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INTERFERENCE RESPONSE SPECTRA

I INTRODUCT ION
Pipelines subjected to an earthquake are affected by the ground shaking.
The motion may be described as a function of time (t) and a space coordinate

(x) measured along the axis of the pipe. The resulting displacement field

Xo T g (x,t) (1
is given at a point, chosen as the origin,and its temporal and spatial variation
along the x coordinate may be considered as the sum of the following effects:

a) phase angle shift due to wave propagation delay,
b) variation of wave form due to gross change in base rock formation
(slope, elevation, etc.),
c¢) variation casued by gross change in overburden soil properties and layering,
d) purely random local variation definable only by statistical parameters
(mean value, variance, correlation distance).
The ground displacement field is a subject of current investigation, but if for
the purposes of this paper we assume it to be known, the dynamic response of a
pipe network system may be determined by numerical integration of the appropriate
equations of motion. Such calculations (by means of a finite element model) are
currently in progress, but because of their expensive and time-consuming nature,
they are not appropriate for the routine analysis of pipe network components.
The results of these structure-medium interaction studies, however, are useful in

the construction of simpler, discrete models, In these, the network is represented



by rigid (or elastic) links interconnected by (elastic or inelastic)
springs and dashpots. The system is reacted by a Winkler foundation
consisting of discrete springs and dashpots, capable of transmitting
axial (or transverse) displacements -(Fig. 1). 1In this discrete model,
the soil-structure interaction behavior is incorporated in terms of
virtual mass, effective stiffness and radiation and material damping.
It may also include elements representing friction and slippage. In
the cases when such a model exhibits real frequencies and mode shapes,
its dynamic response to ground excitation méy be adequately treated by
familiar response spectrum techniques. The purpese of this paper is

to outline such methods.

I1 SINGLE DEGREE OF FREEDOM MODEL

The pipe network system of Fig. 1 may be represented to any degree
of accuracy desired by an equivalent lumped mass system. For example,
if only axial motion were of interest, the mass center of each link
could be used to define the displacement field. The natural
frequencies and associated mode shapes could then be found by standard
techniques. The input for each mode would consist of a linear

combination of the ground motion at the various node points.

Consider, for the moment, the simpler problem of only two pipe
sections connected by a joint, represented by the previocusly described
discrete model, and subjected to ground excitation X0y and X0 at twe
points separated by a distance L (Fig. 2). This model is equivalent to
a damped linear oscillator of two degrees of freedom, as shown in
Fig. 3. The constants kp, cP and m represent the stiffness, damping
and mass (including virtual effects) of the pipes and joints, while

k and ¢ are the stiffness and damping quantities associated with

soil-structure interaction.



The equations of motion of the system are

me, = p (xz-xl “kg (xl—xcl) P ) (2)

+ Cp (x,-x —cg (xl 61

m¥, = -kg (x,~%x..,) - kp (xz—x

2 %c2 T g (%

27Egy) — e, (Rymkgy) (3)

The system exhibits two modes of free vibration. By adding Eqs (2) and (3)

{and rearranging terms), one obtains
m(§1+x2) + cg(x +x ) + k (x +x2) k (x01+xG2) + c (x GZ) (&)

which is the equation of motion of the rigid body mode where the distance

1. between the two mass points remains constant. This mode is of no interest
because it causes nc strain in kp representing the stiffness of the pipe-joint
system., The second mode, which produces strain in both kp and kg may be found

by subtracting Egs (2) and (3), i.e.

m(%k, —%,) + (c +2€ ) (X —%,) + (k +2k ) (x

¥)=%, xy) = kg (xpypxgy) +oe, (RpmEgy) ()

or
k c

. - . -2 _ & _ - AT
A%+ 28wA% + w Ax = - (XGl XG2> + - (xGl XGZ) (6)

where

2 (7



_ k +2k »
G-y £ (8)

(c_ +2c)
R (9)

2mw

and

Equation (6) represents the equation of motion of a single degree of freedom
system with undamped circular frequency w and damping ratio 8.
If the input motion is specified in terms of ground acceleration, it is

convenient to rewrite Eq (6) as
§ + 28a5 + ooy = —a(®, % ) - = [u (e 42 ) - ¢ ] (k. %) (10)
Gl "G2 ™ g p g Gl G2

where y is the "relative' displacement

y = Ax - a(xcl—xcz) (11)
and

o = (1+2k_/k )T (12)

P 2

In the case when cp/cg = kp/kg, the second term on the right hand side of
Eq. (10) drops out. Alternately, if o is close to unity, and cp/cg <<l
(pipe and joint damping is much less than that of the soil), the second term
will be extremely small. Without any great loss of generality, the sacond
term will be neglected, yielding

. ~. -2 =

¥+ 28wy + 'y = X, (13)

where

Xg = alxgXgy) (14)



Equation (13) is the standard differential equation for the relative motion of a
single degree of'freedom oscillator with damping, except the input here represents
the difference in ground acceleration at two points, reduced by the factor a.

In the subsequent treatment we will illustrate the case of interference due
to a phase angle shift across the separation distance L, caused by a time delay
At, defined by

L = C_At (15)
where C.S is the local velocity of wave propagation in the soil. The forcing

function, therefore, becomes

X, = alx (x,8) - x (x4L,0)] (16)
Since the displacements may be assumed to propagate in an elastic medium, they

satisfy an equation of the form

XG(X,t) = f(x—CSt) (17)
so that the equivalent forcing function EG can be given as
X = u[xcl(t) - xCl(t+At)] (18)

Neglecting o for the moment, Eg. (13) may be used to construct a frequency
response spectrum of the second mode motion of the system shown in Fig. 3 and
given by Eqs (2) and (3). This spectrum (to distinguish it from its standard
form) is referred to as an Interference Response Spectrum, and it is given in
terms of the frequency w and a spectral amplitude § defined so that

S = af (19)

where S8 is the amplitude corresponding to the response of the original system.



To obtain the actual amplitude the value of the spectral amplitude is multiplied
by the constant

-1
o = (1+2kp/kg) <1 (see Eq. 12)

An upper bound to S occurs when the stiffness of the pipe system is negligible
compared to that of the equivalent soil spring constant, i.e. o = 1.

The amplitude response is also dependent on the delay time At. The spectrum
E{B,At) thus is given as a family of curves with the parameters At, which in turn
define the distances L as given by Eq. 15.

ITI MULTIPLE DEGREE OF FREEDOM SYSTEMS

The real problem of interest is that represented by Fig. 1, which may exhibit
many independent mode shapes and frequencies. A system of equations, which in matrix
form appear similar to Eq (13), may be set up to represent the physical system.

If we assume modal damping, then an equation for a single degree of freedom system
may be written for each mode. It would appear that with a-amn, the frequency of
the nth mode, the interference spectrum could be used directly to predict the
response of that mode. However, it should be noted that, in general, the forcing

function for the nth mode would contain the ground motion 0f every segment

along the structure. Thus, there would not be a unique length L, or delay time
At, required to define the interference spectrum. Nevertheless, it may be possible
to represent an equivalent length (or At) in terms of the dominant wavelength of
the particular mode.

The development of the spectrum for actual ground motion records is given in
the subsequent sections. The application and some of its consequences will be

reported in a subsequent paper.



IV. INPUT GRQUND MOTION

Approximately 300 earthquake ground motion records are available from
the Earthquake Engineering Research Laboratory. Copies of Vol. II, which
contain the processed acceleration records, as well as integrated velocity
and displacement records, were obtained on magnetic tape so that various
hypotheses could be checked by computational experiments. The records are
in a standard format in which the acceleration values are given every

0.02 sec, the velocity every 0.04 sec, and the displacement every 0.10 sec.

To gain experience in reading the tapes and processing the data, a
simple program was developed which read the digitized acceleration record,
and then computed velocity and displacement records by numerical integration
using the trapezoidal rule. Both the initial velocity and displacement were
assumed to be zero. The computed velocity and displacement records, were
then compared with those given on the tape., Figure 4 shows the displacement
time histories of the May 18, 1940 E1l Centro record, SOOE component,
obtained by integration and directly from the tape. Clearly, there is a
problem of a baseline adjustment. It was noted that the first values of

both the velocity and displacement on the tape record were non—zero.

This problem was discussed with Prof. M.D. Trifunac, currently at the
University of Southern California, who was responsible for processing and
adjusting the raw accelerogram records. Prof. Trifunac explained that t = 0
is not the beginning of the motion; rather, it is the time at which the
acceleration reaches a sufficient magnitude to trigger the recording
mechanism. Therefore, a non-zero "initial" velocity (or displacement)
results from baseline adjusting the entire record; i.e., the initial

velocity is the velocity at t = 0 required such that the velocity at the end



of the record oscillates gbout zereo. In addition, Prof. Trifunac pointed out
that the veloeity record (en tape) is net strictly the integral of the
acceleration, and the displacement is not strictly the integral of the
velocity. This is true hecause each of the three records is filtered

independently in the frequency domain.

To develop interference spectra, consistent finely spaced acceleration,
velocity and displacement records are néeded, i.e,, records in which
dx/dt = v and dv/dt = a. Following Prof. Trifunac's suggestion, the adjusted
acceleration is viewed as the basic record. The trapezoidal integration
scheme with §t = 0.02 sec is sufficiently accurate. However, the initial
velocity and displacement are those given on the tape. The velocity and
displacement waveforms of the 1940 El Centro SOOE record obtained in this
manner are compared with those directly from the tape in Figs., 5 and 6,
respectively. While the curves, especially the displacements, do not

correspond exaectly, they are sufficiently close to use.

V. COMPUTER PROGRAM

Initially, the physical model may be viewed as that shown in Fig. 3,
with kp and cp both going to zero, The inputs Xy and X, are the ground
motion at two points along the pipe. The parameters k, ¢ and m (assumed
identical at both points) could represent the interaction of say a junction
box along the pipe with the ground, while kp and cP are assumed to be the
vanishingly small axial stiffness and damping of the jointed pipe. The

quantity X, = X, represents the stretching of the pipe. When the maximum

2
value of ]xl " %, I/L, where L is the length of pipe between points 1 and 2,
reaches a critical strain, failure is likely to occur. While only the case

of o = 1 will be considered here, the extension to & < 1 would follow easily

as discussed previously,



A computer program DFSPECT was written to compute interference spectra,
i.e., maxlxl(t) - xz(t)l ag a function of w =\/k/m, The basic subroutine
SPECTD was a modification of a spectra subroutine devyeloped for our explosion
induced ground shock work. The routine solves the differential equation for

a single degree of freedom system (with damping)

o [ k _ o

yEGY T LY S x (20)
where vy = x - X is the relative displacement, and where iG is the input
ground acceleration record. The input acceleration is assumed to vary
linearly within a time step §t, i.e.,

. t

- - L <t <
xG(t) a + (al ao) T . tg St <ty + 8t (21)

The relative displacement and velocity at the beginning of the time step,

t = to, are Y and VOLD’ respectively. Equation (20) is solved exactly for

QLD

each time step, i.e.,

a, - a
_ _ = Bwdt . -il 28 (1 0)
y(t0 + 8t) = ¢ [Ccoef cos mCSt + Scoef sin mcét] mz + m3 i (22)
where B = fraction of critical damping = Eﬁa
w = %; =V E = circular frequency of the system without damping (23>
w, = w\/1 - 82 = circular frequency of the damped system
and S are the coefficients of the Cosine and Sine terms in Eq. 22,
coef coef
i.e.,
c v+ 281 %0
coef OLD 2 3 ot
w W
a - a (24)
1 0)
B Copes T Vo T2
W St
S =
coef W

The corresponding relative velocity is



70

Ccoef [ - Bw cos wcﬁt - @, sin wcétI
a. - a
ylty + 6t) = e " Buge L0 (25)
2
w ét
+ Scoef Iwc cos wcét ~ Bw sin wcét]
The results of Eqs. (22) and (25) are then used as new initial conditioms,
YOLD and VOLD’ and the Egs. (22) and (25) are then solved for the next time
step.
The maximum value of |y(t)| is the standard or relative spectral
displacement at frequency w/27. When the perioed
1 Al
=== &5 >
T=7= St (26)

the maximum value LY is sufficiently close to the maximum of Iy(t)] to

OLDI
be used as the spectral value. A factor of four for T/8t is used for

Eq. (26) in the program. If T/8t < 4, no spectral calculations are made.
With the earthquake acceleration records, the time interval of the data,

8t = 0.020 sec, results in a minimum period T of 0.080 sec, or a maximum

credible frequency of 12.5 Hz.

It is possible that the peak value of |y|, for a certain w occurs after
the fingl time of the input base motion. The acceleration time history is
postulated to be zero for t > tf, and the free vibration problem is then
solved with the maximum value of Iyl found analytically. This value is
compared with the vélue found for t £ tf. For the rather long earthquake

records, t_ > 30 sec, and with almost any damping, the value computed during

f

free vibration seldom governs.

While the program searches for the maximum relative displacement, it

also finds the time at which it occurs (either during the record or during

free vibration). Similarly, the maximum relative velocity |&|max and the



"

time at which 1t occurs are recorded. 1In general, this relative velocity
spectra is not equal to the so-called pseudo-velocity, m|ylmax' Rather than
compute the peak relative acceleration, at this point in the program the psuedo-
, 2 . .
acceleration, rhe value of w Jy1 is recorded. Values of 'y1 , lyl ,
, max max max
w }y]max and their times of occurrences (as functions of frequency), as well as th

pseudo-velocity are printed out and stored on magnetic tape for later processing.

The input ground motion consists of the digitized acceleration record
as well as its first and second integrals obtained previously using the
trapezoidal rule, The initial velocity and displacement were those on the

tape, as discussed previously.

For each frequency and during each time step in the calculation, the
i i dded Y
value of the ground displacement and velocity are added to OLD and VOLD’
respectively, to obtain the time history of the absolute motion of the mass.

The absolute acceleration of the mass is evaluated from the equation of

motion, Eq. (203, i.e.,

e e 2 .
a, =y + xg Wy, 28 wy (27)

The complete time histories of the absclute motion of the mass are thus
available for each frequency. The maximum values (without regard to sign)
are defined as the absolute displacement, velocity and acceleration spectra.
Their values and times of occurrence are printed out and recorded on

magnetic tape for later processing.

The object of this phase of the study is to develop and analyze
interference spectra, In general, ground motions are available at isolated
sites. Our interest is in differences in motion at adjacent sites. As a
first approximation, one can assume that the same ground motion occurs at

two adjacent points a distance L apart, but shifted in time an amount
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*
At = L/C, where C is an "appropriate" wave velocity ).Values of At are read

in and interference spectra are computed for each.

Once the time history of the absolute motion of a single mass on a
spring-dashpot is available (i.e., x(tn), v(tn), a(tn), n=1, N),
interference spectra are easily computed. This is done in subroutine DSPEC.
The interference displacement, velocity and acceleration spectra for each

frequency are defined respectively as
max x(tn) - x(tn - At)
max v(tn) - v(tn - At) (28)

max a(tn) - a(tIl - At)

To compute v(tn - At) and a(tn - At) when At is not an exact multiple of the
0.020 sec time spacing, linear interpolation is used. However, since the
prime interest is in differential displacements, and since values of At on
the order of the 0.02 sec spacing were anticipated, a higher order

interpolation scheme was used for computing the displacement x(tn - At),

i.e.,
x(tn - At) = AT2 Xj-l + /_\Tl Xj + ATl ATZ (Vj—l - vj) (1:j - tj_l)
(29)
1 2
+ 5 A’El Arz (aj_l Arl + aj Arz) (tj - tj_l)
< - .
where tj—l tIl At < tj 30)
tn - At - t1,_l
Ay =TT G1)
| j-1
*)

If a phase velocity-frequency diagram were available, the appropriate
C would be C(w). Incorporating this modification would not be difficult.



-
and At .
The error in Eq. (29) is bounded

1 .
Error 2 5F 3s1 (¢, - ¢t
2

9% j- i ji-1
Mention should be made of the special treatment given late and early
times, i.e,, t > te and t < At. The original ground motion data is extended
somewhat before computing the spectra. In general, the last velocity
(integrated acceleration) value will not be zero. The ground velocity is
assumed to go to zero with a constant acceleration of apﬁroximately 0.01 g,
and within ten additional time steps. Moreover, for an additional number of
time steps corresponding to the maximum At, the ground velocity and
acceleration are both set equal to zero, while the ground displacement is
held constant, 1In this fashion, the interference spectrum may be computed
with the standard algorithm described above, and with no special coding for
late times, except checking the case when both oscillators are vibrating

freely (a call to subroutine FREVIB with appropriate initial conditions).

The situation at early times is somewhat less satisfactory. The
initial velocity and displacement of the ground motion are non-zero, while
the initial conditions of the oscillator are unknown. If one assumes them
to be zero, then the initial conditions YOLD and VOLD at the first time step
used to compute the relative motion, Eqs. (22)and (25), are non-zero. For
high frequencies, these arbitrary initial discontinuities govern the
spectra, and the results are seriously in error., Assuming the initial
conditions of the oscillator and the ground to be identical, i.e.,
homoegeneous conditions for the relative motion, is somewhat more

satisfactory. The resulting (standard) relative spectra agrees with

published results. However, a problem still exists in computing

/3

(32)

(33)
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interference spectra when At is on the order of the time step 6t. The motion
of the second oscillator must be defined for t < At. Recalling,

x2(t) =xl(t— At), the motion of x, must be given for - At £t £ 0,

1

At first, thought was given to trying to extrapolate backwards in time
using, say, a linearly varying acceleration. However, for that to work, the
first value of ground acceleration, velocity and displacement must all have
the same sign. A glance at only a few records shows this to be the

exception rather than the rule.

The final solution was to alter the usual spring-dashpot model to a
spring-dashpot—stick model. The model is rigid for t < 0 (i.e., ground
motion and oscillator motion are identical for t £ 0). At t = 0 the stick is
removed so that the mcdel is the usual one for t > 0. In the interference
spectra calculation the motion of mass two for t < At is assumed to be
constant and given by the initial values of the ground motion (never mind
the inconsistency!) In this manner the artificial initial conditions do not

affect the results.



VI. DISCUSSION OF RESULTS

Relative, absolute and interference spectra were computed for the
El Centro May 1940 SOOE record. Initially, the values of At used for the
interference spectra were 0.020, 0.100 and 0.50 sec, Computations were made
for zero, 5 and 107% of critical damping. The spectra were printed and also

stored for later plotting. Selected results are given below.

The standard tripartite plot of the relative spectra is shown in Fig. 7
for all three damping ratios. The envelope drawn on the figure corresponds
to the undamped case. The unconnected c¢ircle at £ = 0.158 Hz is not a
plotting error; the peak undamped relative displacement at this frequency
(and the peak for all frequencies) occurred at t = 55.449 sec, beyond the
53,74 sec duration of the record. This was one of the few places where the
peak occurred during free vibrations. The plot tells us this by not
connecting the point with the adjacent ones. There are 60 evenly spaced
frequencies on the figure, from 0.052 to 12,02 Hz. While the undamped
spectra are somewhat erratic, the damped cases are fairly smooth and taking
more (or fewer) frequencies in the interval would most likely make little
difference in the curves. Likewise, only a moderate change in the spectra
occur when the damping ratio is increased from 5 to 10%. The envelope

values for all three cases are given below:

Variation of Bounding Values with Damping

Pseudo- Pseudo=~
Relative Relative Velocity Absolute Acceleration
Damping Digsplacement | Velocity (wD) Acceleration (w?D)
Ratio % (cm) (em/sec) (cm/sec) (g's) (g's)
0 64.79 248,27 243.63 3.174 3.174
5 49,93 90,59 80.43 0.919 0,922
10 32.17 67.96 65.99 0.753 0.735




A

The relative displacement spectra is plotted directly against the period
in Fig. 8, again for all three damping ratios. The relative displacement
becomes very small for very stiff systems, i.e., for shert periods. The
absolute displacement spectra are plotted in Fig., 9, Here, for all damping
ratios, the spectra at short periods reduce to the maximum ground
displacement of 12.6 cm occurring at t = 8.6 sec, see Fig., 6. The absolute
and relative displacement spectra, for the 5% damping ratio, are compared in
Fig. 10, this time pletted to a linear scale. Other than the fact that the

curves crossg, there does not appear to be much one can say about them.

The relative velocity spectra, for all three damping ratios, are shown
in Fig. 11, while the absolute velpcity spectra are given in Fig, 12, TFor
short periods, the absolute velocity speetra is = 36 cm/sec and occurs at
t = 2,18 sec, the time of the peak velocity in the ground motion, see Fig. 5.
The relative spectra at long periods reaches a somewhat greater value
~ 38 cm/sec at the same time. The relative, absolute and pseudo-velocity
spectra, for 5% of critical damping, are plotted against each other in Fig., 13.
For short periods, the pseudo-velocity and relative velocity spectra are very
similar. At mid-frequencies, near where maximum velocity enhancement occurs,
all three curves are similar. For long periods (or low frequenciesg) the
pseudo-velocity and absolute velocity are very similar, and substantially
below the relative velocity spectra, The same three curves are plotted to a

linear scale in Fig, 14.

The interference displacement spectra, for all three damping ratios, and
for At = 0.020, 0.100 and 0.500 sec, are shown in Figs. 15, 16 and 17,
respectively., They are compared with 5% of critical damping, on a linear
scale in Fig. 18, and on a log scale in Fig, 19, Also shown as dashed lines
on Fig, 19 are the absolute velocity spectra multiplied by the respective

values of At. The limit, as At + 0, of the interference displacement spectra
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should approach the absolute velocity spectra (VS) times At. This, in fact,
occurs in Fig. 19 for At = 0.020 sec. For At = 0.100 sec, the two curves
differ slightly only for short periods, on the order of At, For the highest
value of At, the interference displacement spectra is substantially below

VSAt, except for long periods,

Interference spectra were computed for three additional delay times to
ascertain the trend for long At, The results for At = 1,0, 2.0, and 2,5 sec,
together with the previous largest value, 0.5 sec, are shown in Fig. 20 (for
5% damping). While the interference displacement spectra are roughly
proportional to At for long pericds, T > 5 sec, the pattern no longer holds
for short periods, T < 5 sec. In fact, for periods of approximately 2.5 sec,
on the order of the largest delay time, the spectra for At = 2.5 sec is less
than the other three curves. Clearly, the auto correlation function of the

original ground motion forcing function must be related teo this behavior.

It is also interesting to note that the interference displacement spectra
for very high frequencies (at essentially zevo periocd) are bounded by slightly
more thaﬁ 1 1/2 times the maximum free-field displacement of 12.5 cm.
Moreover, 1 1/2 times the absolute displacement spectra appears to be a
reasonable estimate of the interference displacement spectra for larpe At,
while twice the absoclute spectral value appears to be a reasonable upper
bound, The interference spectra shown in Fig. 20 are replotted to a log
scale in Fig. 21 with a band representing 1 1/2 to 2 times the absolute
displacement spectra superimposed. The peaks of the interference spectra fall

within the band.

This result is not too surprising. If the input ground motion were a
pure sinusoid (which it is not), a time shift of a half period would double

the response due to AXG relative to that due to X itself. Any other time
G
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shift would result in a smaller amplification.

Finally, some of the tentative conclusions were checked by performing
the calculations with a different input earthquake record. The record chosen
was the N79W component of the accelerogram recorded in the basement of
15250 Ventura Boulevard, Los Angeles, during the San Fernando éarthquake of
February 9, 1971. In passing, it should be mentioned that some waterpipe
failures occurred along Ventura Boulevard during this earthquake. The N79W

component is the component {essentially) parallel to the pipes that failed.

The relative, absolute and pseudo-velocity spectra, for 5% of critical
damping are plotted (to a log scale) versus period in Fig., 22, While the
comparable plot with the EL Centrc record (Fig. 13) exhibited a triple peak,
a single peak at T =~ 2.5 sec appears in Fig. 22, Nevertheless, the trends
mentioned earlier apply here as well. The relative, absolute and pseudo-
velocity, for 10% damping, are plotted to a linear scale against period in

Fig. 23.

The interference spectra for this record were computed for At = 0.02,
6.10, 0.5 and 2.5 sec. The results (for 5% damping) are plotted to a linear
scale against period in Fig. 24, As was the case in Fig., 20, the spectra are
roughly proportional to At for long periods, but substantially reduced for
periods on the order of At, or less. This is evident in Fig. 24 at

T = 2,5 sec, where the At = 2.5 sec curve drops below that for At = 0.5 sec.

The same spectra are plotted to a log scale in Fig. 25. Also shown as
dashed lineg in Fig. 25 for the three smallest values of At, and for T > 4 sec
for At = 2.5 sec, are the values of the absolute velocity spectra time At.

As was true in Fig. 19 for the El Centro record, for At = 0,02 sec, the curve
VSAt is indistinguishable from the corresponding interference displacement

spectra. For At = 0.10 sec, while one can observe two distinct curves, at
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least for short periods, the curves are even closer than the corresponding
pair in Fig, 19, The two curves deviate for At » 0.5 sec, especially for
periods T = At, Finally, for the largest value of At, 2,5 sec, the
interference spectra is substantially belovaSAt for most of the frequency
range of interest. On the other hand, the shaded band, spanning the range
from 1 1/2 to 2 times the absolute displacement spectra, includes (or bounds)

the interference spectra for the largest value of At,

VII. SUMMARY AND CONCLUDING REMARKS

An important criterion for faillure of underground pipes subjected to
seismic loading is the strain or difference in displacement, between two
points along the pipe. The concept of interference spectrum has been
introduced to deal with this problem when dynamic effects are significant.

The interference spectrum is the response 8§ {the maximum difference in
displacement) as a function of frequency W and delay time At, The present
approach is limited to problems which may be treated as linear. The concept
is applicable wherever the spatial variation of ground motion input is known.
In this paper, the numerical examples are restricted to deal with only a shift
of phase angle between adjacent points. Variation in ground motion due to

changes in local geology are not included.

The approach required to analyse a multi-degree of freedom pipe network
is ocutlined, although some uncertainty exists in the appropriate choice of
delay time At. The case of only two connected pipes segments is treated in
detail, and shown to be equivalent to a single degree of freedom system.
While actual calculations have been limited to the case when the pipe/joint
stiffness is much smaller than the ground stiffness, i.e., o = 1, extension
to the more general case ¢ < 1 is trivial. The mathematical treatment is

described in detail and the computer code developed to solve them is
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described. Numerical results are presented for both the El Centro 1940 and

15250 Ventura Boulevard 1971 input records.

The absolute velocity gpectra, times the delay time At, is an excellent
estimate of the interference spectra for small wvalues of the delay time. For
the limiting case of At + (0, the relation is an exact one. For large values
of At, those on the order of the predominant periods of the input record,
twice the absolute displacement spectrum is a reasonable upper bound to the
interference gpectra,while 1 1/2 times the absolute spectrum appears to be a
réasonable estimate. Thus, it may be possible to estimate, or at least
bound, interference spectrum without actually computing it. Finally, it
should be noted that for long periods the absolute velocity spectrum is
approximately the same as the pseudo—velocity spectrum, which in turn is

readily available for most earthquakes.
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FIG. 2 TWO UNDERGROUND PIPE SEGMENTS

CONNECTED BY JOINT
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