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I

INTERFERENCE RESPONSE SPECTRA

I INTRODUCTION

Pipelines subjected to an earthquake are affected by the ground shaking.

The motion may be described as a function of time (t) and a space coordinate

(x) measured along the axis of the pipe. The resulting displacement field

x =
G

(1)

is given at a point, chosen as the origin,and its temporal and spatial variation

along the x coordinate may be considered as the sum of the following effects:

a) phase angle shift due to wave propagation delay,

b) variation of wave form due to gross change in base rock formation

(slope, elevation, etc.),

c) variation casued by gross change in overburden soil properties and layering,

d) purely random local variation definable only by statistical parameters

(mean value, variance, correlation distance).

The ground displacement field is a subject of current investigation, but if for

the purposes of this paper we assume it to be known, the dynamic response of a

pipe network system may be determined by numerical integration of the appropriate

equations of motion. Such calculations (by means of a finite element model) are

currently in progress, but because of their expensive and time-consuming nature,

they are not appropriate for the routine analysis of pipe network components.

The results of these structure-medium interaction studies, however, are useful in

the construction of simpler, discrete models. In these, the network is represented



Fig. 3.

by rigid (or elastic) links interconnected by (elastic or inelastic)

springs and dashpots. The system is reacted by a Winkler foundation

consisting of discrete springs and dashpots, capable of transmitting

axial (or transverse) displacements -(Fig. 1). In this discrete model,

the soil-structure interaction behavior is incorporated in terms of

virtual mass, effective stiffness and radiation and material damping.

It may also include elements representing friction and slippage. In

the cases when such a model exhibits real frequencies and mode shapes,

its dynamic response to ground excitation may be adequately treated by

familiar response spectrum techniques. The purpose of this paper is

to outline such methods.

II SINGLE DEGREE OF FREEDOM MODEL

The pipe network system of Fig. I may be represented to any degree

of accuracy desired by an equivalent lumped mass system. For example,

if only axial motion were of interest, the mass center of each link

could be used to define the displacement field. The natural

frequencies and associated mode shapes could then be found by standard

techniques. The input for each mode would consist of a linear

combination of the ground motion at the various node points.

Consider, for the moment, the simpler problem of only two pipe

sections connected by a joint, represented by the previously described

discrete model, and subjected to ground excitation xCI and xG2 at two

points separated by a distance L (Fig. 2). This model is equivalent to

a damped linear oscillator of two degrees of freedom, as shown in

The constants k , c and m represent the stiffness, damping
p p

and mass (including virtual effects) of the pipes and joints, while

k and c are the stiffness and damping quantities associated with
g g

soil-structure interaction.



The equations of motion of the system are

~
1

(2)

(3)

The system exhibits two modes of free vibration. By adding Eqs (2) and (3)

(and rearranging terms), one obtains

(4)

which is the equation of motion of the rigid body mode where the distance

L between the two mass points remains constant. This mode is of no interest

because it causes no strain in k representing the stiffness of the pipe-joint
p

system. The second mode, which produces strain in both k and k may be found
p g

by subtracting Eqs (2) and (3), i.e.

or

-2
~x + 2Sw~x + w ~x

where

k c

m
g

(xG1-xG2 ) + ~ (xG1-xG2 ) (6)

~x (7)



f k +2k
W= g p

m

and
(c +2c)
. g p

2mw

Equation (6) represents the equation of motion of a single degree of freedom

system with undamped circular frequency wand damping ratio S.

If the input motion is specified in terms of ground acceleration, it is

convenient to rewrite Eq (6) as

(8)

(9)

if + 2 0 w-y· + -2 (" ) 1
J ~ W Y = -a xGl-~G2 - m (10)

where y is the "relative" displacement

y

and

a = (1+2k Ik )-1
p g

(11)

(12)

In the case when c Ie ~ k Ik , the second term on the right hand side of
p g P g

Eq. (10) drops out. Alternately, if a is close to unity, and c Ie «1
p g

(pipe and joint damping is much less than that of the soil), the second term

will be extremely small. Without any great loss of generality, the s~cond

term will be neglected, yielding

if + 2 0 -. + -2 ~
J .~wy W Y = -xG

where

(13)

(14)



Equation (13) is the standard differential equation for the relative motion of a

single degree of freedom oscillator with damping~ except the input here represents

the difference in ground acceleration at two points, reduced by the factor a.

In the subsequent treatment we will illustrate the case of interference due

to a phase angle shift across the separation distance L~ caused by a time delay

~t, defined by

L = C ~t (15)
s

where C is the local velocity of wave propagation in the soil. The forcing
s

function, therefore, becomes

(16)

Since the displacements may be assumed to propagate in an elastic medium, they

satisfy an equation of the form

(17)

so that the equivalent forcing function x
G

can be given as

(18)

Neglecting a for the moment~ Eq. (13) may be used to construct a frequency

response spectrum of the second mode motion of the system shown in Fig. 3 and

given by Eqs (2) and (3). This spectrum (to distinguish it from its standard

form) is referred to as an Interference Response Spectrum, and it is given in

terms of the frequency wand a spectral amplitude S defined so that

S = as (19)

where S is the amplitude corresponding to the response of the original system.



To obtain the actual amplitude the value of the spectral amplitude is multiplied

by the constant

ex = (1+2k /k )-1 <1
p g

(see Eq. 12)

An upper bound to S occurs when the stiffness of the pipe system is negligible

compared to that of the equivalent soil spring constant. Le. ct = 1.

The amplitude response is also dependent on the delay time ~t. The spectrum

S(w.~t) thus is given as a family of curves with the parameters ~t, which in turn

define the distances L as given by Eq. 15.

III MUL1;ULE DEGREE OF FREEDOM SYSTEMS.

The real problem of interest is that represented by Fig. I, which may exhibit

many independent mode shapes and frequencies. A system of equations. which in matrix

form appear similar to Eq (13), may be set up to represent the physical system.

If we assume modal damping, then an equation for a single degree of freedom system

may be written for each mode. It would appear that with w~w , the frequency of
n

the nth mode. the interference spectrum could be used directly to predict the

response of that mode. However, it should be noted that, in general. the forcing

function for the nth mode would contain the ground motion of every segment

along the structure. Thus. there would not be a unique length L, or delay time

~t. required to define the interference spectrum. Nevertheless, it may be possible

to represent an equivalent length (or ~t) in terms of the dominant wavelength of

the particular mode.

The development of the spectrum for actual ground motion records is given in

the subsequent sections. The application and some of its consequences will be

reported in a subsequent paper.



IV. INPUT GROUND MOTION

Approximately 300 earthquake ground motion records are available from

the Earthquake Engineering Research Laboratory. Copies of Vol. II, which

contain the processed acceleration records, as well as integrated velocity

and displacement records, were obtained on magnetic tape so that various

hypotheses could be checked by computational experiments. The records are

in a standard format in-which the acceleration values are given every

0.02 sec, the velocity every 0.04 sec, and the displacement every 0.10 sec.

To gain experience in reading the tapes and processing the data, a

simple program was developed which read the digitized acceleration record,

and then computed velocity and displacement records by numerical integration

using the trapezoidal rule. Both the initial velocity and displacement were

assumed to be zero. The computed velocity and displacement records, were

then compared with those given on the tape. Figure 4 shows the displacement

time histories of the May 18, 1940 El Centro record, SOOE component,

obtained by integration and directly from the tape. Clearly, there is a

problem of a baseline adjustment. It was noted that the first values of

both the velocity and displacement on the tape record were non-zero.

This problem was discussed with Prof. M.D. Trifunac, currently at the

University of Southern California, who was responsible for processing and

adjusting the raw accelerogram records. Prof. Trifunac explained that t a

is not the beginning of the motion; rather, it is the time at which the

acceleration reaches a sufficient magnitude to trigger the recording

mechanism. Therefore, a non-zero "initial" velocity (or displacement)

results from baseline adjusting the entire record; i.e., the initial

velocity is the velocity at t = 0 required such that the velocity at the end



ot the record oscillate~ about zero. ~n addition. Prof. Trifunac pointed out

that the velocity record (on tape) is not strictly the integral of the

acceleration, and the displacement is not strictly the integral of the

velocity. This is true because each of the three records is filtered

independently in the frequency domain.

To develop interference spectra, consistent finely spaced acceleration,

velocity and displacement records are needed, i.e., records in which

dx/dt = v and dv/dt = a. Following Prof. Trifunac's suggestion, the adjusted

acceleration is viewed as the basic record. The trapezoidal integration

scheme with ot ;:; 0.02 sec is sUfficiently accurate. However, the initial

velocity and displacement are those given on the tape. The velocity and

displacement waveforms of the 1940 El Centro SOOE record obtained in this

manner are compared with those directly from the tape in Figs. 5 and 6,

respectively. While the curves, especially the displacements, do not

correspond exactly, they are sufficiently close to use.

V. COMPUTER PROGRAM

Initially, the physical model may be viewed as that shown in Fig. 3,

with kp and c
p

both going to zero. The inputs x
Gl

and xG2 are the ground

motion at two points along the pipe. The parameters k, c and m (assumed

identical at both points) could represent the interaction of say a junction

box along the pipe with the ground, while k and c are assumed to be the. p p

vanishingly small axial stiffness and damping of the jointed pipe. The

quantity Xl - x2 represents the stretching of the pipe. When the maximum

value of. IXI ~ x 2 IlL, where L ~s the length of pipe between points 1 and 2,

reaches a critical strain.. failure is likely to occur. While only the case

of ~;:; I wi,1l be considered here, the extension to (X <; 1 would follow easily

as discussed previously,



A computer program P~SPECT was written to compute interference spectra~

1. e. ~ max Ixl (t) ,.. x
2
(t) I g& a function of w =\)k/m, The basi.c subroutine

SPECTD was a modifi,cation of a spectra subroutine developed for our explosion

induced ground shock work. The routine solves the differential equation for

a single degree of freedom system (with damping)

.. c. k
y+-y+-y

m m (20)

where y = x - xG is the relative displacement~ and where x
G

is the input

ground acceleration record. The input acceleration is assumed to vary

linearly within a time step ot~ i.e.,

(21)

The relative displacement and velocity at the beginning of the time step,

t = to' are YOLDand VOLD ' respectively. Equation (20) is solved exactly for

each time step, i.e.,

sin (22)

where S fraction of critical damping = ~

(
mW

W = 2; =V~ = circular frequency of the system without damping (23)

w WVl - S2 circular frequency of the damped system
c

C and S f are the coefficients of the Cosine and Sine terms in Eq. 22,
coef coe

i. e. ,

(24)

w
c

(al - aD)
Sw Ccoef + VOLD + 2

w ot
S =------------'-'--coef

C
coef

The corresponding relative velocity is



;:; e
..., SWQt

C f I ..., Sw cos W Ot - W sin W ot]coe c c c

+ s 1w cos W ot ..., Sw sin W ot]. coef c . c c

(25)

The results of Eqs. (22) and (25) are then used as new initial conditions,

Y
OLD

and VOLD' and the Eqs. (22) and (25) are then solved for the next time

step.

The maximum value of ly(t)1 is the standard or relative spectral

displacement at frequency wl2n. When the period

T
1- =
f

2n » ot
w

(26)

the maximum value IY
OLD

I is sufficiently close to the maximum of ly(t)1 to

be used as the spectral value. A factor of four for Tlot is used for

Eq. (26) in the program. If TIM < 4, no spectral calculations are made.

With the earthquake acceleration records, the time interval of the data,

ot = 0.020 sec, results in a minimum period T of 0.080 sec, or a maximum

credible frequency of 12.5 Hz.

It is possible that the peak value of Iyl, for a certain w occurs 'after

the final time of the input base motion. The acceleration time history is

postulated to be zero for t > t
f

, and the free vibration problem is then

solved with the maximum value of Iyl found analytically. This value is

compared with the value found for t < t
f

. For the rather long earthquake

records, t f > 30 sec, and with almost any damping, the value computed during

free vibration seldom governs.

While the program searches for the maximum relative displacement, it

also finds the time at which it occurs (either during the record or during

free vibration). Similarly, the maximum relative velocity Iyl and the
max



II

time at which it occurs are recorded. In general, this relative velocity

spectra is not equal to the so-called pseudo-velocity, wlYI . Rather than
max

compute the peak relative acceleration, at this point in the program the psuedo-

acceleration, the value of w21yl is recorded. Values of Iyl Iyl
max max' max'

2
w Iylmax and their times of occurrences (as functions of frequency), as well as th

pseudo-velocity are printed out and stored on magnetic tape for later processing.

The input ground motion consists of the digitized acceleration record

as well as its first and second integrals obtained previously using the

trapezoidal rule. The initial velocity and displacement were those on the

tape, as discussed previously.

For each frequency and during each time step in the calculation, the

value of the ground displacement and velocity are added to Y
OLD

and V
OLD

'

respectively, to obtain the time history of the absolute motion of the mass.

The absolute acceleration of the mass is evaluated from the equation of

motion, Eq. (20), Le.,

a
n

.. ..
y + xG (27)

The complete time histories of the absolute motion of the mass are thus

available for each frequency. The maximum values (without regard to sign)

are defined as the absolute displacement, velocity and acceleration spectra.

Their values and times of occurrence are printed out and recorded on

magnetic tape for later processing.

The object of this phase of the study is to develop and analyze

interference spectra. In general, ground motions are available at isolated

sites. Our interest is in differences in motion at adjacent sites. As a

first approximation, one can assume that the same ground motion occurs at

two adjacent points a distance L apart, but shifted in time an amount



f,t = L/c, where C is an "appropriate" wave velocity*) . Values of f,t are read

in and interference spectra are computed for each.

Once the time history of the absolute motion of a single mass on a

spring-dashpot is available (i.e., x(t ), v(t ), a(t ), n = 1, N),
n n n

interference spectra are easily computed. This is done in subroutine DSPEC.

The interference displacement, velocity and acceleration spectra for each

frequency are defined respectively as

maxlx(t ) - x(t - M) I
I n n

maxlv(tn ) - v(t - M)!n

maxla(tn) - a(t - M)In

To compute v(t - f,t) and a(t - f,t) when f,t is not an exact multiple of the
n n

0.020 sec time spacing, linear interpolation is used. However, since the

prime interest is in differential displacements, and since values of f,t on

the order of the 0.02 sec spacing were anticipated, a higher order

interpolation scheme was used for computing the displacement x(t - f,t),
n

i. e. ,

(28)

x(t
n

- f,t) = f,T
2

x
j

_
l

+ f,T
1 x. + M

1
M

2 (v. 1 - v.) (t. - t. 1)
J J- J J J-

(29 )
1 f,T

2 (a. 1 M 1 + f,T
2

) (t. -
2

+"2 M 1 a. t. 1)J- J J J-

where t. 1 < t - f,t < t.
J- n J

t - f,t - t
n ;-1
t. - t. 1

J J-

(30)

(31 )

*)
If a phase velocity-frequency diagram were available, the appropriate

C would be C(w). Incorporating this modification would not be difficult.



and f..T =
2

t - t + f..t
j n
t. - t. 1

J J-
(32)

The error in Eq. (29) is bounded

Error < -..!- 4_ 96 a. 1 (t. - t. 1)
J-~ J J-

(33)

Mention should be made of the special treatment given late and early

times, i.e., t > t f and t < f..t. The original ground motion data is extended

somewhat before computing the spectra. In general, the last velocity

(integrated acceleration) value will not be zero. The ground velocity is

assumed to go to zero with a constant acceleration of approximately 0.01 g,

and within ten additional time steps. Moreover, for an additional number of

time steps corresponding to the maximum f..t, the ground velocity and

acceleration are both set equal to zero, while the ground displacement is

held constant. In this fashion, the interference spectrum may be computed

with the standard algorithm described above, and with no special coding for

late times, except checking the case when both oscillators are vibrating

freely (a call to subroutine FREVIB with appropriate initial conditions).

The situation at early times is somewhat less satisfactory. The

initial velocity and displacement of the ground motion are non-zero, while

the initial conditions of the oscillator are unknown. If one assumes them

to be zero, then the initial conditions Y
OLD

and V
OLD

at the first time step

used to compute the relative motion, Eqs. (22) and (25~ are non-zero. For

high frequencies, these arbitrary initial discontinuities govern the

spectra, and the results are seriously in error. Assuming the initial

conditions of the oscillator and the ground to be identical, i.e.,

homogeneous conditions for the relative motion, is somewhat more

satisfactory. The resulting (standard) relative spectra agrees with

published results. However, a problem still exists in computing



interference spectra when ~t is on the order of the time step ot. The motion

of the second oscillator must be defined for t < ~t. Recalling,

x2(t) =xl(t- ~t), the motion of xl must be given for - ~t ~ t ~ o.

At first, thought was given to trying to extrapolate backwards in time

using, say, a linearly varying acceleration. However, for that to work, the

first value of ground acceleration, velocity and displacement must all have

the same sign. A glance at only a few records shows this to be the

exception rather than the rule.

The final solution was to alter the usual spring-dashpot model to a

spring-dashpot-stick model. The model is rigid for t ~ 0 (i.e., ground

motion and oscillator motion are identical for t < 0). At t = 0 the stick is

removed so that the model is the usual one for t > O. In the interference

spectra calculation the motion of mass two for t < ~t is assumed to be

constant and given by the initial values of the ground motion (never mind

the inconsistency!) In this manner the artificial initial conditions do not

affect the results.
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VI. DISCUSSION OF RESULTS

Relative, absolute and interference spectra were computed for the

El Centro May 1940 SOOE record. Initially, the values of 6t used for the

interference spectra were 0.020, 0.100 and 0.50 sec. Computations were made

for zero, 5 and 10% of critical damping. The spectra were printed and also

stored for later plotting. Selected results are given below.

The standard tripartite plot of the relative spectra is shown in Fig. 7

for all three damping ratios. The envelope drawn on the figure corresponds

to the undamped case. The unconnected circle at f = 0.158 Hz is not a

plotting error; the peak undamped relative displacement at this frequency

(and the peak for all frequencies) occurred at t = 55.449 sec, beyond the

53.74 sec duration of the record. This was one of the few places where the

peak occurred during free vibrations. The plot tells us this by not

connecting the point with the adjacent ones. There are 60 evenly spaced

frequencies on the figure, from 0.052 to 12.02 Hz. While the undamped

spectra are somewhat erratic, the damped cases are fairly smooth and taking

more (or fewer) frequencies in the interval would most likely make little

difference in the curves. Likewise, only a moderate change in the spectra

occur when the damping ratio is increased from 5 to 10%. The envelope

values for all three cases are given below:

Variation of Bounding Values with Damping

Pseudo- Pseudo....
Relative Relative Velocity Absolute Acceleration

Damping Displacement Velocity (wD) Acceleration (W
2D)

Ratio % (em) (em/sec) (em/sec) (g's) (g I s)

0 64.79 248.27 243.63 3.174 3.174

5 40.93 90.59 80.43 0.919 0.922

10 32.17 67.96 65.99 0.753 0.735



The relative displacement spectra is plotted directly against the period

in Fig. 8~ again for all three damping rat~os. The relative displacement

becomes very small for very s,t~ff systems~ i.e.~ for short periods. The

absolute displacement spectra are plotted in F.~g. 9. Here, for all damping

ratios, the spectra at short periods reduce to the maximum ground

displacement of 12.6 em occurring at t ~ 8.6 sec, see Fig. 6. The absolute

and relative displacement spectra, for the 5% damp~ng ratio, are compared in

Fig. 10, this time plotted to a linear scale. Other than the fact that the

curves cross, there does not appear to be much one can say about them.

The relative velocity spectra, for all three damping ratios, are shown

in Fig. 11, while the absolute velocity spectra are given in Fig. 12. For

short periods, the absolute velocity speetra is ~ 36 em/sec and occurs at

t = 2.18 sec, the time of the peak velocity in the ground motion, see Fig. 5.

The relative spectra at long periods reaches a somewhat greater value

~ 38 em/sec at the same time. The relative, absolute and pseudo-velocity

spectra, for 5% of critical damping, are plotted against each other in Fig. 13.

For short periods, the pseudo-velocity and relative velocity spectra are very

similar. At mid-frequencies, near where maximum velocity enhancement occurs,

all three curves are similar. For long periods (or low frequencies) the

pseudo-velocity and absolute velocity are very similar, and substantially

below the relative velocity spectra. The same three curves are plotted to a

linear scale in Fig. 14.

The interference displacement spectra, for all th~ee damping ratios, and

for ~t = 0.020, 0.100 and 0.500 sec, are shown in F~gs. 15, 16 and 17,

respectively. They are compared with 5% of critical damping, on a linear

scale in Fig. 18, and on a log scale in Fig, 19. Also shown as dashed lines

on Fig. 19 are the absolute velocity spectra multiplied by the respective

values of ~t. The limit, as 6t + 0, of the interference displacement spectra



should approach the absolute velocity spectra (V ) times ~t. This, in fact,
s

occurs in Fig. 19 for ~t = 0.020 sec. For ~t = 0.100 sec, the two curves

differ slightly only for short periods, on the order of ~t. For the highest

value of ~t, the interference displacement spectra is substantially below

V ~t, except for long periods.
s

Interference spectra were computed for three additional delay times to

ascertain the trend for long ~t. The results for ~t = 1.0, 2.0, and 2.5 sec,

together with the previous largest value, 0.5 sec, are shown in Fig. 20 (for

5% damping). While the interference displacement spectra are roughly

proportional to ~t for long periods, T > 5 sec, the pattern no longer holds

for short periods, T < 5 sec. In fact, for periods of approximately 2.5 sec,

on the order of the largest delay time, the spectra for ~t = 2.5 sec is less

than the other three curves. Clearly, the auto correlation function of the

original ground motion forcing function must be related to this behavior.

It is also interesting to note that the interference displacement spectra

for very high frequencies (at essentially zero period) are bounded by slightly

more than 1 1/2 times the maximum free-field displacement of 12.5 ern.

Moreover, 1 1/2 times the absolute displacement spectra appears to be a

reasonable estimate of the interference displacement spectra for large ~t,

while twice the absolute spectral value appears to be a reasonable upper

bound. The interference spectra shown in Fig. 20 are replotted to a log

scale in Fig. 21 with a band representing 1 1/2 to 2 times the absolute

displacement spectra superimposed. The peaks of the interference spectra fall

within the band.

This result is not too surprising. If the input ground motion were a

pure sinusoid (which it is not), a time shift of a half period would double

the response due to ~X relative to that due to X itself. Any other time
G G



sh~ft would result in a smaller ampl~fication.

F~nally, some of the tentative conclusions were checked by performing

the calculations with a different input earthquake record. The record chosen

was the N79W component of the accelerogram recorded in the basement of

15250 Ventura Boulevard, Los Angeles, during the San Fernando earthquake of

February 9, 1971. In passing, it should be mentioned that some waterpipe

failures occurred along Ventura Boulevard during this earthquake. The N79W

component is the component (essentially) parallel to the pipes that failed.

The relative, absolute and pseudo-velocity spectra,for 5% of critical

damping are plotted (to a log scale) versus period in Fig. 22. While the

comparable plot with the El Centro record (Fig. 13) exhibited a triple peak,

a single peak at T ~ 2.5 sec appears in Fig. 22. Nevertheless, the trends

mentioned earlier apply here as well. The relative, absolute and pseudo-

velocity, for 10% damping, are plotted to a linear scale against period in

Fig. 23.

The interference spectra for this record were computed for 6t = 0.02,

0.10, 0.5 and 2.5 sec. The results (for 5% damping) are plotted to a linear

scale against period in Fig. 24. As was the case in Fig. 20, the spectra are

roughly proportional to 6t for long periods, but substantially reduced for

per~ods on the order of 6t, or less. This is evident in Fig. 24 at

T ~ 2.5 sec, where the 6t = 2.5 sec curve drops below that for 6t = 0.5 sec.

The same spectra are plotted to a log scale in Fig. 25. Also shown as

dashed lines in Fig. 25 for the three smallest valu~s of 6t, and for T > 4 sec

for 6t =2.5 sec, are the values of the absolute velocity spectra time 6t.

As was true in F~g. 19 for the El Centro record, for 6t = 0.02 sec, the curve

V 6t is indistinguishable from the corresponding interference displacement
s

spectra. For 6t = 0.10 sec, while one can observe two distinct curves, at



least fQr short per~Qds, the curves are even closer than the corresponding

pair in ~~g. 19, The two curves deviate for At ~ 0.5 sec, especially for

periods T ~ 6t. finally, for the largest value of 6t, 2.5 sec, the

interference spectra is substantially below V6t for most of the frequency
s

range of interest. On the other hand, the shaded band, spanning the range

from 1 1/2 to 2 times the absolute displacement spectra, includes (or bounds)

the interference spectra for the largest value of 6t.

VII. SUMMARY AND CONCLUDING REMARKS

An important criterion for failure of underground pipes subjected to

seismic loading is the strain or difference in displacement, between two

points along the pipe. The concept of interference spectrum has been

introduced to deal with this problem when dynamic effects are significant.

The interference spectrum is the response S (the maximum difference in

displacement) as a function of frequency wand delay time 6t. The present

approach is limited to problems which may be treated as linear. The concept

is applicable wherever the spatial variation of ground motion input is known.

In this paper, the numerical examples are restricted to deal with only a shift

of phase angle between adjacent points. Variation in ground motion due to

changes in local geology are not included.

The approach required to analyse a multi-degree of freedoill pipe network

is outlined, although some uncertainty exists in the appropriate choice of

delay time At. The case of only two connected pipes segments is treated in

detail, and shown to be equivalent to a single degree of freedom system.

While actual calculations have been limited to the case when the pipe/joint

stiffness is much smaller than the ground stiffness, i.e., a = 1, extension

to the more general case a < 1 is trivial. The mathematical treatment is

described in detail and the computer code developed to solve them is



described. Nu~erical results. are presented for both the El Centro 1940 and

15250 Ventura Boulevard 1971 input records.

The absolute velocity spectra, ti~es the delay time 6t, is an excellent

estimate of the interference spectra for small values of the delay time. For

the limiting case of 6t ~ 0, the relation is an exact one. For large values

of 6t, those on the order of the predominant periods of the input record,

twice the absolute displacement spectrum is a reasonable upper bound to the

interference spectra,while 1 1/2 times the absolute spectrum appears to be a

reasonable estimate. Thus, it may be possible to estimate, or at least

bound, interference spectrum without actually computing it. Finally, it

should be noted that for long periods the absolute velocity spectrum is

approximately the same as the pseudo-velocity spectrum, which in turn is

readily available for most earthquakes.



FIG. I LONG JOINTED PIPE SUPPORTED BY SPRINGS
AND DASHPOTS
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FIG. 2 TWO UNDERGROUND PIPE SEGMENTS

CONNECTED BY JOINT
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