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INTRODUCTION

The present report has a three fold purpose:

a. To give a general description of a typical pipeline network, with
particular emphasis on its geometric configuration and physical
characteristics.

b. To describe the strength properties of typical pipeline materials and
the materials used in their joints, to give a resume of test data
on pipeline joints and to try to correlate the test data with the
results of elementary theory.

¢. To describe standard pipeline design methods, to present typical pipeline
modeling data and to derive the needed typical entries for a static
"failure matrix," which establishes failure characteristics for wvarious
types of pipelines, depending on their geometric configuration, their
materials, the materials of their joints, and their support, operating
and loading conditions,*

This report is the result of a thorough survey of the literature on under-
ground water pipes, but aims at establishing a static ”failure matrix
methodology' rather than at presenting the application of such methodology

to a complete set of pipeline types. Therefore, most of the data and examples
are limited to cast—-iron pipes of diameters between 4 in. and 36 in. under
static conditions.

The report also contains recommendations for additional tests on pipeline

joints to complement the scant data available at the present time,

*The failure matrix takes into account both the failure of the pipes and that

of the joints, giving conditions for both material failure and leakage.



The operating pressures in transmission or distribution systems are
determined by the amount of water to be transported and by factors such as:
a) the capacity of the pumping equipment,
b) the gravity gradient due to the site topography, and,
¢) the pressure-flow characteristics of the valves and control equipment.

b. Pipe Support Condition

Water pipes are supported in a variety of ways depending largely upon soil
conditions, overall site topography and construction considerations. Water
pipes crossing fields and other open areas, as well as those under highways
and airport embankments, are usually placed in earth trenches. Following the
American National Standard Institute Code A 21-50, pipe laying conditions in
trenches, under embankments or in tunnels have been standardized and classified
as Types 1 through 5. The difference between the 5 types of laying conditions
depend on the compaction level of the soil surrounding the pipe and on whether
bedding is provided under the pipe to support it.

The support conditions control the stress distribution in the pipe due to
the various loads on it, such as the earth pressure and the truck superimposed
loads. They also affect the deformations of the cross section of the pipe and
its longitudinal deformations, if any.

The earth pressure on pipes laying in trenches and under embankments in
silty—clay type so0ils depends on soil settlements and on arching effects.
These in turn depend on the relative stiffnesses of the pipe to that of the soil

surrounding the pipe.
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Part I: Pipeline Network Description

a. Typical Overall Configuration

A survey of the various types of pipes used in water supply systems has
been conducted and a summary of it is given in this section.

Transmission trunk or feeder mains of diameters 20"-200" are commonly

used to transport large amounts of water from water supply sources, such as
lakes or rivers, to large water reservoirs and treatment plants. The mains
operate most frequently under a 100~250 psi pressure due to either hydraulic
pumps or to differences in elevation. These transmission mains have lengths
varying from a few to many tens of miles. After suitable treatment to contrel
turbidity and/or bacteria levels, the water is pumped from city reservoirs to

the supply mains via medium size distribution mains with diamaters of between

6"-24",

A typical water supply system is shown in Fig. 1, which idenfifies
transmission, feeder, trunk and distribution mains, service connections, and
other network details.

At all points where the water lines change direction, as well as at
branching points, suitable thrust blocks, anchor blocks or tie rods are provided
to counter the forces exerted on the pipeline by the water flowing under
pressure through it.

Design and manufacturing difficulties are encountered in control wvalves
which operate at pressures equal to or higher than 250 psi. Consequently, only
very few and often no connections are permitted in transmission mains which

operate at pressures higher than 250 psi.



Figure 2 summarizes standard laying conditions:
1. in trenches,
2. under embankments,
3. in tunnels, and
4, over-ground.

In addition to being layed in one of the above 4 conditions pipes may also

be supported in special ways, such as on cables or underwater.

c. Water pipe and Joint Materials and Characteristics

At least 10 different types of materials are commonly used for the pipes
in the 3 basic types of lines:
1. the transmission, feeder & trunk mains,
2. the distribution mains, and
3. the service connections.
Various pipe characteristics, including their material properties are
summarized in Table T.
The different types of water pipes are governed by various national
specifications and codes. In particular, Table II lists types of metals

and applicable specification numbers.
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Table II - List of Material Specifications

Material
COPPeY PIPE teiiee ittt ittt innanonsaoneatosonsnaeeensnas ASTM B42
Red brass pipe ..... Ceeae Cevaas e e e earen ASTM B43
Cast iron, bell-and-sSpigot . ueeiisicnninrenenncaransanansns FSB WW-P-421
Cast iron, pit cast c.ivivennnn. bas e e e .. .ASA A21.2
Cast iron, centrifugally cast in metal molds ............... ASA A21.6
Cast iron, centrifugally cast in sandlines molds ........... ASA A21.8
Welded wrought—-iron pipe ......... b et N ASTM A72
Welded and seamless steel PIPE ..ociveniininneninrennnannanss ASTM A53
Seamless carbon-steel pipe ...iiveenn beeeann N veeeses s JASTM A106
Black and galvanized welded and seamless

Steel PIpe tuieiiii i i it it i it a ittt ASTM A120
Electric-fusion-welded steel pipe (30 in. and over) ........ ASTM Al34
Electric-resistance~welded steel pipe +.oeeeiiirreeeeirensns JASTM Al135
Electric-fusion~welded stecl pipe (4 to 30 in.).....cvvevnnn ASTM Al139
Seamless and welded austenitic stainless steel pipe ........ ASTM A312
Spiral-welded steel or dron pipe v iii i, ASTM A211
Line PIPE tivrre it tnteeteesastnesscesssnasssassasesnnsanseses API 5L

13-



Cast iron, concrete and steel pipes are the main types of pipes
commonily used in water supply systems. Small plastic pipes are being
introduced in some of the new service connections, while some of the older systems
still have wooden pipes. For the domestic water supply, the use of copper
pipes is common. Most of the water pipes are designed for an operating pressure
in the range of 50 to 250 psi, with a surge allowance of approximately 100 psi.
The water pipes are transported to the job site in the lengths of 20-40 feet
and are joined together most often by "flexible joints." In steel pipes,however,
welded counnections are also common. Thus, except for welded steel pipes, water
pipelines behave mostly as a flexible chain with rigid links and weak joints,
permitting most of the deflections to take place in the vicinity of joints,
Most of the new construction in water supply systems uses a push-on type
rubber gasket joint, which is a truly flexible joint and permits large structural
deformations in an earthquake environment.

All steel, cast-iron and ductile cast—-iron pipes are lined with cement
mortar or coal tar to prevent excessive corrosion. Since in steel pipes
the protection against corrosion is absolutely necessary, these pipes are
coated both on the inside and the outside.

d. Water Pipe Earthquake Breakage Statistics

Experience gained from many different earthquakes around the world has
shown that considerable damage due to earthquakes occurs to underground water

pipelines.

—14—



Table III summarizes available data on the observed pipe breakage during
earthquakes in the San Fernando Valley, California and in Kanto and Niigata
(Japan). For example, in the February 1971 San Fernando Valley earthquake in an area
containing 300 miles of 8'"-30" cast-iron and steel pipes, there was a total
of 829 main breaks, 27 pipe rupltures and 647 service breaks, i.e., a Lotal of
1,503 failures in 300 miles length of pipe or a damage/mile ratio of 5.01. A
list of the 27 main breaks in the 1971 San Fermando Valley, California earthquake
are shown in Table IV. Similarly, for the Kanto earthquake in the city of
Yokohama, Japan the damage/mile ratio was 15.8, while for the Niigata earthquake
the ratio was 3.84. It is obvious that the damage/mile ratio depends upon several
parameters, including:

. suil type and conditions
pipe support condition
. pipe material
diameter and thickness of the pipe
duration of the earthquake
. magnitude and characteristics of the earthquake

Some suggestions for earthquake proofing of lifelines are made in
Figure 3, where it is emphasized that the pipelines joints, connections, branches,
and locations of pipeline size-changes or direction-changes, require special
consideration,as most of the earthquake structural damage or pressure leakage

occur at these points.

-15-
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Tests carried out on cast-iron pipe joints by Professor Prior at Ohio
University (1933) and on cast-iron soil-pipe joints by Professor Sanders at
lTowa University (1970) (see Part I1, section f.2) have shown that pipe

joints lead to lower leakage if:

1. The internal water pressure is low (although sometimes at higher internal

pressures, joint inter-locking may take place),
2. Rubber-gasket flexible joints are used.

In addition,these studies show that care should be taken to adequately
design connections and branches where stress-concentration can develop
stresses 10-12 times higher than in the pipe. (High bending stresses at the
boundary points.such as connection or branch points, are responsible for

these stress concentration factors.)
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Part II: Stress-~Strain Data of Pipe Line and Joint Materials

Introduction

The several types of joints used in water pipelines differ greatly in
behavior during an earth movement or settlement. For example, a steel welded
joint behaves very much like the pipeline itself; and so do some of the
plastic pipe joints of epoxy and other jointing materials.

In this part of the report, the behavior of cast-iron pipe-joints is
summarized. Test data on the cast-iron joints is presented, and further
tests considered significant for the purpose of the present study are recommended.
Finally, an attempt is made to correlate the test data with the results of
simple-beam model analysis, taking into account the mechanical properties
of materials like cast-iron, lead or cement mortar.

Part Il of this report summarizes only the behavior of lead or cement-mortar
type joints in cast-iron pipes. The behavior of concrete and steel pipes
will be reported in successive phases of this study.#*

a. Stress-Strain Relationship for Cast-Iron

Figure 1 shows the stress-strain relationship of gray cast-iron in tension
and compression. TFigure 2 shows the stress-strain curve for pearlitic gray
iren. For these materials both the ultimate strength and the secant elastie
modulus in compression are higher than in tension (Fig. 3).

Cast=iron never exhibits a truly elastic response. At the first applicaticn
of load (Figs. 4a and 4b), some plastic deformation takes place. A typical

stress—-strain curve for cast-iren is shown in Fig. 4a.

*An excellent report, "Welded Steel Water Pipe Manual," containing 616 references
on various aspects of steel pipe behavior was made available to Weidlinger
Assoclates by the Bethlehem Steel Company.
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The stress-strain curves for cyclic loading of cast-iron shown in
Figs. 5a, 5b and 5c¢ show that the stress-strain curves follow different paths
during loading and unloading. The major reason for this behavior is that
the metal matrix is not continuous but broken up by the presence of graphite
flakes which (in tension) behave as voids.

Representative structural properties of cast-iron are summarized in
Table T.

In a paper presented by H.M. Hardy and T.0 Kuivinen at the ASTM symposium
on testing of cast-iron with SR-4 type gage (Ref. 8), the authﬁrs presented
stress—strain relationships of cast-iron in tension and compression. Fig. 8
shows stress-strain curves for cast-iron beams of various shapes. Figs. 9,
10, 11 and 12 show the stress-strain distribution across the cross sectiong
of circular, rectangular, I-section and H-section beams, respectively. It
should be noted that in the I and H sections the strain distribution
in the high tension zone exhibits a slight non-linearity. In all the cases
shown a shift of the neutral axis takes place towards the tension side.
Another conclusion of importance is illustrated by Figs. 13 and 14, which
show that, within 10% accuracy, the use of a linear MC/I for the calculation
of stresses in beams of cast-iron will be correct up to maximum stress of
16,000 psi. Figs. 15 and 16 show a detailed stress-strain curve for gray
cast-iron (from tests by Flinn and Ely reported at ASTM-SR-4 Symposium #97,

Ref. 8).
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b. Failure Criteria for Cast Iron

Coffin (Ref. 1 ) tested, in 1950, 40 gray cast-iron tubes subjected to
various ratios of combined two-dimensional stress. The results of these tests
appear in Fig. 17. Coffin found that Mohr envelope criterion is not
satisfactory for the fracture of gray cast iron, since in the tension-tension
and tension-compression regions, it does not predict the correct fracture surface.

Table V summarizes maximum failure stresses for an 18/40 cast-iron pipe

(Elastic modulus = 15 x 106 psi)

Table V - Failure stresses: cast iron/ductile cast iron

Type Units Cast Iron Ductile Cast Iron
Ring Tension psi 18,000 50,000
Ring Compression psi 90,000 200,000
Ring Buckling (Euler) psi 19,600 33,973
Bending (Rupture)* psi 40,000 62,000
Torsion* psi 27,000 49,000
Shear psi 32,000 49,000

*Assuming linear behavior

c. Dynamic Properties of Cast Iron (Ref. 2).

Tt 1s found from dynamic tests that the dynamic modulus of elasticity on
previously stressed cast iron bars is up to 10%Z higher than that obtained
from static tests. For unstressed bars the dynamic modulus of elasticity

is 10%Z lower than the static modulus.
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d. Damping in Cast Iron (Ref. 2 )

The damping capacity** for grey iron is a function of the stress level and
of the graphite content. For low strength iron, the damping capacity values
have a range of 18-28%, for high strength grey iron the range is 3-12.5%.

e. Mechanical Properties of Lead

Many old cast-iron pipes use lead caulked joints. Since the flexibility
of these kind of jeints depends on the mechanical properties of lead, it must
be noted that:

1) Lead has a highly non-linear stress-strain relationship with ultimate

strain levels of 60-807%.

2) The behavior of lead is strain-rate dependent.
3) Lead exhibits large amounts of creep at ordinary room temperatures.

Due to the non-linear time dependent (creep) behavior of the lead, the
deflection of lead~jcinted pipes subjected to loads at the joints is also found
to be non-linear and time dependent.

The lead or lead-wool used for caulking pipe joints must meet the
requirements of the American Water Works Association's specifications AWA
C600-54% Sec. 9a.5.

Lead is used as a caulking material, because:

1) It does not corrode due to varying conditions of weather, exposure to most
types of soils and action of corrosive chemicals.
2) Due to the high density of lead, caulked lead joints, when properly

installed, prevent leakage of water at the joint.

*%The damping capacity of an oscillating material is defined as the amount of
energy absorbed per oscillation expressed as a percentage of the initial

CUergy.
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Some of the basic properties of lead are listed below:
1) Cast lead weighs 707 1b/cu ft at 20%. (68°F), its melting point is
| 6210F, its ultimate Tensile Strength varies from 1400 to 1700 psi.
2) The tensile strength of annealed lead,at 100°C, is 1920 psi with an
ultimate elongation of 31%.
3) Common lead fails after 72 cycles, when subjected to alternate 90° reverse
bends over 5" rolls at 11 cycles per minute and 200 psi tensile stress.

4) The creep characteristics of lead at room temperature are:'¥

Stress {psi) creep, 4% per hour
-5

200 5 % 10

300 3.5 x 1074

400 11 x 1074

5) The fatigue limit of lead at 215 psi is 5 x 107 cycles,

Commercial lead is found in almost every part of the world and, usually,
contains a small amount of silver and a considerable amount of antimony. Some
commerecial lead contains an average of about 17% of antimony and about 2% of
other metals such as arsenic and copper. (Lead with antimony and other metal
impurities is sometimes called "type metal' or "hard metal.')

6) Pure commercial lead (99.9%Z lead) shows a tensile strength of 1900 psi and
an elongation of 55% when tested at a rate of .25 in/in per minute, but, owing
to the plasticity and creep characteristics of lead, these values vary greatly

with changes in the rate of application of the load.

*These lead properties were obtained from Lead Industries Association, 292
Madison Avenue, New York,N.Y. 10017.
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7) Other mechanical properties of lead can be summarized as follows:

compressive strength 2120 psi @ 32% strain

i

tensile strength of chill cast lead 1820 psi

shear strength of rolled lead 3000 psi

It

elastic modulus of rolled lead 2,130,000 -~ 2,400,000 psi

elastic modulus of annealed lead

2,550,000 psi

shear modulus of rigidity 780,000 psi
Poisson's ratio = 0.43
Some typical stress-strain diagrams for lead with various levels of impurity

are shown in Fig. 18 and tables II.*%

f. Testson Cast Iron Pipes and Joints

1. Axial and Bending Behavior (Ohio State University Tests)
Prof. Prior of Ohic State University (Ref. 3 ) carried out tests in 1935
to investigate the pull-out strength of bell-and-spigot cast-iron water pipes
joints. The tests were carried out on pipes jointed by:

. soft lead

. lead wool

. alloy lead

. portland cement, and

. sulphur compounds.
For both the lead and sulphur compound joints, he found that the pulling force

F at which incipient failure is to be expected is well represented by:
2

F= @22 - 00 2 s,

where D is the diameter of the pipe in inches.

*These data were obtained from Lead Industries in New York City

41—



STRESS IN PSI

HIGH PURITY Pb (LOT )
U.T.S.- 1380 PSI

Pb + 0.016a/0 Sb
U.T.S. = 1660 pPSI

Pb + 0, 16a/0 Bi

+ 3000
.T.S. = 1990 PSI

1000
1 } 0 TR |
U?’? ;0:;;{)8 1?};;1 Pb +0.12a/0 As
o = 2630 PSI
J L ) I TR |
Pb + 0.38a/0 Ba
Pb + 0,03a/o Ba 5000 U.T.S. = 4090 PSI
U.T.S. = 2790 PSI 4000}
3000}
2000}
1000}

15 ASUURENS EVOU S WS SRR P | oo

Pb +0,015a/0 Cq
U.T.S. = 1980 PSI

0.02a/a0 Ca
= 2240 PSI

PR PSR |

u [
2000
1000}
1 - O ,
Pb +0.17a/0 Cd
3000 .T.S, =2430 PSI
2000 3000
- 2000
iOOOV 1000
0 1 1 i ! 1 1 A J 0
7000 Pb + 0, Salo Ca

6000}-
5000!-
4000

3000
2000
1000

U.T.S. = 6790 PSI

ot | 1 £ 1 \

0
0

! 0
125 .250 .375 .500 625 750 .875 1000 0

Pb +0,011la/o Cu
U.T.S. = 2320 PSI

1 Mo 0

STRAIN IN IN./IN,

FIG. 18

—42~

I25 250 .375 500 625 750 .875 1000

STRAIN IN IN./IN.

- STRESS-STRAIN CURVES FOR LEAD BASE ALLOYS



TABLE I

THE CHEMICAL ANALYSIS AND MECHANICAL PROPERTIES

OF BINARY LEAD-BASE ALLOYS

Ultimate
Chemical Tensile Elong.,
Melt Alloying Analysis Strength, % in
No. Addilion w/o alo psi 1 in.
- High-purity Pb -- -- 1380 59
1 Sb 0.0095 0.016 1660 58
2 0, 045 0.077 2020 52
3 0.085 0.14 2500 56
4 0.22 0. 37 2590 70
5 0. 84 1.4 2980 54
6 As 0.001 0.003 2040 75
7 0.008 0.02 2330 46
8 0.031 0.086 2650 33
9 0,042 0.12 2630 30
10 0. 044 0.12 2540 42
11 Ba 0.002 0.003 1660 39
12 0.02 0.03 2790 52
13 0,02 0.03 2740 57
14 0.068 0.10 3500 54
15 0.25 0. 138 4090 34
16 Bi 0.0012 0.0012 1880 75
17 0, 0060 0, 0060 1950 62
18 0.16 0.16 1990 40
19 0.97 0.96 2440 78
20 11.0 10.9 3440 50
21 Cd 0.0010 0.0018 2010 57
22 0.0080 0.015 1980 83
23 0.092 0.17 2430 66
24 0.79 1.4 3150 65
25 2,36 4,27 3470 54
26 Ca 0.001 0.005 1520 59
27 0.003 0.02 1590 73
28 0.004 0.02 2240 28
29 0. 044 0.23 5330 24
30 0.09 0.5 6790 13

ARMOUR ‘RESEARCH FOUNDATION OF ILLINOIS
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TABLE ]I {Cont, )

Ultimate
Chermnical Tensile Elong.,
Melt Alloving Analysis Strength, % in
No. Addition w/o alo psi 1 in.
31 Cu 0.0012 0. 0039 1560 80
32 0.0022 0.0072 1380 51
33 0.0035 0.011 2320 46
34 0.0060 0.020 1925 64
35 0. 0087 0.028 1830 44
36 0.0004 0.01 1510 80
37 0, 0007 0.02 2200 45
38 0.0011 0.033 2270 52
39 0,05 1.5 3620 50
51 Se 0.0004 0.001 1820 59
52 0. 0045 0.012 2500 30
53 0,026 0,068 2230 42
54 0.33 0. 86 2840 33
55 Ag 0.0010 0.0019 2380 63
56 0.010 0.019 2380 63
57 0,021 0, 040 2520 - 54
58 0.20 0.38 2750 45
59 0.49 0.94 3400 41
60 Te 0.0005 0.0008 2220 44
61 0.0010 0,0016 2300 50
62 0.0010 0.0016 2300 44
64 0.0049 0, 0080 2400 33
65 Tl 0.0008 0, 0008 1925 54
66 0.010 0,010 1940 52
67 0.12 0.12 1540 73
68 0.87 0.88 2070 50
69 9.00 9.11 2420 88
70 Sn 0.0081 g.014 1420 48
71 0.153 0, 267 1780 38
72 0.508 0.884 2230 71
73 1.31 2.27 2960 73
74 . 1.37 2.37 3510 52
75 Zn 0.00146 0,00463 1620 61
76 0.0098 0.031 1870 47
77 0.0639 0.203 1720 46
78 0.126 0, 399 2020 36
79 0.448 1.41 2170 29

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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It is to be noted that Prof. Prior's formula is based on tests where two
jointed pipes, capped at the ends, were pulled apart by increasing the internal
pipe pressure. This test situation differs from actual field conditions,
primarily because there are no end caps in the actual pipe and the soil
around the pipe provides considerable resistance to the longitudinal elongation
of the pipe.

The Prior test data for lead joints show considerable creep elongation,
but are of only limited value from an earthquake point of view because of
their long duration. In the case of earthquake loadings, the speed of load
application does not allow the lead joints to show substantial creep.

Figs. 19a, b, ¢ summarize typical load-deflection data obtained by
Prior (1935) fpr pipes with diameters of 24", 36" and 60". The initial
extensions of the joint are influenced by the stresses in the caulking, and
since the tests were long~term duration tests, the data clearly show large
creep deflections.

Professor Prior alsc tested in bending several 20" diameter cast—iron
pipes considered as beams. Two pipes were joinee by lead and cement joints,
supported at the two extreme ends, and loaded in the vicinity of the joint,

In such tests Prior measured circumferential deformations, the deflections of
the pipes at the joints and the joint opening at the bottom of the pipe.
All these tests were simple beam tests without pressure inside the pipes.

2, Bending tests (Iowa State University)

Untrauer et. al. at Towa State University (Ref. 4 ) carried out tests
in 1970 to determine the effects of building movements and soil settlements on

the strength requirements of cast-iron soil-pipe systems. Four inch diameter
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ipes were tested to study:
The behavior of lead-okum joints subjected to bending,
The ultimate strength of lead-ckum joints subjected to bending,
The leakage of lead-okum joints,
The leakage of elastomeric gasket joints.

Seven two-pipe beam tests were conducted on 4 in. pipes. Two equal loads
rere applied on the pipe at 24 in. spacings (12" on either side of the joint,
thich is at midspan of a 60" simple support span).

The stress distribution in the spigot was found to be non-linear mainly
recause the spigot-end of the pipe bears against the hub wall of the other
:nd as the joint rotates. As a result, the ends of the pipes are subjected
0 a combination of bending moment, axial ferce and horizontal friction force.
Jecause of this nonlinear stress distribution, the highest rotational stiffness
or a 4" pipe (I = 4.78 ina) of cast-iron (E = 16 x 106 psi) was found to
e 200,000 in-1b./rad and only 355,000 in-1b./rad for an 8" diameter pipe.
Tig. 20 shows the moment-rotation test curve for 4" diameter with a lead-okum
joint. Fig. 21 shows the stress distribtulon across the cross-section of the
>ipe. This figure shows that the rotational rigidity is not directly proportional
to the moment of inertia of the section because of the high non-linearity of
the stress distribution. It should be noted that the rotational rigidity on
the joints depends,among other things on:

. the caulking forces

. the amount of lead in the joint

. the internal water pressure, and

. the speed at which the load is applied to the joint.
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Table III summarizes the overall results of the tests on cast-iron soil-
pipes. The table shows the average value of the test results. The testing
time for ultimate strength varied from one to ten minutes. The tests have
shown tha£ ;he ratios between the joint rotation at ultimate load and at
leakage for the 4-~in. pipes were 16.20 for pressurized pipes at 5 psi pressure
and 1.52 for non-pressurized pipes. ¥For 8 in. pipes, the ratios were 2.7
for pressurized pipes and 2.04 for non pressurized pipes. The results of
ultimate load tests indicate that a two-pipe system with a lead-okum joint
can sustain a considerable deformation before failing.

Table IIT also summarizes test results for pipes joined by elastomeric
gasket., All these pipes were of 4 in. diameter and the internal pressure
during the beam tests was 5 psi. These tests indicate that elastomeric gasket
joints can undergo considerably more rotation than lead-okum joints before
leakage occurs.

The lowa test results lead to the following conclusion:

i. Since lead~okum joints possess little rotational restraint against
bending, lower stresses develop in the pipe than locally in the
vicinity of a joint, under earth movement or settlement loadings.

ii. A lead-okum joint can sustain considerable rotation before structural
failure occurs.

iii. A joint becomes non functional because of leakage long before it
reaches ultimate joint rotation under a bending moment.

3. Summary of Test Data
For bell-&-spigot joints, the strain and rotation levels for incipient

and ultimate structural damage have been summarized in Table IV from the
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(a)

Table L  Swmmary of ultimate and leakage test results .
Number Joint Joint Joint
Load displacement moment rotation
Test tests (1b) (in.) (in.-1b) {degrees)

1. Ultimate strength test

for 4-in. pipe (P}’ (lead- 10 4040 3.80 36,300 14,6

oakum)
2. Ultimate strength test

for 8-in. pipe {(lead- 1 9780 4.10 88,000 15.7

oakum)
3. Leakage test for lead-

oakuT ioint, 4-in.

pipe \© 9 700 0.24 6,270 0.9
4, Leakage test for lead-

oakum ;oint, 4-4in,

pipeld 2 2650 2.53 23,850 9.6
5. Leakage test for lead-

oakum goint, 8-in.

pipe(c 2 985 1.52 8,880 5.8
6. Leakage test for lead-

oakum }oint, 8-in,

pipe (4 1 3440 2.02 31,000 7.7
7. Leakage test for

elastomeric gaskeg

joint, 4-in, pipe(c 6 470 2.02 4,200 7.7
(a)Averages of number of tests indicated.
(b)Out of 10 tests conducted, seven had hub failures. One broke at the barrel,

one at the spigot, and one did not break.

(C)All values in this row are for pressurized pipes with 5 psi water pressure,
()

All values in this row are for unpressurized pipes (pipes were only filled

with water).
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tests carried out on cast-iron at Ohio University (1935) and soil-pipes at
Iowa University in 1970. The test data for cast iron pipes under pressure is
quite limited and almost no data are available for buried pressurized pipes
subjected to earth movement loads with adequate soil support.

Prior's (1935) tests have some useful data on joint elongation and joint
rotation in bending; however, these tests are long term tests and creep
deflections are included in the elongation of joints, while the bending data
are exclusively on unpressurized pipes.

The Towa 1970 report is on cast iron soil-pipes which are slightly different
from water pipes because of the bead in the bulb of the pipe. Also, only
average results rather than detailed test results are given in the report.

g. Correlation with experimental data

An attempt has been made to correlate the test data of Prior from Chio
State University (1935) with the simple beam model of the joint, for elongation
and bending tests. No correlation was found when the initial elastic modulus
of lead was used: when the initial elastic modulus was used, the calculated
elongations of the joints were about 1/1000 of the observed extensions
(including creep). However, for many pipe diameters (viz 36") a good correlation
was found,if the secant modulus for the lead joint material was used corresponding
to the stress levels acting on the joint.

On the other hand, for the beam bending deflections, the observed tests
from Ohio State University data were better matched when initial elastic
modulus values were used. This was also found to be the case for the Iowa
State University moment-rotation test data when adjustments were made for

non-linear stress distribution across the section.
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h. Recommended Test Program

Qur extensive literature review shows a basic need for tests on:
1} The behavior of buried and pressurized cast iron pipes with lead and
rubber gasket joints subjected to static earth movement loads.
2} The behavior of buried and pressurized lead and rubber gasket iron

pipes subjected to shaking type loads,
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Part III: Design Methods, Modeling Data and Failure Matrix

a.

Water Pipe Design Methods

The thickness of the pipe is chosen to withstand several types of loads,

including operating and surge pressures as well as earth leads and truck loads.

Essentially, two design methods are used in establishing the water pipe

thickness depending on the type of material:

1. "The Rigid Pipe Design Method” is used for pipes made of such mateials as

cast—iron and concrete. In this method the load carrying capacity of

the pipe for the two basic types of locads, namely, the earth and truck
loads, and the internal water pressure, is determined by the use of
second or third order parabola interaction curves, which give the
external load vs. the internal pressure. Cast-iron pipes are designed by
means of quadratic parabeola-, concrete pipes by means of cubic parabola-

interaction curves. Fig. 25 outlines the "Rigid pipeline design method."”

. "The Flexible Pipe Design Method” is used for pipes made of ductile cast-

iron and steel pipes. The pipe is designed to withstand independently
two types of loads, namely, trench loads (earth + truck), and internal
pressure. The trench load, usually, is limited by pipe deformations
rather than stresses. The flexible pipe designmethod ylelds a safer
thickness than the rigid pipe method, because the flexibility of the

pipe permits a more favorable combination of stresses under the two types
of simultaneous loading,the trench lIoad (which causes bending in the

pipe) and the internal pressure (which causes hoop tension all around the
ring). Figure 26 outlines the methodology of the "flexible pipe design

method."
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It must be noted that all water pipes are designed on the basis of ring
stresses alone and that the design methodology of cast-iron pipes is based on
ring rupture and ring bursting test data. Obviously, a cylindrical pipeline
does not behave as a simple ring, but as a cylindrical shell whose stresses may
be approximated by those in a beam of circular cross section elastically supported,
All of the currently existing pipe design codes ignore longitudinal stresses and
only consider stresses across the section of a pipe ring element. Although under
normal operating conditions these beam bending stresses are likely to be marginal,
in the case of an earthquake, where a dynamic strain field and also a residual
displacement are likely to be imposed on the pipeline, longitudinal bending
stresses in the pipes and the joints may become significant. These are never
accounted for in the static design of pipeline and joints. At the present time
none of the U.S. specifications or codes for pipe design have any recommendations
or requirements for the earthquake design of water lifelines.

b. Major Parameters in Water Pipeline Design

Pipeline planning is usually based on present needs and on 30 years
projections for population and industrial growth. The needed water pressure
cr the gravity gradients can be estimated on the basis of the pumping capacity
and flow-head relationship of the pump, the flow-head loss characteristics of
the valves and the control equipment, and the site topelogy.

Figure 3 shows the methodology used to determine the pipe thickness of a
water pipeline made out of various materials. Cost, construction and delivery
schedules, and availability of materials are some of the major parameters which
control the selection of the pipe material, which is also influenced by the
roughness coefficient and the strength properties of the material. Once the

hydraulic roughness factor is defined for the selected pipe material, the
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pipe diameter can be calculated by using basic hydraulic formulas.

As indicated in the section Ib)on pipe support conditions, the soil
conditions and the type of embankment are the controlling factors for the
determination of the pipe laving condition. The depth of soil cover is
determined by the depth of frost penetration in the area and by the magnitude
of a single truck wheel load. Usually, at least 3' of scil cover are provided
for buried water pipes.

Once the mechanical properties of the material of the pipe, the pipe
support condition, the earth lecad, the truck ocad, and the internal operating
and surge water pressures are known, the material thickness of the pipe can
be determined as shown in Figs. 1 and 2, which correspond to rigid and flexible
pipe design methods,respectively.

The structural pipe thickness thus determined has to be adjusted to allow
for corrosion in the case of steel or cast iron pipes and a nominal thickness
has also to be added to allow for manufacturing tolerances. The nominal
pipe size closest to the adjusted thickness is then selected.

In special situations, pipe design engineers consider the influence of
the following additional factors in the design of the pipelines:

. temperature changes

. vacuum in the pipeline

. s0il settlement

. s0il ligquification

. s0il wash-out or erosion, and

. earthquakes
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Fig. 4 obtained from The National Fire Protection Associa-
tion shows the earth cover recommended to avoid freezing of
the underground fire-protection water mains. In the south,
the cover is about 2 1/2 - 4' and increases to 7' - 8' in

the upper north.

A "
Miss ! Ala., Ga

Scale in mijes
0 200

1 . :

Fio.4 Depth ot earth cover recommended 1o avoid Treezing of underground jire-protection
water mains. Public water mauns are usually considered sale with Ve [t less cover.
(Coanrresy u/"h’u' Nutioeral five Protccnion Association.)
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e Safety Factors for Pipeline Design

As shown in Figure 1, a load factor of 2.5 is used in the design of
rigid pipe lines, such as pipes made of cast-iron. After corrosion, manufacturing
tolerance and nominal available size thickness adjustments are made, the actual
pipe thickness yields a considerable higher factor\of safety against the
ultimate strength of the material. Cast-iron pipes with 40,000 or 45,000 psi
minimum ultimate tensile strength, usually, have a safety factor, defined as
the ratio of their ultimate strength to their operating stresses (earth load +
internal pressure), which-lies in the range of 4 - 8., These large factors
are due in part to the fact that cast-iron has a highly non-linear stress-strain
curves. Such large safety factors are also indirectly reflected in the
surveys, conducted by CIPRA (Cast ILron Pipe Research Association) in 18 cities
of Illinois and Wisconsin, indicating that under normal operating conditions
only one pipe length (usually 20 ft.) per 131 miles length of pipeline was

found broken or leaking.

d. Typical Cast-Iron Pipe Modeling Data

For modeling purposes, it was deemed necessary to choose a typical type
of cast-iron pipe. TFor feeder or distribution mains, the most common type of

pipe data are as follows:
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diameter = p = 18"
length = L = 20'
thickness = t = .63"

elastic modulus E

ring rupture modulus

laying condition 'F':

15 x 106 psi

R = 40,000 psi (bending)

bedded and tamped

depth of cover = 8'

ultimate tensile strength = 18,000 psi

ultimate strain to failure = 3%

117 ib/ft {for t

weight of pipe 0.63")

These characteristics were used in the model analysis of the typical pipe.

e. Safety Factor Calculation Examples

This section gives a typical exzample of the calculation of safety factors
for an 18" diameter cast-iron pipe designed according to the ANSI A 21.1 code
with a load factor of 2.5. It is found that the effective safety factor for

this pipe at operating condition is 5.25 and, if surge or truck loads are

taken into account, it still is about 4.26.
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Design Parameters = Diameter = d = 18", operating pressure = 200 psi,
cast-iron: S = 18,000 psi, R = 40,000 psi
cover = H = 5'

Type B laying condition, soil type 4 = 8 = 10‘
From soil mechanics theory or ANSI #A21.1 code:

Effective ring load = W = 1114 # / ft.

Also from code A 21.1:

t = thickness = 0.63"
_pd _ 200x18 _ .
O = 5t T 9x.63 29857 psi
o, = Wx.0795(d%t) _ 4,157 psi
b 2
t
Yotal 2857+4157 = 7,014 psi

The reduction in R (modulus of rupture in bending) due to the internal pressure

p is (from interaetion curves):

2x18,000%.63 _

18 .92

.92x40,000 _ . -

Safety Factor at operating conditions = =
7,014 —_—
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Case I:

Safety

Cage 1T

at

o)
to

Safety factor =

with 100 psi surge

{200+100) x 18

% T x.63 = 4,286 psi
o =022 x 118 x 18.63 _ ;157 pey

b 2

.63

Oporal = Op + Oy = 4,286 + 4,157 = 8,443,
- . . 40,000 x .92 _

factor = 5,403 4.36

with truck load

! i 632
5" cover, equivalent truck load =‘E*Z§'= 436 1bs.
_ 200x18 _ )
T Tx.63 2857 psi
- (1,114+436) x 18.63x.0975 _ 5,784 psi,

.632

tal = 2,857 + 5,784 = 8,641 psi

40,000 x .92 _
8,641 426

The pipes are designed for a load factor of 2.5, but due to corrosion and

manufacturing tolerances the effective load factor goes up to 4.26 for 18"

diameter pipes. The safety factor under operating conditions for this

pipe is

5.25
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f. Computer Program

A simple computer program (see Appendix A) was written to calculate the
actual factor of safety under operating conditions in a cast-iron pipe designed
by presently accepted methods. This factor of safety gives the margin available
against the stresses produced in the pipe during earth movements.

As an input the program requires the definition of:

the pipe diameter

the internal water pressure

the depth of cover

the soil support condition (laying condition)

It is to be noted that while the maximum tensile stress of cast iron is
only 18,000 psi, the 'modulus of rupture' used with linear beam theory, yields
a 40,000 psi tensile stress, Thus from the load point of view, which is
related to the maximum moment causing ring rupture, the apparent load factor
is usually in the viecinity of 2.5; however, due to non-linear effects, the
actual tensile stress is nearer to 18,000 psi than to the assumed linear

stress of 40,000 psi,
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g. Failure Matrix Examples

1. Introduction
The purpose of the failure matrix is to indicate for each type of pipe the
ultimate strength of the pipe and of its joints under static loading conditions.
The "type” of pipe is defined by its geometric and material properties, as well
as by the various joint configurations and gasket shapes and materials. It
is thus obvious that a complete failure matrix will contain information about
a very large number of pipe types.
To exemplify the complexity of a complete failure matrix,it may be

sufficient to consider cast-iron pipes only and te notice that for each of
the three kinds of cast-iron used {cast-iron, malleable cast-iron and gray iromn),
six types of joints are generally employed:

i Push-on joint with rubber gasket (Fig.5).

ii Mechanical joint with rubber gasket (Fig.6).

iii Bell-and-spigot joint with rubber gasket (Fig.7).

iv Bell-and-spigot joint with lead or okum gasket (Fig.8).

v Flanged joints (bolted) (Fig.9).

vi Welded joints (Fig.10)
For each one of these joint-pipe combinations the codes give detailed specifications
and practice manuals installation instructions. On the other hand, the amount
of test data significant to seismic design is extremely limited both in the
static and the dynamic range. It is one of the main purposes of the following
examples to indicate what information is available on a particular type of
cast-iron pipe with mechanical joints using rubber gasket and to illustrate
the needs for a series of dynamic tests,that will be detailed in a subsequent

_Teport.
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2. Pipe failure data

The pipe of the present example is that defined in Sect. III d - "Typical
cast-iron Pipe Modeling Data." The mechanical joint with rubber gasket
is defined in ANST A21.11 - 1972 Fig. 11.1 (Fig.6) with mechanical joints
dimensions specified in Table 11,1, (Table I) here reproduced, and mechanical
joint gasket dimensions specified in Table 11.2 (Table II) and Fig. 11.2
(Fig. 11), here reproduced.

Table III gives the ultimate stresses for the pipe itself under the

indicated static conditions.

Table TIII
Loading condition Ultimate stress (psi)
Axial tension 18,000
Axial compression 90,000
Bending Rupture 40,000
Torsion 27,000
Shear 32,000
Buckling
local torsional 68,000 - 105,000
Euler 104,093
Internal pressure 18,000
Ring bending 40,000
Ring buckling (Euler) 19,600

The main characteristics for pipe failure are the ultimate tension force

P and the ultimate bending moment Mu:
u

—Th—
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—12 -0z Single Duck {2-3 in)
12-0z Double Duck
{4-48in}

] 1.
s x 2 'm;;""i.\ le—— D -Inside Diam.of Gosket +|% ——» A i*
i - 003 in
¢ b 4 .
. G f 03ting 003in
¢ l 1 L \[- G113 in.
} ]
Fom e 28 deg (2-24 in) 006 in. mind }
20 deg (30-48 in.)

Lecd Tip

FL';» /

Mechanical -/'oa'ﬂé dgaoséeé.,.?-45 -'.'1'3(Eat’é‘z‘a.é/c.l'ama.('mu.‘cs:ﬁ

Noles

1. Tipped or backed gaskets may be made in the same mold as plain rubber
gaskets, but the inside diameter of such reinforced portions shall not exceed the
“pipe OD."

2. The duck for tips and backs shall be frictioned before molding.

TABLE IL
2-48-tn. Mechanical-Joint Gaskel Dimensions—in.
Dimensions of Plain Rubber Gaskets
ze D
zootin, | P ¢ |dtperentt B | 00 | 20§

2 2.50 (.48 0.62 0.31 2.48 0.12 0.15 1.05

21 2.75 0.48 0.62 0.31 2.72 0.12 0,15 1.05

3 3.90 0.48 0.62 0.31 3.86 0.12 0.15 1.05

4 4.80 0.62 0.75 0.31 4.68 0.16 0.22 1.22

6 6.90 0.62 0.75 0.31 6.73 0.16 0.22 1.22

8 9.05 0.62 0.75 0.31 8.85 0.16 0.22 1.22
10 11.10 0.62 0.75 0.31 10.87 0.16 0.22 1.22
12 13.20 0.62 0.75 0.31 12.95 0.16 0.22 1.22
14 15.30 0.62 0.75 0.31 14.99 0.16 0,22 1.22
16 17.40 0.62 0.75 0.31 17.07 0.16 0.22 1,22
18 19.50 0.62 0.75 0.31 19.13 0.16 0,22 1.22
20 21.60 0.62 0.75 0.31 21.20 0.16 0.22 1.22
24 25.80 0.62 0.75 0.31 25.34 0.16 0.22 1.22
30 32.00 0.73 1.00 0.38 31.47 0.16 0.37 1.54
36 38.30 0.73 1.00 0.38 37.67 0.16 0.37 1.54
42 44.50 0.73 1.00 0.38 43.78 0.16 0.37 1.54
48 50.80 0.73 1.00 0.38 49,98 0.16 0.37 1.54
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pU b = 18,000 [5(19.50 - .635] X .63 = 672,256 lbs.
H
T 2 m 2 .
M = RS = RD7t = 40,000 x 5 (19.50 - .63)" x .63 = 7,047,500 1b-in,
u,p X 4 4

It is confirmed by practical observations that other modes of failure
seldom occur (additional verbal confirmation from Dr, S. Takada), élthough
some compression fallures have occurred.

3, Joint failure data

i. Bolt failure

From Table XI, 12 bolts of 3/4 in. diameters (area = .3345 inz), must be
used with a minimum yield strength of 45,000 psi. The ultimate tensile

force Pu and ultimate bending moment Mu developed by the bolts is:

1l

P

ubh 12 x .3345 x 45,000 = 180,630 lbs,

Mu,b

13345 x 45,000x (~w. ~~~~~~ =830 a4 x L8667 + 4 x .57
= 6,834,000 1bs. in.
For a working stress of 0.6 x 45,000 = 27,000 psi, the allowable tensile

force developed by the bolts is:

P . = 180,630 x 27,000/

= 78 .
b 108,378 1bs

45,000

iii. Ultimate gasket friction

From Table XIL1 the average compressed area of the rubber gasket is:

A= Lﬁg;ﬂ] 7(19.5 + 0.42) = 26.28 in°

The corresponding axial compressive stress due to the allowable bolt

axial tension is:
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o = 108,378/26.28 = 4,124 psi
c,ax

Assuming all lateral expansion to be prevented in the radial and
circumferential directions and with a Poisson's ratio v = 0.4, the total
stress in the radial direction developed by the axial stress is:

= A
o 1-.4

and with a coefficient of friction u = .7, the maximum axial frictional stress

4,124 = 2,749 psi

is:
£,ax = ,7 x 2,749 = 1,925 psi

From Table Xi the total friction area is:

Ap = 1.22 % w(19.50) = 74.74 in2

and the maximum frictional resistance to pull-out becomes:

Rp—o = 1,925 x 74.74 = 148,872 1bs.
As an order-of-magnitude check on the maximum pull-out joint force, Dr.
Takada found experimentally (Ref. 11, Fig.8):

9

0

3G tons

fi
]

200 mm. P
u

]

300 mm. P 40 tons

u

i

and a parabolic relationship between pull-out force and displacement.
Assuming a linear relation between P, and @, Dr. Takada's results would give

for our example:
D =D-t = 19.50 - .63 = 18.87" = 479 mm.

where t is the pipe thickness:
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Pu = 30+ (40-30) x 279/100 = 57.9 tons = 127,300 lbs.

which is of the same order of magnitude as RP‘O

iii. Joint rotation in bending
Dr. Takada (Ref. 11, Fig. 9) found experimentally, the following

relationship between the pipe diameter and the ultimate moment at leakage:

g = 200 mm. M

u
@ = 300 mm. M

u

4 ton-m

6 ton-m

with a leakage angle of 19°.
From Table I the leakage angle is given by:

can vB o o 3.5
Y572 T (19.50 - .63)/2

-= .371; y = 20.53°.

Assuming a linear relationship between Mu and 9, Mu for our example
becomes:Mu = 4+ (6-4) x 279/100 = 9.58 ton-m = 691,016 ib-in.
4. Failure Matrix Extension

By order of magnitude calculations of the type shown in this section, one
can obtain a complete failure matrix of basic practical value. The uncertainties
due to an almost complete lack of experimental data indicate, on one hand, the
little confidence one should have on purely analytical results and, on the
other, the need of tests on the ultimate static and dynamic strength of the
various pipe joints.

It would seem clear even from the limited results of this interim
report that failure of the cast-iron pipe itself could only occur due to
corrosion or to the exceptional conditions encountered by pipe segments

directly over faults, The main cause of failure in this type of pipe line,

~79=



particularly under seismic conditions, must be due to the weakness of the
joints,which is highly dependent on the time duration of the lcads or
displacements.

While this report indicates a methodology capable of assessing the
sensitivity of pipelines to seismic motions, this methodology must now be
made gquantitatively accurate by obtaining the necessary experimental data
on which to base it.

Table IV gives the Failure Matrix for the cast-iron pipe with mechanical
joints (rubber gaskets) of this section and is typical of the matrices to

be developed for other types of pipes and joints.
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PIPES3321 15129 JUN 23,77

100
110
120
130
140
150
140
170
110
180
200
210
220
230
240
250
260
270
280
290
300
310
3z0
330
340
350
351
360
370
380
390
400
410
411
420
430
440
450
460
470
480
490
500
510
520
530
340
550
5610
570
571
572
S80
590
600
610
620
630

PRINT
PRINT
PRINT YENTER MATERIAL TENSILE STRESS IN KSIV
INPUT S
PRINT ¢*ENTER MATERIAL RUPTURE MODULUS 1IN KSIt
INPUT R
PRINT *ENTER OPERATING PRESSURE PSI?
INPUT P
PRINT YENTER PIPE DIAMETER IN INCHEST®
INPUT D
PRINT 'ENTER PIPE THICKNESS IN INCH?
INPUT T
PRINT 'ENTER EQUIVALENT RING OVERBURDEN FORCFE (W) LBS/FT,.?
INPUT W
S=5#1400
R=R#*1000
Sl=P#D/(2%T)
Y= O0TISH{D+T)/ (THH2)
S2=Y#y
X=2#S#T/D
R=SQPR{ (X=P}/X)
Wl=R#Q/Y
£=51+52
L1=S1+(S52%*S/R)
22=Wl/w
23=5/21
PRINT
PRINT 'DATA ECHO (W NOT PRINTED)?
PRINT S3RIPIDIT
PRINT
PRINT
PRINT 'YRESULTS : STRESSES AND SAFETY FACTORSY
PRINT
PRINT
PRINT *TENSILE STRESS DUE TO OPERATING PRESSURE?
PRINT S1
PRINT 'BENDING STRESS DUE TO OVERBURDEN?
PRINT Sz
PRINT *COMBINED TENSION + BENDING STRESS?
PRINT Z ,
PRINT YADJUSTED COMBINED STRESS INCLUDING NON=-LINEAR EFFECTSY
PRINT 71
PRINT *SAFETY FACTOR=MAX TENSILE STRENGTH/ADJ. COMBINED STRESS?
PRINT Z3
PRINT YAPPLIED EQV.RING FORCE '
PRINT W
PRINT 'MAX, EQV.RING FORCE '
PRINT Wl
PRINT YLOAD FACTOR=MAX RING FORCE(W!1)/APPLIED RING FORCE (w)?
PRINT Z2
PRINT
PRINT .
PRINT D0 YOU wANT TO SOLVE ANOTHER CASE ? YES/NO?
INPUT A%
HE=ty?
IF A$=>8% THEN 100
END
STOR
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