

computer programs are described in Appendix B.

(d) Cases for Calculations

The general calculated shape of the moment-curvature relationships

for the doubly reinforced connecting beams (equal reinforcement top and

bottom) is shown in Fig. 4.8. Numerical studies showed that the influ-

ence of the observed dimensional scatter on the three points indicated
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in Fig. 4.8 was very small. It did not matter whether the average of

the moment-curvature curves or the moment-curvature curve based on

mean dimensions was used. Moment-curvature relationships based on mean

dimensions for the three types of connecting beams are shown in Fig. 4.9a

through c. The differences between positive- and negative-moment strengths

are due to differences in effective depth of the reinforcement.

Moment-curvature relations and moment axial load interaction

relations were computed for the pier cross-section of structure Sl only.

The mean depth and width of the section (Table A. 11) were used. The

reinforcement layers were considered to be in their nominal positions,

in essence, uniformly distributed over the depth of the section. The

variations of section and material properties among test structures was

not considered sufficient to produce a significant variation in strength

properties for the piers. The relations are shown in Fig. 4.10 and 4.11.

The results are listed in Table 4.3.

4.4 Failure Mechanism

(a) General Comments

The failure mechanism for each test structure was investigated

using beam strengths and pier strengths computed as discussed in section

4.3. For the calculations, the story heights were assumed to be equal

to their nominal values. For these larger distances, the variation of

measured distance from the nominal was not considered to be significant.

The loading for the calculation and the resulting reactions are

shown in Fig. 4.12. Concentrated loads at three levels, at the centerline

of each pier, corresponded to the vertical dead load of the test weights.
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Lateral loads were applied at the levels of the second, fourth and sixth

beams. The loads were considered as one, three and five times a constant

Om. These values were chosen to correspond to the computed shape of the

first mode for the test structure (Table 4.5). Depending upon the

governing mechanism, the values of Tb and Cb were determined either from

maximum pier section strength or from maximum beam shears and vertical

equilibrium of the pier. Next, Ml and M2 were obtained from the computed

interaction diagram (Fig. 4.11) at axial loads of Tb and Cb, respectively.

Moment equilibrium about point a was then considered, obtaining Q .m
The base shear, Vb' was then computed considering horizontal equilibrium

of the structure.

(b) Type A Test Structure

The failure mechanism is depicted in Fig. 4.13. The mechanism

is characterized by the development of the maximum tensile capacity at

the base of one pier and a combination of compression and flexure at

the base of the other pier. The beams do not yield. The maximum forces

for the mechanism are listed in Table 4.7.

This mechanism can also be described as failure of the entire

structure as a cantelever, with the maximum load being computed for

flexural failure at the base of the cantelever. Hence, the maximum

base moment may be computed by considering each wall as a single section,

as in Fig. 4.14 and computing the section strength at the appropriate

axial load. The reinforcement layers were considered to be in their

nominal positions. Other dimensions were mean values from Table A.6.

Reinforcement areas were consistent with Table A.3. The two piers act

as a completely coupled unit, as in Fig. 4.7. Moment-Axial Load
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interaction diagrams at several values of E ,were computed for thecm
above section using the computer program of Section 4.3 and Appendix B.

For the compressive axial load corresponding to the dead load on one

wall (3.0 kips), the maximum moment capacity was calculated to be

81 kip-in. As expected, this result was equal to that obtained from the

mechanism analysis.

(c) Types Band C Test Structures

Again, the failure pattern is shown in Fig. 4.13. The pattern

consists of flexural hinges at the ends of the beams and at the bases

of the piers. The mechanism forces (Table 4.7) are provided for two

cases, Mechanism 1 and Mechanism 2. Mechanism 1 considers the beams

to have developed their yield moments, while Mechanism 2 considers them

to have developed their ultimate moments.
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CHAPTER 5

STUDY OF STATIC HYSTERESIS

5.1 Analytical Model

(a) General Comments

An analytical model was developed to study the static response of

the test structure subjected to reversals of lateral loading. The model

considered the cyclic structural response of the test structure for defor

mations into the inelastic range. In essence, the model enabled the

hysteresis properties of the entire structure to be studied given the

momen.t-rotation responses of the individual elements. This section describes

the model itse1f~ while subsequent sections describe several studies performed

using the model. These studies were oriented toward studying the overall

mechanism of energy dissipation~ along with the effect of response amplitude

and mode of response on energy dissipation.

(b) Structural Idealization

The analytical model is depicted in Fig. 5.1. The analysis considered

one-quarter of a test structure or one-half of a wall. The forces result

ing from the analysis were doubled to correspond to forces for one wall.

This idealization assumed that a point of inflection existed at the midspan

of each beam and that there be no axial loads in the beams. The existence

of such a point of inflection depended upon the existence of identical

deformation patterns in each of the two piers of a given wall. This required

that the two piers carry the same load and possess identical distributions

of stiffness. In early stages of loading the piers may have possessed nearly

identical properties, however~ variations in axial load between the piers
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would cause the stiffness of one pier to be different from the other,

leading to different shears in the two piers. In a prototype structure,

a difference in the shears carried by the two piers would cause the gen

eration of axial thrusts in the connecting beams, altering the mechanical

properties of those members. For the test structure, however, this was

not a major consideration. The lateral load was applied directly to each

of the two piers through a very stiff steel weight. As the stiffnesses of

the two piers deviated, redistribution of the loads could occur through the

steel weights themselves, rather than through the beams. This behavior was

further encouraged by the fact that the steel weights were approximately

800 times as stiff, with respect to axial deformation, as the two beams at

the same level in the test structure. Furthermore, the response of an

entire wall was approximated by using the pier hysteresis relations corres

ponding to an axial load equal to the applied dead load. The applied dead

load was an average of. the axial loads in the two piers of a wall. This

condition was required for vertical equilibrium of the connecting beams.

The axial force induced in one pier by the connecting beams had to be of

equal magnitude and opposite sense to that induced in the other pier.

These forces induced by the connecting beams represented the entire deviation

of the axial load in the piers from that axial load due to vertical dead

load. The rationale in using a hysteresis for this "average" axial load

was that an "average" load for the two piers of a wall would be computed

for the pier of the analytical model. The nearly linear nature of the

moment-axial load interaction relation for the pier section for the range

of axial loads encountered in the study (Fig. 4.11) lends credence to this

approach. When the forces computed for the analytical model were doubled,

the result was a reasonable approximation for an entire wall.
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The analytical model considered inelastic action through the approach

of piecewise linear response. A piecewise linear hysteresis relation,

composed of moment and curvature, was idealized for each member, or for

each beam and each story of the pier. Each member was considered to behave

in a linearly elastic manner during each of several steps of loading and

unloading, a step being terminated when any member attained a load corres

ponding to a discontinuity of stiffness in its idealized hysteresis relation.

The altered stiffness of the member was then applied in the next step of

loading or unloading, this step being terminated when another point of

stiffness discontinuity was reached, either in the same member or a differ

ent member. The dead load of the test structure was simulated by concen

trated vertical loads of 500 lb. each, along the centerline of the pier

at the levels of the second, fourth, and sixth connecting beams. These

corresponded to the load of the steel weights in the test structures. The

lateral loading was also applied at the levels of the second, fourth, and

sixth connecting beams. The ratios of the lateral loads were assumed to

remain constant through all stages of loading and unloading, as in the

static test. Referring to Fig. 5.1, the factors al , a2, and a3 remained

constant throughout loading and unloading, only the value of Q varied.

The model ignored axial and shear deformations in the members. The

finite sizes of the joints were considered using the infinitely stiff blocks,

depicted in Fig. 5.1. The test structure was considered to be fixed at

its base.

For purposes of calculation, the model considered the individual

members to be not only linearly elastic, but of uniform section stiffness

throughout their lengths. The calculations were performed considering
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the same piecewise linear moment-curvature hysteresis relation to apply

for the entire length of a given member. This facilitated standard,

linearly elastic structural analysis. This, however, was not a realistic

assumption for higher amplitude stages of loading, when each member would

experience yielding over a portion of its length. Hence, the uniform

section stiffnesses applied for each member during each loading step was

an equivalent or pseudo-uniform section stiffness derived from a more

realistic relation between member end moment and member end rotation.

The moment-rotation relations, considering partial member yielding, are

described in parts (d) and (e); while the moment-curvature relations used to

obtain those moment rotation relations are presented in part (c). The

method of deriving equivalent uniform section stiffnesses from these moment

rotation relations is described in part (f). The calculation procedure

for the structural analysis is further clarified in part (g).

(c) Idealized Moment-Curvature Relations

The moment-curvature relation for the beam section was idealized

tetra-linearly as depicted in Fig. 5.2. The first discontinuity of slope

corresponded to yield of the reinforcement layer subjected to tension, the

second to the attainment of the maximum compressive stress in the concrete

at the edge of the beam section, and ~he third to the attainment of the

strength of the reinforcement layer subjected to tension. The moments and

curvatures corresponding to these three events were the averages of the

values calculated for the beam cross-sections of test structure 51 (chapter

4). Hence, the section stiffnesses for the first three segments of the

relation were defined. The plateau of the relation was nominally of zero

slope, but to facilitate analysis was assigned the small slope shown in
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Fig. 5.2. The limiting curvature, ~~, corresponded to a tensile strain of

0.20 in the reinforcement.

For the cross-section of the pier, the moment curvature relation was

also idealized from that described in chapter 4 (Fig. 4.10). The tri

linear idealization was performed for an axial load of 1.5 kips and is

shown in Fig. 5.3, superimposed on the calculated relation. The limiting

curvature, ~~, was chosen to correspond to a maximum tensile reinforcement

strain of 0.20 in the section.

The parameters Myl ' My2 ' My3 ' M~, ~yl' ~y2' ~y3' and ~~ for both beam

and pier sections are listed in Table 5.1.

(d) Moment-Rotation Relations for Beams

The computation of the end moment-end rotation relation for the

connecting beams is illustrated in Fig. 5.4. The geometry of the beam is

shown in Fig. 5.4(a). The distribution of moment along the beam is obtained

directly from statics, and is illustrated in Fig. 5.4(b). The idealized

moment-curvature relation, presented in part (c) of this section was used

to obtain a curvature distribution along the beam. The end rotation was

then computed as follows.

8 = [e
o

oe =-
E ~E

[~(x) ] x dx (5.l)

(5.2)

where the symbols refer to Fig. 5.4 and ~(x) is the curvature as a

function of the distance along the beam.

Because the moment distribution along the beam was linear and the

moment-curvature relation was idealized as piecewise linear, the variation
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of curvature along the beam for any end moment, was piecewise linear,

greatly simplifying the evaluation of the integral of Equation 5.1. It

was necessary only to compute the moments of several trapezoidal areas about

the hinged end of the beam. Three distinct classes of curvature distribu

tions were delineated. These are shown in Fig. 5.4(c) through (f) and

were based upon the relation of the end moment, M , to the moments Ml'e . y

My2 ' and My3 in Fig. 5.2. For Fig. 5.4(c) through (f), the end moment

Me was less than or equal to the moment My1 ' greater than the moment My1

but 1ess than or equal to the moment ~1y2' greater than the moment r~y2

but less than or equal to the moment My3 ' and greater than the moment

My3 ' respectively. For a given value of Me' the value of 0 (Equation 5.1,

Fig. 5.4(a)) was computed from Equation 5.3, 5.4, 5.5, or 5.6,depending

upon the magnitude of M.e

M < ~1 1e - y (5.3)
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(5.6)

Calculations were performed for several values of Me in each of the four

above ranges. For each case, the values of ¢e' ¢yl' ¢y2 and ¢y3 were

obtained from the idealized moment-curvature relation. The values of

~Xl' ~x2,~x3 and ~x4 were obtained from the moment distribution (Fig. 5.4a)

and the magnitudes of Myl ' My2 and My3 (Table 5.1).

The end rotation, 8E, was then determined from Equation 5.2. The

computed relation between end moment, Me' and end rotation, 8E, is presented

in Fig. 5.5. The point of maximum rotation on the moment-rotation relation

corresponds to the rotation obtained from the case where the maximum

curvature along the beam, ¢e' is equal to the maximum curvature on the

idealized moment-curvature relation. Finally, the moment-rotation relation

was idealized into the tri-linear form also depicted in Fig. 5.5. The

values of moment and rotation corresponding to slope discontinuity in the

idealization are listed in Table 5.2.
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(e) Moment-Rotation Relation for Pier

The computation of the moment rotation relation for each story of the

pier is illustrated in Fig. 5.7. Each member consisted of two infinitely

rigid end portions and the deformable portion of length, £p. Referring

to Fig. 5.7(a), the moment rotation relation was composed of the sum of

the end moments, M , where,e

(5.7)

The linear distribution of moment was obtained directly from statics

(Fig. 5.7b).

The idealized moment-curvature relation, presented in part (c) of

this secti.on, was used to obtain the curvature distribution for a given

pair of end moments, Meb and Met (Fig. 5.7c through e). The total rotation

was obtained from

(5.8)

Again, the curvature distribution was piecewise linear, enabling the

integral of Equation 5.8 to be evaluated as the sum of several trapezoidal

areas.

Considering Met to be less than or equal to MYl for the pier, 8E
was computed from Equation 5.9, 5.10 or 5.11, depending upon the magnitude

of Meb (Fig. 5.7c, d and e).

Mb < M1e - y (5.9)
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M1<Mb<~12y e - y (5.10)

(5.11)

For given values of Meb and Met' the curvatures ~eb and ~et were obtained

from the idealized moment-curvature relation (Fig. 5.3). Knowing the

values for My1 and My2 ' the values of ~x1' and ~x2 and ~x3 were computed

from the linear distribution of moment (Fig. 5.7b).

In relating BE to Me there was some question concerning how the

individual end moments Mband Mt vary as the total, M , is varied. Ine e e
computing a moment-rotation relation, Metwas considered constant, while

only Meb varied. The relation was then computed from Equations 5.9

through 5.11. However, the moment-rotation relation was different for

different values of Met' necessitating computation of the relation for

several values of Met.

The calculated moment rotation relations are presented in Fig. 5.6.

The point on each relation corresponding to maximum rotation corresponded

to a value of ~eb equal to the maximum curvature consistent with the

idealized moment-curvature relation (Fig. 5.3). The calculated curves

were finally idealized into the trilinear form shown in Fig. 5.6. The

values of moment and rotation corresponding to discontinuity of slope in

the idealized relations are listed in Table 5.2.
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(f) Equivalent Section Stiffness

As mentioned in part (b), the analytical model assumed a prismatic

section along the length of any given member. Due to local yielding, the

section stiffness does vary along the length of both beams and. pier members.

In order to account for the variation of section stiffness, an equivalent

section stiffness was used. This was obtained by setting the ratio of the

end moment to the end rotation for a member with uniform section stiffness

equal to the slope of the calculated moment-rotation relation (Fig. 5.5

and 5.6). The uniform section stiffness satisfying this criterion was then

used in the analysis. The procedure will first be illustrated for the beams.

The geometry and distribution of moment for the equivalent beam would be

that depicted in Fig. 5.4a and b. The distribution of curvature is shown

in Fig. 5.8, where Eleq represents the uniform section stiffness. The end

rotation of the member was computed by applying Equations 5.2 and 5.3.

2
1 ~1 ,q,e

8
E

= - (_e_)
3 EI eq ,q,E

Denoting the ratio of end moment to end rotation for the equivalent
Me

member by (e-)eq'
E

(5.12)

(5.13)

r,1
Denoting the slope of the inelastic moment rotation relation by (e~)Y'

the criterion to be satisfied was,

M r·1
(e) = (~)

8E eq 8E y

Combining Equations 5.13 and 5.14,

(5.14)
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1
Me Q,2

EI = - (-) (~)
eq 3 BE Y Q,E (5.15)

EI , was aeq
a new value of

In general, during a given load step, each beam was at a different stage
~1e

in its hysteretic response, hence, (e-) , and therefore
E y

different numerical value for each beam. By determining

EI for each step of loading or unloading, a condition was maintained ineq
which the equivalent member had the same moment rotation stiffness

(overall stiffness) as the more realistically modeled inelastic member.

The same fundamental concept as for the beams was used to obtain an

equivalent uniform section stiffness for the pier members. The appropriate

geometry and moment distributions for the equivalent member were those

depicted in Fig. 5.7(a) and (b). The distribution of curvature is depicted

in Fig. 5.9. The computation of the total rotation, BE' was accomplished

by applying Equation 5.9. Hence,

~1 + M
8
E

=1 (et eb)Q,
2 EI Peq

As was required for the equivalent beam member,

Combining Equations 5.7, 5.16 and 5.17,

(5.16)

(5.17)

(5.18)
Q, M

EIeq = --.l?- (-~)2 8E Y

As for the beam a new value of EI eq was computed whenever the slope

of the inelastic moment-rotation relation changed. In this manner the

overall stiffness of the equivalent member was maintained equal to that

of a realistic yielding member.



60

(g) Calculation Procedure

The calculation procedure applied to the model of Fig. 5.1 is outlined

in Fig. 5.10. Cyclic loading is modelled by applying various hysteresis

schemes to the primary moment-rotation relations of Fig. 5.5 and 5.6.

Hence, in addition to the structural idealization of Fig. 5.1, the input

for the analysis consisted of a piecewise linear hysteretic moment-rotation

relation for each member in the structure. An example would be that of

Fig. 5.13. As discussed previously, the analysis was performed in a series

of steps of loading or unloading, members being linearly elastic in each

step. For each step the uniform section stiffness, Eleq , to be applied to a

member was determined from the slope of the applicable portion of the

moment-rotation hysteresis relation, using either Equation 5.15 or 5.18.

The resulting set of uniform section stiffnesses was then used to assemble

the equivalent structure stiffness matrix, [K ], a 12 by 12 matrix. Thiseq
represented a tangent stiffness for the non-linear hysteretic structure.

The degrees of freedom considered for the structure were the lateral dis

placement and rotation for each of the six beam-column joints (Fig. 5.1).

However, the fact that the externally applied moment at each joint was zero

was used to condense the stiffness matrix into a six by six format, where

the six degrees of freedom were the lateral displacement of each joint.

Explicit consideration of the rotations of the hinged ends of the beams

was avoided by modelling each beam as a rotational spring of stiffness

given by,

(5.19)

Me
where (8[)eq was given by Equation 5.13.
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Again, in general, ksp had a different numerical value for each beam.

The degrees of freedom are depicted in Fig. 5.11, which is a representation

of the structure of Fig. 5.1. The degrees of freedom Ui and 8i represent

lateral displacement and rotation of the i th joint. The load Pi was the

lateral applied load at the i th joint. The six member vectors, {U},{8} and

{P} were composed of the values of U., 8. and P., respectively.
1 1 1

The incremental load vector {6P} consistent with the loading pattern

depicted in Fig. 5.1 and 5.11 was given by,

(5.20)

a3
0

{R } = a2 (5.21 )
~

0
al
0

where 6Q was the increment of the load Q (Fig. 5.1). The value of 6Q

was guessed at this stage of the analysis. The vector {R~} denoted the

predetermined ratio of the lateral loads, which remained constant through

out the analysis.

where a1, a2 and a3 are defined in Fig. 5.1. What resulted was a straight

forward problem in linearly elastic structural analysis. The equilibrium

equation was given by,

(5.22)

where the six member vecto~ {6U}, contained the incremental lateral displace-

ment at each joint (Fig. 5.11). Solving,

(5.23)
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The six joint rotations (81 through 86 in Fig. 5.11) were derived from

{~U} via a six by six transformation matrix, [TJ.

{M} = [T] {~U}

Combining equations 5.20, 5.23, and 5.24,

(5.24)

(5.25)

The structure geometry was such that the six joint rotations were identical

to the end rotations, 8E, of the beams. The total end rotations, 8E,

for the pier members were obtained by summing the two appropriate joint

rotations. Hence, the incremental joint rotations, {~8}, were directly

translatable into increments of the member end rotations,neE, for which the

piecewise linear moment-rotation hysteresis relations were developed.

Using the moment-rotation relations, incremental end moments,~ME' were

defined. For each member there existed a factor, f, such that,

(5.26)

where,

= incremental end moment for a member implied
by the vector,{~8}, as calculated in Equation
5.25.

end moment of a member at beginning of the
loading step in question.

end moment of a member corresponding to a change
in slope of the moment-rotation relation.

Rearranging,

(5.27)
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Equation 5.27 was evaluated for each member in the structure. The smallest

resulting value was designated f .. A vector, {~ME'} of member end momentsmln
was then defined by,

(5.28)

This represented the vector of incremental member end moments at which the

stiffness distribution of the structure needed to be altered. Because the

structure was assumed to respond linearly during each load step,

{~P' } = f. {l1P}mln

and

(5.29)

(5.30)

where {~PI} and {~U'} represented the incremental lateral loads and joint

deflections corresponding to {~ME}' The lateral loads and lateral joint

deflections at the onset of the loading step in question were denoted by

{Po} and {Uo}' respectively. The lateral deflections and lateral loads

for the level of each beam at the end of the step were then obtained from,

and

{U} = {~U'} + {U }
. 0

{P} = {~P'} + {P}o

(5.31)

(5.32)

The values of {U} and {P} from Equations 5.31 and 5.32, then became the

new values of {Uo} and {Po} for the next step of loading or unloading.
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By repeating the preceding sequence for load step after load step,

the lateral load-lateral deflection hysteresis for the structure was

computed. The result was, of course, a piecewise linear relation. The

calculated lateral loads were then used to compute the base moment. The

structure hysteresis was then illustrated by the relation between top

level deflection and base moment.

5.2 Study of Hysteresis Shape

(a) General Comments

The analytical model described in Section 5.1 was used to study

the effect upon the overall structure hysteresis of various hysteresis

models applied to the beams. This section describes that study. The first

hysteresis model investigated was that devised by Takeda (ref. 36). This

was a general model for reinforced concrete used in previous studies (ref.

15,2$. Subsequent investigations applied modifications of the Takeda model

to the beams. These were designed to simulate phenomena such as total

loss of concrete for the beam section adjacent to the pier edge, slip of

beam longitudinal reinforcement in the joint, and yielding of beam longi

tudinal reinforcement in compression as cracks close on the beam adjacent

to the pier edge. For all cases, the pier was assigned an unaltered Takeda

model.

The imposed deflection schedule was identical for all models and is

depicted in Fig. 5.12. The limiting top level deflection for each quarter

cycle was chosen to be equal to the limiting top level deflection for the

corresponding quarter cycle of Test Sl. The loading history considered a

total of one and one quarter cycles.

As described in the preceding section, the model utilized a pre

determined ratio among the lateral loads which remained constant throughout
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a given analysis. For this study, this ratio was chosen to correspond to

that for Test 51. The loads were constrained to be in a ratio given by

the shape of the first mode for the test structure. Referring to Fig. 5.1,

the ratio a1:a2:a3 was equal to 1:3:5.

The following parts will describe each of the five models studied

and present the resulting overall structure hysteresis, in terms of base

moment and top level deflection.

(b) Hysteresis Modell

Modell (Fig. 5.13) was an unaltered Takeda model. As for all cases,

in the first quarter-cycle the relation corresponded to the calculated

moment-rotation relation (Fig. 5.5). The points in Fig. 5.13 corresponding

to the first and second yield levels are denoted by Y1 and Y2, respectively.

The primary curve was also defined in the opposite direction of loading

(shown as a broken line in Fig. 5.13), the points corresponding to the

first and second yield levels being denoted by -Y1 and -Y2, respectively.

The hysteresis rules were defined as follows. The maximum rotation

experienced by the beam during the first one-quarter cycle was denoted

8m1 with the corresponding point on the moment-rotation relation being

denoted M1. The maximum rotation was a result of the analysis and was

the rotation consistent with the predetermined limiting top level deflec

tion for the first one-quarter cycle. The slope of the unloading segment

was determined from,

(5.33)

where sl was the slope of the first segment of the primary curve. The

point on the hysteresis relation corresponding to zero moment, point R1,
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was defined as the intersection of the unloading segment with the rotation

axis. The first reloading segment was defined as a straight line connect-

ing points Rl and -Yl. The path of reloading during the third quarter

cycle then followed the primary curve "breaking" at point -Y2 and reversing

at point M2. The slope of the second unloading segment was computed in a

manner similar to that of the first unloading segment.

(5.34)

The intersection of the unloading segment with the rotation axis defined

point R2. The next reloading segment was defined as a straight line

between points R2 and Ml. Further reloading, with rotations greater than

8 1 occurred along the primary moment-rotation curve, terminating at am

rotation 8m3 (point M3). All six beams were rotated beyond 8y2 during

all of the first, third and fifth quarter cycles. The calculated values

of 8ml , 8rl , 8m2 , 8r2 and 8m3 for each of the six beams are listed in

Table 5.3.

The six pier members (one member for each story) also followed the

Takeda model, but they did not experience such extensive yielding as did

the beams. The rotations for the pier members of stories two through six

did not exceed 8yl at any time (Fig. 5.6). The first story pier member

did experience limited yielding. During the first quarter cycle, the

rotation did not exceed 8yl ' hence, unloading and reloading occurred along

the original loading path. During the third quarter cycle, the maximum

rotation exceeded 8 l' but not 8 2' The point corresponding to the maximumy y-

rotation, 8m2 , was denoted M2. Ina manner similar to that for the beams,

the slope of the unloading segment was computed from Equation 5.34. Again
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the intersection of the unloading segment with the rotation axis defined

point R2 and the reloading segment was defined as a straight line

connecting points R2 and Ml, even though 8ml was less than 8yl . The

reloading then followed the primary curve to the maximum fifth quarter

cycle rotation 8m3 . The values of 8ml , 8 rl , 8m2 , 8r2 and 8m3 are listed in

Tabl e 5.3.

The calculated overall structure hysteresis is shown in Fig. 5.14 as

the relation between base moment and top level lateral deflection. The

regions of the moment-deflection hysteresis corresponding to significant

events in the moment rotation hysteresis of the beams (yielding, attainment

of zero moment) are indicated in the figure. The numbers in parentheses

after the type of the event indicate the order in which the beams at the

various levels experienced the event.

(c) Hysteresis Model 2

The second hysteresis model considered the beams to lose all concrete

in the region adjacent to the edge of the pier after the first quarter

cycle of loading. In this region the section consisted only of the blO

layers of reinforcement. This is illustrated in Fig. 5.15.

To modify the Takeda model for the above condition, it was necessary

to compute the moment-rotation relation for the beam of Fig. 5.l5(d).

It was considered that the yield of the reinforcement adjacent to the pier

edge would lead to the development of an indefinite concentrated rotation

of the beam in the region adjacent to the pier. In essence, it was assumed

that the reinforcement did not strain harden. The resulting moment-rotation

relation is illustrated in Fig. 5.16(c).

computed from,

The yi e1d moment, r1 ,wasys

(5.35)
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as illustrated in Fig. 5.16(a), where f
SY

was obtained from Table A.5 for

the #11 size reinforcement of test structure Sl, As was obtained from the

measured diameter for the #11 wire (Table A.3), and the depths, d and d',

were equal to the nominal values for the test structure. The computation

of the beam rotation corresponding to the development of the yield strength

of the reinforcement adjacent to the pier, 6ys ' (Fig. 5.16(c)) involved

considerable judgment. Fortunately, as will be illustrated later, the

final structure hysteresis relation was not sensitive to the value of 6ys

The reinforcement was assumed to experience a uniform curvature over the

width of the crack, £cr (Fig. 5.15). Due to the moment gradient along the

beam this assumption was not strictly correct. Due to the insensitivity of

the results to 6ys ' this was deemed an acceptable assumption.

was computed, as illustrated in Fig. 5.16(a). From geometry,

2€
:::~

ct>ys d-d '

Hence, 6ys

(5.36)

(5.37)

where ct>ys was the localized curvature at yield and €sy was the strain in

the reinforcement at yield. Since the curvature was assumed uniform over

the length of the crack,

6 - ct> £ys ys cr

Assuming bond between steel and concrete to be destroyed for some distance

beyond the actual separation in the concrete, a value of 0.25 in. was

considered for £cr' resulting in a value of 0.001 radians for 6ys '

The resulting modifications to the Takeda hysteresis model are

illustrated in Fig. 5.17. The primary moment-rotation relation calculated

for the beam was applied as for the unaltered Takeda model. The moment

rotation relation for the damaged beam (Fig. 5.16) is also depicted in
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the figure, the points corresponding to yield for positive and negative

directions of loading being denoted by (S) and (-S), respectively. Loading

in the first quarter cycle to point (Ml) occured along the primary curve as

for the Takeda model. Similarly, the unloading slope, sri was defined as

for the Takeda model. The value of srl defined the location of point

(Rl). At this stage of the loading, the crack at the end of the beam was

assumed to be partially developed (Fig. 5.l5(c)). The reloading segment

was defined as a straight line connecting points (Rl) and (-S). This

represented complete opening of the crack. Further reloading occurred along

the moment-rotation relation for the damaged beam, the maximum rotation,

8r2 , being attained at point (M2). The slope of the unloading segment was

determined as for the Takeda model (Equation 5.34), determining the location

along the rotation axis of point (R2). Next, the point (Ml ' ) was defined

as that point on the moment-rotation relation for the damaged beam char

acterized by a rotation equal to 8ml . The reloading segment was then

defined as a straight line connecting points (R2) and (Ml'). Further

reloading, beyond a rotation of 8ml , occurred along the moment-rotation

relation for the damaged beam, the maximum rotation attained being denoted

8m3 and the corresponding point being (M3).

All six beams experienced the complete sequence of events depicted in

Fig. 5.17. In essence, they all experienced the complete yielding process

in each direction of loading. The calculated values of 8ml , 8r l' 8m2' 8r2 ,

and 8m3 for each beam are listed in Table 5.3.

At this point the insensitivity of the hysteresis to the magnitude

of 8ys should become apparent. The only effect of this rotation upon the

entire hysteresis relation is its effect upon the slope of the first
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reloading segment (third quarter cycle). Referring to the values for 8 rl ,

listed in Table 5.3, a reduction of 8 by 50% to a value of 0.0005 radian,ys
would increase the slope of the reloading segment by 12%, for the first

level beam. The effect for other beams would be much smaller. Hence, the

uncertainty in the choi ce of 8 is not a factor for seri ous concern.ys
The Takeda hysteresis model was applied to the pier members, with the

pattern of behavior paralleling that for Hysteresis ModelL The members

for stories two through six remained elastic throughout the analysis while

the first story member followed the sequence of loading and unloading

described for Modell. The calculated values for 8 1, 8 l' 8 2' 8 2 and
In r m r

e 3 are listed in Table 5.3.m

The computed overall structure hysteresis relation, in terms of base

moment and top level deflection is shown in Fig. 5.18. As for Model 1

(Fig. 5.14) the regions of the moment-deflection relation corresponding to

the various significant events in the hysteretic response of the beams are

indicated, along with the sequence in which the various beams experienced

each event.

from that of a prototype reinforced concrete structure, a case can be made

for analogous behavior.

The mechanism of slip of reinforcement in the beam-pier joint of a

prototype reinforced concrete structure is illustrated in Fig. 5.19.

Deformed reinforcement would be present and the slip would be a manifestation

of the elastic deformation of the bar in the joint. In Fig. 5.l9(a),
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the top layer of reinforcement is loaded to its yield stress, f ,at thesy
face of the joint. The force in .the bar associated with the yield stress

must be in equilibrium with the total force developed by the bond stresses

along the length, ~d' the development length for the bar.. The stress in

the bar at a distance ~d into the joint would be zero. There would be an

elastic deformation, ~~, for the bar, associated with this change in stress

over the length ~d' A manifestation of this deformation would be a deflec

tion of the lugs on the reinforcement, accompanied by localized crushing of

concrete adjacent to the lugs. This would cause the development of the

voids illustrated in Fig. 5.19(a). When the direction of loading in the

beam is reversed, the reinforcement layer, after unloading, must slip the

distance ~~ before the lugs can bear on their opposite faces~ allowing the

reinforcement to develop compressive stress, and the beam to develop load

in the opposite direction. The corresponding rotational slip in the beam

would be given by,

(5.38)

As reloading occurs, the development of tensile stress in the bottom

reinforcement layer will cause damage to concrete similar to that for

the top layer in the first quarter cycle (Fig. 5.19(b)). When the

direction of loading is again reversed, slippage must occur twice. The

bottom reinforcement layer must slip a distance~ ~£~ to develop compres

sive force~ while the top layer must also slip a distance, ~£, to develop

tensile stress (Fig. 5.19(c)). The corresponding rotational slip would

be given by,

(5.39)
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As tensile stress is again developed in the top reinforcement layer, further

crushing will occur adjacent to the lugs. The slippage of the reinforce

ment layer will become 2(6~). Hence, the rotational slippage of the beam

at zero load will be increased by the increment 6Wl for each successive

reversal in loading.

The situation was somewhat different for the beam-pier joint of the

test structure. The reinforcement was underformed wire. Positive anchorage

was obtained by spot welding the beam longitudinal reinforcement to the

vertical reinforcement of the pier. It can be argued that tensile forces

in the longitudinal beam reinforcement transferred to the pier reinforcement

through welds, are then resisted by compression in the concrete adjacent

to the welds. Crushing of concrete may occur, creating a slip mechanism

analogous to that described in the previous paragraph (Fig. 5.20).

As discussed previously, the incremental slip for each cycle, 6~,

will be equal to the elastic deformation of the longitudinal beam reinforce

ment over its development length in the joint. The computation of this value

is illustrated in Fig. 5.21. The stress in the reinforcement at the face

of the joint was assumed to be equal to the yield strength of the steel.

The variation of the tensile stress in the reinforcement along its length

was assumed linear, the stress equall.ing zero at a distance, ~d' into the

joint. The implication was that the bond stresses between steel and con-

crete along the length of the reinforcement were uniform. The differential

deformation, d~~ is given by,

d~ = E dxs (5.40)

where E
S

is the strain in the steel at a distance, x, from the point of
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zero steel stress (Fig. 5.21). The total deformation is given by,

" "I'd d' (5.41)
o

Combining Equations 5.40 and 5.41 and expressing the results in terms of

stress, results in,

(5.42)

where f is the stress in the steel at a distance, x, from the point ofs
zero steel stress and Es is Young's modulus. The linear variation of

stress with, x, may be expressed as,

(5.43)

where fsy is the yield strength of the reinforcement. Combining Equations

5.42 and 5.43 and evaluating the resulting integral resulted in,

f 9,
/:,9, = 1 sy d

2 Es
(5.44)

The corresponding rotational slip for the end of the beam was then expressed

as,

(5.45)

The value for f sy was taken from Table A.5 for test structure 51. Young's

modulus was assumed equal to 29000 ksi. The depths, d and d', were assumed

equal to their nominal values for the type B test ~;tructure. The development

length, 9,d' was assumed equal to three inches. This implied that three of
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the vertical wires in the pier resisted the entire force in the longitudinal

reinforcement of the beam. The result, computed from Equation 5.45, was

a rotational slip, ~wl' equal to 0.003 radian.

The modification of the Takeda hysteresis model to account for the

slip mechanism is shown in Fig. 5.22. The model was identical to the

Takeda model during the first quarter cycle of loading to a rotation equal

to 8ml (point Ml). Similarly the slope of the unloading segment, defining

the location of point Rl was consistent with the Takeda model. However,

before reloading could occur, a slip equal to ~wl (0.003 radian) was

assumed to occur. This slip corresponded to the effect of the voids in

the concrete depicted in Fig. 5.l9(a). In this manner, point (Rl')was

located. The first reloading segment was defined as a straight line

connecting points (Rl') and (-Yl). Further reloading occurred, as for the

Takeda model, along the primary curve, to a maximum rotation equal to

8m2 (point M2). The unloading segment was consistent with the Takeda model

(Equation 5.34), defining the location of point (R2). Before reloading

occurred, a slip equal to 2 (~wl) was assumed to occur, locating point

(R2 1
). This slip corresponded to the slippage of the reinforcement through

the voids illustrated in Fig. 5.l9(b). For reloading, the slip of the

top reinforcement layer in Fig. 5.l9(b) must also manifest itself in the

translation of the primary moment-rotation relation a distance ~wl' along

the rotation axis. The translated moment-rotation relation is shown

dashed in Fig. 5.22. The point (Ml ' ) on the translated relation, at a

rotation equal to 8ml , was defined. The first reloading segment was then

defined as a straight line connecting points (R2 1
) and (Ml ' ). Further

reloading was assumed to occur along the translated moment-rotation

relation, terminating at a rotation equal to 8m3 (point M3). All six
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beams experienced the entire sequence of loading and unloading depicted

in Fig. 5.22. The calculated values for 8ml , 8rl , 8m2 , 8r2 , and 8m3 are

listed in Table 5.3.

The pier members were assumed to follow an unaltered Takeda hysteresis.

The sequence of loading and unloading was similar to that for Models 1 and

2. The second through sixth story members remained elastic. The calculated

values for 8ml , 8rl , 8m2 , 8r2 , and 8m3 for the first story member are

listed in Table 5.3.

The calculated structure hysteresis in terms of base moment and top

level deflection, is shown in Fig. 5.23. As for Models 1 and 2, the regions

of the moment-rotation relation corresponding to the various events in

the hysteretic response of the beams are indicated, along with the sequence

in which the beams experienced each event.

(e) Hysteresis Model 4

The fourth beam hysteresis model was a modification of the second

model. As for Model 2, the section of the beam immediately adjacent pier

was assumed to be characterized by total loss of the concrete. Only the

reinforcing steel remained. This state is depicted in Fig. 5.15, 5.16,

and 5.24(a). For Model 2, the beam in this region was assumed to experience

indefinite concentrated rotation, performing as a section composed only of

two yielded reinforcement layers. For Model 4, however, the beam was

assumed to experience only a specific amount of rotation before closure of

the crack or gap adjacent to the pier occurred (Fig. 5.24(b)). This

transformed the section into one composed of both concrete and steel,

enabling further reloading to occur.
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Fig. 5.24 also illustrates the computation of the rotation necessary

to cause closure of the crack.

was given by,

The rotation, 8 ,consistent with closure,
c~

assuming the mid-height of the section to be the center of rotation. For

this purpose, the crack width, ~ ,was assumed equal to 0.005 in., resultcr
ing in a rotation of 0.0067 radian. Consistent with the crudeness of the

assumptions, a rotation to closure of 0.006 radian was applied in the

analysis.

The modification applied to the Takeda hysteresis model is illustrated

in Fig. 5~25. The primary moment-rotation relation and the moment-rotation

relation for the damaged beam (Fig. 5.15 and 5.24) are shown as for Model 2

(Fig. 5.17). The moment-rotation relation for the damaged beam is identical

to that for Model 2. The loading relation in the first quarter cycle, the

first unloading segment, and the first reloading segment, terminating at

point (-5), are identical to those for Model 2. Further reloading follows

the moment-rotation relation for the damaged beam for rotations less than

8C~ (point Cl). At this point closure of the crack (Fig. 5.24(b)) was

assumed to occur, and further reloading occurred along a segment with a

slope equal to sl; the damaged concrete and steel section was assumed to

have a stiffness equal to that of the intact beam section. The reloading

segment was assumed to terminate along the primary moment-rotation relation

at point (Cl'). At this moment level, yielding of the member was assumed

to occur, and further reloading was consistent with the primary relation,

terminating at a rotation equal to 8m2 (point M2). The unloading segment

was defined as for Model 2, defining the location of point (R2). The
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reloading segment was identical to that for Model 2, until a rotation equal

to 8c~in the opposite direction was attained (point C2). The member was

then assumed to stiffen, and reload along a segment of slope 51. This

segment was assumed to terminate at point (C2 1
), a point on the reloading

segment for the unaltered Takeda hysteresis model. In essence, the beam

was assumed to yield at a moment level consistent with the strength of the

unaltered Takeda model. Further reloading was consistent with the unaltered

Takeda model, achieving a maximum rotation equal to 8m3 (point M3). With

one exception, the beams experienced the entire sequence of loading and

unloading depicted in Fig. 5.25. The exception was that, for the first

level beam, 8ml was less than 8c~. The result was that, for the second

reloading phase (fifth quarter cycle), an interpretation of the hysteresis

rule, specifically for low amplitude response was required. The interpre

tation is illustrated in Fig. 5.27. The figure shows the loading paths of

the first and fifth quarter cycles along with the unloading paths of the

second and sixth quarter cycles. For the fifth quarter cycle the system

was assumed to follow the standard loading path connecting points R2 and Ml 1

until it attained the intersection point, Ml", with the second quarter

cycle unloading path (line connecting points Ml and Rl). The system was

then assumed to reload along the second quarter cycle unloading path,

yielding at a moment Ml and following the primary moment-rotation relation

for larger rotations. The rationale for this procedure was that since

the beam had never experienced rotations larger than 8ml , it should not be

modeled to respond as a section devoid of concrete for rotations larger

than 8ml . In essence, the crack must close when the beam attains the

largest rotation it had previously experienced. If the direction of loading

were reversed while the beam was loading along the path connecting points
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Ml" and Ml, it would unload along this same path. If the load were

reversed at a rotation less than 8 11

1, the unloading slope woul d be computedm .
from the usual relation (analogous to Equations 5.33 and 5.34). This

final point will be significant in a later study. The calculated values

of 8ml , 8rl , 8m2 , 8r2 and 8m3 for each beam are listed in Table 5.3.

The pattern of loading and unloading for the pier members paralleled

that for the other models. The pier members of stories two through six

remained elastic. The values of 8ml , 8rl , 8m2 , 8r2 and 8m3 for the first

story pier are listed in Table 5.3.

The calculated overall structure hysteresis relation, in terms of

base moment and top level deflection is shown in Fig. 5.26. As for Models 1,

2 and 3 the regions of the moment-rotation relation corresponding to the

various events in the hysteretic response of the beams are indicated, along

with the sequence in which the beams experienced each event.

(f) Hysteresis Model 5

The fifth hysteresis model was a modification of the fourth model.

The only modification occurred in the fifth quarter cycle. After the beam

had been cycled once in each direction, it was assumed that the faces of the

crack, or separation, at the beam-pier interface were deteriorated suffici-

ently to preclude reloading after crack closure with a stiffness equal to

that for the intact beam member. Hence, in the fifth quarter cycle, this

stiffness was reduced. The modification is illustrated in Fig. 5.25.

After the crack closed at a rotation equal to 8c£' reloading was assumed

to occur along the straight line connecting points (C2) and (Ml), the

strength of the section again being consistent with Takeda model. As for

Model 4, further reloading was consistent with the Takeda model, attaining

a maximum rotation, 8m3 (point M3).
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The application of this modification to the first level beam again,

presented a special problem. As for Model 4, this was necessitated by the

fact that, for this member, 6ml was less than 6c~' The path of reloading

was identical to that for Model 4. The beam was assumed to reload along

the line connecting points (R2) and (Ml') (Fig. 5.27). Reloading then

occurred along the line connecting points (M1 1I
) and (Ml), the unloading

segment for the second quarter cycle. Further reloading occurred along

the unaltered Takeda relation to a maximum rotation of 6m3 (point M3).

The calculated values of 6m3 for the beams are listed in Table 5.3. Other

rotational values were the same as for Model 4.

The alteration in the structure hysteresis relation for Model 4, due

to the modification characterizing Model 5, is denoted in Fig. 5.26. Again,

the significant events in the hysteretic response of the beams are indicated.

(g) Calculation of Base Moment for Observed Response

The following paragraphs describe the calculation of the base moment

top level deflection hysteresis relation corresponding to the response

observed during test Sl. This step was preparatory to comparing the

results of the analytical study of hysteresis shape (sections 5.2(a)

through (f)) with the observed response (section 3.5).

Figure 3.54 presents the observed hysteresis relations, in terms of

load in a ram and structure deflection at the point of application of that

same load, for each of the three levels along the height of the structure

at which load was applied. The general shape of the hysteresis relation

was the same for all three levels. After the first two quarter cycles of

response, the reloading paths exhibit some distinctive characteristics.

As reloading commences, the structure begins to exhibit a steady decrease
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in stiffness. This progresses until the stiffness becomes quite low.

After a certain amount of deformation the structure regains its lost stiff

ness and eventually reaches the maximum load observed in previous cycles.

The loss of stiffness, deformation at a low stiffness level, and regaining

of stiffness becomes increasingly pronounced with successive reloading

cycles. It is the purpose of this section to interpret the above phenomena

in terms of the behavior mechanism for the connecting beams.

In preparation for comparison with the analytical results, the

observed responses were expressed in the same terms as the analytical

results, a relation between base moment and top level deflection. This

was accomplished using the observed relation between top level load and

top level deflection (Fig. 3.54c) and considering the ratios among the

three applied lateral loads to be those intended for test 51 (Fig. 3.49a).

The base moment was expressed directly as a constant times the top level

load recorded in Fig. 3.54(c). A major consideration in the validity of

this approach was how closely the actual applied loads conformed to the

intended ratios. If the loading equipment did not closely maintain the

intended load ratios, base moments computed as a multiple of the top level

ram load might be inaccurate. Using the continuously recorded hysteresis

relations (Fig. 3.54), however, this was the only computation method

applicable. Base moments could not be calculated using the ram load at

each of the three levels because there was no direct way to choose values

of ram load occurring at the same instant of time. However, during the

first quarter cycle of testing, ram loads were recorded at discrete times,

with the application of load temporarily halted (Fig. 3.53). For this

data, ram loads corresponding to the same times could be used in the

calculation of base moment. Using the discrete loads, a comparison was
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made between base moment calculated considering all three ram loads and

their appropriate moment arms (true base moment) and base moment calculated

as a multiple of top level load (load-multiple base moment) (Fig. 5.28).

The results of this comparison are presented in Fig. 5.29. The figure shows

the variation with true base moment of the deviation of the "load-multiple

base moment" from the true base moment as a per cent of true base moment.

For base moments greater than four kip-in., the error was insignificant.

With this result in mind, the base moment for the first one and one quarter

cycles of test 51 was calculated as shown in Fig. 5.28 for various values

of top level deflection using Fig. 3.54(c). The results are depicted by

the broken curve in Fig. 5.30.

(h) Comparison of Analytical Results and
Observed Response

The following paragraphs compare the results of the study of hysteresis

shape with the hysteresis relation observed in test 51. The objective of

this comparison was to relate the various mechanisms of beam behavior, or

energy dissipation, with the observed response.

The comparison is illustrated in Fig. 5.30, as variations of base

moment with top level deflection. The observed relation is represented

by the broken line. There were characteristics of this relation that

required careful interpretation. During early stages of the reloading

portions of the hysteresis relation (third and fifth quarter cycles),

the stiffness of reloading became progressively lower, until a rather low

level of stiffness prevailed. In later stages of reloading, an apparent

restiffening occurred, followed by an apparent decrease in stiffness as the

maximum moment was approached. Figure 5.30 illustrates that this phenomenon

was more noticeable for the fifth quarter cycle than for the third quarter

cycle. In fact, Fig. 3.54 (broken curve) illustrates that the behavior
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became increasingly pronounced with each succeeding quarter cycle of loading

throughout the test.

The moment-deflection relation for beam hysteresis model 1 (section

5.2(b)) did not exhibit the successive loss of stiffness and restiffening

characterizing the observed response. This is apparent in Fig. 5.30. This

beam hysteresis model followed the general rules given by Takeda (ref. 36).

Beam hysteresis model 2 (section 5.2(c)) considered gross cracking

of the concrete at the ends of the beams. This model did exhibit a marked

decrease in stiffness upon reloading. It did not, however, exhibit the

restiffening. Even the initial decrease in stiffness during reloading was

probably not so pronounced as for the observed response. Finally, the

model did not exhibit the maximum moment capacity apparent in the observed

response. The apparent moment capacity of the observed response indicates

that, at maximum deflection, the section of the beam consisted of more than

merely the two steel layers considered in model 2. A certain amount of

concrete was apparently acting in compression.

Beam hysteresis model 3 (section 5.2(d)) considered the slip of the

longitudinal reinforcement of the beams in the beam-pier joints. The model

exhibits the apparent moment capacity of the observed response, after the

reinforcement had slipped, the concrete could act in compression, and the

moment capacity of model 1 was available. Although the model did exhibit

an initial loss of stiffness upon reloading, followed by restiffening, the

restiffening occurred much sooner, during reloading, than for the observed

reloading. Evidently, the phenomenon determining the shape of the observed

moment-deflection relation, was capable of causing greater incremental

deflections (e.g. greater incremental rotations of the beams) at low

stiffness levels than was the slip of reinforcement in the joints. A
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mechanism was required that would allow the beams to rotate through a

greater angle before reloading.

Beam hysteresis model 4 (section 5.2(d)) was an attempt to provide

for the greater rotations referred to in the preceding paragraph. This

model was actually a modification of model 2, allowing for closure of the

wide cracks at the ends of the beams. This model would allow for larger

beam rotations than the reinforcement slip model, yet allow the concrete

at the ends of the beams to act in compression in the late stages of

reloading. The results from model 4 shown in Fig. 5.30 indicate that the

restiffening does occur during later stages of reloading, as it did for

the observed response. A reasonable magnitude of beam rotation at low

stiffness appears to have been attained. The restiffening was, however,

somewhat more abrupt than indicated by the observed response. This model

assumed that the beams restiffened at their initial, first-quarter-cycle

stiffness. Apparently, the beam was not so stiff as the crack closed.

This was possibly due to reseating of the edges of the crack as closure

took place.

Beam hysteresis model 5 was a modification of model 4, allowing for

a more gradual closure of the crack at the end of the beam (Fig. 5.25).

This appears to improve correlation of the analytical model with observed

response.

Beam hysteresis model 5 exhibited the general characteristics of the

observed response. Fine tuning the analytical model to correspond to

observed response was probably not warranted within the degree of refinement

of the study. The beam rotation necessary to initiate closure of the crack,

along with the stiffness of the beam while closure is taking place, are

difficult variables to quantify. Similarly, crack closure may not even
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terminate at point Ml (Fig. 5.25). The reseating of the two edges of

the crack, along with localized crushing or loss of concrete, may be such

that the full moment capacity of the beam section is attained only at some

rotation greater than 8ml (Fig. 5.25). This could well cause the apparent

discrepancy between beam hysteresis model 5 and the observed response during

the final stage of reloading for the fifth quarter cycle (Fig. 5.30).

In conclusion, the mechanism of energy dissipation for the beams

appears to entail the development of wide cracks, accompanied by loss of

concrete, at the ends of the beams. As the beam rotates, as lateral

loading is applied to the structure, these wide cracks repeatedly open and

close.

It should also be mentioned that, apparently, the six beams did not

share equally in the dissipation of energy, some beams attained considerably

higher maximum rotations than others (Table 5.3). The fourth and fifth

level beams exhibited the greatest degree of inelastic action, the first

level beam, the least degree of inelastic action. Similarly, significant

events in the hysteretic response of the beams (yielding, stiffening,

attainment of zero moment) occurred first in the "middle" beams (levels

2,3,4), and occurred later in the bottom and top beams. This is shown in

Fig. 5.14,5.18,5.23 and 5.26 for overall structure response corresponding

to each beam hysteresis model.

A final comment, concerning the piers, is in order. Only a small

degree of inelastic behavior occurred during the response of these members,

and that was confined to the base. This is mentioned in sections 5.2(b)

through (f) and may be verified in Tables 5.2 and 5.3. Furthermore, the

overall hysteresis relation for the entire structure (base moment related

to top level deflection) was quite sensitive to changes in the moment

rotation hysteresis of the beam members. This was consistent with the
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basic linearity of response for the piers. This point also established

the beams as the significant source of energy dissipation in the structure

as a whole.

5.3 Study of Equivalent Damping

(a) General Comments

The analytical model for static loading was also used to compare the

damping capacity of the test structure when responding in the first mode

to its damping capacity when responding in the second mode. Lateral loads,

with the ratios between the second, fourth and sixth level loads corres

ponding to the first and second mode shapes, were applied to the structure.

As in the hysteresis shape study, the ratios were maintained as constant

throughout each analysis. Additionally, for the first mode loading. the

structure was analyzed for two widely different maximum response amplitudes.

This enabled the effect of response amplitude upon damping capacity to be

studied. For the beams, hysteresis model 5 (section 5.2) was applied. An

unaltered Takeda hysteresis was applied to the piers. The structure

hysteresis. in terms of base moment and top level deflection, was then

calculated for each of the two load ratios (two modes). Viscous damping

coefficients, consistent with each of the two overall structure hysteresis

relations, were derived using a concept developed by Jacobsen (ref. 19).

Subsequent parts of this section describe the study in detail.

(b) First Mode Load Case

The ratio of the lateral loads for the first mode was that applied

in test Sl and used for the hysteresis shape study (section 5.2). The

ratio is illustrated in Fig. 5.31(a).
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The deflection schedule is shown in Fig. 5.32(a). The maximum top

level deflections were chosen to be consistent with observed values from

the dynamic and static tests. The maximum response level for the lower

amplitude cycles was also chosen with the observed hysteresis from test Sl

in mind (Fig. 3.54). The observed hysteresis exhibited a lower stiffness

at lower deflection values. The limiting amplitude for the low amplitude

portion of the analysis was chosen to be consistent with the deflections

corresponding to the low stiffness region of the observed hysteresis. Also

note the bifurcation point, B, in the deflection schedule (Fig. 5.32a).

After the structure had been cycled to the state corresponding to point

B, two cases were investigated, represented by the two paths in the figure.

In one case, loading continued to the upper deflection limit. In the other

case, the cycles were limited to low amplitudes.

The application of hysteresis model 5 to the study of equivalent

damping is illustrated in Fig. 5.33. The first five quarter cycles were

identical to the relation shown in Fig. 5.25. The rule for the sixth

quarter cycle was the same as that for the second and fourth quarter cycles.

The rule for the seventh quarter cycle was the same as that for the fifth

quarter cycle. Point B in the seventh quarter cycle corresponds to the

bifurcation point, B, in Fig. 5.32(a). For the high amplitude response,

the seventh quarter cycle was the final quarter cycle, terminating at

point M4, following the path described by points R3, B, C3, M2 and M4.

For the low amplitude portion of the study the seventh quarter cycle ter

minated at point B and was followed by four additional quarter cycles,

terminating at point M6. Note that the rotation, 8m4 , occurred twice,

once in the high amplitude portion of the study and once in the low

amplitude portion.
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The values of 8ml , 8rl , 8m2 , 8r2 , 8m3 , 8r3 , 8m4 , 8r4 , 8m5 , 8r5 , 8
m6

for

each beam are listed in Table 5.4. Note that for the second through sixth

level beams, during the high amplitude cycles, each of 8ml , 8m2 , 8m3 and

8m4 exceeded the beam rotation for crack closure, 8ct ' These beam cycled

through the complete sequence of events in Fig. 5.33. Only for the first

level beam was this not the case. The discussion in section 5.2(e)

relating to Fig. 5.27 would apply for the first level beam. During the low

amplitude response, closure of the cracks did not occur. Reversal of load,

for all beams, occurred without stiffening of the section. This behavior

is shown in Fig. 5.33, and corresponds to the dashed unloading segment of

Fig. 5.27.

Figure 5.34 depicts the resulting overall structure hysteresis relation

in terms of base moment and top level deflection. The bifurcation, corres-

ponding to the bifurcation in the deflection schedule (Fig. 5.32(a)) is

labeled point B.

(c) Second Mode Load Case

The ratios of the lateral loads for the second mode loading were

obtained from the linear response history study (chapter 8). The calculated

mode shape amplitudes for the second mode, at each of three appropriate

levels, were averaged over all 26 cases studied in chapter 8. This opera

tion resulted in the load ratios depicted in Fig. 5.3l(b).

The deflection schedule is shown in Fig. 5.32(b). For the viscous

damping factors for the two modes to be comparable, the maximum deflections

used in the analysis for the first and second modes were required to

represent similar levels of overall structure response, again, the results

of the response history analysis, described in chapter 8, were used to

accomplish this. Cases having first mode components of response most
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closely describing the test results were chosen. (Analyses 6, 16, 20,

and 24 in chapter 8). The maximum top level deflection (sum of two modes),

averaged over the four analyses in question, was approximately 0.35 in.

Note that the observed maximum deflections for test runs 02-1,03-1, 04-1,

and 05-1, which the response analysis in question simulated, was approxi

mately 0.5 in. The top level deflection for second mode response, averaged

over the four applicable cases was 0.016 in. This result was then adjusted

for the variation of the maximum observed top level deflection during the

dynamic tests from that calculated in the four response history analyses

considered. The calculated second-mode deflection was multiplied by the

ratio of the observed first-mode deflection (0.50 in.) to the calculated

first-mode deflection (0.35 in.). The result was 0.023 in. A deflection

of 0.03 in. was chosen as the maximum for the static analysis. This is the

magnitude shown in Fig. 5.32(b).

The rules for the moment-rotation response of the beams were those

depicted in Fig. 5.25, 5.27 and 5.33.

As would be expected, for second-mode response, the pattern of

maximum end rotations for the beams varied radically from that calculated

for first-mode response. The results are presented in Table 5.4. The

fourth level beam remained elastic. None of the beams experienced rotation

of a magnitude sufficient to cause closure of the cracks at the end of

the beams as simulated by the hysteretic model. The load reversal in

each cycle was analogous to that in Fig. 5.27 and 5.33 when reversal

occurs at a rotation less than e~l.

The calculated overall structure hysteresis relation, in terms of

base moment and top level deflection, is shown in Fig. 5.35.
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(d) Damping Factors

The dynamic hysteretic response of a structure may be modeled as

that of a linearly elastic substitute structure with reduced overall

stiffness and an array of viscous dashpots to account for the energy

dissipated by hysteretic response. Fig. 5.36(a) depicts a sample overall

structure hysteresis. Consider the path of loading and unloading to be

identical for cycle after cycle. Response of the substitute structure

would be linearly elastic with stiffness kr . The area enclosed by the

hysteresis loop, ABCD, of Fig. 5.36(a) is directly proportional to the

energy dissipated by the structure in one cycle of response. This

dissipation of energy is modeled in the substitute structure by the viscous

dashpot depicted in Fig. 5.36(b), where the force in the dashpot is pro

portional to the velocity of the mass, ms ' The work performed by the force

in the dashpot models the energy dissipated by the inelastic hysteresis

(Fig. 5.36a). A single degree of freedom system of the type shown in

Fig. 5.36(b) was defined for each of the two modes of response described

in parts (b) and (c) of this section. The equation of motion of each single

degree of freedom system was of the form,

m x + c X + k x = -m abs s s s r s s

where ab was the acceleration of the base.

Hence,
c k
s' r =xs + -- x + -- x -abms ms s

Let,

(5.47)

(5.48)

(5.49)
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and,

(5.50)

The factor, cs ' controls the magnitude of force 'in the viscous dashpot,

and therefore the capacity for energy dissipation. Hence, the energy

dissipation capacity of the single degree of freedom system may be expressed

in terms of a viscous damping factor, $s' where,

(5.51)

The system desired was characterized by a value of $s corresponding to

a viscous dashpot (Fig. 5.36b) that would dissipate the same quantity of

energy per cycle of response as the hysteretic system. To realize this

goal, it was necessary to solve the equation of motion (Equation 5.47) and

use the result to express $s as a function of the energy dissipated by the

viscous dashpot. Consider the base acceleration to be a sinusoidal function

of time with a circular frequency denoted by wb. Equation 5.48 becomes,

m ~ + C X + k x =-p cos wbts s s s r s (5.52)

where p is a constant. The closed form solution for such a system is a

response with time given by,

(5.53)

where ~ and n are constants. The energy dissipated by the viscous dashpot

acting through an infinitesimal deflection, dXs ' is given by

(5.54)

The deflection, xs ' however, is a function of time and,
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where dt is an infinitesimal time interval. Hence, the energy dissipated

during an entire cycle is given by,

T

'Ev = f S cs(xs,2 dt
o

(5.56)

where Ts is the period. Differentiating Equation 5.53 to obtain the

variation of velocity with time produces,

(5.57)

substituting Equation 5.57 into Equation 5.56 and performing the integra-

tion, the energy dissipated per cycle of response by the viscous dashpot

is expressed as,

(5.58)

The maximum strain energy for the single degree of freedom system was

expressed as,

E = 1 k rl
2

k 2 r

Combining Equations 5.58 and 5:59, an energy ratio was derived,

(5.59)

(5.60)

Combining Equations 5.60, 5.51 and 5.49, the following formula for the

viscous damping factor was obtained,

(5.61)
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By assuming that the frequency of the base motion was close to the natural

frequency of the single degree of freedom system, in essence,

Wb z

Ws

the result was simplified to,

(5.62)

(5.63)

It was desired that the energy dissipated by the hysteretic system per

cycle be equal to that dissipated by the viscous dashpot system, in

essence,

(5.64)

where Eh was the energy dissipated for hysteretic response (Fig. 5.36a).

The magnitude of t.E h was proportional to the area, t.Ah, enclosed by the

hysteresis loop, (in Fig. 5.36, the area enclosed by parallelogram ABeD),

while the magnitude of Ek was proportional to Ak, the area under the line

representing the linearly elastic response of the substitute system (in

Fig. 5.36, the area enclosed by triangle OAE).

Hence,

(5.65)

Equations 5.63 and 5.65 were then used to compute the equivalent viscous

damping factor. The operation was performed for the" structure hystereses,

in terms of base moment and top level deflection, for response in each of

the first and second modes (Fig. 5.34 and 5.35). The calculation for the

first mode was performed for both high and low amplitude response levels.
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For high-amplitude first mode response, the area enclosed by the load paths

of fourth through seventh quarter cycles was utilized in the computation.

For the low amplitude response the area enclosed by the loading paths of

the eighth through eleventh quarter cycles was utilized. For the second

mode response, the area enclosed by the loading paths of the fourth through

seventh quarter cycles was util ized. The results are summarized in Table

5.5.

(e) Discussion of Results

The following paragraphs make some pertinent comments relative to

the results of the study of equivalent damping.

Referring to Table 5.5, the calculated viscous damping factor for

the first mode for high amplitude response was reasonable for a reinforced

concrete structure undergoing significant inelastic response.

The magnitude of the viscous damping factor consistent with the low

amplitude response was somewhat surprising, however. As listed in Table

5.5, the viscous damping factor was considerably higher than for high

amplitude response. Apparently, this was due to the "fatness" of the low

amplitude hysteresis relation compared to the high amplitude relation

(Fig. 5.34). Certainly the beam dissipated more energy per cycle of high

amplitude response than it did per cycle of low amplitude response~ the

area enclosed by the hysteresis realtion is larger for high amplitude

response. This result illustrates the meaning of the viscous damping

factor in a substitute structure. The viscous damping factor is not a

direct measure of the energy dissipated by the structure per cycle of

response. Referring to Fig. 5.36(a), the area of triangle OAE represents

the potential energy of the system when it is at point A in its response.

Since the total system energy is given by the sum of the kinetic and potential
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energy, and the system is motionless at point A, the triangular area

represents the total system energy at that stage of response. Because the

viscous damping factor is given by Equation 5.63, it represents the fraction

of system energy, corresponding to a given mode of response, dissipated

during one cycle of response.

Finally, it was interesting that the viscous damping factor for the

second mode of response was comparable to that for the first mode. This

point will be further considered in the study of the dynamic linear response

of the test structure (chapter 8).
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CHAPTER 6

FOURIER ANALYSIS OF OBSERVEO RESPONSE

6.1 General Comments

This chapter is concerned with the analyses performed to determine

the relative importance of various modes of response in the response

history records of the dynamic tests. This was done using Fourier

analysis, performing the numerical integration with the Fast Fourier

Transform. The analysis, which was performed for one run of each

dynamic test, separated the observed response into two portions, that

attributable to all frequency components above 10 Hz. and that attribut

able to all frequency components below 10 Hz. The lower range would

be associated with the first mode, the higher range with the sum of all

higher modes. Comparison of the two portions provided a measure of

the importance of the first mode relative to higher modes.

The next section describes the results of the Fourier analysis.

The steps used in the analysis are provided for reference in appendix E.

6.2 Results of Fourier Analysis

(a) Cases for Analysis

The Fourier Analysis was performed for one test run from each

dynamic test, including test runs 01-4, 02-1,03-1,04-1 and 05-1.

Analyses were performed only upon response histories for the north wall.

For tests 02, 03, 04 and 05, this was accomplished for horizontal

acceleration at the bottom, middle and top levels, for base shear, and
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for base moment. For test 01, the horizontal deflections at the three

levels were analyzed, in addition to the above.

For each dynamic test, the test run chosen for analysis was the

one in which the maximum base acceleration was approximately 1.Og.

This run was also the one modelled by the static test (51), and was

the test run analyzed in subsequent linearly elastic response analyses

(chapter 8). In this manner, the results of the Fourier analysis,

the static-hysteresis analysis, and the linearly elastic response

analysis were made comparable. This run was chosen, as opposed to other

acceleration levels, because, for all but one dynamic test, it represented

a "virgin" test structure. Furthermore the data indicated that the

test structures had general yielding at a base acceleration of 1.Og.

The response histories computed in the Fourier analysis are provided

in Fig. 6.1 through 6.16. Two sets of response histories are provided,

side by side, on each page. Each set of three curves corresponds to

one response-history curve as reported in chapter 3. The top plot

represents the response due to all frequency components less than or

equal to 10 Hz., the middle plot represents the response due to all

frequency components greater than 10 Hz., and the bottom plot represents

the total response. The bottom plot is identical to the observed response

presented in chapter 3. The maximum responses computed in the analysis

are listed in Tables 6.1 and 6.2. Table 6.3 lists frequencies measured

from the response histories. The following paragraphs describe the

analysis results for deflection, acceleration, base shear, and base moment.

(b) Horizontal Displacements

Fourier analyses were performed for test 01-4 for observed displace

ments at the lower, middle, and top levels (Fig. A.29). The response
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histories are shown in Fig. 6.1. The maximum responses, and frequencies

measured from response histories are provided in Tables 6.1 and 6.3,

respectively.

Both the listed maxima and the response histories imply that the

observed displacement was dominated by the first mode. The measured

frequency for the lower frequency levels (Table 6.3) compared well with

the first mode frequency of the test structure, as determined in a free

vibration test (Table 3.6). The dominant frequency of the higher mode

portion of the response was approximately 11 Hz. This is much too low

a frequency to be attributable to the second mode of response of the

test structure (Table 3.6). The base motion (Fig. 3.6) is rich in

frequencies in this intermediate range.

Because the observed displacements for later dynamic tests were

similar to those for test 01, in terms of apparent first mode dominance,

the Fourier analysis was not performed for the displacements observed

during tests 02 through D5.

(c) Horizontal Acceleration

Fourier analyses were performed on the observed horizontal accelera

tions measured at the lower, middle, and top levels. The response

histories are shown in Fig. 6.2 through 6.6. The maximum responses and

frequencies measured from the response histories are listed in Tables

6.1 and 6.3, respectively.

The response histories indicate that the higher mode response was

quite significant at all three levels. This was consistent with general

observations made concerning the dynamic test results (chapter 3).
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For the lower level acceleration, for all five test runs, the

dominant frequency for the low frequency portion of the response (Table

6.3) was too high to correspond to a first-mode frequency, as measured

in free-vibration tests (Table 3.6). The measured base accelerations

(Fig. 3.6,3.17,3.22,3.35,3.40) appear to contain frequency components

in this intermediate range, between the first and second modes of the

test structures. This is the likely source of this dominant component

in the lower frequency response. For the middle and top level accelera

tions, the dominant frequency component of the lower frequency response

was consistent with the first-mode frequencies of the test structures

(Table 3.6).

For the higher frequency portion of the response, the measured

frequencies for tests 02 through 05 are consistent with the second

mode frequencies as measured in a free vibration test (Table 3.6). Test

01-4, for the lower level acceleration, exhibits a dominant frequency

component in the higher frequency response considerably lower than that

measured in free vibration tests. Again, this is due to the influence

of the base acceleration. The frequencies exhibited by the middle and

top level accelerations, for all five test runs, are reasonably close

to those measured in free vibration tests.

(d) Base Shear and Moment

The response histories obtained in the Fourier Analysis of the

base shears are shown in Fig. 6.8 through 6.11. The maximum responses

scaled from the response histories are listed in Table 6.2.

The results confirm that the higher frequency portion of the

response is quite significant for the base shear. The higher frequency

components are slightly less visible in test 01 than for other tests.
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The response histories resulting from the Fourier analysis of the

base moments are shown in Fig. 6.12 through 6.16. The response maxima

scaled from the response histories are listed in Table 6.2.

As would be expected, the waveform for base moment is dominated

by the first-mode response.

It is interesting to note, though as an observation of narrow

scope, that the total shear and moments were always less than the

absolute sum of the modal components and, in general, comparable to

the "roo t-sum-square" value.
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CHAPTER 7

STUDY OF DYNAMIC RESPONSE

7.1 General Comments

This chapter describes an analytical study of the inelastic, dynamic

response of the test structures to seismic base motion. The nonlinear,

hysteretically responding test structure was replaced by a substitute

structure with reduced stiffness, and viscous damping to account for

hysteretic energy dissipation. The concept is illustrated in idealized

form, for a simple system, in Fig. 7.1. The assumed paths of loading

and unloading for the actual structure are shown by the solid lines with

arrowheads in Fig. 7.1(b). A stable hysteresis loop that develops after

the first cycle of loading and unloading is depicted by the path ABeD

in the figure. The path of loading and unloading for the substitute

structure is the line COA. The substitute structure, itself, is depicted

in Fig. 7.1(c). The substitute structure has the same maximum response

as the actual structure. The reduction in stiffness from ke2 to kr is

referred to as the damage ratio. In essence, the damage ratio, ~dr' is

given by,

(7.1)

This parameter is, in general, not equal to the response deflection

ductility, given by,
x_ sm

~ -dc xsy
(7.2)
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where the variables xsm and xsy are the maximum deflection and yield

deflection, respectively, for the actual structure. Both variables do,

however, quantify the same concept. As the substitute structure goes

through a cycle of response, loading from point 0 to point A, unloading

to point 0 and reloading to point C, then unloading to point 0, the

viscous dashpot, with velocity coefficient cs ' dissipates the same

quantity of energy as that indicated by the interior of the hysteretic

response path, ABeD, of the actual structure. This concept is similar

to that applied in section 5.3(c).

A series of substitute structures were used, applying various viscous

damping factors and various damage ratios to the actual structure. The

response histories of the substitute structures were calculated, using

as input, the observed base acceleration records from the various dynamic

tests. An investigation was also performed on the maximum response of

the substitute structures, using the linear response spectra computed

from the base acceleration records observed in the dynamic tests. A

large body of analytical results on the maximum response of substitute

structures with various damping factors and stiffness levels was amassed

in this portion of the study.

The next section of this chapter discusses the structural idealiza

tions associated with the analytical model. The analysis procedure is

described in detail in appendix F.

The third section of this chapter explains the study of maximum

responses in more detail and presents the results. The final section of

the chapter performs a similar function for the study of response history.

The computer program written to perform the calculations is describe in

appendix D.
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7.2 Structural Idealization

The analytical model is depicted in Fig. 7.2. As for the static

hysteretic model, one quarter of a test structure was modelled. The

forces resulting from the analysis were then doubled to correspond to

forces for one wall. As for the static hysteretic model, a point of

inflection was assumed to occur at the midspan of the connecting beams

of a wall. The comments made about this assumption in chapter 5 also

apply here. The pier was considered to be fixed against rotation at its

base. The base motion was assumed to involve horizontal translation only.

For the actual tests on the earthquake simulator, mass was simulated

by three steel weights as described in chapter 3 and appendix A. In the

analytical model, these weights were simulated by concentrations of

mass at the points where the weights were connected to the pier. The

connections were at the centerline of the pier, at the levels of the

centerlines of the second, fourth and sixth connecting beams. The mass,

mh, associated with horizontal acceleration of a given point of mass

concentration was equal to one quarter of the mass of a complete 2000 lb.

test weight (appendix A). The mass associated with the vertical accelera-

tion of a point of mass concentration was that mass consistent with the

rotational inertia of the complete test weight for rotation about an

axis perpendicular to the plane of a wall and passing through the midspan

of the connecting beam. The concept is illustrated in Fig. 7.3, where

I t represents the rotational inertia of the 2000 lb. weight and mro v
represents the mass for vertical accelerations in the analytical model.

The variables as and av represent rotational and vertical acceleration,

respectively. To obtain equivalent force in the pier, equality of applied

moment was desired, in essence,
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(7.3)

where the factor of one half accounts for the presence of two walls in

a test structure.

From geometry,

(7.4)

The appropriate mass for vertical accelerations was obtained by combining

Equations 7.3 and 7.4,

I
m = rot

v -2
51-

( 7.5)

There was no mass associated with the rotational acceleration of the point

of concentration of mass. This assumption was consistent with the hinge

connection between the piers of the test structure and the test weights

(appendix A).

The individual members were idealized as prismatic and completely

linearly elastic. As for the static hysteretic model the pier was

considered to be six individual members, one for each story.

A damage ratio was applied to the uniform section stiffness for each

beam and pier member.

The model considered only flexure in the beams. Both flexural and

axial deformations were considered in the pier members. Shear deformation

was not considered at all. The idealization, therefore, considered three

degrees of freedom at each beam-pier joint, a horizontal displacement, a

vertical displacement, and a rotation, for a total of 18 degrees of freedom

in the mode1.
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The response history of the idealized model was calculated using

modal superposition and the linear-acceleration method as described in

appendix F.

7.3 Study of Maximum Structure Response

(a) Introductory Remarks

As mentioned in the first section of this chapter, one means by

which the analytical model was used to interpret the observed structure

responses during the dynamic tests was by using the linear model to

calculate the maximum responses of the various test structures, assuming

a range of damage ratios and damping factors. The analysis was performed

using the modal-analysis portion of the computer program written for the

dynamic response analytical model (appendix D), in conjunction with the

linearly elastic response spectra for the observed base accelerations of

the dynamic tests. This section describes the analyses and presents the

analytical results.

(b) Initialization of Study

Modal analyses were performed for two different structures. One

was the type A test structure of test D1, the other was an "average"

structure representing the types Band C structures of tests 02 through

05. To consider inelastic response, the member section stiffnesses were

reduced by various damage ratios, as described in sections 7.1 and 7.2.

Figure 7.4 depicts the reduction in stiffness for the linearly elastic

moment-curvature relation of a section of a member in the substitute

structure. The damage ratio was given by,

(7.6)
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where EI sub was the stiffness of the section in the substitute structure

and EI f was a reference stiffness corresponding to the estimatedre
section stiffness at the beginning of the dynamic test in question.

Hence, the damage ratio directly corresponded to damage incurred during

the dynamic test. Damage incurred during casting and handling was

included in the reduction in stiffness from EI to EI ef' Where axialunc r
section stiffness was considered (in essence, the pier members) an analogous

concept was applied to obtain EAsub ' the axial section stiffness in the

substitute structure. The reference stiffness was obtained by considering

the section stiffnesses for all members to be reduced by identical factors

relative to the stiffness of uncracked sections. In essence, any damage

sustained by the structure prior to the start of testing was assumed to

be distributed uniformly over the structure. Furthermore, for purposes of

this initial stiffness reduction, the structure was idealized as a single

degree of freedom system, characterized in its uncracked (undamaged)

state by the computed first-mode frequency for that state (Table 4.4),

and characterized at the start of the dynamic test in question by the

appropriate measured first-mode frequency (Table 3.6). The reference

section stiffness for each beam and each pier was then obtained from the

relation between stiffness and natural frequency for a single degree

of freedom system, in essence,

(7 •7)

Similarly, the reference axial stiffness for the pier members was

obtained from,
f

EA = E A (_ref)2
ref c tr f unc

(7.8)
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The implicit assumption was made that flexural stiffness and axial stiff

ness reduced by the same factor. For each test structure, the values for

Ec were those listed in Table A.l. The average values of Atr for the

piers, and Itr for the beams and piers, for each test structure, were

the properties of the uncracked sections described in chapter 4 and listed

in Tables 4.1 and 4.2. The values of f for each test structure wereunc
the first-mode frequencies described in chapter 4 and listed in Table 4.4.

The values of f ref were those first-mode frequencies obtained in a low

amplitude free vibration test prior to the start of the appropriate

dynamic test (prior to the first test run) and are listed in Table 3.6.

For the type A test structure (test 01), the values of El ref and EAref
for each member, computed in Equations 7.7 and 7.8, were used directly

as the reference to which damage ratios were applied. For the types B

and C test structures (tests 02 through 05), Equations 7.7 and 7.8 were

evaluated for each member in each test structure, and, for each member,

the resulting reference stiffnesses were then averaged over the four

structures to obtain an "average" reference structure. These values are

listed in Table 7.1.

(c) Cases for Calculation

Three distinct distributions of member damage ratios were used in

the analysis. For all three distributions, the same damage ratio, ~bm'

was applied to all six beams. For the first distribution, a damage ratio

equal to one was applied to the pier members (~pr = 1.0). For the second

distribution, the damage ratio for the first story pier member, applied

to both flexural and axial stiffness, was always equal to that applied to

the beams ( ~pr = ~bm). For the third distribution, the damage ratio for
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the first story pier member, again applied to both flexural and axial

stiffness, was always equal to one-half that applied to the beams

(~pr =t~bm)· For both the second and the third distributions, the stiff

ness of the pier members for the second through sixth stories was not

reduced below the reference value (damage ratio equal to one). For each

of the three distributions of stiffness, a wide range of values of beam

damage ratio, ~bm' were applied. Hence, the analysis considered three

distributions of response ductilities, each representing a specific

relation between beam damage ratio and pier damage ratio, and within each

distribution, several overall levels of response ductility were considered.

For each test, the linearly elastic response spectra, computed for

the observed base acceleration record, were used in the analysis. Hence,

separate results were obtained for each test, in spite of the use of an

lIaverage" test structure for tests 02 through 05. For all tests, the test

run analyzed was that exhibiting a maximum base acceleration approximating

1.Og. This justified comparisons between the results of the study of

static hysteresis, the Fourier analysis, and the study of dynamic response.

The test runs considered were 01-4, 02-1, 03-1, 04-1 and 05-1. For each

test run, analyses were performed for two different viscous damping

factors, two percent of critical damping and ten percent of critical

damping. The same viscous damping factor was applied to both the first

and second modes of response. Responses calculated were the top level

deflection, the base shear for one wall and the base moment for one wall.

For the computation of maximum top level deflection, only the first mode

of response was considered.
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Hence,

where ~mt was the maximum top level deflection, bl was the modal partici

pation factor for the first mode, ¢13 was the element of {¢l} corresponding

to the top level deflection, and Sl was the spectral displacement corres

ponding to the first-mode frequency.

For the maximum base shear and maximum base moment, both first and

second response modes were considered. For the first mode,

(7.10)

(7.11)

where Mml and Vml were the maximum base moment and base shear, respectively,

for the first mode, mh was the mass at each level associated with horizontal

acceleration,wl was the circular frequency for the first mode, Hl , H2 and

H3 were the distances from the base to the bottom, middle, and top concen

trated masses, respectively, and ¢ll' ¢12' ¢13 were the elements of the

mode shape, {¢l}' corresponding to the bottom, middle and top masses,

respectively. The factor of two appeared in the equations because the

shear and moment were computed for one wall (one-half of a test structure),

while the mass, mh, was for one-quarter of a test structure. This was

done so that the results would be comparable with the observed responses

and with the results of the analytical study of response hysteresis.

Similarly, for the second mode of response,

_ 2
Vm2 - au 2 S2 mhb2 (¢21 + ¢22 + ¢23)

Mm2 = au~ S2 mhb2 (H l ¢21 + H2¢22 + H3¢23)

( 7. 12)

( 7. 13)
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where the variables are defined in a manner analogous to those for the first

mode. Finally, the maximum responses for the two modes were added directly.

Hence,

(7.14)

(7.15)

where Vmtot and Mmtot were the maximum total base shear and base moment,

respectively.

(d) Variation of Second-Mode Frequency with
First-Mode Frequency

As discussed in section 7.3(c), a number of structures were considered

in the analysis, representing a range of damage ratios for the beams and

three overall distributions of response ductility. Each structure was,

of course, characterized by its own particular first and second-mode

frequencies. The calculated variation of the second-mode frequency with

the first-mode frequency, for each of the three distributions of response

ductility, is depicted in Fig. 7.5, first for the type A structure, then

for the types Band C structures. For the type A structure, the ratio of

second mode frequency to first-mode frequency varied from approximately

8 at a first-mode frequency equal to 3 Hz to approximately 4.5 at a first

mode frequency equal to 10 Hz. For the types Band C structures, the

same ratio varied from approximately 5.5 for a first-mode frequency equal

to 4 Hz to approximatel,Y 4.0 for a first mode frequency equal to 7.5 Hz.

The implication of the reduction of the above ratio with increasing first

mode frequency (decreasing beam damage ratio) was that as the beams became

stiffer, the structure more strongly assumed the characteristics of a frame;

a reasonable result.
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(e) Variation of Frequency with Damage Ratio

One aspect of comparing the results of the modal analysis-response

spectrum analysis with observed responses was evaluating what damage

ratios in the structure could be expected to accompany a given response

frequency. To make such an evaluation possible, the relation between

damage ratio and first-mode frequency, as obtained in the results of the

response spectrum-model analysis was considered. For each set of damage

ratios considered for the beams and pier, a first-mode frequency was

calculated in the modal analysis. These results are shown as relations

between beam damage ratio and calculated first-mode frequency in Fig. 7.6.

There is a separate set of relations for each of the two structures con

sidered, the type A test structure, and the "average" structure represent

ing the types Band C test structures. Each set of relations consists of

three separate curves, one for each damage distribution, as noted on the

figure.

A primary characteristic of the relations was that, for a given

response frequency, the corresponding damage ratio in the beams decreased

sharply when damage was introduced into the first level pier member. This

is a significant trend that will be used in interpreting observed responses

in later chapters.

(f) Variation of Maximum Responses with Frequency

To aid further in reconciling the dynamic response analysis with

the observed response, the results of the modal spectral analysis were

expressed in terms of two parameters directly observed during the dynamic

tests, maximum response level and first-mode frequency. This approach
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facilitated the comparison of analytical and experimental results which

will be discussed in chapter 8.

The results of the spectral analysis in terms of maximum structure

response and first-mode frequency is shown in Fig. 7.7 through 7.11. Each

page contains the results for one dynamic test for one viscous damping

factor. For each page, the maximum base moment, maximum base shear and

maximum top level deflection, are plotted as functions of first-mode

frequency. The results are for one wall (one-half test structure), and

were computed as described in part (c) of this section (Equations 7.9

through 7,.15). For the top level deflection, only the first mode is

plotted. The second-mode component was considered to be insignificant.

For the base shear and base moment, the maximum response obtained consider-

ing only the first mode is depicted by the broken lines (Equations 7.10

and 7.11). The solid lines indicate the results obtained considering the

direct sum of the maximum responses for the first and second modes

(Equations 7.14 and 7.15). It will be noted that there are several solid

lines and several broken lines for each parameter. This is because the

results for all three distributions of damage considered in the analysis

(in essence, ~pr = ~bm' ~pr = 1.0, and ~pr = ~ ~bm) are plotted together

on the same set of axes. There are not three distinct solid lines and

three distinct broken lines, because in several cases the maximum responses

for the three damage distributions did not differ sufficiently, in relation

to the scale of the plots, tri constitute distinctly separate relations. In

no case did the results for the three damage distributions differ by a

significant amount. For this reason. the relations are not labelled with

respect to which damage distribution to which they correspond. For each

response parameter, the maximum observed response during the appropriate

dynamic test is denoted by a horizontal solid line.
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Although the detailed interpretation of the results of the spectral

study, in terms of other analyses and experimental results, will be

presented in a later chapter, some general observations relative to the

results of the study are appropriate for this chapter.

One of the most striking characteristics of the results displayed

in Fig. 7.7 through 7.11 is that, at a given first-mode frequency for the

structure, the response was virtually independent of the distribution of

damage ratios between the beams and the pier. This result, however, is

really not highly surprising, considering the nature of the analytical

model. The calculated response in a particular mode is a function of two

parameters: spectral displacement or acceleration, and mode shape multi

plied by the appropriate modal participation factor. Consider the first

mode response. The spectral response must be the same for all three damage

distributions, since the frequency is the same. Only the effect of the

distribution of damage upon the shape of the first mode could cause

variations in base moment and base shear. Table 7.4 illustrates that such

variations in the shape of the first mode are minor. The first-mode

maximum base shear and base moment should not be expected to vary signifi

cantly with distribution of damage. For the second mode of response, the

frequency, and hence, the spectral response, will vary somewhat among the

three damage distributions. These frequency variations are shown in

Fig. 7.5 for the type A and types Band C structures. Although the

frequency variations are significant for the type A structure, they are

not so large for the types Band C structures. However, for the range of

frequencies being considered, none of the linear response spectra for the

test runs considered (Fig. 3.3, 3.14, 3.19, 3.32 and 3.37) exhibit a high

rate of variation of spectral response with frequency. One would not
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expect the variation of frequency with damage distribution to affect

strongly the structural response. As for the first mode, the variation of

mode shape with damage distribution is not large. One would not expect

the maximum base shear and base moment, attributable to the second mode of

response, to vary significantly with the distribution of damage ratios

among the beams and pier.

For tests 01-4 and 03-1, the calculated deflections tended to decrease

with increasing first-mode frequency, while the calculated deflections

for tests 02-1, 04-1, and 05-1 showed no overall trend in magnitude over

the first-mode frequency range investigated (approximately three to seven

Hz). For all tests, the deflection exhibited a localized peak at approxi

mately five Hz. The peak was more pronounced for two percent damping

than for ten percent damping. For the calculated base shears and base

moments, a similar localized peak, stronger for two percent damping than

for ten percent, occurred at approximately 5.7 Hz. All of the above

observations are consistent with the characteristics of the linear response

spectra for the appropriate tests. Finally, all calculated responses

were reduced in magnitude and rendered less erratic in their variation

with first mode frequency by the increase in damping factor from two

percent to ten percent.

Comments can also be made concerning the relative contributions of

the first and second modes of response to the base shears and base moments.

These results are presented in Fig. 7.12 through 7.16. The figures

depict, for each viscous damping factor considered in the study, the vari

ation with first-mode frequency of the ratio of the second-mode response

to the first-mode response. Because the variation of maximum responses

with frequency was independent of the relation between damage ratio in
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the beams and damage ratio in the pier, the ratio of the responses for the

two modes was calculated for only one such case, that case corresponding

to a damage ratio of one in the pier. Referring to Fig. 7.12 through

7.16, the second mode of response was stronger, relative to the first mode,

for the base shear, than for the base moment. This was true for all five

tests at both damping factors. The analysis for test Dl, a test of the

type A structure, was characterized by a much weaker second-mode component

than the analyses for tests of types Band C structures. Finally, for all

cases, the contribution of .the second mode relative to that of the first

mode increased as the first-mode frequency decreased. These observations

will be discussed further when the results of the spectral study are

reconciled with the observed responses and with the results of the analyti

cal study of response history.

Finally, a signifi~ant characteristic of Fig. 7.7 through 7.11

is the frequency at which the calculated maximum response was equal to

the observed response, as shown by the horizontal lines in the figures.

This information will be used later in reconciling the results of the

spectral study with the experimental results and the results of other

analyses.

7.4 Study of Response History

(a) Introductory Remarks

This section describes the study of response history, as introduced

in section 7.1, for a number of substitute structures. Response histories

were computed for several of the substitute structures having different

combinations of natural frequency and viscous damping. The goal was to

correlate the response of various substitute structures with the observed

response from the dynamic tests, with the waveform separated into frequency
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components. The calculations were performed using the analytical model

described in section 7.2. Hence, the modal analysis procedure was the

same as for the study of maximum response (section 7.3) and the variation

of response with time was calculated by the numerical analysis described

in section F.5.

The next part of this section (section 7.4(b)) will describe the

choice of the substitute structures for investigation. Section 7.4(c)

will present the results of the study of response history.

(b) Cases for Study

The study of response history included each of the five test runs

(01-4,02-1,03-1, 04-1,05-1) considered in the analytical study of

maximum response (section 7.3), and subjected to the Fourier analysis of

observed responses (chapter 6). This promoted comparability of the

analytical studies with each other and with the observed responses. For

each test run, the base motion input for the study of response history

was the corresponding observed base acceleration record.

As for the study of maximum response, a given substitute structure

was characterized by a particular first-mode response frequency (overall

damage level or stiffness reduction), a distribution of damage ratios,

or stiffness reductions, throughout the structure, and a set of viscous

damping factors for the first and second modes of response. A major

question concerned what combinations of the above parameters to consider.

Of the three distributions of damage ratio between the connecting beams

and the lower level pier member considered in the study of maximum response,

only one distribution was considered for each test structure in the study

of response history. For the type A structure, only that distribution

characterized by equal damage ratios for the beams and lower story pier
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(~pr = ~bm) was considered. For the types Band C structures, only that

distribution characterized by a damage ratio of one for the pier (~pr = 1)

was considered in the study of response history. The decision to use

only one distribution of damage was based upon the similarity of calculated

response for the three distributions of damage at any given first-mode

frequency as obtained in the study of maximum response (Fig. 7.7 through

7.11).

Having set the distribution of damage to be considered, the next

consideration was the first. mode frequencies (overall damage levels)

to be considered in the study. The main objective of the study was, of

course, to correlate the results of the analytical study of response

history with observed response histories. One would want to consider,

for the study, structure damage levels consistent with those existing

immediately before, during, or immediately after the test runs being

considered. The use of frequencies measured in the pre-test free vibration

tests was first considered. These are listed in Table 3.6. However, the

results of the study of maximum response (section 7.3) indicated that this

would not be a promising choice for analysis. This is illustrated by the

variation of maximum base moment and maximum base shear with first mode

frequency (Fig. 7.7 through 7.11). For test Dl-4, if the viscous damping

factor is taken to be ten percent of critical damping, the calculated and

observed maximum responses become equal to each other at a frequency only

slightly less than that measured in a pre-test free vibration test. For

the other four tests, however, the calculated response becomes equal to

observed response only for frequency levels much lower than those consistent

with the pre-test free vibration tests. Hence, for the study of response
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history, it was deemed more reasonable to consider frequencies, or

structure damage levels, occurring at various times during the observed

response of the structures. The observed responses, however, exhibited

a continuous variation of frequency over the duration of response.

Practical considerations limited the number of discrete frequency levels

that could be investigated. Two frequencies were considered. The first

was termed the early frequency and was the average observed response

frequency considering the first 1.5 sec. of response. This represented

the interval of highest amplitude response for the observed records. The

second frequency level considered was termed the late frequency and was

the average response frequency considering the final 2.0 sec. of response.

The early and late frequencies, as calculated for each of the five test

runs considered in the analysis, are listed in Table 7.2.

First-mode frequencies were related to damage ratios in the same

manner as for the study of maximum response. Section stiffnesses through

out the structure were reduced uniformly from the value for an uncracked

section, such that the first-mode frequency would be equal to the fre

quency measured in the pre-test free vibration test. This represented

a reference state of the structure, for which all members were assumed

to have a damage ratio equal to one. A uniform damage ratio was then

applied to the beams, reducing the structure's first-mode frequency from

the reference value to that value being investigated. A reference

structure was defined for the type A structure and an average reference

structure was defined for the four structures of types Band C. In

practice, the damage ratios necessary to produce the desired first-mode

frequencies were obtained from the results of the study of maximum response.
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For each test run, for the early and late frequencies, the corresponding

damage ratios in the beams, for input into the computer program, were

obtained from Fig. 7.6.

The third consideration involved what viscous damping factors to

consider in the investigation. There were two aspects to this considera

tion, the value of the viscous damping factor for the first mode response

and the relative values of the viscous damping factors for the first-

and second-mode responses. For test D4-1, the effect of the relative

values of the two viscous damping factors was investigated. For all

other tests, the viscous damping factors used for the two modes of response

were considered to be equal to each other. Viscous damping factors of

two percent and ten percent of critical damping were considered. In

addition, for test D4-1, a case with both damping factors equal to fifteen

percent of critical damping was investigated.

A summary of the variables considered in the study is provided in

Table 7.3. The table lists, for various combinations of first and second

mode damping factors, which test runs were analyzed. Each combination

was performed at both early and late frequencies, providing a total of

26 analysis cases, considering all test runs. Table 7.4 lists, for each

analysis case, the various structural parameters.

(c) Results of Study

The maximum calculated responses are presented in Table 7 .5. Results

are included for the top level deflection, base shear, and base moment,

for the response histories corresponding to the first-mode response,

second-mode response, and sum of the fi rst- ·and second-mode responses.
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The calculated response histories are presented in Fig. 7.17 through

7.42. Each figure presents the results of one analysis, for analyses 1

through 26 (Tables 7.4 and 7.5). Response histories of top level deflec

tion, base shear, and base moment are presented for each analysis, as

three sets of three response histories each. Within each set of response

histories, the top relation corresponds to the response obtained by

considering only the first mode response of the structure, the middle

relation to that response obtained by considering only the second mode

response, and the bottom relation to that response obtained by considering

the sum, at each point in time, of the first and second mode responses.

Each figure spans one and one-half pages.

The following paragraphs will describe the general characteristics

of the calculated results, considering the effects of varying the quantity

of viscous damping and various first,mode frequencies. Reconciliation of

the results with observed responses and other analyses will be presented in

chapter 8. As would be expected, for a given first-mode frequency level

and test run, increasing the viscous damping factor from two percent of

critical damping to ten percent of critical damping decreased all responses,

top level deflection, base shear and base moment. Consistent with the

implications of response spectra, comparison of the results of the various

analyses for test D4-1 indicated that the effect of increasing the viscous

damping from ten percent of critical damping to fifteen percent of critical

damping has much less effect than increasing the damping from two percent

of critical damping to ten percent of critical damping.

For structures characterized by the early frequency, the high ampli

tude response occurred early in the response history, as for the observed

response. For structures characterized by the late frequency, high
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amplitude response occurred later in the response history. This was a

consistent result among the various tests and characterized top level

deflections, base shears and base moments. It represented the difference

in the overall nature of the response histories obtained for structures

at the two frequency levels. These gross differences in the two classes

of response histories will be important in reconciling the results of the

study of dynamic response with the observed responses (chapter 8).

The trends in the maximum responses, comparing the responses of

structures characterized by the two frequency levels, are consistent

with the linearly elastic response spectra for the base acceleration

records used as input for the analyses. Table 7.6 lists the trends

in calculated maximum response, in terms of per cent increase or decrease

in response, as the frequency considered in the analysis changed from

early frequency to late frequency.

The trends in the top level deflection varied among the damping

factors and test runs. Comparison with the response spectra for relative

deflection (plotted on a linear scale) showed the trends to be consistent

with the variation of the response spectra over the appropriate frequency

range for each test run. The response spectra are shown in Fig. 3.3,3.14,

3.19,3.32 and 3.37 for test runs 01~4, 02-1, 03-1, 04-1 and 05-1, respec

tively. The trends for base shear and base moment shown in Table 7.6,

are provided for both first and second mode responses, as are the response

histories. For all test runs, except 03-1, the first-mode base shear and

moment decreased when the first-mode frequency of the structure decreased

from early frequency to late frequency. For test 03-1 and a damping

factor of ten percent, the response increased. These trends were consistent
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with the response spectra for each test run. For tests 01-4, 02-1,

04-1 and 05-1 the spectral response decreased throughout the interval

of 5.0 Hz to 3.3 Hz, the range of interest. For test 03-1, spectral

response decreased at low damping factors but increased slightly for

higher damping factors, as the frequency decreased. For all cases, except

the base shear for test run 02-1 at ten percent damping, the maximum

second-mode response for base shear and base moment increased when the

first mode frequency of the structure decreased from the early frequency

to the late frequency. This was consistent with the variations in the

response spectra for all cases, except the base moment for test 02-1 at

ten percent damping. Except for test 02-1, all response spectra increased

as the frequency decreased from 30 Hz to 27 Hz, for test 01-4, and decreased

from 23 Hz to 22 Hz for test runs 03-1, 04-1 and 05-1. For test run

02-1, the spectral acceleration decreased as the frequency varied from

23 Hz to 22 Hz. The maximum base shear followed this same pattern, while

the maximum base moment increased slightly (Tables 7.4 and 7.5). This

anomaly was not disturbing, however, as the shape of the second-mode

changed, over the frequency of interest, in a manner that would favor an

increase in base moment (Table 7.5).

In sum, the results of the study of response history, in terms of

the effect of various viscous damping factors and first mode frequencies

upon the response, were reasonable, and were consistent with the character

istics of the linear response spectra for the test runs being analyzed.

The results of the study of dynamic response are reconciled with

the observed responses and the study of static hysteretic response in

Chapter 8.
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CHAPTER 8

COMPARISON OF OBSERVED AND CALCULATED RESPONSES

8.1 General Comments

This chapter compares the results of the analytical and experimental

results described in previous chapters, including the observed responses

presented in chapter 3, the calculated strength and deformation properties

presented in chapter 4, the calculated hysteretic properties presented

in chapter 5, the Fourier analyzed observed responses presented in chapter

6, and the calculated response histories presented in chapter 7. Several

chapters discussed certain implications of the results of individual

experimental or analytical studies relative to the behavior of the test

structures. Much interpretation of the behavior of the test structures,

however, requires comparison of the results of several of the studies

listed above. This chapter provides such a unification.

The reconciliation is made in four parts. The first part, presented

in section 8.2, compares the initial stiffnesses, as calculated in the

strength and deformation study, and observed in the free-vibration tests

and in the static test. The second part, presented in section 8.3,

compares the strength of the test structures, as calculated in the

strength and deformation study, as observed in the static test and

calculated in the static hysteretic analysis, and as implied by the

observed dynamic responses. The third part, presented in section 8.4,

interprets what level of viscous damping factor, for a linear substitute

structure, was required to simulate the observed responses. Results from

the study of linear dynamic response, the study of static hysteretic
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response and the Fourier analysis of the observed responses are compared.

The fourth part. presented in section 8.5. considers the level of struc

tural damage exhibited by the test structures, using results from the study

of linear dynamic response. the strength and deformation study. the study of

static hysteretic response. the static test and the Fourier analysis of

observed response histories. Section 8.6 summarizes the results.

8.2 Reconciliation of Initial Stiffnesses

(a) Introductory Remarks

This section will compare and interpret the low load level stiffness

of the test structures as measured in test Sl. as calculated in analyses

considering linearly elastic response. and as measured in low-amplitude

free-vibration tests. The comparison is for type B test structures only.

because this was the only type for which a test under statically applied

loads. directly measuring initial stiffness. was performed. The free

vibration tests considered were also those for type B structures, tests

previous to test runs 02-1 and 03-1.

(b) Summary of Results

The initial stiffness properties of the type B test structures.

obtained in various manners are summarized in Table 8.1.

The first group of results, the calculated properties. were obtained

as described in section 4.2 and listed in Tables 4.4 and 4.6. Three classes

of calculation results are included. The first considers the structure to

be completely uncracked. the second considers fully cracked section for

every beam. while the piers are considered to be completely uncracked. The

third considers fully cracked section for every beam and for the portion of

the pier below the first level beam. Results are provided for both the
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stiffness~ itself, in terms of the ratio of base moment for one wall to top

level deflection, and in terms of first-mode frequency.

The next group of results pertain to low-amplitude free-vibration tests

performed prior to test runs D2-1 and D3-1. The stiffness values, in terms

of base moment and top-level deflection, listed for the free vibration test~

were obtained by comparison with the calculated stiffness and frequency for

the appropriate test structure, considering the structure completely uncracked.

The calculations followed the method described in Section 4.2(b) (Equations

4.20 through 4.22).

The last three sets of results in Table 8.1 represent attempts, during

the static test~ to measure the initial stiffness of the test structure.

As discussed in Sections 3.5 and A.6, the deflections of the test structure

were measured using both mechanical dial gages and differential transformers.

The initial stiffnesses listed in the table, in terms of base moment and

top-level deflection~ were obtained directly from Fig. 3.50 and 3.53. Those

values obtained from dial gage measurements are provided uncorrected for base

movement (Fig. 3.50) and corrected for base movement (Fig. 3.53). The

results obtained using differential transformers are~ of course, uncorrected

for base movement. The corresponding first-mode frequencies were obtained

by comparison of the initial stiffnesses with calculated stiffness and

frequency for structure Sl~ considering a completely uncracked structure.

The calculation method was analogous to that in Section 4.2(b).

The initial stiffnesses and corresponding first-mode frequencies for

the various cases listed in Table 8.1 vary over a considerable range. The

variations will be discussed in subsequent parts of this section.
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(c) Comparison of Stiffnesses Measured During the
Static Test

As shown in Table 8.1 there is some variation in the three initial

stiffness measurements pertaining to test Sl. The following paragraphs

will discuss those variations.

The stiffness obtained from mechanical dial gage readings corrected

for base movement, as illustrated in Fig. 3.52, was greater than that

consistent with the dial gage readings uncorrected for base movement~ This

is a reasonable result, base movement increases flexibility of the test

structure for low-amplitude response.

An additional comparison may be made between the initial stiffness

as determined from dial gage readings uncorrected for base movement, and

the initial stiffness as determined from differential transformer readings,

also, of course, uncorrected for base movement. The differential transformer

readings implied a significantly lower stiffness. This discrepancy may be

attributed to the fact that the dial gages bore directly against small

plates on the edge of the pier of the test specimen, while the differential

transformers bore against the steel weights. This point is described in

section A.6. The connection between the steel weights and the test specimen

itself, may have been the source of some relative movement. Micrometer

measurements indicated an allowance of 0.025 in. between the bolt diameter

and the inside diameter of the hole through the specimen. To investigate

the plausibility of such an origin for the observed stiffness variation,

the difference between the deflections at each of three levels as measured

by differential transformers and as measured by dial gages are compared with

base moment in Fig. 8.1. The differential deflections for the middle and
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top weights increased almost linearly, until a certain magnitude of deflec

tion was attained. The variation in deflection for the middle weight became

constant with moment at a deflection difference of approximately 0.03 in.,

relatively close to the estimated allowance in the weight-to-specimen

connections. The difference in deflections for the top level weight attained

somewhat higher values (0.04 in.), but also appeared to approach an asymtote

to the vertical axis in the figure. The difference in deflections for the

lower level weights increased continuously with base moment, but did not

exceed the estimated allowance (0.025 in.). It appeared that the slip in

the weight-to-specimen connections could account for the variation between

initial stiffness measured by differential transformers and initial stiffness

measured by mechanical dial gages (uncorrected for base movement).

Overall, the dial gage readings, corrected fnr base movement, would

appear to be the most reliable of the three measures of the initial stiffness

of test structure Sl, eliminating both base movement and slip in the weight-

to-specimen connections.

(d) Comparison of Stiffness fnom Dial Gage Readings
and Free Vibration Tests

The initial stiffness of test structure Sl implied by the mechanical

dial gage readings, corrected for base movement, may be compared to the

initial stiffnesses implied by the results of the pre-test free vibration

tests for test structures D2 and D3. Referring to Table 8.1, the results

were quite comparable, considering that they represent different test

specimens, cast on different days, exhibiting somewhat different material

properties (Table A.l). It appears that the low-amplitude free-vibration

tests provided a reasonably accurate measure of initial stiffness.
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(e) Comparison of Measured Initial 5tiffnesses and
Calculated 5tiffnesses

It is instructive to compare the measured initial stiffnesses (corrected

dial gages readings and free vibration test results) with various calculated

stiffnesses (Table 8.1). The calculated stiffness for each of three cases

listed in Table 8.1, along with the measured initial stiffness from dial

gages or a free-vibration test, are provided in Table 8.2, as fractions of

the stiffness of the uncracked structure, for each of the three appropriate

test structures.

The reduction 'in measured structure stiffness below that for an uncracked

structure is apparently due to shrinkage cracks and other cracks incurred

during casting and handling of the test specimens. Although the calculated

stiffnesses listed in Table 8.2 do not include the effect of shear deforma-

tions, it was determined that this effect could not account for the

discrepancy between the stiffnesses implied by the measurements and those

consistent with the uncracked state. For test structure 51, the shear

deformations were found to reduce the stiffness for the uncracked state by

13 percent. The extent of the reduction in stiffness between the uncracked

state and measured values is emphasized in Table 8.2. The measured stiffness

was comparable to the calculated stiffness for the structure,considering

all beams cracked and the piers below the first level beam cracked. This

result may seem unreasonable. It was noted in chapter 3 that none of the

specimens suffered apparent damage in casting, or handling prior to testing.

However, the result can be explained without admitting visible cracking.

If microcracking is considered to have occurred at locations with abrupt

changes in geometry, stiffness reduction could have been attained by reducing
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all section stiffnesses to approximately 0.35 of the uncracked section

stiffness (Table 8.2). The section stiffnesses for completely cracked

beams and piers ranged from 0.19 to 0.26 of the uncracked section stiff

nesses (Table 8.2). Hence, the observed stiffness reduction is plausible,

although it does illustrate the effect that microcracking can have on the

initial stiffness of the structures.

8.3 Comparison of Observed and Calculated Strengths

(a) Introductory Remarks

This section compares the measured strengths of the test structures

with the calculated strengths. The observed responses considered included

the Fourier analysis results for the critical test runs (01-4,02-1,

03-1,04-1,05-1) and the results for the final run of each test (test

runs 01-5, 02-2, 03-2, 04-2, and 05-2).

Assuming that the test structures were loaded well into the nonlinear

range of response (Sections 3.2, 3.3 and 3.4), the observed maximum base

shear and moment responses can be considered to provide an indication of

the strengths of the structures.

The calculated strengths were those for the failure mechanisms discussed

in Section 4.4.

Section 8.3(b) summarizes the calculated strengths and observed

responses presented in previous chapters. The calculated and observed values

are compared in Sections 8.3(c) through8.3(e).

(b) Presentation of Results

Table 8.3 summarizes the observed maximum base shear and base moment

for each test run for each test structure, along with the calculated maximum
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base shear and base moment consistent with the failure mechanisms for each

test structure.

The failure mechanisms are described in Section 4.4 and the base shears

and base moments consistent with each mechanism are taken from Table 4.7.

The observed responses include the Fourier analysis results for the

critical run of each dynamic test (test runs 01-4, 02-1, 03-1, 04-1 and

05-1). The maximum base shears and base moments for these test runs are

taken from Table 6.2. The shears and moments considering only first-mode

response are noted, in addition to the total shear and moment. The shears

and moments considering only the first response mode were significant in

that they were more directly comparable with the shears and moments con-

sistent with the failure mechanisms than were the total observed shears and

moments. This was due to the fact that the calculated strengths considered

purely first-mode loading (section 4.4).

The maximum observed base shear and base moment for the final run of

each dynamic test (test runs 01-5, 02-2, 03-2, 04-2 and 05-2) are also

provided in Table 8.3. Only the total observed responses are listed, the

values being taken from Table 3.5.

The maximum base shear and base moment, for each direction of loading,

for the static test (test Sl), are also listed in Table 8.3. The maximum

shears and moments were obtained directly from Fig. 3.54, considering the

maximum load at each of three levels, along with the heights of the points

of load application above the base of the structure.

(c) Discussion of Results from the Test Runs
with Amax =1.Og

For convenience, the measured maximum base moments for test runs with

A ; 1.Og are summarized below, along with strengths calculated for
max
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mechanisms 1 and 2, as defined in section 4.4. It should be noted that

mechanisms 1 and 2 refer to the same pattern of flexural yield hinges, the

only difference being the strengths of the hinges. For mechanism 1, the

yield strength of the beams is considered, for mechanism 2, the maximum

moment capacity is considered. The mechanism for structure type A refers

to yielding at the base only.

Ca1culated Heasured

Type

A(Ol)

B(02)
B(03)

C(D4)
C(05)

Hech. 1
k-in.

81

47
47

40
40

Mech. 2
k-in.

56
56

46
46

Fi rs t- r·1ode
k-in.

78

49
51

50
49

Total
k-in.

86

58
56

54
51

The ratio of the maximum first-mode component to the maximum total

measured value is approximately 0.9, which is consistent with the results

of the linear-response analyses. Because the magnitudes indicated by first

mode components are more reliable measurements of the base moment, the

observed ratio, which agrees with the calculated ratio, tends to provide

confidence in the observed maximum total values.

In general, the measured moments agreed reasonably well with the

calculated ones. The measured values for type C structures, especially

the first-mode components, were almost the same as the measured values for

type B structures, contrary to the trend indicated by the calculated values.

The calculated strengths reflected the influence of the reduction of the

reinforcement ratio of the beams. If the measured first-mode base
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moments are considered to be reliable, it would appear that the calculations

underestimated either the relative contribution of the piers to structure

strength or the effect of strain hardening on the strength of the beams.

The mean total moment for type B structures (57 k-in.) was higher than

that for type C structures (53 k-in.), but not high enough to confirm the

difference implied by the calculations.

(d) Discussion of Maximum Observed Moments

Evaluation of the maximum observed moments is of interest because the

strengths implied by these data can be compared directly with strengths

calculated from physical characteristics of the test structures. However,

before the quantities themselves are considered, one feature of the measured

quantities must be discussed.

The "measured" moment is a quantity calculated from accelerations

measured at three levels in the test structure. Consequently, if the

acceleration data contain "sp ikes" and if two of those "sp ikes" are recorded

as having occurred at the same time, the influence on the calculated moment

of these "sp ikes," which mayor may not be real, can be quite large. Further

more, the superposition of such "sp ikes" is highly sensitive to small varia

tions in the phase relations among the accelerations at the three levels in

the test structure. Therefore, "spikes" in the waveform of the moment

response plot must be considered very carefully before associating the

magnitude of such spikes with structure strength.

Referring to Table 8.3, the maximum total base moments for the final

test runs, in general, appear quite high, relative to the calculated

strengths. However, for all cases, except test structure D2, for which the

observed maximum compared to the calculated strength, the observed maxima
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were associated with "sp ikes" or isolated peaks in a "jagged" response

history. This is apparent in Fig. 3.6, 3.17, 3.22, 3.35 and 3.40, where

the maximum base moment for structure 01 occurred at 0.4 sec. after the

start of response and the maximum base moments for other structures occurred

at 1.1 sec. after the start of response. The situation is especially

noticeable for test structure 01. The isolated "spike" that produced this

high maximum moment corresponded to "sp ikes" in the acceleration records

(Fig. 3.4). For all cases, except structure 02, the physically significant

observed maximum moments were probably somewhat lower than the apparent

maxima.

8.4 Interpretation of Observed Response Using
Linear-Response Models

(a) Introductory Remarks

This section compares the observed responses with the results of the

study of linear dynamic response and the study of static hysteretic response,

to determine the overall magnitudes of viscous damping factors consistent

with the observed responses. The objective was to study the feasibility of

using a viscously damped substitute structure to simulate the response of

the test structures.

The spectral study (section 7.3} was first evaluated to determine what

viscous damping factors would be required to make the calculated responses

equal to the observed responses at reasonable frequency levels. This was

done for base shear, base moment and top level deflection and is described

in part (b) of this section.

The basis for determining the feasibility of using a viscously damped,

linear, substitute structure to simulate the observed responses was a
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comparison of the results of the study of response history (section 7.4)

and the results of the Fourier analysis of observed responses (chapter 6).

The comparison was based upon both the overall shape, or character, of the

response histories and the magnitude of viscous damping factors needed,

in the analytical model, to simulate the observed responses. The comparison

is described in parts (c) through (f) of this section.

The final portion of the section (part g) provides a general discussion

of the results derived from the comparisons.

(b) Comparison of Observed Response and
Calcula~ed Spectral Response

Figure 7.7-11, described in Section 7.3, contain plots of three

calculated response quantities (deflection, base shear, and base moment),

as a function of the first-mode frequency at two damping factors (0.02

and 0.10), for each test structure (Amax ; 1.Og). The magnitude of the

maximum observed response is indicated in each plot.

Before considering the comparison of the calculated response histories

with the measured response histories, it is helpful to review the overall

implications of these plots.

In all cases, the observed response can be reconciled with the response

calculated for a particular combination of first-mode frequency (between

approxi~ately 4 and 10 Hz.) and viscous damping factor (between 0.02 and

0.10) .

Because of the necessity of invoking unreasonably low first-mode

frequencies to effect reconciliation at low damping factors, reconciliation

at damping factors approaching 0.10 appears more plausible.

Using the lI early frequencyll (section 7.4) and a damping factor of

approximately 0.10, it is possible to match the observed and calculated
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responses for base shear and moment, but not for top-story displacement.

(c) Scheme for Reconciliation

Sections 8.4(c) through (f) compare calculated response-histories

with observed response histories, in order to study the possibility of

using a linear analytical model to simulate the test results. The compari

sons considered the first-mode response, second-mode response and total

response for the base shear and base moment, and the total response for the

top-level deflection. The results of the a~alytical study of response

history are presented in Fig. 7.17 through 7.42. The results of th~ Fourier

analysis are presented in Fig. 6.1 through 6.16.

The results for the analytical model are compared with the observed

responses, separately, for two particular intervals during the test duration.

The first interval refers to the first 1.5 sec. and the final interval

refers to the final 2.0 sec. of the total test duration of 6.0 sec. The

first interval was significant because maximum response was registered

during this interval. The consideration of the second interval provided

information on whether one substitute structure could be used to simulate

an entire response history, or whether a response history had to be simulated

in pieces, by several substitute structures.

Several overall approaches were considered. One approach involved

comparing observed responses during both the first and final intervals

with the response histories for a substitute structure characterized by a

first-mode frequency equal to the early frequency (chapter 7). Although

such a reconciliation could be made for the type A test structure (test

run Dl-4), for types Band C test structures, the response during the final

interval could not be reconciled in such a manner. A first-mode viscous
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damping factor much greater than 0.10 would be required of a substitute

structure to obtain the first-mode observed response in this interval.

This conclusion was derived from the response histories for base shear and

base moment.

Because of the poor correlation between calculated and measured forces,

the approach of using a substitute structure with a first-mode frequency

equal to the early frequency to simulate response during both first and

final intervals was discarded.

A second possible approach involved calculating the observed response

using a substitute structure characterized by a first-mode frequency equal

to the late frequency. However, the response in the first interval could

not be simulated plausibly using models with their stiffnesses based on the

late frequency. This was true of base shear, base moment and top level

deflection and is shown in Fig. 7.19, 7.20, 7.23, 7.24, 7.26,7.29, 7.30

7.33, 7.34, 7.37, 7.38, 7.41 and 7.42.

Reconciliation of observed and calculated responses was obtained

using a substitute structure characterized by the early frequency to

calculate response in the first interval and a substitute structure char

acterized by the late frequency to calculate response in the final interval.

(d) Type A Structure

The observed response histories for the type A test structure (test

run Dl-4) are shown in Fig. 6.2, 6.7 and 6.12. The calculated response

histories are represented by analyses 1 through 4 (tables 7.4 and 7.5) and

are shown in Fig. 7.17 through 7.20. The substitute structures with viscous

damping factors of 0.02 resulted in responses well in excess of the first-mode

response for both intervals of response. However, the substitute structures
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with viscous damping factors of 0.10 led to overall first-mode magnitudes

comparable to those measured in both intervals. The waveforms of the

calculated response histories also compared well to the results of the

Fourier analysis of observed response.

The overall magnitude of the calculated second-mode response for base

shear was apparently not highly sensitive to the viscous damping factor

(see, for example, Fig. 7.17 and 7.18). The observed response could be

matched using a viscous damping factor for the second mode of either 0.02

or 0.10. For base moment, however, the second-mode response was under

estimated, even using substitute structures with a second-mode damping

factor of 0.02.

The total responses calculated in analyses 2 and 4, using viscous

damping factors of 0.10 for both first-and second-mode responses matched

the total magnitudes of response for both first and final intervals well,

due to the dominant influence of the first mode. However, the second-mode

contributions were vastly underestimated by these analyses. The result was

that the calculated response histories for base shear and base moment for

these analyses lacked much of the IIjaggedness ll produced by the second mode

in the observed response histories.

(e) Type B Structures

The Fourier-analysis results for the observed response histories of

the type B test structures (test runs 02-1 and 03-1)are shown in Fig. 6.8,

6.9,6.13 and 6.14.

The calculated response histories are represented by analyses 19

through 22 (table 7.4). All of the above analyses were characterized

by identical viscous damping factors for the two response modes (either

0.02 or 0.10).
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For both tests, the overall magnitude of response during the first

interval, for base shear, base moment and top level deflection, was grossly

over-estimated by the analyses for damping factors of 0.02. The magnitude

of these first-interval responses were matched closely for both first and

second modes of response by substitute structures characterized by damping

factors of 0.10. The total response for base shear and moment, for the

first interval, was well matched, even to the degree of "jaggedness" in the
,-~-

response.

The overall magnitude of the first-mode response in the final interval

was slightly overestimated for base shear, base moment and top level deflec-

tion, by substitute structures characterized by damping factors equal to

0.10. The implied damping factor for the observed final-interval response

was only slightly greater than 0.10. This was true for both tests.

The overall magnitude of the second-mode response in the final interval

for base shear, base moment and top level deflection, was overestimated

by substitute structures characterized by damping factors equal to 0.02, for

both tests, well matched by substitute structures characterized by damping

factors equal to 0.10, for test run 02-1, and underestimated by substitute

structures characterized by damping factors equal to 0.10, for test run

03-1. Evidently, the second-mode equivalent damping factor, for late stages

of response, was on the order of 0.10 for test run 02-1 and between 0.02 and

0.10 for test run 03-1.

The substitute structures characterized by damping factors equal to

0.10 modelled the general shape and "jaggedness" of the response well for

test run 02-1, while for test run 03-1, such analytical models did not

lead to waveforms with the degree of "jaggedness" observed in the measured
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response. reflecting the lower apparent viscous damping factor for the

second mode.

(f) Type C Structures

The observed response histories for the type C test structures (test

runs 04-1 and 05-1) are shown in Fig. 6.10.6.11.6.15 and 6.16. The

calculated response histories are represented by analyses 5 through 14.

for test run 04-1. and by analyses 23 through 26. for test run 05-1

(Table 7.4). The calculated response histories are shown in Fig. 8.21

through 8.30. for test run 04-1 and Fig. 8.39 through 8.42. for test run

05-1. Analyses 5 through 10 and 23 through 26 were for substitute structures

characterized by equal damping factors for the first and second modes of

response. Analyses 11 through 14 represented a study of the effect of

dissimilar damping factors for the first and second modes of response. The

first-mode viscous damping factor was equal to 0.10 for all of analyses

11 through 14. while the second-mode viscous damping factor was either 0.02

or 0.05.

Considering first the substitute structures characterized by equal

damping factors for the first and second modes of response. the results

were very similar to those for the type B structures. The responses in

the first interval were grossly overestimated by substitute structures

characterized by viscous damping factors equal to 0.02. Substitute struc

tures with viscous damping factors equal to 0.10 matched the observed

response in the first interval for base shear and base moment. quite well.

for both first and second modes of response. The overall shape of the

calculated relations was also consistent with the observed response. The

total first-interval response was also welLmatched by results based on

these structures. Even the overall degree of IIjaggedness ll of the total
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response was well simulated. Hence, calculations using the substitute

structures matched reasonably well the manner in which the two response

modes combined.

The matching of the observed first-interval deflections, was somewhat

more of a problem. The substitute structures with viscous damping factors

for both response modes equal to 0.10 could be used to match the magnitude

of the first two or three peaks in the observed deflection. However,

later peaks in the first interval were underestimated. It was noted that

the observed base shear and moment did not exhibit such behavior. The

maximum response was attained during the first two or three excursions.

Response increased little for subsequent peaks during the first time interval.

The success in matching of the maximum forces, but not deflections, was

thought of as a manifestation of yielding of the test structures during

the interval of early response. This point will be discussed further in

section 8.5.

The final-interval responses, for base shear, base moment, and top

level deflection, for both tests, were slightly overestimated using substitute

structures with viscous damping factors for both response modes equal to

0.10. Damping factors of 0.10 or somewhat greater, for both modes, were

apparently consistent with the observed responses. These substitute struc

tures also led to results which matched the total responses for the final

interval, including the manner in which the two modes of response combined.

Analyses 11 through 14 helped to provide additional support for an

interesting conclusion, described in the preceding paragraphs. This was

the conclusion that, for reconciliation of analytical and observed responses,

for type Band C structures, the viscous damping factor for the second mode

of response needed to be of the same order as that for the first mode of
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response. Analyses 11 through 14 considered substitute structures character

ized by first-mode damping factors equal to 0.10. The second-mode damping

factor was either 0.02 or 0.05. The results for analyses 11 and 13 (second

mode damping factor equal to 0.02) grossly overestimated the second-mode

early response for base shear and base moment. This result also manifested

itself in the total first-interval responses. Only with a second-mode

damping factor equal to 0.10 (analysis 6) did the modal contributions to

first-interval response become reasonable.

The final-interval second-mode response for base shear and base moment

were not as sensitive to the magnitude of viscous damping factor as were the

early responses. A second-mode damping factor equal to 0.02. however. did

result in overestimation of the second-mode contribution. while a second

mode damping factor of 0.05 slightly overestimated the second-mode contri

bution. The change in the overall magnitude of final-interval second-mode

response as the viscous damping factor increased from 0.05 to 0.10 was

noticeable, but not drastic. The viscous damping factor for reconciliation

of calculated and observed response must be on the order of 0.10.

(g) Discussion of Results

The damping factor required to match the results from linear models

with the observed results was generally the same for all types of test

structures.

The required first-mode damping factor for first-interval and high

amplitude response appeared to be on the order of 0.10. This is a reasonable

value for a reinforced concrete structure undergoing extensive yielding.

The required first-mode damping factor for final-interval and low

amplitude response was equal to. or slightly greater than. 0.10, for all
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cases. The calculated first-mode damping factor for low-amplitude response

was greater than that for high-amplitude response, as discussed in section

5.5 (e), in relation to the shape of the hysteresis relation and the defini

tion of an equivalent viscous damping factor. Certainly, the numerical

values nf the calculated damping factors in Table 5.5 do not correlate

well with those values obtained from the response history study. However,

considering the crude manner in which the hysteresis is defined in chapter

5, close numerical correlation may not be expected. The results of chapter 5

enhance the understanding of the results of the response history study and

help support the concept that low-response amplitude does not necessarily

imply low damping factor.

Another interesting result was that, with the exception of the type A

structure (test run 01-4), the second-mode viscous damping factors required

for the substitute structures to predict the observed responses were of the

same order as the first-mode damping factors (equal to or only slightly less

than 0.10). This result was also anticipated by the equivalent damping

study of section 5.5, where, again, this problem is described in terms of

the shape of the hysteresis relation and the definition of an equivalent

viscous damping factor. The calculated damping factors for the first-and

second-modes of response are shown in Table 5.5. The second-mode value

was meant to correspond to high amplitude (first-interval) response. The

hysteresis model used to obtain the values in Table 5.5 was, of course,

very crude, and the results should be thought of only as providing support

for the general concept that the second-mode damping factor may be of a

magnitude similar to that of the first-mode damping factor. Sources of

error for the numerical values of the damping factors of Table 5.5 included

the use of an idealized, or approximate, mode shape, or loading pattern,
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uncertainty concerning the relative amplitudes of the two modes of response,

and idealization of the moment-rotation hysteresis relations for the members.

For the type A structure (test run 01-4) the second-mode viscous damping

factor for reconciliation of calculated and observed response histories was

on the order of 0.02, quite different from those for the type Band C

structures.

Finally, the reconciliation of the analytical study of response history

with the results of the Fourier analysis of the observed response histories

produced reasonable and interesting results, in terms of the magnitudes of

viscous damping factors required for the linear substitute structures to

estimate the observed responses. The damping factors obtained were of

reasonable overall magnitude for reinforced concrete structures undergoing

significant yielding. The results indicated, however, that the general

concept that higher modes are less heavily damped than the first mode and

that viscous damping factor decreases as response amplitude decreases

may not be universally correct.

8.5 Interpretation of Oamage to the Test Structures

(a) Introductory Remarks

This section will interpret the degree of structural damage implied

by the maximum first quarter cycle response during test Sl and by the major

peaks in the observed response histories for the critical test runs (01-4,

02-1, 03-1, 04-1, 05-1).

For the static test (Sl), the degree of structural damage was assessed

by considering the calculated maximum member deformations from the analytical

study of hysteretic response. For the dynamic tests, the structural damage

level was assessed through a series of linear substitute structures, with
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stiffness levels compatible with (a) the maximum base moment and maximum

top level deflection for the various peaks in the observed response histories,

and (b) the frequencies in the first and final intervals. In a similar

manner, a linear substitute structure was defined to exhibit the maximum

base moment and maximum top level deflection observed during the first

quarter cycle of test Sl.

In the first stage of the consideration of structural damage, the

stiffness and frequencies for the substitute structures were compared with

each other and with the overall structure stiffnesses calculated in chapter

4 for various combinations of cracked and uncracked beams and piers and

completely missing beams. In the second stage of the interpretation, using

the methods of chapter 7, damage ratios for the beams and piers were associ

ated with the various substitute structures, based upon their first-mode

frequencies. These were compared with each other and with member damage

ratios implied by the results of the study of static hysteresis. All

dam~ge ratios were based on the stiffness for a cracked section.

Section 8.5 (b) presents a summary of the results to be considered in

the comparison. Section 8.5 (c) discusses the stiffnesses and first-mode

frequencies for the various substitute structures. Section 8.5 (d)

discusses the member damage ratios associated with various substitute

structures and with the study of static hysteretic response.

(b) Summary of Results

The overall stiffnesses of the substitute structures, in terms of

the ratio of base moment for one wall to top level deflection, are listed

in table 8.4. The stiffnesses for various combinations of cracked and

uncracked beams and piers and missing beams (first five cases in the table)
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were taken directly from table 4.6. The stiffnesses for substitute structures

characterized by the frequencies in the first and final intervals were taken

from table 7.2.

The stiffnesses for the substitute structures representing the maximum

fi rst quarter cycl e response for tes t Sl and the study of stati c hystereti c

response were obtained from Fig. 3.54 and 5.30. The substitute structures

for the major peaks in the response histories were defined for purely first

mode response. This promoted comparability with those substitute structures

considering the static test and static hysteresis analysis and with the

analyses considering various combinations of cracked and uncracked section

stiffnesses for the members. The overall stiffnesses for substitute struc

tures corresponding to the pre-test free vibration tests were calculated

from the corresponding observed frequencies (Table 3.6), following the

method of section 4.2(b).

The first-mode frequencies corresponding to the stiffnesses listed

in Table 8.4 are listed in Table 8.5. The results were taken from

Tables 4.4, 3.6, 7.2 and 8.4. The method of section 4.2(b) was used to

convert stiffnesses to frequencies. Through the results of section 7.3,

member damage ratios were associated with the substitute structures corres

ponding to the early frequency and also with those corresponding to the

peaks in the response histories. Using the first-mode frequencies listed

in Table 8.5, the uniform damage ratios for the beams and for the lower

level piers were obtained from Fig. 7.6, for the three distributions of

structural damage provided in the figure. The resulting ranges of member

damage ratios for each substitute structure are listed in Table 8.7. These

damage ratios were based upon the reference structures used in the study of

dynamic response (section 7.3). The member section stiffness for these
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reference structures (reference section stiffnesses) are listed in Table 8.6.

To promote overall comparability in the study and to make the member damage

ratios more physically meaningful. the member damage ratios of ~able 8.7

were factored by a stiffness ratio. so as to be based upon the cracked

section stiffnesses (Table 8.6). The results are listed in Table 8.8.

Note that when damage ratios are based on cracked section stiffnesses, the

identifications for the damage distributions (~ = 1, ~b = 2~ ,~ = ~ )pr m pr pr bm
no longer reflect the numerical relations between beam and pier damage

ratios.

Member damage ratios were also computed for the maximum first quarter

cycle response during the study of static hysteretic response. The maximum

member end rotations, as listed in Table 5.3, were considered. The damage

ratios were expressed in terms of cracked section stiffnesses for the

members and are listed in Table 8.9.

(c) Discussion of Stiffnesses and Frequencies for
Substitute Structures

The stiffnesses corresponding to pre-test free vibration tests,for

test structures D2, D3 and D4, were very close to the stiffness of the test

structure with all beams and the lower level piers fully cracked. The

free vibration test for Dl represented only a slightly lower stiffness,

and that for D5 a somewhat higher stiffness. The comments made relative

to the initial stiffness comparison of section 8.2 apply here, however.

The analyses being considered allowed only the lower level pier to be fully

cracked. The remainder of the pier was assumed completely uncracked. The

results of Tables 8.4 and 8.5 do not require that one assume the beams

and lower level pier to be fully cracked at the start of the dynamic tests.

Finally, the free vibration test results for the types A and C structures



146

represent damage levels fairly similar to those for the type B structures,

as discussed in section 8.2.

The substitute structures corresponding to the final-interval frequency

exhibited stiffnesses very similar to those obtained considering uncoupled

piers and the lower level pier fully cracked. This result was consistent

with the structural damage observed at the conclusions of the critical test

runs (01-4, 02-1, 03-1~ 04-1 and 05-1).

The stiffnesses associated with peaks in the response histories

(Table 8.4) were significant relative to the comparison of observed and

calculated response histories, as discussed in section 8.4. It was mentioned

in section 8.4 that, for types C test structures, substitute structures

exhibiting a first-mode frequency equal to the early frequency and a viscous

damping factor of 0.10 could be used to match the maximum base moment, but

not the maximum deflection. The top-level deflection calculated was close

to that for the peak at a time 0.4 sec. into the" observed response. The

substitute structure characterized by the early frequency modelled the peak

for a time of 0.4 seconds. It also predicted the base moment and top level

deflection for this peak reasonably well. For subsequent peaks, the observed

base moment increased only slightly, while the observed deflection increased

more significantly. The structure was yielding. The substitute structure

corresponding to the early frequency was simply too stiff to predict the

maximum deflection excursion.

In effect, for a more faithful simulation of the response, it would

have been preferable to subdivide the first interval, using models with

different stiffnesses in the two subdivisions.

For the type A structure (test 01), the results were somewhat different.

The maximum response peak, occurring at 0.7 sec., was associated with a
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stiffness only slightly less than that associated with the early frequency,

and well in excess of the stiffness associated with the late frequency.

Finally, the stiffnesses for the substitute structures associated

with the maximum first quarter cycle response for the static test and for

the static hysteresis analysis (Table 8.4) correlated well with stiffnesses

for those substitute structures associated with the late frequency of the

dynamic test structures, and hence, with those substitute structures associ-

ated with the highest amplitude peak (1.2 sec) in the observed response

histories. The static test was designed to simulate the maximum observed

response, and, if anything, represented a higher deformation level than the

dynamic tests. It is also to be noted that the first quarter cycle response

for the static test represented considerable overall yielding (Fig. 3.54).

This was consistent with the yielding implied by the observed response

histories, as discussed in preceding paragraphs.

(d) Discussion of Member Damage Ratios

The damage ratios, based upon fully cracked section stiffnesses, for

the beams and pier, are listed in Table 8.8 for various substitute struc

tures. As mentioned previously, the overall stiffness level for each

substitute structure may be satisfied by an infinite number of combinations

of beam damage ratio and pier damage ratio. The table provides results for

three damage distributions, ~pr = 1, ~pr = ~bm' and ~bm = 2~pr'

It should first be mentioned that the beam and pier damage ratios

are for equivalent prismatic members. The values may be thought of as

related to the average damage ratios over the length of the actual members.

For the beams, especially, the concentrated damage ratios at the beam-pier

interface would be larger. Furthermore, the values in the table assume that

all beams exhibited identical average damage ratios, even though some beams



148

must exhibit larger average damage ratios over their length. The two

preceding observations suggest that in judging the damage ratios computed

for the substitute structures, the quantities listed should be interpreted

as indicating trends rather than precise values.

For the assumed damage distribution ~pr = 1, the results show pier

damage ratios less than one. This merely indicates the section stiffness

for the lower level pier was greater than that for a fully cracked section.

The section stiffness was equal to the reference section stiffness for the

study of dynamic response (chapter 7). For the early frequency and for the

first major peak in the response history (0.4 sec), the damage distribution

with ~pr = 1 requires very high beam damage ratios. For structure 03,

a beam damage ratio of 17.9 is required. Even at this early loading stage,

a pier section stiffness closer to that for a fully cracked section was

likely. For the maximum excursion of the dynamic tests (1.2 sec), the

required damage ratios for the beams would be absurd, exceeding a value of

30.

For test structure 01 (type A) at maximum response (0.7 sec), the

damage ratio for the beams could be made small only by assuming enormous

damage at the base of the pier. It should be noted that the observed and

calculated failure mechanism for this. structure (sections 3.4(h) and

4.4(b)) consisted of failure of the bases of the piers in axial tension and

no apparent beam damage. The implication from the substitute structure was

that the lower level pier damage was very large, which was consistent with

the observed result.

Among the substitute structures for type Band C structures it is

interesting to consider the structures for the final major peak in the
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response history (1.2 sec). A distribution of damage characterized by

flb = fl resulted in damage ratios for the lower level pier which werem pr
too high (in the range 2.6 to 3.0). The member damage ratios for the

distribution, flbm = 2flpr' could be used to explain the structure response.

Damage ratios for the pier, for the various structures, would be in the

range 1.8 to 2.1, while those for the beams would be in the range 3.2 to

5.0. The damage ratio for the pier may also be thought of as being somewhat

less than 1.8, while the beam damage ratios could be thought of as somewhat

higher than 3.2 to 5.0. In sum, the maximum responses observed in tests

02-1, 03-1, 04-1 and 05-1 can be associated with plausible damage ratios

for the members.

Damage ratios, based upon fully cracked section stiffnesses, are

listed, in Table 8.9, for the maximum response during the first quarter

cycle of the analytical study of static hysteretic response. These results

should be compared with those for the substitute structures for tests

02-1 and 03-1 at a time of 1.2 seconds. The beam damage ratios implied

by the hysteretic study appear high (7.5 to 14.2) compared with those for

the dynamic tests for flbm = 2flpr (4.4 to 5.0). It should first be remembered

that the results for the dynamic tests represent average damage ratios

over all six beams. Some beams could be thought of as having larger damage

ratios. Furthermore, as discussed in the previous paragraph, the damage

distribution of flb = 2fl may not reflect the behavior of the test structuresm pr
precisely. The pier damage ratio may be thought of as somewhat lower than

the 1.8 to 2.0 for the substitute structures. As indicated by Fig. 7.6,

for the frequency range under consideration (3.6 to 3.7 HzJ, the damage

ratios for the beams may be quite sensitive to a decrease in the damage
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ratio for the lower level pier. Furthermore, the static test, and the

hysteretic analysis, as described in section 8.3, apparently represented

a slightly higher level of loading than did tests 02-1 and 03-1. Slightly

higher damage ratios for the beams in the static test structure, than for

those in test structures 02 and 03, may be reasonable. The magnitudes of

the beam damage ratios are not only reconcilable with those for the substitute

structures for test 02-1 and 03-1, but are plausible, in terms of general

magnitude.

8.6 Summary of Results

The results of low-amplitude free-vibration tests, measurements of

initial stiffness during the static test, and calculations of structure

stiffness ·indicated that shrinkage cracks and other microcracks reduced the

initial stiffness of the test structures significantly below that indicated

by a calculation based on completely uncracked sections for the members.

Reasonable correlation was obtained between the observed structure

strengths, considering first-mode response only, and the structure strengths

consistent with the failure mechanisms. Type C structures developed slightly

higher displacements during the first test run than did the type B structures.

For all critical test runs, it was found that a linear substitute

structure characterized by the early frequency could be used to match the

level of force response during the first interval in the response history,

while a linear substitute structure chracterized by the late frequency could

be used to match the level of force response during the final interval in

the response history. Furthermore, the linear response models could be

used successfully in estimating the general shape of the response histories.
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Calculations based on substitute structures characterized by a damping

factor of 0.10 matched the overall magnitude of the first-mode base shear

and base moment for first and final intervals in the response histories.

For the type A structure, the overall magnitude of the second-mode base

shear and base moment would be matched by calculations based on a substitute

structure with a damping factor less than 0.02. For types Band C struc

tures, with the exception of test structure 03, the overall magnitude of

the second-mode base shear and base moment was matched by substitute

structures with damping factors on the order of 0.10. For structure 03,

a damping factor slightly less than 0.10 would produce reconciliation for

the second-mode base shear and base moment. When both the first- and

second- mode base shear or base moment were well simulated, the total base

shear or moment was well matched. In essence, the linear dynamic model

could be used to model the manner in which the observed first and second

modes of response combined, to form the total response.

For types Band C structures, a linear substitute structure with a

first-mode damping factor of 0.10 simulated the overall magnitude of top

level deflection late in the response histories and matched the first

major deflection peak (0.4 sec) early in response. Subsequent peaks in

the observed deflection histories were characterized by higher magnitudes

than those calculated using the substitute structure. This was a manifesta

tion of yielding of the test structure and consequent reduction in apparent

structure stiffness, which could not be modelled by the linear substitute

structure characterized by the early frequency.

An interesting finding of the study of linear dynamic response was that

the second-mode damping factor for a linear substitute structure was not
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necessarily significantly less than the first-mode damping factor. Further

more, low-amplitude response was not necessarily consistent with a lower

damping factor than higher amplitude response. These results were reinforced

by those of the study of equivalent damping using the analytical model for

static hysteretic response. The shape of the structure hysteresis can

alter vastly the relations among the various damping factors.

Comparison of the early and late frequencies with the calculated

structure deformation properties, as presented in chapter 4, indicated

that, in addition to significant structural damage to the beams, major

damage to the lower level piers accompanied the maximum response.

Associating various substitute structures with damage ratios, for

the type A structure, implied that for the maximum observed response for

test 01-4, the damage ratios for the lower level piers, based upon a fully

cracked section, had to be very high (significantly greater than five) if

the beam damage ratios were to conform to the observation of no heavy beam

damage.

Associating the stiffnesses of various substitute structures with

damage ratios (Table 8.8) for the types Band C structures, implied that

for the maximum responses in the critical runs (1.2 sec after the start of

response), the average damage ratios for the beams had to be on the order

of five and those for the lower level pier on the order of 1.5. These

values are based upon the stiffness of a fully cracked section. Several

beams had to exhibit damage ratios significantly greater than the average.

The results of the static hysteretic analysis, representing a somewhat

higher level of deformation than tests 02-1 and 03-1, gave an upper limit

to what these ratios might be. The damage ratio for the most severely
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deformed beam could be on the order of 14. Furthermore, the various

combinations of beam and pier damage ratios calculated for the substitute

structures indicated that a certain amount of lower level pier damage,

relative to a cracked section, was required, if the maximum responses

during the dynamic tests were to be explained. For a damage ratio of one

in the lower level piers, the necessary beam damage ratios became unreason

able.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

The object of this study was to develop information toward a better

understanding of the dynamic response of reinforced concrete coupled-wall

systems subjected to strong earthquake motions. The experimental work

included tests of six small-scale structures as described in Fig. A.17

through A.20 and Tables A.6 through A.ll. The main experimental variables

were the strength and stiffness of the connecting beams as shown below.

Beam
~ Mark Depth/Span Reinf. Ratio

A 01 0.6 0.022

B 02,03,51 0.4 0.010

C 04,05 0.4 0.006

Five of the test structures were subjected to base motions simulating

one component of the record obtained at El Centro, California in 1940. One

test structure (51) was loaded with slowly applied cyclic lateral forces.

Both the base motions and the static loading produced yielding of the

structures.

Material properties and test procedures are described in appendix A.

The target concrete strength was 4500 psi. The nominal yield stress of the

reinforcement was 43,000 psi. The walls were reinforced uniformly, the

longitudinal and transverse reinforcement ratios being 0.01. For the beams,

the reinforcement ratio varied as indicated above.

Instrumentation for the dynamic tests measured accelerations and

displacements. The data from all test runs were reduced to obtain base
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shear and moment. The modal components in the data from test runs with

Amax = 1.Og were separated using standard Fourier Analysis techniques.

The data from the static test was studied to provide information on

the actual initial stiffness of the test structures, the limiting capacity

of the system for a particular distribution of lateral loading, and hysteretic

response.

The influence of member hysteretic response on the overall hysteresis

of the structure was studied analytically, using the results from the static

test as a check for the results obtained using the analytical model.

A series of studies were made to investigate the possibility of using

linear-dynamic response models to obtain calculated values comparable to

the observed base shear, base moment and displacement responses from the

dynamic tests. These studies were made for each test structure for the test

run ~Ii th Amax == 1.0g.

The following general conclusions were drawn from the experimental

resul ts:

*The initial measured frequency for the test structures could be

closely matched using the initial stiffness measured during the static

test. The measured initial stiffness was much lower than that computed

considering uncracked sections.

*The apparent natural frequency of the test structures decreased

continuously as the structures deteriorated under successive and increasingly

severe applications of the base motion. Table 3.6 shows this trend.

*The maximum top-level deflection observed during the test runs with

Amax = 1.Og was from 2.7 to 4.6 times the deflection calculated using
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response spectrum-modal analysis and a completely uncracked test structure.

The deflections are listed in Table 9.1.

*The relative contribution to base shears and moments of higher

modes increased with decrease in strength and stiffness of the connecting

beams.

The following conclusion was drawn from the results of the static

hyste~etic analysis:

*The hysteresis relations for the connecting beams had a major effect

on the overall hysteresis relation for the structure and, therefore, on

the energy dissipation capacity of the structure.

Several conclusions follow from comparison of the results of the

linear dynamic response analysis with the results of the dynamic tests

with Amax ; 1.Og:

*A linear dynamic response model could be used to simulate the base

shear and base moment responses observed during the dynamic tests. Better

results were obtained using a model having different stiffness levels for

the initial and final portions of the response duration.

*The equivalent damping factors required for the linear response model

to simulate the observed base shears and moments were virtually constant,

at approximately 0.10, for all levels of response amplitude.

*For test structures with shallow beams (types Band C described in

Fig. A.20), the equivalent damping factors required for the linear response
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model to simulate the observed base shear and base moment responses were

the same for mode 2 as for mode l~

*For test structures with shallow beams, the deflections obtained

from the analytical model (with its natural frequency set equal to the

observed apparent mean frequency) were less than those observed during the

dynamic tests.

*For the test structure with deep beams, observed deflections were

also well simulated by the linear model (with its natural frequency set

equal to the observed apparent mean frequency).
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APPENDIX A

DESCRIPTION OF EXPERIMENTAL PROGRAM

A.l Concrete Properties

The concrete used throughout this study is small-aggregate concrete

similar to that used in previous studies in the Structural Research

Laboratory of the Department of Civil Engineering at the University of

Illinois. The proportions by dry weight for the mix were 1.00:3.83:0.96

(cement:coarse aggregate:fine aggregate). The cement used was high

early strength (Type III), the coarse aggregate was Wabash River sand,

and the fine aggregate was fine lake sand. The aggregates were kept

"bone-dry." The water-cement ratio was 0.8, chosen on the basis of

attaining a desired compressive strength. The water content by volume

was 0.27. This was chosen to obtain maximum possible workability of

the mix.

Mechanical properties were determined from tests performed on the

same day that each wall specimen was tested. Cylinders were tested in

compression and by splitting, and modulus of rupture tests were performed.

Results for each test are summarized in Tables A.l and A.2.

Compressive properties were determined by testing 4 x 8 cylinders

using a 120-kip universal testing machine. Strains were determined

from a O.OOl-in. mechanical dial gage with a 5-in. gage length. A

representative stress-strain relation is shown in Fig. A.l. Due to

limitations of the equipment, it was not always possible to obtain the

descending portion of the stress-strain relation. The data in that
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range were very erratic. The mean compressive strength, obtained

from these tests, for each pair of specimens, along with their respec

tive standard deviations and ranges are compared with age at testing

in Fig. A.2. This data compares well with that obtained for concrete

in previous studies at the University of Illinois (Table A.l in Ref. 25).

The initial modulus of the concrete, taken as the slope of the

secant drawn from zero to 1000 psi, is compared with the square root

of compressive strength in Fig. A.3. All points fall between two lines

described by 4O)f~ and 50~.

The tensile properties of the concrete were determined by

splitting tests on 4 x 8-in. cylinders and from the modulus of rupture

determined from prisms with a 2 x 2-in. cross section loaded at the

center of a span of 6 in. For each pair of specimens, the mean tensile

parameters are compared with the square root of the mean compressive

strength in Fig. A.4. The mean modulus of rupture is compared with

the mean splitting strength for each pair of specimens in Fig. A.5.

These, again, compare well with results from previous studies in the

laboratory (Ref. 25).

A.2 Reinforcement Properties

(a) General Comments

The steel used for flexural and shear reinforcement throughout the

study was black annealed wire. The supplier cut the wire into 6-ft

lengths and covered it with heavy oil for protection from weather

during shipping. To help insure proper bond between steel and concrete

in the tests, the wire was soaked in a petroleum-based solvent to
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remove the oil and then in acetone to remove any residual film. Three

gauges of wire were used; #8 gauge, #11 gauge, and #13 gauge with

nominal diameters of 0.162 in., 0.125 in., and 0.0915 in. respectively.

The cross-sectional dimensions of the wire were checked by micrometer

readings. The nominal area was within 2% of the actual area in all

cases. Measured dimensions are shown in Table A.3.

Tension tests of the steel were performed on a 60-kip universal

testing machine. Strains were measured by a clip-on electrical

resistance strain gauge with a 0.5 in. gauge length.

Preliminary tensile tests of the #11 and #13 gauge wire indicated

that a portion of the bars had yield stresses less than 40 ksi. Yield

stresses this low were considered unacceptable. Hence, it was necessary

to select bars, to be used in the specimen, by individual coupon tests.

For the #11 wire, 307 bars were used in specimens. Of these, stress

strain curves were obtained for 33 and yield stresses for the remainder.

For the #13 wire, samples were tested from 72 bars. Of these, stress

strain curves were obtained for nine wires and yield stresses for the

remainder. From this sample of 72 bars, seven were selected for use

in the specimens. Of the six #8 gauge wires used in the specimens,

stress-strain tests were run for three. Stress-strain results are

also available for five additional bars not used in the specimens.

These results are discussed in part (b) of this section.

The cages for the specimens were assembled by welding lightly

with a 2.5 KVA Taylor-Winfield spot welder. For this reason, an

additional stress-strain study was performed on #11 wire to investigate
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the welding effect. This is described in part (c) of this section.

Tests were also performed on 0.046-in. diameter wire. This

wire was wound into coils and placed as a spiral around the vertical

#11 wire in the piers. These tests are discussed in part (d) of this

secti on.

(b) Properties of Black Annealed Wire Before Welding

As listed in Table A.5, the mean yield stress for the #11 gauge

wire ranged from 42.2 to 45.3 ksi for all test structures and the

coefficient of variation for #11 wires in a given test structure did

not exceed 0.07. Statistical information on parameters delineating

the measured stress-strain curves for #11 wires is tabulated in Table

A.4. As would be expected, strain parameters are subject to consider

ably greater scatter than stress parameters. This is also true for

Young1s Modulus. The fracture strain was not measured for all speci

mens. It is recorded for all those cases in which it was measured ..

Tables A.4 and A.5 also list the stress-strain parameters of the #8

and the #13 wires.

A measured stress-strain curve is presented in Fig. A.6. An

upper yield stress was observed in several specimens, although this

could not be accurately measured with the equipment used. A rounding

of the curve in the region of the yield stress was observed in five

samples.

Variation of the various stress-strain parameters with bar size is

depicted in Figs. A.7 through A.10. Fig. A.7 shows the yield stress

and ultimate stress for the stress strain sample. Fig. A.8 shows the
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ratio of the ultimate stress to the yield stress. Fig. A.9 depicts

the strain at strain hardening and the strain when the ultimate

stress is reached. The measured Young's moduli are shown in Fig. A.10.

The erratic variation with bar size and the scatter of these values

becomes apparent in the figure.

Measured yield stresses, based on measured cross section, are

summarized in Fig. A.ll for the #11 wire. This shows the yield stress

statistics of the particular #11 and #13 wires that were used in the

specimens for each static or dynamic test.

(c) Effect of Welding

To study the effect of welding on the stress strain properties of

the black annealed wire, four #11 wires were selected at random. Each

of these was cut into eight 9-in. samples. The first, third, fifth,

and seventh samples were tested directly. The second, fourth, sixth

and eighth sample each had a #11 gauge cross-bar welded to it. This

resulted in conditions similar to those encountered in the fabrication

of the cages. Conducting the study in this manner should make it

possible to separate the effects of welding upon the yield stress and

ultimate stress from variations from wire to wire and variations along

a given wire.

The results of the study are illustrated in Fig. A.12 through

A.16. Fig. A.12 through A.15 show the measured ultimate stress and

the yield stress measured at 0.2 percent offset for each sample.

Fig. A.16 consists of composite stress-strain curves for the welded

and unwelded samples in each of the four groups of samples. Each
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relation was obtained by averaging the stresses from the appropriate

curves at a number of values of strain.

It is apparent that the stress-strain relation was affected

by welding. The effect, however, was quite erratic. Although the

proportional limit was reduced in all cases, the stress at a strain of

2% was relatively insensitive to the welding process. For two of the

specimen groups even, the yield stress measured to a 0.2% offset

strain was not significantly affected. The ultimate stress is also

quite insensitive. It should also be noted that the most severe

welding effects occurred with the higher strength specimens. The

steel of specimen group four, lacking an abrupt slope discontinuity

in its stress-strain relation at yield, would not have been used in a

shear wall test specimen. After consideration of these observations,

it was decided that the effect of welding upon the yield and ultimate

stresses of the steel would be ignored.

(d) Helical Reinforcement

Determining the properties of the steel used for "sp irals" was

complicated by the mechanical deformation that the material had been

subjected to. The steel was received by the laboratory in a roll. The

wire was unrolled and then deformed by machine into a helix with a

nominal outside diameter of 0.875 in. and longitudinal spacing of

0.25 in. To obtain a measure of its mechanical properties, coupons

from this batch of steel were tested as received and also after it

was made into a helix (coupons were straightened in both cases before

testing). For both cases the proportional limit was approximately
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20,000 psi. Five samples of the wire as received indicated a mean

yield stress of 41,400 psi (stress at approx. 0.04 strain). The

corresponding value was 41,500 psi for four samples of the wire

straightened from the helix.

A.3 Specimen Details

(a) Overall Configuration

Each test structure comprised two walls (Fig. A.17). Each wall

comprised two piers interconnected by beams at six levels (A.17).

The total beam depth was nominally 2.25 in. for test Dl and 1.5 in.

for all other tests. All other nominal dimensions were identical

for each test.

Each specimen was cast monolithically with a heavy base, as

shown in the figures.

Holes were provided along the centerline of each pier at the levels

of the second, fourth and sixth level beams. These facilitated connec

tion of the weights as described in section A.4.

The overall placement scheme of the reinforcement in the specimens

is shown in Fig. A.18. The reinforcing pattern will be described in

detail in the next two parts for the piers (or the structural walls)

and the connecting beams.

(b) Pier Reinforcement

The reinforcement of the pier was common to all specimens and

was unchanged throughout the height of any given specimen. The

nominal cross-sectional geometry is shown in Fig. A.19. The rein

forcement consisted of six #11 wires uniformly spaced throughout the
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depth of the pier placed along the centerline of the small dimension

of the pier.

This provided a steel ratio of 0.98%. Horizontal reinforcement

was spaced at uniform intervals of one in. along the height of the

piers, providing a steel ratio of 1.11%.

It was necessary that the piers be capable of developing their

maximum flexural capacity at the base of the frame. The vertical

pier steel had to be able to develop its ultimate stress at this

location. To insure this, the vertical steel was welded to a steel

plate imbedded in the base of the specimen (Fig. A.21).

(c) Beam Reinforcement

The cross-sectional geometry of the connecting beams was a major

variable in the experimental study. The nominal cross-sectional

dimensions for various tests are shown in Fig. A.20. Type A beams

were used for the specimen for Test 01, Type B beams for the specimens

for Tests 02 and 03, and Type C beams for the specimens for tests 04

and 05. Both the total beam depth and the reinforcement ratio were

varied from test to test. The nominal reinforcement ratios, based on

the total steel area and the gross area of the section, were 3.7%

for Type A, 1.52% for Type B, and 0.88% for Type C. It should be

noted, however, that within any given test specimen, all beams had

identical nominal dimensions. It was desired that the connecting

beams be capable of developing their maximum moment capacity in

flexure. Hence, a major problem in designing the test specimen was

to provide sufficient anchorage length for the longitudinal (flexural)

steel in the beams to enable the beam steel to develop its ultimate
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stress at the face of the piers. Therefore, the beam longitudinal

steel was spot welded to the vertical wall steel as shown in Fig. A.22.

The connecting beams were also provided with #13 closed stirrups

with l4-diameter laps.

Initially, the transverse reinforcement ratio was computed to

provide the shear strength necessary to resist the shear force corres

ponding to the attainment of the maximum moment capacity (based on

strain hardening of longitudinal reinforcement) of the beams at the

face of the piers. The contribution of concrete to shear strength

was ignored. In this way it was intended to suppress a shear failure

in the beam. The beams were designed to fail in flexure. Hawever,

the number of stirrups necessary to provide this condition would have

left most of the length of the beam entirely unreinforced for shear.

Therefore, additional stirrups were placed at a reasonable uniform

interval as shown in Fig. A.20.

(d) Base Detail

The reinforcement details of the base of the specimen are shown in

Fig. A.2l. The longitudinal reinforcement was provided such that the

base could resist, without cracking, the maximum overturning moment

capacity of the frame of the specimen. The vertical steel of the piers

was welded to the steel plate in the base. Steel tubing (Fig. A.2l)

provided vertical holes in the base to bolt the specimen to the

platform of the earthquake simulator.

(e) Casting and Curing

The two walls for each test structure were cast simultaneously.
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The concrete for both walls and for the cylinders and prisms was

mixed in one batch in the laboratory. Proper placement of the con

crete, including elimination of voids, was insured through the use

of a mechanical stud vibrator. The vibrator was used inside the

concrete for the base of the specimen and against the formwork for

the frame of the specimen. Approximately one half hour after place

ment, the concrete was struck off and then finished with a metal

trowe1.

The walls were covered with plastic and allowed to cure overnight

in the laboratory. Approximately 24 hours after casting, they were

uncovered and the side forms were removed. The walls were then

covered with wet burlap and plastic was placed over the burlap.

Seven days after casting, the burlap and the plastic were removed.

The walls were stored in the laboratory. The cylinders and prisms

received the same treatment.

The details of the forms and the placement of the completed

cages in the forms is sho\'m in Fi g. 23.

(f) Measured Specimen Dimensions

The measured dimensions of the specimens varied slightly from

the nominal dimensions. This was due to the general level of accuracy

inherent in fabrication and casting. Hence, actual specimen

dimensions were recorded, including effective depths for the steel

after each test.
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Fig. A.24 shows the positions on the specimens for which

measurements were taken. The pier and opening widths (dimensions A

and B) were measured at two levels between each pair of connecting

beams, for a total of 96 measurements of pier width and 48 measure

ments of opening width in a test structure. Results were also

computed for the portion of the above sample taken below the level

of the lowest level connecting beams (dimensions Al and Bl); a

sample of 16 pier-width measurements and eight opening-width measure

ments. The steel placement in the pier (dimensions Fl thru F7)

was measured at one section near the base of each pier, for a total

of four samples per test structure for each of the appropriate

dimensions. The opening height (dimension D) was measured at each

end of each opening on each face of a wall, for a total of four

samples per opening and 48 samples in a test structure. The pier

thickness (dimension T) is measured at two positions across the width

of each pier at the level of each connecting beam and at midheight

between each pair of connecting beams, for a total of 96 samples

per test structure. Results were also computed for the portion of

this sample taken at the midheight between the base and the first

level beam (dimension Tl), for a total of eight samples per test

structure. The beam section geometry (dimensions E,G,HT and HB)

was measured at each end of each connecting beam, for a total (in

each test structure) of 48 samples each of E and G and 24 samples

each of HT and HB. Tables A.6 thru A.ll summarize the results.
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A.4 Dynamic Tests

(a) The Earthquake Simulator

The dynamic test specimens were tested on the University of

Illinois Earthquake Simulator. The overall test setup is shown in

Figure A.25. A hydraulic ram of 75 kips capacity drives a 12 foot x

12 foot platform, providing one component of horizontal motion. The

test specimen is attached to the platform. Both the ram and the

platform are attached to the structural test floor of the laboratory.

The connection of the platform to the floor is such that no

restraint is provided by the floor in the direction of ram motion.

The frequency range of the simulator response is from zero to 100 Hz.

The maximum single amplitude platform displacement is 2.5 in. The

desired acceleration record for the test is input from ~agnetic tape.

The record is integrated twice to produce a displacement record. A

servomechanism then controls the hydraulic ram to reproduce the

displacement record.

Further details about the earthquake simulator are given by

Otani (1972); Sozen, Otani, Gulkan and Nielsen (1969); and Sozen and

Otani (1970).

(b) Weights and Connections

The platform of the Earthquake Simulator is equipped with a

rectangular pattern of 1/2" nominal diameter threaded holes 12 inches

on centers. This pattern is used to fasten the test structure to

the earthquake simulator. This is accomplished through bolts that

pass with a loose fit through vertical holes in the base of the
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specimen and provide a vertical force in a steel plate which bears

against the top surface of the specimen base. There were four such

connections for each base. Sliding of the specimen bases with respect

to the simulator platform in the direction of excitation is further

prevented by large steel angles bolted to the platform hole pattern

at each end of the bases. This can be seen in Fig. A.26.

The dead load of the structure is provided by 2000-pound steel

weights placed at the levels of the second, fourth and sixth level

connecting beams. Each weight transfers its load to the specimen

at four points; one point along the vertical centerline of each pier.

The connection is such that the weights offer no restraint to bending

of the piers about the strong axis of the pier. Eight steel angles,

two for each connectiqn point, were bolted to the weight through

their horizontal legs. A ball-bearing assembly was press fitted into

each of the vertical legs. A bolt was passed through the center of

the ball bearing fixtures and through a hole in the pier. Washers

were placed between the inner ring of the ball bearing assembly and

the surface of the pier, preventing the specimen from touching the

connecting angle. The centerline of the hole in the pier corresponded

to the centerline of the beam at that level. The detail of the

connection is shown in Fig. A.27. The configuration of the weights

is shown in Fig. A.26.

A major problem with the test structure for this study was that

it possessed very little strength about its weak axis of bending.

Without restraint of some nature, failure of the specimen might occur

about this weak axis, aborting the experiment. To avoid this, steel
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diaphragms were provided in the direction perpendicular to the

direction of motion of the simulator platform. The diaphrams were

equipped with light hinges to prevent them from providing restraint

in the direction of motion of the simulator platform. The placement

of the diaphragms is depicted in Fig. A.28.

(c) Instrumentation

The instrumentation of the test set up consisted of differential

transformers (LVDT) to measure deflections and accelerometers to

meas~re accelerations. Accelerometers were attached to the east

edge of the weights along the axis of the centerline of each of the

two coupled shear wall frames to measure accelerations in the direction

of motion of the simulator platform. AC-type differential transformers

were attached in a similar orientation to the west edge of the weights.

The differential transformers were mounted on a steel A-frame with a

natural frequency of approximately 60 Hertz. Hence, the differential

transformers measured deflections in the direction of motion of the

simulator platform relative to the deflection of the simulator plat

form. An accelerometer was attached to each base to measure the

base acceleration experienced by the specimen. Four DC type differ

ential transformers, two for each base, monitored any vertical uplift

of the bases. These were mounted on heavy steel fixtures which were

bolted to the simulator platform. Each weight was also equipped

with two accelerometers to measure vertical accelerations; one at

the west edge of the weight and one at the east edge. For Test Dl,

these were attached at the centerline of the weights, an equal distance

from each of the two test specimens. However, there was concern that
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vertical vibration of the weight as a beam supported at the two speci

mens might influence the acceleration at this point. Hence, in

subsequent tests, these accelerometers were placed along the axis of

the south specimen. The placement of the instruments is illustrated

in Fig. A.29. Results obtained from accelerometers along the axis

of the specimen were comparable to those obtained from the acceler

ometers located at the centerline of the weight.

(d) Data Recording

The voltage output of the differential transformers and the

accelerometers was continuously recorded in an analog format on

magnetic tape. This required a total of 24 channels on analog magnetic

tape; a channel for each instrument. Three tape recorders were needed

to accomplish the recording.

Since the test data as recorded on tape was purely in terms of

voltages, a calibration was needed to facilitate conversion of the

data to units that would be pertinent to a structural study; in

essence, deflection and acceleration units. Before each test, cali

brations were performed on both the accelerometers and the differential

transformers. Differential transformers were calibrated by metal gage

blocks machined to either 0.25 in. or 1.0 in. The accelerometers were

calibrated against the Earth's gravitational field by placing them

first vertically, then horizontally. The voltage outputs corresponding

to these known instrument response levels were then recorded on the

tape upon which the test data was to be recorded. This provided a

comparison with the test data.

The data recording scheme is illustrated in Fig. A.31.
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(e) Test Procedure

Immediately after the test specimen had been bolted to the

platform of the earthquake simulator and the weights placed on the

specimen any cracks in the specimen were recorded by marking on the

specimen in colored pencil along the crack. These could have been

incurred through either shrinkage or handling. The specimen was

soaked with IIPartek" Pl-A Fluorescent (r,1agnaflux Corporation, Chicago,

Illinois). The fluid was allowed to dry, and a black light was applied

to the specimen. The fluid contained fluorescent particles and glowed

when subjected to the black light. The greater fluid concentration

in cracks caused the cracks to show as bright lines under the black

light.

Next, the tightness of all bolts on the test setup were checked.

This included the weights, the specimen base, and the instrumentation

fixtures. The mounting and alignment of all differential transformers

and accelerometers was rechecked. Finally, the mechanical calibrations

were performed on the accelerometers and differential transformers.

The direction of the calibration step and its magnitude in inches or G

was recorded in a notebook.

The following sequence of operations was performed for each run

of each dynamic test:

1) The tightness of the bolts fixing the specimen to the platform

of the earthquake simulator was checked.

2) The simulator platform was displaced very gently to induce a

low amplitude free vibration in the specimen.

3) The specimen was subjected to the desired earthquake base

motion at the desired acceleration level.
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4) During the run, the motion of the specimen was recorded by

a video tape machine, and by several movie cameras

5) Immediately after the test, still pictures were taken of

the condition of the specimen. Special attention was given

to any wide, visible cracks and to any spalling of the

concrete.

6) Notes were made of the nature and general distribution of the

damage sustained in the run.

7) The specimen was soaked with "Partek" P-1A Fluorescent and

any new cracks were marked.

After conducting the entire dynamic test, as described above, the

weights were removed from the specimen. The crack pattern was

sketched on paper in colored pencil, different colors denoting the

results of different runs. The crack pattern on each specimen was

then darkened in stages with a magic marker, allowing the crack pattern

at the end of each test run to be photographed.

A.5 Reduction of Dynamic Test Data

The data, as obtained in the test, consisted of a series of

instrument responses in voltage units for various times. These were

recorded on magnetic tape in analog format. For purposes of reporting

and interpretation the data was needed in the form of plots of

acceleration-time relations or displacement-time relations. The

variation of base shear and base overturning moment with time was also

required. Finally, the elastic response spectra for the measured

base motions were needed.
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The analog records were converted into diqital records using the

Spiras-65 computer of the Department of Civil Engineering. These

were also placed on magnetic tape. The digitization rate was 1000

points per second. These tapes were then copied on the Burroughs 6700

computer of the Department of Civil Engineering to enable them to

be used on the IBM 360-75 computer of the Digital Computer Laboratory

of the University of Illinois.

The next step involved the determination of the calibration factors

and zero levels for the data. The calibration steps recorded on

tape were read by a computer program in terms of voltage units. By

knowing the instrument response in terms of acceleration or displacement

that these calibration steps corresponded to, the appropriate calibration

factors for the data were computed. By reading the portion of the

data record immediately before the onset of the earthquake, the same

computer program obtained the zero levels for each gage response in

voltage units.

A second computer program was used to process the data into its

final form for permanent storage on magnetic tape. The organization

of the data was altered, to place it into the form of a series of

response-time relations. The previously obtained zero levels and

calibration factors were also applied to the data. The data was then

in the form of a series of time histories in the units of either

inches or G.

A computer program was also written to compute the base shear-time

relations and the base overturning moment-time relations. The base



176

shear and base overturning moment were computed directly at each time

from the measured acceleration response at the appropriate time at

the level of each of the three weights and the measured masS of each

weight.

Two computer programs were written for the purpose of plotting

response-time relations. One routine plotted the relations three

curves to a page and was used to plot large quantities of data for

purposes of comparison. Another routine could plot any portion of one

curve to any time scale and response scale desired. This was useful

for close examination of a specific relation and taking measurements

from a plot.

A computer program was also directed toward computing the response

spectra for the base acceleration-time relations measured in the tests.

The program used a numerical approach to compute the response of a

single degree of freedom system to the measured acceleration record,

considering linearly elastic response. The spectra were plotted in

tripartite form and in a linear form.

A final program was written to integrate any response-time re

lation either once or twice. For example, it would be possible to

compute the displacement-time relations kinematically consistent with

the measured acceleration-time relations.

The data reduction process is illustrated by a chart in Fig. A.32.

A.6 Static Tests

(a) Loading Method

A drawing of the static test setup is shown in Fig. A.33. The
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specimen is mounted on the platform of the earthquake simulator.

This is to insure that the static test includes the same base con

ditions as the dynamic tests. Loading is accomplished by three

hydraulic two-way servorams each of 20 kips capacity. The rams were

bolted to a steel A-frame and applied their loads to the steel weights,

placed at the levels of the second, fourth, and sixth beams. The rams

can deflect the specimen to the east through a direct connecting rod.

Four 0.5 in. nominal diameter rods passing through the entire weight

system and bearing on the east edge of the weights provide for westward

deflection.

Some comments should be made concerning the manner in which the

application of load in the experiment was controlled. Built into each

ram assembly was a load cell and a differential transformer. The top

ram was operated by controlling deflection. The ram would continue

to apply load until its differential transformer sensed a certain

preset limiting deflection, at which time the ram would stop and

maintain its deflection. The two lower rams were operated by control

ling load. The rams would continue to apply load until their load

cells sensed a certain preset fraction of the load in the top ram.

In this way, a certain predetermined ratio was maintained among the

three ram loads and the test was conducted by applying predetermined

increments of top-story deflection.

(b) Loading Pattern

Since a major objective of the static test was to measure hysteresis

relations that would be applicable to the results of the dynamic tests,
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it was considered appropriate that. the ratios among the applied lateral

loads reflect the ratios present in the dynamic tests. Since the

failure of the specimens was a flexural type failure, it was reasonable

that the load or acceleration ratios predominant during periods of

high base overturning moment should be used. Examination of base

overturning moment-time relations for the dynamic tests indicated that

during these periods of large amplitude response, the first mode of

the specimen was predominant. Hence, the ratio among the applied

loads was chosen to correspond to the shape of the first mode of the

specimen. The loading pattern is depicted in Fig. A.33.

(c) Weights and Connections

The dead load for the static test specimen was simulated using

the same weights that were used in the dynamic tests. The features

of the weights and the weight-to-specimen connections were the same

as described for the dynamic tests.

(d) Instrumentation

The instrumentation for the test is shown in Fig. A.34. Deflec

tions were measured by mechanical· dial gages of O.OOOl-in. accuracy

and by differential transformers. A differential transformer was

built into each hydraulic ram, measuring deflection of the weight at

the point of load application. Six AC-type differential transformers

measured lateral deflections of the weights. There were also two dial

gages measuring lateral deflections at the same levels. The dial

gages, however, beared directly upon the east edge of the specimens,

rather than upon the weights. Two dial gages were mounted on steel
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fixtures bolted to the platform of the earthquake simulator and

measured east-west sliding of each of the two specimen bases. Four

dial gages were mounted on wood fixtures bolted to the.platform of

the simulator and monitored uplift of the specimen bases. The load

in each of the three hydraulic rams was measured by load cell built

into the ram assembly.

(e) Data Recording

All load cell and differential transformer responses were recorded

in analog format on magnetic tape during the test. Automatic plotting

instruments provided a continuous plot, in ink, of ram load cell

reading and ram differential transformer reading for each of the three

hydraulic rams. Mechanical dial gage readings were recorded manually

on paper. Fig. A.36 illustrates the data recording scheme.

(f) Test Procedure

Before the beginning of the test, calibrations were performed

for the differential transformers in a manner identical to that

described for the dynamic tests. The crack pattern for the specimen

was also marked before the test; again in a manner identical to that

for the dynamic tests.

In the earliest stage of the test the top-story deflection was

applied in a step by step manner in small increments. The increments

were initially in the range of 0.002 in. and were gradually increased

into the range of 0.07 in. After each increment of deflection, all

instrument readings were recorded, as described in part (e) of this

chapter.
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When a top-story deflection of approximately 0.3 in. was attained,

the mechanical dial gages were removed from the test setup. The

top-story deflection was increased continuously until a deflection

of 0.56 in. was attained. The loading rate was 200 seconds/cycle.

At this point the direction of deflection application was reversed

and the loading rate for the test was increased to 100 seconds/cycle.

The specimen was then sUbjected to several cycles of loading, the

maximum deflection being increased for each successive cycle. After

removal of the dial gages, load cell and differential transformer

readings were continuously recorded as described in part (e). Notes

were taken during the test concerning the onset of large cracks,

spalling of concrete and other major behavior phenomena. Cracks were

marked at the conclusion of the test.

After the test the weights were removed and the crack pattern

was recorded on a sketch. Then the cracks on the specimen were marked

over with felt-tip pen and photographed.
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APPENDIX B

COMPUTER PROGRAMS FOR ~1OMENT, AXIAL LOAD AND CURVATURE

This appendix describes the computer programs written to calculate

the moment-curvature relations and the moment-axial load interaction

relation. The program was written in the Fortran IV language for the

IBM 360/75 computer of the Digital Computer Laboratory of the University

of III inois.

The programs were written for a rectangular section consisting of

several district piers with the reinforcement concentrated in any number

of layers. The various assumptions are as described in Chapter 4 (Fig.

4.7). The procedure for the primary calculations was that outlined in

equations 4.32 through 4.40.

The input data for the moment-curvature program consisted of

section dimensions, steel area for each layer, and stress-strain parameters

for both concrete and steel, along with a set of axial loads, P, and

maximum concrete compressive strains, Ecm' The program then computed a

moment-curvature relation for each axial load, P. To define each curve,

a calculation was performed at each value of E • The output, for eachcm
point of moment-curvature relation, consisted of moment about the plastic

centroid, M, curvature, ~, corresponding neutral axis depth, co' maximum

concrete strain, Ecm ' and strain at the level of each reinforcement layer.

The input data for the moment-axial load interaction program consisted of

section dimensions, steel area for each layer, stress-strain parameters,
\

and a set of maximum compressive concrete strains, E cm An interaction
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diagram was then computed for each value of € provided. The programcm
was equipped with an algorithm to determine the axial loads at which

points on the moment-axial load interaction diagram were to be computed.

The output, for each point on each interaction diagram, consisted of

moment about the plastic centroid, position of the neutral axis, maximum

compressive strain in the concrete, and strain at the level of each

reinforcement layer.

Fig. B.l and B.2 provide flowcharts for the moment-curvature rela-

tion program and the moment-axial load interaction program, respectively.

The two programs contained an identical "core" routine which, provided

with values for maximum compressive concrete strain, €cm' and axial

load, P, computed the neutral axis location, co' and the moment, M,

about the plastic centroid. This routine included, with the exception

of the calculation of the plastic centroid, the calculation routine

described by equations 4.35 through 4.40. A flowchart is provided in

Fi g. B.3.
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APPENDIX C

COMPUTER PROGRAM FOR STATIC ANALYTICAL MODEL

C. 1 General Comments

The purpose of this appendix is to describe the computer program

that was developed to perform the calculations for the static analytical

model presented in Chapter 5. The program was named STAT and was written

in the version of the BASIC language used on the DEC System 10 computer

of the Digital Computer Laboratory at the University of Illinois.

In a general sense, the input consisted of the applied lateral

loading and the distribution of member stiffnesses throughout the system

(Fig. 5.1). As described in Chapter 5, a piecewise linear analysis was

performed, the stiffnesses remaining constant during any given step. In

this manner a lateral load-lateral deflection relation for the structure

was developed. The program was designed to operate in an interactive

fashion: the program stopped and asked the user for input data at ~he

beginning of each step. Hence, the program was independent of any

specific hysteresis relation and the user could begin or conclude

analysis at any stage of loading.

In practice, the lateral loading was applied to the structure in

stages, the system responding linearly in each stage. Consider a typical

loading increment. At the beginning of the increment, the structure was

under some set of external forces, joint deflections, and member forces.

These were the initial responses. To apply the increment, the user

first input the values of the lateral loads. The direction of the loading

increment was determined by the sign of the loads. The magnitudes did

not matter, it was important only that the loads be in the proper ratio.
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A uniform section stiffness was input for each member. The program

analyzed the structure with this data to obtain a set of joint deflec

tions and member end forces. These were referred to as the unfactored

incremental responses. Also input was a set of critical responses.

These were values of member forces or joint deflection which the user

did not want to exceed in the increment. The program multiplied the

un factored responses by a modification factor chosen such that when

the above product was added to the initial responses, none of the

critical responses was exceeded. The resulting set of responses was the

new set of total responses, and became the set of initial responses for

the next loading increment. A series of such loading increments would

constitute an analysis.

By applying the proper sequence of member stiffnesses and critical

responses, and by reversing the signs of the lateral loads at the proper

loading increments, the user could subject the structure to virtually

any hysteresis relation he desired.

C.2 Programming Scheme

A flowchart for STAT is shown in Fig. C.l. The program consisted

of the following:

(1) A series of input statements which received the data for a

given step in the analysis. This included the uniform section

stiffness for each member, the ratio of the applied lateral

loads, and a set of critical responses, the attainment of

anyone of which caused the termination of the loading step.

(2) A computation routine which assumed linear response through

out the system and analyzed the system for the stiffnesses
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and loads input in part (1) above. Note that the loading

used was numerically equal to that input in part (1). Hence,

the resulting member forces and joint displacements needed

to be multiplied by a factor to satisfy the constraints of

the critical responses.

(3) A routine to compute a modification factor for the results

of part (2). The factor was computed such that none of the

critical responses input in part (1) was exceeded. What

was obtained after multiplying the factor times the results

from part (2) was the largest load step which would exceed

none of the critical responses input .

. (4) A data file on magnetic disk (DATA5) which was used to store

the total response between loading steps. At the conclusion

of a step, the file was erased and, the new total responses

were written in the file. The next step read the file and

used the contents for its initial responses.

(5) A second data file on magnetic disk (DATA4), which contained

the values of certain responses at the end of the most recent

step. For each loading step, the program erased the content

of this file and wrote the new total responses onto it.

(6) An output data file (DATAl), again on magnetic disk onto which
I

the program wrote the final responses for each loading stage.

Results were accumulated in this file as load increment after

load increment was applied. This was the permanent record

of the results of the analysis.

(7) A series of output statements that displayed on the screen

of the cathode ray tube (CRT) the input data as understood
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by the program and told the user, for each step, which

critical response constrained the step.

(8) Two decision points at which the user first decided whether

or not to record a given step and then decided whether or

not to terminate the program.

In addition to the main program, there was a small auxiliary program

called ZER05. This program wrote data onto the file DATA5 described

above. It had to be run at the beginning of each analysis, and was

used to initialize this data file. This also enabled the user to begin

an analysis from any intermediate point in a hysteresis relation, he

could write any set of responses he wished onto DATA5. These would then

be the initial responses for the first step of the analysis.

C.3 Operation of STAT

The input data for each step was entered in response to a series

of questions displayed on the CRT. The following is a list of the

questions posed by the program for each loading step and the format in

which the user answered them. Reference to Fig. 5.1 will clarify the

explanations.

(1) liTHE LATERAL LOAD INCREMENTS IN KIPS ARE?"

Six joint loads were typed in, starting with the first story

level and proceeding upward to the top story. (Zero load

input is permitted). If the values entered were positive,

the loads were applied toward the right as shown in Fig. 5.1.

If the signs were negative, the loading was in the opposite

direction. The absolute values of the loads were not important.

It was important only that they be in the proper ratios to

each other.
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(2) liTHE VALUES OF EI FOR EACH MEMBER IN KIP-IN2 ARE?II

The uniform section stiffnesses for the step for both beams

and piers, were entered.

(3) The program now echoed the data as input in parts (1) and

(2).

(4) liTHE CRITICAL r~OMENTS ARE?"

The critical responses used to limit the step size were

entered through the CRT at this time. The parameters

considered were the end rotation for each beam and the top

level deflection. Hence, a total of seven critical responses

were entered.

(5) The program echoed the critical responses. At this point

the program performed the structural analysis, and computed

and applied the modification factor, fmin (Fig. C.l).

(6) The program echoed back the number of the step and which

critical parameter constrained the step size.

(7) II DO YOU WANT TO RECORD THE STEP?"

Typing "YES" on the CRT caused the results to be written in

Files DATAl, DATA4, and DATA5. The program then proceeded

to part (8). Typing "NO" caused the program to discard the

step; it branched back to part (1) of this section to redo

the step.

(8) II DO YOU WANT TO TERMINATE?"

Typing "NO" caused the program to branch back to part (1).

The user would then proceed to enter the next load step.

Typing "YES" caused the program to terminate.
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APPENDIX 0

COMPUTER PROGRAMS FOR STUDY OF DYNAMIC RESPONSE

0.1 General Comments

This appendix describes the computer programs written to perform the

calculations for the analysis presented in chapter 7. This section will

give an introduction to the format of the programs; the next section will

describe the various parts of the main calculation program, and the final

section will describe a second computer program, written to compute the

response histories of base shear and base moment from the results of the

first program.

Both programs were written in the FORTRAN IV language for the IBM

360/75 computer of the Digital Computer Laboratory at the University of

Illinois. The programs received input from punched cards and magnetic

tape and produced output on line printer and magnetic tape. The main

calculation program could operate in two basic capacities. In one capacity,

it performed a modal analysis for a structure with a given set of section

stiffnesses for the members (Fig. 7.2). The program was designed to handle

several sets of section stiffnesses (several distinct analysis cases)

successively, in a single run of the program. The program calculated the

natural frequencies, mode shapes, and modal participation factors for the

first three response modes of the system. In its second capacity, in

addition to calculating the modal parameters, the program calculated the

response histories for the structure, in terms of horizontal acceleration

and horizontal displacement at the levels of the three masses (Fig. 7.2).
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A base acceleration history was provided as input. As for the first

operational capacity, results cou1d'be computed successively for several

sets of section stiffnesses for the various members and several sets of

viscous damping factors for the various models. The response histories

were output to magnetic tape, where they were stored in the same format as

the observed responses. The analytical results could then be plotted

using the same plotting routines as for the observed response.

The program was written as a series of subroutines, each performing a

specific subtask in the analysis. Section 0.2 will present the flow of

calculations in the program and briefly describe each subroutine.

Section 0.3 describes an auxiliary program which read the displacement

response histories computed by the main calculation program, from magnetic

tape, and used them to compute the response histories for base shear and

base moment. These results were stored on magnetic tape, as for the other

calculated response histories.

0.2 Main Calculation Program

(a) Introductory Remarks

The flowchart for the main calculation program for the study of dynamic

response is provided in Fig. 0.1. The names of the subroutines performing

the various operations in the flowchart are denoted either at the upper

left corner of the block for an operation, or at the upper left corner of a

dashed block, enclosed several operations in the same subroutine.

The following paragraphs will briefly describe what each subroutine

did along with explaining the flowchart.
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(b) Control Routine

This was the main or core routine. It called other routines and

received punched card input containing control information, such as whether

a full response history analysis, or only a modal analysis, was to be

performed, and how many analyses (sets of structural properties), N, were

to be performed. When all cases were analyzed it terminated execution of

the program.

(c) Input Routine (INCRD)

This routine was called by the core routine and received input on

punched cards. The input included a uniform flexural section stiffness

for each beam, uniform axial and flexural section stiffnesses for each

story of the pier, story heights, total depth of beams and piers, the

number of response modes to be considered in the analysis, and, if a

response history analysis was to be performed, the viscous damping factors

to be used. The data input was output to line printer.

(d) Assembly of Stiffness Matrix for Structure (STIFF)

Because the program was to be used for only one general structural

configuration, the program did not synthesize the stiffness matrix for the

structure from stiffness matrices for the members. The coefficients for the

structure stiffness (18 x 18 matrix). were directly derived in terms of

member section stiffnesses, member lengths and member depths. The depths

were necessary due to the consideration of finite joint sizes, as discussed

in section 7.2. The information received by subroutine INCRD was then

used by subroutine STIFF to compute the stiffness matrix for the structure.

The degrees of freedom considered in the matrix were the horizontal

displacement, vertical displacement, and rotation for each of the six beam

pier joints, as described in chapter 7.
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(e) Condensation of Structure Stiffness Matrix (CNDNSE)

The stiffness matrix for the structure was condensed from the 18 x 18

format of subroutine STIFF to a 6 x 6 format, as described in appendix F

(Equations F.2 through F.5). The degrees of freedom in the 18 x 18 matrix,

which did not correspond to mass in the test structures, were eliminated.

The degrees of freedom for the 6 x 6 matrix included the horizontal and

vertical displacements at the beam-pier joints of the second, fourth and

sixth level beams.

(f) Assemble Mass Matrix for Structure (MASS)

The mass matrix for the structure was assembled directly from the

lumped mass considered for each of the six degrees of freedom of the

condensed structure stiffness matrix. This involved horizontal and

vertical inertia for each of the three appropriate joints.

(g) ~odal Analysis (MODAL)

Using the 6 x ~ stiffness and mass matrices for the structure, a modal

analysis was performed. A first approximation to the mode shapes and

natural frequencies was obtained using the routine EIGENZ of the IBM

Scientific Subroutine Package. As described in section F.4, the results

provided by this routine were of insufficient accuracy, due to poor matrix

conditioning induced by the axial deformations considered for the pier

members. An iterative improvement technique (ref. 30) was employed,

which used each approximation for mode shapes and frequencies to obtain a

better approximation. The resulting loop is shown in the flowchart (Fig.

D.l). After each iteration through the improvement technique, the approxi

mation to the first mode frequency after the iteration, f., was compared
J
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with that before the iteration, f. l' When the percent change in theJ-
frequency was within a certain tolerance, the results for the frequencies

and mode shapes were accepted and transferred to the control routine.

(h) Printed Output (OUTPRT)

This routine sent the mode shapes, frequencies and modal participation

factors, for the number of response modes desired, to line printer for

output.

(i) Decision Point

If the data input to the control routine at the beginning of the program

indicated that only a modal analysis was to be performed, a check was made

to ascertain if all cases for modal analysis had been executed, in essence,

if the counter, I, was equal to the number of sets of structural parameters

to be processed, N. If not, the program branched back to perform the

analysis for the next set of structural properties, beginning with subroutine

INCRD. If all cases had been processed, execution terminated.

(j) Numerical Integration (PRPG)

If the data input at the start of the program indicated that a complete

response history analysis was to be performed, the numerical integration

of the equations of motion was performed at this stage.

The base acceleration record to be used as loading for the analysis

was read from magnetic tape. This was the function ab, in Equation 7.19,

defined at a number of discrete times.

Step-by-step numerical integration was performed, to solve the

equation of motion for the single degree of freedom system corresponding

to each response mode to be considered in the analysis. This class of

equations is represented by Equation F.14 and the solution procedure was
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that described in section F.5. The results of the analysis were the values

of ~(t) and ~(t) (Equation F.14) for each response mode considered, at each

of the discrete times at which the base acceleration was provided.

(k) Structure Response Histories (OUTTP)

The mode shapes, modal participation factors, and frequencies computed

in subroutine MODAL were transmitted from the core routine to subroutine

OUTTP, along with the single degree of freedom responses (~(t) and ~(t)])

at the various discrete points in time. For each call to subroutine OUTTP,

several response histories were computed considering the various discrete

points in time, using the appropriate modal participation factors, mode

shape values, and single degree of freedom response histories (Equations

F.7 and F.9). There were four calls to subroutine OUTTP for each analysis

case. During the first call, the response histories for horizontal accelera

tion at each of three levels, for response in the first mode and response in

the second mode, a total of six response histories, were computed and

stored on magnetic tape. During the second call, the same was done for the

response histories for horizontal displacement, again, a total of six

response histories. During the third call to OUTTP, the response histories

for horizontal acceleration at each of three levels, for the sum of the

first and second response modes, was computed and stored on magnetic tape.

During the fourth call to OUTTP, the same was done for the horizontal

displacements. The calculation of base shears and moments will be discussed

in section D.3.

(1) Decision Point

The counter, T, was compared to the number of sets of structural para

meters, N, for which response history analyses were to be performed. If



194

all sets of parameters had been processed (1 = N), execution of the program

terminated. If not, flow branched back, to perform the analysis for the

next set of structural parameters, beginning with subroutine INCRD.

D.3 Program for Base Shear and Base Moment

(a) Introductory Remarks

As mentioned in section D.l, a second computer program was written

to compute the response histories for base shear and base moment, using, as

input, the response histories for displacement computed in the main calcula

tion program. The following paragraphs describe the flow of the program.

(b) Description of Program

The flowchart for the program is given in Fig. D.2. The program could,

in one run, compute the base shear and base moment response histories for

several sets of member section shiftnesses and viscous damping factors,

as could the main response history program (section D.2). The number of

cases to be considered was input on punched cards as an integer, N.

In the next step, additional punched card input was received. This

included the first and second mode frequencies, the story heights, and the

mass matrix (3 x 3) for the structure. The degrees of freedom for the

mass matrix were the horizontal displacement at each of the three levels

in the structure corresponding to lumped mass. The response histories for

displacements at each of the three levels, for the first and second response

modes, were input from the magnetic tape on which they were stored by the

main calculation program (Section D.2).

The response histories for base shear were computed in a point-by

point manner from the response histories for displacement, as described in
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section F.6. The calculations were performed, first, considering only the

first response mode, then considering only the second response mode. Finally,

the responses for the two modes were added on a point-by-point basis,

obtaining the results for the sum of the two modes. Each response history

was stored on magnetic tape. A similar procedure was followed for the base

moment.

The counter, I, was incremented by one, and the result compared with

the number analysis cases, N, to be considered. If all cases had been

analyzed, execution of the program terminated. If there were cases yet

to be analyzed, the flow branched back to receive data from punched cards

and magnetic tape for the next analysis case.
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APPENDIX E

FOURIER ANALYSIS THEORY

E.l General Comments

This appendix presents a description of the Fourier analysis method

used to identify the relative contributions of the various modes of response

present in the observed response histories from the dynamic tests. The

material may be found in greater detail in Clough (ref. 6). The

results obtained in the analysis are presented in chapter 6.

E.2 Fo~rier Analysis

(a) General Concept

The objective of the analysis was to consider a given response history

and to determine the portion of that response history attributable to

various frequency domains. This was accomplished by deriving a function

w(w), which, for the response. history, w(t), described the relative

importance of various frequency levels as a continuous function of the

circular frequency, w. The transformation necessary to obtain w(w) from

w(t) was such that the same transformation could be used to obtain the

function w(t), from the function w(w). By applying the transformation to

w(w) over the interval wo to wf ' the portion of the response history, w(t),

associated with frequencies in the interval Wo to wf was obtained.

(b) Formulation for Periodic Functions

An arbitrary response history, if it is assumed harmonic, may be

expressed as a summation of sine and cosine functions of time. For a

response history w(t),
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w(t) = V+ ~ VI cos 2~i t + ~ V" sin 2'ITi t (E.l)
i=l p i=l Tp

where Tp is the period of the lowest mode of harmonic response. From

the orthogonality properties of the sine and cosine functions, the constants

V, VI and V" may be evaluated as,

(E.2)

T
PLw(t)

T

f P w(t)

o

cos ~'ITi t dt
P

sin ~ 'ITi t dt
P

(E.3)

(E.4)

The above relations, however, are somewhat complicated. A more concise

form can be established through the use of complex numbers. The trignometric

functions may be expressed in complex form through the relations,

(E. 5)

(E. 6)

where e is the base of the natural logarithm and z is the complex variable,

z = I=T (E. 7)

Equations E.5 and E.6 are obtained from the power series expansions for

the sine, and cosine, and exponential functions (Kaplan pp. 359, 368).
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By applying Equations E.5 and E.6 to Equation Ll, w(t) is obtained in

complex form as,

w(t) = (E.8)

where wl is the circular frequency for the first mode.

Also,
T

Zi = T~ J P w(t)e-ziwl t dt

o

In essence,

(L 9)

(L10)

The details of the development of Equation E.8 and E.10 from Equations

E.l, E.5 and E.6 is described in greater detail by Kaplan (pp. 433-435).

(c) Extension to Nonperiodic Functions

As they appear above, Equations E.8 and E.10, apply only to a periodic

function, w(t). It is desired to extend these relations to nonperiodic

functions, w(t). In Equations E.1 and E.8, a summation over various

discrete frequency components is being taken. A factor Zi is defined for

each frequency level. Consider a function w(w), given by,

W(w.) = T Z.
1 P 1

(E.11 )

Assume, the frequencies, w., used in the summation to occur at increments
1

of frequency, ~w, such that,

Hence,

~w = w
1

(L12)

(E. 13)
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From Equation E.9,

T = 2'lT
P f:..w

Equations E.8 and E.10 become,

and,

(L14)

(L15)

(L16)

Nonperiodic response is accounted for by allowing the period of the periodic

response to approach infinity (Tp + 00). In addition the frequency increment,

f:..w, for the summation was assumed to become infinitesimally small (f:..w + dw).

In essence, ~(w) becomes a continuous function, rather than one defined

only at several discrete frequencies, wi. Hence Equations E.15 and E.16 become,

_ 00

(E.l7)

w(w) = rw(t)e-zwt dt

_ 00

(E.18)

Equations Ll? and L18 are referred to as a Fourier Transform Pair. The

reciprocal nature of the functions w(t) and w(w) is to be noted. By apply

ing the Fourier Transformation of Equation E.18 to w(t), the function w(w)

is obtained. By applying the Fourier Transformation of Equation E.l? to

the function w(w), the original function, w(t) is obtained again. It is
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also important to note that the magnitude of the function w(w) for a

specific frequency, Wi, represents a weighting factor for the contribution

of the frequency Wi to the function w(t). In other terms, the variation of

the integral of Equation Ll? for an infinitesimal increment of frequency

is given by,

() 1 -( ) zwt Idw t l
= 2n w w e dw

where t l is a specific time for which w(t) is being computed.

(L19)

The result,

dw(t ' ), represents the increment of response at time, t l
, due to frequencies

within the frequency increment, dw. Hence, if one needed to compute the

portion of the response, w(t), due to frequencies in the domain Wo through

wf ' one need only change the 1imits of integration in Equation L 17 to Wo
and wf ' rather than _00 and +00. Similarly, a practical function, w(t),

is nonzero over a finite time interval, t = 0 through t = t f . Hence,given

a response history, w(t), of duration, t f , the function w(w) would be

computed from,

f

tf

w(w) = 0 w(t)e-zwt dt (E.20)

To determine the portion of w(t), w*(t), at a given time, t l
, associated

with frequencies in the domain Wo through wf ' the following transformation

would be performed,

zwt l de w (L 21 )
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(d) Application to Test Data

Equations E.20 and E.2l represent the basis for the Fourier Analysis

of the dynamic test results. In practice, the integrals of Equations

E.20 and E.2l are evaluated numerically. The equations ar~ discretized

into summations and the functions w(w) and w*(t) are computed for an array

of discrete values of circular frequency and time. Referring to Equation

E.20, the interval of response, t f , is divided into N time increments of

magnitude, ~t. The i th discrete time is given by,

t. = i(~t),
Similarly, the frequency is discretized by intervals, ~w, such that,

w. = j(~w)
J

(E. 22)

(E.23)

Hence, the value of w(w) at the circular frequency, w.. is computed from,
J'

N
-Zw.t.

w(w
j

) = I w(ti ) e J' ~t

i=O

(E. 24)

(E.25)

After Equation E.24 is evaluated for each value of the index j, the function

w*(t) is computed at several values of time, t i , as follows,

jf
1 . zw.t.

w*(t,') = -2 I w(w.) e J' ~w
Tf j=j J

o

where the index values jo and jf are those corresponding to the circular

frequencies Wo and wf ' respectively.

In executing the Fourier analysis of the test results a computer

program was utilized that arranged the numerical integration computations

in a highly efficient form known as the Fast Fourier Transform. The details

of this arrangement of the computations will not be discussed here. A
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brief introduction to the Fast Fourier Transform is given in the text by

Clough and Penzien (pp. 114-115).

In performing the analysis, it was deemed appropriate to ascertain

the accuracy of the numerical integration procedure used (Fast Fourier

Transform). The integration to obtain w(w) was performed as in Equation

E.20. The integration of Equation E.21 was, then performed, but over a

wide frequency range, rather than only from Wo through wf . The result

was compared to the original response history, w(t), and correlation was

satisfactory.

The calculations, for the entire Fourier analysis were performed on

the IBM 360/75 computer of the Digital Computer Laboratory of the University

of Illinois.
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APPENDIX F

ANALYTICAL MODEL FOR STUDY OF DYNAMIC RESPONSE

F.l General Comments

This appendix describes the calculation methods used for the study

of dynamic response, as presented in chapter 7. The analysis was performed

for the structure shown in Fig. 7.2. The structure was completely linearly

elastic, with various other idealizations, as described in section 7.2.

The analysis procedure, to obtain response histories, was one of modal

analysis, with a response history being computed for the resulting single

degree of freedom system for each response mode. Modal superposition

was then applied, to obtain the response histories for deflections, base

shears and base moments for the structure.

Subsequent sections of this appendix describe various portions of

the analytical procedure.

F.2 Stiffness Matrix

In its most general form, the equation of motinn for the structure,

in matrix format, could be expressed by,

(F.l )

where [K] represents the l8-degree-of-freedom stiffness matrix (three

degrees of freedom at each of six beam-pier joints), {U} represents

displacements relative to the base for all 18 degrees of freedom and {P}

represents a load vector consisting of external loads at the Joints. For
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seismic response, these loads were solely the inertial loads due to the

idealized mass distribution for the structure. However, the structure

idealization, as described in section 7.2, was such that there was mass

associated with only six of the 18 degrees of freedom. These six degrees

of freedom were the horizontal and vertical displacements at the beam-pier

joints for the second, fourth and sixth level beams. The members of {P}

corresponding to the other 12 degrees of freedom were zero. This obser

vation was used to reduce the analysis problem to one with six degrees

of freedom.

By partitioning [K], Equation F.l became,

(F.2)

where {Pl } contained the six nonzero inertial load terms, {P2} was a

vector of zeroes, and the dimensions of [Kl ] [K2], [K3] , [K4] , {Ul },

{U2},{Pl } and {P2}were 6 x 6,6 x 12,12 x 6,12 x 12,6 xl, 12 x 1,

6 x 1, and 12 x 1, respectively. From Equation F.2,

(F.3)

Combining Equations F.2 and F.3, the relation,

(F.4 )

was obtained. Equation F.4 represented the equation of motion in terms

of a condensed (6 x 6) stiffness matrix, corresponding to a six degree of

freedom system. Hence, the stiffness matrix for the six degree of freedom

substitute structure was obtained from,
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[KJ = [Kl J - [K2J [K4r1 [K3J (F. 5)

F.3 Equations of Motion

The equation of motion for the six degree of freedom substitute

structure was expressed in matrix form as,

(F.6)

where [MJ, [CJ, and [KJ were the mass, viscous damping and stiffness

matrices, respectively. The six member vector, {~}, represented the

horizontal and vertical displacements, relative to the base, at the

locations of the concentrated masses used in the structure idealization .
..

The vectors, {~} and {M were the corresponding velocities and accelera-

tions. The vector, {Ab}, was a six member vector with each member equal

to the base acceleration. All four of the above vectors were functions

of time. The object of the analysis was to determine the magnitude of
..

the vectors {~} and {~} at a number of discrete times during the response

of the structure, given the magnitude of the vector {Ab} at those same

discrete times during the response.

Consistent with a modal analysis approach, the vectors {~}, {~},
..

and {~} were idealized by the summations,

Ns
{M = E b·{t·H;.(t)

i=l 111

Ns
{~} = E b·{t·}~.(t)

i=l 111

(F.7)

(F.8)

b.{cj>.}~.(t)
111

(F.9)
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where b. was the modal participation factor for the i th mode of response,
1

{~i} was the mode shape corresponding to the i th mode of response and

~i(t). ~i(t), and ~i(t) were the displacement, velocity and acceleration,

respectively, relative to the base, as functions of time, for a single

degree of freedom system corresponding to the i th mode of response.

Equations F.l, F.B, and F.9 were substituted into Equation F.6. The

result was premu1tip1ied by {~j}T,the transpose of the mode shape for

a specific mode, mode j. The orthogonality relations,

(F.10)

(F.ll)

were applied. Additionally, the viscous damping coefficients were

considered to be linear functions of mass and stiffness.

Combining Equations F.10, F.11 and F.12,

H.}T [C] H.} = 0 for i 'f j
J 1

(F.12)

(F.13)

Considering all of the above operations applied to Equation F.6, and

rearranging, the result was,

.. 2
b.~.(t) + 2(3 ·w .b.&.(t) + lJl .b·dt)J J SJSJ J J SJ J

= (F.14)

where,
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2 {cPj}T[K]{¢j}
W =

sj {cPj}T[M]{cPj}

Allowing,

b. =
{cP j}T[t~] {I }

J {cPj}T[M]{cPj}

(F.15)

(F.16)

(F.l7)

The result was a single degree of freedom equation of motion for each

mode of response,

.. • 2
~.(t) + 26 .W .~.(t) + W .~.(t) = -ab(t)
J SJ SJ J SJ J

(F.18)

..
In this manner, the problem of defining the vectors {~} and {~}

(equations F.7 and F.9) at several discrete times was reduced to two

major operations. One was the modal analysis of the substitute structure

to determine the mode shape, {cPi}' and circular frequency, wsi' for each

mode, i, of response. That operation is discussed in section F.4. The
..

second operation was to determine the acceleration and displacement, ~i

and si' respectively, for each mode of response, i, at several discrete

times during the response of the structure. That operation is described

in section F.5.

F.4 Eigenanalysis

The eigenvalue problem defined by the relation,

..
[M]{~} + [K]{~} = {OJ (F.19)
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was solved to obtain the mode shpae, {~.}, and the participation factor,
1

bi , for each mode, i. Note that the effect of the viscous damping upon

the mode shapes and frequencies was not considered. For reasonable damping

factors, this effect is generally small.

The eigenanalysis was performed using the subroutine EIGENZ of the

FORTUOI Library of the Digital Computer Laboratory of the University of

Illinois. The resulting mode shapes and natural frequencies were inaccurate

due to the effect of the axial deformation of the pier, which was considered

in the analytical model. The routine, EIGENZ, was not reliable at handling

the poor matrix conditioning associated with the inclusion of the axial

effects. The results obtained using EIGENZ were applied as the initial

guess in an iterative eigenanalysis improvement technique developed by

Robinson and Harris (ref. 30). In this manner, refined results for the

natural frequencies and mode shapes were obtained.

F.5 Response History of Single Degree of Freedom System

This part describes the computation of the response history corres

ponding to Equation F.18. A numerical approach was used, obtaining the

response of the single degree of freedom system at a number of discrete

points in time. The duration of structure response was divided into a

series of uniform intervals, each of duration ~t. The endpoints of the

time intervals became the discrete times for which structure response was

to be computed. For the following discussion, two such discrete times,

t l and til (where til = t l + ~t) are considered.

The single degree of freedom system must, of course, conform to its

equation of motion (Equation F.18) for each of the discrete times. For
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t = til ~ after rearranging the equation~

(F.20)

In this manner. the acceleration at a discrete time was expressed in terms

of the displacement. velocity and base acceleration for that same discrete

time. Kinematics and an assumption concerning the variation of accelera

tion over an interval were used to express the velocity and displacement

at t = til in terms of velocity~ displacement and acceleration at t = t l .

The assumption for the acceleration was that between any two points in time~

such as t l and til. for which the response was to be computed. the accelera

tion varied linearly with time. Referring to Fig. F.l. the acceleration at

any time between t' and til was described as~

.. ..

i;(t) = ~(tl)+ dtll)~t dt ' ) (t-t l ) tl<t<t ll (F.2l)

The expressions for i;(t) and &(t) in the interval where then obtained by

integra ti on.
t

Ut) = ~(tl) + ft l dt) dt

t
dt) = dt ' ) + It' Ht) dt

t<t<t ll (F.22)

(F.23)

Evaluating Equations F.22 and F.23 for t = til resulted in~

~(tll) = ~(tl) + (~2t)[~(t) + ~(tl)]

dtll ) = dt ' ) + (~t) [Uti)] + (M)2[2~(t') + dtll)J
6

(F.24)

(F.25)

Substituting Equations F.24 and F.25 into Equation F.20, a direct relation

between the acceleration at t = til and the accel eration. velocity ~ and
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displacement at t = t l was obtained,

~ (til) = W a (til) + W (t I) + W (t') + W (t I )
1 b 2 3 4

(F.26)

where,

(F.27)

. 6l+S ·w . (t.t)+
SJ SJ

Wl - - -----'---------...-2 2
w· .(t.t)

SJ

I
S.w.(t.t)+w2 .(b.t)2!

s J SJ -"s:..><J,---=-_
= _ 3 IW2 2... (t. t)

l+S .w .(t.t)+ SJ
6SJ SJ

(F.28)

2
[2S ·w . + w .(t.t)]W = _ SJ sJ SJ

3 w2 . (M)2
1 + S .w •( t.t) + --S-.>J'-=6-

SJ SJ

(F.29)

2 2
Wsj(t.t) I

+ S ·w .(t.t) + 6
SJ SJ

(F.30)

The formulation of the initial value problem was complete at this

point. Knowing the acceleration, velocity, and displacement relative to

the base at t = t l
, and the base acceleration at t = t l and t = til, the

acceleration relative to the base at t = til was computed from Equation

F.26. The velocity and displacement for t = til were then computed from

Equati ons F. 24 and F. 25. The results for t = til were then used to compute
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the responses for t = till. Knowing the response at one discrete time, the

response at the next discrete time was computed. Only a set of initial

responses was needed to begin the calculation process. This was accomplished

through the condition of zero acceleration, velocity and displacement for

t = O.

F.6 Deflections, Shears and Moments

Modal superposition was used to compute the deflections, base shear

and base moment for the structure, using the results of sections F.4 and

F.5.

The response history for the structure, for horizontal deflections,

was computed from Equation F.7, where the horizontal deflections are

represented by three members of the six member vector, {~}. The modal

participation factors and mode shapes, bi and {~i}' respectively, for each

mode, were obtained as described in section F.4. The single degree of

freedom displacement, ~(t), for each mode, was calculated for a number of

discrete points in time, as described in section F.5.

The response histories for base shear and moment were computed from

the response histories for deflection. The six member vector of inertial

loads, {Pli }, for the i th mode, was calculated from,

2
{Pl'} = -w Dn {~. }

1 S 1 1

where {~.} represented the vector of displacements for the i th mode,
1

calculated at a number of discrete points in time. Modal superposition

was applied to the inertial loads, obtaining,
Ns

{P l } = E {Pl'}
. 1 11=
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for each of the times for which the vectors, {~i}' were calculated. The

base shear and base moment for each time were then calculated directly

from the three members of {Pl } which represented horizontal loads.
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APPENDIX G

NOTATION

The following symbols are used in this report:

= multiplication factor for the applied lateral load for the structure
at the centerline of the second level beam.

= multiplication factor for the applied lateral load for the structure
at the centerline of the fourth level beam.

= multiplication factor for the applied lateral load for the structure
at the centerline of the sixth level beam.

ab(t)= acceleration of the base for a single degree of freedom system, a
function of time.

a
v

b

b.
1

c

-
c

= vertical acceleration of a pier, associated with rotational accel
eration of a test weight, for the analytical model for the study
of dynamic response.

= rotational acceleration of the steel weights of the test specimen.

= width of section.

= modal participation factor for the i th response mode.

= distance from the neutral axis of the section, positive in the
region of compressive strains.

= depth to centroid of section, measured from edge characterized by
maximum compressive strain.

= distance from the neutral axis of the section to the edge of the
ith pier farthest from the level of maximum compressive strain,
where i = 1 corresponds to the pier experiencing the maximum
compressive strain. Positive in the region of compressive strains.

= distance from the neutral axis of the section to the edge of the
i th pier closest to the level of maximum compressive strain, where
i = 1 corresponds to the pier experiencing the maximum compressive
strain. Positive in the region of compressive strains.

= depth to the neutral axis of the section.

= distance from the neutral axis to the plastic centroid of the
section, positive in the region of compressive strains.
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= velocity coefficient associated with a viscous dashpot in a single
degree of freedom system.

= depth, measured from edge of section characterized by maximum
compressive strain, to farthest layer of reinforcement in a doubly
reinforced beam.

= depth, measured from edge of section characterized by maximum
compressive strain, to closest layer of reinforcement in a doubly
reinforced beam.

= depth, measured from edge of the section characterized by maximum
compressive strain, to i th layer of reinforcement, where i = 1
corresponds to the closest layer.

= depth, measured from the edge of the section characterized by maximum
compressive strain, to centroid (mid-height) of ith pier, where
i = 1 corresponds to the closest pier.

= depth to the plastic centroid of the section, measured from the
edge characterized by the maximum compressive strain.

= total section depth.

= the base of the natural logarithm.

= multiplication factor, in the static analytical model, for incremental
joint rotations.

= frequency of the single degree-of-freedom system corresponding to
Case (a).

= frequency of the single degree-of-freedom system corresponding to
Case (b).

= stress in concrete. Positive in compression

= compressive strength of concrete, obtained from tests of 4 x 8-in.
cylinders.

= stress in concrete at the level of the i th reinforcement layer, where
i = 1 corresponds to the layer closest to the edge characterized
by maximum compressive strain. Positive in compression.

= for the computer program for the study of dynamic response, the J th
approximation to the frequency, in the eigenanalysis improvement
procedure.

= for the static hysteretic model, minimum value of the multiplication
factor, f, considering all members in the structure.

f = for the study of dynamic response, the first-mode frequency, for
ref the structure to which stiffness reductions for the substitute

structures were· referenced.



215

f s = stress in the reinforcement. Positive in compression.

= stress in the i th 1ayer of reinforcement, where i = 1 corresponds
to the layer closest to the edge of the section characterized by
maximum compressive strain. Positive in compression.

= ultimate strength of reinforcement.

f
SY

= yield strength of reinforcement.

ft = tensile strength of concrete, corresponding to splitting stress of
4 x 8 in. cylinders.

f = for the study of dynamic response, the calculated first-mode
unc frequency for the completely uncracked test structure.

i

k

= yield strength of reinforcement.

= depth of i th pier, where i = 1 corresponds to pier experiencing
maximum compressive strain.

= an index variable.

- an index variable.

= in the Fourier analysis, the value of the index for discrete circular
frequencies, corresponding to the circular frequency, wf .

= in the Fourier analysis, the value of the index for discrete circular
frequencies, corresponding to the circular frequency, woo

= number of reinforcement layers subjected to compression for a section.

= stiffness of the single degree-of-freedom system corresponding to
Case (a).

= stiffness of the single degree-of-freedom system corresponding to
Case (b).

= spring stiffness for a linearly elastic single degree of freedom
system, which has not yet yielded.

= spring stiffness, reduced for equivalent linear response, of a
single degree of freedom system.

= rotational stiffness of a linearly elastic spring used to model
the bending stiffness of a beam in the static analytical model.

= the length of a beam, adjacent to the beam-pier joint, characterized
by total loss of concrete.

= length of reinforcement imbeddment in a joint necessary for the
development of the yield stress of the reinforcement at the face of
the joi nt.
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= length of a beam in the static analytical model measured from the
face of the rigid joint to the pinned end.

= length of a beam in the static analytical model measured from the
centerline of the pier to the pinned end.

= length of a pier member measured from face of joint to face of joint.

= Increment of slippage per cycle of loading reversals for a reinforc
ing bar imbedded in a joint.

= distance between the vertical centerlines of the two piers in a wall.

= total number of reinforcement layers in the section, considering
all piers.

= lumped mass associated with horizontal acceleration, for the
analytical model for the study of dynamic response.

= concentrated mass associated with a single degree of freedom system.

= lumped mass associated with rotational acceleration of the test
weights, for the analytical model for the study of dynamic response.

= mass corresponding to the applied dead load at one level, for one
quarter of a test structure.

= ratio of Young's modulus of reinforcement to secant modulus of
concrete.

= a constant determining the amplitude of the harmonic base motion
for a single degree of freedom system.

= number of distinct piers comprising the section.

= slope of the initial segment of the piecewise linear moment rotation
relation of the static analytical model.

= slope of the first unloading segment (second quarter cycle) for
a piecewise linear hysteretic relation between member end moment
and end rotation.

= slope of the second unloading segment (fourth quarter cycle) for
a piecewise linear hysteretic relation between member end moment
and end rotation.

= variable to denote time in a system response.

= a specific time during the response of a structural system.

= a specific time during the response of a structural system.

= a specific time during the response of a structural system.

= an interval, or increment, of time.
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= in the Fourier analysis, the i th discrete value of time, when the
interval of response is divided into uniform increments, ~t.

w(t) = a function of time describing a response of a structure (displace
ment, acceleration, shear,moment).

w(w) = in Fourier analysis, a function of frequency describing the relative
importance of various frequency components in a response history.

w*(t)= portion of a response history, w(t), attributable to frequency
components in the range Wo through wf .

xs
=

\ =

..
xs =

x

z

= variable used to measure distance along a member.

= distance along a member, in the static analytical model, from the
section of maximum curvature, to the nearest section corresponding
to slope discontinuity in the piecewise linear curvature distri
bution.

= distance along a member, in the static analytical model, between
the first and second discontinuities in slope of the piecewise
linear curvature distribution, counting discontinuities from the
section of maximum curvature.

= distance along a member, in the analytical model, between the second
and third discontinuities of slope in the piecewise linear curvature
distribution, counting discontinuities from the section of maximum
curvature.

= distance along a member, in the analytical model, between the third
and fourth discontinuities of slope in the piecewise linear curvature
distribution, counting discontinuities from the section of maximum
curvature.

displacement of the concentrated mass of a single degree of freedom
system.

velocity of the concentrated mass associated with a single degree
of freedom system.

acceleration of the concentrated mass associated with a single
degree of freedom system.

= maximum response deflection for a single degree of freedom system.

= deflection of a single degree of freedom system, corresponding to
yi e1d.

= the complex number (;:1).
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Acr = transformed area of a section, considering a fully cracked condition
for the concrete.

= area enclosed, on a relation between base moment and deflection,
by one complete cycle of hysteretic response.

A .
p1

= on a relation between base moment and deflection, the area enclosed
by a line defining a linearly elastic response, the deflection
axis (horizontal axis), and a vertical line corresponding to a
deflection equal to the maximum linearly elastic response.

= area of the i th level pier, where i = 1 corresponds to the lowest
1evel.

= area of a reinforcement layer.

= transformed area of a section, considering an uncracked condition
for the concrete.

= compressive force in a reinforcing bar.

= maximum compression at the base of a pier, corresponding to a
failure mechanism. Positive in compression.

= secant modulus for concrete measured between a and 1000 psi.

= energy dissipated, per cycle of response, by a nonlinear hysteretic
system.

= strain-hardening modulus for the reinforcement.

= strain energy stored in a linear spring.

= Young1s modulus for the reinforcement.

= energy dissipated by a viscous dashpot in a linearly elastic single
degree of freedom system.

= energy dissipated, per cycle of response, by a viscous dashpot in
a linearly elastic single degree of freedom system.

EA = for the study of dynamic response, the axial section stiffness for
ref a member, to which the damage ratio for the member was referenced.

El bi = uniform section stiffness for the i th level beam in the static
analytical model.

.6Ev

EI .
C1

= uniform section stiffness for the i th story pier member in the
static analytical model.

= for the static analytical model, the uniform section stiffness
of the equivalent member.
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E1 =ref

EI =sub

T =

1bi =

I =cr

I =pi

for the study of dynamic response, the flexural section stiffness for
a member, to which the damage ratio for the member was referenced.

for the study of dynamic response, the flexural section stiffness
for a member in the substitute structure.

in the computer program for the study of dynamic response, a counter.

moment of inertia of the i th level beam, where i = 1 corresponds to
the lowest level.

transformed moment of inertia of a section, considering a fully
cracked condition for the concrete.

moment of inertia of the i th level pier, where i = 1 corresponds to
the lowest level.

1rot = moment of inertia, associated with rotation, for the steel weights
of the test specimen.

= transformed moment of inertia of a section. considering an uncracked
condition for the concrete.

J = in the computer program for the study of dynamic response, a counter.

M = applied moment for a section.

Nl = base moment. corresponding to a failure mechanism, in the pier in
which lateral loads induce tens i 1e force.

M2
= base moment, corresponding to a failure mechanism, in the pier in

whi ch 1atera1 loads induce compressive force.

= base moment, corresponding to a failure mechanism, associated with
the couple comprised of the axial forces in the piers~

~~b

~1crn

= total base moment for one wall (one-half test structure).

= for dynamic test runs subjected to Fourier analysis. the total
observed maximum base moment.

= end moment for a member in the static analytical model. For a beam,
M was the moment at the face of the rigid joint. For a pier. M was
tne sum of the moments at the faces of the upper and lower joint~.

for the static analytical model. the moment in a pier member at
the face of the lower joint.

= for the static analytical model, the moment in a pier member at the
face of the upper joint.
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= moment in a beam in the static analytical model measured at the
centerline of the pier.

(:e)eq=Slope of the relation between member end moment and member end
E . rotation for the equivalent uniform member of the static analytical

model.
M
(~) = slope of the relation between member end moment and member end
8E y rotation considering progressive yielding along the member.

(ME)o= for the static analytical model, end moment for a member at the
beginning of a loading step.

(6ME)= for the static analytical model, incremental end moment for a member,
implied by the vector {68} as calculated in Equation 5.25.

(ME)lim= for the static analytical model, end moment for a member corres
ponding to a change in slope of a piecewise linear moment-rotation
relation.

= for the final run of each dynamic test, the observed maximum base
moment.

= moment level, in terms of either a section moment or member
end moment, corresponding to a tensile strain ofO.20in the
reinforcement.

= for the spectral study, maximum base moment for the first mode of
response.

Mm2 = for the spectral study, maximum base moment for the second mode of
response.

M =mchl base moment corresponding to the failure mechanism for the type A
structure and to the failure mechanism characterized by the attain
ment of the yield moments at the ends of the beams for types Band C
structures.

M~l

Mmch2= base moment corresponding to the failure mechanism characterized
by the attainment of the maximum moment capacity at the ends of the
connecting beams, for types Band C structures.

= for dynamic test runs subjected to Fourier analysis, the maximum
base moment obtained considering only that portion of the response
attributable to frequency components below 10 Hz.

Mtot= for the spectral study, the total maximum base moment, considering
m both first and second mode components.

Msneg= observed maximum base moment, in the negative direction (third
quarter cycle), for the static test.
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= observed maximum base moment. in the positive direction (first
quarter cycle). for the static test.

M
Yl

= moment at first slope discontinuity in a piecewise 1inear moment-
curvature or moment-rotation relation.

My2 = moment at second slope discontinuity in a piecewise 1inear moment-
curvature or moment-rotation relation.

My3 = moment at third slope discontinuity in a piecewise linear moment-
curvature or moment-rotation relation.

r~ys

N

= for the static analytical model. for the beam characterized by
complete loss of concrete adjacent to the face of the beam-pier
joint. the member end moment. measured at the face of the joint.
corresponding to yield.

= in the Fourier analysis. the number of increments. 6t. into which
the interval of system response is divided.

= for the computer program for the study of dynamic response, number
of substitute structures (analysis cases) processed in one run of
the program.

= number of response modes considered for the calculation of a
response history for the structure.

P = axial load on a section. Positive for compression.

6P.
1

Pm

Q

= increment of applied lateral load at the level of the i th beam.

= maximum axial load capacity of a section with no moment applied
to the section.

= factor determining overall magnitude of applied lateral loading.

= increment of the factor determining the overall magnitude of
statically applied lateral loads.

= factor determining overall magnitude of applied lateral loading,
corresponding to a failure mechanism.

= spectral displacement for the i th response mode.

= tensile force in a reinforcing bar.

= maximum tension at the base of a pier. corresponding to a failure
mechanism. Positive in tension.

= period of response for the first response mode of a structure

= natural period of a single degree of freedom system.

= lateral deflection in the analytical model at the level of the
centerline of the ith beam.
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= shear force at a section in a member.

= base shear, corresponding to a failure mechanism, in the pier in
which lateral loads induce tensile force.

= base shear, corresponding to a failure mechanism, in the pier in
which lateral loads induce compressive force.

= total base shear for one wall (one-half test structure), corres
ponding to a failure mechanism.

= for dynamic test runs subjected to Fourier analysis, the total
observed maximum base shear.

= for the final run of each dynamic test, the observed maximum
base shear.

= for the spectral study, maximum base shear for the first mode of
response.

= for the spectral study, maximum base shear for the second mode of
response.

= base shear corresponding to the failure mechanism for the type A
structure, and to the failure mechanism characterized by the
attainment of the yield moment at the ends of the beams for the
types Band C structures.

= base shear corresponding to the failure mechanism characterized by
the attainment of the maximum moment capacity at the ends of the
connecting beams, for types Band C structures.

= for dynamic test runs subjected to Fourier analysis, the maximum
base shear obtained considering only that portion of the response
attributable to frequency components below 10 Hz.

V = for the spectral study, the total maximum base shear, consideringmtot both first and second mode components.

Vsneg = observed maximum base shear, in the negative direction (third
quarter cycle), for the static test.

= observed maximum base shear, in the positive direction (first
quarter cycle), for the static test.

= for the study of dynamic response, a constant in the numerical
integration procedure.

= for the study of dynamic response, a constant in the numerical
integration procedure.



v

v

V"

z.
1

es

223

= for the study of dynamic response, a constant in the numerical
integration procedure.

= for the study of dynamic response, a constant in the numerical
integration procedure.

= constant in a Fourier series.

= constant coefficient of the cosine term in a Fourier series.

= constant coefficient of the sine term in a Fourier series.

= the coefficient, a complex function of time and frequency, in the
complex, exponential form of the Fourier series.

= for the study of dynamic response, the coefficient for the mass
in the viscous damping expression.

= for the study of dynamic response, the coefficient for stiffness
in the viscous damping expression.

= viscous damping factor, as a fraction of critical damping, for a
single degree of freedom system.

= viscous damping factor for the single degree of freedom system
corresponding to the jth response mode.

= '~eflection of a line tangent to a beam at the face of a beam-pier
joint from the undeflected beam. Measured at the pinned end.

L

= strain at the edge of the i th pier fa~thest from the level of
maximum compressive strain, where i = 1 cor~sponds to the pier
experiencing the maximum compressive strain. Positive for
compression.

= strain at the edge of the i th pier closest to the level of maximum
compressive strain, where i = 1 corresponds to the pier experiencing
the maximum compressive strain. Positive for compression.

€c = strain in concrete. Positive in compression.

= strain at the edge of the section characterized by the greatest
compressive strain.

= compressive strain at which concrete attains its compressive strength.

€. = strain in the reinforcement. Positive in compression.s
= strain at the level of the top level of reinforcement in a doubly

reinforced beam. Positive in compression.

= strain at the level of the lower level of reinforcement in a doubly
reinforced beam. Positive in compression.
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= strain in reinforcement at the onset of strain-hardening.

= strain at the level of the i th reinforcement layer, where i = 1
corresponds to the top layer. Positive in compression.

= strain in the reinforcement at the attainment of the ultimate
strength.

= yield strain of reinforcement.

= strain corresponding to tensile strength of concrete.

= phase shift for the harmonic response of a single degree of freedom
system.

= an angle, in radians.

= beam end rotation to accomplish closure of the crack in the beam
adjacent to the face of the beam-pier joint.

= end rotation for a member in the static analytical model. For a
beam, 8

E
was the rotation of the rigid beam-pier joint. For a pier

member, 8E was the difference of the rotations of the upper and
lower beam-pier joints.

~8E = incremental member end rotation.

(8 E)lim= end rotation of a member corresponding to a discontinuity of slope
in a piecewise linear hysteretic relation between member end moment
and end rotation. .

(8E)O = member end rotation at the beginning of a given loading step.

= rotation of the i th level beam-pier joint, in the static analytical
model.

= member end rotation, 8E, corresponding to a tensile strain of 0.20
in the reinforcement.

8"ml

= maximum member end rotation, 8E, for the first quarter cycle of
hysteretic response.

= member end rotation corresponding to the intersection of the
reloading segment of a hysteretic moment-rotation relation with
the unloading segment of the previous cycle.

8m2 = maximum member end rotation, 8
E

, for the third quarter cycle of
hysteretic response.

8m3 = maximum member end rotation, 8
E

, for the fifth quarter cycle of
hysteretic response.

8m4 = maximum member end rotation, 8
E

, for the seventh quarter cycle
of hysteretic response.
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= maximum member end rotation, 8E, for the ninth quarter cycle of
hysteretic response.

= maximum member end rotation, 8
E

, for the eleventh quarter cycle
of hysteretic response.

= member end rotation, 8E' corresponding to zero end moment for the
second quarter cycle of hysteretic response.

= member end rotation, 8
E

, corresponding to zero end moment for the
fourth quarter cycle of hysteretic response.

= member end rotation, 8E' corresponding to zero end moment for the
sixth quarter cycle of hysteretic response.

= member end rotation, 8E' corresponding to zero end moment for the
eighth quarter cycl~ of hysteretic response.

= member end rotation, 8E, corresponding to zero end moment for the
tenth quarter cycle of hysteretic response.

= member end rotation, 8E' corresponding to the first slope discontin
uity in a piecewise linear moment-rotation relation.

= member and rotation, 8E' corresponding to the second slope discontin
uity in a piecewise linear moment-rotation relation.

= for the static analytical model for the beam characterized by
complete loss of concrete adjacent to the face of the beam-pier
joint, the member end rotation corresponding to yield.

= for the study of dynamic response, the damage ratio applied to the
connecting beams.

= response deflection ductility for a structure or structural element.

= damage ratio for an element of a linearly elastic substitute
structure.

= for the study of dynamic response, the damage ratio applied to the
first story pier.

displacement for the single degree of freedom system corresponding
to the ith response mode, a function of time.

velocity for the single degree of freedom system corresponding to
the ith response mode, a function of time.

acceleration for the single degree of freedom system corresponding
~o the ith response mode, a function of time.
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= uniform axial stress in a reinforced concrete section, corresponding
to the applied axial load. Positive in compression.

= curvature applied to a section~

= curvature of a beam in the static analytical model at the face of
the beam-pier joint.

= for the static analytical model, the curvature in a pier member
at the face of the lower joint.

= for the static analytical model, the curvature in a pier member
at the face of the upper joint.

= member of the mode shape vector for the i th response mode, corres
ponding to the level of the jth weight in the test structure.

= curvature of a section corresponding to a tensile strain of 0.20
in the reinforcement.

= curvature corresponding to first slope discontinuity in a piecewise
linear moment-curvature relation.

= curvature corresponding to second slope discontinuity in a piecewise
linear moment-curvature relation.

= curvature corresponding to third slope discontinuity in a piecewise
linear moment-curvature relation.

= for the static analytical model for the beam section characterized
by complete loss of concrete, the curvature at the face of the
joint. corresponding to yield.

= rotational slip at the end of a beam for the first half-cycle of
response, due to slip of reinforcement in the beam-pier joint.

= rotational slip at the end of a beam for the second half-cycle of
response, due to slip of reinforcement in the beam-pier joint.

= circular frequency of a periodic waveform.

= in the Fourier analysis, the increment between uniformly spaced
discrete values of circular frequency.

= in the Fourier analysis, a specific value of circular frequency for
analysis.

= first mode circular frequency for a structure.

= circular frequency of the harmonic base motion for a single degree
of freedom system.
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= in the Fourier analysis, the upper limit for a range of circular
frequencies.

= in the Fourier analysis, the i th discrete value of circular fre
quency.

= in the Fourier analysis, the jth discrete value of circular
frequency.

= in the Fourier analysis, the lower limit for a range of circular
frequencies.

= natural circular frequency for a single degree of freedom system.

= circular frequency for the single degree of freedom system corres-
ponding to the jth response mode. .

= for the spectral study, maximum deflection for the test structure
at the top level weight.

= constant determining the amplitude of harmonic response of a single
degree of freedom system.

- for the study of dynamic response, the six by one vector representing
the base acceleration, a function of time.

= for the study of dynamic response, six by six' viscous damping matrix
for the structure.

= a vector, whose every member is equal to one.

= for the study of dynamic response, the condensed six by six stiffness
matrix for the structure.

= for the study of dynamic response, the 18 x 18 stiffness matrix
for the structure.

= for study of dynamic response, upper left portion of partitioned
structure stiffness matrjx, [K].

= for study of dynamic response, upper right portion of partitioned
structure stiffness matrix, [K].

= for the study of dynamic response, lower left portion of partitioned
structure stiffness matrix, [K].

= for the study of dynamic response, lower right portion of partitioned
structure stiffness matrix, [K].

stiffness matrix for the structure of the static analytical model,
considering equivalent uniform members.
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[M] = for the study of dynamic response, six by six mass matrix for
the structure.

{P} = for the study of dynamic response, the 18 x 1 vector of external
joint loads.

{~P} = vector of incremental, statically applied lateral loads for the
structure.

{~Pl} = vector of incremental lateral loads modified by the factor, f.

= for the study of dynamic response, the upper Qortion of the
partitioned vector of external joint loads, {Pl. The vector
{~l}represented the nonzero joint loads.

for the study of dynamic response, the six by one vector of nonzero
inertial joint loads corresponding to the ith mode of response.

= for the study of dynamic response, the lower Qortion of the
partitioned vector of external joint loads, {Pl.

{Po} = vector of lateral loads at the beginning of a given load step.

{Rc} = for the static hysteretic model, the vector of critical structure
responses for a load step.

{RF} = for the static hysteretic model, vector of structure responses at
the end of a load step.

{Rr} = for the static hysteretic model, vector of structure responses at
the beginning of a load step.

= vector determining the ratios between the statically applied
lateral loads at the levels of the various beams.

[T]

{~UI }

= for the static hysteretic model, vector of unfactored incremental
structure responses for a load step.

= matrix to transform lateral deflections of beam-pier joints into
joint rotations.

= for the study of dynamic response, the 18 x 1 vector of structure
di sp1acements.

= vector of the incremental lateral deflections of the beam pier
joints.

= vector of incremental lateral displacements of the beam-pier joints,
modified by the factor, f.

= for the study of dynamic response, upper portion of the partitioned
vector of structure joint displacements, {U}.
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= for the study of dynamic response, lower pQ.rtion of the partitioned

vector of structure joint displacements, {U}.

= vector of lateral displacements of the beam-pier joints at the
beginning of a given load step.

= vector of incremental rotations of the beam-pier joints.

= mode shape for the i th response mode.

= for the study of dynamic response, the six by one vector of structure
joint displacements, a function of time.

= for the study of dynamic response, the six by one vector of struc
ture joint velocities, a function of time .

= for the study of dynamic response, the six by one vector of
structure joint accelerations, a function of time.
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