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ABSTRACT

This report presents studies on the seismic analysis and

earthquake resistant design of steel low-rise shear buildings, moment

frame buildings, and X-braced frame buildings.

In the first portion of the study, a number of two- and three-story

buildings were designed according to the recommendations of modern

building codes. The forces and deformations generated in the buildings

under the North-South component of the El Centro 1940 earthquake were

assessed by means of time-history analysis. It was found that the base

story was the critical I ink in the lateral seismic load resisting system

for the shear buildings, the moment frame buildings proportioned with

weak columns, and the X-braced buildings considered. For the moment

frame buildings proportioned with strong columns and weak beams, inelastic

response was distributed fairly uniformly throughout the beams of the

buildings. From the results of the time-history studies, it appears that

inelastic deformations can be estimated from the elastic deformations

by means of the design rules that have been developed for single-degree­

of-freedom systems.

In addition, two simpler methods of analysis, the modal method used

in conjunction with inelastic response spectra and the quasi-static

building code approach modified to explicitly take inelastic behavior

into account, were evaluated for use in calculating response quantities.
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it was concluded that the quasi-static building code approach is the most

appropriate procedure for use in the practical design of low-rise steel

buildings of the types considered.

In the last section of the report, the application of the results of

these studies to the practical design of low-rise steel buildings is

discussed. A simplified design procedure that is in part similar to the

quasi-static building code approach presently recommended by the Applied

Technology Council II I study is discussed; the procedure appears to be

applicable at least to two- and three-story buildings. Comments concerning

other factors (redundancy, reserve strength, and so forth) that should be

considered in the design of low-rise steel buildings are made.
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1. INTRODUCTION

1. I Objectives of the Investigation

A major proportion of society's investment in building construction

is consumed on low-rise buildings. Most people spend some portion of each

day -- sleeping, working or living -- in buildings which can be classified

as low-rise. In the past, many of the available techniques of seismic

analysis and design have not been applied to this class of structures

mainly because the additional design costs are large relative to the value

of the buildings, the consequences of failure are considered to be small,

or the dynamic properties cannot be expressed simply in mathematical terms.

Thus, there is a need for procedures consistent with earthquake engineering

theory that can be simply applied to the design practice of low-rise

buildings.

The objective of the first portion of this investigation was to

determine the behavior of some low-rise buildings when subjected to

earthquake base motion. Step-by-step numerical integration of the

governing equations of motion (time-history analysis) was used for these

studies. In the second portion of this investigation, simplified analytical

procedures, specifically the modal method and the quasi-static building

code approach, were evaluated for use in predicting the dynamic response

of low-rise buildings. The objective of the final portion of the investiga­

tion was to discuss the application of the results of the studies in this

report to the design of buildings. The major emphasis of the

studies was on inelastic response as it affects the seismic design of

low-rise buildings.
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This study was limited in scope ~to planar two- and three-story

shear buildings, moment frame buildings, and X-braced frame buildings

subjected to one horizontal component of earthquake ground motion. It

was assumed that nonstructural components had an insignificant influence

on the seismic response, and that torsional and soil-structure interaction

effects could be ignored. A number of assumptions regarding the structural

properties were made in order to simplify the problem of analysis to one of

tractable proportions.

Although the studies were limited to a relatively small sampling of

buildings subjected to only one base motion, it is hoped the conclusions

drawn are general enough that certain limitations in current design

procedures might be isolated, and the gap between complicated methods of

analysis and simplified procedures of design might be lessened.

1.2 Previous Work

The problem of determining the dynamic behavior of building structures

during earthquake motion has been approached by a number of experimental

and analytical investigators. It has long been recognized that seismic

behavior cannot be reconciled on a purely elastic basis. Thus, much of

the recent research effort has been directed towards the determination

of the lateral load carrying capacity of structures in the inelastic

range. In the remainder of this section, reference is made to (a) pertinent

experimental and analytical investigations which lay the foundation for

the selection of the structural idealizations used in chapters to follow,

(b) analytical studies which have given insight into the earthquake

resistant design of buildings, and (c) some of the current methods of

earthquake design.



3

1.2.1 Behavior of Steel Members and Frames -- Considerable effort

in the development of the plastic design of steel theory has been directed

towards the determination of the collapse load of moment frames. Tests

(see for example Arnold, ~ ~., 1968) have shown that the monotonic lateral

load-deformation path observed in experiments can be closely predicted by

second-order elastic-plastic analysis (Galambos, 1968).

Recently much emphasis has been placed on determining the cyclic

hysteretic behavior of steel moment frame structures. The results of tests

by Popov and Bertero (1973) on girder subassemblages, by Carpenter and Lu

(1973) on frames, and others have shown hysteretic behavior to be remarkably

stable. The results indicate that after a number of load cycles, the

experimental ultimate strength can exceed the calculated monotonic load

by 30 percent or more. This increase in load carrying capacity is primarily

due to strain hardening and the beneficial effects of gravity axial loads

acting on column members. Stiffness deteriorates as the number of load

cycles increases because of the Bauschinger effect.

Local buckling of the flange or web of flexural members can lead to

strength and stiffness degradation on cyclic loading, and this must be

protected against in the proportioning of moment frames.

Analysts have attempted to use the results of cyclic load tests in

formulating structural models to account for the hysteretic behavior of

flexural members (Clough, et ~., 1965; Giberson, 1969). Some success

has been achieved in using these types of models in nonlinear time­

history analysis procedures to predict the behavior of dynamically

loaded steel frames (Tang, 1975).



4

The cyclic inelastic behavior of steel X-bracing is relatively

new and not well defined. The load history of a steel brace extends

from tensile yielding through compressive buckling. Although recent

tests (Hanson, 1975) indicate that models with more complicated hysteretic

behavior should be developed, the most commonly used is the elastoplastic

model with tensile yielding and zero buckling strength. Igarashi, et~.

(1973) have shown that this type of model predicts the dynamic behavior of

steel diagonal braces well, provided the slenderness ratios of the braces

are relatively large.

In summary, some of the basic factors which control the inelastic

response of steel members and frames to earthquake base motions have been

determined. It appears that more research is needed before simple analytical

models can be developed to account for many of these factors.

1.2.2 Analytical Investigations -- Inelastic analytical studies

generally fall in two categories: those based on spring-mass or shear-beam

systems, and those based on more complicated finite element models.

The former type of study attempts to model the macroscopic behavior

of a real structure. Work with single-degree-of-freedom systems with

elastoplastic resistances has led to the inelastic response spectra

proposed by Newmark (Veletsos ~~., 1965; Newmark and Hall, 1973 and

1976). Veletsos (1969) summarizes the results of investigations on

single-degree-of-freedom systems with various resistance functions.

Bazan and Rosenblueth (1974) have studied the combined effect of two

resistances in parallel, one representing frame action and the other

representing X-bracing. Penzien (1960), Veletsos and Vann (1971), and
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others have used elastoplastic shear-beam models to represent multi­

degree-of-freedom systems.

Studies on shear-beam systems are usually carried out over a wide

range of parameters with a minimum of expense. Design forces that would

be consistent with a given amount of nonlinear behavior during an earthquake

can be estimated for many one-story buildings directly from pUblished

results. Unfortunately, the results give little indication of the

individual member ductil ity requirements.

The latter type of study uses finite elements to model tall buildings.

Time-history calculations by Clough and Benuska (1967) on concrete frame

buildings and Goel and Hanson (1972) on a series of lightly braced steel

frames are representative of this class of investigation.

Studies using finite elements give insight into the ductility

requirements of the individual members of a frame. The behavior of

specific structures is indicated, but it is difficult to general ize the

results and apply them to the design of other structures.

1.2.3 Present Methods of Design -- In the quasi-static building

code approach (NBC, 1975; SEAOC, 1975; UBC, 1976; and so forth), the

design lateral base shear is calculated and the distribution of the base

shear as lateral loads over the building height is determined. These

lateral loads are applied to the building and a static analysis is

performed; members are proportioned to resist the forces thus obtained

elastically.

The code design approach has evolved empirically from observations

of building behavior during past earthquakes, and it is generally
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consistent with more complicated methods of analysis and design (Newmark,

1968). Buildings designed according to the lateral force provisions of

modern codes are expected to deform inelastically, withstanding ductilities

of 4 to 6 without collapse during major earthquakes.

The modal method used in conjunction with response spectra provides

a slightly more compl icated procedure for determining lateral design forces,

but one which is consistent with the principles of dynamic behavior.

Unfortunately, since superposition is used, the modal method is only

rigorously correct for 1inear elastic systems. However, Newmark and Hall

(1973) note that, ifdesign response spectra are modified to account for

nonl inear behavior, the method can be used to approximate inelastic

response ~uantities. In fact, some of the modern building codes (NBC,

1975; ATC, 1977) recommend this approach for complicated or important

structures.

It is appropriate to mention that the development of procedures for

the estimation of inelastic response quantities using the modal method is

presently an area of active research (Anderson and Gupta, 1972; Luyties

et ~., 1976; Shibata and Sozen, 1976).

In short, it is apparent that design procedures for low-rise buildings

must be simple and similar to prese~t practice in order to be utilized by

design engineers. It is likely that the quasi-static building code

approach, modified to explicitly take into account inelastic behavior,

is at present the most appropriate procedure for use in the design of

low-rise buildings.
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1.3 Scope of the Investigation

This report summarizes the methods used in, and the results of,

detailed studies on the seismic response and the earthquake resistant

design of low-rise steel buildings. It should be appreciated that for the

sake of brevity and understanding the methods and results are presented

in condensed form.

In Chaper 2 a series of two- and three-story low-rise steel buildings

are designed according to the quasi-static procedures recommended by modern

building codes. Also contained in Chapter 2 is a description of the ground

motion used for time-history calculations and the development of design

response spectra consistent with the ground motion. Appendix A contains

supplementary data pertaining to the building properties described in

Chapter 2.

The analytical procedures used for time-history analysis, modal

analysis, and the quasi-static building code approach calculations are

described in Chapter 3. Appendices B, C and D contain detailed descriptions

of the analytical procedures discussed in Chapter 3.

The results of very interesting studies on the dynamic response of

two-degree-of-freedom systems subjected to pulse base motion are contained

in Appendix E; the intent of these special studies was to provide a

theoretical basis on which to view the results of studies on more

compl icated building systems.

In Chapter 4 the results of time-history calculations on the building

designs are summarized with particular attention being paid to the

inelastic response, the story shear distributions, and the story displace­

ments and drifts. Also contained in Chapter 4 is an evaluation of the

modal method of analysis and the quasi-static building code approach for
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estimating the base story shear. Appendix F contains the detailed results

of the time-history calculations discussed in Chapter 4.

The application of the results of the studies recorded in this

report to the design of low-rise buildings is discussed in Chapter 5.

Procedures for proportioning structures to resist seismic motion with an

adequate margin of reserve strength are discussed.

To the authors' knowledge, this is one of the few studies that has

been directed specifically towards determining the inelastic response of

low-rise steel buildings of practical proportions to earthquake-ground

motion. The studies have indicated that complicated methods of analysis

are in general not necessary for use in analyzing commonly employed

low-rise building frames. Also, the studies carried out have provided

further confirmation of the fact that the design rules applicable to

single-degree-of-freedom systems can be used to predict the dynamic

response of (and can be used in the design of) low-rise buildings. In

addition, in contrast to studies on simple systems, these studies on

framing systems have pointed out clearly areas where additional research

impacting practical design is required. For example, there is a tendency

for yielding to be concentrated in the columns of well-designed low-rise

buildings. As yet there are no easy-to-use and reliable procedures for

evaluating the strength-deformation capacities of yielded columns

subjected to thrust and end moment, especially where bracing against

instability is lacking. Also, the role of secondary resisting systems,

redundant resisting systems, and methods for evaluating the margin of

safety or reserve strength under dynamic load reversal remain to be

investigated.



9

1.4 Notat ion

The symbols used in the text are defined where they are first

introduced. For reference purposes~ they are also defined here. A

superscript dot above a symbol indicates one differentiation with

respect to time. A Greek delta prefix to a symbol indicates an

incremental quantity.

a = maximum ground acceleration~ or inelastic hinge length

A = cross-sectional area

A = spectral acceleration for the n-th mode of vibrationn

[A] = pseudostatic structural stiffness matrix

b = coefficient of proportionality between mass and da.mping

{B} = pseudostatic structural load vector

c. = coefficient relating the yield displacement of the i-th
I spring to the maximum relative displacement observed

when the system responds elastically

[c] = structural damping matrix

d = maximum ground displacement

D = spectral displacement for the n-th mode of vibration
n

D.L. = dead load

E = modulus of elasticity

E.Q. = earthquake load

f = frequency of vibration for a single-degree-of-freedom system

f = frequency of vibration for the n-th mode
n

F = axial stress permitted in the absence of bending moment
a

F
b

= bending stress permitted in the absence of axial force

F = design lateral force at the x-th floor
x

F yield stress
y
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{F} = vector of design lateral forces, or vector of resisting
forces due to structural stiffness

[F] = structural flexibility matrix

{g} = end moment vector for a simply supported (constrained)
flexural element

{G} = total element end force vector

{G
E

} = element end force vector calculated from material properties

{G } = element end force vector calculated from geometric properties
G

{G } = element fixed end force vector
0

h = story height

h.,h = height of the j-th or x-th story
I x

= moment of inertia

k = story stiffness, or stiffness of a spring

= entries to the simply supported (constrained) flexural
element stiffness matrix

L = length of a flexural element, or horizontal length
between columns

Lb = length of an X-brace

L. L. = live load

m = mass, or mode number

m. = mass of the i-th story, or mass concentrated at the
I i-th degree-of-freedom

M = plastic moment capac i ty
P

M = plastic moment capac i ty reduced to ta ke ax ia I load
pc effects into account

[M] = mass matrix

['" MJ = d iagona I mass matrix

n = mode number, or number of cycles of iteration in the
initial stress procedure
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N = number of lateral translational degrees-of-freedom,
number of stories, or axial force used to obtain the
element geometric stiffness matrix (positive in compression)

P axial force (positive in compression)

p = yield axial forcey

{p} = structural load residual vector used in the ini tial stress
procedure

qm,qn = generalized coordinate in the m-th or n-th mode of vibration

Q = story shear capacity, or story shear resisted by an
X-brace subassemblage

Q. =
I

(Qi) code =

(Qi) 0 =

(Qi) prob =

force in the i-th spring

force in the i-th spring calculated using the quasi-static
building code approach

force in the i-th spring calculated by combining modes
using the sum of the absolute values of modal quantities
approach

maximum force in the i-th elastic spring

force in the i-th spring calculated by combining modes
using the square root of the sum of the squares of modal
quantities approach

(Q. ) = yield force in the i-th elastoplastic spring
I y

(Qi)lst = force in the i-th spring in the first mode

{R} structural load residual at the beginning of a time step

[5] =

[S~':] =

t

complete structural stiffness matrix

structural stiffness matrix condensed to include only
story displacements

element stiffness matrix calculated from material properties

geometric element stiffness matrix

time

t l = measure of the duration of the pulse base motion

[T l ] = transformation matrix
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[T2] = transformation matrix

u = relative story displacement, or relative spring
displacement for a single~degree~of-freedom system

u. = relative displacement of the i-th spring
I

u = maximum relative story displacement, or maximumm relative displacement for a single-degree of-
freedom system

u = permanent setps

u = story yield displacement, or yield displacement for
y a single-degree~of-freedom system

(u.), m = maximum relative displacement of the i-th elastoplastic
spring

(u. )
I 0

(u.) prob =
I

maximum relative displacement of the i-th spring calculated
by combining modes using the sum of the absolute values
of modal quantities approach

maximum relative displacement of the i-th elastic spring

maximum relative displacement of the i-th spring calculated
by combining modes using the square root of the sum of the
squares of modal quantities approach

(u.) = yield displacement of the i-th spring
I y

{u} = total end rotation vector for a simply supported
(constrained) flexural element

{U} = element end displacement vector

v = maximum ground velocity

{v} = structural story dis~lacement vector relative to the base

{v(m)},{v(n)}=structural story displacement vector relative to the base
in the m-th or n-th mode of vibration

v = design base shear

V = measure of the yield displacement of an elastoplasticy spring in a single-degree-of~freedom system

(V. ) = measure of the maximum relative displacement of the i-th
I 0 elastic spr ing

(V. ) = measure of the yield displacement of the i-th spring
I y

w.,w = weight of the i-th or x-th story
I x
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W= building weight

W.L. = wind load

x = base (ground) displacement

Z = plastic section modulus

a =maximum inelastic hinge rotationm

{a} = inelastic (hinge) end rotation vector

B = parameter in Newmark1s B-Method equations

y = parameter in Newmark1s B-Method equations

Yn = participation factor for the n-th mode of vibration

£ = phase angle for the n-th mode of vibration
n

eh = inelastic hinge rotation capacity

{e} = structural rotation vector

~ = story ductility, or ductility for a single-degree-of-freedom

~' = ductility of the j-th spring
I

~n = percent critical viscous damping in the n-th mode of vibration

average curvature in the inelastic region of a beam
during its critical loading

~ = plastic curvature
p

ep*.= design plastic curvature
p

fep(m)},{ep(n)}=mode shape of the·m-th or n-th mode of vibration

¢. (n) = normalized amplitude of the n-th mode shape at the i-th story
I

{~(n)} = normalized mode shape of the n-th mode of vibration

w= circular frequency of vibration for a single-degree-of­
freedom system

Wn = circular frequency of vibration for the n-th mode

wdn = damped circular frequency of vibration for the n-th mode

{a} =zero vector

{l} = unit vector



[ I ] = identity matrix

{ }T = transposed vector

[ ]T = transposed matrix

14
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2. BUILDING DESIGNS

2.1 Introduction

In this chapter several two- and three-story buildings are designed

to resist earthquake motion using the quasi-static building code approach

to determine lateral loads, and the steel design specifications of the

AISC (1969) to size members. The buildings designed provide the ensemble

of structures used in the analytical and behavioral studies discussed in

Chapter 4. Also presented is a description of the base motion used for

time-history analysis, and the construction of the Newmark-Hall elasto­

plastic design response spectra used for modal analysis and building code

calculations in Chapter 4.

2.2 Ground Motion

The North-South component of the El Centro 1940 earthquake is

believed to be representative of a strong base motion which has a

reasonable probability of occurrence in a highly seismic zone. The

particular digitalized accelerogram used in this study had a maximum

ground acceleration (a), velocity (v) and displacement (d), of 0.318 g,

13.0 in./sec and 8.40 in., respectively. The maximum ground motions

and the elastic response spectrum for this record are shown in Fig. 2. I.

Also shown are elastic and elastoplastic design spectra, consistent with

the maximum ground motions listed above, constructed using the rules

given by Newmark and Hall (1973). All spectra are plotted for 5 percent

critical viscous damping.

The ductility factor for a single-degree-of-freedom elastoplastic

system is defined as
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u
m

11 =­
u

Y
(2.1)

in which u and u denote the maximum displacement of the oscillatorm y

relative to the ground during seismic motion and the maximum elastic or

yield displacement, respectively. The design spectra plotted in Fig. 2.1

represent the peak elastic response (acceieration and yield displacement)

for a series of elastoplastic oscillators.

2.3 Design Criteria

The base shears, V, used in seismic design were selected on the basis

of recommendations contained in modern building codes. The base shear

coefficients recommended by several building codes for use in calculating

design forces in zones of maximum earthquake hazard are tabulated in Table

2.1. The entries to the table represent the limiting (maximum) values of

the base shear normalized by the building weight, W, for low-rise buildings

on stiff ground. The base shear was distributed over the building height

according to the following formula:

w.h.
I. i

w h
F = V __x--,-x_
x N

L:
i=l

(2.2)

in which w , w. and h , h. represent the story weight and height of the
'x I x I

building at the x-th or i-th story, and N denotes the total number of

stories. Since it is generally not required by the building codes for

low-rise buildings, no concentrated lateral force at the top of the

structure was included in Eq. (2.2).

The design external pressure due to wind on the buildings was

assumed to be 20 psf. For design the lateral deflection of the buildings
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per story arising from wind and gravity loading was limited to 1/500 of

the story height.

Hember sizing was accomplished by the specifications of the AISC

using type A36 steel with a yield stress, F , of 36 ksi and a modulus of
y

elasticity, E, of 30,000 ksi. The members were designed for dead plus

gravity live loading (D.L. + L.L.), dead plus gravity live plus earthquake

loading (D.L. + L.L. + E.Q.), and dead plus gravity live plus wind loading

(D.L. + L.L. + W.L.), the loads for the latter two cases being multiplied

by a 0.75 probability factor. *

Beam members in moment frame buildings were assumed to be capable

of developing their plastic moment capacities. For moment frames and

shear buildings, it was assumed that column members could develop their

reduced plastic moment capacities calculated according to the strength

interaction formula (AISC Formula 2.4.3)

Mpc
p

1.18 (l--p) M <M
p - p

y
(2.3)

in which M (= F Z) denotes the plastic moment capacity and P (= F A)
P Y Y Y

denotes the yield axial load capacity of the section. In Eq. (2.3).

Z and A represent the plastic section modulus and the cross-sectional

area of the member. The axial load, P, acting on the column during

dynamic motion was obtained using the concept of tributary area** and

was assumed to be constant.

* For convenience in this study, rather than increasing the resistance
function by a factor of 1.33 for the (D.L. + L.L. + E.Q.) and (D.L. +
L.L. + W.L.) loadings, the loads were multiplied by a factor of 1/1.33=
0.75. In thi sway, stresses for the three load cases coul d be compared
to the same allowable values.

** One-half of the span between adjacent columns was used to calculate
tributary areas (NBC, 1975, Commentary G).
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The connections in shear buildings and moment frame buildings were

assumed to develop the full capacities of members framing into a joint

and to be rigid (unless noted otherwise). Column bases were considered

to be fix-ended.

For X-braced frames, it was assumed that the bracing members could

develop their full tensile strengths based on gross area. The connections

of columns were assumed to resist no moment and to be completely flexible.

It was assumed that 20 percent of the transient live load contributed

to the building weights and column axial loads during earthquake motion.

Thus, floor masses and axial loads were calculated for a dead plus 20

percent gravity live loading [D.L. + 0.2(L.L.)].

For.purposes of design and analysis, it was assumed that each seismic

load resisting frame in a building could be considered separately. Thus,

it was assumed that the individual frames about each horizontal axis of

a building vibrated in phase for seismic motion in a given horizontal

direction. Also, it was assumed that mass was lumped at points of

horizontal story translation,

It is to be noted that some of the building designs described

in this chapter are not necessarily examples of good seismic design.

Rather, the buildings were proportioned so that some of the more

interesting aspects of seismic behavior could be studied. In particular,

shear building Design 2-C and X-braced building Designs 2-G and 3-C,

because of their relatively low base shear capacities, were subjected

to large deformations during earthquake excitation. Also, some of the

members in Designs 2-D and 2-E were overstressed under the building code

loadings.
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2.4 Building Descriptions

Information pertaining to the building designs studied is contained

in Tables 2.2, 2.3 and 2.4, and is shown in Figs. 2.2 and 2.3. The

information recorded is for the most part self-explanatory; however, a

few general comments are made here for clarity. The symbol f
1

used in

Fig. 2.2 denotes the fundamental frequency of vibration. The seismic

design forces and the modal properties of the building designs are

presented in Appendix A.

The first group of designs was for a portion of a two-story building

with three bays in the assumed direction of earthquake motion and a frame

spacing of 32 ft in the perpendicular direction, Fig. 2.2(a), (b) and (c).

The loadings tabulated in Table 2.2 were assumed to include exterior

cladding weight.

Buildings with extremely stiff and strong girders (shear buildings),

Designs 2-A, 2-B and 2-C shown in Fig. 2.2(a), were designed for a base

shear coefficient of 10 percent. Of course, the design stresses as

percentages of the AISC allowable stresses tabulated in Table 2.4 indicated

that the actual base shear coefficients were different from the design

value. The values tabulated in Table 2.4 refer to the design stresses

in the most highly stressed members in the structures. For buildings with

extremely stiff and strong girders, the maximum stresses occurred in the

base story interior columns. As would be expected, the design stresses

for Design 2-A, composed of W12 x 58 sections, were much less than those

for Design 2-C, composed of w8 x 24 sections.

The moment frame buildings shown in Fig. 2.2(b) also were designed

for a base shear coefficient of 10 percent. In this case, the problem

of design was complicated since there were many possible combinations
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of column and beam sections resulting in adequate structures. Both Designs

2-D and 2-E were designed such that yielding tended to be confined to the

columns. Conversely, Design 2-F was sized according to the strong column,

weak beam philosophy. Design stresses in critical members are presented

in Table 2.4. Design 2-D represents a well-designed building for which the

design stresses in the critical column members and the critical beam

members are on the same order of magnitude. The stresses are slightly

less than the allowable stresses. Conversely, the critical columns of

Design 2-E and the critical beams of Design 2-F are overstressed under

the building code loadings.

X-bracing was used for seismic load resistance in Designs 2-G and

2-H shown in Fig. 2.2(c). For this type of structure, ignoring the second

order effects, only lateral forces contribute to stress in the bracing

members. As a result, the member cross-sectional areas listed correspond

to member sizes required to resist the given base shear coefficient at 100

percent of the AISC allowable stress. As mentioned previously, it was

assumed that the connections of columns to beams were completely flexible

in these frames.

Three-story buildings comprise the final group of structures studied.

The ductile moment resisting frame building design shown in Fig. 2.3 was

taken, with minor changes, directly from Army, Navy and Air Force (1973)

Design Example C-2. The floor loadings given in Table 2.3 and an exterior

cladding weight of 4 Ib/ft2 were used to calculate the seismic weights.

The roof diaphragm for this building was assumed to be perfectly flexible,

and the floor diaphragms were assumed to be perfectly rigid. In the

reference cited, the lateral design forces were obtained using the SEAOC
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(1968) recommendations for a Zone 3 earthquake hazard. The design

forces were consistent with a 5 percent base shear coefficient.

For this building only the frames along lines A, C, 1,4 and 7 shown

in Fig. 2.3 are lateral load resisting. In the East-West direction, from

consideration of symmetry, 1/2 of the lateral load is resisted along each

of the exterior walls (lines A and C). Each exterior wall is composed of

two identical frame subassemblages which, by stiffness, attract 1/4 of the

lateral load. Design 3-A shown in Fig. 2.2(d) represents such a

subassemblage.

The behavior in the North-South direction is compl icated because the

roof diaphragm is flexible and the floor diaphragms are rigid. A rigorous

dynamic analysis would require the idealization of the building as three

frames in parallel (the frames along 1ines 1, 4 and 7, Fig. 2.3), the first­

and second-story levels of all frames being constrained to vibrate with

the same displacement, and the roof of each frame being allowed to vibrate

independently. However, for simplicity it was assumed that the vibration

of the central frame (line 4) was independent of the other frames, and 1/2

of the roof weight and 1/3 of the floor weights were tributary to it. The

structural idealization in the North-South direction, Design 3-B, is shown

in Fig. 2.2(d). Stresses in critical members for both Designs 3-A and 3-B

under the design loadings are tabulated in Table 2.4.

Designs 3-C and 3-D shown in Fig. 2.2(e) were for the building

configuration illustrated in Fig. 2.3, but it was assumed that lateral

resistance was provided by X-bracing along lines A and C. The relatively

large design base shear coefficients selected were in line with the

requirements of modern building codes for X-braced buildings in zones of

maximum earthquake hazard.
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3. ANALYTIC PROCEDURES

3. I Introduct ion

This chapter contains a brief description of (a) the step-by-step

numerical integration (time-history) procedure used to solve the coupled

equations of motion which govern the dynamic behavior of low-rise buildings,

(b) the modal method as used in conjunction with inelastic response

spectra, and (c) the quasi-static building code approach modified to

explicitly take inelastic behavior into account. The methods described

are limited to planar structures founded on a rigid base and subjected to

one horizontal component of earthquake base motion. The computational

techniques described were used to perform the analytical and behavioral

studies discussed in Chapter 4.

In an attempt to 1imi t computat iona 1 effort it was necessary to make

several simplifying assumptions. Some of the assumptions are discussed in

the following sections. The use of simplified analytical models permitted

the study of the fundamental parameters which control the inelastic dynamic

response of low-rise buildings.

3.2 Time-History Analysis

3.2.1 Mass and Damping -- For the buildings considered in this study,

it was assumed that mass was lumped at points of horizontal story trans­

lation. The resulting mass matrix was diagonal with nonzero entries only

for translational degrees-of-freedom. Under this assumption, it was

possible to formulate the equations of motion in terms of a set of ordinary

differential equations.
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Damping was assumed to be proportional to mass, and the arbitrary

constant of proportionality (Appendix B, Section B.3) was adjusted so that

5 percent critical viscous damping in the first mode of vibration resulted.

Since inelastic hysteretic behavior was taken into account explicitly when

establishing the structural stiffness, it was felt that this relatively low

value of damping was justified. The higher modes of vibration were damped

less strongly than the first mode using this formulation.

3.2.2. Element Stiffness -- Flexural members were assumed to resist

end rotation in an elastoplastic manner. The moment-rotation diagram shown

in Fig. 3. I represents the hysteretic behavior of a typical flexural element

subjected to moment at one of its ends. Until the end moment capacity of

the member is reached, the elastic resistance curve passing through the

origin is followed. If the moment capacity is reached, an inelastic hinge

forms and subsequent end rotation occurs without increase in end moment.

If the direction of end rotation is now changed, unloading follows a curve

parallel to the initial elastic curve. Subsequent loading or unloading is

along the offset elastic curve until the end moment capacity of the member

is again reached.

The flexural element end moment-rotation relationship used ignores

any increase in moment capacity resulting from strain hardening, and any

decrease in elastic stiffness caused by the Bauschinger effect.

The hysteretic story shear-displacement relationship used for X-braced

frames is shown in Fig. 3.2. On first loading it is assumed that the

compression brace buckles out of the way and the tension brace carries

the lateral load elastically. If the lateral load is increased a sufficient
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amount, the tension bar yields in an elastoplastic manner. If the direc-

tion of load is now reversed, and the ·tension bar is unloaded, the lateral

force will not experience any resistance to deformation until the system

passes back through its initial configuration of zero displacement. The

bar, which had formerly buckled in compression, now is in tension and

carries load as described for the tension bar above. On subsequent load

cycles, the tension bar begins to carry load when the displacement equals

the maximum deformation in the last cycle minus the elastic recovery.

Igarashi, ~~. (1973) have shown that this model predicts the dynamic

behavior of steel diagonal braces well, provided the slenderness ratio is

greater than 2TI~ (or 181 for A36 steel). For the low-rise buildings
y

considered in this study, the slenderness ratios were greater than this

value.

As a story displaces relative to the story below, geometric forces

are caused by gravity loads acting on column members. These secondary

load-displacement (P~delta) effects must be opposed by the lateral load

resisting system. The stiffness matrices for flexural and X-braced

frame elements were modified to take account of P-delta effects.

The detailed derivations of element stiffness properties are given

in Appendix C.

3.2.3 Method of Solution -- Once the structural properties were

established, the equations of motion were assembled by conventional

matrix procedures and solved using time-history analysis. In performing

the time-history analyses, the response history was divided into a

number of small increments in time, and the change in response during
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each increment was calculated for a linear system having stiffness

properties determined at the beginning of the time increment. Since

structural stiffness changed with the member states of inelasticity,

calculations advanced in a step-by-step manner in the time domain for

a series of linear systems with changing stiffness properties.

The basic feature of the incremental time-history analysis procedure

is the transformation of the ordinary differential equations of motion

into a set of incremental algebraic equations. The transformation was

accompl ished in this study by using the expressions of Newmark (1959)

with S = 1/6.

The details of the numerical procedure are found in Appendix D.

3.3 Modal Method

In the modal method calculations referred to in Chapter 4, inelastic

behavior was taken into consideration by using inelastic design response

spectra to obtain the modal response quantities. For a given building,

the spectral ordinates used were consistent with 5 percent critical viscous

damping and a constant value of the ductility factor for all modes of

vibration. The elastic mode shapes and frequencies were used for both

elastic and inelastic response calculations. The total response was

obtained by taking the sum of the absolute values of the modal quantities.

A summary of the modal method as it was used for inelastic response

calculations in this study is as follows:

(1) Obtain the frequencies and mode shapes of elastic vibration

for the given building.

(2) Select the design response spectrum consistent with the
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desired degree of inelastic response. The design response spectra used

were inelastic maximum acceleration or yield displacement spectra.

(3) By means of the conventional procedure for elastic systems t

calculate the yield (maximum) forces and the yield displacements using

the modal method in conjunction with the design response spectrum.

(4) Multiply the yield displacements by the selected ductility

factor to obtain the maximum inelastic displacements.

3.4 Building Code Approach

In using the quasi-static building code approach in Chapter 4 t

the base shear was calculated by multiplying the mass of the building

by the spectral acceleration in the first mode of vibration. Inelastic

behavior was taken into consideration by using inelastic response spectra

to obtain the spectral accelerations.

A detailed discussion of the modal method and the building code

approach is found in Appendix B.
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4. RESULTS OF THE ANALYSIS

4.1 Introduction

This chapter is devoted to the discussion of the results of analytical

studies on the building designs described in Chapter 2. The results of

time-history behavioral studies using the digitalized El Centro earthquake

record for base motion are discussed. Calculations using modal analysis in

conjunction with design response spectra consistent with the El Centro base

motion are compared to the results of the time-history studies. The quasi­

static building code approach for obtaining the design base shear, modified

to explicitly take inelastic behavior into account by use of response

spectra, also is reviewed in light of the time-history calculations.

4.2 Building Behavior Determined from Time-History Calculations

Time-history analysis was carried out according to the methods

described in Chapter 3. Each building design was analyzed under the

following assumptions (shown schematically in Fig. 4.1):

(1) Elastic - The structural members were assumed to respond in a

linearly elastic manner under all displacements.

(2) Inelastic - Yielding was assumed to occur (a) when the plastic

moment capacities of beam members were exceeded, (b) when the reduced

plastic moment capacities of column members were exceeded, and (c) when

the story yield displacements of X-braced frames were exceeded.

(3) Inelastic + P~ - Yielding was assumed to occur, and column

and X-braced frame stiffnesses were reduced to take geometric effects

resulting from gravity axial loads into account. The influence of gravity

axial loads on the response, referred to as P-delta effects in this study,
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was physically modelled by links (false members) subjected to axial force.

The links subjected to axial force shown in Fig. 4.I(c) depend on the

column members or ~he X-braced frame for stability under lateral story

displacement. The abbreviation Pn, standing for the influence of gravity

axial loads on the response, is used only when the inelastic + Pn analysis

case is referred to in the text.

For the three cases listed above, it was assumed that only lateral

loads contributed to the first order member forces. An additional

analytical assumption was made for some of the moment frame building

designs:

(4) Inelastic + FEF - Yielding was assumed to occur and gravity loads

were assumed to be present on the beam members during seismic motion. At

the beginning of the time-history analysis, fixed end forces and moments

were appl ied as equivalent joint loads to account for gravity loads acting

on the beam members. The gravity loads acting were calculated from a dead

plus 20 percent gravity live loading [D.L. + 0.2(L.L.)]. The abbreviation

FEF, standing for fixed end forces and moments, is used only when the

inelastic + FEF analysis case is referred to in the text.

In Section 4.2.3 story shears, and in Section 4.2.4 story displacements

and drifts, are sometimes referred to as "design" quantities. The design

quantities were obtained from the earthquake loadings used to proportion

the buildings in Chapter 2.

In the following sections, the most important results of the time­

history calculations are discussed. In cases where the results of the

inelastic + Pn analysis and the inelastic + FEF analysis were nearly the

same as those for the inelastic analysis, only the results of the
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inelastic analysis are discussed. The detailed numerical data are

presented in Appendix F.

4.2. I Overview of Results -- This section contains a brief overview

of the significant trends observed from the time-history response calcula­

tions. The intent is to familiarize the reader with the manner in which

the three types of buildings considered in this study (shear buildings,

moment frames, and X-braced frames) behaved generally during the El Centro

base motion. The structural configurations of the buildings studied are

shown in Fig. 2.2.

The first observations involve those structures proportioned with

fairly uniform story shear strengths over the building heights. The

structures in this category were the shear building designs, the moment

frame buildings designed so that yielding was forced into the columns,

and the X-braced building designs. For these buildings it was found that

the first story tended to be the weak link in the seismic load resistant

system, and as a result, inelastic deformations were concentrated in the

base story. The upper portions of these buildings remained elastic or

responded in only a slightly inelastic manner.

By contrast, for the moment frame buildings proportioned with weak

beams and strong columns, yielding was distributed fairly uniformly

throughout the beams of all stories. It was found that the presence of

gravity loads on the beam members of these buildings had a marked influence

on the location of inelastic hinges during seismic motion.

The story shears attracted during earthquake motion depended on the

location and magnitude of inelastic behavior within the buildings. For
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buildings with yielding concentrated in the bottom stories (shear buildings,

moment frame buildings designed so that yielding was forced into the

columns, and X-braced buildings), the inelastic analysis case shears were

fairly uniformly distributed over the building heights and were reduced

from the elastic analysis case shears. The reductions were largest in

the first stories.

Conversely, for the moment frame buildings designed with strong

columns, the inelastic story shears observed were only slightly reduced

from, and had the same distribution as, the elastic shears. The response

of these buildings under the El Centro base motion was nearly elastic on

an overall scale.

When the deformations that occurred under the elastic analysis case

were compared to the inelastic analysis case deformations for buildings

with inelastic response concentrated in the base story (shear buildings,

moment frame buildings designed so that yielding was forced into the

columns, and X-braced buildings), it was observed that yielding tended to

concentrate the deformations in the base story and reduce the deformations

in the upper portions of the building. For the shear buildings and moment

frame buildings designed so that yielding was forced into the columns, the

inelastic deformations were equal to or slightly less than the deformations

for the elastic case. The inelastic deformations of the X-braced buildings

were often significantly larger than the elastic deformations.

For moment frames proportioned with strong columns and weak beams,

the elastic and inelastic deformations were for all practical purposes

the same.
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It is the purpose of the following four sections to evaluate in detail

the time-history response of some low-rise steel buildings subjected to

earthquake base motion. Particular emphasis is placed on the application

of the results to the design of low-rise buildings.

4.2.2 Inelastic Response -- The locations where inelastic behavior

tends to be concentrated within a structure during seismic motion, the

magnitude of inelastic response, and the capacity of members to resist

inelastic deformations are of interest to design engineers. Unfortunately,

it is often difficult to determine how a building responds in the inelastic

range without resorting to complicated time-history calculations. In this

section the locations of inelastic response and the magnitudes of inelastic

deformations of some low-rise steel buildings are determined from time­

history calculations.

On reaching th~ir plastic moment capacities, the flexural members

making up shear buildings and moment frame structures form inelastic

hinges. The maximum inelastic hinge rotations and the locations of

inelastic hinges observed during the earthquake base motion are illustrated

in Fig. 4.2 for the buildings studied. It can be seen that the inelastic

hinge rotations were concentrated in the first-story columns for the two­

story shear buildings, Designs 2-A, 2-8 and 2-C. This might have been

anticipated since the maximum response usually occurs in the first-story

for shear-beam systems in the high or medium frequency ranges during

seismic motion.

Similarly, for moment frame Designs 2-D, 2-E and 3-A (buildings

proportioned so that yielding was forced into the columns), the maximum
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inelastic hinge rotations were found to be at the tops and bottoms of

the first-story columns.

The response of moment frame buildings designed such that yielding is

forced into the beams is strongly influenced by gravity loads acting on

beam members. In Fig. 4.3 bending moment diagrams for a beam element under

gravity load and increasing lateral load are compared to those for a beam

element subjected only to increasing lateral load. For the combined loading

case, yielding first occurs at the end of the beam where the moments

resulting from the two types of loading are of the same sign. On subsequent

increase in lateral load, yielding occurs either in the interior or the

opposite end of the yielded beam, depending on the magnitude of the gravity

loads and the beam moment capacity. Conversely, for the lateral load only

case, yielding is restricted to the beam ends.

Moment frame building Designs 2-F and 3-B were designed according to

the strong column, weak beam philosophy. It was observed that inelastic

response occurred in the beams of building Design 2-F (Fig. 4.2) for the

inelastic + FEF case; no yielding occurred in any of the members of Design

2-F for the inelastic analysis case. In this study the magnitudes of

moments resulting from lateral loads were not large enough to cause two

inelastic hinges to form in any of the beams at anyone time during the

response history. For Design 3~B yielding occurred for both the inelastic

and inelastic + FEF analysis cases. Agai'n, most of the beam members under

the inelastic + FEF case could have resisted more lateral load than was

caused by the EI Centro base motion. As a matter of practical interest,

building Designs 2-F and 3-B had a margin of reserve strength that was

not available for the moment frame buildings proportioned so that yielding
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was concentrated in the columns. Also t the inelastic action was more

uniformly distributed throughout the frames for Designs 2-F and 3-B than

it was for the designs with yielding concentrated in the columns.

The cumulative hinge rotations, defined as the sum of the absolute

values of all the inelastic rotations occurring at a given hinge location

during dynamic motion, are of interest. As can be seen from the schematic

representation in Fig. 4.4 t the ratio of the cumulative to maximum hinge

rotation serves as an indication of the amount of inelastic load reversal

or cyclic response that has occurred at a given hinge location. For the

buildings considered in this study, the normalized cumulative hinge

rotations were small numbers, in general less than about 6 t suggesting

that significant inelastic load reversal made up a relatively small portion

of the total response history. The cumulative rotations, normalized by the

corresponding maximum hinge rotations, are presented in Appendix F (Figs.

F.I, F.3 and F.4(b» for the moment frame and shear building designs

considered.

Popov and Bertero (1973) have presented a simple formula for

estimating the available inelastic hinge rotation capacitYt 8ht that an

inelastic region of beam can develop during its critical loading after it

has been subjected to several cycles of load reversal. The expression

has been developed from consideration of the results of cyel ic tests on

a number of cantilever steel beam specimens. The suggested formula is

in which ~ /¢ is the normalized hinge curvature capacity selected from
av p

.'-

experimental results and ¢" is the plastic curvature used in design.
p
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The quantity ~ denotes the average curvature in the inelastic zoneav

during the critical loading, and ~ (= M lEI) denotes the plastic curvature
p p

of the given section. The length of the inelastic hinge, a, is estimated

from knowledge of the shape of the moment diagram and the strain hardening

characteristics of the material.

In Table 4.1 the maximum hinge rotations observed in the columns of

some of the buildings considered in this study are compared to the maximum

hinge rotation capacities calculated using Eq. (4.1). In performing the

calculations, it was assumed that Eq. (4.1) is appl icable to 1 ightly loaded
-'.

columns and that~" = M lEI. In order to estimate the hinge length, it
p p

was assumed that the columns were bent in antisymmetric double curvature

and that .the ratio of maximum end moment to the plastic moment capacity

was 1.15. A reasonable value of the quantity ~ I~ was estimated to beav p

7.5.* These numbers were selected so that conservative estimates to the

hinge rotation capacities were obtained. It can be seen that the maximum

inelastic hinge rotations observed during the time-history calculations

were less than the rotation capacities in all cases.

The inelastic behavior of X-braced buildings is measured in terms

of story ductil ity factors calculated by dividing the maximum relative

story displacements by the yield relative story displacements. It can be

seen from Table 4.2 that the maximum inelastic response occurred in the

first-story for the two- and three-story building Designs 2-G, 2-H, 3-C

and 3-D. (In Table 4.2 a ductility of less than one denotes elastic

response. )

* The normal ized hinge curvature capacity was estimated from the data
recorded in Table 3 of the article by Popov and Bertero.
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For the low-rise buildings studied. the following observations about

the locations of inelastic response and the magnitudes of inelastic

deformations can be made:

(1) The maximum inelastic response was concentrated in the base story

for all designs except moment frames with weak beams. Such behavior is

thought to be typical of many types of low-rise buildings of practical

proportions. provided the fundamental frequency of vibration is in the high

or medium frequency range of the elastic response spectra.

(2) For moment frames proportioned such that yielding was forced into

the beams. yielding was spread throughout the buildings in a fairly uniform

manner and gravity loads acting on beam members had an important influence

on the locations of inelastic regions within the structures.

(3) The inelastic hinge rotations observed for the shear buildings

and the moment frame buildings with inelastic deformations concentrated in

the columns were smaller than the limit capacities estimated by the

procedure of Popov and Bertero.

4.2.3 Story Shear -- In proportioning a building to resist seismic

motion. member sizes are usually selected to resist specified story shears.

It is of interest. therefore. to discuss the shear distributions observed

for the building designs during the El Centro base motion. As would be

expected. the shear distributions depended on the inelastic response.

The story shears attracted by the buildings. normalized by the total

building weights. are shown in Fig. 4.5. The normalized shears designated

as "designll represent the shears used to proportion the buildings in

Chapter 2. The most notable feature of the story shear diagrams for shear
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building Designs 2-A t 2-B and 2-C is that the distributions for the elastic

and inelastic cases were of different shapes. Upon yielding in the base

stories t the shear distributions became more uniform over the building

heights. Moreover, even though the second stories responded elastically

for the inelastic analysis case t the second-story shears were reduced from

those observed for the elastic case.

The behavior of moment frames proportioned so that yielding was

concentrated in the first-story columns t Designs 2-D t 2-E and 3-A, was

similar to that observed for the shear buildings.

Conversely, even though yielding occurred in the beam members of moment

frame Designs 2-F and 3-B, the story shears for the inelastic + FEF analysis

case were not significantly different than the elastic values. On an overall

scale the response of these frames was nearly elastic.

For X-braced building Designs 2-G, 2-H, 3-C and 3-D, the inelastic

story shears were much smaller than the elastic shears. The inelastic shear

distributions were relatively uniform over the building heights and; in fact,

for Designs 2-G, 3-C and 3-D both the first and second stories reached their

yield capacities. The behavior in yielding was, of course, similar to the

other designs with inelastic response concentrated in the first story.

The story shears for the yieldfng buildings plotted in the figure can

be compared to the design values. It is clear that the shear buildings

and the moment frame buildings had base shear capacities far exceeding the

design values. Of course, this was to be expected since some of the members

in many of these designs were stressed below the AISC (1969) allowable

values, and an effort was made to use common section sizes throughout.

In addition, during the earthquake motion the instantaneous live load was



37

assumed to be less than the design live load. For these buildings member

strength that was assumed to be needed to resist gravity load in design

was, in fact, available to resist lateral load.

On the other hand, only lateral load contributes to the first order

stresses in X-braced frames, and the nature of X-bracing members is such

that they can be sized close to the intended design strengths. Therefore,

the story shears for the X-braced frames were near the design values.

From these studies on some two- and three-story steel buildings,

the following observations about the story shear distributions during the

El Centro base motion can be made:

(1) The inelastic story shear response for shear building, moment

frame, and X-braced building designs was similar when yielding was

concentrated in the first story in that the distribution of the story

shears over the building heights tended to become fairly uniform. As a

result, the elastic and inelastic story shear distributions were not of

the same shape.

(2) Moment frame buildings designed so that yielding was forced into

the beams tended to have larger story shear capacities than moment frames

designed so that yielding was concentrated in the columns. (For low-rise

moment frames it is often difficult to force yielding into the beams

without using artifically large column sizes.) The response of the

moment frames with strong columns and weak beams was nearly elastic.

(3) X-braced frames, because of their lack of redundancy and the

dependence of their member sizing on lateral load only, can be proportioned

such that their base shear capacities are close to the intended design

shears.
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4.2.4 Displacement and Drift -- The designer endeavors to proportion

a building so that deformations during seismic motion are not excessive.

In general, the deformations that occur if the structure remains elastic

during the design earthquake can be estimated using simple analytical

procedures. Conversely, it is often difficult to obtain estimates of the

deformations that occur if the structure responds inelastically. It is

the purpose of this section to compare the inelastic deformations of some

low-rise steel buildings to the elastic deformations. The inelastic

deformations are also compared to the deformations under the design loading.

The maximum lateral story displacements relative to the ground observed

during the El Centro base motion are shown in Fig. 4.6 for the building

designs studied. Story drifts, defined as the maximum lateral deflections

between consecutive floors divided by the corresponding story heights, are

also presented in Fig. 4.6. The two types of plots illustrate slightly

different information since the maximum displacements and drifts did not

necessarily occur at the same instant during the time-history calculations.

The displacements and drifts designated as "design" represent the deformations

calculated under the full earthquake loading (i.e., not including the 0.75

load reduction factor) used for the design of the buildings in Chapter 2.

It can be seen that the maximum deformations occurred in the first

stories for the two-story shear building Designs 2-A, 2-B and 2-C. The

inelastic analysis case deformations were less than those for th~ elastic

analysis case, particularly in the second ~tories.

For moment frame Designs 2-D, 2-E and 3-A, once yielding occurred in

the first-story columns, the deformations in the upper stories were reduced

from those observed for the elastic case. The first-story deformations
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were about the same magnitude for the elastic and inelastic analysis

assumptions. The deformed shapes of these designs were similar to those

for the shear building designs described above, especially after yielding

occurred.

By contrast, the behavior of moment frame building Designs 2-F and

3-8 was such that the upper portions of the buildings were more flexible

than the first story. For these buildings yielding was concentrated in

the beams, and the deformed shapes on yielding were similar to the elastic

analysis case deformed shapes. The deformed shapes observed for these

buildings indicated that the lack of significant (shear reducing) yielding

in the first stories permitted forces to be carried up the building frames.

The response of the X-braced buildings, Designs 2-G, 2-H, 3-C and 3-D,

was similar to that for the shear buildings under the elastic analysis

assumption. However, on yielding, especially for the lower strength

Designs 2-G and 3-C, the first-story deformations were greater than the

elastic deformations. As before, when yielding was concentrated in the

first story the drifts in the upper portions of the structures were reduced.

For seismic design purposes it is often assumed that the maximum

displacements are the same whether the system responds elastically or in

an inelastic manner. Exhaustive studies on single-degree-of-freedom

oscillators with various types of resistances have indicated that this

assumption may be conservative, unconservative, or approximately correct,

depending on the frequency of vibration and the nature of the resistance

function.

The elastic displacements serve as slightly conservative approximations

of the inelastic displacements for the shear buildings, and as reasonable
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approximations for the moment frame buildings. However, when inelastic

deformations were largest in the first stories, the elastic and inelastic

deformed shapes were of different form. Yielding in the base story

concentrated the response in the base story and reduced the response in

the upper portions of the building.

On the other hand, the elastic displacements serve as unconservative

estimates of the inelastic displacements for X-braced buildings. This

might have been anticipated since there can be times during the response

history when X-braces, as modelled in this study, offer no resistance to

deformation.

A comparison between the maximum inelastic and the design story drifts

is given .in Table 4.3. It can be seen that the inelastic drifts during

earthquake motion were from about 4 to 10 times the design values. The

inelastic drifts of the lower strength X-braced frame Designs 2-G and 3-C

and the relatively weak shear building Design 2-C are over 2 percent; the

inelastic drifts for all other designs are under 1.5 percent. The maximum

inelastic drift occurred in the first story for all designs except moment

frame Designs 2-F and 3-8; frames 2-F and 3-8 were proportioned so that

yielding was forced into the beams.

The following observations regarding deformation response can be

made from the results of the studies on the low-rise buildings considered

in this investigation:

(1) The elastic and inelastic displacements and drifts were on the

same order of magnitude for the shear building and moment frame building

designs. This could have been anticipated from the results of studies on

single-degree",of"..freedomelastoplastic systems in the frequency ranges of
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the fundamental frequencies of these buildings.

(2) For X-braced buildings, particularly for low base shear capacities,

inelastic deformations were larger than elastic deformations. The reduced

hysteretic energy absorptive capacity of X-braced frames on load reversal

is bel ieved to be responsible for this trend. In order to avoid the

possibility of excessive deformations during seismic excitation, it is

recommended that X-braced frames be proportioned in a conservative manner.

(3) When yielding occurred in the bottom story of a building, the

deformation response was concentrated in the first story and the response

in the upper portions of the building was reduced. For buildings with this

type of response, the first story was the critical I ink of the seismic load

resistant system.

4.2.5 P-delta Effects -- The influence of P-delta effects (gravity

axial load effects) on the response of low-rise buildings is generally

believed to be of secondary importance. Nevertheless, under some

circumstances P-delta loads can modify dynamic behavior. It is the purpose

of this section to evaluate the influence of P-delta effects on the response

of the buildings considered in this study.

The differences between the first story displacements under the

inelastic and the inelastic + P~ analysis cases are tabulated in Table 4.4

for the buildings considered. Displacements were for the most part

increased by P-delta forces, but the increases were in general small.

The influence of P-delta forces tended to be most important for

flexible buildings or buildings of low base shear resistances. For

example, shear building Design 2-C was much more flexible and of smaller

first story shear capacity than was Design 2-A. The increase in displacement
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due to P-delta loads was 18.9 percent for Design 2-C, but the increase

was only O. I percent for Design 2-A. The same trends apply when moment

frame Design 2-E is compared to Design 2-D and when X-braced frame Design

2-G is compared to Design 2-H. (The base shear resistances of the buildings

can be assessed from the plots of Fig. 4.5 for the inelastic analysis case.)

These studies suggest that P-delta effects can be ignored for well­

designed low-rise buildings of reasonably high strengths and stiffnesses.

4.3 Modal Method and Building Code Calculations

The intent of this section is to evaluate the use of less complicated

procedures for estimating the response of low-rise buildings to earthquakes.

The less complicated procedures considered are (a) the modal method used

in conjunction with inelastic response spectra and (b) the quasi-static

building code approach modified to explicitly take inelastic behavior into

account. The response quantities obtained using these procedures are

compared to the response quantities calculated using the time-history

method of analysis.

In order to facilitate comparisons between the less complicated methods

of analysis and time-history analysis, the response spectra used for the

modal method and building code calculations were consistent with the

largest story ductility observed for the given building from the time­

history analysis. The techniques used to estimate ductility factors for

the different types of buildings considered are discussed in Section

4.3.1.

Elastoplastic response spectra were used for the modal method and

building code calculations pertaining to shear buildings and moment frames.

For X-braced frames modified inelastic response spectra were developed
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using the techniques discussed in Section 4.3.1.

The results of the modal method and building code calculations are

presented in Section 4.3.2.*

4.3.1 Story Shear-Deformation Relationships -- The response spectra

that are generally available for use in design calculations have been

derived from consideration of the dynamic response of elastoplastic systems

and therefore strictly apply only to buildings with elastoplastic story

shear-deformation relationships. For the designs considered. the story

shear-deformation relationships were not purely elastoplastic by virtue of

the different yielding mechanisms involved during deformation. Consequently.

it was necessary to estimate equivalent elastoplastic story ductility

factors or to modify the elastoplastic design response spectra for use in

spectral calculations. The procedures used to estimate ductilities and to

modify the elastoplastic response spectra are described in the following

paragraphs.

The story ductility factors for the buildings were calculated using

the expression

um
u

y
(4.2)

in which u is the maximum relative story displacement and u is the storym y

yield displacement.

* The modal properties for the building designs studied are tabulated in
Appendix A (Tables A.3 and A.4). and the elastoplastic response spectra
used for calculations are shown in Fig. 2.I(b). The details of the
modal analysis and the quasi-static building code procedures are
discussed in Chapter 3.
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Story Yield Displacements. Under the assumptions made in this

study, the shear-deformation relationships for the individual column

members in the shear buildings were elastoplastic. However, the story

shear-deformation relationships were not in general elastoplastic since

the individual columns of a story sometimes yielded at different levels

of deformation. The yield displacement of a column can be calculated

using the expression

M h2
pc
GEl (4.3)

in which the symbol h denotes the story height. Equation (4.3) follows

from consideration of the slope-deflection equations for a flexural

member of momen.t capacity M under relative end displacement with nopc

end rotation (fixed-fixed case). The equivalent elastoplastic story

ductil ity can be calculated using Eq. (4.2) under the assumption that

the story yield displacement is equal to the average of the yield

displacements calculated for all columns in a story.

The shear-deformation relationship for a story in a moment frame

building in which yielding at the top and bottom of all column occurs

can be represented graphically by the solid line curve in Fig. 4.7.

Point "a" represents the story shear at which the first column in the

story r~aches its moment capacity, and point lib" represents the shear

at which all columns in the story have formed inelastic hinges at

their tops and bottoms. Unfortunately, the initial story stiffness,

k, and the shape of the resistance curve between points "a l l and "b"

cannot be determined easily. However, a reasonable estimate of k can
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be made by dividing the story shear by the relative story displacement

under lateral loading proportional to the first mode shape.

In order to use Eq. (4.2) to estimate the equivalent elastoplastic

story ductility, some estimate of the yield displacement must be made.

The following three approximate procedures gave quite similar estimates

of the yield displacements for building Designs 2-D, 2-E and 3-A:

(1) Extrapolate the initial resistance curve Iloall linearly to a

horizontal line drawn at the ordinate representing the maximum story

shear, Q, and use the displacement corresponding to point lie" as the

yield value.

(2) Equate the areas under the estimated curve "oab" and an

equivalent elastoplastic curve Ilodbll , and use the displacement corresponding

to point lid" as the yield value.

(3) With knowledge of the inelastic hinge rotations occurring in zones

of inelastic response, sum the energy dissipated by inelastic hinge rotation,

M a, over all the columns in a story. By equating this energy to thepc m

inelastic energy dissipated by an equivalent elastoplastic oscillator,

Q(u - u ), one obtainsm y

u = u' -y m

EM apc m
Q

(4.4)

as an expression for the yield displacement. The symbol a in Eq. (4.4)m

denotes the maximum inelastic (plastic) hinge rotation.

In establ ishing the yield displacements for building Designs 2-D,

2-E and 3-A, preference was given to the third approach.

The problem of obtaining estimates of the story shear-deformation

relationships for moment frames with yielding beams is difficult. Because

building Designs 2-F and 3-B considered in this study responded to the
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El Centro base motion in a nearly elastic manner, the problem was not

specifically addressed in this report.

The lateral yield displacement of a story in an X~braced frame with

bracing in one bay can be calculated in a straightforward manner using

the expression

u = F/b (Lb)
Y E L

(4.5)

in which the symbols Lb and L represent the brace length and the

horizontal projection of the brace length. Equation (4.5) follows from

consideration of the elongation of a tension brace as it resists lateral

story deflection. Once the story yield displacement is obtained, Eq. (4.2)

can be used to calculate the story ductility factor.

For reference purposes, the first-story yield displacements obtained

using the procedures described in this section are presented in Table 4.5

for some of the building designs.

X-braced Frame Response Spectra. The displacements of X-braced

buildings during seismic motion, because of the reduced hysteretic energy

absorptive capacity of X-braced frames, are usually more than those

for an associated elastoplastic building of the same elastic stiffnesses

and initial yield strengths. Consequently, elastoplastic spectra could

not be used for spectral calculations pertaining to X-braced buildings.

In this study modified design response spectra were constructed for

single-degree-of-freedom oscillators having force-deformation relationships

of the type described previously for X-braced frames. The spectra shown

in Fig. 4.8 give (approximately) the initial story yield displacement
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required to 1imit the maximum deformation of an oscillator to a specified

duc til i ty.

The yield level design response spectra were constructed from the

design spectrum for elastic systems in the following manner (see Fig. 4.8) .

{
Yield level } {Elastic spectral] {Mu 1tip 1icat ion ]Spectral Ordinate = Ordinate at x

at Control Point Control Point Factor

a' a 1/11

b l b 1/11

c· c 2/11

d l d l/~

The construction procedure is illustrated in Fig.4.8 for the case where

11 = 4.

The yield level spectra constructed for X-braced systems are in

accordance with the design rules proposed by Veletsos (1969) in the low

and medium frequency ranges of the elastic design response spectrum.

Insufficient data are available at present (1977) to determine the shape

of the yield level spectra in the high frequency range. As a result,

in the high frequency range the yield level spectra for X-braced systems

shown in Fig. 4.8 are at best approximate. Bazan and Rosenblueth (1974)

and Sun ~~. (1973) have proposed slightly different procedures for

estimating the response of X-braced single-degree-of-freedom systems.

4.3.2 Results of Modal Method and Building Code Calculations --

The response quantities obtained using the modal method of analysis are

presented in Table 4.6 and the base shears obtained using the building

code procedure are tabulated in Table 4.7. The response quantities

from the modal method and the building code calculations are normalized
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by the corresponding time-history response quantities. The ductilities

given in the tables were calculated using the procedures described in

Section 4.3.1. It was found that the maximum ductility factors were

attained in the base stories for all buildings except Designs 2-F and 3-6.

Therefore, the ductil ities tabulated are consistent with the first-story

deformations observed during time-history calculations. For convenience

the ductilities were rounded off to even multiples. Since the time-history

response of Designs 2-A, 2-F and 3-B was for all practical purposes elastic,

only elastic quantities are presented in the tables for these buildings.

The agreement between modal and time-history analysis for the elastic

case, Table 4.6(a), was very good for all building designs. The modal

response ·values were never more than 30 percent over or 13 percent under

the time-history values.

The results of inelastic modal calculations are compared to those

from time-history analysis (inelastic analysis case) in Table 4.6(b).

For the shear building Designs 2-B and 2-C, the moment frame Designs 2-D,

2-E and 3-A, and the lower strength X-braced building Designs 2-G and 3-C,

reasonable estimates of the first-story displacements and shears were

obtained using the modal method of analysis. In general, in the upper

portions of the buildings the story shears were underestimated and the

displacements were overestimated. The modal method gave response

quantities that were almost always larger than the time-history response

quantities for the higher strength X-braced frame Designs 2-H and 3-D.

(It is likely that the procedure used to obtain design response spectra

for X-braced buildings tends to be conservative for systems with

relatively high base shear strengths.)



The fact that the response in the upper portions of the buildings

was not well predicted by the modal method might have been anticipated.

In using the modal method, it was tacitly assumed that the elastic and

inelastic deformed shapes were of the same form and that the elastic and

inelastic story shear distributions were of the same form. However,

inelastic behavior was concentrated in the first stories for these

designs, and this caused the inelastic deformed shapes and shear

distributions to differ from those for the elastic case.

It can be seen from Table 4.7(a) that the building code approach

provided good estimates of the elastic base shears. The shears were

never more than 27 percent over or 15 percent under the time-history

values. The building code approach gave values which were almost

identical to the modal analysis first-story shears, but with much less

computational effort (compare Table 4.7(a) to Table 4.6(a), IIfirst-story

The building code approach, as can be seen from Table 4.7(b), also

gave reasonable estimates of the inelastic base shears. Again, the base

shears obtained using the building code approach were nearly the same as

those obtained using the modal method.

Example. As an example of the procedure used to obtain

the entries to Tables 4.6(b) and 4.7(b), consider the

following calculations for moment frame Design 2-D.

The first step in the procedure is to estimate the

first-story ductility factor from the results of the

time-history analysis for the inelastic case by means of

Eqs. (4.2) and (4.4). The reduced plastic moment

capacities of the columns are calculated using the

expression
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M = 1. 18 (I - 1-) Mp .::. MppC
y

Thus, for the exterior base columns

MpC = I. 18 (I - 4~i~~ ) 2610 in. k =2810 in. k: < 2610 in. k

and for the interior base columns

M = 1.18(1 - 9~i~~ ) 2610 in.k = 2540 in.k < 2610 in.kpc

The base story shear capacity is found by assuming all columns

in the story (bent in double curvature) develop hinges at

their tops and bottoms. By summation of moments

Q=2 x 2610 in. k + 2 x 2540 in. k + 2 x 2540 in. k + 2 x 2610 in. k
I44 in. 144 in. I44 in. 144 in .

.= 143k

The maximum inelastic hinge rotations obtained from Fig. 4.2(b)

are

exterior base column interior base column

a = 22.2 x 10-5 rad, top a = 318 x 10- 5 rad, topm
10-5 rad,

m
10-5 rad, bottoma = 538 x bottom a = 551 xm m

The maximum first-story displacement for the inelastic analysis

case from Table F.4 or Fig. 4.6 is urn = 1.54 in. The first­

story yield displacement estimated by means of Eq. (4.4) is

= 4 ·In. _ 2[(22.2+538)2610 in.k+ (318+551)2540 in.k]xI0- 5
uy 1.5 143k

= 1.0 in.

The elastoplastic first-story ductility can finally be obtained

using Eq. (4.2)

~ = 1.54 in./I.O in. = 1.54, use 1.5

The next step is to obtain the quantities used for the

modal method calculations. From Table A.I, the total weight
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of the building is W=276.5 k and the masses of the first

and second stories are ml = 0.477 k-.sec2/in. and m2 = 0.239

k-sec2/in. The elastic frequencies of vibration obtained

from Table A.3(a) are

f l = 1.99 cps

f 2 = 4.92 cps

WI = 2TIf l = 12.5 rad/sec

w2 = 2TIf 2 = 30.9 rad/sec

The spectral yield displacements and accelerations obtained

from Fig. 2.1(b) for the ~ = 1.5 case are

01 = 1.32 in. Al = 206 in./sec2

02 = 0.237 in. A2 = 226 in./sec2

The inelastic response quantities can be estimated by

means of the modal method using the following procedure.

(The elastic mode shapes used are obtained from Table A.4(a).)

Story Number, i o 2

(a) mode shapes,
(1)
(2)

( b)
. '\, (n)

modal accelerations, ~.
(1) i

(2)

0.714
0.286

A • / 2, In. sec
n 147

64.6

1.312
-0.312

270
-70.5

(c) modal forces,
'\, (n)

A , k<p. m.
(1) I I n 70.1
(2) 30.8

(d) moda 1 story shears, k
--\1}

135(2)
13.9N

L: I (moda 1 story shear$) I 149
n=l n

64.5
-16.9

81.4

64.5
-16.9

(1)
N (2)

L: I¢~n) ° I
n=l I n

(e) m~.dal yield displacements, ¢~n) On' in.

0.942
0.0678

1.01

N I (n) I
(f) maximum displacements, ~n~1 ~i D(n) , in.

1.52

1. 73
-0.0739
1.80

2.70
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Also, the base shear can be estimated using the quasi­

static building code approach. The building code base shear
. N

is calculated from the expression Al .~l m. where N is the
1= I

number of stories.

code base shear = (206 in./sec2)(0.477 k-sec2/in. + 0.239 k-sec2/in~)

= 147k

If the response quantities calculated above are normalized

by the corresponding time-history response quantities from

Table F.4 or Figs. 4.5 and 4.6 for the inelastic analysis case,

the entries to Tables 4.6(b) and 4.7(b) for Design 2-D are

obtained.

From the studies recorded in this report on some low-rise steel

buildings, the following observations can be made pertaining to the use of

the modal method and the quasi-static building code procedure to predict

response quantities:

(1) The modal method used in conjunction with inelastic design

spectra gave reasonable estimates of the inelastic forces and displacements

during seismic motion. However, inaccuracies arose because the elastic

mode shapes and frequencies used in calculations sometimes did not

represent well the actual inelastic response. Also, it was difficult to

apply the technique when story shear-deformation relationships could not

be easily defined.

(2) The quasi-static building code method used together with

inelastic response spectra provided a simple and reasonably accurate

procedure for estimating the base shears of low-rise buildings.

(3) For buildings in which yielding was most extensive in the

bottom story, it was found that the ductility used in inelastic spectral
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calculations should correspond to the first story ductility of the building.

(4) Both the modal method and the building code approach gave good

estimates of the elastic response quantities.
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5. DESIGN APPLICATIONS

5.1 Introduction

The intent of this chapter is to review the results of the studies

made as a part of this investigation in the light of practical applications

to the design of low~rise steel buildings. To this end the behavior of

the low-rise buildings considered in this study when subjected to the El

Centro base motion, and the behavior of simple spring-mass systems subjected

to base excitation are briefly reviewed in Section 5.2. The studies on

buildings were 1imited to planar two- and three-story structures subjected

to one component of ground motion. In Section 5.3 the three procedures

that were used in this study for seismic analysis are evaluated. In Section

5.4 a procedure for obtaining seismic deformations and seismic design forces

is described. Finally, in Section 5.5 several comments concerning factors

that should be considered in the design of low-rise steel buildings are made.

5.2 Behavior of Low-Rise !uildings and Simple Systems

The studies recorded in this report were directed in part

towards determining the behavior of low-rise steel buildings subjected to

seismic ground motion. This section serves to summarize some of the more

important findings of the time-history studies presented in Appendix E on

simple elastoplastic shear-beam (spring-mass) systems and studies

presented in Chapter 4 on low-rise steel shear buildings, moment frames,

and X-braced frames.

Simple Systems. From studies on simple shear-beam (spring-mass)

systems with proportions comparable to low-rise buildings, it appears

that in the frequency ranges of interest the maximum response will usually
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occur in the base story. This suggests developing a design criteria, at

least for certain types of low-rise buildings, which assumes the base

story is the critical link in the seismic load resisting system.

Shear Buildings. The response of buildings with very stiff and strong

girders (shear buildings) was similar to the response of simple systems in

that the base story was the critical link in the seismic load resisting

system. When the shear buildings considered in this study were subjected

to the El Centro base motion, zones of inelastic response formed only in

the base story columns. The deformations calculated for I inearly elastic

response were on the same order of magnitude as the deformations obtained

from inelastic response calculations.

Moment Frame Buildings. Moment frame buildings can be proportioned

for two different types of behavior: the inelastic respOnse can be forced

into the beams or it can be forced into the columns. For the moment frame

buildings considered that were proportioned so yielding occurred in the

columns, the inelastic response was similar to the response of shear

buildings; that is, zones of inelastic response generally formed at the

tops and bottoms of the base story columns. For one of the buildings

considered, zones of inelastic response also formed at the bottoms of the

second-story columns, but the m~gnitudes of the inelastic rotations were

small when compared to the inelastic rotations occurring in the base

story columns.

For the moment frame buildings designed so inelastic response was

forced into the beams, inelastic hinges were generally uniformly distributed

throughout the beams of all stories. The buildings proportioned with weak

beams and strong columns had an apparent margin of reserve strength that
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the buildings proportioned so that yielding was concentrated in the columns

did not have. On an overall scale the weak beam, strong column moment

frames considered responded in a nearly elastic manner to the El Centro

base motion.

In proportioning low-rise steel moment frame buildings in the manner

prescribed in modern building codes and specifications, it will often be

found that yielding will be confined to the columns during seismic base

motion. In order to force yielding into the beams and still satisfy the

code and specification requirements for gravity loads acting on beam

members, it often will be necessary to arbitrarily increase the sizes of

column sections above the sizes required on the basis of stress

calculations.

For the moment frame buildings, the deformations obtained from

elastic response calculations were on the same order of magnitude as the

deformations obtained from inelastic response calculations.

X-braced Buildings. When the X-braced buildings considered were

subjected to base motion, the largest inelastic deformations occurred in

the bottom story. For some of the buildings considered, a relatively small

amount of yielding also occurred in the second-story bracing members.

The deformations obtained from inelastic response calculations were

usually larger than the deformations obtained from elastic response

calculations. Further, the inelastic deformations were often excessive

due to the low hysteretic energy absorptive capacity of the X-braced

frames employed in this study.

In order to avoid excessive deformations during seismic motion,

it is recommended that X-braced buildings be designed with relatively
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high base shear coefficients, V/W. For example, the X-braced buildings

considered in this study behaved well when subjected to the EI Centro

base motion provided the base shear coefficient was about 25 percent.

Obviously, if the compression bracing could resist some of the lateral

force, or secondary structural systems could be counted on to provide

lateral resistance, the coefficient could be reduced somewhat.

Comments. Except in the case of moment frame buildings designed

so that the inelastic response was forced into the beams, the maximum

inelastic response of all buildings occurred in the base story. Thus,

for many of the buildings the base story was the critical link in the

seismic load resisting system. The relationship between the maximum

deformations obtained from inelastic response calculations and the

deformations obtained from elastic response calculations varied with

the building type. However, in most cases the relationship between

elastic and inelastic deformations for a building could have been

anticipated from consideration of the corresponding relationship for a

single-degree-of-freedom system responding with the same frequency as

the fundamental frequency of the building.

5.3 Discussion of the Methods of Analysis Used

A major objective of this study was to evaluate the use of some

of the different analytical techniques available for determining the

deformations and forces in buildings during earthquakes. The three

methods considered in this study were, in order of the most to the

least complex, time-history analysis, the modal method used in

conjunction with inelastic response spectra, and the quasi-static
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building code approach modified to explicitly take inelastic behavior

into account.

Time-History Analysis. Time-history analysis is, in general, the

procedure that allows the analyst to obtain the most detailed information

about the inelastic response of buildings during a particular seismic

ground motion. Unfortunately, time-history calculations are too tedious,

complicated, and time consuming to be justified for use in the design of

any but very special or unusual low-rise buildings. The time-history

method of analysis has the added disadvantage that a large number of

earthquake base motions should be used for calculations to at least

partially take account of the statistical nature of earthquake ground

mot ion.

Modal Method. The modal method used in conjunction with inelastic

response spectra can be employed to obtain estimates to the inelastic

response of buildings. Provided a certain amount of judgment is used,

and the response characteristics of the type of the building under study

are considered, reasonably good estimates of response quantities can be

obtained. The use of the modal method is thought to be particularly

appropriate for systems responding with small inelastic deformations

(low ductil ities).

Building Code Approach. The simplest procedure, and the procedure

that is most familiar to design engineers, is the quasi-static building

code approach. In us i ng the bu i 1ding code c;lpproach, the des i gn base

shear is estimated by multiplying the mass of, the building times the

inelastic response spectrum ordinate in the first mode of vibration.

This procedure seems to be particularly appropriate for structures in
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the high and medium frequency ranges of the elastic design response

spectrum, provided response is primarily in the first mode. Therefore,

the procedure is suited to low-rise buildings. Once the base shear is

estimated, the distribution of forces over the building and the deforma­

tions under the forces can be estimated by procedures similar to those

recommended in modern building codes (NBC, 1975; SEAOC, 1975; UBC, 1976;

ATC, 1977).

Comments. The quasi-static building code procedure is thought to be

the most appropriate procedure for use in the design of the majority of

low-rise steel buildings. In using the procedure, it is tacitly assumed

that the response of a building is similar to the response of a single­

degree-of-freedom system subjected to the same design base motion and

having a resistance system similar to the building under construction.

For many of the buildings considered in this study, the first story was

the critical link in the seismic load resisting system. Consequently,

the first story ductil ity was the appropriate ductility for use in

spectral calculations.

5.4 Recommended Design Procedure

The purpose of this section is to formulate simple recommendations

which can be applied by engineers to the design of low-rise buildings.

The intent is to formulate a quasi-static procedure that is famil iar to

design engineers, but that explicitly takes inelastic behavior into

account. In the following section a quasi-static design procedure

that is in principle similar to the ATC (1977) approach is described.

The application of the procedure to low-rise buildings of the types

considered in this study is discussed.
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Procedure. The suggested design procedure for a regular low-rise

building may be summarized as follows:

(1) Construct yield design response spectra for different levels of

elastic and inelastic response that are consistent with the earthquake

hazard and building type. It is recommended that design response spectra

for elastoplastic systems (see for example Newmark and Hall, 1973 and

1976) be used for moment frame buildings with yielding concentrated in

the columns and shear buildings.

At present (1977) simple rules for developing design response spectra

for X-braced systems are not available; however, the recommendations of

Veletsos (1969), Sun ~~. (1973) or Bazan and Rosenblueth (1974) can be

used, at· least in some frequency ranges, to establish the general shape

of the design response spectra (see also Section 4.3.1). Also, accepted

procedures are not available at present for constructing design response

spectra that are applicable to moment frame buildings with inelastic

response occurring in the beams.

(2) Estimate the fundamental frequency of vibration and obtain

the design base shear using the quasi-static building code approach.

The base shear is obtained by multiplying the mass of the building times

the response spectrum ordinate in the first mode of vibration. The

design spectrum used should be consistent with the degree of inelastic

response or ductility desired.

(3) Obtain the lateral yield forces by assuming some distribution

of the base shear over the height of the building, and proportion the

building to resist the yield lateral forces.
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In calculating the lateral yield forces, it is recommended that a

triangular distribution of acceleration in the structure from zero at the

base to a maximum at the top (as recommended by current building codes),

or a distribution of acceleration proportional to the first mode shape be

used. The inertial forces associated with the assumed distribution of

acceleration are the lateral yield forces. The assumed value of accelera-

tion at the top of the structure is adjusted so that the total distributed

lateral forces add up to the design base shear.

(4) Obtain the yield displacements. The yield displacements are the

displacements that occur when the design (yield) lateral forces are applied

to the structure and the structure responds in a linearly elastic manner.

(5) Multiply the yield (elastic) displacements by the selected

ductility factor to obtain the estimated maximum displacements.

(6) Estimate the actual base shear capacity of the bu1lding now

proportioned* and estimate the actual fundamental frequency of vibration,

·for example by means of Rayleigh's method. The base shear capacity and

fundamental frequency of vibration should be commensurate with the values

assumed above for design.

(7) Determine whether or not the building can accommodate the maximum

displacements associated with the design base motion while maintaining its

strength and without being subjected to undue structural or nonstructural

damage. If the building cannot accommodate the maximum displacements,

return to Step (1).

* For low-rise steel moment frame buildings, the base shear capacity can
usually be assessed in a straightforward manner by consideration of the
possible plastic collapse mechanisms that can occur as the static lateral
load is increased.
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Example. As an example of the design procedure,·consider the

following calculations for moment frame Design 2-D. The

structural configuration for Design 2-D is shown in Fig. 2.2(b).

(1) The elastoplastic design response spectra shown in

Fig. 2.1(b) are used for calculations.

(2) The estimated fundamental frequency, f l , and the

selected design ductility, v, are

f l = 1.99 cps

1.1 = 1.5

(In this case the actual value of the fundamental frequency

is known from previous calculations, see Fig. 2.2(b).) The

spectral yield acceleration is obtained from the design

response spectrum for V = 1.5. Thus

Al = 206 in./sec2

Finally, the design base shear is calculated using the expression

N
V = Al '~l m. in which the masses of the first and second

1= 1

stories obtained from Table A.l are m
l

= 0.477 k-sec
2
/in. and

m2 = 0.239 k-sec2/in., and N is the number of stories. Thus

V = (206 in./sec2) (0.477 k-sec2/in. + 0.239 k-sec2/in.)

= 147 k

(3) The lateral yield forces are obtained by assuming a

triangular distribution of acceleration over the building height.

From the calculations presented in Table A.l,

Fl = 0.5 V = 73.5 k

F2 = 0.5 V = 73.5 k

The members can now be proportioned to resist the ultimate

loading. In most instances it can be assumed that the ultimate

loading is made up of the yield lateral forces, the dead load,

and the portion of the gravity live load judged to be present

during earthquake excitation. (In many cases it will not be

necessary to proportion the building in this step since
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preliminary member sizes already will have been selected on

the basis of gravity or gravity plus wind loadings.) It will

be assumed without checking that Design 2-D is proportioned

adequately.

(4) The yield displacements are calculated.

{VI} = ~.639 O.77d 10-2 in. {F l} k = {1.04} in.
'v2 0.771 1.857 x T F

2
1.93

yield
flexibility matrix

(5) The maximum displacements are calculated.

= {1.56} in.
2.90

(6) The actual base shear capacity, Q, of the building

under increasing lateral load and a dead plus 20 percent

gravity live loading is now estimated. The [D.L. + 0.2(L.L.)]

and the moment capacities of the members are shown in the

figure below. (The moment capacities of the base story

columns have been calculated previously in the example

presented in Section 4.3.2.)

128 k/ft/'
(2304) - (2304) Q (2304) QQ

~ /2.56k/ft
<D <D
(\J (\J- -

(5220) 6 (5220) 0 (5220) -
.~ ~

0
<D

~
(\J (\J- -- L.... -- _l.... -'--

-o
<D
(\J-

11-•..---=2:.=8:.=8....:i.;.;.n;....._ ..~1_.._..;:2;..::8...=.8_in_.--,~... 288 in. -I
(M p or Mpc ) in.k

Under the assumption that the distribution of lateral forces

over the building height arises from the inertial forces

caused by a triangular distribution of acceleration, it can

be shown that the following two collapse mechanisms are

among the possible mechanisms.
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Mechanism I

O.5Q ......

O.5Q-­
a a a a

External Work + Internal Work = 0
(0.5Q + 0.5Q) 144 in.a - (4 x 2610 + 4 x 2540) in.k a= 0

.: Q = 143 k

Meehan ism I I

O.5Q --

a

External Work + Internal Work = 0
(0.5Qx 144+0.5Qx288) in. a- (2x2610+2x2540 +

+ 6 x 5220 + 6 x 2304) in. k .a = 0

... Q = 257 k

From all the possible modes of failure, Mechanism gives

the lowest base shear capacity. Therefore

Q = 143 k

If it is assumed that all inelastic hinges form at the

instant during seismic motion when the yield displacement

of the first story is reached, the maximum inelastic hinge

rotations can be estimated from consideration of Mechanism I.

Thus

a =m
inelastic story displacement

story height
= 1.56 in. - 1.04 in. =0.00361 rad

144 in.

The elastic fundamental frequency of vibration can be estimated

by means of Rayleigh's method,
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Since the elastic frequency is to be obtained, the yield

displacements are used for calculations. Thus

f] ~ )~ (73.5 k) (J .04 in.) + (73.5 k) (J .93 in.)

2n (0.477 k'"'5ec2/in.) (1.04 in.}+ (0.239 k"'Sec2/in.) (1.93 in.)2

2.0 cps

The values of the base shear capacity and fundamental frequency

estimated in this step are commensurate with the values assumed

for design in Step (2).

(7) The design for a ductility of 1.5 is complete provided

the building can accommodate the maximum displacements, inelastic

deformations, and so forth.

The response quantities calculated in this example can be

compared to the response quantities obtained from time-history

analysis and the response quantities obtained from modal analysis.

The time-history response quantities (inelastic analysis case)

are shown in Fig. 4.2 and tabulated in Table F.4, and the modal

analysis response quantities are calculated in the example

presented in Section 4.3.2.

5.5 Design Considerations

The conventional approach to the earthquake resistant design of

structures requires that inelastic deformations be relied upon to dissipate

energy during seismic ground motion. It is therefore necessary that

structures be designed to deform in a ductile manner throughout the cylic

response.

In proportioning a low-rise building to resist earthquake base

excitation, due consideration should be given to the overall structural

performance of the lateral load carrying system, including not only primary
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and secondary structural systems, but also nonstructural items. Secondary

structural and nonstructural items such as stairs, exterior walls, partition

walls, and floor systems can have a significant influence on the response.

Also, when assessing the available ultimate deformation capacity of a

building system, it should be remembered that damage to nonstructural items

is often much more expensive to repair than structural damage.

With these factors in mind, a good start to the earthquake resistant

design procedure can be made by proportioning the structure to resist gravity

and wind loads. The adequacy of the design can then be checked using the

recommendations of the seismic provisions in modern building codes, and the

recommendations given in this study.

Strength versus~exibility. The design engineer endeavors to

proportion his building such that it responds to earthquake base motion

without being subjected to excessive deformations. On the other hand, he

does not want to make the building so strong that it attracts very large

inertial forces. Thus, the designer attempts to strike a balance between

strength and flexibil ity.

Redundancy. In an effort to minimize the likelihood of a major

structural failure, the prudent designer will, if possible, include

redundancy in his design. In the event that failure of an element or a

portion of the structure occurs, second lines of defense are then available.

Redundancy can be built into a design by separating the lateral load

resisting system into a number of structural cells or units so that the

weakening of one unit will not endanger the overall structural integrity

of the building system. Further, the structure should be detailed in such

a way that secondary structural members and systems (floor systems, secondary
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framing connections, and so forth) can resist a certain amount of lateral

load and add to damping in the system, especially for significant levels

of deformation. Redundancy also can be included in the design by combining

more than one type of structural system to resist lateral load, provided

the different types of structural systems are compatible with each other

and provided the strength of the redundant system is maintained under

deformation.

Design for Reserve Strength. In order for structures to reach and

sustain their strength under inelastic deformations, the connections between

structural members must be carefully detailed. It is usually preferable to

make a connection stronger than the members framing into it, thus forcing

the inelastic deformations into the members. In proportioning a connection,

due account should be taken of strain hardening effects that occur in the

members under inelastic deformations.

The load carrying capacity of flexural members under cyclic deformations

can be reduced significantly or lost if local buckl ing or a fracture occurs.

Thus, the width to thickness ratios of flexural members should satisfy the

requirements for plastically designed sections. Also, the fracture toughness

of materials and fabricated elements (including X-bracing members) should be

selected to ensure that the resistance (strength and deformation capability)

will be maintained under the design temperatures.

In the case of the primary structural system, the designer must evaluate

the effective resistance offered by all load carrying members. Careful

attention is required to ensure that beams, for example, cannot fail by

lateral torsional buckling. For architectural reasons it may not be

possible to brace column members against lateral torsional buckling.
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Unfortunately, simplified procedures for evaluating the strength-deformation

capacities of unbraced steel columns subjected to thrust and end moment are

not yet available.

For several of the moment frame buildings considered in this study,

it was observed that yielding tended to be concentrated in the base story

columns. It is thought that this type of behavior is typical of many low­

rise steel moment frame buildings of practical proportions. Because the

failure of columns is usually considered to be more severe than the failure

of beams, it is recommended that buildings in which yielding tends to be

concentrated in the columns be designed for relatively low ductilities,

say less than about 2 or 3.

Well-proportioned low-rise buildings, including shear buildings, moment

frames, and X-braced frames, should preferably have story shear strengths

that decrease slightly as the story number increases. There seems to be

little justification for deliberately designing buildings with a weak or

Iisoft'l base story, or buildings with large strength discontinuities between

stories.

Low-rise buildings as a class are often irregular in form and cannot

be modelled simply for purposes of analysis. Nevertheless, the prudent

designer will attempt to proportion -a well-balanced system of comparable

structural properties in the orthogonal horizontal directions. Redundancies

should be included in the design if possible, and designs that result in

large torsional forces or motions should be avoided. The members and frames

of well-designed structures should be connected and tied together in a

manner that allows for the satisfactory overall performance of the structure

during seismic ground excitation; provision also should be made for

overturning and torsional effects at each elevation and the base.
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TABLE 2. I LIMITING BASE SHEAR COEFFICIENTS, V/W

Building Code Ductile Moment Frame X-b raced Frame

UBC (l973) 1 0.067 0.15

NBC (1975)2 0.056 o. 10

SEAOC (1975) I 0.094 0.18

UBC (1976) I 0.094 0.18

ATC (1977) 3 0.14 0.22

I Based on allowable stress, 33 percent increase allowed for (D.L. +
L. L. + E. Q. ) •

2Based on allowable stress, multiply (D.L. + L.L. + E.Q.) by a load
combination probability factor of 0.75.

3Based on yield stress.

TABLE 2.2 LOADING FOR TWO-STORY BUILDINGS

Loading

D. L.

L.L.

D.L. + 0.2(L.L.)

First Floor

(lb/ft2)

70

50

80

Second Floor (Roof)

(lb/ft 2)

36

20

40



TABLE 2.3
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LOADING FOR THREE-STORY BUILDINGS

Loading

D. L.

L.L.

D.L. + 0.2(L.L.)

Fi rst and Second Floor

(1 b/ft2)

74.5

50

84.5

Third Floor (Roof)

(l b/ft2)

35.7*

* Includes 10 1b/ft2 to account for the weight of second floor partitions
tributary to third floor mass.

TABLE 2.4 MAXIMUM DESIGN STRESSES IN CRITICAL MEMBERS,
IN PERCENT OF ALLOWABLE

Design Design Base Shear Columns 1 Beams2
Coeff ic ient, VI\~

2-A 0.10 50

2-B 0.10 85

2-C 0.10 170

2-D O. 10 70 85-90

2-E 0.10 100- I 10 90

2-F 0..10 50 130-135

3-A 0.05 50 30

3-8 0.05 30 55-85

lCa1culated assuming Fb = 22 ksi and Fa = axial stress that would be
permitted in the plane of bending.

2Calculated assuming Fb = 24 ksi.
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COMPARISON BETWEEN MAXIMUM HINGE ROTATIONS
AND HINGE ROTATION CAPACITIES

Design Description Column Location
M

• 1aXlmum
Rotation

(rad)

Rotation2

Capacity, 8h(rad)

2-A shear bu il ding interior, first floor 0.00046 0.0154

2-B shear building interior, first floor 0.00720 0.0189

2-C shear building interior, first floor 0.0141 0.0237

2-D moment frame interior, first floor 0.00551 0.0155

2-E moment frame interior, first floor 0.00603 0.0230

3-A moment frame first floor 0.00995 0.0123

1From the results of time-history calculations for the inelastic
analysis case.

2Calculated using Eq. (4.1), an expression developed by Popov and
Bertero (1973) .

TABLE 4.2 DUCTILITY FACTORS FOR X-BRACED BUILDING DESIGNS,
INELASTIC ANALYSIS CASE

Design Design Base Shear First Second Tlli rd
Coefficient, V/W Story Story Story

2-G O. 157 7.91 1.04

2-H 0.266 3.69 0.706

3-C 0.158 5.58 1.82 0.720

3-D 0.253 3.30 1.09 0.612
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TABLE 4.3 COMPARISON BETWEEN MAXIMUM INELASTIC
AND DESIGN STORY DRIFTS

Design Story of Maximum
Drift

Design
Drift

(%)

Inelastic
Drift

(%)

Inelastic Drift
Design Drift

(a) Two-Story Shear Bu i ld i ngs

2-A 0.0833 0.570 6.84

2-B 0.190 1. 31 6.89

2-C 0.482 2.02 4.19

(b) Two-Story Moment Frames

2-D 0.135 1.07 7.93

2-E 0.311 1.33 4.28

2-F 2 o. 118 0.920;', 7.80

(c) Two-Story X-braced Frames

2-G 0.240 2.37 9.88

2-H 0.240 1. 11 4.63

(d) Three-Story Moment Frames

3-A 0.150 1. 41 9.40

3-B 3 O. 131 1.22", 9.31

(e) Three-Story X-braced Frames

3-C 0.312 2.18 6.99

3-D 0.312 1.29 4.13

* Inelastic + FEF analysis case.
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TABLE 4.4 CHANGES IN INELASTIC FIRST-STORY DISPLACEMENTS
DUE TO P-DELTA EFFECTS

Design Description (Inelastic + p~) - (Inelastic) • 100
(Inelastic)

(%)

2-A shear bu i ld i ng

2-B shear bu i ld ing

2-C shear bu il ding

2-D moment frame

2-E moment frame

2-F moment frame

2-G X-braced frame

2-H X-braced frame

3-A moment frame

3-B moment frame

3-C X-braced frame

3-D X-braced frame

0.1

2.6

18.9

1.3

7.9

1.7

13.2

-6.9
4.3

3.0

2.8

0.0

TABLE 4.5 ESTIMATED FIRST-STORY YIELD DISPLACEMENTS

Design Description uy
(i n.)

2-B shear bu i ld ing 0.89

2-C shear bu i 1ding 1.0

2-D moment frame 1.0

2-E moment frame 1.2

2-G X-braced frame O. 432~':

2-H X-braced frame 0.432*

3-A moment frame 0.98

3-C X-braced frame O.515 j :

3-D X-braced frame O.515~':

* The yield displacements for X-braced building designs are exact
quantities.
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TABLE 4.6 RESPONSE QUANTITIES OBTAINED USING THE MODAL METHOD NORMALIZED
BY THE CORRESPONDING TIME-HISTORY RESPONSE QUANTITIES

Design 2-A 2-B 2-C 2-D 2-E 2-F 2-G 2-H

(a) elastic

second-story shear 1. 21 0.97 0.95 1. 01 1. 27 1.05 1. 01 1.25
first-story shear 1.13 0.90 0.87 0.99 1.26 1.25 0.90 1. 12

second-story displ. 1. 2J 0.89 0.87 0.90 1.25 1. 03 0.90 1. 18
first-story displ. 1.13 0.91 0.87 0.96 1.26 1. 16 0.90 1. 12

(b) inelastic

ductility 2 3 1.5 1.5 8 4

second-story shear 0.71 0.72 0.86 1. 11 0.52 0.96
first-story shear 1. 11 1.08 1. 04 1. 35 1.03 1.43

second-story displ. 1.28 1.38 1. 10 1. 54 1. 33 1. 91
first-story displ. 1.04 1. 11 0.99 1.29 1.04 1. 54

Design 3-A 3-B 3-C 3-D

(a) elastic (continued)

third-story shear 1.25 1.26 1. 06 1. 13
second-story shear 0.99 1.28 0.95 0.97
first-story shear 1. 02 1.30 1. 06 0.98

third-story displ. 0.95 1. 16 0.92 0.93
second-story displ. 0.90 1.23 0.91 0.90
first-story displ. 0.97 . 1. 29 1.06 0.98

(b) inelastic (continued)

ductility 2 6 3

third-story shear 0.90 0.54 0.90
second-story shear 0.76 0.82 1.30
first-story shear 1. 05 1. 05 1.72

third-story displ. 1.42 1. 51 2.06
second-story displ. 1. 26 1. 35 1. 96
first-story displ. 1. 01 1. 14 1.56
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TABLE 4.7 BASE SHEARS OBTAINED USING THE BUILDING CODE APPROACH
NORMALIZED BY THE TIME-HISTORY BASE SHEARS

2-A 2-B 2-C 2-D 2-E 2-F 2-G 2-H

1.13 0~90 0.85 0.98 1.23 1.27 0.90 1.12

1. 10 1. 04 J. 03 1. 31 1.011.43

481.5 1.532

Design

(a) elastic

base shear

(b) inelastic

ductility

base shear

Design 3-A 3-8 3-C 3-D

(a) elastic (continued)

base shear 0.89 1.20 1.04 0.98

(b) inelastic (cont i nued)

ductility 2 6 3

base shear 0.87 0.99 1.71



79

o
Q)
en

.......

.=..
>--

Frequency, cps

(a) Elastic Spectra

o
Q)
en

.......
C..
>--o
o
Q)

>

2

Frequency, Cps

(b) E lastoplast ic Design Spect ra

FIG. 2.1 RESPONSE SPECTRA, EL CENTRO 1940 NS,
5 PERCENT CRITICAL DAMPING



~
I.. 24 ft + 24 ft + 24 ft ~~

Designs 2-A, 2-B, and 2- C

(a) Two-Story Shear Buildings

Design

2-A
2-B
2-C

Column
Size

WI2x58
WIOx39
W8x24

f l
(cps)

2.67
J. 78
1.11

WI6x36 WI6x36 WI6x36 WI6x36 WI6x36 WI6x36 W14 x 26 W14 x 26 W14 x26

00
o

..... ..... .....
WI8x45 )( WI8x45 )( WI8x45 )(

(0 lO lO

~ 3= 3:.., ,~ ,~ .,10:

;::::
)(

(0

~

0 0 0
v v "'"WI8x70 )( WI8x70 )( WI8 x70 )(
IX) a> ex>
~ ~ ~

,,, 77 -,:,. '7,

o
~
)(

ex>
~

0 0 0
lC) lC) lC)

WI8x70 )( WI8x70 )( WI8x70 )(
(\J (\J (\J

~ ~ ~

~ .,. .,.
,~ , ,

o
lC)
)(

(\J

3:

Design 2- D I f
l

:: 1,99 cps

( b1 Two - Story Moment Frames

Design 2-E, f
l

:: 1,35 cps Design 2- F, f,:: 2.27 cps

Typical
Design

2-G
2-H

v
W

0.157
0,266

Brace Area
( in. 2 )

1.69
2.86

f l
(cps)

1.98
2.58

Designs 2-G and 2- H

(c) Two -Story X- Braced Frames

FIG. 2.2 BUILDING DESIGNS



W 14 x 30 W 14 x 30

~. 24 ft _1 4 24 ft .,

Design 3- B 1 f l = 1.39 cps

WI8x 64 WI8 x64
ro I"-
(1l C\I

WI8 x96-; W18x96><
v v
3= ~

.. .,.. ?J 7- ~,

v
3:

I"­
(\J

,..;.....

,..;.....

.,..:.....

WI4x30 W14x 34 WI4 x 30

WI6x36 W 18 x 64 ~6X36
(X) (X)
ID W

W 16 x 40WI6x40 >< W18 x 96 ><
o::t o::t
~ ~

lot 32 ft ~I __ 32 ft ~I-- 32 ft ~I

Design 3- A 1 f, = 1.10 cps

(d) Three - Story Moment Frames

V Brace Area f l
(Xl

Design
W (in. 2 ) (cps)

3-C 0.158 2.86 1.59
3-D 0.253 4.59 2.02

Designs 3-C and 3-D

(e) Three - Story X - Braced Frames

FIG. 2.2 (CONTINUED)



82

3 rd. Floor (Roof) Plan

I I I I i
-r-

rIO''" I
!r

~WI4'30
:r

WI4x34 WI4x30
~

WI4x30

~
)(

~
:it

..... x

~~
'" %

~ 0..,
)( )( )(

v v ~

:it WI4x30
i :itWI4x34 % WI4x 30 :l: WI4x30 WI4x34 % WI4 x30

:t

_ 21-0"~p-- P 6;....PBOYS At T32'-0" =~921-0" ~__-1i-O"
~~~' , I , , 1

A

tr
CD
en
)(

en
:it

~ ~ 6_~ Boy' At ~ 32'-0" • ~192'-0"
, I

i WI6x36 i WI6x36 I WI6x36WI6x36 WI8x64 WI8x64
A ",WI6x40* WIS,.6" , WI6'40'i~WI6 '40' WIS,.6' IWI6'40*i0 t! mI )( )(

=0
-v

~ en(\J

3t :it

~
!--

~WI6'36
:r I", :t % :r

V
~ CD

~"WI6'36
v-0 CD CD en CD

I. )(
)( )( )(-v en

WI8x64 ·IX en en en
(\J

:it iWI6x36 :it
C WI6x36 :it

1st. a 2nd. Floor Plan

W16x40* WI8x96lt W16x40* W16x40* W18x96* WI6x40 ft

Notes:
I. * Indicates Beam Size At I st floor
2. floor and Roof Construction and Beams Not Called Out

WI4x30 I WI4x34 I WI4x30 WI4x30 i WI4x34 I WI4x30

WI6x36 WI8x64 WI6x36 WI6x 36 WI8x64 WI6x36
en en en en

WI6x40 CD WI8x96 ~ WI6x40 WI6x40 ~ WI8x96 CD WI6x40)(

v v ~ v
:it :l: :l: :it

ep

b_.

~ South Elevation (North Elev. Sim. Opp. Hand)

Note: Except Those Indicated 0, All
Connections of Beams and Girders To Columns
Shown on Elevations Shall Develop The Flexural
Capacity of The Beam. Others Are Standard
Framing Connections.

'W14x30 WI4x30 1

WI8x64 WI8x64

~W18X96~>C WI8x96
~ v
:l: :l:

=c;>lElev. At Lines I, 4 a 7..,

FI G. 2.3 STRUCTURAL PLANS AND ELEVATIONS,
THREE-STORY MOMENT FRAME BUILDING
(AFTER ARMY, NAVY AND AIR FORCE, 1973)



83

End Moment

End Rotation

FIG. 3.1 FLEXURAL ELEMENT END MOMENT­
ROTATION RELATIONSHIP



84

Story Shear

Story Displacement

FIG. 3.2 X-BRACE ELEMENT STORY SHEAR-DISPLACEMENT RELATIONSHIP
(AFTER NEWMARK AND ROSENBLUETH, 1971)



Mp = Large

Uy = Large

(a) Elastic

(c) Inelastic + Pa

85

Mp

~LL= ~(~)
uy E L

( b) Inelastic

(d) Inelastic + FEF

FIG. 4.1 SCHEMATIC REPRESENTATION OF ANALYSIS CASES



I

, , 7~ .,
I

, 7~ .,~ ., I

46.0 46.0 46.0

)i. , I

46.0 1667 1720 1720 1667 11240
T'412 T'412 1'240

46.0~ 46.0. 46.0. 46.0. 667 720 720' 667 1240

Design 2-A, Inelastic Design 2-8, Inelastic Design 2-C, Inelastic

(a) Two -Story Shear Buildings

694 628 674

466 361 457

~ ,,!07 ., ~ ., 10,
3,

-;". ,

22.2 318 318

r7

22.2 T263 1516 1516 f263

5381 5511 5511 5381 544

Design 2-D, Inelastic Design 2- E, Inelastic Design 2-F, Inelastic + FEF

(b) Two - Story Moment Frame Buildings
00
0'

375 360 860 869

38.8

995

355

38.8

995

355

7

360 375
381 353

353 381

36.3
~ .,. 7 .,,:

956 925

221 g26

'7'
2.46

4:,. ... ~7.

Design 3-A, Inelastic Design 3-8, Inelastic Design 3-8, Inelastic + FEF

(c) Three - Story Moment Frame Buildings

FIG. 4.2 MAXIMUM HINGE ROTATIONS, 10- 5 Rad



87

Gravity Load

+

II

+

II

Lateral Load

Increasing
Latera ( Load

II

+

II

or

Mp

- Mp

Lateral Load On Iy Gravity Plus Increasing
Lateral Load

FIG. 4.3 THE EFFECT OF GRAVITY LOAD ON
YIELDING BEAM MEMBERS



88

Moment

Mp, Mpc

I I I I I I

I I I I I I

-4 -3 -2 -I 0 I 2 3 4

Inelastic
(Units of

-Mp,-Mpc

Maximum Rotation = 3 Units
Cumulative Rotation = 2 + 1-31 + 4 = 9 Units
Cumulative / Maximum Rotation = 9/3 = 3

Hinge Rotation
Rotation)

FIG. 4.4 NORMALIZED CUMULATIVE HINGE ROTATION



89

O.......Io-~..a-....
o 0.5 1.0

Design 2-A

2

;
I
I
I

0 .......&.&..........u....1
o 0.5 1.0

Design 2-B

0
0 0.5 1.0

Design 2-C

(a) Two-Story Shear Buildings

O~.L-...a....u.~

o 0.5 100

Design 2-D

( b) Two - Story Moment Frames

2 I
I

: I
I I

~I
I
I

O~~~"""'L..Jo 005 1.0 1.0

Design 2- G 2- H

(c) Two - Story X- Braced Frames

Legend

Design
Elastic
Inelastic

--- Inelastic + FEF

1.0

3-B

Frames

Ou.-........Io-.......I

o 0.5 1,0

Design 3-A

(d) Three - Story

(e)

O~.&.Lo.::::-'=-...u.~o 0.5 1.0

Design 3- D

X-Braced Frames

Story
Number

Story Shear
Building Weight

Key

FIG. 4.5 STORY SHEAR COEFFICIENTS



90

3 (%)
I

2 I I
: I

I ~l-:L - '----.,.--.,
I I

i I :
00 I 2

Design 2- C

2 I
I

: I
: L

00 I

Design 2- B

Shear Buildings

2

00 I

Design 2-A

(a) Two - Story

I

2 (0/0)

2-FDesign

2,
I
I
I
I

1!wL ....
I
I
I
I
I I

00 I

I

I
I
I

00 I

Design 2- E

Moment Frames

I II
I

II
I

ft L
I
I
I
I

I II

2

00 I 2(~o)
Design 2- D

( b) Two - Story

Displacements (in.)
or

Drifts (~o)

Key

L
Story
Number

Legend
Design
Elastic
Inelastic

--- Inelastic + FEF

2 3 4 (in.)I 2 3 4 (in.)

2

o 0 ......--"'--.-1
o 2 3(%) 0 I 2 (%)
Design 2-G Design 2-H

(c ) Two - Story X- Braced Frames

FIG. 4.6 STORY DISPLACEMENTS AND DRIFTS



91

234 5

2

234(in.)

0 .10..-
1

_ ....
1

o I 2 (%)

Design 3-8

3,.,....--..

I 2 (~o)

Design 3-A

I
I
I

~ I
I
I

~
L_

I I

2

3

o
o

(d) Three - Story Moment Frames

3

2

2 3 4(in.)

Legend
_........ Design

Elastic
--- Inelastic

--- Inelastic + FEF

Displacements (in.)
or

Drifts ("10)

Key

Story
Number

-,
J
I

2 •
: J
: I
:;L

I
I
I
I
I
I

3 (0/0) 0 ot-...l--......I .....-~

Design
00 1 2

Design 3- C

(e) Three - Story X- Braced Frames

FIG. 4.6 (CONTINUED)



92

..
o
Q)

.cen

>­..
o-en

Q
b

o

Story Displacement

FIG. 4.7 STORY SHEAR-DISPLACEMENT RELATIONSHIP FOR
A STORY FORMING A SIDESWAY MECHANISM



0
Q)
f/)

.......
c

>.-0
0

CD
> ,

a

0.2 0.4 0.60.8 2

93

4 6 8 10 20 40

FIG. 4.8

Frequency, cps

DESIGN RESPONSE SPECTRA FOR X-BRACED SYSTEMS, EL CENTRO 1940 NS,
5 PERCENT CRITICAL DAMPING



94

APPENDIX A. SEISMIC DESIGN FORCES AND MODAL PROPERTIES

This appendix contains (a) in Tables A.l and A.2, the seismic design

forces used to proportion the two- and three-story building designs and

(b) in Tables A.3 and A.4, the elastic frequencies of vibration and mode

shapes for the building designs. The information contained in this

appendix is supplementary to the data presented in Chapter 2 pertaining

to the building designs considered in this study.
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TABLE A. 1 SEISMIC DESIGN FORCES FOR TWO-STORY BUILDINGS

F
Floor hx wxhx

x
Wx V

(k) (ft) (kft)

2 92.16 24 2212 0.5

184.3 12 2212 0.5

L: 276.5 4424 1.0

TABLE A.2 SEISMIC DESIGN FORCES FOR THREE-STORY BUILDINGS

Floor Cladding F
h w h x

Floor Weight Weight w
Vx x x x

(k) ( k) (k) (ft) (kft)

3 364 10.6 375 33 12,375 0.319

2 779 21.1 800 22 17,600 0.454

779 21.1 800 11 8,800 0.227

L: 1975 38,775 1.000
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TABLE A.3 NATURAL FREQUENCIES OF ELASTIC VIBRATION

(a) Two-Story Buildings

Design 2-A 2-B 2-C 2-D 2-E 2-F 2-G 2-H

f 1(cps) 2.67 1. 78 1. 11 1.99 1. 35 2.27 1.98 2.58

f 2/f 1
2.41 2.41 2.41 2.47 2.41 2.88 2.41 2.41

(b) Three-Story Buildings

Design 3-A 3-B 3-C 3-D

f 1(cps) 1. 10 1.39 1.59 2.02

f 2/f 1 2.83 3.04 2.73 2.73

f 3/f 1 4.93 6.23 3.73 3.73
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TABLE A.4 ELASTIC MODE SHAPES

(a) Two-Story Buildings

Design 2-A 2-B 2-C 2-D 2-E 2-F 2-G 2-H

Mode Story

2 1.207 1.207 1,207 1.312 1.265 1.361 1.207 1.207
1 0.854 0.854 0.854 0.714 0.787 0.569 0.854 0.854

2 2 -0.207 -0.207 -0.207 -0.312 -0.265 -0.361 -0.207 -0.207
1 0.146 0.146 0.146 0.286 0.213 0.431 0.146 0.146

(b) Three-Story Buildings

Design 3-A 3-B 3-C 3-D

Mode Story

3 1. 411 1.371 1.243 1.243
2 0.968 0.825 1.084 1.084
1 0.408 0.308 0.628 0.628

2 3 -0.558 -0.466 -0.333 -0.333
2 0.226 0.391 -0.014 -0.014
1 0.368 0.410 0.333 0.333

3 3 0.147 0.095 0.090 0.090
2 -0.194 -0.216 -0.070 -0.070
1 0.224 0.282 0.039 0.039
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APPENDIX B. MODAL ANALYSIS AND APPROXIMATE PROCEDURES

B.l Introduction

This appendix contains (a) a review of the mode-superposition procedure

as used in conjunction with response spectra and (b) a discussion of three

approximate procedures which can be used to estimate dynamic base shear.

Since the modal method is well known (see for example Timoshenko, ~~.,

1974; Clough and Penzien, 1975), only the details pertinent to this study

are repeated. The approximate procedures follow from consideration of the

normal-mode method, and they have been discussed previously by Newmark and

Rosenblueth (1971, pp. 468-469, 482).

B.2 Modal Method

The governing set of simultaneous differential equations of motion can

be uncoupled if the normal modes of vibration are used as generalized

coordinates. Each of the resulting independent differential equations can

be solved as if they governed the response of single-degree-of-freedom

systems. The total response can then be found by transforming back to the

original set of coordinates. This procedure, known as the normal-mode

method, is based on superposition and therefore strictly appl ies only to

elastic systems. The procedure described in the following paragraphs

applies to building structures founded on the ground and subjected to

base motion.

The first step in the normal-mode method involves solving for the

mode shapes and modal frequencies. In this study it was assumed that

mass was lumped only at locations of story translation. Therefore, in

order to avoid including unwanted degrees-of-freedom in the analysis, it
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was convenient to find the mode shapes and frequencies using the

flexibility approach. The equations of motion for free vibration using

flexibility formulation are

[F] r-M.j {v} + {v} {a} (B.1)

in which {v} and ['M.J represent the horizontal displacements of the lumped

story masses and the diagonal mass matrix, respectively. The entries to

the i-th column of the flexibility matrix, [F], are the story displacements

caused by a unit force applied at the i-th story. If it is assumed that

each of the story masses vibrates with harmonic motion about the static

equilibrium position according to the equation v

{v} = {~(n)} sin (w t + £ )
n n

(B.2)

then Eq. (B.l) can be reduced to the following set of algebraic equations

([F]['M.J - -1- [I]){~(n)} = 0
w

n

(B.3)

In Eq. (B.2), {~(n)} represents the mode shape, w represents the natural
n

circular frequency, and £ represents the phase angle associated with then .

n-th mode of vibration. In Eq. (B.3), [I] denotes the identity matrix.

A nontrivial solution to the set of equations is possible only when

det( [F] ['M.J 1
2

[I]) = 0
w

n

(B.4)

The natural circular frequencies of vibration are found by expanding the

determinate and solving the resulting algebraic equation for the N roots

2., l/w
N

in which N represents the number of degrees-of-

freedom. The N mode shapes are found by successively substituting the



100

roots into Eq. (B.3).

It can be shown that the mode shapes have the following orthogonality

relationships, provided w2 ~ w2 :n m

{</>(n)}T ['M...]{</>(m)} {~
0, n ~ m
0, n = m

{</>(n)}T [s*] {</>(m)} {~
0, n -:F m
0, n = m

(B.5)

(B.6)

in which [S*](= [F]-l) represents the structural stiffness matrix condensed

to include only story displacements as degrees-of-freedom.

Next, the response in each mode is found. For purposes of evaluating

the dynamic response in this study, it was convenient computationally to

reformulate the equations of motion using the stiffness approach. If the

stiffness formulation is used, the equations of motion including the effects

of damping and support excitation can be written

(B. ])

in which [C] represents the damping matrix and x represents the ground

acceleration. In Eq. (B.7), {l} denotes the unit vector. Equation (B.7)

can be uncoupled into normal modes of vibration if the displacements are

written in terms of the mode shapes .and the generalized coordinates, qm'

as follows:

{v}
N

= L:
m=1

N
L:

m=1
(B.8)

in which {v(m)} denotes the displacement vector in the m-th mode of

vibration. If Eq. (B.8) is substituted into Eq. (B.7) and the resulting

expression is premultiplied by {</>(n)}T, the equations uncouple.
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In performing the algebra, the orthogonality conditions on mass and

stiffness are used, and it is assumed that a corresponding orthogonality

condition applies to the damping matrix. The uncoupled equation of motion

obtained for the n-th mode of vibration is

In Eq. (B.9), ~ denotes the amount of critical viscous damping in the
n

n-th mode of vibration.

The response expression for the n-th generalized coordinate can be

written, using Duhamel's integral to solve Eq. (B.9), as

q
" =~.(n) }.. T "M..jU} [1 t -t,: W (t-T) ]

L - f x(T ) e n n sin w
d

n (t T) d1: (B 10)
n {¢ n} ['M...J {¢ (n)} wdn 0 -.

in which wd = W /1n n

right hand side of Eq.

~2. The expression in the parentheses on the
n

(B.10) is the same expression as would be used to

calculate the displacement response of a single-degree-of-freedom system

vibrating ~ith the frequency of the n-th mode. In practice only the

maximum value of the displacement is available, and it can be estimated

from the response spectrum ordinate that is consistent with the given

frequency of vibration and amount of damping. If the participation factor,

Y , is defined as
n

(B.l1)

and D represents the spectral displacement, then the maximum value of
n

the n-th generalized coordinate is
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By Eq. (B.8), the maximum displacements in the n-th mode are

(B.12)

If, for convenience, the mode shapes are

normalized* so that

= {ep (n)}y
n

(B.13)

then the maximum displacements in the n-th mode become

Finally, the modal responses are combined to obtain the general

solution. An upper bound to the response of the system is obtained by

taking the sum of the absolute values of the modal quantities. Thus, upper

bounds to the story displacements are

{v} =max
(B.14)

* When the mode shapes are normalized in this manner, the sum of the N
modal ampl itudes at each mass point (degree-of-freedom) is unity, i.e.,

N
L:

n=l
.That this is so can be shown by

calculating the participation factor required such that

N N )
L: {ep(m)}y = {l}. If the expression L: {ep(m}y = {I} is

m=l m m=l m

premultiplied by {ep(n)}T["'"M.,J and modal orthogonality is used,

{ep(n)}T['M.J{ep(n)}y = {ep(n)}T['M.J{l} results. If the resulting
n

expression is solved for y , Eq. (B.ll) is obtained.
n
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Since the maximum modal responses do not in general occur at the same

time, the probable response of the system is often estimated by taking

the square root of the sum of the squares of the modal quantities. Thus,

the probable story displacements are

{v} b = I~'({)n)}' )2 = / ~
pro n=l max n=l

(B. 15)

The accelerations, inertial forces, and story shears in each mode can

be obtained from the usual relationships between these quantities and the

modal displacements. The maximum and probable accelerations, inertial

forces, and story shears can then be obtained by combining the modes in

the fashion described above for displacements.

B.3 Modal Damping

In using the modal method as described in the previous section, it is

not necessary to evaluate the entries to the damping matrix. However, when

using time-history calculations the damping coefficients are usually

related to some percentage of critical viscous damping in each mode of

vibration. In order for the damping coefficients to be related to the

damping in the normal modes, the damped equations of motion must uncouple

into normal modes of vibration. This requires the damping matrix to have

orthogonality properties.

If it is assumed that the damping matrix is linearly proportional to

the mass matrix, i.e.,

[c] = b[M] (B.16)

where b is a constant, the equations uncouple. Once b has been set, the
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percentage of critical viscous damping in the n-th mode is calculated from

b
t;n = 2w

n

When damping is prescribed in this manner, the lower modes are damped

more strongly than the higher modes.

B.4 Bounds on Base Shear

(B.17)

The computation of lateral design forces is often split into two parts:

the calculation of the base shear and the distribution of the base shear

over the building height. Three bounds to the base shear may be obtained

which can be justified in terms of the modal superposition procedure.

A lower bound is obtained by computing the base shear associated with

the first mode. In equation form, the base shear is

N
V~ Al ~ ~. (1) m.

i=l I I

in which mj and Al refer to the lumped mass of the i-th story and the

"'(1)spectral acceleration in the first mode. The symbol ¢. denotes the
I

normalized amplitude of the first mode shape at the i-th story.

(B.18)

Building codes recommend the base shear be calculated by multiplying

the mass of the building by a coefficient that is equivalent to the

spectral acceleration in the first mode. According to studies referred

to by Newmark and Rosenblueth (1971), the building code approach sl ightly

overestimates the base shear of multistory buildings when compared to the

square root of the sum of the squares method of combining modal quantities,

provided the ordinates of the response spectrum do not exceed those
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corresponding to a constant pseudovelocity. Thus, an upper bound may be

obta ined from

m.
I

(B.19)

Equations (B.18) and (B.19) yield the same result if

n.
An upper bound of some interest may be defined for shear-beam systems.

This bound was not specifically considered in this study. The base shear

is less than or equal to the first story stiffness times the spectral

displacement corresponding to a single-degree-of-freedom system having the

same frequency as the fundamental frequency of the system. In equation form

v ~ k 01 (B.20)

in which k represents the first story stiffness. Equation (B.20) is an

upper bound provided the spectral displacement in the first mode is larger

than the spectral displacement in any of the higher modes.*

* This may be shown as follows.
N

By Eq. (B.14), V ~ k L: I¢ (n)O I.
n=l 1 n

Noting ¢l (n) are positive for all n and therefore

~ I,¢(n) I = 1, it follows that V < k max o. Thus, Eq. (B.20) is true
n=1 n n

provided 01 > 0 , n r 1.- n
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APPENDIX C. ELEMENT STIFFNESS PROPERTIES

C.l Introduction

In the analysis of buildings of the types considered in this

report, nonlinearities arise from two sources. The first source

of nonlinearity is caused by the inelastic behavior of the structural

material, and this source is referred to as material nonlinearity. The

second source of nonlinearity, referred to as geometric nonlinearity,

arises when the deformations are large and changes in the geometry of the

structure must be accounted for in the analysis. Consequently, it is

convenient to separate the formulation of the stiffness properties into

the formulation of material stiffness and geometric stiffness.

In this appendix member stiffness matrices to be used in establishing

the structural stiffness matrix are derived. Element stiffness properties

are formulated to account for (a) material nonlinearities resulting from

the yielding of beams, columns, and X-braces and (b) geometric nonlineari­

ties due to gravity loads acting on columns. The material stiffness for

beam and column members is derived from consideration of a beam made up of

an elastic flexural portion with rigid-plastic hinges at the ends. The

material stiffness for X-braced frames represents the behavior of lateral

bracing which resists only tensile forces. To account for geometric

nonlinearities due to gravity loads acting on columns (P-delta effects),

it is assumed that column and X-brace members support rigid, pin~ended,

bar segments (false members) subjected to axial load.

The relationship between member end forces, {G}, and end displace­

ments, {U}, can be written (Przemieniecki, 1968, pp. 383-384)
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(C.l)

in which [SE] and [SG] represent the material and geometric stiffnesses,

respectively. The minus sign before the geometric stiffness is used in

this study to account for the fact that P~delta effects tend to reduce the

element stiffness. Since the material element stiffness changes as a

function of the member force~displacement history, Eq. (C.l) is valid only

for small changes in displacement and must be written in incremental form.

A Greek delta prefix to a symbol indicates an incremental value.

C.2 Flexural Element Material Stiffness

In formulating the flexural element material stiffness, it is

convenient to first establ ish the stiffness of a beam element which is

constrained in such a way that all rigid body degrees-of-freedom are

eliminated. The constrained stiffness is obtained from consideration of

the slope-deflection equations for a simply supported beam, modified to

take inelastic behavior into account. The complete or unconstrained

stiffness is then established from the constrained stiffness by using a

transformation of coordinates. When the beam member is unconstrained,

rigid body displacements that do not induce strains in the beam element

are possible and the corresponding stiffness matrix is singular.

The simply supported beam element shown in Fig. C. I is made up of

an elastic flexural portion with inelastic hinges at either end. If it

is assumed that prior to yielding the hinges at either end are rigid,

and after yielding they sustain the plastic moment capacity of the

member (or reduced plastic moment capacity in the case of columns),

four states of yield can be defined:
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State one, the moment capacity at either end is not exceeded.

State two, the moment capacity at the left end is reached,

the right end remaining elastic.

State three, the moment capacity at the right end is reached,

the left end remaining elastic.

State four, the moment capacity is reached at both ends.

From consideration of the slope-deflection equations, Giberson (1969)

has demonstrated that the relationship between total end rotations, {uL

and end moments, {g}, can be written in incremental form as

t1}fA kBJ {6U I} (C.2)
692 kB kC 6u2

in which kA, kB and kC are stiffness coefficients that depend on the state

of yield. The relationship between inelastic hinge rotations, {a}, and

the total end rotations can be written in incremental form as

(C.3)

in which [TIl is a transformation matrix that also depends on the state of

yield. The values of kA, kB and kC and the entries to [TIl are recorded

in Table C. I for the four states of "yield described above. In Fig. C. I

and Table C.I, E and I denote the modulus of elasticity and the moment of

inertia of the section.

In the unconstrained coordinate system, the beam element shown in Fig.

C.2 is capable of rigid body motions. The end displacements in the

unconstrained coordinate system, {U}, can be related to the end rotations

in the constrained coordinate system by consideration of the geometry of
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the beam element under deformation. Thus

{u}= [TZ]{U} (C.4)

in which

~I/L

t 1/L
1
o

IlL
1/L ~J (C.5)

If the principle of contragradience is used, the unconstrained element

forces, {G
E
}, can be found from

If Eqs. (C.2) and (c.4) are substituted into Eq. (e.6) and incremental

(c.6)

notation is used where appropriate, the following expression can be obtained

for the element forces:

in which the complete element material stiffness is

[S ] = [T ]TfkA kBl [T ]
E 2 k k 2

B C- -

(C.7)

(c .8)

The incremental hinge rotations can be obtained from the unconstrained

displacements by writing Eq. (c.4) in incremental form and substituting

into Eq. (C.3). Thus

C.3 X-brace Material Stiffness

The material stiffness for the X-brace subassemblage shown in Fig.

C.3(a) is obtained by analogy to the derivation used in the previous

section for the flexural element.
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The stiffness in the constrained coordinate system is established

from consideration of the story shear-deformation relationship for the

tension brace in the subassemblage. In establishing the constrained

stiffness, it is assumed that the tension brace is elastic, the compression

brace resists no lateral load, and the gravity loads acting on the columns

can be ignored. From consideration of equil ibrium, Fig. C.3(b), Hooke's

Law and compatibility, Fig. C.3(c), the horizontal story shear resisted is

(c. 10)

In Eq. (C.IO), A denotes the cross-sectional area of the brace and u

represents the relative story displacement.

The story shear resisted by an X-brace subassemblage depends on the

cyclic load history. If it is assumed that the resistance-deformation

relationship described in Section 3.2.2 (see Fig. 3.2) applies, then, for

displacement in the positive direction, the story shear resisted can be

calculated from the following expressions:

u > U ,u - u - u < 0- ps ps y

u > U ,u - u - u > 0- ps ps y -

u < ups

Q = AE [J:.-] 2 (u _ u )
Lb Lb pS

Q = 0

(C.lla)

(C.llb)

(C.llc)

in which u
y

represents the initial yield displacement and

F denotes the yield stress of steel. The permanent set in the positive
y

direction, u ,is equal to the maximum positive displacement minus theps

elastic recovery during the previous excursion into the inelastic range.
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The use of Eq. (C.ll) to calculate the hysteretic response of an X-brace

subassemblage is illustrated by the examples shown in Fig. C.4. Conditionals

similar to those listed above can be written for negative displacements.

Equations (C.ll) can be written more conveniently in the incremental

form

flQ = k· flu (C. 12)

in which k is the constrained stiffness. Two states of yield can then be

defined:

State one, the force resisted changes according to the

elastic stiffness, k = ~: [ L~r.
State two, the change in force resisted in zero, i.e., k = 0 .

The complete or unconstrained element stiffness matrix is obtained

from the constrained element stiffness by a transformation of coordinates.

The relative story displacement can be calculated from the displacement

in the unconstrained coordinate system, {U}, by using the transformation

u = {-l l}{U}

If the contragredient relationship for forces is used, the X-brace

(C.13)

material stiffness in the unconstrained coordinate system can be formulated.

Thus

(C.14)

c.4 Geometric Stiffness

A linear approximation of the flexural element geometric stiffness

can be obtained from consideration of the physical model shown in Fig. C.5
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(Clough and Penzien, 1975, pp. 167-169). The model is made of a rigid

bar segment subjected to axial force·N and a stabilizing flexural element.

As the flexural element deflects, the rigid bar also deflects developing

forces which must be resisted by the flexural element. If it is assumed

that the centerlines of the bar and the flexural element coincide,

summation of moments about the top and bottom ends of the rigid bar leads

to the additional (shear) forces acting on the ends of the flexural element.

In matrix form, the end forces due to geometric effects are

in which the geometric stiffness is

Nih 0 -Nih 0

[SG]
0 0 0 0

=
-Nih 0 Nih 0

0 0 0 0

(C. IS)

(C.16)

The X-brace element geometric stiffness can be obtained in a similar

manner. From consideration of equilibrium of the subassemb1age shown in

Fig. C.3(a) under deformation, the geometric stiffness is

-Nih]

Nih
(C.17)

in which N represents the sum of the axial loads acting on the columns

of the subassemblage.

If the axial forces are positive (compressive), the geometric stiffness

tends to reduce the member stiffness. Thus, the lateral story shear that

can be resisted for a given relative story displacement under monotonically

increasing load is reduced from that which would be resisted if gravity
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loads were not present.

It should be commented that, in'the derivation of the geometric

element stiffnesses, it is assumed that the axial loads acting are

constant. Thus, the axial forces are assumed to arise from sources that

are independent of the seismic excitation.

Buildings are frequently designed so that not all columns in a story

contribute to the resistance of lateral load. The P-delta forces arising

from gravity loads acting on columns that do not contribute to lateral

load resistance are transferred to the seismic load resisting frames by

diaphragm action. The axial loads used to formulate geometric stiffness

matrices must take this transfer of P-delta forces into account.
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TABLE C.l ENTRIES TO THE BEAM ELEMENT MATERIAL STIFFNESS MATRIX
AND TO THE TRANSFORMATION MATRIX USED TO OBTAIN THE
INELASTIC HINGE ROTATIONS

State of
[T1Jyield kA kB kC

4EI 2EI 4EI
[~ ~JL L L

2 0 0
3EI [6 1~2JL

3 3EI
0 0 [1~2 ~JL

4 0 0 0 [~ ~J
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FIG. C.2 TRANSFORMATION OF COORDINATES
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All Horizontal Beams
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(a) X - Brace Subassemblage
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FIG. C.3 X-BRACE ELEMENT
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N

Rigid Bar
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Flexural Member
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(a) Physical Model (b) Free Body Diagram in The
Deformed Configuration

FIG. C.5 PHYSICAL MODEL USED TO OBTAIN THE FLEXURAL
ELEMENT GEOMETRIC STIFFNESS
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APPENDIX D. INCREMENTAL NUMERICAL PROCEDURE

0.1 Introduction

This appendix contains a discussion of the step-by-step numerical

integration (time-history) procedure used to solve the equations that

govern the dynamic response of low-rise steel buildings. In the step-by­

step procedure, the response history is divided into a number of small

increments in time. The response during each increment in time is evaluated

using the structural properties applicable at the beginning of the time

increment. The dynamic response quantities calculated at the end of one

time increment become the initial conditions for the next time increment.

At the end of each time increment, the structural stiffness matrix is

adjusted to account for any changes in the element stiffnesses due to

yielding or hardening. Thus, the solution advances in a step-by-step

manner in the time domain for a series of I inear systems with changing

stiffness properties.

Unless certain precautions are taken when the stiffness properties

are not constant during a time increment, some error is involved in using

the step-by-step numerical integration procedure. If the stiffness changes

during a time increment, the forces that can actually be resisted by some

members are different from the member forces calculated using the stiffness

properties applicable at the beginning of the time increment. In an effort

to minimize this disparity between the forces that can be resisted and

the calculated forces, an iterative technique analogous to the initial

stress procedure that is sometimes applied to static problems is used.

Of course, it is only necessary to use the iterative procedure at the
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end of time increments in which the stiffness has changed.

D.2 Equations of Motion

In order to facilitate the solution of the simultaneous differential

equations of motion using the step-by-step numerical integration procedure,

the equations of motion are converted into a set of simultaneous algebraic

equations. This is accomplished by assuming that the structural displace­

ments, velocities, and accelerations can be simply related to each other

over small time increments.

The simultaneous differential equations of motion, assembled in

incremental form, can be written as follows:

l~~ ]{6v(t} } + [[~] • ] { A~(tl }

+ [S(t}] { ::::: Frr-~~ :jU}Ai«t) + {R(t}} (0.1)

in which ["'MJ represents the diagonal mass matrix,

[c] represents the damping matrix,

[S(t)] represents the tangent stiffness at time t,

{R( t)} represents the residual load vector at time t (see Section D.3),

{v} represents the story displacement vector,

{e} represents the nodal rotation vector,

{l} represents the unit vector,

and x represents the ground acceleration.

A Greek delta prefix to a symbol indicates an incremental value. A

superscript dot above a symbol indicates one differentiation with respect
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to time. The incremental displacement quantities are associated with

the time at the beginning of the time increment, t.

In order to convert Eq. (D.1) into a set of simultaneous equations,

a linear variation of acceleration over a short time interval ~t is assumed.

If the equations of Newmark (1959) with S = 1/6 and y = 1/2 are used, the

incremental story velocities and displacements can be written as follows:

{~~(t)} = ~t{v(t)} + ~; {~v(t)}

{~v(t)} = ~t{~(t)} + (~t)2 {v(t)} +
2

(D.2)

(D.3)

At time t the velocity vector, {~(t)}, and the acceleration vector, {v(t)},

are known quantities. If the incremental displacement vector is taken as

the basic unknown quantity, Eqs. (0.2) and (D.3) can be solved to obtain

the following expressions for the incremental velocity and acceleration

vectors:

{~~(t)} = It{~v(t)} - 3{~(t)} - ~; {v(t)}

{~v(t)} = 6 2 {~v(t)} ... ~6 {~(t}} - 3{v(t)}
(~t) t

(D.4)

(D.5)

If Eqs. (D.4) and (D.5) are substituted into Eq. (D.l) and the resulting

expression is simplified, the following set of simultaneous algebraic

equations is obtained

in which

{
~V(t)}

[A(t)] = {B(t)}
~e( t)

(D.6)
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(D.])= [S(t)] + 6
(L\t) 2

r~-J :J+ It r~] :J
{B( tl} - r~-J :J<;t {~ ~ t1 +3{V(.t>} -{l}8X(tJ

+r~] :1<3 r(:>} +8dV(.t> }>+{R(t» (0.8)

[A(t)]

Equation (0.6) has the same form as the standard static stiffness equations

and it can be solved for the incremental story displacements and rotations

by Gaussian elimination. The incremental velocities and accelerations can

then be found by substituting the incremental story displacements in Eqs.

(0.4) .and (0.5).

The structural story displacements, joint rotations, and so forth at

the end of the time increment are equal to the response quantities at the

beginning of the time increment plus the changes in the response quantities

calculated using Eq. (0.6) and Eqs. (0.4) and (0.5). Thus

tt+8tl} ttl} +tV(t>}= (D.9)
e(t+L\t) e(t) L\e (t) .

{~( t+L\t)} {~(t)} + {L\~(t)} (D.IO)

{v (t+L\t)} = {v(t)} + {L\v (t)} (O.ll)

The solution procedure progresses in a step-by-step manner with the values

at time (t + L\t) calculated by Eqs. (0.9), (0.10) and (0.11) becoming the

the known values at time t for the next time increment.
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0.3 Initial Stress Procedure

Using the initial stress procedure (Zienkiewicz, 1971, pp. 372-373),

a nonlinear problem is solved as a succession of linear problems, the

nonlinearities being accounted for by additional or residual loading terms

in the nodal equilibrium equations. Thus, when yielding (or hardening)

occurs during a time increment, the structural stiffness changes and

[S(t)] {6V(t)} in Eqs. (0.1) and (0.6) should be replaced by (Aktan,
6a(t)

~~., 1974)

{

lW( t))
= [S(t)] r - {6P(t)}

68 (t) J
(D.12)

in which {6F(t)} represents the actual incremental resisting forces due

to structural stiffness and {6P(t)} represents the residual forces.

Incremental structural displacements and residual forces between times

t and (t + 6t) are

+ {6V(t)}n
M(t)

(0.13)

(0.14)

The corrections to the incremental displacements are found iteratively

from

tv<tT[A (t)] = {B(t)}
68 (t)

[A(t)] t<tlf = {6P (t)}o (D. 15)
68(t)

.
j[A (t) ] {~V(tT = {6P (t)}n-l

'68 (t)
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The tangent stiffness applicable at the beginning of the time increment

is used for all cycles of iteratiOn.

The incremental residual forces are obtained successively from

consideration of the member force-deformation relationships. For the i-th

i-Iiteration, the residual forces {~p(t}} to be applied as joint loads are

assembled from the forces required to bring the member forces based on the

tangent stiffness solution (the calculated forces) into coincidence with

the actual forces that the members can resist under the displacements

( ) f { ( .}}i"lreached in the i-l -th iteration. The orce vector ~p t can be

physically interpreted as the unbalanced residual forces left on the

structure at the end of the (i-l}-th iteration.

iteration is continued for a specified number of cycles or until

{~p(t}}n are smaller than a specified tolerance. Since iteration is

carried out only to a tolerance, the residual forces {~p(t}}n found for

the last iteration cycle are added as the residual load vector, {R(t}},

during the next time increment. Before going on to the next increment

in time, the structural stiffness matrix is updated to account for any

changes in element stiffnesses that have occurred.

0.4 Member Residual Forces and Special Considerations

0.4.1 Member Residual Forces -- In order to formulate the residual

load vectors for use in the initial stress procedure described in Section

0.3, it is necessary to obtain the actual forces that can be resisted by

the members under specified displacements. For X-brace elements, once

the member relative displacements are known, the actual member forces can

be determined from the member force-deformation relationships (Eq. (C. II)
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and Fig. 3.2). The member residual forces are simply equal to the

differences between the forces calculated using the tangent stiffness

and the actual member forces.

No unique relationship between moment and rotation exists for flexural

elements: the moment at one end of a flexural element is affected by the

moment at the other end and vice versa. After each iteration of the

initial stress procedure, the calculated flexural element end moments are

adjusted such that the moment capacities at either end are not exceeded.

An adjustment at one end Is accompanied by an adjustment at the other end

according to the carry-over factor applicable to the given state of yield.

The carry-over factors are 1/2 for elastic far ends and 0 for inelastic

far ends.. The residual end moments are found from the differences between

the calculated and adjusted end moments. The residual end moments may be

physically interpreted as the moments to be applied to the elastic inner

portion of the flexural element (of stiffness 4EI/L) In the actual deformed

shape such that the actual deformed shape and the deformed shape assumed

using the tangent stiffness become the same (see Fig. D.1).

The unbalanced residual forces for X-brace elements and the

unbalanced residual end moments for beam elements are liquidated using

the initial stress procedure.

An inelastic hinge at either end of a flexural member is free to

rotate in only one direction during each excursion into the Inelastic

range, and if the direction of rotation changes the member becomes

elastic. If it is found that a beam has unloaded (become elastic) at

either end during a time increment, a special procedure is used.

Rather than calculate unbalanced forces and use the iterative procedure
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described in the previous section, it is convenient to return to the

beginning of the time increment, modify the structural stiffness, and

repeat calculations.

0.4.2 Special Considerations -- The accuracy of the numerical

procedure described above depends on the size of the time increment used

in calculations. Since the times when the response is evaluated do not

in general correspond to the exact times of yielding or maximum deformation,

certain errors can result. Melin (1976) has estimc3ted the magnitude of

these errors from studies on single-degree-of-freedom elastoplastic systems.

If yielding occurs during a time increment, he concludes that the resulting

errors are small provided the time increment is 1/20 to 1/40 of the elastic

period of vibration. In these estimates it was assumed that the force­

deformation relationship was satisfied at the end of the time increment

using an iterative procedure. Melin has estimated the largest probable

error in the calculation of maximum deformation to be less than I percent

or 0.3 percent if the time increment is 1/20 or 1/40, respectively, of

the elastic period of vibration.

For this study the time increment used was less than or equal to 1/20

of the elastic period of the highest mode of vibration. The earthquake

base motion was assumed to be a piecewise linear function between times

of, known ground acceleration. In order to avoid missing abrupt changes in

loading, the response was evaluated at each discontinuity in the slope of

the ground acceleration history. Computations were carried out for the

duration of the base motion plus a time of twice the fundamental elastic

period of vibration.
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0.5 Verification of the Analytical Procedures

The intent of this section is to verify the computational procedures

described above by comparison of the results of some simple response

calculations to the published results of other investigators. The simple

structures studied were subjected to the half-cycle displacement pulse

base motion shown in Fig. E.3. The structures were undamped.

The first group of studies was confined to systems composed of flexural

elements with the inelastic properties described in Section C.2. The one

story frame shown in Fig. 0.2 has an elastoplastic resistance deformation

relationship when subjected to lateral load. Its behavior during dynamic

motion can be compared directly to that of an elastoplastic single-degree­

of-freedom system. In Fig. 0.2 the maximum displacements for a number of

systems are shown as a function of the frequency parameter ft l where f is

the elastic frequency of vibration and t l is a measure of the pulse

duration. For both elastic and inelastic systems, the response calculated

was for all practical purposes the same as that found by Veletsos and Vann

(1971) for elastoplastic single-degree-of-freedom systems subjected to the

same base motion.

Similarly, a flexural element under shear deflection with no end

rotations has an elastoplastic force-deformation relationship. The maximum

displacements of two-story shear systems are plotted in Fig. 0.3 as a

function of the frequency parameter flt l in which the symbol f l denotes

the fundamental frequency of elastic vibration. The response was almost

exactly the same as that found by Veletsos and Vann (1971) for elasto­

plastic two-degree-of-freedom systems. (There were slight discrepancies

for the maximum inelastic responses of the first stories between frequency
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parameters 0.2 and 0.3, see Fig. 0.3(a). These discrepancies cannot be

accounted for, but they may be due to the scale of plotting.)

The results of studies on X-braced single story frames with the

resistance-deformation relationship described in Section C.3 are shown

in Fig. 0.4. Again the plots are in terms of the frequency parameter

ft 1• The maximum deformations calculated by the procedures described

in this appendix were for all practical purposes the same as those found

by Veletsos (1969) for the same base motion.
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Deformed Shape Assumed Using
The Tangent Stiffness Properties

Actual Deformed Shape

Additional Hinge
Rotations During
The Iterati ve
Time Step

FIG. D. 1 ADDITIONAL INELASTIC HINGE ROTATIONS
DURING THE INITIAL STRESS PROCEDURE
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APPENDIX E. THEORETICAL STUDIES OF SIMPLE SYSTEMS

E. 1 Introduct ion

In this chapter the results of calculations on elastoplastic two-

degree-of-freedom systems subjected to pulse type base motion are

summarized. The objectives of this special study were (a) to evaluate

the modal procedure when applied to systems with nonuniform inelasticity,

(b) to find the appropriate procedure for combining modes when applying

the modal method to systems with a few degrees-of-freedom, and (c) to

examine certain approximate procedures which might be used to estimate

the design base shear.

The approach used in the study was to compare the results of modal

method and approximate calculations to time-history solutions. The studies

in part parallel earlier work by Newmark, et~. (1965), Veletsos and Vann

(1971), and others. However, in this study either the base motion consi-

dered, the systems studied, or the modal and approximate procedures used

for estimating inelastic response were in some way different from those

used in the previous studies. It is important that such studies be

pursued because the results of investigations on simple systems provide

a theoretical basis on which to view the more complicated behavior of

two- and three-story buildings subjected to earthquake base motion.

E.2 Systems and Base Motion Considered

Systems. The mathematical idealization for the two-degree-of-

freedom systems studied is shown in Fig. E.l. The symbols f and {~(ri)}
n

denote the frequency and the normalized mode shape for the n-th mode of

small amplitude (elastic) vibration. Mass, m, and elastic stiffness, k,
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are uniform for each degree-of-freedom, and the systems are undamped.

The resistance-deformation relationship for each spring was assumed

to be elastoplastic with equal yield resistances in both directions of

displacement. After yielding occurred, unloading was assumed to follow

a curve offset from, but parallel to, the original elastic curve. The

resistance-deformation curve for the i-th spring is presented in Fig. E.2.

The symbols Q. and u. denote the spring force and the relative displacement,
I I

respectively. The subscript "0" indicates the maximum displacement or

force observed if the spring remains elastic during base motion. The

ductil ity, ~., is calculated by dividing the maximum inelastic displacement,
I

(u.) , by the elastic component of the displacement at yield, (u.) . The
I m I y

symbol (Q.) denotes the maximum elastoplastic spring force.
I y

Base Motion. The half-cycle displacement pulse base motion considered

is shown in Fig. E.3. The symbol t l denotes the duration of one-half of

the base motion.

Single-Degree-of-Freedom Response Spectra. The response spectra for

elastoplastic single-degree-of-freedom systems subjected to the pulse base

motion are plotted in Fig. E.4. Each curve in Fig. E.4 gives the yield

displacement, u , required to limit the maximum deformation of the spring,
y

u , to a specified value of the ductility factor,~. The spectra arem

plotted in terms of the quantity V , defined as V = wu in which w(=2nf)y y y

represents the circular frequency of elastic vibration. In some of the

literature V is referred to as the pseudovelocity for yielding systems.
y

The spectral values are normalized by the maximum ground velocity, v, and

they are plotted in terms of the dimensionless frequency parameter ft l

where f is the frequency of elastic vibration and t l is a measure of the
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pulse duration. The response spectra shown in Fig. E.4 are essentially

the same as those determined by Veletsos and Vann (1971) for the same base

motion.

In discussing the results of the modal method and approximate

calculations later in Section E.4, it is convenient to refer to the

different frequency ranges of the elastic single-degree-of-freedom

response spectrum, .11= 1 in Fig. E.4. The transition between the moderately

low and the medium frequency ranges occurs at a frequency parameter of

about ft l = 0.55 (point b), and the transition between the medium and the

moderately high frequency ranges occurs at a frequency parameter of about

ft l = 0.75 (point c). The transition frequencies adopted in this appendix

are similar to those reported by Veletsos and Vann (1971).

E.3 Time-History Calculations

It is the objective of this section to generate numerical data which

can be compared to the modal and approximate calculations reported in the

following section.

Method of Analysis. The time-history calculations were made using

Newmark's S-Method in the well known iterative form, with S = 1/6 and

y = 1/2 (Newmark, 1959). The increment in time used for the numerical

integration procedure was less than or equal to 1/20 of the elastic period

of the highest mode of vibration. The response was evaluated at the end

of each time increment and at the times of each discontinuity in the

slope of the base acceleration history. Computations were carried out for

the duration of the base motion plus a time of twice the fundamental period

of elastic vibration.
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One Spring Permitted to Yield. The calculated response of the

two-degree-of~freedomsystems where one of the springs could yield is

shown in Figs. E.5 and E.6. In each case the response was determined

for a number of discrete values of the dimensionless frequency parameter

flt l (recall that f l denotes the fundamental frequency of elastic

vibration of a given system, and t l is a measure of the pulse duration).

In the figures, the maximum elastic component of the response was plotted

in terms of the quantity (V.)o if the spring responded elastically, or
I

the quantity (V.) if the spring responded inelastically. The quantities
I y

(V.)o and (V.) are defined as (V.)o = wl(u.)o and (V.) = wl(u.) in
I I Y I I I Y I Y

which wl (=2nf l ) denotes the fundamental circular frequency of elastic

vibration. The displacements (u.)o and (u.) are defined in Fig. E.2. It
I I Y

should be appreciated that the computed quantities were (u.)o or (u.)
I I m

where the ductility, ~i' is given by ~i = (ul)m/(ui)y' The plots are

normalized by the maximum ground velocity, v.

The response of systems for which the base spring was elastoplastic

and the second spring remained elastic is given in Fig. E.5. Each curve

in Fig. E.5(a) gives the yield displacement of the base spring, (u1)y'

required to limit the maximum deformation of the base spring, (ul)m ' to

a specified ductil ity, ~l' Each curve in Fig. E.5(b) gives the maximum

elastic deformation of the second spring, (u 2)o, under the condition that

the base spring responds with the specified ductility, ~l' The abscissa

of both plots is the dimensionless frequency parameter f t
1 1

The plots in Fig. E.5 can be interpreted in the following manner.

For a given value of the dimensionless frequency parameter, the quantity

(Vl)y required to limit the maximum deformation of the base spring to a

ductility of ~l can be obtained from Fig. E.5(a). For the same value of
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the dimensionless frequency parameter, the quantity (V2)o measuring the

maximum elastic response of the second spring under the condition that the

base spring responds with the selected base spring ductility, ~l' can be

obtained from Fig. E.5(b). The yield displacement of the base spring and

the maximum elastic displacement of the second spring can then be found

from the relations (u l ) = (Vl)yIWl and (u 2)o = (V
2
)olw

l
, respectively.

Finally, the maximum displacement of the elastoplastic base spring can be

calculated from the relation (uI)m = ~l(ul)y' Of ~ourse, the use of these

plots implies that the yield displacement of the elastic second spring, if

it exists, is greater than (u2)o.

Similar charts are presented in Fig. E.6 for systems in which the base

spring remained elastic and the second spring was elastoplastic. Each curve

in Fig. E.6(a) gives the maximum elastic deformation of the base spring,

(ul)o, under the condition that the second spring responds with a specified

ductility, ~2' Each curve in Fig. E.6(b) gives the yield displacement of

the second spring, (u2) , required to limit the maximum deformation of they .

second spring~ (u2)m' to a specified ductility, ~2'

On the basis of the studies just described the following observations

concerning the inelastic response of simple two-degree-of-freedom systems

can be made. If the base spring is permitted to yield (Fig. E.5), the

response of the second spring is reduced significantly, even if it remains

elastic. Conversely, if the second spring is permitted to yield (Fig. E.6),

the elastic response of the first spring is reduced only slightly from the

response that would occur if both springs remained elastic.

It should be noted that a graphical interpolation procedure was used

to construct Figs. E.4 through E.6, and the plots may contain slight

inaccuracies.
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Both Springs Permitted to Yield. The calculated response of two­

degree-of-freedom systems where both springs could yield is shown in Fig.

E.7 for systems with a frequency parameter of flt l = 1.0. The graph can

be used in the following manner. The maximum deformations of the springs

assuming that both springs of the system respond elastically to the pulse

base motion are obtained first. The maximum elastic deformations, (ul)o and

(UZ)O, are given in the upper right corner of the figure. The desired design

ductilities for the first and second springs of the system, ~l and ~Z'

are selected. A point on the graph is located corresponding to the

selected ductilities, noting that ~l is the abscissa and Pz is the ordinate

of the plot. The quantities c l and Cz corresponding to the selected

ducti.lities can then be determined from the point on the plot by interpola-

tion between the lines of constantc l and cz. In order for the system to

achieve the desired ductil ities during the pulse base motion, the yield

resistances of the springs must be (ul)y = cl(ul)o and (u2)y = c2 (u2)o.

The maximum deformations of the first and second springs will then be

(ul)m = ~l(ul)y and (uZ)m = Pz(uz)y'

The chart shown in Fig. E.7 demonstrates that the response of even

simple systems to pulse base motion is a complicated function of the system

parameters, especially when yiel~ing is involved. Of course, figures

similar to Fig. E.7 could be constructed for systems with other frequency

parameters.

E.4 Modal and Approximate Calculations

It is the objective of this section to evaluate (a) the modal method

for calculating spring forces and deformations, (b) the use of the first
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mode base spring force as an approximation to the actual force, and (c) the

quasi-static building code approach for estimating the base spring force.

The approach used was to compare response quantities obtained by the three

procedures to the quantities obtained in the previous section using time-

history analysis. In the discussion that follows, the maximum displacement

observed in the i-th spring during time-history calculations is denoted by

(u.)o if the spring remained elastic and (u.) = ~.(u.) if the spring
I I m I I Y

yielded. The maximum time-history spring force in the i-th spring is

denoted by (Q.)o = k(u.)o if the spring remained elastic and (Q.) = k(u.)
I I I Y I Y

if the spring yielded.

A detailed discussion of the modal method and the approximate procedures

is given in Appendix B. The discussion in Appendix B is applicable to

elastic systems.

Modal Method. A summary of the modal method as used for inelastic

response calculations in this appendix is as follows:

(1) Obtain the frequencies and mode shapes of elastic vibration for

the given system.

(2) Select the inelastic design response spectrum that gives the

elastic component of the displacement response for the desired elastoplastic

ductility. (In some publications this spectrum is referred to as the

inelastic maximum acceleration or yield displacement spectrum.) For the

studies recorded in this section, the spectral quantities were obtained

from Fig. E.4.

(3) Calculate the yield (maximum) spring forces and the yield

displacements using the modal method in conjunction with the inelastic

design response spectrum (as described in Appendix B for elastic systems).
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(4) Multiply the yield level displacements by the design ductility

factor to obtain the maximum spring deformations.

The yield (maximum) force and the maximum deformation obtained in the

i-th spring are denoted by (Q.) and (u ) if the modal quantities were
I max i max

obtained by the sum of the absolute values of the modal quantities approach.

They are denoted by (Q.) band (u.) b if the modal quantities were combined
I pro I pro

by the square root of the sum of the squares of the modal quantities approach.

It is well to point out one inconsistency in the modal method as

described above when applied to systems with nonuniform inelasticity. In

particular, consider a two-degree~of-freedom system proportioned so that

inelastic response occurs only in one spring. If the modal calculations

conform to the ductility of the inelastic spring, the response quantities

obtained for the elastic spring are inconsistent.

First Mode Approximation. The base spring force in the first mode of

vibration is denoted by (Ql)lst' The spectral ordinates used for calculations

were obtained from Fig. E.4.

Building Code Approach. In the quasi-static building code approach,

the force in the base spring is approximated by multiplying the total mass

of the building by the spectral acceleration, obtained from Fig. E.4, in

the first mode of vibration. The building code base force is denoted by

(Ql)code'

Both Springs Elastic. The results of calculations for the case where

both springs responded elastically to the pulse base motion are presented

in Table E.l. As would be expected, the sum of the absolute values of

the modal quantities procedure for combining modes gave forces, (QI) max

and (Q2) ,and deformations, (u l ) • and (u2) ,that were close tomax max max
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the time-history values over a wide range of frequency parameters.* The

square root of the sum of the squares of the modal quantities approach also

gave forces, (Ql) band (Q) and deformations, (u l ) band (u2) b'pro 2 prob' pro pro

that were close to the time-history response; however, in the low frequency

region this procedure slightly underestimated the time-history response.

In the medium and high frequency ranges, the base spring forces in

the first mode, (Ql)lst' were almost the same as the time-history forces.

Consequently, it can be assumed that the response was primarily in the first

mode in these frequency ranges.

The building code method of calculating the base spring force, (Ql~ode'

gave good estimates of the time-history spring forces in the medium and

high frequency ranges.

Base Spring Permitted to Yield while Second Spring Remained Elastic.

The results of calculations for the case where the base spring responded

with a ductility of 3 and the second spring responded elastically are

presented in Table E.2. The modal and approximate calculations were

performed using the response spectrum for ~ = 3 shown in Fig. E.4 for both

modes of vibration. Modal analysis gave results that were reasonably close

to, although in general slightly under, the time-history values for the

base s~rtng forces, (Ql)max and (Ql)prob' and base deformations, (ul)max

and (u l ) b' In the medium and hig~ frequency ranges, the base springpro

forces in the first mode, (Ql)lst' were almost the same as the time-history

values. For the medium and high frequency systems, the base spring forces

estimated by the building code approximation, (Ql) d' were within 10co e

* The different frequency ranges of the elastic single-degree-of-freedom
response spectrum are defined in Section E.2.
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percent of the forces obtained by time-history analysis.

Unfortunately, the elastic second spring forces calculated by the

modal method, (Q2) and (Q2) b' were significantly less than themax pro

time-history values. On the other hand, the elastic deformations

calculated by the modal method, (u2) and (u2) b' were much larger
ma~ pro

than the time-history values. Therefore, it can be observed that the

modal method, as used in this study, provided very poor estimates of the

response quantities for the elastic second spring.

Example. As an example of the procedure used to obtain the

entries to Table E.2, consider the following calculations for

a system with m= 1.0 k-sec2/in. and k = 103.4 k/in. For this

system

f l = 1.0 cps

f 2 = 2.618 cps

WI = 6.283 rad/sec

w
2

= 16.45 rad/sec

Assume that the duration of one-half of the pulse base motion

01 = 0.86(10 in./sec)/(6.283 rad/sec) = 1.37 in. Al = 54.1

.°2 = 0.25(10 in./sec)/(16.45 rad/sec) =0.152 ih. A2 = 41.1

is t l = 1.0

The spectral

Fig. E.4 for

sec and the maximum ground velocity is v = 10 in./sec.

yield displacements and accelerations obtained from

elastoplastic systems with a ductility of ~ = 3 are

. I 2In. sec

. I 2In. sec

in which 01 and 02 represent the values of uy for the first and

second modes of vibration, and Al = W~ 01 and A2 = W; 02'

The inelastic response quantities can be estimated by means

of the modal method using the following procedure.

Mass Number, i 0 2

(a) mode shapes, ~~n)
(1) I 0.724 1. 171
(2) 0.276 -0. 171

(b) modal forces,
'V(n) A , k<p. m.

(1) I I n 39.2 63.3
(2) 11.3 -7.03
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(c) modal shears, k
(1) 103 63.3
(2) 4.27 -7.03
(Qi) max 107 70.3
(Qi)prob 103 63.7

(d) modal absolute yield displacements, '¢(n) 0 In.In'(1) 0.992 1.60
(2) 0.0420 -0.0260

(e) modal relative yield displacements, in.
(1) 0.992 0.608
(2) 0.0420 -0.0680
(u i) max/].1 1.03 0.676
(u i ) pliob/].1 0.993 0.612

(f) total relative displacements, in.
(u i) max 3.09 2.03

(ui)prob 2.98 1.84

Also, the base spring force can be estimated using the first

mode approximation and the quasi-static building approach. In

the building code approach, the base spring force is calculated
N

from the expression (Q1) d = Al .L1 m. where m. is the lumpedco e 1= I I

mass at the i-th degree-of-freedom and N is the number of

degrees-of-freedom. Thus

(Q1)lst = 103 k

(Q1) d = (54.1 in./sec2) (1.0 k"'sec2/in. + 1.0 k-sec2/in.)co e
= 108 k

The time-history response values are obtained from Fig.

E.5(a) and (b) for the spectra where ].11 = 3. Thus, (ul)y =

0.70(10 in./sec)/(6.283 rad/sec) = 1.11 in., (ul)m = 3(1.11 in.)=

3.33 in. and (u2)o = 0.53(10 in./sec)/(6.283 rad/sec) = 0.844 in.

Also, (Ql)y= (l03.4 ·k/in.) (1.11 in.) = 115 k and (Q2)o =

(103.4 k/in.)(0.844 in.) = 87.3 k.

The entries to Table E.2 can now be obtained by normal izing

the response quantities calculated above using the modal method

and the approximate procedures by the corresponding time-history

response quantities.
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Second Spring Permitted to Yield while First Spring Remained Elastic.

In Table E.3 comparisons are presented for the case where the base spring

responded elastically and the second spring responded with a ductility of 3.

The modal method and approximate calculations were performed using the

response spectrum for ~ = 3 in Fig. E.4. For all frequency ranges, the

modal method and approximate procedures gave estimates of the elastic base

spring forces, (Q1) ,(Ql) b' (Ql)l t and (Ql) d that were signifi-max pro s co e

cantly under the time-history values. The elastic base spring deformations,

(u l ) and (u l ) b' were in general overestimated by the modal calculations.max pro

In short, the estimates of the response quantities for the elastic base

spring were poor.

Further, for most frequencies even the inelastic second spring forces,

(Q2) max and

(u 2)max and

(Q2)prob' and the inelastic second spring deformations,

(u ) were underestimated by the modal method calculations.2 prob'

Both Springs Permitted to Yield. The comparisons are extended in

Table E.4 to the case where both springs responded with a ductility of 3.

Once again the modal and approximate calculations were performed using

the response spectrum for ~ = 3 in Fig. E.4. In all cases, it can be

observed that the modal and approximate calculations gave response values

that were quite close to the time-history values.

Summary. From the studies on two-degree.-,of-freedom elastoplastic

systems subjected to pulse base motion, the following observations can

be made:

(I) Good estimates of the response quantities were obtained using

the modal method in conjunction with response spectra for elastic systems.

And for elastic systems the sum of the absolute values of the modal
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quantities procedure was the most appropriate method to use to combine

modes.

(2) For systems with fundamental frequencies of elastic vibration

in the medium and high frequency' ranges of the elastic response spectrum,

the elastic response was primarily in the first mode. Consequently, the

quasi-static building code approach gave good estimates of the elastic

base spring force for such cases.

(3) Provided yielding was concentrated in the base spring, the modal

method used in conjunction with inelastic response spectra gave reasonable

estimates of the response quantities for the base spring. The response

quantities in the elastic second spring were poorly predicted.

(4). Provided yielding was concentrated in the base spring, and

provided the fundamental frequencies of elastic vibration of the systems

fell in the medium and high frequency ranges of the elastic response

spectrum, the inelastic base spring forces were predicted with reasonable

accuracy using the building code approach.

(5) If yielding was concentrated in the second spring, all response

quantities were poorly predicted using the modal method and approximate

calculations.

(6) For the one special case studied where both springs could yield

and both springs responded with the same ductility, the response quantities

predicted by the modal method, by the first mode approximation, and by the

building code approach were nearly the same as the time-history response

quantities.



147

E.5 Design Applications

It is the objective of this section to discuss the appl ication of

some of the knowledge gained from the study of simple elastoplastic

multi-degree-of-freedom systems to the design of low-rise steel buildings.

In order to facilitate comparisons, it is necessary to define some

of the dynamic characteristics of low-rise steel buildings of the types

considered in this study. The fundamental frequencies of elastic vibration

of two- or three-story low-rise steel buildings are often in the range of

about 1 to 8 cps. Thus, the frequencies fall in the medium or high

frequency ranges of elastic design response spectra for earthquake base

motion. The yield story shear capacities of low-rise steel buildings

often are reasonably uniform over the heights of the structures, and the

comments to follow pertain in general to this type of building.

In interpreting the theoretical studies in the 1ight of practical

applications, it is necessary to focus on the behavior of the two-degree­

of-freedom simple systems in the medium and high frequency ranges when

subjected to the pulse base motion. For frequency parameters in these

frequency ranges, i.e., flt l > 0.6, it can be seen from Fig. E.5 that the

quantity (Vl)y is nearly equal to or is larger than the quantity (VZ)o.

This implies that, if the yield resistances of the base spring and the

second spring are about equal, yielding will likely be concentrated in

the base spring.

Also pertinent to this discussion are the findings of Veletsos and

Vann (1971) who studied simple, uniform, elastoplastic, shear-beam systems

of a few degrees-of-freedom subjected to pulse and earthquake base motion.

In their studies all springs of the systems were permitted to yield.
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They found that, except for a relatively narrow portion of the low

frequency region of the elastic response spectrum, the maximum elastic

deformation of the base spring was significantly greater than the elastic

deformations in the upper portions of the system. Further, in the high

frequency range and a portion of the medium frequency range, the elastic

response was primarily in the first mode, with the maximum deformations of

the individual springs being reached, for all practical purposes, simulta­

neously. Consequently, when the systems were allowed to yield, the maximum

deformation occurred in a spring other than the base spring only for systems

with a small ductility and only for systems with a fundamental elastic

frequency of vibration in a relatively small portion of the low frequency

range. Thus, in the frequency ranges of interest for low-rise buildings,

the maximum deformations occurred in the base spring.

From consideration of simple systems subjected to pulse and earthquake

base motion generally, it appears unlikely that a building will respond with

uniform inelasticity during earthquake ground motion. In fact, the studies

referred to above strongly imply that the maximum inelastic deformations

will often occur in the base story. This suggests developing a design

criterion for certain types of low-rise buildings which assumes the base

story is the critical link in the seismic load resisting system.

In the frequency ranges of interest for low-rise steel buildings,

the results of the studies recorded in this appendix indicate that the

modal method or the quasi-static building code approach can be used to

estimate response quantities.



TABLE E.l COMPARISON BETWEEN MODAL AND TIME-HISTORY
CALCULATIONS, BOTH SPRINGS ELASTIC

f 1t 1 (Ql) maxi (Ql) 0 (Ql) probl (Ql) 0 (Ql)ls/(Ql)o. (Ql)code/ (Ql)o (Q2)max/(Q2) 0 (QZ)prob/ (Q2)o

(u 1)max/ (u 1)o (u 1)prob/ (u 1)o (uZ)max/(uZ)o (uz)prob/(uz)o

0.1 I. 15 0.85 0.77 0.81 1.26 0.90

0.2 I. 01 0.73 0.62 0.65 1. 01 0.74

0.3 I. 01 0.80 0.77 0.81 1. 01 0.72

0.4 1.02 0.93 0.93 0.98 1.06 0.86

0.6 1. 01 0.99 0.98 1.04 1.03 0.96

0.8 1. 01 0.98 0.98 1.03 1.02 0.94

1.0 1. 02 0.99 0.99 1.04 1. 13 1. 05

1.4 1.02 0.98 0.98 1.03 1. 19 1. 07

2.0 1.03 0.99 0.99 1.05 1. 16 1. 05

3.0 1.03 0.97 0.96 1.02 1.26 1. 10

~
\.0



TABLE E.2 COMPARISON BETWEEN MODAL AND TIME-HISTORY CALCULATIONS, BASE SPRING ELASTOPLASTIC*

1t 1 (Ql)ma/(Ql)y (Ql)prob!(Ql)y (Ql)ls/(Ql)y (Ql)cod/(Ql)y (Q2)ma/(Q2) 0 (Q2)prob/(Q2)o (u2)ma/(u2)o (U2)prob/(U2) 0

(u 1) !(u1) (u 1)prob!(u 1)mmax m

0.1 0.99 0.78 0.74 0.79 0.78 0.56 2.34 1.68

0.2 1.39 1.00 0.81 0.85 0.79 0.59 2.37 1.77

0.3 1. 23 0.91 0.79 0.84 0.65 0.47 1.95 1.41

0.4 0.94 0.82 0.81 0.86 0.49 0.38 1. 47 1. 14

0.6 0.90 0.86 0.86 0.90 , 0.51 0.45 1.53 1.35

0.8 0.91 0.88 0.88 0.93 0.53 0.49 1. 59 1.47

1.0 0.93 0.90 0.90 0.94 0.81 0.73 2.41 2.18

1.4 0.97 0.92 0.92 0.97 0.81 0.72 2.43 2.16

2.0 1.08 1.01 1. 01 1.07 1. 13 0.97 3.39 2.91

3.0 0.99 0.93 0.93 0.98 1. 02 0.88 3.06 2.64

* For the time-history calculations, the ductil ity of the base spring was 3 and the second spring was elastic.

\J1
o



TABLE E.3 COMPARISON BETWEEN MODAL AND TIME-HISTORY CALCULATIONS, SECOND SPRING ELASTOPLASTIC*

f1t 1 (Ql)ma/(Q1)o (Q1)prob/(Q1)o (u l ) /(ul)o (u 1) prob/(u 1) 0 (Ql)ls/(Q1)o (Q1)cod/(Q1)o (Q2)ma/(Q2)y (Q2) prob/(Q2)ymax

(u2)ma/(u2)m (u2) prob/(u2)m

0.1 0.34 0.27 1.02 0.81 0.26 0.27 0.96 0.68

0.2 0.46 0.33 1. 38 0.99 0.27 0.28 0.74 0.55

0.3 0.39 0.29 1. 17 0.87 0.25 0.27 0.55 0.39

0.4 0.51 0.45 1.53 1.35 0.44 0.47 0.72 0.56

J.6 0.48 0.46 1.44 1.38 0.46 0.48 0.67 0.59

0.8 0.52 0.50 1. 56 1. 50 0.50 0.53 0.79 0.72

1.0 0.55 0.53 1.65 1. 59 0.53 0.56 0.86 0.78

1.4 0.64 0.61 1.92 1.83 0.61 0.64 1.00 0.89

2.0 0.51 0.48 1. 53 1.44 0.48 0.51 0.79 0.68

3.0 0.82 0.77 2.46 2.31 0.77 0.82 1.25 1.08

* For the time-history calculations, the base spring was elastic and the ductility of the second spring was 3.

\J1



TABLE E.4 COMPARISON BETWEEN MODAL AND TIME-HISTORY
CALCULATIONS, BOTH SPRINGS ELASTOPLASTIC

f 1t 1 (Ql) maxi (Ql) y (Ql)prob/(Ql\ (Ql)ls/(Ql)y (Ql)code / (Ql)y (Q2)max / (Q2)y (Q2)prob / (Q2)y

(u 1)maxi (u 1)m (u l ) b/(u l ) (u
2
) l(u2) (u2)prob/ (u 2)mpro m max m

1.0 1.00 0.96 0.96 1.01 1.24 1• 12

* For the time-history calculations, the ductility of both springs was 3.

\,T1
N
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APPENDIX F. DETAILED RESULTS OF THE TIME-HISTORY CALCULATIONS

This appendix contains the detailed numerical data that were generated

from the time-history analyses of the building designs considered in this

study. The four time-history analysis cases considered are described in

Chapter 4.

The inelastic hinge rotations for the building designs are given in

Figs. F.l through F.4. In Figs. F.2 and F.4(a), the maximum inelastic

hinge rotations and the locations of the inelastic hinges on the structures

during dynamic motion are presented. In Figs. F.l, F.3 and F.4(b) the

cumulative hinge rotations, i.e., the sum of the absolute values of all

the inelastic rotations occurring at a give~ hinge location during dynamic

motion, are presented. The cumulative hinge rotations are normalized by

the associated maximum inelastic hinge rotations. The data presented in

Figs. F.l through F.4 are supplementary to the data discussed in Section

4.2.2.

In Tables F.l through F.12 are tabulated (a) the story shear

coefficients, i.e., the story shears divided by the corresponding

building weight, (b) the maximum story displacements relative to the

ground, and (c) the maximum (relative) story drifts for the building

designs considered. Tables F.1 through F.12 supplement the information

discussed in Sections 4.2.3 and 4.2.4.
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TABLE F.l TIME-HISTORY RESPONSE QUANTITIES FOR SHEAR BUILDING DESIGN 2-A

Elastic Inelastic Inelastic + P~

Story Shear Coefficients

2 0.320 0.315 0.314
1 0.731 0.626 0.622

Story Displacements (i n.)

2 1. 17 1. 17 1. 18
1 0.879 0.821 0.822

Story Drifts (%)
2 0.268 0.264 0.263
1 0.611 0.570 0.571

TABLE F.2 TIME-HISTORY RESPONSE QUANTITIES FOR SHEAR BUILDING DESIGN 2-B

Elastic Inelastic Inelastic + P~

Story Shear Coefficients

2 0.355 0.251 0.252
1 0.792 0.326 0.326

Story Displacements (i n.)

2 3. 11 2. 18 2.20
1 2.16 1.89 1.94

Story Dr i fts (%)

2 0.673 0.475 0.481
1 1.50 1.31 1.35
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TABLE F.3 TIME-HISTORY RESPONSE QUANTITIES FOR SHEAR BUILDING DESIGN 2-C

Elastic Inelastic Inelastic + P-A

Story Shear Coefficients

2 0.250 O. 118 O. 111
1 0.528 0.144 0.154

Story Displacements (i n.)

2 5.21 3.31 3.90
1 3.66 2.91 3.46

Story Dr i fts (%)

2 1. 21 0.571 0.543
1 2.54 2.02 2.40

TABLE F.4 TIME-HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 2-D

Elastic Inelastic Inelastic + PA Inelastic + FEF

Story Shear Coefficients

2 0.430 0.344 0.340 0.343
1 0.814 0.517 0.510 0.510

Story Displacements ( in. )

2 3.01 2.46 2.48 2.45
1 1. 59 1.54 1.56 1.52

Story Drifts (%)
2 0.990 0.750 0.743 0.750
1 1. 10 1.07 1.08 1.06
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TABLE F.5 TIME~HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 2-E

Elastic Inelastic Inelastic + Pb. Inelastic + FEF

Story Shear Coefficients

2 0.237 0.184 0.187 0.185
1 0.441 0.276 0.272 0.276

Story Displacements ( in.)

2 3. 12 2.54 2.70 2.63
1 1. 95 1. 91 2.06 1.99

Story Dr ifts (%)

2 0.963 0.739 0.757 0.740
1 1.35 1. 33 1.43 1.38

TABLE F.6 TIME-HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 2-F

Elastic Inelastic Inelastic + Pb. Inelastic + FEF

Story Shear Coefficients

2 0.445 0.445 0.445 0.351
1 0.655 0.655 0.658 0.626

Story Displacements ( in. )

2 2. 14 2.14 2.16 2.12
1 0.832 0.832 0.846 0.806

Story Drifts (%)
2 0.925 0.925 0.931 0.920
1 0.578 0.578 0.588 0.560
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TABLE F.7 TlME~HISTORY RESPONSE QUANTITIES FOR X~BRACED FRAME DESIGN 2~G

Elastic Inelastic Inelastic + PA

Story Shear Coefficients

2 0.376 0.197 0.190
1 0.883 0.197 0.194

Story Displacements ( in.)

2 2.76 3.78 4.05
1 1.94 3.41 3.86

Story Drifts (%)
2 0.574 0.313 0.291
1 1. 35 2.37 2.68

TABLE F.8 TIME-HISTORY RESPONSE QUANTITIES FOR X-BRACED FRAME DESIGN 2-H

Elastic Inelastic Inelastic + PA

Story Shear Coefficients

2 0.309 0.235 0.220
1 0.738 0.333 0.330

Story Displacements ( in.)

2 1.28 1.83 1.68
1 0.956 1. 59 1.48

Story Drifts (%)
2 0.278 0.212 0.199
1 0.664 1. 11 1.03
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TABLE F.9 TIME~HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 3-A

Story Shear Coefficients

3
2
1

Story Displacements (in.)

3
2
1

Story Drifts (%)

3
2
1

Elastic

0.184
0.351
0.499

5.86
4. 14
1.89

1.65
1.77
1.43

Inelastic

0.137
0.233
0,253

3.98
2.98
1.87

1. 15
1. 16
1. 41

Inelastic + PL1

0.134
0.221
0.241

4. 19
3.10
1.95

1.15
1. 15
1.48

TABLE F.l0 TIME-HISTORY RESPONSE QUANTITIES FOR MOMENT FRAME DESIGN 3-B

Elastic Inelastic Inelastic + PL1 Inelastic + FEF

Story Shear Coefficients

3 0.249 0.199 0.194 0.192
2 0.331 0.301 0.304 0.299
1 0.467 0.442 0.438 0.436

Story Displacements (i n.)

3 3.54 3.62 3.61 3.45
2 2.06 2. 12 2.16 2.06
1 0.840 0.832 0.857 0.805

Story Drifts (%)

3 1. 26 1. 33 1. 32 1.22
2 0.989 1. 01 1. 03 0.993
1 0.636 0.630 0.649 0.610
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TABLE F.ll TIME~HISTORY RESPONSE QUANTITIES FOR X~BRACED FRAME DESIGN 3-C

Elastic Inelastic Inelastic + Pb.

Story Shear Coefficients

3 0.205 0.142 0.108
2 0.529 0.197 0.195
1 0.618 0.197 0.194

Story Displacements (i n.)

3 3.53 4.03 3.71
2 2.99 3.69 3.44
I 1. 61 2.87 2.95

Story Dr i fts (%)

3 0.406 0.281 0.215
2 1.05 0.711 0.614
I 1.22 2. 18 2.23

TABLE F.12 TIME-HISTORY RESPONSE QUANTITIES FOR X-BRACED FRAME DESIGN 3-D

Elastic Inelastic Inelastic + Pb.

Story Shear Coefficients

3 0.226 0.194 0.16:]
2 0.632 0.317 0.315
1 0.827 0.317 0.313

Story Displacements ( in. )

3 2.74 2.46 2.34
2 2.37 2.17 2.17
1 1.34 1. 70 1. 70

Story Dr ifts (%)

3 0.278 0.239 0.207
2 0.779 0.426 0.409
1 1.02 1. 29 1.29
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