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A SIMPLIFIED PROCEDURE FOR ESTIMATING

EARTHQUAKE-INDUCED DEFORMATIONS IN DAMS AND EMBANKMENTS

by

F. I. Makdisi1 and H. Bolton seed2

INTRODUCTION

In the'past decade major advances have been achieved in analyzing the

stability of dams and embankments during earthquake loading. Newmark (1965)

and Seed (1966) proposed methods of analysis for predicting the permanent

displacements of dams subjected to earthquake shaking and suggested this as

a criterion of performance as opposed to the concept of a factor of safety

based on limit equilibrium principles. Seed and Martin (1966) used the

shear beam analysis to study the dynamlc response of embankments to seismic

loads and presented a ra~iona1 method for the calculation of dynamic seismic

coefficients ,for earth dams. Ambraseys and Sarma (1967) adopted the same

procedure to study the response of embankments to a variety of earthquake

motions.

Later the finite element method was introduced to study the two-

dimensional response of embankments (Clough and Chopra, 1966; Idriss and

Seed, 1967) and the equivalent linear method (Seed and Idriss, 1969a) was

used successfully to represent the strain ~ependent non-linear behavior of

soils. In addition the nature of the behavior of soils during cyclic loading

has been the subject of extensive research (Seed and Chan, 1966; Seed and Lee,

1966; Lee and Seed, 1967, Thiers and Seed, 1969, etc.). Both, the improvement

in the analytical tools to study the response of embankments and the

1project Engineer, Woodward-Clyde Consultants, San Francisco, CA.
2Professor of, Civil Engineering, university of California, Berkeley, CA.
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knowledge of material behavior during cyclic loading, led to the development

of a more rational approach to the study of stability of embankments during

seismic loading. Such an approach was used successfully to analyze the

Sheffield' Darn failure during the 1925 Santa Barbara earthquake (Seed, Lee and

Idriss, 1969) and the behavior of the San Fernando Dams during the 1971

earthquake (Seed et al., 1973). This method has since been used extensively

in the design and analysis of many large dams in the State of California and

elsewhere.

From the study of the performance of embankments during strong earth­

quakes, two distinct types of behavior may be discerned:

(1) That associated with loose to medium dense sandy embankments;

these are susceptible to rapid increases in pore pressure due to cyclic

loading resulting in the development of pore pressure ratios of 100% in

large portions of the embankment, associated reductions in shear strength,

and potentially large movements leading to almost complete failure.

(2) The behavior associated with compacted cohesive clays, dry sands

and some dense sands; here the potential for buildup of pore pressures is

much less than that associated with loose to medium dense sands, the result­

ing cyclic strains are usually quite smalL and the material retains most of

its static undrained shearing resistance so that the resulting post-earth­

quake behavior is a limited permanent deformation of the embankment.

The dynamic analysis procedure proposed by Seed and his co-workers

has been used to predict adequately both types of embankment behavior using

the "Strain Potential" concept (Seed et al., 1973). Procedures for inte­

grating strain potentials to obtain the overall deformation of an embarik­

ment have been proposed by Seed et al. (1973), Lee (1975), and Serff et al.

(1976) .
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The dynamic analysis approach has been recommended by ~he Committee

on Earthquakes of the International commission on Large Dams (ICOLD, 1975):

"high embankment dams whose failure may cause loss-of-life or major damage

should be designed by the conventional method at first, followed by a

dynamic analysis in order 'to investigate any deficiencies which may exist

in the pseudo-statical design of the dam". For low dams in remote areas

the Committee recommended the use of conventional pseudo-static methods

using a constant horizontal seismic coefficient selected on the basis of the

seismicity of the area. However, the inadequacy of the pseudo-static approach

to predict the behavior of embankments during earthquakes has been clearly

recognized and demonstrated (Terzaghi, 1950; Seed and Martin, 1966; Seed, Lee

and Idriss, 1969; Seed et al., 1973 and Seed, 1973) . Furthermore in the same

report mentioned above (ICOLD, 1975) the Commission refers to the conventional

method as follows: "There is a need' for early revision of the conventional

method since the results of dynamic analyses, model tests and observations

of existing dams show that the horizontal acceleration due to earthquake

forces varies throughout the height of the dam.•.. in several in?tances, this

method predicts a safe condition for dams which are known to have had major

slides."

It is this need for a simple yet rational approach to the seismic design

of small embankments that prompted the development of the simplified procedure

described in the following pages.

This approximate method uses the concept originally proposed by Newmark
(

(1965) for calculating permanent deformations but it is based on an evaluation

of the dynamic response of the embankment as proposed by 'Seed and Martin (1966)

rather than rigid body behavior. It assumes that failure occurs on a well

defined slip surface and that the material behaves elastically at stress levels
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below failure but develops a perfectly plastic behavior above yield. The

method involves the following steps:

(1) A yield acceleration i.e. an acceleration at which a potential

sliding surface, would develop a factor of safety of unity is

determined. Values of yield acceleration are a function of the

embankment geometry, the undrained strength of the material

(or the reduced strength due to shaking), and the location of
\

the potential sliding mass.

(2) Earthquake induced accelerations in the embankment are deter-

mined using dynamic response analyses. Finite element procedures

using strain-dependent soil properties can be used for calculating

time-histories of acceleration, or simpler one-dimensional

techniques might be used for the same purpose. From these analyses

time-histories of average accelerations for various potential

sliding masses can be determined.

(3) For a given potential sliding mass, when the induced accelera-

tion exceeds the calculated yield acceleration, movements are

assumed to occur along the direction of the failure plane and

the magnitude of the displacement is evaluated by a simple double

integration procedure.

The method has been applied to dams with heights in the range of 100

to 200 ft, and constructed of compacted cohesive soils or very dense cohesion-

less soils, but may be applicable to higher embankments. A similar approach

has been proposed by Sarma (1975) using the assumption of a rigid block on an

inclined plane rather than a deformable earth structure which responds with

differential motions to the imposed base excitation.

In the following paragraphs the steps involved in the analyses will be
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described in detail and design curves prepared on the basis of analyzed cases

will be presented, together with an example problem to illustrate the use

of the method. It should be noted, however, that the method is an approxi-

mate one and involves simplifying assumptions. The design curves are

averages based on a limited number of cases analyzed and should be updated

as more data become available and more cases are studied.

DETERMINATION OF THE YIELD ACCELERATION

The yield acceleration, k , is defined as that average acceleration
y

producing a horizontal inertia force on a potential sliding mass so as to

produce a factor of safety of unity and thus to cause it to experience

permanent displacements.

For soils which do not develop large cyclic strains or pore pressurs

and maintain most of their original strength after earthquake shaking, the

value of k can be calculated by stability analyses using limiting equilibrium
y

methods. In conventional slope stability analyses the strength of the material

is defined as either the maximum deviator stress in an undrained test, or

that stress level which would cause a certain allowable axial strain, say 10%,

in a test specimen. However, the behavior of the material under cyclic

loading conditions is different from that under static conditions. Due to

the transient nature of the earthquake loading an embankment may be subjected

to a number of stress pulses at levels equal to or higher than its static

failure stress which simply produce some permanent deformation rather than

complete failure. Thus the yield strength is defined, for the purpose of

this analysis, as that maximum stress level below which the material exhibits

a near elastic behavior (when subjected to cyclic stresses of numbers and

frequencies similar to those induced by earthquake shaking) and above which
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the material exhibits permanent plastic deformation of magnitudes dependent

on the number and frequency of the pulses applied. Fig. 1 illustrates the

concept of cyclic yield strength. The material in this case has a cyclic

yield strength equal to 90% of its static undrained strength and as shown

in Fig. l(a) the application of 100 cycles of stress amounting to 80% of the

undrained strength resulted in essentially an elastic behavior with very

little permanent deformation. On the other hand the application of 10 cycles

of stress level equal to 95% of the static undrained strength led to substan­

tial permanent strain as shown in Fig. l(b). On loading the. material

monotonically to failure after the series of cyclic stress applications, the

material was found to retain the original undrained strength. This type of

behavior is associated with various types of soils that exhibit small increases

in pore pressure during cyclic loading. This would include clayey materials,

dry or partially saturated cohesionless soils or very.dense saturated

cohesionless materials which will not undergo significant deformations, even

under cyclic loading conditions, unless the undrained static strength of the

soil is exceeded.

Seed and Chan (1966) conducted cyclic tests on samples of undisturbed

and compacted silty clays and found that for conditions of no stress reversal

and for different values of initial and cyclic stresses, the total stress

required to produce large deformations in 10 and 100 cycles ranged between

90 and 110% of the undrained static strength.

Sangrey et al. (1969) investigated the effective stress response of

clay under repeated loading. They tested undisturbed samples of highly

plastic clay (LL = 28, PI = 10) and found that the cyclic yield strength of

this material was of the order of 60% of its static undrained strength.

Rahman (1972) performed similar tests on remoulded samples of a brittle

silty clay (LL =91, PI = 49) and found that the cyclic yield strength was a
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function of the initial effective confining pressure. For practical ranges

of effective confining pressures the cyclic yield strength for this material

ranged between aO/and 95 percent of its static undrained strength. At cyclic

stress levels below the yield strength, in all cases, the material reached

equilibrium and assumed an elastic behavior at strain levels less than

2 percent irrespective of the number of stress cycles applied.

Thiers and Seed (1969) performed tests on undisturbed and remoulded

samples of different clayey materials to determine the reduction in static

undrained strength due to cyclic loading. Their results are summarized in

Fig. 2 which shows that the reduction in undrained strength after cyclic

loading as a function of the ratio of the "maximum cyclic strain" to the

"static failure strain". These results were obtained from strain controlled

cyclic tests; after the application of 200 cycles of a certain strain ampli­

tude, the sample was loaded to failure monotonically at a strain rate of

3 percent per minute. Thus from Fig. 2 it could be argued that if a clay is

subjected to 200 cycles of strain with an amplitude less than half its static

failure strain, the material may be expected to retain at least 90 percent of

its original static undrained strength.

Andersen (1976), on the basis of cyclic simple shear tests on samples

of Drammen clay, determined that the reduction in undrained shear strength

was found to be less than 25% as long as the cyclic shear strain was less than

±3% even after 1000 cycles.

On the basis of the experimental data reported above and for values of

cyclic shear strains calculated from earthquake response analyses, the value

of cyclic yield strength for a clayey material can be estimated. In most

cases this value would appear to be aO% or more of the static undrained

strength. This value in turn may be used in an appropriate method of stability

analysis to calculate the corresponding yield acceleration.
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Fini:te element·response analyses (as will be described later) have

been carried out to calculate time histories of crest acceleration and

average acceleration for various potential sliding masses. The method of

analysis employs the equivalent linear technique with strain dependent

modulus and damping. The ranges of calculated maximum shear strains, for

different magnitude earthquakes and different embankment characteristics,

are presented in Table 1. It can be seen from Table 1 that the maximum

cyclic shear strain induced during the earthquakes ranged between 0.1% for

a magnitude 6-1/2 earthquake with a base acceleration of 0.2g and 1% for a

magnitude 8-1/4 earthquake with a base acceleration of 0.75g. For the

compacted clayey material encountered in dam embankments "static failure

strain" values usually range between 3% and 10%, depending on whether the

material was compacted on the dry or wet side of the optimum moisture

content. Thus in both instances the ratio of the "cyclic strain" to "static

failure strain" is less than 0.5.

It seems reasonable therefore to assume that for these compacted

cohesive soils, very little reduction in strength may be expected as a result

of strong earthquake loading of the magnitude described above.

Once the cyclic yield strength is defined, the calculation of the

yield acceleration can be achieved by using one of the available methods

of stability analysis. In the present study the ordinary method of slices

has been used to calculate the yield acceleration for circular slip surfaces.

As an alternative Seed (1966) has suggested a method of combining both

effective and total stress approaches,. where the shear strength on the failure

plane during the earthquake is considered to be a function of the initial

effective normal stress on that same plane before the earthquake. This method

is applicable to non-circular slip surfaces and the horizontal inertia force

resulting in a factor of safety of unity can readily be calculated.
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Table 1

Maximum Cyclic Shear Strains Calculated
from Dynamic finite Element Resp9nse Analyses

Embankment Max. Base Max. Shear
Magnitude Height Slope Acceleration Strain

(ft. ) (\)

6-1/2 (Ca1tech record) 75 2:1 0.5 0.2-0.4

6-1/2 (Cal tech record) 150 2:1 0.2 0.1-0.15

6-1/2 (Cal tech record) 150 2:1 0.5 0.2-0.3

6-1/2 (Lake Hughes record) 150 2:1 0.2 0.1-0.15

6-1/2 (Ca1tech record) 150 2-1/2:1 0.5 0.2-0.3

7-1/2 (Taft record) 150 2:1 0.5 0.2-0.5

7-1/2 (Taft record) 150 2:1 0.2 0.1-0.2

8-1/4 (S-1 record) 150 2:1 0.75 0.4-~.0

8-1/4 (5-1 record) 135 0.4 0.2-0.5

Table 2

Embankment Characteristics for Magnitllde 6-1/2 Earthquake

(1 ) k
(2)

Embankment Height ~ase Acceleration T max
Case' It Description (ft.) '(g) 0

--i:Jl Symbol

1 Example Case 150 0.2 0.8 (a) 0.31 •- slope 2:1 (Cal tech record) (b) 0.12 •- k '= 60
2max

2 Example Case 150 0.5 1. 08 (a) 0.4 0

- slope = 2:1 (Cal tech record) (b) 0.18 0
- k = 60

2max

3 Example Case 150 0.5 0.84 (a) 0.33 e
- slope 2: 1 (Lake Hughes record) (b) 0.16 ~

- k2max = 80

4 Example Case 150 0.5 0.95 (a) ,0.49 0
- slope = 2-1/2jl (Cal tech record) (b) 0.22 <:7

- k = 80
2max

5 Example Case 75 0.5 0.6 (a) 0.86 •- slope 2:1 (Cal tech record) (b) 0.26 a
- k = 60

2max

(1) T
o

(2) k
max

Calculated first natural period of the embankment.

Maximum value of time history of:
(a) crest acceleration
(b) average acceleration for slidinq mass extendinq through full height of .

r:mbankm(·nt.
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Having determined the yield acceleration for a certain location of the

slip surface, the next step in the analysis is to determine the time history

of earthquake-induced average accelerations for that particular sliding mass.

This will be treated in the following section.

DETERMINATION OF EARTHQUAKE INDUCED ACCELERATION

In order for the permanent deformations to be calculated for a

particular slip surface, the time-history of earthquake-induced average

accelerations must first be determined.

Two-dimensional finite element procedures using equivalent linear

strain-dependent properties are available (Idriss et al., 1973) and have

been shown to provide response values in good agreement with measured values

(Kovacs et al., 1971) and with closed form one-dimensional wave propagation

solutions (Sc~abel et al., 1972).

For most of the case studies of embankments used in the present

analysis, the response calcula~ion was performed using the finite element

computer program QUAD-4 (Idriss et al., 1973) with strain dependent modulus

and damping. The program uses the Rayleigh damping approach and allows for

variable damping to be used in different elements.

To calculate the time-history of average acceleration for a specified

sliding mass, the method described by Chopra (1966) was adopted in the

present study. The finite element calculation provides time-histories of

stresses for every element in the embankment. As illustrated in Fig. 3, at

each time step the forces acting along the boundary of the sliding ma~s are

calculated from the corresponding normal and shear stresses of the finite

elements along that boundary. The resultant of these forces divided by the

weight of the sliding mass would give the average acceleration, k (t), actingav

on the sliding mass at that instant in time. The process is repeated for

every time step to calculate the entire time-history of average acceleration.
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For a 150-ft-high dam subjected to 30 seconds of the Taft earthquake

record scaled to produce a maximum base acceleration of 0.2g, the variation

of the time-history of k with the depth of the sliding mass within the
av

embankment, together with the time-history of crest accelerations, is shown

in Fig. 4.

Comparing the time-history of crest acceleration with that of the

average acceleration for different depths of the potential sliding mass, the

similarity in the frequency content is readily apparent (it generally reflects

the first natural period of the embankment), while the amplitudes are shown

to decrease as the depth of the sliding mass increases towards the base of

the embankment. The maximum crest acceleration is designated by u , andmax

k is the maximum average acceleration for a potential sliding mass extend-max

ing to a specified depth, y.

It would be desirable to establish a relationship showing the variation

of the maximum acceleration ratio (k Iii ~ With depth for a range of embank-max max

ments and earthquake loading conditions. It would then be sufficient, for

design purposes, to estimate the maximum crest acceleration in a given embank-

ment due to a specified earthquake and use the above relationship to determine

the maximum average acceleration for any depth of the potential sliding mass.

A simplified proced',1re" to estimate the maximum crest acceleration and the

natural period of an embankment subjected to a given base motion is described

in Appendix A (Makdisi and Seed, 1977).

To determine the variation of maximum acceleration ratio with depth, use

was made of published results of response computations using the one-dimensional

shear slice method with visco-elastic material properties (Seed and Martin, 1966;

Ambraseys and Sarma, 1967). Martin (1965) calculated the response of embank-

ments ranging in height between 100 and 600 ft and with shear wave velocities
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between 300 and 1000 fps. Using a constant shear modulus and a damping

factor of 0.2, the average acceleration histories for various levels were

computed for embankments subjected to ground accelerations recorded in the

El Centro earthquake of 1940. The variation of the maximum average accelera~

tion, k , with depth for these embankments with natural periods ranging
max

between 0.26 and 5.22 sec. is presented in Fig. 5. The maximum average

acceleration in Fig. 5 is normalized with respect to the maximum crest

acceleration and the ratio (k !u ) plotted as a function of the depth of
max max

the sliding mass is presented in Fig. 6.

Ambraseys and Sarma (1967) used essentially the same method reported

by Seed and Martin (1966) and calculated the response of embankments with

natural periods ranging between 0.25 and 3.0 seconds. They presented their

results in terms of average response for 8 strong motion records. The varia-

tion of maximum average acceleration with depth based on the results reported

by Ambraseys and Sarma (1967) is shown in Fig. 7 and that for the maximum

acceleration ratio (k /.U ) is shown in Fig. 8. A summary of the resultsmax max

obtained from the different shear slice response calculations mentioned above

is presented in Fig. 9 together with results obtained from finite element

calculations made in the present study. As can be seen from Fig. 9 the shape

of the curves obtained using the shear slice method and the finite element

method are very similar. The dashed curve in Fig. 9 is an average relation-

ship of all data considered. The maximum difference between the envelope of

all data and the average relationship ranges from ±10 to ±20% for the upper

portion of the embankment and from ±20 to ±30% for the lower portion of the

embankment.

Considering the approximate nature of the proposed method of analysis,

the use of the average relationship shown in Fig. 9 for determining the

maximum average acceleration for a potential sliding mass based on the maximum
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crest acceleration is considered accurate enough for practical purposes.

For design computations where a conservative estimate of the accelerations

is desired the upper bound curve shown in Fig. 9 may be used leading to

values which are 10 to 30% higher than those estimated using the average

relationship.

CALCULATION OF PERMANENT DEFORMATIONS

Once the yield acceleration and the time-history of average induced

acceleration for a potential sliding mass have been determined, the permanent

displacements can readily be calculated.

By assuming a direction of the sliding plane and writing the equation

of motion for the sliding mass'along such a plane, the displacements which

would occur any time the induced acceleration exceeds the yield acceleration

may be evaluated by simple numerical integration. For the purposes of the

soil types considered in this study, the yield acceleration was assumed to

be constant throughout the earthquake.

The direction of motion for a potential sliding mass once yielding

occurs was assumed to be along a horizontal plane. This mode of deformation

is not uncommon for embankments subjected to strong earthquake shaking, aQd

is manifested in many cases in the field by the development of longitudinal

cracks along the crest of the embankment. However studies made for other

directions of the sliding surface showed that this factor had little effect

on the computed displacements.

To calculate an order of magnitude of the deformations induced in

embankments due to strong shaking a number of cases have been analyzed during

the course of this study. The height of embankments considered ranged

between 75 and 150 ft with varying slopes and material properties. The

embankments were subjected to ground accelerations representing three dif­

ferent earthquake magnitudes: 6-1/2, 7-1/2 and 8-1/4.

'-"- "
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The method used for calculating the- response, as mentioned earlier, is a

time-step finite element analysis using the equivalent linear method. The

strain, dependent modulus and damping relations for the soils used in this

study are presented in Fig. 10. The response computation for each base

motion was repeated for a number of iterations (mostly 3 to 4) until strain

compatible material properties were obtained. In each case both time

histories of crest acceleration and the average acceleration for a potential

sliding mass extending through almost the full height of the embankment were

calculated, together with the first natural period of the embankment. In one

case however, time histories of average acceleration for sliding surfaces at

5 different levels in the embankment were obtained (see Fig. 4), and the

corresponding permanent deformations for each time-history were calculated

for different values of yield acceleration. It was found that for the same

ratio of yield acceleration to maximum average acceleration at each level,

the computed deformations varied uniformly between a maximum value obtained

using the crest acceleration time-history to a minimum value obtained using

the time-history of average acceleration for a sliding mass extending through

the full height of the embankment. Thus it was considered sufficient for the

remaining cases to compute the deformations only for these two levels.

Table 2 shows details of the embankments analyzed using ground motions

representative of a magnitude 6-1/2 earthquake. The two rock motions used

were those recorded at the Cal Tech Seismographic Laboratory (S90W Component)

and at Lake Hughes Station #12 (N2lE) during the 1971 San Fernando earthquake,

with maximum accelerations scaled to 0.2 and 0.5g. The computed natural

periods and maximum values of the acceleration time-histories are also

presented in Table 2. The computed natural periods ranged between a value

of 0.6 seconds for the 75-ft-high embankment to a value of 1.08 seconds for

the 150-ft-high embankment. Because of the non-linear strain-dependent
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behavior of the material, the response of the embankment is highly dependent

on the amplitude of the base motion. This is clearly demonstrated in the

first two cases in Table 2, where the same embankment was subjected to the

same ground acceleration history but with different maximum accelerations

for each case. In one instance, for a base acceleration of 0.2g the calcu-

lated maximum crest accelerations was 0.3g with a magnification factor of

1.5 and a computed natural period of the order of 0.8 seconds. In the

second case, for a base acceleration of 0.5g the computed maximum crest

acceleration was 0.4g with an attenuation factor of 0.8 and a computed

natural period of 1.1 seconds.

From the time-histories of induced acceleration calculated for all

the cases described in Table 2 and for various ratios of yield acceleration

tomaximurn average acceleration, k /k ,the permanent deformations were
y max

calculated by numerical double integration. The results are presented in

Fig. 11 which shows that for relatively low values of yield acceleration,

k /k of 0.2 for example, the range of computed permanent displacements was
y max

of the order of 10 to 70 cm (0.3 - 2.5 ft). However, for larger values of

k /k ,say 0.5 or more, the calculated displacements were less than 12 cmy max

(0.5 ft). It should be emphasized that for very low values of yield

accelerations (in this case k /k < 0.1) the basic assumptions used in
y rnax- .&

~

calculating the response by the finite element method, namely the equivalent
t

linear behavior and the small strain theory, become invalid. Consequently

the acceleration time-histories calculated for such a case do not represent

the real field behavior and the calculated displacements based on these

time-historiesrnay not be realistic.

The procedure described above was repeated for the case of a magnitude

7-1/2 earthquake. The base acceleration time-history used for this analysis

was that recorded at Taft during the 1952 Kern County earthquake and scaled to
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displacements are shown in Fig. 12.
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maximum accelerations of 0.2 and 0.5g. The details of the 3 cases analyzed

are presented in Table 3 and the results of the computatio~s of the permanent

For a ratio of k /k of 0.2 the cal­
y max

culated displacements in this case ranged between 30 and 200 cm (1 and 6 ft),

and for ratios greater than 0.5 the displacements were less than 25 cm (0.8 ft).

In the cases analyzed for the 8-1/4 magnitude earthquake, an artificial

accelerogram proposed by Seed and Idriss (1969) was used with maximum base

accelerations of 0.4 and 0.75g. Two embankments were analysed in this case

and their calculated natural periods ranged between 0.8 and 1.5 seconds.

Table 4 shows the details of the calculations and in Fig. 13 the results of

the permanent displacement computati9ns are presented. As can be seen from

Fig. 13 the permanent displacements computed for a ratio of k /k 'of 0.2
y max

ranged between 200 and 700 cm (6 and 23 ft), and for ratios higher than 0.5

the values were less than 100 cm (3 ft). It should be noted in this case that

values of deformations -calculated for a yield ratio less than 0.2 may not be

realistic.

An envelope of the results obtained for each of the three earthquake

loading conditions is presented in Fig. 14 and reveals a large scatter in

the computed results reaching, in the case of the magnitude 6-1/2 earthquake,

about one order of magnitude.

It can reasonably be expected that for a potential sliding mass with

a sp~cified yield acceleration, the magnitude of the permanent deformation

induced by a certain earthquake loading is controlled by the following factors:

a) the amplitude of induced average accelerations, which is a function

of the base motion, the amplifying characteristics of the embankment,

and the location of the sliding mass within the embankment;

b) the frequency content of the average acceleration time-history, which

is governed by the embankment height and stiffness characteristics,
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Table 3

Embankment Characteristics for Magnitude 7-1/2 Earthquake

Embankment Height Base Acceleration (1) k(2)
T max

Case II Description (ft.) (g) 0
-.Js.L Symbol

1 Example Case 150 0.2 0.86 (a) 0.41 •slope 2:1 (Taft record) (b) 0.13 •- k = 60
2max

2 Example Case 150 0.2 1.18 (a) 0.54 0
- slope 2:1 (Taft record) (b) 0.21 a
- k = 60

2max

3 Example Case 150 0.2 0.76 (a) 0.46 <:>
- slope 2-1/2:1 (Taft record) (b) 0.15 6
- k = 802max

(ll T
o

(2) k
max

Calculated first natural period of the embankment.

Maximum value of time history of:
(a) crest acceleration
(b) average acceleration for sliding mass extending through full height of embankment.

Table 4

Embankment Characteristics of Magnitude 8-1/4 Earthquake

(1 )
(2)

k
Embankment Height Base Acceleration T !na:-t

0
Case II Description (ft. ) (g) --l9.L Symbol

1 Chabot Dam 135 0.4 0.99 (a) 0.57 0
(average properties) (S-I Syn-th. record)

Chabot Dam 135 0.4 1. 07 (a) 0.53
(Lower bound) (5-I Synth. record)

Chabot Dam 135 0.4 0..83 (a) 0.68 0
(Upper bound)

2 Example Case 150 0.75 1. 49 (a) 0.74 •- slope 2:1 (b) 0.34 •- k
2max

= 60

(1) T
o

(2) k
max

Calculated first natural period of the embankment.

Maximum value of time history of:
(a) crest acceleration
(b) nverage acceleration for sliding mass extending through full height of embankment.
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and is usually dominated by the first natural frequency of the

embankment;

c) the duration of significant shaking, which is a function of the

magnitude of the specified earthquake.

Thus to reduce the large scatter exhibited in the data in Fig. 14, the

permanent displacements for each embankment were normalized with respect to

its calculated first natural period, T , and with respect to the maximum value,
o

k , of the average acceleration time-history used in the computation. Themax

resulting normalized permanent displacements for the three different earth-

quakes are presented in Fig. 15. It may be seen that a substantial reduction

in the scatter of the data is achieved by this normalization procedure as

evidenced by comparing the results in Figs. 14 and 15. This shows that for the

ranges of embankment heights considered in this study (75 to 150 ft or 50 to 65

meters) the first natural period of the embankment and the maximum value of

acceleration time-history may be considered as two of the parameters having

a major influence on ,the calculated permanent displacements. Average curves

for the normalized permanent displacements based on the results in Fig. 15

are presented in Fig. 16. Although some scatter still exists in the results

as shown in Fig. 15, the average curves presented in Fig. 16 are considered

adequate to provide an order of magnitude of the induced permanent displace-

ments for different magnitude earthquakes. At yield acceleration ratios less

than 0.2 the average curves are shown as dashed lines since, as discussed

earlier, the calculated displacements at these low ratios may be unrealistic.

Thus to calculate the permanent deformation in an embankment constructed

of a soil which does not change in strength significantly during an earthquake,

it is sufficient to determine its maximum crest acceleration, u , and first
, max

natural period, T , due to a specified earthquake. Then by the use of the
o

relationship presented in Fig. 9, the maximum value of average acceleration
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history, k , for any level of the specified sliding mass may be deter­
max

mined. Entering'the curves in Fig. 16 with the appropriate values of k
max

and T , the permanent displacements can be determined for any value of
o

yield acceleration associated with that particular sliding surface.

It has been assumed earlier in this paper'that in the majority of

embankments permanent deformations usually occur due to slip oLa sliding

mass on a horizontal failure plane. For those few instances where sliding

might occur on an inclined failure plane it is of interest to determine the

difference between the actual deformations and those calculated with the

assumption of a horizontal failure plane having the same yield acceleration.

A simple computation was made to investigate this condition using the analogy

of a block on an inclined plane for a purely frictional material; It was

found that for inclined failure planes with slope angles of 15° to the

horizontal, the computed displacements were 10 to 18% higher than those based

on a horizontal plane assumption.

APPLICATION OF METHOD TO AN EMBANKMENT

SUBJECTED TO AN 8-1/4 MAGNITUDE EARTHQUAKE

To illustrate the use of the simplified procedure for evaluating

earthquake-induced deformations, computations are presented below for the

135 ft high Chabot Dam, constructed of sandy clay and having the section

shown in Fig. 17.

The shear wave velocity of the embankment was determined from a field

investigation and the strain-dependent modulus and damping were determined

from laboratory tests on undisturbed samples. The dam, located about

20 miles from the San Andreas fault, was shaken in 1906 by the magnitude 8-1/4

San Francisco earthquake with no significant deformations being noted; peak

accelerations in the rock underlying the dam in this event are estimated to

have been about 0.4g. Accordingly the response of the embankment to ground
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accelerations representative of a magnitude 8-1/4 earthquake and having a

maximum acceleration of 0.4g was calculated by a finite element analysis.

The maximum crest acceleration of th.e embankment, u , was calculated to. max

be 0.57g and the first natural period, T = 0.99 seconds. The maximum values
o

of the calculated shear strain were less than 0.5%. On the basis of static

undrained tests on the embankment material, the static failure strains

ranged between 3% and 8%, so that for the purposes of this analysis the

cyclic yield strength of this material can be considered equal to its static

undrained strength. From consolidated undrained tests on representative

samples of the embankment material two interpretations were made for the

strength of the material: one, based on an average of all the samples tested

resulting in a cohesion value, c, of 0.72 tons/sq. ft (or 0.72 kg/cm2
) and a

friction angle, ~, of 13°; the other; a conservative interpretation, based

on the minimum strength values with a cohesion of 0.4 tons/sq. ft (or

0.4 kg/cm2
) and a friction angle of 16°. Using these strength estimates,

values of yield accelerations were calculated for a sliding mass extending

through the full height of the embankment as shown in Fig. 17.

Considering the average relationship ofk /u with depth shown in
max max

Fig. 9, the ratio for a sliding mass extending through the full height of

the embankment is 0.35, resulting in a maximum average acceleration, k ,max

of 0.35 xO.57g = 0.2g. From Fig. 17 the yield acceleration calculated for

the average strength values isO.14g. Thus the parameters to be used in

Fig. 16 to calculate the displacements for this particular sliding surface
)

are as follows:

Magnitude ~ 8-1/4

T 0.99 sec.
0

k 0.2max

k /k
0.14 0.7- =

y max 0.20
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From Fig. 16:

U/k g T = 0.013 seconds
max o·

The displacement U=0.013xO.2x32.2xO.99=0.08 ft. (or 2.4 em).

Using the most conservative value of k lu shown in Fig. 9 of 0.47,
max max

the computed displacement would have been 0.58 ft (17.5 em). Similarly using

the conservative strength parameters for the soil (giving k = 0.07) and the
y

average curve for k lu shown in Fig. 9, the computed displacement would
max max

have been 1.5 ft (45 ems). All of these values are in reasonable accord with

the observed performance of the darn during the 1906 earthquake.

The calculation was repeated for a sliding mass extending through half

the depth of the embankment. The computed permanent displacements ranged

between 0.02 and 1.08 ft (0.6 to 32 ems) indicating that the critical potential

sliding mass in this case was that extending through the full height of the

embankment.

CONCLUSION

A simple yet rational approach to the design of small embankments under

earthquake loading has been described herein. The method is based on the con-

cept of permanent deformations as proposed by Newmark (1965) but modified to

allow for the dynamic response of the embankment as proposed by Seed and Martin

(1966) and restricted in application to compacted clayey embankments and dry or

dense cohesionless soils which experience very little reduction in strength due

to cyclic loading. The method is an approximate one and involves a number of

simplifying assumptions which may lead to somewhat conservative results.

On the basis of response computations for embankments subjected to

different ground motion records, a relationship for the variation of induced

average acceleration with embankment depth has been established. Design

curves to estimate the permanent deformations for embankments, in the height

range of 100 to 200 ft, have been established based on equivalent-linear
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finite elementdynarnic analyses for different magnitude earthquakes. The

use of these curves requires a knowledge of the maximum crest acceleration

and the natural period of an embankment due to a specified ground motion.

It should be noted that the design curves presented are.based on

averages of a range of results which exhibit some degree of scatter, and are

derived from a limited number of cases. These curves should be updated and

refined as analytical results for more embankments are obtained.

Finally, the method has been applied to an actual embankment which was

subjected to a magnitude 8-1/4 earthquake at an epicentral distance of some

20 miles. Depending on the degree of conservatism in estimating the undrain-

ed strength of the material and in estimating the max~mum accelerations in the

embankment, the calculated deformations for this 135 ft clayey embankment

ranged between 0.1 ft and 1.5 ft. These approximate displacement values are
,

in good accord with the actual performance of the embankment during the

earthquake.

Whereas the method described above provides a rational approach to the

design of embankments and offers a significant improvement over the conventional

pseuso-static approach, the nature of the approximations involved requires that

it be used with caution and good judgment especially in determining the soil

characteristics of the embankment to which it may be applied.

For large embankments, for embankments where failure might result in a

loss of life or major damage and property loss, or where soil conditions can~

not be determined with a significant degree of accuracy to warrant the use of

the method, the more rigorous dynamic method of analysis ~escribed earlier

might well provide a more satisfactory alternative for design purposes.
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A SIMPLIFIED PROCEDURE FOR COMPUTING MAXIMUM

CREST ACCELERATION AND NATURAL PERIOD FOR EMBANKMENTS

by

1 2 -F. I. Makdisi and H. Bolton Seed
I

Introduction

For many types of embankments, constructed of dry or very dense sands

or clayey soils, an estimate of the magnitude of the deformations which

might be induced by earthquake shaking can be made from a knowledge of the

yield acceleration for a potential sliding mass, the maximum crest accelera-

tion induced at the crest of the darn by the earthquake and the natural

period of vibration of the darn (Makdisi and Seed, 1977). The yield

acceleration, that is, the average acceleration at which a condition of

incipierit failure is induced in the potential sliding mass is determined by

the strength parameters of the soil and an appropriate method of stability

analysis.

The maximum crest acceleration induced in the embankment and the

natural period of the embankment can readily be determined either by a

finite element analysis "(Clough and Chopra, 1966i Idriss and Seed, 1967) of

the embankment section or by a shear slice analysis (Arnbraseys,1960i Seed

and Martin, 1966). For many purpose~ howeve~ a simplified procedure may

provide evaluations of these embankment characteristics with sufficient

accuracy for many practical purposes. such a procedure, which enables the

determination, by hand calculation, of the maximum crest acceleration and

the natural period of an embankment due to a specified earthquake loading

is described in the following pages. The method also allows~ through

lproject Engineer, Woodward-Clyde Consultants, San Francisco, CA.

2professor of Civil Engineering, University of California, Berkeley, CA.
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iteration, the use of strain dependent material properties. The steps in-
,

volved in this procedure are described in the following paragraphs, and an

example problem is solved to compare the results from the approximate method

to those obtained from a finite element solution.

1. Evaluation of initial properties

Consider the dam section shown in Fig. l(a) with height H, shear wave

velocity v , and a mass density p. The section is assumed to be homo­max

geneous and of infinite length. The maximum shear modulus, G , is relatedmax

to the shear wave velocity, v , by the relation:max

G = P v 2
max max

(1)

For the first iteration of computations, assume any initial value of

shear modulus G, and determine the ratio G/G • From Fig. l(b), for the
max

calculated value of G/G the corresponding values of shear strain, y ,
max ave

and damping, A, could then be determined.

2. Calculation of maximum acceleration and natural period

In the derivation of the shear slice theory for a dam section with~

the properties described above, the expression for the acceleration at any

level, y, as a function of time is given by:

u(y,t)

00

= L
n=l

W V (t)
n n

( 2)

where: J ,J
l

Bessel functions of first kind of order zero and one
o .

W
n

= the zero value of the frequency equation J (Whip/G) =a
0

= S v /h, where v = k/pn s s

natural frequency of the th
mode.n
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(a) Homogeneous Dam Section

A-3

G/Gmax
.__--1 Damping

Shear Stroin

(b) Stroin Dependant Soil Properties

5 % Damping
10 %

20%

Wn

(c) Earthquake Acceleration Response Spectra

FIG. 1 CALCULATION OF MAXIMUM CREST ACCELERATION AND NATURAL
PERIOD - (APPROXIMATE PROCEDURE).
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v (t) known as Duhammel's integral is given by the expression:n
t -A W (t-"r)

V (t) ~f
.. n n sin [wdn (t-T) ] dTu e

n g
0

where: wdn = W M2 :::: wn for small values of An n n

A fraction of critical damping
n

00

(3)

Thus, ii (y, t) =L
n=l

<P (y) W V (t)n n n (4)

where:

= mode participation factor.

Considering the first three modes of vibration, the corresponding values of

8n are always: 8
1

= 2.4, 82 = 5.52, 8
3

= 8.65, and the corresponding values

of the first natural frequencies are:

Wl = 2.4 v Ihs

w2 = 5.52 vs/h

W
3

= 8.65 v Ihs

( 5)

At the crest of the dam, y = 0, and the corresponding values of the mode

participation factors <P (0) for the first three modes are given by:
n

<PI (0) = 1. 6

<1>3(0) = 0.86

The value of acceleration at the crest in each mode is given by the

expression:

( 6)



U (o,t) = ¢ (0) W v (t)n n n n
(7)
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and the maximum value of the crest acceleration in each mode is given by:

..
u

nmax
¢ (0) W Sn n vn

( 8)

where S , known as the spectral velocity, is the maximum value of V (t),vn ' . n

and is a function ofWn , An and the characteristics of the ground motion

u (t). For small values of A the spectral acceleration 5 , is approxi-
g n an

mately equal to W 5 and thus the expression for the maximum crestn vn

acceleration for each mode could be written as:

(9 )

The value'of S as a function of wand A is readily available for mostan n n

earthquake ground motion records and average values have been published by

various authors (Housner, 1959; Newmark and Hall, 1969; Newmark, Blume and

Kapur, 1973; Seed, Ugas and Lysmer, 1976).

The maximum crest acceleration for the first three modes is thus given

by ..
ulmax = ¢l (0) Sal = 1.6 Sal

u2 ¢3 (0) 5 a2 1. 06 Sa2
(10)

max
..

¢3 (0) S 0.86 Su = =3max a3 a3

As the maximum values in each mode occur at different times, the maximum

values of the crest acceleration is approximated by taking the square root

of the sum of squares of the maximum acceleration of the first three modes,

hence:

umax

3 1/2

[ L: (u )2]
n=l I1rnax

(ll)
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Therefore, having determined the value of v and A in step (1), Eq. 5 is
s

then used to determine the corresponding values of the first three natural

frequencies. These in turn are used in Fig. l(c) to determine the corres-

ponding values of spectral acceleration and with the aid of Eqs. 10 and 11

the value of the maximum crest acceleration is readily determined.

3. Determination of average shear strain

To estimate the strain compatible material properties, an expression

for the average shear strain over the entire section should be determined.

From thesnear slice theory, the expression for shear strain at any level in

the embankment as a function of time is given by:

Thus

where:

co 2J
l

(8
n
y/h)

y (y, t) L Vn(t)=
h W J

l
(8 )

n=l n n

co 2Jl (Sny/h)
~L w V (t)= v 2 8n :2 J

l
(8n) n n

s n=l

co

y (y, t) h L ¢ , (y) w V (t)-2-
Vs n=l

n n n

¢n I (y)
2J l (Sny / h )

=
S 2 J l

(8 )
n n

(12)

(13)

(14)

shear strain mode participation factor.

The variation of ¢ , with depth for the first three modes (after Martin,
n

1965) is shown in Fig. 2. Considering the small contributions of the higher

modes compared to the first mode over the entire depth, it is sufficient for

all practical purposes to consider the contributions of the first mode only in

calculating the average shear strain. Thus from Eq. 13 the expression for the

maximum shear strain at any level, y, may be written as:



cA' (y) = 2 Jdt3n Y/h)
n al JI (t3n)

-0.2 -0.1 0 0.1 0.2 0.3 0.5
o

0.2

0.4

Y/h

0.6

0.8

FIG. 2 VARIATION OF SHEAR STRAIN MODE PARTICIPATION FACTORS WITH
DEPTH - SHEAR SLICE THEORY. (After Martin, 1965).
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(15)

where ¢ , is the first mode participation factor as shown in Fig. 2,
1

and

sal is the spectral acceleration corresponding to the first natural

frequency Wl .

The average maximum shear strain for the entire section may be deter-

mined by calculating an average value (¢i)ave of the first mode participation

factor in Fig. 2:

... (¢' ) '" ls (0.38 + 0.41 + 0.35 + 0.24 + 0.1)
1 ave

~ 0.3

(16)

and (y )
ave max

= ~(¢,) S
V 2 1 ave als

(17) .

Assuming the equivalent cyclic shear strain is approximately 65% of

the maximum average shear strain, (y -) "then
ave max

(y )
ave eq

h
0.65 x 0.3 x v

s
2 Sal (18)

Having obtained a new value for the average shear strain from Eq. 18

a new set of modulus and damping values can be determined from Fig. l(b).

If these values are different .from those assumed in step (1), a new iteration

must be performed starting from step (2) and the process repeated until

strain compatible properties are obtained. The process usually converges in

3 iterations.

Example Problem

To evaluate the accuracy of the approximate method proposed above, the

response of a lSO-ft-high embankment, for which a solution has been obtained

by the finite element method, will be calculated herein.
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, ,
In the finite element solution the maximum shear modulus was calcu-

lated as a function of the square root of the effective confining pressure;

therefore a weighted average based on values from all the elements was

calculated and that value was used for the homogeneous section analyzed by

the approximate method. The properties of the embankment are as follows:

Height, h = 150 ft

Unit weight, Y = 130 pcf

Mass density, p = 4.04 slugs/ft 3

Maximum shear modulus, G
max

Maximum shear wave velocity, vmax

= 3650 ksf (average of all
elements)

= 950 fps

The finite element response was calculated for ground accelerations

obtained from the N-S component of the Taft record of the Kern County (1952)

earthquake, adjusted to have ~,maximum acceleration of O.2g. A plot of the

normalized response spectra for this record is shown in Fig. 3. The strain

dependent modulus and damping properties used in the computations are presented

-in Fig. 4.

Iteration #1

Assume v = 600 fps.
s

and G/G
max

600/950 = 0.63

(v /v )2 = 0.4
s max

From Fig. 4: for G/G
max

0.4

shear strain

and

0.06%

= 13%

From Eq. 5:

Wl = 2.4 x 600/150 = 9.6 rad/sec, Tl 0.65 sec.

w2 = 5.52 x 600/150 = 22.1 rad/sec, T2 0.284 sec.

w3
8.65 x 600/150 34.6 rad/sec, T3 0.182 sec.
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The values of spectral acceleration, for, wI' w2 ' w3 are obtained from r

Fig. 3 for A 13%, and from Eq.lO we get:

u 1.6 x 0.26 = 0.416g
Imax

u 2max = 1.06 x 0.316 = 0.335g

..
0.86 0.29 0.249gu3max x

from Eq. 11 the maximum crest acceleration

i.i = 0.59gmax

the average equivalent shear strain from Eq. 18 is then:

(Yave)eq =
150

0.65 x 0.3 x (600)2 x 0.26 x 32.2

= 0.068%

Iteration #2

From Fig. 4: for s~ear strain = 0.068%

GIG = 0.36max

A = 13.7\

and v = 570 fpss



(Yave)eq =
150

0.65 x 0.3 x (570)2 X 0.244 X 32.2

0.071%

A-13

Repeating the same calculations for Iteration #3 we get the following

results: .

u = 0.57g
max

T = 0.7 sec ..
0

Yave = 0.07% Approximate Procedure

G = 1270 ksf

A = 14%

The finite element solution gave the following results:

u = 0.51g
max

T = O.75g
0

Yave = 0.065% Finite Element Solution

(G) ave = 1410 ksf-

( A) = 11%
ave

As can be seen from the comparison above there isa fairly good

agreement between the results obtained by the approximate procedure and

those from the finite element calculation. Thus it would appear that

for practical purposes the above procedure can be used for estimating

the maximum crest acceleration and natural period of an embankment sub-

jected to a given base motion. These values may in turn be used to

estimate the permanent displacements induced by earthquake shaking as

described elsewhere (Makdisi and Seed, 1977).
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