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ABSTRACT

This report presents studies on the seismic analysis and

earthquake resistant design of steel Jow-rise shear buildings, moment
frame buildings, and X-braced frame buildings.

In the first portion of the study, a number of two- and three-story
buildings were designed according to the recommendations of modern
building codes. The forces and deformations generated in the buildings
under the North-South component of the E1 Centro 1940 earthquake were
assessed by means of time-history analysis. It was found that the base
story was the critical link in the lateral seismic load resisting system
for the shear buildings, the moment frame buildings proporticned with
weak columns, and the X-braced buildings considered. For the moment
frame buildings proportioned with strong columns and weak beams, inelastic
response was distributed fairly uniformly throughout the beams of the
buildings. From the results of the time-history studies, it appears that
inelastic deformations can be estimated from the elastic deformations
by means of the design rules that have been developed for single-degree-
of-freedom systems.

In addition, two simpler methods of analysis, the modal method used
in conjunction with inelastic response spectra and the guasi-static
building code approach modified to explicitly take inelastic behavior

into account, were evaluated for use in calculating response quantities.






it was concluded that the quasi-static building code approach is the most
appropriate procedure for use ih the practical design of low-rise steel
buildings of the types considered.

In the last section of the report, the application of the results of
these studies to the practical design of low-rise steel buildings is
discussed. A simplified design procedure that is in part similar to the
quasi-static building code approach presently recommended by the Applied
Technology Council |1l study is discussed; the procedure appears to be
applicable at least to two- and three-story buildings. Comments concerning
other factors (redundancy, reserve strength, and so forth) that should be

considered in the design of low-rise steel buildings are made.
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1. INTRODUCTION

1.1 Objectives of the investigation

A major proportion of society's investment in building construction
is consumed on low-rise buildings, Most people spend some portion of each
day -- sleeping, working or living ~- in buildings which can be classified
as low-rise. In the past, many of the available techniques of seismic
analysis and design have not been applied to this class of structures
mainly because the additional design costs are large relative to the value
of the buildings, the consequences of failure are considered to be small,
or the dynamic properties cannot be expressed simply in mathematical terms.
Thus, there is a need for procedures consistent with earthquake engineering
theory that can be simply applied to the design practice of low-~rise
buildings.

The objective of the first portion of this investigation was to
determine the behavior of some low-rise buildings when subjected to
earthquake base motion. Step-by-step numerical integration of the
governing equations of motion (time-history analysis) was used for these
studies. In the second portion of this investigation, simplified analytical
procedures, specifically the modai method and the quasi-static building
code approach, were evaluated for use in predicting the dynamic response
of low-rise buildings. The objective of the final portion of the investiga-
tion was to discuss the application of the results of the studies in this
report to the design of buildings. The major emphasis of the
studies was on inelastic response as it affects the seismic design of

low-rise buildings.



This study was limited in scope 'to planar two- and three-story
shear buildings, moment frame buifdings, and X-braced frame buildings
subjected to one horizontal component of earthquake ground motion. It
was assumed that nonstructural components had an insignificant influence
on the seismic response, and that torsional and soil-structure interaction
effects could be ignored. A number of assumptions regarding the structural
properties were made in order to simplify the problem of analysis to one of
tractable proportions. |

Although the studies were limited to a relatively small sampling of
buildings subjected to only one base motion, it is hoped the conclusions
drawn are general enough that certain limitations in current design
precedures might be isolated, and the gap between complicated methods of

analysis and simplified procedures of design might be lessened.

1.2 Previous Work

The problem of determining the dynamic behavior of building structures
during earthquake motion has‘been approached by a number of experimental
and analytical investigators. It has long been recognized that seismic
behavior cannot be reconciled on a purely elastic basis. Thus, much of
the recent research effort has been directed towards the determination
of the lateral load carrying capacity of structures in the inelastic
range. In the remainder of this section, reference is made to (a) pertinent
experimental and analytical investigations which lay the foundation for
the selection of the structural idealizations used in chapters to follow,
(b) analytical studies which have given insight into the earthquake
resistant design of buildings, and (c) some of the current methods of

earthquake design.



1.2.1 Behavior of Steel Members and Frames -- Considerable effort

in the development of the plastic design of steel theory has been directed
towards the determination of the collapse load of moment frames. Tests

(see for example Arnold, et al., 1968) have shown that the monotonic lateral
load-deformation path observed in experiments can be closely predicted by
second-order elastic-plastic analysis (Galambos, 1968).

Recently much emphasis has been placed on determining the cyclic
hysteretic behavior of steel moment frame structures. The results of tests
by Popov and Bertero (1973) on girder subassemblages, by Carpenter and Lu
(1973) on frames, and others have shown hysteretic behavior to be remarkably
stable. The results indicate that after a number of load cycles, the
experimental uitimate strength can exceed the calculated monotonic load
by 30 percent or more. This increase in load carrying capacity is primarily
due to strain hardening and the beneficial effects of gravity axial loads
acting on column members. Stiffness deteriorates as the number of load
cycles increases because of the Bauschinger effect.

Local buckling of the flange or web of flexural members can lead to
strength and stiffness degradation on cyclic leading, and this must be
protected against in the proportioning of moment frames.

Analysts have attempted to use the results of cyclic load tests in
formulating structural models to account for the hysteretic behavior of
flexural members (Clough, et al., 1965; Giberson, 1969). Some success
has been achieved in using these types of models in nonlinear time-
history analysis procedures to predict the behavior of dynamically

loaded steel frames {(Tang, 1975).



The cyclic inelastic behavior of steel X-bracing is relatively
new and not well defined. The load history of a steel brace extends
from tensile yielding through compressive buckling. Although recent
tests (Hanson, 1975) indicate that models with more compiicated hysteretic
behavior should be developed, the most commonly used is the elastoplastic
model with tensile yielding and zero buckling strength. lgarashi, et al.
(1973) have shown that this type of model predicts the dynamic behavior of
steel diagonal braces well, provided the slenderness ratios of the braces
are relatively large.

In summary, some of the basic factors which control the inelastic
response of steel members and frames to earthquake base motions have been
determined. |t appears that more research is needed before simple analytical

models can be developed to account for many of these factors,

1.2,2 Analytical Investigations ~- lInelastic anpalytical studies

generally fall in two categories: those based on spring-mass or shear-beam
systems, and those based on more complicated finite element models.

The former type of study attempts to model the macroscopic behavior
.of a real structure. Work with single-degree-of-freedom systems with
elastoplastic resistances has led to the inelastic response spectra
proposed by Newmark (Veletsos et al., 1965; Newmark and Hall, 1973 and
1976). Veletsos (1969) summarizes the results of investigations on
single-degree-of-freedom systems with various resistance functions.
Bazadn and Rosenblueth (1974) have studied the combined effect of two
resistances in parallel, one representing frame action and the other

representing X-bracing. Penzien (1960), Veletsos and Vann {1971), and



others have used elastoplastic shear-beam models to represent multi-
degree-of-freedom systems.

Studies on shear-beam systems are usually carried out over a wide
range of parameters with a minimum of expense. Design forces that would
be consistent with a given amount of nonlinear behavior during an earthquake
can be estimated for many one=-story buildings directly from published
results. Unfortunately, the results give little indication of the
individual member ductility requirements.

The latter type of study uses finite elements to model tall buildings.
Time-history calculations by Clough and Benuska (1967) on concrete frame
buildings and Goel and Hanson (1972) on a series of lightly braced steel
frames are representative of this class of investigation.

Studies using finite elements give insight into the ductility
requirements of the individual members of a frame. The behavior of
specific structures is indicated, but it is difficult to generalize the

results and apply them to the design of other structures.

1.2.3 Present Methods of Design -- In the quasi-static building

code appreoach (NBC, 1975; SEAOC, 1975; UBC, 1976; and so forth), the
design lateral base shear is cal;ulated and the distribution of the base
shear as lateral loads over the building height is determined. These
lateral loads are applied to the building and a static analysis is
performed; members are proportioned to resist the forces thus obtained
elastically.

The code design approach has evolved empirically from observations

of building behavior during past earthquakes, and it is generally



consistent with more complicated methods of analysis and design (Newmark,
1968). Buildings designed according to the lateral force provisions of
modern codes are expecte& to deform inelastically, withstanding ductilities
of 4 to 6 without collapse during major earthquakes.

The modal method used in conjunction with response spectra provides
a slightly more complicated prdcedure for determining lateral design forces,
but one which is consistent with the principles of dynamic behavior.
Unfortunately, since superposition is used, the modal method is only
rigorously correct for linear elastic systems. However, Newmark and Hall
(1973} note that, if design response spectra are modified to account for
nonlinear behavior, the method can be used to approximate inelastic
response .quantities. In fact, some of the modern building codes {(NBC,
1975; ATC, 1977) recommend this approach for complicated or important
structures.

It is appropriate to mention that the development of procedures for
the estimation of inelastic response quantities using the modal method is
presently an area of active research (Anderson and Gupta, 1972; Luyties
et al., 1976; Shibata and Sozen, 1976).

In short, it is apparent that design procedures For‘low-rise bujldings
must be simple and similar to present practice in order to be utilized by
design engineers. |t is likely that the quasi-static building code
approach, modified to explicitly take into account inelastic behavior,
is at present the most appropriate procedure for use in the design of

low-rise buildings.



1.3 Scope of the Investigation

This report summarizes the methods used in, and the results of,
detailed studies on the seismic response and the earthquake resistant
design of low-rise steel buildings. |t should be appreciated that for the
sake of brevity and understanding the methods and resuits are presented
in condensed form.

In Chaper 2 a series of two- and three-story low-rise steel buildings
are designed according to the quasi-static procedures recommended by modern
building codes. Also contained in Chapter 2 is a description of the ground
motion used for time-history calculations and the development of design
response spectra consistent with the ground motion. Appendix A contains
supplementary data pertaining to the building properties described in
Chapter 2.

The analytical procedures used for time-history analysis, modal
analysis, and the quasi-static building code approach calculations are
described in Chapter 3. Appendices B, C and D contain detailed descriptions
of the analytical procedures discussed in Chapter 3.

The results of very interesting studies on the dynamic response of
two~degree-of-freedom systems subjected to pulse base motion are contained
in Appendix E; the intent of these special studies was to provide a
theoretical basis on which to view the results of studies on more
complicated building systems.

In Chapter 4 the results of time-history calculations on the building
designs are summarized with particular attention being paid to the
inelastic response, the story shear distributions, and the story displace-
ments and drifts. Also contained in Chapter 4 is an evaluation of the

modal method of analysis and the quasi-static building code approach for



estimating the base story shear. Appendix F contains the detailed results
of the time-history calculations discussed in Chapter 4.

The application of the results of the studies recorded in this
report to the design of low-rise buildings is discussed in Chapter 5.
Procedures for proportioning structurés to resist seismic motion with an
adequate margin of reserve strength are discussed,.

To the authors' knowledge, this is one of the few studies that has
been directed specifically towards determining the inelastic response of
low-rise steel buildings of practical proportions to earthquake- ground
motion. The studies have indicated that complicated methods of analysis
are in general not necessary for use in analyzing commonly employed
low-rise building frames. Also, the studies carried out have provided
further confirmation of the fact that the design rules applicable to
single-degree-of ~freedom systems can be used to predict the dynamic
response of (and can be used in the design of) low-rise buildings. In
addition, in contrast to studies on simple systems, these studies on
framing systems have pointed out clearly areas where additional research
impacting pracfical design is required. For example, there is a tendency
for yielding to be concentrated in the columns of weil-designed low-rise
buildings. As yet there are no easy-to-use and reliable procedures for
evaluating the strength-deformation capacities of yielded columns
subjected to thrust and end moment, especially where bracing against
instability is lacking. Also, the role of secondary resisting systems,
redundant resisting systems, and methods for evaluating the margin of
safety or reserve strength under dynamic load reVersal‘remaIn to be

investigated.



1.4 Notation

The symbols used in the text are defined where they are first
introduced. For reference purposes, they are also defined here. A
superscript dot above a symbol indicates one differentiation with
respect to time. A Greek delta prefix to a symbol indicates an
incremental quantity.

a

maximum ground acceleration, or inelastic hinge length
A = cross-sectional area
An = spectral acceleration for the n-th mode of vibration
[A] = pseudostatic structural stiffness matrix
b = coefficient of proportionality between mass and damping
{B} = pseudostatic structural load vector
c;, = coefficient relating the yield displacement of the i-th
spring to the maximum relative displacement observed
when the system responds elastically
[€] = structural damping matrix
d = maximum ground displacement
D = spectral displacement for the n-th mode of vibration
ﬁ.L. = dead load
E = modulus of elasticity

E.Q. = earthquake load

f = frequency of vibration for a single-degree-of-freedom system

fn = frequency of vibration for the n-th mode

Fa = axial stress permitted in the absence of bending moment
Fb = bending stress permitted in the absence of axial force
Fx = design lateral force at the x-th floor

F = yield stress



{F}

A’TBYC

pc

Ml
tud

Il

i0

vector of design laterai forces, or vector of resisting
forces due to structural stiffness

structural flexibility matrix

end moment vector for a simply supported (constrained)
flexural element

total element end force vector

element end férce vector calculated from material properties
element end force vector calculated from geometric properties
element fixed end force vecfor

story height

height of the i-th or x-th story

moment of inertia

story stiffness, or stiffness of a spring

entries to the simply supported (constrained) flexural
element stiffness matrix

length of a flexural element, or horizontal length
between columns

length of an X-brace
live load
mass, or mode number

mass of the i-th story, or mass concentrated at the
i-th degree-of~freedom

plastic moment capacity

plastic moment capacity reduced to take axial load
effects into account

mass matrix
diagonal mass matrix

mode number, or number of cycles of iteration in the
initial stress procedure



(Q.)

i’code

)

i max

(Q

(a,)

Q)

i’ prob

(Qi)y
Q)44
(R}
(s}

[5+]

[s

[s

1

number of lateral translational degrees-of-freedom,

number of stories, or axial force used to obtain the
element geometric .stiffness matrix (positive in compression)
axial force (positive in compression)

yield axial force

structural load residual vector used in the initial stress
procedure

generalized coordinate in the m-th or n-th mode of vibration

story shear capacity, or story shear resisted by an
X-brace subassemblage

force in the i-th spring

force in the i-th spring calculated using the quasi-static
building code approach :

force in the {~-th spring calculated by combining modes
using the sum of the absolute values of modal quantities
approach

maximum force in the i-th elastic spring

force in the i~th spring calculated by combining modes
using the square root of the sum of the squares of modal
gquantities approach

vield force in the i-th elastoplastic spring

force in the i-th spring in the first mode

structural load residual at the beginning of a time step

complete structural stiffness matrix

structural stiffness matrix condensed to include only
story displacements

element stiffness matrix calculated from material properties
geometric element stiffness matrix

time

measure of the duration of the pulse base motion

transformation matrix
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transformation matrix

retative story displacement, or relative spring
displacement for a single-degree~of-freedom system

relative displacement of the i-th spring
maximum relative story displacement, or maximum
reiative displacement for a singie-degree of-
freedom system

permanent set

story yield displacement, or yield displacement for
a single-degree~of-freedom system

maximum relative displacement of the i-th elastoplastic
spring

maximum relative displacement of the i-th spring calculated
by combining modes using the sum of the absolute values

of modal quantities approach

maximum relative displacement of the i-th elastic spring
maximum relative displacement of the i-th spring calculated
by combining modes using the sguare root of the sum of the
squares of modal quantities approach

yield displacement of the i-th spring

total end rotation vector for a simply supported
(constrained) flexural element

‘element end displacement vector

maximum ground velocity
structural story displacement vector relative to the base

structural story displacement vector relative to the base
in the m-th or n-th mode of vibration

design base shear

measure of the yield displacement of an elastoplastic
spring in a single-degree-of-freedom system

measure of the maximum relative displacement of the i-th
elastic spring

measure of the yield displacement of the i-th spring

weight of the i-th 09 x-th story
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W = building weight
W.L. = wind load

base (ground) displacement

x
n

Z = plastic section modulus
o = maximum inelastic hinge rotation
{a} = inelastic (hinge) end rotation vector
B = parameter in Newmark's B-Method equations
Y = parameter in Newmark's B-Method equations
Y = participation factor for the n-th mode of vibration
€ = phase angle for the n-th mode of vibration
Bh = inelastic hinge rotation capacity
{8} = structural rotation vector
M = story ductility, or ductility for a single-degree-of-freedom
u, = ductility of the i-th spring
£ = percent critical viscous damping in the n-th mode of vibration

¢_ = average curvature in the inelastic region of a beam
during its critical leading

¢ = plastic curvature
¢ *= design plastic curvature

P
)
f¢(m'},{¢(")k=mode shape of the.m-th or n-th mode of vibration

%i(n) = normalized amplitude of the n-th mode shape at the i-th story
{a(n)} = normalized mode shape of the n-th mode of vibration
w= circular frequency of vibration for a single-degree-of-
freedom system
W, = circular frequency of vibration for the n-th mode
Wyp = damped circular frequency of vibration for the n-th mode

{0} = zera vector

{1} = unit vector



[1]

il

identity matrix
transposed vector

transposed matrix

Ik



15

2. BUILDING DESIGNS

2.1 Introduction

in this chapter several two- and three-story buildings are designed
to resist earthquake motion using the quasi-static building code approach
to determine lateral loads, and the steel design specifications of the
A1SC (1969) to size members. -The buildings designed provide the ensemble
of structures used in the analytical and behavioral studies discussed in
Chapter 4. Also presented is a description of the base motion used for
time-history analysis, and the construction of the Newmark-Hall elasto-
plastic design response spectra used for modal analysis and building code

calculations in Chapter 4.

2.2 Ground Motion

The North-South component of the El Centro 1940 earthquake is
believed to be representative of a strong base motion which has a
reasonable probability of occurrence in a highly seismic zone. The
particular digitalized accelerogram used in this study had a maximum
ground acceleration (a), velocity (v) and displacement (d), of 0.318 g,
13.0 in./sec and 8.40 in., respectively. The maximum ground motions
and the elastic response spectrum for this record are shown in Fig. 2.1.
Also shown are elastic and elastoplastic design spectra, consistent with
the maximum ground motions listed above, constructed using the rules
given by Newmark and Hall (1973). All spectra are plotted for 5 percent
critical viscous damping.

The ductility factor for a single-degree-of-freedom elastoplastic

system is defined as
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(2.1)

=
) i
<c 131:

in which Uy and uy denote the maximum displacement of the oscillator
relative to the ground during seismic motion and the maximum elastic or
yield displacement, respectively. The design spectra plotted in Fig. 2.1
represent the peak elastic response (acceieration and yield displacement)

for a series of elastoplastic oscillators.

2.3 Deslign Criteria

The base shears, V, used in seismic design wére seiected on the basis
of recommendations contained in modern building codes. The base shear
coefficients recommended by several building codes for use in calculating
design forces in zones of maximum earthquake hazard are tabulated in Table
2.1. The entries to the table represent the limiting (maximum} values of
the base shear normalized by the building weight, W, for low-rise buildings
on stiff ground. The base shear was distributed over the building height

according to the following formula:

(2.2)

in which W W and hx’ hi represent the story weight and height of the
building at the x-th or i-th story, and N denotes the total number of
stories. Since it is generally not required by the building codes for
low~-rise buildings, no concentrated lateral force at the top of the
structure was included in Eq. (2.2).

The design external pressure due to wind on the buildings was

assumed to be 20 psf. For design the lateral deflection of the buildings
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per story arising from wind and gravity loading was limited to 1/500 of
the story height.

Member sizing was accomplished by the specifications of the AISC
using type A36 steel with a yield stress, Fy, of 36 ksi and a modulus of
elasticity, E, of 30,000 ksi. The members were designed for dead plus
gravity live loading (D.L. + L.L.), dead plus gravity live plus earthquake
loading (D.L. + L.L. + E.Q.), and dead plus gravity live plus wind loading
(D.L. + L.L. + W.L.), the loads for the latter two cases being multiplied
by a 0.75 probability factor, *

Beam members in moment frame buildings were assumed to be capable
of developing their plastic moment capacities. For moment frames and
shear buildings, it was assumed that column members could develop their
reduced plastic moment capacities calculated according to the strength

interaction formula (A1SC Formula 2.4.3)

P
= 1. - =3 M < .
Mpc‘ 1.18 (1 Py) o M (2.3)

in which Mp (= FyZ) denotes the plastic moment capacity and Py = FyA)
denotes the yield axial load capacity of the section. In Eq. {(2.3),
Z and A represent the plastic section modulus and the cross-sectional
area of the member. The axial load, P, acting on the column during
dynamic motion was obtained using the concept of tributary area®* and

was assumed to be constant.

* For convenience in this study, rather than increasing the resistance
function by a factor of 1,33 for the (D.L. + L.L. + E.Q.) and (D.L. +
L.L. + W.L.) loadings, the locads were multiplied by a factor of 1/1.33=
0.75. In this way, stresses for the three load cases could be compared
to the same allowable values.

%% One~half of the span between adjacent columns was used to calculate
tributary areas (NBC, 1975, Commentary G).
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The connections in shear buildings and moment frame buildings were
assumed to develop the full capacities of members framing into a joint
and to be rigid (unless noted otherwise). Column bases were considered
to be fix-ended.

For X-braced frames, it was assumed that the bracing members could
develop their full tensile strengths based on gross area. The connections
of columns were assumed to resist no moment and to be completely flexible.

It was assumed that 20 percent of the transient live load contributed
to the building weights and column axial loads during earthquake motion.
Thus, floor masses and axial loads were calculated for a dead plus 20
percent gravity live loading [D.L. + 0.2(L.L.}].

For purposes of design and analysis, it was assumed that each seismic
load resisting frame in a building couid be considered separately. Thus,
it was assumed that the individual frames about each horizontal axis of
a building vibrated in phase for seismic motion in a given horizontal
direction. Also, it was aSsumed that mass was lumped at points of
horizontal story translation,

It is to be noted that some of the building designs described
in this chapter are not necessarily examples of good seismic design.
Rather, the buildings were proporticned so that some of the more
interesting aspects of seismic behavior could be studied. In particular,
shear building Design 2-C and X-braced building Designs 2-G and 3-C,
because of their relatively low base shear capacities, were subjected
to large deformations during earthquake excitation. Also, some of the
members in Designs 2-D and 2-E were overstressed under the building code

loadings.



2.4 Building Descriptions

Information pertaining to the building designs studied is contained
in Tables 2.2, 2,3 and 2.4, and is shown in Figs. 2.2 and 2.3. The
information recorded is for the most part self-explanatory; however, a
few general comments are made here for clarity. The symbol f] used in
Fig. 2.2 denotes the fundamental frequency of vibration. The seismic
design forces and the modal properties of the building designs are
presented in Appendix A.

The first group of designs was for a portion of a two-story building
with three bays in the assumed direction of earthquake motion and a frame
spacing of 32 ft in the perpendicular direction, Fig. 2.2(a), (b) and (c).
The Toadings tabulated in Table 2.2 were assumed to include exterior
cladding weight.

Buildings with extremely stiff and strong girders (shear buildings),
Designs 2-A, 2-B and 2-C shown in Fig. 2.2(a), were designed for a base
shear coefficient of 10 percent. Of course, the design stresses as
percentages of the AISC allowable stresses tabulated in Table 2.4 indicated
that the actual base shear coefficients were different from the design
value. The values tabulated in Table 2.4 refer to the design stresses
in the most highiy stressed members in the structures. For buildings with
extremely stiff and strong girders, the maximum stresses occurred in the
base story interior columns. As would be expected, the design stresses
for Design 2-A, composed of W12 x 58 sections, were much less than those
for Design 2-C, composed of W8 x 24 sections.

The moment frame buildings shown in Fig. 2.2(b) also were designed
for a base shear coefficient of 10 percent. In this case, the problem:

of design was complicated since there were many possible combinations
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of column and beam sections resulting in adeguate structures. Both Designs
2-D and 2-E were designed such that yielding tended to be confined to the
columns. Conversetly, Degign 2-F was sized according to the strong column,
weak beam philosophy. Design stresses in critical members are presented
in Table 2.4. Design 2-D represents a well-designed building for which the
design stresses in the critical column members and the critical beam
members are on the same order of magnitude. The stresses are slightly
less than the allowable stresses. Conversely, the critical columns of
Design 2-E and the criticai beams of Design 2-F are overstressed under
the building code loadings.

X-bracing was used for seismic ioad resistance in Designs 2-G and
2-H shown in Fig. 2.2(c). For this type of structure, ignoring the second
order effects, only lateral forces contribute to stress in the bracing
members. As a result, the member cross-sectional areas listed correspond
to member sizes required to resist the given base shear coefficient at IOQ
percent of the AISC allowablc stress. As mentioned previously, it was
assumed that the connections of columns to beams were completely flexible
in these frames.

Three-story buildings comprise the final group of structures studied.
The ductile moment resisting frame building design shown in Fig. 2.3 was
taken, with minor changes, directly from Army, Navy and Air Force (1973)
Design Example C-2. The floor loadings given in Table 2.3 and an exterior
cladding weight of 4 lb/ft2 were used to calculate the seismic weights.
The roof diaphragm for this building was assumed to be perfectly flexible,
and the floor diaphragms were assumed to be perfectly rigid. In the

reference cited, the lateral design forces were obtained using the SEAOC
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(1968) recommendations for a Zone 3 earthquake hazard. The design
forces were consistent with a 5 percent base shear coefficient.

For this building only the frames along lines A, C, 1, 4 and 7 shown
in Fig. 2.3 are lateral load resisting. In the East-West direction, from
consideration of symmetry, 1/2 of the lateral load is resisted along each
of the exterior walls (lines A and C), Each exterior wall is composed of
two identical frame subassemblages which, by stiffness, attract 1/4 of the
lateral load. Design 3-A shown in Fig. 2.2(d) represents such a
subassembhlage.

The behavior in the North-South direction is complicated because the
roof diaphragm is flexible and the floor diaphragms are rigid., A rigorous
dynamic analysis would require the idealization of the building as three
frames in parallel (the frames along lines 1, 4 and 7, Fig. 2.3), the first-~
and second-story levels of all frames being constrained to vibrate with
the same displacement, and the roof of each frame being allowed to vibratg
independently. However, for simplicity it was assumed that the vibration
of the central frame (line 4) was independent of the other frames, and 1/2
of the roof weight and 1/3 of the floor weights were tributary to it. The
structural idealization in the North-South direction, Design 3-B, is shown
in Fig. 2.2(d). Stresses in critical members for both Designs 3-A and 3-B
under the design loadings are tabulated in Table 2.4,

Designs 3-C and 3-D shown in Fig. 2.2{(e) were for the building
configuration illustrated in Fig. 2.3, but it was assumed that lateral
resistance was provided by X-bracing along lines A and C. The relatively
large design base shear coefficients selected were in line with the
requirements of modern building codes for X-braced buildings in zones of

maximum earthquake hazard.
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3. ANALYTIC PROCEDURES

3.1 Introduction

This chapter contains a brief description of (a) the step-by-step
numerical integration (time-history) procedure used to solve the coupled
equations of motion which govern the dynamic behavior of low-rise buildings,
(b) the modal method as used in conjunction with inelastic response
spectra, and (c) the quasi-static building code approach modified to
explicitly take inelastic behavior into account. The methods described
are limited to planar structures founded on a rigid base and subjected to
one horizontal component of earthquake base motion. The computational
techniques described were used to perform the analytical and behavioral
studies discussed in Chapter 4.

in an attempt to limit computaticnal effort it was necessary to make
several simplifying assumptions. Some of the assumptions are discussed in
the following sections. The use of simplified analytical models permitted
the study of the fundamenta]'parameters which control the inelastic dynamic

response of low-rise buildings.

3.2 Time-History Analysis

3.2.1 Mass and Damping -- For the buildings considered in this study,

it was assumed that mass was lumped at points of horizontal story trans-
lation. The resulting mass matrix was diagonal with nonzero entries only
for translational degrees-of-freedom. Under this assumption, it was
possible to formulate the equations of motion in terms of a set of ordinary

differential equations.
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Damping was assumed to be proportional to mass, and the arbitrary
constant of proportionality (Appendix B, Section B,3) was adjusted so that
5 percent critical viscous damping in the first mode of vibration resulted.
Since inelastic hysteretic behavior was taken into account explicitly when
establishing the structurai stiffness, it was felt that this relatively low
value of damping was justified. The higher modes of vibration were damped

less strongly than the first mode using this formulation.

3.2.2. Element Stiffness -- Flexural members were assumed to resist

end rotation in an elastoplastic manner, The moment-~rotation diagram shown
in Fig. 3.1 represents the hysteretic behavior of a typical flexural element
subjected to moment at one of its ends. Until the end moment capacity of
the mémber is reached, the elastic resistance curve passing through the
origin is followed. |If the moment capacity is reached, an inelastic hinge
forms and subsequent end rotation occurs without increase in end moment.
If the direction of end rotation is now changed, unloading follows a curve
parallel to the initial elastic curve. Subsequent loading or unleading is
along the offset elastic curve until the end moment capacity of the member
is again reached.

The flexural element end moment-rotation relationship used ignores
any increase in moment capacity resulting from strain hardening, and any
decrease in elastic stiffness caused by the Bauschinger effect.

The hysteretic story shear-displacement relationship used for X-braced
frames is shown in Fig. 3.2, On first loading it is assumed that the
compression brace buckles out of the way and the tension brace carries

the tateral load elastically. (f the lateral load is increased a sufficient
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amount, the tension bar yields in an elastoplastic manner. If the direc-
tion of load is now reversed-and the tension bar is unloaded, the lateral
force will not experience any resistance to deformation until the system
passes back through its initial configuration of zero displacement. The
bar, which had formerly buckled in compression, now is in tension and
carries load as described for the tension bar above. 0On subsequent load
cycles, the tension bar begins to carry load when the displacement equals
the maximum deformation in the last cycle minus the elastic recovery.

igarashi, et al. (1973) have shown that this model predicts the dynamic
behavior of steel diagonal braces well, provided the slenderness ratio is
greater than 2ﬁ/€7f; (or 181 for A36 steel). For the 1ow-ris¢ buildings
considered in this study, the slenderness ratios were greater than this
value.

As a story displaces relative to the story below, geometric forces
are caused by gravity loads acting on column members. These Secondary
load-displacement (P-delta) effects must be opposed by the lateral load
resisting system. The stiffness matrices for flexural and X-braced
frame elements‘were modified to take account of P-delta effects.

The detailed derivations of element stiffness properties are given

in Appendix C.

3.2.3 Method of Solution -- Once the structural properties were

established, the equations of motion were assembled by conventional
matrix procedures and solved using time-history analysis, In performing
the time-history analyses, the response history was divided into a

number of small increments in time, and the change in response during
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each increment was calculated for a linear system having stiffness
properties determined at the beginning of the time increment. Since
structural stiffness changed with the member states of inelasticity,
calculations advanced in a step-by-step manner in the time domain for
a series of linear systems with changing stiffness properties.

The basic feature of the incremental time-history analysis procedure
is the transformation of the ordinary differential equations of motion
into a set of incremental algebraic equations. The transformation was
accomplished in this study by using the expressions of Newmark (1959)
with B = 1/6.

The details of the numerical procedure are found in Appendix D.

3.3 Modal Method

In the modal method calculations referred to in Chapter &, tnelastic
behavior was taken into consideration by using inelastic design response
spectra to obtain the modal response quantities. FfFor a given building,
the spectral ordinates used were consistent with 5 percent critical viscous
damping and a constant value of the ductility factor for all modes of
vibration. The elastic mode shapes and frequencies were used for both
elastic and inelastic response calculations. The total response was
obtained by taking the sum of the absolute values of the modal quantities.

A summary of the modal method as it was used for inelastic response
calculations in this study is as follows:

(1) Obtain the frequencies and mode shapes of elastic vibration
for the given building.

(2) Select the design response spectrum consistent with the
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desired degree of inelastic response. The design response spectra used
were inelastic maximum acceleration or yield displacement spectra.

(3) By means of the conventional procedure for elastic systems,
calculate the yield (maximum) forces and the yield displacements using
the modal method in conjunction with the design response spectrum.

(4) Multiply the yield displacements by the selected ductility

factor to obtain the maximum inelastic displacements,

3.4 Building Code Approach

in using the quasi-static building code approach in Chapter 4,
the base shear was calculated by multipiying the mass of the building
by the spectral acceleration in the first mode of vibration. Inelastic
behaviorﬂwas taken into consideration by using inelastic response spectra
to obtain the spectral accelerations,

A detailed discussion of the modal method and the building code

approach is found in Appendix B.
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L, RESULTS OF THE ANALYSIS

4.1 Introduction

This chapter is devoted to the discussion of the results of analytical
studies on the building designs described in Chapter 2. The results of
time-history behavioral studies using the digitalized El Centro earthquake
record for base motion are discussed. Calculations using modal analysis in
conjunction with design response spectra consistent with the El Centro base
motion are compared to the results of the time-history studies, The quasi-
static building code approach for obtaining the design base shear, modified
to explicitly take inelastic behavior into account by use of response

spectra, also is reviewed in light of the time-history calculations.

4.2 Building Behavior Determined from Time-History Calculations

Time-history analysis was carried out according to the methods
described in Chapter 3. Each building design was analyzed under the
following assumptions (shown schematically in Fig. 4.1):

(1) Elastic - The structural members were assumed to respond in a
linearly elastic manner under all displacements.

(2) tnelastic - Yielding was assumed to occur {a) when the plastic
moment capacities of beam members were exceeded, (b) when the reduced
plastic moment capacities of column members were exceeded, and {(c) when
the story yield displacements of X-braced frames were exceeded,

(3) Inelastic + PA - Yielding was assumed to occur, and column
and X-braced frame stiffnesses were reduced to take geometric effects
resulting from gravity axial loads into account. The influence of gravity

axial loads on the response, referred to as P-delta effects in this study,
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was physically modelled by links (false members) subjected to axial force.
The links subjected to axial force shown in Fig. 4.1(c) depend on the
column members or the X-braced frame for stability under lateral story
displacement. The abbreviation PA, standing for the influence of gravity
axial loads on the response, is used only when the inelastic + PA analysis
case is referred to in the text.

For the three cases listed above, it was assumed that only lateral
loads contributed to the first order member forces. An additional
analytical assumption was made for some of the moment frame building
designs:

(4) Inelastic + FEF - Yielding was assumed to occur and gravity loads
were assumed to be present on the beam members during seismic motion. At
the beginning of the time-history analysis, fixed end forces and moments
were applied as equivalent joint loads to account for gravity loads acting
on the beam members. The gravity loads acting were calculated from a dead
plus 20 percent gravity live loading [D.L. + 0.2(L.L.)]. The abbreviation
FEF, standing for fixed end forces and moments, is used only when the
inelastic + FEF analysis case is referred to in the text.

in Section 4.2.3 story shears, and in Section 4.2.4 story displacements
and drifts, are sometimes referred to as ''design'' quantities. The design
quantities were obtained from the earthquake loadings used to proportion
the buildings in Chapter 2.

In the following sections, the most important results of the time-
history calculations are discussed, In cases where the results of the
inelastic‘+ PA analysis and the inelastic + FEF analysis were nearly the

same as those for the inelastic analysis, only the results of the
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inelastic analysis are discussed. The detailed numerical data are

presented in Appendix F.

L.2.1 Overview of Results -- This section contains a brief overview

of the significant trends observed from the time-history response calcula-
tions. The intent is to familiarize the reader with the manner in which
the three types of buildings considered in this study (shear buildings,
moment frames, and X-braced frémes) behaved generally during the El Centro
hase motion. The structural configurations of the buildings studied are
shown in Fig. 2.2.

The first observations involve those structures proportioned with
fairly uniform story shear strengths over the building heights. The
strucfures in this category were the shear building designs, the moment
frame buildings designed so that yielding was forced into the columns,
and the X-braced building designs. For these buildings it was found that
the first story tended to be the weak link in the seismic load resistant
system, and as a result, inelastic deformations were concentrated.in the
base story. The upper portions of these buildings remained elastic or
responded in only a slightly inelastic manner.

By contrast, for the moment frame buildings proportioned with weak
beams and strong columns, yielding was distributed fairly uniformily
throughout the beams of all stories. 1t was found that the presence of
gravity loads on the beam members of these buildings had a marked influence
on the location of inelastic hinges during seismic motion.

The story shears attracted during earthquake motion depended on the

location and magnitude of inelastic behavior within the buildings. For
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buildings with yielding concentrated in the bottom stories {shear buildings,
moment frame buildings designed so that yielding was forced into the
columns, and X-braced buildings), the inelastic analysis case shears were
fairly uniformly distributed over the building heights and were reduced
from the elastic analysis case shears. The reductions were largest In

the first stories.

Conversely, for the moment frame buildings designed with strong
columns, the inelastic story shears observed were only slightly reduced
from, and had the same distribution as, the elastic shears. The response
of these buildings under the El Centro base motion was nearly elastic on
an overall scale.

When the deformations that occurred under the elastic analysis case
were compared to the inelastic analysis case deformations for buildings
with inelastic response concentrated in the base story (shear buildings,
moment frame buildings designed so that yielding was forced into the
columns, and X-braced buijldings), it was observed that yielding tended to
concentrate the deformations in the base story and reduce the deformations
in the upper pbrtions of the building. For the shear buildings and moment
-frame buildings designed so that yielding was forced into the columns, the
inelastic deformations were equal to or slightly less than the deformations
for the elastic case. The inelastic deformations of the X-braced buildings
were often significantly larger than the elastic deformations.

For moment frames proportioned with strong columns and weak beams,

the elastic and inelastic deformations were for all practical purposes

the same.



31

It is the purpose of the following four sections to evaluate in detail
the time-history response of some low-rise steel buildings subjected to
earthquake base motion. Particular emphasis is placed on the application

of the results to the design of low-rise buildings.

4,2.2 Inelastic Response -- The locations where inelastic behavior

tends to be concentrated within a structure during seismic motion, the
magnitude of inelastic response, and the capacity of members to resist
inelastic deformations are of interest to design engineerﬁ. Unfortunately,
it is often difficult to determine how a building responds in the inelastic
range without resorting to complicated time-history calculations. In this
section the locations of inelastic response and the magnitudes of inelastic
defofmations of some low-rise steel buildings are determined from time-
history calculations.

On reaching their plastic moment capacities, the flexural members
making up shear buildings and moment frame structures form inelastic
hinges. The maximum inelastic hinge rotations and the locations of |
inelastic hinges observed during the earthquake base motion are illustrated
in Fig. 4.2 for the buildings studied. It can be seen that the inelastic
hinge rotations were concentrated in the first-story columns for the two-
story shear buildings, Designs ZfA, 2-B and 2-C. This might have been
anticipated since the maximum response usually occurs in the first-story
for shear-beam systems in the high or medium frequency ranges during
seismic motion.

Similarly, for moment frame Designs 2-D, 2-E and 3-A (buildings

proportioned so that yielding was forced into the columns), the maximum
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inelastic hinge rotations were found to be at the tops and bottoms of
the first-story columns.

The response of moment frame buildings designed such that yielding is
forced into the beams is strongly influenced by gravity leads acting on
beam members. In Fig. 4.3 bending moment diagrams for a beam element under
gravity load and increasing lateral load are compared to those for a keam
element subjected only to increasing lateral load. For the combined loading
case, yielding first occurs at the end of the beam where the moments
resulting from the two types of loading are of the same sign. 0On subsequent
increase in lateral load, yielding occurs either in the interior or the
opposite end of the yielded beam, depending on the magnitude of the gravity
loads and the beam moment capacity. Conversely, for the lateral load only
case, yielding is restricted to the beam ends.

Moment frame building Designs 2-F and 3-B were designed according to
the stroﬁg column, weak beam philosophy. It was observed that inelastic
response occurred in the beams of building Design 2-F (Fig. 4.2) for the
inelastic + FEF case; no yielding occurred in any of the members of Design
2-F for the inélastic analysis case. In this study the magnitudes of
moments resulting from lateral loads were not large enough to cause two
inetastic hinges to form in any of the beams at any one time during the
response history. For Design 3-B yielding occurred for both the inetastic
and inelastic + FEF analysis cases. Again, most of the beam members under
the inelastic + FEF case could have resisted more lateral load than was
caused by the El Centro base motion. As a matter of practical interest,
building Designs 2-F and 3-B had a margin of reserve strength that was

not available for the moment frame buildings proportioned so that yielding
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was concentrated in the columns. Also, the inelastic action was more
uniformly distributed throughout the frames for Designs 2~F and 3-B than
it was for the designs with vielding concentrated in the columns.

The cumulative hinge rotations, defined as the sum of the absolute
values of all the inelastic rotations occurring at a given hinge location
during dynamic motion, are of interest. As can be seen from the schematic
representation in Fig. 4.4, the ratio of the cumulative to maximum hinge
rotation serves as an indication of the amount of inelastic load reversal
or cyclic response that has occurred at a given hinge location. For the
buildings considered in this study, the normalized cumulative hinge
rotations were small numbers, in general less than about 6, suggesting
that significant inelastic load reversal made up a relatively small portion
of the total response history. The cumulative rotations, normalized by the
corresponding maximum hinge rotations, are presented in Appendix F (Figs.
F.1, F.3 and F.4{(b) ) for the moment frame and shear building designs
considered.

Popov and Bertero (1973) have presented a simple formula for

estimating the available inelastic hinge rotation capacity, 8§_, that an

h!
inelastic region of beam can develop during its critical loading after it
has been subjected to several cycles of load reversal. The expression

has been developed from consideration of the results of cyclic tests on

a number of cantilever steel beam specimens. The suggested formula is

(I) wls
9 =a§—" ) (4.1)
p p

in which ¢av/¢p is the normalized hinge curvature capacity selected from

experimental results and ¢; is the plastic curvature used in design.
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The quantity ¢av denotes the average curvature in the inelastic zone
during the critical loading, and ¢p(= Mp/El) denotes the plastic curvature
of the given section. The length of the inelastic hinge, a, is estimated
from knowledge of the shape of the moment diagram and the strain hardening
characteristics of the material.

In Table 4.1 the maximum hinge rotations observed in the columns of
some of the buildings considered in this study are compared to the maximum
hinge rotation capacities calculated using Eq. (4.1). In performing the
calculations, jt was assumed that Eq. (4.1) is applicable to lightly loaded
columns and that ¢: = Mp/Ef. In order to estimate the hinge length, it
was assumed that the columns were bent in antisymmetric double curvature
and that .the ratio of maximum end moment to the plastic moment capacity
was 1.15. A reasonable value of the gquantity ¢av/¢p was estimated to be
7.5.% These numbers were selected so that conservative estimates to the
hinge rotation capacities were obtained. It can be seen that the maximum
inelastic hinge rotations observed during the time-history calculations
were less than the rotation capacities in all cases.

The ineIaétic behavior of X-braced buildings is measured in terms
of story ductility factors calculated by dividing the maximum relative
story displacements by the yield relative story displacements. It can be
seen from Table 4,2 that the maximum inelastic response occurred in the
first-story for the two- and three-story building Designs 2-G, 2-H, 3-C
and 3-D. (in Table 4.2 a ductility of less than one denotes elastic

response. )

* The normalized hinge curvature capacity was estimated from the data
recorded in Table 3 of the article by Popov and Bertero.
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For the low-rise buildings studied, the following observations about
the locations of inelastic response and the magnituaes of inelastic
deformations can be made:

(1) The maximum inelastic response was concentrated in the base story
for all desighs except moment frames with weak beams. Such behavior is
thought to be typical of many types of low-rise buildings of practical
proportions, provided the fundamental frequency of vibration is in the high
or medium frequency range of the elastic response spectra.

(2} For moment frames proportioned such that yielding was forced into
the beams, yielding was spread throughout the buildings in a fairly uniform
manner and gravity loads acting on beam members had an important influence
on the locations of inelastic regions within the structures.

(3) The inelastic hinge rotations observed for the shear buildings
and the moment framé buildings with inelastic deformations concentrated in
the columns were smaller than the 1imit capacities estimated by the

procedure of Popov and Bertero.

4.2.3 Story Shear -- In proportioning a building to resist seismic
motion, member sizes are usually selected to resist specified story shears.
It is of interest, therefore, to discuss the shear distributions observed
for the building designs during the E1 Centro base motion. As would be
expected, the shear distributions depended on the inelastic response.

The story shears attracted by the buildings, normalized by the total
building weights, are shown in Fig. 4.5. The normalized shears designated
as ''design'' represent the shears used to proportion the buildings in

Chapter 2. The most notable feature of the story shear diagrams for shear
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building Designs 2-A, 2-B and 2-C is that the distributions for the etastic
and inelastic cases were of different shapes. Upon yielding in the base
stories, the shear distributions became more uniform over the building
heights. Moreover, even though the second stories responded elastically
for the inelastic analysis case, the second-story shears were reduced from
those observed for the elastic case.

The behavior of moment frames proportioned so that yielding was
concentrated in the first-story columns, Designs 2-D, 2-E and 3-A, was
similar to that observed for the shear buildings.

Converse]y,‘even though yielding occurred in the beam members of moment
frame Designs 2-F and 3-B, the story shears for the inelastic + FEF analysis
case were not significantly different than the elastic values. On an overall
scale the response of these frames was nearly elastic,

For X-braced building Designs 2-G, Z-H, 3-C and 3-D, the inelastic
story shears were much smaller than the elastic shears. The inetastic shegr
distributions were reTativéiy uniform over the building heights and, in fact,
for Designs 2-G, 3-C and 3-D both the first and second stories reached their
yield capacitiés. The behavior in vielding was, of course, similar to the
other designs with inelastic response concentrated in the first story.

The story shears for the yielding buildings plotted in the figure can
be compared to the design values. It is clear that the shear buildings
and the moment frame buildings had base shear capacities far exceeding the
design values. Of course, this was to be expected since some of the members
in many of these designs were stressed below the AISC (1969) aliowable
values, and an effort was made to use common section sizes throughout.

In addition, during the earthquake motion the instantaneous live load was
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assumed to be less than the design live load, For these buildings member
strength that was assumed tc be needed to resist gravity load in design
was, in fact, available to resist lateral load.

On the other hand, only lateral load contributes to the first order
stresses in X-braced frames, and the nature of X-bracing members is such
that they can be sized close to the intended design strengths. Therefore,
the story shears for the X-braced frames were near the design values.

From these studies on some two- and three-story steel buildings,
the following observations about the story shear distributions during the
El Centro base motion can be made:

(1) The inelastic story shear response for shear building, moment
frame, and X-braced building designs was similar when yielding was
concentrated in the first story in that the distribution of the story
shears over the building heights tended to become fairly uniform. As a
result, the elastic and inelastic story shear distributions were not of
the same shape.

(2) Moment frame buildings designed so that yielding was forced into
the beams tended toc have larger story shear capacities than moment frames
designed so that yielding was concentrated in the columns. (For low-rise
moment frames it is often difficult to force yielding into the beams
without using artifically large column sizes.) The response of the
moment frames with strong columns and weak beams was nearly elastic.

(3) X-braced frames, because of their lack of redundancy and the
dependence of their member sizing on lateral load only, can be proportioned
such that their base shear capacities are close to the intended design

shears.



38

L.2.k Displacement and Drift -- The designer endeavors to proportion

a building so that deformations during seismic motion are not excessive.

In general, the deformations that occur if the structure remains elastic
during the design earthquake can be estimated using simple analytical
procedures. Conversely, it is often difficult to obtain estimates of the
deformations that occur if the structure responds inelastically. It is

the purpose of this section to compare the inelastic deformations of some
tow-rise steel buildings to the elastic deformations. The inelastic
deformations are also compared to the deformations under the design loading.

The maximum lateral story displacements relative to the ground observed
during the El Centro base motion are shown in Fig. 4.6 for the buiiding
designs studied. Story drifts, defined as the maximum lateral deflections
between consecutive floors divided by the corresponding story heights, are
also presented in Fig.‘h.6. The two types of plots illustrate slightly
different information since the maximum displacements and drifts did not
necessarily occur at the same instant during the time-history calculations.
The displacements and drifts designated as 'design'’ represent the deformations
calculated under the full earthquake loading (i.e., not including the 0.75
toad reduction factor) used for the design of the buildings in Chapter 2.

It can be seen that the maximum deformations occurred in the first
stories for the two-story shear building Designs 2-A, 2-B and 2-C. The
inelastic analysis case deformations were less than those for the elastic
analysis case, particularly in the second stories.

For moment frame Designs 2-D, 2~E and 3-A, once yielding occurred in
the first-story columns, the deformations in the upper storijes were reduced

from those observed for the elastic case. The first-story deformations
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were about the same magnitude for the elastic and inelastic analysis
assumptions. The deformed shapes of these designs were similar to those
for the shear building designs described above, especially after yielding
occurred.

By contrast, the behavior of moment frame building Designs 2-F and
3-B was such that the upper portions of the buildings were more flexible
than the first story. For these buildings yielding was concentrated in
the beams, and the deformed shapes on yielding were similar to the elastic
analysis case deformed shapes. The deformed shapes ohserved for these
buildings indicated that the lack of significant {shear reducing) yielding
in the first stories permitted forces to be carried up the building frames.

The response of the X-braced buildings, Designs 2-G, 2-H4, 3-C and 3-D,
was similar to that for the shear buildings under the elastic analysis
assumption. However, on yielding, especially for the lower strength
Designs 2-G and 3-C, the first-story deformations were greater than the
elastic deformations. As before, when yielding was concentrated in the
first story the drifts in the upper portions of the structures were reduced.

For seismic design purposes it is often assumed that the maximum
displacements are the same whether the system responds elastically or in
an inelastic manner. Exhaustive studies on single-degree-of-freedom
oscillators with various types of resistances have indicated that this
assumption may be conservative, unconservative, or approximately correct,
depending on the frequency of vibration and the pature of the resistance
function.

The elastic displacements serve as slightly conservative approximations

of the inelastic displacements for the shear buildings, and as reasonable
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approximations for the moment frame buildings. However, when inelastic
deformations were largest in the first stories, the elastic and inelastic
deformed shapes were of different form. Yielding in the base story
concentrated the response in the base story and reduced the response in
the upper portions of the buiiding.

On the other hand, the elastic displacements serve as unconservative
estimates of the inelastic displacements for X-braced buildings. This
might have been anticipated since there can be times during the response
history when X~-braces, as modelled in this study, offer no resistance to
deformation.

A comparison between the maximum inelastic and the design story drifts
is given .in Table 4.3. 1t can be seen that the inelastic drifts during
earthquake motion were from about 4 to 10 times the design values. The
inelastic drifts of the lower strength X-braced frame Designs 2-G and 3-C
and the relatively weak shear building Design 2-C are over 2 percent; the
inelastic drifts for all other designs are under 1.5 percent. The maximum
inelastic drift occurred in the first story for all designs except moment
frame Designs 2-F and 3-B; frames 2-F and 3-B were proportioned so that
vielding was forced into the beams.

The following observations regarding deformation response can be
made from the results of the studies on the low-rise buildings considered
in this investigation:

(1) The elastic and inelastic displacements and drifts were on the
same order of magnitude for the shear building and moment frame building
designs. This could have been anticipated from the results of studies on

single~degree-~of~freedom elastoplastic systems in the frequency ranges of
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the fundamental frequencies of these buiidings.

(2) For X-braced buildings, particularly for low base shear capacities,
inelastic deformations were larger than elastic deformations. The reduced
hysteretic energy absorptive capacity of X-braced frames on load reversal
is believed to be responsible for this trend. |In order to avoid the
possibility of excessive deformations during seismic excitation, it is
recommended that X-~braced frames be proportioned in a conservative manner.

(3) When yielding occurred in the bottom story of a building, the
deformation response was concentrated in the first story and the response
in the upper portions of the building was reduced. For buildings with this
type of response, the first story was the critical link of the seismic ioad

resistant system.

4,2.5 P-delta Effects -- The influence of P-delta effects (gravity

axial load effects) on the response of low-rise buildings is generally
believed to be of secondary importance. MNevertheless, under some
circumstances P-delta loads can modify dynamic behavior. |t is the purpose
of this section to evaluate the influence of P-delta effects on the response
of the buildings considered in this study.

The differences between the first story displacements under the
inelastic and the inelastic + PA analysis cases are tabulated in Table 4.4
for the buildings considered, Displacements were for the most part
increased by P-delta forces, but the increases were in general small.

The influence of P-delta forces tended to be most important for
flexible buildings or buildings of low base shear resistances. For
example, shear building Design 2-C was much more flexible and of smaller

first story shear capacity than was Design 2-A. The increase in displacement
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due to P-delta loads was 18.9 percent for Design 2-C, but the increase

was only 0.1 percent for Design 2-A.  The same trends apply when moment

frame Design 2-E is compared to Design 2-D and when X-braced frame Design

2-G is compared to Design 2~H, (The base shear resistances of the buildings

can be assessed from the plots of Fig. 4.5 for the inelastic analysis case.)
These studies suggest that P-delta effects can be ignored for weill-

designed low-rise buildings of reasonably high strengths and stiffnesses.

4.3 Modal Method and Building Code Calculations

The intent of this section is to evaluate the use of less complicated
procedures for estimating the response of low-rise buildings to earthquakes.
The less complicated procedures considered are (a) the modal method used
in conjuﬁction with inelastic response spectra and (b) the quasi-static
building code abproach-modified to explicitly take inelastic behavior into
account. The response quantities obtained using these procedures are
compared to the response quantities calculated using the time-history
method of analysis.

In order to facilitate comparisons between the less complicated methods
of analysis and time-history analysis, the response spectra used for the
.modal method and building code calculations were consistent with the
largest story ductility observed for the given building from the time-
history analysis. The technigues used to estimaté ductility factors for
the different types of buildings considered are discussed in Section
4.3.1.

Elastoplastic response spectra were used for the modal method and
building code calculations pertaining to shear buildings and moment frames.

For X-braced frames modified inelastic response spectra were developed



43

using the techniques discussed in Section L4.3.1.
The results of the modal method and building code calculations are

presented in Section 4.3.2.%

4.,3,1 Story Shear-Deformation Relationships -- The response spectra

that are generally available for use in design calculations have been
derived from consideration of the dynamic response of elastoplastic systems
and therefore strictly apply only to buildings with elastoplastic story
shear~deformation relationships. For the designs considered, the story
shear-deformation relationships were not purely elastoplastic by virtue of
the different yielding mechanisms involved during deformation. €onsequently,
it was necessary to estimate equivalent elastoplastic story ductility
fact&rs or to modify the elastoplastic design response spectra for use in
spectral calculations. The procedures used to estimate ductilities and to
modify the elastoplastic response spectra are described in the following
paragraphs.

The story ductility factors for the buildings were calculated using

the expression

um
M= (4.2)
Y

in which U is the maximum relative story displacement and uy is the story

yield displacement.

* The modal properties for the building designs studied are tabulated in
Appendix A (Tables A.3 and A.4), and the elastoplastic response spectra
used for calculations are shown in Fig. 2.1(b). The details of the
modal analysis and the quasi-static building code procedures are
discussed in Chapter 3.
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Story Yield Displacements. Under the assumptions made in this

study, the shear-deformation relationships for the individual column
members in the shear buildings were elastoplastic, However, the story
shear-deformation relationships were not in general elastoplastic since
the individual columns of a story sometimes yielded at different levels
of deformation. Tﬁe yield displacement of a column can be calculated

using the expression
u =B (L.3)

in which the symbol h denotes the story height. Equation (4.3) follows
from consideration of the slope-deflection equations for a flexural
member of moment capacity Mpc under relative end displacement with no
end rotation (fixed-fixed case). The equivalent elastoplastic story
ductility can be calculated using Eq. (4.2) under the assumption that
the story yield displacement is equal to the average of the yield
displacements calculated for all columns in a story.

The shear-deformation relationship for a story in a moment frame
building in which yielding at the top and bottom of all column occurs
can be represented graphically by the solid line curve in Fig. 4.7.
Point "a'" represents the story shear at which the first column in the
story reaches its moment capacity, and point ''b'' represents the shear
at which all columns in the story have formed inelastic hinges at
their tops and bottoms. Unfortunately, the initial story stiffness,
k, and the shape of the resistance curve between polnts '"a'' and 'b"

cannot be determined easily. However, a reasonable estimate of k can
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be made by dividing the story shear by the relative story displacement
under lateral loading proportional to the first mode shape.

In order to use Eq. {4.2) to estimate the equivalent elastoplastic
story ductility, some estimate of the yield displacement must be made.
The following three approximate procedures gave quite similar estimates
of the yield displacements for building Designs 2-D, 2-E and 3-A:

(1) Extrapolate the initial resistance curve ''oa' linearly to a
horizontal line drawn at the ordinate representing the maximum story
shear, Q, and use the displacement corresponding to point ''¢" as the
yvield value.

(2) Equate the areas under the estimated curve ''oab'’ and an
equivalent elastoplastic curve "odb'", and use the displacement corresponding
to point ''d" as the yield value.

(3) With knowledge of the inelastic hinge rotations occurring in zones
of inelastic response, sum the energy dissipated by inelastic hinge rotation,
MpC am, over all the columns in a story. By equating this energy to the
inelastic energy dissipated by an equivalent elastoplastib osciliator,

Q(um - uy), one obtains

M Cum
uy =u - —*Ea—— (4.4)

as an expression for the yield disp]acement. The symbol o in Eq. (4.4)
denotes the maximum inelastic (plastic) hinge rotation.

in establishing the yield displacements for building Designs 2-D,
2-E and 3-A, preference was given to the third approach.

The problem of obtaining estimates of the story shear-deformation
relationships for moment frames with yielding beams is difficult. Because

building Designs 2-F and 3-B considered in this study responded to the
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El Centro base motion in a nearly elastic manner, the problem was not
specifically addressed in this report.

The lateral yield displacement of a story in an X~braced frame with
bracing in one bay can be calculated in a straightforward manner using

the expression

PRy by
o = b (D) (h.5)

in which the symbols L, and L represent the brace length and the

b
horizontal projection of the brace length, Equation (4.5) follows from
consideration of the elongation of a tension brace as it resists lateral
story deflection. Oncé the story yield displacement is obtained, Eq. (4.2)
can be used to calculate the story ductility factor.

For referénce purposes, the first-story yield displacements obtained
using the procedures described in this section are presented in Table 4.5

for some of the building designs,

X-braced Frame Response Spectra. The displacements of X-braced

buildings during seismic motion, because of the reduced hysteretic energy
absorptive capacity of X-braced frames, are usually more than those

for an associated elastoplastic bui!ding of the same elastic stiffnesses
and initial yield strengths. Consequently, elastoplastic spectra could
not be used for spectral calculations pertaining to X-braced buildings.

In this study modified design response spectra were constructed for
single-degree-of-freedom oscillators having force-deformation relationships
of the type described previously for X-braced frames. The spectra shown

in Fig. 4.8 give (approximately) the initial story yield displacement
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required to 1imit the maximum deformation of an oscillator to a specified
ductilivty.
The yield level design response spectra were constructed from the

design spectrum for elastic systems in the following manner (see Fig. 4.8).

Yield Level Elastic Spectral: Multiolicatio
Spectral Ordinatep = Ordinate at x F:ctor n
at Control Point Control Point

a' a 1/u
b! b 1/
c! c 2/u
d d /Y1

The cqnstructiou procedure is illustrated in Fig. 4.8 for the case where
u =k

The yield level spectra constructed for X-braced systems are in
accordance with the design rules proposed by Veletsos (1969) in the tow
and medium frequency ranges of the elastic design response spectrum.
Insufficient data are avaf1ab|e at present (1977) to determine the shape
of the yield level spectra in the high frequency range. As a result,
in the high frequency range the yield level spectra for X-braced systems
shown in Fig. 4.8 are at best approximate. Bazan and Rosenblueth {1974)
and Sun et al. (1973) have proposed slightly different procedures for

estimating the response of X-braced single-degree-of-freedom systems.

L.3.2 Results of Modal Method and Building Code Calculations ~--

The response quantities obtained using the modal method of analysis are
presented in Table 4.6 and the base shears obtained using the building
code procedure are tabulated in Table 4.7. The response quantities

from the modal method and the building code calculations are normalized
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by the corresponding time-history response quantities. The ductilities
given in the tables were calculated using the procedures described in
Section 4.3.1., It was found that the maximum ductility factors were
attained in the base stories for all buildings except Designs 2-F and 3-B.
Therefore, the ductilities tabulated are consistent with the first-story
deformations observed during time-history calculations. For convenience
the ductilities were rounded off to even multiples. Since the time-history
response of Designs 2-A, 2-F and 3-B was for all practical purposes elastic,
only elastic guantities are presented in the tables for these buildings.

The agreement between modal and time-history analysis for the elastic
case, Table 4.6(a), was very good for all building designs. The modal
response -values were never more than 30 percent over or 13 percent under
the time-history values.

The results of inelastic modal calculations are compared to those
from time-history analysis (inelastic analysis case) in Table 4.6(b).
For the shear building Designs 2-B and 2-C, the moment frame Designs 2-D,
2-E and 3-A, and the lower strength X-braced building Designs 2-G and 3-C,
reasonable estimates of the first-story displacements and shears were
obtained using the modal method of analysis. In general, in the upper
portioﬁs of the buildings the story shears were underestimated and the
displacements were overestimated. The modal method gave response
quantities that were almost always larger than the time-history response
quantities for the higher strength X-braced frame Designs 2-H and 3-D.
(1t is likely that the procedure used to obtain design response spectra
for X-braced buildings tends to be conservative for systems with

relatively high base shear strengths.)
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The fact that the response in the upper portions of the buildings
was not well predicted by the modal method might have been anticipated.
In using the modal method, it was tacitly assumed that the elastic and
inelastic deformed shapes were of the same form and that the elastic and
inelastic story shear distributions were of the same form. However,
inelastic behavior wés concentrated in the first stories for these
designs, and this caused the inelastic deformed shapes and shear
distributions to differ from those for the elastic case.

It can be seen from Table 4.7(a) that the building code approach
provided good estimates of the elastic base shears. The shears were
never more than 27 percent over or 15 percent under the time-history
values. The building code approach gave values which were almost
identical to the modal analysis first-story shears, but with much less
computational effort (compare Table 4.7(a) to Table 4.6(a), "first-story
shear'’).

The building code approach, as can be seen from Table 4.7(b), also
gave reasonable estimates of the inelastic base shears. Again, the base
shears obtained using the building code approach were nearly the same as
those obtained using the modal method.

Example. As an example of the procedure used to obtain
the entries to Tables 4.6(b) and 4.7(b), consider the
following calculations for moment frame Design 2-D.

The first step in the procedure is to estimate the
first-story ductility factor from the results of the
time-history analysis for the inelastic case by means of
Eqs. (4.2) and (4.4). The reduced plastic moment

capacities of the columns are calculated using the

expression
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Thus, for the exterior base columns

6.1k

MpC = ].]8{] - "‘S—iglz

J 2610 in.k =2810 in.k < 2610 in.k

and for the interior base columns

_ _92.2% c o . .
Mpc = 1.18{] 559k ] 2610 in.k. =2540 in.k < 2610 in.k
The base story shear capacity is found by assuming all columns
in the story (bent in double curvature) develop hinges at

their tops and bottoms. By summation of moments

Q=2x26]0 in.k+2x2540 in.k+2x2540 in.k+2X26]0 in.k
144 in, 144 in. 144 in. 144 in.

=143k

The maximum inelastic hinge rotations obtained from Fig. 4.2(b)

are
exterior base column interior base column
o =22.2x 1072 rad, top o = 318 x 1072 rad, top
o = 538 x 1072 rad, bottom o =551 x 10™° rad, bottom

The maximum first-story displacement for the inelastic analysis
case from Table F.4 or Fig. 4.6 is u. = 1.54 in. The first-
story yield displacement estimated by means of Eq. (4.4) is

. 2[(22.2+538)2610 in.k+ (318+551)2540 in.k]x1G "
y = 1.54 in. - Th3K

1.0 in.

=
!

The elastoplastic first-story ductility can finally be obtained
using Eq. (4.2)

w=1.584 in./1.0 in. = 1.54 , wuse 1.5

The next step is to obtain the quantities used for the

modal method calculations. From Table A.1, the total weight
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of the building is W=276.5 k and the masses of the first
and second stories are m]==0.h77 kﬁsecz/in. and m, = 0.239
kﬂsecz/in. The elastic frequencies of vibration obtained
from Table A.3(a) are

f‘ 1.99 cps w] = 2nf

]
fz 4.92 ¢cps w, = 2ﬁf2

The spectral yield displacements and accelerations obtained

12.5 rad/sec
30.9 rad/sec

from Fig. 2.1(b) for the u = 1.5 case are
D, = 1.32 in. A, = 206 in./sec?

D, = 0.237 in. A, = 226 in./sec?

The inelastic response quantities can be estimated by

Il
]

means of the modal method using the following procedure.

(The elastic mode shapes used are obtained from Table A.k(a).)

Story Number, i 0 ] 2
(a) mode shapes, %‘n)

(1) ' 0.714 1.312

(2) 0.286 -0.312
{(b) modal acce]erations,ragn) AL in./sec?

1) ‘ 147 270

(2) 64.6 ~70.5
{c) modal forces, %fn) m, A ,Kk

m ! ton 70.1 64.5

(2) 30.8 -16.9
(d) modal story shears, k

%;g 135 64.5
N 13.9 -16.9
Z | (modal story shear$)n| 149 81.4

n=]
(e) modal yield displacements, $§") D, in.

(1) 0.942 1.73
N2 0.0678 20.0739
5 ‘E?”' D, | 1.01 1.80

n=1 N (n)
(f) maximum displacements, Y I $i H(n) , in.
n=1

1.52 2.70
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Also, the base shear can be estimated using the quasi-
static building code approach. The building code base shear

N
is calculated from the expression AI ig m. where N is the

1
number of stories.

(206 in./secz)(0.477 k-secZ/in. + 0.239 kesec/in.)
147 k

code base shear

If the respdnse quantities calculated above are normalized
by the corresponding time-history response quantities from
Table F.4 or Figs. 4.5 and 4.6 for the inelastic analysis'case,
the entries to Tables 4.6(b) and 4.7(b) for Design 2-D are
obtained.

From the studies recorded in this report on some low-rise steel
buildings, the following observations can be made pertaining to the use of
the modal method and the quasi-static building code procedure to predict
response quantities:

(1) The modal method used in conjunction with inelastic design
spectra gave reasonable estimates of the inelastic forces and displacements
during seismic motion. Hoﬁever, inaccuracies arose because the elastic
mode shapes and frequencies used in calculations sometimes did not
represent well the actual inelastic response. Also, it was difficult to
apply the technique when story shear-deformation relationships could not
be easily defined. |

(2) The quasi-static building code method used together with
inelastic response spectra provided a simple and reasonably accurate
procedure for estimating the base shears of low-rise buildings.

(3) For buildings in which yielding was most extensive in the

bottom story, it was found that the ductility used in inelastic spectral
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calculations should correspond to the first story ductility of the building.
(4) Both the moda) method and the building code approach gave good

estimates of the elastic response quantities.
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5. DESIGN APPLICATIONS

5.1 Introduction

The intent of this chapter is to review the results of the studies
made as a part of this investigation in the light of practical applications
to the design of low-rise steel buildings. To this end the behavior of
the low-rise buildings considered in this study when subjected to the EIl
Centro base motion, and the behavfor of simple spring-mass systems subjected
to base excitation are briefly reviewed in Section 5.2, The studies on
buildings were limited to planar two- and three-story structures subjected
to one component of ground motion. In Section 5.3 the three procedures
that were used in this study for seismic analysis are evaluated. In Section
5.4 a prbcedure for obtaining seismic deformations and seismic design forces
is described. .Finally, in Section 5.5 several comments concerning factors

that should be considered in the design of low-rise steel buildings are made.

5.2 Behavior of Low-Rise Buildings and Simple Systems

The studies recorded In this report were directed in part
towards determining the behavior of low-rise steel buildings subjected to
-seismic ground motion. This section serves to summarize some of the more
important findings of the time-history studies presented in Appendix E on
simple elastoplastic shear-beam (spring-mass) systems and studies
presented in Chapter 4 on low-rise steel shear buildings, moment frames,
and X-braced frames.

Simple Systems, From studies on simple shear-beam (spring-mass)

systems with proportions comparable to low-rise buildings, it appears

that in the frequency ranges of interest the maximum response will usually
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occur in the base story. This suggests developing a design criteria, at
least for certain types of low-rise buildings, which assumes the base
story is the critical link in the seismic Joad resisting system.

Shear Buildings, The response of buildings with very stiff and strong

girders (shear buildings) was similar to the response of simple systems in
that the base story was the critical link in the seismic load resisting
system. When the shear buildings considered in this study were subjected
to the El Centro base motion, zones of inelastic response formed only in
the base story columns. The deformations calculated for linearly elastic
response were on the same order of magnitude as the deformations obtained
from inelastic response calculations.

Moment Frame Buildings. Moment frame buildings can be proportioned

for two different types of behavior: the inelastic response can be forced
into the beams or it can be forced into the columns. For the moment frame
buildings considered that were proportioned so yielding occurred in the
columns, the inelastic response was similar to the response of shear
buildings; that is, zones of inelastic response generally formed at the
tops and bottoms of the base story columns. For one of the buildings
cons idered, zones of inelastic response also formed at the bottoms of the
second-story columns, but the magnitudes of the inelastic rotations were
small when compared to the inelastic rotations occurring in the base
story columns.

For the moment frame buildings designed so inelastic response was
forced into the beams, inelastic hinges were generally uniformly distributed
throughout the beams of all stories. The buildings proportioned with weak

beams and strong columns had an apparent margin of reserve strength that
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the buildings proportioned so that yielding was concentrated in the columns
did not have. On an overall scale the weak beam, strong column moment
frames considered responded in a nearly elastic manner to the El Centro
base motion.

In proportioning low-rise steel moment frame buildings in the manner
prescribed in modern building codes and specifications, it will often be
found that yielding will be confined to the columns during seismic base
motion. In order to force yielding into the beams and still satisfy the
code and specification requirements for gravity loads acting on beam
members, it often will be necessary to arbitrarily increaée the sizes of
column sections above the sizes required on the basis of stress
calculations.

For the moment frame buildings, the deformations obtained from
elastic response calculations were on the same order of magnitude as the
deformations obtained from inelastic respanse calculations.

X-braced Buildings. When the X-braced buildings considered were

subjected to base motion, the largest inelastic deformations occurred in
the bottom story. For some of the buildings considered, a relatively small
amount of yielding also occurred in the second-story bracing members.
The deformations obtained from inelastic response calculations were
usually larger than the deformations obtained from elastic response
calculations. Further, the inelastic deformations were often excessive
due to the low hysteretic energy absorptive capacity of the X-braced
frames employed in this study.

In order to avoid excessive deformations during seismic motion,

it is recommended that X-braced buildings be designed with relatively
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high base shear coefficients, V/W. For example, the X-braced buildings
considered in this study behaved well when subjected to the El Centro
base motion provided the base shear coefficient was about 25 percent.
Obviously, if the compression bracing could resist some of the lateral
force, or secondary structural systems could be counted on to provide
lateral resistance, the coefficient could be reduced somewhat.
Comments. Except in the case of moment frame buildings designed
so that the inelastic response was forced into the beams, the maximum
inetastic response of all buildings occurred in the base story. Thus,
for many of the buildings the base story was the critical link in the
seismic load resisting system. The relationship between the maximum
deformations obtained from inelastic response calculations and the
deformations obtained from elastic response calculations varied with
the building type. However, in most cases the relationship between
elastic and inelastic deformations for a building could have been
anticipated from consideration of the corresponding relationship for a
single-~degree-of-freedom system responding with the same frequency as

the fundamental frequency of the building.

5.3 Discussion of the Methods of Analysis Used

A major objective of this study was to evaluate the use of some
of the different analytical techniques available for determining the
deformations and forces in buildings during earthquakes. The three
methods considered in this study were, in order of the most to the
least complex, time-history analysis, the modal method used in

conjunction with inelastic response spectra, and the quasi-static
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building code approach modified to explicitly take inelastic behavior
into account.

Time-History Analysis. Time-history analysis is, in general, the

procedure that allows the analyst to obtain the most detailed information
about the inelastic response of buildings during a particular seismic
ground motion. Unfortunately, time-history calculations are too tedious,
complicated, and time consuming to be justified for use in the design of
any but very special or unusual low-rise buildings. The time-history
method of analysis has the added disadvantage that a large number of
earthquake base motions should be used for calculations to at least
partially take account of the statistical nature of earthquake ground
motion.

Modal Method. The modal method used in conjunction with inelastic

response spectra can be employed to obtain estimates to the inelastic
response of buildings. Provided a certain amount of judgment is used,
and the response characteristics of the type of the building under study
are considered, reascnably good estimates of response quantities can be
obtained. The use of the modal method is thought to be particularly
appropriate for systems responding with small inelastic deformations
(low ductilities).

Building Code Approach. The simplest procedure, and the procedure

that is most familiar to design engineers, is the quasi-static building
code approach. In using the building code approach, the design base
shear is estimated by multiplying the mass 0%‘the building times the
inelastic response spectrum ordinate in the First mode of vibration.

This procedure seems to be particularly appropriate for structures in
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the high and medium frequency ranges of the elastic design response
spectrum, provided response is primarily in the first mode. Therefore,
the procedure is suited to low-rise buildings. Once the base shear is
estimated, the distribution of forces over the building and the deforma-
tions under the forces can be estimated by procedures similar to those
recommended in modern building codes (NBC, 1975; SEAOC, 1975; UBC, 1976;
ATC, 1977).

Comments. The quasi-static building code procedure is thought to be
the most appropriate procedure for use in the design of the majority of
low-rise steel buildings. 1In using the procedure, it is tacitly assumed
that the response of a building is similar to the response of a single-
degree-of~freedom system subjected to the same design base motion and
having a resistance system similar to the building under construction,
For many of the buildings considered in this study, the first story was
the critical link in the seismic load resisting system. Consequently,_
the first story ductility was the appropriate ductility for use in

spectral calculations.

5.4 Recommended Design Procedure

The purpose of this section is to formulate simple recommendations
which can be applied by engineers to the design of low-rise buildings.
The intent is to formulate a quasi-static procedure that is familiar to
design engineers, but thatexplicitly takes inelastic behavior into
account. In the following section a quasi-static design procedure
that is in principle similar to the ATC (1977) approach is described.
The application of the procedure to low-rise buildings of the types

considered in this study is discussed.
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Procedure. The suggested design procedure for a reguiar low-rise
building may be summarized as follows:

(1) Construct yield design response spectra for different levels of
elastic and inelastic response that are consistent with the earthquake
hazard and building type. It is recommended that design response spectra
for elastoplastic systems (see for example Newmark and Hall, 1973 and
1976) be used for moment frame buildings with yielding concentrated in
the columns and shear buildings.

At present (1977) simple rules for developing design response spectra
for X-braced systems are not available; however, the recommendations of
Veletsos (1969), Sun et al. (1973) or Bazdn and Rosenblueth (1974) can be
used, at. least in some frequency ranges, to establish the general shape
of the design response spectra (see also Section 4.3.1). Also, accepted
procedures are not available at present for constructing design response
spectra that are applicable to moment frame buildings with inelastic
response occurring in the beams.

(2) Estimate the fundamental frequency of vibration and obtain
the design base shear using the quasi-static building code approach.

‘The base shear is obtained by multiplying the mass of the building times
the response spectrum ordinate in the first mode of vibration. The
design spectrum used should be consistent with the degree of inelastic
response or ductility desired.

(3) Obtain the tateral yield forces by assuming some distribution
of the base shear over the height of the building, and proportion the

building to resist the yield lateral forces.
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In calculating the lateral yield forces, it is recommended that a
triangular distribution of acceleration in the structure from zero at the
base to a maximum at the top (as recommended by current building codes),
or a distribution of acceleration proportional to the first mode shape be
used. The inertial forces associated with the assumed distribution of
acceleration are the lateral yield forces. The assumed value of accelera-
tion at the top of the structure is adjusted so that the total distributed
lateral fofces add up to the design base shear.

(4) Obtain the yield displacements. The yield displacements are the
displacementé that occur when the design (yie]d) lateral forces are applied
to the structure and the structure responds in a linearly elastic manner.

(5) Multiply the vield (elastic) displacements by the selected
ductility factor to obtain the estimated maximum displacements.

(6) Estimate the actual base shear capacity of the buiiding now
proportioned* and estimate the actuai Fundameﬁtal frequency of vibration,
-for example by means of Rayleigh's method. The base shear capacity and
fundamental frequency of vibration should be commensurate with the values
assumed above for design.

(7) Determine whether or not the building can accommodate the maximum
displacements associated with the design base motion while maintaining its
strength and.without being subjected to undue structural or nonstructural
damage. |If the building cannot accommodate the maximum displacements,

return to Step (1).

% For low-rise steel moment frame buildings, the base shear capacity can
usually be assessed in a straightforward manner by consideration of the
possible plastic collapse mechanisms that can occur as the static lateral
load is increased.
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Example. As an example of the design procedure,. consider the
following calculations for moment frame Design 2-D. The
structural configuration for Design 2-D is shown in Fig. 2.2(b).

(1) The elastoplastic design response spectra shown in
Fig. 2.1(b) are used for calculations.

(2) The estimated fundamental frequency, fl’ and the
selected design ductility, |, are

f] = 1.99 cps

u=1.5

(in this case the actual value of the fundamental frequency
is known from previous calculations, see Fig. 2.2(b).) The
spectral yield acceleration is obtained from the design

response spectrum for u = 1.5. Thus

A] = 206 in./sec2

Finally, the design base shear is calculated using the expression

V = AI ) mi in which the masses of the first and second

stories obtained from Table A.l1 are mI = 0.477 k-secz/In. and

m2==0.239 k-seczlin., and N is the number of stories. Thus

v

(206 in./sec?)(0.477 k-sec?/in. + 0.239 k-secZ/in.)
147 k

(3) The lateral yield forces are obtained by assuming a
triangular distribution of acceleration over the building height.

From the calculations presented in Table A.1l,

M
F2

0.5 v
0.5V

73.5 k
73.5 k

The members can now be proportioned to resist the ultimate
loading. In most instances it can be assumed that the ultimate
loading is made up of the yield lateral forces, the dead load,
and the portion of the gravity live load judged to be present
during earthquake excitation. {In many cases it will not be

necessary to proportion the building in this step since
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preliminary member sizes already will have been selected on
the basis of gravity or gravity plus wind loadings.) It will
be assumed without checking that Design. 2-D is proportioned

adequately.

(4) The yield displacements are calculated.

- n - in.
v, o771 187l 0 T TR KT 1103

ield
Y flexibility matrix

(5) The maximum displacements are calculated.

Yy VI} {"56 i
= U = in.
v2 v2 2.90

max yvield

{v] 0.639 0.771 -2 in. |F

(6) The actual base shear capacity, Q, of the building
under increasing lateral load and a dead plus 20 percent
gravity live loading is now estimated. The [D.L. + 0.2(L.L.)]
and the moment capacities of the members are shown in the
figure below. (The moment capacities of the base story
columns have been calculated previously in the example

presented in Section 4.3.2.)

l.28 k/ft
,/_

=) (2304) & (2304) 3 (2304)
& 8| ~eserft &
s {5220) g (5220) g (5220)
& S:', &
|  288in. 288 in. | 288in.
B =

(Mp or Mpc) ink

Under the assumption that the distribution of lateral forces
over the building height arises from the inertial forces
caused by a triangular distribution of acceleration, it can
be shown that the following two collapse mechanisms are

among the possible mechanisms.
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Mechanism |
0.5Q =—
0.5Q =
a a a a
a a a a
External Work + internal Work = 0 :
(0.50 + 0.5Q) 144 in. a - (4 x2610 + b x2540) in.ka=0
o0 =143 k
Mechanism |1
05Q ~— £
a a
05Q [
a
a
External Work + Internal Work = 0
(0.5Qx 144 +0.5Qx288) in.a- (2x2610+2x2540 +
"+ 6 x 5220 + 6x2304) inko =0
L Q=257 k
From all the possible modes of failure, Mechanism | gives
the lowest base shear capacity, Therefore
Q=143 k
If it is assumed that all inelastic hinges form at the
instant during seismic motion when the yield displacement
of the first story is reached, the maximum inelastic hinge
rotations can be estimated from consideration of Mechanism i.
Thus
inelastic story displacement _ 1.56 in. -1.04 in. _
m story height - T4 in. =0.00361 rad

The elastic fundamental frequency of vibration can be estimated

by means of Rayleigh's method,
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N N
Y 'f - 2
1= [i§1 Fi"i] ' {151 ”‘i"t}

Since the elastic frequency is to be obtained, the vield

displacements are used for calculations. Thus

P X 1 (73.5 k) (1.04 in.) + (73.5 k)(1.93 in.)
U 27 N, 477 kesec?/in.) (1.0k in.)P+ (0.239 k-sec?/in.)(1.93 in.)?
= 2.0 cps

The values of the base shear capacity and fundamental frequency
estimated in this step are commensurate with the values assumed
for design in Step (2).

(7) The design for a ductility of 1.5 is complete provided
the building can accommodate the maximum displacements, inelastic
deformations, and so forth.

The response quantities calculated in this example can be
compared to the response quantities obtained from time-history
analysis and the response quantities obtained from modal analysis.
The time-history response quantities (inelastic analysis case)
are shown in Fig. 4.2 and tabulated in Table F.4, and the modal
analysis response quantities are calculated in the example

presented in Section 4.3.2.

5.5 Design Considerations

The conventional approach to the earthquake resistant design of
structures requires that inelastic deformations be relied upon to dissipate
energy during seismic ground motion. |t is therefore necessary that
structures be designed to deform in a ductile manner throughout the cylic
response.

In proportioning a low-rise building to resist earthquake base
excitation, due consideration should be given to the overall structural

performance of the lateral load carrying system, including not only primary
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and secondary structural systems, but also nonstructural items. Secondary
structural and nonstructural items such as stairs, exterior walls, partition
walls, and floor systems can have a significant influence on the response.
Also, when assessing the available ultimate deformation capacity of a
building system, it should be remembered that damage to nonstructural items
is often much more expensive to repair than structural damage.

With these factors in mind, a good start to the earthquake resistant
design procedure can be made by proportioning the structure to resist gravity
and wind loads. The adequacy of the design can then be checked using the
recommendations of the seismic provisions in modern building codes, and the
recommendations given in this study.

Strength versus Flexibility. The design engineer endeavors to

proportion his building such that it responds to earthquake base motion
without being subjected to excessive deformations. O0On the other hand, he
does not want to make the building so strong that it attracts very large
inertial forces. Thus, the designer attempts to strike a balance between
strength and flexibility.

Redundancy. In an effort to minimize the likelihood of a major
structural failure, the prudent designer will, if possible, include
redundancy in his design. In the event that failure of an element or a
portion of the structure occurs, second lines of defense are then available.

Redundancy can be built into a design by separating the lateral load
resisting system into a number of structural cells or units so that the
weakening of one unit will not endanger the overall structural integrity
of the building system. Further, the structure should be detailed in such

a way that secondary structural members and systems (floor systems, secondary
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framing connections, and so fbrth) can resist a certain amount of lateral
load and add to damping in the system, especially for significant levels

of deformation. Redundancy also can be included in the design by combining
more than one type of structural system to resist lateral load, provided
the different types of structural systems are compatible with each other
and provided the strength of the redundant system is maintained under
deformation.

Design for Reserve Strength. 1In order for structures to reach and

sustain their strength under inelastic deformations, the connections between
structural members must be carefully detailed. It is usually preferable to
make a connection stronger than the members framing into it, thus forcing
the inelastic deformations into the members. {n proportioning a connection,
due account should be taken of strain hardening effects that occur in the
members under inelastic deformations.

The load carrying capacity of flexural members under cyclic deformations
can be reduced significantly or lost if ilocal buckling or a fracture occurs.
Thus, the width to thickness ratios of flexural members should satisfy the
requirements for plastically designed sections. Also, the fracture toughness
of materials and fabricated elements (including X-bracing members) should be
selected to ensure that the resistance (strength and deformation capability)
will be maintained under the design temperatures.

In the case of the primary structural system, the designer must evaluate
the effective resistance offered by all load carrying members. Careful
attention is required to ensure that beams, for example, cannot fail by
lateral torsional buckling. For architectural reasons it may not be

possible to brace column members against lateral torsional buckling.
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Unfortunately, simplified procedures for evaluating the strength-deformation
capacities of unbraced steel columns subjected to thrust and end moment are
not yet available,

For several of the moment frame buildings considered in this study,
it was observed that yielding tended to be concentrated in the base story
columns, 1t is thought that this type of behavior is typical of many low-
rise steel moment frame buildings of practical proportions. Because the
failure of columns is usually considered to be more severe than the failure
of beams, it is recommended that buildings in which yielding tends to be
concentrated in the columns be designed for relatively low ductilities,
say less than about 2 or 3.

Well-proportioned Tow-rise buildings, including shear buildings, moment
frames, and X-braced frames, should preferably have story shear strengths
that decrease slightly as the story number increases. There seems ta be
little justification for deliberately designing buildings with a weak or
"'soft'" base story, or buildings with large strength discontinuities between
stories.

Low~-rise buildings as a class are often irregular in form and cannot
be modelled simply for purposes of analysis. Nevertheless, the prudent
designer will attempt to proportion a well-balanced system of comparable
structural properties in the orthogonal horizontal directions. Redundancies
should be included in the design if possible, and designs that result in
large torsional forces or motions should be avoided. The members and frames
of well-designed structures should be connected and tied together in a
mannet that allows for the satisfactory overall performance of the structure
during seismic ground excitation; provision also should be made for

overturning and torsional effects at each elevation and the base.
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TABLE 2.1 LIMITING BASE SHEAR COEFFICIENTS, V/W

Building Code Ductile Moment Frame X-braced Frame

ust  (1973)] 0.067 0.15
NBC  (1975)2 0.056 0.10
SEAOC (1975) 0.094 0.18
uBC  (1976)" 0.094 0.18
aTC  (1977)3 0.14 | 0.22

IBased on allowable stress, 33 percent increase allowed for (D.L. +
L.L. + E.Q.).

2Based on allowable stress, multiply (D.L. + L.L. + E.Q.) by a load
combination probability factor of 0.75.

3

Based on yield stress.

TABLE 2.2  LOADING FOR TWO-STORY BUILDINGS

. First Floor Second Floor (Roof)
Loading 2 2
(1b/Ft) (1b/ft°)
D.L. 70 36
L.L. 50 20

D.L. + 0.2(L.L.) 80 Lo
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TABLE 2.3  LOADING FOR THREE-STORY BUILDINGS

Loading First andlsegond Floor Third Floo; {Roof)
(1b/ft") (1b/Ft*)

D.L. 74.5 35.7%

L.L. 50 -

D.L. + 0.2(L.L.) 84.5 35, 7%

% {ncludes 10 lb/ft2 to account for the weight of second floor partitions
tributary to third floor mass,

TABLE 2.4  MAXIMUM DESIGN STRESSES IN CRITICAL MEMBERS,
IN PERCENT OF ALLOWABLE

Design gzz;%?c?:i:’SS?;r Co}umns] Beams2
2-A 0.10 50 -
2-B ‘ 0.10 85 -
2-C | 0.10 170 -
2-D ‘ 0.10 70 85-90
2-E 0.10 100-110 90
2-F 0.10 50 130-135
3-A | 0.05 50 30
3-B 0.05 30 55-85

]Calculated assuming Fy = 22 ksi and F_ = axial stress that would be

permitted in the plane of bending.

2Calculated assuming Fb = 24 ksi,
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TABLE 4.1 COMPARISON BETWEEN MAXIMUM HINGE ROTATIONS
AND HINGE ROTATION CAPACITIES

Maximum] Rotation2
Design Description Column Location Rotation Capacity, ©

(rad) (rad) "

2-A shear building interior, first floor 0.00046 0.0154

2-B shear building interior, first floor 0,00720 0.0189
2-C shear building interior, first floor 0.0141 0.0237
2-D  moment frame interior, first floor  0.00551 0.0155
2-E moment frame interior, first floor 0.00603 0.0230
3-A moment frame first floor 0.00995 0.0123

lFrom the results of time-history calculations for the inelastic

analysis case.

VZCaIculated using Eq. (4.1), an expression developed by Popov and
Bertero (1973).

TABLE 4.2  DUCTILITY FACTORS FOR X-BRACED BUILDING DESIGNS,
INELASTIC ANALYS!S CASE

Desian Design Base Shear First Second Third
s Coefficient, V/W Story Story Story
2-G 0.157 7.91 1.04 -
2-H 0.266 3.69 0.706 -
3-C 0.158 5.58 1.82 0.720

3~D 0.253 3.30 1.09 0.612
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TABLE 4.3  COMPARISON BETWEEN MAXIMUM INELASTIC
AND DESIGN STORY DRIFTS

Desian Story of Maximum Design Inelastic lnelastic Drift
g Prift Drift Drift Design Drift
(%) (%)

(a) Two-Story Shear Buildings

2-A 1 0.0833 0.570 6.84

2-8 I 0.190 1.31 . 6.89

2-C 1 0.482 2.02 4.19
{b) Two-Story Moment Frames

2-D i 0.135 1.07 7.93

2-E i 0.311 1.33 4,28

2-F 2 0.118 0.920% 7.80
{c) Two-Story X-braced Frames

2-G 1 0.240 2.37 9.88

2-H 1 0.240 .11 4.63
{d) Three-Story Moment Frames

3-A _ i 0.150 1.41 9.40

3-B 3 0.131 1.22% 9.31
(e) Three-Story X-braced Frames

3-C : ] 0.312 2.18 6.99

3-D 1 0.312 1.29 L.13

% Inelastic + FEF analysis case.




76

TABLE 4.4  CHANGES IN INELASTIC FIRST-STORY DISPLACEMENTS
DUE TO P-DELTA EFFECTS

(Inelastic + PA) - (Inelastic) 1

Design Description (Tnelastic) 00
(%)
2-A shear building 0.1
2-B shear building 2.6
2-C shear building 18.9
2-D moment frame 1.3
2-E moment frame 7.9
2-F moment frame 1.7
2-G X-braced frame 13.2
2-H X-braced frame -6.9
3-A moment frame 4,3
3-B moment frame 3.0
3-C X~-braced frame 2.8
3-D X-braced frame .0

TABLE 4,5  ESTIMATED FIRST-STORY YIELD DISPLACEMENTS

Design Description uy
, (in.)
2-B shear building 0.89
2-C shear building 1.0
2-D moment frame ' 1.0
Z-E moment frame 1.2
2-G X-braced frame 0.432%
2-H X-braced frame 0.432%
3-A moment frame 0.98
3-C X-braced frame 0.515%
3-D X-braced frame 0.515%

ol

* The yield displacements for X-braced building designs are exact
quantities.
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TABLE 4.6  RESPONSE QUANTITIES OBTAINED USING THE MODAL METHOD NORMALIZED
BY THE CORRESPONDING TIME-HISTORY RESPONSE QUANTITEES

Design 2-A 2-B  2-C  2-D 2-E 2-F 2-G 2-H

(a) elastic

second-story shear 1.21 0.97 0.95 1.0t 1.27 1.05 1,01 1.25
first-story shear ¢.90 0.87 0.99 1.26 1.25 0.%0 1.12
second-story displ, 0.89 0.87 0.90 1.25 1.03 0.90 1.18
first-story displ. 0.91 0.87 0.96 1.26 1,16 0.90 1.12
(b) inelastic
ductility -2 3 1.5 1.5 - 8 4
second-story shear - 0.71 0.72 0.86 1.11 - 0.52 0.96
first-story shear - 1.11 1.08 1,04 1.35 - 1.03 1.43
. second-story displ. - 1.28 1.38 1.10 1.54 - 1.33 1.91
first-story displ. - 1.04 1.11 0.99 1.29 - 1.04 1.54
Design 3-A  3-B 3-C 3-D

(a) elastic (continued)

third-story shear .25 1,26 1.06 1.
second-story shear 0.99 1.28 0.95 0.97
first-story shear 1.02 1.30 1.06 O

third-story displ. 0.95 1.16 0.92 0.93
second-story displ. 0,90 1.23 0.91 0.90
first-story displ. 0.97 - 1.29 1,06 0.98

(b) inelastic (continued)

ductility 2 - 6 3

third-story shear 0.90 -~ 0.54 0.90
second-story shear 0.76 - 0.82 1.30
first-story shear 1.05 - 1.05 1.72
third-story displ. 1.42 - 1.51 2.06
second-story displ., 1.26 - 1.35 1.96

first-story displ. 1.01 - 1.14 1.56
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TABLE 4.7  BASE SHEARS OBTAINED USING THE BUILDING CODE APPROACH
NORMALIZED BY THE TIME-HISTORY BASE SHEARS

Design 2-A 2-B 2-C 2-D 2-E 2-F 2-G 2-H
{a) elastic
base shear .13 0.90 0.85 0.98 1.23 1.27 0.90 1.12
(b) inelastic
ductility - 2 3 1.5 1.5 - 8 L
base shear - .10 1.04 1.03 1.31 - 1.01 1.43
Design 3-A 3-B 3-C 3-D
(a) elastic (continued)
base shear 0.89 1.20 1.04 0.98
(b) inelastic (continued)
ductility 2 - 6 3
base shear 0.87 - 0.99 1.71
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APPENDIX A. SEISMIC DESIGN FORCES AND MODAL PROPERTIES

This appendix contains {a) in Tables A.1 and A.2, the seismic design
forces used to proportion the two- and three-story building designs and
(b) in Tables A.3 and A.4, the elastic frequencies of vibration and mode
shapes for the building designs. The information contained in this
appendix is supplementary to the data presented in Chapter 2 pertaining

to the building designs considered in this study.
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TABLE A.1 SEISMIC DESIGN FORCES FOR TWO-STORY BUILDINGS
Fx
Floor Wy hx wy hye v
(k) (ft) (kft)
2 92.16 24 2212 0.5
; 184.3 12 2212 0.5
z 276.5 Lyl 1.0
TABLE A.2 SEISMIC DESIGN FORCES FOR THREE-STORY BUILDINGS
Fl i F
oor Cladding W h w h X
Floor Weight Weight X X X X v
(k) (k) (k) (ft) (kft)
3 364 10.6 375 33 12,375 0.319
2 779 21.1 800 22 17,600 0.454
1 779 21.1 SLO 11 8,800 0.227
P 1975 38,775 1.000
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TABLE A.3  NATURAL FREQUENCIES OF ELASTIC VIBRATION

{a) Two-Story Buildings

Design 2-A 2-B 2-C 2-D 2-E 2-F 2-G 2-H

f‘(cps) 2.67 1.78 1.1 . 1.99 1.35 2.27 1.98 2.58
fZ/f] 2.4 2.4 2. 41 2.47 2.5 2.88 2.4 2.4

(b} Three-Story Buildings

Design 3-A 3-8 3-C 3-D

fileps)  1.10 1.39  1.59  2.02
f/f,  2.83  3.04 273  2.73

f3/f1 k.93 6.23 3.73 3.73
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'ELASTIC MODE SHAPES

(a)

Two-Story Buildings

Design 2-A 2-8 2-C 2-D 2-E 92-F 2-G 2-H
Mode Storz
1 2 1.207  1.207 1.207 1.312  1.265 1.361 1.207 1.207
1 0.854 0.85% 0.854 0.7t4% 0.787 0.569 0.85F 0.854
2 2 -0.207 -0.207 -0.207 -0.312 -0.265 -0.361 -0.207 -0.207
1 0.i46 0.146 0.146 0.286 0.213 0.431 0.146 0.146
{b) Three-Story Buildings
Design 3-A 3-8 3-C 3-D
Mode Storz
1 3 1.411 0 1.371 1.243  1.243
2 0.968 0.825 1.084 1.08h
1 0.408 0.308 0.628 0.628
) 3 -0.558 -0.466 -0.333 -0.333
2 0.226 0.391 -0.014% -0.01h
1 0.368 0.410 0.333 0.333
3 3 0.147 0.095 0.090 0.090
2  -0.19% -0.216 -0.070 -0.070
1 0.224 0.282 0.039 0.039
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APPENDIX B. MODAL ANALYSIS AND APPROXIMATE PROCEDURES

B.1 Introduction

This appendix contains {a) a review of the mode-superposition procedure
as used in conjunction with response spectra and (b) a discussion of three
approximate procedures which can be used to estimate dynamic base shear.
Since the modal method is well known (see for example Timoshenko, et al.,
1974; Clough and Penzien, 1975), ohly the details pertinent to this study
are repeated. The approximate procedures follow from consideration of the

normal-mode method, and they have been discussed previously by Newmark and

Rosenblueth (1971, pp. L468-469, L82).

B.2 Modal Method

The governing set of simultaneous differential equations of motion can
be uncoupled if the normal modes of vibration are used as generalized
coordinates. Each of the resulting independent differential equations can
be solved as if they governed the response of single-degree-of-freedom
systems. The total response can then be found by transforming back to the
original set of coordinates. This procedure, known as the normal-mode
method, is based on superposition and therefore strictly applies only to
elastic systems. The procedure described in the following paragraphs
applies to building structures founded on the ground and subjected to
base motion.

The first step in the normal-mode method involves solving for the
mode shapes and modal frequencies. In this study it was assumed that
mass was lumped only at locations of story translation. Therefore, in

order to avoid including unwanted degrees-of-freedom in the analysis, it
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was convenient to find the mode shapes and frequencies using the
flexibility approach. The equations of motion for free vibration using

flexibility formulation are

[F] M V) + {v} = {0} (B.1)

in which {v} and ["MJ represent the horizontal displacements of the lumped
story masses and the diagonal mass matrix, respectively. The entries to
the i-th column of the flexibility matrix, [F], are the story displacements
caused by a unit force applied at the i-th story. |If it is assumed that
each of the story masses vibrates with harmonic motion about the static

equilibrium position according to the equation .

£

v = ™) sin (e v e) (8.2)
then Eq. (B.1) can be reduced to the following set of algebraic equations

(F1tud - S o™y =0 (8.3)

(63
n

In Eq. (B.2), {¢(n)} represents the mode shape, w represents the natural
circular frequency, and €, represents the phase angle associated with the
n-th mode of vibration. |In Eq. (B.3), [!] denotes the identity matrix.

A nontrivial sclution to the set of equations is possible only when

det ([F1[Hd - = [11) = 0 (8.4)

W
n

The natural circular frequencies of vibration are found by expanding the
determinate and solving the resulting algebraic equation for the N roots
I/m%, l/w%, v e ey llwﬁ in which N represents the number of degrees-of-

freedom. The N mode shapes are found by successively substituting the
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roots into Eq. (B.3).

It can be shown that the mode shapes have the following orthogonality

relationships, provided mi # mi:
™7 endte™ {; o (8.5)
T [ 16 {; 0, n#m (5.6)

in which [S*](= [F]_]) represents the structural stiffness matrix condensed
to include only story displacements as degrees-of-freedom.

Next, the response in each mode is found. For purposes of evaluating
the dynamiq response in this study, it was convenient computationally to
reformulate the equations of motion using the stiffness approach. |If the
stiffness formulation is used, the equations of motion including the effects

of damping and support excitation can be written

SMJET + [e]4v) + [S¥1{v} = -MJ 1) X (8.7)

in which [C] represents the damping matrix and X represents the ground
acceleration. In Eq. (B.7), {1} denotes the unit vector. Equation (B.7)
can be uncoupled into normal modes of vibration if the displacements are
written in terms of the mode shapes .and the generalized coordinates, q_»
as follows:
(m) N (m)
{vi= 3% {v'"}= 3 {67} q (B.8)
m=1 m=1 m
in which'{v(m)} denotes the displacement vector in the m-th mode of
vibration. |If Eq. (B.8) is substituted into Eq. (B.7) and the resulting

(n) }T

expression is premultiplied by {¢ , the equations uncouple.
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In performing the algebra, the orthogonality conditions on mass and
stiffness are used, and it is assumed that a corresponding orthogonality
condition applies to the damping matrix. The uncoupled equation of motion

obtained for the n-th mode of vibration is

(n)yT
L R N R B ,
ON O (8.9)
™7 puae'™)

g+ q_ + =
qn ZEnwnqn wn qn

In Eqg. (B.9), En denotes the amount of critical viscous damping in the

n-th mode of vibration.

The response expression for the n~th generalized coordinate can be

written, using Duhamel's integral to solve Eq. (B.9), as

-£ w (t-1)

(n) T
_le 'y pbuJiil} -1t . .
0T T e | By o K0 T sinay, (o) e (810

in which mdn = mnf P - Ei . The expression in the parentheses on the
right hand side of Eq. (B.10) is the same expression as would be used to
calculate the disp]acemeﬁt response of a single-degree-of-freedom system
vibrating with the frequency of the n-th mode. 1In practice only the
maximum value of the displacement is available, and it can be estimated
from the response spectrum ordinate that is consistent with the given

frequency of vibration and amount of damping. |If the participation factor,

Y, is defined as

_ '™ a0 5.11)
Yo T T mnd o™y '

and Dn represents the spectral displacement, then the maximum value of

the n-th generalized coordinate is
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(qn)max = YnDn (8.12)

By Eq. (B.8), the maximum displacements in the n-th mode are

{n)
{v'h }ma

“ = {¢(n)}YnDn. if, for convenience, the mode shapes are

normalized* so that

Fy - oMy (8.13)

then the maximum displacements in the n-th mode become
{n) _ y(n)
{v }max = {¢ }Dn .
Finally, the modal responses are combined to obtain the general
solution. An upper bound to the response of the system is obtained by

taking the sum of the absolute values of the modal quantities. Thus, upper

bounds to the story displacements are

IO
i

{v} =

max max

1 s I

N
= = 1 | (B.14)
n n=1

* When the mode shapes are normatized in this manner, the sum of the N
modal amplitudes at each mass point (degree-of-freedom) is unity, i.e.,

N N
Z] {¢(n)}Yn = 1 {$(n)} = {1}. .That this is so can be shown by
n= n=}

calculating the participation factor required such that
N N
pX {¢(m)}ym = {1}. If the expression I {¢(m)}Y {1} is

m=1 m=1 m

{(n) }T

premultiplied by {¢ [*M-] and modal orthogonality is used,

{¢(n)}TE‘M~]{¢(n)}yn = {¢(n)}T[‘M~J{I} results. |If the resulting

expression is solved for y_, Eq. (B.11) is obtained.
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Since the maximum modal responses do not in general occur at the same
time, the probable response of the system is often estimated by taking
the square root of the sum of the squares of the modal quantities. Thus,

the probable story displacements are

N N
_ Ll y2 V/ "w(n) 2
{V}P"Ob-\/nz]({v had” <V TG0 (8.15)
The accelerations, inertial forces, and story shears in each mode can
be obtained from the usual relationships between these quantities and the
modal displacements. The maximum and probable accelerations, inertial
forces, and story shears can then be obtained by combining the modes in

the fashion described above for displacements.

B.3 Modal Damping -

In using the modal method as described in the previous section, it is
not necessary to evaluate the entries to the damping matrix. However, when
using time-history calculations the damping coefficients are usually
related to some percentage of critical viscous damping in each mode of
vibration. In order for the damping coefficients to be related to the
damping in the normal modes, the damped equations of motion must uncouple
into normal modes of vibration. This requires the damping matrix to have
orthogonal ity properties.

1f it is assumed that the damping matrix is lineariy proportional to

the mass matrix, i.e.,

{cl = bM] (B.16)

where b is a constant, the equations uncouple, Once b has been set, the
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percentage of critical viscous damping in the n-th mode is calculated from

g =5 (B.17)

When damping is prescribed in this manner, the lower modes are damped

more strongly than the higher modes.

B.4 Bounds on Base Shear

The computation of lateral design forces is often split into two parts:
the calculation of the base shear and the distribution of the base shear
over the building height. Three bounds to the base shear may be obtained
which can be justified in terms of the modal superposition procedure.

A lower bound is obtained by computing the base shear associated with

the first mode. In equation form, the base shear is

N
p %i(” m. (B.18)
=1

in which m; and A] refer to the lumped mass of the i-th story and the

(1)

spectral acceleration in the first mode. The symbol $i denotes the
normalized amplitude of the first mode shape at the i-th story.

Building codes recommend the base shear be calculated by multiplying
the mass of the building by a coefficient that is equivalent to the
spectral acceleration in the first mode. According to studies referred
to by Newmark and Rosenblueth (1971), the building code approach slightly
overestimates the base shear of multistory buildings when compared to the

square root of the sum of the squares method of combining modal quantities,

provided the ordinates of the response spectrum do not exceed those
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corresponding to a constant pseudovelocity. Thus, an upper bound may be

obtained from

V<A, I m. (B.19)

Equations (B.18) and (B.19) yield the same result if
LIRS L SR T Y

An upper bound of some interest may be defined for shear-beam systems.
This bound was not specifically considered in this study. The base shear
is less than or equal to the first story stiffness times the spectral
displacement corresponding to a single-degree-of-freedom system having the

same frequency as the fundamental frequency of the system. In equation form
V<kD (B.20)
in which k represents the first story stiffness. Equation (B.20) is an

upper bound provided the spectral displacement in the first mode is larger

than the spectral dispiacement in any of the higher modes.*

|$](H)D

N
* This may be shown as follows. By Eq. {B.14), V<k I

n=1 n"

Noting %I(n) are positive for all n and therefore

Non), . :
T | =1, it follows that V < k max_D_. Thus, Eq. (B,20) is true
n=1

provided D] Z-Dn’ n#l.
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APPENDIX C. ELEMENT STIFFNESS PROPERTIES

C.1 {introduction

In the analysis of buildings of the types considered in this
report, nonlinearities arise from two sources. The first source
of nonlinearity is caused by the inelastic behavior of the structural
material, and this source is referred to as material noniinearity. The
second source of nonlinearity, referred to as geometric nonlinearity,
arises when the deformations are large and changes in the geometry of the
structure must be accounted for in the analysis. Consequently, it is
convenient to separate the formulation of the stiffness properties into
the formulation of material stiffness and geometric stiffness.

In this appendix member stiffness matrices to be used in establishing
the structural stiffness matrix are derived. Element stiffness properties
are formulated to account for (a) material nonlinearities resulting from
the yielding of beams, columns, and X-braces and (b) geometric nonlineari-
ties due to gravity loads acting on columns. The material stiffness for
beam and column members is derived from consideration of a beam made up of
an elastic flexural portion with rigid-plastic hinges at the ends. The
material stiffness for X-braced frames represents the behavior of lateral
bracing which resists only tensile forces. To account for geometric
nonlinearities due to gravity loads acting on columns (P-delta effects),
it is assumed that column and X-brace members support rigid, pin-ended,
bar segments (false members) subjected to axial load.

The relationship between member end forces, {G}, and end displace-

ments, {U}, can be written (Przemieniecki, 1968, pp. 383-384)
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{AG} = ([sE] - [SG]){AU} (c.1)

in which [SE] and [SG] represent the material and geometric stiffnesses,
respectively, The minus sign before the geometric stiffness is used in
this study to account for the fact that P-~delta effects tend to reduce the
element stiffness, Since the material element stiffness changes as a
function of the member force-displacement history, Eq. {C.1) is valid only
for small changes in displacement and must be written in incremental.form.

A Greek delta prefix to a symbol indicates an incremental value.

£.2 Flexural Element Material Stiffness

In formulating the flexural element material stiffness, it is
convenient to first establish the stiffness of a beam element which is
constrained in such a way that all rigid body degrees-of-freedom are
eliminated., The constrained stiffness is obtained from consideration of
the slope-deflection equations for a simply supported beam, modified to
take inelastic behaviof into account. The complete or unconstrained
stiffness is then established from the constrained stiffness by using a
transformation of‘coordinates. When the beam member is unconstrained,
rigid body displacements that do not induce strains in the beam element
are possible and the corresp0ndfng stiffness matrix is singular.

The simply supported beam element shown in Fig. C.1 is made up of
an elastic flexural portion with inelastic hinges at either end. |If it
is assumed that prior to yielding the hinges at either end are rigid,
and after yielding they sustain the plastic moment capacity of the
member (or reduced plastic moment capacity in the case of columns),

four states of yield can be defined:
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State one, the moment capacity at either end is not exceeded,.

State two, the moment capacity at the left end is reached,
the right end remaining elastic.

State three, the moment capacity at the right end is reached,
the left end remaining elastic.

State four, the moment capacity is reached at both ends.

From consideration of the slope-deflection equations, Giberson (1969)
has demonstrated that the relationship between total end rotations, {u},
and end moments, {g}, can be written in incremental form as

{Agi}: kA kB {Au]} ©.2)
Agz kg ke Auz

in which kA’ kB and kC are stiffness coefficients that depend on the state
of yield. The relationship between inelastic hinge rotations, {a}, and

the total end rotations can be written in incremental form as

{ha} = [T, 1{au) (c.3)

in which [T¥1 fs a transformation matrix that also depends on the state of
yield. The values of kA, kB and kC and the entries to [T1] are recorded
in Table C.1 for the four states of yield described above. In Fig. C.1
and Table C.1, E and | denote the modulus of elasticity and the moment of
inertia of the section.

in the unconstrained coordinate system, the beam element shown in Fig.
C.2 is capable of rigid body motions. The end displacements in the
unconstrained coordinate system, {U}, can be related to the end rotations

in the constrained coordinate system by consideration of the geometry of
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the beam element under deformation. Thus

{u} = [T, }{u} (c.4)

in which
I RV R VI
(1,1 = {EI/L 0 1/L 1:1 (c.5)

If the principle of contragradience is used, the unconstrained element

forces, {GE}, can be found from

{6} = [T,17 {g} (c.6)

if Eqs. (C.2) and (C.4) are substituted into Eq. (C.6) and incremental
notation is used where appropriate, the following expression can be obtained

for the element forces:

{AGE} = [SE]{AU} (€.7)

“in which the complete element material stiffness is

k, k

ABL ) | (c.8)

__kB kC

]
(5] = [T,]

The incremental hinge rotations can be obtained from the unconstrained
displacements by writing Eq. (C.4) in incremental form and substituting

into Eq. (C.3). Thus

{ha} = [T,10T,1{AU} (c.9)

C.3 X-brace. Material Stiffness

The material stiffness for the X-brace subassemblage shown in Fig.
€C.3(a) is obtained by analogy to the derivation used in the previous

section for the flexural element.
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The stiffness in the constrained coordinate system is established
from consideration of the story shear-deformation relationship for the
tension brace in the subassemblage. in establishing the constrained
stiffness, it is assumed that the tension brace is elastic, the compression
brace resists no lateral load, and the gravity loads acting on the columns
can be ignored. From consideration of equilibrium, Fig. C.3(b), Hooke's

Law and compatibility, Fig. C.3{c), the horizontal story shear resisted is

AE (L)2y
Q=-—|— (¢c.10)
C (Lb}

in Eq. (€C.10), A denotes the cross-sectional area of the brace and u
represents the relative story displacement.

The story shear resisted by an X-brace subassemblage depends on the
cyclic load history., |If it is assumed that the resistance-deformation
relationship described in Section 3.2.2 (see Fig. 3.2) applies, then, for
Idisplacement in the positive direction, the story shear resisted can be

calculated from the following expressions:

2
- AE L -
u z_ups, u - upS - u <0 Q= L, [Lb} {u ups) (c.11a)
= L
UZugsumumu >0 Q= AR {Lb} (C.11b)
u < ups Q=0 (c.l1c)

FL L
in which uy = —XEE'{;él represents the initial yield displacement and

Fy denotes the yield stress of steel. The permanent set in the positive
direction, ups’ is equal to the maximum positive displacement minus the

elastic recovery during the previous excursion into the inelastic range,
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The use of Eq. {C.11) to calculate the hysteretic response of an X-brace

subassemblage is illustrated by the examples shown in Fig. C.4. Conditionals

similar to those listed above can be written for negative displacements.
Equations (C.11) can be written more conveniently in the incremental

form

M = keAu (c.12)

in which k is the constrained stiffness. Two states of yield can then be
defined:
State one, the force resisted changes according to the

elastic stiffness, k = 22| b [7
by L b

State two, the change in force resisted in zero, i.e., k=0,

The complete or unconstrained element stiffness matrix is obtained
from the constrained element stiffness by a transformation of coordinates.
The relative story displacement can be calculated from the displacement

in the unconstrained coordinate system, {U}, by using the transformation
u={-1 1Hu} (C.13)

If the contragredient relationship for forces is used, the X~brace

material stiffness in the unconstrained coordinate system can be formulated.

[s.] = [E :} (c.14)

A linear approximation of the flexural element geometric stiffness

Thus

C.4 Geometric Stiffness

can be obtained from consideration of the physical model shown in Fig. C.5
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(Clough and Penzien, 1975, pp. 167-169). The model is made of a rigid

bar segment subjected to axial force N and a stabilizing flexural element.
As the flexural element deflects, the rigid bar also defiects developing
forces which must be resisted by the flexural element. If it is assumed
that the centerlines of the bar and the flexural element coincide,

summation of moments about the top and bottom ends of the rigid bar leads
to the additional (shear) forces acting on the ends of the flexural element.

In matrix form, the end forces due to geometric effects are

{g,} = [sG]{u} (c.15)

in which the geometric stiffness is

N/hh O -N/h O
0 0 0 0
S = C-l6
[ G] -N/h 0 N/h O ( )
L o 0 0 0

The X-brace element geometric stiffness can be obtained in a similar
manner. From consideration of equilibrium of the subassemblage shown in

Fig. C.3(a) under deformation, the geometric stiffness is

N/h  -N/h
[sGI = (can
~=N/h N/h

in which N représents the sum of the axial loads acting on the columns
of the subassemblage.

1f the axia) forces are positive (compressive), the geometric stiffness
tends to reduce the member stiffness. Thus, the lateral story shear that
can be resisted for a given relative story displacement under monotonically

increasing load is reduced from that which would be resisted if gravity
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loads were not present.

It should be commented that, in the derivation of the geometric
element stiffnesses, it is assumed that the axial loads acting are
constant. Thus, the axial forces are assumed to arise from sources that
are independent of the seismic excitation.

Buildings are frequently designed so that not all columns in a story
contribute to the resistance of lateral load. The P-delta forces arising
from gravity loads acting on columns that do not contribute to lateral
load resistance are transferred to the seismic load resisting frames by
diaphragm action. The axial loads used to formulate geometric stiffness

matrices must take this transfer of P-delita forces into account.
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TABLE C.1  ENTRIES TO THE BEAM ELEMENT MATERIAL STIFFNESS MATRIX
- AND TO THE TRANSFORMATION MATRIX USED TO OBTAIN THE
INELASTIC HINGE ROTATIONS
State of
yield kn “g ke [?1
| LEI 2E| LEY 0 0]
L L L 0 0 |
3E1 1 1/27]
2 0 0 3 [:0 o |
3E1 0 0 |
3 C 0 0 [}/2 1]
4 0 0 0 ’ 0]
0 1]
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FIG. C.1  SIMPLY SUPPORTED BEAM ELEMENT
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FIG. C.3  X-BRACE ELEMENT
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APPENDIX D. INCREMENTAL NUMERICAL PROCEDURE

B.1 Introduction

This appendix contains a discussion of the step-by-step numerical
integration (time-history) procedure used to solve the equations that
govern the dynamic response of low-rise steel buildings. in the step-by-
step procedure, the response history is divided into a number of small
increments in time. The response during each increment in time is evaluated
using the structural properties applicable at the beginning of the time
increment. The dynamic response quantities calculated at the end of one
time increment become the initial conditions for the next time increment.
At the end of each time increment, the structural stiffness matrix is
adjusted fo account for any changes in the element stiffnesses due to
yielding or hardening. Thus, the solution advances in a step-by-step
manner in the time domain for a series of linear systems with changing
stiffness properties.

Unless certain precautions are taken when the stiffness properties
are not constant during a time increment, some error is involved in using
the step-by-step numerical integration procedure., |If the stiffness changes
during a time increment, the forces that can actually be resisted by some
members are different from the member forces calculated using the stiffness
properties applicable at the beginning of the time increment. In an effort
to minimize this disparity between the forces that can be resisted and

the calculated forces, an iterative technique analogous to the initial

stress procedure that is sometimes applied to static problems is used.

0f course, it is only necessary to use the iterative procedure at the
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end of time increments in which the stiffness has changed.

D.2 Equations of Motion

In order to facilitate the solution of the simultaneous differential

equations of motion using the step-by-step numerical integration procedure,

the equations of motion are converted into a set of simultaneous algebraic

equations. This is accomplished by assuming that the structural displace-

ments, velocities, and accelerations can be simply related to each other

over small time increments.

The simultaneous differential equations of motion, assembled in

incremental form, can be written as follows:

M

+ [s(t)] 1

in which [~MJ
[c]

[s(t)]

{rR(t)}

{v}

{6}

{1}

and X

. AV(t)
)

L

represents
represents
represents
represents
represents
represents
represents

represents

r Av(t)

L AB(t)

the
the
the
the
the
the
the

the

~ — g

P - wd

el - Av(t)

rI“M\]
| - {11a%(t) + {R({t)} (p.1)

diagonal mass matrix,

damping matrix,

tangent stiffness at time t,

residual load vector at time t (see Section D.3),
story displacement vector,

nodal rotation vector,

unit vector,

ground acceleration.

A Greek delta prefix to a symbol indicates an incremental value. A

superscript dot above a symbol indicates one differentiation with respect
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to time. The incremental displacement quantities are associated with
the time at the beginning of the time increment, t.

in order to convert Eq. (D.1) into a set of simultaneous equations,
a linear variation of acceleration over a short time interval At is assumed.
If the equations of Newmark (1959) with 8 = 1/6 and vy = 1/2 are used, the

incremental story velocities and displacements can be written as follows:

Ac{v ()} + %;-{AV(t)} (D.2)

2
pei(0y + L0 (o) + L% (o) (0.3)

{av(t)}

{Av(t)}

At time t the velocity vector, {v(t)}, and the acceleration vector, {v(t)},
are known quantities. 1f the incremental displacement vector is taken as
the basic unknown quantity, Eqs. (D.2) and (D.3) can be solved to obtain

the following expressions for the incremental velocity and acceleration

vectors:
. 3 . At . .
{av(t)} = ZE{AV(t)} - 3{v(t)} - 75-{V(t)} (D.4)
Wi} = =2 (v & (0} - 3650 (0.5)
(At)

tf Eqs. (D.4) and {D.5) are substituted into Eq. {D.1) and the resulting
expression is simplified, the following set of simultaneous algebraic

equations is obtained

Av(t)
[A(t)] { } = {B(t)} (D.6)
AB(t)

in which



Md - [cl »
6 3
(at)? - | YA . (0.7)

[ACe)] = [s(t)] +

v(t)_ TGN

| PMJ Ve fule)
{B(t)}- L3y L - ATRAR(Y)
1 2 I PASUC R U

Equation (D.6) has the same form as the standard static stiffness equations
and it can be solved for the incremental story displacements and rotations
by Gaussian elimination. The incremental velocities and accelerations can
then be found by substituting the incremental story displacements in Eqgs.
(D.4) and (D.5).

The structural story displacements, joint rotations, and so forth at
the end of the time increment are equal to the response quantities at the
beginning of the time increment plus the changes in the response quantities

calculated using Eq. (D.6) and Eqs. (D.4) and (D.5). Thus

v{t+at) v{t) Av(t)

= + (p.9)
8 (t+At) 6(t) AB(t)
{v(t+at)} = {v(t)} + {av(e)} (p.10)
{V(t+at) = {v(t)r + {av(t)} (p.11)

The solution procedure progresses in a step-by-step manner with the values
at time (t + At) calculated by Eqs. (D.9), (D.10) and (D.11) becoming the

the known values at time t for the next time increment.
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D.3 Initial Stress Procedure

Using the initial stress procedure (Zienkiewicz, 1971, pp. 372-373),
a nonlinear problem is solved as a succession of linear problems, the
nonlinearities being accounted for by additional or residual loading terms
in the nodal equilibrium equations. Thus, when yieiding (or hardening)
occurs during a time increment, the structural stiffness changes and

[s(t)] {iyzt;} in Eqs. (D.1) and (D.6) should be replaced by (Aktan,
o(t

t al., 1974)

Av(t))
{AF(t)} = [s(t)] - {AP(t)} (p.12)
169
in which {AF(t)} represents the actual incremental resisting forces due
to structural stiffness and {AP(t)} represents the residual forces.

Incremental structural displacements and residual forces between times

t and (t + At) are

(o)) (ave))® [avie)]] av(e)]"

= + 4 o + (p.13)
AB(t) Ag(t) A8 (t) A8 (t)
[aP(1)} = {AP(6)}° + LAP(0)} + ...... + {aP(0)}" (D.14)

The corrections to the incremental displacements are found iteratively

from
' Av(t))® )

[a(t)] = {B(t)}
A8 (t)
av(£))}

[Aa(t)] ( )} = {apP(t)}° : {D.15)
Ae{t

[A(t)] {AV(t)}" - {ap(e)3"!
A8 (t) J
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The tangent stiffness applicable at the beginning of the time increment
is used for all cycles of iteration.

The incremental residual forces are obtained successively from
consideration of the member force-defofmation relationships. For the i-th
iteration, the residual forces {AP(t)]ri-1 to be applied as joint loads are
assembled from the forces required to bring the member forces based on the
tangent stiffness solution {the calculated forces) into coincidence with
the actual forces that the members can resist under the displacements
reached in the (i-1)-th iteration. The force vector {AP(t)}i"I can be
physically interpreted as the unbalanced residual forces left on the
structure at the end of the (i-1)-th iteration.

lteration is continued for a specified number of cycles or until’
{AP(t)}n are smal}ef than a specified tolerance. Since iteration is
carried out only to a tolerance, the residual forces {AP(t)}" found for
the last iteration cycle are added as the residual load vector, {R(t)},
during the next time inbrement. Before going on to the next increment
in time, the structural stiffness matrix is updated to account for any

changes in element stiffnesses that have occurred.

D.4 Member Residual Forces and Special Considerations

D.4.1 Member Residual Forces -- In order to formulate the residual

load vectors for use in the initial stress procedure described in Section
D.3, it is necessary to obtain the actual forces that can be resisted by
the members under specified displacements. For X-brace elements, once

the member relative displacements are known, the actual member forces can

be determined from the member force-deformation relationships (Eq.{(C.11)
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and Fig. 3.2). The member residual forces are simply equal to the
differences between the forces calculated using the tangent stiffness
and the actual member forces.

No unique relationship bgtween moment and rotation exists for flexural
elements: the moment at one end of a flexural element is affected by the
moment at the other end and vice versa. After each lteration of the
initial stress procedure, the calculated flexural element end moments are
adjusted such that the moment capacities at either end are not exceeded.
An adjustment at one end is accompanied by an adjustment at the other end
according to the carry-over factor applicable to the given state of yield.
The carry-over factors are 1/2 for elastic far ends and 0 for inelastic
far ends. The residual end moments are found from the differences between
the calculated and adjusted end moments. The residual end moments may be
physically interpreted‘as the moments to be applied to the elastic inner
portion of the flexural element {of stiffness LEI/L) in the actual deformed
shape such that the actual deformed shape and the deformed shape assumed
using the tangent stiffness become the same {see Fig. D.1).

The unbalanced residuai forces for X-brace elements and the
unbalanced residual end moments for beam elements are‘liquidated using
the initial stress procedure.

An inelastic hinge at either end of a flexural member is free to
rotate in only one direction during each excursion into the inelastic
range, and if the direction of rotation changes the member becomes
elastic. If it is found that a beam has unloaded (become elastic) at
either end during a time increment, a special procedure is used,

Rather than calculate unbalanced forces and use the iterative procedure
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described in the previous section, it is convenient to return to the
beginning of the time increment, modify the structural stiffness, and

repeat calculations.

D.4.2 Special Considerations -- The accuracy of the numerical

procedure described above depends on the size of the time increment used

in calculations. Since the times when the response is evaluated do not

in general correspond to the exact times of yielding or maximum deformation,
certain errors can result., Melin (1976) has estimated the magnitude of
these errors from studies on single-degree-of-freedom elastoplastic systems.
If yielding occurs during a time increment, he concludes that the resulting
errors are small provided the time increment is 1/20 to 1/L0 of the elastic
period of vibration. In these estimates it was assumed that the force-
deformation relationship was satisfied at the end of the time increment
using an iterative procedure. Melin has estimated the largest probable
error in the calculation of maximum deformation to be less than 1 percent

or 0.3 percent if the time increment is 1/20 or 1/40, respectively, of

the elastic period of vibration,

For this study the time increment used was less than or equal to 1/20
of the elastic period of the highest mode of vibration. The earthquake
base motion was assumed to be a piecewise linear function between times
of- known ground acceleration. In order to avoid missing abrupt changes in
loading, the response was evaluated at each discontinuity in the slope of
the ground acceleration history. Computations were carried out for the
duration of the base motion plus a time of twice the fundamental elastic

period of vibration,
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D.5 Verification of the Analytical Procedures

The intent of this section is to verify the computational procedures
described above by comparison of the results of some simple response
calculations to the published results of other investigators, The simple
structures studied were subjected to the half-cycle displacement pulse
base motion shown in Fig. E.3. The structures were undamped,

The first group of studies was confined to systems composed of flexural
elements with the inelastic properties described in Section C.2. The one
story frame shown in Fig. D.2 has an elastoplastic resistance deformation
relationship when subjected to lateral load. Its behavior during dynamic
motion can be compared directly to that of an elastoplastic single-degree-
of-freedom system. |In Fig. D.2 the maximum displacements for a number of
systems are shown as a function of the frequency parameter ft‘ where f is
the elastic frequency of vibration and t] is a measure of the pulse
duration. For both elastic and inelastic systems, the response caICuIated‘
was for all practical purposes the same as that found by Veletsos and Vann
(1971) for elastoplastic single-degree~of-freedom systems subjected to the
same base motién.

Similarly, a flexural element under shear deflection with no end
rotations has an elastoplastic force-deformation relationship. The maximum
displacements of two-story shear systems are plotted in Fig. D.3 as a
function of the frequency parameter F]tI in which the symbol f] denotes
the fundamental frequency of elastic vibration. The response was almost
exactly the same as that found by Veletsos and Vann (1971) for elasto-
plastic two-degree-of-freedom systems. (There were slight discrepancies

for the maximum inelastic responses of the first stories between frequency
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!

parameters 0.2 and 0.3, see Fig. D.3(a), These discrepancies cannot be

accounted for, but they may be due to the scale of plotting.)
The results of studies on X-braced single story frames with the

resistance-deformation relationship described in Section C,3 are shown

in Fig. D.4. Again the plots are in terms of the frequency parameter

ftl. The maximum deformations calculated by the procedures described

in this appendix were for all practical purposes the same as those found

by Veletsos (1969) for the same base motion.
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Deformed Shape Assumed Using
The Tangent Stiffness Properties

Actual Deformed Shape

Additional Hinge
Rotations During
The Iterative

Time Step

FIG. D ADDITIONAL INELASTIC HINGE ROTATIONS
DURING THE INITFAL STRESS PROCEDURE
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APPENDIX E. THEORETICAL STUDIES OF SIMPLE SYSTEMS

E.1 Introduction

In this chapter the results of calculations on elastoplastic two-
degree-of-freedom systems subjected to pulse type base motion are
summarized. The objectives of this special study were (a) to evaluate
the modal procedure when applied to systems with nonuniform inelasticity,
(b) to find the appropriate procedure for combining modes when applying
the modal method to systems with a few degrees-of-freedom, and (c) to
examine certain approximate procedures which might be used to estimate
the design base shear.

The approach used in the study was to compare the results of modal
method aﬁd approximate calculations to time-history solutions. The studies
in part parallel earlier work by Newmark, et al. (1965), Veletsos and Vann
(1971), and others. However, in this study either the base moticn consi-
dered, the systems studied, or the modal and approximate procedures used
for estimating inelastic resbonsa were in some way different from those
used in the previous studies. It is important that such studies be
pursued because the results of investigations on simple systems provide
a theoretical basis on which to view the more complicated behavior of

two- and three~story buildings subjected to earthquake base motion.

E.2 Systems and Base Motion Considered

Systems. The mathematical idealization for the two-degree-of-
. - v(n}-
freedom systems studied is shown in Fig. E.1. The symbols f_and {$""'}
denote the frequency and the notrmalized mode shape for the n-th mode of

small amplitude (elastic) vibration. Mass, m, and elastic stiffness, k,
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are uniform for each degree-of-freedom, and the systems are undamped.

The resistance-deformation relationship for each spring was assumed
to be elastoplastic with equal vield resistances in both directions of
displacement. After yielding occurred, unloading was assumed to follow
a curve offset from, but parallel to, the original elastic curve. The
resistance-deformation curve for the i-th spring is presented in Fig. E.2.
The symbols Qi and u, denote the spring force and the relative displacement,
respectively. The subscript o' indicates the maximum displacement or
force observed if the spring remains elastic during base motion. The
ductility, His is calculated by dividing the maximum inelastic displacement,
(ui)m, by the elastic component of the displacement at yield,(ui)y. The
symbo } (Qi)y denotes the maximum etastoplastic spring force.

Base Motion. The half-cycle displacement pulse base motion considered
is shown in Fig. E.3. The symbol t denotes the duration of one-half of
the base motion.

Single-Degree-of-Freedom Response Spectra. The response spectra for

elastoplastic single-degree~of-freedom systems subjected to the pulse base
motion are blotted in Fig. E.4. Each curve in Fig. E.4 gives the vyield
displacement, uy, required to 1imit the maximum deformation of the spring,
U to a specified value of the ductility factor, u. The spectra are
plotted in terms of the quantity Vy, defined as Vy = wuy in which w(=2wf)
represents the circular frequency of elastic vibration. In some of the
literature Vy is referred to as the pseudovelocity for yielding systems.
The spectral values are normalized by the maximum ground velocity, v, and
they are plotted in terms of the dimensionless frequency parameter ftI

where f is the frequency of elastic vibration and t is a measure of the
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pulse duration. The response spectra shown in Fig. E.4 are essentially
the same as those determined by Veletsos and Vann (1971) for the same base
motion.

In discussing the results of the modal method and approximate
calculations later in Section E.4, it is convenient to refer to the
different frequency ranges of the elastic single-degree-of-freedom
response spectrum, M=1 in Fig. E.4. The transition between the moderately
low and the medium frequency ranges occurs at a frequency parameter of

about ft, = 0,55 (point b), and the transition between the medium and the

1
moderately high frequency ranges occurs at a frequency parameter of about
ft] = 0.75 (point ¢). The transition frequencies adopted in this appendix

are similar to those reported by Veletsos and Vann (1971).

E.3 Time-History Calculations

It is the objective of this section to generate numerical data which
can be compared to the modal and approximate calculations reported in the
following section.

Method of Analysis. The time-history calculations were made using

Newmark's R-Method in the well known iterative form, with B = 1/6 and

Yy = 1/2 (Newmark, 1959). The increment in time used for the numerical
integration procedure was less than or equal to 1/20 of the elastic period
of the highest mode of vibration., The response was evaluated at the end

of each time increment and at the times of each discontinuity in the

slope of the base acceleration history. Computations were carried out for
the duration of the base motion plus a time of twice the fundamental period

of elastic vibration.
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One Spring Permitted to Yield, The calculated response of the

two-degree-of-freedom systems where one of the springs could yield is
shown in Figs. E.5 and E.6. In each case the response was determined
for a number of discrete values of the dimensionless frequency parameter
f]t] (recall that f] denotes the fundamental frequency of elastic
vibration of a given system, and t] is a measure of the pulse duration).
In the figures, the maximum elastic component of the response was plotted
in terms of the quantity (Vi)° if the spring responded elastically, or
the quantity (Vi)y if the spring responded inelastically. The guantities
(Vi)° and (Vi)y are defined as (Vi)° = w](ui)D and (Vi)y = w](ui)y in
which w](=2ﬁfl) denotes the fundamental circular frequency of elastic
vibration. The displacements (ui)° and (ui)y are defined in Fig. E.2. It
should be appreciated that the computed quantities were (ui)° or (ui)m
where the ductility, u;, is given by u; = (u])n,/(ui)y. The plots are
normalized by the maximum ground velocity, v.

The response of systems for which the base spring was elastoplastic

and the secend spring remained elastic is given in Fig. E.5. Each curve

in Fig. E.S(a) gives the yield displacement of the base spring, (UI)

L]

Y

required to limit the maximum deformation of the base spring, (UI) to

m
a specified ductility, My Each curve in Fig. E.5(b) gives the maximum
elastic deformation of the second spring, (u2)°’ under the condition that
the base spring responds with the specified ductility, My The abscissa
of both plots is the dimensionless frequency parameter fttl.

The plots in Fig. £.5 can be interpreted in the following manner.
For a given value of the dimensionless frequency parameter, the quantity

(V])y required to limit the maximum deformation of the base spring to a

ductility of M, can be obtained from Fig, E.5(a). For the same value of
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the dimensionless frequency parameter, the quantity (Vz)o measuring the
maximum elastic response of the second spring under the condition that the
base spring responds with the selected base spring ductility, U], can be
obtained from Fig. E.5{(b). The yield displacement of the base spring and
the maximum elastic displacement of the second spring can then be found
from the relations (ul) = (Vl)y/ml and (u2)° = (V2)°/w1’ respectively.
Finally, the maximum displacement of the elastoplastic base spring can be

calculated from the relation (u]) = u](ul)y. 0f course, the use of these

m
plots implies that the yield displacement of the elastic second spring, if
it exists, is greater than (u2)°'

Similar charts are presented in Fig, E.6 for systems in which the base
spring remained elastic and the second spring was elastoplastic. Each curve
in Fig. E.6(a) gives the maximum elastic deformation of the base spring,
(UI)°’ under the conditfon that the second spring responds with a specified
ductility, Hy. Each curve in Fig. E.6(b) gives the yield displacement of

the second spring, (u,) , required to limit the maximum deformation of the

2%y
second spring, (uz)m, to a specified ductility, My -

On the basis of the studies just described the following cbservations
concerning the inelastic response of simple two-degree-of-freedom systems
can be made. |If the base spring is permitted to yield (Fig. E.5), the
response of the second spring is reduced significantly, even if it remains
elastic, Conversely, if the second spring is permitted to yield (Fig. E.6),
the elastic response of the first spring is reduced only slightly from the
response that would occur if both springs remained elastic,

it should be noted that a graphical interpolation procedure was used

to construct Figs. E.4 through E.6, and the plots may contain slight

inaccuracies.
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Both Springs Permitted to Yield. The calculated response of two-

degree-of-freedom systems where both springs could yield is shown in Fig.
E.7 for systems with a frequency parameter of fl 1= 1.0. The graph can

be used in the following manner. The maximum deformations of the springs
assuming that both springs of the system respond elastically to the pulse
base motion are obtained first. The maximum elastic deformations, (u])° and
(u2)°’ are given In the upper right corner of the figure. The desired design
ductilities for the first and second springs of the system, M and Uy

are selected. A point on the graph is located corresponding to the

selected ductilities, noting that U, is the abscissa and Hy is the ordinate
of the plot. The quantities < and ¢y corresponding to the selected
ductilities can then be determined from the point on the plot by interpola-
tion between the lines of constantc} and c,- In order for the system to
achieve the desired ductilities during the pulse base motion, the yield
resistances of the springs must be (ul)y = c,(u])o and (u2)y = Cz(“2)°'

The maximum deformations of the first and second springs will then be

(“1)

n = u](ul)y and (u,) = u,(u,) .

Y
The chart shown in Fig. E.7 demonstrates that the response of even
simple systems to pulse base motion is a complicated function of the system
parameters, especially when vielding is involved. Of course, figures

similar to Fig. E.7 could be constructed for systems with other frequency

parameters.

E.4 Modal and Approximate Calculations

It is the objective of this section to evaluate (a) the modal method

for calculating spring forces and deformations, (b) the use of the first



140

mode base spring force as an approximation to the actual force, and (c) the
quasi-static buiiding code approach for estimating the base spring force.
The approach used was to compare response quantities obtained by the three
procedures to the quantities obtained in the previous section using time-
history analysis. In the discussion that follows, the maximum displacement
observed in the i-th spring during time-history calculations is denoted by
(ui)° if the spring remained elastic and (ui)m = ui(ui)y if the spring
yielded. The maximum time-history spring force in the i-th spring is
denoted by (Qi)° = k(qi)° if the spring remained elastic and (Qi)y = k(ui)y
if the spring yielded.

A detailed discussion of the modal method and the approximate procedures
is given .in Appendix B. The discussion in Appendix B is applicable to

elastic systems.

Modal Method. A summary of the modal method as used for inelastic

response calculations in this appendix is as follows:

(1) Obtain the frequencies and mode shapes of elastic vibration for
the given system.

(2) Seleét the inelastic design response spectrum that gives the
elastic component of the displacement response for the desired elastoplastic
ductility. (In some publications this spectrum is referred to as the
inelastic maximum acceleration or yield displacement spectrum.) Ffor the
studies recorded in this section, the spectral quantities were obtained
from Fig. E.4,

(3) Calculate the yield (maximum) spring forces and the yield
displacements using the médal method in conjunction with the inelastic

design response spectrum (as described in Appendix B for elastic systems).
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(4) Multiply the yield level displacements by the design ductility
factor to obtain the maximum spring deformations.

The yield (maximum) force and the maximum deformation obtained in the
i-th spring are denoted by (Qi)max and (ui)max if the modal quantities were

obtained by the sum of the absolute values of the modal quantities approach.

They are denoted by (Q.)

) prob and (ui)prob if the modal quantities were combined

by the square root of the sum of the squares of the modal quantities approach.

It is well to point out one inconsistency in the modal method as
described above when applied to systems with nonuniform inelasticity. In
particular, consider a two-degree~of-freedom system proportioned so that
inelastic response occurs only in one spring. [If the modal calculations
conform to the ductility of the inelastic spring, the response quantities
obtained for the elastic spring are inconsistent.

First Mode Approximation. The base spring force in the first mode of

vibration is denoted by (Ql)lst' The spectral ordinates used for calculations
were obtained from Fig. E.4.

Building Code Approach. In the gquasi-static building code approach,

the force in the base spring is approximated by multiplying the total mass
of the building by the spectral acceleration, obtained from Fig. E.4, in
the first mode of vibration. The building code base force is denoted by
(Ql)code'

Both Springs Elastic. The results of calculations for the case where

both springs responded elastically to the pulse base motion are presented
in Table E.1. As would be expected, the sum of the absolute values of

the modal quantities procedure for combining modes gave forces, (Ql)max

and (uz)max’ that were close to

and (Qz)max, and dgformatlons, (Ui)max
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the time-history values over a wide range of frequency parameters.* The
square root of the sum of the squares of the modal quantities approach also
gave forces, (Ql)pr

b and (Qz)prob’ and deformations, (ul) and (uz)

o prob prob’

that were close to the time-history response; however, in the low frequency
region this procedure slightly underestimated the time-history response.

In the medium and high frequency ranges, the base spring forces in
the first mode, (Ql)lst’ were almost the same as the time-history forces.
Consequently, it can be assumed that the response was primarily in the first
mode in these frequency ranges.

The building code method of calculating the base spring force, (Qlkode’
gave good estimates of the time-history spring forces in the medium and

high frequency ranges.

Base Spring Permitted to Yield while Second Spring Remained Elastic.

The results of calculations for the case where the base spring responded
with a ductility of 3 and the second spring responded elastically are
presented in Table E.2. The modal and approximate calculations were
performed using the response spectrum for p = 3 shown in Fig. E.4 for both
modes of vibration. Modal analysis gave results that were reasonably close
to, although in general slightly under, the time-history values for the

base spring forces, (Ql)max and (Qlyprob’ and base deformations, (ul)max

and (ul) In the medium and higﬁ frequency ranges, the base spring

prob’
forces in the first mode, (Ql)]st’ were almost the same as the time-history
values. For the medium and high frequency systems, the base spring forces

estimated by the building code approximation, (Ql)code’ were within 10

* The different frequency ranges of the elastic single-degree~of-freedom
response spectrum are defined in Section E.2.
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percent of the forces obtained by time-history analysis.
Unfortunately, the elastic second spring forces calculated by the

modal method, (QZ)max and (Qz)prob’ were significantly less than the

time-history values. On the other hand, the elastic deformations

calculated by the modal method, (uz)

nax and (uz)prob’ were much larger

than the time-history values. Therefore, it can be observed that the
modal method, as used in this study, provided very poor estimates of the
response quantities for the elastic second spring.

Example. As an example of the procedure used to obtain the
entries to Table E.2, consider the following calculations for

a system with m=1.0 k‘Secz/in. and k = 103.4 k/in. for this

system
fy = 1.0 cps wy = 6.283 rad/sec
fz = 2.618 cps w, = 16.45 rad/sec

Assume that the duration of one-half of the pulse base motion
is t] = 1.0 sec and the maximum ground velocity is v = 10 in./sec.
The spectral yield displacements and accelerations obtained from

Fig. E.4 for elastoplastic systems with a ductility of t = 3 are

DI==0.86(10 in./sec)/{6.283 rad/sec) =1,37 in. A]==54.I in./sec2

' 02==o.25(10 in./sec)/(16.45 rad/sec) =0.152 in. A2==41.1 In./sec’
in which D] and D2 represent the values of u  for the first and
second modes of vibration, and AI = w% D] and A2 = wg Dz.

The inelastic response quantities can be estimated by means

6f the modal method using the following procedure.

Mass Number, i 0 1 2
(a) mode shapes, $§n)
{1) 0.724 1.171
(2) 0.276 -0.171
{b) modal forces, $§n) m, An’ k
Mm 39.2 63.3
11.3 -7.03

(2)
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(c) modal shears, k

(1) 103 63.3
22)) L.27 -7.03
Qi) max 107 70.3
(Qi)prob 103 63.7
(d) modal absolute yield displacements, %Qﬂ Dp, In.
(1) 0.992 1.60
(2} 0.0420 -0.0260
(e) modal relative yield displacements, in.
(1) . 0.992 0.608
(2) 0.0420 -0.0680
(U5 max/u 1.03 0.676
(u:) prob/u 0.993 0.612
(f) total relative displacements, in
(T 3.09 2.03
(ui)prob 2.98 1.84

Also, the base spring force can be estimated using the first
mode approximation and the quasi-static building approach. In
the building code approach, the baSﬁ spring force is calculated
from the expression (Q]) = A ié

code 1 1
mass at the i-th degree-of-freedom and N is the number of

m. where m. is the lumped

degrees-of-freedom. Thus

(Ql)lst = 103 k
. 2 2 2
(Q])code = (5;.] in./sec“) (1.0 k=sec“/in. + 1.0 k-sec“/in.)
= 108 k

The time-history response values are obtained from Fig,
E.5(a) and (b) for the spectra where n, = 3. Thus, (ul)y =
0.70{(10 in./sec)/(6.283 rad/sec) = 1.11 in., (u])m = 3{(1.11 in.) =
3.33 in. and (u2)° = 0.53{(10 in./sec)/(6.283 rad/sec) = 0.844 in.
Also, (Ql)y= (103.4 k/in.)(1.11 in.) = 115 k and (Qz)o =
(103.4 k/in.)(0.844 in.) = 87.3 k.

The entries to Table E.2 can now be obtained by normalizing
the response quantities calculated above using the modal method
and the approximate procedures by the corresponding time-history

response quantities.
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Second Spring Permitted to Yield while First Spring Remainad Elastic.

in Table E.3 comparisons are presented for the case where the base spring
responded elastically and the second spring responded with a ductility of 3.
The modal method and approximate calculations were performed using the
response spectrum for y = 3 in Fig. E.4. For all frequency ranges, the
modal method and approximate procedures gave estimates of the elastic base

spring forces, (Ql)max’ (Q]) (Q]) and (Ql)code that were signifi-

prob’ Ist

cantly under the time-history values. The elastic base spring deformations,
(up)

and (u]) , were in general overestimated by the modal calculations.

max prob

in short, the estimates of the response quantities for the elastic base
spring were poor.

Further, for most frequencies even the inelastic second spring forces,
(Qz)max and (Qz)prob’ and the inelastic second spring deformations,

(uz) and (u2)prob’ were underestimated by the modal method calculations.

max

Both Springs Permitted to Yield. The comparisons are extended in

Table E.4 to the case where both springs responded with a ductility of 3.
Once again the modal and approximate calculations were performed using
the responée spectrum for u = 3 in Fig. E.4. In all cases, it can be
observed that the modal and approximate calculations gave response values
that were quite close to the time-history values.

Summary. From the studies on two-degree-of-freedom elastoplastic
systems subjected to pulse base motion, the following observations can
be made:

(1) Good estimates of the response quantities weré obtained using
the modal method in conjunction with response spectra for elastic systems.

And for elastic systems the sum of the absolute values of the modal
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quantities procedure was the most appropriate method to use to combine
modes,

(2) For systems with fundamental frequencies of elastic vibration
in the medium and high frequency ranges of the elastic response spectrum,
the elastic response was primarily in the first mode. Consequently, the
quasi-static building code approach gave good estimates of the elastic
base spring force for such cases.

(3) Provided yielding was concentrated in the base spring, the modal
method used in conjunction with inelastic response spectra gave reasonable
estimates of the response quantities for the base spring. The response
quantities in the elastic second spring were poorly predicted.

(k) - Provided yielding was concentrated in the base spring, and
provided the fundamental frequencies of elastic vibration of the systems
fell in the medium and high frequency ranges of the elastic response
spectrum, the inelastic base spring forces were predicted with reascnable
accuracy using the building code approach.

(5) If yielding was concentrated in the second spring, all response
quantities weré poorly predicted usihg the modal method and approximate
calculations.

(6) For the one special case studied where both springs could yield
and both springs responded with the same ductility, the response quantities
predicted by the modal method, by the first mode approximation, and by the
building code approach were nearly the same as the time-history response

quantities.
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E.5 Design Applications

It is the objective of this section to discuss the application of
some of the knowledge gained from the study of simple elastoplastic
multi-degree-of-freedom systems to the design of low-rise steel buildings.

in order to facilitate comparisons, it is necessary to define some
of the dynamic characteristics of low-rise steel buildings of the types
considered in this study. The fundamental frequencies of elastic vibration
of two- or three-story low-rise steel buildings are often in the range of
about 1 to 8 cps. Thus, the frequencies fall in the medium or high
frequency ranges of elastic design response spectra for earthquake base
motion. The yield story shear capacities of low-rise steel buildings
often are reasonably uniform over the heights of the structures, and the
comments to follow pertain in general to this type of building.

In interpreting the theoretical studies in the light of practical
applications, it is necessary to focus on the behavior of the two-degree-
of-freedom simple systems in the medium and high frequency ranges when
subjected to the pulse base motion. For frequency parameters in these

frequency ranges, i.e., f]t > 0.6, it can be seen from Fig. E.5 that the

1
quantity (Vl)y is nearly equal to or is larger than the quantity (V2)°'
This implies that, if the yield resistances of the base spring and the
second spring are about equal, yielding will likely be concentrated in
the base spring.

Also pertinent to this discussion are the findings of Veletsos and
Vann (1971) who studied simple, uniform, elastoplastic, shear-beam systems

of a few degrees-of-freedom subjected to pulse and earthquake base motion.

In their studies all springs of the systems were permitted to yield,
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They found that, except for a relatively narrow portion of the iow
frequency region of the elastic response spectrum, the maximum elastic
deformation of the base spring was significantly greater than the elastic
deformations in the upper portions of the system. Further, in the high
frequency range and a portion of the medium frequency range, the elastic
response was primarily in the first mode, with the maximum deformations of
the individual springs being reached, for all practical purposes, simulta-
neously. Consequently, when the systems were allowed to vield, the maximum
deformation occurred in a spring other than the base spring only for systems
with a small ductility and only for systems with a fundamental elastic
frequency of vibration in a relatively small portion of the low frequency
range. Thus, in the frequency ranges of interest for low-rise buildings,
the maximum deformations occurred in the base spring.

From consideration of simple systems subjected to pulse and earthquake
base motion generally, it appears unlikely that a building will respond with
uniform inelasticity during earthquake ground motion. 1In fact, the studies
referred to above strongly imply that the maximum inelastic deformations
will often occur in the base story. This suggests developing a design
criterion for certain types of low-rise buildings which assumes the base
story is the critical link in the seismic load resisting system.

In the frequency ranges of interest for low-rise steel buildings,
the results of the studies recorded in this appendix indicate that the
modal method or the quasi-static building code approach can be used to

estimate response quantities.



TABLE E.1 COMPARISON BETWEEN MODAL AND TIME-HISTORY
CALCULATIONS, BOTH SPRINGS ELASTIC

Q) nax? Q)6 (Q])prob/(Ql)° Q) 17 (Q) 0 44Q)) g/ (@0 | Q) 7(Q,)0 (Qz)prob/(QZ)o
(up) /(8o (ul)prob/(u1)° | (TP NN (TP % (uz)prob/(u2)°

1.15 0.85 | 0.77 0.81 1.26 0.90

1.01 - 0.73 0.62 0.65 1.0t 0.74

1.0 0.80 0.77 0.81 1.0 0.72

1.02 0.93 0.93 0.98 1.06 0.86

1.01 0.99 0.98 1.04 1.03 0.96

1.0 0.98 0.98 1.03 1.02 0.9h

1.02 0.99 0.99 1.04 1.13 1.05

1.02 0.98 0.98 1.03 1.19 1.07

1.03 0.99 0.99 1.05 1.6 1.05

1.03 0.97 0.96 1.02 1.26 1.10
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TABLE E.2

COMPARISON BETWEEN MODAL AND TIME-HISTORY CALCULATIONS, BASE SPRING ELASTOPLASTIC*

0 Q) mand Q0 1 €@ o/ (@ 1R /@D Q) g /(0 HQ) L /(0D el (Q,) /@Yo [ luy) o ) o (U)o (U)o
(u])max/(ul)m (ul)prob (u l)

0.1 0.99 0.78 0.74 0.79 0.78 0.56 2.34 1.68
0.2 1.39 1.00 0.81 0.85 0.79 0.59 2.37 1.77
0.3 1.23 0.91 0.79 0.84 0.65 0.47 1.95 1.4
0.4 0.94 0.82 0.81 0.86 0.49 0.38 1.47 1.14
0.6 0.90 0.86 0.86 0.90 0.51 0.45 1.53 1.35
0.8 0.91 0.88 0.88 0.93 0.53 0.49 1.59 1.47
1.0 0.93 0.90 0.90 0.94 0.81 0.73 2.4 2.18
1.4 0.97 0.92 0.92 0.97 0.81 0.72 2.43 2.16
2.0 1.08 1.01 .01 1.07 1.13 0.97 3.39 2.91
3.0 0.99 0.93 0.93 0.98 1.02 0.88 3.06 2.64
* For the time-history calculations, the ductility of the base spring was 3 and the second spring was elastic.
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TABLE E.3

COMPARISON BETWEEN MODAL AND TIME-HISTORY CALCULATIONS, SECOND SPRING ELASTOPLASTIC*

fty (Q,)max/(Q‘)o (Qi)prob/(ql)° (ud nan? (U)o (“l)prob/(ul)“ Q) /@ o] () 4071800 (Qz)max/(Qz)y {QZ)prob/(QZ)y
(u2)max/(u2)m {uz)prob/(uz)m

0.1 0.34 0.27 1.02 0.81 0.26 0.27 0.96 0.68

0.2 0.46 0.33 1.38 0.99 0.27 0.28 0.74 0.55

0.3 0.39 0.29 1.17 0.87 0.25 0.27 0.55 0.39

0.4 0.51 0.45 i.53 1.35 0. 44 0.47 0.72 0.56

3.6 0.48 0.46 1.44 1.38 0.46 0.48 0.67 0.59

0.8 0.52 0.50 1.56 1.50 0.50 0.53 0.79 0.72

1.0 0.55 0.53 1.65 1.59 0.53 0.56 0.86 0.78

1.4 0.6k 0.61 1.92 1.83 0.61 0.64 1.00 0.89

2.0 0.51 0.48 1.53 1.44 0.48 0.51 0.79 0.68

3.0 0.82 0.77 2.46 2.31 0.77 0.82 1.25 1.08

% For the time-history calculations, the base spring was elastic and the ductility of the second spring was 3.
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TABLE E.h4

COMPARISON BETWEEN MODAL AND TIME-HISTORY
CALCULATIONS, BOTH SPRINGS ELASTOPLASTIC

6] @)/ (@) @) Lo/ @) Feey )y /(@) (@) g/ @) | (@) /(e ey /()
“ max/(u]) (ul)prob/(ul m /(UZ)m_ prob/(UZ)
.0 .00 0.96 0.96 1.24

* For the time-history calculations, the ductility of both springs was 3.

251



153

3—\/\A/~—J"r'n" : -

-+—~h» 4———» | -—F—*—Z
f, = o0ss3e, o [F] < {0724 i}

t ~
_f_g_ = 2,618 {¢‘“}T {0.276 —o.m}
:

Fig., E. TWO~DEGREE~OF-FREEDOM UN{FORM SHEAR-BEAM SYSTEM

Q;,Spring Force

(Qi )o T
Elastic
/-Elas'mplusfic
(Q[)y - -

i i s s e— i ol

I
]
|
!

oy Wi (udme a Cuy

L__/ui , Relative Displacement

FIG. E.2  RESISTANCE-DEFORMATION RELATIONSHIP FOR A SPRING



154

0707a O.TO;I a

—-V\ NN

| i Il

14 1 ¥ T

0.293 t.\/ L7071, t

a

(a) Acceleration History

X v=0.2072 t a

72—

v

(b) Velocity History

X d=0.1179 1  a

1N

(¢) Displacement History

FIG., E.3 HALF-CYCLE DISPLACEMENT PULSE
(AFTER VELETSOS AND VANN, 1971)



T L) 1 T T TT 'I T L) T T T 17] T LI T T T 1T I L) L) ¥ LR L I_‘
Medium Frequency 4
L Range R
| a b ¢ d =
Extremely Moderately Moderately Extremely
B Low Frequency | Low High Frequency High Frequency T
- Roange Frequency Range Range .
Range
| — .j
- -4
b -
= 4
] v ]
o 1
= 4
| = 30 .
L p= 50 ]
oot g2 007 ] b L1ty | Lot L N EEE
001 0.l [ 10 100
ft,

FIG, E.4L'  RESPONSE SPECTRA FOR UNDAMPED ELASTOPLASTIC SYSTEMS,
HALF-CYCLE DISPLACEMENT PULSE

qql



lc LI b Ll T

lflTll

el

1

i

p—

Ib -
n ]
(V|)! -
v #rl0 |
L p|".5 4
ol—#r 30 i
[ a*50 (v ]
- (u)y = —v_ll '{»T ‘ _
_Flsno (u))g= FI‘“I)y ﬂ
ool it I Lot i |
005 o.! |
fiyy
{a) Elastoplastic Base Spring
FIG. E.S

L5

1 (Vo)
v

o\

eXe |

T T

T

T TTT

LA o |

LR T T 1

i

IR 1 IIIIJII | | ]
|

005

0.

fi t
(b} Elastic Second Spring

RESPONSE SPECTRA FOR TWO-DEGREE~OF-FREEDOM SYSTEMS, BASE SPRING ELASTOPLASTIC,

SECOND SPRIMG ELASTIC, HALF-CYCLE DISPLACEMENT PULSE

951



0 [T Ty T T L S S N N N N | T T ] i0 T T Y T LA S R | T T

B § u i

- 4 - i

= - n J

— -] | — -

N 3 - ]

- - - _ .

| 4 - A 4

Vo T ] (Vg)y B i

v [ T v F_zs 10 h

=|'
: : 1212 ‘
po=20

Qi — . (V|)o v - o] "-’,_2=3_0 (VZ)y v -

- tudo = == - . - luzly = == < ]

L - — pp*50 tup )y = palugly 1

B i n J

— - —"zslo -

ool i1l I IR ERE L1 ool 111l bt 1o gyl L
005 ol I 15 Q05 ol i L5
AT fit
(a) Elastic Base Spring {b) Elastoplastic Second Spring

FIG. E.6 RESPONSE SPECTRA FOR TWQO-DEGREE-OF-FREEDOM SYSTEMS, BASE SPRING ELASTIC,
SECOND SPRING ELASTOPLASTIC, HALF-CYCLE DISPLACEMENT PULSE

LSl



100

N T T N S S S N B |
801~ (V)o v v

- '(Ul)o = _-\-I— ‘:}'1"" = 1,25 -‘:’T
€0 (v,)

i (ply = —2 —L— = 0,729 L

(ua)y = ¢, luy)

(uhy = Hplup)y

FIG. E.7  RESPONSE OF TWO-DEGREE-OF-FREEDOM SYSTEMS,
BOTH SPRINGS ELASTOPLASTIC, HALF-CYCLE
DISPLACEMENT PULSE, f]t] =1.0



159

APPENDIX F. DETAILED RESULTS OF THE TIME-HISTORY CALCULATIONS

This appendix contains the detailed numerical data that were generated
from the time-history analyses of the building designs considered in this
study. The four time-history analysis cases considered are described in
Chapter 4.

The inelastic hinge rotations for the building designs are given in
Figs. F.1 through F.4. In Figs; F.2 and F.4(a), the maximum inelastic
hinge rotations and the locations of the inelastic hinges on the structures
during dynamfc motion are presented. In Figs. F.1, F.3 and F.4(b) the
cumulative hinge rotations, i.e., the sum of the absolute values of all
the inelastic rotations occurring at a giveq'hinge location during dynamic
motién, are presented. The cumulative hinge rotations are normalized by
the associated maximum inelastic hinge rotations. The data presented in
Figs. F.1 through F.4 are supplementary to the data discussed in Section
b.2.2.

In Tables F.1 through F.12 are tabulated (a) the story shear
coefficients, i.e., the story shears divided by the corresponding
building weight, (b) the maximum story displacements relative to the
ground, and (c) the maximum (reLative) story drifts for the building
designs considered. Tables F.l1 through F.12 supplement the information

discussed in Sections 4.2.3 and 4.2.4,
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TABLE F.1 TIME-HISTORY RESPONSE QUANTITIES FOR SHEAR BUILDING DESIGN 2-A
Elastic Inelastic Inelastic + PA

Story Shear Coefficients

2 0.320 0.315 0.314

1 0.731 0.626 0.622
Story Displacements (in.)

2 1.17 1.17 1.18

1 0.879 0.821 0.822
Story Drifts (%)

2 0.268 0.264 0.263

1 0.611 0.570 0.571
TABLE F.2 TIME-HISTORY RESPONSE QUANTITIES FOR SHEAR BUILDING DESIGN 2-B

Elastic inelastic tnelastic + PA

Story Shear Coefficients

2 0.355 0.251 0.252

1 0.792 0.326 0.326
Story Displacements (in.)

2 3.11 2.18 2.20

i 2.16 1.89 1.94
Story Drifts (%)

2 0.673 0.475 0.481

1 1.50 1.31 1.35
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TABLE F.3  TIME-HISTORY RESPONSE QUANTITIES FOR SHEAR BUILDING DESIGN 2-C

Eléstic Inelastic Inelastic + P-A

Story Shear Coefficients

2 0.250 0.118 0.111

1 0.528 0.144 0.154%
Story Displacements (in.)

2 5.21 3.31 3.90

] 3.66 2.91 3.46
Story Drifts (%)

2 1.21 0.571 0.543

1 2.54 2.02 2.50

TABLE F.4  TIME-HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 2-D

Elastic Inelastic Inelastic + PA lnelastic.+ FEF

Story Shear Coefficients

2 0.430 0.344 0.340 0.343

1 0.814 0.517 0.510 0.510
Story Displacements (in.)

2 3.01 6 2.48 2.45

] 1.59 1.54 1.56 1.52
Story Drifts (%)

2 0.990 0.750 0.743 0.750

1 .10 1.07 1.08 1.06
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TABLE F.5  TIME-~HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 2-E

Elastic Inelastic Inelastic + PA Inelastic + FEF

Story Shear Coefficients

2 0.237 0.184 0.187 0.185

1 0.4 0.276 0.272 0.276
Story Displacements (in.)

2 3.12 2.54 , 2,70 2.63

1 1.95 1.91 2.06 1.99
Story Drifts (%)

2 0.963 0.739 0.757 0.740

] 1.35 1.33 1.43 1.38

TABLE F.6  TIME-HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 2-F

Elastic tinelastic Inelastic + PA Inelastic + FEF

Story Shear Coefficients

2 0.445  0.445 0.445 0.351
1 0.655  0.655 0.658 0.626

Story Displacements {in.)

2 2. 1h 2.14 2.16 2.12
1 0.832 0.832 0.846 0.806

Story Drifts (%)

2 0.925 0.925 0.931 0.920
1 0.578 0.578 - 0.588 0.560
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TABLE F.7  TIME-HISTORY RESPONSE QUANTITIES FOR X-BRACED FRAME DESIGN 2-G

Elastic Inelastic Inelastic + PA

Story Shear Coefficients

2 0.376 0.197 0.190

] 0.883 0.197 0.194
Story Displacements {(in.)

2 2.76 3.78 4,05

1 1.94 3.4 3.86
Story Drifts (%)

2 0.574 0.313 0.291

1 1.35 2.37 2.68

TABLE F.8 TIME-HISTORY RESPONSE QUANTITIES FOR X-BRACED FRAME DESIGN 2-H

Elastic Inelastic Inelastic + PA
Story Shear Coefficients
2 0.309 0.235 0.220
] 0.738 0.333 0.330
Story Displacements (in.)
2 1.28 1.83 1.68
1 0.956 1.59 1.48

Story Drifts (%)

2 0.278 0.212 0.139
1 0,664 1.1 1.03




164

TABLE F.9  TIME-HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 3-A

Elastic Inelastic Inelastic + PA

Story Shear Coefficients

3 0.184 0.137 0.134

2 0.351 0.233 0.221

1 0.499 0.253 0.241
Story Displacements (in.)

3 5.86 3.98 k.19

2 b1k 2,98 3.10

1 1.89 1.87 1.95
Story Drifts (%)

3 1.65 1.15 1.15

2 1.77 1.16 1.15

] 1.43 1.41 1.48

TABLE F.10  TIME~HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 3-B

Elastic. Inelastic Inelastic+ PA Inelastic + FEF

Story Shear Coefficients

3 0.249 0.199 0.194 0.192

2 0.331 0.301 0.304 0.299

1 0.467 0.442 0.438 0.436
Story Displacements (in.)

3 3.54 3.62 3.61 3.45

2 2.06 2.12 2.16 2.06

1 0.8L40 .0.832 0.857 0.805
Story Drifts (%)

3 1.26 1.33 i.32 1.22

2 0.989 1.01 1.03 0.993

1 0.636 0.630 0.649 0.610
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TABLE F.11 TIME~HISTORY RESPONSE QUANTITIES FOR X~BRACED FRAME DESIGN 3-C
Elastic Inelastic Inelastic + PA

Story Shear Coefficients

3 0.205 0.142 0.108

2 0.529 0.197 0.195

] 0.618 0.197 0.194
Story Displacements (in.)

3 3.53 4.03 3.71

2 2.99 3.69 3.44

1 1.61 2.87 2.95
Story Drifts (%)

3 0.406 0.281 0.215

2 1.05 0.711 0.614

] 1.22 2.18 2.23
TABLE F.12 TIME-HISTORY RESPONSE QUANTITIES FOR X-BRACED FRAME DESIGN 3-D

Elastic Inelastic inelastic + PA

Story Shear Coefficients

3 0.226 0.194 0.167

2 0.632 0.317 0.315

1 0f827 0.317 0.313
Story Displacements (in.)

3 2.74 2.4 2.34

2 2.37 2.17 2.17

1 1.34 1.70 1.70
Story Drifts (%)

3 0.278 0.239 0.207

2 0.779 0.426 0.409

1 1.02 1.29 1.29
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