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CHAPTER L. INTRODUCTION

Seismic force distributions for simplified computation of
shears and overturning moments for preliminary design of
buildings have been generated and a parameter study of the
significant variables has been made to determine the
applicability of the proposed distributions. These distributions
are intended to give greater accuracy than do existing

procedures, which are based on more empirical concepts.
1l.1 Motivation

The design of structures to resist seismic forces is an
iterative process. Preliminary distributions of forces and
overturning moments need to be determined in a consistent fashion
80 that member sizes can be initially proportioned. Furtﬁer
cycles of analysis and design converge to the proportions likely
to behave best when subjected to a strong ground motion. The
purpose of this thesis 1is to determine that set of shears and
o&erturning moments which would permit this process to converge

in the least number of cycles with a minimal effort.

More rigorous analyses are undesirable for preliminary
proportioning as they are time consuming and they require
information that may not be available at that stage of analysis.
Furthermore, some of the more rigorous methods presuppose an
'actual earthquake to determine the structural response, as is the

case for time history analyses, and unless the next strong ground



motion closely resembles the one designed against, the structure
may suffer excessive démage.- Stochastic methods have often been
used to construct a probable ground motion and to  analyze the
structural response to these spectra. However, much effort is
required at too early a stage in design to warrant their wuse.
Structures proportioned initially with the proposed distributions
may be reanalyzed in later cycles of the design-analysis
iteration by more rigorous approaches if greater accurac? is

desired.

fi=
1}
Iro

Scope

The purpose of this thesis is to look at realistic response
spectra and determine the distributions of shears and overturning
moments over a range of significant parameters. The parameters
studied involve the type of building, whether shear wall or sheér
beam or a combination of ﬁhe two (see Fig. 1), the uniformity of
the structure'along its height (see Fig. 2), the spacing of the
'lower modal frequencies, the fundamental £frequency relative to
the intersection of the -constant velocity and constant
acceleration branches of the response spectrum (see Fig. 3}, the
slenderness of the structure and the shear wave velocity of the
soil on which it is founded. The distributions should be
applicable to the majority of structures of either frame, shear
wall or combination of the two lateral resisting structural
systems. This study represents a more iﬁclusive continuation of
a previous investigation presented in Ref. [4] and iscussed in

Ref. [21].



Damping is accounted for in a relative sense and the overall
effective damping of the structure is incorporated in the
determining of the fundamental mode spectral acceleration as is

currently the case (see Fig. 4).

Structural behavior was assumed to be linear and although
this is never quite the case for strong motion responses, nor 1is
it desirable for the structure to resist the seismic induced
forces in the elastic range, this provides an upper bound for
structural proportioning. Nonlinearities due to. secondary
effects, excessive deformations beyond the elastic 1limit and
progressive damage of structural components cause a
redistributidn of stresses as the earthqﬁake progresses and an
accurate determination of the responSe would require extensive
analvygis. Furthermore, several‘ analyses for several time
histories of select recorded earthquakes would be required for an
accurate appraisal of Ehe redistributions. A well proportioned
structure analyzed in the elastic range will generally exhibit

superior structural behavior as it exceeds its elastic limits.

The response studied in this thesis is for motion in one
principal direction only; twisting moments arising £from ground
motions not coincident with the principal directions of the
structure as well as masses and stiffness eccentricities within
the structure were not investigated in this study. Account of
these twisting moments must be made by either considering a modal
‘analysis with the torsional ground motién response spectra or in

an equivalent static manner by proportioning the effective moment



induced by intentional, in addition to accidental,

eccentricities.

Soil structure interaction was investigated to assess 1its
2ffect on the response of the structures in this study. The so0il
structure interaction investigated should not be confused with
the amplification or attenuation of the ground motion as it is
filtered through the founding soil. By varying the slenderness
ratio of the structure and the shear wave velocity of the soil on
which it is founded, the foundation flexibility's effect on
reducing the structure's appvarent natural frequency and its
dynamic response can be assessed. The interaction model
considered is‘ that of a disk attached to an infinite elastic or
visco-elastic halfspace. Results o©of previous studies, in
Refs. [15),[19},(24),(26]1,1029],[301,(31]1,(032] and [33], on the
effect of soil structure interaction have been incorporated into

this study.

1.3 Organization

The results of this study aiong with the explanation of the
methods by which they were obtained are presented 1in the
following chapters. The theory on which the study was based is
sresented in chapter 2. The mathematical models adopted in
order to apply these theories to this investigation are
discussed in chapter 3. Chapter 4 lists and explains the
variables investigated to efféct the parameter study.

Chapter 5 explains the means by which the response data



was normalized enabling the data to be reduced in the desired
fashion. Chapter 6 discusses the resulting design distributions
and base values for the several parametric variations. The
conclusions and recommendations for further study are the subject

of chapter 7.

1.4 Notation

a, dimensionless frequency parameter

A area of cross section

AC acceleration distribution along the height

AF spectral acceleration amplification factor

AF " spectral velocity amplification’factor

A, transform matrix from story forces to overturning moments
AS transformation matrix fromstory forces to story shears
B polynomial acceleration distribution coefficients

C damping matrix

Cs effgctive seismic velocity

E modulus of elasticity

£ story forces

F forcing function

g gravity acceleration

G shéar stiffness

h story height

H height of structure

I moment of inertia of cross section

i,j,k,A dummy indices

K stiffness matrix




M

|

£

R

i

G

element length

mass matrix

mnode number

total number of story levels and degrees of freedom

load

load factor

radius of gyration

radius of foundation

story shear

spectral acceleration

spectral displacenment

portion of base shear resisted by frame

time

period

displacement (subscripts correspond to the direction or
mode of deformation); direction of transverse displacement
strain energy

direction of axial displacement

convolution integral

direction of base translation

position along the unit height of the structure

normal mode displacement

polynomial distribution along the height of the structure
distribution coefficient as a function of position

and height of setback

dimensionless frequency devendent coefficient for

calculating dynamic stiffness of halfspace



percent of critical damping

percent of strain energy due to shéar deformation
story drift

static displacement

index of correlation

direction of end rotation

shear area shape factor

overturning-moment

Poisson's ratio

ﬁass density ratio

dimensionless wave parameter

eligenvectors

regression coefficient as a function of position
and height of setback
direction of base rotation

circular freguency




CHAPTER 2. THEORY

In the course of this study it was negessary to establish
. £he equations of motion for various types of structures. These
structural types were expressed in terms of the percent of total
strain energy due to shear deformation. A variety of these
equations of motion were solved for structures ranging from shear
beams to flexural beams. In order to determine the structuré's
response to strong ground motion a modal anlysis was performed
and the eigenvalues and eigenvectors were calculated. The
secondary effects of P-A and soil structure interaction were
included in the modal analysis and distributions of story shears
and overturning moments were determined. A polynomial regression
analysis was then performed on the distributions resulting in
base coefficients and design acceleration disfributions for a

class of structural types and founding media.

This chapter explains the theory behind the operations
verformed in this investigation. The formulation and description
of the various eguations and terms is presented in the following

sections.



2.1 Equations of Motion

Simplified force equilibrium equations can be expressed for
structures subjected to ground motions similarly to structures
subjected to static forces. In the dynamic problem inertial and
damping forces, actions vproportional to accelerations and
velocities respectively, must be included to transform the time
dependent problem into a series of static cases. A more detailed

discussion is available in Refs. [2]1,[12] and[ [20].

The interstory shear term,[K]l{u}, 1is the product of the
shear stiffnessesr and the interstory displacements. The
interstory damping term, [C]{u}, is the‘product of the equivélent
viscus damping and .the interstory velocities, The inertial term,
[M] {u}, is the product of the interstory accelerations and the
lumped story masses. These force terms are summed equal to ‘the
lumped story masses times the ground acceleration, [M]{l}ug(t),

at the level in question.

M{t} + [c1{u} + Kl{u} = - ({1} i, (0 (1)

This can be transformed into normal coordinates which
effectively decouple the equations to represent a series of

independent single degree of freedom systems
o YT {o 9 + (o 1TICHo by + (o ) IKILe Yy = - {6} DMI{1M_ () (2)
n n-n n n-<n n nin n g

. This equation can be solved for undamped free vibration without

gsignificant loss of accuracy. The normal mode displacements can
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be found equal to :

T
{¢n} MI{1} v, (t)

Yy = T (3)
{¢n} [Nﬂ{¢n} W,
where
t -8 wn(t—T)
v (t) = J ﬁg(t) e B sin(t-1) dr (4)
8]

The relative displacement of the 1ith node in the nth mode is

obtained upon transforming back to our original system.
fu (6)} = {o.} v, (5)

Elastic story forces corresponding to  the dJdisplacements are
obtained by premultiplying the displacements by the stiffness

matrix:

{fn(t)} [K]{un(t)} (6)

or eguivalently:

| , |
(£,(0)} = Mg ®©F (7)

i

Elastic interstory shears are found by summing the story forces
from the top down to the story of interest. Story shears for

each mode are calculated separately.
{sn(t)} = [AHE (0} (8)

where [AS] is a unit upper triangle matrix which produces the
story shears when postmultiplied by the story forces. The matrix

[AS] for a five story structure is:
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[As] = (9)

cooor
coorF
coHKFKH
OHHKER
el

The inverse of [AS] is the matrix which produces the story forces

when postmultiplied by the story shears.

1-1 0 0 0
4 |0 1-100 -
A =100 1-10 (10)
000 1-1
00001

Overturning moments are calculated by summing the first moment of

the story forces from the top down to the story of interest.
M ()} = (A T{f (B} (11)

where {Am] is an upper triangle matrix of the cumulative story
heights. When [Am] is postmultiplied by the story forces the
resulting values are the overturning moments. A five story
structure with constant story heights produces ‘the following

matrix for [Am]:

(A, = (h) (12)

OO0 C O
OC oM
OO HMNW
O =N W

Similarly, the inverse of [Am] is the matrix which produces the
story forces when postmultiplied by the overturning moments. For

the five story structure with uniform story heights:

1
§ o

~

»

Sand

it
OO OCH
COCOMHN
oMK

I .
OHNHC
NP OO
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The maximum response of each mode of vibration can be read
directly from a response spectrum and these maximum modal

responses can be combined to give a.total response.

s } (o Y 141}

u = 19 : 5.8, T.) (14)

n n {¢n}T[M]{¢n} d**n’ n

o o] {o 3T {1} —

£ = [MI{¢ _— 1|8 , T (15)
n n {q)n}T [M] {¢n} A a ‘n n

We note that the damping term ﬁad_been ignored in computing
the normal coerdinate displacements. This 1is only a
minor error since the «contribution of damping to the force
equilibrium equation is small. The damping is accounted for in
the response spectral values of maximum displacement and

acceleration.

2.1,1 Stiffness Matrix

The structural idealization of the building frames analyzed
for this parameter study was cafried out by means of the direct
stiffness approach. An energy expression for the beam and column
elements was used to calculate the total potential energy of an
elastic frame in terms of the displacements and rotatibns of the
joints. Using the slope deflection equations, relating the end
actions of a beam element to its deflected shape, the energy
expression was then arranged in a quadratic form. The

expression was differentiated with respect to the generalized
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coordinates and expressed in matrix notation.

_ 2EI | 2 2 _ L%y T Yui Yo3 ~ Yei
U="3" Y * Yysley ¥ Yoy 4 T ) Mgy *Upy) * 3= | (18)

EA 2 .
+'§f h%d - uvi) + constant

Where Ug s Uy and u, are the rotational, transverse and axial
displacements at the i and j nodes. The stiffness matfix
generated .in this fashion contains no rigid body motions and is
not singular. Furthermore, it is important to note that the
matrix is necessarily positive definite since the energy function

is positive definite. A more detailed discussion is available in

Ref. [17}].

Shear walls, behaving as cantilever deep beams containing
both flexural and shear modes of deformation, were treated
gseparately. Flexibility coefficients, expressing the
displacements of the wall due to a unit load at any one floor

level, were generated by means of the unit dummy load method.

_ 3 _ [{Mm , x Ss
u——é—ﬁ-—J[ﬁ+ _('_-‘:\—} dx (17)

Where M= mP, S = sP and k is the shear area shape factor. The
applied moments and shears, M and 8, are 1linear homogeneous
functions of the external load P whereas the dummy moments and
shears, mand g, are due to a unit load acting alone. The
displacement at any level i due to a load at level j is therefore

calculated as:




"wall the product of gk and r

14

K ( (BT)y g ~ (BD)

1 2.,1.3,3 2.
u= XXX == x.+x.] X +3 K +ig X (18)
kzl[:l ik 2 i | 3 k, 13 _J (EI)k+l . (EI)k

where k* is equml to the smaller of i and j. For a rectangular
2 eguals one tenth of the square of

the width of the wall.

Once the flexibity matrix 1is determined it is easily
inverted by Gaussian eliminétion technigques to obtain the lateral
stiffness matrix. This matrix, expressing the cantilever bean's
loading required to effect a unit displacement at a‘specific
level with no displacements elsewhere, is in a convenient form
for calculating the natural frequencies associated with the

lateral degrees of freedom.

2.1.2 Condensation

The structural stiffness coefficients, as derived from the
potential enet§y of the elastic system, may contain degrzes of
freedom corresponding to.which the inertial, damping and forcing
functions may have no components. These degrees of freedom may
be condensed out to preserve their effects without explicitly
expressing them. Vertical joint displacements and joint
rotations may be expressed in terms of the horizontal
displacements and, by means of back substitution, their effects

can be preserved.

This process is easiest done by partitioning the stiffness

matrix into nine submatrices setting Py and PV equal to zero.
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ol | e R AT | [
SN ENENESE as

Py ﬁﬁﬁfxw-Kve I Y W

The bottom row of partitioned matrices may be expanded to a self-

equilibrating equation and {uv} may be solved in terms of {ue}.

O

% {u b+ [Kygl{ugh + [K,J{u} =0 (20)

_ -1 '
{uv} = - [KW] [Kve] {ue} (21)

Similarly, the nekt row of matrices can be expanded, the vector
{qv} can be replaced by its equivalent and {ug} may be solved

in terms of {uu}

[Kg,l{u} + [Kgol{ug} + [k, 1{u } = 0 (22)
[Kg dlu, ¢ EKGG] - [Kev][KW]"llKve]]{ue} (23)
. . -1 -1

tag) = = [IRggl = IR, 1R I M RG] IRy () (24)

Finally, we may substitute for {UB} and {uv] into the top row
of the egquilibrium equation and express the stiffness

coefficients solely in terms of the lateral displacements.
O .
{p,} = Ik Mu} + (K Jut + B (o) (25)

‘ -1
-1 ) .

The equations of motion may be written using the condensed
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stiffness coefficients so the terms are all of the same order and
the degrees of freedom are consistent in all their derivatives.

These equations will be decoupled by transforming them into

normal coordinates.

2.1.3 Mass Matrix

A consistent mass matrix may be derived from the kinetic
energy of the system just as the stiffness coefficients were
obtained from the npotential energy. The element velocity
distributions were reiated to the nodal wvalues via the same
functions which related element displacement distributions to the
nodal vwvalues. The first derivative of the kinetic energy
relation with respect to the nodal velocity gives the desired

masg coefficients.

The lumped mass appfoximation follows the same theory except
the element velocites are assumed to be zero everywhere but at
the nodes. Only diagonal terms representing the mass associated
with translational degrees of freedom are retained. The mass of
each floor 1is considered to be concentrated at a node and it is
understood that an acceleration at any node produces inertia
forces at that node only. Rotational degrees of freedom are
assigned no rotary inertia and no mass is éssiqned to them. The
lumped mass representation greatly simplifies the calculations by

introducing no mass coupling.
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The consistent mass matrix may be condensed, in a fashion
similar to the stiffness matrix condensation, to reduce the
degrees of freedom while preserving their effects. Such a
condensation would produce an upper bound to the correct
frequencies, however, the benefits do not justify the
computational effort required. A detailed description of mass

matrix condensation is available in Ref. [23].

Structural damping 1is the mechanism to which energy
dissipation in elastic analysis is attributed. This damping is
due to the hysteretic nature of structural systems and the energy
loss per cycle is'equal to the area within the hysteretic force-
displacement plot. This energy loss per cycle must also equal
the work done by the external forces. Although the energy ioss
is proportional to the sqguare of the amplitude of the structure’'s
response, for a harmonic excitation this can be eguated to an
equivalent viscous damping which is proportional to the response
velocity, though opposite to its direction. The magnitude of
equivalent viscous damping for each mode of vibration is the
subject for considerable debate. For computational convenience
proportional damping is assumed to permit the equation of motion
to uncouple when transformed into normal coordinates. a
convenient form for the damping matrix, to assure its uncoupling,
is to assign its coefficients values proportiopal to a linear

combination of the mass and stiffness matrices. Two factors of
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proportionality can then be assigned to assure two modes to be
damped to the desired deqgree. In general, however, the damping

matrix can be constructed from the stiffness and mass matrices to

‘guarantee its uncoupling specifying as many modes of damping as

degrees of freedom. The remaining values of modal damping will
result from the ©orocess of enforcing the specified wvalues.
Computationally, this procedure gets cumbersome bevond specifying
the first two modes. A thorough discussion of these procedures

is available in Refs. [2] and [12].

Although the form of the damping matrix 1is essential for
dynamic analyses involving numerical integration of a specified
time history input, it will be shown that this is not the case
for response spectrum techniques. The wmagnitude of relative
fixed base modal damping is essential and in this study the
ratios were assumed equal in the first few significant modes of
vibration. Studies conducted elsewhere and discussed in

Ref. [21] support this assumption.

2.1.5 Forcing Function

The forcing function, for the case of a horizontal ground
acceleration base input, is simply the negative of the product of
the storv masses and the ground acceleration. A unit vector is
used to represent each degree of freedom's uniform translation
due to a unit base motion. Obviously, were the masses not all
collinear and perpendicular to the assumed base motion the unit

vector would be replaced by the appropriate relation.
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If the forecing function were subtracted from'both sides of
the equation of motion and combined, on the left side, with the
inertia force term, we would then have the product of the mass
matrix and the total acceleration the masses are subjected to.
The right hand side of the equation would be zero and the

equation would be reduced to:
(M1 {ii, } + [c1{u} + [K1{u} = 0 (27)
where

u, =u+ u (28)

2.2 Eigenvalues

Having generated the stiffness coefficients and mass matrix,
these can now be combined into the dynamical matrix for ﬁhe
purpose of calculating the natural frequencies and mode shapes of
the vibrating structure. The equilibrium equation can be written
relating the spring force, inertial force and damping force. The
damping force however, is much smaller than the other two and may
be safely ignored. The resulting equilibrium equation may be

expressed in symmetric form for computational facility.
M1{i} + [K1{u} =0 (29)
{u} = {¢} sin wt - (30)

- w2 mM1{¢} + [KI1{o} =0 (31)
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[{K] - wztm}{q»} =0 (32)

-1/2

T 1/2 2

- [M] (K1 M]™77° - w® [I]1 =0 (33)

The EISPAC subroutine was used to solve the eigenvalue
problem for the symmetric, positive definite, dynamical matrix
and the values were back substituted to obtain the aésociated
vectors. The EISPAC system employs the method of bisection
applied to the Sturm sequence for smaller systems of equations
and the rational Q R method with Newtonian corrections for larger
systems in which only a few solutions are desired. A complete

writeup of the EISPAC system is available in Ref. [6].

The vectors obtained from the EISPAC routine were
orthogonally normalized so that the result of postmultiplying
and premultiplying the mass matrix by the scaled vectors and

their transposes resulted in the identity matrix.

(61TmMITe] = 111 (34)

The eigenvectors established £for the 1linear system represent

independent motions in a normal coordinate system and they may be

- combined by the principal of superposition.
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2.3 Modal Analysis

The eigenvalues and the scaled eigenvectors are the squared
circular frequencies and the orthonormalized mode shapes which
define the dynamic response for the fixed base structure. The
maximum response and displacements can be obtained from a
response spectrum which charts the maximum responses of a damped
single degree of freedom system of varying natural frequency to a
given strong ground motion. Each mode may be considered a single
degree of freedom system with a percent of the total mass
considered effective and the desired response can be calculated,
whether it -be displacement, force,story shear, overtdrning
moment, etc. independent of the other modes. The responses of
all the modes can be combined in a suitable manner to indicate

the most probable response of the system.

The percent of the total mass considered effective may be
derived from the forcing function as expressed in the right hand

side of the equilibrium eguation of ground motion.
F () = fo_}T[MI{1} G_(¢) (35)
n n g

Since the mode shapes are orthonormalized the total components of
base acceleration each mass is subjected to 1is identically equal

to the ratio of mass effective in a mode of wvibration.

{637 (M1 41}
B ML)

M = (¢} M1{1} (36)

The modal elastic displacements result from the product of the
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normalized mode shapes, the ratic of effective mass and spectral
displacements £for the frequency and percent of critical damping

corresponding to the mode.
{u} =M Sg(8 , T ){¢} (37)

The modal elastic forces result from the product of the
normalized mode shapes, the mass matrix, the ratio of effective

mass and the spectral acceleratrions.
{fn} =M S (B, Tn){(bn} {38)

The modal shears and moments may be calculated from the elastic

forces as in a conventional static analysis.
2.4 Pp-A Effects

Secondary effects due to the additional moments the
structure's weight produceé when deflected from its stationary
vertical configuration may be sizable for tall, flexible
buildings. These additional moments result in amplified story
shears and amplified story drifts which, in turn, result in vyet
additional overturning moments. An iterative scheme is required
until ‘a stable and equilibrated deflected configuration is
reached.

S* =5 + (39)

S* =85 +

(40)
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_ _ PA* *

st = (L - gxp) S (41)

g% = Mﬂ_gﬁzy_ (42)
(1~ ETE)

For linearly elastic structures the story stiffness, the slope of

the story shear vs story drift curve, is constant so

. |
k=32=2 (43)

and

_ s |
s = —Sr (44)

sn’

These effective story shears correspond to the equilibrated
displaced shape of the structure and may be used to calculate'the
overturning moments. ihe effective shears take into account the
eccentricity of the story weight in its deflected configuration
in addition to the inertial force of the story masses due to the
strong ground motion. Each modal shear and overturning moment

distribution, assumed to be independent of the others, is

amplified to account for the P-A effects.

A similar amplification procedure may be applied to the
interstory displacements which, when summed from the ground up,

yield the equilibrated displaced configuration.

=R (43
Sh
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Alternatively, since the system is assumed to behave elastically,
the additional displacement due to the P-A effects may be
calculated from the effective increase 1in story forces

corresponding to V*,

(£+} - (£} = (a17H({s*} - {sh (46)

{A*} - {A} = [K]™Y ({s*} - {s})) (47)

These  procedures are explained in greater detail in

Refs. [5],[24],[27]1,[34].

2.5 BSoil Structure Interaction

The effect of a compliant foundation on the dynamic behavior
of the superstructure is to lengthen the fundamental periods and
increase the amount of energy dissipated through radiation of
waves into the supporting éoil. The brincipal effects may be
represented by two additional springs and dampers at the base of
the structure, one pair representing the foundation's rotational
degree of freedom, the other representing the foundation's
translational degree of freedom. The development and discussion
of the soil structure interaction egquations 1is presented in
Refs. [7j,[15],[211 and [26]. These studies have shown that the
coupling between the horizontal and rotational motions may be,
for multistory structures, neglected with little loss of
accuracy. Neglecting the coupling permits‘the representation of

the motion by normal coordinates and a solution by modal analysis
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techniques.

The equations of motion for the compliant foundation differ
from the fixed base in that there are two additional degrees of

freedom and two additional -equations.

[M]’{ﬁt} + [cl{u} + [Kl{u} = 0O (48)
(L} IMILE} + my (B + G,) = -5 () (49)
{h}(mi{i,} + I, (G)) = -M,(t) (50)

The impedance relations for the elastic half space are

S8 6% O ‘:‘X}+ [Kx 0] Yy (51
Mb(t) 0 C¢ uy, 0 K¢ uw

Where Sb(t) and Mb(t) are the base shear and overturning moments

at the structure-foundation interface.
fut} = ug{l} + uxfl} + uw{h} + {u} | (52)

Rearranging the terms results in the foilowing three equations
(M1{8} + B, (M1{2} + &, M1{h} + [C1{@} + [K}{u} = -G [MI{1} (53)
(137 [l i} + 6, (11T M1 01} + 6, (11T M1 (h) +my) 4 Con +Kou =

(54)
- .ﬁg({l}T[M]{l} +my)
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)T (8} + 8 (hhMI(L) + G, (0T MIth) + 1.8, + c)d

- ﬁg{h}T[M]{l}

‘Combining into a single expression

M'1{a"'} + [(c'1{u'} + [(k'1{u'} = {F"}

B [M] .:1 [M1{1} ' [M]{n}
____________________ e s e e —
'] = | (13T o Tadry ¢ 03T Ml {n}
________ A e o e ot 7 et v e et A e it P o
tiTimMy ¢ T miiar 3 (hyTmMjin}
T -
- [c1 0 ' 0
T ] eee——————— -}- ———————————— J'- ———————————
SRR D A
o ' 0 ' c, |
B ]
(K] ! 0 r0
———————— -'i-_————-———..__.!..._____...__.......
KR! = 0 H ! 0
: K=y 9o S S §§ _____ 5
0 ' 0 :
L S
{u}
{u'} = u
o
Mj{1}

(F'} = -ty { my o+ (11T (1)
{h}T M1 {1}

i + K,u, =
tTy vy vy (55)

(56)

(57)

(38)

(59)

(60)

(61)



27

The equafions may be uncoupled to perform a modal analysis by
meas of Foss' method,described in Refs. [12] and [15]). The (N+2)
degree of freedom system is first transformed into a 2 (N+2)

dégree of.fieedom system of lower order.

0 - [M'] iR -[M*] 0 at | 0
+ =
[My]  [C*} ‘ 1'-'1'. 0 [Ct] ut {r*} (62)

This 'form of the équation vields (N+2) cbmplex eigen values and
{N+2) complex éonjuggtes_ An iterative procedure must be used to
account for the  frequency dependent impedance functions.
Altefnatively, the equations may be solved in the frequency

domain using fast fourier transform technigues.

Simplifications afising from parametric studies of the
solutions  of these eguations, presented in
Refs. [19]}[29],[30],[31] and [32], may obviate the need of a
rigorous solution., Good correlation between exact and simplified
approaches allow for the use of the fixed base mode shapes with

the modified frequencies and dampings.

2.6 Combination ¢f Modes

The ‘stofy "displacements, shears and c¢cverturning moments
calculated for each mode of interest, amplified for P-A effects
and modified to account for scil structure interaction are
combined to represent the most probable response. | Most
,sﬁructures' natural fregquencies are well enough separated that

their .responses to strong ground motion are considered

o mqum il e L
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independent of esach other. For such separated systems the most
probable combined response is the square root of the sum of the

squares of the individual modal responses. An upper bound to the

structural response 1is the sum of the absolute values of the

individual modal responses. It 1is highly unlikely for the
maximum responses of all the modes due to a strong ground motion
to occur simultaneously. The sum of absolute maximum responses

is highly overconservative for multidegree of freedom systems.

2.7 Energy Relations

The elastic strain - energy of a structural system 1is a
function .of the loads acting on the system and the resulting
deformations. Two systems with different load resisting
properties subjected to identical loads would generate different
amounts of strain energy depending solely on the difference iﬁ
deflected shapes. A preécribed load applied statically along a
cantilever shear beam generates a different deflected shape than
does a cantilever flexure beam. 1In a system in which the lateral
resisting elements exhibit combinations of shear and flexural
deformations, the ratio of energy due to either action divided by
the total energy ought to provide a measure for the influence of

either component.

For the discretized systems the strain energies of the
several structural components may be determined for the most
probable deflected shape of the system. The percent of shear

strain enengy for a system composed of any number, N*, of lateral
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load resisting systems may be calculated from the stiffness
matrices which describe the 1linear system and the deflected
shape. The subscripts s and f refer to the shear and flexure
modes of deformation respectively and the subscript t indicates a

total value, whether it be stiffness, strain energy or

deformation.
(K, = (k1Y + x,0"h (63)
it 7 is] if
N*
[K.] = 'E [X;] (64)
=1
{ut} = {uif} + {uis} (65)
{Pi} = [Kif]{uif} = [Kis]{uis} | (66)
_ -1
{uif} = [Kif] [Kis]{uis} (67)
-1 |
{ut} = {[I] + [K ] [Kis]]{gis} (68)
-1 ~1
{uis} = [{I] + [K ] [Kis}} {ut} (69)
-1 -1 -1
_ -1
{uis} = [Kis] [Ki]{ut} {71)
U, =% {u TR, _1{u, } O (72)

is 2 is is is
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N¥* '
Ug = L Uig . (73)
. T N* 1
U, = 1/2 {u/} {izl [K,TIK, T [Ki]]{ut} (74)
N* -
U, =1/2 {u}" [ ) [K.]] {u,) (75)
t t . i}t
i=1
US
y' = 100 2 (76)
Ut

2.8 Regression Analysis

The story accelerations distributions may be expressed as

cubic polynomial eguations.

3 2

* *
+ B,X + B (77)

, %*
A (X) = BX 3 4

+ &t
B2X

The several variations in structural discontinuities and soil
structure interaction for each héight of structure and percent of
shear deformation may be combined by the method of least squares
to produce a generalized design distribution. Story shears and
overturning moments need first be normalized to produce a unit
base shear assuming unit story masses at each level. This has
the effect of normalizing the story accelerations, allowing the
story shears and overturning moment distributions to be compared

directly regardless of the actual story masses. The least
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squares regression therefore minimizes the wvariation in the
fourth and fifth order polynomial response distributions with
respect to the cubic polynomial acceleration distributions'
coefficients. To minimize the variation between the modal
response distributions and the expressions to fit this data, the

following four simultaneous eguations must be solved.

N
A SRR L S (78a)
*
i=1 9B; 1 1
Nl
7 Ly, -¥nt=0 (78b)
i=1 3B, 1 1
N" .
A O o (78¢)
i=1 9B, 1 +
N!, .
5 * 2
izl EE* (Y, - Yi) =0 (784)
4

The Y; are the values obtained from the modal analysis, whether
*

they be story shears or overturning moments, the Yi are the

polynomial expressions for the respective response distributions
*
lr

distribution points included in the regression analysis. The

* * *
82, B3 and B4, and N' 1is the +total number of

in terms of B
acceleration distributions for calculating the most probable
shears and overturning moments for a particular structure will
“not necessarily be the same. Two distinct distributions must

therefore be determined for each structural idealization.




Assuming the story accelerations to be of the cubic

polynomial form

* i, 3 i, 2 * i *
* 1.3 * i.2 L. | * :
£, =m (B, {{~ + B, (§)° + By (ﬁo + B4) (80)
) Loe- L
s, = £, = £, - £, (81)
LR T D = S = R
3 B* N j=-1
- iz
si= ] YA Y @@t - T mp)m? (82)
}oa=0 n' li=1 i=1

If we were to assume all base masses to be equal to unity and all
setback masses to be equal to m, the eguation for story shears at

level j becomes:

*
j=1 k
DI S (1~m)(i)1](83)

3B N N
S. = zuﬁlﬁ-{inunk+203m(n*—
121 i1 i=1 11

T %0
Where k is the story at which the setback occurs,
*
And k =k but not greater than (j-1)
The sum of constants, integers, their squares, cubes and quartics
from one to N has been calculated in Ref. [16] to be

N
7 (L)

i=1

I
=

(84a)

il

N
T (i) 5 N(N+1) (84b)
i=1
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N 2 1

D ()% = 2 () (N+1) (2N+41) (84c)

i=1

T3 1 2 2

I ()7 = 7 (M7 (N+1) (844)

i=1

N4 _ 1 2

(1) " = g5 (W) (N+ N+ N” + 3N- de
igl i)" = 55 (N) (N+1) (28+1) (3 3N-1) (84e)

Substituting into the éxpression for story shears at a level and

regrouping, we obtain the following equation.

* * *
BY (2. 2. 2.) B (2. Z. 2.y B (Z. 2.
N T T T W R A D W (P T
SJ"“'[TI“*ii“*if' ¥ ( CR M 6] R [2 *2 }*'34(Zl> (83)
N N ,
Where
* *
Z2. = mN* - k* - G- + KM o+ ¥ - K (86)

An expression for overturning moments at any story in terms

. ) * * * * ,
of the acceleration coefficients B_, B_., B_. and B, and functions

1" "2' 73 4
Zl, 22, Z3 and Z4 may be der;ved as follows:
N .
Mj = _2. (1 -3+ 1) £ (87)
i=j
5 T
M. = (i -3+1 £, - (i - j + 1) £, (88)
T =1 Tois *
* .
3 B,,_ N + J=1
TR g3 {m.(l-j)(i)ld-mi(i)x 1]«— ) [mi(l-j)(i)x
J 320 W j=10 % i=] (89)

+ mi(i)x+l]}

I1f, as before, we assume all base masses to be equal to unity and




34

all setback masses to be equal to m, the equation becomes:

*
3B . N N ' .k k
M= I -G Y e @M+ ) n@ M ) am a- @t § e @
=0 N i=1 _ i=] i=1 i=1
j1 -1 k" K .
Jo Jz ;
- Y e - @M - Y o a-p @t - 3 aem @
i=1 i=1 i=1 i=1

After substituting the expressions for the summations and

rearranging, the equations for overturning moments becomes:

gg :}1'j)‘i; * i? * i%’ + ‘ié * ig * 25{] * (91)
% | (1-3) (2 + (2 4 ?—25)]

For both shear and overturning moment distributions, the
polynomial regression egquations take the same form and the

acceleration. distribution coefficients are solved in the same

fashion.
Y* _ * * * * \ (92
Y3 = By X3 * By Xp3 * By X33 ¥ By Xy )
* %*
) ) : (s
Y. Yu: b = ¥e: Xo:1{B, } 3}
j21 1M j=1 31 ki k

Solving for the coefficients
*

. N Ly
B T [El X1 Xk-{] [izl Yi in] s
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If the acceleration distributions are constrained to be zero at
*
the base of the structure, the coefficient B4 is set equal to

zero. This allows the equations to be condensed and reduced from

fourth order to third.

An index of correlation was calculated to measure the
goodness of fit of the cubic regression equations to the derived

distributions of shears and overturning moments. The index was

defined as:

N* . 2
(N'~4)
i

1 (95)

1~ Il o~

which is, for 1large values of N', a function of the unbiased

conditional dispersion about the regression equation and the

variance of the distribution about its mean value.

A more detailed discussion of polynomial regression analysis

is presented in Refs. [1] and [3].
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CHAPTER 3. MODELS

This chapter is a description of the models wused to adapt

the material in Chapter 2 to this study.

3.1 Type of Structure

Structures acting as multidegree of freedom oscillators
responding to a strong ground motion, may be represented by
spring-mass models (see Fig. 5a). The springs interconnecting
the masses are of two basic types representing shear and flexural
behavior. Buildings exhibit a combination of the two depending
on the iateral force resisting systems. Although the relative
proportions of shear and flexural behavior vary along the height
of most buildings, the representative springs in the spring mass

models may be combined to match the actual behavior.

Slender shear walls behave essentially as flexural beams
with shear éffects increasing along with the wall depth.
Conversely, moment resisting frames behave essentially as shear
beams with flexural effects incfeasing with beam flexibility and
axial column deformation. Since beam to column stiffnesses vary
along the height of the structure, as 4o the axial colunn
stiffnesses, the rotational (flexural) effects vary as well.
Frames with infinitely rigid beams and inextensible columns
behave as pure shear beams and may be modeled as such. All other
structural systems exhibit a combination of the two actions.

Fig. 1 1illustrates the deformation modes of frame-wall
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structures.

The model used to repfesent shear wall elements 1is a
discrete spring mass representation of the Timoshenko Beam. In
this model the shear and flexural stiffnesses are combined in
series, indicating additional flexibility due to the inclusion of
both actions. For combinations of walls, with different
proportions of flexure and shear, or for the combination of walls
and frames, the shear and flexural stiffnesses need to be
combined in parallel. In this instance the combination of

lateral resisting actions result in a stiffer system.

The Timoshenko Beam is comprised of both flexural and shear
components of stiffness connected in series. The 1inclusion of
the shear componenf softens the system and augments the deflected

shape of the beam.

4 a2 4
EI 3—% +m 3 g - mﬁgI ?zu > =0 (96)
X at X" 3t
u = ¢(X) sin wt (97)

MKELo> 32¢(X) =0

4
3 ¢ (X) 2
EI - mw ¢ {X) + {98)
ax AG 5%
The Heidebrecht and smith beam c¢ontains both modes of

deformation; however, the two are connected in parallel and the

inclusion of the shear component stiffens the system, reducing

the deflected shape of the beam.
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4 2 2 .
pr 2% + 24 CROTH (99)
5X ats K ax
u = ¢(X) sin wt (97)
adox) 2 GA 326 (X) |
EI g - mw d(X) - — T (100)
ax K ax

The differential equations for the continuous cantilever beam
representation of the two models are derived and discussed in

Refs. [2],[10],[11],[13]1,[14],([17] and [28].

3.1.1 Stiffness Matrix

The discretized representation of the lateral structural
stiffness matrix is accomplished by summing the condensed lateral
frame stiffness coefficients and the lateral wall stiffness
coefficients. The wall stiffness matrix is generated as the
inverse of the sum of the component flexure and shear flexibility
matrices. This procedure preserves the effects of beam
flexibilities, column elongations and shear flexibilities
maintaining only the lateral degrees of freedom. The assumption
involved 1is that all the walls and frames are constrained to
displace an equal amount at each floor level due to a floor slab
infinitely rigid in its plane. Furthermore, simplifications in
the frame stiffness formulation were obtained by assuming all
joint rotations at a floor were equal; This assumption was

tested against an exact formulation in Ref. [12] and was found to
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be guite adequate.

The wall stiffness factors were expressed as the sum of the
EI/L for all walls at a story. The frame stiffnesses factors
were expressed as the ratio of the sum of the column stiffnesses
to the sum of the walll stiffnesses at a story. The beam
stiffnesses were expressed as the ratio of the sum of the beam
stiffnesses to the sum of the column stiffnesses for ‘the flbor
below. The column shortening factors were expressed as the ratio
of the sum of the column areas to the sum of the c¢olumn

stiffnesses.

The story stiffness distributions were assumed both uniform
over the height of the structure and uniform to an 1intermediate
level and uniform, though reduced, for the remaining height of
the structure. The first wuniform distribution represents a
reqular structure whereas the second discontinuous distribution

represents a setback structure.

In this study the actual values of story stiffness are not
as important as the relative values of story stiffness. The
resulting lateral stiffness‘ matrix may be scaled to yield the
stiffness coefficients corresponding to a desired fundamental
frequency. Furthermore, considerable computational economies may
be achieved by working with fewer degrees of freedom than £floor
levels. This may be accomplished, preserving the relative
influence of secondary effects, notably the P-A interactions, by
"multiplying the stiffness and dividing the masses by the ratio of

reduced degrees of freedom to the number of stories in the
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structure. To preserve the P-A influence the story heights must
also be factored when considering the ratio of PA/HV and H/R

slenderness factor.

3.1.2 Mass Matrix

The masses were assumed to be concentrated at the joints and
the resulting matrix representation is of diagonal form. Story
masses were assumed to vary 1in the same relative distribution as

story stiffnesses to represent uniform or setback structures.

The story weights used to calculate second order P-A effects
were a mdltiple of the mass matrix. Thesé weights were taken to
be twenty five percent greater than the corresponding values used
in the dynamic analysis. This twenty five percent increase was
intended to account for live loads at the time of the strong

ground motion.

3.2 Response Spectrum

The response spectrum used in this study is bilinear,
repregenting a constant acceleration branch and a c¢onstant
velocity branch. The intersection of these lines forms the knee
in the spectrum and serves as a point of refrence in scaling the
response. A unit constant acceleration was assumed and the
frequency at which the knee occurs was assigned the value of 2.5
Hz. (see Fig. 3). This effectively fixes the value of the

second branch at 24.6 in/sec. Both the value of the constant
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acceleration branch and the frequency at which the knee occurs
may be varied to match the response of a strong ground motion.
For modal analyses which do not include the secondary effects of
soil structure and P-A interactions, the natural frequencies may
be allowed to slide along the freguency axis to simulate the
effect of varying fundamental frequencies with respect to the
knee. It should be noted that either the structural stiffness
matrix or the mass matrix may be multiplied by a constant factor
to vary the fundamental frequency relative to the kneee. For
this type of primary modal analysis it is only tﬁe relative
spacing of the natural frequencies which are of interest. A
family of responses for different heights of structures, masses
or stiffness factors or strong ground motions may be easily
generated for any particular relative stiffness and mass

distribution.

When the secondary effects of soil-structure and P-A
interactions'are included in the modal analysis, the relative
value of fundamental frequency to the Kknee 1is no 1longer
sufficient and depending on the wvalue of the fundamental

frequency the secondary effects will be amplified or diminished.
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3.3 Boil Structure Interaction

A replacement oscillator approximation to the actual

structure-foundation system was used to account for foundation

compliance in the modal analysis (see Fig. 5b) . In this
approach, developed and reported in Refs. [19],1[29]1,[30]
and {31], each mode of vibration, taken to be a single degree of
freedom oscillatior of equivalent mass and height, was presumed
to be attached to a pair of springs and dampers at the base. The
foundation stiffnesses and dampings were calculated for a rigid
circular disk on an elastic halfspace. These impedance functions
were derived assuming the disk to be continuously connected to
the halfépace, hence no uplifting, and no¢ instabilities

representing large foundation settlements.

The dynamic properties of the replacement osciliator were
chosen such that the resonant shears of the modified systenm
equalled the resonant shears of the actual system when subjected
tp the same basé motion. For such an equality to exist, the
component of structural displacement multiplied by the fixed base
structural stiffness must equal the total displacement multiplied
by the modified stiffness. Equating the two shears and dividing
both sides by the mass we find the two displacements related by
the following expression:

2

T n
u= ()" u ) (101)
T
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However, to this structural displacement the effects of rigid
.body rotation must be added to give the total displacement of the
story mass. The mwmodified period of the replacement oscillator
may be calculated from the static displacement it undergoes due
to a force equal to the weight of its mass. Similarly, the
period of the fixed base system may be approximated from the
static displacement it undergoes due to the same force acting on
it. The periods are proportional to the square roots of the
respective élatic displacements. The ratio of modified to fixed
base periods therefore equals the ratio of the sguare rooted

displacements.

e K X | 2,1 mg ‘
Sst = [} - (1 + ﬁ_'(H) {] % (102)
X L
= 0g
6St 7 (;03)
Y K 1/2
2= [1~+ = L+ 22 m? (104)
X Y

The equivalent damper -for the modified system may be
congidered to be the sum of the equivalent radiation damping and
effective interfloor structural damping. The structural damping
may no longer be considered as large as in the fixed base
structure and must be reduced to account for the shift in
resonant frequencies. By eguating the resonant magnitﬁdes of
- pseudo acceleration ratios due to.tﬁe equivalent and original

systems we obtain the following relation which has been derived
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in Ref. [19].

o
: ;1 =1 1T .1 (105)
| 28 | T 2%
9) max
3
¥ = %} B (106)
¥

The total modal damping of the system is therefore the sum of the
radiation damping due to the foundation flexibility and the
modified fixed base structural damping. It is possible that the
total damping of the interactive system may be calculated to be
less than the assumed damping of the fixed base structure;
however, the lower limit of the total ihteractive damping is set
at its fixed base value. Since the percent of critical damping
for the structure was based on observations which do not
distinguish between foundation and structural components, the
composite value is assumed never to be less than the estimated

value of B.

The freguency dependent values of spring stiffnesses used to
model the foundation flexibility result from the following

equations:

8o
R, = —X er (107)
2=-v
8a
K, = ¥_ gr3 (108)
3(1~-v)

Where Oy and aw are the frequency dependent coefficients and were

determined in previous studies. It was found that the
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coefficient for translation is, for all practical purposes,
constant and equal to unity while the coefficient for rotation
diminished with diminishing slenderness and and diminishing wave
parameter. These relationships are illustrated in Fig. 6. The
wave parameter describes the relative stiffness of the half space

and structure and is egual to:

o= S (109)

Other parameters affecting the degree of spil structure
interaction are the relative density of the structure to the
halfspace material and the Poisson's ratio for the halfspace.
These parameters may be substituted inté the relation for the
modified period of the replacement oscillator to vyield the

following equation:

1/2
3 3{1-v) a 2
i= 1+2'—"-"——%—(%)1+-—--——’5-(%) ] (110)
T : 2 G o] (2-v) uw
3.4 Damping

The effects of structural damping on the response spectra
may be included in relative terms with amplification or reduction
factors applied to the bilinear response values. The factors
will differ for the two branches and the frequency at which the

knee occurs will diminish as the damping increases.
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Statistical studies of earthquake spectra, presented in
Ref., [8] , have provided plots of the amplification factors
for the two branches of response for various percentiles (see
IFig. 4). These factors are applicable up to twenty percent of
critical damping. This limitation does not, for the majority of
the models investigated, affect this study. Equations fitting

the plots for mean values are as follows:

-— ]

AFa - 4.389 0.994 &n B (111)
4.389 - 0.994 4n B

AFV _ 3.11% - 0,677 4n B' (112)
3.119 - 0.677 4n B

B' is the structural damping for the mode in question and § is

the structural damping assumed for the bilinear representation.

The overall damping for a given mode of the soil structure
system is a composite of the energy dissipated by the structure.
and the energy losses ffom internal friction and wave radiation
into the ground. In this study, structural dampings in all modes
were assumed to be five perﬁent of cfitical, a value consistent
with the findings of Refs. [9],({21] and [22], and only the soil
structure interaction effects weré assumed to affect the relative
values. These interaction effects were accounted for from
empirical studies performed elsewhere. The values of damping
are functions of the structure's slenderness ratio, fixed base to
compliant foundation frequency ratic and the level of excitation.
Eguations for the values of eguivalent interaction damping were
fit from plots published in Ref. [29], and presented in Fig. 7,

corresponding to strong ground motions at high strain levels.
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These damping components were ‘combined with the structure's fixed

base damping according to the relationship

T

3
L.+ | =
soil [%} BStructure

B, = B

£ (113)

Furthermore, it was assumed that the interactive combined

dampings could never be less than the fixed base values.

3.5 Energy Relations

The portion of strain energy due to shear deformtion may be
approximated by combining the individual ratios of all the
lateral load resisting systems in a wéighted average technique.
Each system alone may be considered to be a deep beam and the
ratio may be calculated from the work of each action through its

resulting deformation.

dax . (114)

L 2 2
U = f M™ ., xS
o {2EI - 2GA

The percent of total deformation attributed to shear will be a

function of the shape of the cantilever and its loading.

Ug r(%)z
y = 100 — = 100 5 (115)
U Q0+ k(X
T L
Q = .1444 Concentrated top load
Q = .0650 Uniform Load
Q = .0851 Linearly Increasing Load

"The value of Q for equal loads concentrated at each story level

is a function of the total number of stories in the building.
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1 2"
Q=0,065 {1 + = + — (116)

Each energy ratio is weighted by the relative stiffness of
the structural elements and averaged to yield a composite index.
The elements are considered to be connected at the top story and
thereby constrained to deflect an equal amount. The weighted
factor may be the proportion of base shear a particular element
attracts. This value can be calculated in a manner similar to
the component stiffness method by assuming the frames tec take a
constant shear due to an interéction force at the top. The
remainder of the shear is assumed proportioned to the shear walls

in relation to their moments of inertia.

In the range of practical structures, frames may be
considered to be ninety percent shear beam, hence
Accordingly, the percent. of total deformation attributed to
shear, and hencelthe ratio of total stiffness to shear stiffness,
is nine tentﬂs. The portion of base shear attributed to the
frame may be calculated in a manner similar to the derivations in

Ref. [18] to be

(.2 2 2
3N + 2N-1 , 3N r
+ ——
S 130 © [HI ](N+l)
Sp = - (117)
18 [r]2 N3 {N LEL
2 + - K | = —_ + —
\ 130 i 3 5.4 IEI,
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[3N2 + 2N-l]{N+1]
3
8 N
Sp = 5 (118)
1+ 3 TEly

N2
10.8 N LET
The resulting weighted average of shear deformation may be
expressed as:
*
N

Y = Splyp) + (1-Sp)
i=1

Y (119)

(EIw)i
wi ZEIw

where N* is the number of walls in the structure, EEIW is the sum
. .
of the (EI) of all N walls at a level and XEIC is the sum of all

the (EI}) of all the columns in the frames at a level.




50

CHAPTER 4. PARAMETERS

To specify the behavior of the cantilevered Timoshenko Beam

used to model the different types of structures on the various

foundations, several of the parameters were varied. The
principal concern of this study was to model the lateral 1load
resisting behavior, the distribution of setbacks along the
height, the fundamental fregquency relative to the knee in the
response spectra and the foundation compliance. To effect these
conditions the slenderness of the beam, the structural stiffness;
the relative masses and the stiffness along the height and the
shear wave velocity of the supporting medium were varied.
Furthermore, basic to Athe analyses several parameters were
assumed and held constant throughout. These constants reflect
either a most typical value or an insensitive parameter whose
variation would cause . little significant effect. These
assumptions pertain to fhe secondary effects of P-A and soil
structure interaction and are déscribed in greater detail in the

next section.

4.1 Fixed Parameters

The Poisson's ratio of the elastic halfspace was assumed to
be 0.45 representing a realistic value for a foundation material.
The Poisson's ratio is involved in determining the impedance and
damping properties of the halfspace and its effect has been

investigated in Refs. [29] and [30]. The equations for the



51

equivalent spring stiffness and frequency dependence factors are
functions of the Poisson's .ratio and substituting the assumed

value yields the following expressions:

K = 4.85 o GRS

" " (120)

]

K

- 5.16 Oy GR | (121)

In previous studies the values of o and Uy s the frequency

. L
dependence factors, have been calculated for several values of

Poisson's ratioc. The value of o, for the assumed Poisson's ratio
was found nearly constant and equal to unity whereas the value of

o, diminished with diminishing wave parameter and slenderness

¥

ratio as described earlier. A polynomial fit to the curves in

Ref. [30] vielded " an expression for the relationship between o

v

and the dimensionless frequency parameter a,-

&, = 0.000677 ag -~ 0.01164 ag + 0.06828 ag
° | - (122)
- 0.15 a2 - 0.0902 a_ + 0.954
where
a = WR_ 271 R, (123)
o CS o H

It has been observed in Refs.l[19],[29] and [30] and verified in
the course of this study that although aw is freguency dependent
and ought to be determined in an iterative scheme, the fixed base
frequency gives an adequate‘ approximation. Little change was
observed from successive refinements of the interactive

fundamental frequency.
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The damping characteristics of the halfspace were determined
for the assumed value of the Poisson's ratio and the 1level of
hysteretic energy dissipation corresponding to strong ground
motion. A family of polynomial fits to the plots in Ref. [29]
provided relations between radiation damping and the ratio of
interactive to fixed base fundamental frequencies for various
slendernesses of structures. These damping were expressed as
percents of critical and were combined with the assumed value of
fixed hase structural damping as described previously.
Furthermore, it was assumed that the interactive damping values

could never be less than the fixed base values.

¢

The fixéd base value of structural damping was assumed to be
five percent of «critical for all modes of vibration. This
assumption, considered typical of elastic structural response,
corresponds to the bilinear response spectrum used in the modal
analysis. Since it 1is dnly the relative levels of modal damping
that affect the values of spectral acceleration and it is only
the foundatioﬁ compliance that affeéts the relative levels of
modal damping, the overall analysis 1is fairly insensitive to

changes in the fixed base value..

The relative mass density for the structure and supporting
medium was assumed to be 0.15. This value is representative for
buildings and variations 1lead to small changes in foundation

damping and interactive fundamental frequency.
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Lastly, the ratio of total weight to dead weight divided by
story height, expressed in feet, was assigned the value of 0.125.
This factor is representative of buildings in which the live load
is one guarter the weight of the structure and the story heights
are ten feet. This value is used in determining the secondary
effects of P~A moments. Once again slight deviation from the
assumed value has little effect on the distribution of shears and

overturning moments'along the height of the structure.
4.2 Variables

A parameter study of modal analyses of structures subjected
to strong ground motions is comprised of two fundamental phases
of investigation. First, the structural behavior and
configuration needs to be established to determine the dynamic
nature of the system. Secondly, the mode shapes need tovbe
combined to reflect the effect of ground motion on the structure.
The parameters are tggrefore either of the type which determines
the mode shapes and gelative spacing of the frequencies or those
which determine the weighting by which the modes are combined.
These two types of parameters are ‘described in the following

articles and are outlined in Table 1.
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4.2,

The single most significant parameter 1in modeling the

behavior of a cantilever Timoshenko beam 1is its slenderness

ratio. This property determines the deformation characteristics
of the model and thus the dynamic properties. By increasing the
slenderness of a beam we may represent flexural behavior with its
widely separated natural frequencies and corresponding mode
shapes, Conversely, by decreasing the slenderness ratio we may
accentuate the shear deformation behavior and the resulting modal

analysis will correspond to that of a shear beam.

In choosing the values of slenderness ratio to represent the
two extreme conditions and four intermediate combinations, the
elastic strain energy of deformation due to a concentrated load
at the free end was considered. Values of 0, 20, 40, 60, 80 and
100 percent shear deformation were chosen and the corresponding
slendernesses were back calculated to evaluate the beam's
dimensions.

4.2.2 Setbacks

The structural discontinuities investigated in this study
were modeled as towers setback from a unit base. A tower of »plan
dimension thirty percent that of the base was considered a
representative configuration 1likely to exhibit the effects of
discontinuities on shear and overturning moment distributions.

The relative heights of the tower and base were varied to
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determine the effect the location of discontinuties had on
.structural response to strong ground motion. Structures were
assumed, at first wuniform over the height, and successively
setback in twenty percent intervals till the tower comprised
eighty percent of the height. The thirty percent plan area
setback represents a tower with thrity percent of the mass and
stiffness of the base portion. The degrees of setback studied

are illustrated in Fig. 2.

4.2.3 Heights and Fundamental Fregquencies

Four heights of structures were investigated represehting
five, ten, twenty and forty story buildings. For each
representation lumped masses were assigned to each floor level
separated by unit story heights. The resulting natural
frequencies were then> scaled to a realistic value based on fhe
height of structure and degree of setback. Structures were
assigned a fixed base fundamenfal frequency inversely
propottional to the number of stories, raised to the 3/4 power
and directly proportional to a setback factor. The values of
fundamental frequency were assigned relative to the frequency at
which the knee 1in the response spectra occurs. All higher
frequencies were scaled to preserve the relative spacing and
hence the relative modal contribution. Two fundamental
frequencies were calculated for each height of building, percent
. shear deformation and degree of setback. One frequency was

intended to represent a stiff structure and the second a more
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flexible design. The corresponding constants of proportionality,
based on a response spectra knee frequency of 2.5 Hz., were

assumed to be 7.113 and 5.0808 respectively. These values are in

agreement with the expressions for determining fundamental

frequencies of structures, assuming a ten foot story height,

proposed in Ref. [24].

The setback factor is the ratio of the actual fundamental
frequency of a model with the base properties uniform over the
height. The setback factor for uniform buildings is therefore
equal to wunity whereas for other configurations the factor
reflects the effect of structural discontinuities on the
fundamental freQuency. In preserving the relative fundamental
frequencies structures of the same height and percent of shear
deformation may be compared directly with each other to determine

the effect of the setback on the response.

An approximation, yiélding greater economy of calculations,
would have been " to analyze a ten degree of freedom system
regardless of the actual number of stories. This would have been
accomplished by multiplying the massegs and story heights and
dividing the stiffnesses all by one tenth the actual number of
stories in the structure. Unfortunately, such approximations
would have made the top story shears impossible to calculate and

the desired accuracy would have been lost.
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4,2.4 Soil Structure Interaction Parameters

The seismic velocity and the slenderness ratios were chosen
to represent the degree of soil structure interaction of the
superstructure founded on a massless disk on an elastic
halfspace. The slenderness ratio represents the height of the
modal centroid to the radius of the foundation's base. For
noncircular foundations the radius is an equivalent value related
to the 1length of the side of the foundation in the direction of
the strong ground motion. Equations for equivalent’ radii are
given in Ref. [24]. The slenderness ratio 1is a significant
parameter in  determining the relative effects of foundation
translation and rotation. Dividing the seismic velocity by the
fundamental frequency of the fixed base structure and the
associated height of the modal centrecid yvields a dimensionless
wave parameter. This wave paramgter is a measure of the relative
stiffness of the foundation and the structure. Since the
fundamental frequency is approximately inversely proportional to
the height o©of the structure, the wave parameter is primarily a
function of the shear wave velocity of the supporting soil. The
seismic velocity may be interpreted'as a stiffness factor ranging
from several hundered feet per second for soft soils to several
thousand feet per second for hard rock. Both the wave parameter
and the slenderness are therefore the primary variables
determining the ratio of interactive to fixed base frequencies

~and equivalent structural dampings of the interactive system.
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In this study, the seismic velocity was assigned four values
to represent different degrees of interaction as well as four
slendernesses to represent different configurations of
structures. The seismic velocities assumed were 250 feet per
second (soft), 500 feet per second (intermediate), 1000 feet per
second (hard) and infinity (fixed base). These values are
intended to represent the effective seismic velocity at strain
levels consistent with strong ground motion and they are
substantially less than those values measured at small amplitude
strain levels. The slendernesses assumed corresponded’ to the
available data on equivalent structural dampings and the ratios

were 1,1.5,2 and % ranging from squat to slender structures.
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CHAPTER 5. RESPONSE DATA

The square root of the sum of the squares combination of the
modal values of shear and overturning moments at each floor level
represent the most probable distributions of seismic structural
response. The distributions need to be normalized to compare the
differences resulting from the parametric variations. The
response data was considered to be composed of two distinct
parts, the'base value representing the total base shear and base
overturning moments and the distribution of accelerétions over
the height. Treated separately, design distributions and design
base factors may be applied to a uniform fixed base model, for
which fundamental frequencies and hence response accelerations

may be easily estimated, to determine the actual response.

5.1 Normalization of Base Shears

The most probable base shears and base overturning moments
may be normalized with respect to the fixed base base shear for
the uniform structure adjusted to the total weight of the setback
structure. An equivalent base shear factor, representing the
difference between the base and the first story normalized
overturning moments divided by the story height, may be
evaluated. These normalized base shear values reflect the
effects of structural discontinuities, soil structure interaction
~and P-A effects, and they may be considered to be story shear and

overturning moment factors. It 1is intended that the factor
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corresponding to a structural configuration and founded on a
compliant footing will convert the base shear and base
overturning moment, <calculated for a fixed base and uniform
istructure, to the corresponding values for which the factors were
obtained. In this fashion, one need only work with a uniform
structure on a fixed base foundation and modify the resulting
shears and overturning moments with the factor pertaining to the
actual configuration and foundation. - In many cases vof
preliminary design, accurate knowledge of natural frequencies and
étructural stiffness is limited. This methdd of analysis affords

the designer an approach consistent with the information at hand.

5.2 Normalization of Distributions

The story shears and overturning moments may be decomposed
into story force distributions which may be further decomposed
into acceleration distfibutiohs along the height of the
structure. The tésulting distributions represent the equivalent
lateral response accelerations at each floor level for
calculating either story shearsl or overturning moments. The
response distributions may be reconstructed from the story
accelerations assuming unit masses and unit story heights at each
level. The resulting distrtibutions may be normalized to produce

unit base shears as previously described.

The story shears and overturning moments may be

reconstructed using the following transformations:
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1

M = a1~ a1 (124)
(1 = a1t a1 e (125)

Where [AS],[AS]_l,[Am] and [Am]_l are defined in chapter 2.

The polynomial expressions derrived for the response
distributions can be simplified for the reconstructed data.
Since all the masses are equal to unity the distribution

coefficients (see equation 86) simplify to the following form:

z, = v - (3-1)Y) (126)

5.3 Combination of Distributions

The normalized distributions may be expressed in polynomial
form by means of a least squares regression technique. It was
observed that for a given height of structure, percent of shear
deformation and soil shear wave velocity all the distributions
for the investigated combinations of fundamental frequency and
structural discontinuity c0uld-be included in the same Jleast
squares routine, The resulting cubic polynomial expressions
represent the best curve fit for all distributions as a function
of the number of stories, deformation characteristics and soil
shear wave velocity. Two sets of acceleration distributions were
calculated 1in this fashion, one for computing story shears and

"the other for computing overturning moments.
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It was further observed that the top story shear and
overturning values, for distributions normalized according to the
preceding section, were egual to the top story acceleration. A
weighting, proportional to the number of stories in the
structure, was assigned to this top story value to increase the
least squares' sensitivity and thereby force the resulting
acceleration distributions to more nearly approximate this point.

In this fashion, the polynomial distributions better reflect the

top story values.
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CHAPTER 6. RESULTS

The data generated by means of the models discussed in
Chapter 3, for the parametric variations outlined in Chapter 4
and normalized according to the procedures established in Chapter
5. are presented 1in this chapter. The story shear and
overturning moment response to strong ground motion are separated
into two components, the base value and the distribution ovef the
height of the structure. Each component will be discussed with

respect to the parameters varied.

In the course of the parameter study, several combinations
of seismic velocity, slenderness ratio and fundamental period
exceeded the limits of applicability of the mathematical models
incorporated into this study. In particular, the upper limit of
the range of applicability of damping values for the median
horizontal ground motion response spectrum amplification factors,
obtained frqm Ref. [8] and plotted in Fig. 4, is twenty percent
of critical. However, for sguat structures on soft soil for
which the radiation damping component may be sizable (see Fig,
7} the combination Qf strﬁctural and radiation damping often
exceeds this limit. PFurthermore, the results obtained by the
replacement oscillator model of the soil-structure interaction
may be significantly in error for cases where the dimensionless
wave parameter 1s less than three. It has been observed, and
reported in Ref. [30], that this may be particularly true for
"slender high rise structures founded on very soft soils. This

| requirement is not too restrictive and generally overlaps the

fefiata b
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limitation imposed on the effective damping of the system. The
parametric combinations which violate these 1limitations are
indicated in the Tables of results with an asterisk, denoting
that the applicability of the analysis may be gquestionable in the

cases so identified.

6.1 . Base Values

The current procedure for calculating the base shears and
the base overturning moments is to multiply the total wéight of
the structure by the following: (1) a site effect factor; (2) a
seismicity factor; (3) an occupancy factor;‘and (4) a base shear
coefficienﬁ. This last coefficient is defined in Ref. [25] as
the ratio of the maximum base shear to the weight of the
structure of a wuniform multidegree of freedom system. The
multidegree of freedom system 1is assumed to have a linear
fundamental mode shape and Ehe effect of all vibrational modes is
included. The - plot of the basé shear coefficient as a function
of period is, in effect, an influence line for the base shear.
However, an error in estimating the fundamental period of the
structure or a variation in the spacing of the first several
frequencies results in an erroneous base value. To overcome this
source of error the base values presented in this chapter will
account for the effects o0f building discontinuities and
soil-structure interaction. These factors modify the base shears
and base overturning moments of a uniforh and rigidly founded

structure, calculated by current methods, to reflect the
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amplification or reduction due to nonuniformities and foundation
compliances., Factors accounting for the effects of the percent
of shear deformation, as a deviation from the linear fundamental

mode shape assumed in Ref. [25], are also presented.

6.1.1 Mode of Deformation

The effects of varying the proportion of shear déformation
on the base shears and overturning moments is presented in
Table 2. The values are calculated to be the base sheérs for a
uniform rigidly founded structure of varyving degree of shear
deforma;ion and number of stories, normalized with respect té the
shear beam base shears. These factors account for the altered
relative spacing of natural frequenciés and mode shapes with
increasing presence of flexural deformation and may be considered
to be an expression of the effective weight of the structufe.
The relative spacing of the first three natural frequencies of a
uniform rigidly founded shear beam increases from (1.0, 3.0, 5.0)
to (1.0, 6.27, 17.55) for the corresponding £flexural bean.
Similarly, the relative modal ‘base shear participation factors

increase from (1.0, 0.108, 0.036) to (1.0, 0.306, 0.1lU3).

For a given structure, as the number of stories increases
the fundamental frequency decreases. The higher mode influences
will vary depending on the location of the fundamental period
relative to the knee in the response spectrum. When all natural
~ frequencies exceed the frequency at which the knee in the

response spectrum occurs, the relative influence of all modes are
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the saﬁe as the modal base shear participation factors. When the
fundamental frequency 1is less than the frequency at which the

knee occurs, the relative influence of the higher modes

increases. It is apparent, from Table 2, that for a five story

flexure beam, the effect of the more uniform participation of the
first three modes, when combined in a square roct of the sum of
the squares fashion, yields a smaller effective weight than that
of a shear beam. However, as the number of stories increases,
and the frequencies are scaled accordingly, the 1ar§er spacing of
the natural frequencies causes the higher modes to dominate. The
resulting flexural beam effective weight is greater than that of

a shear beam.

6.1.2 Setbacks and Soil-Structure Interaction

The effects of soil-structure interaction and setbacks on
the base shears for the variations in height and fundamental
period of structures with eighty percent shear deformation are
presented in Tables 3 through 6. The corresponding effects on
the base overturning moments for the same variation in parameters
are presented in Tables 7 through 10. The base values for eighty
percent shear deformation were chosen as representative, although
the complete set of tabulated results are summarized in

Tables 11 through 1l4.

The values in Tables 3 through 10 represent normalized bhase
shears for calculating both story shears and overturning moments.

The base story shear and the difference between the first two
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stories!' overturning moments® divided by the first story height
for each variation of the setback and soil-structure interaction
parameters were normalized with respect to the base story shear
of a uniform and rigidly founded structure having the same
percent of shear deformation, height and fundamental frequency.
The values therefore isolate the effects of foundation compliance
and structural discontinuity. Moreover, Tables 7 through 10
reflect the additional effect of base overturning moments reduced
from those calculated from the story shear distributions. Thié
reduction has, in the past, been expressed as a ‘J coefficient
which wvaried along the height. Since this study has treated the
distributions and base values separately, the analagous J
coefficient need only be expressed as a base reduction. These
reductions are apparent when Tables 3 through 6 and 7 through 10

are compared.

The effect ofvsetbacks on the models generated was: (1) ¢to
increase‘_the fundamental frequency; (2) to decrease the ratio of
second to first natural frequency; and {(3) to reduce the base
shear participation factor of the fundamental mode from those of
a uniform building having éhe dimensions of the lower portion of
the actual structure. The influence of the fundamental mode
relativé to the higher modes 1is heightened by the first two
effects and diminished by the third. The entries in Tables 3
through 10, corresponding to infinite seismic velocity, show the
influence of setbacks on a rigidly founded structure. As the
height of the setback increases reiative to the base portion, the

setback factor increases to0 a maximum and then decreases. For
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low rise structures the peak value occurs when the setback height
is roughly thirty percent of the height of the structure. For

high rise structures the peak value occurs when the setback

height 1is eighty percent of the height of the structure. When

the structure is setback over its full height the model 1is once
again uniform, though reduced in plan, and the setback factor
eguals the values for a uniform structure. These relationships
are due entirely to the location of the fundamental frequeﬁcy
relative to the knee in the response spectrum. As the height of
the structure increases and hence the fundamental frequency
decreases, the relative influences of the three dynamical effects
of structural @ setbacks favors the higher modes, vyielding a

greater amplification.

The fixed base entries for each degree of setback and each
height of structure have been averagéd over the six degrees of
shear deformation investigated, ranging from flexure beam to
shear  beamn. ~ The condensed results are presented in
Tables 11 and 12, where the numbers appearing in parentheses are
standard deviations indicating the degree of scatter in the
averaged values. Since the setback factors were determined for

masses and stiffnesses reduced to thirty percent of the base

- values, to determine the factors for a structure with proportions

differing from those studied, an extrapélation or interpolation
is required. The values in Table 12, for calculating the effect
of setbacks on base overturning moments, are smaller than the
corresponding values in Table 11, which are for calculating the

base shears. The difference between the two represents the base
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moment reduction factor for fixed base structures.

The effect of soil-struéture interaction on the models
generated was to decrease the fundamental frequency, holding the
remaining natural frequencies constant, and to increase the
apparent damping of the fundamental mode., The influence of both
effects 1is ‘to diminish the spectral acceleration of the
fundamental mode while thé remaining modal responses stay the
same. Looking once again at Tables 3 through 10, it is apparent
that the seismic velocity is the primary parameter in reducing
the base response. Furthermore, for a givenl percent of shear
deformation and height of structure, a more flexible structure,
represehted by a higher fundamental period; is less affected by a
compliant foundation. Lastly, the slenderness of the structure
has contfqry influences on the base response. Equation 110
indicates that the ratio of interactive period to fixed base
period increases as the slenderness ratio increases. This causes
a decrease_lin the fundamental mode spectral acceleration. Fig.
7 shows that as the period ratio increases the apparent damping
for a given slenderness inc;eases. However, as the slenderness
increases the apparent damping for a given period ratio decreases
and the response spectral acceleration is amplified. It is the
relative increases and decreases of the spectral acceleration
that determine the modal contributions and the resulting base

value factors.

The base values for the flexibly founded models for each

.deqree of shear deformation, height of.strﬁcture, fundamental
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period and percent setback were normalized with respect to the
base values for the fixed base case. The normalized values for
each seismic velocity and slenderness ratio were averaged over
the six degrees of shear deformation, the féur heights of
structures, the two fundamental periods per height of structure
and the five degrees of setback investigated. The effects of
varying the seismic velocity and the slenderness ratio are
summarized in Tables 13 and 14 along with the associated standafd
deviations. The wvalues in Table 14, for calculating the effects
of soil-structure interaction on the base overturning moments,
are smaller than the corresponding values in Table 13, which are
for calculating the base shears. The difference between the two
is the additional base moment reduction for flexibly Cfounded
structures which augments the fixed base reductions presented

earlier.

6.2 Distributions

The current procedure for calculating the base shear and
overturning moment distributions over the height of a structure
is to assume a linear distribution of story accelerations.
Summing the products of the story acceleration and story mass,
starting from the top story proceeding downwards, and normalizing
with respect to the . base summation yields the story shear
distribution. The overturning moments are calculated from these
shears as they would be calculated for a étatic cantilever beam

subjected to a transverse loading. A provision to account for
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the amplified higher mode effects due to the skewed relative
modal contributions in high rise, 1large fundamental period,
structures 1is to provide a concentrated force at the top story
not to exceed one quarter of the total base shear of the
building. This procedure recognizes that the higher mode effects
on shears and overturning moments are confined to the top portion
of the structure due to the reversals in story accelerations in
the remainder of the structure. Recently, a refinemeﬁt in
Ref. [24] recommended a distribution of story accelerations
ranging from linear to gquadratic, depending on the ‘fundamental
period. This refinement 1is intended to replace the linear
distribution-and a concentrated top story force with a single
expression. The dynamic effects of setbacks on structures
subjected to strong ground motion is the subject of a 1958 report
of the Structural Engineers Association Of California Setback

Sub-Committee and is presented in Appendix C of Ref. [25].

The distributions of accelerations for calculating story
shears and overturning moments presented in this study are
intended to provide the designer greater accuracy and
flexibility. The acceleratiéns for calculating story shears and
overturning moments have been determined independently to
represent the most probable distributions along the structure.
Furthermore, the effect the type of structural 1lateral 1load
resisting system has on the response distributions is presented
in this chapter along with the effects of setbacks and soil
" structure interaction. The story acceleration distributidns

generated in this study are in the form of a polynomial expansion
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truncated after the cubic term and constrained to be zero at the
base. The two constants, Bl and 32, specifying the contribution
of the higher order terms are the coefficients of the cubic and

* %*
quadratic terms, B and B,., of Eguation 79 divided by the

1
coefficient of the linear term, B;.'
A (X) = B.X3 + B.X% + X (127)
[a] 1l 2 _

The values of Bl and 82 are presented iﬁ Tables 15 througﬁ 34 and
illustrated in Figs. 8 through 11. The linear term coefficient
has been normalized to unity for all conditions. When combined
with the higher order terms the linearity of the acceleration
distributions is altered in different regions along the height of
the structure. The cubic term coefficient, Bl’ is positive and
represents a concentration at the upper stories. The quadratic
term coefficient, B,y is negative and it represents a reduction
which, when coupled with fhe linear and cubic terms, is largely
confined to the waid-region of the structure. The relative
magnitudes of the coefficients will détermine the shape of the
acceleration distribution. The acceleration distributions must
be normalized with respect to thé sum of the products of each
story acceleration by its corresponding story mass to be used to

calculate the story shears and overturning moments.
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5.2.1 Mode of Deformation

The most probable distributions of story shears and
overturning moménts along the height of a structure have been
calculated as the sguare root of the sum of the sgquares of the
mddal contributions. To determine the effect of the percent of
shear deformation of a structure on the distributions of story
sheare and overturhing moments it is first necessary to consider
the modal distributions and their relative influence. The
fundamental mode shape for a uniform cantilevered flexural beam
increases monotonically, concave downward, with the greatest
curvature at the fixed end. The fundamental mode shape for a
uniform cantilevered shear beam increases monotonically, concave
upward, with the. greatest curvature at the free end. The
fundamentadl mode shear distributions for both beams increases
monotonically, concave @ownward,.from a free end value of zerd to
their fixed end values. However, flexure .beams attract over
fifty percént more of the base shear near the free end than do
sheaf beams. The fundamental mnode overturning moment
distributions for the two ~types of cantilever beams increases
monotonically, concave upward, from‘zero‘at their free end to
their base value. The concentration of the base overturning
moments near the free end is only one third 4greater in flexure

beams than in shear beams.

The higher mode shapes do not increase monotonically and the
number of sign changes equals the mode number less one. Although

the higher mode shapes of the two types of beams are similar,
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small differences between the two are amplified in the shear and
overturning moment distributions.' The absolute wvalues of the
higher mode story shears and overturning moments approach a
uniform distribution due to the increasing number of sign changes

in their mode shapes.

Since the portion of the total weight considered effective
in each mode is more uniformly distributed in flexure beam
structures than in shear beam structures; the combined influence
of the higher mode shapes 1is more pronounced with decreasing
percents of shear deformation. This greater higher mode
participation has the effect of amplifying the shears in the
upper and lower.quarters of the building from the fundamental
mode values. These .effects are even more pronounced for the
overturning moment distributions. Furthermore, since the natural
frequencies of flexure beams are more widely spaced than those of
shear beams, the higher mode effects are more amplified in a high
rise flexure beam structure than in a corresponding shear beam

structure.

The shear distributions for . a structure with significant
higher mode participation increases from zero at the free end to
a region of near constant shear and then flares out towards the
fixed base. The 1location and extent of the constant region is
determined by the position of the fundamental frequency relative
to the knee 1in the response spectra as well as the percent of
shear deformation in the structure. The résulting acceleration

distribution, decomposed from the story shears, are 'S' shaped
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and the reduced values in the mid~height region produces the near

uniform shears.

The acceleration distribution regression coefficients for
calculating the ‘story shears of fixed base structures are
presented in Tables 15 through 18. The first column of results,
corresponding to a uniform structure of a given height, indicates
an increasing negative influence in the mid-height region with
decreasing percents of shear deformation. This relationship is
most extreme for low rise structures wﬁere the spectral

accelerations for all modes are nearly egual.

When the most probable overturning moment distributions are
compared with those of the fundamental mode it is apparent that
the effect of the higher modes is to aﬁplify‘ the upper values
while reducing the lower values relative to the base. These
deviations from the fundamental mode overturning moments are more
pronounced than the deviations observed between the most probable
story shears and the fundamental mode values. The story
accelerations obtained from the most probable coverturning moment
distributions are therefore reduced in the mid-height region to a
greater extent than those from the shear distributions. The
polynomial - regression coefficients for calculating the
overturning moment acceleration distributions of fixed based
structures are presented in Tables 23 through 26. As was the
case with the story shear acceleration distributions, the higher
‘mode effects are most pronounced in high rise flexure beam

structures.
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6.2.2 Setbacks and Soil-Structure Interaction

The effect oflsetbacks on the distribution of story shears
and overturning moments is primarily to alter the relative
contribution of each mode to the most probable distributions.
Although the mode shapes of a setback structure are different
from those of a uniform structure, the difference in shape 1is a
secondary effect and it is overshadowed by the more significént
change in the spacing of the natural fregquencies. The story
shear regression coefficients for fixed based structures are
presented in Tables 15 through 18 and the corresponding
coefficients for calculating overturniné moments are preéented in
Tables 23 £hrough 26. These tables reflect the increased effect
of higher mode participation for structures with setbacks equal
to thirty percent of the area of the base. For a given height of
structure and percent of shear deformation, the coefficients
exhibit no specific trend 6ver the range of setbacks. A more
general set of polynomial regreésion coefficients were calculated
for each height of structure and percent of shear deformation by
grouping the ~five wvariations 1in setbacks into a single least
squares analysis. The values for calculating story shears are
presented in Table 31 and the values for calculating overturning
moments are presented in Table 33, These tables have been
presented in Figs. 8 and 10 where it is obvious that the greatest
variation in the acceleration coefficients is in the range of low
rise structures. The effect of increasing Ehe number of stories,

thereby reducing the fundamental frequency with respect to the
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knee in the response spectrum, is to increase the higher mode
influences. However, the <coefficients for a given type of
structure approach uniform values as the number of stories
increases. The acceleration distributions for calculating story
shears of fixed base structures are illustrated directly above
the corresponding distributions for calculating overturning
moments on the left hand side of Figs. 12 through 17. These
diagrams are normalized to a unit value at the top story and the
higher mode <c¢ontributions are seen to increase with increasing

story height and decreasing percent of shear deformation.

The indexes of correlation for the individuwal distributions
presented 1in Tables 15 through 18 and Tables 23 through 286 were
¢loser to unity than those of the grouped ‘acceleration
distributions presented in Tables 31 through 34. This is due to
the dispar}ty between the distributions for the various values of
setback. However, fbr preliminary design purposes the errors

introduced by generalizing the distribution coefficients do not

impair their usefulness.

Polynomial regression <coefficients were calculated for
structures on compliant foundations to determine the effects of
soil-structure interaction. The distributions for structures
founded on a halfspace with an effective seismic velocity of five
hundred feet per second were chosen to represent these effects.
The sfory shear and overturning moment distributions were found
to be very similar over the range of structural slendernesses

investigated, B/R equal to 1.0, 1.5, 2.0 and 5.0. The regression
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coefficients were therefore calculated for each percent of shear
deformation, height of structure and percent setback while the
four slendernesses were grouped into a single 1least squates
analysis. The coefficients for calculating story shears are
presented in Tables 19 through 22 and the corresponding
coefficients for calculating overturning moments are presented in
Tables 27 through 30. When these tables are compared with those
for fixed base structures it 1is obvious that the single most
significant effect of soil-structure interaction is to increase
the higher mode participation in the most probable distributions
calculated. The trends observed for the fixed base structures
were also observed when soil-structure interaction was considered
and the distributions for setback structures were combined in a
single best fit expression for each heiéht and percent of shear
deformation., These acceleration coefficients for calculating
story shears are presented in Table 32 and the corresponding
coefficients for calculatihg overturning moments are presented in
Table 34. These tables have aiso been plotted in Figs. 9 and 11
and the results are similar to those for fixed base structures.
The acceleration distributions. for calculating story shears of
structures founded on a halfspace with an effective seismic
velocity of five hundred feet per second are illustrated in
Figs. 12 through 17 directly above the corresponding
distributions for <calculating 'overturning moments and to the
right of the corresponding distributions for fixed base
structures. To determine the coefficienﬁs for calculating the

acceleration distributions for structures founded on compliant
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halfspaces with effective seismic

velocities

hundred feet per second it 1s necessary to

interpolate from the tabulated data.

other than five

extrapolate or
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CHAPTER 7. CONCLUSIONS

A vprocedure for determining design story shears and
overturning moments to resist the effects of strong ground
motions is presented. These distributions over the height of a
structure are the result of a parameter study in which the type
of structure, the height of structure, the vertical configuration
and the foundation interactions were varied. For each modei a
modal analysis was performed and the square root of the sum of
the squares of the responses were generated. The base mdgnitudes
were reduced to base factors, accounting for the effects of the
parameters varied. Polynomial regression analyses were performed
on the nérmalized distributions and the coefficients were

determined to account for the effects of the parameters varied.

7.1 Design Procedure

The procedure for calculating the seismic shears and
overturning moments presented in this study is compatible with
current code practices. The base factors and the acceleration
distribution coefficients discussed in Chapter 6 may be used to
calculate design shears and moments without: the need of a
rigorous modal analysis. Once the lateral load resisting system
has been chosen, in the most preliminary stages of design, the
mode of deformation of the proposed structure may be determined
from the general proportions of the primaryAstructural elements.

This value may be calculated by Equations 115 through 119. With
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this information and the height of the structure a mode of
deformation factor may be determined from Table 2. With further
information regarding the uniformity of the structure over its
height and the soil on which it will be founded, setback factors .
and soil-structure interaction factors may be determined from
Tables 11 through 14. Two seté of these factors must be
determined, one set for calculating the story shears and the
other for calculating the overturning moments. These faétoré are
to be multiplied by the total weight of the structure, the
spectral acceleration and whatever other site effect; occupancy
and seismicity factors present codes may redguire. The two
resulting base shears will be used for calculating the story
shears and the overturning moments over the height of the
building. The distributions may be calculated with Equation 127
using the polynomial regression factors tabulated in
Tables 31 through 34 or illustrated in Figs. 9 through 12. Once
again two sets of acceleration distributions must be determined,
one for calculating the story shears and the other for
calculating the overturning moments. The two distributions need
to be determined and normalized with respect to the sum of the
products of each story acceleration by its corresponding story
mass. The resulting normalized distributions must be multiplied
by the base values and story masses to yield the static story
forces. These two static story force distributions are to be
used to calculate the ©probable elastic story shears and

_overturning moments due to a strong ground motion.
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7.2 Further Study

In this study damping was assumed to be five percent of
critical for the first several modes of vibration. Further
investigations of existing structures are needed to determine the
actual damping, both structural and radiational, at various
levels of excitation. The effects of soil-structure interaction
have been presented for structures supported at the surface of a
homogeneous hélfspace. Modifications to the effective seismic
velocity and slenderness ratios need to be developéd to
generalize the results of this paper to sﬁructures embedded in a
layered media..  Furthermore, the effects of isolated spread
footings énd pile  foundations need to -be adapted to the
parameters investigated. Lastly, the case where a structure
temporarily l1ifts off part of its foundation needs to be studied

and presented as a reduction to the design distributions.
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TABLE 3

Base Shear Factors : (5 Stories,

Fundamental Period = 0.02503/4

(*) Analysis does not apply to this case.

Setback
40%
1.117

1.072
1.091
1.104
1.118

0.907
0.998
1.044
0.979

0.465
0.591
0.656
0.640

Setback
40%
1.249

1.210
1.219
1.220
1.2006

1.085
l.122
1.142
1.101

0.697
0.821
0.875
0.822

. Seismic H/R
Velocity
(Ft./Sec.) 0% 20%
Infinite All 1.000 1.173
1000 1.0 0.948 1.107
1000 1.5 0.959 1.121
1000 2.0 0.963 1.127
1000 5.0 0.946 1.104
500 1.0 0.786 0.900
500 1.5 0.837 0.966
500 2.0 .0.862 0.998
500 5.0 0.815 0.940
250 1.0 S 0.421 0.457
250 1.5 0.528 0.585
250 2.0 0.578 0.646
250 5.0 0.554 0.622
Fundamental Period = 0.03583/4

‘Seismic H/R

Velocity ‘
(Ft./Sec.) 0% 20%

Infinite All 1.000 1.164
10040 1.0 0.974 1.131
1000 1.5 0.981 1.140
1000 2.0 0.980 1.139
1000 5.0 0.972 1.129
500 1.0 0.895 1.029
500 1.5 0.918 1.059
500 2.0 0.931 1.075
500 5.0 0.902 1.039
250 1.0 0.621 0.682
250 1.5 0.710 0.795
250 2.0 0.749 0.844

- 250 5.0 0.704 0.790

60%
0.968

0.931
0.947
0.958
0.969

0.801
0.865
0.893
0.848

0.603
0.640
0.641

60%
1.135

1.104
1.111
1.113
1.102

1.010
1.038
1.054
1.024

0.775
0.843
0.874
0.851

80% Shear Deformation)

BO%
0.898

0.846
0.857
0.862
0.845

0.695
0.743
0.765
0.729

0.530
0.560
0.558

B0%
0.965

0.941
0.947
0.947
0.940

0.869
0.891
0.902
0.880

0.682
0.737
0.762
0.742
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TABLE 4

Base Shear Factors - (10 Stories, 80% Shear Deformation)

Fundamental Period = 0.025H3/4

‘Seismic H/R Setback

Velocity

(Ft./Sec.) 0% 20% 40% " 60% 80%
Infinite All 1.000 1.163 1.257 1.198 1.004
1000 1.0 0.938 1,081 1.156 1.126 0.949
10090 1.5 0.951 1.099 1.178 1.141 0.961

- 1000 2,0 0.957 1.107 1.189 1.150 0.967
1000 5.0 0.937 1.081 1.158 1.129 0.951
500 1.0 0.751 0.838 0.868 0.951 0.811
500 1.5 0.811 0.916 0.961 1.004 0.853
500 2.0 0.840 0.953 1.003 1.029 0.873
500 5.0 0.794 0.895 0.942 0.998 0.848
250 1.0 * * Cow * o
250 1.5 0.523 0.550 0.578 0,836 0.713
250 2.0 0.567 0.607 0.636 0.857 0.731
250 5.0 0.562 0.606 0.655 0.882 0.751

Fundamental Period = 0.035H3/4

Seismic H/R : Setback

Velocity

(Ft./Sec.) . 0% 20% 40% 60% 80%

Infinite All 1.000 1.140 1.241 1.350 1.134
1000 1.0 0.971 1.102 1.195 1.321 1.112
1000 1.5 0.978 . 1.111 1.206 1,327 1.117
1000 2.0 0,979 1.112 1.208 1.323 1.118
1000 5.0 0.970 1.100 1.193 1.320 1.111
500 1.0 0.883 0.983 1.050 1.23¢6 1.047
500 1.5 0.909 1.019 1.095 1.261 1.0067
500 - 2,0 0.924 1.038 1.118 1.275 1.077
500 5.0 0.896 1.001 1.075 1.252 1.059
250 1.0 0.628 0.648 0.693 1.089 0.926
250 1.5 0.707 0.752 0.799 1.125 0.957
250 2.0 0.743 0.798 -0.848 1.145 0.973
2590 5.0 0.715 0.764 0.819 1.138 0.967

(*) Analysis does not apply to this case.



91

TABLE 5

Base Shear Factors . (20 Stories, 80% Shear Deformation)

Fundamental Period = 0..025&13/4

Seismic H/R ‘ Setback
Velocity
(Ft./Sec.) 0% 20% 40% 60% 80%
Infinite All 1.000 1.145 1.235 1.385 1.218
1000 1.0 0.928 1.047 1.112 1.313 - 1.166
1000 1.5 0.943 1.068 1.139 1.329 1.177
1000 2.0 0.952 1.080 1.154 1.338 1.184
1000 5.0 0.931 1.052 1.121 1.321 1.171
500 1.0 0.734 0.791 0.815 1.181 1.066
500 1.5 0.796 0.873 0.908 1.218 1.094
500 2.0 0.824 0.910 0.950 1.236 1.108
500 5.0 0.788 0.854 0.904 1.221 1.08%6
250 . 1.0 * * * % *
250 1.5 * * * * *
250 2.0 * * * * *
250 5_0 * * * * *
Fundamental Period = 0.035H3/4
Seismic H/R - ‘ Setback
- Velocity ,
(Ft./Sec.) 0% 20% 40% 60% 80%
Infinite alil 1.000 1.145 1.242 1.375 1.386
1000 1.0 0.965 1.098 1.184 1.339 1.364
1000 1.5 0.973 - 1.109 1.197 1.347 1.369
1000 2.0 0.975 1.112 1.202 1.351 1.371
1000 5.0 0.964 1.097 1.183 1.340 1.364
500 1.0 0.856 0.953 1.007 1.244 1.304
500 1.5 0.890 0.999 1.063 1.273 1.323
500 2.0 0.909 1.023 1.092 1.283 1.332
500 5.0 0.880 0.984 1.047 1.268 1.319
250 1.0 0.617 0.645 0.693 * *
250 1.5 0.686 0.732 0.776 1.157 1.2456
250 2.0 0.720 0.776 0.821 1.173 1,257
5.0 0.711 0.765 0.815 1,177 1.260

250

(*) Analysis does not apply to this case.
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TABLE 6

Base Shear PFactors ‘ (40 Stories, B0% Shear Deformation)

Fundamental Period = 0,025H3/4

Seismic H/R Setback

Velocity ,

(Ft./Sec.) 0% 20% 40% 560% 80%
Infinite All 1.000 1.145 1.258 1.382 1.438
1000 1.0 0.904 1.017 1.1060 1.289 -1.434
1000 1.5 0.926 1.046 1.136 1.310 1.446
1000 2.0 0.938 1.062 1.155 1.321 1.453
1000 5.0 0.915 1.031 - 1.11¢ 1.302 1.442
500 1.0 0.690 0.736 0.799 1.166 1.359
500 1.5 0.757 0.822 0.887 1.197 1.378
500 2.0 0.787 0.862 0.928 1.213 1.383
500 5.0 0.761 0.829 0.900 1.207 1.384
250 1.0 * * * * *
250 1.5 * ¥ * * *
250 2.0 * * * * *
250 5.0 * * * * *

Fundamental Periocd = 0.035H3/4

Seismic H/R ' ‘ Setback

Velocity

(Ft./Sec.) o 0% 20% 40% 60% 80%
Infinite All 1.000 1.143 1.248 1.387 1.473
1000 1.0 0.953 1.080 1,170 1.341 1.446
1000 1.5 0.964 - 1.094 1.187 1.351 1.452
10090 2.0 0.969 1.101 1.196 1.357 1.455
1000 5.0 0.956 1.083 “1.174 1.345 1.449
500 1.0 0.816 0.897 0.955 1.234 1.383
500 1.5 0.361 0.957 1.025 1.267 1.402
500 2.0 0.884 0.987 1.058 1.283 1.412
500 5.0 ¢.857 0.949 1.018 1.269 1.404
250 1_0 * * * x *
250 1.5 0.658 0.6985 0.758 1.171 1.342
250 2.0 0.693 0.739 0.800 1.185 1.352
250 5.0 0.710 0.756 0.830 1.214 1.371

{(*) Analysis does not apply tb this case.
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TABLE 7
Base Overturning Moment Factors ( 5 Stories, 80% Shear Deformation)
Fundamental Period = 0.025H3/4
Seismic H/R | Setback
Velocity '
(Ft./Sec.) 0% 20% . 40% 002 80%
Infinite aAll 0.974 1.155 1.091 0.865 0.8090
1000 1.0 0.921 1.087 1.045 0.823 0.742
1000 1.5 0.932 1.102 1.064 0.841 0.754
1000 2.0 0.936 1.107 1.077 0.853 0.760
1000 5.0 0.918 1.084 1.0092 0.866 0.741
500 1.0 0.752 0.87%6 0.874 0.673 0.564
500 1.5 0.805 0.943 0,968 0.747 0.621
500 2.0 0.832 0.976 1.0156 0.780 0.648
500 5.0 0.783 0.916 0.949 0.728 0.605
250 1.0 0.356 0.408  0.398 * *
250 1.5 0.477 0.547 0.54¢0¢ 0.418 0.340
250 2.0 0.531 0.612 0.610 0.470 0.385
250 5.0 0.506 0.586 0.593 0.471 0.382
Fundamental Period = 0.035H3/4

Seismic H/R ' : ' Setback

- Velocity .
(Ft./Sec.) _ 0% 20% 40% 60% 80%
Infinite all 0.950 1.128 1.204 0.965 0.786
10600 1.0 0.923 1.094 1.163 0.928 0.757
1000 1.5 0.930 - 1.103 1.173 0.937 0.764
1000 2.0 0.929 1.103 1.174 0.938 0.765
1000 5.0 0.921 1.092 1.160 0.926 0.756
500 1.0 0.839 0.989 1.033 0.815 0.666
500 1.5 0.863 1.020 1.072 0.849 0.694
500 2.0 0.877 1.038 1.093 0.868 0.709
500 5.0 0.846 0.999 1.049 0.831 0.679
250 1.0 0.537 0.620 0.613 0.495 0.391
250 1.5 0.638 0.742 0.751 0.595 0.480
250 2.0 0.681 0.794 - 0.809 0.639 ¢.518

- 250 5.0 0.631 0.737 0.753 0.605 0.488

(*) Analysis does not apply to this case.
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TABLE 8

Base Overturning Moment Factors (10 Stories, 80% Shear Deformation)

Fundamental Period = 0.025H3/4

‘Seismic H/R Setback

Velocity :

(Ft./Sec.) 0% 20% 40% 60% 80%
Infinite All 0.929 1.109 1,195 0.984 0.796
1000 1.0 0.862  1.024 1.088 0.895 0.726
1000 1.5 - 0.876 1.042 1.111 0.914 0.741
1000 2.0 0.883 1.051 1.123 0.925 0.749
1000 5.0 0.861 1.023  1.090 0.900 0.729
500 1.0 ' 0.655 0.762 0.775 0.666 0.534
500 1.5 0.722 0.848 0.878 0.738 0.596
500 2.0 0.754 0.887 0.924 0.771 0.624
500 5.0 0.703 0.825 0.857 0.731 0.538
250 1_0 * * ’ * x *
250 1.5 0.372 0.428 0,427 0.512 0.377
250 2.0 0.431 0.498  0.502 0.538 0.408
250 5,0 0.425 0.496 0.526 0.572 0.440

Fundamental Period = 0.035H3/4

Seismic H/R o Setback

Velocity

(Ft./Sec.) » 0% 20% 40% 60% 80%
Infinite All 0.871 1.041 1.127 1.001 0.791
1000 1.0 0.838 0.999 1.076 0.962 0.760
1000 1.5 0.846 - 1.010 1.088 0.971 0.7867
1000 2.0 0.846 1.011 1.090 0.974 0.769
1000 5.0 0.836 0.997 1.073 0.961 0.759
500 1.0 0.733 0.867 0.913 0.846 0.663
500 1.5 0.7865 0.907 0.963 0.882 0.693
500 2.0 0.782 0.929 0.99¢0 0.9060 0.709
500 5.0 0.749 0.887 0.940 0.869 0.682
250 1.0 0.395 0.457 0.461 0.659 0.407
250 1.5 0.5190 0.594 0.607 0.696 0.517
250 2.0 0.558 0.651 "0.670 0.721 0.545
250 5.0 :

0.520 0.608 0.632 0.714 0.536

(*) Analysis does not apply to this case.
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TABLE 9

Base Overturning Moment Factors (20 Stories, 80% Shear Deformation)

Fundamental Period = 0.025H3/4

Seismic H/R | Sethack
Velocity
(Ft./Sec.) ‘ 0% 20% 40% 00% 30%
Infinite A1l 0.848 - 1.010 1.107 1.028 0.831
1000 1.0 0.762 0.898 0.969 0.935 0.757
1000 1.5 0.781 0.923 1.000 0.955 0.773
1000 2.0 0.791 0.9236 1.016 0.967 0.782
1000 5.0 0.766 0.904 0.980 0.945 0.764
500 1.0 0.511 0.581 0.605 0.781 0.618
500 1.5 0.595 0.688 0.726 0.816 0.654
500 2.0 0.633 0.734 0.777 0.837 0.673
500 5.0 0.584 0.676 0.721 0.821 0.657
250 1_0 * * ‘ * %* *
250 1-5 * * * * *
250 2-0 * * * * *
250 5_0 * 3 * * *
Fundamental Period = 0.035H3/4
Seismic H/R . ' Setback
Velocity . »
(Ft./Sec.) 0% 20% 40% 60% 803
Infinite All 0.841 0.995 1.086 1.006 0.899
1000 1.0 0.799 0.940 1.018 0.960 0.868
1000 1.5 0.809 0.953 1.033 0.970 0.875
1000 2.0 0.812 0.957 1.03¢ 0.975 0.878
1000 5.0 0.798 0.939 1.018 0.961 0.869
500 1.0 0.664 0.7656 0.806 0.834 0.79%0
500 1.5 0.708 0.822 0.875 0.873 3.813
500 2.0 0.730 0.851 0.909% 0.892 0.825
500 5.0 0.693 0.803 0.855 0.867 0.810
250 1.0 0.303 0.322 0.345 * *
250 1.5 0.424 0.468 0.488 0.751 0.761
250 2.0 0.477 0.532 0.556 0.760 0.758
- 250 5.0 0.460 0.513 0.545 0.767 0.765

(*) Analysis does not apply to this case.
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TABLE 10

Base Overturning Moment Factors (40 Stories, B80% Shear Deformation)

Fundamental Period = 0.025H3/4

Seismic H/R Setback

Velocity

(Ft./Sec.) 0% 208 40% - 60% 80%
Infinite All 0.838 0.991 1.081 1.014 0.978
1000 1.0 0.722  0.839 0.891 0.894 0.916
1000 1.5 0.749 0.874  0.936 0.921 0.929
1000 2.0 0.763 0.893 0.959 0.935 0.936
1000 5.0 0.735 0.856 0.915 0.911 0.925
500 1.0 . 0.425 0.464 0.473 0.778 0.921
500 1.5 0.525 0.590 0.610 0.791 0.893
500 2.0 0.568 0.643 0.668 0.808 0.891
500 5.0 0.531 0.599 0.629 0.802 0.895
250 1.0 % * * * *
250 1.5 * * * * *
250 2.0 * * * * *
250 5_0 *® * * * *

Fundamental Period = 0.035H3/4

Seismic H/R o Setback

Velocity _

(Ft./Sec.) . 0% 20% 40% 60% 80%
Infinite  All 0.832 0.981 1.067 0.984 0.958
1000 1.0 0.776 0.908 0.975 0.922 0.924
1000 1.5 0.788 1 0.924 0.995 0.936 0.932
1000 2.0 0.794 0.932 1.006 0.943 0.936
1000 5.0 0.778 0.910 0.980 0.928 0.929
500 1.0 0.599 0.680 0.701 0.781 0.871
500 : 1.5 0.659 0.757 0.794 0,823 0.882
500 2.0 0.688 0.794 0.837 0.844 0.891
500 5.0 0.651 0.746 0.785 0.826 0.887
250 1.0 * * * * *
250 1.5 0.355 0.378 0.394 0.746 0.936
250 2.0 0.414 0.450 0.468 0.746 0.908
250 5.0 0.430 0.469 0.508 0.769 0.903

(*) Analysis does not apply to this case.
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TABLE 13

Base Shear Soil—Structure Interaction Facfor

Fundamental Period = 0.25H3/4

Seismic Slenderness Ratio
Velocity.
(Ft./Sec.) 1 1.5 2 5
1000 0.936 0.952 0.960 0.947
(0.024) (0.020) (0.018) (0.029)
500 0.788 0.837 0.860 0.834
(6.079) (0.061) (0.056) (0.064)
250 0.452 0.586 0.621 0.636
(0.070) (0.095) (0.083) (0.087)
Fundamental Period 0.35H3/4
Seismic Slenderness Ratio
Velocity
(Ft./Sec.) 1 1.5 2 5
1000 0.970 0.977 0.979 0.970
(0.012) {0.009) -{0.008) {0.012)
500 0.887 0.912 0.926 0.905
(0.047) (0.036) (G.030} {(0.039)
250 0.672 0.764 0.788 0.780
(0.102) (0.102) {0.089) (0.098)

Note: Numbers within parentheses are standard deviations
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TABLE 14

Fundamental Period = 0.25H3/4

Seismic Slenderness Ratio

Velocity

(Ft./Sec.) 1 1.5 2
1000 0.917 0.937 0.948

(0.039) (0.031) (0.028)

500 - - 0.733 0.792 0.821
‘ (0.143) (0.106) (0.093)

250 0.384 0.456 0.506
(0.047) (0.124) (0.1086)

Fundamental Petiod = O.35H3/4

Seismic Slenderness Ratio

Velocity

(Ft./Sec.) 1 1.5 2
1000 1 0.960 0.969 0.972

: (0.020)  (0.015)  (0.013)

500 o 0.850 0.883 0.901
(0.087) (0.063) {0.052)

250 0.546 0.685 0.718
(0.1386) . (0.183) (0.158)

Base Overturning Moment Soil-Structure Interaction Factor

5

0.930
(0.041)

0.788
(0.105)

0.529
(0.092)

-

2

0.960
(0.019)

0.873
(0.067)

0.703
(0.157)

Note: Numbers within parentheses are standard deviations
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TABLE 15
Story Shear Acceleration Distribution Coefficients

5 Stories Seismic Velocity = Infinite

Coefficient Bj

Percent Setbhack

Shear

Deformation 0% 20% 40% 60% 80%

0 , 1.727 2.059 2.003 2.045 1.952
20 1.562 1.749 1.709 1.844 1.804
40 1.364 1.467 1.397 1.645 1.684
60 1,004 1.199 1.098 1.384 1.524
80 0.771 0.971 0.844 1.026 1.306
100 0.477 0.805 0.656 0.557 1.033

Coefficient B,

Percent Setback

Shear

Deformation v 0% 20% 40% 60% 80%
0 -1.921 -1.812 ~-1.727 -2.283 -2.292
20 . -1.887 -1.739 -1.589 -2.151 ~2.194
40 -1.681 ~1.542 -1.318 -1.907 - ~=2.042
60 ~-1.400 -1.378 ~-1.099 -1.558 -1.836
80 =1.109 -1.277 -0.965 -1.090 -1.577
100 _ -0.903 -1.241 -0.913 ~0.505 -1.274

Index of Correlation

Percent Setback

Shear : :

Deformation 0% 20% 40% 60% 80%
0 0.999 1.000 1.9000 1.000 0.999
20 ' 0.999 1.000 1.000 1.000 0.999
40 1.000 1.000 1.000 1.000 0.999
60 1.000 1.000 1.000 0.999 0.999
80 1.000 1.000 1.000 0.999 0.999

100 1.000 1.000 1.000 0.999 1.000
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TABLE 16
Story Shear Acceleration Distribution Coefficients

10 Stories Seismic Velocity = Infinite

Coefficient By

Percent Sethack

Shear

Deformation 0% 20% 40% - 60% 80%

0 2.162 2.611 2.500 2.309% - 2.229
20 2.00606 2.337 2.236 2.134 2.100
49 1.3830 2.176 2.032 2.030 2.072
60 _ 1.817 1.991 1.801 1.923 2.054
80 1.591 1.755 1.534 1,782 2.016
100 ‘ 1.255 1.502 1.247 1.564 1.942

Coefficient Boy

Percent ‘ Setback

Shear :

Deformation - 0% 20% 40% 60% 80%
0 -2.722 ~2.874 ~-2.700 -2.793 -2.808
20 ~-2.624 -2.663 -2.484 -2.679 =-2.727
40 -2.523 -2.48% -2.239 -2.564 -2.685
60 -2.3580 ~2.291 -1.981 -2.419 -2.638
80 -2.035 =-2.084 -1.734 -2.224 -2.567
100 -1.713 -1.906 -1.524 -1.928 ~2.454

Index of Correlation

Percent Setback

Shear .

Deformation 0% 20% 40% 60% ; 80%
0 0.995 0.998 0.998 0.996 0.992
20 0.9297 0.999 0.999 0.997 0.995
40 0.9938 0.999 0.9%9 0.997 0.996
o0 0.998 0.999 0.999 0.996 0.997
80 0.999 0.999 0.999 0.996 0.998

100 0.999 3.999 0.999 0.996 0.997
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TABLE 17
Story Shear Acceleration Distribution Coefficients

20 Stories Seismic Velocity = Infinite

Coefficient By

Percent Setback

Shear

Deformation 0% 20% 40% 60% 80%
0 ‘ 2.300 2.796 2.739 2.429 2.293
20 2.193 2.594 2.555 2.325 2.216
40 2.192 2.567 2.464 2.288 2.247
60 2.181 2.521 2.328 2.250 2.292
80 2.058 2.383 2.053 2.167 2.330
100 1.780 2.157 1.738 2.029 2.351

Coefficient By

Percent Setback

Shear

Deformation : 0% 20% 40% 60% 80%
0 -2.9382 -3.231 -3.171 -3.054 -2.979
20 J ~2.913 =-3.073 -3.007 ~-2.9389 -2.932
40 ~2.874 -2.997 -2.835 ~-2.929 . =2.940
60 -2.802 -2.878 -2.617 ~-2.848 -2.960
80 -2.603 -2.704 -2.309 ~-2.695 ~2.962
100 : -2.292 -2.504 -2.049 ~2.478 -2.946

Index of Correlation

Percent Setback

Shear :

Deformation 0% 20% 40% 60% 80%

0 0.987 0.995 0.995 0.988 0.983
20 0.994 0.998 0.999 0.995 0.992
40 0.998 0.999 0.999 0.996 0.995
60 0.999 0.999 0.999 0.995 0.997
80 0.999 1.000 1.000 0.995 0.996

100 0.999 1.000 1.000 0.996 0.995




104

TABRLE 18
Story Shear Acceleration Distribution Coefficients

40 Stories Seismic Velocity = Infinite

Coefficient B;

Percent Setbhack

Shear

Deformation 0% 203 40% 60% 80%
0 2.3640 - 2.850 2.805 2.463 2.278
20 2.309 2.755 . 2.678 2,417 2.300
40 2.348 2.810 2.640 2.427 2.370
60 2.352 2.792 2.525 2.417 2.420
80 ‘ 2.265 2.662 2.304 2.374 2.463
100 : 2.018 2.394 2.002 2.276 2.489

Coefficient B,

Percent : Sethack

Shear

Deformation 0% 20% 40% 60% 80%
0 ~-3.074 -3.353 -3.315 -3.130 -3.00%6
20 -3.031 -3.267 -3.181 -3.092 -3.031
40 ~-3.019 =-3.241 -3.060 -3.065 -3.073
60 -2.955 ~3.143 -2.860 -3.,006 =-3.092
80 ~-2.807 -2.976 -2.611 -2.905 -3.103
100 ~2.543 -2.738 -2.351 -2.746 -3.092

Index of Correlation

Percent Setback

Shear .

Deformation 0% 20% 40% 60% 80%
0 0.989 0.993 0.993 0.984 0.982
20 : 0.999 0.999 0.999 0.998 0.995
40 0.999 0.999 0.999 0.999 0.991
60 0.999 0.999 0.999 0.998 0.990
30 0.999 0.999 0.999 0.998 0.990

100 0.999 0.999 0.999 0.998 0.993



Story Shear Acceleration Distribution Coefficients

Percent
Shear
Deformation

0
20
40
60
80
100

Percent
Shear
Deformation

0
20
40
60
80
100

Percent
Shear
Deformation

0
.20
40
60
80
100

5 Stories Seismic Velocity

Coefficient B

0%

1.836

1.695
1.539
1.302
0.971
0.621

Coefficient Bj

0%

-2.228
-2.166
-1.980
-1.701
-1.360
-1.065

105

TABLE 19

20%

2.235
1.964
1.717
1.448
1.184
0.962

20%

-2.278
-2.139
-1.914
-1.693
-1.516
-1.402

= 500 Pt./Sec.

Setback
40% ' 60%

2.171 2.076

1.914 1.928

1.626 1.784

1.310 1.589
- 1.010 1.300

0.775 0.916
Setback

40% 60%
-2.228 -2.555
-1.692 -2.234
~1.387 -1.951
-1.161 -1.556
-1.038 -1.044

Index of Correlation

0%

0.999
1.000
1.000
1.000
1.000
1,000

20%

1.000
1.000
1.000
1.000
1.000
1.000

Setback
40% 60%
1.000 0.999
1.000 1.000
1.000 0.999
1.0800 0.999
1.000 0.999

1.000 0.999

80%

1 1.975

1.886
1.832
1.750
l.615

1.404

80%

-2.465

=-2.376

-2.245
~-2.05%6
-1.792

80%

0.998
0.999
0.999
1.000
1.000
1.000
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TABLE 20
Story Shear Acceleration Distribution Coefficients

10 Stories Seismic Velocity = 500 Ft./Sec.

Cdefficient B;

Percent Setback

Shear :

Deformation 0% 20% 40% 60% 80%

g 2.198 - 2.677 2.614 2.340 - 2.222
20 2.066 2.459 - 2.413 2.217 2.134
40 2.028 2.370 2.290 2.156 2.144
60 ‘ - 1.972 2.253 2.126 2.094 2.169
84 1.815 2.048 1.876 2.004 2.182
100 1.477 1.773 1.544 1.853 2.163

Coefficient By

Percent ‘ Setback

Shear

Deformation 0% 20% 40% 60% 80%
0 -2.850 -3.101 ~3.058 -2.999 -2.927
290 -2.759 ~-2.913 -2.853 -2.900 -2.862
40 -2.694 -2.781 -2.653 -2.819 -2.853
60 -2.584 -2.614 -2.408 ~-2.715 -2.846
80 ~2.360 -=2.395 -2.114 ~-2.568 -2.818
100 ~1,984 ~2.164 -1.815 ~-2.336 -2.751

Index of Correlation

Percent Setbhack

Shear :

Deformation 0% 20% 403 60% 80%
0 0.995 0.937 0.997 0.993 0.989
20 0.998 1.000 0.999 0.998 0.996
40 0.998 1.000 0.999 0.996 0.998
60 0.999 0.999 0.999 0.965 0.998
80 0.999 1.000 0.995 0.994 0.998

100 . 0.999 0.939 0.999 0.994 0.997



Story Shear Acceleration Distribution Coefficients

Percent
Shear
Deformation

0
20
40
60
80
100

Percent
Shear
Deformation

0
20
40
60
80
100

Percent
Shear
Deformation

0
20
40
60
80
100

20 Stories
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TABLE 21

Seismic Velocity = 500 Ft./Sec.

Coefficient By

0%

2.318
2.225
2.248
2.292
2.278
2.111

Coefficient B,

0%

-3.042
-2.978
-2.976

=2.967

-2.874
-2.640

20%

2.797
2.635
2.666
2.720
2.696
2.531

20%

-3.324
-3.192
-3.172
-3.137
-3.033
-2.845

Setback
40%

2.770
2.628
2.621
2.604
2.451
2.152

Setback
40%

-3.320
-3.177
-3.098
-2.981
-2.743
-2.446

Index of Correlation

0%

0.989
0.997
0.997
0.995
0.997
0.998

20%

0.994
0.999
0.998
0.999
0.999
0.999

Setback
40%

0.992
0.998
0.998
0.998
0.998
0.999

60%

2.478
2.371
2.333
2.325
2.318
2.275

60%

-3.171
-3.084
-3.035
-2.996
-2.935
-2.822

60%

0.984
0.996
0.994
0.9%1
0.990
0.991

80%

2,293

2.247
2.301
2,376
2.452
2,523

80%

-3.037
-3.004

- =3.039

-3.084
-3.124
-3.150

80%

0.981

0.996

0.998
0.997
0.993
0.987




108

TABLE 22
Story Shear Acceleration Distribution Coefficients

40 Stories Seismic Velocity = 500 Ft./Sec.

Coefficient B,

Percent | Setback

Shear :

Deformation 0% 20% 40% 60% 80%
0 2.390  2.869 2.811 2.534 -2.311
20 2.348 2.784 2.723 2.458 2.344
40 2.406 2.886 2.769 2.475 2.440
60 2.476 2,983 2.802 2.495 2.527
80 2.516 3.011 2.733 2.524 2.615
100 ‘ 2.422 2.862 2.504 2.527 2.691

Coefficient By

Percent ’ Setback

Shear

Deformation 0% 20% 40% 60% 80%

J ‘ -3.115 -3.407 -3.,377 -3.217 -3.055
20 -3.089 -3.340 -3.291 -3.162 -3.089
40 -3.118 -3.382 -3.276 -3.164 -3.161
60 -3.137 -3.396 -3.220 -3.154 ~-3.220
80 -3.111 -3.344 -3.079 -3.139 -3.275

100 -2.963 -3.167 -2.835 -3.090 -3.313

Index of Correlation

Percent Setback

Shear

Deformation 0% 20% 40% 60% 30%
0 0.990 0.994 0.992 0.983 0.934
20 0.998 0.999 0.999 0.997 0.997
40 0.996 0.998 0.997 - 0.997 0.992
60 0.994 0.998 0.996 0.995 0.986
80 0.994 0.997 0.999% 0.994 0.977

100 0.995 0.996 0.996 0.993 0.976
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TABLE 23

Story Overturning Moment Acceleration Distribution Coefficients

Percent
Shear
Deformation

0
20
40
60
80
100

Percent’
Shear
Deformation

0
20
40
60
80
100

Percent
Shear
Deformation

0
20
40
60
80
100

5 Stories

Coefficient B,

0%

2.014
1.860
1.595
1.217
0.803
0.478

Coefficient B2

0%

-2.319
-2.111
-1.766
+=1.370
-1.031
-0.850

20%

2.175
1.920
1.609
1.313
1.073
0.905

20%

-2.154
-1.939
-1.686
~1.507
-1.409
=1.377

Sethack
40%

2.179
1.941
1.612
1.264
0.961
0.736

Setback
40%

-2.216
-1.912
-1.540
~1.243
-1.058
-0.977

Index of Correlation

0%

1.000
1.000
1.000
. 1.000
1.000
1.000

20%

1.000
1.000
1.000
1.000
1.000
1.000

Setback
40%

1.000
1.000
1.000
1.000
1.000
1.000

Seismic Velocity = Infinite

60%

2.458
2.346
2.127
1.650
0.621
-1.461

60%

-2.647
-2.366
-1.809
~-1.794
-1.084

4.444

60%

1.000
1.000
1.000
1.000
1.000
1.000

80%

2.297

2.235
2.136
1.948
1.646
1.200

80%

-2.660
-2.523
-2.311
-2.004
-1.580
-0.979

80%

1.000

1.000 .

1.000
1.000
1.000
1.000
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TABLE 24

Story Overturning Moment Acceleration Distribution Coefficients

Percent
Shear
Deformation

0

20
40
60
80
100

Percent
Shear
Deformation

0
20
40
60
80
100

Percent
Shear
Deformation

10 Stories

Seismic Velocity = Infinite

Coefficient By

0%

2.352
2.384
2.392
2.287
1.947
1.396

Coefficient By

0%

2.974
2.960
2.874
2.658
2.248
1.745

20%

2.610
2.587
2.469
2.232
1.909
1.590

20%

-2.983
-2.874
-2.681
-2.432
-2.176
-1.976

Setback
40%

2.544
2.508
2.383
2.156
1.848
1.505

Setback
40%

-2.906
-2.787
-2.561
~-2.286
-2.011
-1.775

Index of Correlation

0%

1.000
1.000
1.000
1.000
1.000
1.000

20%

1.000
1.000
1.000
1.000
1.000
1.000

Setback

40%

1.000
1.000
1.000
1.000
1.000
1.000

60%

2.610
2.664
2.742
2.824
2.877
2.642

60%

-3.110
-3.098
-3.019
~2.839

~-2.424

-1.283

60%

1.000
1.000
1.040
1.000
1.000
1.000

80%

©2.390
2.449
2.540
2.632
2.711
2.788

80%

-3.022
-3.057
-3.084
-3.093
-3.067
-2.992

. 80%

1.000
1.000
1.000
1.000
0.999
0.999



o111

TABLE 25

Story Overturning Moment Acceleration Distribution Coefficients

Percent
Shear
Deformation

0
20
40
60
80
100

Percent
Shear
Deformation

Percent
Shear
Deformation

0
20
40
60
80
100

20 Stories

Seismic Velocity

Coefficient By

0%

2.525
2.642
2.772
2.843
2.626
2.150

Coefficient By

0%

-3.251
-3.331
-3.364

- =3.316

-3.012
-2.562

20%

2.873
3.009
3.134
3.064
2.779
2.385

20%

-3.374
-3.431
=-3.421
~-3.250
=2.967
-2.670

Index of Correlation

0%

0.999
0.999
1.000
1.000
1.000
1.000

20%

1.000
1.000
1.000
1.000
1.000
1.000

= Infinite
Setback
40% 60%
2.805 2.739
2.895 2.851
2.915 3.006
2.794 3.207
2.445 -3.348
2.051 3.290
Setback
40% 60%
~-3.341 -3.389
-3.384 —3.457
-3.260 -3.511
~-3.052 -3.534
~-2,705 -3.396
-2.397 -2.995
Setback
40% 60%
1.000 0.999
1.000 0.999
1.000 0.999
1.000 1.000
1.000 1.000
1.000 1.000

80%

2.451

2.576
2.749
2.905
3.040
3.163

80%

-3.188
-3.293

- =3.410

-3.497
~-3.563
~3,618

80%

0.999
0.999
0.3999
0.999
1.000
1.000
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TABLE 26

Story Overturning Moment Acceleration Distribution Coefficients

40 Stories

Percent
Shear
Deformation

0
.20
40
60
80
100

Percent
Shear
Deformation

0
20
40
60
80
100

Percent
Shear
Deformation

Seismic Velocity = Infinite

Coefficient By

0% 20%
2.600 2.980
2.724 3.176
2.841 3.303
2.860 3.234
2.674 2,956
2.290 2.570

Coefficient By

0% 20%
~3.355 ~3.547
-3.421 -3.636
-3,453 ~3.634
~3.380 -3.481
-3.146 ~3.214
-2.783 -2.901

Index of Correlation

0% 20%
0.939 1.0400
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000

Sethack
40% 60%
2,914 2.805
3.029 2.907
3.070 3.055
2.926 3.212
2.628 3.299
2.260 3.230
Setback
40% 60%
~-3.514 -3.502
-3.537 ~3.552
-3.467 -3.599%
-3.250 -3.604
-2.963 -3.503
-2.666 -3.223
Setback
40% 60%
1.000 0.999
1.000 1.0006
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000

80%

2.475
2.628
2.768
2.874
2.938
3.001

80%

-3.258
-3.372
-3.401
-3.518
-3.541
-3.554

80%

0.999
1.000
1.000
1.000
1.000
1.0090
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TABLE 27

Story Overturning Moment Acceleration Distribution Coefficients

Percent
Shear
Deformation

Percent
Shear
Deformation

0

20 )
40

60

80

100

Percent
Shear
Deformation

0
20
40
60
80
100

5 Stories

Seismic Velocity

Coefficient By

0%
2.107
2.016
1.826
1.490

1.042
0.633

Coefficient B,

0%

-2.580
-2.423
-2.132

- =1.730
-1.305

-1.009

20%

2.331
2.1438
1.880
1.575
1.292
1.067

20%

-2.537
-2.334
-2.0064
-1.823
~1.650
~1.544

= 500 Ft./Sec.

Setback
40%

2.316
2.148
1.865
1.507
1.156
0.880

Setback
40%

-2.601
-2.320
-1.934
-1.561
-1.283
-1.129

Index of Correlation

0%

1.000
1.000
1.000
1.000
1.000
1.000

20%

1.000
1.000
1.000
1.000
1.000
1.000

Setback
40%

1.000
1.000
1.000
1.000
1.000
1.000

60%

2.463

2.435
2.354
2.107
1.451
-0.156

60%

-2.932

—-2.763

-2.411
-1.716
~0.295

2.649

60%

1.000
1.000
1.000
1.000
1.000
1.000

80%

2.295
2.314
2.325
2.276
2.129
1.829

80%

-2.883
-2.833

. —-2.738

-2.564
~2.267
-1.749

80%

1.000
1.000
1.000
1.000
1.000
1.000
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TABLE 28

Story Overturning Moment Acceleration Distribution Coefficients

Percent
Shear
Deformation
0

20

- 40

60
80
100

Percent
Shear
Deformation

0
20
40
60
80
1060

Percent
Shear
Deformation

0.
20
490
60
80
100

10 Stories

Seismic Velocity

Cdefficient B

0%

2.394
2.467
2.558
2.579
2.355
1.778

20%

2.711
2.782
2.786
2.635
2.305
1.908

Coefficient By

0%

-3.093
-3.120
-3.116
-3.008
-2.667

-2.094

20%

-3.212
-3.182
-3.073
-2.853
-2.547
-2.259

= 500 Ft./Sec.

Setback
40%

2.665
2.724
2.727
2.595
2.290

~ 1.864

Setback
40%

~3.218
-3.171
-3.035
-2.789
-2.455
-2.112

Index of Correlation

0%

1.000
1.000
1.000
1.000
1.000
1.000

20%

1.000
1.4800
1.000
1.0380
1.000
1.000

Setback
40¢%

1.000
1,000
1.000
1.000
1.000
1.000

60%

2.629
2.735
2.901
3.152
3.550
4.132

60%

-3.313
~3.356
-3.395
-3.417
-3.361
-2.865

60%

1.000
1.000
1.000
1.000
1.000
1.000

80%

- 2.382
2.491
2.655
2.853
3.080
3.389

80%

-3.135
-3.210
-3.308
-3.412
-3.512
-3.617

80%

1.0400
1.000
1.000
1.000
0.999
0.999
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TABLE 29

Story Overturning Moment Acceleration Distribution Coefficients

Percent
Shear
Deformation

0
20
40
60
80
180

Percent’
Shear
Deformation

0

20 '
40 '
60

80

100

Percent
Shear
Deformation

0
20
40
60
80
100

20 Stories

Seismic Velocity = 500 Ft./Sec.

Coefficient By

0%
2.539
2.685
2.910
3.180

3.191
2.762

Coefficient-Bz

0%

-3.305
-3.413
-3.546

- =3.676

=3.549
-3.103

20%

2.910
3.134
3.462
3.654
3.494
3.008

20%

-3.494
-3.623
=-3.7717
-3.787
'-3.553
~3.157

Index of Correlation

0%

0.999
0.998
0.999
0.999
0.999
1.000

20%

1.000
1.000
1.000
1.000
1.000
1.000

Setback
40% 60%
2.849 2.762
3.012 2.884
3.216 3.087
3.305 3.424
3.032 -3.883
3.562 4,394
Setback
40% 60%
-3.486 -3.4938
-3.568 -3.581
-3.627 -3.699
-3.569 ~-3.882
~-3.252 ~4.,065
-2.857 -4.133
Setback
40% 60%
1.000 0.997
1.000 0.996
1.000 0.997
1.000 0.998
1.000 0.999
1.000

0.999

80%

2,429

2.591
2.835
3.117
3.422
3.751

80%

-3.232
-3.363
-3.547
-3.747
-3.954
~-4.167

80%

0.999
0.999
0.998
0.997
0.996
0.99¢6
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TABLE 30

Story Overturning Moment Acceleration Distribution Coefficients

40 Stories

Percent
Shear
Deformation

0
20
40
60
80
100

Percent
Shear
Deformation

Percent
Shear
Deformation

0
20
40
60
80
100

Seismic Velocity

Coefficient By

0% 20%

2.606 2.984
2.765 3.291
2.995 3.669
3.221 3.901
3.249 3.744
2.959 3.315

Coefficient By

0% 20%
-3.385 -3.601
-3.497 -3.793
-3.645 -4.0090
-3.761 -4.068
-3.701 ~3.867
~3.394 -3.497

500 Ft./Sec.

Index of Correlation

0% 208

0.994 0.999
0.993 0.999
0.995 0.999
0.996 0.999
0.997 0.999

0.998 0.999

Setback
40% 60%
2,943 2.810
3.144 2.960
3.401 3.166
3.520 3.465
3.326 3.849
2.898 4.256
Setback
40% 60%
-3.594 -3.551
-3.711 -3.656
-3.838 -3.787
-3.829 -3.962
-3.604 -4.,156
-3.241 -4.285
Setback
40% 60%
0.999 0.997
0.95%9 0.992
0.999 0.99%
0.999 0.996
0.999 0.997
0.999 0.998

80%

2,493
2,729
2.887
3.093
3.246
3.453

80%

-3.301
-3.488
=-3.607
-3.757
-3.860
-3.993

80%

0.988
0.968
0.979
0.977
0.984
0.989



Story Shear Acceleration Distribution Coefficients

Number of

Stories

0%
5 1.950
10 2.328
20 ‘ 2.469
40 2.512
Number of
Stories

0%
5 . —2,063
10 -2.780
20 -3.064
40 -3.153
Number of
Stories

0%
5 0.999
10 0.992
20 0.972

40 0.955
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TABLE 31

Coefficient By

Percent Shear
20% 40%
1.738 1.527
2.138 2.04b
2.338 2.317
2.454 2.479

Coefficient By

Percent Shear
20% 40%
-1.961 -1.743
-2.650 -2.534
—2.971 -2.919
-3.103 -3.082

Seismic Velocity = Infinite

Deformation
60% - 80%
1.274 0.990
1.930 1.769
2.295 2.214
2.472 2.415

Deformation
60% 80%
-1,483 -1.221
-2.389 -2.199
-2.846 -2.712
~-3.022 -2.921

Index of Correlation

percent Shear

20% 40%
0.999 0.999
0.992 0.994
0.975 0.980
0.965

0.970

Deformation
50% 80%
0.999 0.999
0.996 0.997
0.986 0.991
0.978 0.985

100%
0.714
1.538
2.065

2.276

100%
-1.005

-1.961

100%
0.998
0.997
0.993

0.991




Number of
Stories

10
20

40

Number of
Stories

10
20

490

Number of
Stories

10
20

40

Story She

0%
2.035
2.370
2.500
2.552

0%

-2.403
-2.973
~3.159

-3,215

0%
0.997
0.982
0.958

0.950
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TABLE 32
ar Acceleration Distribution Coefficients

Seismic Velocity = 500 Pt./Sec.

Coefficient By

Percent Shear Deformation

20% 40% 60% 80%
1.872 1.715 1.510 1.247
2.223 2.172 2.117 2.011
2.385 2.392 2.421 2.420
2.499 2.554 2.610 2.643

Coefficient By
Percent Shear Deformation
20% 40% 60% B0¢%
-2.288 -2.098 ~-1.854 ~-1.575
-2.855 -2.775 -2.674 -2.519
—3.0’0 -3.051 —3.032V -2.973
-3.176 -3.201 -3.212 -3.196
Index of Correlation
Perceht Shear Deformation

20% 40% 60% 80%
0.998 0.999 0.999 0.999
0.985 0.988 0.991 0.994
0.966 0.967 0.971 0.979
0.958 0.954 0.957 0.964

100%
0.954
1.820
2.349
2.604

1003
-1.303
~2.294
~2.853

-3.1186

100%
0.999
0.995
0.984

0.974
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TABLE 33

Story Overturning Moment Acceleration Distribution Coefficients

Number of
Stories

10
20

40

Number of
Stories

10
20
40

Number of
Stories

10
20

40

03
2.229
2.476
2.626

2.682

0%
-2.433
-3.005

-3.289

-3.396

0%
1.000
1.000
0.998

0.995

Seismic Velocity =

Infinite

Coefficient B,y

Percent Shear Deformation

20%
2;068'
2.500
2.735

2.807

40%
1.814
2,508
2.866

2.926

Coefficient By

Percent Shear

20%
-2.200
-2.980
—3.363

-3.465

40%
-1.851
~-2.892
;3.403
-3.504

Index of Correlation

Percent Shear Deformation

20%
1.000
1.0600
0.998

0.998

40%
1.000
1.000
0.999

0.998

60% 80%
1.463 1.064
2.445 2.253
2.949 2,876
2.973 2.896

Deformation

60% 803
-1.458 -1.095
-2.726 -2.455
-3.37% '_3-222
-3.468 -3.341

60% 80%
1.000 1.000
0.999 - 0.999
0.999 0.999
0.998 0.998

100%
0.696

1.906

+ 2.652

2.706

100%
~0.824
-2.091
-2.977

-3.131

100%
1.000
0.999
0.998

0.998
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TABLE 34

Story Overturning Moment Acceleration Distribution Coefficients

Number of
Stories

10
20
40

Number of
Stories

10
20

40

Number of
Stories

10
20
40

0%
2.302
2.521
2.635
2.688

0%
-2.743
-3.189
-3.373

-3.440

0%
1.000
0.999
0.992

0.974

Seismic Ve

Coefficient By

20%
2.226
2.603
2.773
2.873

Coefficient B,

20%
-2.580
-3.216
-3.471

-3.574

locity = 500 Ft./Sec.

Percent Shear Deformation

40%

2,071
2.710
2.996
3.068

Percent Shear

40%
-2.307
-3.223
-3.607

-3.701

60% 80%
1.798 1.414
2.785 2.737
3.257 3.413
3.284 3.389

Deformation

| 60% 80%

-1.940 -1.527
-3.170 -2.989
-3.746 -3.770
-3.826 -3.851

Index of Correlation

20%
1.000
0.999
0.994
0.978

Percent Shear Deformation

408
1.000
0.999
0.995
0.982

603
1.000
0.599
0.994

0.983

80%
1.000
0.999
0.993
0.985

100%
0.992
2.464
3.350
3.372

100%
-1.148
-2.628
-3.621

-3.768

100%
1.000
0.998
0.992
0.986
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