
Seismic Shears and Overturning Moments in Buildings

BIBLIOGRAPHIC DATA
SHEET

4. Title and Subritle
1

1. Report No.
NSFjRA-770317

-!. Report Dace -

July 1977
6.

7. Author(sl

R. Smilowitz, N.M. Newmark
9. Performing Organization Name and Address

University of Illinois at Urbana-Champaign
Department of Civil Engineering
Urbana, Illinois 61801

12. Sponsoring Organization Name and Address

Research Applied to National Needs (RANN)
National Science Foundation
Washington, D.C. 20550

15. Supplementary Notes

8. Performing Organization Rept.
No. SRS 441

10. Project/Task/Work Unit No.

11. Contract/Grant No.

AEN7508456

13. Type of Report & Period
Covered

Technical
14.

16. Abstracts Seismic force distributions for simpl Hied computation of shears and over
turning moment for preliminary design of buildings have been generated. A parameter
study of the significant variables has been made to determine the applicability of
the proposed distributions. These distributions are intended to give greater accuracy
than do existing procedures. The parameters studied involve the type of building,
whether shear .wall or shear beam or a combination of the two, the uniformity of the
structure along its height, the spacing of the lower modal frequencies, the funda
mental frequency relative to the intersection of the constant velocity and constant
acceleration branches of the response spectrum, the slenderness of the structure,
and the shear wave velocity of the soil on which it is founded. The distributions
should be applicable to the majority of structures of either frame, shear wall or
combination of the two lateral resisting structural systems. The results of the
study along with the explanation of the methods by which they were obtained are
nrpc::pntpd. Tanular and araDhic material are included.

17. Key Words and Document Analysis.· 170. Descriptors

Shear properties
Earthquakes
Bearing properties
Shear tests
Soil mechanics
Strains
Stresses
Shear rate
Shear strength

17b~ Idenrifiers/Open-Ended Tert~s

Seismic design
Seismic shears
Overturning moments

17c. COSATI Field/Group

18. Availability Statement

NTIS

Earthquake resistant structures
Moments
Buildings
Skyscrapers

19•. Security Class (This

Re~~~tfl A

21.) -

FORM NTIs-as (REv. '0-73) ENDORSED BY ANSI AND UNESCO.

\.
20. Security Class (This

Page
UNCLASSIFIED

THIS FORM MAY BE REPRODUCED USCOMM.DC 8211~·P74



CAPITAL SYSTEp,J1S GROUP, INC.
6110 EXr::CUTIVE BOULEVARD

SUiTE 250
ROCKVILLE, MARYLAND 20852'



i i

ACKNOWLEDGMENT

This report was prepared as a doctoral dissertation by Mr. Robert

Smilowitz and was submitted to the Graduate College of the University of

Illinois at Urbana-Champaign in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Civil Engineering. The thesis

was done under the supervision of Dr. N. M. Newmark, Professor of Civil

Engineering and in the Center for Advanced Study Emeritus.

The investigation was part of a research program on the Design for

Protection Against Natural Hazards sponsored by the National Science

Foundation (RANN), Grant No. ENV 75-08456.

Any opinions, findings, and conclusions or recommendations expressed

in this publication are those of the author and do not necessarily

reflect the views of the National Science Foundation.

The numerical results were obtained with the use of the IBM 360/75

computer system of the Computing Services Offices of the University of

Illinois at Urbana-Champaign. The text was prepared and edited on the

Civil Engineering Department1s B6700 computer system. The authors wish to

thank Dr. Leonard A. Lopez and F. Stephen McCollum for their generous

assistance.

Any opinions, findings, conclusions
or recommendations expressed in this
publication are those of the author(s)
and do not necessarily reflect the views
of the National Science Foundation.





iii

TABLE OF CONTENTS

1

1

2

4

5

8

9

12

14

16

17

18

19

21

22

24

27

28

30

36

36

38

40

40

Page

Equations of Motion •

Mass Matrix •.•

Response Spectrum .

Modal Analysis

Type of Structure .

Combination of Modes

Energy Relatilms

Regression ~na1ysls .

Stiffness Matrix

Stiffness Matrix

Condensation

l'-tass fo1a tr ix • •

Damping

Forcing Function.

Eigenvalues • . .

p - I:J. Effects . .

Soil-Structure Interaction

MODELS

3.1

3.1.1

3.1. 2

3.2

INTRODUCTION••..

Motivation

Scope • . .

Organization

Notation

1.1

1.2

1.3

1.4

2 THEORY

2.1

2.1.1

2.1. 2

2.1. 3

2.1. 4

2.1. 5

2.2

2.3

2.4

2~5

2.6

2.7

2.8

3

CHAPTER

1



5 RESPONSE DATA . . . . . . . . . ,. . .
5.1 Normalization of Base Shears

5.2 Normalization of Distributions

5.3 Combination of Distributions

6 RESULTS . . . . . . . . . . . . . . .

PARAMETERS

CONCLUSIONS • . • . . . • •

4

7

REFERENCES

3.3

3.4

3.5

4.1

4.2

4.2.1

4.2.2

4.2.3

4.2.4

6.1

6.1.1

6.1. 2

6.2

6.2.1

6.2.2

7.1

7.2

iv

Soil-Structure Interaction

Damping . • • • • .

Energy Relations

Fixed Parameters

Variables • • • . • •

Mode of Deformation •

Setbacks

Heights and Fundamental Frequencies

Soil-Structure Interaction Parameters .

Base Values

Mode of Deformation •

Setbacks and Soil-Structure Interaction .

Distributions '•••.

Mode of Deformation •

Setbacks and Soil-Structure Interaction .

Design Procedure

Further Study

Page

42

45

47

50

50

53

54

54

55

57

59

59

60

61

63

64

65

66

70

73

76

80

80

82

83



TABLE

v

LIST OF TABLES

Page

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Parameter Combinations • . •

Mode of Deformation Factor

Base Shear Factors
(5 Stories, 80% Shear Deformation).

Base Shear Factors
(10 Stories, 80% Shear Deformation) .•

Base Shear Factors
(20 Stories, 80% Shear Deformation) ••

Base Shear Factors
(40 Stories, 80% Shear Deformation).

Base Overturning Moment Factors
(5 Stories, 80% Shear Deformation).

Base Overturning Moment Factors
(10 Stories, 80% Shear Deformation).

Base Overturning Moment Factors
(20 Stories, 80% Shear Deformation).

Base Overturning Moment Factors
(40 Stories, 80% Shear Deformation) .•.

Base Shear Setback Factor

Base O~erturning Moment Setback Factor .

Base Shear Soil-Structure Interaction Factor .

Base Overturning Moment Soil-Structure
Interaction Factor • . . . • • • . . •

87

88

89

90

91

92

93

94

95

96

97

98

99

. • . • 100

15 Story Shear
5 Stories

16 Story Shear
10 Stories

17 Story Shear
20 Stories

18 Story Shear
40 Stories

Acceleration Distribution Coefficients
Seismic Velocity = Infinite .•.•••••• 101

Acceleration Distribution Coefficients
Seismic Velocity = Infinite • • • • . . . •• 102

Acceleration Distribution Coefficients
Seismic Velocity = Infinite ...••..•. 103

Acceleration Distribution Coefficients
Seismic Velocity = Infinite • • .••..•• 104



TABLE

vi

Page

19 Story Shear Acceleration Distribution Coefficients
5 Stories Seismic Velocity = 500 Ft./Sec. ... . 105

20 Story Shear Acceleration Distribution Coefficients
10 Stories Seismic Velocity = 500 Ft./Sec. . ..• 106

21 Story Shear Acceleration Distribution Coefficients
20 Stories Seismic Velocity = 500 Ft./Sec. . ... 107

22 Story Shear Acceleration Distribution Coefficients
40 Stories Seismic Velocity = 500 Ft./Sec. . ..•... 108

23 Story Overturning Moment Acceleration Distribution
Coefficients 5 Stories Seismic Velocity = Infinite .. 109

24 Story Overturning Moment Acceleration Distribution
Coefficients 10 Stories Seismic Velocity = Infinite .. 110

25 Story Overturning Moment Acceleration Distribution
Coefficients 20 Stories Seismic Velocity = Infinite .. III

26 Story Overturning Moment Acceleration Distribution
Coefficients 40 Stories Seismic Velocity = Infinite .. 112

27 Story Overturning Mo~ent Acceleration Distribution
Coefficients 5 Stories Seismic Velocity = 500 Ft./Sec. 113

28 Story Overturning Moment Acceleration Distribution
Coefficients 10 Stories Seismic Velocity = 500 Ft./Sec. 114

29 Story Overturning Moment Acceleration Distribution
Coefficients 20 Stories Seismic Velocity = 500 Ft./Sec. 115

30 Story Overturning Moment Acceleration Distribution
Coefficients 40 Stories Seismic Velocity = 500 Ft./Sec. 116

31 Story Shear Acceleration Distribution Coefficients
Seismic Velocity = Infinite ..•..•........• 117

32 Story Shear Acceleration Distribution Coefficients
Seismic Velocity = 500 Ft./Sec. . ......•..... 118

33 Story Overturning Moment Acceleration Distribution
Coefficients Seismic Velocity = Infinite ..•...•. 119

34 Story Overturning Moment Acceleration Distribution
Coefficients Seismic Velocity = 500 Pt./Sec. • .•• 120



vi i

LIST OF FIGURES

FIGURE

1

2

3

4

Sa

5b

DEFORMATION MODES OF FRAME-WALL STRUCTURES . .

DEGREES OF SETBACK STUDIED,
Setback Stiffness and Mass = 30% of Base Value

RESPONSE SPECTRUM

MEDIAN HORIZONTAL GROUND MOTION RESPONSE SPECTRUM
AMPLIFICATION FACTOR • • • . • . • . • .

SERIES AND PARALLEL REPRESENTATION OF LATERAL
RESISTING ELEMENTS IN A STRUCTURE

REPLACEMENT OSCILLATOR . • . • . • .

Page

• 121

122

· 123

124

· 125

· 125

6 DIMENSIONLESS STIFFNESS FACTOR FOR
FREQUENCY DEPENDENT INTERACTION . . . • . . . . • . . . . 126

7 RADIATION DAMPING DUE TO FOUNDATION INTERACTION . • 127

8 STORY SHEAR ACCELERATION DISTRIBUTION COEFFICIENTS,
Seismic Velocity = Infinite ...•. . . . • . • . 128

9 STORY SHEAR ACCELERATION DISTRIBUTION COEFFICIENTS,
Seismic Velocity = 500 Ft./Sec. 129

10

11

12

STORY OVERTURNING MOMENT ACCELERATION DISTRIBUTION
COEFFICIENTS, Seismic Velocity = Infinite .•.•

STORY OVERTURNING MOJ.VIENT ACCELERATION DISTRIBUTION
COEFFICIENTS, S~ismic Velocity = 500 Ft./Sec.

ACCELERATION DISTRIBUTIONS OVER THE HEIGHT
OF THE STRUCTURE, 0% Shear Deformation ..

130

131

132

13 ACCELERATION DISTRIBUTIONS OVER THE HEIGHT
OF THE STRUCTURE, 20% Shear Deformation ...•..••. 133

14 ACCELERATION DISTRIBUTIONS OVER THE HEIGHT
OF THE STRUCTURE, 40% Shear Deformation 134

15 ACCELERATION DISTRIBUTIONS OVER THE HEIGHT
OF THE STRUCTURE, 60% Shear Deformation •...••..• 135

16 ACCELERATION DISTRIBUTIONS OVER THE HEIGHT
OF THE STRUCTURE, 80% Shear Deformation . . ...••.. 136

17 ACCELERATION DISTRIBUTIONS OVER THE HEIGHT
OF THE STRUCTURE, 100% Shear Deformation . 137





1

CHAPTER '1. INTRODUCTION

Seismic force distributions for simplified computation of

shears and overturning moments for preliminary design of

buildings have been generated and a parameter study of the

significant variables has been made to determine the

applicability of the proposed distributions. These distributions

are intended. to give greater accuracy than do existing

procedures, which are based on more empirical concepts.

1.1 Motivation

The design of structures to resist seismic forces is an

iterative process. Preliminary distributions of forces and

overturning moments need to be determined in a consistent fashion

so that member sizes can be initially proportioned. Further

cycles of analysis and design converge to the proportions likely

to behave best when subjected to a strong ground motion. The

purpose of this thesis is to determine that set of shears and

overturning moments which would permit this process to converge

in the least number of cycles with a minimal effort.

More rigorous analyses are undesirable for preliminary

proportioning as they are time consuming and they require

information that may not be available at that stage of analysis.

Furthermore, some of the more rigorous methods presuppose an

actual earthquake to determine the structural response, as is the

case for time history analyses, and unless the next strong ground
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motion closely resembles the one designed against, the structure

may suffer excessive damage. Stochastic methods have often been

used to construct a probable ground motion and to analyze the

structural response to these spectra. However, much effort is

required at too early a stage in design to warrant their use.

Structures proportioned initially with the proposed distributions

may be reanalyzed in later cycles of the design-analysis

iteration by more rigorous approaches if greater accuracy is

desired.

1.2 Scope

The purpose of this thesis is to look at realistic response

spectra and determine the distributions of shears and overturning

moments over a range of significant parameters. The parameters

studied involve the type of building, whether shear wall or shear

beam or a combination of the two (see Fig. 1), the uniformity of

the structure along its height (see Fig. 2), the spacing of the

lower modal frequencies, the fundamental frequency relative to

the intersection of the -constant velocity and constant

acceleration branches of the response spectrum (see Fig. 3), the

slenderness of the structure and the shear wave velocity of the

soil on which it is founded. The distributions should be

applicable to the majority of structures of either frame, shear

wallar combination of the two lateral resisting structural

systems. This study represents a more inclusive continuation of

a previous investigation presented in Ref. [4] and iscussed in

Ref. [21].
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Damping is accounted for in a relative sense and the overall

effective damping of the structure is incorporated in the

determining of the fundamental mode spectral acceleration as is

currently the case (see Fig. 4).

Structural behavior was assumed to be linear and although

this is never quite the case for strong motion responses, nor is

it desirable for the structure to resist the seismic induced

forces in the elastic range, this provides an upper bound for

structural proportioning. Nonlinearities due to secondary

effects, excessive deformations beyond the elastic limit and

progressive damage of structural components cause a

redistribution of stresses as the earthquake progresses and an

accurate determination of the response would require extensive

analysis. Furthermore, several analyses for several time

histories of select recorded earthquakes would be required for an

accurate appraisal of the redistributions. A well proportioned

structure analyzed in the elastic range will generally exhibit

superior structural behavior as it exceeds its elastic limits.

The response studied in this thesis is for motion in one

principal direction only; twisting moments arising from ground

motions not coincident with the principal directions of the

structure as well as masses and stiffness eccentricities within

the structure were not investigated in this study. Account of

these twisting moments must be made by either considering a modal

analysis with the torsional ground motion response spectra or in

an equivalent static manner by proportioning the effective moment



induced by intentional,

eccentricities.

in

4

addition to accidental,

Soil structure interaction was investigated to assess its

effect on the response of the structures in this study. The soil

structure interaction investigated should not be confused with

the amplification or attenuation of the ground motion as it is

filtered through the founding soil. By varying the slenderness

ratio of the structure and the shear wave velocity of the soil on

which it is founded, the foundation flexibility's effect on

reducing the structure's ap9arent natural frequency and its

dynamic response can be assessed. The interaction model

considered is that of a disk attached to an infinite elastic or

visco-elastic halfspace. Results of previous studies, in

t<.efs. [15],[19],[24],[26],[29],[30],[31],[32] and [33J, on the

effect of soil structure interaction have been incorporated into

this study.

1.3 Organization

The results of this study along with the explanation of the

methods by which they were obtained are presented in the

following chapters. The theory on which the study was based is

0resented in chapter 2. The mathematical models adopted in

order to apply these theories to this investigation are

discussed in chapter 3. Chapter 4 lists and explains the

variables investigated to effect the parameter study.

Chapter 5 explains the means by which the response data
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was normalized enabling the data to be reduced in the desired

fashion. Chapter 6 discusses the resulting design distributions

and base values for the several parametric variations. The

conclusions and recommendations for further study are the subject

of chapter 7.

l.i Notation

a dimensionless frequency parametero

A area of cross section

A acceleration distribution along the height
c

AF a spectral acceleration amplification factor

AFv . spectral velocity amplification factor

Am transform matrix from story forces to overturning moments

As transformation matrix fromstory forces to story shears

B polynomial acceleration distribution coefficients

C damping matrix

Cs effective seismic velocity

E modulus of elasticity

f story forces

F forcing function

g gravity acceleration

G shear stiffness

h story height

H height of structure

I moment of inertia of cross section

i,j,k,A dummy indices

K stiffness matrix



L

n

N

p

r

R

3 a

s
~f

t

T

u

6

element length

mass matrix

mode number

total number of story levels and degrees of freedom

load

load factor

radius of gyration

radius of foundation

story shear

spectral acceleration

spectral displacement

portion of base shear resisted by frame

time

period

displacement (subscripts correspond to the direction or

mode of deformation)~ direction of transverse displacement

u strain energy

v direction of axial displacement

V convolution integral

x direction of base translation

x position along the unit height of the structure

Yn normal mode displacement

Y polynomial distribution along the height of the structure

z

a

distribution coefficient as a function of position

and height of setback

dimensionless frequency dependent coefficient for

calculating dynamic stiffness of halfspace



------ --~- ----------

7

S ?ercent of critical dam?ing

y percent of strain energy due to shear deformation

~ story drift

Cst static displacement

£ index of correlation

e direction of end rotation

K shear area shape factor

M overturning moment

v Poisson's ratio

p mass density ratio

a dimensionless wave parameter

~ . eigenvectors

X regression coefficient as a function of position

and height of setback

W direction of base rotation

w circular frequency
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CHAPTER 2. THEORY

In the course of this study it was necessary to establish

the equations of motion for various types of structures. These

structural types were expressed in terms of the percent of total

strain energy due to shear deformation. A variety of these

equations of motion were solved for structures ranging from shear

beams to flexural beams. In order to determine the structure's

response to strong ground motion a modal anlysis was performed

and the eigenvalues and eigenvectors were calculated. The

secondary effects of P-~ and soil structure interaction were

included in the modal analysis and distri~utions of story shears

and overturning moments were determined. A polynomial regression

analysis was then performed on the distributions resulting in

base coefficients and design acceleration distributions for a

class of structural types and founding media.

This chapter explains the theory behind the operations

performed in this investigation. The formulation and description

of the various equations and terms is presented in the following

sections.

/



-------

9

2.1 Equations of Motion

Simplified force equilibrium equations can be expressed for

structures subjected to ground motions similarly to structures

subjected to static forces. In the dynamic problem inertial and

damping forces, actions proportional to accelerations and

velocities respectively, must be included to transform the time

dependent problem into a series of static cases. A more detailed

discussion is available in Refs. [2], [12] and [ [20].

The interstory shear term, [K]{u}, is the product of the

shear stiffnesses and the interstory displacements. The

interstory damping term, [C] {u}, is the product of the equivalent

viscus damping and the interstory velocities. The inertial term,

[M]{U}, is the product of the interstory accelerations and the

lumped story masses. These force terms are summed equal to the

lumped story masses times the ground acceleration, [M] {l}ug(t) ,

at the level in question.

[M]{U} + [C]{u} + [K]{U} =- [M] {l} ij (t)
g

(1 )

This can be transformed into normal coordinates which

effectively decouple the equations to represent a series of

independent single degree of freedom systems

This equation can be solved for undamped free vibration without

significant loss of accuracy. The normal ~ode displacements can
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be found equal to

where

y =n (3 )

-8 W (t-T)nne Sin(t-T) dT ( 4)

The relative displacement of the ith node in the nth mode is

obtained upon transforming back to our original system.

(5 )

Elastic story forces corresponding to the displacements are

obtained by premultiplying the displacements by the stiffness

matrix:

( 6)

or equivalently:

(7)

Elastic interstory shears are -found by summing the story forces

from the top down to the story of interest.

each mode are calculated separately.

Story shears for

(8)

where [A] is a unit upper triangle matrix which produces the
s

story shears when postmultiplied by the story forces. The matrix

[As] for a five story structure is:
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[

1 1 1 1 1]o 1 111
= 0 0 111

o 0 011
o 0 0 0 1

(9 )

The inverse of [As] is the matrix which produces the story forces

when postmultiplied by the story ~hears.

[

1 -1 0 0 0]o 1 -1 0 0
[A ]-1 = 0 0 1 -1 0

s 0 0 0 1-1
o 0 001

(10)

Overturning moments are calculated by summing the first moment of

the story forces from the top down to the story of interest.

(11 )

where [Am] is an upper triangle matrix of the cumulative story

heights. When [Am] is postmultiplied by the story forces the

resulting values are the overturning moments. A five story

structure with constant story heights produces the following

matrix for [Am]:

-[~= 0
o
o

2
1
o
o
o

3
2
1
o
o

4
3
2
1
o
n(h)

(12 )

Similarly, the inverse of [Am] is the matrix which produces the

story forces when postmultiplied by the overturning moments. For

the five story structure with uniform story heights:

-~ -~ -~ J] (~]
000 1

(13 )
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The maximum response of each mode of vibration can be read

directly from a response spectrum and these maximum modal

responses can be combined to give a total response.

(14 )

(15 )

We note that the damping term had been ignored in computing

the normal coordinate displacements. This is only a

minor error since the contribution o~ damping to the force

equilibrium equation is small. The damping is accounted for in

the response spectral values of maximum displacement and

acceleration.

2.1.1 Stiffness Matrix

The structural idealization of the building frames analyzed

for this parameter study was carried out by means of the direct

stiffness approach. An energy expression for the beam and column

elements was used to calculate the total potential energy of an

elastic frame in terms of the displacements and rotations of the

joints. Using the slope deflection equations, relating the end

actions of a beam element to its deflected shape, the energy

expression was then arranged in a quadratic form. The

expression was differentiated with respect to the generalized
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coordinates and expressed in matrix notation.

2
[
u . - U ojU] \ll+ uej - 3 L (uei + uej )

+ ~ (uvj - '-Vi) 2 + constant

[
u

+ 3 ej (16 )

Where ue' Uu and Uv are the rotational, transverse and axial

displacements at the i and j nodes. The stiffness matrix

generated in this fashion contains no rigid body motions and is

not singular. Furthermore, it is important to note that the

matrix is necessarily positive definite since the energy function

is positive definite. A more detailed discussion is available in

Ref. [17].

Shear walls, behaving as cantilever deep beams containing

both flexural and shear modes of deformation, were treated

separately. Flexibility coefficients, expressing the

(17)

displacements of the wall due to a unit load at anyone floor

level, were generated by means of the unit dummy load method.

u = ~g = I[:; + "ciS J dx

Where At = mP, S = sP and K is the shear area shape factor. The

applied moments and shears, M and S, are linear homogeneous

functions of the external load P whereas the dummy moments and

shears, m and s, are due to a unit load acting alone. The

displacement at any level i due to a load at level j is therefore

calculated as:



k*~ 1 ( JU = L X.x.x. - -2 lX, +X.
k=l 1. J-l{ 1. J

14

3 30 2

~
(EI}k+l - (EI}k

x.2 + 13 x..-.+ 13 Kr x.--k -1{ --k (EI}k+l. (EI\ (18)

where k* is equal to the smaller of i and j. For a rectangular

wall the product of K and r 2 equals one tenth of the square of

the width of the wall.

Once the flexibity matrix is determined it is easily

inverted by Gaussian elimination techniques to obtain the lateral

stiffness matrix. This matrix, expressing the cantilever beam's

loading required to effect a unit displacement at a specific

level with no displacements elsewhere, is in a convenient form

for calculating the natural frequencies associated with the

lateral degrees of freedom.

2.1.2 Condensation

The structural stiffness coefficients, as derived from the

potential energy of the elastic system, may contain degrees of

freedom corresponding to which the inertial, damping and forcing

functions may have no components. These degrees of freedom may

be condensed out to preserve their effects without explicitly

expressing them. Vertical joint displacements and joint

rotations may be expressed in terms of the horizontal

displacements and, by means of back substitution, their effects

can be preserved.

This process is easiest done by partitioning the stiffness

matrix into nine submatrices setting P e and P v equal to zero.
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P Kuu_I~~W~ Uuu

Pe = Keu_l~e~ LKev _ ue (19)

P ~OIK I Kvv Uvv . ve

The bottom row of partitioned matrices may be expanded to a self-

equilibrating equation and {u v } may be solved in terms of rUe}.

o

~ {uu} + [KVe]{ue} + [Kvv]{Uv } =0 (20)

(21)

Similarly, the next row of matrices can be expanded, the vector

{uv } can be replaced by its equivalent and rUe} may be solved

in terms of {u }
u

(22)

(23)

(24)

Finally, we may substitute for rUe} and {uv } into the top row

of the equilibrium equation and express the stiffness

coefficients solely in terms of the lateral displacements.

o

{Pu} = [KuuHuu} + [KueHue} + [~ {Uv} (25 )

The equations of motion may be written using the condensed
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stiffness coefficients so the terms are all of the same order and

the degrees of freedom are consistent in all their derivatives.

These equations will be decoupled by transforming them into

normal coordinates.

2.1.3 Mass Matrix- --

A consistent mass matrix may be derived from the kinetic

energy of the system just as the stiffness coefficients were

obtained from the potential energy. The element velocity

distributions were related to the nodal values via the same

functions which related element displaceme0t distributions to the

nodal values. The first derivative of the kinetic energy

relation with respect to the nodal velocity gives the desired

mass coefficients.

The lumped mass approximation follows the same theory except

the element velocites are assumed to be zero everywhere but at

the nodes. Only diagonal terms representing the mass associated

with translational degrees of freedom are retained. The mass of

each floor is considered to be concentrated at a node and it is

understood that an acceleration at any node produces inertia

forces at that node only. Rotational degrees of freedom are

assigned no rotary inertia and no mass is assigned to them. The

lumped mass representation greatly simplifies the calculations by

introducing no mass coupling.
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The consistent mass matrix may be condensed, in a fashion

similar to the stiffness matrix condensation, to reduce the

degrees of freedom while preserving their effects. Such a

condensation would produce an upper bound to the correct

frequencies, however, the benefits do not justify the

computational effort required. A detailed description of mass

matr ix condensation is avail.ab1e in Ref. [23].

2.1. 4 Damping

Structural damping is the mechanism to which energy

dissipation in elastic analysis is attributed. This damping is

due to the hysteretic nature of structural systems and the energy

loss per cycle is equal to the area within the hysteretic force-

displacement plot. This energy loss per cycle must also equal

the work done by the external forces. Although the energy loss

is proportional to the square of the amplitude of the structure's

response, for a harmonic excitation this can be equated to an

equivalent viscous damping which is proportional to the response

velocity, though opposite to its direction. The magnitude of

equivalent viscous damping for each mode of vibration is the

subject for considerable debate. For computational convenience

proportional damping is assumed to permit the equation of motion

to uncouple when transformed into normal coordinates. A

convenient form for the damping matrix, to assure its uncoupling,

is to assign its coefficients values proportional to a linear

combination of the mass and stiffness matrices. Two factors of
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proportionality can then be assigned to assure two modes to be

damped to the desired degree. In general, however, the damping

matrix can be constructed from the stiffness and mass matrices to

guarantee its uncoupling specifying as many modes of damping as

degrees of freedom. The remaining values of modal damping will

result from the process of enforcing the s~ecified values.

Computationally, this procedure gets cumbersome beyond specifying

the first two modes. A thorough discussion of these procedures

is available in Refs. [2] and [12].

Although the form of the damping matrix is essential for

dynamic analyses involving numerical integration of a specified

time history input, it will be shown that this is not the case

for response spectrum techniques. The magnitude of relative

fixed base modal damping is essential and in this stUdy the

ratios were assumed equal in the first few significant modes of

vibration. Studies conducted elsewhere and discussed in

Ref. [21] support this assumption.

2.1. 5 Forcing t"'unction

The forcing function, for the case of a horizontal ground

acceleration base input, is simply the negative of the product of

the story masses and the ground acceleration. A unit vector is

used to represent each degree of freedom's uniform translation

due to a unit base motion. Obviously, were the masses not all

collinear and perpendicular to the assumed base motion the unit

vector would be replaced by the appropriate relation.
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If the forcing function were subtracted from both sides of

the equation of motion and compined, on the left side, with the

inertia force term, we would then have the product of the mass

matrix and the total acceleration the masses are subjected to.

The right hand side of the equation would be zero and the

equation would be reduced to:

where

lM]{ijt} + [C]{~} + [K]{u} = 0

2.2 Eigenvalues

(27)

(28)

Having generated the stiffness coefficients and mass matrix,

these can now be combined into the dynamical matrix for the

purpose of calculating the natural frequencies and mode shapes of

the vibrating structure. The equilibrium equation can be written

relating the spring force, inertial force and damping force. The

damping force however, is much smaller than the other two and may

be safely ignored. The resulting equilibrium equation may be

expressed in symmetric form for computational facility.

[M]{li} + [K]{U} = 0

{u} = {~} sin wt

(29)

(30)

(31)
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-1/2 2
[M] T [K] (M] -1/2 - w [I] = 0

(32)

(33)

The E1SPAC subroutine was used to solve the eigenvalue

problem for the symmetric, positive definite, dynamical matrix

and the values were back substituted to obtain the associated

vectors. The E1SPAC system employs the method of bisection

applied to the Sturm sequence for smaller systems of equations

and the rational Q R method with Newtonian corrections for larger

systems in which only a few solutions are desired. A complete

writeup of, the E1SPAC system is available in Ref. [6].

The vectors obtained from the E1SPAC routine were

orthogonally normalized so that the result of postmultiplying

and premultiplying the mass matrix by the scaled vectors and

their transposes resulted in the identity matrix.

(34)

The eigenvectors established for the linear system represent

independent motions in a normal coordinate system and they may be

combined by the principal of superposition.
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~.l Modal Analysis

The eigenvalues and the scaled eigenvectors are the squared

circular frequencies and the orthonormalized mode shapes which

define the dynamic response for the fixed base structure. The

maximum response and displacements can be obtained from a

response spectrum which charts the maximum responses of a damped

single degree of freedom system of varying natural frequency to a

given strong ground motion. Each mode .may be considered a single

degree of freedom system with a percent of the total mass

considered effective and the desired response can be calculated,

whether it be displacement, force,story shear, overturning

moment, etc. independent of the other modes. The responses of

all the modes can be combined in a suitable manner to indicate

the most probable response of the system.

The percent of the total mass considered effective may be

derived from the forcing function as expressed in the right hand

side of the equilibrium equation of ground motion.

(35)

Since the mode shapes are orthonormalized the total components of

base acceleration each mass is subjected to is identically equal

to the ratio of mass effective in a mode of vibration.

{~n}T[M]{l}

{~n}T[M]{~n}
(36)

The modal elastic displacements result from the product of the
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normalized mode shapes, the ratio of effective mass and spectral

displacements for the frequency and percent of critical damping

corresponding to the mode.

(37)

The modal elastic forces result from the product of the

normalized mode shapes, the mass matrix, the ratio of effective

mass and the spectral acceleratrions.

(38)

The modal shears and moments may be calculated from the elastic

forces as in a conventional static analysi~.

2.4 P-1:1 Effects

Secondary effects due to the additional moments the

structure's weight produces when deflected from its stationary

vertical configuration may be sizable for tall, flexible

buildings. These additional moments result in amplified story

shears and amplified story drifts which, in turn, result in yet

additional overturning moments. An iterative scheme is required

until a stable and equilibrated deflected configuration is

reached.

----

S* S + PI:1*= ~

PI:1*S*
S* = S + S* h

(39)

(40)

/
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pfj,* *
S* = (1 - S*h) S (41)

S* = S
pfj,*

(1 - S*h)
( 42)

For linearly elastic structures the story stiffness, the slope of

the story shear vsstory drift curve, is constant so

(43)

and

(44)SS* =
(1 - pfj,)

Sh
These effective story shears correspond to the equilibrated

displaced shape of the structure and may be used to calculate the

overturning moments. The effective shears take into account the

eccentricity of the story weight in its deflected configuration

in addition to the inertial force of the story masses due to the

strong ground motion. Each modal shear and overturning moment

distribution, assumed to be independent of the others, is

amplified to account for the P-fj, effects.

A similar amplification procedure may be applied to the

interstory displacements which, when summed from the ground up,

yield the equilibrated displaced configuration.

fj,* =
(1 - Pfj,)

Sh

(45 )
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Alternatively, since the system is assumed to behave elastically,

the additional displacement due to the p-~ effects may be

calculated from the effective increase in story forces

corresponding to V*.

{~*} - {~} = [K]-l t{S*} - Is})

(46)

(47)

These procedures are explained in greater detail in

Re f s • [5] , [24] , [27] , [34] •

2.5 Soil Structure Interaction

The effect of a compliant foundation on the dynamic behavior

of the superstructure is to lengthen the fundamental periods and

increase the amount of energy dissipated through radiation of

waves into the supporting soil. The principal effects may be

represented by two additional springs and dampers at the base of

the structure, one pair representing the foundation's rotational

degree of freedom, the other representing the foundation's

translational degree of freedom. The development and discussion

of the soil structure interaction equations is presented in

Refs. [7] ,[15],[21] and [26]. These studies have shown that the

coupling between the horizontal and rotational motions may be,

for multistory structures, neglected with little loss of

accuracy. Neglecting the coupling permits the representation of

the motion by normal coordinates and a solution by modal analysis
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techniques.

The equations of motion for the compliant foundation differ

from the fixed base in that there are two additional degrees of

freedom and two additional equations.

(48)

(49)

(50)

The impedance relations for the elastic half space are

(51)

Where Sb(t) and Mb(t) are the base shear and overturning moments

at the structure-foundation interface.

(52)

Rearranging the terms results in the following three equations

{l}T[M] {ii} + UX{l}T[M] {l} + U1/J{l}T[M] {h} +mb iix + Cxux + Kxux =

- Ug({l}T[M]{l} + mb )

( 54)
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" .+ ItUljJ + CljJUljJ

- ii {h}T[M]{l}
9

'Combining into a single expression

[r.1']{ii'} + [C']{u'} + [K']{u'} = {F'} (56)

o

[M'] =

[C'] =

[K'] =

{U'} =

[M] : [M]{l} : [M]{h}

--------~------------~-----------
{l}T[M] : {l}T[M]{l} : {l}T[M]{h}

--------~------------~-----------
{h}T[M] : {h}T[M]{l} : {h}T[M]{h}

[C] : 0 : 0
--------~------------~--~--------, ,

o ' C ' 0, x '
--------~------------~-----------, ,

: 0 :

[K] : 0 : 0

--------~------------~-----------. ,
o I K ' 0, x '--------t------------4-----------o : 0 : KljJ

{U}

U x

UljJ

(57)

(58)

(59)

(60)

{F '} = -ii
9

[M] {I}

rob + {l}T[M]{l}

{h}T[M]{l}

(61)
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The equations may be uncoupled to perform a modal analysis by

meas of Foss' method,described ,in Refs. (12] and [15]. The (N+2)

degree of freedom system is first transformed into a 2(N+2)

degree of freedom system of lower order.

(62)

This form of the equation yields (N+2) complex eigen values and

(N+2) complex conjugates. An iterative procedure must be used to

account for the frequency dependent impedance functions.

Alternatively, the equations may be solved in the frequency
, .

domain ~sing fast fourier transform techniques.

Simplifications arising from parametric studies of the

solutions of these equations, presented in

Refs. [19],[29] ,[30] ,[31] and [32], may obviate the need of a

rigorous solution. Good correlation between exact and simplified

approaches allow for the use of the fixed base mode shapes with

the modified frequencies and dampings.

2.6 Combination of Modes

The story displacements, shears and overturning moments

calculated ~or each mode of interest, amplified for p-~ effects

and modified to account for soil structure interaction are

combined to represent the most probable response. Most

structures' natural frequencies are well enough separated that

their responses to strong ground motion are considered
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independent of each other. For such separated systems the most

probable combined response is the square root of the sum of the

squares of the individual modal responses. An upper bound to the

structural response is the sum of the absolute values of the

individual modal responses. It is highly unlikely for the

maximum responses of all the modes due to a strong ground motion

to occur simultaneously. The sum of absolute maximum responses

is highly overconservative for multidegree of freedom systems.

2.7 Energy Relations

The elastic strain energy of a structural system is a

function of the loads acting on the system and the resulting

deformations. Two systems with different load resisting

properties subjected to identical loads would generate different

amounts of strain energy depending solely on the difference in

deflected shapes. A ?rescribed load applied statically along a

cantilever shear beam generates a different deflected shape than

does a cantilever flexure beam. In a system in which the lateral

resisting elements exhibit combinations of shear and flexural

deformations, the ratio of energy due to either action divided by

the total energy ought to provide a measure for the influence of

either component.

For the discretized systems the strain energies of the

several structural components may be determined for the most

probable deflected shape of the system. The percent of shear

strain enengy for a system composed of any number, N*, of lateral
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load resisting systems may be calculated from the stiffness

matrices which describe the linear system and the deflected

shape. The subscripts sand f refer to the shear and flexure

modes of deformation respectively and the subscript t indicates a

total value, whether it be stiffness, strain energy or

deformation.

[K. ]
1

(63)

N*
I

i=l
[K. ]

1
(64)

= {u.
f

} + {u. }
1 1S

(65)

{p. } = [Kif]{uif } = [K. ]{u. } (66)
1 1S 1S

{u
if

} -1 (67)= [K.
f

] [K. ]{u. }
1 1S 1S

{Ut} [[I] 1 ) (68)= + [K. f] - [K. ] {u. }
1 18 .... 1S

{U. } ( [I] -1 )-1 (69)= + [Kif] [Kis]· {Ut}1S

{u. } [ [I] ( [K
i

] -1 - -1] ]-1) (70)= + [Kis ] [Kis ] {Ut
lS

{u. } = [K
is

]-l[K
i

]{U
t

} (71)
lS

1 T (72)U. = "2 {u. } [K·s]{U' }
lS 1S 1 1S
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(73)

(74)

(75)

U
~' = 100 s (76)

U
t

2.8 Regression Analysis

The story accelerations distributions may be expressed as

cubic polynomial equations.

(77 )

The several variations in structural discontinuities and soil

structure interaction for each height of structure and percent of

shear deformation may be combined by the method of least squares

to produce a generalized design distribution. Story shears and

overturning moments need first be normalized to produce a unit

base shear assuming unit story masses at each level. This has

the effect of normalizing the story accelerations, allowing the

story shears and overturning moment distributions to be compared

directly regardless of the actual story masses. The least
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squares regression therefore minimizes the variation in the

fourth and fifth order polynomial response distributions with

respect to the cubic polynomial acceleration distributions l

coefficients. To minimize the variation between the modal

response distributions and the expressions to fit this data, the

following four simultaneous equations must be solved.

N1

a y~)2L --* (Y. - = 0
i=l aB

l
1 1

N' a y~)2L --* (Y. - = 0
i=l aB2

1 1

( 78a)

(78b)

(78c)

(7Sd)

The Yi are the values obtained from the modal analysis, whether

they be story shears or overturning moments, *the Y. are the
1

polynomial expressions for the respective response distributions

* * * *in terms of 8 1 , B2 , B3 and 8 4 , and N 1 is the total number of

distribution points included in the regression analysis. The

acceleration distributions for calculating the most probable

shears and overturning moments for a particular structure will

not necessarily be the same. Two distinct distributions must

therefore be determined for each structural idealization.

I
t
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polynomial form
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the story accelerations to be of the cubic

N N j-l
S. = I f. = L £i - I f.

J i=j ~ i=1 i=1
~

*

[L (m
i

) (i) l. ]
3 B (4- A)

(mi) (i) A
j-l

S. = I - IJ A=O NA i=l

(79)

(80)

(81)

(82)

If we were to assume all base masses to be equal to unity and all

setback masses to be equal to m, the equation for story shears at

level j becomes:

* *3 B [ N N j-l k ]s. = I (4~A) I m(i) A + I (l-m) (i) A - I m(i) A - I (l-m) (i) A (83)
J A=O N i=l i=l i=1 i=l

Where k is the story at which the setback occurs,

*And k =k but not greater than (j~l)

The sum of constants, integers, their squares, cubes and quartics

from one to N has been calculated in Ref. [16] to be

N
I (1) = N

i=l

N
~ N (N+l)I (i) =

i=l

(84a)

(84b)
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N
(i)2 1

L = 6" (N) (N+1) (2N+1)
i=l

N
(i)3 1 (N)2(N+1)2L = 4"i=l

N
(i)4 1

(N) (N+1) (2N+1) (3N2 + 3N-1)L = 30i=l

(84c)

(84d)

(84e)

Substituting into the expression for story shears at a level and

regrouping, we obtain the following equation.

Where

( 86)

An expression for overturning moments at any story in terms

* * * *of the acceleration coefficients B
1

, B
2

, 8
3

and B
4

and functions

Zl' Z2' Z3 and Z4 may be derived as follows:

M. =
J

N

L
i=j

(i - j + 1) f.
1

(87)

N j-1
M. = L (i - j + 1) f.,... L (i - j + 1) f. (88)

J i=1 1 i=1 1

M, = I B~ 4~A) [. I (rn
i

(1- j) (i) A + rni (i) A+1 ) - ~II
(rni (1- j) (i) A

J A=O N 1=1 ' 1=\ mi(iIA+lJ! (89)

If, as before, we assume all base masses to be equal to unity and
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all setback masses to be equal to m, the equation becomes:

*3 B(4~A)
M.= I A

J A=O N

After substituting the expressions for the summations and

(91)

rearranging, the equations for overturning moments becomes:

Mj = :i [<l-j l (
Z

44 + Z23 + Z42 ) + (
Z

5
5 + Z24 + Z33 - :~}J +

B*2" " Z3 Z2 Zl Z Z Z ]
(44 + 2

3 + -4
2

) +N2 _(l-j) (3 + 2 + T) +

B3 r z2 zl Z3
'N L(l-j) (2 + 2) + (3 +

BJ [(l-j) (Zl) + (
Z

22 + Z21lJ
For both shear and overturning moment distributions, the

polynomial regression equations take the same form and the

acceleration distribution coefficients are solved in the same

fashion.

{ y* Y.x .. }
i=l 1 J1

Solving for the coefficients

(93)

= ry* X .. Xk l -1 [y* Y. x.. ]
~=l )1 ~ i=l 1 J1

(94)
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If the acceleration distributions are constrained to be zero at

*the base of the structure, the coefficient B4 is set equal to

zero. This allows the equations to be condensed and reduced from

fourth order to third.

An index of correlation was calculated to measure the

goodness of fit of the cubic regression equations to the derived

distributions of shears and overturning moments. The index was

defined as:

N' 2
1/2

*(N'-4) L (Y. - Y.)
i=l J. J.

E = 1 - N'
(95)

(N'-l) L (Y. - Y.) 2
i=l J. J.

which is, for large values of N', a function of the unbiased

conditional dispersion about the regression equation and the

variance of the distribution about its mean value.

A more detailed discussion of polynomial regression analysis

is presented in Refs. [1] and [3].
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CHAPTER 3. MODELS

This chapter is a description of the models used to adapt

the material in Chapter 2 to this study.

3.1 Type of Structure

Structures acting as multidegree of freedom oscillators

responding to a strong ground motion, may be represented by

spring-mass models (see Fig. Sa). The springs interconnecting

the masses are of two basic types representing shear and flexural

behavior. Buildings exhibit a combination ,of the two depending

on the lateral force resisting systems. Although the relative

proportions of shear and flexural behavior vary along the height

of most buildings, the representative springs in the spring mass

models may be combined to match the actual behavior.

Slender shear walls behave essentially as flexural beams

with shear effects increasing along with the wall depth.

Conversely, moment resisting frames behave essentially as shear

beams with flexural effects increasing with beam flexibility and

axial column deformation. Since beam to column stiffnesses vary

along the height of the structure, as do the axial column

stiffnesses, the rotational (flexural) effects vary as well.

Frames with infinitely rigid beams and inextensible columns

behave as pure shear beams and may be modeled as such. All other

structural systems exhibit a combination of the two actions.

Fig. 1 illustrates the deformation modes of frame-wall
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structures.

The model used to represent shear wall elements is a

discrete spring mass representation of the Timoshenko Beam. In

this model the shear and flexural stiffnesses are combined in

series, indicating additional flexibility due to the inclusion of

both actions. For combinations of walls, with different

proportions of fle~ure and shear, or for the combination of walls

and frames, the shear and flexural stiffnesses need to be

combined in parallel. In this instance the combination of

lateral resisting actions result in a stiffer system.

The Tirnoshenko Beam is comprised of both flexural and shear

components of stiffness connected in series. The inclusion of

the shear component softens the system and augments the deflected

shape of the beam.

u = <!>(x) sin wt

(96)

(97)

( 98)

The Heidebrecht and Smith beam contains both modes of

deformation~ however, the two are connected in parallel and the

inclusion of the shear component stiffens the system, reducing

the deflected shape of the beam.
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u = <P(X) sin wt

(99)

( 97)

(100)

The differential equations for the continuous cantilever beam

representation of the two models are derived and discussed in

Refs. [2], [10] , [11] , [13], [14] , [17] and [28].

3.1.1 Stiffness Matrix

The discretized representation of the lateral structural

stiffness matrix is accomplished by summing the condensed lateral

frame stiffness coefficients and the lateral wall stiffness

coefficients. The wall stiffness matrix is generated as the

inverse of the sum of the component flexure and shear flexibility

matrices. This procedure preserves the effects of beam

flexibilities, column elongations and shear flexibilities

maintaining only the lateral degrees of freedom. The assumption

involved is that all the walls and frames are constrained to

displace an equal amount at each floor level due to a floor slab

infinitely rigid in its plane. Furthermore, simplifications in

the frame stiffness formulation were obtained by assuming all

joint rotations at a floor were equal. This assumption was

tested against an exact formulation in Ref. [12] and was, found to
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be quite adequate.

The wall stiffness factors were expressed as the sum of the

EI/L for all walls at a story. The frame stiffnesses factors

were expressed as the ratio of the sum of the column stiffnesses

to the sum of the wall stiffnesses at a story. The beam

stiffnesses were expressed as the ratio of the sum of the beam

stiffnesses to the sum of the column stiffnesses for the floor

below. The column shortening factors were expressed as the ratio

of the sum of the column areas to the sum of the column

stiffnesses.

The story stiffness distributions were assumed both uniform

over the height of the structure and uniform to an intermediate

level and uniform, though reduced, for the remaining height of

the structure. The first uniform distribution represents a

regular structure whereas the second discontinuous distribution

represents a.setback structure.

In this study the actual values of story stiffness are not

as important as the relative values of story stiffness. The

resulting lateral stiffness matrix may be scaled to yield the

stiffness coefficients corresponding to a desired fundamental

frequency. Furthermore, considerable computational economies may

be achieved by working with fewer degrees of freedom than floor

levels. This may be accomplished, preserving the relative

influence of secondary effects, notably the p-~ interactions, by

multiplying the stiffness and dividing the masses by the ratio of

reduced degrees of freedom to the number of stories in the
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structure. To preserve the P-6 influence the story heights must

also be factored when considering the ratio of P6/HV and H/R

slenderness factor.

3.1.2 Mass Matrix

The masses were assumed tG be concentrated at the joints and

the resulting matrix representation is of diagonal form. Story

masses were assumed to vary in the same relative distribution as

story stiffnesses to represent uniform or setback structures.

The story weights used to calculate second order P-6 effects

were a multiple of the mass matrix. These weights were taken to

be twenty five percent greater than the corresponding values used

in the dynamic analysis. This twenty five percent increase was

intended to account for live loads at the time of the strong

ground motion.

3.2 Response Spectrum

The response spectrum used in this study is bilinear,

representing a constant acceleration branch and a constant

velocity branch. The intersection of these lines forms the knee

in the spectrum and serves as a point of refrence in scaling the

response. A unit constant acceleration was assumed and the

frequency at which the knee occurs was assigned the value of 2.5

Hz. (see Fig. 3). This effectively fixes the value of the

second branch at 24.6 in/sec. 80th the value of the constant
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acceleration branch and the frequency at which the knee occurs

may be varied to match the response of a strong ground motion.

For modal analyses which do not include the secondary effects of

soil structure and p-~ interactions, the natural frequencies may

be allowed to slide along the frequency axis to simulate the

effect of varying fundamental frequencies with respect to the

knee. It should be noted that either the structural stiffness

matrix or the mass matrix may be multiplied by a constant factor

to vary the fundamental frequency relative to the kneee. For

this type of primary modal analysis it is only the relative

spacing of the natural frequencies which are of interest. A

family of responses for different heights of structures, masses

or stiffness factors or strong ground motions may be easily

generated for any particular relative stiffness and mass

distribution.

When the secondary effects of soil-structure and p-~

interactions are included in the modal analysis, the relative

value of fundamental frequency to the knee is no longer

sufficient and depending on the value of the fundamental

frequency the secondary effects will be amplified or diminished.
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3.3 Soil Structure Interaction

A replacement oscillator approximation to the actual

structure-foundation system was used to account for foundation

compliance in the modal analysis (see Fig. 5b). In this

approach, developed and reported in Refs. [19] ,[29] ,[30]

and [31], each mode of vibration, taken to be a single degree of

freedom oscillatior of equivalent mass and height, was presumed

to be attached to a pair of springs and dampers at the base. The

foundation stiffnesses and dampings were calculated for a rigid

circular disk on an elastic halfspace. These impedance functions

were derived assuming the disk to be continuously connected to

the halfspace, hence no uplifting, and no instabilities

representing large foundation settlements.

The dynamic properties of the replacement oscillator were

chosen such that the resonant shears of the modified system

equalled the resonant shears of the actual system when subjected

to the same base motion. For such an equality to exist, the

component of structural displacement multiplied by the fixed base

structural stiffness must equal the total displacement multiplied

by the modified stiffness. Equating the two shears and dividing

both sides by the mass we find the two displacements related by

the following expression:

T 2 tV
U = (-) u

~
(101 )
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However, to this structural displacement the effects of rigid

body rotation must be added to give the total displacement of the

story mass. The modified period of the replacement oscillator

may be calculated from the static displacement it undergoes due

to a force equal to the weight of its mass. Similarly, the

period of the fixed base system may be approximated from the

static displacement it undergoes due to the same force acting on

it. The periods are proportional to the square roots of the

respective elatic displacements. The ratio of modified to fixed

base periods therefore equals the ratio of the square rooted

displacements.

'V

o
st

(102)

=~
K

~ (T = 1 +
K

1<'x

(103 )

(104 )

The equivalent damper ·for the modified system may be

considered to be the sum of the equivalent radiation damping and

effective inter floor structural damping. The structural damping

may no longer be considered as large as in the fixed base

structure and must be reduced to account for the shift in

resonant frequencies. By equating the resonant magnitudes of

pseudo acceleration ratios due to the equivalent and original

systems we obtain the following relation which has been derived



44

in Re f • [ 19] •

[T2~ ].
9 max

= 1

2{3 lH =
1

2~
(105 )

(106 )

The total modal damping of the system is therefore the sum of the

radiation damping due to the foundation flexibility and the

modified fixed base structural damping. It is possible that the

total damping of the interactive system may be calculated to be

less than the assumed damping of the fixed base structure;

however, the lower limit of the total interactive damping is set

at its fixed base value. Since the percent of critical damping

for the structure was based on observations which do not

distinguish between foundation and structural components, the

composite value is assumed never to be less than the estimated

value of 13.

The frequency dependent values of spring stiffnesses used to

model the foundation flexibility result from the following

equations:

Sa
Kx

x GR=
2-v

K -
Sal/!

GR3
l/! -

3(1-v)

(107)

(108 )

Where ax and al/! are the frequency dependent coefficients and were

determined in previous studies. It was found that the
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coefficient for translation is, for all practical purposes,

constant and equal to unity while the coefficient for rotation

diminished with diminishing slenderness and and diminishing wave

parameter. These relationships are illustrated in Fig. 6. The

wave parameter describes the relative stiffness of the half space

and structure and is equal to:

a =
C Ts

H
(109 )

Other parameters affecting the degree of soil structure

interaction are the relative density of the structure to the

halfspace material and the Poisson's ratio for the halfspace.

These parameters may be substituted into the relation for the

modified period of the replacement oscillator to yield the

following equation:

3(1-\») ax

(2-\)) 0.1/1

2]]1/2
(!!)
R

(110)

3.4 Damping

The effects of structural damping on the response spectra

may be included in relative terms with amplification or reduction

factors applied to the bilinear response values. The factors

will differ for the two branches and the frequency at which the

knee occurs will diminish as the damping increases.
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Statistical studies of earthquake spectra, presented in

Ref. [8] , have provided plots of the amplification factors

for the two branches of response for various percentiles (see

Fig. 4). These factors are applicable up to twenty percent of

critical damping. This limitation does not, for the majority of

the models investigated, affect this stu~y.

the plots for mean values are as follows:

4.389 - 0.994 ~n S'=
4.389 - 0.994 ~n S

= 3.119 - 0.677 ~n S'
3.119 - 0.677 ~n S

Equations fitting

(111)

(112)

S' is the structural damping for the mod~ in question and S is

the structural damping assumed for the bilinear representation.

The overall damping for a given mode of the soil structure

system is a composite of the energy dissipated by the structure

and the energy losses from internal friction and wave radiation

into the ground. In this studYt structural dampings in all modes

were assumed to be five percent of critical, a value consistent

with the findings of Refs. [9] ,[21] and [22], and only the soil

structure interaction effects were assumed to affect the relative

values. These interaction effects were accounted for from

empirical studies performed elsewhere. The values of damping

are functions of the structure's slenderness ratio, fixed base to

compliant foundation frequency ratio and the level of excitation.

Equations for the values of equivalent interaction damping were

fit from plots published in Ref. [29], and presented in Fig. 7,

corresponding to strong ground motions at high strain levels.
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These damping components were 'combined with-the structure's fixed

base damping according to the ~e1ationship

[T] 3S = +-t Ssoil ~ Sstructure (113 )

Furthermore, it was assumed that the interactive combined

dampings could never be less than the fixed base values.

3.5 Energy Relations

The portion of strain energy due to shear deformtion may be

approximated by combining the individual ratios of all the

lateral load resisting systems in a weighted average technique.

Each system alone may be considered to be a deep beam and the

ratio may be calculated from the work of each action through its

resulting deformation.

U= fL[~ + KS 2]dX
o 2EI 2GA

(114 )

The percent of total deformation attributed to shear will be a

function of the shape of the cantilever and its loading.

Us
y = 100 -- = 100

U
T

Q = .1444 Concentrated top load

Q = .0650 Uniform Load

Q = .0851 Linearly Increasing Load

'K (!:) 2.. L

Q + K (£)2
L

(115 )

. The value of Q for equal loads concentrated at each story level

is a function of the total number of stories in the building.
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Q = 0.065 ri + 1: +~L N 9N~
(116)

Each energy ratio is weighted by the relative stiffness of

the structural elements and averaged to yield a composite index.

The elements are considered to be connected at the top story and

thereby constrained to deflect an equal amount. The weighted

factor may be the proportion of base shear a particular element

attracts. This value can be calculated in a manner similar to

the component stiffness method by assuming the frames to take a

constant shear due to an interaction force at the top. The

remainder of the shear is assumed proportio?ed to the shear walls

in relation to their moments of inertia.

In the range of practical structures, frames may be

considered to be ninety percent shear beam, hence

Accordingly, the percent. of total deformation

Y
f

= 90% •.rame

attributed to

shear, and hence the ratio of total stiffness to shear stiffness,

is nine tenths. The portion of base shear attributed to the

frame may be calculated in a manner similar to the derivations in

Ref. [18 ] to be

[3N2 + 2N-l 3N2
K [ ~ r] (N+l)+ --

12 130

SF =

[2 + [ift 1N3 (N EEl ]18 + ·~.4 ZE;c130 K -
3

(117 )

For values of (r/H}2 < 0.01
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(118)
3 EE1w

1 +
~=

10.8 N2 EElc

The resulting weighted average of shear deformation may be

expressed as:

*of the (EI) of all N walls at a level and EEl is the sum of allc

the (EI) of all the columns in the frames at a level.
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CHAPTER 4. PARAMETERS

To specify the behavior of the cantilevered Timoshenko Beam

used to model the different types of structures on the various

foundations, several of the parameters were varied. The

principal concern of this study was to model the lateral load

resisting behavior, the distribution of setbacks along the

height, the fundamental frequency relative to the knee in the

response spectra and the foundation compliance. To effect these

conditions the slenderness of the beam, the structural stiffness,

the relative masses and the stiffness along the height and the

shear wave velocity of the supporting. medium were varied.

Furthermore, basic to the analyses several parameters were

assumed and held constant throughout. These constants reflect

either a most typical value or an insensitive parameter whose

variation would cause little significant effect. These

assumptions pertain to the secondary effects of P-6 and soil

structure interaction and are described in greater detail in the

next section.

4.1 Fixed Parameters

The Poisson's ratio of the elastic halfspace was assumed to

be 0.45 representing a realistic value for a foundation material.

The Poisson's ratio is involved in determining the impedance and

damping properties of the halfspace and its effect has been

investigated in Refs. [29] and [30]. The equations for the
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equivalent spring stiffness and frequency dependence factors are

functions of the Poisson's .ratio and substituting the assumed

value yields the following expressions:

(120)

(121 )

In previous studies the values of and a , the frequencyx

(122)

dependence factors, have been calculated for several values of

Poisson's ratio. The value of ax for the assumed Poisson's ratio

was found nearly constant and equal to unity whereas the value of

a~ diminished with diminishing wave parameter and slenderness

ratio as described earlier. A polynomial fit to the curves in

Ref. [30] yielded an expression for the relationship between a~

and the dimensionless frequency parameter ao.

a~ = 0.000677 a~ - 0.01164 a~ + 0.06828

- 0.15 a~ - 0.0902 ao + 0.954

where

(123 )

It has been observed in Refs. [19] ,[29] and [30] and verified in

the course of this study that although a~ is frequency dependent

and ought to be determined in an iterative scheme, the fixed base

frequency gives an adequate approximation. Little change was

observed from successive refinements of the interactive

fundamental frequency.
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The damping characteristics of the halfspace were determined

for the assumed value of the Poisson's ratio and the level of

hysteretic energy dissipation corresponding to strong ground

motion. A family of polynomial fits to the plots in Ref. [29]

provided relations between radiation damping and the ratio of

interactive to fixed base fundamental frequencies for various

slendernesses of structures. These damping were expressed as

percents of critical and were combined with the assumed value of

fixed base structural damping as described previously.

Furthermore, it was assumed that the interactive damping values

could never be less than the fixed base values.

The fixed base value of structural damping was assumed to be

five percent of critical for all modes of vibration. This

assumption, considered typical of elastic structural response,

corresponds to the bilinear response spectrum used in the modal

analysis. Since it is only the relative levels of modal damping

that affect the values of spectral acceleration and it is only

the foundation compliance that affects the relative levels of

modal damping, the overall analysis is fairly insensitive to

changes in the fixed base value.

The relative mass density for the structure and supporting

medium was assumed to be 0.15. This value is representative for

buildings and variations lead to small changes in foundation

damping and interactive fundamental frequency.
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Lastly, the ratio of total weight to dead weight divided by

story height, expressed in feet, was assigned the value of 0.125.

This factor is representative of buildings in which the live load

is one quarter the weight of the structure and the story heights

are ten feet. This value is used in determining the secondary

effects of p~~ moments. Once again slight deviation from the

assumed value has little effect on the distribution of shears and

overturning moments along the height of the structure.

4.2 Variables

A parameter study of modal analyses of structures subjected

to strong ground motions is comprised of two fundamental phases

of investigation. First, the structural behavior and

configuration needs to be established to determine the dynamic

nature of the system. Secondly, the mode shapes need to be

combined to reflect the effect of ground motion on the structure.

The parameters are therefore either of the type which determines
/

!

the mode shapes and relative spacing of the frequencies or those

which determine the weighting by which the modes are combined.

These two types of parameters are described in the following

articles and are outlined in Table 1.

i

I
I

I
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4.2.1 ~ode of Deformation

The single most significant parameter in modeling the

behavior of a cantilever Timoshenko beam is its slenderness

ratio. This property determines the deformation characteristics

of the model and thus the dynamic properties. By increasing the

slenderness of a beam we may represent flexural behavior with its

widely separated natural frequencies and corresponding mode

shapes. Conversely, by decreasing the slenderness ratio we may

accentuate the shear deformation behavior and the resulting modal

analysis will correspond to that of a shear beam.

In choosing the values of slenderness ratio to represent the

two extreme conditions and four intermediate combinations, the

elastic strain energy of deformation due to a concentrated load

at the free end was considered. Values of 0, 20, 40, 60, 80 and

100 percent shear deformation were chosen and the corresponding

slendernesses

dimensions.

were back calculated to evaluate the beam's

4.2.2 Setbacks

The structural discontinuities investigated in this study

were modeled as towers setback from a unit base. A tower of plan

dimension thirty percent that of the base was considered a

representative configuration likely to exhibit the effects of

discontinuities on shear and overturning moment distributions.

The relative heights of the tower and base were varied to

/
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determine the effect the location of discontinuties had on

structural response to strong ground motion. Structures were

assumed, at first uniform over the height, and successively

setback in twenty percent intervals till the tower comprised

eighty percent of the height. The thirty percent plan area

setback represents a tower with thrity percent of the mass and

stiffness of the base portion. The degrees of setback studied

are illustrated in Fig. 2.

4.2.3 Heights and Fundamental Frequencies

Four heights of structures were investigated representing

five, ten, twenty and forty story buildings. For each

representation lumped masses were assigned to each floor level

separated by unit story heights. The resulting natural

frequencies were then scaled to a realistic value based on the

height of structure and degree of setback. Structures were

assigned a fixed base fundamental frequency inversely

proportional to the number of stories, raised to the 3/4 power

and directly proportional to a setback factor. The values of

fundamental frequency were assigned relative to the frequency at

which the knee in the response spectra occurs. All higher

frequencies were scaled to preserve the relative spacing and

hence the relative modal contribution. Two fundamental

frequencies were calculated for each height of building, percent

shear deformation and degree of setback. One frequency was

intended to represent a stiff structure and the second a more
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flexible design. The corresponding constants of proportionality,

based on a response spectra knee frequency of 2.5 Hz., were

assumed to be 7.113 and 5.0808 respectively. These values are in

agreement with the expressions for determining fundamental

frequencies of structures, assuming a ten foot story height,

proposed in Ref. [24].

The setback factor is the ratio of the actual fundamental

frequency of a model with the base properties uniform over the

height. The setback factor for uniform buildings is therefore

equal to unity whereas for other configurations the factor

reflects the effect of structural discontinuities on the

fundamental frequency. In preserving the' relative fundamental

frequencies structures of the same height and percent of shear

deformation may be compared directly with each other to determine

the effect of the setback on the response.

An approximation, yielding greater economy of calculations,

would have been to analyze a ten degree of freedom system

regardless of the actual number of stories. This would have been

accomplished by multiplying the masses and story heights and

dividing the stiffnesses all by one tenth the actual number of

stories in the structure. Unfortunately, such approximations

would have made the top story shears impossible to calculate and

the desired accuracy would have been lost.
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4.2.4 Soil Structure Interaction Parameters

The seismic velocity and the slenderness ratios were chosen

to represent the degree of soil structure interaction of the

superstructure founded on a massless disk on an elastic

halfspace. The slenderness ratio represents the height of the

modal centroid to the radius of the foundation's base. For

noncircular foundations the radius i~ an equivalent value related

to the length of the side of the foundation in the direction of

the strong ground motion. Equations for equivalent radii are

given in Ref. [24]. The slenderness ratio is a significant

parameter in determining the relative effects of foundation

translation and rotation. Dividing the seismic velocity by the

fundamental frequency of the fixed base structure and the

associated height of the modal centroid yields a dimensionless

wave parameter. This wave parameter is a measure of the relative

stiffness of the foundation and the structure. Since the

fundamental frequency is approximately inversely proportional to

the height of the structure, the wave parameter is primarily a

function of the shear wave velocity of the supporting soil. The

seismic velocity may be interpreted as a stiffness factor ranging

from several hundered feet per second for soft soils to several

thousand feet per second for hard rock. Both the wave parameter

and equivalent structural dampings of the interactive system.

determining the ratio of interactive to fixed base frequencies

and the slenderness are therefore the primary variables

I
I



58

In this study, the seismic velocity was assigned four values

to represent different degrees of. interaction as well as four

slendernesses to represent different configurations of

structures. The seismic velocities assumed were 250 feet per

second {soft}, 500 feet per second (intermediate), 1000 feet per

second {hard} and infinity (fixed base). These values are

intended to represent the effective seismic velocity at strain

levels consistent with strong ground motion and they are

substantially less than those values measured at small amplitude

strain levels. The slendernesses assumed corresponded to the

available data on equivalent structural dampings and the ratios

were 1,1.5,2 and 5 ranging from squat to slender structures.



59

CHAPTER 5. RESPONSE DATA

The square root of the sum of the squares combination of the

modal values of shear and overturning moments at each floor level

represent the most probable distributions of seismic structural

response. The distributions need to be normalized to compare the

differences resulting from the parametric variations. The

response data was considered to be composed of two distinct

parts, the base value representing the total base shear and base

overturning moments and the distribution of accelerations over

the height. Treated separately, design distributions and design

base factors may be applied to a uniform fixed base model, for

which fundamental frequencies and hence response accelerations

may be easily estimated, to determine the actual response.

5.1 Normalization of Base Shears

The most probable base shears and base overturning moments

may be normalized with respect to the fixed base base shear for

the uniform structure adjusted to the total weight of the setback

structure. An equivalent base shear factor, representing the

difference between the base and the first story normalized

overturning moments divided by the story height, may be

evaluated. These normalized base shear values reflect the

effects of structural discontinuities, soil structure interaction

and P-A effects, and they may be considered to be story shear and

overturning moment factors. It is intended that the factor
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corresponding to a structural configuration and founded on a

compliant footing will convert the base shear and base

overturning moment, calculated for a fixed base and uniform

structure, to the corresponding values for which the factors were

obtained. In this fashion, one need only work with a uniform

structure on a fixed base foundation and modify the resulting

shears and overturning moments with the factor pertaining to the

actual configuration and foundation. In many cases of

preliminary design, accurate knowledge of natural frequencies and

structural stiffness is limited. This method of analysis affords

the designer an approach consistent with the information at hand.

5.2 Normalization of Distributions

The story shears and overturning moments may be decomposed

into story force distributions which may be further decomposed

into acceleration distributions along the height of the

structure. The resulting distributions represent the equivalent

lateral response accelerations at each floor level for

calculating either story shears. or overturning moments. The

response distributions may be reconstructed from the story

accelerations assuming unit masses and unit story heights at each

level. The resulting distrtibutions may be normalized to produce

unit base shears as previously described.

The story shears and overturning moments

reconstructed using the following transformations:

may be

/
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(124)

(125 )

Where [A ] ,[A ]-l,[Am] and [A ]-1 are defined in chapter 2.
ssm

The polynomial expressions derrived for the response

distributions can be simplified for the reconstructed data.

Since all the masses are equal to unity the distribution

coefficients (see equation 86) simplify to the following form:

(126 )

5.3 Combination of Distributions

The normalized distributions may be expressed in polynomial

form by means of a least squares regression technique. It was

observed th~t for a given height of structure, percent of shear

deformation and soil shear wave velocity all the distributions

for the investigated combinations of fundamental frequency and

structural discontinuity could be included in the same least

squares routine. The resulting cubic polynomial expressions

represent the best curve fit for all distributions as a function

of the number of stories, deformation characteristics and soil

shear wave velocity. Two sets of acceleration distributions were

calculated in this fashion, one for computing story shears and

. the other for computing overturning moments.



62

It was further observed that the top story shear and

overturning values, for distributions normalized according to the

preceding section, were equal to the top story acceleration. A

weighting, proportional to the number of stories in the

structure, was assigned to this top story value to increase the

least squares' sensitivity and thereby force the resulting

acceleration distributions to more nearly approximate this point.

In this fashion, the polynomial distributions better reflect the

top story values.



63

CHAPTER 6. RESULTS

The data generated by means of the models discussed in

Chapter 3, for the parametric variations outlined in Chapter 4

and normalized according to the procedures established in Chapter

5, are presented in this chapter. The story shear and

overturning moment response to strong ground motion are separated

into two components~ the base value and the distribution over the

height of the structure. Each component will be discussed with

respect to the parameters varied.

In the course of the parameter study, several combinations

of seismic velocity, slenderness ratio and fundamental period

exceeded the limits of applicability of the mathematical models

incorporated into this study. In particular, the upper limit of

the range of applicability of damping values for the median

horizontal ground motion response spectrum amplification factors,

obtained from Ref. [8] and plotted in Fig. 4, is twenty percent

of critical. However, for squat structures on soft soil for

which the radiation damping component may be sizable (see Fig.

7) the combination of structural and radiation damping often

exceeds this limit. Furthermore, the results obtained by the

replacement oscillator model of the soil-structure interaction

may be significantly in error for cases where the dimensionless

wave parameter is less than three. It has been observed, and

requirement is not too restrictive and generally overlaps

. slender high rise structures founded on very soft soils.

reported in Ref. [30], that this may be particularly true for I
This

!i
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l

f
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limitation imposed on the effective damping of the system. The

parametric combinations which violate these limitations are

indicated in the Tables of results with an asterisk, denoting

that the applicability of the analysis may be questionable in the

cases so identified.

6.1 Base Values

The current procedure for calculating the base shears and

the base overturning moments is to multiply the total weight of

the structure by the following: (1) a site effect factor; (2) a

seismicity factor; (3) an occupancy factor; and (4) a base shear

coefficient. This last coefficient is defined in Ref. [25] as

the ratio of the maximum base shear to the weight of the

structure of a uniform multidegree of freedom system. The

multidegree of freedom system is assumed to have a linear

fundamental mode shape and the effect of all vibrational modes is

included. The· plot of the base shear coefficient as a function

of period is, in effect, an influence line for the base shear.

However, an error in estimatiQg the fundamental period of the

structure or a variation in the spacing of the first several

frequencies results in an erroneous base value. To overcome this

source of error the base values presented in this chapter will

account for the effects of building discontinuities and

soil-structure interaction. These factors modify the base shears

and base overturning moments of a uniform and rigidly founded

~ structure, calculated by current methods, to reflect the

/
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amplification or reduction due to nonuniformities and foundation

compliances. Factors accounting for the effects of the percent

of shear deformation, as a deviation from the linear fundamental

mode shape assumed in Ref. [25], are also presented.

6.1.1 Mode of Deformation

The effects of varying the proportion of shear deformation

on the base shears and overturning moments is presented in

Table 2. The values are calculated to be the base shears for a
-
uniform rigidly founded structure of varying degree of shear

deformation and number of stories, normalized with respect to the

shear beam base shears. These factors account for the altered

relative spacing of natural frequencies and mode shapes with

increasin~ presence of flexural deformation and may be considered

to be an ex~ression of the effective weight of the structure.

The relativ~ spacing of the first three natural frequencies of a

uniform rigidly founded shear beam increases from (1.0, 3.0, 5.0)

to (1.0, 6.27, 17.55) for the corresponding flexural beam.

Similarly, the relative modal -base shear participation factors

increase from (1.0, 0.108, 0.036) to (1.0, 0.306,0.105).

For a given structure, as the number of stories increases

the fundamental frequency decreases. The higher mode influences

will vary depending on the location of the fundamental period

relative to the knee in the response spectrum. When all natural

frequencies exceed the frequency at which the knee in the

response spectrum occurs, the relative influence of all modes are
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the same as the modal base shear participation factors. When the

fundamental frequency is less than the frequency at which the

knee occurs, the relative influence of the higher modes

increases. It is apparent, from Table 2, that for a five story

flexure beam, the effect of the more uniform participation of the

first three modes, when combined in a square root of the sum of

the squares fashion, yields a smaller effective weight than that

of a shear beam. However, as the number of stories increases,

and the frequencies are scaled accordingly, the larger spacing of

the natural frequencies causes the higher modes to dominate. The

resulting flexural beam effective weight is greater than that of

a shear beam.

6.1.2 Setbacks and Soil-Structure Interaction

The effects of soil-structure interaction and setbacks on

the base shears for the variations in height and fundamental

period of structtires with eighty percent shear deformation are

presented in Tables 3 through 6. The corresponding effects on

the base overturning moments for the same variation in parameters

are presented in Tables 7 through 10. The base values for eighty

percent shear deformation were chosen as representative, although

the complete set of tabulated results are summarized in

Tables 11 through 14.

The values in Tables 3 through 10 represent normalized base

shears for calculating both story shears and overturning moments.

The base story shear and the difference between the first two
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stories' overturning moment~ divided by the .first story height

for each variation of the setback and soil-structure interaction

parameters were normalized with respect to the base story shear

of a uniform and rigidly founded structure having the same

percent of shear deformation, height and fundamental frequency.

The values therefore isolate the effects of foundation compliance

and structural discontinuity. Moreover, Tables 7 through 10

reflect the addItional effect of base overturning moments reduced

from those calculated from the story shear distributions. This

reduction has, in the past, been expressed as a J coefficient

which varied along the height. Since this study has treated the

distributions and base values separately, the analagous J

coefficient need only be expressed as a base reduction. These

reductions are apparent when Tables 3 through 6 and 7 through 10

are compared.

The effect of setbacks on the models generated was: (1) to

increase .the fundamental frequency; (2) to decrease the ratio of

second to first natural frequency; and (3) to reduce the base

shear participation factor of the fundamental mode from those of

a uniform building having the dimensions of the lower portion of

the actual structure. The influence of the fundamental mode

relative to the higher modes is heightened by the first two

effects and diminished by the third. The entries in Tables 3

through 10, corresponding to infinite seismic velocity, show the

influence of setbacks on a rigidly founded structure. As the

height of the setback increases relative to the base portion, the

setback factor increases to a maximu~ and then decreases. For
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low rise structures the peak value occurs when the setback height

is roughly thirty percent of the height of the structure. For

high rise structures the peak value occurs when the setback

height is eighty percent of the height of the structure. When

the structure is setback over its full height the model is once

again uniform, though reduced in plan, and the setback factor

equals the values for a uniform structure. These relationships

are due entirely to the location of the fundamental frequency

relative to the knee in the response spectrum. As the height of

the structure increases and hence the fundamental frequency

decreases, the relative influences of the three dynamical effects

of structural setbacks favors the higher modes, yielding a

greater amplification.

The fixed base entries for each degree of setback and each
,

height of structure have been averaged over the six degrees of

shear deformation investigated, ranging from flexure beam to

shear . beam. The condensed results are presented in

Tables 11 and 12, where the numbers appearing in parentheses are

standard deviations indicating the degree of scatter in the

averaged values. Since the setback factors were determined for

masses and stiffnesses reduced to thirty percent of the base

values, to determine the factors for a structure with proportions

differing from those studied, an extrapolation or interpolation

is required. The values in Table 12, for calculating the effect

of setbacks on base overturning moments, are smaller than the

corresponding values in Table 11, which are for calculating the

base shears. The difference between the two represents the base
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moment reduction factor for fixed base structures.

The effect of soil-structure interaction on the models

generated was to decrease the fundamental frequency, holding the

remaining natural frequencies constant, and to increase the

The influence of bothapparent

effects

damping of the fundamental mode.

is to diminish the spectral acceleration of the

fundamental mode while the remaining modal responses stay the

same. Looking once again at Tables 3 through 10, it is apparent

that the seismic velocity is the primary parameter in reducing

the base response. Furthermore, for a given percent of shear

deformation and height of structure, a more flexible structure,

represented by a higher fundamental period, is less affected by a

compliant foundation. Lastly, the slenderness of the structure

has contr~ry influences on the base response. Equation 110

indicates that the ratio of interactive period to fixed base

period increases as the slenderness ratio increases. This causes

a decrease. in the fundamental mode spectral acceleration. Fig.

7 shows that as the period ratio increases the apparent damping

for a given slenderness increases. However, as the slenderness

increases the apparent damping for a given period ratio decreases

and the response spectral acceleration is amplified. It is the

relative increases and decreases of the spectral acceleration

that determine the modal contributions and the resulting base

value factors.

The base values for the flexibly founded models for each

degree of shear deformation, height of structure, fundamental
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period and percent setback were normalized with respect to the

base values for the fixed base case. The normalized values for

each seismic velocity and slenderness ratio were averaged over

the six degrees of shear deformation, the four heights of

structures, the two fundamental periods per height of structure

and the five degrees of setback investigated. The effects of

varying the seismic velocity and the slenderness ratio are

summarized in Tables 13 and 14 along with the associated standard

deviations. The values in Table 14, for calculating the effects

of soil-structure interaction on the base overturning moments,

are smaller than the corresponding values in Table 13, which are

for calculating the base shears. The difference between the two

is the additional base moment reduction for flexibly founded

structures which augments the fixed base reductions presented

earlier.

6.2 Distributions

The current procedure for calculating the base shear and

overturning moment distributions over the height of a structure

is to assume a linear distribution of story accelerations.

Summing the products of the story acceleration and story mass,

starting from the top story proceeding downwards, and normalizing

with respect to the base summation yields the story shear

distribution. The overturning moments are calculated from these

shears as they would be calculated for a static cantilever beam

subjected to a transverse loading. A provision to account for

/
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the amplified higher mode effects due to the skewed relative

modal contributions in high rise, large fundamental period,

structures is to provide a concentrated force at the top story

not to exceed one quarter of the total base shear of the

building. This procedure recognizes that the higher mode effects

on shears and overturning moments are confined to the top portion

of the structure due to the reversals in story accelerations in

the remainder of the structure. Recently, a refinement in

Ref. [24] recommended a distribution of story accelerations

ranging from linear to quadratic, depending on the fundamental

period. This refinement is intended to replace the linear

distribution and a concentrated top story force with a single

expression. The dynamic effects of setbacks on structures

subjected to strong ground motion is the subject of a 1958 report

of the Structural Engineers Association Of California Setback

Sub-Committee and is presented in Appendix C of Ref. [25].

The distributions of accelerations for calculating story

shears and overturning moments presented in this study are

intended to provide the designer greater accuracy and

flexibility. The accelerations for calculating story shears and

overturning moments have been determined inde~endently to

represent the most probable distributions along the structure.

Furthermore, the effect the type of structural lateral load

resisting system has on the response distributions is presented

in this chapter along with the effects· of setbacks and soil

structure interaction. The story acceleration distributions

generated in this study are in the form of a polynomial expansion
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truncated after the cubic term and constrained to be zero at the

base. The two constants, B
l

and B
2

, specifying the contribution

of the higher order terms are the coefficients of the cubic and

quadratic * * Equationterms, B
l

and B
2

, of 79 divided by the

*coefficient of the linear term, B3 •

Ac(X) = B X3 + B x2 + X (127)1 2

The values of B1 and B2 are presented in Tables 15 through 34 and

illustrated in Figs. 8 through 11. The linear term coefficient

has been normalized to unity for all conditions. When combined

with the higher order terms the linearity of the acceleration

distributions is altered in different regions along the height of

the structure. The cubic term coefficient, B1 , is positive and

represents a concentration at the upper stories. The quadratic

term coefficient, B2 , is negative and it represents a reduction

which, when coupled with the linear and cubic terms, is largely

confined to the mid-region of the structure. The relative

magnitudes of the coefficients will determine the shape of the

acceleration distribution. The acceleration distributions must

be normalized with respect to the sum of the products of each

story acceleration by its corresponding story mass to be used to

calculate the story shears and overturning moments.

/
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6.2.1 Mode of Deformation

The most probable distributions of story shears and

overturning moments along the height of a structure have been

calculated as the square root of the sum of the squares of the

modal contributions. To determine the effect of the percent of

shear deformation of a structure on the distributions of story

shears and overturning moments it is first necessary to consider

the modal distributions and their relative influence. The

fundamental mode shape for a uniform cantilevered flexural beam

increases monotonically, concave downward, with the greatest

curvature at the fixed end. The fundamental mode shape for a

uniform cantilevered shear beam increases monotonically, concave

upward, with the greatest curvature at the free end. The

fundamental mode shear distributions for both beams increases

monotonically, concave downward, from a free end value of zero to

their fixed end values. However, flexure" beams attract over

fifty percent more of the base shear near the free end than do

shear beams. The fundamental mode overturning moment

distributions for the two "types of cantilever beams increases

monotonically, concave upward, from zero at their free end to

their base value. The concentration of the base overturning

moments near the free end is only one third greater in flexure

beams than in shear beams.

The higher mode shapes do not increase monotonically and the

number of sign changes equals the mode number less one. Although

the higher mode shapes of the two types of beams are similar,
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small differences between the two are amplified in the shear and

overturning moment distributions. The absolute values of the

higher mode story shears and overturning moments approach a

uniform distribution due to the increasing number of sign changes

in their mode shapes.

Since the portion of the total weight considered effective

in each mode is more uniformly distributed in flexure beam

structures than in shear beam structures, the combined influence

of the higher mode shapes is more pronounced with decreasing

percents of shear deformation. This greater higher mode

participation has the effect of amplifying the shears in the

upper and lower quarters of the building from the fundamental

mode values. These effects are even more pronounced for the

overturning moment distributions. Furthermore, since the natural

frequencies of flexure beams are more widely spaced than those of

shear beams, the higher mode effects are more amplified in a high

rise flexure beam structure than in a corresponding shear beam

structure.

The shear distr ibutions for . a structure with s ignif icant

higher mode participation increases from zero at the free end to

a region of near constant shear and then flares out towards the

fixed base. The location and extent of the constant region is

determined by the position of the fundamental frequency relative

to the knee in the response spectra as well as the percent of

shear deformation in the structure. The resulting acceleration

distribution, decomposed from the story shears, are'S' shaped

/
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When the most probable overturning moment distributions are

compared with those of the fundamental mode it is apparent that

the effect of the higher modes is to amplify the upper values

while reducing the lower values relative to the base. These

deviations from the fundamental mode overturning moments are more

pronounced than the deviations observed between the most probable

~tory shear~ and the fundamental mode values. The story

accelerations obtained from the most probable overturning moment

distributions are therefore reduced in the mid-height region to a

greater extent than those from the shear distributions. The

polynomial regression coefficients for calculating the

overturning moment acceleration distributions of fixed based

structures are presented in Tables 23 through 26. As was the

case with the story shear acceleration distributions, the higher

mode effects are most pronounced in high rise flexure beam

structures.
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6.2.2 Setbacks and Soil-Structure Interaction- --

The effect of setbacks on the distribution of story shears

and overturning moments is primarily to alter the relative

contribution of each mode to the most probable distributions.

Although the mode shapes of a setback structure are different

from those of a uniform structure, the difference in shape is a

secondary effect and it is overshadowed by the more significant

change in the spacing of the natural frequencies. The story

shear regression coefficients for fixed based structures are

presented in Tables 15 through 18 and the corresponding

coefficients for calculating overturning moments are presented in

Tables 23 through 26. These tables reflect the increased effect

of higher mode participation for structures with setbacks equal

to thirty percent of the area of the base. For a given height of

structure and percent of shear deformation, the coefficients

exhibit no specific trend over the range of setbacks. A more

general set of -polynomial regression coefficients were calculated

for each height of structure and percent of shear deformation by

grouping the five variations in setbacks into a single least

squares analysis. The values for calculating story shears are

presented in Table 31 and the values for calculating overturning

moments are presented in Table 33. These tables have been

presented in Figs. 8 and 10 where it is obvious that the greatest

variation in the acceleration coefficients is in the range of low

rise structures. The effect of increasing the number of stories,

thereby reducing the fundamental frequency with respect to the
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knee in the response spectrum, is to increase the higher mode

influences. However, the coefficients for a given type of

structure approach uniform values as the number of stories

increases. The acceleration distributions for calculating story

shears of fixed base structures are illustrated directly above

the corresponding distributions for calculating overturning

moments on the left hand side of Figs. 12 through 17. These

diagrams are normalized to a unit value at the top story and the

higher mode contributions are seen to increase with increasing

story height and decreasing percent of shear deformation.

The indexes of correlation for the individual distributions

presented in Tables 15 through 18 and Tables 23 through 26 were

closer to unity than those of the grouped acceleration

distributions presented in Tables 31 through 34. This is due to

the disparity between the distributions for the various values of

setback. However, for preliminary design purposes the errors

introduced by generalizing the distribution coefficients do not

impair their usefulness.

Polynomial regression coefficients were calculated for

structures on compliant foundations to determine the effects of

soil-structure interaction. The distributions for structures

founded on a halfspace with an effective seismic velocity of five

hundred feet per second were chosen to represent these effects.

The story shear and overturning moment distributions were found

to be very similar over the range of structural slendernesses

investigated, HIR equal to 1.0, 1.5, 2.0 and 5.0. The regression



78

coefficients were therefore calculated for each percent of shear

deformation, height of structure and percent setback while the

four slendernesses were grouped into a single least squares

analysis. The coefficients for calculating story shears are

presented in Tables 19 through 22 and the corresponding

coefficients for calculating overturning moments are presented in

Tables 27 through 30. When these tables are compared with those

for fixed base structures it is obvious that the single most

significant effect of soil-structure interaction is to increase

the higher mode participation in the most probable distributions

calculated. The trends observed for the fixed base structures

were also observed when soil-structure interaction was considered

and the distributions for setback structures were combined in a

single best fit expression for each height and percent of shear

deformation. These acceleration coefficients for calculating

story shears are presented in Table 32 and the corresponding

coefficients for calculating overturning moments are presented in

Table 34. These tables have also been plotted in Figs. 9 and 11

and the results are similar to those for fixed base structures.

The acceleration distributions, for calculating story shears of

structures founded on a halfspace with an effective seismic

velocity of five hundred feet per second are illustrated in

Figs. 12 through 17 directly above the corresponding

distributions for calculating overturning moments and to the

right of the corresponding distributions for fixed base

structures. To determine the coefficients for calculating the

acceleration distributions for structures founded on compliant

/
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halfspaces with effective seismic velocities

hundred feet per second it .is necessary to

interpolate from the tabulated data.

other than five

extrapolate or
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CHAPTER 7. CONCLUSIONS

A procedure for determining design story shears and

overturning moments to resist the effects of strong ground

motions is presented. These distributions over the height of a

structure are the result of a parameter study in which the type

of structure, the height of structure, the vertical configuration

and the foundation interactions were varied. For each model a

modal analysis was performed and the square root of the sum of

the squares of the responses were generated. The base magnitudes

were reduced to base factors, accounting for the effects of the

parameters varied. Polynomial regression a,nalyses were performed

on the normalized distributions and the coefficients were

determined to account for the effects of the parameters varied.

7.1 Design Procedure

The procedure for calculating the seismic shears and

overturning moments presented in this study is compatible with

current code practices. The base factors and the acceleration

distribution coefficients discussed in Chapter 6 may be used to

calculate design shears and moments without the need of a

rigorous modal analysis. Once the lateral load resisting system

has been chosen, in the most preliminary stages of design, the

mode of deformation of the proposed structure may be determined

from the general proportions of the primary structural elements.

This value may be calculated by Equations 115 through 119. With
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this information and the height of the structure a mode of

deformation factor may be determined from Table 2. With further

information regarding the uniformity of the structure over its

height and the soil on which it will be founded, setback factors

and soil-structure interaction factors may be determined from

Tables 11 through 14. Two sets of these factors must be

determined, one set for calculating the story shears and the

other for calculating the overturning moments. These factors are

to be multiplied by the total weight of the structure, the

spectral acceleration and whatever other site effect, occupancy

and seismicity factors present codes may require. The two

resulting base shears will be used for calculating the story

shears and the overturning moments over the height of the

building. The distributions may be calculated with Equation 127

using the polynomial regression factors tabulated in

Tables 31 through 34 or illustrated in Figs. 9 through 12. Once

again two sets of acceleration distributions must be determined,

one for calculating the story shears and the other for

calculating the overturning moments. The two distributions need

to be determined and normalized with respect to the sum of the

products of each story acceleration by its corresponding story

mass. The resulting normalized distributions must be multiplied

by the base values and story masses to yield the static story

forces. These two static story force distributions are to be

used to calculate the probable elastic story shears and

overturning moments due to a strong ground motion.
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7.2 Further Study

In this study damping was assumed to be five percent of

critical for the first several modes of vibration. Further

investigations of existing structures are needed to determine the

actual damping, both structural and radiational, at various

levels of excitation. The effects of soil-structure interaction

have been presented for structures supported at the surface of a

homogeneous halfspace. Modifications to the effective seismic

velocity and slenderness ratios need to be developed to

generalize the results of this paper to structures embedded in a

layered media. Furthermore, the effects of isolated spread

footings and pile foundations need to be adapted to the

parameters investigated. Lastly, the case where a structure

temporarily lifts off part of its foundation needs to be studied

and presented as a reduction to the design distributions.
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TABLE 3

Base Shear Factors (S Stories, 80% Shear Deformation)

Fundamental Period = 0.025H3/ 4

Seismic H/R Setback
Velocity
(Ft./Sec. ) 0% 20% 40% 60% 80%

Infinite All LOOO L173 1.117 0.968 0.898

1000 LO 0.948 1.107 1.072 0.931 0.846
1000 1.5 0.959 1.121 1. 091 0.947 0.857
1000 2.0 0.963 1.127 1.104 0.958 0.862
1000 5.0 0.946 1.104 1.118 0.969 0.845

500 1.0 0.786 0.900 0.907 0.801 0.695
500 1.S 0.837 0.966 0.998 0.865 0.743
SOO 2.0 0.862 0.998 1.044 0.893 0.765
500 5.0 0.815 0.940 0.979 0.848 0.729

2S0 1.0 0.421 0.457 0.465 * *
2S0 1.5 0.528 0.S85 0.S91 0.603 0.S30
250 2.0 0.S78 0.646 0.656 0.640 0.560
250 5.0 0.554 0.622 0.640 0.641 0.558

Fundamental Period = O.035H3/ 4

Seismic H/R Setback
Velocity
(Ft./Sec. ) 0% 20% 40% 60% 80%

Infinite All 1.000 1.164 1. 249 1.135 0.965

1000 1.0 0.974 1.131 1. 210 1.104 0.941
1000 1.S 0.981 1.140 1.219 1.111 0.947
1000 2.0 0.980 1.139 1. 220 1.113 0.947
1000 5.0 0.972 1.129 1. 206 1.102 0.940

500 1.0 0.895 1. 029 1.085 1. 010 0.869
500 1.5 0.918 L059 1.122 1. 038 0.891
500 2.0 0.931 1. 075 1.142 1. 054 0.902
500 5.0 0.902 1.039 1.101 1. 024 0.880

250 1.0 0.621 0.682 0.697 0.775 0.682
2S0 1.5 0.710 0.795 0.821 0.843 0.737
2S0 2.0 0.749 0.844 0.875 0.874 0.762
250 5.0 0.704 0.790 0.822 0.851 0.742

(*) Analysis does not apply to this case.
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TABLE 4

Base Shear Factors (10 Stories, 80% Shear Deformation)

Fundamental Period = 0.025H3/ 4

'Seismic H/R Setback
Velocity
(Ft./Sec. ) 0% 20% 40% 60% 80%

Infinite All 1.000 1.163 1. 257 1.198 1. 004

1000 1.0 0.938 1. 081 1.156 1.126 0.949
1000 1.5 0.951 1.099 1.178 1.141 0.961
1000 2.0 0.957 1.107 1.189 1.150 0.967
1000 5.0 0.937 1. 081 1.158 1.129 0.951

500 1.0 0.751 0.838 0.868 0.951 0.811
500 1.5 0.811 0.916 0.961 1. 004 0.853
500 2.0 0.840 0.953 1. 003 1.029 0.873
500 5.0 0.794 0.895 0.942 0.998 0.848

250 1.0 * * * * *
250 1.5 0.523 0.550 0.578 0.836 0.713
250 2.0 0.567 0.607 0.636 0.857 0.731
250 5.0 0.562 0.606 0.655 0.882 0.751

Fundamental Period = 0.035H 3/ 4

Seismic H/R Setback
Velocity
(Ft./Sec. ) 0% 20% 40% 60% 80%

Infinite All 1.000 1.140 1. 241 1.350 1.134

1000 1.0 0.971 1.102 1.195 1.321 1.112
1000 1.5 0.978 ' 1.111 1. 206 1. 327 1.117
1000 2.0 0.979 1.112 1. 208 1.329 1.118
1000 5.0 0.970 1.100 1.193 1. 320 1.111

500 1.0 0.883 0.983 1.050 1.236 1.047
500 1.5 0.909 1.019 1. 095 1. 261 1.067
500 2.0 0.924 1.038 1.118 1. 275 1.077
500 5.0 0.896 1.001 1. 075 1.252 1.059

250 1.0 0.628 0.648 0.693 1. 089 0.926
250 1.5 0.707 0.752 0.799 1.125 0.957
250 2.0 0.743 0.798 ·0.848 1.145 0.973
250 5.0 0.715 0.764 0.819 1.138 0.967

(*) Analysis does not apply to this case.
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TABLE 5

Base Shear Factors (20 Stories, 80% Shear Deformation)

Fundamental Period = 0.025H 3/ 4

Seismic H/R Setback
Velocity
(Ft./Sec. ) 0% 20% 40% 60% 80%

Infinite All 1. 000 1.145 1.235 1. 385 1. 218

1000 1.0 0.928 1. 047 1.112 1. 313 1.166
1000 1.5 0.943 1. 068 1.139 1. 329 1.177
1000 2.0 0.952 1. 080 1.154 1.338 1.184
1000 5.0 0.931 1. 052 1.121 1. 321 1.171

500 1.0 0.734 0.791 0.815 1.181 1.066
500 1.5 0.796 0.873 0.908 1.218 1. 094
500 2.0 0.824 0.910 0.950 1.236 1.108
500 5.0 0.788 0.864 0.904 1. 221 1. 096

250 1.0 * * * * *
250 1.5 * * * * *
250 2.0 * * * * *
250 5.0 * * * * *

Fundamental Period = 0.035H 3/ 4

Seismic H/R Setback
, Velocity

~(Ft./Sec.) 0% 20% 40% 60% 80%
i'

Infinite All 1. 000 1.145 1. 242 1. 375 1. 386 I'r

1000 1.0 0.965 1. 098 1.184 1. 339 1. 364 I
1000 1.5 0.973 . 1.109 1.197 1. 347 1. 369 l1000 2.0 0.975 1.112 1. 202 1. 351 1. 371
1000 5.0 0.964 1. 097 1.183 1. 340 1. 364

500 1.0 0.856 0.953 1. 007 1. 244 1. 304
500 1.5 0.890 0.999 1.063 1. 273 1. 323
500 2.0 0.909 1. 023 1. 092 1. 288 1. 332
500 5.0 0.880 0.984 1. 047 1.268 1. 319

250 1.0 0.617 0.645 0.693 * *
250 1.5 0.686 0.732 0.776 1.157 1. 246
250 2.0 0.720 0.776 0.821 1.173 1.257
250 5.0 0.711 0.765 0.815 1.177 1. 260

(*) Analysis does not apply to this case.
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TABLE 6

Base Shear Factors ,( 40 Stories, 80% Shear Deformation)

Fundamental Period = 0.025H3/ 4

Seismic H/R Setback
Velocity
(Ft./Sec.) 0% 20% 40% 60% 80%

Infinite All 1. 000 1.145 1. 258 1. 382 1. 488

1000 1.0 0.904 1. 017 1.100 1. 289 1. 434
1000 1.5 0.926 1. 046 1.136 1. 310 1. 446
1000 2.0 0.938 1. 062 1.155 1.321 1. 453
1000 5.0 0.915 1.031 1.119 1. 302 1. 442

500 1.0 0.690 0.736 0.799 1.166 1. 359
500 1.5 0.757 0.822 0.887 1.197 1. 378
500 2.0 0.787 0.862 0.928 1.213 1.388
500 5.0 0.761 0.829 0.900 1. 207 1. 384

250 1.0 * * * * *
250 1.5 * * * * *
250 2.0 * * * * *
250 5.0 * * * * *

Fundamental Period = 0.035H 3/ 4

Seismic H/R Setback
Velocity
(Ft./Sec. ) 0% 20% 40% 60% 80%

Infinite All 1. 000 1.143 1. 248 1. 387 1. 473

1000 1.0 0.953 1. 080 1.170 1. 341 1. 446
1000 1.5 0.964 . 1. 094 1.187 1. 351 1. 452
1000 2.0 0.969 1.101 1.196 1. 357 1. 455
1000 5.0 0.956 1. 083 1.174 1. 345 1. 449

500 1.0 0.816 0.897 0.955 1. 234 1. 383
500 1.5 0.861 0.957 1. 025 1. 267 1. 402
500 2.0 0.884 0.987 1. 058 1.283 1. 412
500 5.0 0.857 0.949 1. 018 1. 269 1. 404

250 1.0 * * * * *
250 1.5 0.658 0.695 0.758 1.171 1.342
250 2.0 0.693 0.739 0.800 1.185 1. 352
250 5.0 0.710 0.756 0.830 1.214 1. 371

(*) Analysis does not apply to this case.
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TABLE 7

Base overturning Moment Factor~ 5 Stories, 80% Shear Deformation)

Fundamental Period = 0.025H3/ 4

Seismic H/R Setback
Velocity
(Ft ./Sec.) 0% 20% 40% 60% 80%

Infinite All 0.974 1.155 1. 091 0.865 0.800

1000 1.0 0.921 1. 087 1. 045 0.823 0.742
1000 1.5 0.932 1.102 1. 064 0.841 0.754
1000 2.0 0.936 1.107 1.077 0.853 0.760
1000 5.0 0.918 1. 084 1. 092 0.866 0.741

500 1.0 0.752 0.876 0.874 0.673 0.564
500 1.5 0.805 0.943 0.968 0.747 0.621
500 2.0 0.832 0.976 1. 016 0.780 0.648
500 5.0 0.783 0.916 0.949 0.728 0.605

250 1.0 0.356 0.408 0.398 * *
250 1.5 0.477 0.547 0.540 0.418 0.340
250 2.0 0.531 0.612 0.610 0.470 0.385
250 5.0 0.506 0.586 0.593 0.471 0.382

Fundamental Period = 0.035H3/ 4

Seismic H/R Setback
. Velocity

(Ft./Sec.) 0% 20% 40% 60% 80%

Infinite All 0.950 1.128 1. 204 0.965 0.786

1000 1.0 0.923 1. 094 1.163 0.928 0.757
1000 1.5 0.930 . 1.103 1.173 0.937 0.764
1000 2.0 0.929 1.103 1.174 0.938 0.765
1000 5.0 0.921 1.092 1.160 0.926 0.756

500 1.0 0.839 0.989 1. 033 0.815 0.666
500 1.5 0.863 1. 020 1. 072 0.849 0.694
500 2.0 0.877 1.036 1. 093 0.868 0.709
500 5.0 0.846 0.999 1. 049 0.831 0.679

250 1.0 0.537 0.620 0.613 0.495 0.391
250 1.5 0.638 0.742 0.751 0.595 0.480
250 2.0 0.681 0.794 0.809 0.639 0.518
250 5.0 0.631 0.737 0.753 0.605 0.488

(* ) Analysis does not apply to this case.
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TABLE 8

Base Overturning Moment Factors ,(10 Stories, 80% Shear Deformation)

Fundamental Period = O.025H 3/ 4

Seismic H/R Setback
velocity
(Ft./Sec.) 0% 20% 40% 60% 80%

Infinite All 0.929 1.109 1.195 0.984 0.796

1000 1.0 0.862 1. 024 1.088 0.895 0.726
1000 1.5 0.876 1.042 1.111 0.914 0.741
1000 2.0 0.883 1.051 1.123 0.925 0.749
1000 5.0 0.861 1.023 1. 090 0.900 0.729

500 1.0 0.655 0.762 0.775 0.666 0.534
500 1.5 0.722 0.848 0.878 0.738 0.596
500 2.0 0.754 0.887 0.924 0.771 0.624
500 5.0 0.703 0.825 0.857 0.731 0.588

250 1.0 * * * * *
250 1.5 0.372 0.428 0.427 0.512 0.377
250 2.0 0.431 0.498 0.502 0.538 0.408
250 5.0 0.425 0.496 0.526 0.572 0.440

Fundamental Period = 0.035H3/ 4

Seismic H/R Setback
Velocity
(Ft./Sec. ) 0% 20% 40% 60% 80%

Infinite All 0.871 1. 041 1.127 1. 001 0.791

1000 1.0 0.838 0.999 1. 076 0.962 0.760
1000 1.5 0.846 1.010 1. 088 0.971 0.767
1000 2.0 0.846 1. all 1.090 0.974 0.769
1000 5.0 0.836 0.997 1. 073 0.961 0.759

500 1.0 0.733 0.867 0.913 0.846 0.663
500 1.5 0.765 0.907 0.963 0.882 0.693
500 2.0 0.782 0.929 0.990 0.900 0.709
500 5.0 0.749 0.887 0.940 0.869 0.682

250 1.0 0.395 0.457 0.461 0.659 0.467
250 1.5 0.510 0.594 0.607 0.696 0.517
250 2.0 0.558 0.651 '0.670 0.721 0.545
250 5.0 0.520 0.608 0.632 0.714 0.536

(* ) Analysis does not apply to this case.
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TABLE 9

Base Overturning Moment Factors ( 20 Stories, 80% Shear Deformation)

Fundamental Period = 0.025H3/ 4

Seismic H/R Setback
Velocity
(Ft. /Sec.) 0% 20% 40% 60% 80%

Infinite All 0.848 1. 010 1.107 1.028 0.a31

1000 1.0 0.762 0.898 0.969 0.935 0.757
1000 1.5 0.781 0.923 1. 000 0.955 0.773
1000 2.0 0.791 0.936 1. 016 0.967 0.782
1000 5.0 0.766 0.904 0.980 0.945 0.764

500 1.0 0.511 0.581 0.605 0.781 0.618
500 1.5 0.595 0.688 0.726 0.816 0.654
500 2.0 0.633 0.734 0.777 0.837 0.673
500 5.0 0.584 0.676 0.721 0.821 0.657

250 1.0 * * * * *
250 1.5 * * * * *
250 2.0 * * * * *
250 5.0 * * * * *

Fundamental Period = O.03SH 3/ 4

Seismic H/R Setback
Velocity
(Ft./Sec. ) 0% 20% 40% 60% 80%

Infinite All 0.841 0.995 1. 086 L006 0.899

1000 1.0 0.799 0.940 1. 018 0.960 0.868
1000 1.5 0.809· 0.953 1. 033 0.970 0.875
1000 2.0 0.812 0.957 1. 039 0.975 0.878
1000 5.0 0.798 0.939 1. 018 0.961 0.869

500 1.0 0.664 0.766 0.806 0.834 0.790
500 1.5 0.708 0.822 0.875 0.873 0.813
500 2.0 0.730 0.851 0.909 0.892 0.825
500 5.0 0.693 0.803 0.855 0.867 0.810

250 1.0 0.303 0.322 0.345 * *
250 1.5 0.424 0.468 0.488 0.751 0.761
250 2.0 0.477 0.532 0.556 0.760 0.758
250 5.0 0.460 0.513 0.545 0.767 0.765

(*) Analysis does not apply to this case.
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TABLE 10

Base Overturning Moment Factors (40 Stories, 80% Shear Deformation)

Fundamental Period = 0.025H 3/ 4

Seismic H/R Setback
Velocity
(Ft./Sec. ) 0% 20% 40% . 60% 80%

Infinite All 0.838 0.991 1. 081 1.014 0.978

1000 1.0 0.722 0.839 0.891 0.894 0.916
1000 1.5 0.749 0.874 0.936 0.921 0.929
1000 2.0 0.763 0.893 0.959 0.935 0.936
1000 5.0 0.735 0.856 0.915 0.911 0.925

500 1.0 0.425 0.464 0.473 0.778 0.921
500 1.5 0.525 0.590 0.610 0.791 0.893
500 2.0 0.568 0.643 0.668 0.806 0.891
500 5.0 0.531 0.599 0.629 0.802 0.895

250 1.0 * * * * *
250 1.5 * * * * *
250 2.0 * * * * *
250 5.0 * * * * *

Fundamental Period = O.035H3/ 4

Seismic H/R Setback
Velocity
(Ft./Sec.) 0% 20% 40% 60% 80%

Infinite All 0.832 0.981 1. 067 0.984 0.958

1000 1.0 0.776 0.908 0.975 0.922 0.924
1000 1.5 0.788 0.924 0.995 0.936 0.932
1000 2.0 0.794 0.932 1. 006 0.943 0.936
1000 5.0 0.778 0.910 0.980 0.928 0.929

500 1.0 0.599 0.680 0.701 0.781 0.871
500 1.5 0.659 0.757 0.794 0.823 0.882
500 2.0 0.688 0.794 0.837 0.844 0.891
500 5.0 0.651 0.746 0.785 0.826 0.887

250 1.0 * * * * *
250 1.5 0.355 0.378 0.394 0.746 0.936
250 2.0 0.414 0.450 0.468 0.746 0.908
250 5.0 0.430 0.469 0.508 0.769 0.903

(*) Analysis does not apply to this case.
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TABLE 13

Base Shear Soil-Structure Interaction Factor

Fundamental Period = 0.25H 3/ 4

Seismic Slenderness Ratio
Velocity
(Ft./Sec. ) 1 1.5 2 5

1000 0.936 0.952 0.960 0.947
(O.024) (0.020) (0.OI8) (0.029)

500 0.788 0.837 0.860 0.834
(0.079) (0.06l) (0.056) (0.064)

250 0.452 0.586 0.621 0.636
(0.070) (0.09S) (0.083) (0.08?)

Fundamental Period = 0.35H3/ 4

Seismic Slenderness Ratio
Velocity
(Ft./Sec.) 1 1.5 2 5

1000 0.970 0.977 0.979 0.970
(0.012) (0.009) (0.008) (O.012)

500 0.887 0.912 0.926 0.905
(0.047) (0.036) (0.030) (0.039)

250 0.672 0.764 0.788 0.780
(0.102) (0.102) (0.089) (0.098)

Note: Numbers within parentheses are standard deviations
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TABLE 14

Base Overturning Moment Soil-Structure Interaction Factor

Fundamental Period = 0.25H3/ 4

Seismic Slenderness Ratio
Velocity
(Ft./Sec.) 1 1.5 2 5

1000 0.917 0.937 0.948 0.930
(0.039) (0.031) (0.028) (0.041)

500 0.733 0.792 0.821 0.788
(0.143) (0.106) (0.093) (0.105)

250 0.384 0.456 0.506 0.529
(0.047) (0.124) (0.106) (0.092)

Fundamental Period = O.35H3/ 4

Seismic Slenderness Ratio
Velocity
(Ft./Sec. ) 1 1.5 2 5

1000 0.960 0.969 0.972 0.960
(0.020) (0.015) (0.013) (0.019)

500 0.850 0.883 0.901 0.873
(0.087) (0.063) (0.052) (0.067)

250 0.546 0.685 0.718 0.703
(0.136) (0.183) (0.158) (0.157)

Note: Numbers within parentheses are standard deviations

/
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TABLE 15

Story Shear Acceleration Distribution Coefficients

5 Stories Seismic Velocity = Infinite

Coefficient B1

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 1. 727 2.059 2.003 2.045 1. 952
20 1.562 1. 749 1.709 1. 844 1. 804
40 1. 364 1. 467 1. 397 1. 645 1.684
60 1. 094 1.199 1. 098 1. 384 1.524
80 0.771 0.971 0.844 1. 026 1. 306
100 0.477 0.805 0.656 0.557 1.033

Coefficient B2

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 -1. 921 -1.812 -1.727 -2.283 -2.292
20 -1. 887 -1.739 -1.589 -2.151 -2.194
40 -1.681 -1. 542 -1. 318 -1. 907 -2.042
60 -1.400 -1.378 -1. 099 -1.558 -1. 836
80 -1.109 -1. 277 -0.965 -1.090 -1.577
100 -0.903 -1. 241 -0.913 -0.505 -1. 274

Index of Correlation

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 0.999 1. 000 1.000 1. 000 0.999
20 0.999 1.000 1.000 1. 000 0.999
40 1.000 1. 000 1. 000 1. 000 0.999
60 1.000 1. 000 1.000 0.999 0.999
80 1.000 1. 000 1. 000 0.999 0.999
100 1. 000 1.000 1.000 0.999 1.000
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TABLE 16

Story Shear Acceleration Distribution Coefficients

10 Stories Seismic Velocity = Infinite

Coefficient B1

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 2.162 2.611 2.500 2.309 2.229
20 2.006 2.337 2.236 2.134 2.100
40 1. 930 2.176 2.032 2.030 2.072
60 1.817 1.991 1.801 1. 923 2.054
80 1. 591 1. 755 1. 534 1. 782 2.016
100 1. 255 1. 502 1. 247 1.564 1. 942

Coefficient B2

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 -2.722 -2.874 -2.700 -2.793 -2.808
20 -2.624 -2.663 -2.484 -2.679 -2.727
40 -2.523 -2.486 -2.239 -2.564 -2.685
60 -2.360 -2.291 -1. 981 -2.419 -2.638
80 -2.085 ~2.084 -1. 734 -2.224 -2.567
100 -1. 713 -1.906 -1.524 -1.928 -2.454

Index of Correlation

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 0.995 0.998 0.998 0.996 0.992
20 0.997 0.999 0.999 0.997 0.995
40 0.998 0.999 0.999 0.997 0.996
60 0.998 0.999 0.999 0.996 0.997
80 0.999 0.999 0.999 0.996 0.998
100 0.999 0.999 0.999 0.996 0.997
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TABLE 17

Story Shear Acceleration Distribution Coefficients

20 Stories Seismic Velocity = Infinite

Coefficient B1

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 2.300 2.796 2.739 2.429 2.293
20 2.193 2.594 2.555 2.325 2.216
40 2.192 2.567 2.464 2.288 2.247
60 2.181 2.521 2.328 2.250 2.292
80 2.058 2.383 2.053 2.167 2.330
100 1.780 2.157 1. 738 2.029 2.351

Coefficient B2

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 -2.982 -3.231 -3.171 -3.054 -2.979
20 -2.913 -3.073 -3.007 -2.989 -2.932
40 -2.874 -2.997 -2.835 -2.929 . -2.946
60 -2.802 -2.878 -2.617 -2.848 -2.960
80 ..:.2.603 -2.704 -2.309 -2.695 -2.962
100 -2.292 -2.504 -2.049 -2.478 -2.946

Index of Correlation

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 0.987 0.995 0.995 0.988 0.983
20 0.994 0.998 0.999 0.995 0.992
40 0.998 0.999 0.999 0.996 0.995
60 0.999 0.999 0.999 0.995 0.997
80 0.999 1.000 1.000 0.995 0.996
100 0.999 1. 000 1. 000 0.996 0.995
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TABLE 18

Story Shear Acceleration Distribution Coefficients

40 Stories Seismic Velocity = Infinite

Coefficient B1

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 2.360 2.850 2.805 2.463 2.278
20 2.309 2.755 2.678 2.417 2.300
40 2.348 2.810 2.640 2.427 2.370
60 2.352 2.792 2.525 2.417 2.420
80 2.265 2.662 2.304 2.374 2.463
100 2.018 2.394 2.002 2.276 2.489

Coefficient B2

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 -3.074 -3.353 -3.315 -3.130 -3.006
20 -3.031 -3.267 -3.181 -3.092 -3.031
40 -3.019 -3.241 -3.060 -3.065 -3.073
60 -2 .. 955 -3.143 -2.860 -3.006 -3.092
80 -2.807 -2.976 -2.611 -2.905 -3.103
100 -2.543 -2.738 -2.351 -2.746 -3.092

Index of Correlation

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 0.989 0.993 0.993 0.984 0.982
20 0.999 0.999 0.999 0.998 0.995
40 0.999 0.999 0.999 0.999 0.991
60 0.999 0.999 0.999 0.998 0.990
80 0.999 0.999 0.999 0.998 0.990
100 0.999 0.999 0.999 0.998 0.993
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TABLE 19

Story Shear Acc~leration Distribution Coefficients

5 Stories Seismic Velocity = 500 Ft./Sec.

Coefficient 81

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

a 1.836 2.235 2.171 2.076 1.975
20 1.695 1.964 1.914 1.928 1. 886
40 1.539 1. 717 1.626 1. 784 1. 832
60 1.302 1.448 1.310 1. 589 1. 750
80 0.971 1.184 1.010 1. 306 1. 615
100 0.621 0.962 0.775 0.916 1.404

Coefficient B2

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 -2.228 -2.278 -2.228 -2.555 -2.536
20 -2.166 -2.139 -2.016 -2.432 -2.465
40 -1.980 -1.914 -1. 692 -2.234 -2.376
60 -1. 701 -1. 693 -1.387 -1.951 -2.245
80 -1. 360 "-1.516 -1.161 -1. 556 -2.056
100 -1.065 -1. 402 -1.038 -1.044 -1. 792

Index of Correlation

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 0.999 1.000 1.000 0.999 0.998
. 20 1. 000 1. 000 1.000 1. 000 0.999

40 1. 000 1. 000 1.000 0.999 0.999
60 1. 000 1.000 1.000 0.999 1. 000
80 1. 000 1.000 1.000 0.999 1. 000
100 1. 000 1. 000 1. 000 0.999 1.000
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TABLE 20

Story Shear Acceleration Distribution Coefficients

10 Stories Seismic Velocity = 500 Ft./Sec.

Coefficient B1

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 2.198 2.677 2.614 2.340 2.222
20 2.066 2.459 2.413 2.217 2.134
40 2.028 2.370 2.290 2.156 2.144
60 1.972 2.253 2.126 2.094 2.169
80 1.815 2.048 1. 876 2.004 2.182
100 1. 477 1.773 1. 544 1. 853 2.163

Coefficient 8 2

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 -2.850 -3.101 -3.058 -2.999 -2.927
20 -2.759 -2.913 -2.853 -2.900 -2.862
40 -2.694 -2.781 -2.653 -2.819 -2.853
60 -2 .. 584 -2.614 -2.408 -2.715 -2.846
80 -2.360 -2.395 -2.114 -2.568 -2.818
100 -1. 984 -2.164 -1. 815 -2.336 -2.751

Index of Correlation

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 0.995 0.997 0.997 0.993 0.989
20 0.998 1. 000 0.999 0.998 0.996
40 0.998 1. 000 0.999 0.996 0.998
60 0.999 0.999 0.999 0.995 0.998
80 0.999 1. 000 0.999 0.994 0.998
100 0.999 0.999 0.999 0.994 0.997
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TABLE 21

Story Shear Acceleration Distribution Coefficients

20 Stories Seismic Velocity = 500 Ft./Sec.

Coefficient 8 1

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 2.318 2.797 2.770 2.478 2.293
20 2.225 2.635 2.628 2.371 2.247
40 2.248 2.666 2.621 2.333 2.301
60 2.292 2.720 2.604 2.325 2.376
80 2.278 2.696 2.451 2.318 2.452
100 2.111 2.531 2.152 2.275 2.523

Coefficient 8 2

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 -3.042 -3.324 -3.320 -3.171 -3.037
20 -2.978 -3.192 -3.177 -3.084 -3.004
40 -2.976 -3.172 -3.098 -3.035 -3.039
60 -2.967 -3.137 -2.981 -2.996 -3.084
80 "':'2.874 -3.033 -2.743 -2.935 -3.124
100 -2.640 -2.845 -2.446 -2.822 -3.150

Index of Correlation

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 0.989 0.994 0.992 0.984 0.981
20 0.997 0.999 0.998 0.996 0.996
40 0.997 0.998 0.998 0.994 0.998
60 0.995 0.999 0.998 0.991 0.997
80 0.997 0.999 0.998 0.990 0.993
100 0.998 0.999 0.999 0.991 0.987
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TABLE 22

Story Shear Acceleration Distribution Coefficients

40 Stories Seismic Velocity = 500 Ft./Sec.

Coefficient B1

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 2.390 2.869 2.811 2.534 2.311
20 2.348 2.784 2.723 2.458 2.344
40 2.406 2.886 2.769 2.475 2.440
60 2.476 2.983 2.802 2.495 2.527
80 2.516 3.011 2.733 2.524 2.615
100 2.422 2.862 2.504 2.527 2.691

Coefficient B2

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 -3.115 -3.407 -3.377 -3.217 -3.055
20 -3.089 -3.340 -3.291 -3.162 -3.089
40 -3.118 -3.382 -3.276 -3.164 -3.161
60 -3 .. 137 -3.396 -3.220 -3.154 -3.220
80 -3.111 ..,.3.344 -3.079 -3.139 -3.275
100 -2.963 -3.167 -2.835 -3.090 -3.313

Index of Correlation

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 0.990 0.994 0.992 0.983 0.984
20 0.998 0.999 0.999 0.997 0.997
40 0.996 0.998 0.997 0.997 0.992
60 0.994 0.998 0.996 0.995 0.986
80 0.994 0.997 0.996 0.994 0.977
100 0.995 0.996 0.996 0.993 0.976
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TABLE 23

Story Overturning Moment Acceleration Distribution Coefficients

5 Stories Seismic Velocity = Infinite

Coefficient B1

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

a 2.014 2.175 2.179 2.458 2.297
20 1. 860 1. 920 1. 941 2.346 2.235
40 1. 595 1. 609 1. 612 2.127 2.136
60 1. 217 1. 313 1. 264 1. 650 1. 948
80 0.803 1. 073 0.961 0.621 1. 646
100 0.478 0.905 0.736 -1. 461 1. 200

Coefficient B2

Percent' Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 -2.319 -2.154 -2.216 -2.647 -2.660
20 -2.111 -1. 939 -1. 912 -2.366 -2.523
40 -1. 766 -1. 686 -1. 540 -1.809 -2.311
60 -1. 370 -1. 507 -1.'243 -1. 794 -2.004
80 -1. 031 -1.409 -1.058 -1. 084 -1.580
100 -0.850 -1. 377 -0.977 4.444 -0.979

Index of Correlation

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

a 1. 000 1. 000 1. 000 1. 000 1. 000
20 1. 000 1. 000 1. 000 1. 000 1. 000

I40 1. 000 1. 000 1. 000 1. 000 1. 000
f,60 1. 000 1. 000 1. 000 1. 000 1. 000

80 1. 000 1. 000 1. 000 1. 000 1. 000 Ii
100 1. 000 1. 000 1. 000 1. 000 1. 000 II

~
Ii
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TABLE 24

Story Overturning Moment Accel.eration Distribution Coefficients

10 Stories Seismic Velocity = Infinite

Coefficient B1

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 2.352 2.610 2.544 2.610 2.390
20 2.384 2.587 2.508 2.664 2.449
40 2.392 2.469 2.383 2.742 2.540
60 2.287 2.232 2.156 2.824 2.632
80 1. 947 1. 909 1.848 2.877 2.711
100 1. 396 1. 590 1.505 2.642 2.788

Coefficient B2

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 -2.974 -2.983 -2.906 -3.110 -3.022
20 -2.960 -2.874 -2.787 -3.098 -3.057
40 -2.874 -2.681 -2.561 -3.019 -3.084
60 -2.658 -2.432 -2.286 -2.839 -3.093
80 -2.2'48 -2.176 -2.011 -2.424 -3.067
100 -1. 745 -1. 976 -1.775 -1. 283 -2.992

Index of Correlation

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 1. 000 LOOO 1. 000 1. 000 1. 000
20 1. 000 1. 000 1.000 1.000 1. 000
40 1. 000 1.000 1.000 1.000 1. 000
60 1. 000 1.000 1. 000 1. 000 1. 000
80 1.000 1. 000 1. 000 1. 000 0.999
100 1. 000 1. 000 1. 000 1. 000 0.999
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TABLE 25

Story Overturning Moment Acceleration Distribution Coefficients

20 Stories Seismic Velocity = Infinite

Coefficient 8 1

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 2.525 2.873 2.806 2.739 2.451
20 2.642 3.009 2.895 2.851 2.576
40 2.772 3.134 2.915 3.006 2.749
60 2.843 3.064 2.794 3.207 2.905
80 2.626 2.779 2.445 3.348 3.040
100 2.150 2.385 2.051 3.290 3.163

Coefficient B2

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 -3.251 -3.374 -3.341 -3.389 -3.188
20 -3.331 -3.431 -3.364 -3.467 -3.293
40 -3.364 -3.421 -3.260 -3.511 -3.410
60 -3.316 -3.250 -3.052 -3.534 -3.497
80 -3.012 -2.967 -2.705 -3.396 -3.563
100 -2.562 -2.670 -2.397 -2.995 -3.618

Index of Correlation

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 0.999 1. 000 1. 000 0.999 0.999
20 0.999 1. 000 1. 000 0.999 0.999
40 1. 000 1. 000 1. 000 0.999 0.999
60 1. 000 1. 000 1. 000 1. 000 0.999
80 1. 000 1. 000 1. 000 1. 000 1. 000
100 1. 000 1. 000 1. 000 1. 000 1. 000
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TABLE 26

Story Overturning Moment Acceleration Distribution Coefficients

40 Stories Seismic Velocity = Infinite

Coefficient B1

Percent
Shear
Deformation

o
20
40
60
80
100

0%

2.600
2.724
2.841
2.860
2.674
2.290

20%

2.980
3.176
3.303
3.234
2.956
2.570

Setback

40%

2.914
3.029
3.070
2.926
2.628
2.260

60%

2.805
2.907
3.055
3.212
3.299
3.230

80%

2.475
2.628
2.768
2.874
2.938
3.001

Coefficient 82

Percent
Shear
Deformation

a
20
40
60
80
100

0%

-3.355
-3.421
-3.453
-3.380
-3.146
-2.783

20%

-3.547
-3.636
-3.634
-3.481
-3.214
-2.901

Setback

40%

-3.514
-3.537
-3.467
-3.250
-2.963
-2.666

60%

-3.502
-3.552
-3.599
-3.604
-3.503
-3.223

80%

-3.258
-3.372
-3.461
-3.518
-3.541
-3.554

Index of Correlation

Percent
Shear
Deformation

o
20
40
60
80
100

0%

0.999
1. 000
1. 000
1.000
1. 000
1. 000

20%

1. 000
1. 000
1. 000
1.000
1.000
1.000

Setback

40%

1.000
1. 000
1. 000
1. 000
1. 000
1. 000

60%

0.999
LOOO
1. 000
1. 000
1. 000
1. 000

80%

0.999
1.000
1. 000
1.000
1. 000
1. 000
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TABLE 27

Story Overturning Moment Acceleration Distribution Coefficients

5 Stories Seismic Velocity = 500 Ft./Sec.

Coefficient B1

Percent
Shear
Deformation

o
20
40
60
80
100

0%

2.107
2.016
1. 826
1. 490
1. 042
0.633

20%

2.331
2.148
1. 880
1. 575
1. 292
1. 067

Setback

40%

2.316
2.148
1. 865
1. 507
1.156
0.880

60%

2.463
2.435
2.354
2.107
1. 451

-0.156

80%

2.295
2.314
2.325
2.276
2.129
1. 829

Coefficient 8 2

Percent
Shear
Deformation

o
20
40
60
80
100

0%

-2.580
-2.423
-2.132
-1. 730
-1.305
-1.009

20%

-2.537
-2.334
-2.064
-1. 823
-1. 650
-1. 544

Setback

40%

-2.601
-2.320
-1. 934
-1. 561
-1.283
-1.129

60%

-2.932
-2.763
-2.411
-1. 716
-0.295

2.649

80%

-2.883
-2.833
-2.738
-2.564
-2.267
-1. 749

Index of Correlation

Percent
Shear
Deformation

o
20
40
60
80
100

0%

1. 000
1. 000
1. 000
1. 000
1. 000
1. 000

20%

1. 000
1. 000
1. 000
1. 000
1. 000
1. 000

Setback

40%

1. 000
1. 000
1.000
1.000
1. 000
1. 000

60%

1.000
1.000
1.000
1.000
1.000
1. 000

80%

1. 000
1. 000
1. 000
1. 000
1.000
1.000
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TABLE 28

Story Overturning Moment Acceleration Distribution Coefficients

10 Stories Seismic Velocity = 500 Ft./Sec.

Coefficient B1

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 2.394 2 • .711 2.665 2.629 2.382
20 2.467 2.782 2.724 2.735 2.491
40 2.558 2.786 2.727 2.901 2.655
60 2.579 2.635 2.595 3.152 2.853
80 2.355 2.305 2.290 3.550 3.080
100 1.778 1.908 1. 864 4.132 3.389

Coefficient 82

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 -3.093 -3.212 -3.218 -3.313 -3.135
20 -3.120 -3.182 -3.171 -3.356 -3.210
40 -3.116 -3.073 -3.035 -3.395 -3.308
60 -3.008 -2.853 -2.789 -3.417 -3.412
80 -2.667 ~2.547 -2.455 -3.361 -3.512
100 -2.094 -2.259 -2.112 -2.865 -3.617

Index of Correlation

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

a 1.000 1. 000 1. 000 1. 000 1. 000
20 1.000 1. 000 1. 000 1. 000 1. 000
40 1. 000 1. 000 1. 000 1. 000 1. 000
60 1. 000 1. 000 1. 000 1. 000 1. 000
80 1.000 1.000 1. 000 1. 000 0.999
100 1.000 1.000 1. 000 1.000 0.999
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TABLE 29

Story Overturning Moment AGce1eration Distribution Coefficients

20 Stories Seismic Velocity = 500 Ft./Sec.

Coefficient B1

Percent
Shear
Deformation

a
20
40
60
80
100

0%

2.539
2.685
2.910
3.180
3.191
2.762

20%

2.910
3.134
3.462
3.654
3.494
3.008

Setback

40%

2.849
3.012
3.216
3.305
3.032
3.562

60%

2.762
2.884
3.087
3.424
3.383
4.394

80%

2.429
2.591
2.835
3.117
3.422
3.751

Coefficient B2

Percent
Shear
Deformation

a
20
40
60
80
100

0%

-3.305
-3.413
-3.546
-3.676
.... 3.549
-3.103

20%

-3.494
-3.623
-3.777
-3.787
-3.553
-3.157

Setback

40%

-3.486
-3.568
-3.627
-3.569
-3.252
-2.857

60%

-3.498
-3.581
-3.699
-3.882
-4.065
-4.133

80%

-3.232
-3.363
-3.547
-3.747
-3.954
-4.167

Index of Corr€lation

Percent
Shear
Deformation

a
20
40
60
80
100

0%

0.999
0.998
0.999
0.999
0.999
1.000

20%

1. 000
1. 000
1. 000
1. 000
1.000
1. 000

Setback

40%

1. 000
1. 000
1. 000
1. 000
1. 000
1. 000

60%

0.997
0.996
0.997
0.998
0.999
0.999

80%

0.999
0.999
0.998
0.997
0.996
0.996
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TABLE 30

Story Overturning Moment Acceleration Distribution Coefficients

40 Stories Seismic Velocity = 500 Ft./Sec.

Coefficient Bl

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 2.606 2.984 2.943 2.810 2.493
20 2.765 3.291 3.144 2.960 2.729
40 2.995 3.669 3.401 3.166 2.887
60 3.221 3.901 3.520 3.465 3.093
80 3.249 3.744 3.326 3.849 3.246
100 2.959 3.315 2.898 4.256 3.453

Coefficient B2

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 -3.385 -3.601 -3.594 -3.551 -3.301
20 -3.497 -3.793 -3.711 -3.656 -3.488
40 -3.645 -4.000 -3.838 -3.787 -3.607
60 -3.761 -4.068 -3.829 -3.962 -3.757
80 -3.701 ~3.867 -3.604 -4.156 -3.860
100 -3.394 -3.497 -3.241 -4.285 -3.993

Index of Correlation

Percent Setback
Shear
Deformation 0% 20% 40% 60% 80%

0 0.994 0.999 0.999 0.997 0.988
20 0.993 0.999 0.999 0.992 0.968
40 0.995 0.999 0.999 0.999 0.979
60 0.996 0.999 0.999 0.996 0.977
80 0.997 0.999 0.999 0.997 0.984
100 0.998 0.999 0.999 0.998 0.989
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TABLE 32

Story Shear Acceleration Distribution Coefficients

Seismic Velocity = 500 Ft./Sec.

Coefficient Bl

Percent Shear Deformation

Coefficient B2

Percent Shear Deformation

Number of
Stories

5

10

20

40

Number of
Stories

5

10

20

40

0%

2.035

2.370

2.500

2.552

0%

-3.159

-3.215

20%

1. 872

2.223

2.385

2.499

20%

-2.288

-2.855

-3.070

-3.176

40%

1. 715

2.172

2.392

2.554

40%

-2.098

-2.775

-3.051

-3.201

60%

1. 510

2.117

2.421

2.610

60%

-1. 854

-2.674

-3.032

-3.212

80%

1. 247

2.011

2.420

2.643

80%

-1. 575

-2.519

-2.973

-3.196

100%

0.954

1. 820

2.349

2.604

100%

-1. 303

-2.294

-2.853

-3.116

Index of Correlation

Percent Shear DeformationNumber of
Stories

5

10

20

40

0%

0.997

0.982

0.958

0.950

20%

0.998

0.985

0.966

0.958

40%

0.999

0.988

0.967

0.954

60%

0.999

0.991

0.971

0.957

80%

0.999

0.994

0.979

0.964

100%

0.999

0.995

0.984

0.974

/
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TABLE 33

Story Overturning Moment Acceleration Distribution Coefficients

Seismic Velocity = Infinite

Coefficient B1

Number of Percent Shear Deformation
Stories

0% 20% 40% 60% 80% 100%

5 2.229 2.068 1. 814 1. 463 1. 064 0.696

10 2.476 2.500 2.508 2.445 2.253 1. 906

20 2.626 2.735 2.866 2.949 2.876 2.652

40 2.682 2.807 2.926 2.973 2.896 2.706

Coefficient B'2

Number of Percent Shear Deformation
Stories

0% 20% 40% 60% 80% 100%

5 -2.433 -2.200 -1.851 -1. 458 -1.095 -0.824

10 -3.005 -2.980 -2.892 -2.726 -2.455 -2.091

20 -3.289 -3.363 -3.403 -3.379 -3.222 -2.977

40 -3.396 -3.465 -3.504 -3.468 -3.341 -3.131

Index of Correlation

Number of Percent Shear Deformation
Stories

0% 20% 40% 60% 80% 100%

5 1. 000 1.000 1.000 1. 000 1. 000 1. 000

10 1.000 1.000 1. 000 0.999 0.999 0.999

20 0.998 0.998 0.999 0.999 0.999 0.998

40 0.995 0.998 0.998 0.998 0.998 0.998



TABLE 34

Story Overturning Moment Acceleration Distribution Coefficients

Seismic Velocity = 500 Ft./Sec.

Coefficient Bl

Number of Percent Shear Deformation
Stories

0% 20% 40% 60% 80% 100%

5 2.302 2.226 2.071 1.798 1.414 0.992

10 2.521 2.603 2.710 2.785 2.737 2.464

20 2.635 2.773 2.996 3.257 3.413 3.350

40 2.688 2.873 3.068 3.284 3.389 3.372

Coefficient B2

Number of Percent Shear Deformation
Stories

0% 20% 40% 60% 80% 100%

5 -2.743 -2.580 -2.307 -1. 940 -1.527 -1.148

10 -3.189 -3.216 -3.223 -3.170 -2.989 -2.629

20 -3.373 -3.471 -3.607 -3.746 -3.770 -3.621

40 -3.440 -3.574 -3.701 -3.826 -3.851 -3.768

Index of Correlation

Number of Percent Shear Deformation
Stories

0% 20% 40% 60% 80% 100%

5 1. 000 1.000 1.000 1. 000 1. 000 1. 000

10 0.999 0.999 0.999 0.999 0.999 0.998

20 0.992 0.994 0.995 0.994 0.993 0.992

40 0.974 0.978 0.982 0.983 0.985 0.986
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