INELASTIC BEHAVIOR OF ECCENTRICALLY BRACED STEEL FRAMES UNDER CYCLIC LOADINGS

<u> III n</u>

by

Charles W. Roeder Research Assistant University of California, Berkeley

Egor P. Popov Professor of Civil Engineering University of California, Berkeley

Report to Sponsors American Iron and Steel Institute National Science Foundation

Report No. UCB/EERC-77/18 Earthquake Engineering Research Center College of Engineering University of California Berkeley, California

August 1977

REPRODUCED BY: U.S. Department of Commerca ional Technical Information Ser Springfield, Virginia 22161

NTE

rvice

GENERAL DISCLAIMER

This document may be affected by one or more of the following statements

- This document has been reproduced from the best copy furnished by the sponsoring agency. It is being released in the interest of making available as much information as possible.
- This document may contain data which exceeds the sheet parameters. It was furnished in this condition by the sponsoring agency and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

· · · ·

.

^ . .

ABSTRACT

A unique, practical structural system, the eccentric bracing system, which possesses many advantages in the seismic design of steel structures, is described in this work. This system employs diagonal braces with deliberately large eccentricities with respect to the beamcolumn joint. The eccentricity is introduced to provide a ductile fuse which will prevent brace buckling at extreme loads, such as those that may occur during a severe shake, and to avoid the poor energy dissipation characteristics which result from this buckling. The system is also a very stiff structural system, since linear elastic analysis indicates that the lateral stiffness remains essentially constant over a wide range of small to moderate eccentricities. Therefore, eccentrically braced frames offer the elastic strength and stiffness of a braced frame and the energy dissipation of a steel moment-resisting frame. Hence, the system is very suitable for the design of earthquake-resistant structures, and it has numerous potential applications.

Short beams which initially yield in shear are tested in cyclic loading. These beams were designed to simulate the behavior of an eccentric element. It was found that cyclic shear yielding of the eccentric element is the most desirable energy dissipation mechanism because of its greater stability during large cyclic deflections. An analytical model for predicting the behavior of such beams is developed from the test results. The model is based on sandwich beam theory, which includes the effect of cross-sectional warping caused by shear yielding. The inelastic model is used to perform inelastic dynamic analysis of a 20-story eccentrically braced prototype structure under the 1.5 times

i (c)

El Centro and unreduced Pacoima Dam acceleration records. The results of these analyses are compared with the computed response for similar ordinary braced and moment-resisting frames. The eccentric bracing system performs very well in this comparison because it combines strength, stiffness, and energy dissipation. The moment-resisting frame did not have sufficient strength of stiffness and the ordinary braced frame lacked good energy dissipation, so the alternate structures did not perform as well as the eccentric system.

Two one-third scale model eccentrically braced test frames were designed and tested. The frames were three-stories high, and they were modeled to represent the lower corner of the 20-story prototype structure. The loading program simulates the response of the eccentrically braced frame under the 1.5 times El Centro and unreduced Pacoima Dam acceleration records in sequence. The tests indicate that the eccentrically braced frame can be expected to survive two such sequential earthquakes without a structural failure. Further, for severe earthquakes of this intensity, the frames exhibit very sound, unpinched hysteresis loops which do not deteriorate in strength or stiffness. The tests are also compared with the inelastic model, and the comparison indicates that the behavior predicted by the model is in very close agreement with the test results.

Finally, design recommendations are made. The combination of these, the analytical procedures, and the test results can be used to produce structures which are able to withstand very severe earthquake excitations. In addition to applications in building design, which were emphasized in this work, the eccentric bracing system offers attractive possibilities for supports of water towers, large span roofs, and other systems in areas with severe seismic activity.

ii

ACKNOWLEDGEMENTS.

The research reported herein is the major phase of Project 193 on "Earthquake Bracing of Multistory Steel Frames" sponsored by the Committee of Structural Steel Producers and the Committee of Steel Plate Producers of the American Iron and Steel Institute (AISI). Some support in developing this report was also provided by the National Science Foundation (NSF) under Grant ENV-7604263 on "Seismic Behavior of Structural Components". Mr. Albert C. Kuentz of AISI and Drs. S. C. Lin and J. B. Scalzi of NSF provided much encouragement in carrying out this work. It is a pleasure to acknowledge with gratitude this support which made this work possible.

The preceding three reports issued on this project are:

"Structural Steel Bracing Systems: Behavior under Cyclic Loading," by E. P. Popov, K. Takanashi, and C. W. Roeder, Report No. EERC 76-17, June 1976, Earthquake Engineering Research Center, University of California, Berkeley, California;

"Capacity of Columns with Splice Imperfections," by E. P. Popov and R. M. Stephen, Report No. EERC 76-21, September 1976, Earthquake Engineering Research Center, University of California, Berkeley, California;

"Tensile Capacity of Partial Penetration Welds," by E. P. Popov and R. M. Stephen, Report No. EERC 76-28, October 1976, Earthquake Engineering Research Center, University of California, Berkeley, California.

The Task Force on Project 193 offered much valuable advice and.

iii

significantly contributed to the practical orientation of the project. The authors sincerely thank the following members of this group: A. L. Collin, S. E. Ault, L. H. Daniels, J. L. Fox, R. D. Hanson, R. H. Hofer, Jr., J. C. Kariotis, H. A. Krentz, L-W. Lu, M. A. Mark, W. A. Milek, Jr., J. O. Robb, D. R. Strand, E. J. Teal, and L. A. Wyllie, as well as H. J. Degenkolb, who was an early advocate of the structural system studied herein.

A number of graduate students assisted with the project among whom Ed Ong competently and with dedication helped throughtout the study, and Perry Chin was involved on special assignments. Barry Lotz and Don Clyde of the laboratory research staff helped in testing the frames, Beverly Bolt edited the manuscript and Robin Cranford did the typing. Leona Rambeau and Gail Feazell prepared the drawings. The help of these people is greatly appreciated.

The authors also wish to express their gratitude to Professor V. V. Bertero who freely gave advice and cooperated to the utmost in the smooth running of this project.

i٧

TABLE OF CONTENTS

	Page
Abstract	. i
Acknowledgements	. iii
Table of Contents	. v
List of Tables	. ix
List of Figures	. xi
List of Symbols	. xvii
Chapter 1. Introduction	. 1
General	. 1
Background	. 2
Scope and Objectives	. 5
Chapter 2. Design and Linear Elastic Analysis of the Prototype $% \mathcal{L}^{(n)}$.	. 7
Design of the Prototype	. 7
Linear Elastic Analyses	. 10
Overall Plane Frame Analysis	. 11
Detailed Linear Elastic Analysis	. 15
Summary	. 16
Chapter 3. Cyclic Shear of Wide Flange Beams	. 19
General	. 19
Test Set-up	20
Design of the Beam Specimens	. 20
Beam Specimen 1	. 24
Beam Specimen 2	• _ · 27
Ream Specimen 3	· ⊑, 28
	. 20
Beam Specimen 5	30
Beam Specimen 6	32
Beam Specimen 7	. 52
Beam Specimen 9	. 55
	. 55
Summany of Conclusions of Cyclic Roam Tosts	. 30
Analytical Model for Cyclic Shaan Vielding Perma	. 30 /1
Analytical model for Cyclic Shear fletaing Beams	. 41
Simple Shear Deflection Theory	. 44

Sandwich Beam Theory
Cyclic Shear Model
Fit of the Cyclic Shear Model
Summary of Cyclic Shear Yield Behavior
Chapter 4. Inelastic Dynamic Analyses
General
DRAIN-2D Dynamic Analysis Program
Post Buckling Brace Element
Alternate Structures
Input Parameters
Results From 1.5 Times the El Centro Excitation
Results From the Pacoima Dam Excitation
Comparison of the Member Behavior
Floor Deformations in the Eccentrically Braced Frame
Problem Noted in Eccentric Frame Dynamic Analysis
Dynamic Response of the Entire Structure
Summary of Dynamic Analysis Results
Chapter 5. Design of One-Third Scale Model Frames and Test Setup . 85
General
Design of One-Third Scale Model
Selection of Model Member Sizes
Additional Design Parameters for Test Frame 1
Design of Test Frame 2
Test Setup
Loading Beam
Lateral Support System
Instrumentation
Loading Program
Total Lateral Load on the Test Frame
Summary
Chapter 6. Braced Frame Test Results, Evaluation and Comparison to Inelastic Analytical Model

Table of Contents (cont'd)

Page

-

General	07
Results for Test Frame 1	07
Evaluation of Test Frame 1	13
Test Frame 2	19
Comparison of the Tests	26
Comparison of the Analytical Model with Test Results \ldots . l	29
Summary	32
Summary, Design Recommendations and Conclusions	33
Summary	33
Design Recommendations	34
Conclusions	37
References	41
Tables	45
Figures	49
Appendix A	47
Appendix B	57
Appendix C	75
Appendix D	89
Appendix E	03

.

. · ·

• •

· · · ·

.

· · ·

LIST OF TABLES

Table	1	-	Design Parameters of Beam Specimens	145
Table	2	-	Comparison of Data Points Between ANSR-I and Test Frame 1	146
Table	3	-	Comparison of Data Points Between ANSR-I and Test	147

LIST OF FIGURES

• • •

	Page
Figure 1 -	Typical Load Deformation Relationship of a Slender Bar
Figure 2 -	Typical Pinched Hysteresis Loops for a Concentrically Braced Frame [4]
Figure 3 -	Alternate Eccentrically Braced Elements
Figure 4 -	Eccentric Bracing System of This Study 152
Figure 5 -	Prototype Structure
Figure 6 -	Normalized Stiffness of the Prototype Structure as a Function of its Eccentricity
Figure 7 -	Computation of the Lateral Stiffness Provided by the Brace
Figure 8 -	Variation in the Lateral Stiffness Provided by the Brace
Figure 9 -	Lateral Stiffness of a Single Story Frame 157
Figure 10 -	Subassemblage Used in the Detailed Linear Elastic Analysis
Figure 11 -	Photograph of the Test Apparatus and Cycling Procedure 159
Figure 12 -	Design Options of the Test Specimens
Figure 13 -	Force-Displacement Relationship for Monotonic Test 161
Figure 14 -	Cyclic Force - Deflection Behavior of Specimen 1 162
Figure 15 -	Photograph of the Photogrammetric Grid for Specimen 1 . 163
Figure 16 -	Cyclic Force - Deflection Behavior of Specimen 2 164
Figure 17 -	Cyclic Force - Deflection Behavior of Specimen 3 165
Figure 18 -	Cyclic Force - Deflection Behavior of Specimen 4 166
Figure 19 -/	Cyclic Force - Deflection Behavior of Specimen 5 167
Figure 20 -	Photograph of the Tear in the Doubler Plate in Specimen 5
Figure 21 -	Cyclic Force - Deflection Behavior of Specimen 6 169
Figure 22 -	Cyclic Force - Deflection Behavior of Specimen 7 170
Preceding Page	Blank

List of Figures (cont'd)

х., ^с

i	Figure	23	-	Photograph of the Failure in Specimen 7	-	17 1
1	Figure	24	-	Cyclic Force - Deflection Behavior of Specimen 8	•	172
i	Figure	25 ⁻	-	Cyclic Force - Deflection Behavior of Specimen 9		173
ļ	Figure	26		Idealized Bilinear Stress-Strain Diagram for Steel .	•	174
ļ	Figure	27	-	Shear Stress Distribution and Cross-Sectional Warping Due to Shear Deformation in a Wide Flange Section	-	175
1	Figure	28	. –	Comparison of the Shear Yield Theories With Experimental Data	•	176
-	Figure	29	-	Components of Deflection of a Sandwich Beam Element .	•	177
1	Figure	30 ,	- ′	Proportion of Incremental Shear Carried by the Web and Flange	•	178
1	Figure	31	~	Comparison of the Cyclic Shear Yield Model with Test Specimen 2	•	179
	Figure	32	-	Comparison of the Cyclic Shear Yield Model with Test Specimen 6	•	180
	Figure	33	-	Comparison of the Cyclic Shear Yield Model with Test Specimen 8	•	181
	Figure	34	-	Linear Approximation of the Post-Buckling Brace Behavior	•	182
	Figure	35	<u>-</u>	Acceleration Record for 1.5 Times El Centro N-S Component 1940	•	183
*	Figure	36	-	Acceleration Record for Pacoima Dam 1971	•	184
	Figure	37		Maximum Relative Displacement Due to the 1.5 Times El Centro Base Excitation	•	185
	Figure	38	-	Maximum Story Drift Due to 1.5 Times El Centro Excitation	•	186
	Figure	39	-	Deflected Shape at the End of 8.0 Seconds of the 1.5 Times El Centro Excitation	•	187
	Figure	40	-	Maximum Relative Displacement Due to the Pacoima Dam Excitation	•	188
	Figure	41	-	Maximum Story Drift Due to the Pacoima Dam Excitation	•	189
	Figure	42	-	Deflected Shape at the End of 15.0 Seconds of the Pacoima Dam Excitation	•.	190
				xii		

Page

List of Figures (cont'd)

Page

Figure	43	-,	Time-History of the Roof Displacement of the Moment- Resisting and Eccentrically Braced Frames Due to the Pacoima Dam Excitation	191
Figure	44	-	Components of Braced Frame Deflection	192
Figure	45	-	Maximum Floor Deformations of the Eccentric Elements .	193
Figure	46	-	Time-History Plot of the Eccentric Element During 1.5 Times El Centro Excitation	194
Figure	47	-	Time-History of the Eccentric Element During Pacoima Dam Excitation	195
Figure	48	-	Damping Forces on the Elastic Central Bracing System .	196
Figure	49	-	Location and Free Body of the Test Frame	197
Figure	50	-	General Design of Test Frame 1	198
Figure	51	-	Beam-to-Column Connection Used on Test Frame 1	199
Figure	52	-	Brace-to-Beam Connection Used on Test Frame 1	200
Figure	53	-	General Design of Test Frame 2	201
Figure	54	-	Beam-to-Column Connection Used on Test Frame 2	202
Figure	55	-	Brace-to-Beam Connection Used on Test Frame 2	203
Figure	56	-	Layout of the Test Apparatus	204
Figure	57	-	Photograph of the Key Components of the Lateral Support Frame	205
Figure	58	-	Placement of the SR 4 Strain Gages	206
Figure	59	-	Placement and Deformation Geometry of Clip Gages in Eccentric Elements	207
Figure	60	-	Placement of Clip Gages on the Test Frames	208
Figure	61	-	Placement of Miscellaneous Instrumentation	209
Figure	62	-	Load Program for the Inelastic Cycles of Testing	210
Figure	63	-	Load Program for the Elastic Cycles of Testing	21.1
Figure	64	-	Effect of the Frictional Force on the Force-Deflection Hysteretic Curves	213

xiii

List of Figures (cont'd)

Figure

65	-	Component of Lateral Force Induced by Vertical Load Cells
66	-	Photograph of the Test Frame and Test Facility 214
67	-	Lateral Force - Third Floor Deflection Hysteretic Behavior for the Elastic Cycles at the Start of Test 1 215
68 [.]	-	Lateral Force - Third Floor Deflection Hysteretic Behavior for the Inelastic Cycles of Test Frame 1 216
69	-	Lateral Force - Third Floor Deflection Hysteretic Behavior for the Elastic Cycles After LP 12
70	-	Lateral Force - Third Floor Deflection Hysteretic Behavior for the Elastic Cycles After LP 22 218
71	-	Photograph of the Torn South Eccentric Element of Test Frame 1
72	-	Photograph of Test Frame 1 After Completion of the Test 220
73	-	Lateral Force - First Floor Deflection Hysteretic Behavior for the Inelastic Cycles of Test Frame 1 221
74	-	Lateral Force - Second Floor Deflection Hysteretic Behavior for the Inelastic Cycles of Test Frame 1 222
75	-	Lateral Force - First Floor Deflection Hysteresis Loops for Inelastic Cycles of Test Frame 1 After Correction 223 for Brace Connection Slippage
76	-	Lateral Force - Second Floor Deflection Hysteresis Loops for the Inelastic Cycles of Test Frame 1 After Correction for Brace Connection Slippage
77	-	Lateral Force - Third Floor Deflection Hysteresis Loops for the Inelastic Cycles of Test Frame 1 After Correction for Brace Connection Slippage
78	-	Lateral Force - Third Floor Deflection for the Elastic Cycles After LP 22 After Correction for Brace Connection Slippage
79		Axial Force - Brace Slippage Hysteresis Loops for the First Floor Brace of Test Frame 1
80	-	Photograph of a Typical Yielded Eccentric Element 228.

Lateral Force - Floor Deflection of the First Floor Figure 81 -229 South Eccentric Element of Test Frame 1

Page

Figure 82 -Lateral Force - Floor Deflection of the First Floor Figure 83 -Components of Lateral Deflection for Test Frame 1 . . . 231 Figure 84 -Lateral Force - Third Floor Deflection Hysteretic Figure 85 -Behavior for the Elastic Cycles at the Start of Test 2 233 Figure 86 -Lateral Force - Third Floor Deflection Hysteretic Behavior for the Inelastic Cycles of Test Frame 2 . . . 234 Figure 87 -Figure 88 -Photograph of the Torn Eccentric Element of Test . . . 236 Lateral Force - Third Floor Deflection Hysteretic Figure 89 -Behavior for the Elastic Cycles After LP 26 of Test 2 . 237 Figure 90 -Figure 91 -Lateral Force - First Floor Deflection Hysteretic Behavior for the Inelastic Cycles of Test Frame 2 . . . 239 Figure 92 -Lateral Force - Second Floor Deflection Hysteretic Behavior for the Inelastic Cycles of Test Frame 2 . . . 240 Figure 93 -Lateral Force - Floor Deflection of the First Floor Figure 94 -Lateral Force - Floor Deflection of the First Floor Figure 95 -Photograph of Test Frame 2 After Completion of the Test 243 Figure 96 -Comparison of the Analytical Model with the Third Floor Comparison of the Analytical Model with the Third Floor Figure 97 -

XV

• • • .

. . . .

,

, · · · i.

LIST OF SYMBOLS

	А	- cross-sectional area
	b	- flange width
	d ·	- depth of the wide flange section
	E	- modulus of elasticity
	G	- elastic shear modulus
	Gp	- plastic shear modulus for a web yielding in pure shear
	h	- story height
	1	- moment of inertia of the cross section
	I _f	- moment of inertia of the flange
	I w	- moment of inertia of the web
	К	- lateral stiffness
	М	- bending moment
	^M f	- bending moment of a flange
	Mp	- full plastic moment
	M [*] p	- reduced plastic moment contributed by the flanges
	P	- load applied by the lateral load cell
	Ρ _T	- total corrected lateral force
	Q	- total shear force
	Q _f	- shear force carried by a flange
	Q _w	- shear force carried by the web
	s _f	- shear area of the flange
	s _w	- shear area of the web
	t _f	- thickness of the flange
	t _w	- thickness of the web
	۷ _p	- plastic shear force
	-~	
Prec	edi	xvii

xvii

^w t	- total deflection of a sandwich beam
wb	- partial deflection due to beam bending
₩bf	- deflection due to flange bending
w _s	- partial deflection due to shear
Wst	- deflection due to shear in the flange
[∆] 3	- lateral deflection of the third floor of the test frame
∆P	- correction for the lateral force
് _a	- lateral deflection due to elongation of the brace
δЪ	- lateral deflection due to elongation of the column
^б с	- lateral deflection due to deformation of the eccentric element
ρ	- uniaxial strain hardening ratio
δy	- yield stress in tension
ф.	- beam curvature

xviii

CHAPTER 1. INTRODUCTION

General

Structures which are located in seismic regions must be designed to resist considerable lateral inertial loads. The design of such structures requires a balance between strength, stiffness and energy dissipation. This report describes a new structural system, an eccentric bracing system, which meets the above requirements for earthquake-resistant steel structures. The system employs deliberately large eccentricities between the brace connection and beam-column joint, chosen to assure that the beam yields in shear. It is believed that this is the first application of cyclic shear yielding as the primary energy dissipation mechanism of a structure. The results of this study show that the system is well-suited to earthquake-resistant design.

Any structure which is designed to withstand earthquakes must fulfil two basic criteria. The first is that it must sustain no structural damage and only limited non-structural damage during shakes which may occur at frequent intervals in the life of the structure. This criterion is usually met by assuring that the structure remains elastic and has sufficient stiffness to prevent excessive deflections.

The second criterion is the necessity of preventing a disaster during an extreme, infrequent earthquake. Here the primary concern is to assure that the structure does not collapse or suffer major structural damage. This is accomplished by examining the inelastic force-deflection hysteresis loops of the structure. The area enclosed within these loops is a measure of the ability of the structure to dissipate energy. If the loops are full and do not deteriorate under repeated and reversed loadings, the structure is much more likely to survive a strong quake. Energy dissipation is

-1-

poorer in structures with pinched or deteriorating hysteresis loops. The safety of such structures can be appraised only from a detailed evaluation of the inelastic response of the structure. As a result of the many uncertainties in response evaluations, designers tend to avoid structural systems which exhibit pinched or deteriorating hysteresis loops in favor of other systems with better hysteretic behavior.

Concentrically braced structures are very economical structures with more than enough stiffness to satisfy the first criterion. However, these structures have not been as successful in satisfying the second criterion because they often have strongly pinched hysteresis loops. On the other hand, moment-resisting frames have full, unpinched hysteresis loops but tend to be relatively flexible structures, and sometimes it is uneconomical to develop the desired stiffness in these frames.

It is apparent that the best system for earthquake resistant structures would economically combine the strength and stiffness of a braced steel frame with the excellent energy dissipation of a momentresisting frame. The eccentric bracing system which is described in this report appears to be such a system. While its initial cost in terms of design and connection details may be slightly higher than for a moment-resisting frame, it may more than make up for this in the considerably lighter steel and small weld sizes required.

Background

Historically steel moment-resisting frames have been highly regarded by structural designers for their earthquake-resistant behavior. These structures performed very well during the 1906 San Francisco Earthquake and in other more recent earthquakes. However, the 1972 Managua Earthquake showed that stiff shear walls offer many advantages during a severe shake. Since then a strong interest has developed in stiffer

-2-

structures for earthquake-resistent construction. Since moment-resisting frames tend to be flexible, braced frames are considered as a means of providing increased structural stiffness. Concentrically braced frames can easily provide the needed stiffness, but their cyclic inelastic behavior is questioned by many designers. Hence, there is strong interest in better understanding and improving the performance of braced frame structures.

Reports on a number of studies which investigated the cyclic inelastic behavior of braced frame structures are available in the literature. Many of the findings and conclusions are summarized by Popov, Takanashi, and Roeder [1]. All of these studies confirm that the cyclic inelastic behavior of concentrically braced frames is strongly influenced by the cyclic post-buckling behavior of the individual braces. This brace behavior has been experimentally and analytically studied by a number of investigators [2,3,4,6,7,8] who obtained cyclic axial force-deflection relationships of the type shown in Figure 1. The general behavior, shown in Figure 1, can be classified into several distinct zones. Zone O-A starts with linear elastic shortening of the brace but, because of initial imperfections, becomes increasingly nonlinear as the stability load is approached. Zone A-B has steadily decreasing axial force with increasing axial shortening, because of the large plastic rotation . forming at the center of the brace. The loading is reversed at Point B in Figure 1 (a), so zones B-C and C-D consist of elastic restraightening of the severely deformed brace. Zone D-E consists of inelastic restraightening of the brace, since the tensile, axial force is large enough to form a reversed plastic hinge in the middle of the brace. At point E, the brace is essentially restraightened. Therefore, $P-\Delta$ moments become

-3-

nearly zero and further elongation, zone E-F, is purely a plastic elongation of an axially loaded member. The loading is reversed at point F in Figure 1 (a), and the slope of zone F-G is very similar to the initial slope of zone O-A. Later cycles exhibit the same characteristics as the first cycle, but the compressive buckling loads may be substantially reduced because the brace is not perfectly restraightened after each cycle.

A number of experimental and analytical attempts have been made to translate the inelastic cyclic behavior of an individual brace into the behavior of a braced frame [4,8,9,10,11,12,13,14]. The earliest analytical studies [9,10,11] used variations of the slip model [1] of brace behavior to predict the behavior of braced frames. The later analytical studies [4,8,12] used more accurate mathematical models which simulated more closely the behavior shown in Figure 1. All of the studies produced cyclic inelastic frame behavior which is characterized by strongly pinched hysteresis loops; a typical result is shown in Figure 2. The pinching is caused by the large lateral deflections of the frame, which are necessary to restraighten the brace and regain the brace stiffness after buckling.

Because concentrically braced frames exhibit pinched and deteriorating hysteretic behavior, there is an interest in developing structural bracing systems which exhibit better energy dissipation characteristics. This should be possible, since steel as a material is known to have excellent energy dissipation characteristics. Steel by itself is very ductile and it generates unpinched hysteresis loops with very slow deterioration in strength and stiffness. Steel moment-resisting frames exhibit these same desirable energy dissipation properties [15,16]. Thus, several bracing systems [17,18] have been proposed, which can be designed so

-4-

÷

that the inelastic activity is restricted to bending yield as in momentresisting frames. Since brace buckling is avoided in such designs, desirable energy dissipation characteristics can be achieved. Fujimoto et al [17] tested several frames of the eccentric K-brace type shown in Figure 3(a), and found that they exhibited no pinching of the hysteresis loops. Hisatoku [18] studied several frames of the inverted Y-bracing shown in Figure 3(b) and found that the hysteresis loops could be pinched or full depending upon the length of the vertical strut. The staggered truss system was studied by Gupta [19] and Hanson, Goel and Berg [20]; in this system the center bay is not braced and the plastic behavior is limited to bending of the chords of the center bay. This type of structure may have good hysteretic behavior but it has never been studied experimentally.

Although studies of the behavior of these alternate bracing systems have been limited and incomplete, the results give strong indication that eccentric bracing is a viable alternative to the usual concentric bracing system. This study concentrates on the behavior of eccentrically braced frames. The eccentric bracing concept is employed in diagonally braced frames with deliberately large eccentricities with respect to the beamto-column joint. The behavior of this type of bracing is quite different from the typical concentric bracing where the centerlines of beams, columns, and braces intersect at the same point.

Scope and Objective

The objective of this study is to evaluate thoroughly the eccentric bracing system of the type shown in Figure 4 with particular regard to its applicability in earthquake-resistant design. The proposed system is unique in that the energy dissipation is provided by shear yielding of the eccentric beam element. Since the yield capacity of such an element

-5-

can be determined a priori, the braces can be sized so as to prevent their buckling, thereby eliminating pinched deteriorating hysteresis loops. The best connection details and design parameters for this system are determined from a large number of linear elastic analyses. A detailed experimental study of the inelastic behavior of the key eccentric element is made, and an analytical model for predicting its inelastic behavior is developed. A series of inelastic dynamic analyses are carried out to determine the performance of this structural system and to compare it with other structural systems. Quasi-static cyclic tests are performed on two one-third scale model frames to verify that the structure does perform as predicted in the analysis. The predicted inelastic analyses are shown to be in excellent agreement with the experimental results. Finally, conclusions and design recommendations are given to aid in the design of structures of this type.

-6-

CHAPTER 2. DESIGN AND LINEAR ELASTIC ANALYSES OF THE PROTOTYPE

Design of the Prototype

The selected prototype structure is the square 20 story - 4 bay office building shown in Fig. 5. The bay width is 24 ft (7.3 m) and the story height is 12 ft (3.6 m) for all stories except the first, which is 15 ft (4.6 m). The structure was designed by using the following gravity load specifications:

Dead	load	of	roof .	• •	• • •	•		• •	•	• •	•	•	67	psf	(3.21	kN/m ²)
Dead	load	of	floors	and	inter	ior	par	tit	cion	s.		•	85	psf	(4.07	kN/m ²)
Dead	load	of	curtai	n wal	lls	•		•	•			•	15	psf	(.72	kN∕m ²)
Live	load	of	roof .	• •	, 	•	•••	•	•		•	•	20	psf	(.96	kŊ∕m ²)
Live	load	of	floor.										50	psf	(2.40	kN/m ²)

The earthquake lateral loads of the structure were determined by the 1976 UBC recommendations [21,22]. The natural period of the structure was estimated at approximately 1.24 seconds. It was assumed that the structure rests on a shallow, stiff layer of soil so that the period of the soil is approximately one second and the Soil Interaction Factor is 1.47. This Soil Factor is a new provision to the UBC code. For a structure of this type an Importance Factor of 1.0 is applicable, resulting in an equivalent horizontal acceleration of approximately 7% of gravity. The equivalent acceleration was applied to the dead load plus 25% of the live load to produce a total base shear of 1483 kips (6599 kN). It was assumed that the external bays were braced as shown in Fig. 5(b). The bracing was shifted from the outside bays to the interior bays for the upper levels as shown in Fig. 5(b) to reduce the likelihood of excessively high tensile loads developing in the lower columns [23]. It is quite possible that the bracing would have to be moved to an interior frame or that the

-7-

bracing would have to be confined to a single bay within the frame for architectural reasons. However, this should not cause a problem, since the proposed system is not limited to these design assumptions. The code recommended torsional effect was computed and as a result, the braced frames were designed to carry 52.5% of the total base shear. The design of the frames was essentially controlled by these lateral loads, since the tributary area for the gravity loads of the exterior frames was small.

The eccentrically braced frames were designed by plastic methods, where the force distribution was determined by a lower bound technique, moment balancing [24,25,26]. The key concept to the moment balancing approach is that, if the designer chooses any moment diagram, which satisfies statics and the external loading condition of the structure, and also proportions the structure so that there are enough plastic hinges to form a mechanism, the upper and lower bound plastic theorems are both satisfied. An initial assumption of individual member force and moment distribution is made for the structure. This assumed distribution is based on the desired structural performance and the collapse mechanism. The individual nodes of the structure are then checked for force and moment imbalances, and any nodal imbalance is distributed throughout the structure by a prescribed balancing scheme which depends on the desired collapse mechanism of the structure. Appendix A gives an example of a possible balancing scheme for a 3 story eccentrically braced frame structure. Since members will probably be sized with slightly more strength than required by the final moment diagram, the factored design loads become a lower bound for the actual strength of the structure.

This type of procedure was applied to the factored design loads of the structure. The members were then sized in 5-story increments to

-8-

simplify the design and analysis of the structure. Structures were designed in this way with a number of connection and design details including eccentrically braced frames with moment-resisting beam-tocolumn connections, beams oriented for weak axis bending, bolted beam-tocolumn connections, and several other connection details. The final design had strong axis beam bending and moment-resisting beam-to-column connections. This system was chosen after considerable elastic analysis as the most satisfactory; the other systems were studied and analyzed but the analyses are not included in this report. Unless otherwise specified, all conclusions and results given in this report will apply to the final design.

There are several comments that should be made about this design. The moment-resisting beam-to-column connection details add considerable cost to the design, when compared to bolted connections. However, substantial savings are made by the greatly reduced weight of steel. These savings in weight are realized because of the smaller beam and column sizes. Further, the smaller member sizes result in greatly reduced weld sizes, and the moment resisting connections are not nearly as expensive as the moment-resisting connections of a heavier moment-resisting frame. The beams are smaller because the moment diagram of the beam is in triple or quadruple curvature. The columns are smaller because they are designed by the weak beam-strong column concept, and smaller beam sizes require smaller column sizes. Since the beam is designed as the weak element of the system, the brace must be overdesigned to prevent buckling due to strain hardening or variability in the yield stress of the beam. Although the brace must be overdesigned, it contributes very little to the total weight of steel in the structure. The degree of conservatism to be applied

-9-

to the brace design will be discussed in greater detail later in this report.

The final design of prototype structure is not covered in great detail in this report, because it was a very preliminary design. This design was established without benefit of the analysis and experimental study performed later in this program. These later studies greatly influenced the selection of the final recommended design procedure, hence more detailed design recommendations are given in a later chapter. The design of the interior unbraced frames is not covered in this report; however, they were designed for their share of gravity loads plus minimum lateral loads as required by the Uniform Building Code (UBC).

Linear Elastic Analyses

There are many unusual features in the design of an eccentrically braced structural system, so a substantial program of linear elastic analyses was undertaken after completion of the initial design. This program of analyses was performed to determine which of the alternate designs was most suitable, to further refine the design, and to determine and evaluate the key parameters affecting the elastic behavior of the system. The linear elastic analysis was performed by using the computer program GENFEM3 [27,28]. This program is very suitable for the analysis of structural systems with this geometry. The input data are always input with respect to a local coordinate system. The program also contains provisions for declaring some nodes as "slaves" to the displacement of other "master" nodes. As a result of these features, very complex connection details can be analyzed with relatively simple input and output. Further, substantial changes in the geometry can be made with few input changes, because of the nodal coordinate generation capabilities of the

-10-

program. GENFEM3 has both beam element capabilities for performing overall plane frame analysis of the braced frame structure and plate bending and membrane elements for analyzing local effects such as connection details. The program has one major limitation in that the beam type elements do not include deformability due to shear.

This program was used to perform two separate programs of linear elastic analyses. The first program was an analysis of the overall braced frame, which was performed to study the deflections, member forces, and overall behavior of the frame. The results of the overall analysis were then used to determine boundary conditions for detailed analyses of a subassemblage, which were performed by using the plate membrane and bending elements to model the detailed connection subassemblage. This latter -analysis was used to study alternate connection details.

Overall Plane Frame Analysis

The overall linear elastic plane frame analyses were performed on a frame as shown in Fig. 5(b). All of these analyses were performed with the full design gravity loads and the design earthquake loads applied. Then various alternative initial designs were elastically analyzed under the same loading conditions. This overall elastic analysis program was very useful in refining the design of the structural system. This program was also instrumental in the elimination of design alternatives which employed bolted beam-to-column connections. These alternatives were dropped from consideration because of the high shear force, which is predicted in the eccentric element. Careful evaluation of possible bolted beam-to-column connection details indicated that it was not possible to develop this high shear force in the eccentric element with any of the bolted beam-to-column connections commonly used in steel

-11-

structures. The shear force is so large in the eccentric elements that the web would fail in bearing on the bolt, unless a very large number of bolts were inserted. It was not possible to insert such a large number of bolts into a single row while maintaining the minimum bolt spacing. If multirows of bolts are used, the danger of connection failure is greatly increased, because of the large deformations which must occur in the eccentric element during yielding. Therefore, the alternative designs employing bolted beam-to-column connections were rejected for this eccentric bracing system.

The alternatives with moment-resisting beam-to-column connections were carried one step further. A number of separate analyses were made where the loads and member sizes were held fixed while only the eccentricity was varied. This series of analyses led to several conclusions. First, the eccentricity chosen affected the predicted stress levels and the design of the frame. The lateral loads were held constant for all eccentricities, but the UBC design earthquake loads were expected to decrease with increasing eccentricity due to the increasing period. This reduction in lateral loads would make the stress level less sensitive to variation in eccentricity, so the actual UBC design should be less sensitive to variation in eccentricity. Secondly, the elastic floor deformation increased with increasing eccentricity. At eccentricities in excess of 5 ft (1.52 m) the elastic floor deflection was expected to exceed the deflection allowable by the Uniform Building Code.

The third and most surprising observation concerns the variation of lateral stiffness of the frame. For this comparison, the lateral stiffness of the braced frame was defined as the total base shear divided by the lateral deflection of a given point at the top of the structure.

-12-

Since the loads were held constant, the total base shear was the same for all eccentricities. The stiffness terms were then normalized by dividing through by the stiffness of a concentrically braced frame (i.e. eccentricity equals zero). The plot of this variation for the acceptable alternative design is shown in Figure 6. At an eccentricity of zero, the lateral stiffness is that of a concentrically braced frame. At an eccentricity of 12.0 ft, the brace is standing vertically, and the stiffness is essentially the stiffness of a moment-resisting frame. The really surprising result is that the stiffness increases for small to moderate (less than 4 ft) eccentricities. This slight increase means that the eccentric system under discussion is not a stiffness reduction or "soft story" scheme, since the stiffness remains relatively constant even for moderately large eccentricities of up to 4 ft (1.22 m). This stable stiffness retention is explained by the geometry of the system.

For a simple explanation of the stability of the lateral stiffness consider the stiffness provided by the brace in a single story braced frame, which is derived by computing the horizontal load necessary to produce a unit horizontal displacement when all other displacements are fixed. This computation is shown in Fig. 7 and

$$K = \frac{AE}{h} \cos^2 \theta \sin \theta$$
 (1)

In the plane frame analysis, the member sizes and all geometry except the eccentricity were held constant, so A, E, and h are constant and K is a function of θ . Figure 8 is a plot of the variation in brace stiffness as a function of θ . In the prototype frame, the minimum value of θ is approximately 26°.6. The curve in Figure 8 for $\theta > 26°.6$ exhibits very similar characteristics to the curve of Figure 6. The stiffness

-13-

provided by the brace is very stable over a range of small to moderate eccentricities. Further, this will generally be true for other structures using this bracing system, since the ratio of the bay width to story height falls into a relatively well-defined range for most structures. The stiffness is not likely to be stable for other bracing systems, such as the eccentric K brace, since the minimum angle is likely to be in the range of 40° to 55°. Minimum angles in this range fall on the sharply dropping portion of the stiffness curve.

A second factor in the increase in stiffness is the contribution by the rotational restraint of the beams. Figure 9(a) shows a comparison of the lateral stiffness of two moment-resisting frames. If the rotational resistance of the beam is infinite, the lateral stiffness of the frame is 4 times higher than if the rotational restraint is zero. In the eccentrically braced frame system, the eccentricity induces an extra constraint upon the deflected shape of the beam, which is now in triple or quadruple curvature as opposed to double curvature, and the rotational restraint of the beam ends is increased. The added constraint, simulated by the springs in Figure 9(b), together with the increased rotational resistance of the beams, increases the lateral stiffness for small to moderate values of eccentricity.

In summary, the stiffness of the eccentric bracing system is stable up to moderate eccentricities (to approximately 4 ft for the prototype structure). The stability can be attributed to two geometric effects. (a) The lateral stiffness of the brace is stable or increasing over the same range of eccentricities. (b) The eccentric brace adds constraints to the deflected shape of the beam, and the lateral stiffness due to the moment-resisting connections is increased accordingly.

-14-
Detailed Linear Elastic Analysis

After completion of the elastic plane frame analysis, the remaining designs were analyzed in more detail to evaluate the local effects and to refine further the design of the connection. These analyses were performed on subassemblages taken from the structure as shown in Fig. 10. The subassemblage was modeled as a series of plate bending and membrane elements. The forces and bending moments acting at the interfaces of the subassemblages were determined from the overall linear elastic plane frame analysis. It was also assumed that plane sections remain plane at these interfaces. These analyses were performed on subassemblages with the beam oriented for bending in the strong axis and weak axis. The eccentricities were varied from 2 to 4.5 ft (0.61 to 1.37 m), and the effectiveness of stiffener plates, doubler plates, and bolted gusset plates was considered.

Finally, the design with strong axis beam bending and welded momentresisting beam-to-column connections was chosen because it exhibited the most promising yield and energy dissipation characteristics while still utilizing practical connection details. The design with weak axis bending resulted in a system which did not exhibit very promising energy dissipation, so it was rejected.

A further result was that a single stiffener plate is necessary at the brace-to-beam connection of the subassemblage to assure a uniform distribution of shear stress in the web of the eccentric beam element. The stiffener also prevents the build-up of high stress concentrations at the brace-to-beam connection, and the possibility of local yielding or web crippling is eliminated. The effect of other stiffeners in the beamto-column and brace-to-beam connections were analyzed, but the analyses did not appear to indicate a strong consistent justification for their use.

-15-

The elastic analyses showed that the shear stress was very high in the web of the beam. For wide flange sections with unreinforced webs, the shear stress was high enough that shear yielding of the web would necessarily be the primary energy dissipation mechanism. Since the cyclic inelastic behavior of wide flange beams was not well understood, possible methods of eliminating this shear yielding were studied. It was found that increasing the eccentricity increased the magnitude of bending stresses as compared to shear stresses; but shear yielding of the web could be eliminated only when a substantial doubler plate was added to the web. To eliminate shear yielding completely, the thickness of the doubler plate must be of the order of the thickness of the web. The doubler plates would be quite thick and shear stress would still be high. Hence, it was felt that the inelastic behavior of the eccentric elements required a great deal of study to evaluate the inelastic performance of beams which yield in shear or have large doubler plates.

Summary

In this chapter, the initial design of the prototype structure was discussed. The design was considered for a variety of design details. The alternates were then analyzed as plane frame structures, and it was discovered that the elastic system under discussion is not a "soft story" or stiffness reduction scheme. More detailed analyses were then performed on subassemblages of the braced structure. These were helpful in evaluating the alternate designs and determining the best. The alternative selected was a frame with strong axis beam bending, welded moment-resisting beam-to-column connections, and a centerline eccentricity of approximately 3.5 ft (1.07 m). This type of system dissipated energy by cyclic shear yielding of the web. At least one beam stiffener was required to develop

-16-

the shear stress in the web of the eccentric element, and although doubler plates reduced the shear stress level in the eccentric beam, they had to be very thick.

ì

ł

ł

ł

1 1

1

~

1 . .

. 1 ł

ł . 1

i |

1 ł

ł 1

:

CHAPTER 3. CYCLIC SHEAR OF WIDE FLANGE BEAMS

General

The general design and linear elastic analyses of the prototype eccentrically braced frame were discussed in the preceding chapter. One of the major findings of the elastic analysis is that the primary yield-. ing of the system will be shear yielding of the web unless thick doubler plates are added to the web of the eccentric beam element. However, neither the cyclic inelastic behavior of beams which yield in shear nor the cyclic inelastic behavior of beams with thick doubler plates is well understood. The only known experiments on wide flange beams yielding in shear have been reported by Newmark and Hall [29]. Their tests were performed by monotonically increasing the load on beams, which yield in shear, to determine if the beams would develop their full plastic moment, It was found that the full plastic moment was attained after con-M_n. siderable strain hardening due to shear yielding. These beams, which yielded in shear, can be thought of as exhibiting 3 separate forcedeflection behavior zones. The beam is very stiff in the first zone, because the beam is fully elastic. The second zone is a zone of intermediate stiffness due to the elastic flanges and plastic web. The third zone is a very soft zone, because both the web and flanges are fully plastic. Newmark and Hall presented an empirical equation for estimating the stiffness of the intermediate shear yielding zone. These tests indicate that wide flange beams which yield in shear perform well under monotonic loading, but they give no information about the cyclic inelastic behavior of beams which yield in shear.

The cyclic behavior of a panel zone with thick doubler plates has been reported by Popov, Bertero and Chandramouli [30]. A number of beam-

Preceding Page Blank

column subassemblages of moment-resisting frames with doubler plates in the connection panel zone of the column were tested under cyclic loads in this study. It was found that the doubler plates performed well in these tests except for one partial failure due to an inadequate weld. These results are applicable to the eccentric elements, but at least one major difference must be expected. This difference is that the eccentric elements of the prototype design will undergo much larger inelastic deformations than the panel zone of a moment-resisting frame, because the eccentric element is the primary energy dissipation mechanism. A program of testing was undertaken to simulate the cyclic behavior of these eccentric elements; the test specimens were 1/3 scale models of these elements of the prototype. This program of testing was undertaken to answer several questions. First, the tests would determine the effectiveness of shear yielding of the web of a wide flange as an energy dissipation mechanism. Secondly, the program would resolve any question of whether the doubler plates were capable of withstanding the required cyclic inelastic deformations. Finally, several specimens, which yielded in bending, were tested so that the behavior of shear yielding beams could be compared with the better understood cyclic behavior of beams yielding in bending.

The test setup, procedure, and results of these tests are discussed in this chapter. The results indicate that shear yielding of the web is a very desirable energy dissipation mechanism for the eccentric beam element. This type of yielding is desirable primarily because of the great stability it exhibits. The development of an analytical model using the results of these tests, is also discussed.

Test Set up

Nine specimens were fabricated from a W6x12 section of A36 steel. The actual material properties and residual stresses of the section are

-20-

shown in Appendix B. The W 6x12 section was chosen as the closest standard section to a 1/3 scale model of the W 16x64 section used for the beams of the lowest stories of the prototype.

These specimens were tested by quasi-statically cycling the center line load on a simply supported beam. A simply supported beam was chosen because the simple supports simulate the inflection point which must occur at some midpoint of each eccentric element, and because the center line moment simulates the high bending moment at the face of the column in beam-to-column connections. The specimens were tested on a 400 kip Baldwin hydraulic testing machine. The quasi-static cyclic effect was simulated by loading the specimen until achieving the desired deflection, unloading the specimen, turning the specimen upside-down, and again loading in the opposite direction until the reversed deflection is achieved. The centerline deflection of the beam was continuously recorded by a Honeywell XY Recorder connected to 2 Daytronic LVDTs (Linear Variable Displacement Transducers). The readings of these LVDTs were averaged to eliminate any torsional movement of the beam. A photogrammetric grid was applied to the web [15]. This was accomplished by drawing a grid of 0.75 in (18.7 mm) squares on the web of the beam with a 1 mm ink drawing pen while the beam was undeformed. Photographs were taken of the deformed grid at various intervals of the test. The photographs were taken on glass plates which could then be compared to a reference plate, and the grid displacements could then be determined to reasonable accuracy. These displacements serve as a check of the LVDT readings and permit the measurement of local deformations within the web. The remainder of the specimen was whitewashed to better exhibit yielding of the metal. Figure 11 presents two photographs of this test setup and demonstrates the simulated cyclic effect which was produced by turning the specimen upside-down.

-21-

Design of the Beam Specimens

Nine specimens were designed and tested. The purpose of these test specimens was to evaluate the relative performance of beams which vield in shear during cyclic loading. The first six specimens were designed prior to any testing, and the last three were modified in response to questions raised in the first six tests. The specimens were designed by three design options, which were intended to simulate various boundary conditions and connection details. These options are shown in Fig. 12. Option A consists of two beam segments with flanges and the web welded to a center plate with full penetration welds. The connection of the beam segments to the center plate simulates the connection of an eccentric beam element to the face of the column. A tail is left on the beam beyond the simple supports to reduce the possibility of local buckling problems and to provide warping restraint at the simple supports. Option B also has a tail extending beyond the simple supports. However, the specimen is made up of one beam segment with a stiffener plate welded into the centerline position. This detail simulates the brace-to-beam connection, since the beam is continuous and the moment is high at this location. Option C does not have a tail extending beyond the simple support. The supports are formed by a single plate, which is welded to the beam segment by a full penetration weld along the web. The flanges are not connected to the end plate, and so, these end connections simulate the connections which would result if the eccentric beam element were connected to the column by a bolted, non-moment-resisting connection. As a result of this detail, the cross section may warp at this interface, because of different shear strains in the web from those in the flanges.

The primary variable of the design options was the half-span dimension, B, which had values of 6 and 12 in (152 and 304 mm). The

-22-

smaller dimension of 6 in represented the 1/3 scale model of one-half the eccentric element of the prototype. Beam specimens of this length were ordinarily expected to yield primarily in shear of the web. The larger dimension of 12 in (304 mm) was chosen, because it was large enough to assure that the beam yielded in bending before the web yielded in shear. Doubler plates were applied to the webs of Specimens 4 and 5, to check the performance of the plates and to reduce the importance of shear yielding while increasing the significance of bending yield. The latter occurs because the doubler plate greatly increases the shear area of the web. Cover plates were added to the flanges of Specimen 8, to increase the moment of inertia and section modulus of the cross section. This reduces the significance of bending yielding and increases the significance of shear yielding. Thus Specimen 8 was designed primarily as a shear yielding specimen. Specimen 7 had stiffeners added to the web and flanges. These stiffeners were added to prevent flange buckling, and were not expected to affect the balance between bending and shear yielding.

The design of the beam specimens is summarized in Figure 12 and Table 1. The actual yielding of the specimens is a complex problem since each beam is loaded under combined bending and shear. However, Specimens 1, 2, 6, 8 and 9 were designed to yield primarily in shear. Specimens 3, 4 and 7 were designed to yield primarily in bending. Specimen 5 with its doubler plate was proportioned so that yielding in bending and shear occurred at approximately the same loading. From this series of experiments, it is possible to evaluate the relative merits of various types of yielding by comparing results from various test specimens. The tests also permitted a determination of the effectiveness of doubler plates and alternate connection details. Thus, the tests enabled a study to

-23-

be made of a wide range of related problems even though the number of tests was small and the tests were fairly simple.

Beam Specimen 1

Specimen 1 had a 6 in (152 mm) half span and was designed by Option A with no doubler plates. As a result, it was expected to yield primarily in shear of the web. This specimen was tested basically under monotonic loading, with cycles later added after obtaining the initial results. The monotonic load was applied until a deflection of 1.2 in (27.9 mm) was achieved; a plot of the monotonic behavior is shown in Fig. 13. This specimen produced the same general characteristics reported by Newmark and Hall [29] in that there were three distinct zones of force-deflection behavior and the full plastic moment was achieved only after considerable plastic shear deflection had occurred. Strain gages were mounted on the web of this specimen in an effort to predict the start of web buckling. However, these gages were ineffective because the specimen exhibited the characteristics of an initially imperfect specimen and had no apparent bifurcation of equilibrium. Nevertheless, a visible buckle in the web was observed at 0.6 in (15 mm) center line deflection, but the web buckling did not cause a decrease in load due to the formation of a diagonal tension field. Yielding of the flange was noted at approximately 0.4 inches (10 mm).

After monotonically loading the specimen, several cycles of loading were applied to it. The cyclic behavior of Specimen 1 is shown in Fig. 14. Two small cycles were applied from the deformed configuration after the monotonic loading. These two cycles are essentially repetitive with no deterioration in stiffness despite the severe deformation. Then the loading was reversed to a very large negative displacement, -1.78 in

-24-

(-45 mm). During this reversal the web buckle from the monotonic cycle restraightened itself and another severe buckle in the opposite direction formed due to the displacement reversal. The load remained stable during this transition, because the diagonal tension field again formed after the web buckled, but a very slight decrease in strength began after the specimen was deflected through -1 in (25 mm). After the displacement of -1.78 in (-45 mm) the loading was reversed, and the web buckle restraight-ened again. However, the web buckle formed more quickly and severely for this cycle, because of the very severe strain history. The load began to drop off rapidly and the test was stopped at a deflection of 0.7 in (17.8 mm). The specimen had probably the most severe accumulation of plastic strain of all 9 specimens, but it did not fail. The total energy dissipated by Specimen 1 was 816.6 in-kips (92.3 kN-m).

In the initial monotonic portion of the test, the force-deflection curve first exhibited non-linear behavior at a load of approximately 80 kips (356 kN). Since the yield point in shear is likely to be the same in either direction of loading, this results in a range of approximately 160 kips (712 kN) for the linear elastic zone of the virgin curve. The range of the linear elastic zone is approximately 190 kips during the first cyclic reversal between LP1 and LP3. This represents a significant growth in the linear elastic zone during monotonic loading. This growth indicates that the monotonic portion of the test obeyed an isotropic hardening model [31], since the yield surface grew significantly larger during the strain hardening. Figure 14 also indicates that the elastic zone did not exhibit any visible growth during the later cycles between LP3 and LP13, and so these later cycles exhibited kinematic hardening, which permits translation but no growth in the yield surface [31].

-25-

During the monotonic portion of Test 1, three zones of behavior were noted in Fig. 13; a very stiff linear elastic zone; a large transitional zone of intermediate stiffness due to shear yielding of the web; and, finally, a very flat zone due to the formation of a plastic hinge in flexure. The cyclic behavior after LPI did not exhibit this translational shear yielding zone. The force-deflection curves flattened very quickly after leaving the linear elastic zone, and shear yielding is not apparent in the force-deflection hysteretic curves of the cycles after LPI. This phenomenon also adds credibility to the idea that the monotonic loading was strongly influenced by isotropic hardening, since a growth in the size of the yield surface would raise the yield point in shear.

A photograph of the photogrammetric grid is shown in Fig. 15, and this indicates that the yield behavior of the specimen was dominated by shear yielding. Note that the elements in the center of the rectangular grid have deformed into nearly perfect parallelograms, which are associated with pure shear strain. The grid elements near the centerline of the beam and the beam supports do not exhibit quite the same behavior. At these interfaces, the grid also indicates shear strain, since the right angles of the grid change slightly, but the magnitude of the shear strain becomes increasingly smaller closer to these interface lines. The reduction in shear strain is caused by the warping restraint provided at these interfaces. The beam center line is a line of symmetry in geometry and loading, and the beam supports have a tail section extending beyond the support. Therefore, warping cannot occur on either of these lines, so shear strain must be constant along these interfaces. The constant shear strain requires that the flanges must also deform in shear, and the shear area is effectively increased near these interfaces. In the central

-26-

portion of the grid, there is no such restraint against warping due to shear deformation; the web carries nearly all of the shear and experiences much larger shear strains.

Beam Specimen 2

Specimen 2 was of identical design to Specimen 1, but the loading was purely cyclic. The cyclic force-deflection hysteretic curves for Specimen 2 are shown in Fig. 16. This specimen was first subjected to three cycles of gradually increasing deflections to one side of the origin, then the next cycles were larger and were to both sides of the origin. Web buckling became very apparent during this fourth cycle, but the load on the specimen steadily increased, because a cyclic diagonal tension field formed during cyclic loading. The test was terminated at a deflection of -1.55 in (-39.4 mm), because it was believed that little useful information could be obtained from further cycles. There was no deterioration in strength or stiffness and no specimen failure occurred. The total energy dissipated by this specimen was 554 in-kips (62.6 kN-m).

During the early cycles of this test, there was a very marked growth in the linear elastic zone due to isotropic strain hardening, but the later cycles exhibited relatively constant size for the elastic zone; this is typical of kinematic strain hardening. The slopes of the inelastic parts of the force-deflection curves were generally much larger for the early cycles than they were for the later cycles. This indicates that the intermediate shear yielding zone again became less visible on the force-deflection curves after substantial strain hardening had occurred. The photogrammetric grid indicated the same shear deformation and warping resistance behavior as noted for Specimen 1.

-27-

Beam Specimen 3

Specimen 3 was of the same design as Specimens 1 and 2 except that it had a 12 in (305 mm) half span. Since the span length was doubled, the specimen was designed so that shear yielding was less prevalent and deflections could be doubled. Figure 17 shows the cyclic force-deflection relationship for Specimen 3. The first two cycles were between + 0.4 in (+ 10 mm). They generated very repetitive force-deflection curves, but significant flange buckling was already noted during these two cycles. These buckles formed in the compression flange and restraightened when the flange was in tension. The specimen was then loaded until it reached a deflection of 1.25 in (32 mm) at load point LP9. Very large flange buckles were observed during this cycle, and a slight decrease in load was noted just before reaching the cycle reversal point at LP9. The load was reversed, and the displacement was cycled to -1.5 in (-38 mm) at LPI1. During this cycle, it was observed that the buckled tensile flange was not restraightening properly, and the load dropped off sharply due to specimen failure at LP11. A tear was noted propagating across the flange and up the web along a line approximately 0.5 in (13 mm) from the center plate. The energy dissipated for this specimen was 497 in-kips (56 kN-m) which is only 61% of the energy dissipated by Specimen 1. The maximum deflection of 1.5 inches is 83% of the maximum deflection obtained by Specimen 1.

The size of the linear elastic zone appeared to grow slightly in the early cycles, but the growth did not appear to be as significant as the growth noted for Specimens 1 and 2. The rectangular grid did not exhibit the parallelograms noted in Specimens 1 and 2. Therefore, shear yielding of the web was not significant in this test.

-28-

Beam Specimen 4

Specimen 4 was the same design as Specimen 3 except that it had an 0.1875 in (4.8 mm) doubler plate applied to the web of the beam. This specimen was designed to yield only in flexure, because of the long span and doubler plate. Specimen 4 was tested with the same cyclic displacement program as Specimen 3. The cyclic force-deflection hysteretic curves for Specimen 4 are shown in Fig. 18. The first two cycles exhibited the same repetitive hysteresis loops and flange buckling behavior as noted for Specimen 3 except that the loads were higher due to the increased section modulus. On the third cycle, the specimen was loaded until it reached a deflection of 1.25 in (32 mm); very large flange buckles and a decrease in load were noted during this half cycle. Loading reversal was made at LP9, and it was noted that the buckled tension flange was not restraightening properly. The load began to drop off slowly at a deflection of 0.2 in (5 mm), and very small hairline cracks were seen forming in the weld connecting the doubler plate to the beam. The formation of these cracks was accompanied by soft "pinging" sounds and buckling type distortion between the web and doubler plate. This cycle continued until the load dropped off suddenly at -0.95 in (24 mm) to specimen failure. Examination of the test specimen showed that a tearing type failure had occurred at the same location as Specimen 3. The failure of Specimen 4 occurred well before attaining the deflection at which Specimen 3 failed. However, its load carrying capacity was 28% larger. The energy dissipated by this specimen was 570 in-kips (67.5 kN-m), which is 70% of the energy dissipated by Specimen 1, and the maximum deflection was only 69% of the maximum deflection of Specimen 1.

-29-

Examination of the photogrammetric data verified that shear yielding of the web was of little importance to the overall specimen behavior, because the doubler plate prevented excess shear deformation. However, there was some evidence that the doubler plate did not perform well in this test. At the end of the test, the whitewash on the doubler plate was virtually unmarred, whereas the whitewash on the web was cracked and peeled. This clearly showed that there was no yielding in the doubler plate, while the web had experienced yielding. The web and the doubler plate were not deforming together. This is known because of the inconsistency in yield behavior and the cracks in the weld of the doubler plate. This cracking in the weld of the doubler plate has also been observed in doubler plates applied to the panel zones of beam-column subassemblages [30].

Beam Specimen 5

Specimen 5 was designed similar to Specimens 1 and 2 except that it had a 0.1875 in (4.8 mm) doubler plate welded to the web. This specimen was designed so that plastic shear deformation of the web was less significant than for Specimens 1 and 2 but more significant than for Specimens 3 and 4. The cyclic force-deflection behavior of Specimen 5 is shown in Fig. 19. The first one and one-half cycles of loading were between deflections of \pm 0.125 in (\pm 3.1 mm). After these one and one half cycles, the specimen was turned over, and the load was applied in the opposite direction. However, the load dropped off suddenly while the beam was behaving elastically. This sudden drop in load was accompanied by a loud noise. The specimen was then unloaded to zero load at LP6. Examination of the specimen revealed that a number of fine cracks had formed in the weld around the doubler plate. It was suspected that the weld might be defective, so the test was stopped, and the specimen was returned to the shop. The weld metal was gouged out and inspected for possible

-30-

defects, but no weld defects were found. Therefore, the doubler plates were rewelded with full penetration groove welds, and a fillet weld was extended over the groove weld and the doubler to provide added strength to the weld. The test was restarted at LP6. Then the specimen was cycled to -0.125 in (-3.1 mm) at LP7 and 0.125 in (3.1 mm) at LP9. The beam exhibited increased stiffness during the cycle, which can be attributed to greater compliance between the web and doubler plate. The next cycle varied between deflections of -0.4 in (-10 mm) at LP11 and 0.4 in (10 mm) at LP13. The deflection was then reversed to a deflection of -1.16 in (-29.5 mm) at LP16. All cycles up to LP16 exhibited very stable repetitive behavior with no deteriorate rapidly after the load was 'reversed from LP16 and the deflection passed through zero. A ductile tearing type failure was noted between the doubler plate and the web, see Figure 20. The test was stopped at a deflection of 0.72 in (18 mm).

In the early cycles up to LP13, a very significant growth in the strength of the specimen and in the size of the linear elastic zone was noted for each cycle. Much of this growth must be attributed to isotropic strain hardening during these early cycles; however, a significant portion which occurred after LP6, must be attributed to increased compatibility between the web and doubler plate, which was caused by the increased weld size. The performance of the doubler plate in the test indicated that it would be very unlikely that doubler plates would perform satisfactorily on the eccentric elements of the prototype bracing system. The doubler plates greatly increased the strength of the beam, but the doubler plate and its welds were not capable of withstanding the large inelastic deflections necessary in this system.

-31-

An examination of the photogrammetric data shows that this specimen exhibited evidence of shear yielding during the test. However, the deflections due to shear yielding were not nearly as great as for Specimens 1 and 2, since the photogrammetric grid did not show the sharp parallelograms noted for Tests 1 and 2. Shear yielding is also apparent in Fig. 19 for the early cycles. For cycles up to LP13, the slope of the inelastic zone was quite steep as was typical of the shear yielding zone. After LP13, the shear yielding zone is not apparent in Fig. 19, because there is a very rapid transition between the linear elastic zone and the very flat zone. The energy dissipated by this specimen was 839 in-kips (94.8 kN-m). This is 103% of the energy dissipated by Specimen 1 and 169% of the energy dissipated by the increased strength, since the deflections attained by the specimen were small compared to Specimen 1.

Beam Specimen 6

Specimen 6 was designed to be identical to Specimens 1 and 2. Its inelastic behavior was dominated by shear yielding of the web. Since the span length was 1/2 the span length of Specimens 3 and 4, the loading program for the earlier cycles was taken as 1/2 the displacements applied to Test 3 and 4. Later cycles were taken to deflections greater than those attained for Specimens 3 and 4. No failure resulted from this test. The experiment was terminated because little useful information on shear yielding could be obtained by further cycling. The total energy dissipated by this specimen was 624 in-kips (70.6 kN-m). The force-deflection hysteresis is shown in Fig. 21.

A detailed description of this test is not given, because the results are essentially identical to Tests 1 and 2. The inelastic behavior was dominated by shear yielding. Shear yielding, web buckling, and cyclic

-32-

diagonal tension formed with no pinching of hysteresis loops or degradation in strength or stiffness. The early cycles up to LP9 exhibited a steady growth in the linear elastic zone due to isotropic hardening. The cycles after LP9 showed no significant growth in this zone, which in general is typical of kinematic hardening. The key conclusion which can be drawn from this test, is that the shear yield energy dissipation mechanism of this specimen was much more stable than the bending yield mechanism of Tests 3 and 4. This stable behavior can be attributed to the restraint provided by the elastic flanges to the yielded and buckled web. This restraint is seen as the cyclic diagonal tension field. Beam Specimen 7

Specimen 7 was designed using Option B with a half span dimension of 12 in (305 mm). It also had 2 pairs of 0.25 in (6.4 mm) stiffeners spaced 2.5 in (63.5 mm) on center on each side of the center plate; no doubler plates were provided. The additional stiffeners were added to reduce the extreme flange buckling noted in Tests 3 and 4 and to delay the premature failure which resulted. The stiffeners were placed at the predicted location of the peak of the wave forms due to flange buckling. The half wave lengths were determined using equation 6.21 of the ASCE Manual 41 [26] and observations of Specimens 3 and 4.

The cyclic force-deflection relationship for this specimen is shown in Fig. 22. The early cycles of loading were of identical displacement to those applied to Specimens 3 and 4. The first two cycles had very repetitive hysteresis loops with force levels nearly identical to those obtained for Specimen 3; however, no visually observable flange buckles occurredduring these two cycles. The specimen was then deflected to approximately 1.25 in (32 mm) at LP10. During this half cycle flange

-33-

buckling was observed, but the amplitude and wave length of these buckles were much smaller than those observed earlier in Specimens 3 and 4. Thus, the stiffeners forced the flange buckling to exhibit a higher mode effect. The load was then reversed, and the deflection was increased 0.8 in and 0.4 in (20 and 10 mm) beyond the failure points for Specimen 4 and 3, respectively. The flange buckling becomes more severe throughout this half cycle, and at a deflection of -1.7 in (-43 mm) the load dropped off sharply because of the severe flange buckling. The specimen was then carefully examined and no crack or failure could be detected. Therefore, the specimen was unloaded and reversed up to the deflection of 0.72 in (18 mm) with no loss in strength. However, at LP16 the load dropped off very sharply to LP16A, and the test was stopped. The sharp drop in loading was caused by a tearing failure across the tensile flange and up the web. This failure is typical of the failures of Specimens 3, 4 and 7, and is shown in the photograph of Fig. 23. The wave length of the flange buckles was approximately one-half the wave length observed in Tests 3 and 4.

The photogrammetric data verified that this specimen was only minimally affected by shear yielding. The specimen attained much larger deflections and energy dissipation than Specimens 3 and 4, because of the delay in failure caused by the added stiffeners which restricted flange buckling and assured more ductile behavior. However, the added cost of these stiffeners cannot be justified since the energy dissipation and maximum deflection of this specimen were nearly identical to Specimen 1, which had a shorter span and no added stiffeners. The total energy dissipated was 788 in-kips (89.0 kN-m) which was 96% and 159% of that dissipated by Specimens 1 and 3, respectively.

-34-

Beam Specimen 8

Specimen 8 was designed by Option B and had a 12 in (305 mm) half span and four 0.375 in x 1.25 in (9.5 mm x 31.8 mm) cover plates attached to the flange and web by 0.1875 in (4.8 mm) fillet welds. This specimen was also designed after observing the results of the first 6 tests. It was noted that Specimens 1, 2, and 6 which yielded in shear, generally exhibited more desirable behavior. They were superior because they withstood larger deflections, exhibited more stable post buckling strength with no failure, and dissipated more energy. Therefore, Specimen 8 was also designed to yield primarily in shear. This was accomplished by adding cover plates of sufficient size to raise the plastic moment enough to develop shear yielding of the web. As a result of this design, Specimen 8 was strongly influenced by plastic shear deformations but not as strongly as were Specimens 1, 2 and 6.

The load program for the early cycles was identical to that experienced by Specimens 3, 4, and 7. The cyclic force-deflection behavior of Specimen 8 is shown in Fig. 24. The first two cycles exhibited repetitive hysteresis loops with a slight growth in the linear elastic zone due to strain hardening. Web buckling was observed in these cycles but no flange buckling occurred. The deflection was increased to 1.2 in (30.5 mm) at LP11 and then reversed reaching a deflection of -1.9 in (-48 mm) at LP14. At LP14, the specimen had been deflected beyond the point of failure of Specimens 3 and 4 and the point of sharp drop in loading due to flange buckling in Specimen 7. The loading was reversed to a deflection of 2.7 in (69 mm) at LP17. This deflection level is well beyond the point of failure for all flexural yield specimens (Specimens 3, 4 and 7). However, Specimen 8 experienced no failure or loss in strength or stiffness. The test was

-35-

stopped at this point because little information on cyclic shear yielding could be attained by further testing. At the conclusion of the test, the specimen was still in very good condition.

The photogrammetric data indicated the yield mechanism was primarily shear yielding of the web because the deformed grid displayed the classic parallelogram shapes with warping restraint noted for Specimens 1, 2 and The maximum deflections attained by this specimen were in the order 6. of twice the maximum values of Specimens 1, 2 and 6. This doubling of maximum deflections was anticipated but not achieved for the bending yield specimens (3, 4 and 7), and this again emphasizes the very stable behavior of the shear yielding beams (Specimens 1, 2, 6 and 8). The beams which yielded in shear, performed well and attained larger deflections despite yielding and buckling of the web because of the cyclic diagonal tension field which was provided by the flanges. The beams which yielded in bending, experienced flange yielding and buckling, but the beam performance was not very stable, because the web provides no restraint to the buckled flanges. The total energy dissipation of Specimen 8 was 1162 in-kips (131 kN-m), which was 234% of that dissipated by Specimen 3.

Beam Specimen 9

Specimen 9 was the only specimen designed by Option C. It had a 6 in (152.4 mm) half span with no tail left on the beam for warping resistance at the simple supports and with no flange connection to the end plates. This specimen was designed to yield in shear, but the design was to provide added insight into the desirability of warping resistance and flange restraint, upon the cyclic behavior of beams which yield in shear. The question is significant, because eccentric elements with a bolted beam-to-column connection would lack the warping resistance and flange restraint at the bolted connection.

-36-

The cyclic force-deflection hysteresis loops for the specimen are shown in Fig. 25. The first cycles were taken at one half the displacements used in cycling the bending yield specimens (3, 4, and 7). The first two cycles were between deflections of \pm 0.2 in (\pm 5.1 mm). These cycles show very repetitive hysteresis loops, but the stiffness of the shear yielding zone is much smaller than that obtained in Specimens 1, 2 and 6. This loss in stiffness can be seen by comparing the slope of the elastic portions of these early cycles of Fig. 25 with the comparable slopes in Figs. 16 and 21. This loss in stiffness can be attributed to the lack of warping restraint at the simple supports in Specimen 9. The flanges are not connected to the end plates or a beam tail, and so the shear strain is not uniformly distributed at the simple supports. Therefore, cross-sectional warping takes place.

The next cycles were between \pm 0.6 in (\pm 15 mm). During these cycles, considerable twisting of the flanges was observed because of the lack of flange restraint. However, these cycles still exhibit repetitive behavior with no deterioration in strength. The deflection was then reversed to -0.9 in (-22.5 mm) at LP15. The web buckling and twisting of flanges was very severe at this point, and a slight decrease in strength had started to occur. The load was reversed until a deflection of 1.4 in (35 mm) was attained at LP18. During this half cycle, web buckling and flange twisting became steadily worse, and the strength began to drop off slowly after a deflection of 0.2 in (5 mm) because of these buckling. The total energy dissipated was 804 in-kips (91 kN-m).

The photogrammetric grid indicated that the specimen was predominately influenced by shear yielding, but the warping restraint was very different

-37-

from Specimens 1, 2, 6 and 8. Web buckling was visibly more severe for this specimen than for any other specimen. The more severe web buckling occurred because the lack of flange restraint prevented proper formation of cyclic diagonal tension field. It is well known from deep plate girder design [32] that a trussing action between the flanges and stiffners is needed to form a monotonic diagonal tension field. The cyclic diagonal tension field requires the same trussing action, but this action was not possible in Specimen 9, because the flange was not connected to the end plate. The behavior was better than Specimens 3, 4 or 7, but it was not nearly as good as Specimens 1, 2, 6 or 8. The behavior of the specimen indicates one of the additional problems, which must be overcome before bolted beam-to-column connections can be used in the eccentric bracing system.

Summary of Conclusions of Cyclic Beam Tests

٠,٠

One primary conclusion, which can be drawn from these tests, is that shear yielding of the web is an excellent energy dissipation mechanism for an eccentrically braced frame. The specimens which yielded in shear (1, 2, 6, 8 and 9) were able to withstand larger inelastic deflections and dissipate larger amounts of energy than the specimens which yielded due to bending (3, 4 and 7). Further, all of the specimens which yielded in bending resulted in fracture of the specimen. None of the shear yielding specimens fractured, although two shear yield specimens (1 and 9) developed web buckling such that they could no longer maintain their full load. However, these two specimens both represent special cases in that Specimen 1 was tested under an unusually severe strain history and Specimen 9 was designed so that it could not develop the cyclic diagonal tension field. The remaining three shear yielding specimens

-38-

exhibited no undesirable buckling or fracture problems at the conclusion of the tests. This does not imply that bending yield is a poor energy dissipation mechanism, since it is well known [15,30] that the inelastic behavior of steel moment-resisting frames is very good. The difference is that the eccentric bracing system experiences very large inelastic deformations in the eccentric element, and these inelastic deformations are larger and more concentrated than those encountered in a momentresisting frame. These results imply that eccentric elements which yield in shear are better able to withstand the large inelastic deformations and remain effective for further cycling.

The reason for this better behavior of shear yielding beams is the greater stability under local buckling, which shear yielding beams exhibit. Since the shear is the slope of the bending moment diagram of a beam, beams with very high shear will have only a very short section of flange, which is plastic, even after considerable strain hardening due to plastic hinge formation has occurred. The formation of flange buckles generally requires flange yielding over a sufficient flange length to form a wave length of buckling [26]. As a result, flange buckles and the associated lateral torsional buckling do not occur in conjunction with shear yielding of the web. Very substantial web buckles form, but the unbuckled flanges provide considerable restraint to the buckled web. Therefore, a cyclic diagonal tension field can form and the load is maintained. Further, these tests indicate that the cyclic diagonal tension field can form and reform without producing any observable pinching of the hysteresis loops or degradation in strength or stiffness. The beam must be designed to develop this cyclic diagonal tension field by adding stiffeners to develop a trussing action between the flanges, stiffeners and the web. Specimen 9 did not have these required stiffeners, and

-39-

the cyclic diagonal tension field did not form properly. The design of these stiffeners is similar to the design of stiffeners for deep plate girders [32], since plate girders also require stiffeners to develop a diagonal tension field under monotonic or static load. The beams, which yielded in bending, had a lower shear and moment gradient, and greater length of flange yielded during strain hardening at the plastic hinges. Flange buckling occurs after a sufficient length of flange has yielded, but the web is not able to provide much restraint to the buckled flange, so the flange buckles deform dramatically and eventually fracture after several reversals. This underscores the need for moment-resisting beamto-column connections. As is verified by comparing Specimen 9 to Specimens 1, 2, 6 and 8, the cyclic diagonal tension field, which is needed to assure stable performance after web buckling, is formed only when the flanges and stiffeners are properly restrained.

The cyclic loading which was applied to these test specimens was primarily to examine cyclic behavior at large deflections. As a result, none of the specimens were subjected to a large number of cycles. The limited number of cycles significantly reduced the amount of energy which could be dissipated by the specimens. A much larger amount of energy could have been dissipated by each of the specimens had it been cycled through a large number of small or moderate inelastic deflections. However, for these nine specimens the beams which yielded in shear were the better dissipators of energy. They were better because they dissipated larger amounts of energy during the test and did not fracture, so that they would have been capable of dissipating more if additional cycles had been run. This better dissipation can be attributed to the distribution of plastic strain over a larger area of the web. Beams, which yield in

-40-

bending and have flange buckles, experience very large plastic strains locally and so the specimen fails. The shear yield specimens had a more uniform distribution of plastic strain, and the specimens did not fail.

Finally, these tests indicate that doubler plates should not be applied to the web of eccentric beam elements. The specimens which used doubler plates (4 and 5) resulted in a failure of the doubler plate weld. Moreover the doubler plates did not deform in unison with the web, unless a very large weld was used. This is not to say that doubler plates should never be used, because they may be very effective in elements which remain elastic or undergo only small inelastic deflection. However, doubler plates do not appear to be effective on eccentric elements which undergo very large inelastic deflections, and they are not worth the high cost of installation.

Analytical Model for Cyclic Shear Yielding Beams

After it was determined that shear yielding exhibits the best inelastic cyclic behavior, it was necessary to develop an analytical model which would predict the inelastic response of shear yielding beams. The desired model was not one which would predict the local stresses or strains within the elements but a global model which adequately defines the nodal displacement of a beam. The model could then be used to predict the gross overall behavior of eccentrically braced frame structures as opposed to the details of individual connections.

The model developed averages over and ignores many local effects within the beam such as web buckling and diagonal tension, but remains consistent with the general concepts of inelastic behavior and the test results. It is a piecewise linear approximation of the true inelastic force-deflection relationship. The beam is assumed to have rotational

-41-

restraint at both ends, and rotational plastic hinges may form at either end as well as shear yielding of the web of the entire element. Hence there are eight possible linear zones of behavior in this model. These zones are

1. Fully elastic beam

2. Elastic web with plastic hinge due to bending at left end 3. Elastic web with plastic hinge due to bending at right end 4. Elastic web with plastic hinges due to bending at both ends 5. Web yielded in shear but no plastic hinges due to bending 6. Web yielded in shear with plastic hinge due to bending at left end 7. Web yielded in shear with plastic hinge due to bending at right end Web yielded in shear with plastic hinges due to bending at both ends 8. The beam element may fall into any one of these eight zones depending on its strain history and state of stress. The stiffness of the element is computed for each of these zones based on material with bilinear material hardening. This bilinear material was modeled by a variation of the parallel component approach [33, 34]. In this method, an elastoplastic component is combined with a fully elastic component to model bilinear strain hardening. The fully elastic component simulates the strain hardening of the fully yielded element, and the elasto-plastic component provides the remainder of the elastic stiffness. The slope and yield point of the elasto-plastic component are usually taken as fixed, but in this model these values are adjusted to permit the yield surface to grow during strain hardening and to account for the shear yielding phenomenon. The effect of plastic hinge formation is very easily accounted for by this method [34]. This is done by arbitrarily setting the elasto-plastic component of the bending moment at the plastic hinge to zero and partitioning and condensing the 2 x 2 generalized

-42-

stiffness matrix to a single value. When plastic hinges form at both ends, the elasto-plastic component of stiffness is reduced to zero.

Therefore, the calculation of the stiffness of the eight zones of behavior essentially reduces to the problem of determining the 2×2 generalized stiffness matrix for a fully linear elastic beam and the 2 x 2 generalized stiffness matrix for a beam with a shear yielded web and no plastic hinges. The stiffness of the linear elastic element depends only upon the geometry of the beam, and the linear elastic properties of the material, Young's Modulus, E, and the Shear Modulus, G. The stiffness of the beam with a shear yielded web requires the definition of the inelastic strain hardening properties of the material. To define these properties a bilinear strain hardening material model was used as is shown in Fig. 26. With this idealization the total uniaxial stressstrain curve is determined by three variables, Young's Modulus, E, the uniaxial strain hardening ratio, $\rho,$ and the yield stress, $\sigma_{\rm v}.$ All three of these parameters can be empirically determined from a tensile coupon test, as shown in the diagram of Fig. 26. It was further assumed that the web strain hardens in pure shear. Therefore, a plastic shear modulus, G_p, was found using the Prandtl-Reuss equation [31], assuming that the volume of material is constant during plastic deformation. As a result of these conditions, the slope, G_n , or the strain hardening portion of the bilinear stress-strain idealization in pure shear is

$$G_{p} = \frac{\rho E}{3} \qquad (2)$$

This plastic shear modulus, G_p , was used in place of G when the beam web had yielded in shear.

-43-

In addition to a plastic flow rule, a yield surface had to be defined for the beam. This was done by assuming that the web yields in pure shear and obeys the von Mises yield criterion. Based on this criterion, the shear force at yielding of the web, V_p , is

$$V_{\rm p} = t_{\rm w} d \frac{\sigma_{\rm y}}{\sqrt{3}}$$
(3)

where t_w is the thickness of the web of the wide flange section and d is its total depth. Equation 3 predicts an average shear yield stress of 0.577 σ_y . It was also assumed that the flange yielded purely by uniaxial stress due to bending. This simplification is a reasonable approximation of the beam bending behavior. To be consistent with this assumption and the test results, the reduced plastic moment contributed by the flanges, M_p^* , was used in place of the full plastic moment, M_p .

$$M_{p}^{\star} = t_{f} b (d - t_{f}) \sigma_{y}$$
(4)

where t_f is the thickness of the flange and b is the width of the flange. It should be noted that the use of M_p^* is consistent with the test results of the new cyclic tests as well as those by Newmark and Hall [29]. The earlier tests indicated that the full plastic moment could be developed in beams which yield in shear, but only after considerable strain hardening had occurred. Therefore, the point of first bending yield was taken as M_p^* for cyclic behavior. The full plastic moment can still be achieved but only after considerable strain hardening.

Simple Shear Deflection Theory

÷,

The stiffness matrix was determined by computing the combined bending and shear deflection of the beam under unit forces to calculate the flexibility matrix; then the flexibility was inverted to obtain the

- 44 -

stiffness. A simple and commonly used method of computing this combined deflection of an elastic beam is to superimpose the deflection components due to pure bending and pure shear. In the computation of the bending deflections, it is assumed that plane sections remain plane and the material behaves linearly, then the bending deflections and bending stresses in the beam can be computed. The distribution of shear stresses in the beam is determined by applying statics to the bending stress distribution. The shear stress distribution, which results for a wide flange, is a parabolically varying stress with nearly constant shear stress in the web, as shown in Fig. 27(a). This nearly constant stress is approximated by a constant shear stress, as shown in Fig. 27(b). Therefore, the shear deflections can be computed directly from these elastic shear strains.

The above approach is a very direct approach, and it produces satisfactory results if the web of the beam is elastic. This is the procedure used to compute the stiffness terms of zones 1 through 4 in the analytical model. The simplest method of computing plastic shear deflections is to use the same simple shear deflection theory, but to substitute the plastic shear modulus, G_p , for the elastic shear modulus, G, when computing incremental shear strain. However, this simplified approach will not produce satisfactory results because it predicts excessive warping. This simple theory assumes that the incremental shear stress and strain are uniformly distributed over the web and are zero in the flanges. Therefore, cross-sectional warping must occur, as shown in Fig. 27(c), since the shear strain is not the same at all points along the cross-section. This warping presents a problem in that warping is prevented at interfaces between shear yielding elements and elastic or bending yield elements. The stiffness of a beam which has

-45-

yielded in shear will be underestimated by this simple shear deflection method because the method does not include warping resistance. Figure 28 shows a plot of the monotonic test results from Specimen 1 and the relatively poor fit provided by the application of the simple shear deflection theory. It should be noted that warping also occurs when the web is elastic, but the elastic incremental shear deflections and strain are very small, so the warping is very small. Therefore, it is necessary to develop a theory which will consider the warping restraint provided to a beam with a web which had yielded in shear.

Sandwich Beam Theory

A slightly more complex theory, the sandwich beam theory, was used to compute the stiffness of a beam with a web yielded in shear. This theory was used because it is capable of evaluating the effect of warping resistance on the deflections of the beam. The sandwich beam theory variation developed by Plantema [35] and van der Neut [36] was used for this model. In this theory the deflections of the beam are still expressed as the sum of two components.

$$w_{+} = w_{s} + w_{b} \tag{5}$$

but the components are determined as set forth below. The deflections, w_s and w_b , are the partial deflections due to shear and bending, respectively, and w_t is the total deflection of the beam. These components are shown in Fig. 29. The component w_b can be computed by the ordinary theory of beam bending

$$w''_{b} = \frac{M}{EI} = \phi \qquad (6)$$

-46-

where M is the bending moment of the beam, E is Young's Modulus or the slope of the uniaxial stress-strain curve, ϕ is the curvature of the beam, and I is the moment of inertia of the cross-section. Because of the previous assumptions, the web of the shear yielded beam does not carry any bending stress and thus its bending stiffness is neglected, so that

I =
$$\frac{t_f b}{2} (d - t_f)^2 + \frac{1}{6} b t_f^3$$
 (7)

This is a reasonable assumption since the bending stiffness of the web is relatively small.

It is necessary to break the partial deflection due to shear, w_s , into two parts to determine its magnitude. The two parts are obtained because the flanges must undergo the same deflection as the web at all points, and the flange deflection must be composed of flange bending, w_{bf} , and flange shear, w_{sf} , components so that

$$w_{s} = w_{sf} + w_{bf}$$
(8)

To simplify the determination of w_s , it is assumed that there is no distributed load on the beam segment. This simplification is not necessary to obtain a solution, but it simplifies the mathematical solution without affecting the ability of the model to compute the element stiffness. Since there are no distributed loads, the total shear force, Q, is constant over the length of the element.

However, this total shear is carried partially by the web and partially by the flanges, so

$$Q = Q_w + 2Q_f \tag{9}$$

where ${\tt Q}_{\rm w}$ is the shear carried by the web and ${\tt Q}_{\rm f}$ the shear carried by a

single flange. Q_f and Q_w are not constant over the length of the element. The shear deflection of the web and flanges can be computed by ordinary shear deflection theory.

$$Q_f = G_f S_f W_{sf}$$
 (10a)

$$Q_{W} = G_{W} S_{W} W_{SW}$$
(10b)

The S_f and S_w terms are the shear areas of the flange and web, and w_{sw} is the shear deflection of the web, which is also equal to the shear deflection of the beam, w_s . The terms G_f and G_w are the shear moduli terms for the flanges and web; and since the web is plastic and the flanges are elastic, these terms take on the values of the elastic shear modulus, G, and the plastic shear modulus, G_p , respectively. The shear area terms are computed by the usual engineering shear deflection theory, and

$$S_{w} = \frac{(d - t_{f})^{2}}{d - 2t_{f}} t_{w}$$
(11a)
$$S_{f} = t_{f}b$$

The flange bending deflection term, w_{bf} , is determined analagously to the beam bending term

$$w_{bf}'' = \frac{M_{f}}{EI_{f}}$$
(12)

where M_{f} is the component of bending moment carried by the flange and I_{f} is the moment of inertia of the flange.

$$I_{f} = \frac{1}{12} b t_{f}^{3}$$
 (13)

-48-

Statics requires that the magnitude of the shear be the magnitude of the derivative of the moment diagram with respect to x, so when the sign convention is considered

$$Q_{f} = -M_{f}'$$
(14)

$$-EI_{f} w_{bf}''' = G_{f} S_{f} w_{sf}'$$

$$Q = -EI w_{b}''' \qquad (15)$$

and

$$w_{bf}'' - \alpha^2 w_{bf}' = -\alpha^2 \frac{Q}{S_w G_p}$$
(16a)

$$w_{b}'' = \frac{M}{EI}$$
(16b)

$$w_{sf}' = \frac{-EI_{f} w_{bf}''}{G S_{f}}$$
(16c)

where

$$\alpha^{2} = \frac{G_{p} S_{w} G S_{f}}{EI_{f} (G_{p} S_{w} + 2GS_{f})}$$
(17)

Equations 16a and 16b can be solved directly since the total shear, Q, and the total bending moment, M, come directly from the loading condition. Equation 16a can be solved by separating the solution into its complimentary and particular soltuions, so that

$$w_{bf} = A_1 e^{\alpha X} + A_2 e^{-\alpha X} + A_3 + \frac{QX}{3}$$
 (18)

The constants, A_1 , A_2 and A_3 , can be determined from the boundary conditions. The boundary conditions used for the solution of Equation 18 depend on the warping of the cross-section as well as the displacement configuration of the beam. Figure 29 clearly indicates that the only

-49-

cross-sectional warping that can occur in this system is warping due to different shear strains in the flanges and the web. Since the deflections of the flange are further constrained by Equation 8, warping is prevented if

$$w_{bf}' = 0$$
 (19)

at that point. By a similar argument

$$w_{bf}^{"} = 0$$
 (20)

if warping is totally unrestrained at a given boundary. If warping is not, at least partially, restrained at some point in the beam element, the solution of these equations will degenerate into the very simple shear deflection theory, which was discussed earlier in this chapter. Displacement boundary conditions may be more complex since the displacement is the sum of three variables

 $w = w_b + w_{bf} + w_{sf}$ (21)

In all of the test beams, the center line was a line of symmetry, and so no warping could occur. On Specimens 1 thru 8, the beam had a tail section beyond the simple supports, so warping was prevented also at the simple supports. The deflection was zero at the simple supports. Therefore, the boundary conditions used to evalute the constants of equation 18 are

at center line and simple supports and

 $w_b = w_{bf} = w_{sf} = 0$

(22)

-50-
at the simple supports.

After solving Equation 16a, the solution for Equations 16b and 16c are easily obtained. Equation 16b is the usual beam bending solution, and 16c is dependent upon the solution of Equation 16a. The equations were solved for beams which exhibited shear yielding of the web, and the stiffness of the beam for these shear yielding zones was computed as discussed earlier. The force-deflection relationship for these specimens could then be computed by solving the stiffness formulations in an incremental fashion. In this procedure, the stiffness equations are solved under small load steps and the beam is checked for a change of yield state at the end of each step. If a change in yield state occurs, the stiffness matrix is changed and the incremental solution is continued. Using this approach and a uniaxial strain hardening ratio of 0.75 percent (see Appendix B), the theory was compared with the experimental data from the monotonic portion of Test 1. Figure 28 is a plot of this comparison; the dashed line is the theoretical value and the solid line is the experimental plot. This figure indicates that the theory fits the experiment quite well. The fit is very much better than that produced. by the simple shear deflection theory. It should be emphasized that the sandwich beam theory is still a relatively simple theory since it does not consider any of the local effects, such as propagation of yielding, web buckling, or diagonal tension formation. Despite these simplifications, the theory gives a reasonably accurate prediction of the inelastic behavior of the beam elements.

A physical understanding of why the sandwich beam theory produces a better fit than the simple shear deflection theory can be found in Fig. 30. The warping resistance provided by the sandwich beam theory

-51-

requires that the shear force in the beam be distributed between the flange and web. Figure 30 consists of three typical plots of this distribution of incremental shear force. These curves are all normalized, and the plotted values are all dimensionless ratios. The upper curve in this figure represents the proportion of incremental shear carried by the flange of the 6 in half span specimens after the web has yielded. Virtually all of the incremental shear is carried by the flanges at interfaces restrained against warping after shear yielding of the web. This warping restraint also affects the interior points so that the flange is always carrying 50 percent of the added shear in all parts of the beam. The middle curve indicates the percentage of shear carried by the flange of a 12 in specimen after the web yielded. This curve is also indicative of the distribution predicted for the prototype eccentric element. Virtually all of the additional shear is transferred to the flanges at the interfaces, but the proportion of shear carried by the flange in the intermediate beam is substantially reduced. Both these curves substantiate • the deformation patterns noted in the tests of Specimens 1, 2, 6 and 8. After the web has yielded, virtually all the incremental shear is transferred to the flanges at interfaces where warping is prevented. Therefore, the shear strain of the web becomes small near these interfaces, as noted in Fig. 15. In the central portions of the half spans, the additional shear is still carried primarily by the web, and the plastic shear strain in the web is much larger. The third curve in Fig. 30 is the percentage of shear carried by the flange when the web is fully elastic. The flange carries a greatly reduced percentage of the shear despite the warping restraint at the ends, so the effect of warping is much less severe when the beam is fully elastic. It is then appropriate to use the simple shear deflection theory for the fully elastic beam.

-52-

Cyclic Shear Model

After completion of the monotonic test comparison, the theory was extended to include the cyclic behavior of shear yielding beams. The strain hardening and yield criteria are reasonably well-defined for the monotonic case, but they are not well defined for the cyclic case. There are two simple bilinear strain hardening models for cyclic loading: kinematic and isotropic hardening [31]. Kinematic hardening is strain hardening in which the yield surface is permitted to translate but not grow in size. This is a very popular model because it accounts for the well known Bauschinger Effect. Isotropic hardening permits the yield surface to grow in size but not to translate in the stress space. It is well known that neither of these models accurately represents the cyclic behavior of steel. It was noted in the cyclic tests of the shear yielding beams that the early cycles exhibited considerable growth in the yield surface but later cycles exhibited no growth in this surface.

Dafalias and Popov [37,38] have shown a more complex model that gives a more accurate representation of cyclic stress-strain behavior. This theory produces a particularly good fit on cycles performed at large strains. This model consists of a yield surface and bounding surface. Both of these surfaces may translate and grow in the stress space. The yield surface is allowed to approach and contact the bounding surface, but the yield surface cannot intersect the outer bounding surface. Later studies by Petersson and Popov [39] indicate that this model could be refined by a weighting function. This refinement improves the accuracy of the cyclic stress-strain prediction at smaller strain levels. The weighting function takes a combination of the cyclic stressstrain relation and the monotonic coupon test stress-strain relation to

-53--

develop the refined model. The addition of the weighting function permitted an increase in influence of the isotropic type hardening in the smaller strain cycles since experimentally these cycles exhibit considerable growth in the yield surface.

The application of the very simple kinematic and isotropic hardening models did not produce a satisfactory fit to the experimental results, and a more refined model was developed. There was no attempt to apply the full sophistication of the above models because of the several simplifications made in the sandwich beam shear yield theory. Instead, an empirical model was developed which satisfied the general yield surface, bounding surface, and strain hardening concepts of the above theoretical models. The proposed empirical model fits the test results reasonably well.

As was discussed earlier, a variation of the two component approach was used to model the plastic element behavior. This model is basically a kinematic hardening model. Isotropic hardening was introduced into the early smaller cycles by allowing the yield stress of the elasto-plastic component to grow larger during strain hardening. This theory was intended only for beams which yielded primarily in shear, and so the growth in yield point was applied only to the shear. This accomplished a dual purpose in that it assured that the earlier and smaller cycles were more significantly affected by isotropic hardening and it provided a bounding surface to the isotropic hardening. Therefore, the shear yield effect will disappear after sufficient strain hardening due to shear yielding has occurred. This agrees well with the test results since the beams which yield in shear exhibit pronounced growth in the elastic zone in the early cycles and masking of the shear yield effect

-54-

in later cycles. This growth in the yield surface was permitted only in the direction of yield. It should be noted that no axial softening was applied to this model during shear or bending yield. This was done because there is no known method for predicting this softening, and the axial loads are generally quite low in the eccentric elements. Moreover, the shear beams were tested with no axial loads.

Fit of the Cyclic Shear Model

The cyclic shear model was applied to the cyclic shear yield beam Specimens 2, 6 and 8. It was applied to these specimens because they yielded in cyclic shear and had the required warping restraint in the beam. The comparison of these predictions to test results are shown in Figs. 31, 32, and 33. The fit that is obtained by this model is quite good, especially in the more important range of small and moderate deflections. It should be again noted that this model is a very simple model which is intended to predict the gross overall behavior of an element and a structure. It completely ignores local effects such as web buckling, diagonal tension formation, and progression of yielding. Further, the model applies only an empirical approximation of the true cyclic material behavior. The model also uses infinitesimal strain theory. However, at deflections of greater than about one inch (25 mm) for Specimens 2 and 6, or 2 inches (50 mm) for Specimen 8, the strains are quite large and a finite strain theory would be more appropriate. Infinitesimal strain theory is not a severe limitation because deflections which are large enough to require finite strain theory can occur only after an eccentrically braced frame has undergone severe lateral deflections.

-55-

Despite these limitations, the fit is quite good. The fit is particularly good for small and moderate deflections. The slope of the elastic zone of the model is consistently stiffer than the slope found experimentally. This is not a limitation of the model, but a limitation of the experimental procedure employed. The test specimens were designed with an 0.375 in (9 mm) radius for a simple support, as shown in Fig. 12, to permit the specimen to rotate freely. This support system accomplished these ends, but it resulted in a contact stress problem at the supports. This problem is well known [40,41], and local yielding must be expected at these points. The deflection due to this local yielding was not monitored during the test, but the maximum values could be determined after the test. The maximum deflections due to this local yielding were found to be in the range of 0.01 to 0.02 in (0.2 to 0.5 mm). This small deflection is apparent in the stiffness of the elastic zone, but it is insignificant in the inelastic deflected beam.

Although the analytical model fits the test results well, there is some room for improvement of the model. There are two general ways in which the model could be improved. The first is to keep the very simple model concept, but to improve the modeling of the cyclic constitutive relations. For example, no isotropic hardening is applied to the yield due to bending. Figures 31, 32, and 33 show that the fit could be improved if the bending yield were allowed to increase because of strain hardening in some of the earlier cycles. Further, a more realistic model of the bounding surface could improve fit by further eliminating or reducing the strain hardening effect at very large deflections. Finally, as the more refined analytical model is better understood, perhaps the refined model could be applied directly to this theory by assuming the

٩

-56-

web acts in pure shear and flanges act under pure uniaxial stress.

The second method for improving the analytical model is to improve the sophistication of the model itself. This could be done by dividing the individual shear yielding beam into a number of finite elements which consider the inelastic cyclic constitutive relation of the material. If the elements included plate bending effects, this type of model could take into account propagation a yielding, web buckling, and diagonal tension field formation. The accuracy of the model would be improved if all of these local effects were considered, but the complexity and cost of analysis would also be increased.

No comparisons are made for the other beam specimens, because the cyclic shear theory did not apply to these cases. The theory applies only to beams which yield in shear before plastic hinges form at both ends of the element. This can be assured by designing the beam such that

$$|V_{p}| < \frac{2M_{p}^{\star}}{\ell}$$
(23)

if the rotational restraint is applied at both ends, or

$$|V_p| < \left|\frac{M_p^*}{\ell}\right|$$
 (24)

if simply supported at one end. It is essential that the cross-section be restrained against warping at both ends. Thus, a simply supported end requires a tail or other means of providing warping restraint. Summary of Cyclic Shear Yield Behavior

The results of the cyclic beam tests indicate that cyclic shear yielding of the web provides a very desirable energy dissipation mechanism. Beams which yielded in shear dissipated more energy, withstood larger deflections, and exhibited greater stability than beams which yielded in

-57-

bending. Beams which yielded in bending had flange buckling problems, while shear yielding beams buckled only in the web. Web buckling is a more desirable buckling form because of the cyclic diagonal tension field. However, shear yielding beams must be designed with stiffeners and flange restraint if the cyclic diagonal tension field is to form.

Based on the results of the beam tests, a simple analytical model of cyclic shear yield behavior was derived. This model fits the experimental results very well, and it coincides with general observations from the individual tests and with the general concepts of cyclic inelastic constitutive theory.

- '

. .

.

.

· .

•

CHAPTER 4. INELASTIC DYNAMIC ANALYSES

General

The purpose of this chapter will be to discuss an inelastic dynamic analysis of the prototype structure. In performing this analysis, the analytical model of the shear beam is first incorporated into an existing dynamic analysis program, DRAIN-2D. The eccentrically braced frame is then analyzed under two separate base excitations and the predicted behavior is presented and evaluated. Three alternate structural systems are also analyzed under the same two base excitations, and the responses of these alternate systems are compared with the predicted response of the prototype system. The objective of this series of analyses is to understand better the inelastic behavior of the total eccentric system both with respect to itself and also relative to other structural systems. DRAIN-2D Dynamic Analysis Program

The DRAIN-2D program [34] was used to determine the behavior of the prototype frame; the program performs a plane frame inelastic dynamic analysis for structures subjected to a base excitation. The analysis employs a step-by-step procedure with the yield state of each element checked at the end of each time step. The tangent stiffness modifications and the equilibrium corrections for any imbalance due to change in state are applied at the end of each time step; the time step is held constant, and no iteration is used, however, equilibrium corrections are applied at the end of each time step to correct for any imbalance due to change in state. These corrections are applied to prevent the imbalances from accumulating and causing the solution to diverge. Because of the several simplifications used in this procedure, the solution is by no means exact. It will approach the exact solution, however, if a sufficiently small

-59-

step is used, but, since the cost of the solution increases with decreasing time steps, it is desirable to perform the analysis with the largest time step which gives sufficiently accurate results. Therefore the results of these analyses are not used to predict minute differences in behavior, but rather to determine general trends of structural behavior.

One of the main advantages of the DRAIN-2D program is the relative ease with which new inelastic elements can be added. This was the primary reason for the selection of this dynamic analysis program. The elements provided with the basic DRAIN-2D program include: (1) a brace type element (Element 1) which yields or buckles as in a variation of the slip model [1]; (2) a beam-column element (Element 2) which includes the interaction between axial force and bending moment; and (3) a beam element (Element 5) which considers only yielding due to bending. The beam and beam-column elements yield only in bending, since there is no axial softening after yielding. The elements also obey a bilinear strain hardening model which is primarily a kinematic hardening model. In the eccentric bracing system under study, it was determined that the primary method of energy dissipation would be cyclic shear yield of the eccentric element. Hence, the cyclic shear yield model discussed in the previous chapter was also programmed for DRAIN-2D. The basic beam element (Element 5) was used to form the cyclic shear yield element. The programming of the shear yielding element was simplified, since a number of parts of the analysis were identical to those used by the beam element. For example, the application of damping effect, initial and fixed end force applications and geometric stiffness application were essentially unchanged from Element 5. However, major changes had to be made in the state determination, bending stiffness calculation and input subroutine. The behavior of

-60-

this element coincides with the behavior described in Chapter 3. A listing of the element subroutines, input instructions, and some comments on the use of the element are given in Appendix C.

Post-Buckling Brace Element

The only existing brace type element for DRAIN-2D was the slip model element (Element 1). It is well known [1] that the slip model does not accurately represent the inelastic behavior of a brace, because it does not accurately reflect the behavior of a brace after it has buckled. Similarly, a brace, which yields in compression as permitted in Element 1, greatly overestimates the ability of the brace to dissipate energy. Since neither of the post buckling brace models permitted by Element 1 were accurate representatives of true brace behavior, a more realistic brace element was also programmed for DRAIN-2D. This element was programmed by starting with the basic structure of Element 1. As a result, the programming was again simplified since damping effects, geometric stiffness and some other computations remained unchanged. Major changes were made to the stiffness and state determination calculations. The assumed inelastic behavior of the brace, which was used in this element, is very similar to a model developed by Nilforoushan [12]. The model used is a linear approximation as shown in Fig. 34 of the true brace behavior shown in Fig. 1. Nine linear zones, which are defined by the strain history and other critical parameters, are used to approximate the true brace behavior. The critical parameters are input values, and they are determined by making a best fit to the brace behavior, which was determined by experimentation, by theoretical derivation, or by other acceptable means. This provides more flexibility in the analyses, since the brace behavior is not tied

-61-

to a specified theoretical model. The critical parameters, input instructions and a listing of the element subroutines are given in Appendix D.

This model also simulates the deterioration in buckling strength of the brace, which occurs in consecutive cycles. Experimentation has shown that the buckling load achieved on later cycles usually is greatly reduced from the buckling load on the first cycle [1]. The reduction takes place because after the brace buckles it inelastically kinks. In principle, it may be possible to restraighten such a kink completely, when the load is reversed. However, as a practical matter, the brace is not able to restraighten completely. As a result, it is less perfect in later cycles and buckles at a lower compressive load. Examination of the results of cyclic tests of axially loaded members indicates that the compressive load deteriorates less when the kinking is less severe. These results also indicate that there is a limit below which the buckling load will not deteriorate. The Post-Buckling element which was developed for DRAIN-2D permits the input of an initial and minimum buckling load of the brace, and then the buckling load is varied for later cycles as required. The details of this reduction procedure are also given in Appendix D. Alternate Structures

Four alternate structures were analyzed by DRAIN-2D. These were the prototype eccentrically braced frame, a concentrically braced frame with all bolted connections, a concentrically braced frame with momentresisting connections, and a moment-resisting frame. All of these frames were designed for the same geometry and the same gravity loads. The braced frames were assumed to be exterior frames which carried the total lateral loads and were therefore designed to resist, individually, 52.5% of the lateral loads and 12.5% of the gravity loads. The moment-resisting frame was assumed to be one of five frames, which carry tributary loads.

-62-

Therefore, the interior frames were taken as the critical frames and they were designed for 25% of the total lateral and gravity loads. The natural periods of all three braced structures were very similar, so the design lateral loads were alike. The moment-resisting frame was a much more flexible structure, and its design lateral loads were markedly smaller because of its longer period. However, this did not significantly affect the design, since the design of the moment-resisting frame was controlled by the maximum story drift. The moment-resisting frame was approximately 30% heavier than the braced frames. It should also be noted that the design of the eccentrically braced frame was more refined by the detailed linear elastic analyses which were performed. The other frames were not designed to the same degree of refinement. Therefore, these designs must be considered preliminary, and improvement in the dynamic performance of these three alternates may be achieved if the design is refined. The design of these alternate structures were performed in 5 story increments. Input Parameters

All of the analyses were performed with a 0.01 second time step, which was chosen after several trial runs of the first few seconds of the eccentrically braced frame analyses. Considerable inelastic activity had occurred during this time span, and the results with the larger time step were sufficiently similar to the results with the smaller (0.005 seconds) time step that the cost of the shorter time step was not warranted. All of the alternate structures were analyzed with original stiffness proportional damping where the damping was approximately 5% of the critical damping for the first mode. Original stiffness proportional damping was chosen because it was felt to be more indicative of the true conditions. It is also desirable because it distributes the damping effect throughout the structure and not just at mass points. Further, it was thought

-63-

that the bulk of the damping effect would be attributable to cracking of floor slabs, damage to nonstructural walls, and etc. Therefore, it was expected that damping would substantially increase after yielding of the structure. Original stiffness damping results in a substantial increase in damping after yielding, while tangent stiffness damping produces a significant decrease in damping effects. Therefore, original stiffness damping was thought to be more realistic.

The four alternate structures were analyzed under two separate base excitations. The first excitation was 1.5 times the El Centro 1940 N-S component acceleration record shown in Fig. 35. The first 8 seconds of this record were used, since this time period contains nearly all of the high acceleration peaks and the major part of the inelastic activity should occur within this time period. The peak acceleration for this record is approximately 0.5 times the acceleration of gravity. It is believed that this record is a realistic indication of the intensity of shaking that could occur in a moderate to severe earthquake. The second acceleration was the Pacoima Dam record of the 1971 San Fernando Earthquake. This record, which is shown in Fig. 36, has a peak acceleration of approximately 1.2 times the acceleration of gravity. The first 15 seconds of this record were used, because all inelastic activity should be concentrated within this time period. It is well known that the very high accelerations of this record are a result of amplification due to local site conditions. Moreover, this record is associated with a small impulse type loading and was used to determine the relative performance of the alternate structures under such a dynamic loading. It is not intended to imply that a structure should be designed to resist this excitation.

-64-

The analyses were performed on the alternate systems with the $P-\Delta$ effect of the frames accounted for by means of the geometric stiffness. The gravity loads which were used for the computation of the geometric stiffness included the frames share of the full dead load plus 10% of the total live load. It should be noted that a fully accurate resolution of the P- Δ effect requires a 3-dimensional analysis including the gravity effect of all interior frames. This problem will be discussed in greater detail in a later section. The braced frames were designed as exterior frames, so they all carried 12.5% of the total gravity loads. The momentresisting frames were designed as interior frames, so each one carried 25% of the total gravity loads. The total mass of the structure was also taken as the mass of the total dead load and 10% of the live load. The braced frames were designed to carry all of the lateral loads, and so, each braced frame was assigned 50% of the total mass of the structure. The design lateral loads were distributed among the moment-resisting frames, and so each interior frame was assigned 25% of the total mass. The gravity loads were also distributed elastically throughout the frame, and hence affected the first yielding of each element. This should not greatly affect the performance of the frames, however, once the inelastic behavior of the frame has started.

Results from 1.5 Times the El Centro Excitation

The four alternate structures were analyzed under 1.5 times the El Centro excitation. Figure 37 is a plot of the maximum relative displacement of the various story levels for the alternate structures. The solid line in this plot is the eccentrically braced frame. The triangles indicate the bolted concentrically braced frame, diamonds indicate the concentrically braced frame with moment-resisting connections, and the

-65-

squares represent data points of the moment-resisting frame. The maximum relative displacement of each story level is the maximum deflection relative to the structures' undeformed configurations. These maximum values do not occur at the same time for all story levels, so the curves plotted in Fig. 37 do not represent the deflected shape of the structure at any one time of the analysis. The maximum relative deflection of the eccentrically braced frame is significantly smaller than those of the other alternate structures. The maximum deflections of the concentrically braced frames were the largest for the upper stories, and the maximum deflections of the moment-resisting frame were the largest for the lower stories. The curve for the moment-resisting frame exhibits a sharp kink at the 10th floor level. The reason for this sharp kink is that the time of the maximum deflection was very different for the top and bottom stories. The large time difference is introduced because the momentresisting frame is a more flexible, longer period structure, and the higher modes are more apparent.

Figure 38 is a plot of the maximum story drift for each alternative at the various story levels. The various curves are defined by the same legend as for Fig. 37. The maximum story drifts are generally smaller for the eccentrically braced frame and generally larger for the momentresisting frame than for the other alternatives. The eccentrically braced frame experienced smaller story drifts because it was a stiffer structure with very good energy dissipation capabilities. The momentresisting frame also had very good energy dissipation but it was considerably more flexible, and so it experienced the largest drift. The curve for the eccentrically braced frame was relatively uniform indicating that the deformation was greater at lower stories but basically well distributed throughout the structure. The curve for the moment-resisting frame

-66-

exhibits two zones of high story drift. These two zones apparently indicate that higher modes of vibration play an important role in the response of the moment-resisting frame. The concentrically braced frames had slightly larger story drifts than the eccentrically braced frames, and the curves were somewhat more erratic than for the eccentric and momentresisting frames. The erratic nature of these curves was most apparent in the lower stories where the buckling of the braces were most severe, so the curves would probably be smoother if the structural members were sized over smaller intervals and if the design were more refined.

Figure 39 is a plot of the deflected shape of the alternate structures at the end of 8.0 seconds. At that point, the inelastic activity produced by the El Centro record was essentially complete, and the analysis was stopped. The velocity at that time was not equal to zero, so Fig. 39 does not represent the final deformed shape of the structure. However, because future deformations would have been primarily elastic, this deflected shape and the individual time histories of the floor levels can a be used to infer an approximate final deformed configuration. A study of these curves leads to several conclusions. The first is that all of the four alternate structures will return to a final deformed shape which is close to the original undeformed configuration of the structures, but the eccentrically braced frame should be somewhat better than the other alternatives. It will have smaller permanent lateral deflection than the concentrically braced frames, and it will exhibit a straighter deflected shape than the moment-resisting frame. The moment-resisting frame will assume a kinked final deformed shape because of its larger story drifts and the influence of higher modes of vibration. The second conclusion is that mathematical models predict that the eccentrically braced frame and the moment-resisting frame will regain their full lateral stiffness

-67-

at the end of the excitation, because their yielding mechanisms do not exhibit any deterioration during the analyses. The concentrically braced frames will have only a small portion of their initial stiffness because the analyses indicate that most of the braces have buckled. These buckled braces will behave elastically at the end of the excitations, but some of them will be so severely bent that their elastic stiffness is only a small fraction of their initial stiffness. As a result of this great loss in stiffness, the concentrically braced frames must be expected to experience large lateral deflection during even minor windstorms or aftershocks. Since the concentrically braced frames have lost much of their stiffness, they may also require major structural repair to regain this stiffness. The eccentrically braced frames will require repair only for non-structural damage. Further, the alternate structures have suffered larger permanent lateral deflections and these are more likely to be condemned. A final conclusion to be made from this comparison is that the eccentrically braced frame is likely to be reparable at the conclusion of this level of excitation. This desirable attribute occurs because of the good energy dissipation characteristics of the eccentrically braced frame. All of the frames dissipated large amounts of energy, but the eccentric frame and moment-resisting frame dissipated this energy without any degradation in strength or lateral stiffness. As a result of this better dissipation behavior, the eccentric system is predicted to come out of the excitation in better condition.

The comparison of the performance of the alternate structures can be summarized by noting that all of the alternate structures performed satisfactorily under a substantial excitation. However, the eccentric bracing system did perform better. It experienced smaller relative

-68-

deflections and story drifts, and the eccentric system appears to be a more repairable structure.

Results from the Pacoima Dam Excitation

The four alternate structures were also analyzed under the Pacoima Dam excitation. The plots of maximum relative displacement of the various story levels for the alternate structures are shown in Fig. 40. The legend of Fig. 40 is identical to that of Figs. 37, 38 and 39. For all of the braced frame structures, the maximum relative displacements fall into a very narrow band. The maximum deflection was of the order of 36 in (910 mm) for all of these frames. The moment-resisting frame experienced maximum deflections which were much larger than those of the braced frames. The maximum deflection for the moment-resisting frame was 69.8 in (1.77 m). Further, Fig. 40 indicates that virtually all of the extreme deformations are concentrated in the lowest 5 stories. These large relative displacements are occurring because of the substantial $P-\Delta$ effect. The moment-resisting frame has considerably less lateral strength and stiffness than any of the braced frames. When a structure is subjected to a prolonged impulse loading, its strength and stiffness are more important than its energy dissipation capabilities. The Pacoima Dam Record induces an impulse type loading in structures, and so, the flexible moment-resisting frame experiences large deflections. These large deflections induce large $P-\Delta$ moments, and a larger proportion of the frame's strength and stiffness are expended resisting the P- Δ effect.

Figure 41 is a plot of the maximum story drift. This figure gives further verification of the significance of the $P-\Delta$ effect for the momentresisting frame. The maximum story deformations are concentrated in the

-69-

lowest five stories; the bottom story has a maximum story drift of approximately 22 in (560 mm). The story drift of the braced frame structures all fit into a fairly tight band. The story drift is certainly more severe for lower stories in the eccentrically braced frame, but the deformations are far more uniformly distributed than for the momentresisting frame. It should be noted that none of the DRAIN-2D elements have a criterion for element failure. It is questionable whether the bottom story would be able to withstand a 22 in (560 mm) story drift without experiencing a total or partial failure of the frame.

Figure 42 is a plot of the deflected shapes of the alternate structures at the end of the analyses. The velocity does not equal zero at this time. However, the inelastic activity is complete for the braced frame structures, so the analyses were stopped. It is again possible to infer the final deflected shape of the braced structures by combining Fig. 42 with the individual story level time-history plots. A study of these curves indicates that all of the alternate structural systems. will have considerabe permanent deflection. A permanent deflection of the order of 15 to 25 inches (380 to 640 mm) can be expected for the braced frames. The concentrically braced frames will have slightly smaller final deflections, because they have slightly larger stiffnesses and strengths due to their slightly larger weights of steel. All of the braced structures experienced very large inelastic deformations, and it is improbable that any of these structures could be repaired. It is not possible to infer a final deflected shape of the moment resisting frame, because this frame has severe stability problems. Since the Pacoima Dam acceleration record has some characteristics of an impulse loading, the response produced by this record were consistently one-sided responses. That is, at some time in the analysis the relative displacement

-70-

moved to one side of the initial undeformed configuration and stayed to that side throughout the rest of the analysis. This type of behavior is displayed in Fig. 43, which is a plot of the time-history response of the roof for the moment-resisting and eccentrically braced frame. The eccentrically braced frame is indicated by the solid line, and the momentresisting frame is identified by the solid line with squares. As was discussed earlier, the plot shows that the response of the eccentrically braced frame reached a peak at approximately 8.5 seconds, and the response then stabilized during the mild excitations which followed. This frame appears to be stabilizing toward a final top story deflection of approximatiely 22 in (560 mm). The plot also shows that during this period of time the response of the moment-resisting frame is not stabilizing. The moment-resisting frame reaches a very substantial peak in its response at approximately 10 seconds. The deflections are so large at this time that the P- Δ effect uses up most of the elastic strength and stiffness of the frame. Therefore, it reaches an even higher peak at 14.6 seconds even though the base excitations are very low during this period. It is very possible that this drift would continue with the moment resisting frame, if a longer Pacoima record were used. As a result, this structure would probably collapse during the rest of the excitation or during minor aftershocks.

The one-sided response, which was noted for all structures subjected to the Pacoima Dam acceleration record, is characteristic of the inelastic response of a single degree-of-freedom system to a pulse excitation. Solutions to the single degree-of-freedom problem are well known [42] and the maximum deflections are strongly influenced by the strength and stiffness of the system. The response to the Pacoima Dam excitation was greatly influenced also by the strength and stiffness of the structures.

-71-

All the braced frames had about the same strength and stiffness and they experienced similar responses. The moment-resisting frame was not nearly as stiff or strong as the braced frames, and it experienced much larger deflections. Since one cannot know in advance what characteristics an acceleration record of a future earthquake will possess, it is desirable to have structures with stiffness, strength and good energy dissipation characteristics. To meet all contingencies, an eccentrically braced frame should be best. It is stiff and strong like a concentrically braced frame, and it has excellent energy dissipation like a momentresisting frame. Hence, the eccentric bracing system can be expected to perform well during virtually any earthquake, if it is properly designed. It is not intended to say that the other systems are inadequate. The other braced systems performed satisfactorily, but the moment resisting frame subjected to the Pacoima Dam acceleration was found to be unsatisfactory. The moment-resisting frame developed problems due to excessive deflections thereby increasing the $P-\Delta$ effect. It should be noted, however, that the design of the moment-resisting frame was a preliminary design, and its performance could be improved by increasing its strength and stiffness.

Comparison of the Member Behavior

The purpose of the comparison of the overall structural behaviors of the different systems was to display their relative merits. It was not intended to make a detailed comparison of local behavior such as axial forces in the columns, since this has been done in other studies [11,12,43]. However, a few general comments will be made about the local inelastic behavior. Essentially all of the energy that was dissipated by the eccentrically braced frame was dissipated in the eccentric elements. Every eccentric element experienced some yielding in both the

-72-

Pacoima and El Centro excitation. No braces buckled during the El Centro analysis, and only one brace, which was located at the 16th story level, buckled during the Pacoima analysis. The axial forces in the base of the columns were quite high at times in both tension and compression. The maximum column loads were 3080 kips (13.7 MN) in compression and 1460 kips (6500 KN) in tension. It was assumed in the analysis that the foundation was capable of developing these tensile loads. As a result of the high column forces, plastic hinges formed in the columns for short periods of time at several locations. These hinges did not adversely affect the lateral deflections, since the lateral deflections were severely limited by the bracing. However, the yield locations had to be evaluated at the end of each analysis for inelastic axial shortening. The DRAIN-2D beam-column element (Element 2) does not model any axial softening after yielding has occurred. It is shown in reference [30] that this softening does occur in columns with high axial loads, but no numerical model for evaluating this softening has been implemented. The indicated hinge locations were examined, and it appears that axial softening would not be a problem, or, at most, could be prevented by relatively minor increases in column sizes.

The axial forces in the columns were a more severe problem for the concentrically braced structures. The maximum axial loads in the columns were considerably lower for the eccentrically braced frame, because this force was limited by the shear transmitted by the yielding eccentric element. The increase in column loads is limited only by the strength of the brace for a concentrically braced frame. Since the brace was designed in compression, while it can also yield in tension, wide fluctuation in column loads resulted. The maximum column forces in the prototype concentrically braced frames were 4300 kips (19.1 MN) in

-73-

compression and 3000 kips (13.4 MN) in tension. Because of these higher axial forces, the plastic moment was reduced, and plastic hinges formed at a few more locations than for the eccentric bracing system. The energy dissipation of the concentrically braced frames was virtually all due to the inelastic shortening and lengthening of axial members. Similar behavior was noted for the concentrically braced frames with both bolted and moment-resisting connections. This behavior appears to contradict the findings of Igarashi and Inoue [4], who found that the inelastic behavior is better in braced frames with moment-resisting capabilities. However, their conclusions were based on inelastic static analysis, and the analyses discussed here are dynamic. Since there are additional factors which affect dynamic response analysis but which do not have any apparent effect in the static analysis, the basic conclusion that it is better to design braced frames with moment-resisting connections appears to be valid.

The energy dissipation of the moment-resisting frame was entirely due to the plastic hinge rotations of the beam ends. The frame was designed by the weak beam-strong column design concept. As a result, all of the beam ends formed plastic hinges at some time in the analysis. The only plastic hinges which formed in the columns occurred at the very base of the columns. The column bases were fixed against rotation, so these plastic hinges must develop before the structure can form the mechanism which is necessary to achieve large lateral deflections and dissipate energy. Any plastic hinge which forms in the column is certainly more dangerous in a moment resisting frame than a braced frame, because there is less restraint against story drift. However, these plastic hinges were not considered to be critical, because the axial loads in the

-74-

columns of the moment-resisting frames were quite moderate. The maximum compressive force was approximately 1250 kips (5560 kN). No tensile forces developed in the columns.

Floor Deformations in the Eccentrically Braced Frame

In the previous sections, it was indicated that the overall dynamic performance of the eccentrically braced frame is superior to that of the moment-resisting and concentrically braced frames, because it has both excellent energy dissipation characteristics and greater strength and stiffness. It must be noted that, while obtaining these desirable characteristics, the system develops substantial inelastic floor deformations, which are necessary, because this is the intrinsic energy dissipation mechanism of the eccentric bracing system. The floor deformation is related to the lateral deflections which the structure experiences.

The publication, "Plastic Design of Braced Multistory Steel Frames," [44] presents a method of estimating the lateral deflections of a concentrically braced frame as the sum of two components. The components are δ_a , the lateral deflection due to lengthening or shortening of the brace, and δ_b , the lateral deflection due to lengthening and shortening of the columns. For eccentrically braced frames, a third component, δ_c , the lateral deflection caused by the deformation in the eccentric element, can be added, see Fig. 44. Therefore

 $\delta_{\rm T} \simeq \delta_{\rm a} + \delta_{\rm b} + \delta_{\rm c} \qquad (25)$

If the value of δ_a or δ_b are to change, it is necessary to have a change in the axial loads of the brace or column. Since the eccentric element is designed to avoid brace buckling these axial loads do not change greatly in a structure which is yielding, however, so the two

-75-

components remain nearly constant while the structure is yielding. The third component, δ_c , is negligible while the structure is elastic, because of the high stiffness of the elastic eccentric element, but δ_c changes significantly after the eccentric element has yielded and lost most of its stiffness. These simple kinematic concepts are reflected in the results of the dynamic analysis.

Time history records of the eccentric element floor deformations were maintained for the bottom 12 stories in the DRAIN-2D analyses. Similar records for the top eight stories could not be obtained because of limitations in the program. However, approximate envelope values for these upper stories can be inferred. Figure 45 is a plot of the maximum floor deformations for the eccentric elements on the first 12 stories. The diamonds identify data from the 1.5 times El Centro analysis and the triangles, the Pacoima Dam analysis. This figure shows that the deformations are quite uniformly distributed throughout the height of the structure for the El Centro analysis. The peak deformation was approximately 6.7 in (170 mm) for the Pacoima analysis. This deformation is very severe when it is recognized that it is concentrated within 35 in (890 mm) of the eccentric element. The maximum deformation due to the El Centro excitation was approximately 1.4 in (35 mm). The timehistory plots for the most severely deformed eccentric elements are shown in Figs. 46 and 47. The curves corroborate the significance of the three components of deflection shown in Fig. 44. When the structure is elastic the eccentric element deformations are small but very high velocities are attained during the short time the eccentric element is forced to behave plastically. These results indicate that lateral deflections due to deformation of the eccentric element are basically plastic deformations.

-76-

Figures 45, 46, and 47 also verify some of the conclusions reached from observation of story drift and maximum displacement. First, Fig. 45 indicates a uniform distribution of plastic deformation in the eccentric elements during the El Centro analysis. This is very desirable, since it implies that the ductility requirement imposed on an individual element is less severe. Further, the resulting permanent deformation of the structure due to El Centro is small as may be seen from Fig. 46. This agrees with the previous conclusions. Figure 47 indicates a very large permanent plastic deformation of the structure is left after the Pacoima Dam excitation analysis. Therefore, it is apparent that any permanent lateral deflection, which remains in the structure after completion of the analysis, must cause permanent inelastic floor deformation in the structure.

The above discussion can be summarized by saying that the inelastic behavior of the eccentrically braced system is directly related to the inelastic deformation of the eccentric elements. Therefore, the eccentric elements must be designed to withstand the inelastic deformations. Since these deformations may be large, this presents a very substantial design problem.

Problem Noted in Eccentric Frame Dynamic Analysis

A potential problem was noted in the DRAIN-2D dynamic analysis of the eccentrically braced frames when original stiffness proportional damping was used. This damping was used because it predicted a more realistic distribution of damping effects and did not cause a decrease in damping after yielding occurred; it also offers more computational stability in the analysis. The DRAIN-2D computer program handles this type of damping by augmenting the structural stiffness at the start of

-77-

the analysis and adding a load term at the end of each time step throughout the analysis [34]. The load term is added to the unbalanced load vector, which includes unbalanced loads due to change of yield state of correction for nonlinearities due to large deflections. The unbalanced load vector is then added to the next time step, since no iteration is performed within the time step for this program.

The problem was first noted by observing that the member forces, which were output by DRAIN-2D, did not satisfy equilibrium at the eccentric nodes. The axial forces in the brace and central beam segment were considerably higher than was warranted by the shear in the eccentric beam element. Moreover, this imbalance did not start until the eccentric element started to exhibit large amounts of yielding. The imbalance in member forces could not be caused by inertial loads, since there was no mass at these eccentric nodes. Eventually it was determined that the imbalance in member forces was caused by the application of a load through the unbalanced load vector used in DRAIN-2D. A large number of computer runs were made, which showed that this problem was dependent upon the geometry of the eccentric bracing system and the solution procedure used in DRAIN-2D and not a error within the subroutines developed for this analysis. These runs also indicated that the imbalance became significant only when the vertical damping loads on eccentric nodes became large. These vertical damping loads are large only while the eccentric element is plastic, because the vertical velocities of the eccentric node are essentially zero before yielding but are very large during yielding. This is verified by the time-history plots of Figs. 46 and 47.

The problem occurs when the eccentric element has lost most of its stiffness and ability to transmit shear, but the axial stiffness of the brace and central beam segment is still high. Therefore, this stiff,

-78-

interior bracing system is essentially isolated from the rest of the structure by the plastic eccentric elements as depicted in Fig. 48. Since the elastic central bracing system is isolated by the plastic eccentric elements, the damping forces which are applied to these eccentric nodes are transmitted by the trussing action as shown in Fig. 48. The direction and magnitude of these damping forces are dependent upon the direction and magnitude of the velocity. These damping forces will always increase the magnitude of both axial tension and axial compression forces. As a result, the axial force in the brace and central beam section are higher than required by the forces in the eccentric element. It must be emphasized that the DRAIN-2D analysis does satisfy equilibrium when damping effects are taken into account. The apparent imbalance in member forces is balanced by the damping loads.

There are several questions as to whether this damping phenomenon simulates true structural behavior. Damping normally includes any dissipative behavior which cannot normally be included as structural element behavior. This includes many things such as viscous material behavior, slippage in bolts in connections, and damage to floor slabs and non-structural infill walls. Some of these damping effects may physically cause higher axial forces in the brace but other effects will For example, in an eccentric bracing system with the floor slab not. integrally connected to the eccentric beam, considerable damping will result from crushing and cracking of the floor slab and infill walls. This damping is likely to cause a substantial increase in the axial loads of the brace. If the same structure were designed with the eccentric beam isolated from the floor slab, the axial force in the brace could not increase. There would still be considerable damping due to slippage in bolts, damage to infill walls, and other causes, but the

-79-

axial load in the brace could not increase after the eccentric element yields, because the brace is physically separated from all of these effects. Therefore, it is apparent that the predicted increase in axial loads may or may not be realistic, depending upon the design of the structure.

This increase in axial forces may cause substantial design problems in a structure. For example, it is very important that the brace be designed to avoid buckling, and it is necessary to have a realistic estimate of brace forces to properly design this brace. Another example, the axial force time history of the brace can be used to generate a time history record of the base shear of the structure. Both of these examples require a realistic time history record for the axial force in the brace. A certain amount of engineering judgment must be applied to this problem to determine if the damping and brace time-history record is realistic. If they are both realistic there is no problem. However, if the overall damping is realistic but the brace forces are unrealistically high, it may be necessary to modify the axial force time-history by finding the axial force at each time step which satisfies nodal equilibrium with the shears in the beam.

This problem was evaluated in the prototype structural system, and it was not found to be a severe problem. The maximum increase in axial forces appeared to be approximately 30%. This increase was felt to be reasonable for the 20-story prototype structural system, because the structure was designed to have interaction between the floor slab and the beam. However, the size of this increase depends upon the structure being analyzed. Increases in excess of 100% were noted for several other shorter eccentrically braced frames.

-80-

Dynamic Response of the Entire Structure

The analyses which were performed were plane frame analyses. However, the effect of factors such as the torsional response and the P- Δ effect on interior unbraced frames depend on the response of the total structure. The dynamic response of the total structure is a 3-dimensional response problem. However, the cost and complexity of such a 3-dimensional analysis make it prohibitive for present investigation. Therefore, this section will consist of a short discussion of how applicable the plane frame analysis is likely to be to the total frame response.

The first factor to be considered in this discussion is the torsional response of the structure. A plane frame analysis includes no torsional response. However, the total frame response may be significantly affected by the inelastic torsional response of the structure. For example, when an individual frame of the total structure softens due to yielding, the shear center of the structure moves. As a result, the torsional effect on the structure may change suddenly. The prototype structure was designed as a structure with a very symmetric distribution of mass, strength, and stiffness. Therefore, it is likely that yielding will progress in essentially a symmetric manner. This implies that the torsional response is not likely to be a serious problem for this structure, but any torsional excitation or variability in the as-built properties of the structure can increase the significance of torsional response. The full impact of torsion can only be determined by a more thorough study.

The second major factor, which would be considered, is the variability of the in-plane behavior of the various frames of the structure. For example, in the braced frame alternatives, the braced frames were designed to provide the full lateral strength and stiffness of the

-81-

structure. The interior unbraced frames were designed to resist their tributary gravity loads with a capability to resist the minimum lateral loads required by the design code. These interior frames are designed by the so called "two bit" frame concept. This lateral strength is necessary, because these interior frames must resist minimal overturning moments due to the P- Δ effect. However, the lateral strength provided to these interior frames affects the dynamic response of the structure.

This variability in in-plane behavior can be approximately accounted for by a method used by Wang [45] in the analysis of shear wall structures. In this method, two plane frames are analyzed while coupled together with a rigid link at each story level. This method assumes that there is no shear lag within the floor system, and all frames deflect the same amount. One of these two frames would have the properties of an exterior braced frame, and the other frame would have the properties of an interior frame.

This coupled frame analysis would be much more costly, because of the increased number of members and degrees of freedom. This type of analysis was not performed on the 20-story prototype structure, because it was thought that this analysis would not add further insight into the behavior of the eccentrically braced frame. These interior frames were thought to be beneficial to the eccentric bracing system, since they provided added strength and dissipation capability to a system which experiences small deflections with no deterioration in strength or stiffness. This type of coupled frame analysis will likely be more useful in the concentric bracing system, because this system does exhibit some deterioration during later cycles.

Summary of Dynamic Analysis Results

Two sets of plane frame inelastic dynamic analyses for two signifcantly different types of earthquakes were performed on the prototype

- 82 -

structure and three alternate structural systems. In all cases, the eccentrically braced system performed well. It performed well, because it is a stiff, strong structure with excellent energy dissipation characteristics. The concentrically braced frame also performed well but not as well as the eccentric system, because of its poorer energy dissipation and deterioration of strength and stiffness. The momentresisting frame exhibited desirable energy dissipation, but it lacked the strength and stiffness at large deflections to assure its stability under the Pacoima Dam excitation. It should be noted that the three alternative designs were preliminary designs, and improvements could be made in their performance. However, the designs were sufficiently representative so that they displayed the relative strengths and weaknesses of the alternate structural systems. ,

.

. .

CHAPTER 5. DESIGN OF ONE-THIRD SCALE MODEL FRAMES AND TEST SETUP

General

The prototype structure had been thoroughly analyzed at this point in the study. Also a detailed experimental and analytical study of the inelastic behavior of the eccentric element had been performed. A number of conclusions were reached in the inelastic dynamic analyses. One of the more critical conclusions was that large inelastic deformations are predicted in the eccentric beam element. These large deformations are necessary to the eccentrically braced system, since its sound energy dissipation capability is created by these severe deformations. Experimental studies were then necessary to assure that the eccentric system could withstand the large deformations without a structural failure. It was also necessary to assure that the actual system behaved as predicted by the analytical model. Further, the following experimental studies were desirable as an aid in the development of design criteria for this type of structure.

Design of One-Third Scale Model

For testing purposes, it was necessary to choose a frame size which would fit well with a testing facility presently in operation at the University of California, Berkeley. This facility had been successfully used in experiments with shear walls [45] and is frequently used for the cyclic testing of subassemblages. Another consideration in the design of the frame size was that it should have more than one level of eccentric bracing in order to simulate earthquake effects on a taller structure.

For these reasons, a one-third scale model of a three story single bay structure was chosen. This three story single bay braced frame subassemblage was intended to fit into the prototype structure as the three stories in the lower corner as shown in Fig. 49(a). For testing purposes, this model was then taken as a free body of this lower corner a shown in Fig. 49(b). Therefore, the cyclic loadings, which were applied to the test frame, were the cyclic effects which the free body would experience, if a one-third scale model of the entire prototype frame were tested.

One major simplification was made in the design and testing of the free body test specimens. The bending moments of the beams of the interior bays of Fig. 49(a) were neglected. This simplification was appropriate because the magnitudes of these bending moments were very small when compared to the overturning moment of the free body. It should also be noted these interior bays may employ bolted connections in which case the bending moment would be essentially zero. Further, the inelastic bending of beams is reasonably well understood (15,16), and it can be accounted for in the design and analysis.

Selection of Model Member Sizes

A number of parameters influenced the selection of the scale model member sizes. These obviously included the area of the cross section, moment of inertia, and section modulus. Because of the interest in the inelastic behavior and web and flange buckling, the thickness of the web and flange, width of flange, and depth of section were also important. A further consideration was to make use of standard steel sections and to further restrict the wide flange sections to compact sections. Due to these considerations, the final member sizes have properties which vary considerably away from the desired one-third scale. Because of these variances, the model was first scaled, and then an independent design check of the scale model was made. This check was to assure that the basic design concepts which had been developed for the eccentric system were not violated by approximations in the scaling procedure.

-86-
Another variance to be noted in the modeling of the test frame is the top beam of the model which was not designed to conform with the prototype. This member was sized considerably heavier, because of the local boundary condition effects. The first of these local conditions is the absence of the 4th story brace on the test specimen. The missing brace reduces the maximum number of plastic hinge locations in the beam, and so the beam size must be slightly larger. The second local condition is the high axial force which must occur in the eccentric element of the third story of the test frame. The cyclic behavior of beams which yield in shear has been studied and was found to be excellent, but the behavior of beams which are subjected simultaneously to shear and axial forces has not been determined. Because of these two factors, the third floor beam was oversized to avoid any problems. This larger beam size was expected to cause slightly larger deformations in the eccentric elements of the lower two stories, because the eccentric element of the top floor would not yield in shear until the other elements had experienced large amounts of strain hardening. This difference was not expected to be significant.

As is usual with multistory buildings, the story height of the lowest story in the model was higher than for the upper stories. This higher story level resulted in a steeper inclination of the brace angle. This steeper inclination forces earlier yielding in the eccentric beam element associated with the first story brace. In this particular case, the earlier yielding at this location was desirable because it assured the the earliest inelastic action would develop at a well-instrumented location. Figure 50 is a sketch of Test Frame 1 with the principal member sizes shown.

- 87-

Additional Design Parameters for Test Frame 1

The columns and beam sizes were identical for both Test Frames 1 and 2. The braces, however, varied. In Test Frame 1, the braces and their connections were designed for axial forces, which were approximately twice the design forces. The brace in an eccentrically braced system can develop increased forces due to strain hardening of the eccentric beam element and a possible lack of uniformity in the yield strength of steel. In this design, it is very important to avoid brace buckling in order to force the eccentric elements to yield in shear. For these reasons, the brace was designed very conservatively.

The spacing of the lateral support points also differed between Test Frames 1 and 2. The lateral support spacing requirements are not explicitly defined in the current design codes. The AISC code [32] specifies that wide flange beams should be supported at plastic hinge locations and at specified intervals depending upon the bending moment. These spacing requirements are based on tests of beams under uniform bending moment and monotonic loading. The eccentrically braced test frames were to be loaded cyclically with a highly variable bending moment across the beam. As a result, the realistic lateral support for this structural system was not clearly defined.

Test Frame 1 was supported conservatively since each beam was supported at six points. The beam-column joints were supported by simulating the support provided by the transverse frames. The bracebeam joint panel zones and two interior points of the central beam segment were also supported. These four interior supports simulate the support provided by the floor slab support joists. These joists are assumed to be spaced at approximately fifth point intervals of the beam which is somewhat closer than the spacing a structural designer would

- 88 - -

normally employ. However, this spacing fully satisfies code requirements because all plastic hinge locations are supported. This spacing also supported the central beam segment, because at times this segment develops high compressive forces, and the floor system must provide restraint to prevent weak axis buckling.

The connection details for test frame one are shown in Figs. 51 and 52. The beam-to-column connections were moment-resisting connections. A special feature of this connection detail is the fillet weld between the erection plate and the web of the eccentric beam element. The fillet weld was required because of the very high shear force in the eccentric element. If a bolted connection rather than a welded one had been used, a single row of bolts would not have had sufficient bearing capacity in the web to carry the high shear force. Multi-rows of bolts would be capable of carrying the high shear force, but the extra rows would complicate the connection detail. Additionally, under extreme cyclic loadings, the bolt holes in the web would become progressively larger, due to localized yielding, and the energy dissipation of the structure would be reduced.

The brace-to-beam connection is also shown on Fig. 52. As can be seen in the detail, these were bolted connections. The bolts were designed at working stress levels as friction bolts which were tightened by the Turn of the Nut Method. The capacity of the friction connection was approximately 79 kips, but the connection had a much larger capacity when the bolts were in bearing. The bearing stress of the bolts on the gusset plate and web of the channel was checked against acceptable stress levels, because of the likelihood of slippage in the friction connection.

-89-

This figure also shows another feature of the brace-to-beam connection of Test Frame 1. There is an eccentricity between the centroid of the welds of the gusset plate to the beam and the center line of the brace, and this eccentricity induces a bending moment which must be considered in the design of the connection. This eccentricity was the result of two factors. First, the gusset plate had to be of sufficient length to transmit the brace force to the beam. Secondly, the gusset plate could not be allowed to extend into the eccentric zone of the beam. This eccentric zone must be kept clear because it is designed to experience very large cyclic deformations. Since the gusset plate had to be quite long and kept back from the eccentric zone, an eccentricity at the connection was introduced.

Test Frame 1 also employed a number of stiffeners in the connection detail as shown in Figs. 51 and 52. Stiffeners were added to the beamcolumn joint because of the relatively high component of bending moment transferred by the beam. Stiffeners and a doubler plate were added to the brace-beam joint because of the large component of axial force which the brace transmits to the beam. The brace force applies a shear force to the eccentric beam element and develops an axial force in the central beam. The doubler plate and stiffeners are used to distribute the brace force to the beam. These reinforcing details were felt to be necessary because the gusset plate was much thicker than the web of the beam.

This has been a summary of the more important considerations applied to Test Frame 1. The details are shown in the working drawings of the first frame in Appendix E.

Design of Test Frame 2

The basic design of Frame 2 was similar to that of Frame 1. The differences were focused upon specific details of the design, in order

-90-

to improve them based on the experience gained from testing the first frame. Figure 53 shows the principal member sizes and details of Frame 2. The basic geometry of the second frame was identical to that of the first frame. However, the brace size in this frame was reduced in order to aid in the determination of the safe limits in the brace design. These braces were designed to develop 1.5 times the design force.

Figure 54 shows the details of the beam-to-column connection. The basic connection is again moment-resisting with a fillet weld between the web of the beam and the erection plate. These details were considered necessary for the satisfactory performance of the system. This connection is the same for both frames. Note that no stiffeners were employed in these beam-to-column connections. The cost of these stiffeners is quite high, and they were left off the second test frame. In comparision with Test Frame 1, the number of stiffeners was also reduced at the brace-tobeam joints of Frame 2. Figure 55 shows the details of this connection. Only a pair of stiffeners was used in this detail, compared to two pairs of stiffeners and a doubler plate used in Frame 1. This was also an attempt to evaluate the need for these costly design details. Since the brace of Frame 2 was somewhat smaller, the need for these stiffeners was reduced. It should be noted that a pair of stiffeners is required for the brace-to-beam connection as called out in Fig. 55. These are very important, and they will always be necessary to assure that the cyclic diagonal tension field can form in the web of the eccentric element.

There were also several other differences in the design of the braceto-beam connection of Frame 2. The first of these differences is that the brace connection is no longer a purely bolted connection. During

-91-

severe cycling, very substantial slippage of the bolted brace connection was noted for the first frame. This slippage will be discussed in greater detail in the next chapter, but in order to prevent slippage in the second frame, a small fillet weld was placed between the flanges of the channels and the gusset plate. This modification in the design of Frame 2 permitted a comparison of behavior between a slipping and fixed brace connection.

Another difference between the frames which can be noted from Fig. 55 is the kind of gusset plate attachment provided for the brace-to-beam connection. Test Frame 1 used the conventional gusset plate arrangement, but the second frame used a welded-on T section for a gusset plate. The T-section offers several advantages. First, the flange weld on the T causes the centroid of the welded connection to move toward the flange thereby nearly coinciding with the thrust line of the force in the brace. Thus, the eccentricity noted on Test Frame 1 is nearly eliminated. Secondly, the flange of the T-section can be aligned with the pair of web stiffeners resulting in a more direct transfer of force between the brace and beam. Therefore, the likelihood of local stress concentration and local instability such as web crippling is reduced. Finally, the T-section is also likely to help provide lateral support to the system because of the rigidity of the connection. This rigidity is helpful to both the brace and the beam, since both members in effect support each other in the out-of-plane direction.

The number of lateral support points was significantly reduced for Frame 2. Lateral support was provided only at four points at each floor level. The panel zone of each beam-to-column connection was supported, and two intermediate points of the beam were also restrained. The intermediate supports were placed at approximately the third points of the beam

-92-

span, since this was considered to be a more convenient spacing of floor slab joists by normal structural design standards. However, this spacing was somewhat questionable by code requirements, since support was not provided at all plastic hinge locations, although the two interior support points were of considerable help in preventing weak axis buckling of the central beam segment. In using this placement of lateral support points, it is implicitly assumed that lateral torsional buckling is not a serious problem in the eccentric bracing system. This assumption enters because the only available lateral support against lateral torsional buckling is the indirect support provided by the central beam segment. The very steep moment gradient in the eccentric element justifies this assumption. However, one of the objectives of this test was to determine the validity of this assumption.

In general, Frame 2 was designed less conservatively than the first. The final working drawings of both frames are shown in Appendix E. The results of the tests for these two frames can be compared to determine which of the designs produced better results.

Test Setup

The primary purpose of these tests was to perform a detailed investigation into the elastic and inelastic mechanical behavior of the eccentric bracing system. The tests were intended to quasi-statically simulate the cyclic effect of an earthquake rather than to apply a dynamic excitation to the system. This is the same basic procedure used in many other tests of structural systems [15,30,45]. The test facility, which was also used in earlier tests of concrete shear wall subassemblages, is shown in Fig. 56 with a braced frame in testing position. A detailed description of the design and construction of this testing facility is readily available [45,46] so only a brief description of this facility will be made

-93-

The frame was tested in a horizontal position. It was prestressed here. at the base to large concrete anchor blocks, which in turn were also prestressed to the test floor of the laboratory. The two load cells at the top of the frame are attached to other anchor blocks and are connected to the loading beam, which distributes the load to the test frame. These load cells apply and maintain a constant total force of 200 kips (890 kN) throughout the test to simulate the gravity load. The variable lateral forces are applied to the test frame by the 460 kip (2047 kN) load cell. The overturning effects of the top 17 stories of the prototype are simulated by a couple, which is also applied by the top two load cells, and the magnitude and direction of this couple are a function of the lateral force. The free body is loaded with an overturning moment of 4.375 kip-ft (5.93 kN-m) for every kip of base shear applied by the lateral load cell. It should be noted that the free body overturning moment is only a small part of the total prototype overturning moment, since this is only a one-third scale model of a single bay of a four-bay prototype structure. The three load cells were all electronically controlled by a MTS 406.11 servo-controller. A more detailed description of the basic system can be found in other references [46].

Loading Beam

There were several modifications which had to be made to the test apparatus for these particular tests. The first of these required a loading beam, the placement of which is shown in Fig. 56. The actual member forces of members in the test frame will vary greatly depending upon the loading, yield state and deflection history of the frame. Individual members will attract high proportions of force when they are stiff and much smaller forces when they are less stiff because of yielding. The loading beam makes use of this basic concept. The beam was

-94-

designed to remain elastic and relatively undeformable, while exerting no significant effect upon the stiffness of the test subassemblage. The individual elements of the frame should be able to deform and distribute their forces in the same manner as they do in the prototype structure. The presence of the loading beam will have a limited, local effect upon the stiffness of the frame, as the member forces will not be indicative of the prototype behavior in locations near the loading beam. However, these local effects dissipate rapidly, and the behavior in the lowest two stories of the test frame should agree well with the behavior of the prototype.

The design of the loading beam was influenced by several factors. The first was that the beam had to be designed to deliver the total load to the test frame, while the beam remained elastic and did not experience significant deflections. This relatively rigid elastic behavior was necessary to assure that the load cell forces were applied to the test frame members in accordance with their member stiffness and not in accordance with the loading beam stiffness. A second requirement of the loading beam design was that it had to fit within a very limited space. The anchor blocks of the test apparatus could be moved only with very great difficulty. Further, the test frames were designed to approximate a one-third scale model as closely as possible. This left very little space between the test frame and load cells for the beam, so it had to be made from an 8 inch (203 mm) deep wide flange section of high strength steel. A number of stiffeners and reinforcing plates were added to the beam to assure that it remained elastic and did not deflect excessively. The final design requirement also relates to the scale of the test frame.

The load cells, which applied the gravity loads, were 7 ft (2.14 m) on center. It was very important to maintain the 8 ft (2.44 m) column

-95-

spacing required by the scale of the test frame, and so the loading beam had to be designed to transfer the loads to these columns. The detailed working drawings for the fabrication of the loading beam are shown in Appendix E.

Lateral Support System

The second requirement of the test setup was a positive lateral support system for the beams. The compression flange of wide flange beams must be restrained against out-of-plane motion after it yields in compression to prevent lateral torsional buckling of the beams of the test frame. This lateral support is also needed to restrain the weak axis of the frame to prevent weak axis buckling of the column and central beam segment. The lateral support is very necessary in both the prototype and test frame structures, but it is also important to assure that the support provided to the test frame is consistent with the restraint, which will actually be achieved in the prototype. The compression flange alternates between the top and bottom of the prototype, and so both flanges require some restraint. The prototype lateral support is provided by means of the floor joists, which carry the floor slab. These joists will be of a smaller size than the beam, and they are likely to be bolted into place. As a result, the lateral support of the prototype may permit the beam to deflect and rotate out-of-plane a small amount before resistance is encountered, and then the resistance will not be very large because of the flexibility of the system. The lateral support system for the test frame was designed to satisfy the above general discription of the prototype support.

The lateral support system of the test frame also had to be designed to withstand large inelastic deflections, such as a maximum

-96-

lateral deflection of \pm 6 in (\pm 152 mm) at the top of frame; and the eccentric element was expected to experience vertical deflections as large as \pm 3 in (\pm 76 mm) at the same time. The test frame support system had to provide continuous support during these large cycles. Finally, the restraint system had to be designed to allow versatility in the placement of the supports, since the two test frames were designed to have different spacings of the support points.

Appendix E shows the design working drawings of the lateral support system, which was designed for the test frame, and Fig. 57 is a photograph of the key components of this system. The basic component of the design is a rail type frame, which is bolted to the laboratory floor, and a sliding arrangement, which encloses the rails, as shown in Fig. 57. Teflon was glued onto all contact surfaces between the rails and slides. Therefore, all friction surfaces were Teflon on Teflon and frictional resistance was essentially eliminated. All of the slides were adjustable. so that they could move freely in the plane of the rail. A cruciform was chosen to connect the support system to the beam, since this closely simulates the restraint provided by a floor joist to the beam of the prototype. One of these attachments is shown near the top of a threaded stud in Fig. 57. The cruciform was designed to be tack welded to the test frame, and it was made of light steel plates so that it would be very flexible and could not deliver unrealistic lateral restraint. The threaded studs provided a convenient means of connecting the test frame to the supporting system. The size of the rod was chosen to provide the needed support without being excessively rigid or strong.

The loading beam weighed approximately 2.2 kips (9.8 kN), and this weight had to be supported to prevent damage to the test frame and the test apparatus. Thus, a support system was designed to carry the total

-97-

weight of the loading beam and to be adjustable in height. The adjustable height was accomplished by the same threaded rod arrangement used in the lateral support of the test frame. This permitted precise leveling of the loading beam and unrestricted movement and support. All friction surfaces were again coated with Teflon to eliminate friction. A copy of the working drawings of both support frames are shown in Appendix E. Instrumentation

The bulk of the data taken during these experiments was read and stored by a high speed data accquisition system. This system can read and record approximately 20000 data points per second and has the capability of monitoring 127 channels, although only 72 were utilized in these tests. With this limited number of channels, the data are recorded virtually instantaneously, and the speed at which the test is conducted has no bearing on the accuracy of the data. A Tektronix console was connected to the data acquisition system for the input of initial data and calibration factors, specification of read points, and for visual monitoring of a limited number of data channels during the test. The system also transfers all data directly to a tape, which can be read, plotted and evaluated on the CDC 6400. This system permitted the reading of a large number of data channels at very close intervals of the test. The resulting data produces a nearly continuous recording of events.

A large number of SR 4 gages were mounted to the structure at locations which were expected to remain elastic throughout the test. These locations were chosen to assure that the bending moments, shear, and axial load of any single member could be accurately determined at any time of the test. There was a high degree of redundancy in these

-98-

gage locations, so that cross checks could be made for any malfunctioning gage location. Moreover, these gages were often placed in pairs to check for any out-of-plane buckling or instability. The general philosophy of the placement of the SR 4 gages was to accumulate sufficient data to cover any feasible problem which could occur in the test as well as to give force and bending moment estimates for critical members such as the braces. Figure 58 is a sketch of the test frame which shows the placement locations of SR 4 Strain Gages.

Clip gages were placed in locations where large deformations due to yielding were expected, since clip gages are designed to remain linear throughout a wide range of axial elongation. Several gages were mounted to the flanges at locations where plastic hinges were expected to form, and then the average plastic rotation could be determined [15]. A pair of clip gages was also mounted diagonally on both sides of the web of the eccentric zones as shown in Fig. 59(a). The measurements from them can be combined to estimate the deformation and average shear strain of the eccentric element. The geometry of the deformation of the eccentric element is shown in Fig. 59(b). It is implicitly assumed that the stiffener at the end of the eccentric zone is inclined at the same angle, β , as the face of the column. The shear yield tests of Chapter 3 indicate that this is a reasonable assumption. From the geometry shown in Fig. 59(b) it is apparent that

$$t^{2} = u^{2} + (v + r)^{2}$$
 (26)

and

 $s^2 = u^2 + (r - v)^2$ (27)

-99-

The eccentric element can be expected to deform severely during the test, and small deflection geometry cannot be expected to hold true throughout the test. Therefore, u, v, s and t must be considered variable. However, r should remain essentially constant throughout the test, since the beam must deform in an unrealistic manner to significantly change its value. Equations 26 and 27 can be combined to eliminate the variable u then

$$v = \frac{t^2 - s^2}{4r}$$
(28)

The variable v is a measure of the deformation of the eccentric element, and the angle of average shear strain, γ_{av} , of the eccentric element can be estimated as

$$\gamma_{av} = \tan^{-1} \frac{v}{u}$$
 (29)

The vertical deflection, y, of the eccentric element can be determined from v by noting that the rotation angle β will be quite small and applying small angle geometry

$$y = v - u\beta \tag{30}$$

The placement locations of the clip gages are shown in Fig. 60.

A number of linear potentiometers were also used to measure the deflections of specific points of the frame. The linear potentiometers are capable of measuring deflections of up to \pm 6 in (\pm 152 mm). These gages were placed at locations where direct measurements of deflection or elongation were most useful. The first three potentiometers were placed at the three story levels to measure the lateral deflection of each level. Two others were used to measure the vertical movement of the top of each column. The vertical movements of the eccentric nodes on the bottom story were also measured by a pair of such potentiometers. The average reading of a pair of linear potentiometers was also used to

-100 -

record the elongation and slippage of individual braces for the first test specimen. Figure 61 is a sketch showing the placement of these linear potentiometers.

In addition to the instrumentation shown in Figs. 58, 60 and 61, the three load cells shown in Figure 56 also transmitted an electronic signal which indicated the magnitude of forces acting on the test frame at a given time. The electronic signals provided by the strain gages, clip gages, linear potentiometers and load cells were all received and measured by the high speed data acquisition system. The data system then interpreted the voltage and current measurements by prescribed calibration factors, and recorded the interpreted data. The timing of the data acquisition was manually controlled, and data were collected at very close intervals to assure accurate plotting and interpretation.

In addition to the data recorded by the high speed data acquisition system, data were taken by other means during the test. The Tektronix console, which was directly connected to the data acquisition system was used to monitor the measurements taken on a limited number of channels. The channels of interest were primarily the linear potentiometers and load cells. These data were used solely for the control of the test. Three Esterline X-Y-Y' Recorders were used during the test to continuously record selected data. These data were recorded as force-deflection plots. The recorded force was always the lateral force on the test frame, and was plotted against the lateral deflections of all three story levels and the vertical deflections of the two eccentric nodes of the bottom story.

A number of manual and photographic measurements were taken during these tests. Several dial gages were mounted to the base plate to measure

-101-

any movement of the test frame relative to the anchor blocks. These gages were manually read at various intervals. A 16 mm motion picture camera was also used during this test to record some of the observable inelastic behavior. The test frames were whitewashed to make the yielding of the steel observable. The test frame was under continued observation during the test, and a number of still photographs were also taken during the test. A photogrammetric grid was placed on the web of the beams, columns and braces of the eccentric zones of the lowest story as shown in Fig. 61. Photographs were taken on glass plates at critical points of the test. This is the same photogrammetric procedure as was used in the test of the beam specimens, the purpose of which was to evaluate further the local effects within the severely deformed eccentric element.

Loading Program

The two frames were tested under the same basic load program. The cycles covered both elastic and inelastic behavior, with the elastic cycles under force control and the inelastic cycles under displacement control. Figure 62 shows the basic load program for the inelastic behavior portion of the test. The load point numbers which were assigned are shown in this figure. This cyclic deflection history was applied at the third story level. The load program was chosen as a simulation of predicted maximum dynamic response predicted for the 1.5 times El Centro and unreduced Pacoima Dam acceleration records. The first 9 cycles are symmetric displacement cycles with increasing magnitudes of displacement of .5, 1.0 and 1.5 inches (12, 25 and 27 mm). The nine cycles are an idealization to the one-third scale of the dynamic response of the prototype structure computed for the 1.5 times El Centro excitation. However, this is an extreme idealization, since the dynamic analysis does not indicate that the structure would experience so many severe inelastic

-102-

cycles. The next cycles are an idealization of the one-third scale of the severe inelastic response predicted for the prototype structure during the Pacoima Dam excitation. The first 13 cycles were primarily intended to evaluate the actual behavior of the structure as compared to the performance predicted for the given excitation. It was thought that these cycles formed a very severe test of the structure, but additional cycles were applied to obtain more information on the behavior of the system and to examine its failure and partial collapse. Hence, the remaining cycles were applied at the full displacement capacity of the test apparatus.

The load program in Fig. 62 includes only the inelastic cycles which were applied to the test frame, but the frame was also subjected to three separate sets of elastic cycles. The elastic cycles were force controlled, and Fig. 63 is a plot of the typical elastic cyclic loading. The magnitudes of the cyclic lateral forces are low and the frame remains elastic during the cycles. The first set of the elastic cycles was applied at the start of the test before any yielding had occurred. The second set of cycles was applied after the three 1.5 in (38 mm) cycles. This set of elastic cycles was thought to represent the elastic condition of the structure after experiencing the 1.5 times El Centro acceleration. The third set of elastic cycles was performed after the 3.0 or the 4.5 inch (76 or 114 mm) cycles. This set of elastic cycles was felt to be indicative of the condition of the structure after an extremely severe earthquake.

The test program of elastic cycles was applied to the structure for several reasons. These cycles give a measure of the elastic stiffness of the frame. This information can be very useful in showing any degradation of stiffness that may occur in the structure. The effect of a partial structural failure on the elastic properties of the frame could also be

-103-

determined with these cycles. Further, the elastic cycles were expected to provide information on the accuracy of the tests. For example the frictional force exerted by the lateral support system could be determined by these elastic cycles. Figure 64 shows a graphical representation of how this frictional force can be estimated from the elastic hysteretic curves. Information of this type was valuable at intervals throughout the test, since it gives an indication of how well the test frame and the test equipment are performing.

Total Lateral Load on the Test Frame

In the description of the test setup, it was noted that the lateral load on the test specimen was applied by a single load cell as shown in Fig. 56. At very small lateral deflections, this load cell provides the total lateral force on the test frame, but at larger deflections the two gravity load simulators contribute a component to the lateral force. The basis of this contribution is shown in Fig. 65. The one end of the gravity load cells are fixed against translation, but the other end translates with the loading beam and the top of the test frame. As a result, the load cells are not quite perpendicular to the loading beam at large lateral deflections. The average length between the rotation points of the load cells is 83 in (2.11 m). This length will vary slightly during the test, but the variation is too small to be significant in these calculations. Therefore, the angular change, ψ , produced by this deflection is defined by

$$\tan \psi = \frac{\Delta_3}{83} \tag{31}$$

where Δ_3 is the 3rd story deflection. Since ψ is always small, $\cos \psi$ is essentially equal to 1.0, and the net gravity load is always 200 kips

-104-

(890 kN), as was discussed earlier. The lateral load, however, must be corrected. The correction, ΔP , is

$$\Delta P = 200 \sin \psi \approx 200 \frac{\Delta_3}{83} \qquad (.32)$$

At a lateral deflection of 6 in, ΔP is 14.45 kips (64.3 kN), which is very significant. The total corrected lateral force, P_T , is

,

$$P_{T} = P + \Delta P \tag{33}$$

where P is the load applied by the lateral load cell. All the lateral forces which are presented in this report, are corrected for lateral deflection

Summary

The test frames are very complex systems, which are intended to simulate the behavior of a small part of a large structure. Much of the design of the test apparatus centered about the simulation of the total structural behavior. The loading program was intended to produce the maximum amount of useful data, while attempting to simulate a realistic force and deflection history for this small part of the total structure. The instrumentation was applied very liberally, so that maximum information could be obtained from these tests. I ł 1

. .

ł

ł

ł r :

.

CHAPTER 6. BRACED FRAME TEST RESULTS, EVALUATION AND COMPARISON TO INELASTIC ANALYTICAL MODEL

<u>General</u>

This chapter contains a discussion of the tests of the two eccentrically braced frames and an evaluation of the results. Comparisons will be made to evaluate the relative performance of the two test frames to aid in determining the best design procedures. The inelastic analytical model, which was discussed in previous chapters, will be compared to the test results.

Reduced copies of the working drawings of the one-third scale models are shown in Appendix E. The two scale model braced frame subassemblages and the loading beam were fabricated at the machine shop of the University of California Richmond Field Station. The lateral support system was fabricated by the University of California Department of Civil Engineering Machine Shop. Tensile coupon tests were taken from the web and flange of each of the main member sizes used in these test frames. The results of these tests and residual stress test results are shown in Appendix B.

Results for Test Frame 1

Preceding Page Blank

Test Frame 1 was tested in the horizontal position with the testing apparatus discussed in the previous chapter. Figure 66 is a photograph of the test frame and the testing facility just prior to testing. The testing began with several cycles of elastic loading as shown in Figure 63. After completion of these elastic cycles, the inelastic displacement controlled loading program shown in Figure 62 was begun. As can be seen from this figure, the frame was first cycled through three cycles of \pm .5 in (\pm 12.7 mm) and then three cycles of \pm 1 in (\pm 25.4 mm) third floor deflection. During the \pm 1 in (\pm 12.7 mm) displacement cycles,

-107-

brace bolt slippage was noted. For this reason, a second set of elastic cycles was run to determine the effects of this slippage on the stiffness of the frame. After this, the inelastic displacement was again begun with three cycles of \pm 1.5 in (\pm 38 mm) third floor deflection. One-sided deflections began at 3 in (76 mm). Frame stiffness was then tested with a third set of elastic cycles. Testing proceeded with a 4.5 in (114 mm) one-sided deflection. Eventually, maximum cyclic loading deflection of \pm 6 in (\pm 152 mm) was applied to test the failure mechanism of the frame. Each of these loadings and their effect on the test frame will be discussed.

The initial elastic hysteresis loops shown in Fig. 67 indicate that the lateral support system was not exerting much friction on the test frame. The procedure shown in Figure 64 indicates that the static friction force was approximately 1 kip (4.5 kN). This was less than 1% of the ultimate strength of the test frame, and so, it was neglected. The stiffness of the structure with respect to the prescribed loading and the third floor deflection was 174 kips/in (30.5 kN/mm) during these initial elastic cycles.

The inelastic displacement controlled loading program was then begun. The first three cycles were taken between \pm 0.5 in (\pm 12.7 mm) third floor deflection. The initial shear yielding was expected to occur in the first floor south eccentric element (see Fig. 56) due to the steeper inclination of the first floor brace. The test frame did begin yielding at a deflection of approximately 0.25 in (6.4 mm). Since the first yielding started at this deflection level, the first three cycles can be regarded as a ductility factor of approximately two with respect to first yielding. Figure 68 is a plot of lateral force-third

-108-

floor deflection hysteresis loops for these inelastic test cycles. The first three cycles of this figure are completely repetitive with no pinching of the hysteresis loops nor any deterioration in strength or stiffness. The linear elastic portion of these early cycles grew slightly larger with each of these cycles. This growth is indicative of isotropic hardening of the eccentric elements during the early yielding. This growth in yield surface is verified by the fact that the lateral force required to induce a 0.5 in (12.7 mm) deflection increased from 65.8 to 68.6 to 70.3 kips (293 kN, 305 kN, 313 kN) during these three cycles.

The next three cycles were between + 1 in (+ 25.4 mm). During the first one inch cycle, a noise was heard at a load of 78 kips (347 kN). Examination of the test specimen and data indicated that the noise was associated with brace bolt slippage. The test specimen was then cycled through the two additional one inch cycles, and increased slippage of the bolts occurred shortly after each load reversal. The noise increased in duration with each reversal, and the noise and slippage started at a lower load with each reversal. At the end of these one inch cycles, the slippage was starting at a lateral force of approximately 25 kips(111 kN). This slippage did not have any apparent effect upon the hysteretic curves at this time (see Figure 68). The strength of the frame continued to increase due to strain hardening during these cycles. The force required to achieve a 1.0 in (25.4 mm) lateral deflection increased from 85.6 kips to 91.4 kips to 92.9 (381 kN, 407 kN, and 413 kN). Considerable yielding was occurring in the web of the eccentric beam elements of the bottom two stories as evidenced by cracking and flaking of the whitewash.

The plot of the second set of elastic cycles is shown in Figure 69. The effect of the bolt slippage is very apparent in these hysteresis

-109 -

curves. The stiffness of the frame is essentially the same as the stiffness of Figure 67, when the brace is in full bearing, but the average stiffness is reduced by 11% due to the brace slippage.

The test frame was then cycled for 3 cycles between + 1.5 in (+ 38 mm) and two additional cycles of one-sided deflection where the maximum third floor deflection was 3 in (76 mm) and the minimum deflection was zero. The brace slippage continued to grow more severe during these cycles, and a very small, but distinct, pinching effect was noted in the hysteretic loops for these later cycles. Several of these very small pinched zones are circled in Figure 68. At the end of the 3 in (76 mm) cycles, this slippage was starting as a reversed load of approximately 5 to 10 kips (22.5 - 44.5 kN). The strength of the frame continued to increase during the early part of these five cycles, but it stabilized and showed a very slight decrease in the later cycles. The force required to attain a 1.5 in (38 mm) deflection increased from 99.9 kips to 103.8 kips and 104.3 kips (444 kN, 462 kN, and 464 kN) during the three 1.5 in (38 mm) cycles, but the deflection required to attain a 3 in (76 mm) deflection decreased from 113.5 kips to 112 kips during the 3 inch cycles. This observation indicates that the early cycles are strongly influenced by isotropic strain hardening while the later cycles are predominantly influenced by kinematic hardening. Web buckling in the yielded web of the eccentric beam elements was visible during all of these cycles. However, this buckling did not have a detrimental influence upon the test results, since the cyclic diagonal tension field formed.

The plot of the hysteretic loops of the third series of elastic load cycles is shown in Fig. 70. The average stiffness was 125 kips/in (21.9 kN/mm). This represents a 29% reduction in the average stiffness.

-110-

This average stiffness has deteriorated significantly since the last series of elastic cycles after LP12. However, even at this point, the stiffness when the brace and bolt are in bearing is essentially the same as at the start of the test. Figure 70 also indicates that the lateral support system continued to perform well, since the static friction force is still on the order of 1 kip (4.5 kN) despite the large deflections which the frame has experienced.

The test frame was then cycled through two cycles of one-sided deflection with a 4.5 in (114 mm) maximum at the third story level. These two cycles again exhibited repetitive hysteretic behavior. The slippage of the brace was very evident during these cycles, and the hysteretic loops exhibited slight pinching. However, the overall behavior of Test Frame 1 was satisfactory up to LP26. The strength of the frame remained essentially stable during these two cycles with only a very slight deterioration in strength. The force required to induce a 4.5 in (114 mm) deflection decreased from 117.3 kips to 114 kips (522 kN and 507 kN). This further amplifies the significance of kinematic strain hardening during these later cycles. It should be recalled that the 13 inelastic cycles through LP26 were intended to simulate the behavior of the test frame under sequential 1.5 times El Centro and unreduced Pacoima Dam earthquakes.

The full displacement capacity of the test apparatus, \pm 6 in (\pm 152 mm), was then applied to the specimen to gain insight into the ultimate failure mechanism of the structure. The test frame was first cycled to a maximum deflection of 6 in (152 mm) at LP27, and the frame exhibited no deterioration in strength (see Fig. 68). However, the beam of the first floor south eccentric element (see Figure 56) began

-111-

to show signs of imminent failure after reversal from LP27. These signs consisted of the development of shiny slip lines of metal, which began to tear as the displacement was reversed. The tearing of this web began to appear as the deflection reached 1 in (25.4 mm), and it grew worse as the deflection decreased to ~5.12 (-130 mm) at LP28. The tear progressed diagonally across the web as shown in the photograph (see Fig. 71). The strength of the frame decreased from -104 kips (-463 kN) at a 2 in (51 mm) deflection to -89 kips (-396 kN) at LP28. This is a relatively small drop, and it indicates that the failure of an individual eccentric element does not mean the total collapse of a frame. However, the plastic deformation progressed more rapidly in the other eccentric elements after the first element started to tear. The south element of the second floor (see Fig. 56) started to tear at a deflection of -2.5 in (-64 mm) after reversal from LP28. This element also tore diagonally across the web. The lateral strength was approximately 81 kips (360 kN) at LP29 after the first two eccentric elements failed. The north eccentric element of the second floor (see Fig. 56) began to exhibit a severe accumulation of plastic deformation at LP29, but this element did not appear to be in danger of immediate failure. The test was stopped at LP29. The specimen was carrying the full 200 kips (890 kN) gravity load, the overturning moment of the upper stories and a lateral load of 81 kips (360 kN) at LP29. This indicates that the test frame retained a very significant proportion of its initial strength despite the failure of two of the eccentric elements. Figure 72 is a photograph of the test frame after completion of the test.

The energy dissipation was relatively uniformly distributed among the eccentric elements of the frame. Figures 73 and 74 are the lateral

-112-

force-deflection hysteretic plots for the first and second floor. The areas enclosed within these hysteresis loops together with Fig. 68 are a measure of the cyclic energy dissipation at the various story levels. Comparison of these figures indicate that there is a relatively uniform distribution of energy dissipation within the test frame. At moderate plastic strain levels, approximately 40% of the energy was dissipated within each of the first two stories, and 20% was dissipated within the top story level. The top level dissipated less energy, because the beam at that level was oversize, and this top story was not designed to correctly reflect the behavior of the prototype. The lower stories were sized to simulate prototype behavior, and the energy was dissipated very uniformly within these story levels. This uniform energy dissipation is a very desirable feature, as it indicates that the eccentric beam elements are deforming plastically; and no one element is excessively strained. Figures 73 and 74 also display the very stable and repetitive hysteretic behavior of this eccentrically braced frame.

Evaluation of Test Frame 1

The performance of Test Frame 1 was basically very good. It survived cyclic deflections in excess of those predicted for a 1.5 times El Centro base excitation (\pm 1.0 to \pm 1.5 in) with no structural failure and only a modest loss in average stiffness. It is possible that this stiffness could be significant since it implies that the structure will deflect more under lateral load. However, this stiffness loss could be corrected by welding the brace connection to prevent slipping since this test indicates that the loss in stiffness is essentially zero when the brace slippage is prevented. The test frame also withstood cyclic deflections in excess of those predicted for a Pacoima base excitation (up to LP26) without any structural failure. The stiffness

-113-

loss was somewhat greater during these larger cycles, but the frame could still be repaired. Several eccentric elements tore during the extreme \pm 6 in (\pm 152 mm) cycles. Nevertheless, the frame retained much of its strength and continued to exhibit ductile behavior. The test was stopped at LP29 where the lateral deflection was 6 in (152 mm). The frame continued to carry the full 200 kip (890 kN) gravity load and an 81 kip (360 kN) lateral load at the conclusion of the test despite the two torn eccentric elements. Thus, this test frame withstood cyclic deflections well beyond those predicted for the 1.5 times El Centro and Pacoima excitations.

Brace slippage was an important factor in the behavior of this test frame. This slippage was measured during the test, and so, its effect can be determined. Since the slippage of the brace is equivalent to an elongation or shortening of the brace, the lateral deflection due to slippage can be computed using the technique [44] discussed in Chapter 4 and shown in Fig. 44. This computation was made for the three floor deflections, and the modified hysteresis curves are plotted in Figs. 75, 76, and 77. These figures indicate that the removal of the deflection caused by brace slip eliminated the small pinching effect, which was noted earlier. Figure 78 is a plot of the modified hysteresis loops for the elastic cycles made after LP22. A comparison of these four figures indicates that the deterioration was caused by brace slippage. They also indicate that the effect of slippage does become more severe for the larger inelastic cycles. The hysteretic loops prior to LP18 are essentially unchanged by the slip correction, but the correction becomes as large as 0.5 in (12.7 mm) for the later cycles. Figure 79 is a plot of the axial force versus the brace slippage plus elongation for the

-114-

first floor brace. The area enclosed within these hysteresis loops is the energy dissipation by slippage of the first floor brace. This enclosed area is very small. Further, the loops are extremely pinched, and they deteriorate badly. As a result, the energy dissipation mechanism provided by the brace slippage is very poor. However, the brace and bolted connections were conservatively designed. Thus, the pinching effect due to brace slippage was negligibly small compared to the great dissipation provided by the eccentric beam element.

The test specimen was studied to determine the cause of this deterioration with the bolted brace connections. The nuts were removed from several of the bolts in the first story brace after completion of the test, and it was found that some of the bolt holes had elongated approximately 0.1 in (2.5 mm) to one side. This examination indicates why the slippage dissipation deteriorated. During very early cycles the bolted connection did not slip, because the bolts were tightened down to provide a friction type connection. It should be noted that the first bolt slippage occurred at an axial force of approximately 70 kips. This is somewhat less than the 79.5 kips predicted by the AISC allowable friction connection forces. However, the bolted connection was also designed with the bolts in bearing contact. The ulimate bearing capacity of this connection was approximately 135 kips (599 kN). At slightly larger cyclic inelastic deflections, the frictional resistance of the connection was overcome and the bolts slipped into bearing contact. This slippage continued during a number of cycles, and the friction surfaces became polished. This polishing reduced the frictional coefficient, and the slippage started at a lower reversal load on each succeeding cycle. At the same time, very localized yielding began to

-115-

occur due to bearing contact of the bolts in the bolt holes, and so slippage became more severe with each cycle, because the bolt holes grew larger. This local yielding occurred at very low stress levels. The maximum bearing stress was 37 ksi (255 mN/m²). This bearing stress is well below the actual yield stress of the brace (42.5 ksi), and it indicates that the bolted connections must be designed very conservatively with respect to bearing stress under cyclic loading to control this localized yielding. If these connections are not designed conservatively, the brace slippage will become more severe, and the structure will eventually suffer severely pinched hysteresis loops which will produce larger deflections.

Figure 80 is a photograph of a typical yielded eccentric element. Note that the eccentric element exhibits complete yielding of the web, but virtually no yielding occurs outside the eccentric zone. This indicates that the bulk of the energy was dissipated by the inelastic strain in the eccentric elements. These eccentric elements behaved like the shear yielding beam elements discussed in Chapter 3. That is, these elements had a photogrammetric grid with very sharp parallelograms in the center of the eccentric element, and less sharply defined shear strain at the edges of the eccentric element because of the warping restraint. Web buckling also accompanied the shear yielding, becoming particularly severe during the cycles between LP18 and LP26. The web buckling did not adversely affect the force-deflection hysteresis loops, because the expected cyclic diagonal tension field formed. This field formed and reformed under cyclic loading without causing any pinching of the hysteresis loops or deterioration in strength. However, the diagonal tension field also restraightened the web on the next half cycle after the web had buckled. This precipitated a failure mechanism where a

-116-

tear progressed diagonally across the web through the area which had buckled and restraightened a large number of times. The eccentric node, which is the connection joint of the brace and the beam, experienced very large vertical movements due to the inelastic deformation of the eccentric elements. The test frame was designed so that the early deflections were more severe in the south eccentric element of the first floor. Figure 81 is a plot of the vertical deflection of the eccentric node of this element for the various lateral load levels. This plot is not a hysteretic plot in the full sense, since the area enclosed within the loops has no particular meaning, but this figure indicates that the large inelastic deflections of the eccentric element exhibit very stable, repetitive behavior. The maximum deflection was approximately 2.2 in (56 mm) prior to the element failure. The deflection became more severe after failure of the element. This is a very severe deflection level, since the eccentric element is only 12.5 in (318 mm) long. Figure 82 is the corresponding plot for the north eccentric element. The behavior of this element is similar to that seen for the south element in Fig. 81. The north element experienced some erratic behavior after the south element failed which was caused by the redistribution of forces after failure of the south element.

Figure 83 indicates how the inelastic deflections of the frame are attained. This plot subdivides the deflection into the three components described in Fig. 44 and the component due to slip of the brace connection. This plot clearly indicates that virtually all of the inelastic deflection of the frame is caused by the inelastic deflections of the eccentric element. It also indicates that the component of deflection due to brace slip increases for later cycles at larger deflections, while the component due to elastic elongation of the brace is virtually

-117-

constant. The component due to elongation and shortening of the columns increases very slightly in later cycles, because of inelastic shortening in the plastic hinges at the base of the columns. The lateral slippage of the base of the structure was monitored during the test, and it was found that this effect was negligible, since the deflections were always less than 0.001 in (.025 mm).

A very small percentage of the energy dissipation was caused by the formation of a plastic hinge at the base of the columns. The base of the columns were fixed against rotation, and so this point of the column attracted very large bending moments. Therefore, column yielding had to occur before the frame could attain really large deflections. Flange buckles formed in this yielded zone, after the flanges yield. These buckles were first noted at the 3 in (76 mm) deflection. The buckles became progressively more severe during the last cycles of the test. Figure 84 is a photograph of these buckles at the end of the test. The flange buckling did not adversely affect the test, because the plastic rotations at this location were quite small. This flange buckling and the previously noted web buckling of the eccentric beam elements are the only buckling phenomena observed in this test frame.

The results of Test 1 can be summarized by saying that the test frame performed very well. It dissipated large amounts of energy without any significant pinching of the hysteresis loops. The bolted braces did exhibit some undesirable slippage but these effects were severely limited by the conservative design of the bolted connections. The lateral support system performed very well. The results of this test indicate that a well-designed and constructed eccentrically braced frame is able to withstand very severe lateral deflections.

-118-

Test Frame 2

The second test frame was of a less conservative design than the first. The braces were lighter and the lateral support was provided only at the third points of the beams. The number of stiffeners and doubler plates was also reduced. Because of the brace slippage which occurred in the first frame, the brace connections were welded to prevent slippage. These design changes were made to better evaluate the design alternatives for the eccentric bracing system.

The load program and instrumentation were essentially identical to those of Frame 1 except that the elastic cycles were run after \pm 1.5 in $(\pm$ 38 mm) and 4.5 in (114 mm) cycles. The testing began with the elastic load program shown in Figure 63. The lateral force-third floor deflection hysteretic curves for these elastic cycles are shown in Fig. 85. The elastic stiffness of the test frame with respect to the lateral loading and third floor deflection was 164 kips/in (28.7 kN/mm). This stiffness was 6% less than the stiffness of Test Frame 1 because the braces were lighter. Figure 85 again indicates that the frictional force exerted by the lateral support system on the test frame was negligible. The maximum static friction force was 1 kip, and this is less than 1% of the ultimate strength of the test frame.

After completion of the initial elastic cycles, the inelastic displacement controlled loading program shown in Fig. 62 was started. The hysteretic behavior of the lateral load versus the third floor deflection for these inelastic cycles is shown in Fig. 86. The first nine cycles at ± 0.5 (± 12.5 mm), ± 1.0 (± 25.4) and ± 1.5 in (± 38 mm) exhibited very repetitive behavior with no pinching of the hysteresis loops, and no deterioration of strength or stiffness (see Fig. 86). The behavior of Test Frame 2 was similar to that of Test Frame 1 during these cycles,

-119-

except that the elastic stiffness was 6% greater in the first frame because of the larger braces. Brace slippage was prevented for Frame 2 by both welding and bolting the braces to the gusset plate. The strength of the frame increased steadily during these nine cycles because of the strain hardening in the plastic eccentric elements. The strain hardening in these early cycles was predominantly isotropic hardening. These facts are verified by observing that the force required to induce a 0.5 in (12.7 mm) deflection increased from 64.4 kips to 65.8 kips and 67.3 kips (287 kN, 293 kN, and 299 kN) during the first three cycles. During the 1.5 in (38.1 mm) cycles the strength increased from 99.9 kips to 104.8 kips to 105.5 kips (444 kN, 466 kN, and 469 kN). The whitewash on the web of the eccentric beam elements began to flake during the one inch cycles. This indicates that significant yielding was occurring in the web at this time. Visible web buckling began to occur in the plastic web during the 1.5 inch cycles. However, as can be seen in Fig. 86, this buckling did not have an adverse effect on the strength of the frame.

LP18 marked the end of the first nine inelastic cycles, and a series of elastic cycles were then performed. The hysteretic behavior for these elastic cycles was essentially identical to that shown in Fig. 85. The average elastic stiffness was 158 kips/in (28.0 kN/mm), and the maximum static friction within the test apparatus was less than one kip.

Two cycles of one-sided deflection with a 3.0 in (76 mm) maximum third floor deflection were then run. These cycles also exhibited very good energy dissipation, but the braces began to show severe lateral torsional buckling during these cycles. The brace attracted substantial bending moments because of the welded connections, and so plastic hinges formed in the brace at the base of the structure. Lateral torsional

-120-

buckling began to appear during the first 3 in (76 mm) cycle because of the yielded brace. Figure 87 is a photograph of this brace in its ultimate buckled condition. Lateral torsional buckling also occurred in the third story brace because of the high bending moments induced by the heavy third floor beam. However, the local buckling of the third floor brace lagged behind the buckling in the first floor brace. These buckles became steadily worse during the cyclic loading, but they had no apparent effect on any of the hysteresis loops of any of the cycles up to LP22. The behavior during the 3 in (76 mm) cycles showed very little influence due to isotropic hardening and considerable influence due to kinematic hardening. The force required to induce a 3 in (76.2 mm) deflection increased slightly from 107 kips to 110 kips (476 kN to 490 kN) during the 3 inch cycles.

The test frame was then cycled through two 4.5 in (114 mm) one-sided deflections. During these two cycles, the lateral torsional buckles continued to increase. The strength of the frame exhibited moderate deterioration at the end of these cycles since the strength decreased from -109.5 kips to -94.6 kips (-487 kN to -421 kN) when the frame was at zero deflection. However, the hysteretic curves were basically very repetitive. The first web failure occurred in the south eccentric element (see Fig. 56) in the first floor after reversal from LP26. The tear progressed diagonally across the web because of the severe working which it experienced during cyclic buckling and diagonal tension formation. Figure 88 is a photograph of the torn element. The tear was very similar to the initial web tear in Frame 1, except that it occurred one-half cycle sooner.

Another series of elastic cycles was applied to the structure after the web tear. The lateral force-deflection hysteresis loops for these

-121-

cycles are shown in Fig. 89. The lateral stiffness indicated by this figure is 134 kip/in (23.5 kN/mm), which is only an 18% reduction from the original elastic stiffness. This is a very important fact, because it emphasizes that the deactivation of one of the eccentric beam elements does not necessarily indicate that the structure will totally collapse. It appears that a number of these eccentric elements must fail before the structure can collapse. The static friction force can also be seen from Fig. 89, and it has remained less than one kip.

The remainder of the load cycles were applied at the maximum deflection capacity of the test apparatus, + 6 in (+ 152 mm). The frame was first deflected to 6 in (152 mm) at LP27. During this half cycle, the maximum lateral strength of the frame was 104 kips (463 kN) which was approximately a 10% reduction in strength from previous cycles. The reduction was primarily caused by the first web tear. The displacement was reversed to LP28 with no adverse effects, but on reversal from LP28 the south eccentric element of the second floor also tore. The strength steadily decreased, while the tear was progressing, to a load of 78 kips (247 kN) at LP29. The third floor deflection was then reversed to -5.46in (-139 mm) at LP30. The lateral torsional buckling of the third story brace became steadily more severe during each of these cycles. The lateral torsional buckling of the first story brace did not deteriorate much beyond LP26, because it did not carry a very large force after the first eccentric element failed. The displacement was reversed to 6 in (152 mm) at LP31, but the third story brace buckled around its weak axis when the deflection reached 4 in (101 mm). The strength of the frame dropped from 65 kips (289 kN) to 54 kips (240 kN) when the brace buckled in its weak axis. The deflection was continued to 6 in (152 mm) at

-122-
LP31, and the test was stopped. The test frame was supporting 57 kips (254 kN) lateral load, 200 kips gravity load, and the overturning moment of the upper 17 stories at the conclusion of the test. It should be noted that the loading beam was designed to have a minimal effect upon the test. However, it is very possible that after the frame had lost significant strength this beam did affect the results of the last cycles. The presence of this rigid loading beam at the top of the structure probably helped the test frame maintain its lateral strength and stiffness after the eccentric elements had failed.

Figure 90 is a photograph of the buckled third story brace. The earliest buckling that occurred in this brace was lateral torsional buckling. This local buckling was first observed during the 3 in (76.2 mm) cycles, and it became more severe with each succeeding cycle. The centroid of the brace section deflected out of the plane of the weak axis because of the severe twisting induced by the lateral torsional buckling. This deflection caused considerable weak axis bending within the brace, which then buckled in a column buckling mode just before LP31. The column type buckling, which is seen in Fig. 90 was caused by large twists induced by the lateral deflections of the compressive flange.

Figures 91 and 92 are lateral force-deflection hysteretic curves for the first and second floor deflections. These figures again show that the hysteresis loops of the eccentric bracing system are very stable and repetitive. This frame has the same good distribution of energy noted for Test 1. That is, the two lower stories each dissipate 40% of the energy and the top story dissipates only 20%. This favorable distribution of energy dissipation indicates that all of the eccentric elements are deforming plastically without causing any one element to deform excessively.

-123-

The bulk of the dissipated energy in Test 2 was provided by the 🦿 eccentric elements. The eccentric elements of Test Frame 2 behaved similarly to eccentric elements of Frame 1 and the shear yield beams described in Chapter 3. They displayed considerable shear yielding of the web, with warping restraint at the interfaces. Web buckles formed, but they did not adversely affect the hysteresis loops, because the cyclic diagonal tension field formed. However, the large inelastic shear deformation again resulted in very significant vertical deflections of the eccentric nodes. Figures 93 and 94 are plots of this vertical deflection as a function of the lateral loads for the north and south eccentric elements of the first floor. These plots amplify the very stable and repetitive characteristics of the inelastic behavior of this eccentrically braced frame. However, the maximum floor deflections are very large, which indicates considerable damage to the floor system. The plots in Figs. 93 and 94 are similar to the curves obtained for Test 1 and shown in Figs. 81 and 82. The only significant difference is that the south eccentric element of Frame 2 experienced slightly larger inelastic deflections than the same element of Frame 1, during the inelastic cycles between LP12 and LP26. Figure 95 is a photograph of Test Frame 2 after completion of the test, which illustrates the many similarities in deflected shape, failure mechanism, and severity of plastic deformations between Frames 1 and 2.

Test Frame 2 experienced its first web tear earlier in the inelastic loading program than Test Frame 1 and the data were examined to determine why this occurred. It was found that the south eccentric element (see Fig. 56) of the first floor had a more severe strain history in Test 2 than in Test 1. This occurred because the loading cycles were displacement controlled and the brace could not slip in Test 2. The more severe strain

-124 -

history resulted in larger deflections of the south eccentric element of Frame 2. This can be seen by comparing the curves shown in Figs. 81 and 93. These deflections are only slightly larger for each cycle of Fig. 93, but over the total number of cycles this slight difference accumulates into a considerably more severe strain history. If these accumulated strain histories are considered, it is apparent that the eccentric elements fail at approximately the same accumulated strain level.

One of the lateral support points failed in Frame 2 just prior to LP31, when the brace buckled. The cruciform plate fore away from the beam, because neither it nor its welds had sufficient strength or stiffness to restrain the beam after the brace buckled. This failure of the lateral support did not significantly effect the experiment since it occurred just before completion of the test. It can be regarded as being fortunate because it indicated that the lateral support system was performing as intended. The lateral support system was designed to provide adequate lateral support to the frame, while simulating strength and stiffness limits that could be expected in normal building construction.

The results of the second test can be summarized by saying that the frame exhibited the same sound energy dissipation noted for the first frame. The hysteretic loops were repetitive, stable, and unpinched. The primary difference in behavior can be attributed to the behavior of the brace and brace connections. The welded brace connection induced bending moments into the brace which caused the formation of plastic hinges and lateral torsional buckling in the brace. Since Test Frame 2 could not have any brace slippage, it was forced to deform more severely and fail earlier for the same amount of displacement in the eccentric element. The lateral support system performed very satisfactorily during the test.

-125-

results of this test again indicate that a well-designed and constructed eccentrically braced frame can withstand extremely severe lateral deflections.

Comparison of the Tests

Although there were several major differences in the design of the two test frames, they both exhibited the same general elastic and inelastic behavior. Their hysteretic loops were very repetitive and stable, and the frames maintained their strength and stiffness well into the failure of individual eccentric elements. Their elastic deflections and energy dissipation were produced by the inelastic deformation of the eccentric elements. These eccentric elements performed well, and their behavior was similar in both frames.

One of the major differences in design of the specimens was the braceto-beam connection. The first frame had bolted connections. The major advantage of this connection was that it avoided lateral torsional buckling of the brace. A second advantage is that it is an economical connection. Its main disadvantage was that the brace connection slipped. This slippage results in a slight deterioration in the hysteretic behavior, and it caused a loss in the average lateral stiffness of the frame. Because of these two factors, a frame with bolted brace connections can expect slightly larger lateral deflections during severe excitations.

The second frame had welded brace connections. This connection offered the advantage of avoiding brace slippage. A related advantage is that the lateral deflections tend to be less severe. It had the disadvantage of attracting larger bending moments in the brace. These bending moments caused local yielding and the formation of lateral torsional buckling. At severe displacements, the eccentric element will be slightly more severely deformed than with the bolted connection and this may lead

-126-

to earlier failure of the frame. However, both connection details are satisfactory since in both cases the frame adequately withstood severe deflections without failing. The undesirable features of each can be minimized if they are designed properly. This means that bolted brace connections should be designed conservatively, whereas welded connections should have good lateral support.

Another difference is the size of the brace. The brace in Frame 1 was designed very conservatively with the factor of safety against ultimate compressive load of greater than two. The brace in Frame 2 had a factor of safety of approximately 1.5. At large displacements of the frame, the braces in the second frame exhibited considerable buckling while those in the first frame did not. In the second test, the buckling problems were induced by the welded brace connection. The brace of Test Frame 2 was strong enough to avoid Euler buckling if the lateral torsional buckling had not damaged the brace. Therefore, the smaller brace size is the more desirable since it is economical while providing adequate strength to the frame.

The lateral support, which was provided to the frame, was also a design variable. Frame I was supported at the fifth points of the beam, and the second frame was supported at the third points of the beam. There was no distinguishable difference in the performance of the two test frames with respect to the lateral support. The support used for Test Frame 2 is more economical and consistent with the framing normally used in building construction. From the results of these tests, it appears that lateral torsional stability of the beam is not a severe problem in these eccentrically braced frames. This verifies the results of Chapter 3 where cyclic behavior of short beams is discussed. That is, the high shear

-127-

(or moment gradient) of the shear yielding eccentric zone inhibits flange buckling or lateral torsional buckling because the flange cannot yield over a sufficient length to form a buckle. Web buckling occurs but it is more stable because of the formation of the cyclic diagonal tension field.

The gusset plate used in the brace-to-beam connection was also a variable in the design. Test Frame 1 used an ordinary plate type gusset, as shown in Fig. 52. The second frame used a simulated structural T-section for a gusset plate, as shown in Fig. 55. The T-section was used because it provides a better transfer of the axial force of the brace to the beam, since the flange of the T and the beam stiffener can be directly aligned. Further, the centroid of the weld of the T-section coincides with the line of action of the brace, and this simplifies the design. There were no significant differences in the test results, which could be attributed to this design detail. However, the connection detail used in the first frame also required a doubler plate and an additional stiffener to transfer the brace force, as shown in Fig. 52. The additional stiffeners and doubler plate make this a more expensive connection.

The final variation in the design of the test frames was the stiffeners used in the beam-to-column connection. Frame 1 was conservatively designed with column web stiffeners at the level of the beam flanges, as shown in Fig. 51. Test Frame 2 was designed without the use of such stiffeners. There were no apparent differences in the behavior of the test frames that could be attributed to this detail. Therefore, it appears that the eccentric bracing system does not have any special need for stiffeners in the beam-to-column connection. This is not intended to imply that stiffeners are not needed at the brace-to-beam connection. A single stiffener is always required at the brace connection, as shown in Fig. 55, so that the shear can be uniformly transferred to the web and the cyclic

-128-

diagonal tension field can form.

Comparison of the Analytical Model with Test Results

A static cyclic inelastic analysis was performed on these two test frames and the results were compared to the test results. The DRAIN-2D program is capable of performing only dynamic analysis, and so it was not suitable for this analysis. The ANSR-I [46] computer program was used for this analysis because it was similar to the DRAIN-2D program and it had capabilities for static inelastic analysis. The shear yielding beam element, which was developed for DRAIN-2D, was modified for use in ANSR. The basic element behavior and yield criteria are identical to the listing in Appendix C, but a number of other modifications had to be made to adapt them to the three-dimensional analysis and the iteration and solution procedures used by ANSR. It should be noted that while ANSR is a threedimensional nonlinear analysis program the shear yielding beam element is still a planar element. It was also necessary to modify the basic ANSR program to create a save-and-restart capability. This capability was necessary because of the iterative nature of the solution and the many cycles to be analyzed.

The entire test frame and loading beam were modeled, and the lateral loads, gravity loads, and overturning couple were applied to the loading beam. The panel zone of all beam-to-column connections were assumed to be rigid. The brace was assumed to be connected to the beam with a pinned connection for Test Frame 1, and a moment-resisting connection for Test Frame 2. The base plates of the test frames were designed to remain elastic throughout the test, and it was necessary to consider the linear elastic deflection of these base plates. This base plate deflection was modeled by using the deflection equation (Equation 147 [41]) of a point load on a plate, which is simply supported on four sides. The base of the

-129-

test frame was grouted and prestressed to the anchor block, and the only deflection which could occur was that the column could uplift slightly when it was in tension. This correction reduced the predicted elastic lateral stiffness of the test frame by approximately 9%. The maximum change in deflection caused by this correction was .04 in. (1 mm) at the 3rd floor of the test frame.

The yield stress, Young's Modulus and uniaxial strain hardening coefficient, ρ , used in this comparison, were obtained from the test results shown in Appendix B. The residual stress distribution of the W 6 x 12 beam section (see Appendix B) was used to produce a modified plastic shear force, V_p . The yield stress of the web was simply reduced by the average residual stress in the web, and V_p was computed by Equation 3. The ultimate compressive loads were predicted by the AISC formulas [32], which were modified to the tensile coupon yield stress of the specimen. The interaction between axial force and bending moment was approximated by AISC equation 2.4-3 [32].

Both tests were analyzed for all inelastic cycles up to and including LP23. The ANSR computer program is a load controlled solution, but the test results were displacement controlled. Therefore, the nonlinear analysis was also run as a displacement controlled analysis, but this had to be done by an interactive approach, because of the complexity of the loadings. The interactive analysis was accomplished by first choosing a cyclic loading program and analyzing several cycles. This analysis was examined, and the loading program was adjusted so that the desired cyclic deflection was obtained. After the first displacement cycles were satisfactorily obtained, the results were saved, and the restart capability was used to save the expense of continually reanalyzing the early

-130-

cycles. Because of the limitations imposed by manually starting and terminating a run, it was not possible to precisely match the deflection program used in the tests. However, the fit of the analytical model to the experiment was good. Figure 96 is a plot of the lateral force third floor deflection for Test Frame 1. The dashed lines are the curves predicted by the analytical model, and the solid lines are test results. It should be noted that the test curve is corrected for brace slip, since the analytical model has no provisions for brace slip. The curve fit between the experimental and analytical results during the early cycles is extremely good. The later cycles up to LP 23 are also good, but the model displays a common failing during these later cycles. At large deflections, the model consistently undershoots the lower side of the test curve. The model is still satisfactory at LP 23, but it is apparent that the fit will grow worse at larger deflections. The analysis was stopped at LP23 because of the great cost of this analysis in this range, and the limited accuracy to be expected in further cycles. However, Figure 96 indicates that the shear yield model, which was developed in Chapter 3 is a very good model for predicing global deflections of the eccentrically braced frames. This figure also indicates the ways in which the model could be improved. At large deflections, the shear yield model becomes basically a kinematic hardening model, and this causes undershooting shown in Fig. 96. If the shear yielding element could incorporate a more accurate balance between isotropic hardening, kinematic hardening, and bounding surface concept, the fit would be improved for these large deflections.

The analytical model was also compared with the test results in other ways (see Table 2), and the comparison was generally favorable. Table 2 shows that the comparison is by no means exact, but it is good for

-131-

inelastic analyses. It should be noted that some of the variables, such as the vertical deflection of the eccentric node, are very sensitive, and this sensitivity makes it difficult to obtain good experimental comparisons.

The plot of the hysteretic comparison of Frame 2 in Figure 97 indicates that the model does a good job of predicting overall inelastic behavior of the frame. Other comparisons are shown in Table 3. The fit obtained for Frame 2 is very similar to the general fit from Test 1. <u>Summary</u>

Two eccentrically braced frames were tested and it was found that the eccentric bracing system has excellent energy dissipation capabilities. The hysteretic loops were repetitive and stable, and the frames maintained most of their strength and stiffness even after the first web tear. Hence this system is likely to perform satisfactorily even if one of the eccentric elements fails. A number of design parameters were evaluated. The brace-beam connection was the most sensitive parameter. If the brace is connected by bolts, the brace will slip; if it is welded, the brace will develop lateral torsional buckling problems. Neither of these problems was excessively severe, but the structural design must be attuned to avoid them. An analytical model discussed earlier was compared with these results. The comparison indicated that the analytical model is very good at predicting the behavior of the eccentrically braced system.

-132-

SUMMARY, DESIGN RECOMMENDATIONS AND CONCLUSIONS

Summary

The eccentric bracing system has many desirable attributes for the design of earthquake-resistant structures. The analyses have shown that this system provides a very stiff structure, and the stiffness provided is stable over a relatively large range of eccentricities. Stiffness is very desirable, because it helps assure a more serviceable structure and tends to limit the P-A effect during severe earthquake excitations. The eccentric bracing system also offers excellent energy dissipation characteristics and inelastic behavior since the eccentric element is designed to deform inelastically before the brace can buckle.

A study of the inelastic behavior of the eccentric beam element showed that cyclic shear yielding of the web produced superior inelastic behavior. The cyclic behavior was stable during large deflections because a cyclic diagonal tension field formed and prevented deterioration due to web buckling. However, flange restraint and web stiffeners were necessary to develop this tension field. An analytical model of cyclic shear yield behavior was developed from these studies, and the model was used in the inelastic dynamic analysis of a 20-story four-bay eccentrically braced frame. The results of this analysis were compared to results predicted for conventional concentrically braced and steel moment-resisting frames under two very different types of earthquake excitations. The comparison indicated that the eccentrically braced frame performed very well because of its strength, stiffness, and energy dissipation capabilities.

Two one-third scale model test frames were designed to simulate the behavior of the 20-story prototype structure, and they were tested under a loading program which simulated two severe earthquakes sequentially

-133-

applied to the structure. These tests verified that the structural system performed as a stiff structure with full, unpinched hysteresis loops and that the loops were repetitive with no deterioration in strength or stiffness. It was further found that this structural system was capable of withstanding both of these earthquake simulations without any structural failure. However, it should be noted that very large floor deflections must be expected during the large lateral deflections. The results of the tests were used also to evaluate various design details. The analytical model was also compared with the test frame results. The predicted behavior from the model was very similar to the actual test results.

The tests and analytical studies indicate that the eccentric bracing system performed well under severe earthquake simulations; the system is very stiff with excellent energy dissipation, and thus performs well elastically and inelastically.

Design Recommendations

A number of conclusions were reached during the course of this study which directly affect the design of an eccentrically braced frame. The eccentrically braced system is a framing system where the center line of the brace does not intersect the center line of the beam-to-column connection. The eccentricity is introduced so that the eccentric beam element provides a ductile fuse which assures good inelastic behavior and energy dissipation. Since the plastic behavior is very important to this framing system, the initial preliminary design should be made using plastic design concepts. The technique of moment balancing is suitable for this. The procedure simply requires that the designer obtain a moment diagram which satisfies statics and design the structure accordingly. It is immaterial how this moment diagram was obtained or selected. Two factors are most

-134 -

helpful in generating the diagram. First, it is useful to understand the general collapse mechanisms which can occur in an eccentrically braced frame. Secondly, because the brace provides approximately 75 to 80% of the lateral stiffness of the structure, it should carry a similar proportion of the lateral shear. An application of this general approach is given in Appendix A.

The beam-to-column connections are also an important feature of the system. They must be designed as moment-resisting connections, because the flanges require this restraint if the diagonal tension field is to form, and the beam must be designed to yield in shear. This is accomplished by assuring that the chosen beam has sufficient web area to develop the plastic shear force, V_{p} , required for the eccentric beam elements. The size of the eccentricity is selected so that shear yielding occurs before plastic hinges form at both ends of the eccentric beam element. Moreover, the eccentricity should be chosen to assure a balance between shear and bending yield by having plastic hinges form at both ends of the eccentric beam soon after shear yield. This balance can be accomplished by choosing the eccentricity with the techniques suggested in equations 23 and 24. The beam must be designed for the bending moment at the face of the column, which is considerably less than the bending moment at the center line of the beam-column joint. The plastic moment is reduced to $M_{\rm D}^{\star}$ in the eccentric beam segment and is further reduced at the brace connection because of the interaction between moment capacity and high axial load in the central beam segment. It should be noted that doubler plates must not be used to increase the shear area of the web of the eccentric beam element, but cover plates can be applied to the flanges to increase the bending capacity of the beam. The beam design is critical.

-135-

It should not be designed too conservatively because the brace and column design depend on the beam design.

The brace itself is designed as a compression member with its ultimate axial design load depending upon the ultimate plastic strength of the beam. The axial design load will be somewhat higher than the load predicted by moment balancing, and it depends on how conservatively the beam is designed. The brace should be designed for this ultimate compressive load with a factor of safety of at least 1.5. The additional factor of safety is necessary to assure that the brace will not buckle despite strain hardening of the eccentric beam element, uncertainty in the actual yield stress of the steel, and the additional force necessary to crack the floor slab. This factor of safety could be modified if an analysis of an individual design indicated that the modification was justified.

The columns are designed by the usual weak beam-strong column design concept employed in steel moment-resisting frames. The beam-to-column connection must be designed as a moment-resisting connection as shown in Figure 54. This type of all-welded connection is necessary because of the high shear in the eccentric element and the required flange restraint, which assures stability of the eccentric beam element. It should be noted that a fillet weld is necessary between the erection plate and the beam web because of the very high shear force in the eccentric beam element.

The brace-to-beam connection is best designed as a bolted joint with a structural T section used for a gusset plate as shown in Figure 55. The flange of the T should be directly aligned with the web stiffeners as shown in this figure. This pair of stiffeners is always necessary to develop the diagonal tension field and to ensure stability of the eccentric beam element. The bolted connection should be designed for the full

-136-

ultimate brace load with the additional factor of safety. The connection must be designed with bolts in bearing, and the bearing stress should not exceed the yield stress of the material. The limitation in bearing stress is necessary so that cyclic slippage of the brace does not become too severe and reduce the energy dissipation of the system. It should be noted that brace slippage in the connection will produce a slight deterioration in lateral stiffness during a major earthquake, but the loss in stiffness can be regained later by welding the connection. A welded connection is also an acceptable alternative. Finally, the use of a regular gusset plate as shown in Figure 52 is also acceptable. However, this last detail will generally require additional stiffeners and doubler plates at the brace connection.

<u>Conclusions</u>

The major conclusions of this report can be summarized as follows:

1. The eccentric bracing system is a very stiff structural system which easily satisfies the serviceability requirements of building codes. The weight of steel required may be of the order of 30% less than that required for steel moment-resisting frames. Further, this lateral stiffness remains stable through a wide range of small to moderate eccentricities.

2. Cyclic shear yielding is a desirable method of energy dissipation for the eccentric element. Shear yielding offers good stability under large cyclic deflections. Web buckles form after the web has yielded, but if the beam is properly designed, a cyclic diagonal tension field forms at large displacement levels, and this tension field prevents any significant deterioration in the inelastic behavior of the frame.

3. The cyclic inelastic behavior of structures with eccentric

-137-

elements which yield in shear can be predicted by a simple analytical model which gives a good indication of structural behavior.

4. Inelastic dynamic analyses of the eccentric prototype system and other alternate concentrically braced and moment-resisting frames under two very different severe base excitations indicate that different excitations produce different responses in the structure. Some excitations create a pulse effect, and the structure must have considerable elastic strength and stiffness to limit inelastic deflections. Other excitations exhibit a periodic effect, and the structure must exhibit sound cyclic energy dissipation characteristics to limit inelastic deflections. The eccentric bracing system performs very well because it combines the stiffness of a braced frame with the very desirable energy dissipation of a steel moment-resisting frame.

5. One-third scale models of eccentrically braced frames exhibit large initial elastic stiffness; they also possess very sound energy dissipation characteristics. The hysteretic loops are unpinched and do not deteriorate in strength or stiffness. Further, even beyond failure of the first eccentric element, the structure continues to retain most of its strength and stiffness. Therefore, the premature failure of a few eccentric elements for any reason will not necessarily mean a total collapse of a structure. Apparently a relatively large number of eccentric elements must fail before the structure is in danger of total collapse.

6. The inelastic behavior of the eccentrically braced frame is very good, but very large inelastic floor deflections must be expected through all of the floors of a structure. This is both an advantage and a disadvantage. It is desirable because it distributes the inelastic activity and no one point experiences excessive deformation. However, it

-138-

also indicates that considerable floor damage must be expected on all floor levels. The floor damage may be quite severe, but it is also more easily repaired than many other types of damage.

7. The beam-to-column joint must be a moment-resisting connection. This is necessary because the flanges of the eccentric beam element require restraint to develop the cyclic diagonal tension field. A web stiffener is also required at the brace connection to develop this tension field. These connection details are costly, but the weld and member sizes are relatively small. Therefore, the danger of lamellar tearing and the cost of welding should be significantly less than for a steel moment-resisting frame.

8. No doubler plates are required in the web of the column of the eccentrically braced frames. Inelastic strains in this panel zone do not adversely affect the story drift as they do in moment-resisting frames. However, stiffeners may be needed at the beam-column connections.

9. A peripheral conclusion was reached relative to the design of the bolted connections. As is well documented in the test of Frame 1, slippage of bolted connections can have a very detrimental effect upon the hysteretic behavior of the total structure. This effect is limited if the bolted connection is designed conservatively in bearing on the bolts. Therefore, it is recommended that bolted connections, which are subjected to cyclic loadings, be designed for ultimate bearing stresses no larger than the yield stress of the material.

In addition to the above, there are several areas which are worthy of further study. These include:

1. The possibility of developing a new all-bolted beam-to-column connection for use in the eccentric bracing system. This connection

.-139-

detail is not possible with the usual bolted web connection because of the high shear forces and bolt bearing problems noted earlier. This type of connection would have to be a hybrid connection which eliminates the bearing stress problem.

2. The effect of axial force on cyclic shear yielding of beams needs further study. The behavior of beams which yield in shear is excellent, if the axial force is low. However, no tests have been made on beams simultaneously loaded with axial and shear force. This type of condition occurs in systems such as the eccentric K brace, and it may also occur in other bracing systems under certain conditions.

3. Eccentric bracing creates a structure which utilizes the beam better and limits the magnitude of forces and moments in the members. The general eccentric bracing concept could be applied to other structural systems.

-140-

References

1.	Popov, E. P., Takanashi, K., and Roeder, C. W., "Structural Steel Bracing Systems: Behavior Under Cyclic Loading," <u>EERC Report 76-17</u> , University of California, Berkeley, June 1976.
2.	Wakabayashi, et al, "Experiment on the Elastic-Plastic Behavior of Bars Subjected to Cyclic Axial Loads," <u>Preprints of Annual Conference</u> , <u>AIJ</u> , October 1972.
3.	Kahn, L. F., and Hanson, R. D., "Inelastic Cycles of Axially Loaded Steel Members," <u>ASCE Struct. Div. J</u> ., Vol. 102, May 1976.
4.	Igarashi, S., and Inoue, I., "Memorandum on the Study of Braced Frames," <u>Quarterly Column</u> , No. 49, October, 1973.
5.	Higginbotham, A. B., "The Inelastic Cyclic Behavior of Axially-Loaded Steel Members," <u>Ph.D. Thesis</u> , University of Michigan, 1973.
6.	Nonaka, T., "An Elastic-Plastic Analysis of a Bar Under Repeated Axial Loading," <u>J. Solids Structures</u> , Vol. 9, 1973.
7.	Igarashi, S., Inoue, I., Ogawa, K., and Asano, M., "Hysteretic Characteristics of Steel Braced Frames, Part I, The Behavior of Bracing Members Under Cyclic Axial Forces," <u>Trans AIJ,</u> No. 196, 1972.
8.	Fujimoto, M., Wada, A., Shirakata, K., and Kosugi, R., "Nonlinear Analysis for K-Type Braced Steel Frames," <u>Trans AIJ</u> , No. 209, July 1973.
9.	Tanabashi and Taneta, "On the Relation Between the Restoring Force Characteristics of Structures and the Patterns of Earthquake Ground Motion," <u>Proceedings of Japan National Symposium Earthquake Engineer-</u> ing, Tokyo, Japan, 1962.
10.	Veletsos, A. S., "Maximum Deformation of Certain Nonlinear Systems," <u>Proceedings of 4th World Conference Earthquake Engineering</u> , Santiago, Chili,1969.
11.	Workman, G. H., "The Inelastic Behavior of Multi-Story Braced Frame Structures Subjected to Earthquake Excitation," <u>University of</u> <u>Michigan Research Report</u> , September 1969.
12.	Nilforoushan, R., "Seismic Behavior of Multi-Story K-Braced Frame Structures," <u>University of Michigan Research Report UMEE 73R9</u> , November 1973.

13. Wakabayashi, M., et al, "Experimental Study on the Elastic-Plastic Stability on Steel Frames and the Restoring Force Characteristics," <u>JSSC</u>, Vol. 6, No. 55, 1970, in Japanese.

- 14. Wakabayashi, M., Matsui, C., Minami, K., and Mitani, I., "Inelastic Behavior of Full-Scale Steel Frames with and without Bracing," <u>Bulletin of Disaster Prevention Res. Inst</u>., Kyoto University, Vol. 24, Part 1, No. 216, March 1974.
- 15. Krawinkler, H., Bertero, V. V., and Popov, E. P., "Inelastic Behavior of Steel Beam to Column Subassemblages," <u>EERC Report 71-7</u>, University of California, Berkeley, October 1971.
- Bertero, V. V., Krawinkler, H., and Popov, E. P., "Further Studies on the Seismic Behavior of Steel Beam-Column Subassemblages," <u>EERC</u> Report 73-27, University of California, Berkeley, December, 1973.
- 17. Fujimoto, M., Aoyagi, T., Ukai, K., Wada, A., Saito, K., "Structural Characteristics of Eccentric K-Braced Frames," <u>Trans AIJ</u>, No. 195, May 1972.
- Hisatoku, T., et al, "Experimental Study on the Static Behavior of the Y-Typed Bracings," <u>Report of Takenaka Technical Institute</u>, No. 12, August 1974.
- 19. Gupta, R. P., "Seismic Behavior of Staggered Truss Framing System," University of Michigan Report on AISI Project No. 175, December 1971.
- 20. Hanson, R., Goel, S., Berg, G., "Seismic Behavior of Staggered Truss Frame System Design Procedure for Earthquake Loading," <u>University of</u> Michigan Report on AISI Project No. 175, December 1971.
- 21. Teal, E. J., "Seismic Design Practice for Steel Buildings," Structural Steel Education Council, AISC, 1976.
- 22. <u>Uniform Building Code</u>, International Conference of Building Officials, Pasadena, 1973 edition.
- 23. Tsuji, B., "Behavior of Bracing," Quarterly Column, No. 49, October 1973.
- 24. Horne, M. R., "A Moment Distribution Method for the Analysis and Design of Structures by the Plastic Theory," <u>Proceedings of Institute</u> of Civil Engineers, Vol. 3, No. 1, April, 1954.
- 25. Gaylord, E. H., "Plastic Design by Moment Balancing," <u>Steel Structures</u> Symposium, University of Illinois, Urbana, October 1966.
- "PLastic Design in Steel, A Guide and Commentary," <u>ASCE Manual 41</u>, 1971.
- 27. Petersson, H., "GENFEM A Computer Program for Analysis of Three-Dimensional Building Structures by the Finite Element Method," to be published.
- Petersson, H., and Popov, E. P., "Substructuring and Equation System Solutions in Finite Element Analysis," <u>Computers and Structures</u>, Vol. 7, Pergamon Press, Great Britain, 1977.

- Newmark, N. M., and Hall, W. J., "Shear Deflection of Wide-Flange Steel Beams in the Plastic Range," <u>Transactions ASCE</u>, Vol. 122, Paper No. 2878, 1957.
- Popov, E. P., Bertero, V. V., and Chandramouli, S., "Hysteretic Behavior of Steel Columns," <u>EERC Report 75-11</u>, University of California, Berkeley, September 1975.
- Malvern, L. E., <u>Introduction to the Mechanics of a Continuous Medium</u>," Prentice-Hall, Englewood Cliffs, New Jersey, 1969.
- 32. Manual of Steel Construction, Seventh Edition, AISC, New York, 1969.
- Iwan, W. D., "Distributed Element Model for Hysteresis and Its Steady-State Dynamic Response," Journal of Applied Mechanics, Vol. 33, December, 1966.
- 34. Kanaan, A. E., and Powell, G. H., "DRAIN-2D A General Purpose Computer Program for the Dynamic Analysis of Inelastic Plane Structures," <u>EERC Report</u>, University of California, Berkeley, April 1973.
- 35. Plantema, F. J., <u>Sandwich Construction, The Bending and Buckling of</u> <u>Sandwich Beams, Plates, and Shells</u>, John Wiley, and Sons, New York, 1966.
- 36. van der Neut, A., "The Three Point Bending Test of Wooden Box Beams," NLL Report S.72. (in Dutch).
- 37. Dafalias, Y. F., <u>Ph.D. Thesis</u>, Department of Civil Engineering, University of California, Berkeley, 1975.
- Dafalias, Y. F., and Popov, E. P., "Plastic Internal Variable Formalism of Cyclic Plasticity," <u>Journal of Applied Mechanics</u>, Vol. 98, No. 4, December, 1976.
- Petersson, H., and Popov, E. P., "Generalized Loading Constitutive Relations," <u>ASCE Engineering Mechanics Specialty Conference</u>, May 23-25, 1977.
- 40. Seely, F. B. and Smith, J. O., <u>Advanced Mechanics of Materials</u>, John Wiley and Sons, New York, 1932.
- 41. Timoshenko, S. P., and Goodier, J. N., <u>Theory of Elasticity</u>, McGraw-Hill, New York, 1956.
- 42. Biggs, J. M., Introduction to Structural Dynamics, McGraw-Hill, New York, 1964.
- 43. Goel, S. C., and Hanson, R. D., "Seismic Behavior of Multistory Braced Steel Frames," ASCE Journal of Structural Division, January 1974.
- 44. <u>Plastic Design of Braced Multistory Steel Frames</u>, AISI, New York, 1968.

- 45. Wang, T. Y., Bertero, V. V., and Popov, E. P., "Hysteretic Behavior of Reinforced Concrete Framed Walls," <u>EERC Report 75-23</u>, University of California, Berkeley, 1975.
- 46. Bertero, V. V., Popov, E. P., Endo, T., and Wang, T. Y., "Pseudo-Dynamic Testing of Wall Structural Systems," ASCE Engineering Mechanics Division Specialty Conference, UCLA, March, 1976.
- 47. Mondikar, D. P., and Powell, G. H., "ANSR-I, General Purpose Program for Analysis of Nonlinear Structural Reponse," <u>EERC Report 75-37</u>, University of California, Berkeley, 1975.
- 48. Timoshenko, S. P., and Wornowsky-Krieger, S., "Theory of Plates and Shells," McGraw-Hill, New York, 1959.

-144 -

SPECIMEN NUMBER	DESIGN OPTION	SPAN DIMENSION B (IN.)	PRIMARY YIELD MECHANISM	SPECIAL NOTES
l	Α	6.0	SHEAR	
2	A	6.0	SHEAR	· · · · · · · · · · · · · · · · · · ·
3	A	12:0	BENDING	
4	Α	12.0	BENDING	3/16" DOUBLER PLATE TO WEB
5	A	6.0	COMBINED	3/16" DOUBLER PLATE TO WEB
6	А	6.0	SHEAR	
. 7	В	12.0	BENDING	STIFFENER PLATES (1/4") SPACED 2-1/2" O.C.
8	B	12.0	SHEAR	3/8" x 1 1/4" COVER PLATE ON ALL FOUR FLANGES
9	С	6.0	SHEAR	NO FLANGE OR WARPING RESTRAINT

TABLE 1 - DESIGN PARAMETERS OF BEAM SPECIMENS

-145-

	LATERAL FORCE		LATERAL DEFLECTION	THIRD FLOOR	LATERAL DEFLECTION	FIRST	LATERAL DEFLECTION	SECOND FLOOR	FLOOR DEFLECTION	NORTH END FIRST FLOOR	FLOOR DEFLECTION	SOUTH END FIRST FLOOR
LOAD POINT	TEST	ANSR	TEST	ANSR	TEST	ANSR	TEST	ANSR	TEST	ANSR	TEST	ANSR
LP 1	65.8	70.5	0.48	0.47	0.23	0.20	0.37	0.35	15	05	0.15	0.13
LP 7	85.6	83.0	.99	1.00	0.42	0.40	0.76	0.75	26	17	0.32	.33
LP 13	99.6	95.6	1.36	1.32	0.58	0.55	1.05	1.03	31	25	0.48	0.48
LP 19	112.9	108.4	2.78	2.76	1.17	1.37	2.15	2.29	61	59	1.07	1.32
LP 23	109.6	115.4	4.25	4.02	1.76	1.95	3.30	3.25	93	88	-1.71	1,92

TABLE 2 - COMPARISON OF DATA POINTS BETWEEN ANSR-I AND TEST FRAME 1

. . .

	LATERAL FORCE		LATERAL DEFLECTION	FLOOR	LATERAL DEFLECTION FIRST FLOOR		LATERAL DEFLECTION SECOND FLOOR		FLOOR DEFLECTION NORTH END FIRST FLOOR		FLOOR DEFLECTION SOUTH END FIRST FLOOR	
LOAD POINT	TEST	ANSR	TEST	ANSR	TEST	Ansr	TEST	ANSR	TEST	ANSR	TEST	ANSR
LP 1	64.3	70.0	. 50	. 51	.22	.21	. 39	.37	-0.06	05	0.14	0.11
LP 7	83.2	81.9	.99	1.00	.42	.39	.78	.75	17	18	. 32	.29
LP 13	100.0	98.2	1.49	1.52	.65	. 64	1.19	1.18	23	21	. 53	.53
LP 19	113.6	107.1	3.00	2.98	1.31	1.38	2.38	2.39	52	16	1.16	1.30
LP 23	113.0	112.0	4.53	4.50	1.91	2.03	3.55	3.51	82	-,38	1.79	1.97

TABLE 3 - COMPARISON OF DATA POINTS BETWEEN ANSR-I AND TEST FRAME 2

.

ł

ł

Preceding Page Blank

-149-

 $\pm 10^{-1}$

(b) INVERTED Y-BRACE

FIGURE 3 - ALTERNATE ECCENTRICALLY BRACED ELEMENTS

FIGURE 5 - PROTOTYPE STRUCTURE

-153-

FIGURE 6 - NORMALIZED STIFFNESS OF THE PROTOTYPE STRUCTURE AS A FUNCTION OF ITS ECCENTRICITY

-154-

AXIAL LOAD IN BRACE = P = $\frac{\Delta AE}{l}$ LENGTH OF BRACE (UNDEFORMED = $l = \frac{h}{SIN\theta}$ LATERAL STIFFNESS OF BRACE = K = PCOS θ SMALL ANGLE GEOMETRY IMPLIES THAT $\Delta = I(COS \theta) = COS\theta$

$$K = \frac{AE}{h} (COS^2\theta) (SIN\theta)$$

FIGURE 7 - COMPUTATION OF THE LATERAL STIFFNESS PROVIDED BY THE BRACE

FIGURE 8 - VARIATION IN THE LATERAL STIFFNESS PROVIDED BY THE BRACE

-156-

(a) SINGLE STORY MOMENT-RESISTING FRAMES

THIS GIRDER IS RESTRAINED BY THE ECCENTRIC BRACE AND THUS ITS BENDING STIFFNESS IS GREATLY INCREASED. THUS: $K \rightarrow \frac{24 \text{ EL}_{C}}{h^{3}}$

(b) SINGLE STORY ECCENTRIC BRACED FRAME BENDING STIFFNESS

FIGURE 9 - LATERAL STIFFNESS OF A SINGLE STORY FRAME

FIGURE 10 - SUBASSEMBLAGE USED IN THE DETAILED LINEAR ELASTIC ANALYSIS

A) PHOTOGRAPH AT THE END OF A GIVEN HALF CYCLE

B) PHOTOGRAPH AT THE END OF THE NEXT HALF CYCLE

FIGURE 11 - PHOTOGRAPH OF THE TEST APPARATUS AND CYCLING PROCEDURE

b) OPTION B

c) OPTION C

FIGURE 12 - DESIGN OPTIONS OF THE TEST SPECIMENS

FIGURE 13 - FORCE-DISPLACEMENT RELATIONSHIP FOR MONOTONIC TEST

FIGURE 14 - CYCLIC FORCE - DEFLECTION BEHAVIOR OF SPECIMEN 1

-162-

FIGURE 15 - PHOTOGRAPH OF THE PHOTOGRAMMETRIC GRID FOR SPECIMEN 1

-163-

FIGURE 16 - CYCLIC FORCE - DEFLECTION BEHAVIOR OF SPECIMEN 2

-164-

FIGURE 17 - CYCLIC FORCE - DEFLECTION BEHAVIOR OF SPECIMEN 3

-165-

FIGURE 18 - CYCLIC FORCE - DEFLECTION BEHAVIOR OF SPECIMEN 4

-166-

FIGURE 19 - CYCLIC FORCE - DEFLECTION BEHAVIOR OF SPECIMEN 5

-168-

FIGURE 21 - CYCLIC FORCE - DEFLECTION BEHAVIOR IN SPECIMEN 6

-169-

FIGURE 22 - CYCLIC FORCE - DEFLECTION BEHAVIOR OF SPECIMEN 7

-170-

FIGURE 23 - PHOTOGRAPH OF THE FAILURE IN SPECIMEN 7

140 600 LP17 CP11 LP7 LP1 70 300 FORCE KILONEWTONS KIPS 0 0 COVER PLATES -300 - 70 LΡ OPTION B 12" HALF SPAN LP9 LP14 -600 -140 -2.0 -1.2 -0.4 0 0.4 1.2 2.0 2.8 INCHES -40 20 60 -20 0 40 MILLIMETERS DEFLECTION

FIGURE 24 - CYCLIC FORCE - DEFLECTION BEHAVIOR IN SPECIMEN 8

-172-

FIGURE 25 - CYCLIC FORCE - DEFLECTION BEHAVIOR OF SPECIMEN 9

÷1.73-

FIGURE 26 - IDEALIZED BI-LINEAR STRESS - STRAIN DIAGRAM FOR STEEL

-174-

(a) ELASTIC STRESS DISTRIBUTION FOR WF BEAM WITH PLANE SECTIONS REMAINING PLACE

(b) APPROXIMATE SHEAR STRESS DISTRIBUTION

(c) CROSSECTIONAL WARPING DUE TO HIGH SHEAR STRESS IN WEB

FIGURE 27 - SHEAR STRESS DISTRIBUTION AND CROSS-SECTIONAL WARPING DUE TO SHEAR DEFORMATION IN A WIDE FLANGE SECTION

FIGURE 28 - COMPARISON OF THE SHEAR YIELD THEORIES WITH EXPERIMENTAL DATA

(a) TOTAL DEFORMATION

(b) BENDING DEFORMATION

(c) SHEAR DEFORMATION

FIGURE 29 - COMPONENTS OF DEFLECTION OF A SANDWICH BEAM ELEMENT

FIGURE 30 - PROPORTION OF INCREMENTAL SHEAR CARRIED BY THE WEB AND FLANGES

-178-

FIGURE 31 - COMPARISON OF THE CYCLIC SHEAR YIELD MODEL WITH TEST SPECIMEN 2

-179-

FIGURE 32 - COMPARISON OF THE CYCLIC SHEAR YIELD MODEL WITH TEST SPECIMEN 6

-180-

FIGURE 33 - COMPARISON OF THE CYCLIC SHEAR YIELD MODEL WITH TEST SPECIMEN 8

-181-

FIGURE 35 - ACCELERATION RECORD FOR 1.5 TIMES EL CENTRO N-S COMPONENT 1940

-183-

FIGURE 36 - ACCELERATION RECORD FOR PACOIMA DAM 1971

-184-

FIGURE 37 - MAXIMUM RELATIVE DISPLACEMENT DUE TO THE 1.5 TIMES EL CENTRO BASE EXCITATION

FIGURE 38 - MAXIMUM STORY DRIFT DUE TO 1.5 TIMES EL CENTRO EXCITATION

FIGURE 39 - DEFLECTED SHAPE AT THE END OF 8.0 SECONDS OF THE 1.5 TIMES EL CENTRO EXCITATION

PACOIMA DAM EXCITATION

FIGURE 43 - TIME-HISTORY OF THE ROOF DISPLACEMENT OF THE MOMENT-RESISTING AND ECCENTRICALLY BRACED FRAMES DUE TO THE PACOIMA DAM EXCITATION

FIGURE 44 - COMPONENTS OF BRACED FRAME DEFLECTION

FIGURE 46 - TIME-HISTORY PLOT OF THE ECCENTRIC ELEMENT DURING 1.5 TIMES EL CENTRO EXCITATION

-194-

FIGURE 47 - TIME-HISTORY OF THE ECCENTRIC ELEMENT DURING PACOIMA DAM EXCITATION

-195-

-196-

-197-

.

FIGURE 49 - LOCATION AND FREE BODY OF THE TEST FRAME

FIGURE 50 - GENERAL DESIGN OF TEST FRAME 1

FIGURE 51 - BEAM-TO-COLUMN CONNECTION USED ON TEST FRAME 1

-199-

FIGURE 52 - BRACE-TO-BEAM CONNECTION USED ON TEST FRAME 1

-200-

ξ

ELEVATION

FIGURE 53 - GENERAL DESIGN OF TEST FRAME 2

COLUMN - BEAM CONNECTION

-202-

FIGURE 54 - BEAM-TO-COLUMN CONNECTION USED ON TEST FRAME 2.

-203-

FIGURE 57 - PHOTOGRAPH OF THE KEY COMPONENTS OF THE LATERAL SUPPORT SYSTEM

FIGURE 58 - PLACEMENT OF THE SR 4 STRAIN GAGES

FIGURE 59 - PLACEMENT AND DEFORMATION GEOMETRY OF CLIP GAGES IN ECCENTRIC ELEMENTS

FIGURE 60 - PLACEMENT OF CLIP GAGES ON THE TEST FRAMES

FIGURE 61 - PLACEMENT OF MISCELLANEOUS INSTRUMENTATION

FIGURE 62 - LOAD PROGRAM FOR THE INELASTIC CYCLES OF TESTING

-210-

,

N 1

.

FIGURE 65 - COMPONENT OF LATERAL FORCE INDUCED BY VERTICAL LOAD CELLS

FIGURE 66 - PHOTOGRAPH OF THE TEST FRAME AND TEST FACILITY

FIGURE 67 - LATERAL FORCE - THIRD FLOOR DEFLECTION HYSTERETIC BEHAVIOR FOR THE ELASTIC CYCLES AT THE START OF TEST 1

FIGURE 68 - LATERAL FORCE - THIRD FLOOR DEFLECTION HYSTERETIC BEHAVIOR FOR THE INELASTIC CYCLES OF TEST FRAME 1

-216-

FIGURE 69 - LATERAL FORCE - THIRD FLOOR DEFLECTION HYSTERETIC BEHAVIOR FOR THE ELASTIC CYCLES AFTER LP 12

-217-

FIGURE 70 - LATERAL FORCE - THIRD FLOOR DEFLECTION HYSTERETIC BEHAVIOR FOR THE ELASTIC CYCLES AFTER LP 22

-218-

•

FIGURE 71 - PHOTOGRAPH OF THE TORN SOUTH ECCENTRIC ELEMENT OF TEST FRAME 1

FIGURE 72 - PHOTOGRAPH OF TEST FRAME 1 AFTER COMPLETION OF THE TEST

FIGURE 73 - LATERAL FORCE - FIRST FLOOR DEFLECTION HYSTERETIC BEHAVIOR FOR THE INELASTIC

FIGURE 74 - LATERAL FORCE - SECOND FLOOR DEFLECTION HYSTERETIC BEHAVIOR FOR THE INELASTIC CYCLES OF TEST FRAME 1

-222-

FIGURE 75 - LATERAL FORCE - FIRST FLOOR DEFLECTION HYSTERESIS LOOPS FOR INELASTIC CYCLES OF TEST FRAME 1 AFTER CORRECTION FOR BRACE CONNECTION SLIPPAGE

FIGURE 76 - LATERAL FORCE - SECOND FLOOR DEFLECTION HYSTERESIS LOOPS FOR THE INELASTIC CYCLES OF TEST FRAME 1 AFTER CORRECTION FOR BRACE CONNECTION SLIPPAGE

-224-

FIGURE 77 - LATERAL FORCE - THIRD FLOOR DEFLECTION HYSTERESIS LOOPS FOR THE INELASTIC CYCLES OF TEST FRAME 1 AFTER CORRECTION FOR BRACE CONNECTION SLIPPAGE

-225-

FIGURE 78 - LATERAL FORCE - THIRD FLOOR DEFLECTION FOR THE ELASTIC CYCLES AFTER LP 22 AFTER CORRECTION FOR BRACE CONNECTION SLIPPAGE

-226-

FIGURE 79 - AXIAL FORCE - BRACE SLIPPAGE HYSTERESIS LOOPS FOR THE FIRST FLOOR BRACE OF TEST FRAME 1

-227-

FIGURE 80 - PHOTOGRAPH OF A TYPICAL YIELDED ECCENTRIC ELEMENT

-229-

FIGURE 81 - LATERAL FORCE - FLOOR DEFLECTION OF THE FIRST FLOOR SOUTH ECCENTRIC

FIGURE 82 - LATERAL FORCE - FLOOR DEFLECTION OF THE FIRST FLOOR NORTH ECCENTRIC ELEMENT OF TEST FRAME 1

FIGURE 83 - COMPONENTS OF LATERAL DEFLECTION FOR TEST FRAME 1

FIGURE 84 - TEST FRAME 1 - COLUMN FLANGE BUCKLING

FIGURE 85 - LATERAL FORCE - THIRD FLOOR DEFLECTION HYSTERETIC BEHAVIOR FOR THE ELASTIC CYCLES AT THE START OF TEST 2

-233-

FIGURE 86 - LATERAL FORCE - THIRD FLOOR DEFLECTION HYSTERETIC BEHAVIOR FOR THE INELASTIC CYCLES OF TEST FRAME 2

-234-

FIGURE 87 - LATERAL TORSIONAL BUCKLING IN TEST FRAME 2

FIGURE 89 - LATERAL FORCE - THIRD FLOOR DEFLECTION HYSTERETIC BEHAVIOR FOR THE ELASTIC CYCLES AFTER LP 26 OF TEST 2

-237-

FIGURE 90 - BUCKLED THIRD FLOOR BRACE IN TEST FRAME 2

.

FIGURE 91 - LATERAL FORCE - FIRST FLOOR DEFLECTION HYSTERETIC BEHAVIOR FOR THE INELASTIC CYCLES OF TEST FRAME 2

FIGURE 92 - LATERAL FORCE - SECOND FLOOR DEFLECTION HYSTERETIC BEHAVIOR FOR THE INELASTIC CYCLES OF TEST FRAME 2

-240-

-241-

FIGURE 94 - LATERAL FORCE - FLOOR DEFLECTION OF THE FIRST FLOOR NORTH ECCENTRIC ELEMENT OF TEST FRAME 2

-242-

FIGURE 95 - PHOTOGRAPH OF TEST FRAME 2 AFTER COMPLETION OF THE TEST

FIGURE 96 - COMPARISON OF THE ANALYTICAL MODEL WITH THE THIRD FLOOR TEST RESULTS OF TEST FRAME 1

.

-244-

FIGURE 97 - COMPARISON OF THE ANALYTICAL MODEL WITH THE THIRD FLOOR TEST RESULTS OF TEST FRAME 2

-245-

.

-

. .'

APPENDIX A

AN EXAMPLE OF MOMENT BALANCING

The basic design of the eccentric bracing system must consider the inelastic behavior of the frame. Moment balancing (24,25) is a very versatile procedure for considering this behavior. This technique is based on the concept that, if a structure is designed to any moment diagram which satisfies statics, the loadings will be a lower bound of the true strength of the structure. If the design is also performed to attain a specific mechanism, the lower and upper bound theories are simultaneously satisfied. It is immaterial how the distribution of forces and moments was attained in moment balancing. The distribution can be obtained by a good guess or by any of a number of rational procedures. This appendix will give an example of one possible way of finding an acceptable moment distribution. The example frame and its factored loadings are shown in Fig. Al. The brace is assumed to be pin-connected, but all other connections are moment-resisting connections.

It is also very necessary to consider the desired collapse mechanism of the frame when performing moment balancing on an eccentrically braced frame. The eccentric system should be designed so that essentially all of the plastic action is concentrated in the eccentric beam elements. Therefore, the mechanism shown in Fig. A2 is appropriate.

The first step in the balancing procedure is to obtain an initial estimate of member forces and bending moments for the brace, the beam, and the column. In arriving at these estimates, it is required that each individual member be in equilibrium even though the nodes may not be in equilibrium.

-247-

The balancing then proceeds by arbitrarily assigning approximately 80% of the lateral load to the brace since it provides approximately 80% of the lateral stiffness. This assumption is applied to the brace in the example shown in Fig. A3. Once the original estimate of the brace force has been agreed upon, this force can then be used to compute the moments and forces in the beam. This is done by assuring that the eccentric node is in equilibrium, and the final moment diagram is consistent with the collapse mechanism (see Figure A2). Figure A4 indicates a typical loading diagram for the top beam. End moments M_1 and M_2 of this figure should be chosen so that the moment diagram of the beam is compatible with the collapse mechanism shown in Fig. A2. It should be borne in mind that the plastic hinges of the beam form at the face of the column; they do not form at the center line intersection. Because of the steep moment gradient in the eccentric beam element, this distinction makes a considerable difference. The initial estimates of the force and moment diagram is found for the other beams just as they were for the top beam.

The forces and moments in the columns are found by recalling that the remaining 20% of the lateral forces which are not carried by the brace must be carried by the columns. This is assumed to be equally distributed between both columns as is shown in Fig. A5. Figure A5 shows that the two end moments, M_1 and M_2 , are coupled by the known shear force. However, one of these end moments must be determined by an arbitrary estimate. Figures A6(a) and A6(b) represent typical initial distributions of forces and bending moments which could be obtained by the above procedure. The forces in Fig. A6(a) were chosen so that all of the nodes are in equilibrium with respect to force. Further Fig. A6(b)

-248-

was chosen so that the bending moments are in equilibrium at the eccentric nodes. However, the bending moments are not in equilibrium at the beamto-column joints. The next step in the moment balancing procedure is to eliminate these imbalances. There are several methods of eliminating these imbalances, but the easiest is to note that the moment diagram of the column can be shifted, without affecting the balanced shear and axial forces, by adding a constant bending moment over the length of the column as shown in Fig. A7. This technique first must be used to balance the top nodes, and the constant moment is passed down the column to the next node. Each successive node is balanced down the column until all nodes are in equilibrium. This correction procedure produces the final moment diagram shown in Fig. A8. All forces and moments are in equilibrium with this moment diagram.

It should be recalled that the initial distribution of moments shown in Fig. A6(b) was obtained by arbitrarily assigning one of the end moments for each column segment. The correction procedure used to obtain Fig. A8 is modifying this initial assignment, and so if the arbitrarily selected end moment had been chosen with enough foresight, there would have been no imbalance.

Since the distribution shown in Fig. A8 is in equilibrium, moment balancing permits the use of this distribution of forces to perform a plastic design. However, a better, more economical design will result if the distributed forces are examined carefully. The above distribution produced columns which are under single curvature. Single curvature results in larger column sizes than double curvature. This problem is not too severe in this particular example, but in other cases it could produce unrealistically high design moments in the columns. When this

-249-

happens, the balancing should be corrected by slightly increasing or decreasing the proportion of lateral force which is carried by the brace and rebalancing. Thus, the final step in this balancing procedure is to examine the resulting moment diagram, and, if necessary, revising the initial estimate of the percentage of lateral force carried by the brace and repeating the first two steps.

This has been an example of one way of handling moment balancing. The method, which is used to obtain the final force distribution, is not important. It is important to assure that the final force and moment be consistent with the desired collapse mechanism (see Fig. A2). The procedure used above does this by making a judicious selection of end moments for the beam and holding these end moments constant throughout the balancing. This same procedure could also be applied to very large or tall structures. However, it is recommended, that the balancing be done in parts for these structures. That is, the very top story or stories should be completely checked and balanced before starting on the next lower level. The balancing then proceeds down the structure, and the analysis is simplified, because it is always concerned with only a small part of the total structure.

-250-

FIGURE A2 - COLLAPSE MECHANISM

-251-

FIGURE A3 - INITIAL ESTIMATE OF THE BRACE FORCE

FIGURE A4 - INITIAL ESTIMATE OF THE BEAM MOMENT DIAGRAM

10

M₂

10

. .

M₂ = M₁ + 10 (9) = 90 + M₁

•

·

FIGURE A5 - INITIAL ESTIMATE OF THE COLUMN MOMENT DIAGRAM

(A) AXIAL FORCES (B) BENDING MOMENTS FIGURE A6 - INITIAL ESTIMATE OF THE MEMBER FORCES AND MOMENTS

-254-

FIGURE A7 - CONSTANT MOMENT CORRECTION FOR COLUMN MOMENT DIAGRAM

FIGURE A8 - BALANCED MOMENT DIAGRAM

RESIDUAL STRESS DISTRIBUTION USED IN BEAM TEST SPECIMEN

FIGURE B1 - RESIDUAL STRESS DISTRIBUTION FOR W6X12 USED IN THE BEAM SPECIMENS

AVERAGE RESIDUAL STRESSES

FIGURE B2 - RESIDUAL STRESS DISTRIBUTION FOR W6X12 USED IN THE TEST FRAMES

AVERAGED RESIDUAL STRESSES

FIGURE B3 - RESIDUAL STRESS DISTRIBUTION FOR W8X28

~

AVERAGED RESIDUAL STRESSES

FIGURE B4 - RESIDUAL STRESS DISTRIBUTION FOR C5X9

FIGURE B5 - STRESS-STRAIN CURVE FOR THE WEB OF THE W6X12 USED IN THE BEAM SPECIMENS

-261-

FIGURE B6 - STRESS-STRAIN CURVE FOR THE FLANGE OF THE W6X12 USED IN THE BEAM SPECIMENS

-262-

FIGURE B7 - STRESS-STRAIN CURVE FOR THE WEB OF THE W6X12 USED IN THE TEST FRAME

_-263-

FIGURE B8 - STRESS-STRAIN CURVE FOR THE FLANGE OF THE W6X12 USED IN THE TEST FRAMES

-264-

FIGURE B9 - STRESS-STRAIN CURVES FOR THE WEB OF THE W8X28

-265-

FIGURE B10 - STRESS-STRAIN CURVES FOR THE FLANGE OF THE W8X28

-266-

FIGURE B11 - STRESS-STRAIN CURVE FOR THE WEB OF THE C5X9

-267-

FIGURE B12 - STRESS-STRAIN CURVE FOR THE FLANGE OF THE C5X9

-268-

FIGURE B13 - STRESS-STRAIN CURVE FOR THE WEB OF THE C5X6.7

-269-

FIGURE B14 - STRESS-STRAIN CURVE FOR THE FLANGE OF THE C5X6.7

-270-

FIGURE B15 - MONOTONIC TENSILE TEST OF W6X12

-271-

FIGURE BI6 - AVERAGE CYCLIC STRESS-STRAIN CURVE OF W6X12

-272-

FIGURE B17 - CYCLIC STRESS-STRAIN CURVE FOR A SINGLE GAGE OF A SPECIMEN TAKEN FROM W6X12

-273-

u

•

APPENDIX C

INPUT FORMAT AND FORTRAN LISTING FOR SHEAR YIELD ELEMENT

INPUT INSTRUCTIONS

Β.

The number of words of information per element - 104. A. CONTROL INFORMATION FOR GROUP (715) - ONE CARD.

Columns			5:	Punch 9 (to indicate that group consists of shear yield elements).
	6	-	10:	Number of elements in group.
	11 -	-	15:	Number of different element stiffness types (max. 40).
	16	-	20:	Number of different end eccentricity types (max. 15).
	21	-	25:	Number of different yield surfaces for cross sections (max. 40).
	26	-	30:	Number of different fixed end force patterns (max. 35).
	31	-	35:	Number of different initial element force patterns (max. 30).
STIFFNESS STIFFNESS	5 ΤΥ 5 ΤΥ	'PE 'PE	IS (15	5,6F10.0,3F5.0,/,F10.0) - TWO CARDS FOR EACH
Columns	1	-	5:	Stiffness type number.
,	6	-	15:	Young's modulus of elasticity.
	16	-	25:	Uniaxial strain hardening modulus, as a <u>proportion</u> of Young's modulus.
	26	-	35:	Depth of the wide flange beam.
	36	-	45:	Thickness of wide flange beam flanges.
	46	-	55:	Width of flange.
	56	-	65:	Web thickness.

-275-

66 - 70: Flexural stiffness factor f_{ii} (see note below).

71 - 75: Flexural stiffness factor f_{ii} (see note below).

76 - 80: Flexural stiffness factor $f_{i,i}$ (see note below).

1 - 10: Poisson's ratio

- Note: Note that the flexural stiffness factors are used to compute the bending component of deflection as described in Chapter 3. Therefore, these factors must reflect the degree of rotational constraint provided by other attached elements as well as any variation in element properties and dimensions. If this is not done the warping restraint provided in this element may produce erroneous results.
- C. END ECCENTRICITIES (15,4F10.0) ONE CARD FOR EACH END ECCENTRICITY TYPE.

Omit if there are no end eccentricities. See Fig. B2.6 for explanation. All eccentricities are measured from the node to the element end.

Columns 1 - 5: End eccentricity type number, in sequence beginning with 1.

- 6 15: X; = X eccentricity at end i.
- 16 25: $X_i = X$ eccentricity at end j.
- 26 35: $Y_i = Y$ eccentricity at end i.
- 36 45: $Y_i = Y$ eccentricity at end j.
- D. CROSS SECTION YIELD SURFACES (15,5x,2F10.0,40x,F10.0) ONE CARD FOR EACH YIELD SURFACE.

Columns 1 - 5: Yield surface number, in sequence beginning with 1.

- 11 20: Positive (sagging) yield moment M_{v+}.
- 21 30: Negative (hogging) yield moment $M_{v_{-}}$.
- 71 80: Shear yield force. A very large number is assumed if left at zero.
- E. FIXED END FORCE PATTERNS (215,7F10.0) ONE CARD FOR EACH FIXED END FORCE PATTERN.

Omit if there are no fixed end forces. See Fig. B2.5.

Columns 1 - 5: Pattern number, in sequence beginning with 1.

10: Axis code, as follows.

Code = 0: Forces are in the element coordinate system, as in Fig. B2.5a.

Code = 1: Forces are in the global coordinate system, as in Fig. B2.5b.

- 11 20: Clamping force, F.
- 21 30: Clamping force, V;.
- 31 40: Clamping moment, M.
 - 41 50: Clamping force, F₁.
 - 51 60: Clamping force, V_i .
 - 61 70: Clamping moment, M_i.

71 - 80: Live load reduction factor, for computation of live load forces to be applied to nodes. See Section B2.5, Appendix B2 for explanation.

F. INITIAL ELEMENT FORCE PATTERNS (15,6F10.0) - ONE CARD FOR EACH INITIAL FORCE PATTERN.

Omit if there are no initial forces. See Fig. B2.5a.

Columns 1 - 5: Pattern number, in sequence beginning with 1.

- 6 15: Initial axial force, F_i.
- 16 25: Initial shear force, V,.
- 26 35: Initial moment, M.
- 36 45: Initial axial force, F_i.
- 46 55: Initial shear force, V_i .
- 56 65 Initial moment, M_i.
- G. ELEMENT GENERATION COMMANDS (1215,2F5.0,15,F5.0) ONE CARD FOR EACH GENERATION COMMAND.

Elements must be specified in increasing numerical order. Cards for the first and last elements must be included. See NOTE 7 for explanation of generation procedure.

Columns 1 - 5:

- 5: Element number, or number of first element in a sequentially numbered series of elements to be generated by this command.
- 6 10: Node number at element end i.
- 11 15: Node number at element end j.
- 16 20: Node number increment for element generation. If zero or blank, assumed to be equal to 1.

21 - 25: Stiffness type number.

۵

- 26 30: End eccentricity type number. Leave blank or punch zero if there is no end eccentricity.
- 31 35: Yield surface number for element end i.
- 36 40: Yield surface number for element end j.
 - 45: Code for including geometric stiffness. Punch 1 if geometric stiffness is to be included. Leave blank or punch zero if geometric stiffness is to be ignored.
 - 50: Time history output code. If a time history of element results is not required for the element covered by this command, punch zero or leave blank. If a time history printout, at the intervals specified on card Dl, is required, punch 1.
- 51 55: Fixed end force pattern number for static dead loads on element. Leave blank or punch zero if there are no dead loads. See note below.
- 56 60: Fixed end forces pattern number for static live loads on element. Leave blank or punch zero there are no live loads.
- 61 65: Scale factor to be applied to fixed end forces due to static dead loads.
- 66 70: Scale factor to be applied to fixed end forces due to static live loads.
- 71 75: Initial force pattern number. Leave blank or punch zero if there are no initial forces.
- 76 80: Scale factor to be applied to initial element forces.
- Note: If the static load code, Card Cl, is zero but fixed end forces are still specified for some elements, an inconsistency results. In effect, any such fixed end forces will be treated as initial element forces.

	SUBBEUTINE RESPORTED INCOLOURNESS RELEASED SUBBEUTINE RESPONDED TO THE VELMED FA		10		EML(1)=EVE7(1)+DEV(1) RE9	570
	1. BELTA)	FF9	20		ENI (P)=ENEF(2)+CEV(2) RES	560
c	· · · · · · · · · · · · · · · · · · ·	PF9	30		EMEL(1)=EMTCT(1)-EMEP(1) RES	590
ç.	****	WEFE	40		FNEL(2)=CMTGT(3)-DMFP(2) RES	600
è		EFO.	50	с		610
è	SHEAD VIELDING FLENGAT STATE DETERMINATION	6 6 6	60	c	TRACE OUT NONLINEAR PATH RES	620
r	SIM AR OTLESING LEPENT OF STATE LEPENTATION	0.5	70	c	NOTE THAT CONTINUATION OF YIELDING IS CHECKED BY ASSUMING ELASTIC PEG	63(
-		000		Ċ	REHAVIOR AND OFTERVINING IF THE VIELD SUPPACE IS REACTRATED	640
~	(FARLED FLELFF	055	с 0 г 0	ř	- DEG	550
~		000				660
с -	REVISED FROM ELEMENT & -+ FEBRUART ISTC	PE7	100			570
		NES.	110			660
-	\$ 7 40 0 M 4 1 M H 1 3 M 1 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M	16666A	120			607
C		NE9	130			200
	COMMCN /INFEL/ IMEM,KST,LM(6),KCECN,FL,(CSA;SINA,A(2,6),EK11,	65 S	146			700
	I FK22,EK12,PSH,EAL,EK11F,EK22F,EC(4),KCOYX(2),	FE9	150			
	2 KUDY(2), EMTCT(2), SETCT(2), FIEL(2), PETCT(2), SENF(P)	RES.	IE O			720
	3 SENN(8),TENP(8),TENP(8),FEACE(2),PEACE(2),BMEP(2),	PE9	170		KEAL=0	/30
	4 SOACTLT), PMY(2,2), NEDI, NEDJ, KEUTOT, PF12, PR21;	FE9	160		C FACTOR=1,-FACAG FED	740
	5 SK11,5K22,5K12,5K11H,5K22H,VP(2),FEST(96)	RES	150		KCCC(1)=KCCY(1) FEY	750
	CCMMCN /WORK/ DVR(2), DPR(2), DEM(2), BEWICI(2), BML(2), PMEL(2);	RE9	200	•	#ED3[2]=K50*(2) RES	760
	DVAX, DFAX, FACAC, FACTER, FAC, DSF, PM 10B, EMJUB, SFUB	RES	210	C	RE9	770
	2 ,SCNI,SONJ,SDFC,KCCE(2),VT ,ENT(2),VEL(2),WCRK,	FE9	220	с	PES	760
	3 SHYLDR(2),W(1956)	PE9	230		25 FORMAT (2HOP,411C) RES	790
	COMMEN/THIST/ITHEUT(10),THEUT(20),1THE,TSAVE,NELTH,NETH,NE7,1SE	PE5	246	c	RE9	800
¢ .		RE 9	250	c	PLASTIC HINGE PETATIONS REP.	erd
	DIMENSION COM(1), COMS(1), CDISM(1), (211), VELM(1), NED(2)	RES	260		KYY=K00Y(1)+KC0Y(2)+1 PE9	820
	EQUIVALENCE (IMEM.COM(1)). (NCD1.NED(1))	RE9	270		GE TE (60.40.50.400.60.45.50) .KTT FES	830
c		REG	280		4C DPE(1)-DVR(1)+392143VR(2) RE5	840
•	KA T=C	BES	ser		DUR())=CVR(2)+2912*DV9(1) RE9	250
	POID LEL-NINEC	DEG	300		SC TC FC BES	860
		EFC.	110		45 PD0111=3V0111+15K12Z5X113¢3V0123 RE9	870
			320			PPC
		050	320			AGE
		PC0	332			0.00
-	IT CIPEPEDULI IPPED	550	240			500
2		PEY	350			010
	GEFLEMMATICK INCHEMENTS	NES	260			
C		PES	370			930
	IF (%(11).E0.1.23456F10) GC VC 20	FE9	380			940
	DDISM(1) = DCISM(1) - EC(3) + CDISM(3)	RES	390			950
	CD15M(2)=DD15M(2)+EC(1)*0015M(2)	RE9	400	C	, PLS	560
	CDISM(4)=0015M(4)-EC(4)+CC(5M(6)	PES	410	c	. ELASTIC, GET FACTOR FOR STATUS CHANCE RES	\$70
	DD15M(5)=DD1SM(=)+EC(2)#C019M(6)	RES	420	c	, eee	986
	20 CVAX=COSA*(CCIS*(4)-OCIS*(1))+SINA*(CCIS*(E)-ODIS*(2))	RES	430		65 [F (CAMIJEND)) 70,100,00 PF5	990
	FOT=(SINA*(D0 SV(4)-001SV(1))+(C5#*(C0ISV(2)+C0ISM(5)))/FL	R E 9	4 4 C		70 FAC=(FMY(IENO,2)-PMEP(IEND))/DEM(IEND) RES	1000
	CVR(1)=>DISM(3)+RCT+	RÉ9	450		IF (FAC-GT-FACTER) CC TC 100 PES	1010
	CVR(2)=DCISN(6)+SCT	RES	9 E C		[F ((IEND.FG.P).AND.((KCDY(1)-KODE(1)).KE+C).AND.(FAC.KE+FACTER)) RE9	1020
c		625	470		1 KCCY(1)=KCCY(1)-1 RES	1030
C	AXIAL FORCE INCREMENT	FE9	480		[F (FIC+LT+Q+C) CALL EXIT RE9	1040
с		RES	450		FACTES=FAC RES	1950
		RES	500		REMY=RMY(IEND.2) RES	1060
	FTC1(1)=FTC1(1)-CFAX	RES	510		KODY(15N3)=KP3Y(16N3)+1 F59	1070
	F TOT(2) ~FTCT(2) +CFAX	RES	520		KFAC=IENG FES	1000
c	· · · · · · · · · · · · · · · · · · ·	FEG	530			1090
ē.	LINSAR NEMENT INFREMENTS	REC	= a C		PO FACE(FMY(IFND,1)-P//FO(IFND))/DP//IFND) FF5	1100
c -	Control Congress Interpretation	DEG	550			11110
~		Dee	550		I A THE AND THE AND THE AND	1120
	Cree Greet	- L 3			I CITCOLLET / AROTICE RUNCHI NON COMPANY ACTREFACTORY FET	1120

-279-

	•							
	1 ×C) Y{ 1} = KCC Y{ 1} - 1	RES	1130			15 (IEND.E".KF/C) CC TC 130	RES 1650	
	IF (FAC.LT.D.C) (ALL FXII	FES	1140			IF ((KCDY(IFND).NF.0).AND.(KCDY(IENEJ.NE.2)) CD TO 110	RES 1700	
	FACTEFFAC	PES	1150			EMER(lend)=PMEP(lend)+FACTCR+DBN(lEND)	PE9 1710	,
	5 FMY=9MY(1FN0,1)	PÉS	1160			6C TF 140	R59 1720	
	KCCY ([END) # KCCY (1 END) + 1	REÓ	1170		110	SPPR=FACTORNOPR([FNG]	RE9 1730	
	KFAC-IEND	RES	ilec			PRICT(JENC)=PRTCT(JENC)+09PR	RES 1740	
	(C TS 109	RES	1190			IF (DPPP,LT.0.) GC TC 120	PES 1750	
90	CENTINUE	RES	1200			FRACE(lenc)=PRacp(lenc)+CPPR	RE9 1760	
r		RL0	1210			55 75 140	RE9 1770	
		PFG	1220		120	PPACN(IEND)=PEACN(IEND)+DPPR	RE9 1780	
· · · ·	IF 90TH CODES AGE DESET OVE TO BENDING VIELD CHECK WHICH VIELDS	BES	1270				8E5 1750	
č	EIDET	EFO	1240		130	entre(1END) - et hy	RES 18CC	
-		DE E	1250		140		RE9 1810	
	TE NAVES DE DE TETENESETENESETENESETENESETENESETENESETENESETENESETENESETENESETENESETENESETENESETENESETENESETENES	060	1260		1-0	16 (KEDY(1)) 17.3) 60 TE 107	DE0 1820	
~	THE CALLENGER IN THE TRUE OF A DETAIL VIEW AND THE CARE THE CONSTRUCTOR		1200			ADDIVISETOPOLIC LADDENING FEFERI IF SLEAD VIELD SLEAPE	050 1030	
L	NY IS 155 FAN & UNLESS BUILT TIELD AT THE SAME TIME ON PAULONS	- PCV	1270			The set of	NCG 1800	
	17 (ADSISTYLIJ) - 24 - 47 SILUP(2) J RELT(2)=RELT(2)=L	PC 9	L L L L L L				RES 1010	
	[] [Ads()/em(1)].L(.ads()d#(/)]) KLD([]/KLD([]/L(])-[PES	1290				REA LEEL	
153		929	1200	_	101		KEN 1860	
c	INSERT SHEAP YIELD CHECK	869	1310	C			RE9 1870	
	SHFAC=FACTC?	RE9	1320	ſ		CHECK COMPLETION OF CYCLE	PE9 1880	
	TE (FACTCP+GT+1+3) SPFAC=1+0	PSS	1330	c			BE2 1620	
	PMT(1)=8WT(1)+SHEAC40PM(1)	FE9	134C			FACAC=FACAC+FACTCF	RES 1900	
	ENT(2)=BNT(2)+SHFAC*CEN(2)	PES	1350		152	ECRYAT (2F0A,4(EE20+1C,/))	RE9 1910	
	DELSHP=(PM*(1)-PMFP(1)+FM*(2)-PMFF(2))/FL	PE9	1360			IF ("ACAC.GT.0.90098) 6C TC 150	RES 1920	
	VT =VT+DELSHP#SHFAC	FES	1370			CALL BMCALC /	RE9 1930	
	1F [KESY(1)+(F+2) GC TC 10B	855	1360			CC TC 10	RES 1940	
c	ELEMENT IS ELASTIC IN SHEAP CHECK FOR START OF YIELDING	RE9	1390	c			RES 1950	
	15 (VI.GT.+7.0) GE TC 104	929	1400	c		ELASTIC AND TOTAL FORCES	RE9 1960	
	1F (VT.LE.VP(2)) GD TC 1C5	PE9	1410	. 0			RES 1970	
		RE9	1420		150	63MTCT(1)=9MTCT(1)	PES 1980	
109	16 (NT.GE.VP(1)) 50 75 105	859	1420			FPYTCT(2)=FNTST(2)	RES 1990	
		RE9	1440			PMTCT(1)-9NEP(1)+PMEL(1)+(EK11#CVF(1)+FK12#CVR(2))#PSF	RES 2000	
1.01	CENTINUE	8-9	14=0			EMTCT(2)= BMEP(2)4 FMEL(2)4(EN124)VR(1)4 FK224CVR(2))AFSH	8E9 2010	
с ¹⁷	ELEMENT IS STARTING TO VIELD IN CHEAS	REG	1460			CSE = (ANTCT(1) - PENTCT(1) 4 ENTCT(2) - EENTCT(2) / E	BEG 2020	
.		PEG	1470				DE0 2030	
		DEC	LAFC				EEE 2040	
	$\frac{1}{10} + \frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{1}{10} $	DEC	1420	· ~			PE9 2040	
			1490				RE9 26-0	
	IF TVIED ACTOR FACELARIAN CONTRACT	000	1510			UNIALANCE CLAES LUE IN TIFLI	PE9 2000	
100	CENTINGE	REY	1310	L,			RES 2070	
	FACTUREFAC SFLAC	6.6.9	1520			IF ((KCDY(I).K* .K()))A([]).LR.(KCDY(2).KC.KC(4A(2))) KHAL=1	ME9 2080	
	KFA' = D	P 2 9	1236				RES 2050	
	KP3Y(1)=K03E(1)+?	HE9	1540			17 (KPAL.EC.O) GC TC 16C	RES 2100	
	KECY (2)=KECE (2) 42	PE9	1550			(V[U9=FNL(])-FVFP(])	RES 2110	
	GC TO LOP	RE9	1560			ENCUBERNL(3)-ENER(2)	RES 2120	
109	I CENTINUE	HE9	1570			CC TC 17C	RE9 2130	
	KNT-KNT+1	359	1260		160	ENIUS=0.	RE9 2140	
	[F (KNT.GT.16) CALL EXIT	RE9	1590			PNJU3=C.	RES 2150	
с	SHEAR CHECK IS FINISHED FOR THIS CYCLE CONTINUE ON CYCLE	RES	1600	c			RE9 2160	
с	UPDATE SHEAP FOR YIELD CHECK	RE9	1510	-		CEFCENATION PATES FOR DAMPING	RE9 2170	
	15 [KCC7(1].CF.2] GC TO 109	FES	1620	C		· · · · · · · · · · · · · · · · · · ·	RE9 2180	
	DELSHR=FACTEP*(DSM(1)+)FR(2)]/FL	P59	1630		170	IF (CFACLED.D.D.ANC.DELTA.ED.D.) CC TC 200	RES 2190	
105	CONTINUE	PE9	1640			1F (TIME.EC.0.) GC TC 210	RES 2200	
с		RES	1650			K - AL = 1	RE9 2210	
č	LOCATE MOMENTS AND HINGE PETATLENS	REG	1660			IF (FC(1), EC.1.23456E10) GE TE 180	RES 2220	
- c		REO	1670			$v \in [M(1)] = v \in [M(1)] \rightarrow e \in (3) \notin v \in [M(3)]$	RE9 2230	
-	CC 140 T5ND-1-2	REG	LEEC			VELV(2)=VELV(2)+EC(1)+VELW(2)	BEG 2240	
	of the Function					*	FC9 2240	

.

.

,

.

.

<pre>>*E(2)*ELM(E) M(a)=VELM(1)*SINA*(VELM(5)=VE #R(a)=VELM(1)*CESA*(VELM(2)=VE #R(T #R(T) *R(T) *R(T) *I) *I) *I) *I) *I) *I) *I) *I) *I) *I</pre>	LW(2)) LV(5))/FL	HEG 22200 HEG 22200 REG 22300 REG 2310 REG 2310 REG 2320 REG 2320 REG 2320 REG 2310 REG 2340 REG 2360 REG 2360 REG 2400 REG 2400 REG 2400 REG 2440 REG 24500 REG 2500 REG 2500 REG 2500 REG 2500 REG 2500	IF (IT 240 IF (IH KKPP=[03]NT 250 FCRMA1 I 260 PCINT 1.5PACE 270 FCRMAT C 270 FCRMAT C 280 IF (IT KKPR=[, ITHCUT ITHCUT ITHCUT ITHCUT C 290 THCUT(CC 200 300 THCUT(THP.41.1) GF 11 24C HED.NE.(C) GE TC 26C [APS(NOR) 250, KKDR,TIME 1(7/2)AH RESULTS FCF GFCUF,[3, 234, 3GAM ELEMENTS, TIME =,FF7, GH ELEMAX,4HNCU,3X,5H CCOF,FX, 7X,5HFCRCE,PX,7HCURRENT,4X,CFAC(1 270, IMFM,(NCC(1),KCCM(1),BHTCT(1) =(1),PMCN(1),1=1,2) T (15,18,17,3X,3H12,2,3X,3F12,5/9X IME HISTORY IN Z1H1STZ THP.LT.1.CF.KOUTCT.EG.0) GE TE J10 IAPS(NOP) 1(1)=KKD5 1(2)=5 1(3)-IMEM 1(4)=KCD1(1) 1(5)=KCD1 1(4)=KCD1 1(1)	<pre>///0x, */HEENDING, 7>, EMISHEAR, FCTATIONS/5X, ,7H MOMENT, 7>, FHEORCE, (POE + 3X, OPAFC - NEG - /) 1}, SHICI(1), FTCT(1), PRTCT(1) x, TE, 17, 3X, 3F 12+2, 3X, 3F12+5 3</pre>	HARPER PRR PRR PR PR PR PP RR PR PR PR PR PR	2220 2620 2640 2860 2860 2860 2860 2860 2860 2890 29910 29910 29910 29910 29910 29910 29910 29910 29910 29910 299400 299400 29940000000000	
M(4)-VELM(1))+SIAA#(VELM(5)-VE +RCT +RCT +RCT +RCT (1) 6C TC 190 SH) (1) 4DVR(1)+EK12*CVR(2))*FAC (2) 200 (1) 4EK22*CVR(2))*FAC CFAC PING LCAD .) 6C TC 200 (PMT0T(1))*SIGN(1.,CVF(2)) (PMT0T(1))*SIGN(1.,CVF(2)) (PMT0T(1))*FTCT(2))/2.1~SIGN(1. MI+SCACT(2) +SCACT(2) (CT TO 21C JUE)/FL NA-FCUB*CIA A-FCUB*SIA (1)*EC(3)+CO(2)*EC(1) (4)*EC(4)+CD(2)*EC(1)	.,Cvax)	PEG 2280 PEG 2280 RES 2290 RES 2300 RES 2310 RES 2310 RES 2320 RES 2320 RES 2320 RES 2320 RES 2320 RES 2350 RES 2400 RES 2410 RES 2440 RES 2480 RES 2480 RES 2500 RES 25	242 17 (16 KR09=1 25) FCRMA1 2 3 4 5 10-01 2 3 4 5 10-01 10-01 2 2 10-01 2 2 10-01 10-0	<pre>HED.NE.C) GC TC 260 HED.NE.C) GC TC 260 PSO, KKOR,TIME T(//)IAH RESULTS FCF GFCUF,T2, P3H, GGAW ELEMENTS, TIME =.FE.TY GH ELEMAX,ALNEDE,3X,SHYTELC,GK, 7X,SHFCRCE,PX,7LUKRFHT,4X,CHAC() 270, IMFM,(NCC(1).KCEM(1).BHTCTTT 270, IMFM,(NCC(1).BHTCTTT 270, IMFM,(NCC(1).BHTCTTT,(I).BHTCTTT 270, IMFM,(I).BHTCTTT 270, IMFM,(I).BHTCTTT 270, IMFM,(I).BHTCTTT 270, IMFM,(I).BHTCTTT 270, IMFM,(I).BHTCTTT 270, IMFM,(I).BHTCTTT 270, IMFM,(I).BHTCTTTT 270, IMFM,(I).BHTCTTTT 270, IMFM,(I).BHTCTTTTT 270, IMFM,(I).BHTCTTTTT 270, IMFM,(I).BHTCTTTTTT 270, IMFM,(I).BHTCTTTTTT 270, IMFM,(I).BHTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT</pre>	<pre>///2x, ,7/EENCING,7>, EMISHE AR, FCTATIENS/5X, ,7/ MCNENT,7>, CHFORCE, (. PCS.,3X,9FACC. NEC./) 1).SFICT(1),FTCT(1),PFTCT(1) x,18,17,3X,3F12.2,3X,3F12.5 0</pre>	HARARRARRARIAN, AARARARRARRARRARRARRARRARRARRARRARRARRA	2830 2840 2850 2850 2850 2857 2860 28900 25910 25910 25910 25910 25920 29940 29940 29940 29940 29940 29940 29950 29950 29950 1010 1020 1020 1020 1020	
M(4)-VELM(1))+CCSA*(VELM(2)-VE +RCT +RCT +RCT K11+DVR(1)+EK12*CVR(2))#FAC K12*DVP(1)+EK22*CVR(2))#FAC CFAC PING LCAD .) CC TC 200 (FMTOT(1)+SICN(1,,CVR(1)) (EMTOT(1))*SICN(1,,CVR(2)) (CMTOT(1)+FTCT(2))/2.)*SICN(1, MI*SCACT(2) H*SCACT(2) +SCACT(2) CC TO 21C JUF)/FL NA-FOUB*CCSA A-FCUE*SINA *23456E10) CC TC 21C (1)*SC(3)+CO(2)*EC(1) (4)*EC(4)+20(2)*EC(1)	.,CVAX)	PEG 2280 PEG 2280 RES 2300 RES 2300 RES 2310 RES 2320 RES 2340 RES 2340 RES 2360 RES 2360 RES 2400 RES 2400 RES 2400 RES 2400 RES 2400 RES 2440 RES 2450 RES 2450 RES 2450 RES 2450 RES 2450 RES 2500 RES 2500 RES 2500 RES 2540 RES 2550 RES 25500 RES 25500 RES 25500 RES 2550 RES 25500 RES 25500 R	KKPP=1 P3INT 250 FCRMA1 2 3 4 5 1+ED=1 260 FGINT 1,FRACE 270 FCRMAT C 280 IF (ITT 280 IF (ITT) C 280 IF (ITT) 11+OUT 11+OUT 11+OUT 11+OUT 0 290 THOUT(0 290 THOUT(0 200 THOUT(0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>LABS(KAP) PSO, KKPR,TIME 1(///LAP RESULTS FOR GECUP,[2, PSO, KKPR,TIME SHELEY,AX,AHNOCE,3X,SHYTELC,GX, PX,SHAPIAL,J&X,2HPLASTIC HINGF FM ND+,4X,AH NC,JX,FH COSF,GX, 7X,SHFTRE,PX,7HCUKRENT,4X,CHA(C 1 270, IMFM,(NCC(1),KCD*(1),BHTCT(1) =(1),PHACN(1),1=1,2) T (15,18,17,3X,JHIZ,2,3X+3F12.5/QX IME HISTOPY IN /1HIST/ TH9.LT.1.CF.KOUTCT.EC.0) GC TC J10 LAES(KPR) T(1)=KKDG (12)=5 f(3)-IMEH I(4)=KCDT(1) T(5)=KCDT(2) F(6)=KCDT(2) F(6)=KCDT(2) F(7)=NNDJ I [=1,F (1)=PHTCT(1) N=14</pre>	<pre>///2x, ,7PEENCING, 7>, EMSHEAR, FCTATIENS/5X, ,7H MENENT, 7>, FHFORCE, (. PCS., 3X, 9+AFC. NEC./) 1).SHICI(1),FTCT(1),PHTCT(1) x, TE, 17, 3X, 3F12.2, 3X, 3F12.5 3</pre>	K R R R R R R R R R R R R R R R R R R R	2040 22450 22450 22450 22860 22860 22910 22910 22920 20970 20970 20970 20970 20970 20970 20970 20970 20970 20970 20970 20970 20970 20970 20970 20000 20000000000	
<pre>+RCT +RCT +RCT) CC TC 190 SH) K11*DVR(1)+EK12*CVR(2))#FAC K12*DVP(1)+EK22*CVR(2))#FAC CFAC PING LCAD .) CC TC 200 (PMTOT(1))*SIGN(1.,CVR(1)) (PMTOT(1))*SIGN(1.,CVR(1)) (PMTOT(1))*FICT(2)/2.)~SIGN(1. MI+SCACT(1) MI+SCACT(2) +SCACT(2) CC TO 21C JUE)/FL NA-FOUD*CIA A-FCUD*SINA ,23456E10) CC TC 21C (1)*SC(3)+C0(2)*EC(1) (4)*EC(4)+DD(E)*EC(2)</pre>	., Cvax)	RES 2250 PRES 2300 RES 2320 RES 2320 RES 2320 RES 2340 RES 2350 RES 2360 RES 2360 PEC 2350 PEC 2400 RES 2430 PEC 2400 RES 2430 PES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2500 RES 2440 RES 2500 RES 2	011NT 250 FCRMAT 1 2 3 4 5 1FED=1 260 PGINT 1,PRACE 27C FCRMAT C 28C IF (IT) C SET ID 28C IF (IT) C SET ID 10FOLT 11FOLT 17FOLT 0 29C THOUT(0 29C THOUT(0 20C 200 30C THOUT(<pre>P50, KKDP,TIME 1(//21AP RESULTS FCF GFCUF,I2, 23H, 3CAM ELEMENTS, TIME =,F6:T/ SP ELEMIAN, AFNODE, 3X, SFYTELC, 6X, 7X, SHATAL, 12X, 23FPLASTIC FINGF SF ND:,4X, AF NC:, 3X, SF CCSF, 6X, 7X, SHFCRCE, PX, 7FCURRENT, 4X, CFAC(1 270, IMFM, (NCC(1), KCCM(1), BHTCT(1) F(1), PDACN(1), 1=1,2) T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 573X IME FIRTCPY IN /THIST/ TMP,LT,1-CF, KOUTCT, EC,0) CC TC J10 TAFS(K09) T(1)=KK05 T(2)=5 T(3)-IMCH I(4)=KC0T(1) T(5)=KC0T(2) T(6)=KC0T(2) T(6)=KCCT I(7)=N00J J [=1,6 (1)=PMTCT(1)</pre>	<pre>//2x, //2x, // ECTATICNS/5x, / MCMENT,7>,FHF0PCE, (PCS-,3x,9FAFC, NEG-/) 1),SF1C1(1),FTCT(1),PFTCT(1) x,18,17,3x,2F12+2,3x,3F12+5 0</pre>	R R R P R R R R R P P P R R P P R R R R	2250 2270 2270 2280 22900 2510 2510 2530 2930 2930 2930 2930 2940 2950 2050	·
+RCT) 6C TC 190 SH) K11+DVR(1)+EK12+CVR(2))#FAC K12+DVP(1)+EK22+CVR(2))#FAC CFAC PING LCAD .) 6C TC 200 (PMT0T(1)+SICN(1.,CVR(1)) (PMT0T(1)+SICN(1.,CVR(1)) (PMT0T(1)+SICN(1.,CVR(2)) ((FT0T(1)+FTCT(2))/2.)~SIGN(1. MI+SCACT(2) CC TO 21C JUF)/FL NA-FOLB+CCSA A-FCUE+SINA .23456E10) 6C TC 21C (1)#SC(3)+C0(2)#EC(1) (4)#SC(4)+DD(E)#EC(2)	.,Cvax)	PES 2200 RES 2310 RES 2320 RES 2330 RES 2340 RES 2360 RES 2350 RES 2360 RES 2350 RES 2360 RES 2410 RES 2410 RES 2410 RES 2440 RES 2440 RES 2440 RES 2440 RES 2480 RES 2480 RES 2500 RES 2500 RES 2500 RES 2510 RES 2530 RES 2550 RES 2550 RES 2550	250 FCRMAT 2 3 4 5 1+ED=1 260 PEINT 1,PRACE 270 FCRMAT C CFI TI C CFI TI 280 FF (TT 280 FF (TT) 280 FF (TT) 280 FCT (TC) 11+OLT 11+OLT 11+OLT 11+OLT 002 200 290 THOUT(002 00 300 THOUT	<pre>1(//2)10P RESULTS FCF GFCUF,12, 23M, 30GAV ELEMENTS, TIME =,FE-7/ 5F ELEM,12*,4FNCDE,3X;5FYTELC;6X; 7X;5HAXIAL,12*,23PDLASTIC HINCF 6F NC-,4X;4F NC-,3X;5F CCOF;6X; 7X;5HFCRCE,PX;7FCUFFFN1,4X;CFAC(270, 1MFM;(NCC(1))*CEO*(1);0HICT(1) F(1);0PACN(1);1=1;2) T (15,18;17;3X+3F12:2;3X;3F12:5/9X IME FISTCPY IN /THIST/ TH0+LT;1:CC+*KUTCT*EC;0) CE TE 310 TAFS(K09) T(1)=KK05 I(2)=5 f(3)=IME# I(4)=KCOY(1) F(5)=KCCY(2) F(6)=KCCY(2) F(6)=KCCY(2) F(6)=KCCI I(7)=NNO3 J [=1;6 (1)=OPTCT(1) X [=1]</pre>	<pre>///3x4 ,7PEENCING,7>,EMEMEAR, FCTATICNS/5x, ,7P MCMENT,7>,CHFORCE, (. PCS-;3x,9FAFC. NEC./) 1).SFICT(1),FICT(1),PFTCT(1) x,1E,17,3x,2F12.2,3x,3F12.5 0</pre>	R R R P R R R P R P R R P R R R P R R R P R R R P R R R P R R P R R P R R P R R P R R P R R R P R R R P R R R P R R P R R P R R P R R R P R R R P R R R P R R R R R P R R R P R	22400	·
) 6C TC 190 SH) K11+DVR(1)+EK12*CVR(2))#FAC K12*DVP(1)+EK22*CVR(2))#FAC CFAC PING LCAD .) 6C TC 200 (PMT0T(1))*SICN(1.,CVF(1)) (L#T0T(2))*SICN(1.,CVF(2)) ((FTOT(1)+FTCT(2))/2.)~SIGN(1. MI+SCACT(1) MJ+SCACT(2) CC TO 21C JUE)/FL NA-FOLD8CCSA A-FCUE*SINA *23456E10) 6C TC 21C (1)*SC(3)+C0(2)*EC(1) (4)*EC(4)+CD(E)*EC(2)		RES 2310 RES 2320 RES 2330 RES 2340 RES 2350 RES 2350 RES 2350 RES 2350 RES 2350 RES 2350 RES 2360 RES 2400 RES 2410 RES 2430 RES 2430 RES 2440 RES 2400 RES 2500 RES 2500 RES 2500 RES 2500 RES 2540 RES 2550 RES 2560 RES 2560	L 2 3 4 5 1+ED=L 260 PRINT 1,PRACE 270 FORMAT C 200 FORMAT C 200 FORMAT 1,PRACE 200 FORMAT 11+OUT 11+OUT 11+OUT 11+OUT 00 200 200 THOUT(00 200 300 THOUT	<pre>P3M, 3CAW ELEMENTS, TIME =,FE.T/ FH ELEW_AX, AFACDE, 3X, 5FYTELC, 6X, TX, 5MAXIAL, IX, 21PULAETIC + IAS, FH NC., 4X, 4F NC., 3X, FF CCCF, 6X, TX, SHETRCE, PX, 7FCURRENT, 4X, CFAC(270, IMFM, (ACC(1), XCCW(1), EBTCT(1) F(1), PPACN(1), I=1,2) T (IS, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5/49) IME FISTCRY IN Z1HISTZ THP.LT.1.CF.KOUTCT.EC.0) CC TC 210 TAFS(K09) T(1)=XK04 I(4)=KC04(2) T(5)=KC04(2)</pre>	<pre>///Sx, ,7/EENCING,7>,5H5HEAR, FCTATICNS/5X, ,7H PCMENT,7>,FHFCPCE, (. PCE.;3X,9FAPC. NEG./) 1),SFTCT(1),FTCT(1),PRTCT(1) x,TE,17,3X,3F12.5 0</pre>	R R P R R R R R P R R R P R R R R R R R	2970 2280 2280 2900 25910 25920 25920 2930 2950 2950 2950 2950 2950 2950 2950 295	·
) 6C TC 190 SH) K11+DVR[1]+EK12*CVR(2])#FAC K12+DVP(1)+EK22*CVR(2])#FAC CFAC PING LCAD .) 6C TC 200 (MTOT(1))*SICN(1.,CVF(2)) (MTOT(1))*SICN(1.,CVF(2)) ((FTOT(1))*FTCT(2))/2.)~SIGN(1. MI+SCACT(2) #ISCACT(2) CC TO 21C JUE)/FL NA-FOLB*CCSA A-FCUE*SINA *23456E10) 6C TC 21C (1)*SC(3)+C0(2)*EC(1) (4)*SC(4)+DD(E)*EC(2)	.,CVAX)	REG 232C REG 2330 REG 2340 REG 2340 REG 2360 REG 2360 REG 2400 REG 2410 REG 2410 REG 2410 REG 2410 REG 2420 REG 2440 REG 2440 REG 2440 REG 2440 REG 2440 REG 2500 REG 2500 REG 2510 REG 2510 REG 2550 REG 2550 REG 2550 REG 2550 REG 2550	2 3 4 5 1PED=1 260 PEINT 1,PPACE 270 FCMPAT C C *FT TI C 280 [F (TTI 280 [F (TTI 280 [F (TTI 280 [F (TTI 1)TICUT 1)TICUT 1)TICUT 1)TICUT 1)TICUT 200 THOUT(200 300 THOUT(<pre>GF ELE 41AX, 4FACCE, 3X, 5FY IELC, 6X, 7X, 5HAXIAL, 12X, 23PPLASTIC FIRSF 6F NC.14X, 4F NC., 3X, 5F CCCF, 6X, 7X, 5FFC9CE, PX, 7FCURRENT, 4X, 6FACC 220, IMFM, (NCC(1), KCCW(1), 8HTCT(1) F(1), 9PACN(1), 1=1, 2) T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F2, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F2, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (15, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (17, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (17, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (17, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (17, 18, 17, 3X, 3F12, 2, 3X, 3F12, 5F4 T (17, 18, 17, 3X, 3F12, 2, 3Y, 3F12, 5F4 T (17, 18, 17, 3X, 3F12, 2, 3Y, 3F12, 5F4 T (17, 18, 17, 3Y, 3F12, 2, 3Y, 3F12, 5F4 T (17, 18, 17, 3Y, 3F12, 3F</pre>	,7/PERCING,7),EHSHEAR, FCTATICNS/5X, FCTATICNS/5X, 7H MCMENT,73,FHFDRCE, (. PCS-;3X,9FAFC. NEC-/) 1).SFTCT(1),FTCT(1),PRTCT(1 X,TE,17,3X,3F12.2,3X,3F12.5 0	R P R R F P R P R R P P R R P R R P R R P R R P R R P R P R P R P P R R P P R R P R R R P R R R P R R R P R R P R R P R R P R R P R R R P R R R P R R R P R R R P R R R R R P R R P R R R R R P R	2260 22900 25900 25910 25920 25920 25920 29940 29950 2000 200	·
<pre>>) GC TC 190 SH) K11*DVR[1]+EK12*CVR(2)]#FAC K12*DVP(1)+EK22*CVR(2)]#FAC GFAC PING LCAD .) GC TC 200 (PMTOT(1))*SICN(1.,CVR(1)) LEMTCT(1))*SICN(1.,CVR(1)) LEMTCT(1)+FTCT(2))/2.+~SIGN(1. MI-SCACT(2) MI-SCACT(2) SIC SIC SIC SIC NA-FOLB*CT(2) *SCACT(2) *</pre>	.,Cvax)	REG 2330 REG 2340 REG 2340 REG 2360 REG 2360 REG 2360 REG 2390 REG 2400 REG 2400 REG 2410 REG 2410 REG 2430 REG 2430 REG 2430 REG 2430 REG 2430 REG 2430 REG 2450 REG 2490 REG 2500 REG 2500	2 3 4 5 1FED=1 260 PEINT 1.PRACE 27C FCRMAT C 22C IF (IT) ARPREL 1 THCLT 1 THCLT 1 THCLT 1 THCLT 1 THCLT 1 THCLT 1 THCLT 250 THCLT(C 200 301 THCLT(C 200 301 THCLT)	<pre>>= ELE * [13, 4 FACE[3, 4, 5 F + [ELE 1, 5 4, 7 F + [ELE 1, 5 4, 7 F + [ELE 1, 5 4, 7 F + COSF, 6 x, 7 x, 5 H + F(3, 4 x, 4 + NC, 3 x, 5 + COSF, 6 x, 7 x, 5 H + F(3, 4 x, 5 + A + C), 3 x, 5 + COSF, 6 x, 7 x, 5 H + F(3, 2 + A + A + A + A + A + A + A + A + A +</pre>	<pre>PERCIENCIES/53. FCTATIENCS/53. ,7H MEMENT,73,FHEORCE, (. PES.,3X,04AFC. NEG./) 1),SHICI(1),FTCT(1),PRTCT(1) x,TE,17,3X,3F12+2,3X,3F12+5 0</pre>	R R	2250 22900 22910 22510 22520 22940 29500 20000000000	·
) GC TC 190 SH): 	.,CVAX)	CEG 2330 REG 2340 REG 2360 REG 2360 REG 2380 REG 2400 REG 2410 REG 2410 REG 2410 REG 2420 REG 2420 REG 2440 REG 2440 REG 2440 REG 2440 REG 2440 REG 2440 REG 2480 REG 2500 REG 2500	3 4 5 1+ED=1 260 FGINT 270 FGINT 270 FGHAT C C FGI TI 282 [F (11) 8KR08=1 11+0ut 11+0ut 11+0ut 11+0ut 11+0ut 11+0ut 200 7HOUT(00 200 300 7HOUT(<pre>7x,EHA X[AL,] 2X,23PDLASTIC + INCF FH NC,14X,4H NC,3X,FH CC5F,6X, 7X,5HFCRCE,PX,7+CURRENT,4X,C+A(C) 270, IMFM,[NCC(1],KCCM(1],BHTCT(1] F(1),PRACN(1),]=1,2) T (15,18,17,3X,3+12,2,3X,3F12,2,44 T (15,18,17,3X,3+12,2,3X,4F12,2,45 T (15,18,17,3X,3+12,2,3X,4F12,2,45 T (15,18,17,3X,3+12,2,3X,4F12,2,45 T (15,18,17,3X,3+12,2,3X,4F12,2,45 T (15,18,17,3X,3+12,2,3X,4F12,2,45 T (15,18,17,3X,3+12,2,3X,45) T (15,18,17,3X,45) T (15,18,17,3X,45) T</pre>	FCTATICNS/SX, 74 MCNENT,73,5HFORCE, (. PCS.,3X,9FAFC. NEC./) 1).SFTCT(1),FTCT(1),PRTCT(1 X,TE,17,3X,3F12.2,3X,3F12.5	PRR R PR P	2250 22900 22900 2530 2530 22920 2950 2950 2950 2950 2950 2950 29	
) GC TC 190 SH): K11*DVR[1]+EK12*CVR[2])#FAC K12*DVP[1]+EK22*CVR[2]]#FAC GFAC PING LCAD .) GC TC 200 (PMTOT(1)+SICN(1.,CVR[1]) (PMTOT(1)+FTCT(2))/2.+~SIGN(1. WI-SCACT(1) WJ+SDACT(2) CC TO 21C JUF)/FL NA-FOLB*CTSA A-FCUP*SINA .23456E10) GC TC 21C (1)*SC(3)+CO(2)*EC(1) (4)*EC(4)+DD(E)*EC(2)	.,Cv#x)	RES 234C RES 2350 RES 2350 RES 2350 RES 2390 RES 2390 RES 2400 RES 2410 RES 2430 RES 2430 RES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2500 RES 2500	4 5 1+ED=1 260 PEINT 1.PRACE 270 PERMAT C C FETTI 220 IF (ITM KRPR=1, 1740LT 17	<pre>6 NC.44.4 NC.3X,5 CCCF,Ex, 7X,5 FFC ACE, PX,7 FCURRENT,4X,CFACC 1 220, IMFM, (NCC(I), NCCM(I), BM TCT(I) F(I), PPACN(I), I=1,2) T (IS, IA, I7, 3X.3 F I2.2, 3X, 3F 12.57 G) INE FISTCRY IN /1HIST/ THP.LT.1.CP.KOUTCT.EC.0) CC TE JIO IAFS(KRG) T(I)=KRG T(I)=KRG T(I)=KRG T(I)=KCDT(I) T(5)=KCDT(I) T(5)=KCDT(I) T(5)=KCDT(I) T(5)=KCDT(I) T(1)=KCDT(I) T(1)=KCT(I)</pre>	,74 ΜCNENT,73,54400CE, (. PC5.;3X,944CC, NE6.7) 1),541(1(1),41CT(1),987CT(1 X,18,17,3X,3812.2,3X,3812.5	R R R R R R R R R R R R R R R R R R R	2900 2910 2920 2940 2940 2940 2960 2960 2970 2960 2970 2960 2970 2960 2970 2960 2970 2960 2070 2070 2070 2070 2070 2070 2070 20	·
SH) K11*DVP(1)+EK12*CVP(2))#FAC K12*DVP(1)+EK22*CVP(2))#FAC CFAC PING LCAD .) CC TC 200 (PMT0T(1))*SIGN(1.,DVP(1)) LEMT0T(1))*SIGN(1.,CVF(2)) ((FT0T1)+FTCT(2))/2.)*SIGN(1. M1+SCACT(1) M1+SCACT(2) +SCACT(2) CC TO 21C JUF)/FL NA-FOLB*CCSA A-FCUP*SINA *23455E10) CC TC 21C (1)*SC(3)+CO(2)*EC(1) (4)*EC(4)+DD(E)*EC(2)	.,CV#X)	RE9 2250 RE5 2360 RE5 2360 RE5 2390 RE5 2400 RE5 2410 RE5 2410 RE5 2410 RE5 2420 RE5 2440 RE5 2440 RE5 2440 RE5 2480 RE5 2480 RE5 2500 RE5 2510 RE5 2510 RE5 2510 RE5 2510 RE5 2510 RE5 2510 RE5 2510 RE5 2510 RE5 2510	5 1 FED = 1 200 FEINT 1, PRACE 270 FCRMAT C C *FI TI C 280 FF (TTI 280 FF (TTI 280 FF (TTI 280 FF (TTI 11FOLT 11FOLT 11FOLT 00 280 290 THOUT(00 200 300 THOUT(<pre>7X,SFFCRCE,PX,7FCURRENT,4X,CFACC 270, IMEM,(NCC(1),KCCM(1),BMTCT(1) F(1),PMACN(1),I=1,2) T (15,18,17,3X,J=12,2,3X+3F12,279X IME FIRTCRY IN /THIST/ TMP,LT,1-CF,KOUTCT,EG,0) CC TC J10 TAFS(K09) T(1)=KK05 T(2)=5 F(3)-IMCM H(4)=KC0T(1) F(5)=KC0T(2) F(6)=KC0T(2) F(6)=KC0T(2) F(7)=NOD J [=1,6 (1)=PMTCT(1) X [=1,6 (1)=PMTCTT(1) X [=1,6 (1)=PMTCTT(1) X [=1,6 (1)=PMTCTTT(1) X [=1,6 (1)=PMTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT</pre>	C. PCS.;3X,9+PCC. NEC./) 1).SH1C1(1),FTC7(1),PR7CT(T X,TE,17,3X,3F12.2,3X,3F12.5	R R F F F F F F F F F F F F F F F F F F	251C 252C 253C 2953C 2950 2950 2950 2950 2950 2950 2950 2950	·
<pre>Rli*DVR(1)+EK12*CVR(2))#FAC K12#DVP(1)+EK22*CVR(2)]#FAC CFAC PING LCAD .) CC TC 200 (FMTOT(1))*SICN(1.,CVR(1)) (LMTOT(1))*SICN(1.,CVR(1)) (LMTOT(1)+FTCT(2))/2.)~SIGN(1. MI*SCACT(2) #I*SCACT(2) #I*SCACT(2) CC TO 21C JUF)/FL NA-FOLB*CT(2) *CACT(2) *23456E10) CC TC 21C (1)*SC(3)+CO(2)*EC(1) (4)*EC(4)+CD(2)*EC(1)</pre>	.,Cvax)	RES 2360 RES 2360 RES 2380 RES 2380 RES 2400 RES 2400 RES 2400 RES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2500 RES 2500 RES 2500 RES 2500 RES 2500 RES 2540 RES 2540 RES 2540 RES 2540	1+60=1 260 PRINT 1, PRACE 270 FORMAT C 280 IF (IT) KRPR=1, 1700UT 11+0UT 11+0UT 11+0UT 11+0UT 11+0UT 290 THCUT(00 200 300 THCUT(1 270, INFP, (NCC(1), KCC(1), ENTCT(1 F(1), PACN(1), 1=1,2) T (15, 18, 17, 33, 3+12,2, 33, 9+12, 2,93) IME FISTORY IN ZTHISTZ THP.LT.1.CP.KOUTOT.EG.0) CC 1C 210 TAFS(R0) T(1)=KR05 T(2)=5 T(3)-INEM I(4)=SC0T(1) T(5)=KC0T(1) T(5)=KC0T(2) I(6)=SC0T I(7)=SN03 I =1,6 (1)=PMTCT(1) X=10 X	1).SFTCT(1),FTCT(1),PRTCT(1 X,TE,17,3X,7F)2.2,3X,3F12.5	RIF622222233333	2920 2930 2940 2940 2950 2950 2950 2950 2950 2950 2950 295	·
<pre>KlishDve(1)+EK22*CvR(2)]#FAC CFAC PING LCAD .) CE TC 200 (PMTOT(1))*SIGN(1.,CVF(1)) (PMTOT(1))*SIGN(1.,CVF(2)) (CFTOT(1)+FTCT(2))/2.*~SIGN(1. MI+SCACT(1) MJ+SCACT(2) +SCACT(2) CE TO 21C JUF)/FL NA-FOUB*CTSA A-FCUB*SINA *23456E10) CE TE 21C (1)*SC(3)+C0(2)*EC(1) (4)*SC(4)+CD(E)*EC(2)</pre>	.,Cv#x)	HES 2300 RES 2300 RES 2300 RES 2400 RES 2410 RES 2410 RES 2420 RES 2420 RES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2480 RES 2500 RES 2510 RES 2510 RES 2510 RES 2510 RES 2510 RES 2510	1000 FEINT 200 FEINT 1, PRACE 270 FCRMAT C 280 FE (IT 280 FE (IT 280 FE (IT 280 FE (IT 1000 FE 1000 FE 1000 FE 290 THOUT(500 FEUT(500 FE)	<pre>270, IMFM, (NCC(1), NCCM(1), BMTCT(1) p(1), DPACN(1), I=1,2) T (19, I8, 17, 3X+3+12,2, 3X+3F12,249X IME FISTCRY IN /THIST/ TMP+LT, I-CP+KOUTCT+EG+0) CC TC 210 TAPS(K09) T(1)=KK05 T(2)=5 f(3)-IMCH I(4)=KC0T(1) f(5)=KCDT(1) f(5)=KCDT(2) f(6)=KCDT(2) f(6)=KCDT(2) f(6)=KCDT(2) f(7)=ND0 1 [=1,6] </pre>	1)•5+161(1),FTC+(1),PATCT(T 5,18,17,3%,2F12•2,3%,3F12•5	IPR IPR <td>2920 2930 2950 2950 2950 2950 2950 2970 2970 2970 2970 2970 2070 2010 1020 1020 1020 1030 1040 1050 1050 1070</td> <td>·</td>	2920 2930 2950 2950 2950 2950 2950 2970 2970 2970 2970 2970 2070 2010 1020 1020 1020 1030 1040 1050 1050 1070	·
<pre>k12=Duv(1)+EK22=CUR(2))#FAC CFAC PING LCAD .) CC TC 200 (FMTOT(1)+SICN(1.,CVF(1)) (LMTOT(1)+FTCT(2))/2.)~SIGN(1. WISECAT(1) WISECAT(2) HISECAT(2) CC TO 21C JUE)/FL NA-FOLB*CCSA A-FCUE*SINA .23456E10) CC TC 21C (1)*CC(1)+CO(2)*EC(1) (4)*EC(4)+CD(E)*EC(2)</pre>	.,CVAX)	RES 2320 RES 2380 RES 2400 RES 2400 RES 2410 RES 2420 RES 2430 RES 2430 RES 2440 RES 2440 RES 2440 RES 2440 RES 2500 RES 2500 RES 2500 RES 2500 RES 2540 RES 2540 RES 2540 RES 2540 RES 2540	269 PEINT LIPPACE 270 FCRPAT C 280 FF (TT 280 FF (TT 280 FF (TT 280 FF (TT 280 FF (TT 1900 FT 1900 FT	270, IMFM, (KECIT), KECM(I), EMICT(I F(I), PMACN(I), I=1,2) T (IS, IA, T7, 3X,J+12,2, 3X, 3F12,579) IME FISTERY IN ZIHISTZ TH9.LT.1.CP.KOUTET.EG.0) CC TC JIG TAES(KOQ) T(1)=KKOS T(2)=5 T(3)-(MEM I(4)=KCOT(1) T(5)=KCOT(1) T(5)=KCOT(2) I(6)=KCOT I(7)=NMOJ J [=1,6 (1)=PMICT(1) X [=1,6 (1)=PMICT(1)	1),5F1(1(1),F1(+(1),PF((1(1 3,18,17,3X,2F12,2,3X,3F12,5	1161789555555555555555555555555555555555555	2930 2940 2950 2950 2970 2970 2970 2970 2970 2970 2970 297	·
CFAC PING LCAD .) CC TC 200 (PMTOT(1))*SIGN(1.,CVF(1)) (PMTOT(1))*SIGN(1.,CVF(2)) (CFTOT(1)*FTCT(2))/2.)*SIGN(1. MI+SCACT(1) MJ+SCACT(2) CC TO 21C JUF)/FL NA-FOLB*CCSA A-FCUP*SINA .23455610) CC TC 21C (1)*SC(3)+C0(2)*EC(1) (4)*EC(4)+20(5)*EC(2)	., Cvax)	FEG 2380 FEG 2390 FEG 2400 FEG 2410 RES 2420 RES 2430 RES 2440 RES 2490 RES 2490 RES 2500	1, FRACE 270 F CRMAT C C *F1 TI C 220 [F (11 KKPR=1) 116UT 116UT 116UT 116UT 176UT 0 116UT 0 116UT 0 200 200 THOUT(0 200 300 THOUT)	F(1), PPACN(1), [=1,2) T (15,16,17,3X.J=12.2,3X+3F12.5/9) IME FISTORY IN /1HIST/ TH9.LT.1.CF.KOUTCT.EC.0) CC 1C J10 TAFS(K09) T(1)=XK95 T(3)=JK6 T(3)=JK6 T(3)=KC11) T(5)=KC0T(1) T(5)=KC0T(2) T(6)=KC0T(2) T(7)=KC0T(*,18,17,3X,3F12.2,3X,3F12.5	R)	2940 2950 29570 2970 2970 2990 3010 3010 3010 3020 1020 1020 1020 102	
PING LCAD .) CC TC 200 (PMTOT(1))*SICN(1.,CNR(1)) (LMTOT(1)*FTCT(2))/2.)*SIGN(1. WI*SCACT(1) WJ*SCACT(2) *SCACT(2) CC TO 21C JUE9/FL NA-FOLB*CCSA A-FCUE*SINA *23456610) CC TC 21C (1)*SC(3)+CO(2)*EC(1) (4)*EC(4)+20(2)*EC(1)	.,CVAX)	PE¢ 2350 PE¢ 2400 RE¢ 2410 RE¢ 2410 PE¢ 2420 RE¢ 2430 PE¢ 2440 RE¢ 2440 RE¢ 2440 RE¢ 2470 RE¢ 2480 RE¢ 2500 RE¢ 2500 RE¢ 2500 RE¢ 2500 RE¢ 2500 RE¢ 2500 RE¢ 2500 RE¢ 2500 RE¢ 2500	270 FCRPAT C C *ET TI C 280 [F (11 KKP7=1 1)%Cut 1)%Cut 11%Cut 11%Cut 11%Cut 11%Cut 11%Cut 200 T%Cut(C CC 200 300 T%Cut(C	T (15,16,17,38.3+12.2,38,3F12.2,49) IME FISTERY IN /1HIST/ TH9.LT.1.CF.KOUTE1.EG.0) CC 1C J10 TAES(K00) T(1)=KK05 T(2)=5 T(3)-(MEH T(4)=KCD1(1) T(5)=KCD1(1) T(5)=KCD1 T(5)=KCD1 T(7)=NNDJ J [=1,6 ())=PWTCT(1) V=1.0	x,12,17,3X,2F12.2,3X,3F12.5	Image: 1 to 1 t	2950 256C 2970 2950 2950 2950 2010 2010 2010 2020 2020 2020 2020 20	·
PING LCAD .) CC TC 200 (PHTOT(1))*SICN(1.,CVF(1)) LWYQT(2))*SICN(1.,CVF(2)) ((FTOT(1)+FTCT(2))/2.)~SIGN(1. MI+SDACT(1) MJ+SDACT(2) CC TO 21C JUF)/FL NA-FQUB*CCSA A-FCUB*SINA .23455610) CC TC 21C (1)*SC(3)+C0(2)*EC(1) (4)*SC(4)+CD(E)*EC(2)	.,Cvax)	PES 2400 RES 2410 RES 2420 RES 2430 RES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2490 RES 2500 RES 2500 RES 2500 RES 2500 RES 2500 RES 2540 RES 2540 RES 2540 RES 2540 RES 2540	C C 222 F (11 KEPP=1 11:CUT 11:CUT 11:CUT 11:CUT 11:CUT CC 200 302 THCUT(CC 200	INE FISTERY IN /1HIST/ THP.LT.1.CF.KOLTET.EG.0) CE 1E JIG TAFS(KOG) T(1)=SKOG T(2)=5 T(3)=JKEF I(4)=KCDT(1) T(5)=KCDT(2) T(6)=KCDT T(7)=NODJ J [=1,6 (1)=PWTCT(1) J=1.4	σ	R F F F F F F F F F F F F F F F F F F F	2960 2970 2950 3950 3000 3010 3010 3020 3030 3030 3030 303	
.) CC TC 200 (PMTOT(1))*SICN(1.,CNP(1)) (LMTOT(2))*SICN(1.,CVP(2)) ((FTOT(1)+FTCT(2))/2.)*SIGN(1. WI*SCACT(2) *SCACT(2) CC TO 21C JUE)/FL NA-FOLB*CCSA A-FCUE*SINA *23456610) CC TC 21C (1)*SC(3)+CO(2)*EC(1) (4)*SC(4)+20(E)*EC(2)	.,CVAX)	REG 2410 REG 2410 REG 2420 REG 2440 REG 2440 REG 2440 REG 2470 REG 2480 REG 2480 REG 2500 REG 2500 REG 2510 REG 2510 REG 2510 REG 2510 REG 2510	C 991 TI C 290 IF (IT 4KP9=1 ITHCUT ITHCUT ITHCUT ITHCUT C 290 C 290 290 THCUT(CC 200 300 THCUT(IME FISTERY IN ZIHISTZ TH0.LT.1.CF.KQUTCI.EG.0) GE TE JIG TAES(K09) T(1)=xx05 T(2)=5 T(3)-IMEH T(4)=xCDI(1) T(5)=xCDI(1) T(5)=xCDI T(5)=xCDI T(7)=NNDJ J =1,6 ()=0WTCT(1) V=1-10	σ	PEESS 3325 PEESS 3325 REESS 3355 REESS 3355 REESS 3355 REESS 3355 REESS 33555 REESS 33555 RESS 33555 REESS 33555 REESS 335555 REESS 335555 REESS 335555 REESS 33555555555555555555555555555555555	2970 2970 2990 3990 3010 3010 3010 3020 3030 3030 3030 3050 3050 3070 3080	
.) CC TC 200 (PMTDT(1))*SICh(1.,CNP(1)) (LMTDT(1))*FTCT(2))/2.)*SIGN(1. MI+SCACT(1) MI+SCACT(2) +SCACT(2) CC TO 21C JUE)/FL NA-FOLB*CCSA A-FCUE*SINA *23455610) CC TC 21C (1)*SC(3)+C0(2)*EC(1) (4)*EC(4)+20(5)*EC(2)	.,CVAX)	RES 2410 RES 2420 RES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2440 RES 2490 RES 2500 RES 2510 RES 2530 RES 2530 RES 2550 RES 2550 RES 2550 RES 2560	C 290 [F (]T 290 [F (]T 4000 F (]T 1100 F (]T 1100 F (]T 1100 F (]T 1100 F (]T 1100 F (]T 200 THOUT(200 THOUT(200 THOUT(200 THOUT(INE FISTERY IN JUHISTJ THP.LT.1.CP.KOLTOT.EG.0) CC TE JIG TAFS(KOR) T(1)=KKOF T(2)=5 T(3)=JKEM T(4)=KCOT(1) T(5)=KCOT(2) T(6)=KCOT(2) T(5)=KCOT(2) T(7)=NOCJ J T=1,6 (1)=PWTCT(1) J=1,6	с	RESSISTER RESSIST	2996 2956 2959 3000 3010 3020 3020 3020 3020 3040 3050 3060 1070 1070	
-) GC TC 200 (FMTOT(1))*SICN(1.,CNR(1)) (EMTOT(1))*SICN(1.,CVF(2)) ((FTOT(1)+FTCT(2))/2.)*SIGN(1. MI*SCACT(2) +SCACT(2) +SCACT(2) (DF)/FL NA-FOLB*CC5A A-FCUE*SINA *23456E10) GC TC 210 (1)*SC(3)+C0(2)*EC(1) (4)*SC(4)+20(E)*EC(2)	.,CVAX)	PES 2420 PES 2440 PES 2440 RES 2440 RES 2440 RES 2440 RES 2480 RES 2480 RES 2500 RES 2500 RES 2500 RES 2510 RES 2510 RES 2540 RES 2550 RES 2550 RES 2550	C 280 [# (IT 8KPPE] 1)14CLT 1)14CLT 114CLT 114CLT 114CLT 114CLT 114CLT 2002 2003 2003 14CLT C 2003 3014CLT	TH9.LT.1.CF.KOUTCT.EC.0) CE TE J1C TAES(KP9) T(1)= <kp6 T(2)=5 T(3)-IMEH T(4)=KCPT(1) T(5)=KCCT(1) T(5)=KCCT T(7)=NNDJ J =1,6 (1)=9WTCT(1) V=1-6</kp6 	с	RESSISTERS STREET	2950 2950 3000 3010 3020 3020 3020 3020 3020 302	
(PMTOT(1))*SICh(1-,CNF(1)) (EMTOT(2))*SICh(1-,CVF(2)) ((FTOT(1))*FTCT(2))/2-)*SIGh(1- MI*SCACT(1) MJ*SDACT(2) 45CACT(2) 45CACT(2) CC TO 21C JUF)/FL NA-FOUB*SCSA A-FCUB*SINA *23455610) CC TC 21C (1)*SC(3)+C0(2)*EC(1) (4)*EC(4)+20(5)*EC(2)	.,CVAX)	RES 2430 RES 244C RES 244C RES 244C RES 247C RES 247C RES 2490 RES 2500 RES 2500 RES 2510 RES 2510 RES 2530 RES 254C RES 2550 RES 2550 RES 256C	280 28 (F (F) KRPRET 114047 114047 114047 114047 114047 114047 114047 114047 290 74047 200 74047 104047 104047 200 300 104047 200 300 200 3	THOLUTILOF.KOUTOT.EC.0) (C TC Jic TAES(KOG) T(1)=KKOS T(2)=5 T(3)=JNCA T(4)=KCOT(1) T(5)=KCOT(2) T(5)=KCOT(2) T(5)=KCOT(2) T(7)=NOCJ T(7)=NOCJ T(1)=VT(T(1) V=1-4	с	RES 2 RES 3 RES 3 RES 3 RES 3 RES 3 RES 3 RES 3 RES 3 RES 3 RES 3	2990 3000 3010 3020 2030 3040 3050 3040 3050 3060 1070	·
<pre>tewtet(2))*sick(1.,CVF(2)) ((FTOT(1)*FTCT(2))/2.)*siGN(1. W1*SDACT(2) +SDACT(2) CC TO 21C JUE)/FL NA-FOLB*CC54 A-FCUE*SINA *23456E10) GC TC 21C (1)*5C(3)*C0(2)*EC(1) (4)*EC(4)+20(E)*EC(2)</pre>	.,CVAX)	PE9 2440 PE9 2440 RE9 2440 RE9 2470 RE9 2470 RE9 2470 RE9 2500 RE9 2500 RE9 2510 RE9 2510 RE9 2540 RE9 2550 RE9 2550 RE9 2560 RE9 2560	8 K P P = 1 1 11 (CLT 1 11 + PCLT 1 1 + PCLT 1 1 + PCLT 1 1 + PCLT 1 1 + PCLT 2 SC 7 H C C T (C 2 SC 2 SC 3 O C 1 + PCLT (C	TAES(KOR) T(1)==KCD5 T(2)=5 T(3)=JME# T(4)==KCD7(1) T(5)=KCD7(2) T(6)=KCD7(2) T(6)=KCD7 T(7)=NCDJ J [=1,6 (1)=007CT(1) J =1.4		PE9 1 PE9 3 RE9 3 RE9 3 RE9 3 RE9 3 RE9 3 RE9 3 RE9 3 RE9 3 RE9 3	3000 3010 3020 3030 3040 3050 3060 3060 3060	
((FTOT(1))+FTCT(2))/2.)~SIGN(1. MI+SCACT(1) MI+SCACT(2) +SCACT(2) -SCACT(2)	.,CVAX)	PEG 2450 REG 2440 REG 2440 REG 2480 REG 2500 REG 2500 REG 2510 REG 2510 REG 2510 REG 2510 REG 2510 REG 2510 REG 2510	110000 110000 110000 110000 110000 110000 110000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 2000000	(1)=(KD5 (2)=5 (3)-(MEH (4)=(KD3(1)) f(5)=(CD3(2)) f(5)=(C	·	PES 3 RES 3 RES 3 RES 3 RES 3 RES 3 RES 3 RES 3 RES 3	3010 3020 3020 3040 3050 3050 3060 3060 3070	
<pre>W1+SCACT(1) W1+SCACT(1) W1+SCACT(2) +SCACT(2) U0F)/FL NA-FOLB*CC5A A-FCUE*SINA *23456E10) GC TC 210 (1)*EC(3)+C0(2)*EC(1) (4)*EC(4)+20(2)*EC(2)</pre>		PES 244C RES 244C RES 2480 RES 2480 RES 2500 RES 2500 RES 2510 RES 2510 RES 254C RES 254C RES 254C RES 254C	111601 111601 114021 114021 114021 114021 114021 002 200 302 14001(002 300	111/->>>>> 1122=5 1123=1464 1145=xCD1(1) 1153=xCD1 1153=xCD1 1153=xCD1 1154=xCD1 1155=xCD1	·	RE9 3 RE9 3 RE9 3 RE9 3 RE9 3 RE9 3 RE9 3 RE9 3 RE9 3	2020 2020 3020 3040 3050 3060 3060 3060	
- 1702-11(1) WI-SDACT(2) +SCACT(2) SC TO 21C JUFJ/FL NA-FOLB*CCSA A-FOLB*CCSA A-FOLB*SINA +23455610) GC TC 21C (1)*5C(3)+C0(2)*EC(1) (4)*EC(4)+20(5)*EC(2)	· .	RES 244C RES 2480 RES 2480 RES 2500 RES 2500 RES 2510 RES 2510 RES 2530 RES 2530 RES 2530 RES 2550 RES 256C	111-PUT 1120-RT 1120-RT 1140-RT 1140-RT 1120-RT 1120-RT 200 200 200 200 200 200 200 200 200 20	1(2)=5 1(3)=1MEH 1(4)=KCDY(1) F(5)=KCDY(2) 1(6)=KCDY 1(7)=NPDJ 1 [=1,6 (1)=PMTCT(1) 1 [=1,6 1]=1,4 1		RE9 1 RE9 1 RE5 3 RE9 3 RE9 3 RE9 3 RE9 3 RE9 3	2020 2030 304 2050 2050 2060 2060 2070	
MIFSDACT(2) +SCACT(2) CC TO 21C JUE)/FL NA-FOUBSCCSA A-FOUBSCCSA A-FOUBSCCSA (1)#SC(3)+CO(2)#EC(1) (4)#SC(4)+2D(2)#EC(2)	· .	RES 2470 RES 2480 RES 2480 RES 2490 RES 2500 RES 2510 RES 2540 RES 2540 RES 2540 RES 2540 RES 2540	110411 11401 11401 11401 11341 11341 200 200 00 00 200 00 200 00 200 00 200	T(3)-IVE# I(4)=KCDY(2) T(5)=KCDY(2) T(5)=KCDY(2) T(7)=NODJ J =1,6 (1)=0v7CT(1) J =1,6		RE9 3 RE9 3 RE9 3 RE9 3 RE9 3 RE9 3 RE9 3	2020 304C 3050 306C 3070 308C	
+SEACT(2) CC TO 21C JUE}/FL NA-FOUB*SCEA A-FOUB*SINA +23456E10) GC TC 21C (1)*SC(3)+C0(2)*EC(1) (4)*SC(4)+20(5)*EC(2)		FES 2480 RES 2490 RES 2500 RES 2510 RES 2530 RES 2530 RES 2540 FES 2550 RES 2560 RES 2560	14601 11601 11601 11601 11601 11601 16011 16011 16011 16001 160011	I(4)=KCDY(1) I(6)=KCDY(2) I(6)=KCDY(2) J [=1,6 ()=GWT(T(1) J == 4 J == 4		RES 3 RE9 3 RE9 3 RE9 3 RE9 3 RE9 3	304C 3050 306C 1070 108C	
CC TO 21C JUE)/FL NA-FOUB®CCSA A-FOUB*SINA ,23456E10) GC TC 21C (1)*5C(3)+C0(2)*EC(1) (4)*EC(4)+2D(E)*EC(2)		RES 2490 RES 2500 RES 2510 RES 2510 RES 2530 RES 2540 RES 2550 RES 2560 RES 2560	11-60-7 11-60-7 11-70-7 11-70-7 290 70-00-7 290 70-00-7 00-70-00-7 300 70-00-7 300 70-00-7 10-00-7 10-00-7 10-00-7 10-00-7 10-00-7 10-00-7 10-00-7 10-00-7 10-00-7 10-00-7 10-00-7 10-00-7 10-00-7 20-00-7 10-00-7 20-	T(5)=KCDY(2) T(6)=ACCI T(7)=NOS J ==1,6 (1)=907CT(1) J=1.6		RE9 3 RE9 3 RE9 3 RE9 3 RE9 3	3050 3060 1070 1080	
CC TO 21C JUEJ/FL NA-FOLBSCCSA A-FCUEFSINA +23456E10) GC TC 21C (1)#5C(3)+C0(2)#EC(1) (4)#6C(4)+20(5)#EC(2)		RES 2500 RES 2510 RES 2510 RES 2530 RES 2530 RES 2540 RES 2540 RES 2540 RES 2540	117601 17601 176017 00 299 290 76017 00 300 301 76011	16)=1051 16)=1051 T(7)=N053 0 [=1,8 ()=9mfCT(1) 1 = 1		RE9 3 RE9 3 RE9 3	206C 1070 108C	
CC TO 21C JUE)/FL NA-FOLBSCISA A-FOURSSINA ,23456E10) GC TC 21C (1)*5C(3)+C0(2)*EC(1) (4)*5C(4)+20(5)*EC(2)		RES 2510 RES 2510 RES 2530 RES 2540 RES 2540 RES 2540 RES 2560 RES 2560	176017 176307 060 200 290 76007(050 300 300 76001(7157-7651 7171-8053 211-1+8 (1)=04767(1)		RE9 J RE9 J RE9 J	1070	
CC TO 21C JUEJ/FL NA-FOUB®CCSA A-FCUB®SINA •23456E10) GC TC 21C (1)*5C(3)+C0(2)*EC(1) (4)*6C(4)+20(5)*EC(2)		REG 2510 REG 2520 REG 2530 REG 2540 REG 2550 REG 2560	TTFDUT DC 299 290 thout(DC 200 301 thout()	בפחאיד בנואד 1,1=1,8 1,1=2 לאליק בנון 1,1=1,2		RE9 1 RE9 3 RE9 3	1080	
CC TO 21C JUEJ/FL NA-FOLBECTSA A-FOUD#SINA *23456510) GC TC 21C (1)#5C(3)+C0(2)#EC(1) (4)#EC(4)+20(5)#EC(2)		RES 2520 RES 2530 RES 2540 RES 2550 RES 2560 RES 2560	002 30)7UCHT 00 <u>2</u> 005 30 1HCU1(3 1 = 1 = 2 3 1 = 1 = 2 3 1 = 1 = 2		RES 1	1080	
CC TO 21C JUEJ/FL NA-FOUR®CCEA A-FCUR®SINA *23456E10) GC TC 21C (1)*EC(3)+CO(2)*EC(1) (4)*EC(4)+2D(E)*EC(2)		RES 2530 RES 2540 RE9 2550 RES 2560 RES 2560	290 THCUT(00 20 300 THCUT(([)= ³ μ ² τ(])		RES 1		
JUE}/FL NA-FOUB*CCEA A-FOUB*SINA ,23456E10) GC TC 210 (1)*SC(3)+C0(2)*EC(1) (4)*EC(4)+DD(E)*EC(2)		RES 2540 RES 2550 RES 2560	CC 200 301 THCU1(3 1-1 4			309C	
NA-FOLBACCSA A-FOURASINA (1)#56(3)+60(2)#60(1) (4)#50(4)+00(2)#60(1)		RE9 2550 RE9 2560	301 THCU1(REG 7	1100	
-FCUE+SINA .23456€10) GC TC 210 (1)*5C(3)+C0(2)*EC(1) (4)*EC(4)+20(5)*EC(2)		RES 2560	JUL INCUIL	//		DECT	3110	
+-FLOEFSIN# +23456E10) GC TC 210 (1)*EC(3)+CO(2)#EC(1) (4)*EC(4)+2D(E)*EC(2)		RES 2560 DEC 2577		ALTER PROCEED		HL9 3		
+23455510) CC TC 210 (1)*50(3)+00(2)#20(1) (4)≫80(4)+00(5)#20(2)		060 2070	1 F F L I ((13)=TIME		RE9 .	150	
,23456510) CC TC 21C (1)*5C(3)+CO(2)#EC(1) (4)*5C(4)+2D(5)*EC(2)			ISAVE=	= }		RES 2	2130	
+23456510) CC TC 210 (1)*5C(3)+CO(2)*EC(1) (4)*6C(4)+3D(5)*EC(2)		PE9 2580	c			REST	314C	
.23456E10) GE TE 210 - (1)*5C(3)+CO(2)#EC(1) (4)*EC(4)+CD(2)#EC(2)		RE\$ 2500		NETCATCE FOR STIFTHERE CHARCE		OFC 7	1150	
+23455E10) 60 TC 210 - (1)≠5C(3)+C0(2)≠EC(1) (4)⇒EC(4)+∂D(5)¥EC(2)		DEC 2600	C 30, 18	SHAN SHE STATE STATEMENT COMPOSE			1100	
↓23455210) 60 (1) 216 - (1)#5C(3)+CO(2)#EC(1) (4}#5C(4)+3D(5)#EC(2)		ME9 2000	c			HES 3	190	
(1)#5C(3)+CO(2)#EC(1) (4}#EC(4)+3D(5)#EC(2)		329 2610	31C KST-C			PE9 3	1170	
(4}*EC(4)+2D(E)*EC(2)	-	RES SEZC	[= (KC)	COVX(1)+NE+KCCY(1)+ER+KCCVX(2)+NE+	*KCC4(2)) KS1=1	RES 3	3160	
		RE9 2630	C			PEC	190	
		RES 264C	Č 1000-63 6	E INFORMATION IN CONS		DECT	1200	
DEC		EEC DEEC	C UPCATE	L INCOMPANIEN IN CLUB		000	200	
· · · -		PC9 2050	C			HE5 3	1210	
		PE\$ 2660	00 720	C J=26,92		RE9 3	1220	
· ·		RES 2670	350 CCM2()	(L)MJ)=(CM(J)		PES 2	1230	
		PE9 2680	CONSIS	2)=CEN(2)		REST	2240	
I)) GE TE 220		BEC 26GD	c . etc	INTERNAL CONTRACTOR		DEO T	1250	
			(0.511)	1027-02-01127		1 CY J	1220	
		NEA 5100	CC#5(1/	104] TC(M(104)		RES 3	15.6 C	
		RES 2710	C			PE9 3	127C	
I)) CC TC 23C		RES 2720	RETURN	N		PE9 I	326C	
		FE9 2730	ACC BEINT	450		986	1260	
		869 S740	420 000000		CCD: INDESELET 6	050 1		
			450 FLMXAT	A TARET TOPOLORUCTING RESEA STATUS	CLOC IMPLISTELY 1	U	,	
		ME9 2750	CALL F	-X17 é		PES 3	1310	
		PE9 27€0	END			RE9 3	1350	
ICRY		PE\$ 2770	SLARCU'	UTINE (PESS (NS)		THS	10	
			c			T S G	20	
		RE9 2780	-			• •	L	
	•	RE9 2780 RE9 2790	C D 11 11 -	V PIETOTA ITEOLITATION THOUTINGS TA	LC. FRALE ALL TH ARTH ART ISS	1 6 0	20	
GC 10 200	•	RE9 2780 RE9 2790	COMMEN	N 27F1972 ITHOUT(10), IPOUT(20), 11F	FF,[SAXE,MFL1F,NST-,NF7,[S=	115	30	
ן ד ד)) GE TE 290)) GE TE 236)) CE TE 220)) CE TE 23C EFY	PES 2660 RES 2670 PES 2680 PES 2680 FES 2690 RES 2700 RES 2700 RES 2700 RES 2710 RES 2720 FES 2720 RES 2720	PES 2660 C0.72. REG 267C 320 CCHSL REG 2680 CCMSL REG 2690 CCVSL REG 2710 C 1) CC TC 23C REG 272C REG 2730 400 FFINT REG 2750 CALL I REG 2750 CALL I PEG 277C SUBRCT EFY PEG 2770 C	PES 2640 C0.720 J=26,62 RE9 2670 C0.8(J)=C0.4(J) PE9 2680 C0.8(J)=C0.4(J) PE9 2680 C0.8(J)=C0.4(J) PE9 2680 C0.8(J)=C0.4(J) PE9 2680 C0.8(J)=C0.4(J) PE9 2690 C0.8(J)=C0.4(J) PE9 2700 C0.8(J0.4)-C0.4(J0.4) PE9 2710 C PE9 2720 ACC.PEINT 450 RE9 2730 4CC.PEINT 450 RE9 2750 CALL +X11 PE9 2760 END EFY PE9 2760 END RE9 2780 C	PES 2660 C0.720 J=36,92 RE9 2670 320 CCMS(2)=CCM(1) PE9 2680 C0MS(2)=CCM(12) PE9 2690 CCMS(2)=CCM(12) PE9 2690 CCMS(10)=CCM(12) PE9 2700 CCMS(104)=CCM(104) PE9 2700 CALL +X11 PE9 2760 CALL +X11 PE9 2760 END PE9 2760 C PE9 2780 C	PES 260 00.720 1256,92 RE9 PES 267C 320 CPKS(J)=CCM(J) RE5)) CC TE 220 RE9 2680 CPKS(J)=CCM(IC) RE5)) CC TE 220 RE5 2680 CPKS(J)=CCM(IC) RE5)) CC TE 220 RE5 2700 CCKS(IO1)=CCM(IC) RE5)) CC TE 230 RE5 2710 C RE5)) CC TE 230 RE5 2720 C RE5)) CC TE 230 RE5 2720 C RE5)) CC TE 230 RE5 2720 C RE5 PES 2730 400, FEINT 450 PES PES RE5 2750 CALL FX1 * PES PES PES PES RE5 EFY PES 2760 END RE5 RE5 2760 TH5 EFY PES 2760 SURCUTINE (PES9 (NS) TH5	PES 260 00.720 J=26,92 RE9.3220 PES 267C 320.00%(J)=CCM(J) PES.3230 PE9 2680 C.MS(2)=CCM(2) RE9.220 PE9 2680 C.MS(2)=CCM(2) RE9.220 PE9 2680 C.MS(2)=CCM(2) RE9.220 PE9 2690 C.VS(10.2)=CCM(10.) RE9.220 PE9 2700 C.MS(10.4) RE9.220 PE9 2710 C PE9.220 PE9 2710 C PE9.220 PE9 2710 C PE9.220 PE9 2710 C PE9.2270 PE9 2720 C PE9.2270 PE9 2720 C PE9.2270 PE9 2720 ADD, FENT 450 PE9.2250 RE9 2730 ADD, FENT 450 PE9.2300 RE9 2750 CALL +X1 + PE9.2310 PE9 2760 END RE9.3220 EFY PES 277C SUBRCUTINE 14FE9.0NS) TH9.10

			·
		· · · · · · · · · · · · · · · · · · ·	
•			
VELM(4)=VELM(4) +C(4)=VELM(E) \E, N(6)=VELM(4) +C(4)=VELM(E)	FE9 2250	IF (KPP.E2.0.CF.KCUTDI.EG.O) CUTC 310	RES 2010
▼CCM\CCI-CCLM\CCI+CCL2+CCL2+CCLACCI IRC OVAX:=CO <at(ufin(a)+vfin(1)++≤ina±(vfin(5)+vfin(2))< td=""><td>REG 2220</td><td></td><td>PEC 2620</td></at(ufin(a)+vfin(1)++≤ina±(vfin(5)+vfin(2))<>	REG 2220		PEC 2620
F01=(SINA+(VELM(4)-VELM(1))+CC5a+(VELM(2)-VELM(5)))/FL	PES 2280	KKDG=(ABS(KDB)	RE9 2840
DVR(I) = VELM(3) + RCT	RES 2250	PRINT 250, KKPR, TIMS	RE9 2850
CVR(2)=VELM(6)+RCT	PES 2200	253 FORMAT(7771AM RESULTS FOR GROUP,13,	RES 2800 -
	RE5 2310	1 POH, BEAM ELEMENTS, TIME = , FE. J///CX.	RES 2970
PETA-C DAMPING	RE9 2320	2 SH ELEH, 4X, 4HNEDE, 3X, SHY IELE, 6X, 7HBENDING, 7X, SHSHEAR,	R29 2860
	RE9 2330	3 7X.GHAXIAL,10X.23HPLASTIC HINCE FCTATIONS/5X.	PE9 2890
1F (CFA(.EC.J.) CC TC 190	RES 2340	4 SH NO.,4X,4H NO.,3X,5H COSE,6X,7H MEMENT,7X,FHEDRCE,	RES 2900
FAC=0FAC*(1.+0SH)	RE9 2350	5 7X,5HFTRCE,PX,7HCURRENT,4X,4HACC+ PC5+;3X,9HATC+ NEC+/)	RES 2510
	FES 2360		FLS 2520
EMJEETEMJUET(EKIZADVA(I)TEKZZACVA(Z)JEFAC	N-5 2370	269 PEINT 270, IMEN, (NULLI), KUSY(I), ENTETLI), SETUTI), FILTEI), FILTEI), PHOL	18F5 2930
	R19 2380 REC 2360	L.PHACH(I),PHACN([]]]=[]2] One population of the score of the score for the state of the score score of the score of the score of the score	1050 2050
STRUCTURAL DAMPING LEAD	BEC 2400	2/0 PUHPAT (13,18,07,34,3712,22,37,3712,27,37,17,17,37,17,17,37,37,27,27,37,37,27)	RES 2560
	RES 2410	C SET TIME HISTERY IN ZTHISTZ	RE9 2970
190 IF (DELTA-EG-E-) CE TC 200	RES 2420		RE9 2980
SCM L=DELT A* ARS(PMTOT(1))*SIGN(L, ,CNR(1))	RES 2430	202 1F ([THP.LT.1.CF.KOUTCT.EG.0) 6E 1E 410	RES 2990
SCMJ=DELTA#ARS(EMTET(2))#SICK(1,,CVF(2))	PE9 2440	KKPR=[AFS(KPR)	PE9 3000
\$3F0=DELTA#A8\$((fT0T(1)+FTCT(2))/2+)~\$IGN(l+;CVAX)	PE9 2450	1 THCLT(1)=KKP5	PES 3010
EM108=EN108-SCMI+SCACT(1)	RES 24EC	11HPUT(2)=5	RE9 3020
6WJL8=6MJU9-5CMJ+20051(5)	RES 2470	ITHCUT(3)-INEM	RE9 2020
FUMPEFEUE-SEFEFSEACT(2)	FES 2480	· ITHOUT(4)=KCOV(1)	RES 3C4C
z DACI (1) = z CM L	RES 2490	11HOUT(5)=KCOY(2)	PE9 3050
	REG 2500		RE9 3000
	REG 2520		RE9 3070
201 IF (KEAL.ED.0) CC TO 210	RES 2530	00 7490 1-140 200 1400/11/11-00/01/11	PE9 1000
SFUB=(EMIU0+EMIUE)/FL	RES 2540		8FS 3100
CO(1)=-SFUB*SINA-FOLB*CC5A	FE9 2550	305 THCL1(1+0)-PPACP(I)	RES 3110
CC(2)=SFU@*CCSA-FCU@*SINA	RES 2560	1+FL1(13)=T1MF	RE9 3120
00(3)=EMIUR	RES 2570	ISAVE=1 .	RE9 2130
CC(4)=-CC(1)	PE9 2580	c	RES 3140
CC(5)=+DC(2)	RES 2590	C SET INDICATOR FOR STIFFNESS CHANGE	RE9 3150
59153-200308 15 (554)) 50 1 23055510) 60 70 210	RE9 2600	C	RES 2180
P (t(()), e(, 1, 2345610) (t) (t) (210	RES 2610	31C KST-C	PE9 3170
	REG 2620	LE (KCCYX(1)+NE.KCCY(1),ER.KCCYX(2)+NE.KCCY(2)) KS1=1	RES JLEC
00101-30107 001477021477091017EC187	REY 2070 DEC 3666	C UNCARE INFORMATION IN COMP.	MES 3190 REC 7200
EXTRACT ENVELOPES	REG 2650	C OPENIC INTERVALLEN IN CLAS 2	HE9 3200
	RES 2660	C	RE9 3220
210 DC 230 (=1,8 ·	RE9 2670		RES 3230
S= 2MTCT (I)	PE9 2680	CONS(2)=CEN(2)	RES 3240
IF (S.LE.SENT(1)) GC TE 220	RES 2690	CCV5(102)=CCM(103)	FE9 3250
SENP(1)=5	FE9 2700	CCM5(104)=C(M(104)	RE9 3260
TENP(I)=TIME	RES 2710	C	PE9 3270
220 1F (S.GE.SENN(1)) CC TC 230	RES 2720	FETURN	PEG 328C
SENN(I)=S	FE9 2730	400, FFINT 450	NE2 3520
1 E N N 1 J - 1 I M E	RE9 2740	450 FCPMAT (44FI*AASUFRCUTINE RESPS STATU? CODI IMPOSSIFUE -)	PES 3300
226 CONTINUE	HE9 2750	CALL FXI' ¿	PE9 3310
PRINT TIME, HISTORY	PE9 2760 DEC 3777	END .	HE9 3320 .
s of a second	AFO 2780	SURACUTINE (ME49 (NS)	
I SAVE=C	REC 2750	- 5 	1-4 20
IF (KPR.LT.0) GC TO 240	RE9 2800	C. C	TH5 40
		-	

-281-

c	·····································	9 50
è	нт 	E
~	CLEAD MICLORNE LIGHENT PEOPCANIZED FUTDIT SUBPLIENC T	2 70
2		15 B.0
2		-c 90
C		,
c		9 100
c	PEVILED FILEMENT S JUNE 1976	9 110
c	1	9 120
C	······································	9 120
с	PECRGANIZED TIME FISTERY CUTEUT, EEAN LIFNENTS	9 140
C	TH TH	9 150
	TH (NS.CT.1) (SC TC 20 TH	S 160
с	TH TH	9 170
•	PPINT 10, ITHCU1(1),ITHCUT(3) TH	is 180
	LC FCPMAT(18H1855LL19 FCQ (RCL9,13, 7)	9 150
	1 28H, DEAM FLEWENTS, FLEMENT NC., IA///EX, TH	S 200
	2 SH TIME.4X,4MNCDE.3X,SHYIELC,CX,7HEENCING,7X,SHSHEAF, TH	9 210
	7X.SHAVIAL.17X.2 HPLASTIC HINCE RETATION\$25X, TH	9 220
	4 5H .AX.4H NE 3X.5H COCF.6X.7H MEMENT.7X.5HFCRCE, TH	9 230
	5 7X.SHECRCH.HX.7HCLARENT.AX.SHACC. PCS3X.9HECC. NEG./) TH	\$ 240
		9 250
ι.	CO POINT TO THE MARK THEN IS A THEN TO A CHECKTER A THE ALL PLAN A THEN THE	9 260
		9 270
	$\frac{1}{1} \frac{1}{1} \frac{1}$	
	- 39 FLXMAL (IMU, 18-3, 17, 17, 28, 37 12, 24, 37, 37 12, 27, 58, 16, 17, 28, 31, 12, 24, 31, 31, 32, 34, 31, 34, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35	c 200
	1612.5)	5 250
	11 (15E+EC+0) GE 1E 4C	5 <u>300</u>
	4^{1} TE (NF7) THOUT(13), ITHOUT(6), ITHOUT(4), (THOUT(1), I=1, (1, 2), ITHOT	.5 210
	1UT(7),[THOUT(E),(THOUT(J),1=2,12,2)	9 320
	40 CENTINUE	9 230
с	r⊢ t⊦	9 340
	FETURN TH	9 350
	LNC TH	9 360
	SUDPOUTINE STIES (NSTEP, NOCE, NINEC, CONS, EK, CEAC) ST	9 10
c	医马卡尔尔斯 化化合物 化化合物 化化合物 化化合物 化化合物 化化合物 化化合物 化化合	ç 2C
c	51	9 30
c	SHEAR YIELDING FLEWENT STIFFNESS MEDIFICATION FOUTINE ST	S 40
c	51	ς <u>€</u> C
ċ		G 60
Ē	ST ST	\$ 70
č		S 80
~		\$ 90
, c	 	5 100
-		0 110
ſ	STATISTICS A THEM ACT INTER ACTIVE TO STATE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	c 120
		0 130
	$1 \qquad \qquad$	9 1.30
	2 KERY(2), PMICT(2), SFILT(2), FFL(2), FFL(2), SERPER, ST	9 140
	3 SENN(A), TENP(A), TENN(A), FEACE(21, PACK(21, PMEP(21, 5)	5 120
	4 \$9ACT(3),9MY(2,2),NCOI,NCOJ,KGUTDT,FFL2,FK2L, 51	9 160
	5 SKIL, SK22, SK12, SK114, SK22+, REST(SE) 51	4 17C
	COMMEN /WEPK/ ST(2,2),STT(2,2),ATK16,2),AA(2,6),PFU,AXK,FAC, ST	9 180
	1 FFK(6,5).4(1929) ST	5 190
۲	ST	\$ 200
	DIMPASION CON(1),CONS(1),FK(6,6) ST	9 210
	ECUIVALENCE(INEN,CON(1)) . ST	\$ 22C
С	ST	9 23C
c	STIFFNESS FORMULATION, EFAN FLEMENIS ST	5 240

-

	· · · · · · · · · · · · · · · · · · ·	519	250
		214	200
10	CEM(J)-CEMS(J)	519	270
	20 15 1=56,102	515	280
15	COM(1)=CCMS(1)	515	290
		516	300
	CUFRENT FLEXUPAL STIFFNESS, ELASTL-PLASTIC PART	519	310
		519	320
	CALL FSTED (STAKGDY)	519	330
:		515	340
	PREVIOUS STIFFNESS	519	350
		519	360
	IF (METEP.LT.2) GC TC 30	STS	370
	CALL FSTF9 (STT,KCOVX)	519	380
		545	390
	STIFFNESS DIFFERENCE	ST9	400
		519	410
	· · · · · · · · · · · · · · · · · · ·	51,9	420
50	ST([,1]=ST(1,1)-STT([,1]	519	430
	CALL NULTST (A,ST,ATK,FK,6,2)	519	440
	RETURN	519	450
		519	460
	CPISINAL STIFFNESS AT STEF ZERC, EETA-C COREN AT STEP L	579	47C
		519	480
30	F AC = 1 .	. 515	450
	IF (NSTEP.FQ.1) FAC=DFAC	515	500
	[[={ .+45 -}*FAC	519	510
	00 40 1-1.4	519	520
4 C	ST(1,1)=ST(1,1)4CC	STS	530
	CALL VULTST (A,ST,ATK,FK,6,2)	515	540
	16 (FAC.FG.0.) 6C TC 7C	519	550
	EAL = FAL + FAC	579	560
		STS	57C
	f(1,1) = F((1,1) + AXK	579	580
	FK(1.4)=FK(1.4)-AXK	515	590
	FK(4,4)=FK(4,4)+AXK	515	600
	AXK=EAL +SINA++?	519	610
	FK(2,2)=FK(2,2)+AXK	515	eac
	EK(2,5)=EK(2,5)-AXK	519	630
	FK(5,5)=FK(5,5)+AXK	515	640
	AXK=FAL*SINA*CCSA	519	550
	FK(1,2) = FK(1,2) + AKK	519	660
	+K(1.5)=FK(1.3)-AXK	STS	67C
	FK(2.4)-FK(2.4)-AXK	579	680
	FK(4.5)=+K(4.4)+#XK	515	F 90
	IE (EC(1).E0.1.23456E1C) GC 1C 50	515	700
	FC3=[754#FC[3]-5[NA#FC(1]	519	710
	$F(a - SINA \pm F(12) - F(S) \pm F(12)$	STS	720
		510	730
		514	740
	ERII J- ERII - ENER	570	750
	ERT 394/-ERTS/9/THAN	510	760
	PRK-5104401 77144	575	770
	+ K (2 + 1) = F K (2 + 2) = 9, K = 2, 2 = 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5,	519	780
	FK[3,5]=FK[3,5]=AXK	519	760
	FR(3,3)=FR(1,2)+EAL=103=72	215	150
	A YK HE P NA 7 HE A THAT A L	319	avu

x

,

-282-

FK(1,6)=FK(1,6)-AXK 519 810 c \$19 FK[4,E)=FK(4,E)+A>K 620 AXK=SINA+EC4+EAL 519 830 FK(2,6)=FK(2,6)-AXK \$19 84G FK(5,6)=FK(E, 6)+AXK \$19 850 FK(3.6)=FK(3.6)+EC3#F54#EAL 515 860 C FK(6,6)=FK(6,6)+EC4+2+EAL STR 870 ¢ EAL=FAL/FAC 519 880 c 50 DC 6C I=1,6 515 896 с CC 60 J=1,6 515 900 60 FK(J.1)=FK([.J) 519 510 \$19 920 ACD CECMETRIC STIFFNESS 519 930 STS 940 70 IF (MSTEP.E0.0.CP.KGECM.FO.C) GC 1C 12C 519 950 PFL= (CCMS(45) - CCMS(44))/(2.4FL) 519 560 DC 8C J=1,4 ST9 97C 80 ST(1,1)=PFL 514 580 DC 90 1=1,12 STS SPC 90 AA([,1]=0. 519 1000 AA(L.))=-SINA 515 1010 AA(1.2)=COSA ST9 1020 AA(2,4)=SINA \$19 1030 AA(2,5)=-CCSA ST9 1040 I# (EC(1).EQ.1.23466E10) GC TC 13C \$19 1050 AA(1,3)=SINA*EC(3)+CC5A*EC(1) STS 1060 AA(2, f) =- SINA#FC(4)-COSA#EC(2) S19 107C ST9 1080 100 CALL MULTET (AA,ST,ATK,FFK,6,2) STS 1090 ¢ CC 110 1=1.36 519 1100 110 FK(I,1)=FK(I,1)+FFK(I,1) 519 1110 515 1120 120 FETUEN 519 1130 ST5 114C END 519 1150 SUBROUTINE INELS (KCONT, FCONT, NODE, NINEC, 10, X, Y, NN) 1 N S 10 1N9 20 30 ĮNĢ 4 C SFEAR VIELDING ELEMENT -- INPUT SCERDUTINE 1.59 50 ING бC CHARLES ROEDER IN9 70 INS 80 с REVISED FROM ELEMENT 5 -- JUNE 1976 1 N S 5 C ۲, 159 100 0 110 COMMON /INFEL/ IMEM, KST, LMIG), KGECN, FL, CCSA, SINA, A (2,6), EK11, 1N9 120 ÍN9 130 EK22, EK12, PSH, EAL, EK111, EK22H, EC(4), KCDYX(2), KCDY(2), ENTCT(2), SFTCT(2), FTCT(2), PFTCT(2), SENP(8), ING 14C SENN(8), TENP(9), TENN(8), PRACP(2), PRACN(2), EMEP(2), IN9 150 - 1 SCACT(3), ENV(2,2), NED1, NODJ, KOUTOT, FE 12, PR21, INS 160 4 5 SK11, SK22, SK12, SK11H, SK22F, VP(?), FEST(96) 1N9 170 COMMCN /WORK/ SFF(3), SSFF(8), DO(6), GA(6,6), FFEF(6), FF(6), KSF(2), 1N9 100 FTYP(60,10),FEF(50,7),K2FEF(50),FINIT(45,6),ECC(35,4)INS ISC 1 , SMMY(7C, 3), W(3CE) 2 119 200 COMMENTIFIST/ ITFOUT (10), THOUT (20), ITHP. ISAVE, NELTH, NETH, NET, ISE INS 210

С

c

c

c

C

¢

С

С

с

с

C

•

C

c

c

283-

	119 . 220
CIMENSION KCONT(1),IC(NN,L),X(1),Y(1),COM(1),AST(2),YESNC(2)	1NS 230
FOUIVALENCE 1 INEN, CEMIII	IN9 240
CATA AST/2H ,2H #/	IN9 250
DATA YESNUZAH YESJAH NC Z	1N9 26C
	119 270
· · · · · · · · · · · · · · · · · · ·	IN5 28C
SATA INPUT. REAM COLUMN ELEMENTS	IN9 200
	1 1 4 300
NDCF = 6	1.49 210
N 105 C = 104	159 320
	1NC 310
	1 10 300
	1 NS 750
	105 360
	110 170
	INC 380
	105 300
	184 390
$FHIN = \{V, V \in C(N C(N C)) \mid C = C(C)\}$	155 400
IC FORMATCHER PEAN FLEMENTS CITES STATA	INS ALC
L 34F NO. OF ELEMENTS = 147	1 N9 420
2 34F NC . LF STIFFNESS TYPES =147	1N5 435
3 34H NO. OF FCCENTRICITY TYPES = 14/	IN9 440
4 34F NC, OF VIELD MOMENT TYPES =14/	IN9 45C
5 34H NC. OF FIXED FND FURCE FATTEENS = 142	INS AFC
6 34H Nº, OF INITIAL FORCE PATTERNS =141	IN9 470
	ING 480
INPUT STIFFNESS FROPERTIES	IN9 490
	INS ÉCC
PRINT 20	INS EIC
20 FERMAT (////ICH STIFFNESS TYPES//	IN9 520
I SH TYPE,3X,7F YEUNCS,3X,9FFAPEENINC,6X,7F EEAM ,3X,8F FLA	NCE ING 520
2 · ,1H ,3X,9H FLANGE ,8X,3HNEB,4X,26FFLEXURAL STIFFNESS FACT	CR5.1NS 540
3 5X,7HPE195CN/	1N9 550
4 SH NC.,3X,7HNCCULUS,3X,9H RATIC ,4X,7H CEPTH ,3X,8HTHIC	KNESING 560.
5 LES, 3X, 9H WICTE , EX, 9HTEICKNESS, 1X, 72E 11 JJ	IN9, 570
6 ,4F1J ,5X,7F FATTC /)	ING SEC
CO 30 N=1,NMBT	IN9 590
READ 40, I,(114E(N,J),J=1,10)	189 666
30 F91N1 50, N.(FTYF{N,J),J=(, C)	IN9 610
43 FERVAT ([\$;6Fl0+C;2F5+C;7F10+0)	119 620
57 FC9MAT (14,E11.4,E12.4,4F12.3,1X,2F10.3,F11.2)	INS 63C
	IN9 640
INFUT ENCLOCENTRICATIES	1N9 650
	INS FEC
[F (NECC.E).0] 60 TO 100	119 670
FFINT EQ	INS EEC
60 FORMAT(////23H FND ECCENTRICITY TYPES//	INS 690
1 SH TYPE,6X,2EFFCRIZENTAL ECCENTRICITIES,54,	1N9 700
2 25H VERTICAL FORENTRICITLES /	IN9 710
3 5F NC., 48, 25M END 1 FND J ,58,	119 720
4 25H END L END J	1NG 770
EE 76 N=1,NTCC	IN9 740
9640 90, 1,(E(C(N,J),J=1,4)	119 750
7C PRINT 90, N.(ECC(N,J),J=1,4)	IN9 760
80 FCSWAT (15,4F18.C)	119 770

			•	
,				
	, ,			
	90 FC9YAT (14,2(F15.2,F14.2,1X))	IN9 780	8 175 NC. SCALE FAC./) 1N9 1340	
ç	ALCIA HENCAY TYPEA	ING 790		
c c	VIELU WEVENT TTERN	185 810	[1, 100] 26C C0MJ)=0. [NS 1370	
•	100 FRINT 110	INS 820	KCCYX(1)≈0 IN9 [380	
	110 FERMAT(////10H YIFLO WEWENT TYPES//	IN9 830	KCC7X(2)=0 INS 1390	
	I SHITYAR,5X,8HODSITIVE,5X,8HNEGATIVE,7X,5HSHEAR/	INS 840		
	DC 140 N=1.NSUPF	119 860	KS1=C INS 142C	
	FEAD 120, 1, ENNY(N, 1), ENNY(N, 2), ENNY(N, 3)	INS 870	C 189 1430	
	PRINT 13C, N, 94MY(N, 1), 94MY(N, 2), EANY(N, 3)	1N9 880	IMEM=1 ING 144C	
	120 FCFMAT (15,5%,2°10,0,40%,F10.0) 130 FCFMAT (15,5%,2°10,0,40%,F10.0)	189 890 185 800	275 READ 280, INCL, INCD, INCD, IIAC, IIAC	
	140 ENMY(N, 2)=-APS(BHNY(N, 2))	EN9 910	286 FCRWAT (1215, 285-6, 15, 85-0) ING 1470	
c	``	1NS 520	C ING 1480	
ç	FIXED END FRACE PATTERNS	189 920	IF (INFL.GT.]#E#) GC TC 32C INS 1490	
C	IF (NEFF.EC.0) GC TC 190	1NG 950		
	PRINT 150	119 960	INC= 11NC 1N9 1520	
	100 FERMAT(////254 FIXED END FERCE PATTERNS//	1:15 970	1F (INC+EG+0) INC=1 LN9 L530	
	1 BH PATTERN, 3X, 4HAXIS, 7X, 5HAXIAL, 7X, 5HSHEAR, EX, 6HMCMENT,	ING 980	[MP1-1][MB] INV 1540	
	3 BH NEL 33X.4HCCCC5.7X.5HAT 1.7X.5HAT 1.6X.6H AT 1.	INS 1000		
	4 7X, SHAT J, 7X, SHAT J, EX, FH AT J , SX, CH FACILE /)	IN9 1010	KSFJ= [KSFJ IN9 1570	
	DC 169 N=1,NFFF	INS 1020	KGECH=IKCM ING IEBO	
	READ 17C, L_KOMEF(N),(FEF(N,J),J=1,7)	199 1030	* KCLTST=1KDT INS 1550	•
	17C FCRWAT (215,7F10.0)	1N5 1050	IF (KGEWANE.0) YNG-YESNE(1) INS 1610	
	180 FORMAT (15,10,F12.2,SF12.7,F12.3)	109 1060	ING 1620	
ç		INS 1070	IF (KCUTCT.NE.D) YNTYYFSNC(1) ING 1630	
ſ	INTIAL FUNCE SATIENCE	189 1080		
	190 IF (NINT.EC.0) GE TE 240	INS LICC		
	FAINT 200	189 1110	FLLM=FFLL IN9 1670	
	200 FORMAT(////284 INITIAL END FORCE PATTERNS //	ING 1120		
•	7X.5FSFEAQ.6X.EPPEMENT/	ING 1140		
	3 8H NE. ,7X,5HAT 1,7X,5HAT 1,6X,6H AT 1,7X,5HAT J,	INS LIEC	17 (FLLF.EC.O.) FLLF=1.E-6 INS 1710	
	4 7X, SHAT J, EX, EH AT J /J	JNS 1160	JOG INIT= LINIT ING 1720	
	GE 210 N=1+NENT DIAD 220. L.(DINIT(N, 1), 1=1.6)	189 1170 .		
	210 COINT 230, N. (FINIT(N.J), J=1.6)	INS 1190	1F (INEL,NF.NMEM) 276,320 TN9 1750	
	220 FORMAT (15,6F10.0)	INS 1900	C INS 1760	
	230 F(FM#T (15,3X,6F12.2)	189 1210	310 NO1=NO01+INC IN9 1770	
c r	FIEMENT SPECIFICATION	ING 1220		
ċ		IN9 124C		
	24C PRINT 250	1NS 1250	120 FRINT 330, ASTT, IMEM, NCCI, NCCJ, INC, IMET, IECC, KSFL, KSFJ, YNG, YNT, KFDINS 1810	
	250 FC94#T(////22E ELEMENT SPECIFICATION// 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1N9 1260	11, KFLL, FOL, FLLM, INIT, FTNT 	
	2 ,28,14FYIELD MCMENTS,FX,4FCECM,28,4FT1ME,37,	119 1260	C INITIALIZE SHEAP STIFFNESS FREPERTIES IN9 1840	
	3 12FFEF PATTERNS, 3X, 17FFEF SCALE FACTCPS, 3X,	JN9 1250	5K11=0+0 IN9 1850	
	A LEH INITIAL FERCES /	INS 1300		
•	5 3X, 4F NU, 13X, 4F 1 42X, 4F 3 127, 4FUTF12X, 4FTF6, 2X, 4FT 6 ,2X, 14F ENC I ENC J ,2X, 4FST1F, 2X, 4FF1ST, 3X,	ING 1320		
	7 12H DL LL ,37,17H DL LL ,3X,	IN9 1330	5K/201=0.0 INS 1850	
	· ·			

• •

•

VE(1)=999999.0	147 1500			0 2440
	105 1966			Ký 2400
	INC ISIC			NS 2476
C	IN9 1920	370	EKII=EIL*FACL II	NG 2480
C . CCUNT.NUMBER OF ELEMENT TIME FISTOFIES	IN9 1930		EK22=E1L#FACP	NS 2490
c	1 69 1940		EK12=ELL#FACLE 1/	NG 2=CC
15 (KC)1727.K9.4) K5176-K5176.X			Set 16-Set 1-Set 100002/Set 20	AC 2510
	100 1050			Nº 2010
t a construction of the second s	INS 1960		EK#2F=EK22-EK12@#2/EK11	N9 2520
C LECATION MATRIX	1N9 1970		TF {{?+LF+C+QCCC()+QR+C {[1%*3]} +LE+C+Q)} GC TC 377 '	N9 2530
C · · · ·	INC 1980	r	CEVELOPE SHEAD VIELD STIFFNESS TERMS ASSUME NO CONSECTIONAL	NG 2540
FO 342 JEL 3 /			LICTICAL AT END FOR CLARTELA PARAMETER PROTOCOLITANE AND AND A	
	1149 1990	, c	RAN-ING AT TRUS PEPCHNIERA, SANDAICH CONSTOUCTION, MILEY I	NG 2000
LM(I)=IS(NCDI,I)	ING 20CC	τ.	1966	N9 2560
340 LM(1+3)=10(NCDJ+1)	INS 2010		S=T%*(C4#2)*Y*CC*FTYP(INET,2)/((C+TF)*2.0) []	N9 2570
CALL EANC	159 2020		SE = 8 # 1 E * YMC02 (2 + C * C + E 1 * 2 (1 M A + 1 0)) 1	0 7580
r	100 6020			2500
	1119 2636		FF=0-THLL+(1F=+3)/[2-0]	N9 2990
C FLEMENT PHOPERTIES	119 2040		P=9*YNCO*TF*(C**?)/2.0	NS 2600
C · · ·	ING 2050		ALPMA=50RT(\$*\$F/(PF*(\$+8+0\$F))]	N9 2610
XL=X(NCDJ)-X(NCC1)	ING SCAC	c	STIVE FOR STIFFNESS COFFETCIENTS	NG 2620
YI = Y (N C) - Y (N C C))		-		
	106 5010		EPAL=EXPLATEMATEL 1	NY 2630
IF TIECC.EG.0J GC IC 360	INS 20ec		WS1L={?,0*{1.2-FPAL}**2}/{ALPHA*S*{1.3-EPAL**2}}+FL/S	N9 2640
CO 350 1=1,4	109 2090		WS2L=-ALFHAPPF92.0#((L,)-EFAL)*92)/(S#SF#(1EPAL942)) []	NG 2650
350 EC(1) = EC(1)EC()	INC 3100		WC2DM-(A) QEA4+21+2C/(CC4C4E)	10 3660
	TNA 5110		FACE-FIFE(ING) / /	NY SCIC
1_=YL-EC(3)+E(14)	1N9 2120		FACR=FTYP(IM4T,5) II	N9 2680
360 FL=5CFT(XL**2+YL**2)	INS 2130		FACLF=FTYP(IMET.5) [1]	NS 2690
COSA-XL/FL	169 2140	· · ·	15 (5aCl + 5C + 0.40) = 5aCl + 1.5 = 6	NS 2700
	1149 2140			
	102 5150		1" UFALMADUAUA FALVEIAFED 1	NY 2710
YMCD=FTYP(IMRT,1)	INC SIEC		CEY=FACL*FACF-FACLF##2 11	NS 2720
PSH-FTYP(IMET,2)	INS 2170		F22=FACL*FF5H210E1*SIL1 1	N9 2730
656H=166H	INC 2100			6 3740
	105 2160			N9 2740
	IN2 5100		+ 11=(+ALL*PPS+)/(CET*EIL)-WS2PM+(WS1L+WS2L)/(FL*FL) []	NS 2750
C=FTYF(IMFT,3)-FTYP(IMET,4)	INS 2200		FJJ=(FACR+003H)/(DFT+E1L)-%S2PM+(%S1L+%S2L}/(FL+FL) 11	N9 2760
TF=FTYP(IN9T+4)	INS 2210		F[J=={FA(){\$*P(SE)/{(CETAF1)}=\$\$2PM+{\$*S1+\$*S2}}/{\$E1+\$}	NG 277C
F=FTYP(1WFT,S)	140 2220			
	109 2220			N9 2780
	INS 2230		SK11=F11/CET-(PAEK11)/PPSH 11	NS 2790
E1L=(YMCD#PPSH/FL)*((B*((D-TF)**3)/12.)+(E*TF#D##2/2.)+(E#TF##3/	[N9 2240		SK3S=EJJ/0ET-(F#EK22)/FESE 11	NS 280C.
1 6+11	ING 2250		5K12=-E1J/D5T-(0\$EK12)/E25H	0 2810
		r	The Third States of Control of Millings II Call to Calero opening in	
	INS ZZEC	<u> </u>	RULE THE REENTES FURKE FAS TICLEEL IT CAN BUILDREEM PHEVIDE 11	NG 2820
H BL TYNCUVANEB/FL	ING 2270	с	WFFPING RESISTANCE 1	N9 2830
[FACL=F1YP(INBT,7)	INS 2280	c	HINGE AT RICHT END II	N9 2840
FACR=FTYP(1MB1.6)	ING 2200		NC71 = ([) , / (SKE)) i + (] , / (6) (D + 63(S#F))))	NC 3857
FARLE-FIVEFINET CA				
	114 2200		B 22L - 11/1 ALPH # * FL*1 372,* 2FJ 1	VA 5600
TE (PACLIED.O.) FACLEL.E-6	INS 2210		WS10FM=0_0	NS 2870
IF (FACB.EG.O.) FACP=1.E-6	IN9 2320		WS110M=(1,0/(**FL))+((2,0*5PAL)/(1,0-5PAL##2))]	N9 2880
IF ((!\\+C))+FC+0+0) (() 1C 370	ING 2330		₩521 EM=(2, #FD A) 1/(F) ±(5+5, #SF)#(1, #FD A) ##5)	10 98CA
SEEAC-ETH // CTYOF INDI IN // 2 CTY ACTYOF THET STANATHEORE ACTORS	140 2340			
	102 5340		1 2 2 0 2 M = (1 , + 1; M = (M = 2) / (- L = (S + 2 + M S + 2 + (1 + - 1 + A L = 42)) []	NS 2500
· UCIEFALLAFALLAF#2	INS 2350		GFT=FACL#FAC9-FACLP##2	N9 2910
FIL=FACP/CET+SHFAC	INS 2360		F!!=(#ACE##FF5F)/{CFT#E1L}-WS}30PM-W\$20PM+(WS!L+WS2L}/(FL#FL}]/	NS 2920
FJJ=FACL/DET+SHFAC	IN9 2370		1 1 J=- (FACL R# 955)) 2 (FFT#F1) 1- 8510PM-8520PM+(851) +8521 32 (F) AF4 5	16 2030
E = 1	THE STAC			
				N9 2940
S GIATUREDE MITE DECAM TIELD	UNG 2390		1 JI=+FAULR=PPSPZIEFT*E1L1=WS1LP#=WS2LPM+(WS1L+WS2L}//FL#FL1]	NS 255C
₽ #F1YP(1YET,2)	INS 2400		CETTEJJ-FTIGEJI	N9 2960
IF ((0.LE.0.000Cl).CF.(FTYP(INET,E).LE.0.01) ([15 375	INS 2410		S11=FJJ/CST-EK114F/FP5F 11	NC 2570
C (LF=F1L/FP5H	1 19 2420		*225F117DF1-Ex22+D705H	0.000
				49 2920
	115 2920		512=-F1475F1-EK12#07795F 11	NG 2990
	IN9 2940		SVI=FJJZCFT-EKIZAFZFFSF	NS 2000
FACP=FI1/DET	ING 2450		SK22F=522-S12tS21/S11 1/	1010
			· · · · · · · · · · · · · · · · · · ·	
			1	
			· -	

. . .

•			•	
	C HINGE AT END 1 (LEFT END)	INS 3020	C	185 3560
	WSIDFM-WSILOW	1030	DC 400 1=1.6	105 2550
	WS1LFM=0.0	IN9 2040	SFF(1)=0-	165 3600
	FII=NS2LPM	LN9 3050 ·	ACC SSFF111=C.	109 3610
	N 52L PM=W\$200 N	IN9 3060	IF (KFDL+KFLL+FC+C) GO TC 53C	114 3620
	· NSCOON=FII	1N7 2070	CC, 410 [=],6	185 3636
	. ŊFT=FACL♦F/CR-FACLP♦≠2	050E 241	DC 410 J=1.6	ING 3646
	F1}=(FACG*PPSF)/{CET*F1L}-WS10PN-WS20FN+(WS1L+WS2L}/(FL*FL)	INS 3090	410 GA(1,J)=C.	119 3650
	FIJ=-(FACL03209+)/(95T#FIL)-%\$10PM-%\$20PM+(%\$1L+#\$2L)/(FL@FL)	INS 3100	GA(1,L)=CCSA	1N9 366C
	FJJ=(FACL*PPSF)/(DET*ETL)-WS1LPM-WS2LPM+(WS1L+WS2L)/(FL*FL)	119 3110	(A(1,2)=SINA	159 3670
	FJI=-FACLR+075K/(CET#5IL}-WS}LPH-WSZLFH+(WS}L+WSZL)/(FL#FL)	1N9 3120	CA(2+1)=~SINA	189 3680
	85T=F[[#F]]-F[]#F][IN9 3130	GA(2.2)=CCSA	INS 3650
	511=FJJZCFT-FK11#FZ2PSH	INS 2140	$C \land [\cdot , \cdot] = 1 $.	INS 3700
	525=FIT/3FT=FK2568/PD <h< td=""><td>IN9 3150</td><td>GA(4,4)=CC5A</td><td>IN9 371C</td></h<>	IN9 3150	GA(4,4)=CC5A	IN9 371C
	512-3611//FFT-EK1276/2005F	119 3160	CA(4.5)=51NA	IN9 3720
		ING 2120	GALS-ALE-SINA	INS 3730
		160 3180	GALGEST CCA	1N9 374C
		107 3160		119 3750
	372 FERMAT (1+6,5270.16,7,1+0,5220.10)	100 3300		1N9 376C
	377 CENTINE	IN9 3200		189 3770
		114 3210	Fr (KrGL=EG+0) GL FL 450	ING 1760
	0651=cK157EK11	INS 3550		INC 3700
	C C	1N9 3230	426 FAE(1)=FEF(KFDL,1)=FDL	TNC 3000
	C YIELC MEMENTS	INS 324C	IF (KEFEF(KFEL].EG.C) CE TE 426	119 3000
	c	INS 3250	CALL MULT (GA,FFEF,SFF,6,6,1)"	
	Evy(1+1)EWMY(k2F1+5)4662H	188. 3590	CO TC 450	144 3820
1	8MY()+2)=-8MYY(K9FI+1)*FF5H	IN9 3270	430 CC 440 [=],6	169 3830
N	BMY(2,1)=934Y(KSFJ,1)\$7P\$H	149 3280	440 SFF(1)_FFSF(1)	ING BEAL
œ	₽₩¥(2,2)=EMM¥(KSEJ,2)=PESH	INS 3250	c	189 3850
, o	VP(1)=AHS(DVMY(KSF1,3))0PPSH .	IN9 3300	450 1F (FFLL.EC.D) GC TC 490	1NS 3860
1	IF (AFS(CMMY(KSFJ,3))_LT.VP(1)) VP(1)-AES(CMMY(KSFJ,3))*PPSH	INS 3310	CC 460 I=Lyf	119 3870
	VP(2)=-VP(1)	INS 3320	FLLF#FLLF#FLLW	1N9 388C
	C ,	119 3330	IF (J+EC+3+CP+I+EC+A) FLL=FLLM	INS 3890
	C DISPLACEMENT TRANSFERMATICN	INS 3340	460 FFEF(1)=FEF(KFLL,T)*FLL	LV8 3800
		IN9 3350	IF (KCFEF(KFLL).EC.0) GC TE 470	IN2 391C
	A(1,1) = -5 [NA/f].	INS 3360	CALL MULT (GA,FFFF,SSFF,6,6,1)	119 3920
		INS 3370	CL TE 490	INS 393C .>
		159 3380	67C CC 49D I=1.f	1N5 254C
		INS 3356	4H0 SSEE(1)=EEEE(1)	IN9 3950
		ING 3400		1N9 396C
		1NG 3410		119 3970
		ING 3420	500 FF(1)-SFF(1)+SSFF(1)	1N9 3980
	$\mathbf{A}_{1} < \mathbf{y}_{1} = \mathbf{A}_{1} + \mathbf{A}_{2}$	109 3420		INS 3990
	ATG-27-24 AFC	186 3440	сань-мылтт (са. FF, rC, F, F, L)	IN9 4000
	Alcy JEV N	(NY 3446 [NO 3662		ING 4C1C
	A(2, d) = A(1, 4)	109 3430		189 4020
	A(2,5) = A(1,5)	1140 3400		ING AD30
	$A(2, \epsilon) = 1$	INS JAZU	50(n)=05(E)-30(4)*C((4)*C(C)*C(*)*	INC ADAC
	[F (1FCC.FG.0) 6C TO 380	IN9 3480	510 CALL SFLACE (EN)	100 4050
	, A[2,2] = (STNA*EC(3)+CCSA*EC(1))/FL	[N9 3450	(180 4050
	A(1,2) = 1 + A(2,2)	[N9 3500	C NEDIFY TO GET INITIAL FLEMENT PERCES	149 4020
	♪(l,+6)=(-51N♪*EC(4)-CC5♪*EC(2))/EL	1NS 3510	ί .	169 4070
	A(?+E)=1++A(L+E)	ING 3520	CC 520 [=1,6	ING 4080
	CC TC 350 ·	119 3530	FLL=1./FLL=	1N5 405C
	300 EC(1)=1.+2.4456F10	1N9 3540	tr (1,60,3,00,1,60,6) FLL=1.	ING 4100
	390 CONTINUE	IN9 3550	520 SFF(1)=9FF(T)+SFFF(1)4FLL	IN5 4110
	c	IN9 3560	C .	[N9 4120
	C LEADS DUE TO FIXED END FIRCES	ING 3570	C INITIAL FERCES	[NS 4130

.

	(119	4140	c	
	530 CC 540 I=t,6	INS	4150		COMMEN ZINF
		ING	4160		· ·
		INA	4170		· ·
	DC 220 (21) 10 (21) 20	(4100		
	33551175711117111111177	1.00	4200		5
		ING	4200	٢	5
	C TNITIALIZE ELEMENT EMPES	1.59	4220		CIMENSION O
		ING	0270		ECULVALENCE
	560 FMFD111=SFF()10205H	159	6260		
		ING	625 A	ċ	FINAL ENVEL
	F T O T (1) = S F f (1)	ING	4260	ċ	
	FTCT (2)=SFF(4)	115	4270	-	50 JC J=1.0
	\$F 101(1)=\$FF(2)	1115	4280		10 CENTUD=CCM8
	SETURICE LESERCES	1.0	4290	r	
	F #TCT(1)=5FF(?)	185	4300		16 (1×64.60
	PMTDT(2) = SFF(7)	1N9	9310		2C FCFMAT(23F
	c c	INS	4320		5H E
	C INITIALIZE ENVELCHES	185	4330		2 13X,
		119	4340		3 58
	FF(1)-SSFF(3)	185	4350		4 4FT1
	FF(2)=SSFF(6)	_ IN9	4 76 Ó		5 5x,9
	FF(3)≈SSFF(2)	1.1.1	A370	c	
	FF(4)=55FF(5)	INS	4386		FRINT 30, I
	FF(5)=95FF(1)	1 1 9	4390		1KK(1),1=1,7
· N	FF(6)=SSFF(4)	INS	440C		25 KK(1), TEKM
<u></u>	DO SEC I=1.6	1N9	4410		20 ECGMAT(14)
7	JF (FF(1).LT.D.) CC 3G 570	4.1.9	9420		1 16×.
1 E 1	5ERP(1)=FF(1)	115	4430		2 7×,1
	SENN(1)=0.	119	4440		3 16×.
	GC TC 580	.1 N 9	4450	C	
	570 SENN(]}#FF(1)	[N9	4460		RETURN
	SFNP(1)=0.	1 5 9	4470		ErD
	SPO CONTINUE	185	44 C C		SUPPCUTINE
	C The second sec	178	4490	C	
	CALL FINISH	185	4500	c	
	c ,	189	4510	C	
	C CENERATE MISSING ELEMENTS	185	4520	¢	FOPM 2 * 2
	č	185	4530	¢	SHEAR YIELS
	IF (IMEM_EQ.NMEM) RETURN	1 6 9	9540	c	REVISED JUM
		1 N \$	4550	C	
	IF (IMEM.FO.INFL) GC 12 250	IN9	4560	c	
		1 / 9	4570	c	CHAPLES HOE
	6	1 N 5	4520	<u>ج</u>	
	ENU	1.59	4550	Ľ	
			10		
		*******(U9	. 20		
	L C - Sugad Vielning Fiedent Bangares Putting Puerout 1	CU9	50		VINCESIUNES VVV-VEDICE
	a smear fielding clevent Envelipe Lutput Subroutint		- E C		CD 10 (10 /
		LU9	50		The steam of
	r suppled tilber	CU0	20	-	FLACTIC FM
	C DEVICED EDON ELEMENT 5 MA HUNE 1934		80	L	LEADINE ENCLUSION
	· · ·		e 0 6 C	· -	ENTICELY E
		18****CUS	100	•	4111-11=FK

	(119 4140	C	60° 11	ε	
	530 CC 540 I=t,6	INS 4150	COMMEN /INFGL/ IMEM,KST,LM(E),KGEEN,FL,CCSA,SINA,4(2,6),EK11, (CUS 12	a '	
	54C 55FF(1)-0.	INS 4160	I FK22, EK12, FSH, EAL, 1K, 11+, EK22+, EC(4), KSDYX(2), (CV9 13	c .	
	15 (INIT-50.0) (P 10 550	166 4170	2 KEDY(21,98101(2),SEIC1(2),ETIT(2),SEICT(2),SENC(8),	FUS 14	۰ ۱	
		10 2 6 1 9 6	3 SENNIAL TENDIPLITENKIAL DOGCO(2) ODACNISH ANEDISH	CLC 15	r	
					· ·	
		160 190		aus rei	1	
	550 SFF(1)=SFF(1)+5SFF(1)	INS 4200		109 17	1	
	C	IN9 4210	ξ i	062 16	2	
	C INITIALIZE ELEMENT FORCES	1N9 4220	DIMENSION COM(1),CCM+(1)	CUS 191	3	
	c -	INS 4230	ECUIVALENCE([NE#,CCN(1]]	219 20	6	
	560 EMEP(1)=SFF(1)00PSH	189 4240		CVS 21	a	
		INC ADEC	C ' FINAL FRAFICEF CLIPLE, FEAN FLENFNIS	CUS 22	0	
	E M. F. & J = 31 (AU / FE3) E M. F. & C.			CLC 22	, .	
		INA 4500		209 23	-	
	FTCT (2)=5FF (4)	ING 427C	50 IC D=1.KIN+C	LUS 24	ب	
	\$FTOT(1)=\$FE(2)	1N9 4280	10 CEM(1)=CEMS(1)	CUS 25	2	
	SETOT(EJ=SEF(5)	189 4290	C C	009 26	ũ.	
	€2TCT(1)=5FF(2)	1NS 4300	IF (IMEM.EC.I) ORINT 20	CUS 27	8	
	PMTDT(2) = SFF(f)	ING 9310	20 FORMAT(23) ERAN FLEWENTS (TYPE 91///	DL5 21	e	
		150 4120		cie an	, a	
		183 4325		EU 7 27	,	
	C INTIACIZE ERVELUP-S	1N9 4330	2 ISX, THE FINGE, 12X, 9F ACCCM /	245 36	-	
	κ	1 5 4340	3 5H NE++3X+44 NE++17X+7H ACAENT+3X+44T1MF+7X+54FCFCF+3X+ U	DNA 31	2	
	FF(1)-SSFF(3)	1NS 4350	4 AFTIME,7X,SHECRCE,3X,9FTIME,EX,ERCTATICN,3X,9HTIME,	CU9 324	3	
	FF(2)=SSFF(6)	IN9 4760	5 5x, efpetatiens/)	QLS 23	3	
	FF(3)=SSFF(2)	159 9370	E Contraction of the second seco	CL9 74	à	
	FF(4)=55FF(5)	INC ATRA	FEINT 30. INFM.NETI.(SENE(1).TENP(1).1-1.7.2).2PACC(1).(SENN(1).TEN	CLC 36	c	
		140 4300	(1,1,1,2,2,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,	000 36	, ,	
1		104 4340	And the the second state of the second state of the state of the second state of the s		<i>,</i>	
· N	FF (F)=55FF(4)	INS 440C	2+ NN(1), 1 CNN(1), 1=2, 4, 2), 3HA' N(2)	CC5 37	2	
00	DO SEC I=1,6	1N9 4410	30 FCRMAT(14,17,5X,0FCC51T1VC,3(F12,5,67+3),F14,5,F7+3,F14,5/	CUS 361	2	
7	JF (FF(1),LT,D,) CC 3G 570	1 N9 4420	1 16X+EPNCGATIVE;3(E12+2+E7+3)+F14+6+E7+3+E14+67	EUS 390	J .	
1 ·	SENP(1)=FF(1)	INS 4430	2 7X, 14, 5X, AHPES IT 1VE, J(F12, 2, F7, 3), F14, 5, F7, 2, F14, 5X	ELS 4C	٥	
	SENN(1)=0.	159 4440	3 16X.EHNEGATIVE.3(E12.2.E7.3).EL4.5.(7.1).E14.5/)	019 41	c.	
				CI 9 47	0	
	DIU SENA(II=PP(I)	144 4460		069 42		
	S = NP(1) = 0.	189 4470		CU9 44	ر ۱	
	SPO CENTINUE	1N9 448C	SUPPOUTINE FOTHO (ST,KCC) F	F\$9 L/	נ	
	C	189 4490	с	FS9 2	ε	
	CALL FINISH	INS 4500	1	F\$9 3-	J	
	c ,	189 4510		FCC A	a.	
	C CENELATE MIRSING ELEMENTS	1.6 4520	C EDDM 3 A 3 ELEVIDAL STEERSS	6 6 F F	, ,	
		- 187 4520		705 DI 705 DI	-	
	τ.	1N9 4530	C SHEAR TILLING SUPERI SITERNESS ASSIGNMENT SUFFLUTION	F 99 6	2	
	IF (IMEM.EQ.NMEM) RETURN	189 4540	C REVISED JUNE 1974	F55 7	: <u>.</u>	
	INEN-INEN+I	1NS 4550	C	F59 - 60	່	
	TE (IMEM.FQ.INFL) GC 12 250	IN9 4560	C	FSS, C	د	
	CC TC 310	189 4570	C CHAPLES REEDER	ES9 10/	1	
	c	INS AFRC	r	r 90 . I I		
	S SAID		· · · · · · · · · · · · · · · · · · ·		-	
		169 4340		A 2 N 1 2 M		
	SLEREGVINE COTS (CEPS, NINFC)	CLS 10	COMMEN ZINFELZ SPACE(24).EKIIJEKZZJEKJEJEKILJEKLIHUEKZZH,	FES 131	3	
	C ************************************	######################################	1 GAP(66),9811,5822,5812,58116,58226,FE5T(\$8)	859 140	נ	
	¢	CL9 30	GIMENSION-ST(2+2),KCD(2)	F59 15	J	
	C SHEAR VIELDING ELEVENT ENVELCEE CUTFUT SUERCUTINE	GUS 40	KAA=KCC(1)+1 b	F 5 5 16	J	
	C	CU9 50	GD TE (10.20.39.46) .KYY	ESS 17		
	C CHARLES STEPES	01.5 40	C NE SHEAR YIELD THIS KOOLST FOLDIS & CR. C	ESC 18	1	
			r Elastric En l		, •	
				155 190	,	
	C REVISED FROM ELEMENT 5 JUNE 1970	CLA 60	$\int \left[\mathbf{C} \right] \mathbf{F} \left[\left(\mathbf{K} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{T} \mathbf{F} \mathbf{G} \mathbf{G} \mathbf{T} \mathbf{E} \right] \mathbf{F} \right] \mathbf{F} \left[\mathbf{F} \mathbf{C} \right] \mathbf{F} \mathbf{F} \left[\mathbf{F} \mathbf{F} \mathbf{G} \mathbf{F} \mathbf{F} \right] \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F}$	FS9 201	1	
	c	_ CUS 90	C ENTIFELY FLASTIC '	F 59 21/)	
	· C · · · · · · · · · · · · · · · · ·	++++++++++++CU9 100	57(1,))=FK()	ESE 224	:	
		• · · ·				
· .						
					•	
· ·						
						·

Reproduced from best available copy.

		51(2,2)=7K22	EZC	2.10
		<t(1,2)=fk12< td=""><td>F59</td><td>24C</td></t(1,2)=fk12<>	F59	24C
		CH YE KO	F 5-9	250
с		FLASTIC FINCE AT FICHT AND	FSÇ	260
	15	ST(1,1)-FK(1H	FS9	270
		ST(2,2)=7.7	FST	280
		S1(1,2)=C.C	ESS	200
			FSG	200
. г		SLASSIC FINCE AT END 1 KERED FOUNDS D FE 1	ESC	310
-	20	1E (KCD(2)-50-11 GC TE 25	E 5 9	120
		57(1,1)-2-6	FSC	370
			E C C	340
		6. (7. 5) - FK: 20	600	350
			F F C	360
c		DIAGTIC FINGE AT ECTH CARC	FEG	170
•	26	reactive reaction and the product of the second s	1 3 9	160
	20		666	366
			100	
			F 3 %	400
-			1 29	410
,		STUPPENT PASTIFUES IN SPEAK THUS KIGIZE = 2 16 S	159	420
_	30	1F LKUELZJJFELGJ GE IL SE	1 2 5	430
c		NG PLASTIC HINCH FLT SESAR YIFLU	F 5 G	440
		\$1(1,1)-SK1	F 5 9	450
		Z T (S + S) = 2K = S	FSS	4 Ć C
		\$T(1,2)=SK12	FS9	470
		CE TE EC	FSG	4 F C
Ċ		PLASTIC HINCE AT FICHT FULS SHEAR YIELD	F 5 5	450
	35	51(1,1)=5K(1)-	FSS	500
		51(2,2)=0.0	F 5 5	510
		< (L p 7) = C + C	FS9	520
			F 5 5	530
	٩C	IF (MCD(F)+E0+3) OF TE 25	F S Ç	5 4 C
· C		PLASTIC FINCE AT LEFT END PLUS SHEAR YIELD	FS9	550
		57(1,1)=0.0	F 5 9	560
		51(1+5)=C+C	F59	570
		ST(2)=SX22H	FSS	260
	ec	<t(2(1)=st(1,2)< td=""><td>FSS</td><td>550</td></t(2(1)=st(1,2)<>	FSS	550
		FETURN	r 55	600
		ÉND	F S S	€10
		SLERCUTINE PMCALG	ENC	10
C		· · · · · · · · · · · · · · · · · · ·	≜ENC	5 C
c			БМŚ	30
r		CHARLES REELER	FM9	40
c			2 N.9	5 C
¢		REVISED JUNE 1976	6 M G	60
¢			885	70
С		公式公司来来来来自他的家家来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来	¢ems	EC
		COMMEN /INFEL/ SPACE(20), FK11, EK22, EK17, PSH, EAL, LK111, EK22H, EC(4)	, E M S	90
		L KCDYX(2),KCCY(2),CAP(59),SK11,SK22,SK12,SK11+.SK22F,REST(96)	BMS	100
		COMMON 200882 DV8(2);005(2);008(2);FILLEF(1554)	FING	110
		KYY=KCDY(1)+)	8×9	120
		GC TC (10.20.30.40),KYY	CMS	130
	10	TE (KCCY(2)-EC.1) CC TO 15	FNG	140
c		ENTIPELY ELASTIC	BMC	150
•		COV(1)=EK1140VP(1)+EK1240VP(2)	EMS	160
	· .,	CPY(2)=E<12+DVP(1)+EK22+CVR(2)	PMS	170
				-

		RETUPN	8¥9	180
C		FLASTIC FINGE BT FNC NUMPER 2	9 M S	150
	15	09M(1)=EK11H#0VR(1)	EM S	200
		CPM(2)=0-0	B₩⊊	510
			8∦9	220
	20	15 (KCOY(2).00.1) GC TO 25	E M 9	530
С		FLASTIC FINCE AT ENG 1 -	BMS	240
		DBM(1)=0.0	849	250
		CPM(2)=EK22+*CVP(2)	BN9	260
		FEILAN	D M 9	27 C
¢		PLASTIC FINGE FORMS AT BOTH ENDS	8 M 9	590
	29	CPN(1)=0.0	BMS	250
		08M(:)=C.C	EMS	300
		FETUEN	E № 9	310
с		HAT YIELDED IN SHEAP	BMS	350
	30	IF (K00Y(2).LC.3) GC 1C 25	e M9	330
		CBM(1)=5K11+0VF(1)+\$K12+CVR(2)	BWS	340
		CAM(2)=SK12*0VF(1)+EK22*3VF(2)	6M9	350
		FFTUEN	6₩9	360
с		PLASTIC HINGE AT INF ? PLUS SHEAR YIELD	EMS.	370
	25	CBM(1)=5K11++6VP(1)	e¥9	380
		CBW(2)=0.0	BMS	390
		RETURN	BM9	400
	40	1F (K(CY(2).50.3) GC 10 25	6 19	410
с		PLASTIC WINGE AT END I FLUS SHEAF YICLE	ews.	420
		CBM(1)=C*D	8₩9	430
		じまえ(2)=5×22をあらく方(2)	BMS	4 4 C
		FFT19N	BM9	450
		ENL	819	460

-288-

,

APPENDIX D

INPUT FORMAT AND FORTRAN LISTING FOR POST BUCKLING TRUSS ELEMENT

INPUT INSTRUCTIONS

The number of words of information per element = 52.

- A. CONTROL INFORMATION FOR GROUP (415) ONE CARD.
 - Columns 5: Punch 7 (to indicate that the group consists of the post buckling elements).
 - 6 10: Number of elements in group.
 - 11 15: Number of different element stiffness types
 (max. 40).
 - 16 20: Number of different fixed end force patterns
 (max. 40).
- B. STIFFNESS TYPES (I5,7F10.0/,7F10.0) TWO CARDS PER STIFFNESS TYPE (see Fig. D1).

CARD 1

- 1 5: Stiffness number.
- 6 15: Young's modulus of elasticity.
- 16 25: Cross sectional area.
- 26 35: Yield stress (yields only in tension).
- 36 45: Buckling load Pcr.
- 46 55: Displacement coordinate U_1 .
- 56 65: Displacement coordinate U_R.

66 - 75: Post buckling load - POSTBL.

CARD 2

- 1 10: Force coordinate F1'.
- 21 30: Slope of zone 8 as a proportion of elastic zone 1 slope.

31 - 40: Zone 6 pivotal point force coordinate F_6 . 41 - 50: Zone 7 pivotal point force coordinate F_7 . 51 - 60: Zone 6 pivotal point displacement coordinate U_6 . 61 - 70: Zone 7 pivotal point displacement coordinate U7. 71 - 80: Buckling load - PCRF - for later cycles after permanently kinked. FIXED END FORCE PATTERNS (215,4F10.0) - ONE CARD FOR EACH FIXED END С. FORCE PATTERN. Omit if there are no fixed end forces. See Fig. B1.5. 1 - 5: Pattern number, in sequence beginning with 1. Columns 10: Axis code, as follows. Code = 0: Forces are in the element coordinate system, as in Fig. Bl.5a. Code = 1: Forces are in the global coordinate system, as in Fig. Bl.5b. 11 - 20: Clamping force F;. 21 - 30: Clamping force V_i. 31 - 40: Clamping force F_i. 41 - 50: Clamping force V_i. ELEMENT GENERATION COMMANDS (915,2F5.0,F10.0) - ONE CARD FOR EACH D. GENERATION COMMAND.

- Elements must be specified in increasing numerical order. Cards for the first and last elements must be included. See NOTE 7 for explanation of generation procedure.
 - Columns 1 5: Element number, or number of first element in a sequentially numbered series of elements to be generated by this command.
 - 6 10: Node number at element end i.
 - 11 15: Node number at element end j.
 - 16 20: Node number increment for element generation. If zero or blank, assumed to be equal to 1.
 - 21 25: Stiffness type number.

- 30: Code for including geometric stiffness. Punch 1 if geometric stiffness is to be included. Leave blank or punch zero if geometric stiffness is to be ignored.
- 35: Time history output code. If a time history of element results is not required for the elements covered by this command, punch zero or leave blank. If a time history printout, at the intervals specified on card D1, is required, punch 1.
- 36 40: Fixed end force pattern number for static dead loads on element. Leave blank if there are no dead loads. See note below.
- 41 45: Fixed end force pattern number for static live loads on element. Leave blank if there are no live loads.
- 46 50: Scale factor to be applied to fixed end forces due to static dead loads. Leave blank if there are no dead loads.
- 51 55: Scale factor to be applied to fixed end forces due to static live loads. Leave blank if there are no live loads.
- 56 65: Initial axial force on element, tension positive.
- Note: If the static load code, Card Cl, is zero but fixed end forces are still specified for some elements, an inconsistency results. In effect, any such fixed end forces will be treated as initial element forces.

NOTES ON THE PHILOSOPHY BEHIND THE ELEMENT

1

1. This element is a model of brace behavior which permits the user to describe the inelastic behavior. The behavior may be found by a theory of brace behavior, by judgment, or by experimental results. The input parameters are described in Fig. D1. The general zonal behavior is described in Fig. D2. Figure D3 shows the procedure used in the deterioration in buckling load.

2. In a given time step the brace must lengthen, shorten, or remain unchanged. It is not possible to lengthen during part of the step and shorten during the rest of the step. This means that the brace must continue to lengthen or shorten during a time step, or it may reverse itself. There are no other possibilities.

3. Zones 1, 6, and 7 are elastic zones. The brace can reverse itself on these zones.

4. Zones 3, 4, 5, and 8 are plastic zones. Thus, the brace must enter zones 6 or 7 when reversing from these plastic zones.

5. Zone 2 is also an inelastic zone. The brace can reverse from this zone only by entering zone 1.

6. Zone 9 is an inelastic zone. However, when zone 9 is reached the brace is nearly straight. Therefore, it would be unrealistic to reverse on to zone 7 from any point on zone 9. As a result partial reversal is permitted on zone 9. Zone 9 may unload until a critical force level is reached and then unloading progresses along zone 7. This is slightly different from the Nilforoushan approach. He creates a new zone which is parallel to zone luntil Reld = 0.0 and he then progresses along zone 7. The difference between these two methods is relatively minor, because metal braces have relatively high axial stiffness. Thus the stiffness of zone 9 is quite similar to the stiffness of zone 1, and the dissipated energy between zones 9 and 1 is trivial. There is no theoretical basis for either approach; they are based on judgment. This approach could easily be changed in the program.

7. Zone 6 may pass directly to zone 1 if it intersects zone 1 before it intersects zone 7. Zone 7 may pass directly to zone 1 if it intersects 1 before it reaches zone 8. This is another minor difference from the Nilforoushan model. He requires the brace to phase through zone 9 when going from 7 to 1. The difference is minor because this new zone 9 will be of very high stiffness.

-292-

	-		
	SUBREUTINE RESPT (NCCF, NINFC, KEAL, KPP, CONS, COISM, OD, TIME,	PE7	3
	VELM.DEAC, DELTAI	RE7	2
	CCMMCN /INFEL/ IMEM,KST,LM(4),KGECM,EALEP,EALE,FL,CCSA,SINA,	RE 7	
	1 NCD1,NDD2,C5,C8,PYP,F6,U6,F7,U7,IHIST,	857	
1	2 IFUT, STHIST, TSTR, RSTR, L1, UP, FCST9L, FCF, UELD, PCLD,	RE7	5
1	J CELC,FJPRH,UNEW,PNEW,PFL,CF,CCNST,KCLTDT,REST(10)	, PE 7	
	4 PCPM, 50FC, REML148)	RE/	
	COMMEN /WORK/ EAL, DEL, DEEP, DENL, FAC, FACTCR, FACACC, DEUP, PEUT (1992)	RE7	
	COMPON ZTHISTZITHEUT(10).THEUT(20). ITHE. ISAVE. NEI TH. NSTH. NE 7. ISE	RE7	
	CIMENSION COM(1).COMS(1).DDISH(1).DD(1).VELP(1)	867	1
	EGVIVALENCE (IMEN,CEM(1))	RE 7	÷
	EDUTVALENCE (IFIC.IHIST)	557	-
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	10F7	1
	POST BUCKLING TRUSS FLEMENT STATE OFTERMINATION	PF7	5
		DET	
		057	1
	CHARLES REFORM	067	-
			1
	REVISED COTORED 30 1076	PC/	
	Refized Constantion 1970	RE 7	1
		807	2
		TARE 7	2
		PE/	2
	FL B LENGIF	RE7	2
	$c_{2} = s_{1}c_{2}c_{3}c_{3}c_{3}c_{3}c_{3}c_{3}c_{3}c_{3$	REZ	2
	CH = SLUP OF ZONF 9.	RE7	23
	(J6,F6) = CECPLINATES OF ZONE & INTERSECTION POINT	REZ	2
	(U/, /) = COCODINATES OF ZENE / INTERSECTION POINT	PE7	2
	INIST = IGLD= ZONE FOR LAST TIME STEP	F E 7	2
	IFUT - ZENE FER NEXT TIME STEP	REI	5
	STHIST = ACCUMULATED TENSILE ELENGATION AT TIME T	RE7	3
	TSTR = ELONCATION AT YIELD = (PYP L) / (A E)	PE7	З
	ESTR = FLONGATION AT FIFST EUCKLING = [PCP L) / (A E)	RE7	3
	UL = ELONGATION AT COMPRESSIVE INSTABILITY	FF7	3.
	(UB,POSTBL) = CCCRDINATES FOR INTERSECTION OF ZONES 4 AND 5	PEZ	3
	UDLO = OLD FLONGATION	RF7	3
	LNEW = NEW FLONCATION	RE7	34
	CF = AXIAL STIFFNESS OF NEXT TIME STEP	RE7	3
	POLD = AXIAL FORCE FOR LAST TIME STEP	RE7	з.
	FNEN = AXIAL FORCE FOR NEXT TIME STRE	PE7	3
	COLD = AXIAL STIFFNESS OF LAST TIME STEP	RE7	9
	SLIN = AXIAL FORCE IF THE PRACE REMAINS ON THE PRESENT ZONF	RE7	4
	DV = CHANGE IN LENGTH OF THE ERACE IN THE LAST TIME STEP	RET	4
	SU - CORRECTION NECESSARY TO ACCOUNT FOR ZONE CHANGE	757	4
	SZERC, FCR. FRC. CRF. DEL - WCRK VARIAELES THEY HAVE NO	PE7	
	UNLOUE MEANING	RE7	4
	INITIAL 17E VALUES	PEZ	
		SE7	
10		55 F	
		067	4
		957 957	- 4
		NT F	2
	P166-P7768	PE7	5
		RET	- 23
		HEF.	5.
		9E7-	5
	IF LINEVIES II IPEDES	Pt7	- 53
	CETERFINE EXTENSION INCREMENT OF EAR	FE7	50

		94=CF5A4(10)54(3)=99154(1)+51KA4(CD158(4)=CC158(2))	NE7	570
			HE /	250
		5U1X+PNFW+5F*7V	PE7	éc¢
		FELC=UNFW-STFIST	F 5 7	600
С		DETERMINE NEW ZONE FROM ELC ZONE	RE7	£10
		60 Th (50,50,70,80,90,100,120,120, 130), 1F15T	RE7	620
c		ICLC - 1 CF 2	RE /	`€3C
	53	[F (PELD.GE.TSTF) CE TO 220	PE7	64Ç
		IF (FELD.CF.ASTR) CO TO ZIC	RE7	550
		IF (FELD.GE.UE) CC TC 230	RE7	660
		IF (RFL0+6F+U1) GC TC 24C	RE7	670
		GC TC 250	RE /	680
с.		ICLD = 3	FE7	650
	70	IF (UNEW.GT.UCLE) GG TÓ 55	R57	700
		IF (FELD.GE.LE) (C TE 230	RE7	710
		IE (RELD.GE.UI) SC TC 244	EE7	220
			057	730
~			057	2.0
-	80	TELENEM STUDIEL SE TO ES		750
	ciu		ACT.	750
			HE/	760
		60 10 256	RE7	. 770
¢			PE 7	780
	ĞС	IF (UNEW.GT.UCLD) SC 1C 5	FE7	790
		CC TC 250	.667	800
C		CHECK TO SEE IF PAGE REMAINS IN ZINE & CH DIRECTLY TO I OR THRU	7RE 7	. eio
ſ		ERACH IS LENCIHENING FROM ZUNES 3, 4, 5, 6, CR 7	FE7	820
	95	IF (FFLD.GE.TSTF) GC TC 220	RE 7	654
		DFL=l-PCLD/(F&-PCLS))*LLA+DV-RELD)	RE7	F G C
		FZERCEVCLGECC	RE7	85,0
		FCR=PFLD#SALE	RE7	660
		FRC=PRLD+DVVFE/LUC+STH1ST-PZESC)	FE7	810
		1F ((FZERC+CE-STFIST).AND.(FCP.GE.FRC)) CC TO 210	RE 7	860
		IF (DEL.GT.DV) SC TO 26C	FE7	890
	56	FTRMAT (56HOFFANAPNINCANA GLESTIGNAPLE ZENE CHANGE CHECK INPLI DA	TREZ	900
		14 3	5.57	510
c		CHECK TO SEE IS PRACE STOPS IN ZONE 7 IR GEES EN TO L. S. OP S	RF7	920
	¢ 7	FRC= (UNFW-F2FRE)#57/(STFJST-F2FRO+U7)	EE7	0.10
		$\mathbf{F} \mathbf{C} \mathbf{P} = \mathbf{C} \mathbf{P} + \mathbf{C} \mathbf{D} - \mathbf{L} 1 3 \mathbf{C} \mathbf{P} + \mathbf{C} 1 \mathbf{Q} \mathbf{P} \mathbf{M}$	DET	640
		$\mathcal{F} = I \left[\mathcal{F} \left[\mathcal{F} \right] + \mathcal{F} \left[\mathcal{F} \right] \right] $	667	540
			053	. 350
			RE/	070
			WE /	970
			HE 7	460
	99		RE7	990
			RE7	1000
		GL 10 270	RE7	1010
τ		101.7 = 6	₽€7	1050
	100	IF ((UNEW.GE.UCLC)-AND.(SLIN.LE.0.C)) (C IC IGI	FE 7	1030
		LE (UNEW-GE-UCLD) GO TO 95	R E 7	1040
		F729C=UCLC-FCLC/CF-STF1ST	FE7	1050
		GC TC 135	RE7	1060
	101	EALCESTINZEALE	FE7	1070
		IF (FELD.GE.FALC) GE TÇ 210	RE 7	1080
		GE TE 260	RE 7	1090
с		10LC = 7	RE7	1100
	านว่	PZERC-UCLC-(PCLC/CF)-STHIST	RE7	1110
		FF 151 IN-LE-0-01 GC TC 125	RE7	1120
			,	

-293-

.....

Ċ

¢

.............

с

		IF (RELO.GE.TETR) GC TC 220	RE 7	1130
		IF (UNEW,LC:UCLD) GO TG 270	RE7	1140
		FZERC=FZERC+STH15T	FE 3	1150
		GC TE 57	F (; 7	1160
C		ILLO - A	RE7	1170
	120	FRC=FALE*FFLD	RE7	118C
		16 (86L).CS.TSTP) GC TO 220	RE7	1190
		IF (55LD.CC.9.9) CC TC 290	RE 7	1200
		IF (UNFW.GE.UCLD) GO TE 200	RE7	1210
		FZERC=UCLC-STFIST-(PPLO*(STFIST+U7+UCLC))/(F7-PCL7)	RE7	1220
		IF (LNEW.G1.02995) CC TC 270	RE7	123C
			BE Z	1240
c			RE7	1250
è.		TONE & IS AN INCLASTIC ZENE. MEMENEE, THE FRACE IS NEARLY	SE7	1260
2	•	ETAL 7 12 HE LENCESTE LICE INCLUSIVE TO LENCE IN AND A PROPERTY OF LENCES	PF7	1270
č		STARLET WITH IT THAT AS EAST IN THE STARLET THE COLD AND DETAIL THE	DE 7	1280
-		ACALISTIC TO REVENUE OF THE ALL OF THE REVENUES AND REVENUES OF	6.6.7	1200
ć		TORE 4. FOR CARTER, C. FOLO C. WERTER THAT THE THEFT	6 6 7	1300
L C		UNMERLISTIC ACOMPTY SULFE NUMEL REALLY FREEPERE, I AM	000	1310
Ļ		PRIVITING MOVEMENT OF ECCE & CALL FILLESS FRANCES FOR ANY FRE	RE7	1310
5		INTERSECTION WITH ZUNE 9. THIS WILL PREVENT THE STEPRESS FROM	HE/	1320
<u>د</u>		EURA REGATIVE CH EXCESSIVELY SHALL WER THE EMBLE IS REAMLY	RE /	1320
C		STRAIGHT. IT IS AN ANPIRARY CECISICN AND CAN BE CHARGED BY	RE7	1340
¢		CHANGING THE TWE CARES AFTER STATEMENT 130.	RE7	1350
	130	IF (SLIN.GF.4YP) GC (C 220	RE7	1360
		FRC=FLPRM-CR+UI	RE7	1370
		FCR=C+50+57	RE /	1360
		LE (FRC+L)+CP3 FCR=H4C	RE7	1390
		IF ((SLIN-LE-FCR),AND-(UNEW-LT-UCLD)-AND+(SLIN-LE-FRC)) GC TO 133	AE7	1400
		GC TF 290	PF7	1410
	132	LFL=(PCLD+F(F)/CF	RE7	1420
		P7ERC=UCLD-DEL-F(R+1STH1ST+U7-UCLC+DEL)/(F7-FCR)-STF1ST	PE /	14 2 C
		IF (RELD.GT.PZERE) 60 TO 270	FE7	1440
c		ERACE IS CENERESSING ON TO ZONE & AND POSSIBLY INTERSECTS 2,4,04	SFE 7	1450
r		PRACE IS SHERTENING FROM ZENES 7 , 8, CH 9	₽E7	1460
	135	f (P= (F6/106-72F9C))*(9ELC-92ERC)	067	1470
		FRC=905181+(5*(FELB-U))	FE 7	1420
		1+ (FC9.51.44C) GD TD 380	DE7	1490
		IE (SEL9-1E-01) CE TE 250	RE 7	1560
		1 = (1971 - 3.5 - 10.3 - 4.5) + (ECR + 1.5 + 10.3) + (ECR + 1	RE7	1510
		$F_{F} = F_{F} = F_{F$	RE7	1520
			RE7	1520
			RE7	1540
ſ		GETENW ZENE AND DETERMINE SU	RE 7	1550
ĉ			FF7	1560
~	310		RE 7	1579
	-10		RE7	1580
			RET	1500
			057	1600
		to the sensity guadelmanteeremet	667	1610
			067	1620
¢			~ 5 7	1416
	2.5.0		R	1036
			- C /	1350
				1000
			4 E /	1000
		17 LILLU.977.27 SUBSEIN-979	PE/	1460
		GC TC 350	8 E	1686

c	IFUT = 3	RE7 1690
	230 1561=7	RE7 17CC
	C F = 0 - 0	PE7 1710
	IF (ICLD.EC.3) 54=0.0	RE7 1720
	IF (JOLD.NE. ?) SUSSLIN-PCR	RE7 1730
	6r (r. 353	BE7 1740
~		DE7 1750
		657 1760
		DE 3 1770
		063 1700
		PE7 1700
	· 1+ (120.00.4) SUED 0	RF7 1740
	IF (I/CO.NE.a) SU=SUIN-CF*(FELD-UII-FCSTFL	RE7 1800
	GC VC 350	8E1 1010
c	IFLT = 5	. RE7 1820
	25C IFUT=5	RE7 1830
	(===C5	RE7 IE4C
	1F (ICLD.FC.S) SU≈C.Q	RE7 1850
	IF (ICLD.NF.5) SU=SLIN-(RELD-L1)#CE-PCSTOL	RE7 1860
	GC TE 350	RE7 1870
ć	(F) T = 6	RF7 1880
•		RE7 LESC
		DF7 1670
		657 1910
		057 1630
		NE7 1920
_	60 10 250	HE7 1930
c	(FU) = 7	NE7 1940
	276 IFL1=7	RE7 1950
	IF (ICLD.EC.3) PRINT 56	RE7 1960
	IF (ICLD.EC.7) %L=0.0	RE7 1970
	IF (10L0.80.8) SU=SUIN-(F7-PCL0)#DV/IU7+STH1ST-UCL0)-PCL0	FE7 1980
	IF {1CLC.EC.9} SU=SL1N-FC4+(F7#(CV+DEL)/(U7+STHFST-PZEPC))	RE7 1990
	{F (ICLD.LE.5) \$U=\$L1N=(F7*(CV-CEL)/(L7+STFIST-PZERC))	PE7 2000
	ÌF (ICL9.NE.6) GC TC 250	RE7 2010
	FZ59C=UCLC+({5CLC/(FCLC-SL1N))*CV) %	PE7 2020
	SU=SLTN-(UNEW-PZ5RC)*(F7/1ST+1ST+L7-PZFRC))	RE7 2030
	GE 12 350	RE7 2040
r		EE7 2050
`		RE7 2060
		BE1 2070
		057 2000
		RC7 2000
		RE7 2340
	IF (I(L), KE, X) SUESCINFUMATUT ARECTEPTION	RE7 2100
	60 FB0	PE7 2110
c	1FUT - 9	RE7 212C
	296 IFUT=9	RE7 2130
	IF (1CLC+LC+4) 391N7 96	RE7 2140
	CT=[>YP-F1PRM+{01*C@}}/TSTR	RE7 2150
	IF (10LD.EQ.0) SU = C= C	FE7 2160
	IF (ICLD.NE.0) SU=SLIN-(PYF-FIRRM+UI*CF)*(UNEW-STHIST)/TSTP-	RE7 2170
	1 (F19RM-C2#L1)	RE7 2180
	כב דב שלא	FE7 2190
	350 RN(N=511N-51	KE7 2200
	DFI = DNFW	PE7 2210
	1 F (100 - 50 - 150 1) 6C 1C 375	PE7 2220
		DE7 2210
		DE7 2240
	· · · · · · · · · · · · · · · · · · ·	AC1 5749

• •

		KEAL=1	FE7	2250
c		DEFERNATION RATE FOR CANFING	₽E 7	22E0
	375	IF (DFÅC.EC.0.0.AND.DELTA.E0.0.0) GC TC 400	RE7	227C
		1F (TIME.EC.0.C) CO TC 450	PĖ7	2280
		KBAL=1	RE7	2290
		DV=CCSA#1VELH[3]-VELH[]])+SINA0[VELH[4]-VELH[2]]	RE7	2300
c		RETA - Q CAMPINC FORCE	RE 7	2310
		IF (DFAC.EC.0.0) CP TC 390	RE7	2320
		CSUB=CSUE+CFAC*EALE*SV	ŔĖ7	2330
С		STRUCTURAL DANPING FORCE	RE7	234C
	35 C	IF [DELTA.20.0.0] GC TC 400	RE7	2350
		CSL=CELTAASIGN(A2S(SLIN),2V)	RE 7	2260
		D\$U9=D\$U9-D\$L+\$CFC	RE7	237C
		SCFC=CSL	RE 7	2380
ć		UNEALANCED LOAD VECTOR	RE 7	2390
	4 C C	IF (KCAL.E0.0) GC TC 450	RE7	240C
		GD[]}=CSUE +CCS A	857	241C
		0D(4)=D508451NA '	RE7	2420
		CC(1)≐-CC(3)	RE7	2430
		€2(2)=-05(4)	RE7	200C
¢		PRINT TIME HISTORY	RE7	2450
	450	ISAVE=0	RE7	74 6 0
		1F (KPR.LT.0) GO TC 475	PE7	247G
		IF (KPR.EC.0.OR.KCUTDT.EC.O) GG TC 525	PE7	24ED
		1F (11HP.GT.1) GC TC 490	RE7	2450
	475	(F (1HED.NE.0) GC TC 48C	RE7	2500
		KKPP=[AES(KPR)	RE7	2510
		PRINT 478, KKPR, TIME	RE7	2520
	478	FERMAT(///18+ RESULTS FER GREUP,12,284, PEST BUCKLING TRUSS ELEME	NRE7	2532
		I , IOHTS, TIME=;F8.3;775X,SH ELEW,3X,4HNCCE,3X,4HNOCE,3X,5HPMASE	R5.7	2540
		2 ,8X,5MAXIAL,4X,9H LATEST ,3X,14MACCUM. FLASTIC,7, 5X,5H NC.,	RE7	2550
		3 3X,4H I, JX,4H J, 3X,5H CCCE, EX,5FFCRCE,4X,GFEXTENSICN,6X,	RE7	256C
		4 SHEXTERSION/	RE7	2570
		1460=1	RE7	2580
	400	POINT 485, IMPERIOU, NEED, IFUT, FREE, UNEW, STEIST	REC	2556
	400	POHMAI [19,21/][2;F]4.2;CF[3:1]	RE/	2000
_	490	LE LITHFALTA AGENTUTION EGUD EL TE 22	NEZ	2010
C			RE7	2020
			PER	2030
		[] MULII] = KKPK		2046
			0.57	
		17+067(2)=7	RE7	2650
		17+067(2)=7 17+007(3)=1ME#	RE7 PE7	2650 2660
		1THOUT(2)=7 ITHOUT(3)=IME* ITHOUT(4)=NOD1 ITHOUT(4)=NOD1	RE7 P57 F57	2650 2660 2670
		17F0UT(2)=7 17F0UT(3)=17E 17F0UT(4)=N001 17F0UT(5)=N0CJ 17F0UT(5)=N0CJ	RE7 PS7 FE7 RE7	2650 2660 2670 2680
		1TFOLT(2)=7 ITFOLT(3)=IME* JTFOLT(4)=NOD1 ITFOLT(5)=NGCJ JTFOLT(6)=IFUT VOLT(4)=DENUT	RE7 P57 F57 RE7 RE7	2650 2660 2670 2680 2650
		1TFOUT(2)=7 ITFOUT(3)=IME# JTFOUT(4)=NOD1 ITFOUT(5)=NCCJ ITFOUT(6)=IFUT TFOUT(1)=PNFW JUFUT(2)=UNFW	RE7 P57 F57 RE7 R57 R57	2650 2660 2670 2680 2680 2650 2650
		1TFOUT(2)=7 ITFOUT(3)=IFE> ITFOUT(4)=NOCJ ITFOUT(5)=NCCJ ITFOUT(5)=IFUT TFOUT(1)=NFW TFOUT(2)=UNEW TFOUT(2)=UNEW	RE777777777777777	2650 2660 2670 2680 2680 2700 2710
		1TFOLT(2)=7 ITFOLT(2)=IME* ITFOLT(4)=NOD1 ITFCUT(5)=NGCJ ITFOLT(6)=IFUT TFOLT(1)=NFW TFOLT(1)=NFW TFOLT(2)=UNEW TFOLT(2)=UNEW TFOLT(4)=TTMF	R P F R P F R P F R P F R P F R P F F F F	2650 2660 2670 2680 2650 2700 2710 2720 2730
		1TFOLT(2)=7 ITFOLT(3)=IME# JTFOLT(4)=NOD1 ITFOLT(5)=NCCJ ITFOLT(5)=NCCJ ITFOLT(5)=NFW THOLT(1)=PNFW THOLT(3)=STHIST THOLT(4)=TIMC ISAVE=1	RES777777777777777777777777777777777777	2650 2660 2670 2680 2650 2700 2710 2720 2730 2740
	525	1TFOUT(2)=7 ITFOUT(2)=1WEW ITFOUT(4)=NOCJ ITFOUT(5)=NCCJ ITFOUT(5)=NCCJ ITFOUT(5)=NCW THOUT(1)=NFW THOUT(2)=UNEW THOUT(2)=UNEW THOUT(3)=STHIST THOUT(4)=TTMC ISAVE=1 CONTINUE	RE7 PE7 FE7 FE7 RE7 RE7 RE7 RE7 RE7 RE7 RE7 RE7 RE7	2650 2660 2670 2680 2760 2710 2720 2730 2740 2740
	\$ 2 5	1TFOLT(2)=7 ITFOLT(2)=1MEM ITFOLT(4)=NOD1 ITFCUT(5)=NCOJ ITFOLT(6)=IFUT THOLT(1)=NFW THOLT(2)=UNEW THOUT(2)=UNEW THOUT(3)=STH1ST THOUT(4)=TTMC ISAVE=1 CONTINUE CONTINUE CONTINUE	RE7 PE7 FE7 FE7 RE7 RE7 RE7 RE7 RE7 RE7 RE7 RE7 RE7	2650 2660 2670 2680 2700 2710 2720 2730 2740 2750 2760
	\$ 2 5	<pre>IT+OLT(2)=7 IT+OLT(2)=1ME* IT+OLT(3)=IME* IT+OLT(4)=NOD1 IT+OLT(5)=NGCJ IT+OLT(6)=IFUT T+OLT(1)=PNEW THOUT(3)=STHIST THOUT(3)=STHIST THOUT(4)=TTMC ISAVE=1 CONTINUE IF (FNEW_LT+FEST[1]) FEST[2)=T]NE IF (FNEW_LT+FEST[1]) FEST[2)=TPEN</pre>	RE77 RE77 RE77 RE77 RE77 RE77 RE77 RE77	2650 2660 2680 2700 2710 2720 2730 2740 2740 2760 2770
	Ġ25	<pre>IT+OUT(2)=7 IT+OUT(2)=1ME IT+OUT(3)=1ME IT+OUT(5)=NCOJ IT+OUT(5)=NCOJ IT+OUT(5)=NEW THOUT(1)=NEW THOUT(2)=UNEW THOUT(2)=UNEW THOUT(2)=STHIST THOUT(4)=TTME ISAVE=1 CONTINUE IF (FAEW_LT+FEST(1)) FEST(2)=TIME IF (FAEW_LT+FEST(1)) PSST(1)=FAEW IF (FAEW_LT+FEST(1)) PSST(1)=FAEW</pre>	RE77 RE77 RE777 RE777 RE777777777777777	2650 2640 2670 2680 2700 2710 2720 2730 2740 2750 2750 2770 2780
	\$ 2 5	<pre>IT+OUT(2)=7 IT+OUT(2)=ITEUT(4)=NOD IT+OUT(4)=NOD IT+OUT(5)=NCOJ IT+OUT(5)=NCOJ IT+OUT(6)=IFUT THOUT(1)=NFW THOUT(2)=UNEW THOUT(2)=UNEW THOUT(3)=STH1ST THOUT(4)=TTMC ISAVE=1 CONTINUE IF (FNEW_CT=FEST(1)) FEST(2)=TIME IF (FNEW_CT=FEST(1)) REST(4)=TIME IF (FNEW_CT=FEST(3)) REST(4)=TIME IF (FNEW_CT=FEST(3)) REST(4)=TIME</pre>	RE5777777777777778	2650 2660 2670 2680 2750 2710 2720 2730 2740 2750 2760 27760 27760 27760 27760
	\$ 2 5	<pre>IT+OUT(2)=7 IT+OUT(2)=IME# IT+OUT(3)=IME# IT+OUT(5)=NOCJ IT+OUT(5)=NOCJ IT+OUT(6)=IFUT THOUT(1)=PNFW THOUT(2)=UNEW THOUT(3)=STH1ST THOUT(3)=STH1ST IT+OUT(4)=TTME ISAVE=1 CONTINUE IF (FAEW_LT+FEST(1)) FEST(2)=TIME IF (FAEW_LT+FEST(1)) FEST(2)=TIME IF (FAEW_CT-REST(3)) REST(3)=CAEW IF (FAEU_CT+FEST(5)) REST(3)=CAEW IF (FAEU_CT+FEST(5)) REST(6)=IME</pre>	R P F R P F R P F R P F R P F F R P F F F F	2650 2660 2670 2680 2760 2710 2720 2730 2740 2750 2760 27760 27780 2750 27780 2750 27780

	IF (RFLD.CT.RFST(5)) FEST(5)=RELC	PEP	2810
	1: (P:L).L1.FEST(7)) REST(P)=TIME	RE7	2820
	TE (HELD.(PE7	-29.30
	REDITY 9 23 10 13 10 4 00 611 AND 110 3 45 (3 00 4 00 611)	NE7	2840
	<pre>() DECTION-DECTIONALEED DECTON</pre>	RC/	2030
	$1 = \{1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	667	2000
		DE7	2880
	16 (1611-60-61) CE-166-08-08 (164-97-1851-1854)	D 67	2860
	IF 11 FUT 260_{-7} (F= 177 - PNEW)/(STH1ST+U7-UNEW)	RE7	2900
e	ADJUST FOR SURSEQUENT CYCLES	RE7	2910
-	IF ((FUT+LE,5),AND+((FLT+CE,3)) CC TC 525	RE7	2920
	GC TC SAN	RE7	2930
	529 JF (PNFW-LT-PCSM) SC TC 530	RE7	2940
	ĒSTŘ=(₽CQM/₽(0)∳₽€Ţ₽	RE7	2950
	אמסת = ססק	RET	2560
	CO TO 540	5 E 7	2970
	530 ESTR=(ENEW/PCR)+ESTR	PE7	2980
	PCO=PNE W	R 1- 7	2990
	SAD CENTINUS	RE7	3000
Ç,	UPDATE COME	RE7	3610
	00 550 I-1.NINFC	6E7	3020
	550 COMS(I)=CCM(I)	RF, 7	3030
	RETURN	RE7	3040
	t NO	RĘ7	3050
	SUGGEUTINE INFL7 IKCENT,FEENT,NEEF,NINFE,IE4X,Y,NN}	1N7	10
C		1 8 7	20
	CCMMCN /INFEL/ INFM,KST,LM(4),KCECM,EALEP,EALE,FL,CCSA,SINA,	1 N 7	3 C
	1 NODI,NEDJ,E5,E0,P1P,F6,L6,F7,U7,TH1ST,	147	4 C
	2 IFUT, STPISI, ISTR, 9STP, UL, UP, PCSIBL, FCR, ULD, PCLO,	.187	50
	3 COLD / IPAN, UNEW, FNEW, FFL, CF, CONST, KCUTCT, 9657(10)	,117	60
	4 PCPM, SOFE, HEM(142)	117	70
	CUMMEN /WLHK/FTYS(40,15),REUC(40),FEF(40,4),KDFEF(46).DD(4),	1N7	80
	$\frac{1}{2}$	1N 7	90
	<pre>/ GNEL, INCL, INCU, INCL, INCL, INCL, INC, INC, INC, INC, INC, INC, INC, INC</pre>	1.57	100
	a Interpretation of the second states and th	1	110
	CONNENTS IST / INCLUSION THE INTERNET AND A PROVIDE A DECAY AND	1.57	120
c		1.0.7	1.0
÷	CIMENSION KONTIII-ICINN.II.X(I)-Y(I).COM(I)	1.57	150
	CINESTEN ASTICL.YESTEL	1517	1.0
		167	170
	CATA YESNEZAH YES, AH NC Z	1.0.2	Lec
с	********************	FEIN7	190
ċ		INZ	200
Ē	PEST BUCKLING TRUPS FLEWENT INPLT SUPPENTINE	157	210
ς		1.57	220
c	CHARLES REEDER	IN7	23c
с		117	240
c	FEVISED OCTOBER 30 , 1976	IN7	250
с		LN7	280
с	\$ \$ \$ 7 \$ 3 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	**[N7	270
Ξ.	******	**1.57	280
2	THIS SUBRENTINE IS PENISED SUICHTLY FROM INELLY. INEL INITIALIZES	5 IN7	290
с	AND READS ELEMENT DATA. THE INITIAL DATA IS NOT VEFY	117	300
¢	CIFFERENT FOR THE POST BUCKLING MODEL .	[N7	310

					ů
	·				
•		117	320		1F (NFEF+E0+0) GE TE 10C [N7 88
-	FOUTVALENCE (IVEN,CEN(1))	LN7	330		PRINT 60 INT RG
	C CENTERI MAELAELES	157	340		1 BE PATTERN, 3X, 4HAX15, 2(7X, 5EAX16L, 7X, 5H 5H5AF)/ IN7 91
		INC	360		2 BE NC. ,3X,4+CCDE,2(7X,EEAT 1),2(7X,EEAT J)/) IN7 52
	FELC=0.0	[1.7	370	ç	DE ZD (NE-) NESE 1N7 93: 1N7 94:
	DV. I 121,100 1 FFST(1)=0.0	[1.7	390		REAC 80, 1,KCEEFINE);(FEE(NE,J);J=1,4) IN7 55
	L11 0.0	I N 7	400		70 PRINT 90, NF,KOFEF(NF),(FEF(NF,J),J=1,4) IN7 96
	LNF#=0.0	1 N 7	910		90 FCFMAT (215,4F10,0) IN7 97 CD FC1MAT (16,18,1X,4F12,2) IN7 98
	NUNEC = S 2	INZ	4 ° C	5	IN7 95
	Sr=C≈0.0	167	440	c	ELEMENT DATA INT LCC
	NNEV=KCCN17() NNEV=KCCN17()	[5,7	450	5	101 SEINT 110 INT 101
	NFEF=KCCN1(4)	IN7	470		THE FORMAT(////22H ELEMENT SPECIFICATION// INT LOB
	PRINT 10, (KCENT(1),1=2,4)	1N7	9 8 C		1 3X,4+ELEM, 3X,4+NCCE, 2X,4+NCCE, 2X,4+NCDE, 2X,4+STIF, 2X, IN7 104
	10 FERMAT (39H PEFT PUCKLING TRUES ELEMENTS (TYPE 7) //	187	490		2 AHGELM.22.4PP:174.42.47.12FFEF FATTERNS,22.17FFEF SCALE FACTORSIN/ 103 3 .5X.7FINITIAL/ INT 106
	2 25H NC. OF STIFFAESS TYPES =142	117	510		4 3X,4+ NC.,3X,4+ 1,2X,4+ J,2X,4+CIFF,2X,4+TYPE,2X, 1N7 107
	3 25H NC. (F F.F.F. PATTERNS = 14)	1 1 7	520		5 4FSTIF,2X,4HHIST,3X,12H DL LL 13X,17H DL LL 1N7 1084
	C	187	5340	2	8 ,5X,7H -LHCE / / // // // // // // // // // // // /
	¢	1 N 7	56 C		KST=0 IN7 111
	PRINT 20	· 187	560		CO 120 J=15,29 1N7 112
1.	20 FURMAT(777716F STIFFNESS TYPESTY, 2F TYPESCA, F 7HSECTION.78.13H3FNESSILE YIELD(2X.8FF0C#L[NG.2X.	- IN7	570	c	INT 114
29	2 2112HOISPLACEMENT, 2X1, 1X, 1CHPC51 PLCK, ,4%, 7HTENSILE, /,	117	590		[V=] IN7 115
ማ	3 SH NEWYSX,7HYCCULUS,6K,7H AREA ,3KIICH STRESS (44X) A BH LIDAD RX SHITINIX SHIRISY,7HICAC FLOX,1CHICAC FLOCH	1 N 7	600		130 REAC 140, INEL, INCDJ, INCDJ, INC, ITAPT, IKG*, IKDT, IKECL, IKELL, FEGL, FIN7 116 1611, FEINTE
r	5 ,///.IF .I3*,GFSLCFC/AX,EFSLCFE,IEX,72FCCCEBJINATES FLR FIVE	TALNZ	620		140 F09MAI (915,255.C,510.G) 1N7 118
	6 .PHL PCINTS .14X,1CHSLESEGLENT,	1 N 7	630		IF (INEL.GT.INEN) CC TC 17C INT 115
	7 /, IP , IEX, 2PG 2, IIX, 2PF C, IIX, 2PF	157	650		NCCJ= INCCJ INT 120
	C READ STIFFNESS INFORMATION	1 . 7	660		INC-11NC 187 172
	CC 30 [T=1,NMFT	1 N 2	£7C		1F (1NC+59+0) INC+1
	IF (11.NE.)) PPINT 500	1.57	690		KGLEV=IKGM INT 125
	1F ((FTVP(11,5).(L.+TYP(11,6)).(R.(FTYF(11,6).GE.C.O)) PRINT &OC	1 N 7	700		KCUTET=1KGT IN7 126
	(F (FTYP((T,A),GT.F1YP((T,7)) PF(AT 700 FURCEOUCHY CYCLE OFF - REEM - WELL BE OFFITER THAN ON HOUSE TH	[1.7	710		YNG=YFSNC(2) IN7 (27) 16 (KGGCM-NE-C) YNG=YFSNC(1) IN7 (28)
	C	IN7	730		YNT=YESNE(2) IN7 129
	15 ((FTYP(1T,15).LT.FTYP(1T,4)).CR.(FTNP(11,15).GT.FTYP(11,7))	EN7	740		1F (KCUTCT.NC.C) YNT=YESNC(1) IN7 130
	L PRINT 650 LE LETYP(IT, 151, LT, ETYP(IT, 4)) FTYE(IT, 15)=FTYE(IT, 4)	1 N 7	750		KFCL+{KFCL IN7 1313 KFLL=1KFLL . [N7 1324
	IF (F***(11,1-).CT.FTYP(11,7)) FT*P(11,1E)=FT*P(11,7)	157	7 7 C		FOL=FFOL INT 133
	30 P91N1 50, 11,(FTYP(11,J),J=1,15)	1 . 7	780		FLL=FFLL INV 134
	SOD FERVAL (538 AAAAAA EKSER STIFFNESS CHEUPS NET IN CREER AAAAAA)	187	PCO		ASTY=AST(1) IN7 136
	50 FORMAT (14, PE17.4, //.1H , SX, 7E13.4, //)	117	810		IF (INFL.NE.NMEM) 130,170 IN7 137
	609 FERNET (54F POPORE ERRES INFROPER NECATIVE DISPLACEFENTS POPA 669 FERNET (54F POPORER RUBSERVENT CYCLE FEE NAMES IS AS WEEKD	+)]K?	820	E E	
	700 FTRMAT(400 \$\$\$\$\$\$ EFROR F1 LESS THAN FC9 \$\$\$\$\$	1 17	840		NCDJ=NCDJ+TNC / IN7 14C
	¢ //	1 N 7	esc		ASTT=AST(2) IN7 1411
	C FIXED PND EPPCE PATTERNS	1N7	860 870	Ċ	IN7 142 170 PRINT 18C. ASIT.IMEM.NODI.NCDJ.INC.IMPT.YNG.YNT.KFCL.KFLL.FCL.FLL.FL.1N7 1474
	5.				the set of

1N7 320 If IMPERIOD OF ICC 1120 1N7 1N7 340 60 FERMIC 00 1N7 1N7 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
IN7 122 PRIM 6.0 IN7 6.0 IN7 1.0 <td></td> <td>11.7</td> <td>320</td> <td>1F (NFEF+E0+0) GC TC 100</td> <td>1.57</td> <td>880</td>		11.7	320	1F (NFEF+E0+0) GC TC 100	1.57	880
1A7 360 60 T CEWAT(////25+ F1XCC ENC FUNCT FATTERS/// IA7 51 1A7 350 1 4P PATERS/32/4A34152/32/14/EAT 11,2(7%;5PAT 1/2)/ 1A7 1A7 250 2 9F ACF.,32,44+CGGC,2(2%;5PAT 11,2(7%;5PAT 1/2)/ 1A7 1A7 250 0 ACF.,22,44+CGGC,2(2%;5PAT 11,2(7%;5PAT 1/2)/ 1A7 1A7 250 0 ACF.,24,44+CGGC,2(2%;5PAT 1/2,1),2(1,4) 1A7 1A7 260 39 FCMAT0,20,1,450+FEF,14,5FF(KF,J1,J,1+1,4) 1A7 1A7 460 39 FCMAT0,20,1,450+FEF,14,5FF(KF,J1,J,1+1,4) 1A7 1A7 460 39 FCMAT0,20,1,450+FEF(KF,J1,J,1+1,4) 1A7 1A7 460 C 1A7 1A7 1A7 460 C 1A7 1A7 1A7 460 1C 5474110/2/22 1A7 1A7 460 1C 5474117/222 1A7 1A7 460 1C 5474117/222 1A7 1A7 460 2 4465444/227/444517/274,4447 <t< td=""><td></td><td>LN7</td><td>330</td><td>PAIN* 60</td><td>1 \ 7</td><td>660</td></t<>		LN7	330	PAIN* 60	1 \ 7	660
1A7 25C 1 ΦΡΑΤΤΕΡΑ, 3X, ΦΡΑΧΤΕ, 27, Χ, ΈΡΑΤΑΕ, ΔΥ, ΔΕΥΜΕΛΑΕ, Σ 1N7 5 1A7 25C 2 ΦΕ Ν<, 3X, ΦΡΑ CCO, 27, 27, ΔΕ ΜΤΙ, 27, 27, ΔΕ ΜΤΙΑΕ, 77, 27, 47		157	340	60 FURMAT(22225F FIDED END FURCE FATTERNS/2	. IN7	500
IA 200 2 94 NC 33,44CCCC,2(2X, CFAT 11,2(7X, CFAT 11,7<		187	350	1 3F PATTEPN, 3X, 4HAX15, 2(7X, 5FAX1AL, 7X, 5H5H5AF)/	1 N 7	910
[K7] 370 C [K7] 370 [INC	360	2 BF NC+,3X,4FCCOE,2(7X,5FAT 1),2(7X,5FAT J)/)	157	52C
107 2cc 2(2) (2) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		[] 7	370	ς	157	930
157 360 NFAC, PO, LyCCFF [NF] (FFF(AF, J), J=1, 4) NF7 157 460 70 0010 00, NY, CCFFF(AF, J), J=1, 4) NF7 157 460 70 0010 00, NY, CCFFF(AF, J), J=1, 4) NF7 157 460 C 615 (FFF(AF, J), AF10, 0) NF7 157 460 C 615 (FFN) 10A NF7 157 460 C 615 (FFN) 111 NF7 157 470 11C FRMA1(2///2P) CLEMENT SPECIFICATIFN // NF7 157 470 11C FRMA1(2///2P) CLEMENT SPECIFICATIFN // NF7 157 470 11C FRMA1(2///2P) CLEMENT SPECIFICATIFN // NF7 157 470 127 (FFR) 147 150 147 157 510 27 (AF11) 147 150 147 157 510 27 (C C 147 150 147 157 520 28 (AF AC , 38, 4F 1, 42, 4F 1, 42, 4F 1, 42, 4F 1, 42, 4F 1, 47 1,		1N7	360	00 70'NF=1,NF9F	187	940
15.7 20 7.0 0.0 NY, COREN, CEE, CHARLE, CEE, CHARLE, CEE, CHARLE, ADDITIONAL 11.7 7.7 15.7 400 0.0 CEEWART (215, 474 F0, 0.0) 15.7		IN7	390	NHAC RO. I.KCEFFINE);(FEF(NE,JI,J=I,G)	1N7	55 C
117 30 50 F(5WA1 (215,4F10,0) 1N7 1N7 117 420 C G F(FWA1 (16,18,1X,4F12,2) 1N7 G 117 400 C S15***N1 (3AA 1N7 G G 1N7 G		17	400	70 PPINT 90, NF,KOFEF(NF),(FEF(NF,J),J=1.4)	11.7	260
inf sig Circleret 10(s); x, sF(2,2) inf sig inf sig Circleret 10, x, sF(2,2) inf sig inf sig inf sig Circleret 2, x, sF(2,2) Circleret 2, x, sF(2,2) inf sig inf sig Circleret 2, x, sF(2,2) Circleret 2, x, sF(2,2) inf sig inf sig Circleret 2, x, sf(2,2) Circleret 2, x, sf(2,2) inf sig inf sig Circleret 2, x, sf(2,2) Circleret 2, x, sf(2,2) inf sig inf sig Circleret 2, x, sf(2,2) Circleret 2, x, sf(2,2) inf sig inf sig Circleret 2, x, sf(2,2) Circleret 2, x, sf(2,2) inf inf sig inf sig Circleret 2, x, sf(2,2) Circleret 2, x, sf(2,2) inf inf sig inf sig Circleret 2, x, sf(2,2) Circleret 2, x, sf(2,2) inf		157	410	20 FESMAT (215.4F10.0)	117	970
INT ACC INT INT 440 C ELEMENT DATA INT I		1.57	470	CO FOINAF (16.18.18.4F12.2)	157	980
<pre>117 440 C EICW-N1 DATA</pre>		1 10 1	6 3 6		1.57	950
<pre> Inv 400</pre>		167	000	C ELENGNY DATA '	1.17	1000
<pre>11.1 4.2 10 10 5 5134 110 177 727 5LFMFWT 5PFCIFICATIFA// 187 10 117 70 127 5LFMFWT 5PFCIFICATIFA// 187 117 117 70 127 5LFMFWT 5PFCIFICATIFA// 187 117 117 70 117 710 117</pre>		1 8 7	450		1.57	1010
<pre>1k0 400 100</pre>		1	4.0	100 GRINT 110	1.6.7	1020
<pre>1N7 4PC 1 37,4PELD% 37,4PACE2,21,4AACDE,21,4+KDE,21,4+TIF,21, 17,7 10 1N7 4PC 1 37,4PELD% 37,4PACE2,21,4AACDE,22,4+TIF,22,4+TIF,22, 17,7 10 1N7 5C 3 .5X.7P.MTIA/ 111/ 1N7 5SC 3 .4S.7P.MTIA/ 122,44 J22,4PELFF,21,4+TYPE,22, 1N1 10 1N7 5SC 6 .5X.7P.CFCE / 1 .171 1N7 5SC 110 1N7 111 1N7 5SC 110 1N7 11 1N7 5SC 110 1N7 5SC 110 1N7 11 1N7 1</pre>	•	1.57	400	THE FORMATION THE STERENT SPECIFICATION //	1.57	1030
<pre>INV 45C 1 Structure.spin.ctc.j.pin.ctcc.j.pin.ctc.j.pin.ctc.j.pin.ctc.j.pin.ctc.j.pin.ctc.</pre>		1 1 1 2	470	THE FUNCTION TO ATTRACT CONTRACTOR AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS	1.57	1040
INF 400 2 4 HDECENTRATION (ALTING) A HDECENTRATION (ALTING) <td></td> <td>187</td> <td>486</td> <td>I SAMPLET SAMPLE SAM</td> <td>DC 1N 7</td> <td>1050</td>		187	486	I SAMPLET SAMPLE SAM	DC 1N 7	1050
IN7 EUC 2 IAA, PAIN, IAE, I, 2X, 4H J, 2X, 4H ETFF, 2X, 4Y TYPE, 2X, INT IG IN7 520 5 4F5TFF, 7X, 4HHIST, 2X, 1F DL LL 12X, 1F DL LL 177 DL LL 177 IN7 520 5 4F5TFF, 7X, 4HHIST, 2X, 1F DL LL 12X LL 177 IN7 520 5 4F5TFF, 7X, 4HHIST, 2X, 1F DL LL 12X LL 177 IN7 530 176 107 187 1		104	490	2 AUDUCT (2) (47, 12) (17) (17) FA (CONSTRAINT) CONTRACTOR (17) (17) (17) (17) (17) (17) (17) (17)	16.7	1060
IN7 510 A JATAF NCL, JA, JF J, CA, AFF LF, ZA, AFF LF, ZA, AFF DL LL JATAF NCL, JA, JAFF DL LL JATAF DL <thjataf dl<="" th=""> LL JATAF DL</thjataf>		INZ	500		1.1.7	1020
1 K7 520 5 AFETTE, X, AMMEST, 2W, 12W 0L LL 1.3, 1.1 1 K7 540 1 1.7 </td <td></td> <td>117</td> <td>510</td> <td>1 38,4F NL-,38,4F L +28,4F J +28,4FL IFF,28,4F IFFC+28,</td> <td>1.57</td> <td>1000</td>		117	510	1 38,4F NL-,38,4F L +28,4F J +28,4FL IFF,28,4F IFFC+28,	1.57	1000
[N7] 53C 6 (5X, /M * Lule / f) (IA) (IA) [N7] 54C [N7] [N7		1.57	520		1.1	1000
IN7 54C IN7 IN7 55C KST=0 IN7 IN7 55C C IN7 IN7 55C C IN7 IN7 55C IN7 IN7 IN7 56C IN7 IN7 IN7 56C IN7 IN7 IN7 56C IN7 IN7 IN7 56C IN7 IN7 IN7 65C IF IN7 IN7 65C IN7 IN7 IN7 65C IN7 10 IN7 IN7 65C IN7 10 IN7 IN7 66C INC-11NC IN7 IN7 66C INC-11NC IN7 IN7 7C <t< td=""><td></td><td>IN7</td><td>536</td><td></td><td>1</td><td>1090</td></t<>		IN7	536		1	1090
INV 55C KNT-30 INV INV INV 55C C0 120 J=15,29 INV INV INV INV 57C IPC C0H(J)=0. INV INV <td></td> <td>[1 7</td> <td>54 C</td> <td></td> <td>1.1.7</td> <td>1100</td>		[1 7	54 C		1.1.7	1100
<pre>IN7 560 C0 120 J=15,29 IN7 11 IN7 57C [2 C CH4JIE0. IN7 11 IN7 57C [2 C CH4JIE0. IN7 11 IN7 57C [2 C CH4JIE0. IN7 11 IN7 57C [30 FFAC 140, INEL, INCDI, INCCJ, INC, ITPT, IKGY, IKOT, IKFCL, IKFLL, FFCL, FIN7 11 IN7 60C ISO FFAC 140, INEL, INCDI, INCCJ, INC, ITPT, IKGY, IKOT, IKFCL, IKFLL, FFCL, FIN7 11 IN7 62C IF (INEL, GT, INEN) CC TC 170 IN7 11 IN7 62C IF (INEL, GT, INEN) CC TC 170 IN7 12 IN7 62C IF (INEL, GT, INEN) CC TC 170 IN7 12 IN7 62C IF (INEL, GT, INEN) CC TC 170 IN7 12 IN7 62C IF (INE, GT, O) INC*1 IN7 12 IN7 62C IF (INE, GT, O) INC*1 IN7 12 IN7 62C IF (INE, GT, O) INC*1 IN7 12 IN7 62C IF (INE, GT, O) INC*1 IN7 12 IN7 62C IF (INE, GT, O) INC*1 IN7 12 IN7 62C IF (INE, GT, O) INC*1 IN7 12 IN7 62C IF (INE, GT, O) INC*1 IN7 12 IN7 62C IF (INE, GT, O) INC*1 IN7 12 IN7 62C IF (INE, GT, O) INC*1 IN7 12 IN7 62C IF (INE, GT, O) INC*1 IN7 12 IN7 62C IF (INE, GT, O) INC*1 IN7 12 IN7 72C IF (INE, GT, O) INT FEELD IN7 12 IN7 73C YNT=YERNC12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD IN7 12 IN7 73C IF (INC, GT, O) INT FEELD INT INT INT INT INT INT INT INT INT INT</pre>		1 N 7	55 C	K ST = 0	1.57	1110
IN7 570 IPC (C:MC JI=0. IN7 IN7 590 (M*M=1) IN7 IN7 590 (M*M=1) IN7 IN7 590 (M*M=1) IN7 FIPE IN7 600 130 FF4.6 140, INC.1 FIPE IN7 610 IFCL.FEINIT IN7 117 IN7 620 143 F30MAI (915,255.C, F10.0) IN7 117 IN7 610 IFCL.FEINIT IN7 117 117 IN7 620 167 IFEL.FEINIT IN7 117 IN7 640 160 NO1:ENCOJ IN7 117 IN7 650 NCD:INCCJ IN7 117 IN7 660 INC-INC 117 117 IN7 670 INC:INC.F0.0 IN7 117 IN7 670 KGLC #=1KG# IN7 117 IN7 700 KGLC #=1KG# IN7 12 IN7 710 YNS:FFENCI2) IN7 13 IN7 720 </td <td></td> <td>187</td> <td>560</td> <td>CO 120 J=15,29</td> <td>1 N 7</td> <td>1120</td>		187	560	CO 120 J=15,29	1 N 7	1120
<pre>IN7 5PC C IN7 11 iN7 5P0 [V=N=1] , IN7 60 [V=N=1] , IN7 60 [IOC [IOC [IOC [IOC [IOC [IOC [IOC [IOC</pre>		1.1.7	570	LAC COMPANY - 0.	187	1130
IN7 590 LVFM=1 IN7		N 7	SPC	c ' .	IN7	1140
<pre>, IN2 600 130 6FAC 140, INEL, INDD1, INCD1, INC, IIAPT, IKGM, IKOT, IKFCL, IKFLL, FFCL, FICT II IPDFW IN7 610 IFL, FFLNIT IN7 620 140 F29MAI [915, 2F5.C.F1C.0] IN7 11 IN7 620 IF (INEL.GT.IMEW, NDD1, NCD1, INC, IIAPT, IKGM, IKOT, IKFCL, IKFCL, FFCL, FL, IN7 11 IN7 620 IF (INEL.GT.IMEW, NDD1, NCD1, INC, IIAPT, IKGM, IKOT, IKFCL, IKFCL, FFCL, FLL, FL, FL, IN7 12 IN7 660 INCLINC IN7 12 IN7 660 INCLINC IN7 12 IN7 660 KGL(#IKGM IN7 12 IN7 660 KGL(#IKGM IN7 12 IN7 700 KGL(#IKGM IN7 12 IN7 730 YNS=YFSNC(1) IN7 12 IN7 760 KFCL_TKCT IN7 760 KFCL_TKCT IN7 760 KFCL IN7 770 IF (KCETT.NF.C) YNS=YFSNC(1) IN7 760 KFCL_TKCT IN7 760 KFCL_TKFCL IN7 770 IF (KCETT.NF.C) YNS=YFSNC(1) IN7 12 IN7 760 KFCL_TKFCL IN7 770 IF (KCETT.NF.C) YNS=YFSNC(1) IN7 12 IN7 760 KFCL_TKFCL IN7 770 IF (KCETT.NF.C) YNS=YFSNC(1) IN7 12 IN7 760 KFCL_TKFCL IN7 12 IN7 760 KFCL_TKFCL IN7 12 IN7 760 KFCL_TKFCL IN7 13 IN7 760 IF (INFL.NE.NEMPM) 130,170 IN7 13 IN7 810 IF (INFL.NE.NEMPM) 130,170 IN7 13 IN7 850 NCOJ=NCOI+INC IN7 14 IN7 850 IN7 180, NCOJ=NCOI+INC</pre>	-	11.7	590	[0 - N =]	1N7	1150
FIPEN IN7 610 IFLL_FFINIT IN7 1N7		1 N 2	660	130 FFAC 140, INEL, INCDI, INCDJ, INC, ITAPT, IKGM, IKOT, IKFCL, IKFLL, FFCL	• F I N 7	1160
LG FIVLTAIN7 620 143 F39MAT 1915,255,C,F1C,G) 117 11 IN7 620 IF (INEL.GT.IMEM) CC TC 170 1N7 IN7 650 NCCJ=INCCJ IN7 650 NCCJ=INCCJ IN7 650 NCCJ=INCCJ IN7 660 INCC-IINC 1N7 12 IN7 660 INCC-IINC 1N7 12 IN7 660 NCCJ=INCCJ IN7 670 KGL(V=IKGV IN7 12 IN7 710 YNS=YESNC(1) IN7 12 IN7 730 YNS=YESNC(1) IN7 12 IN7 730 YNS=YESNC(1) IN7 12 IN7 730 KGL(=1KFCL IN7 17 IN7 750 KGL(=1KFCL IN7 17 IN7 17 IN7 750 IN7 17 IN7 17 IN7 750 IN7 17 IN7 17	FIPFM	1 N 7	610	1FLL,FFLNIT	1 N 7	1170
IN7 62C IF (INEL_GT.IMEN) CC TC I7C IN7 IN7 F7,IIX, IN7 640 160 NCDI=INCDI IN7 IN7 IN7 65C NCCJ=INCDJ IN7 IN7 IN7 660 INC-1INC IN7 IN7 IN7 690 KGL(V=IKGM IN7 IN7 IN7 700 KGUTT=INGT IN7 IN7 IN7 730 VNT=YESKC[1) IN7 IN7 IN7 760 KGUTT=INF.C) YNT=YESKC[1) IN7 IN7 IN7 760 KGUTT=INF.C) YNT=YESKC[1) IN7 IN7 IN7	CR FIVEL	AIN7	620	143 F29MAT (915,255.C,51C.C)	187	1160
F7,11X, 1K7 640 160 167 187 <		1 N 7	630	IF (INEL-GT.INEN) CC TC 170	1.67	1150
1A7 650 NCCJ=INCCJ 1A7 1A7 1A7 660 INC-IINC 1A7 1A7 1A7 660 KGL(F=IKGF IN7 1A7 1A7 690 KGL(F=IKGF IN7 1A7 1A7 700 KGUTT=IKGT IN7 1A7 1A7 730 YS=YESNC[1) IN7 1A7 1A7 730 YS=YESNC[1) IN7 1A7 1A7 730 YS=YESNC[1) IN7 1A7 1A7 760 KFL(=1KFUL IN7 1A7 1A7 760 KFL(=1KFUL IN7 13 1A7 760 KFL(=1KFUL IN7 13 1A7 770 FUL=IKFUL IN7 13 1A7 770 FUL=IFFL IN7 14 1A7 770 FUL=IFFL IN7 17	F7,11×,	157	640	100 NC01 = [NC0]	1 N 7	1500
1A7 660 1AC-11NC 1A7	•	1 N 7	650	NCCJ=INCCJ	1 \ 7	1210
1 N7 67.0 1 F (1NC=0.0) INC=1 1 N7 1 N7 1 N7 67.0 1 MET=11MET 1 N7 1 N7 1 N7 67.0 KGLCV=1KGV 1 N7 1 N7 1 N7 70.0 KGUTDT=1KGT 1 N7 1 N7 1 N7 1 N7 70.0 KGUTDT=1KGT 1 N7 1 N7 1 N7 1 N7 71.0 YNS=YFENC(12) 1 N7 1 N7 1 N7 1 N7 73.0 YNT=YEENC(12) 1 N7 1		1 \ 7	660	INC-11NC	1N7	1250
IN7 FFQ IMET=INPET IN7		1 N 7	670	1F (1NC+52+0) INC=1	1 N 7	1230
IA7 690 KGL(V=1KGV IA7 12 INT 600 IA7 700 KGUTGT=1KGT IA7 12 IN7 710 YNGSYESAC[2) IN7 12 AL TC IA7 720 IF (KGECM=AF=0) YNS=YESAC[1) IA7 12 IA7 730 YNT=YESAC[2) IA7 12 IA7 730 YNT=YESAC[1) IA7 12 IA7 730 YNT=YESAC[1) IA7 12 IA7 730 YNT=YESAC[1) IA7 13 IA7 750 KFCL=1KFCL IA7 13 IA7 760 KFLL=1KFLL IA7 14 IA7 760 KFLL=1KFLL IA7 13 IA7 760 KFLL=1KFLL IA7 14 IA7 760 KFLL=1KFLL IA7 14 IA7 760		[N7	680	· INST = I INST	157	1240
INT 600 INZ 700 KCUTCTIKGT INZ		117	690	KGL(M= KGM	[N7	1250
[N7 710 YNG=YESC(2) JN7 12 AL TC [N7 720 IF (KGE(TM_NE_C) YNG=YESNC(1)) IN7 12 JN7 730 YNT=YESNC(2) IN7 12 1,77)) [N7 730 YNT=YESNC(2) IN7 12 1,77)) [N7 730 YNT=YESNC(1) IN7 12 1,77) [N7 730 YNT=YESNC(1) IN7 12 1,77 740 IF (KCUTO!-NC-C) YNT=YESNC(1) IN7 13 1,77 760 KFCL=1KFLL IN7 13 1,77 760 KFCL=1KFLL IN7 13 1,77 760 KFL=1FFL IN7 13 1,77 760 FINIT=FFINIT IN7 13 1,77 700 FINIT=FFINIT IN7 13 1,77 700 FINIT=SFINIT IN7 13 1,77 700 ASTT=AST(1) IN7 13 1,77 800 IF (INEL-NE-NMEM) 130,170 IN7 13 1,77 830 IG (INT 12) IN7 13 1,77 840 NC01=NC01+NC IN7 14 1,70 840 NC01=NC01+INC IN7 14 1,70 850 ASTT=AST(2) IN7 14 1,77 850 IN7 14 IN7 14 1,77 850 IN7 14 <t< td=""><td>INT EOC</td><td>1 N 7</td><td>700</td><td>K CUT C T = 1 K CT</td><td>117</td><td>1269</td></t<>	INT EOC	1 N 7	700	K CUT C T = 1 K CT	117	1269
AL TC IN7 720 IF (K0000+NF+C) YNS=YFSNC(1) IN7		[].7	710	YNS=YFSNC[2]	1N7	1270
IN7 730 VNT=VEGKC[2) IN7 16 1,7)) IN7 740 IF (KCUTOT.NT.C.) YNT=YEANC(L) IN7 17 1,7 740 IF (KCUTOT.NT.C.) YNT=YEANC(L) IN7 18 1,7 750 KFCL=1KFCL IN7 13 1,7 760 KFLL=1KFLL IN7 13 1,7 760 KFLL=1KFLL IN7 14 1,7 760 FLL=FFLL IN7 15 1,7 790 FLNT=YETNT IN7 17 1,7 790 FINIT=FFINIT IN7 17 1,7 700 ASTT=AST(1) IN7 13 1,7 810 IF TINE.NE.NMEM) 130,170 IN7 13 1,7 810 IF TINE.NE.NMEM) 130,170 IN7 14 1,7 840 NC0I=NC0I+INC IN7 14 1,17 840 NC0J=NC0I+INC IN7 14 1,17 840 NC0J=NC0I+INC	AL TE	LN7	720	IF (KGECM-NF-C) YNG=YFSNC(1)	117	1280
1,7))) [K7 740 IF (XCUTCI.NC.C) YNT=YFYNC[L] [N7 13 N7 750 KFCL={KFCL N7 750 KFCL={KFCL N7 760 KFLL=1KFLL N7 770 FCL=FF7L N7 770 FCL=FF7L N7 780 FLL=FFLL N7 780 ASTT=AST(1) N7 810 IF (INFL-NG-NMEM) 130,170 T5 *****)]N7 820 L67 NCD1=NCC14INC N7 840 NCD1=NCC14INC N7 850 L67 NCD1=NCC14INC N7 860 C N7 14 N7 860 C N7 14 N7 860 C N7 14 N7 870 L70 PF(NT 180, ASTT,IMEM,NDD1,NC0J,INC,IMPT,YFG,YNT,KFCL,KFLL,FCL,FLL,IN7 14		IN7	730	VNT=VESNE(2)	117	1550
1N7 750 KPDL=1KFDL IN7 137 1N7 760 KFLL=1KFDL IN7 137 1N7 760 KFLL=1KFUL IN7 137 1N7 760 KFLL=1KFUL IN7 137 1N7 780 FLL=FFLL IN7 137 1N7 780 FINIT=FFINIT IN7 137 1N7 810 IF IN7 130 177 1N7 810 IF IN7 130,170 IN7 137 1N7 810 IF IN7 130,170 IN7 137 1N7 820 C IN7 137 130,170 IN7 137 1N7 830 ISO ISO ISO IN7 147 IN7 840 ISO ISO IN7 147 IN7 840 ISO ISO IN7 147 IN7 840 ISO ISO IN7 147 </td <td>1,7))</td> <td>EN7</td> <td>740</td> <td>1F (KCUTCI.NC.C) YNT=YF5NC(L)</td> <td>1N7</td> <td>1300</td>	1,7))	EN7	740	1F (KCUTCI.NC.C) YNT=YF5NC(L)	1N7	1300
1K7 760 KFLL=1KFLL [N7 12 1K7 770 FCL=1KFLL [N7 12 1K7 770 FCL=1FFLL [N7 12 1K7 780 FINIT=FFINIT [N7 13 1K7 740 FINIT=FFINIT [N7 13 1K7 700 ASTT=AST(1) [N7 13 1K7 810 IF [N7 13 1K7 820 IF IK7 13 1K7 820 IF IK7 14 1K7 840 KC01=KC01+KC IK7 14 IK7 840 KC01=KC01+KC IK7 14 IK7 840 KC01=KC01+KC IK7 14 IK7 850 IK7 IK7 14		1 N 7	750	KECL-IKECL	157	1310
1N7 77C FCL=FFDL IN7 137 1N7 78C FLL=FFDL IN7 137 1N7 78C FLL=FFDL IN7 137 1N7 78C FL1=FFLNT IN7 137 1N7 810 IF (IN7 13 1N7 820 C IN7 13 1N7 830 NCDI=NCDI+INC IN7 14 1N7 840 NCDJ=NCDI+INC IN7 14 1N7 850 ASTT=#ST(2) IN7 14 1N7 860 C IN7 14 1N7 860 C IN7 14 1N7 860 L IN7 14 1N7 87 190 PF(NT 180, ASTT=#ST, IMEM, NDDI, NCOJ, INC, IMCT, IMCT, IMCT, IN7 14		157	760	XFLL=IKFLL	EN7	1320
1N7 720 FLL=FFLL 1N7 12 1F7 740 FINIT=FFINIT 1N7 12 1N7 700 GASTI=AST(1) 1N7 13 1N7 810 IF (IN7 13 1N7 810 IF (IN7 13 1N7 810 IF (IN7 13 1N7 820 IN7 13 170 IN7 13 1N7 820 IN7 IN7 14 IN7 14 17 15 1N7 830 ICOJ=NCDI+INC IN7 14 IN7 14 IN7 840 ICOJ=NCDI+INC IN7 14 IN7 850 ICOJ=NCDI+INC IN7 14 IN7 860 IN7 15 IN7 14 IN7 860 IN7 14 IN7 14 IN7 860 IN7 14 IN7 14 IN7 87 </td <td></td> <td>157</td> <td>770</td> <td></td> <td>157</td> <td>1330</td>		157	770		157	1330
147 740 FINIT=FFINIT IN7 147 740 FINIT=FFINIT IN7 157 740 157 157 157 810 IF 150,170 IN7 157 810 IF 150,170 IN7 13 15 ####\$)187 820 IN7 13 17 14 15 ####\$)187 820 IN7 14 187 14 107 840 NCD1=NCC14 INC IN7 14 187 14 107 860 C IN7 14 187 14 107 860 C IN7 14 187 14 107 860 C		IN7	780		1.57	1340
******) IN7 PD0 ASTT=AST(1) IN7		1+7	790	FINITEFINIT	IN7	1350
IN7 810 IF (INFL.NE.NMEM) 130,170 IN7 13 IS ###\$})IN7 820 C IN7 13 FD) 1N7 830 L63 NCD1=NCD14INC L67 12 LN7 840 NCD1=NCD1+INC IN7 14 LN7 850 NCD1=NCD1+INC IN7 14 LN7 850 NCT=AST(2) IN7 14 LN7 860 L IN7 14 LN7 870 L IN7 14 LN7 860 L IN7 14 LN7 870 L L LN7 870 L L	*****	1N7	PCO	$\Delta ST = \Delta ST (2)$	1.N7	1360
TE ****\$)IN7 E2C C FD) 1N7 E2C C FD) 1N7 E2C C IN7 E2C C IN7 E2C C IN7 E2C C IN7 E2C NSTE=PST(2) IN7 E6C C IN7 E6C C IN7 E7C I7O PFINT 18C, ASIT,IMEM,NODI,NCOJ,INČ,IMET,YNG,YNT,KFCL,KFLL,FCL,FLL,IN7 14	· · · · ·	1.57	810	IF (INELNENNER) 130.170	IN7	1370
Los Constraint Constraint <td></td> <td>1167</td> <td>820</td> <td></td> <td>11.7</td> <td>1.360</td>		1167	820		11.7	1.360
107 107 107 107 107 107 840 COJ=RCDJ+TRC 107 107 107 850 ASTT=AST(2) 107 14 107 860 C 107 14 107 860 C 107 14 107 860 C 107 14 107 870 170 PEINT 180, ASIT, IMEM, NOD1, NCOJ, IAČ, IMBT, YNG, YNT, KFCL, KFLL, FCL, FLL, INT 14		1 1 1 7	830		1 6.7	1350
IN7 14 IN7 θ5C ASTT=AST(2) IN7 86C L IN7 14 IN7 87C I7O PFINT 18C, ASIT,IMEM,NOD1,NCDJ,INČ,IMDT,YNG,YNT,KFCL,KFLL,FCL,FLL,IN7 14	,	1.1.7	840		1.0.7	1400
107 14 107 866 C 107 866 L 107 87C 170 ΡΕΙΝΤ 180, ΑΞΙΤ,ΙΜΕΜ,ΝΟΟΙ,ΝΟΌΙ,ΙΝϹ,ΙΜΟΤ,ΥΝΟ,ΥΝΤ,ΚΕΟL,ΚΕLL,ΕΟL,ΓLL,ΙΝΤ 14		1.57	ase ase		167	1410
IN7 BUV C IN7		1 1 1 7	000 040	אין ו = אין ו ע עו	15.7	1420
INT GIG IND PRINT 190, ASII, IMEM, NUDI, NGJJ, ING, IMER, TNG, YNI, KHUL, KHUL, FUL, INT 14		157	200	L	1.1.7	1420
		111	ert	L/U PEINE 180, ASII, MEM, NUDI, NUDI, NUDI, INC, MEL, TRU, TRU, TRU, TRU, TRU, TRU, TRU, TRU	-, 187	1430

•

. .

	IFIN T	1.1.7	1000		(AI) 11-000A
18	0 FOUNDT (42,14,17,316,38,46,28,46,17,16,F11,2,610,2,611,2)	1.57	1450		GALL-21=STNA
c		1.57	1450		Safe Die Sina
Ę	COUNT NUMBER OF STEVENT TIME HISTORIES	IN7	1420		54(2.2)=(E54
ċ		17			
· .	IF INCUTOT-NE-01 NELTHENELTHAN	1 1 1 1	1400		
c		1.7	1600		CA(0,3) = -SIAA
ē.	LCCATTCN WATERY	1.67	1500		
ē.		1147	1510		
•	· CC 190 L=1.7	1.57	1520		
		1 1 1 7	1550	210	SET TIVE .
19		1.7	1240	210	3377(17-34 15 (MED) 50 A) 60 75 256
••		1 157	1550		
r .		1 N 7	1524		
è .	CIENCLE ORDERING	1.07	1570	220	FFFF(1)=FEF(KFUL,1)=FUL
~	ELEBERT PROFERITES	1.1.1	1580		THE INDEPENDED AND SET OF 220
۰.	VI SYLADD () VI ADD ()	107	1596		LALL MULI (GA,F+8F,5FF,4,4,1)
		1	1000		GC 10 PEC
		187	1610	5 30	CC 240 1=1,4
	FL=SUR(1,L=*2+TL**2)	1117	1650	240	SEE([)=PEEF(])
		1 1 1 7	1630	c	5 C
	SINAIYL/FL'	[N7	1646	250	IF (KELLAFC.0) GC TC 290
C	THIST = NUMBER DEFINING THE PART OF THE CYCLIC CLAVED WHICH IS	187	1650		DC 260 L=1.4
C .	CCCUPIEC CURING THIS TIME STEP. STHIST - HISTORY OF	I N 7	1660	260	FF9F(l)=F9F(KFUL,[)#FLL
C	PERMANANT DEFORMATION OF NEWBER.	1N7	1670		IF (KCFEF(KFLL).EG.D) CC TC 270
	IHIST = L	1.57	1680		CALL MULT (GA,FEFE,SSFE,4,4,1)
1	15T4 = (FYYP(INEY,3)*FL)/FTYP(INEY,1)	[N7	1690		CC TC 290
	BSTR=FTY?(1487,4)*FL/(F1Y¤(1M37,2)*FTYF(1M¤1,1))	167	1700	270	DC 240 I-1,4
	LNEM=0.D	1 N 7	1710	240	SSFF(I)=(FFF(I) .
	Flark=Flac(1Wd1''')	1N7	1720	c	
	Ul=FTYP(IMPT,5)	1 N7	1730	290	CD 3CC 1=L+A
	LB=F14P([N91,6)	187	1740	300	\$\$FF(1)=\$\$FF(1)+\$FF(1)
	POSTEL=FTYP(INGT,7)	IN7	1750	c	
	FCR=FTYF(INHT,4)	[N7	1760	•	CALL NULTE (GA,59F5,00,4,4,1)
	PCRM = FTYP(INBT, 15)	LN 7	1770 -		CALL SECRCE (CO)
	1601=}	1 1 7	1780	c	
	£1H1 € Î = 0+0 ·	1 N 7	1796 *	c	INITIALIZE FLEVENT FORCE
	APEA=FTY9(1M8T,2)	1 N 7	1800	÷.	
	<pre>v pAb=VdevetAbflest*3)</pre>	I N 7	1610		51 1 5= (SSEE (3)-SSEE (1))*(.5
	EALER = C.C	1N7	1820	310	ENTW=FINLT+SFEF
	FALE = FTYP(IMET,L) + AREA / FL	I N 7	1930		FFL = ENF W
	CS=F1YP(1/9T+9)*6ALS	1 N 7	1840		15 (FINIT-L1-9-) 60 TC 120
	C8=FTYP(1M9T; 10) PEALE	187	1850		SEST(1)=FINIT
	F6=FTYFLINAT,11)	1N7	1660		HEST(2)=0.0
	F 7=F TYPL (M97, 12)	1N7	1970		67 TE 330
	U6=FTYP(19PT,13)	157	1980	120	REST/ 31-E1NIT
	U7=F1YFL[WB1,14]	EN7	1850		CEST(A)-D.D
	CF=CALE	1.57	1900	c	
	C(L)=CF	1117	1510		
=		117	1920	~	CALL FIRIN
ċ	LEARS BUE TO FIVER END FORCES	1.57	1930	, r	CENCRATE MICCING ELEVENTS
ċ		INT	1940	ć	A MERICAL ATOMICE CEREINIS
•	SFFF=0.	187	1950	L.	TE TIMEN ED LAENA CETAEL
	16 (MECLAKEN) - FEAD) 66 TO 330	107	1560		TH TIMEWAEGENMENT HETCHN
	DD 200 101.NDGF	1147	1970		12 1100 22 110 1
	CC 200 I=1.NCCF	1.57	1970		IF (IMEN.EG.INEL) GE TO 150
20		1 1 1 7	1900		CU TU 160
26		1.017		C	
	·				

IN7 2030 117 2040 IN7 2050

IN7 2060 IN7 2070 IN7 2020 LN7 2090 187 2100

IN7 2110 IN7 2120

IN7 2130 IN7 2140

167 2150 1N7 2160 117 2170 1N7 2180 IN7 2190

187 2200

IN7 221C

117 2240 LN7 2250 IN7 2260

117 2270 IN7 228C 117 2290

117 2300 IN7 2310

ÌN7 2320 IN7 2330 117 2340

IN7 2350 IN7 2360 IN7 2360 IN7 2370 IN7 2380

LN7 2390

1N7 24CG IN7 2410 IN7 2420 IN7 2430 IN7 2440 IN7 2450 IN7 2470 IN7 2470

IN7 24PC

1N7 2490 157 2500

IN7 2510 IN7 2520 IN7 2520 IN7 2530 IN7 2540 IN7 2550

-297

	ENG	1.67	5200
	SUBGEUTINE STIFT INSTEP,NOCF,NINEC,COMS,FK,EFAC)	S T 7	10
	COMMEN /INFEL/ INFN.KST.LVI4J.KGECN.FALFF.EALE.FL.CCSA.SINA.	ST7	20
	NCC1,NCCJ,CC5,CP,PYP,F6,U6,F7,U7,1H1ST,	517	30
	1FLY.STHIST.JSTA.ESTA.UI.UE.FCSTEL.FCF.UCLC.PCLD.	517	4 C
	CCLD_FIPSY.(NE%.PNE%.CE).CF.CLNS1.KFLTPT_REST(160)	517	50
-	CONNEN /WEEK/ SST(2.2), 44(2.4), 44(4.5), FEK(4.4), 6(19(4)	\$17	6.0
	$ (f_{i}) = (f_{i}) + (f_$	CT7	70
	are not the set of the provide		
		3 T T 2	
			1 00
	ever Stevense reverse every entrefere were learned currently	517	100
	PEST SCREINE (-633 CEEPERT - 2111PRE-5 PEET IGHTER SCOPECTIVE	211	130
		617	130
		0.7.7	100
		217	
		677	1.50
		217	105
		~ 3 7	100
10	COLTA DESTRUCTION	217	100
ιv		517	150
		517	200
		517	210
		517	220
	CL 1C 503	517	530
90	IF (MSTED.FC.1) CCNS*=FALE*DFAC	\$17	240
	IF (MSTEP-50-1) or to 500	517	250
	THE SHAPE OF THE FULLO FORCE - DISPLACEMENT CURVE CAN	517	26 C
	ME CHANGED BY CHANGING THE INPUT VARIABLES. FEWEVER,	517	270
	- CARE MUST RE TAKEN TO ASSURE THAT THE INFLT BEHAVIOR	577	280
	RECENCIES REACE CEHAVIOR. INFLT OUTH AS NECATIVE F6 CR F7	517	250
	COULD CIVE STRANGE RESULTS.	517	300
200	CONST=CE-CCLD	577	310
5 C C	FK(), I}=CONSTACDS44M2	577	350
	FK(1,2)=CCNST*S(NA*CDSA	ST7	330
	FY(1,3)=-FK(1,1)	ST7	340
	FK(1,4)=-FK(1,2)	ST7	250
	FK(2,2)=CCNST+SLNA++2	ST7	36.0
	+ K(2, 2)=FK(1, 4)	517	370
	FK(2,4)=-FK(2,2)	ST7	380
	FK(3,7)=FK(1,1)	ST 7	290
	FK(3,4)=FK(1,2)	517	400
	FN (4.0) = FK (2.2)	517	41 C
	DC 550 I=2.4	517	420
		517	430
		517	4 4 C
E50	FK(1, 1)=FK(1, 1)	517	450
	COMPLET OSCINETRIC STIFFAESS	517	46.0
500		ST /	970
	IF (MSTEE, NEAL) SO TO 700	517	480
		517	450
620		\$17	500
~ ~ ~		5 7 7	510
670		517	526
		517	530
		ST7	640
		517	550
		517	230

...

c

r

c

C

ŕ

c

¢

C

c

C

c

с

. .

....

AA(2,4)=-CCSA ST7 560 CALL MULTST [AA, ST, AATK, FFK, 4,2] 517 570 CC 650 1=1,16 517 580 #EC EK(1,1)#EK(1,1)#EEK(1,1) ST7 590 700 CENTINUE 5-7 6.00 SE LUSIN 517 610 END 517 620 SUPPEUTINE CUT7 (CENS, NINEC) C U 7 10 COMMON ZINFHUZ IMEM, KST. LN(4), KGECK, HALEF, CALE, FL. COSA, SINA, CU7 20 NOCI,NODJ.CS.CO,PYP,FC.UC.F7.U7.IHIST, CU7 30 IFUT,STHIST,TSTP,ESTF,UL,UF,FCSTEL,FCP,UCLD,POLD, DU 7 40 CCLD, FIPRM.UNEN, PNEN, PFL, CF, CENST, KCLTDT, REST(160) EU7 50 DINENSION COMMINGCENSION 007 60 FQUIVALENCE (IMEM, CCM(1)) 007 70 *********** 80 01.7 S.P. POST BUCKLING TRUSS ELEVENT -- ENVELOPE FLIPLT SUPECITINE Cu7 100 0117 110 CHARLES REEDER Cu7 120 CU7 130 PEVISED JANUARY 19,1976 CU7 140 ru7 150 CU7 170 ENVELOPE CUTPUT FOR POST PUCKLING TRUSS FLEMENTS CU7 180 DE 10 JULININES 007 190 10 CCM(J)=COMS(J) CU7 200 IF (IMEM.FG.1) PRINT 20 CL7 210 20 FORMAT (JEH POST BUCKLING TRUSS ELEMENTS (TYPE 7) .// 007 220 1 SH ELFM, 7x, 4HNCDE, 14X, 20HMAXIMUM AXIAL FORCES , CU7 230 LEX, LOHMAXINUM EXTENSIONS, 12X, 25HACCUM. FLASTIC FATENSIONS, 7 2 CU7 24C 54 NO., 3X, 4H 1 , 3X, 4H J , 6X, 5HOUNEN, 4X, 4HTINE, 5X, CU7 250 3 PHTENSION , 28, 4HTINH, 5X, PHPCSITIVE, 2X, 4HTIME, ۵ CU7 260 3X, BHNEGATIVE, 3X, 4HTIME, 7X, AHPESITIVE, 5X, BHNEGATIVE/1 CU7 270 5 FRINT 30,1MCM,NCC1,NDDJ, (REST(1),1=1;10) CU7 280 30 FCPMAT(14+17,17,2X,2(F11+2,F7-2),2X,P(F11-5,F7+2)+2X,2F13-5) CU7 290 RETURN CU7 300 END 017 310 SUBRCUTINE THPR7 (KS) T⊢7 10 COMPEN ZTHISTZ ITPOUT(10), THOUT(20), ITPP, ISAVE, NELTH, NETH, NET, ISE TH7 20 TH7 30 40 TH 7 50 POST BUCKLING TRUSS ELEMENT -- RECEGANIZED CUTPUT SUBROUTINE. 167 60 TH7 70 CHARLES REEDER **TH7** ε¢ 1 H 7 90 REVISED FERRUARY 12,1976 TH 7 100 T E 7 110 RECREANIZED TIME HISTORY CUTPUT 117 130 IF (NS.61.1) SC TP 20 TF7 140 PEINT 19, ITHOUT(1), ITHOUT(3) TH7 150 TO PERMATCIONIREGULTS FOR GROUP, 13,291 POST FUCKLING TRUSS ELEMENTS, TH7 160 1 13H, ELEMENT NO., 14, //5X, 5H TIME, 3X, 4HNODE, 3X, 4HNODE, 3X, TH7 170 P EHPHASERCK, SHAXIAL, 4X, 9H TETAL, 3Y, 14 HACCUM, FLASTIC, 7, 5X,
 SH (3X, 44 T, 3X, 44 J, 2X, 54 CODE, 6X, 54 FCPCE, 4X,
 9HEXTLNSICA, 4X, 9HEXTENSICN) エピノ 180 Th 7 190 117 200 20 PRINT TO, THOUT(4), (ITHOUT(1), 1-4, 2), (THOUT(1), 1-1, 2) TH7 210 30 FURMAT (1H0, FR.3, 217, 18, F14.2, 3F13.5) TH7 220 IF (155,F0.0) SC TO 40 T ► 7 230 WRITE (NEV) TECUT(4), CITECUT(T), (=4, e), (TECUT(T), (=1, 2)) T⊢7 240 "C CONTINUE TH7 250 **F**TUEN 167 260 E NO Trl 270

.

298

FIGURE D1 - DEFINITION OF INPUT PARAMETERS

-299-

FIGURE D3 - BUCKLING BEHAVIOR DURING LATER CYCLES

.

· · ·

.

• •

-303-

FIGURE E2 - WORKING DRAWINGS OF TEST FRAME 2

-304-

FIGURE E3 - WORKING DRAWINGS OF THE LOADING BEAM

FIGURE E4 - WORKING DRAWINGS OF LOADING BEAM SUPPORT

-306-

FIGURE E5 - WORKING DRAWINGS OF THE LATERAL SUPPORT FRAME

-307-

FIGURE E6 - ASSEMBLY DRAWINGS FOR THE LATERAL SUPPORT FRAME

EARTHQUAKE ENGINEERING RESEARCH CENTER REPORTS

NOTE: Numbers in parentheses are Accession Numbers assigned by the National Technical Information Service; these are followed by a price code. Copies of the reports may be ordered from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia, 22161. Accession Numbers should be quoted on orders for reports (PB-- ---) and remittance must accompany each order. Reports without this information were not available at time of printing. Upon request, EERC will mail inquirers this information when it becomes available.

EERC 67-1	"Feasibility Study of Large-Scale Earthquake Simulator Facility," by J. Penzie	en,
	J. G. Bouwkamp, R. W. Clough, and D. Rea - 1967 (PB 187 905)A07	

- EERC 68-1 Unassigned
- EERC 58-2 "Inelastic Behavior of Beam-to-Column Subassemblages under Repeated Loading," by V. V. Bertero - 1968 (PB 184 888)A05
- EERC 68-3 "A Graphical Method for Solving the Wave Reflection-Refraction Problem," by H. D. McNiven and Y. Mengi - 1968 (PB 187 943)A03
- EERC 68-4 "Dynamic Properties of McKinley School Buildings," by D. Rea, J. G. Bouwkamp, and R. W. Clough - 1968 (PB 187 902)A07
- EERC 68-5 "Characteristics of Rock Motions during Earthquakes," by H. B. Seed, I. M. Idriss, and F. W. Kiefer 1968 (PB 188 338)A03
- EERC 69-1 "Earthquake Engineering Research at Berkeley," 1969 (PB 187 906)All
- EERC 69-2 "Nonlinear Seismic Response of Earth Structures," by M. Dibaj and J. Penzien 1969 (PB 187 904)A08
- EERC 69-3 "Probabilistic Study of the Behavior of Structures during Earthquakes," by R. Ruiz and J. Penzien 1969 (PB 187 886)A06
- EERC 69-4 "Numerical Solution of Boundary Value Problems in Structural Mechanics by Reduction to an Initial Value Formulation," by N. Distefano and J. Schujman - 1969 (PB 187 942)A02
- EERC 69-5 "Dynamic Programming and the Solution of the Biharmonic Equation," by N. Distefano 1969 (PB 187 941)A03
- EERC 69-6 "Stochastic Analysis of Offshore Tower Structures," by A. K. Malhotra and J. Penzien -1969 (PB 187 903)A09
- EERC 69-7 "Rock Motion Accelerograms for High Magnitude Earthquakes," by H. B. Seed and I. M. Idriss -1969 (PB 187 940)A02
- EERC 69-8 "Structural Dynamics Testing Facilities at the University of California, Berkeley," by R. M. Stephen, J. G. Bouwkamp, R. W. Clough and J. Penzien - 1969 (PB 189 111)A04
- EERC 69-9 "Seismic Response of Soil Deposits Underlain by Sloping Rock Boundaries," by H. Dezfulian and H. B. Seed - 1969 (PB 189 114)A03
- EERC 69-10 "Dynamic Stress Analysis of Axisymmetric Structures under Arbitrary Loading," by S. Ghosh and E. L. Wilson - 1969 (PB 189 026)Al0
- EERC 69-11 "Seismic Behavior of Multistory Frames Designed by Different Philosophies," by J. C. Anderson and V. V. Bertero 1969 (PB 190 662)Alo
- EERC 69-12 "Stiffness Degradation of Reinforcing Concrete Members Subjected to Cyclic Flexural Moments," by V. V. Bertero, B. Bresler, and H. Ming Liao - 1969 (PB 202 942)A07
- EERC 69-13 "Response of Non-Uniform Soil Deposits to Travelling Seismic Waves," by H. Dezfulian and H. B. Seed - 1969 (PB 191 023)A03
- EERC 69-14 "Damping Capacity of a Model Steel Structure," by D. Rea, R. W. Clough, and J. G. Bouwkamp -1969 (PB 190 663)A06
- EERC 69-15 "Influence of Local Soil Conditions on Building Damage Potential during Earthquakes," by H. B. Seed and I. M. Idriss - 1969 (PB 191 036)A03

EERC 69-16	"The Behavior of Sands under Seismic Loading Conditions," by M. L. Silver and H. B. Seed - 1969 (AD 714 982)AO7
EERC 70-1	"Earthquake Response of Gravity Dams," by A. K. Chopra - 1970 (AD 709 640)A03
EERC 70-2	"Relationships between Soil Conditions and Building Damage in the Caracas Earthquake of July 29, 1967," by H. B. Seed, I. M. Idriss, and H. Dezfulian - 1970 (PB 195 762)A05
EERC 70-3	"Cyclic Loading of Full Size Steel Connections," by E. P. Popov and R. M. Stephen - 1970 (PB 213 545)A04
EERC 70-4	"Seismic Analysis of the Charaima Building, Caraballeda, Venezuela," by Subcommittee of the SEAONC Research Committee: V. V. Bertero, P. F. Fratessa, S. A. Mahin, J. H. Sexton, A. C. Scordelis, E. L. Wilson, L. A. Wyllie, H. B. Seed, and J. Penzien, Chairman - 1970 (PB 201 455)A06
EERC 70-5	"A Computer Program for Earthquake Analysis of Dams," by A. K. Chopra and P. Chakrabarti - 1970 (AD 723 994)A05
EERC 70-6	"The Propagation of Love Waves Across Non-Horizontally Layered Structures," by J. Lysmer and L. A. Drake - 1970 (PB 197 896)A03
EERC 70-7	"Influence of Base Rock Characteristics on Ground Response," by J. Lysmer, H. B. Seed, and P. B. Schnabel - 1970 (PB 197 897)A03
EERC 70-8	"Applicability of Laboratory Test Procedures for Measuring Soil Liquefaction Characteristics under Cyclic Loading," by H. B. Seed and W. H. Peacock - 1970 (PB 198 016)A03
EERC 70-9	"A Simplified Procedure for Evaluating Soil Liquefaction Potential," by H. B. Seed and I. M. Idriss - 1970 (PB 198 009)A03
EERC 70-10	"Soil Moduli and Damping Factors for Dynamic Response Analysis," by H. B. Seed and I. M. Idriss - 1970 (PB 197 869)AO3
EERC 71-1	"Koyna Earthquake of December 11, 1967 and the Performance of Koyna Dam," by A. K. Chopra and P. Chakrabarti - 1971 (AD 731 496)AO6
EERC 71-2	"Preliminary In-Situ Measurements of Anelastic Absorption in Soils using a Prototype Earthquake Simulator," by R. D. Borcherdt and P. W. Rodgers - 1971 (PB 201 454)A03
EERC 71-3	"Static and Dynamic Analysis of Inelastic Frame Structures," by F. L. Porter and G. H. Powell - 1971 (PB 210 135)A06
EERC 71-4	"Research Needs in Limit Design of Reinforced Concrete Structures," by V. V. Bertero - 1971 (PB 202 943)A04
EERC 71-5	"Dynamic Behavior of a High-Rise Diagonally Braced Steel Building," by D. Rea, A. A. Shah, and J. G. Bouwkamp - 1971 (PB 203 584)AO6
EERC 71-6	"Dynamic Stress Analysis of Porous Elastic Solids Saturated with Compressible Fluids," by J. Ghaboussi and E. L. Wilson - 1971 (PB 213 396)A06
EERC 71-7	"Inelastic Behavior of Steel Beam-to-Column Subassemblages," by H. Krawinkler, V. V. Bertero, and E. P. Popov - 1971 (PB 211 355)A14
EERC 71-8	"Modification of Seismograph Records for Effects of Local Soil Conditions," by P. Schnabel, H. B. Seed, and J. Lysmer - 1971 (PB 214 450)A03
EERC 72-1	"Static and Earthquake Analysis of Three Dimensional Frame and Shear Wall Buildings," by E. L. Wilson and H. H. Dovey - 1972 (PB 212 904)A05
EERC 72-2	"Accelerations in Rock for Earthquakes in the Western United States," by P. B. Schnabel and H. B. Seed - 1972 (PB 213 100)A03
EERC 72-3	"Elastic-Plastic Earthquake Response of Soil-Building Systems." by T. Minami - 1972 (PB 214 868)A08
EERC 72-4	" Stochastic Inelastic Response of Offshore Towers to Strong Motion Earthquakes," by M. K. Kaul - 1972 (PB 215 713)AO5
-	
	-312-

	EERC 72-5	"Cyclic Behavior of Three Reinforced Concrete Flexural Members with High Shear," by a E. P. Popov, V. V. Bentero, and H. Krawinkler - 1972 (PB 214 555)A05
	EERC 72-6	"Earthquake Response of Gravity Dams Including Reservoir Interaction Effects," by P. Chakrabarti and A. K. Chopra - 1972 (AD 762 330)AO8
	EERC 72-7	"Dynamic Properties of Pine Flat Dam," by D. Rea, C. Y. Liaw, and A. K. Chopra - 1972 (AD 763 928)A05
	EERC 72-8	"Three Dimensional Analysis of Building Systems," by E. L. Wilson and H. H. Dovey - 1972 (PB 222 438)A06
	EERC 72-9	"Rate of Loading Effects on Uncracked and Repaired Reinforced Concrete Members," by S. Mahin, V. V. Bertero, D. Rea and M. Atalay - 1972 (PB 224 520)A08
	EERC 72-10	"Computer Program for Static and Dynamic Analysis of Linear Structural Systems," by E. L. Wilson, KJ. Bathe, J. E. Peterson and H. H. Dovey - 1972 (PB 220 437)AO4
	EERC 72-11	"Literature Survey - Seismic Effects on Highway Bridges," by T. Iwasaki, J. Penzien, and R. W. Clough - 1972 (PB 215 613)A19
	EERC 72-12	"SHAKE - A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites," by P. B. Schnabel and J. Lysmer - 1972 (PB 220 207)A06
	EERC 73-1	"Optimal Seismic Design of Multistory Frames," by V. V. Bertero and H. Kamil - 1973
	EERC 73-2.	"Analysis of the Slides in the San Fernando Dams during the Earthquake of February 9, 1971," by H. B. Seed, K. L. Lee, I. M. Idriss, and F. Makdisi - 1973 (PB 223 402)A14
·	EERC 73-3	"Computer Aided Ultimate Load Design of Unbraced Multistory Steel Frames," by M. B. El-Hafez and G. H. Powell - 1973 (PB 248 315)A09
	EERC 73-4	"Experimental Investigation into the Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment and Shear," by M. Celebi and J. Penzien - 1973 (PB 215 884)AO9
	EERC 73-5	"Hysteretic Behavior of Epoxy-Repaired Reinforced Concrete Beams," by M. Celebi and J. Penzien - 1973 (PB 239 568)AO3
	EERC 73-6	"General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures," by A. Kanaan and G. H. Powell - 1973 (PB 221 260)A08
	EERC 73-7	"A Computer Program for Earthquake Analysis of Gravity Dams Including Reservoir Interac- tion," by P. Chakrabarti and A. K. Chopra - 1973 (AD 766 271)AO4
1	EERC 73-8	"Behavior of Reinforced Concrete Deep Beam-Column Subassemblages under Cyclic Loads," by O. Küstü and J. G. Bouwkamp - 1973 (PB 246 117)Al2
	EERC 73-9	"Earthquake Analysis of Structure-Founation Systems," by A. K. Vaish and A. K. Chopra - 1973 (AD 766 272)A07
	EERC 73-10	"Deconvolution of Seismic Response for Linear Systems," by R. B. Reimer - 1973 (PB 227 179)A08
	EERC 73-11	"SAP IV: A Structural Analysis Program for Static and Dynamic Response of Linear Systems," by KJ. Bathe, E. L. Wilson, and F. E. Peterson - 1973 (PB 221 967)A09
	EERC 73-12	"Analytical Investigations of the Seismic Response of Long, Multiple Span Highway Bridges," by W. S. Tseng and J. Penzien - 1973 (PB 227 816)Alo
	EERC 73-13	"Earthquake Analysis of Multi-Story Buildings Including Foundation Interaction," by A. K. Chopra and J. A. Gutierrez - 1973 (PB 222 970)A03
	EERC 73-14	"ADAP: A Computer Program for Static and Dynamic Analysis of Arch Dams," by R. W. Clough, J. M. Raphael, and S. Mojtahedi - 1973 (PB 223 763)AO9
	EERC. 73-15	"Cyclic Plastic Analysis of Structural Steel Joints," by R. B. Pinkney and R. W. Clough - 1973 (PB 226 843)A08
	EERC 73-16	"QUAD-4: A Computer Program for Evaluating the Seismic Response of Soil Structures by Variable Damping Finite Element Procedures," by I. M. Idriss, J. Lysmer, R. Hwang, and H. B. Seed - 1973 (PB 229 424)AO5

-313-

- EERC 73-17 "Dynamic Behavior of a Multi-Story Pyramid Shaped Building," by R. M. Stephen, J. P. Hollings, and J. G. Bouwkamp - 1973 (PB 240 718)A06 "Effect of Different Types of Reinforcing on Seismic Behavior of Short Concrete Columns," by V. V. Bertero, J. Hollings, O. Küstü, R. M. Stephen, and J. G. Bouwkamp - 1973 EERC 73-18 EERC 73-19 "Olive View Medical Center Materials Studies, Phase I," by B. Bresler and V. V. Bertero -1973 (PB 235 986)A06 EERC 73-20 "Linear and Nonlinear Sesismic Analysis Computer Programs for Long Multiple-Span Highway Bridges," by W. S. Tseng and J. Penzien - 1973 "Constitutive Models for Cyclic Plastic Deformation of Engineering Materials," by J. M. Kelly and P. P. Gillis - 1973 (PB 226 024)A03 EERC 73-21 EERC 73-22 "DRAIN-2D User's Guide," by G. H. Powell - 1973 (PB 227 016)A05 EERC 73-23 "Earthquake Engineering at Berkeley - 1973 " 1973 (PB 226 033)A11 EERC 73-24 Unassigned EERC 73-25 "Earthquake Response of Axisymmetric Tower Structures Surrounded by Water," by C. Y. Liaw and A. K. Chopra - 1973 (AD 773 052)A09 "Investigation of the Failures of the Olive View Stairtowers during the San Fernando FERC 73-26 Earthquake and Their Implications on Seismic Design," by V. V. Bertero and R. G. Collins -1973 (PB 235 106)A13 EERC 73-27 "Further Studies on Seismis Behavior of Steel Beam-Column Subassemblages," by V. V. Bertero, H. Krawinkler, and E. P. Popov - 1973 (PB 234 172)A06 EERC 74-1 "Seismic Risk Analysis," by C. S. Oliveira - 1974 (PB 235 920)A06 EERC 74-2 "Settlement and Liquefaction of Sands under Multi-Directional Shaking," by R. Pyke, C. K. Chan, and H. B. Seed - 1974 EERC 74-3 "Optimum Design of Earthquake Resistant Shear Buildings," by D. Ray, K. S. Pister, and A. K. Chopra - 1974 (PB 231 172)A06 EERC 74-4 "LUSH - A Computer Program for Complex Response Analysis of Soil-Structure Systems," by J. Lysmer, T. Udaka, H. B. Seed, and R. Hwang - 1974 (PB 236 796)A05 "Sensitivity Analysis for Hysteretic Dynamic Systems: Applications to Earthquake Engineering," by D. Ray - 1974 (PB 233 213)A06 EERC 74-5 "Soil Structure Interaction Analyses for Evaluating Seismic Response," by H. B. Seed, J. Lysmer, and R. Hwang - 1974 (PB 236 519)A04EERC 74-6 EERC 74-7 Unassigned "Shaking Table Tests of a Steel Frame - A Progress Report," by R. W. Clough and D. Tang -1974 (PB 240 869)AO3 EERC 74-8 EERC 74-9 "Hysteretic Behavior of Reinforced Concrete Flexural Members with Special Web Reinforcement," by V. V. Bertero, E. P. Popov, and T. Y. Wang - 1974 (PB 236 797)A07 EERC 74~10 "Applications of Realiability-Based, Global Cost Optimization to Design of Earthquake Resistant Structures," by E. Vitiello and K. S. Pister - 1974 (PB 237 231)A06 "Liquefaction of Gravelly Soils under Cyclic Loading Conditions," by R. T. Wong, H. B. Seed, and C. K. Chan \sim 1974 (PB 242 042)A03 EERC 74-11
- EERC 74-12 "Site-Dependent Spectra for Earthquake-Resistant Design," by H. B. Seed, C. Ugas, and J. Lysmer 1974 (PB 240 953)A03
- EERC 74-13 "Earthquake Simulator Study of a Reinforced Concrete Frame," by P. Hidalgo and R. W. Clough 1974 (PB 241 944)A13
- EERC 74-14 "Nonlinear Earthquake Response of Concrete Gravity Dams," by N. Pal 1974 (AD/A 006 583)AD6

-314-

	EERC 74-15	"Modeling and Identification in Nonlinear Structural Dynamics - I. One Degree of Freedom Models," by N. Distefano and A. Rath - 1974 (PB 241 548)AQ6
	EERC 75-1	"Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. I: Description, Theory and Analytical Modeling of Bridge and Parameters," by F. Baron and SH. Pang - 1975 (PB 259 407)A15
	EERC 75-2	"Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. II: Numerical Studies and Establishment of Seismic Design Criteria," by F. Baron and SH. Pang - 1975 (PB 259 408)All [For set of EERC 75-1 and 75-2 (PB 241 454)A09]
	EERC 75-3	"Seismic Risk Analysis for a Site and a Metropolitan Area," by C. S. Oliveira - 1975 (PB 248 134)AD9
	EERC 75-4	"Analytical Investigations of Seismic Response of Short, Single or Multiple-Span Highway Bridges," by MC. Chen and J. Penzien - 1975 (PB 241 454)A09
	EERC 75-5	"An Evaluation of Some Methods for Predicting Seismic Behavior of Reinforced Concrete Buildings," by S. A. Mahin and V. V. Bertero - 1975 (PB 246 306)Al6
•	EERC 75-6	"Earthquake Simulator Störy of a Steel Frame Structure, Vol. I: Experimental Results," by R. W. Clough and D. T. Tang - 1975 (PB 243 981)A13
	EERC 75-7	"Dynamic Properties of San Bernardino Intake Tower," by D. Rea, CY Liaw and A. K. Chopra - 1975 (AD/A 008 406)A05
	EERC 75-8	"Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. 1: Description, Theory and Analytical Modeling of Bridge Components," by F. Baron and R. E. Hamati - 1975 (PB 251 539)A07
	EERC 75-9	"Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. 2: Numerical Studies of Steel and Concrete Girder Alternates," by F. Baron and R. E. Hamati - 1975 (PB 251 540)Alo
	EERC .75-10	"Static and Dynamic Analysis of Nonlinear Structures," by D. P. Mondkar and G. H. Powell - 1975 (PB 242 434)A08
	EERC 75-11	"Hysteretic Behavior of Steel Columns," by E. P. Popov, V. V. Bertero, and S. Chandramouli - 1975 (PB 252 365)All
	EERC 75-12	"Earthquake Engineering Research Center Library Printed Catalog " - 1975 (PB. 243 711)A26
·	EERC 75-13	"Three Dimensional Analysis of Building Systems (Extended Version)," by E. L. Wilson, J. P. Hollings, and H. H. Dovey - 1975 (PB 243 989)A07
	EERC 75-14	"Determination of Soil Liquefaction Characteristics by Large-Scale Laboratory Tests," by P. De Alba, C. K. Chan, and H. B. Seed - 1975 (NUREG 0027)A08
	EERC 75-15	"A Literature Survey - Compressive, Tensile, Bond and Shear Strength of Masonry," by R. L. Mayes and R. W. Clough - 1975 (PB 246 292)Alo
	EERC 75-16	"Hysteretic Behavior of Ductile Moment-Resisting Reinforced Concrete Frame Components," by V. V. Bertero and E. P. Popov - 1975 (PB 246 388)AO5
	EERC 75-17	"Relationships Between Maximum Acceleration, Maximum Velocity, Distance from Source, Local Site Conditions for Moderately Strong Earthquakes," by H. B. Seed, R. Murarka, J. Lysmer, and I. M. Idriss - 1975 (PB 248 172)AO3
	EERC 75-18	"The Effects of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands," by J. Mulilis, C. K. Chan, and H. B. Seed - 1975 (Summarized in EERC 75-28)
	EERC 75-19	"The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear and Axial Force," by M. B. Atalay and J. Penzien - 1975 (PB 258 842)All
	EERC 75-20	"Dynamic Properties of an Eleven Story Masonry Building," by R. M. Stephen, J. P. Hollings, J. G. Bouwkamp, and D. Jurukovski - 1975 (PB 246 945)A04
	EERC 75-21	"State-of-the-Art in Seismic Strength of Masonry - An Evaluation and Review," by R. L. Mayes and R. W. Clough - 1975 (PB 249 040)A07
	EERC 75-22	"Frequency Dependent Stiffness Matrices for Viscoelastic Half-Plane Foundations," by

-315-

- EERC 75-23 "Hysteretic Behavior of Reinforced Concrete Framed Walls," by T. Y. Wang, V. V. Bertero, and E. P. Popov - 1975
- EERC 75-24 "Testing Facility for Subassemblages of Frame-Wall Structural Systems," by V. V. Bertero, E. P. Popov, and T. Endo - 1975
- EERC 75-25 "Influence of Seismic History on the Liquefaction Characteristics of Sands," by H. B. Seed, K. Mori, and C. K. Chan - 1975 (Summarized in EERC 75-28)
- EERC 75-26 "The Generation and Dissipation of Pore Water Pressures during Soil Liquefaction," by H. B. Seed, P. P. Martin, and J. Lysmer - 1975 (PB 252 648)A03
- EERC 75-27 "Identification of Research Needs for Improving Aseismic Design of Building Structures," by V. V. Bertero - 1975 (PB 248 136)A05
- EERC 75-28 "Evaluation of Soil Liquefaction Potential during Earthquakes," by H. B. Seed, I. Arango, and C. K. Chan - 1975 (NUREG 0026)A13
- EERC 74-29 "Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses," by H. B. Seed, I. M. Idriss, F. Makdisi, and N. Banerjee - 1975 (PB 252 635)A03
- EERC 75-30 "FLUSH A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problems," by J. Lysmer, T. Udaka, C.-F. Tsai, and H. B. Seed - 1975 (PB 259 332)A07
- EERC 75-31 "ALUSH A Computer Program for Seismic Response Analysis of Axisymmetric Soil-Structure Systems," by E. Berger, J. Lysmer, and H. B. Seed - 1975
- EERC 75-32 "TRIP and TRAVEL Computer Programs for Soil-Structure Interaction Analysis with Horizontally Travelling Waves," by T. Udaka, J. Lysmer, and H. B. Seed - 1975
- EERC 75-33 "Predicting the Performance of Structures in Regions of High Seismicity," by J. Penzien 1975 (PB 248 130)A03
- EERC 75-34 "Efficient Finite Element Analysis of Seismic Structure-Soil-Direction," by J. Lysmer, H. B. Seed, T. Udaka, R. N. Hwang, and C.-F. Tsai - 1975 (PB 253 570)A03
- EERC 75-35 "The Dynamic Behavior of a First Story Girder of a Three-Story Steel Frame Subjected to Earthquake Loading," by R. W. Clough and L.-Y. Li 1975 (PB 248 841)A05
- EERC 75-36 "Earthquake Simulator Story of a Steel Frame Structure, Volume II Analytical Results," by D. T. Tang - 1975 (PB 252 926)Alo
- EERC 75-37 "ANSR-I General Purpose Computer Program for Analysis of Non-Linear Structural Response," by D. P. Mondkar and G. H. Powell - 1975 (PB 252 386)A08
- EERC 75-38 "Nonlinear Response Spectra for Probabilistic Seismic Design and Damage Assessment of Reinforced Concrete Structures," by M. Murakami and J. Penzien - 1975 (PB 259 530)A05
- EERC 75-39 "Study of a Method of Feasible Directions for Optimal Elastic Design of Frame Structures Subjected to Earthquake Loading," by N. D. Walker and K. S. Pister - 1975 (PB 247 781)A06
- EERC 75-40 "An Alternative Representation of the Elastic-Viscoelastic Analogy," by G. Dasgupta and J. L. Sackman 1975 (PB 252 173)A03
- EERC 75-41 "Effect of Multi-Directional Shaking on Liquefaction of Sands," by H. B. Seed, R. Pyke, and G. R. Martin - 1975 (PB 258 781)A03
- EERC 76-1 "Strength and Ductility Evaluation of Existing Low-Rise Reinforced Concrete Buildings -Screening Method," by T. Okada and B. Bresler - 1976 (PB 257 906)All
- EERC 76-2 "Experimental and Analytical Studies on the Hysteretic Behavior of Reinforced Concrete Rectangular and T-Beams," by S.-Y. M. Ma, E. P. Popov, and V. V. Bertero - 1976 (PB 260 843)A12
- EERC 76-3 "Dynamic Behavior of a Multistory Triangular-Shaped Building," by J. Petrovski, R. M. Stephen, E. Gartenbaum, and J. G. Bouwkamp - 1976
- EERC 76-4 "Earthquake Induced Deformations of Earth Dams," by N. Serff and H. B. Seed 1976
- EERC 76-5 "Analysis and Design of Tube-Type Tall Building Structures," by H. de Clercq and G. H. Powell - 1976 (PB 252 220)Al0

EERC 76-6 "Time and Frequency Domain Analysis of Three-Dimensional Ground Motions.San	
Earthquake," by T. Kubo and J. Penzien - 1976 (PB 260 556)All	Fernando
EERC 76-7 "Expected Performance of Uniform Building Code Design Masonry Structures," t Y. Omote, S. W. Chen, and R. W. Clough - 1976	oy R. L. Mayes,
EERC 76-8 "Cyclic Shear Tests on Concrete Masonry Piers, Part I ~ Test Results," by R. Y. Omote, and R. W. Clough - 1976 (PB 264 424)AD6	L. Mayes,
EERC 76-9 "A Substructure Method for Earthquake Analysis of Structure-Soil Interaction J. A. Gutierrez and A. K. Chopra - 1976 (PB 247 783)A08	а," бу
EERC 76-10 "Stabilization of Potentially Liquefiable San Deposits using Gravel Drain Sy H. B. Seed and J. R. Booker - 1976 (PB 248 820)A04	stems," by
EERC 76-11 "Influence of Design and Analysis Assumptions on Computed Inelastic Response Moderately Tall Frames," by G. H. Powell and D. G. Row - 1976	e of
EERC 76-12 "Sensitivity Analysis for Hysteretic Dynamic Systems: Theory and Application D. Ray, K. S. Pister, and E. Polak - 1976 (PB 262 859)A04	ons," by
EERC 76-13 "Coupled Lateral Torsional Response of Buildings to Ground Shaking," by C. L A. K. Chopra - 1976 (PB 257 907)A09	Kan and
EERC 76-14 "Seismic Analyses of the Banco de America," by V. V. Bertero, S. A. Mahin, a J. A. Hollings - 1976	and .
EERC 76-15 "Reinforced Concrete Frame 2: Seismic Testing and Analytical Correlation," and J. Gidwani - 1976 (PB 261 323)AO8	by R. W. Clough
EERC 76-16 "Cyclic Shear Tests on Masonry Piers, Part II - Analysis of Test Results," b Y. Omote, and R. W. Clough - 1976	by R. L. Mayes,
EERC 76-17 "Structural Steel Bracing Systems: Behavior under Cyclic Loading," by E. P. K. Takanashi, and C. W. Roeder - 1976 (PB 260 715)A05	. Popov,
EERC 76-18 "Experimental Model Studies on Seismic Response of High Curved Overcrossings D. Williams and W. G. Godden - 1976	s," by
EERC 76-19 "Effects of Non-Uniform Seismic Disturbances on the Dumbarton Bridge Replace by F. Baron and R. E. Hamati - 1976	ement Structure,"
EERC 76-20 "Investigation of the Inelastic Characteristics of a Single Story Steel Stru System Identification and Shaking Table Experiments," by V. C. Matzen and H. 1976 (PB 258 453)A07	ucture using . D. McNiven -
EERC 76-21 "Capacity of Columns with Splice Imperfections," by E. P. Popov, R. M. Steph R. Philbrick - 1976 (PB 260 378)A04	nen and
EERC 76-22 "Response of the Olive View Hospital Main Building during the San Fernando E by S. A. Mahin, V. V. Bertero, A. K. Chopra, and R. Collins," - 1976	arthquake,"
EERC 76-23 "A Study on the Major Factors Influencing the Strength of Masonry Prisms," E N. M. Mostaghel, R. L. Mayes, R. W. Clough, and S. W. Chen - 1976	y
EERC 76-24 "GADFLEA - A Computer Program for the Analysis of Pore Pressure Generation a tion during Cyclic or Earthquake Loading," by J. R. Booker, M. S. Rahman, an 1976 (PB 263 947)A04	and Dissipa- nd H. B. Seed -
EERC 76-25 "Rehabilitation of an Existing Building: A Case Study," by B. Bresler and	J. Axley - 1976
EERC 76-26 "Correlative Investigations on Theoretical and Experimental Dynamic Behavior Bridge Structure," by K. Kawashima and J. Penzien - 1976 (PB 263 388)All	r of a Model
EERC 76-27 "Earthquake Response of Coupled Shear Wall Buildings," by T. Srichatrapimuk (PB 265 157)A07	- 1976
EERC 76-28 "Tensile Capacity of Partial Penetration Welds," by E. P. Popov and R. M. St 1976 (PB 262 899)AO3	tephen -
EERC 76-29 "Analysis and Design of Numerical Integration Methods in Structural Dynamics H. M. Hilber - 1976 (PB 264 410)A06	s," by

- EERC 76-30 "Contribution of a Floor System to the Dynamic Characteristics of Reinforced Concrete Buildings," by L. E. Malik and V. V. Bertero - 1976
- EERC 76-31 "The Effects of Seismic Disturbances on the Golden Gate Bridge," by F. Baron, M. Arikan, R. E. Hamati - 1976
- EERC 76-32 "Infilled Frames in Earthquake-Resistant Construction," by R. E. Klingner and V. V. Bertero -1976 (PB 265 892)Al3
- UCB/EERC-77/01 "PLUSH A Computer Program for Probabilistic Finite Element Analysis of Seismic Soil-Structure Interaction," by M. P. Romo Organista, J. Lysmer, and H. B. Seed - 1977
- UCB/EERC-77/02 "Soil-Structure Interaction Effects at the Humboldt Bay Power Plant in the Ferndale Earthquake of June 7, 1975," by J. E. Valera, H. B. Seed, C.-F. Tsai, and J. Lysmer -1977 (B 265 795)A04
- UCB/EERC-77/03 "Influence of Sample Disturbance on Sand Response to Cyclic Loading," by K. Mori, H. B. Seed, and C. K. Chan - 1977 (PB 267 352)A04
- UCB/EERC-77/04 "Seismological Studies of Strong Motion Records," by J. Shoja-Taheri 1977 (PB 269 655)Al0
- UCB/EERC-77/05 "Testing Facility for Coupled Shear Walls," by L.-H. Lee, V. V. Bertero, and E. P. Popov -1977
- UCB/EERC-77/06 "Developing Methodologies for Evaluating the Earthquake Safety of Existing Buildings," No. 1 - B. Bresler; No. 2 - B. Bresler, T. Okada, and D. Zisling; No. 3 - T. Okada and B. Bresler; No. 4 - V. V. Bertero and B. Bresler - 1977 (PB 267 354)AO8
- UCB/EERC-77/07 "A Literature Survey Transverse Strength of Masonry Walls," by Y. Omote, R. L. Mayes, S. W. Chen, and R. W. Clough - 1977
- UCB/EERC-77/08 "DRAIN-TABS: A Computer Program for Inelastic Earthquake Response of Three Dimensional Buildings," by R. Guendelman-Israel and G. H. Powell - 1977
- UCB/EERC-77/09 "SUBWALL: A Special Purpose Finite Element Computer Program for Practical Elastic Analysis and Design of Structural Walls with Substructure Option," by D. Q. Le, H. Petersson, and E. P. Popov - 1977
- UCB/EERC-77/10 "Experimental Evaluation of Seismic Design Methods for Broad Cylindrical Tanks," by D. P. Clough - 1977
- UCB/EERC-77/11 "Earthquake Engineering Research at Berkeley 1976," 1977
- UCB/EERC-77/12 "Automated Design of Earthquake Resistant Multistory Steel Building Frames," by N. D. Walker, Jr. - 1977
- UCB/EERC-77/13 "Concrete Confined by Rectangular Hoops and Subjected to Axial Loads," by J. Vallenas, V. V. Bertero, and E. P. Popov - 1977

UC8/EERC-77/14 "Seismic Strain Induced in the Ground during Earthquakes," by Y. Sugimura - 1977

- UCB/EERC-77/15 "Bond Deterioration under Generalized Loading," by V. V. Bertero, E. P. Popov, and S. Viwathanatepa 1977
- UCB/EERC-77/16 "Computer-Aided Optimum Design of Ductile Reinforced Concrete Moment-Resisting Frames," by S. W. Zagajeski and V. V. Bertero - 1977
- UCB/EERC-77/17 "Earthquake Simulation Testing of a Stepping Frame with Energy-Absorbing Devices," by J. M. Kelly and D. F. Tsztoo - 1977
- UCB/EERC-77/18 "Inelastic Behavior of Eccentrically Braced Steel Frames under Cyclic Loadings," by C. W. Roeder and E. P. Popov - 1977