EFFECT OF BEAM STRENGTH AND STIFFNESS ON DYNAMIC BEHAVIOR OF REINFORCED CONCRETE COUPLED WALLS

Volume 2: Tables and Figures

Ву

John M. Lybas

and

Mete A. Sozen

Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

A Report to the NATIONAL SCIENCE FOUNDATION Research Grant ENV74-22962

> University of Illinois at Urbana-Champaign Urbana, Illinois July 1977

SHEET	NS	F/RA-770275			••• neespiel	
4. Title and Subtitle Effect of Beam Stre inforced Concrete C (Civil Engineering	ngth and Stiff oupled Walls, Studies, Struc	ness on Dynam Vol. 2: Table tural Researc	ic Behavio s and Figu h Series N	or of Re- Tres lo. 444)	 Report D July 6. 	Date 1977
7. Author(s) J.M. Lybas, M.A. So	zen	······································		· · ·	8. Performi No. UII	ng Organization F LU-ENG-77-20
9. Performing Organization University of Illin	Name and Address		·		10. Project	/Task/Work Unit
at Urbana - Champai Urbana, Illinois 61	gn 801				11. Contrac ENV742	rt/Grant No. 2962
12. Sponsoring Organization	Name and Address		<u> </u>		13. Type of	Report & Period
Research Applied National Science Washington, D.C.	to National N Foundation 20550	leeds (RANN)			14.	·
15. Supplementary Notes Volume 1 is also av	ailable from N	NTIS.		<u></u>	<u>I</u>	
structures was under calculated overall damping factor with simulating the observation	ertaken. Equiv structure hyst response mode erved dynamic r Both response-	valent viscous teresis relati e and response responses with -spectrum anal	damping f on, were c amplitude a linear	factors, o determined was stud viscously response-h	isponse of consisten l. The v lied. The camped historv a	t with the ariation of e feasibilit analytical m nalyses were
structures was under calculated overall damping factor with simulating the observation was investigated. performed. Finally analytical studies. Feport. 17. Key Words and Documen Earthquakes Earthquake resistar	ertaken. Equiv structure hyst response mode erved dynamic r Both response- , the experime . This volume t Analysis. 17a. De nt structures	valent viscous teresis relati e and response responses with -spectrum anal ental results contains tabl	adamping f on, were c amplitude a linear yses and r were compa es and fig	factors, o determined was stud viscously response-h ared with gures rele	isponse of consisten l. The v lied. The camped istory a the resu vant to	t with the ariation of e feasibilit analytical m nalyses were lts of the the text of
structures was under calculated overall damping factor with simulating the obser was investigated. performed. Finally analytical studies. Peport. 17. Key Words and Documen Earthquakes Earthquake resistan Earthquake resistan Concrete construction Earth pressure Loads (forces)	ertaken. Equiv structure hyst response mode erved dynamic r Both response- r, the experime This volume t Analysis. 17a. De t structures t construction ion	valent viscous teresis relati e and response responses with -spectrum anal ental results contains tabl	adamping f on, were c amplitude a linear yses and r were compa es and fig	factors, o determined was stud viscously response-h ared with gures rele	isponse of consisten ied. The v camped istory a the resu vant to	t with the ariation of e feasibilit analytical m nalyses were lts of the the text of
structures was under calculated overall damping factor with simulating the obser was investigated. performed. Finally analytical studies. Feport. 17. Key Words and Documen Earthquakes Earthquake resistar Earthquake resistar Concrete construct Earth pressure Loads (forces)	ertaken. Equiv structure hyst response mode erved dynamic r Both response- , the experime . This volume t Analysis. 17a. De nt structures it construction ion	valent viscous teresis relati e and response responses with -spectrum anal ental results contains tabl	adamping f on, were c amplitude a linear yses and r were compa es and fig	factors, o determined was stud viscously response-h ared with gures rele	isponse of consisten ied. The v camped istory a the resu evant to	t with the ariation of e feasibilit analytical m nalyses were lts of the the text of
structures was under calculated overall damping factor with simulating the obser was investigated. performed. Finally analytical studies. Feport. 17. Key Words and Documen Earthquakes Earthquake resistan Earthquake resistan Concrete construct Earth pressure Loads (forces)	ertaken. Equiv structure hyst response mode erved dynamic r Both response- r, the experime This volume t Analysis. 17a. De at structures t construction ion	valent viscous teresis relati e and response responses with -spectrum anal ental results contains tabl	adamping f on, were c amplitude a linear yses and r were compa es and fig	factors, o determined was stud viscously response-h ared with gures rele	sponse o onsisten I. The v lied. The camped nistory a the resu vant to	t with the ariation of e feasibilit analytical m nalyses were lts of the the text of
structures was under calculated overall damping factor with simulating the obser was investigated. performed. Finally analytical studies. Feport. 17. Key Words and Documen Earthquakes Earthquake resistan Earthquake resistan Concrete construct Earth pressure Loads (forces) 17b. Identifiers/Open-Ended Seismic loading	ertaken. Equiv structure hyst response mode erved dynamic r Both response- , the experime This volume t Analysis. 17a. De at structures t construction ion	valent viscous teresis relati e and response responses with -spectrum anal ental results contains tabl	adapping f on, were c amplitude a linear yses and r were compa es and fig	factors, o determined was stud viscously response-h ared with gures rele	sponse o onsisten I. The v lied. The camped nistory a the resu evant to	t with the ariation of e feasibilit analytical m nalyses were lts of the the text of
structures was under calculated overall damping factor with simulating the obser was investigated. performed. Finally analytical studies. Peport. 17. Key Words and Documen Earthquakes Earthquakes Earthquake resistan Concrete constructin Earth pressure Loads (forces) 17b. Identifiers/Open-Ended Seismic loading	ertaken. Equiv structure hyst response mode erved dynamic r Both response- r, the experime This volume t Analysis. 17a. De at structures t construction ion	valent viscous teresis relati e and response responses with -spectrum anal ental results contains tabl	adapping f on, were c amplitude a linear yses and r were compa es and fig	factors, o determined was stud viscously response-h ared with gures rele	sponse of onsisten I. The v lied. The camped istory a the resu vant to	t with the ariation of e feasibilit analytical m nalyses were lts of the the text of
structures was under calculated overall damping factor with simulating the observation was investigated. performed. Finally analytical studies. Feport. 17. Key Words and Documen Earthquakes Earthquakes Earthquake resistan Concrete constructin Earth pressure Loads (forces) 17b. Identifiers/Open-Ended Seismic loading	ertaken. Equiv structure hyst response mode erved dynamic r Both response- r, the experime This volume t Analysis. 17a. De at structures t construction ion	valent viscous teresis relati e and response responses with -spectrum anal ental results contains tabl	adapping f on, were c amplitude a linear yses and r were compa es and fig	factors, o determined was stud viscously response-h ared with gures rele	sponse o onsisten I. The v lied. The camped nistory a the resu evant to	t with the ariation of e feasibilit analytical m nalyses were lts of the the text of
structures was under calculated overall damping factor with simulating the observation was investigated. performed. Finally analytical studies. Feport. 17. Key Words and Documen Earthquakes Earthquakes Earthquake resistan Concrete constructin Earth pressure Loads (forces) 17b. Identifiers/Open-Ended Seismic loading 17c. COSATI Field/Group	ertaken. Equiv structure hyst response mode erved dynamic r Both response- r, the experime This volume t Analysis. 17a. De at structures t construction ion	valent viscous teresis relati e and response responses with -spectrum anal ental results contains tabl	adapping f on, were c amplitude a linear yses and r were compa es and fig	factors, o determined was stud viscously response-h ared with gures rele	sponse o onsisten I. The v lied. The camped nistory a the resu evant to	t with the ariation of e feasibilit analytical m nalyses were lts of the the text of
structures was unde calculated overall damping factor with simulating the obse was investigated. performed. Finally analytical studies. Feport. 17. Key Words and Documen Earthquakes Earthquake resistan Earthquake resistan Concrete constructi Earth pressure Loads (forces) 17b. Identifiers/Open-Ended Seismic loading 17c. COSATI Field/Group 18. Availability Statement NTIS	ertaken. Equiv structure hyst response mode erved dynamic r Both response- r, the experime This volume t Analysis. 17a. De at structures at construction ion	valent viscous teresis relati e and response responses with -spectrum anal ental results contains tabl	adapping f on, were c amplitude a linear yses and r were compa es and fig	A Security Cla Report)	ass (This	t with the ariation of e feasibilit analytical m nalyses were lts of the the text of 21. No. of Pag 340
structures was unde calculated overall damping factor with simulating the obse was investigated. performed. Finally analytical studies. Feport. 17. Key Words and Documen Earthquakes Earthquake resistan Concrete constructi Earth pressure Loads (forces) 17b. Identifiers/Open-Ended Seismic loading 17c. COSATI Field/Group 18. Availability Statement NTIS	ertaken. Equiv structure hyst response mode erved dynamic r Both response- r, the experime This volume t Analysis. 17a. De at structures at construction ion	valent viscous teresis relati e and response responses with -spectrum anal ental results contains tabl	adapping f on, were c amplitude a linear yses and r were compa es and fig	9. Security Cla Report) UNCLAS 0. Security Cla Page	ass (This SSIFIED ass (This	21. No. of Pag 21. No. of Pag 22. Price 22. Price 21. Solution 22. Price 21. Solution 22. Price 21. Solution 22. Price AIS-C

INSTRUCTIONS FOR COMPLETING FORM NTIS-35

(Bibliographic Data Sheet based on COSATI

Guidelines to Format Standards for Scientific and Technical Reports Prepared by or for the Federal Government, PB-180 600).

- 1. Report Number. Each individually bound report shall carry a unique alphanumeric designation selected by the performing organization or provided by the sponsoring organization. Use uppercase letters and Arabic numerals only. Examples FASEB-NS-73-87 and FAA-RD-73-09.
- 2. Leave blank.
- 3. Recipient's Accession Number. Reserved for use by each report recipient.
- 4. Title and Subtitle. Title should indicate clearly and briefly the subject coverage of the report, subordinate subtitle to the main title. When a report is prepared in more than one volume, repeat the primary title, add volume number and include subtitle for the specific volume.
- 5. Report Date. Each report shall carry a date indicating at least month and year. Indicate the basis on which it was selected (e.g., date of issue, date of approval, date of preparation, date published).
- 6. Performing Organization Code. Leave blank.
- 7. Author(s). Give name(s) in conventional order (e.g., John R. Doe, or J. Robert Doe). List author's affiliation if it differs from the performing organization.
- 8. Performing Organization Report Number. Insert if performing organization wishes to assign this number.
- 9. Performing Organization Name and Mailing Address. Give name, street, city, state, and zip code. List no more than two levels of an organizational hierarchy. Display the name of the organization exactly as it should appear in Government indexes such as Government Reports Index (GRI).
- 10. Project/Task/Work Unit Number. Use the project, task and work unit numbers under which the report was prepared.
- 11. Contract/Grant Number. Insert contract or grant number under which report was prepared.
- 12. Sponsoring Agency Name and Mailing Address. Include zip code. Cite main sponsors.
- 13. Type of Report and Period Covered. State interim, final, etc., and, if applicable, inclusive dates.
- 14. Sponsoring Agency Code. Leave blank.
- 15. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with... Translation of ... Presented at conference of ... To be published in ... Supersedes ... Supplements ... Cite availability of related parts, volumes, phases, etc. with report number.
- 16. Abstract. Include a brief (200 words or less) factual summary of the most significant information contained in the report. If the report contains a significant bibliography or literature survey, mention it here.
- 17. Key Words and Document Analysis. (a). Descriptors. Select from the Thesaurus of Engineering and Scientific Terms the proper authorized terms that identify the major concept of the research and are sufficiently specific and precise to be used as index entries for cataloging.

(b). Identifiers and Open-Ended Terms. Use identifiers for project names, code names, equipment designators, etc. Use open-ended terms written in descriptor form for those subjects for which no descriptor exists.

(c). **COSATI Field/Group**. Field and Group assignments are to be taken from the 1964 COSATI Subject Category List. Since the majority of documents are multidisciplinary in nature, the primary Field/Group assignment(s) will be the specific discipline, area of human endeavor, or type of physical object. The application(s) will be cross-referenced with secondary Field/Group assignments that will follow the primary posting(s).

- 18. Distribution Statement. Denote public releasability, for example "Release unlimited", or limitation for reasons other than security. Cite any availability to the public, other than NTIS, with address, order number and price, if known.
- 19 & 20. Security Classification. Do not submit classified reports to the National Technical Information Service.

21. Number of Pages. Insert the total number of pages, including introductory pages, but excluding distribution list, if any. CAPTIAL SYSTEMS GROUP, INC. 6110 EXECUTIVE BOULEVARD

22. NTIS Price. Leave blank.

SUITE 250 ROCKVILLE, MARYLAND 20852

FORM NTIS-35 (REV. 10-73)

USCOMM-DC 8265-P74

Observed Maximum Single-Amplitude	Horizontal Accelerations
Table 3.1	

/

		Top	0.24 0.62	0. 93 1, 09	1.26	1.00	1.62	0.97	1.29	1.01	1.54	0,96	1.49
	South Wall	Middle	0.19 0.42	0.57	1.53	0.90	1.23	0.74	1.49	0.76	1.74	0.74	1.89
ation, G.		Bottom	0.13 0.37	0.91	3.15	1.47	2.32	1.49	2.58	1.09	2.41	1.17	2.14
Accelera		Тор	0.27 0.60	0.91 1.08	1.32	0.89	1.3 1	1.02	1.24	0.94	1.56	0.90	1.38
	North Wall	Middle	0.19 0.38	0.56	1.26	0.82	1.03	0.97	1.43	0.72	2.06	0.72	1.59
		Bottom	0.14 0.38	0.80	2.81	1.33	2.34	1.31	2.53	1.05	2.27	1.19	2.36
		specimen Type	Α			в				J			
		lest Run	D1-1 D1-2	D1-3 D1-4	D1-5	D2-1	D2-2	D3-1	D3-2	D4-1	04-2	D5-1	D5-2

Observed Maximum Single-Amplitude	Horizontal Displacement
Table 3.2	

		6		
	Top	0.05 0.15 0.31 0.48 1.05	0.43 1.36 0.47 0.98	0.48 1.13 0.48 1.23
South Wall	Middle	0.038 0.10 0.31 0.31 0.67	0.29 0.89 0.29 0.59	0.30 0.71 0.29 0.75
ement, in.	Bottom	0.020 0.05 0.11 0.20 0.42	0.12 0.42 0.11 0.26	0.12 0.30 0.12 0.32
Displace	Top	0.059 0.15 0.25 0.51 1.07	0.46 1.35 0.44 1.02	0.51 1.12 0.48 1.15
North Wall	Middle	0.041 0.10 0.33 0.33 0.72	0.30 0.86 0.27 0.64	0.30 0.71 0.29 0.71
	Bottom	0.023 0.06 0.12 0.38 0.38	0.12 0.39 0.10 0.28	0.12 0.29 0.12 0.30
	Specimen Type	A	۵	U
	Test Run	01-1 01-2 01-3 01-4 01-5	D2-1 D2-2 D3-1 D3-2	04-1 04-2 05-1 05-2

Observed Maximum Double-Amplitude	Horizontal Displacement
Table 3.3	

			North Wall	Displace	ment, in.	South Wall	
Test Run	Specimen Type	Bottom	Middle	Top	Bottom	Middle	Top
01-1 01-2 01-3 01-4 01-5	A	0.044 0.10 0.20 0.34 0.62	0.080 0.17 0.31 0.51 1.11	0.115 0.27 0.48 0.79 1.70	0.038 0.10 0.20 0.36 0.74	0.073 0.17 0.32 0.50 1.19	0.110 0.28 0.52 0.81 1.84
D2-1 D2-2 D3-1 D3-2	ß	0.19 0.68 0.17 0.50	0.47 1.51 0.42 1.18	0.75 2.42 0.69 1.93	0.20 0.73 0.18 0.50	0.49 1.53 0.45 1.18	0.77 2.38 0.74 1.94
D4-1 D4-2 D5-1 D5-2	U	0.20 0.55 0.20 0.58	0.46 1.34 0.50 1.36	0.87 2.2 0.85 2.2	0.21 0.55 0.19 0.60	0.46 1.41 0.50 1.40	0.83 2.1 0.86 2.3

		Nort	h Wall	Displacemen	ıt, in.	South Wall	
lest Run	specimen Type	Bottom	Middle	Top	Bottom	Middle	Top
01-1 2	А	0,2	0 ~	0~~	0 ~ ~	0 2	0 0
D]-3			0.004	0.01	-0.004	-0.006	-0.01
D1-5		0.10	0.17	0.21	0.04	0.07	0.09
D2-1 D2-2	B	-0.01	-0.03 0.01	-0.05 0.02	0~	~0 0.02	~0.05
D3-1 D3-2		00~2	~0 -0.04	~ 0 -0.03	002	~0 0.03	~0 0.04
D4-1 D4-2	J	~0 0.01	-0.01 0.05	-0.02 0.05	~0 0.01	-0.01 0.05	-0.02 0.07
D5-1 D5-2		-0.01 0.02	-0.02 0.06	-0.03 0.08	-0.01 0.01	-0.02 0.05	-0.04 0.08

Table 3.4 Observed Residual Displacement

<pre>m Single-Amplitude</pre>	
Observed Maximur	Base Functions
Table 3.5	

		Base Acceler	ation, G.	Base Shear	*, kip	Base Moment	,* k-in.	ļ
Test Run	Specimen Type	North	South	North	South	North	South	ļ
D1-1 D1-2 D1-3 D1-4 D1-5	A	0.12 0.22 0.50 1.05 2.2	0.12 0.21 0.49 2.2	0.50 1.18 1.78 2.3 3.5	0.46 1.13 1.73 2.3 3.5	21 48 86 105	20 69 88 102	237
D2-1 D2-2	В	1.33 4.07	1.23 3.1	1.54 2.5	1.61 2.5	58 58	60 60	1
D3-1 D3-2		1.14 2.1	1.11 2.1	1.67 2.3	1.63 2.5	56 65	59 62	l
D4-1 D4-2	ن	1.12 2.4	1.12 2.4	1.35 2.6	1.65 2.0	54 62	56 58	
D5-1 D5-2		1.06 2.1	1.07 2.1	1.50 2.5	1.47 2.5	51 63	51 62	1

*For a single wall.

Frequencies
Response
Observed
3.6
Table

		Moc	le 1 Frequenc	y, Hz. Mo	de 2
Test Run	Specimen Type	Pre-Test ^a Frequency	Post-Test ^b Frequency	Pre-Test ^a Frequency	Post-Test ^b Frequency
D1-1 D1-2 D1-3 D1-4 D1-5	Α	12 6.2 4.9 4.0	6.5 6.1 3.8 3.3 8.7	32 27 24 24	27 27 23 20
D2-1 D2-2 D3-1 D3-2	B	7.6 4.7	3.5 2.2 3.5	35 35 22	19 16 12
D4-1 D4-2	υ	6.9 3.8	3.5 2.2	31 25	21 13
D5-1 D5-2		8.4	3.4	31 24	96
^a Free-vibration	test. Maximum	displacement amp	Jitude less than	0.01 in.	

 $^{\mathrm{b}}$ Based on displacement response during the last two sec. of test duration.

Table 3.7 Spectrum Intensities for Observed Base Motions

			North Re	ecord	spectrum 1	Intensity	, in.	South	1 Record		
Test Run	Spec. Type	β= 0.0	β= 0.0 2	β=0.05	β=0.10	β=0.20	β= 0.0	β=0.02	β=0.05	β= 0.1 0	β= 0.2 0
D1-1 D1-2 D1-2 D1-4 D1-5	A	1.72 3.4 6.4 12.6 24.4	1.13 2.2 4.3 8.2 16.0	0.90 1.80 3.5 6.7 13.1	0.72 1.46 2.9 5.7 11.0	0.56 1.13 2.3 4.7 9.1	1.61 3.2 6.4 12.6 25	1.05 2.1 4.3 8.3 16.1	0.85 1.73 3.5 6.7 13.2	0.68 1.40 2.9 5.7 11.1	0.53 1.09 2.3 9.1
D2-1 D2-2	В	9.3 19.3	6.1 12.7	5.1 10.8	4.3 9.2	3.5 7.5	9.5 19.4	6.2 12.8	5.2 10.7	4.4 9.1	3.5 7.4
D3-1 D3-2		13.4 19.8	9.3 13.0	7.8 10.7	6.4 9.0	4.9 7.5	12.0 20.0	8.1 13.0	6.6 10.8	5.5 9.1	4.4 7.4
D4-1 D4-2	J	9.9 20	6.5 13.4	5.3 11.1	4.5 9.3	3.7 7.7	10.0 20.0	6.5 13.2	5.3 10.9	4.5 9.2	3.7 7.6
D5-1 D5-2		10.1	6.5 13.2	5.4 10.9	4.5 0.1	3.7 7.5	10.0 19.9	6.5 13.1	5.4 10.8	4.5 9.0	3.7 7.4

Computed from	Structure
ion Properties	ns of Each Test
erage Beam Sect	isured Dimension
Table 4.1 Ave	Mea

		~	alues base	d on mean o	dimensions		
Parameter	Symbol	la	D2	D3	D4	D5	SI
Jncracked Transformed Area, in ²	A _{tr}	2.9	1.69	1.74	1.67	1.66	1.73
Jncracked Transformed Moment of Inertia, in ⁴	Itr	1.28	0.32	0.32	0.32	0.31	0.33
Cracked Transformed Area, in ²	Acr	1.43	0.59	0.64	0.47	0.48	0.61
Cracked Transformed Moment of Inertia, in ⁴	Icr	0.61	0.073	0.083	0.054	0.054	0.078
Cracking Moment, k-in.	Συ	0.31	0.171	0.185	0.171	0.20	0.163
/ield Moment, k-in	M	2.6	0.49	0.50	0.30	0.30	0.50
Jltimate Moment, k-in.	n ₩	3.4	0.78	0.78	0.48	0.46	0.78

Table 4.2 Average Section Stiffnesses for Piers Computed from Measured Dimensions of Each Test Structure

	_ +	51	33	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.4	6.3	6.3	6.6	6.4	6.3
	ia, in	D5	32	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	۲.٦	7.0	7.0	7.2	۲.۱	7.0
	Inert	D4	32	6.8	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	7.0	6.9	6.9	7.2	6.9	6.9
Section	ent of	D3	31	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	7.0	6.9	6.9	7.2	7.0	6.9
ormed S	Mon	D2	31	5.8	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	6.1	5.9	5,9
Transfc		5	32	5.9	6.1	6.1	6.1	6.1	6.1	6.2	6.1	6.1	6.3	6.2	6.2	6.5	6.2	6.2
es of		S1	8.1	1.71	2.1	2.1	2.3	2.3	2.3	2.6	2.4	2.4	3.0	2.7	2.5	3.4	2.9	2.7
operti		D5	7.9	1.97	2.2	2.2	2.4	2.4	2.4	2.7	2.5	2.5	3.0	2.8	2.6	3.4	3.0	2.8
age Pr	in ²	D4	7.8	1.82	2.1	2.2	2.3	2.3	2.3	2.7	2.5	2.5	3.1	2.7	2.6	3.4	2.9	2.8
Aven	Area,	D3	7.7	1.89	2.2	2.2	2.4	2.4	2.4	2.7	2.5	2.5	3.1	2.7	2.6	3.4	3.0	2.8
		D2	7.7	1.61	1.91	2.0	2.1	2.1	2.1	2.4	2.3	2.2	2.8	2.5	2.4	3.]	2.7	2.5
		6	7.8	1.41	1.94	2.0	2.2	2.2	2.2	2.6	2.3	2.3	3.0	2.6	2.4	3.3	2.8	2.6
	Moment		·	M Cr	MCr ^{+M}	_ س	Acr	Mcr +M	, ^w	Mcr	Mcr+M	ح تع	Mcr	Mcr+M	× "	M cr		Σ ^η
	Axial Load.	kips	ı	-0.5*			0.0			0.5			1.5			3.0		
	Case		Uncracked	Cracked									-					

*Negative Load denotes tension.

Table 4.3 Average Pier Section Strength for Each Test Structure Computed from Measured Dimensions

				Average va	alue for e	ach test si	tructure	
Parameter	Symbo]	Loads (kips)	[0	D2	D3	D4	D5	S1
Cracking Moment, k-in.	ຮັ	-0.5	2.2	3.1	3.4	3.2	3.9	3.0
	د	0.0	2.8	3.7	4.0	3.7	4.5	3.6
		0.5	3.4	4.3	4.5	4.3	5.1	4.1
		1.5	4.6	5.4	5.7	5.5	6.2	5.3
		3.0	6.3	7.2	7.4	7.2	8.0	7.0
Ultimate Moment, k-in.	Ŵ	0.5	Ĺ	I	ł	E	I	13.2
	3	1.0	ı	E	ı	ı	ı	14.7
		1.5	ł	I	I	ı	ı	16.1

Table 4.4 Natural Frequencies for Each Test Structure Computed from Measured Dimensions

		Computed	natural	frequency fo	or each te	st structu	e, Hz.
Mode	Case	[]	D2	D3	D4	D5	SI
First	Uncracked	16.3	13.8	12.5	12.8	12.5	13.6
	Beams Cracked	15.4	10.5	9.8	9.1	8.9	10.4
	Beams and Lower Piers Cracked	11.3	8.0	7.6	7.0	6.9	8.0
	Uncoupled Piers, Uncracked	6.3	6.1	5.5	5.6	5.5	6.0
	Uncoupled Piers, Lower Piers Cracked	3.7	3.5	3.3	3.4	3.4	3.4
Second	Uncracked	74	57	52	53	52	56
	Beams Cracked	66	47	43	42	42	47
	Beams and Lower Piers Cracked	59	41	38	37	36	40
	Uncoupled Piers, Uncracked	42	40	36	37	37	39
	Uncoupled Piers, Lower Piers Cracked	35	33	31	31	31	33

Mode Shapes Computed from Measured Dimensions of Test Structures Table 4.5

	•			
Case	Level	Mode 1 Struc tur e Types A,B,C	Mode Structure Type A	2 Structure Types B,C
Uncracked	Top	0.57	-0.42	-0.52
	Middle	0.32	0.74	0.78
	Bottom	0.10	0.68	0.74
Beams Cracked-Piers Uncracked	Top	0.57	-0.47	-0.62
	Middle	0.33	0.76	0.85
	Bottom	0.11	0.71	0.77
Beams and Lower Piers Cracked	Top	0.54	-0.53	-0.71
	Middle	0.33	0.69	0.79
	Bottom	0.13	0.84	0.92
Uncoupled Piers, Uncracked	Top	0.59	-0.56	-0.56
	Middle	0.31	0.86	0.86
	Bottom	0.09	0.71	0.71
Uncoupled Piers, Lower Piers Cracked	Top	0.55	-0.70	-0.70
	Middle	0.33	0.82	0.82
	Bottom	0.13	0.88	0.88

Dimensions
Measured
from
Computed
Structure
Test
Each
for
Stiffness
Table 4.6

	Computed	stiffness	for each t	est struct	ure, kip *	
Case	LD	D2	D3	D4	D5	SI
Uncracked	1980	1570	1290	1340	1290	1530
Beams Cracked	1740	910	790	670	660	890
Beams and Lower Piers Cracked	950	530	480	400	400	530
Uncoupled Piers, Uncracked	290	310	250	250	250	300
Uncoupled Piers, Lower Pier Cracked	102	101	06	94	96	96
		- - - - - - - - - - - - - - - - - - -				

*Values given are for one wall (one-half of a test structure).

Note: Stiffness given in terms of base moment per unit deflection at top for the force distribution shown in Fig. 4.4.

Strength Properties Computed from Measured Dimensions of Each Test Structure Table 4.7

		Compute	d properti	es for eacl	h test stru	cture (one	wall) ^a
Parameter	Symbol ^c	IQ	D2	D3	D4	D5	S1
Base Shear - Mechanism l	۲ ^۲	1.8	1.1	1.1	0.9	0.9	1.1
Base Tension - Mechanism l	° –	3.5	0.0	0.0	-0.60 ^b	-0.60 ^b	0.0
Base Compression - Mechanism l	°ۍ	6.5	3.0	3.0	2.4	2.4	3.0
Base Moment due to Couple - Mechanism l	M ₃	55	17	17	10	10	17
Base Moment of Piers - Mechanism 1	M1+M2	26	30	30	30	30	30
Total Base Moment - Mechanism l	"M	81	47	47	40	40	47
Base Shear - Mechanism 2	2	ı	1.3	1.3	1.0	1.0	1.3
Base Tension - Mechanism 2	ے ب	1	0.84	0.84	-0.06 ^b	-0.12 ^b	0.84
Base Compression - Mechanism 2	° د	ı	3.8	3.8	2.9	2.9	3.8
Base Moment Due to Couple - Mechanism 2	M 3	ı	26	26	16	15	26
Base Moment of Piers - Mechanism 2	M ₁ +M ₂	ł	30	30	30	30	30
Total Base Moment - Mechanism 2	¥ ^Q	1	56	56	46	45	56
^a Values given are for one w	all (one-half	f of a test	structure).			

^bNegative values for T_b denote compression.

^cSymbols refer to Fig. 4.12.

Table 5.1 Defining Parameters for Idealization of Moment-Curvature Relations

Description	Symbol*	Beam	Pier
Moment at First Discontinuity, kip-in.	My1	0.50	14.1
Moment at Second Discontinuity, kip-in.	My2	0.67	15.9
Moment at Third Discontinuity, kip-in.	y3 y3	0.78	I
Moment for 20% Strain in Tension Steel, kip-in.	α W	0.78	16.1
Curvature at First Discontinuity, in ⁻¹	^م را ا	0.0022	0.001
Curvature at Second Discontinuity, in ⁻¹	ϕ_{V2}	0.0127	0.014
Curvature at Third Discontinuity, in ⁻¹	ϕ_{y3}	0.074	I
Curvature for 20% Strain in Tension Steel, in ⁻¹	α φ	0.20	0.035

*Symbols relate to Fig. 5.2 and 5.3.

Table 5.2 Defining Parameters for Idealization of Moment-Rotation Relations

0.0075 30.0 0.056 14.1 28.2 30.2 0.070 0.0069 27.9 26.1 28.1 0.029 12 0.037 26.9 27.1 25.1 0.0067 0.025 Ξ 0.031 a M_{et}(kip-in.) 0.0064 25.9 26.1 24.1 2 0.021 0.027 Pier 0.0190 0.0061 24.9 0.024 23.1 25.1 σ 0.0059 0.0171 0.022 23.9 24.1 22.1 ω 0.0056 0.0156 22.9 21.1 23.1 0.0195 ~ 0.0054 0.0144 21.9 20.1 22.1 0.0180 9 0.00188 0.00058 Beam 0.55 0.72 0.80 0.0067 (kip-in.) (kip-in.) (kip-in.) (radians) (radians) (radians) Parameter^a $^{\theta}$ y2 ⁰ کا Ч2 У2 ۳ ര് ຮິ

^aSymbols relate to Fig. 5.5 and 5.6.

Table 5.3 Member Rotation Parameters Calculated from Hysteresis Shape Study

		Sixth Level	0.0125	0.0082	0.0163	0.0111	0.0181	0.0184	0.0121	0.0202
		Fifth Level	0.0130	0.0086	0.0168	0.0115	0.0186	0.0183	0.0121	0.0202
	tms	Fourth Level	0.0130	0.0086	0.0169	0.0115	0.0187	0.0176	0.0115	0.0194
radians	Bea	Third Level	0.0123	0.0080	0.0160	0.0108	0.0178	0.0158	0.0100	0.0176
tations, ^t		Second Level	0.0098	0.0062	0.0135	0.0090	0.0153	0.0125	0.0074	0.0143
mber End Rotat		First Level	0.0059	0.0033	0.0093	0.0058	0.0111	0.0076	0.0037	0, 0094
Memt	Pier	Lower Level	0.0059	0	0.0093	0.0017	0.0111	0.0076	0.0005	0.0094
		Symbol ^a	e m	θr1	θ _m 2	θr2	θ_{m3}	θm2	^θ r2	θ ^m 3
		Quarter Cycle	First	Second	Third	Fourth	Fifth	Third	Fourth	Fifth
		Type of Parameter	Maximum	ero Intercept	Maximum	ero Intercept	Maximum	Maximum	ero Intercept	Maximum
		Hysteresis Model	LLA	Zŧ	F	Z		2	Z	

^aSymbols refer to Fig. 5.13, 5.17, 5.22 and 5.25. ^bRotations are given as absolute values.

Table 5.3 (contd.) Member Rotation Parameters Calculated from Hysteresis Shape Study

0.0110 0.0163 0.0111 0.0182 0.0183 0.0163 0.0181 Sixth Level 0.0114 0.0168 0.0186 0.0168 0.0114 0.0187 0.0186 Fifth Level Fourth Level 0.0169 0.0115 0.0187 0.0169 0.0114 0.0187 0.0187 Member End Rotations, radians 0.0160 0.0178 0.0160 0.0108 0.0178 0.0108 0.0178 Third Level Beams 0.0090 Second Level 0.0135 0.0153 0.0135 0.0089 0.0153 0.0153 0.0059 0.0110 0.0093 0.0058 0.0109 0.0093 0.0110 First Level 0.0093 0.0016 0,0110 0.0093 0.0016 0.0109 0.0110 Lower Level Pier Symbo1 em3 eⁿ3 $^{\theta}$ m3 $^{\theta}$ m2 θ r2 $^{\theta}$ m2 θ r2 Quarter Cycle Fourth Fourth Fifth Fifth Third Third Fifth Zero Intercept Zero Intercept Type of Parameter Maximum Maximum Maximum Maximum Maximum Hysteresis Model m 4-5 ഹ

Table 5.4 Member Rotation Parameters Calculated from Study of Equivalent Damping and Response Amplitude

Sixth 0.0072 0.0113 0.0113 0.0073 0.0111 0.0073 0.0035 0.0036 Leve] 0.0111 0.0029 0.0031 0.0036 0.0116 0.0076 0.0117 0.0076 0.0075 0.0116 0.0037 0.0032 0.0117 0.0036 Fifth 0.0030 0.0036 Level Fourth Level 0.0076 0.0117 0.0118 0.0036 0.0030 0.0036 0.0077 0.0117 0.0031 0.0118 0.0036 0.0077 Member End Rotations,^b radians Beams 0.0072 Third Level 0.0111 0.0111 0.0072 0.0033 0.0029 0.0111 0.0071 0.0111 0.0033 0.0033 0.0028 Second Level 0.0090 0.0057 0.0022 0.0026 0.0090 0.0091 0.0056 0.0027 0.0023 0.0026 0.0056 0.0091 0.0045 0.0054 0.0015 First Level 0.0057 0.0030 0.0013 0.0030 0.0057 0.0016 0.0054 0.0012 0.0015 0.0054 Lower Level 0.0057 0.0054 0.0057 0.0016 0.0015 0.0015 Pier 0 0 0 0 0 Symbol^a ر م $^{\theta}$ r4 θ r3 _ອໂ $^{\theta}_{m2}$ θ r2 $^{\theta}_{m3}$ $^{0}_{m4}$ $^{0}_{m4}$ θ m5 მი 0 سو Eleventh Seventh Seventh Quarter Second Fourth Eighth Cycle First Third Ninth Fifth Sixth Tenth Zero Intercept Zero Intercept Zero Intercept Zero Intercept Zero Intercept Type of Parameter Maximum Maximum Maximum Maximum Maximum Maximum Maximum Ampl. Level Both High Low Mode

^aSymbols refer to Fig. 5.33

^bFor Mode 1, rotations are given as absolute values. For Mode 2, rotations are positive clockwise.

Table 5.4 (contd.) Member Rotation Parameters Calculated from Study of Equivalent Damping and Response Amplitude

0.0015 0.0008 -0.0015 0.0015 -0.0002 -0.0008 -0.0011 Sixth Level -0.0013 0.0013 0.0007 Fifth Level -0.0017 -0.0002 0.0013 -0.0007 radians Fourth Level 0.0009 -0.0002 0.0011 -0.0002 0.0002 -0.0011 -0.0002 Member End Rotations, 0 0 0 Beams Third Level 0.0001 -0.0005 0.0005 -0.0011 Second Level -0.0013 -0.0014 0.0020 0.0006 0.0021 -0.0021 -0.0021 0.0014 -0.0021 -0.0021 0.0006 0.0021 0.0020 0.0013 First Level 0.0020 Lower Level Pier -0.0021 -0.0021 0.0021 0 0 0 Symbo 1 θ 72 $^{\theta}$ m3 θr3 е ш θ Γ θ m2 $^{0}_{m4}$ Quarter Cycle Seventh Fourth Second First Sixth Third Fifth Zero Intercept Zero Intercept Zero Intercept Type of Parameter Maximum Maximum Maximum Maximum Ampl. Level Both Mode \sim

Results
Damping
Equivalent
e 5.5
[ab]

Damping as a fraction of Critical Damping	0.065	0.146	0.043	-
Loading Segments Enclosing Area for Energy Dissipation Calculation (Quarter Cycles)	Fourth through Seventh	Eighth through Eleventh	Fourth through Seventh	
Amplitude Level	High	Low		
Mode of Loading	First	First	Second	

Table 6.1 Fourier Analysis. Maximum Computed Accelerations and Displacements

		Low	er Level		Mido	lle Level			Top Level	
Parameter	Test Run	First Mode	Higher Modes	Total	First Mode	Higher Modes	Total	First Mode	Higher Modes	Total
Acceleration, g ^a	D1-4	0.78	1.23	1.58	0.58	0.61	0.79	0.96	0.58	1.08
	D2-1	0.31	1.35	1.33	0.39	0.66	0.82	0.64	0.73	0.89
	D3-1	0.33	1.34	1.31	0.38	0.74	0.97	0.70	0.87	1.02
	D4-1	0.30	1.03	1.05	0.38	0.76	0.72	0.67	0.73	0.94
	D5-1	0.30	1.18	1.19	0.37	0.63	0.72	0.66	0.74	0.90
Displacement,in. ^t	01-4	0.18	0.08	0.18	0.25	0.04	0.26	0.39	0.07	0.40

^aValues provided are single amplitude maxima.

^bValues provided are one-half of double amplitude maxima.

Table 6.2 Fourier Analysis. Maximum Computed Base Shear and Base Moment

u .	Total	86	58	56	54	51	
e Moment, kip-i	Higher Modes	26	19	17	10	13	
Base	First Mode	78	49	51	50	49	
	Total	2.25	1.54	1.67	1.35	1.50	
Shear, kips	Higher Modes	0.87	1.13	1. 14	0.92	1.00	
Base	First Mode	2.02	1.13	1.16	1.14	1.11	
	Test Run	D1-4	D2-1	D3-1	D4-1	D5-1	

Frequencies for Computed Response Histories Fourier Analysis. Table 6.3

Late^b 19 19 19 1322119 19 19 19 19 19 Ξ ł Higher Modes Early^a pL pLL 15 20 20 20 20 20 20223 Frequency, Hz. Late^b 8.0) 8.0) 8.0) 4.0 4.0 4.0 4.9 4.5 4.5 First Mode Early^a (12.3)6.0) 5.2 5.2 5.7 5.7 D1-4 D1-4 D1-4 D1-4 D2-1 D3-1 D4-1 D5-1 D1-4 D2-1 01-4 D3-1 D4-1 D5-1 D3-1 D4-1 D5-1 02-1 Run Lower Level Acceleration^C Middle Level Acceleration Middle Level Displacement Lower Level Displacement Top Level Acceleration Top Level Displacement Parameter

^aMeasured over first 1.5 sec. of response.

^bMeasured over final 2.0 sec. of response.

^CInfluenced strongly by frequency content of base motion.

^dMeasured over first 1.0 sec. of response.

Table 7.1 Reference Section Stiffnesses for Study of Dynamic Response

Specimen	Test Stanctime	Bending S of Pier S kip-in ²	tiffness ection,	Axial Sti of Pier S kips	ffness ection,	Bending S of Beam S kip-i	tiffness ection, n ²
i y pe	סרו מררימו ב	Uncracked	Reference	Uncracked	Reference	Uncracked	Reference
А	IQ	104,300	57,200	25,500	14,000	3,660	2,010
В	D2	106,800	31,500	26,200	7,730	1,074	317
В	D3	87,300	31,400	21,400	7,700	890	320
J	D4	91,600	31,400	22,500	7,720	913	313
U	D5	88,600	31,900	21,700	7,810	858	309
	Average for types B and C	ł	31,600	ł	7,740	1	315

Table 7.2 Study of Response History. First-Mode Frequencies for Substitute Structures

luency, Hz.	Late Frequency	3.8	3.4	3.5	3.5	3.4
First Mode Free	Early Frequency	4.7	4.5	4.1	4.3	4.3
Toot	Run	D1-4	D2-1	D3-1	D4-1	D5-1
Constants	Type	Α	ш	ß	U	J

for	
Test Runs Analyzed and Second-Mode	
Study of Response History. Each Combination of First- Viscous Damping Factors	
Table 7.3	

First-Mode Viscous Damping as a Fraction of Critical Damping	Second-Mode Vis 0.02	cous Damping a 0.05	s a Fraction of 0.10	Critical Damping 0.15
0.02	D1-4 D2-1 D3-1 D4-1 D5-1			
0.05			Ē	
0.10	D4-1	D4-1	01-4 02-1 03-1 04-1 05-1	
0.15				D4-1

Note: All above cases analyzed for both early frequency and late frequency.

Histo
Response
0 f
Study
for
Parameters
7.4
Table 7

S

Top Level -0.62-0.59-0.59-0.59-0.57-0.5Shape of Second Mode Middle Level 0.720.720.700.700.700.86Bottom Level $\begin{array}{c} 0.89\\ 0.89\\ 0.89\\ 0.74\\ 0.72\\$ Top Level First Mode Middle Shape of Level Bottom Level Damping Factor PerCent First Second Mode Mode L Frequency Description Early the set of the Second Mode Frequency, Hz. First Mode Beams Damage Ratio First Story Pier Structure Type Base Motion 02-1 02-1 03-1 03-1 05-1 05-1 05-1 05-1 05-1 D4-1 D2-1 Analysis Number

Analysis	Top Le	vel Defl	ection, in.	Bas	se Shear,	kips	Base	e Moment,	kip-in.
Number	First Mode	Second Mode	Sum of First and Second Modes	First Mode	Second Mode	Sum of First and Second Modes	First Mode	Second Mode	Sum of First and Second Modes
		0		с с					
- ~	0.49 0.49	0.004	0.49 0.49	2°.2	0. /U 0. 67	3.4 2.1	90	2.0 2.0	142 87
က	0.62	0.006	0.62	1.77	0.82	1.83	76	7.7	75
4	0.49	0.005	0.49	1.38	0.67	1.41	59	6.2	58
വ	0.57	0.014	0.57	1.85	1.31	2.4	82	15.5	82
9	0.34	0.013	0.34	1.10	1.14	1.30	49	13.5	47
7	0.48	0.019	0.49	1.02	1.67	1.82	46	21	47
ω.	0.37	0.015	0.37	0.78	1.26	1.19	35	16.2	35
ں م	0.29	0.012	0.29	0.96	1.05	1.07	43	12.4	41
10	0.34	0.013	0.34	0.72	1.15	1.05	32	14.7	31
	0.34	0.014	0.35	1.10	1.31	1.86	49	15.5	54
12	0.34	0.012	0.35	1.10	1.12	1.60	49	13.3	50
۲ <u>]</u>	0.37	0.019	0.37	0.78	1.67	1.72	35	21	40
14	0.37	0.015	0.37	0.78	1.30	1.44	35	16.6	36
 	0.48	0.028	0.49	1./3	7.5 17	 	\ . \ .	29	48 4
91	0.34	0.019	0.34	1.21	۰./ ۲.	2.3	54	20	55 57
/1	0.4/	0.032 0.010	0.48	0.94	1 60	3. C 1 79	4 7 C	02	50
<u>o</u> <u>o</u>	0.65	0.017	0.66	1 92	1.49	3.0	36 86	18.0	ñ ő
20	0.43	0.016	0.44	1.26	1.39	2.3	57	16.8	62
21	0.82	0.022	0.81	1.74	1.93	3.2	78	25	94
22	0.67	0.018	0.66	1.42	1.54	2.1	64	19.8	72
23	0.57	0.016	0.57	1.86	1.42	2.4	83	16.8	83
24	0.33	0.013	0.34	1.08	1.22	1.26	48	14.5	46
25	0.52	0.020	0.53	1.05	1.75	2.1	47	23	50
26	0.40	0.016	0.40	0.80	1.41	1.33	36	18.2	36

Table 7.5 Maximum Calculated Responses from Study of Response History

Study of Response History. Per Cent Change in Maximum Response as First-Mode Frequency Changes from Early Frequency to Late Frequency Table 7.6

	Top L Defle	evel ction		Base S	hear			Base Mon	nent	
Test Run	First Resp B ₁ =0.02	-Mode onse 	First Resp B ₁ =0.02	-Mode onse 	Second-M Respons B2=0.02	40de se ^B 2 ⁼ 0.10	First- Respo B ₁ =0.02	Mode nse ^B 1=0.10	Second- Respon B2=0.02	Mode Ise B2=0.10
D1-4	-21	0	-46	- 34	+17	0	-47	-34	+24	+5
D2-1	- 2	9+	-46	-41	+12	- 6 -	-45	-41	+24	+5
D3-1	+26	+56	б 1	+13	+30	! L+	6 -	+12	+39	+18
D4-1	- 16	6+	-45	-29	+27	+11	-44	-29	+35	+20
D5-1	6 1	+21	-44	-26	+23	+16	-43	-25	+37	+26
β ₁ =	Viscous .	damping fac	tor for f	irst mode,	expressed	as a fract	tion of cr	itical damp	oing.	
β 2 =	Viscous .	damping fac	tor for se w_w	scond mode,	expressed	l as a frac	ction of c	ritical dan	ıping.	
Resui	lts given	represent		100%						
where	; WE = 1	maximum res	ponse whei	n the first	-mode freq	quency is e	equal to t	he early fr	equency.	

 w_L = maximum response when the first-mode frequency is equal to the late frequency.

Table 8.1 Comparison of Initial Stiffnesses

i

Origin	Description	Test Structure	Stiffness,* kips	First-Mode Frequency, Hz.
Calculated	Beams and Piers Uncracked	D2 D3 S1	1570 1290 1530	13.8 12.5 13.6
Calculated	Beams Cracked, Piers Uncracked	D2 D3 S1	910 790 890	10.5 9.8 10.4
Calculated	Beams Cracked, Lower Piers Cracked	02 03 S1	530 480 530	8.0 8.0 8.0
0bserved	Low-Amplitude Free-Vibration Test	D2 D3	500 480	7.8 7.6
0bserved	Measured by Dial Gages (Corrected for Base Movement)	S	520	7.9
0bserved	Measured by Dial Gages (Uncorrected for Base Movement)	S	470	7.5
Observed	Measured by Differential Transformers	SI	420	7.1
*Base moment pe	er in. of top-story displacement for one wall (fiv	rst-mode forc	e distribution)	

Table 8.2	Ratios of Initial Stiffnesses of Structure, Obtained
	in Various Manners, to the Stiffness of the Structure
	in the Uncracked State

Davameter	Te	st Struct	ure	
	D2	D3	SI	
(Measured Initial Stiffness of Structure) ^d /(Calculated Stiffness of Uncracked Structure) ^b	0.32	0.37	0.34	
(Cracked Section Stiffness for Beams)/(Uncracked Section Stiffness for Beams)	0.23	0.26	0.24	
(Cracked Section Stiffness for Pier)/(Uncracked Section Stiffness for Pier)	0.19	0.22	0.19	
(Calculated Stiffness of Structure with Beams Cracked and Pier Uncracked) ^b /(Calculated Stiffness of Uncracked Structure) ^b	0.58	0.61	0.58	
(Calculated Stiffness of Structure with Beams Cracked and First-Story Pier Cracked) ^b /(Calculated Stiffness of Uncracked Structure) ^b	0.34	0.37	0.35	
^a From a low-amplitude free-vibration test or a dial-gage reading cor ^b Expressed in terms of base moment per inch of top-level deflection	rected for for one wa	base mov 11.	ement.	
Test Structures				

for				
Strengths				
and				
Responses				
Maximum				
Observed				
8.3 .3				
Table				

			Structure	e Identif	ication	and Type		
Parameter	Symbol	Type A D1	Type B D2	Type B D3	Type C D4	Type C D5	Type B S1	
Calculated Base Moment at Failure, Mechanism l, kip-in. ^a	M mch1	81	47	47	40	40	47	
Calculated Base Shear at Failure, Mechanism l, kips ^a	Vmch1	1.8		1.1	0.9	6.0	1.1	
Calculated Base Moment at Failure, Mechanism 2, kip-in. ^a	M mch2	ı	56	56	46	45	56	L .
Calculated Base Shear at Failure, Mechanism 2, kips ^a	V mch2	ł	1.3	1.3	1.0	1.0	1.3	
Maximum Base Moment for First-Mode Response, l.Og Test Run, kip-in. ^b	Mmd1	78	49	51	50	49	ı	
Maximum Base Moment for Total Observed Response, 1.0g Test Run, kip-in. ^b	Mcrn	86	58	56	54	51	I	
Maximum Observed Base Moment, Final Test Run, kip-in. ^C	Mfrn	105	58	65	62	63	ı	
dEsilive mochanicme l and 2 ave defined in ce	+ion A Al							

'Failure mechanisms 1 and 2 are defined in section 4.4(c).

^bMaxima are results of Fourier analysis (chapter 6), for test runs D1-4, D2-1, D3-1, D4-1 and D5-1. ^CMaxima as reported in chapter 3, for test runs D1-5, D2-2, D3-2, D4-2 and D5-2, north wall. ^dNegative and positive loading directions defined in chapters 3 and 5.

Table 8.3 (contd.) Observed Maximum Responses and Strengths for Test Structures

			Structur	e Identi	fication	and Type	
Parameter	Symbo 1	Type A D1	Type B D2	Type B D3	Type C D4	Type C D5	Type B S1
Maximum Base Shear for First Mode Response, 1.0g Test Run, kips ^b	Vmd1	2.0	1.1	1.2		1.1	I
Maximum Base Shear for Total Observed Response, 1.0g Test Run, kips ^b	Vcrn	2.3	1.5	1.7	1.4	1.5	I
Maximum Observed Base Shear, Final Test Run, kips ^c	Vfrn	3.5	2.5	2.3	2.6	2.5	
Maximum Observed Positive Base Moment, Static Test, kip-in. ^d	Mspos	1	I	1	ı	I	57
Maximum Observed Negative Base Moment, Static Test, kip-in.	Msneg	ı	ı	I	I	ı	58
Maximum Observed Positive Base Shear, Static Test, kips	Vspos	ı	1	I	I	ı	1.3
Maximum Observed Negative Base Shear, Static Test, kipsd	V sneg	ı	ı	ı	I	I	1.3

Cases
Several
for
Structures
Test
the
for
Stiffnesses
8.4
Table

		Stiffne	ss for Each	n Test Struc	:ture; kip	
Case	Type A D1	Type B D2	Type B D3	Type C D4	Type C D5	Type B S1
Uncracked	1980	1570	1290	1340	1290	1530
Beams Cracked	1740	910	200	670	660	890
Beams and Lower Piers Cracked	950	530	480	400	400	530
Uncoupled Piers, Uncracked	290	310	250	250	250	300
Uncoupled Piers, Lower Piers Cracked	102	101	06	94	96	96
Maximum First Quarter Cycle Deflection - Static Test	ł	ı	·	·	ı	105
Maximum First Quarter Cycle Deflection- Hysteretic Analysis, Model 5	l	ı	ı	I	I	103
Pre-Test Free-Vibration Test	851	500	480	390	590	ı
Early Frequency	166	166	139	151	153	1
Late Frequency	108	95	101	100	96	ı
Ratio of Base Moment to Top Level Deflection, t = 0.4 sec.	ı	165	160	150	161	ı
<pre>Ratio of Base Moment to Top Level Deflection, t = 0.6 sec.</pre>	I	142	137	131	128	ı
<pre>Ratio of Base Moment to Top Level Deflection, t = 0.7 sec.</pre>	153	130	146	117	115	ş
<pre>Ratio of Base Moment to Top Level Deflection, t = 1.2 sec.</pre>	1	109	114	100	102	ı
* Base moment per in. of top story dis	placement fo	or one wall.				

Table 8.5 First-Mode Frequencies for the Test Structures for Several Cases

		First-Mode H	-requency fo	or Each Test	: Structure,	Hz.
Case	Type A D1	Type B D2	Type B D3	Type C D4	Type C D5	Type B S1
Jncracked	16.3	13.8	12.5	12.8	12.5	13.6
3eams Cracked	15.4	10.5	9.8	9.1	8.9	10.4
3eams and Lower Piers Cracked	11.3	8.0	7.6	7.0	6.9	8.0
Jncoupled Piers, Uncracked	6.3	6.1	5.5	5.6	5.5	6.0
Jncoupled Piers, Lower Piers Cracked	3.7	3.5	3.3	3.4	3.4	3.4
<pre>Maximum First Quarter Cycle Deflection - Static Test</pre>	•	ı	ı	1	I,	3.6
<pre>4aximum First Quarter Cycle Deflection - Hysteretic Analysis, Model 5</pre>	ı	I	ı		ı	3.5
Pre-Test Free-Vibration Test	12	7.8	7.6	6.9	8.4	1
Early Frequency	4.7	4.5	4.1	4.3	4.3	ı
Late Frequency	3.8	3.4	3.5	3.5	3.4	• .
<pre>Ratio of Base Moment to Top Level Deflection, t = 0.4 sec.</pre>	ı	4.5	4.4	4.3	4.4	ī
<pre>Ratio of Base Moment to Top Level Deflection, t = 0.6 sec.</pre>	. 1	4.2	4.1	4.0	3.9	·
<pre>Ratio of Base Moment to Top Level Deflection, t = 0.7 sec.</pre>	4.5	4.0	4.2	3.8	3.7	ı
<pre>Ratio of Base Moment to Top Level Deflection, t = 1.2 sec.</pre>	ı	3.6	3.7	3.5	3.5	ı

		Test St	ructure Ide	ntification	and Type	
Case	Type A D1	Type B D2	Type B D3	Type C D4	Type C D5	Type B S1
Reference Section Stiffness for the Pier, kip-in. ^{2 a}	57,200	31,600	31,600	31,600	31,600	14,100
Cracked Section Stiffness for the Pier, kip-in. ² b	20,300	20,100	19,180	19,800	19,300	19,900
Reference Section Stiffness for the Beams, kip-in. ^{2 a}	2,010	315	315	315	315	234
Cracked Section Stiffness for the Beams, kip-in. ^{2 b}	2,000	248	231	155	149	246
^a For tests Dl through D5, these are th the study of linear dynamic response (chapt	ne referenc ter 7). Fo	e, or initi r test Sl,	al, uniform the value l	section st isted is th	iffnesses f e stiffness	rom consistent

with the initial slope of idealized hysteresis relation for the member (chapter 5).

^bCalculated from moments of inertia listed in Table 4.1 and secant moduli listed in Table A.1.

Based on Reference Stiffnesses for Member Damage Ratios for Several Cases. Study of Linear Dynamic Response Table 8.7

3.8 n pm 16.8 4.3 3.0 2.8 5.3 4.0 Type C D5 15 35 hpr 3.0 1.0 2.0 3**.** 8 1.0 2.8 1.0 2.2 2.7 4.3 3.0 4.2 3.0 5.0 3.1 h bm 16.8 Type C D4 17 28 1.0 1.0 2.5 ч рг 1.0 2.2 3.0 2.1 3.0 3.1 4.8 4.0 2.8 3.4 n bm 3.4 4.7 12 23 23 മ Type | D3 ⁿpr 2.4 3.4 1.0 2.0 2.8 1.0 2.4 3.4 1.0 nd u 13.2 3.8 2.7 13.2 3.8 2.7 4.5 3.2 6 മ Type D2 1.90 1.0 0.1 npr 2.7 6.1 2.7 1.0 2.3 3.2 11.2 т рт 9.0 18.0 I ര Type A D1 11.2 ч рг 0 I I Distribution 2µpr 2µpr $\mu_{bm} = 2\mu_{pr}$ ^µpr nd L Damage ^μbm^{=μ}pr -----|| μ_{bm} = 11 11 11 Ĥ п , rq^µ , ma u . mq_{rt} mq n ^µpr ^µpr Ratio of Base Moment to Top Ratio of Base Moment to Top Level Deflection, t = 0.4 sec. Level Deflection, Case Early Frequency t = 0.6 sec.

^aThe ductility requirement was extremely high, beyond the range of Fig. 7.6.

Based on Reference Stiffnesses Table 8.7 (contd.) Member Damage Ratios for Several Cases. for Study of Linear Dynamic Response

		Type	A a	Type	В	Type	В	Type	J	Type	сı
Case	Damage Distribution	^µ pr	mqn	ⁿ pr	md ^u	^µ pr	hbm	^µ pr	hbm	^µ pr	h bm
Ratio of Base Moment to Top	^µ pr = 1	1.0	ס	1.0	28	1.0	19	1.0	ט	1.0	ъ
<pre>Level Deflection, t = 0.7 sec.</pre>	μ _{bm} = ^{2μ} pr	10	20	2.5	5.0	2.3	4.5	2.8	5.6	3.0	6.0
	μ _{bm} = μ _{pr}	12.2	12.2	3.6	3.6	3.2	3.2	4.0	4.0	4.3	4.3
Ratio of Base Moment to Top	μ <mark>υ</mark> ς =]	ı	I	1.0	ы	1.0	ъ	1.0	ъ	1.0	271 م
<pre>Level Uerlection, t = 1.2 sec.</pre>	μ _{bm} = 2μ _{br}	1	I	3.2	6.3	3.0	6.0	3.4	6.7	3.4	6.7
	^µ bm ⁼ ^µ pr	I	ı	4.6	4.6	4.3	4.3	4.8	4.8	4.8	4.8

^aThe ductility requirement was extremely high, beyond the range of Fig. 7.6.

Based on Cracked Section Stiffness Member Damage Ratios for Several Cases. for Beams and Piers Table 8.8

272 Beams L 1 I 2 1 ł SI Pier ı 1 ı ı 1 ı 1.42 1.80 . 89 1.32 7.9 2.0 7.1 16.62.5 Beams Pier F D2 1.34 1.83 1.65 1.22 0.61 0.61 1.71 0.61 2.3 Beams 1.48 1.48 1.53 13.8 2.5 8.3 8.4 2.1 2.1 Member Damage Ratios 4 Pier 1.88 0.63 1.88 0.63 0.63 1.38 1.94 1.32 1.57 Pier Beams 11.0 16.9 2.5 16.9 3.5 2.5 2.9 3.4 2.1 B 0.61 0.61 1.46 1.46 1.70 0.6] 1.21 2.1 2.] Beams 15.0 10.4 3.0 3.0 3.5 2.5 10.4 2.1 2.1 20 Pier 0.64 0.64 0.64 1.72 1.72 1.46 1.21 1.21 2.0 Pier Beams 17.9 11.1 ര ŧ ı ı ł I I Ξ 0.36 3.2 4.0 1 ī F I ł ł Distribution 2µpr 2µpr 2µpr р<mark>г</mark> nd^u р<mark>г</mark> Damage 11 П в 8 II Ш 11 11 11 тbm ָ שמ^ו , md ^µ ^µpr μ bm hpr n bin μbm т рт Level Deflection, Level Deflection, Early Frequency Ratio of Base Moment to Top Ratio of Base Moment to Top t = 0.4 sec.t = 0.6 sec.Case

^aDamage ratio greater than 30.

ness	
Stiff	
Section	
Cracked	
uo	
Based	
Cases.	
Several	
for	
Ratios	Piers
Damage	ums and
Member	for Bea
<u> </u>	
(contd	
8.8	
Table	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
--

^aDamage ratio greater than 30.

^aStiffness, s₁, defined in section 5.3.

Table 8.9 Damage Ratios Computed in Hysteresis Shape Study Using

CaseD1D2D3D4Top Level Deflection Consistent with Uncracked State*, in.0.110.130.170.18Top Level Deflection Consistent with the Stiffness Corresponding to the Free-Vibration Test, in.0.190.250.290.26Maximum Top Level Deflection for the Test with A_{max} = 1.09., in.0.500.450.460.50			Te	est Structu	re		
Top Level Deflection Consistent with Uncracked State*, in. Top Level Deflection Consistent with the Stiffness Corresponding to the Free-Vibration Test, in. Maximum Top Level Deflection for the Test with Amax = 1.0g., in. Ratio of Observed Maximum Deflection	Case	IQ	D2	D3	D4	D5	
Top Level Deflection Consistent with the Stiffness Corresponding to the Free-Vibration Test, in. 0.19 0.25 0.29 0.29 Maximum Top Level Deflection for the Test with A _{max} = 1.0g., in. 0.50 0.45 0.46 0.50 Ratio of Observed Maximum Deflection	Top Level Deflection Consistent with Uncracked State*, in.	0.11	0.13	0.17	0.15	0.16	
Maximum Top Level Deflection for the Test with A _{max} = 1.0g., in. Ratio of Observed Maximum Deflection	Top Level Deflection Consistent with the Stiffness Corresponding to the Free-Vibration Test, in.	0.19	0.25	0.29	0.29	0.29	
Ratio of Observed Maximum Deflection	Maximum Top Level Deflection for the Test with A _{max} = 1.0g., in.	0.50	0.45	0.46	0.50	0.48	275
(Amax ^{-1.09}) to that calculated for other acced Structure 3.5 2.7 3.3	Ratio of Observed Maximum Deflection (A _{max} = 1.0g) to that Calculated for Uncracked Structure	4.6	3.5	2.7	3.3	3.0	

Table 9.1 Effect of Inelastic Structural Response on Top-Level Deflection

*Calculated using response spectra from observed base motions.

Parameter	Test Spec.	Age, Days	Size of Sample	Mean	Maximum	Minimum	Standard Deviation	Coefficient of Variation	Mean Plus Std. Dev.	Mean Minus Std. Dev.
Compressive Strength, psi	01 02 04 S1 S1	500 500 500 500 500 500 500 500 500 500	<u>ہ –</u> مومہ	4550 5710 4610 4960 4180 5220	4980 5980 5260 5100 4500 5380	4180 5260 3390 4740 3830 4900	280 230 610 140 230 160	0.062 0.041 0.133 0.027 0.055 0.031	4830 5940 5220 5100 4410 5380	4270 5480 4000 4820 3950 5060
Strain at Maximum Stress	01 02 05 05 05 05 05 05 05 05 03 03 03 03 03 03 03 03 03 03 03 03 03	32 50 50 50	moooor	0.0034 0.0034 0.0034 0.0040 0.0038 0.0041	0.0036 0.0040 0.0041 0.0045 0.0049 0.0049	0.0032 0.0019 0.0029 0.0036 0.0031 0.0031	0.0002 0.0006 0.0004 0.0003 0.0003 0.0007	0.06 0.18 0.13 0.08 0.18 0.12	0.0036 0.0040 0.0038 0.0038 0.0043 0.0045 0.0046	0.0032 0.0028 0.0030 0.0037 0.0037 0.0037
Secant Modulus from Zero to 1000 psi, ksi	01 02 04 05 05 05	500 3 4 3 3 3 5 3 5 3 5 3 5 5 5 5 5 5 5 5 5	٥ <u>۲</u> 600 <i>۲</i>	3280 3400 2780 2870 2760 3160	4350 5000 3230 3230 3700 3700	2700 2860 2320 2500 2500 2780	560 510 250 350 350	0.171 0.179 0.112 0.089 0.089 0.110	3840 4010 3090 3130 3510	2720 2790 2470 2610 2510 2810

Compressive strength based on tests of 4 by 8-in. cylinders

Table A.1 Measured Compressive Properties of Concrete

	Test Snec	Age, Dave	Size				Standard	Coefficient of	Mean Plus	Mean Minus
Parameter		c (na	Sample	Mean	Maximum	Minimum	Deviation	Variation	Std. Dev.	Std. Dev.
Splitting	[0	32	с	310	330	300	20	0.06	ł	-
Stress. psi	D2	53		410	1	1	!	:	1 1	:
	D3	43	ო	440	510	380	70	0.15	1	8
	D4	30	m	410	520	350	06	0.20	ł	l t
	D5	20	ო	490	520	460	30	0.06	1	ł
	SI	50	e	380	430	350	40	0.11		!
Modulus of	10	32	9	850	980	730	110	0.13	960	740
Rupture, psi	D2	53	9	1030	1100	006	06	0.09	1020	940
	B3	43	6	840	920	750	60	0.08	006	780
	D4	30	9	780	016	590	110	0.15	890	670
	D5	20	6	750	860	680	60	0.08	810	069
	SI	50	9	066	1150	930	80	0.08	1070	016
		+	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0	On open : Live					

Table A.2 Measured Tensile Properties of Concrete

277

splitting stress based on tests of 4 by 8-in. cylinders Modulus of rupture based on tests of 1 by 1-in. beams loaded at the center of a six-in. span

ł

Table A.3 Measured Diameter of Reinforcement

Mean Minus Std. Dev. 0.120 0.161 0.091 Mean Plus Std. Dev. 0.161 0.122 0.091 Coefficient of Variation 0 0.01 0 Diameters, in. Standard Deviation 0.001 0 0 Minimum 0.119 0.160 0.090 Maximum 0.123 0.161 0.091 Mean 0.161 0.121 0.091 Size of Sample 80 8 64 Wire Gauge No. 13 No. 11 No. 8

:						-			- - -
Wire Gauge	Parameter	Size of Sample	Mean	Maximum	Minimum	Standard Deviation	Coefficient of Variation	Mean Plus Std. Dev.	Mean Minus Std. Dev.
No. 8	Yield Stress, ksi Ultimate Stress, ksi Ult. Stress/Yield Stress Strain at Strain-Hardening Strain at Ultimate Strain at Fracture Young's Modulus, ksi	∞ ∞ ∞ ∞ ∞ ∞ ∞	42.6 51.9 1.218 0.016 0.074 0.17 27500	43.0 52.9 1.239 0.024 0.090 0.20 31900	41.8 49.3 1.155 0.011 0.050 0.15 23000	0.4 1.2 0.027 0.004 0.010 0.02 3400	0.009 0.023 0.022 0.3 0.14 0.12 0.12	43.0 53.1 1.245 0.020 0.084 0.19 30900	42.2 50.7 1.191 0.012 0.064 0.15 24100
No. 11	Yield Stress, ksi Ultimate Stress, ksi Ult. Stress/Yield Stress Strain at Strain-Hardening Strain at Ultimate Strain at Fracture Young's Modulus, ksi		43.7 53.1 1.218 0.025 0.066 0.21 31300	50.4 59.6 1.319 0.045 0.100 0.36 45300	36.8 47.8 1.139 0.010 0.035 0.12 17500	3.1 2.6 0.043 0.009 0.019 0.10 7600	0.070 0.049 0.035 0.4 0.3 0.3 0.5 0.24	46.8 55.7 1.261 0.034 0.085 0.31 38900	40.6 50.5 1.175 0.016 0.047 0.11 23700
No. 13	Yield Stress, ksi Ultimate Stress, ksi Ult. Stress/Yield Stress Strain at Strain-Hardening Strain at Ultimate Strain at Fracture Young's Modulus, ksi	ຉຉຉຉຉຉຉ	39.0 46.5 1.193 0.035 0.081 0.20 25300	41.9 49.0 1.261 0.040 0.090 0.30 30700	37.3 38.1 1.019 0.021 0.030 0.16 21300	1.4 3.4 0.086 0.007 0.020 0.04 2400	0.035 0.073 0.072 0.2 0.2 0.2 0.2 0.095	40.4 49.9 1.279 0.042 0.101 0.24 27700	37.6 43.1 1.107 0.028 0.061 0.16 22900

Table A.4 Measured Stress-Strain Properties of Reinforcement

1 4	ļ	280	
Mean Minus Std. Dev.	8	39.2 41.6 42.9 42.5 42.5	41.4 41.3
Mean Plus Std. Dev.	ļ	45.2 46.0 47.7 46.6 46.8 45.9	42.2 42.1
Coefficient of Variation	0.004	0.070 0.051 0.053 0.046 0.049 0.038	0.0
Standard Deviation	0.2	3.0 2.2 2.1 1.7	0.4
Minimum	42.7	37.7 40.4 41.2 41.2 41.2 40.4	41.2 41.2
Maximum	43.0	50.9 50.9 51.8 50.9 48.3	42.0 42.0
Mean	42.8	42.2 43.8 45.3 44.5 44.6 44.2	41.8 41.7
Size of Sample	CC -	56 49 47 48 48	4
Test Spec.	DI	D1 D2 D4 D5 S1	D4 D5
Wire Gauge	No. 8	No. 11	No. 13

Table A.5 Yield Stress for Wire Used in Specimens

Table A.6 Measured Dimensions of Test Structure - Test D1

	- -	:			Ω	imensions	, in.			
SS.	nbol -ig.	Size of					Standard	Coefficien of	t Mean Plus	Mean Minus
∀	.25)	Sample	Nominal	Mean	Maximum	Minimum	Deviation	Variation	Std. Dev.	Std. Dev.
4	-	96	7.00	7.01	7.08	6.92	0.04	0.005	7.05	6.97
	മ	48	4.00	4.02	4.09	3.97	0.02	0.006	4.04	4.00
•	L	96	1.00	1.03	1.08	0.99	0.02	0.02	1.05	1.01
	~	48	6.75	6.75	7.03	6.67	0.09	0.01	6.84	6.66
	1	16	7.00	7.01	7.05	6.95	0.03	0.004	7.04	6.98
ш	_	ω	4.00	4.04	4.09	4.00	0.03	0.007	4.07	4.01
 		ω	1.00	1.02	1.03	0.99	0.01	0.01	1.03	1.01
-		4	0.53	0.61	0.71	0.55	0.08	0.12	0.69	0.53
ш	2	4	1.19	1.20	1.24	1.17	0.03	0.03	1.23	1.17
ш.,	က	4	1.19	1.18	1.22	1.13	0.04	0.03	1.22	1.14
ш.	4:	4	1.19	1.18	1.20	1.16	0.02	0.01	1.20	1.16
	ភ្ន	4	1.19	1.19	1.22	1.16	0.03	0.02	1.22	1.16
_	9	4	1.19	1.19	1.24	1.14	0.04	0.03	1.23	1.15
	F7	4	0.53	0.50	0.57	0.38	0.09	0.18	0.59	0.41
	ш	48	2.25	2.26	2.35	2.18	0.04	0.02	2.30	2.22
	G	72	1 °00	0.99	1.03	0.96	0.02	0.02	1.01	0.97
	HT	24	0.29	0.33	0.40	0.26	0.04	0.11	0.37	0.29
	HB	24	0.29	0.34	0.41	0.30	0.03	0.09	0.37	0.31

281

.

Table A.7 Measured Dimensions of Test Structure - Test D2

					Dim	ensions,	in.			
	Symbol (Fig	Size of					Standard	Coefficien of	t Mean Plus	Mean Minus
Parameter	A.25)	Sample	Nominal	Mean	Maximum	Minimum	Deviation	Variation	Std. Dev.	Std. Dev.
Pier Width	А	96	7.00	6.99	7.04	6.93	0.02	0.003	7.01	6.97
Opening Width	മ	48	4.00	4.12	4.18	4.03	0.04	0.009	4.16	5.08
Pier Thickness	⊢	96	1.00	1.03	1.08	1.00	0.02	0.01	1.05	1.01
Opening Height	D	48	7.50	7.49	7.61	7.38	0.05	0.006	7.54	7.45
Pier Width at Base	٩٦	16	7.00	6.99	7.04	6.95	0.02	0.003	7.01	6.97
Opening Width at Base	e B1	ω	4.00	4.09	4.13	4.03	0.03	0.008	4.12	4.06
Pier Thickness at Ba	se Tl	∞	1.00	1.02	1.05	1.01	0.01	0.01	1.03	1.01
Pier Reinforcement	Ē	4	0.53	0.60	0.64	0.53	0.05	0.08	0.65	0.55
Geometry at Base	F2	4	1.19	1.18	1.20	1.15	0.03	0.02	1.21	1.15
	F3	4	1.19	1.17	1.18	1.16	0.01	0.008	1.18	1.16
	F4	4	1.19	1.19	1.20	1.18	0.01	0.008	1.20	1.18
	F5	4	1.19	1.18	1.18	1.17	0.01	0.004	1.19	1.17
	F6	4	1.19	1.17	1.20	1.15	0.02	0.02	1.19	1.15
	F7	4	0.53	0.49	0.58	0.42	0.07	0.15	0.56	0.42
Beam Depth	ш	48	1.50	1.52	1.57	1.43	0.03	0.02	1.55	1.49
Beam Thickness	പ	72	1.00	1.00	1.05	0.97	0.02	0.02	1.02	0.98
Top Steel Cover	Ħ	24	0.31	0.33	0.41	0.22	0.05	0.14	0.38	0.28
Bottom Steel Cover	HB	24	0.31	0.33	0.41	0.28	0.04	0.12	0.37	0.29

Table A.8 Measured Dimensions of Test Structure - Test D3

						Dimension	ıs, in.			
Sy (A	mbol Fig. .25)		Nominal	Mean	Maximum	Minimum	Standard Deviation	Coefficient of Variation	Mean Plus Std. Dev.	Mean Minus Std. Dev.
r Width	A	96	7.00	6.99	11.7	6.92	0.03	0.005	7.02	6.96
ning Width	В	48	4.00	4.16	4.22	4.10	0.03	0.007	4.19	4.13
r Thickness	⊢-	96	1.00	1.01	1.04	0.99	0.01	0.01	1.02	1.00
ning Height	Ω	48	7.50	7.50	7.60	7, 38	0.06	0.007	7.56	7.44
r Width at Base	٩٦	16	7.00	7.01	7.11	6.97	0.04	0.006	7.05	6.97
ning Width at Base	Bl	ω	4.00	4.13	4.17	4.11	0.02	0.005	4.15	4.11
r Thickness at Base	Ц	ω	1.00	1.02	1.03	1.00	0.01	0.01	1.03	1.01
r Reinforcement	F	4	0.53	0.57	0.71	0.44	0.12	0.21	0.69	0.45
metry at Base	F2	4	1.19	1.24	1.26	1.22	0.02	0.01	1.26	1.22
	F3	4	1.19	1.15	1.17	1.13	0.02	0.01	1.17	1.13
	F4	4	1.19	1.17	1.19	1.15	0.02	0.01	1.19	1.15
	F5	4	1.19	1.15	1.18	1.14	0.02	0.02	1.17	1.13
	F6	4	1.19	1.20	1.22	1.18	0.02	0.01	1.22	1.18
	F7	4	0.53	0.54	0.64	0.44	0.09	0.16	0.63	0.45
um Depth	ш	48	1.50	1.52	1.60	1.46	0.03	0.02	1.55	1.49
m Thickness	ۍ	72	1.00	1.00	1.02	0.96	0.01	0.01	1.01	0.99
Steel Cover	HT	24	0.31	0.30	0.39	0.22	0.04	0.13	0.34	0.26
tom Steel Cover	HB	24	0.31	0.40	0.50	0.32	0.05	0.12	0.45	0.35

Test [
Structure -
f Test :
imensions o
Measured [
A.9
Table

4

Std. Dev. Minus Mean 6.93 4.09 1.02 7.42 6.94 4.09 1.010.501.181.151.151.171.171.171.181.171.181.171.181.171.181.171.181.171.181.171.181.17Std. Dev. Mean Plus 7.057.057.057.057.087.09Coefficient Maximum Minimum Deviation Variation 0.0080.010.010.010.0070.0010.020 10 Standard 0.060.070.070.070.070.070.010.010.010.02Dimensions, in. 6.87 0.99 0.99 0.92 6.92 6.92 6.92 6.92 1.17 1.17 1.17 1.15 0.35 0.35 0.35 0.35 0.35 0.40 7.11 1.08 7.19 7.11 7.11 7.11 1.02 1.22 1.20 1.20 1.20 0.34 0.34 0.59 0.59 Mean Nominal Sample Size 248 24 24 24 24 444 of Symbo1 (Fig. A.25) Pier Thickness at Base Opening Width at Base Opening Height Pier Width at Base Bottom Steel Cover Pier Reinforcement Geometry at Base Beam Thickness Top Steel Cover Pier Thickness Opening Width Beam Depth Pier Width Parameter

)imensior	is, in.				
	Symbol (Fig.	Sîze of					tandard	Coefficien of	t Mean Plus	Mean Minus	ł
Parameter	À.25)	Sample	Nominal	Mean	Maximum N	1inimum D	eviation	Variation	Std. Dev.	Std. Dev.	
Pier Width	A	96	7.00	7.00	7.07	6.94	0.03	0.004	7.03	6.97	
Opening Width	В	48	4.00	4.12	4.19	4.02	0.04	0.01	4.16	4.08	
Pier Thickness	┝	96	1.00	1.03	1.07	1.01	0.02	0.02	1.05	1.01	
Opening Height	Δ	48	7.50	7.49	7.65	7.30	0.09	0.01	7.58	7.40	
Pier Width at Basd	Al	16	7.00	7.01	7.05	6.96	0.02	0.003	7.03	6.99	
Opening Width at Base	B1	0	4.00	4.17	4.19	4.13	0.02	0.006	4.19	4.15	
Pier Thickness at Bas	e II	ω	1.00	1.02	1.03	1.01	0.008	0.008	1.03	1.01	
Pier Reinforcement	E	4	0.53	0.54	0.63	0.36	0.13	0.23	0.67	0.41	2
Geometry at Base	F2	4	1.19	1.22	1.26	1.20	0.03	0.02	1.25	1.19	80
,	F3	4	1.19	1.15	1.18	1.13	0.02	0.02	1.17	1.13	
	F4	4	1.19	1.17	1.22	1.13	0.04	0.03	1.21	1.13	
	F5	4	1.19	1.19	1.25	1.14	0.06	0.05	1.25	1.13	
	F6	4	1.19	1.21	1.24	1.19	0.02	0.02	1.23	1.19	
	F7	4	0.53	0.55	0.69	0.44	0.11	0.19	0.66	0.44	
Beam Depth	LШ	48	1.50	1.52	1.59	1.47	0.03	0.02	1.55	1.49	
Beam Thickness	5	72	1.00	1.01	1.04	0.98	0.01	0.01	1.02	1.00	
Top Steel Cover	HT	24	0.33	0.28	0.39	0.15	0.07	0.23	0.35	0.21	
Bottom Steel Cover	HB	24	0.33	0.46	0.56	0.32	0.07	0.15	0.53	0.39	

Table A.10 Measured Dimensions of Test Structure - Test D5

Table A.11 Measured Dimensions of Test Structure - Test S1

Std. Dev. Std. Dev. Minus 6.94 4.01 7.43 6.97 6.97 6.97 6.97 6.97 1.13 1.13 1.13 1.13 1.13 0.21 0.21 0.21 0.36 Mean 7.007.037.037.537.537.537.537.037.031.121.231.251Plus Mean Coefficient Standard of Maximum Minimum Deviation 0.0040.010.030.030.040.010.020.020.020.020.020.020.020.02Dimensions, in. 0.030.050.050.050.030.030.040.020.020.020.030.020.030.030.030.030.030.030.030.056.90 7.38 7.38 7.38 7.38 6.95 6.95 6.95 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 0.53 0.53 0.53 0.53 0.54 0.52 0.53 0.547.027.027.027.587.587.587.587.067.067.067.067.061.131.121.221.231.251.251.251.251.251.55Mean 6.97 1.08 7.00 7.00 7.00 7.00 1.08 1.08 1.18 1.18 1.18 1.18 1.18 0.55 0.55 0.27 0.27 0.27 Sample Nominal 7.00 7.00 7.50 7.50 7.50 7.50 1.19 1.19 1.19 1.19 0.53 0.53 0.31 0.31 Size 0404C 080808844444 248 242 242 of 4 4 HH CETTERS HAU Symbol (Fig. A.25) Pier Thickness Opening Height Pier Width at Base Opening Width at Base Pier Thickness at Base Pier Reinforcement Bottom Steel Cover Geometry at Base Beam Thickness Top Steel Cover **Opening Width** Beam Depth Pier Width Parameter

Figure 3.1 Variation of Spectrum Intensity with Base Acceleration

AFLOCITY, IN/SEC

AFFOCILL' INVEEC

Test Structure D1. Linear Response Spectra. Tripartite Format. ($\beta = 0.0$, 0.02, 0.05, 0.10, 0.20) Figure 3.2

(b) Test Run D1-2

(a) Test Run D1-1

(c) Test Run D1-3

(d) Test Run Dl-4

Figure 3.2 (contd.) Test Structure D1. Linear Response Spectra. Tripartite Format. (8 = 0.0, 0.02, 0.05, 0.10, 0.20)

(a) Test Run Dl-l. North Wall.

Figure 3.3 Test Structure D1. Linear Response Spectra. (β = 0.02, 0.05, 0.10, 0.20)

Figure 3.3 (contd.) Test Structure D1. Linear Response Spectra. (β = 0.02, 0.05, 0.10, 0.20)

Figure 3.3 (contd.) Test Structure D1. Linear Response Spectra. (β = 0.02, 0.05, 0.10, 0.20)

Figure 3.3 (contd.) Test Structure D1. Linear Response Spectra. (B = 0.02, 0.05, 0.10, 0.20)

Figure 3.4 Test Structure D1. Observed Horizontal Accelerations

(b) Test Run D1-2. North Wall

.

Figure 3.4 (contd.) Test Structure Dl. Observed Horizontal Accelerations

Figure 3.4 (contd.) Test Structure D1. Observed Horizontal Accelerations

Figure 3.5 Test Structure Dl. Observed Horizontal Displacements

Figure 3.5 (contd.) Test Structure D1. Observed Horizontal Displacements

(c) Test Run D1-3. North Wall.

Figure 3.5 (contd.) Test Structure D1. Observed Horizontal Displacements

Figure 3.5 (contd.) Test Structure D1. Observed Horizontal Displacements

Figure 3.5 (contd.) Test Structure D1. Observed Horizontal Displacements

Figure 3.6 Test Structure D1. Observed Base Functions

(b) Test Run D1-2. North Wall.

Fig. 3.6 (contd.) Test Structure Dl. Observed Base Functions

Figure 3.6 (contd.) Test Structure D1. Observed Base Functions

Figure 3.6 (contd.) Test Structure D1. Observed Base Functions

Figure 3.6 (contd.) Test Structure D1. Observed Base Functions

(f) Test Run D1-5. North Wall.

Figure 3.6 (contd.) Test Structure D1. Observed Base Functions

Figure 3.7 Test Structure D1. Observed Crack Patterns

Figure 3.7 (contd.) Test Structure D1. Observed Crack Patterns

Figure 3.8 Type A Test Structure. Variation of Spectrum Intensity with Horizontal Acceleration

Figure 3.9 Type A Test Structure. Variation of Spectrum Intensity with One-Half of Average Horizontal Double Amplitude Displacement

Figure 3.10 Type A Test Structure. Variation of Spectrum Intensity with Average Base Shear and Average Base Moment

Figure 3.11 Type A Test Structure. Variation of Average Base Shear and Base Moment with One-Half of Average Double-Amplitude Top Level Displacement

Figure 3.12 (contd.) Type A Test Structure, Variation of Observed Deflection with Height at Several Times. South Wall

AELOCITY, JN/SEC

50.0

(b) Test Run D2-2

(a) Test Run D2-1

Test Structure D2. Linear Response Spectra. Tripartite Format. (8 = 0.0, 0.02, 0.05, 0.10, 0.20) Figure 3.13

Ì ∂

(a) Test Run D2-1. North Wall.

Figure 3.14 Test Structure D2. Linear Response Spectra. (β = 0.02, 0.05, 0.10, 0.20)

Figure 3.14 (contd.) Test Structure D2. Linear Response Spectra. (β = 0.02, 0.05, 0.10, 0.20)

Figure 3.14 (contd.) Test Structure D2. Linear Response Spectra. (β = 0.02, 0.05, 0.10, 0.20)

Figure 3.15 Test Structure D2. Observed Horizontal Accelerations

Figure 3.15 (contd.) Test Structure D2. Observed Horizontal Accelerations

Figure 3.16 Test Structure D2. Observed Horizontal Displacements

Figure 3.17 Test Structure D2. Observed Base Functions

Figure 3.17 (contd.) Test Structure D2. Observed Base Functions

Figure 3.17 (contd.) Test Structure D2. Observed Base Functions

Test Structure D3. Linear Response Spectra. Tripartite Format. ($\beta = 0.0$, 0.02, 0.05, 0.10, 0.20)

Figure 3.18

AELOCITY, IN/SEC

Figure 3.19 (contd.) Test Structure D3. Linear Response Spectra. (β = 0.02, 0.05, 0.10, 0.20)

Figure 3.19 (contd.) Test Structure D3. Linear Response Spectra. (β = 0.02, 0.05, 0.10, 0.20)

Figure 3.20 Test Structure D3. Observed Horizontal Accelerations

Figure 3.20 (contd.) Test Structure D3. Observed Horizontal Accelerations

Figure 3.21 Test Structure D3. Observed Horizontal Displacements

Figure 3.22 (contd.) Test Structure D3. Observed Base Functions

(c) Test Run D3-2. North Wall.

Figure 3.22 (contd.) Test Structure D3. Observed Base Functions

Figure 3.23 Test Structure D2. Observed Crack Patterns

Figure 3.24 Test Structure D3. Observed Crack Patterns

Figure 3.25 Type B Test Structures. Variation of Spectrum Intensity with Horizontal Acceleration

Figure 3.26 Type B Test Structures. Variation of Spectrum Intensity with One-Half of Average Horizontal Double Amplitude Displacement

Figure 3.27 Type B Test Structures. Variation of Spectrum Intensity with Average Base Shear and Average Base Moment

Fig. 3.28 Type B Test Structures. Variation of Average Base Shear and Base Moment with One-Half of Average Double Amplitude Top-Level Displacement

10000 -

ł

(b) Test Run D4-2

Test Structure D4. Linear Response Spectra. Tripartite Format. ($\beta = 0.0, 0.02, 0.05, 0.10, 0.20$) Figure 3.31

353

10.0

50.0

Figure 3.32 Test Structure D4. Linear Response Spectra. (β = 0.02, 0.05, 0.10, 0.20)

(b) Test Run D4-1. South Wall.

Figure 3.32 (contd.) Test Structure D4. Linear Response Spectra. (β = 0.02, 0.05, 0.10, 0.20)

Figure 3.32 (contd.) Test Structure D4. Linear Response Spectra. (β = 0.02, 0.05, 0.10, 0.20) (c) Test Run D4-2. North Wall.

(a) Test Run D4-1. North Wall.

Figure 3.33 Test Structure D4. Observed Horizontal Accelerations

Figure 3.33 (contd.) Test Structure D4. Observed Horizontal Accelerations

Figure 3.34 Test Structure D4. Observed Horizontal Displacements

Figure 3.34 (contd.) Test Structure D4. Observed Horizontal Displacements

Figure 3.35 Test Structure D4. Observed Base Functions

Figure 3.35 (contd.) Test Structure D4. Observed Base Functions

-

Figure 3.35 (contd.) Test Structure D4. Observed Base Functions

Figure 3.37 Test Structure D5. Linear Response Spectra. (β = 0.02, 0.05, 0.10, 0.20)

Linear Response Spectra. ($\beta = 0.02$, 0.05, 0.10, 0.20) (b) Test Run D5-1. South Wall. Figure 3.37 (contd.) Test Structure D5.

Figure 3.37 (contd.) Test Structure D5. Linear Response Spectra. (B = 0.02, 0.05, 0.10, 0.20)

Accelerations

-0.50-

Figure 3.39 Test Structure D5. Observed Horizontal Displacements

Figure 3.39 (contd.) Test Structure D5. Observed Horizontal Displacements

Figure 3.40 (contd.) Test Structure D5. Observed Base Functions

Figure 3.40 (contd.) Test Structure D5. Observed Base Functions

Figure 3.41 Test Structure D4. Observed Crack Patterns.

Figure 3.42 Test Structure D5. Observed Crack Patterns

Figure 3.43 Type C Test Structures. Variation of Spectrum Intensity with Horizontal Acceleration

Figure 3.44 Type C Test Structures. Variation of Spectrum Intensity with One-Half of Average Horizontal Double Amplitude Displacement

Figure 3.45 Type C Test Structures. Variation of Spectrum Intensity with Average Base Shear and Average Base Moment

Figure 3.46 Type C Test Structures. Variation of Average Base Moment with One-Half of Average Double Amplitude Top Level Displacement

Figure 3.49 Static Test. Loading Information

.

One-Half of Ram Load, lb.

Static Test. Observed Variation of Vertical and Horizontal Deflections of the Base with Top Level Load

d_s = Horizontal Deflection of Base.

- d_u = Horizontal Deflection of Wall Uncorrected for Base Deflection.
- d = Horizontal Deflection of Wall Corrected for Base Deflection

h = Height of Deflection Observation above Base

$$d_c = d_u - d_s - \left[\frac{a_v e^{+a} v w}{\ell}\right] h$$

Figure 3.52 Static Test. Correction of Observed Wall Deflections for Observed Base Deflections

.df ,bsol msA fo flah-enO

.df ,bsol msЯ to t[sH-enO

One-Half of Ram Load, lb.

Figure 4.1 Uncracked Transformed Sections

Figure 4.4 Structure Idealization for Modal Analysis and Initial Stiffness Calculation

5Q

3Q

Figure 4.5 Idealized Stress-Strain Relations for Concrete and Steel

Figure 4.7 Calculation of Moment-Axial Load Interaction and Moment-Curvature Relations

.ni-qiy ,tnəmoM

Moment-Curvature Relation for Beam Section Computed from Measured Dimensions, Type A Test Structure

Moment, kip-in.

.ni-qiy .tnəmoM

Figure 4.11 Moment-Axial Load Interaction Relation for Pier Section Computed from Measured Dimensions. Test Structure S1

Figure 4.12 Loading and Definition of Reactions for Computed Failure Mechanisms

ł

ł

ł

ł

1

ł

Figure 4.14 Section Used to Calculate Maximum Base Moment of One Wall as a Cantilever

Figure 5.1 Analytical Model for Static Loading

Figure 5.2 Idealized Moment-Curvature Relation for Beam Section

Curvature, ϕ

Figure 5.3 Idealized Moment-Curvature Relation for Pier Section

Figure 5.4 Calculation of Moment-Rotation Relation for Connecting Beams

Figure 5.5 Moment-Rotation Relation for Beams

Figure 5.6 Moment-Rotation Relation for Lower Story Pier

Figure 5.8 Curvature Distribution for Equivalent Uniform Beam Member

Figure 5.9 Curvature Distribution for Equivalent Uniform Pier Member

Figure 5.10 Outline of Calculations for Static Analytical Model

Figure 5.11 Model and Variables for Structural Analysis

Figure 5.12 Deflection Schedule. Hysteresis Shape Study

(a) Forces, Strains and Section Dimensions

(b) Definition of Moment and Rotation

(c) Idealized Moment – Rotation Relation

Figure 5.16 Idealization of Behavior Mechanism of Beams. Hysteresis Model 2

(b) End of Third Quarter Cycle

(c) End of Fifth Quarter Cycle

Figure 5.19 Slip Mechanism for Conventional Reinforcement

(a) Crack Completely Open

Figure 5.24 Mechanism of Closure of Cracks at Ends of Beams. Hysteresis Models 4 and 5

Figure 5.25 Moment Rotation Relation for a Member. Hysteresis Models 4 and 5

Calculation of Base Moment from Observed Figure 5.28 Top-Level Ram Load

Figure 5.29 Relative Deviation of Base Moment

Base Moment, kip-in.

Figure 5.32 Study of Response Amplitude and Equivalent Damping Factor. Deflection Schedule

Base Moment, kip-in.

Variation of Base Moment with Top-Level Deflection. Study of Response Amplitude and Equivalent Damping Factor. Response in the Second Mode

.

(c) Substitute Structure

Figure 7.1 Substitute Structure Concept Illustrated by a Single-Degree-of-Freedom System

Figure 7.2 Structure Idealization for Study of Dynamic Linear Response

Figure 7.3 Consideration of Rotational Inertia of Test Weights

Figure 7.5 Variation of Second-Mode Frequency with First-Mode Frequency. Type A Structure

Figure 7.5 (contd.) Variation of Second-Mode Frequency with First-Mode Frequency. Types B and C Structures

Figure 7.6 Variation of First-Mode Frequency with Damage Ratio for Beams. Type A Structure

Figure 7.6 (contd.) Variation of First-Mode Frequency with Damage Ratio for the Beams. Types B and C Structures

Figure 7.7 Variation of Maximum Calculated Response with First-Mode Frequency. Test D1-4. β = 0.02

Figure 7.7 (contd.) Variation of Maximum Calculated Response with First-Mode Frequency. Test D1-4. β = 0.10

Figure 7.8 Variation of Maximum Calculated Response with First-Mode Frequency. Test D2-1, $\beta = 0.02$

Figure 7.8 (contd.) Variation of Maximum Calculated Response with First-Mode Frequency. Test D2-1. $\beta = 0.10$

Figure 7.9 Variation of Maximum Calculated Response with First-Mode Frequency. Test D3-1. β = 0.02

Figure 7.9 (contd,) Variation of Maximum Calculated Response with First-Mode Frequency. Test D3-1. β = 0.10

Figure 7.10 Variation of Maximum Calculated Response with First-Mode Frequency. Test D4-1. β = 0.02

Figure 7.10 (contd.) Variation of Maximum Calculated Response with First-Mode Frequency. Test D4-1. β = 0.10

Figure 7.11 Variation of Maximum Calculated Response with First-Mode Frequency. Test D5-1. β = 0.02

Figure 7.11 (contd.) Variation of Maximum Calculated Response with First-Mode Frequency. Test D5-1. β = 0.10

Figure 7.12 Variation of the Ratio of Second-Mode Response to First-Mode Response with First-Mode Frequency. Test D1-4

Figure 7.13 Variation of Ratio of Second-Mode Response to First-Mode Response with First-Mode Frequency. Test D2-1

Figure 7.14 Variation of Ratio of Second-Mode Response to First-Mode Response with First-Mode Frequency. Test D3-1

Figure 7.15 Variation of Ratio of Second-Mode Response to First-Mode Response with First-Mode Frequency. Test D4-1

Figure 7.16 Variation of Ratio of Second-Mode Response to First-Mode Response with First-Mode Frequency. Test D5-1

in.

0.50+

0.00

-0.50 1

0.507

TIME. SEC. 3.0

5.0

...

18 -0.504

0.0

-0,504

0,00

0.507

e.

Figure A.1 Representative Stress-Strain Relation for the Concrete

Figure A.2 Variation of Compressive Strength of Concrete with Age

Figure A.5 Relation between Modulus of Rupture of Concrete and Splitting Strength of Concrete

Figure A.7 Ultimate Stress and Yield Stress for Each Wire Size

Figure A.8 Ratio of Ultimate Stress to Yield Stress for Each Wire Size

Figure A.9 Strain at Strain-Hardening, Attainment of Ultimate Stress and Fracture for Each Wire Size

Figure A.11 Yield Stress of #11 Wire for Each Test

Figure A.12 Yield and Ultimate Stresses for Specimen Group No. 1

Figure A.13 Yield and Ultimate Stresses for Specimen Group No. 2

Figure A.14 Yield and Ultimate Stresses for Specimen Group No. 3

Figure A.15 Yield and Ultimate Stresses for Specimen Group No. 4

Figure A.18 General Reinforcing Scheme of Test Specimen

Figure A.19 Nominal Cross-Section of Pier

Figure A.20 Details of Connecting Beams

Figure A.23 Formwork for Casting

Figure A.24 Identification of Measured Dimensions of Test Structure

Detail of Connection Between Steel Weight and Wall

Figure A.28 Lateral Diaphragms

Figure A.29 Dynamic Test Instrumentation

Figure A.30 (contd.) Dynamic Test Setup

Figure A.34 Static Test Instrumentation

Figure A.35 (contd.) Static Test Setup

Figure B.1 Flowchart for Computer Program to Compute Moment-Axial Load Interaction Relation

÷

Figure B.2 Flowchart for Computer Program to Compute Moment-Curvature Relation

Figure B.3 Flowchart for Calculation Routine to Compute Neutral Axis Location

Figure C.1 Flowchart for Computer Program to Perform Calculations for Study of Static Hysteresis

Figure C.1 (contd.) Flowchart for Computer Program to Perform Calculations for Study of Static Hysteresis

Figure D.l (contd.) Flowchart for Computer Program for Dynamic Analysis

U U

Figure D.1 (contd.) Flowchart for Computer Program for Dynamic Analysis

Figure D.1 (contd.) Flowchart for Computer Program for Dynamic Analysis

Figure D.2 Flowchart of Computer Program to Compute Base Shears and Base Moments for Dynamic Analysis

Figure F.1 Acceleration Idealization for Numerical Integration