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ABSTRACT 

The literature survey presented collates most of the available 

relevant information on the transverse or out-of-plane strength of 

masonry walls. The report discusses several of the test techniques 

used and summarizes the most significant available test results. 

Formulations for predicting the capacity of walls subjected to trans­

verse loads are presented together with their correlation with 

experimental results. Also included is a section relating test results 

to present design practices and code requirements. 
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1 

1. INTRODUCTION 

An important consideration in the analysis and design of a 

masonry building is its ability to withstand lateral loads. Figure 1.1 

shows a schematic drawing of the load transfer mechanism of a wall 

subjected to lateral forces - either wind or earthquake. The lateral 

loads act on Wall A and are transferred to Wall B by horizontal 

diaphragms which may include the floors and/or roof of the structure. 

Consequently, in the design of a masonry building there are three 

important factors to consider: (1) the ultimate in-plane shear 

capacity of Wall B; (2) the shear transfer capacity between the 

diaphragm and Wall B, and (3), the out-of-plane flexural capacity of 

the transverse Wall A. 

The in-plane shear strength of masonry walls has been the sub-

o (1,2,3) 
Ject of three recent reports by Mayes and Clough , and the 

objective of this literature survey is to summarize most of the 

available information on the out-of-plane flexural capacity of masonry 

walls subjected to transverse loads. Chapter 2 describes most of the 

test techniques that have been used to simulate transverse loads on 

masonry walls. In Chapter 3, test results on the transverse strength 

of masonry walls are summarized. In Chapter 4 formulations to predict 

the transverse flexural capacity of masonry walls are discussed. In 

Chapter 5 present design practices are considered with regard to 

transverse load test results. 



2 

CD 

Ul 
H 

~ 
§ 

~ 
0 
J:'r.. 

~ 
§ 

<t 
..J 
..J r-I . <t r-I 3: . 

t!] 
H 
J:'r.. 
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2. TEST TECHNIQUES 

2.1 Introduction 

In order to determine the flexural capacity of a masonry wall 

subjected to transverse loading, several kinds of test techniques have 

been used in laboratory test programs. One of the most common and 

frequently used methods is the air-bag test described in Section 2.2, 

which usually uses a large wall panel as the test specimen. Small 

specimens are used in the wallette test discussed in Section 2.3. 

Other methods used by investigators include the use of hydraulic jacks 

to apply line loads to the wall. Dynamic tests have been performed 

with explosive or pulse loadings to simulate gas explosions on a wall. 

2.2 Air-bag Tests 

Typical transverse air-bag test equipment for full-size walls 

is shown in Figs. 2.1 and 2.2. It consists of a movable restraining 

steel frame with a plywood backboard stiffened with steel channels. 

Seamless steel pipes welded to steel channels provide support behind 

the test specimen. These support members are firmly attached to the 

retaining framework in positions that provide the required vertical 

span for the specimen, which is usually 7.5 ft. An air-bag (nylon 

reinforced neoprene or polyvinyl sheeting, etc.) is hung between the 

backboard and the face or compressive side of the test wall. The air­

bag is inflated with air from a compressor to produce a uniformly 

distributed transverse load over the face of the wall. Pressure in 

the system is measured by means of a manometer or pressure transducer. 

The transverse load is applied in increments (usually four psi) 

and deflections at everyone-third point along the height are measured 
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by dial gages or transducers and recorded at each increment. To 

prevent complete collapse of the wall at failure and resulting damage 

to the displacement equipment, wood restraining members are generally 

clamped to an adjacent steel frame. As shown in Fig. 2.2 these wood 

restraining members are far enough away from the tensile side of the 

wall to permit maximum deflections of the wall. 

The test procedure described above is in accordance with 

ASTM E 72-61(4) which specifies (paragraph 20(6)} that the load shall 

be applied to the outside face of three test specimens and to the 

inside face of another three. Most investigators, however, tested 

with the load applied to what would be considered the "outside" face 

only. In the case of brick-block composite walls, a load is applied 

f h
· d (5) rom eac Sl e . 

The walls are considered non-load-bearing walls when only a 

horizontal transverse load is applied. When both a transverse load and 

a vertical compressive load are applied(5,6) , the walls are considered 

load bearing walls. When there is both vertical and horizontal loading, 

the vertical compressive load is applied first and after the desired 

stress level is reached, the transverse load is applied and gradually 

increased until the specimen fails. 

2.3 Wallette Tests 

A second test, frequently used to determine the flexural strength 

of masonry walls, is the wallette test as shown in Fig. 2.3. A 2-block 

high prism (described in ASTM Standard E149-66 (7» is usually used in 

this test, although sometimes 3-block or 4-block high prisms are used. 

A comparison of results from the air-bag system and from the 

wallette test is given in section 3.6. 



, 

l.J 

, 

I 

, 

fl I 
I 

FIG. 2.3 

p 
~ 

tJ 

I 

, 

, 

I] -t 
WALLETTE TEST EQUIPMENT 

From Reference (24) 

7 



8 

FIG. 2.4 TRANSVERSE TEST BY SINGLE-LINE LOAD 

From Reference (10) 
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2.4 Other Static Tests 

Some transverse load tests have been conducted with the use of 

. k (8,9,10,40) 
hydraulic Jac s . I . h . . 2 4 (10) An examp e ~s s own ~n F~g.. • A 

line load is applied at the mid-height of the test specimen by an 

hydraulic jack. Figure 2.5 shows another example where two line loads 

are applied (through rollers) at the outer quarter points of the 

. (40) 
he~ght of the wall . In this case, the total load theoretically 

produces the same maximum bending moment as that induced by an equal 

total wind pressure uniformly distributed over the wall. Actually the 

load is applied to the face of the wall by rollers or similar devices, 

and care must be taken to avoid a local failure at the loading point. 

2.5 Dynamic Tests 

Some transverse dynamic load tests have been conducted in order 

to test the resistance of a masonry wall to a blast load such as a gas 

explosion. An example of the blast loading technique is a recent 

. (II to 16) 
ser~es conducted by the VAS Research Company . The test 

setup for this program is shown in Figs. 2.6 and 2.7. Tests of masonry 

. (17) 
walls under blast loading were also carried out by McKee and Sev~n • 

Another dynamic loading test was conducted by Morton and 

(18) 
Hendry . The walls used in this program were one4:hird scale brick 

subjected to precompression. Twenty-three walls were tested to 

failure using a lateral dynamic pulse applied as a line load to the 

wall at mid-height. The lateral strengths of the walls for both 

dynamic and static loading were compared, and it was concluded that 

the different rates of loading have little effect on the ultimate 

strength of masonry panels. 
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FIG. 2.5 TRANSVERSE TEST BY TWO-LINE LOAD 

From Reference (40) 
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k 
(40) 

Mon conducted impact loading tests for full size SCR masonry 

wall panels (4 ft. x 8 ft.), using a sandbag as shown in Fig. 2.8. 

The bag is raised and then released producing an instantaneous load 

on the wall at impact. The walls are tied to the support rollers to 

hold them in place when complete failure takes place; tying does not 

restrict the walls from rotating around the supports. The bottom of 

the specimen rests on rollers. 
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3. FACTORS AFFECTING THE TRANSVERSE STRENGTH OF MASONRY WALLS 

3.1 Introduction 

Factors generally included in formulations to predict the 

transverse strength of a masonry wall include the tensile and com-

pressive strength of the masonry, the vertical load and the amount of 

reinforcement. Variables that affect the transverse strength but which 

are not directly included in the formulations are the strength of the 

masonry units, the strength of the mortar, the initial rate of absorp-

tion of the masonry unit, the thickness and width of the mortar joint, 

the pattern in which the units are laid and the workmanship. 

A substantial number of research programs have been conducted 

in an attempt to determine the effect of the above variables on the 

transverse strength of masonry walls. A summary of most of the test 

programs that have been performed is given in Table 3.1 together with 

the appropriate reference. The tests on solid brick walls, hollow 

clay brick walls and concrete block walls are listed separately. 

Although the influence of the variables mentioned above are inter-

related, they are discussed here separately. Formulations to predict 

the transverse strength of masonry walls are discussed in the following 

chapter. 

3.2 Effect of Masonry Unit Strength and Initial Rate of Absorption 

The two major properties of a masonry unit that affect the bond 

strength between the masonry unit and the mortar are the strength and 

initial rate of absorption (IRA) of the unit. The Structural Clay 

. (19) 
Products Research Foundatlon investigated the influence of these 

two variables and found conflicting results. 
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In one series of fifteen tests on claybrick panels using the 

air-bag test setup of Fig. 2.1, the only variable included in the 

program was the strength of the masonry unit. All fifteen walls were 

built with the same type "s" mortar and the same joint thickness. The 

dimensions of the brick units are shown in Fig. 3.1 and the physical 

properties are listed in Table 3.2. The results of the tests are 

summarized in Table 3.3 and the load-deflection curves for the three 

sets of wall specimens are plotted in Figs. 3.2(1) to 3.2(3). The 

test results indicate that a lower brick strength gives a lower 

ultimate transverse strength of the wall and a lower modulus of rupture. 

Furthermore a lower brick strength gives a lower modulus of elasticity 

resulting in larger lateral deflections. It should be noted that the 

initial rate of absorption of the high strength units is 4.0 (grams 

per min. per 30 in:) while that of the medium and low strength units 

is 14.8 and 24.1, respectively. Consequently it could also be con­

cluded that higher transverse strengths are associated with the 

lowest IRA. 

In the second series of tests, 135 wallette specimens were 

tested in the setup shown in Fig. 2.3. The specimens were 4 inches 

by 4 inches by 16 inches long and were constructed with type "s" 

mortar and 27 different types of brick units. The investigators 

concluded that the property that appears to have had the greatest 

influence on the transverse strength of the wallettes was the initial 

rate of absorption (IRA) or suction of the unit at the time of laying. 

The effect of the IRA is shown in Table 3.4 and indicates that lower 

transverse strengths are associated with IRA's of less than 5 grams 

per min. per 30 in~ and greater than 30 grams per min. per 30 in~ • 
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Table 3.4 

Effect of Brick Suction on Transverse Strength 
of 4-In. Brick Masonry Wallettes* 

Suction Wallette Strength 
of 

Brick Modulus 
Strength 

g per min per of 
30 sq in. 

n 
Rupture Ratio 

psi 

Less than 5 30 113 0.S4 

5 to 30 SO 135 1.00 

Over 30 25 9S 0.73 

* 16 by l6-in. wallettes built with type S mortar and 
3/S-in. joints 

25 

from reference (19) 
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The contradiction in the two sets of results led the 

investigators to conclude that other variables affect the bond 

developed at the brick mortar interface; e.g. the character of the 

bedding surface and the extent to which mechanical interlocking of the 

mortar with brick is achieved. The investigators suggested the 

possibility of developing a measure of surface roughness, not only at 

the surface itself but the size, shape and depth of pores contiguous 

with the surface of the brick. 

3.3 Effect of Mortar 

AS stated in Section 3.1 the transverse strength of a masonry 

wall is primarily affected by the bond characteristics between the 

masonry unit and the mortar. The bond developed at the interface, in 

addition to being a function of the properties of the masonry unit, is 

also related to the properties of the mortar. Several investigators 

have attempted to isolate particular properties of the mortar that 

affect the bond at the unit-mortar interface. These include the com­

pressive and tensile strength of the mortar, the thickness of the 

mortar joint, and the width of the mortar joint. Research programs 

associated with each of these properties are discussed separately in 

the following sections. 

3.3.1 Effect of Mortar Strength 

Stang et al. (9) in 1926 conducted a series of twenty-seven 

transverse wall tests using various types of clay tiles, both wetted 

and dry at the time of laying, and mortars of various strengths. The 

walls were 9 ft. long and 6 ft. wide and were loaded with two line 

loads applied through timber members by hydraulic jacks. The walls 
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Table 3.5 
Results of Transverse Tests of Hollow-Tile Walls 

Wall 
Description Equiva-

Wall designa- thick- of tiles and size Maxi- Distance Modulus 
in inches lent 

tion 1 ness mum between 
uniform 

of 
load restraints 

load Rupture 

inches 
l-E-l 

pounds inches Ibs/ft
2 Ibs/in2 -

8 6-cell, 8 by 12 by 12 1,080 106 27 18 
1-5-1 8 do 1,970 108 49 39 
l-E-2 8 do 2,080 107 52 41 
4-E-2 8 do 2,390 105 60 47 
1-S-2 8 do 2,900 109 71 62 

8-S-2 8 H-shaped, 8 by 10J" by 12 4,350 92 115 73 
1-M-2 8 6-cell, 8 by 12 by 12 1,570 107 39 29 
l-E-3 8 do 1,670 107 41 32 
5-E-3 8 do 1,980 102 50 36 
6-E-3 8 XXX, 8 by 12 by 12 1,980 107 49 39 

7-E-3 8 do 2,190 104 55 41 
9-E-3 8 Double shell, 8 by 12 by 5 3,320 107 82 70 
1-S-3 8 6-cell, 8 by 12 by 12 2,700 109 66 57 
4-5-3 8 do 2,080 110 51 44 
5-S-3 8 do 1,980 105 50 38 

6-S-3 8 XXX, 8 by 12 by 12 2,410 105 60 47 
10-S-3 8 2-cell, 8 by 5 by 12 3,010 104 76 60 
13-S-3 8 3-cell, 8 by 5 by 12 3,630 103 92 72 
14-S-3 8 T-shaped, 8by~by 12 1,980 106 49 38 

15-S-3 8 do 2,500 108 62 52 
l-E-4 8 6-cell, 8 by 12 by 12 2,660 106 66 53 
1-S-4 8 do 4,450 109 110 98 
2-E-2 12 6-cell, 12 by 12 by 12 5,580 105 140 49 

(1+3)-E-2 12 6-cel1, 8 by 12 by 12 
5,690 106 142 50 3-cell, 3-3/4 by 12 by 12 

2-S-2 12 6-cell, 12 by 12 by 12 6,100 108 151 57 
(10+11+12) -S-3 12 Faced with brick 6,100 106 152 55 
14-S-3 12 T-shaped, 8 by 6J" by 12 4,870 106 121 42 

IThe symbols listed in this column represent, in the order used: Tile lot number, construc­
tion, and mortar number. 

Table 3.6 
Average Strength of Mortar Specimens 

Speci-
Average 

Average 
com-Mortar 

mens tensile 
Number Proportions (by volume) 

tested 
pressive 

strength 
strength 

Ibs/in2 lbs/in2 

1 IJ"L:3S 12 85 14 
2 1C:l~:6S 81 760 80 
3 lC:1J"L:4S 105 1,190 135 
4 lC:3S 12 1,990 155 

from reference (7) 

, 
! 
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were simply supported at an interval of approximately 9 ft. An 

equivalent uniform load at failure was calculated that gave the same 

bending moment as the two line loads at the center of the simply 

supported panel. The results of the tests are given in Table 3.5 and 

the mortar strengths in Table 3.6. All walls constructed with mortar 

types 1, 2 and 4 were laid with dry tiles while those constructed with 

mortar type 3 were laid with wetted tiles. The failure mode of all 

walls was a tensile failure between the mortar and the tiles. A 

comparison of the strengths of equivalent walls constructed with 

different mortar types indicates that the wall strength increases as 

the mortar strength increases i.e. Walls l-E-l, l-E-2 and l-E-4 had 

2 . 1 wall strengths of 18, 41 and 53 Ibs/in., respect1ve y. Walls l-S-l, 

2 
1-S-2 and 1-S-4 had strengths of 39, 62 and 98 Ibs/in., respectively. 

The compressive strengths for mortar types 1, 2 and 4 were 85, 760 and 

. 2 . 1 1990 Ibs/1n., respect1ve y. Similar walls constructed with the wetted 

. 2 
tiles, i.e. l-E-3 and 1-S-3 had wall strengths of 32 and 57 Ibs/1n., 

respectively. The compressive strength of mortar type 3 was 1190 

/
. 2 

lbs 1n. . This series of results indicates that an increase in the 

moisture content of the walls decreases their strength. This is 

illustrated by the fact that walls l-E-2 and 1-S-2 constructed with 

a weaker mortar had greater wall strengths than the corresponding 

walls l-E-3 and 1-S-3. 

In research performed at the Structural Clay Products Research 

(19) 
Foundation (SCPRF) the effect of the tensile strength of mortar on the 

transverse strength of 4 inch flexural wallette tests was investigated. 

All 16 inch by 16 inch wal1ettes were built with the same type of brick 

(11,771 psi) with a constant 3/8 inch joint thickness. The four types 

of Uniform Building Code mortars (Type M, S, Nand 0) were used and the 
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Type 

M 

S 

N 

0 

Table 3.7 

Effect of Mortar Tensile Strength on 

Transverse Strength of 4-In. Brick Masonry Wallettes* 

Mortar Wallettes 

Modulus 
Proportions Tensile 

of Relative 
by Strength** 

Rupture Strength 
Volume psi 

n 
psi 

lC:~L: 3S 278 5 137 1.10 

lC:~L:~S 200 5 125 1.00 

lC:lL:6S 128 5 96 0.77 

lC:2L:9S 48 5 85 0.68 

*16 by 16-in. wallettes built with same type of brick (11,771 psi) 
and 3/8-in. joints 

**28-day strength of air-cured briquettes 

from reference (19) 
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results are shown in Table 3.7. The modulus of rupture of the wallettes 

increased with increasing tensile strength of the mortar. Furthermore, 

the increase in tensile strength of the mortar is also associated with 

an increase in compressive strength of the mortar and consequently, it 

could be concluded, that the modulus of rupture of the wallettes 

increases with increasing compressive strength of the mortar. 

The effect of mortar strength on the flexural strength of the 

walls was included in an extensive research program performed by Yokel, 

Mathey and Dikkers(6) on walls subjected to compressive and transverse 

loads. The walls were 8 ft. high and 4 ft. wide and were constructed 

from both hollow concrete block and clay brick units. The two mortars 

included in the test program were Ie: 3S and Ie: lL: 4S, having com-

pressive strengths of 525 psi and 1100 psi, respectively. In addition 

an 8710 psi (compressive strength) high-bond strength mortar was used 

with the hollow concrete block units and a 7280 psi high-bond strength 

mortar was used with the brick units. 

The results of both compressive and flexural tests on the wall 

panels are given in Table 3.8. The results of the hollow concrete 

block tests indicate that the high strength mortar had a negligible 

effect on the compressive strength of the walls but increased the 

flexural strength by a factor of 21 over that with the Ie: 3S mortar. 

For the 4 in. Brick A walls the high-bond mortar increased the com-

pressive strength by a factor of 1.5 to 4 over that with the Ie: lL: 4S 

mortar. The effect of the high-bond mortar on different types of bricks 

was variable. In comparing Brick A to Brick S the high-bond mortar 

increased the compressive strength by a factor of 1.25 and decreased 

the flexural strength by a factor of 0.6, whereas a comparison of 
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Brick A and Brick B shows the compressive strengths to be comparable 

and the flexural strength of Brick B to be 1.5 times that of Brick A. 

Hence it appears that the higher bond (and compressive) strength 

mortar has a significant effect in increasing the flexural strength of 

the walls, by a factor of 4 for the brick walls and a factor of 21 for 

the concrete block walls. 

3.3.2 Effect of Mortar Joint Thickness and Width 

The width and thickness of the mortar joint are two factors that 

were found to affect the transverse strength of masonry walls. These 

two factors are related to workmanship rather than the quality of 

. .. (19,20,21) 
mortar and were the subject of three separate ~nvest~gat~ons 

In the research program performed at the Structural Clay Products 

Research Foundation(19) the thickness of the mortar joint was varied 

between 1/4 in. and 3/4 in. by 1/8 in. increments in twenty-five 

4 in. x 6 in. x 16 in. clay brick wallette tests. The results are 

given in Table 3.9 and the strength ratio with respect to the standard 

3/8 in. joint is also tabulated. It is clear that the flexural 

strength. varies inversely to the thickness of the mortar joint. This 

is similar to the effect of mortar joint thickness on compressive 

strength of prism as shown in Fig. 3.3. 

In a test series performed by the Structural Clay Products 

Institute (20) the effect of the width of the mortar joint was investigated. 

The test specimens were 8 ft. high and 3 ft. or 4 ft. wide and were 

tested with the air-bag test setup of Fig. 2.1. The walls were con-

structed from "solidll clay units with nominal brick thicknesses of 8 in., 

6 in., and 4 in. In order to determine the effect of the width of the 

mortar joint a series of walls were constructed with full bed joints 
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and these were designated SS, 6S and 4S. A second series of walls 

were constructed with only face shell bedding and these were designated 

SSF and 6SF. In addition to' the "solid" clay units with face shell 

bedding two series of tests were performed on walls with hollow clay 

units with the same face shell bedding as the solid units and 

designated SR and 6R. 

The results of the tests are given in Table 3.10. The effect 

of face shell bedding on,the solid units decreases the flexural 

strength by factors of 0.55 and 0.81 for the S inch and 6 inch units, 

respectively. For hollow units with the same mortar bed width as the 

solid units (SF and H series), the flexural strength decreases by 

factors of 0.55 and 0.67 for the 8 inch and 6 inch units, respectively. 

The decrease in flexural strength of the solid units due to face 

shell bedding was attributed to the more rapid drying of the narrower 

bed. This unfavorable curing condition has an adverse effect on the 

bond strength. between the mortar and masonry unit. The additional 

decrease in the flexural strength of the hollow units is attributed by 

the authors to an even worse curing condition than for the face shell 

bedded solid units. The hollow units apparently provide a great 

internal "chimney effect" that creates even more rapid drying and con­

sequently decreased bond strength. 

3.3.3 Effect of Workmanship 

Probably the most difficult parameter to evaluate is the effect 

of workmanship. The quality of workmanship affects the size, width and 

thickness of the mortar joint, the quality of the mortar and the IRA of 

the masonry unit. All these factors affect the transverse strength of 

a wall, hence attempts to evaluate the overall effect of workmanship 
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Table 3.11 
Transverse Load Tests of Brick Walls 

(1) PHYSICAL PROPERTIES OF BRICK 

Compres- Modulus Water Absorption 
sive of Weight 

Brick 
Strength 24-hr. 5-hr. I-min. Partial dry Rupture 

immersion 1 lb. psi psi cold, boil, Ratio 
C B C/B Dry laid 
% % 

As 

High-
strength 17,600 2,275 1.9 3.45 0.53 8 8 5.85 

Medium-
strength 2,670 550 11.3 15.1 0.74 23 11 4.49 

lImmersed on flat side in 1/3 in. of water. Absorption in grams per 30 sq. in. 

(2) PHYSICAL PROPERTIES OF MORTAR 

Water Compressive 
Content, Strength 

Kind of Mortar 
Proportion, by Weight Flow, 

by Volume of Dry percent Air Water 
Materials Storage, Storage, 
percent psi psi 

Cement 1C:0.25L:3S 19.6 113 1390 3220 

Cement-lime lC:1L:6S 23.3 107 440 640 

C cement, L lime and S sand. 

(3) TRANSVERSE TESTS OF BRICK WALLS 

Wall Type 2 Equivalent Uniform Load, psf Modulus of Rupture 1 
, psi 

AA 

AB 

AC 

1 2 3 Average 1 2 3 Average 

115 120 140 125 73.6 76.7 89.5 79.9 

53.3 38.0 52.3 48 

I 
34.7 24.7 34.0 31.1 

85 80 82 82 53.6 50.4 51. 7 51.9 

lTested at age of 28 days 

2AA is combination of high-strength brick and cement mortar with grade A workmanship. 
AB is combination of medium-strength brick and cement-lime mortar with grade B 
workmanship. AC is the same combination as AB but with grade A workmanship. 

from reference (22) 

i 

i 
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are difficult. An attempt to evaluate the effect of workmanship was 

performed in 1938 by Whittemore et ale (22) who defined excellent or 

grade A workmanship to be a wall with completely filled bed joints and 

poor or grade B workmanship to be a wall with bed joints that were not 

completely filled. The mortar and brick properties are given in Tables 

3.11 (1) and (2). The test results are given in Table 3.11 (3). The 

two series of walls AB and AC with the same mortar and brick had grade 

B and A workmanship, respectively. The walls (AB) with grade B work­

manship had flexural strengths 60% of those of the grade A walls (AC). 

Although the objective of the test series performed at the Structural 

Clay Products Institute(20) was to evaluate the effect of mortar joint 

width, by Whittemore's definition this was an evaluation of the effect 

of workmanship on solid units. The strength of the walls with poor 

workmanship according to Whittemore's definition was 55% and 81% of the 

strength of the walls with excellent workmanship for 8 inch and 6 inch 

units, respectively. 

3.4 Effect of Wall Pattern 

One of the architectural features of masonry is that a variety of 

wall patterns can be obtained with the various sizes, shapes and colors 

of masonry units. These patterned walls generally are not used as 

load bearing shear walls, therefore their capacity to withstand out-of­

plane or transverse loadings is of major importance. In a series of 

tests performed by the Portland Cement Association in 1963(23} the 

effect of various wall patterns was investigated. The nine wall 

patterns used in the tests are shown in Fig. 3.4. The walls were 8 ft. 

high and 4 ft wide and tested with the ASTM E-72-55 test setup. The 

walls were constructed from concrete block units of various sizes. All 
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the walls were tested such that they spanned vertically. The top six walls 

shown in Fig. 3.4 were also tested with a vertical compressive load of 

85 psi. Four of the walls (standard, horizontally stacked, diagonal 

basket weave and 4 inch running bond) also were tested such that they 

spanned horizontally, and in addition the same four walls were tested 

with horizontal joint reinforcement. 

The results of the tests are given in Table 3.12 for Type M and 

Type S mortar. For walls spanning vertically the two diagonal types 

of bond increased the flexural strength by approximately 50%. The 

horizontally stacked bonded wall, surprisingly,increased the flexural 

strength by 30% whereas the vertically stacked bonded wall decreased 

the flexural strength by 13%. The effect of wall pattern was more 

dramatic for walls spanning horizontally. The strength of the 

horizontally stacked bonded wall was 28% of that of the standard 8 inch 

running bond wall, while the corresponding value for the diagonal 

basket weave wall was 60%. The wall with 4 inch high units and 

running bond had an increase in strength of 30% when compared with the 

wall with 8 inch high units. 

3.5 Effect of Reinforcement 

Although only a few investigations have been performed to 

determine the effect of reinforcement, two distinct and different types 

of reinforcement have been considered. The first is joint reinforcement, 

i.e. horizontal reinforcement placed in the mortar joints. It is 

effective for a wall spanning horizontally between vertical supports. 

The second type is vertical reinforcement which is placed in the cores 

of hollow units and in the grouted core of cavity walls. It is effective 

for walls spanning vertically between horizontal supports. The effect 
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of joint reinforcement was evaluated by both the Portland Cement 

. . ( ) (23) d d (8) 
Assoc~at~on PCA an Cox an Ennega . The effect of vertical 

. (24) 
reinforcement was evaluated by Scr~vener and the Masonry Institute 

. (25) 
of Amer~ca . 

In the tests performed by the PCA and described in the previous 

section horizontal joint reinforcement was included in the mortar bed 

joints at 8 inches and 16 inches center to center in walls with 

different bond patterns. The walls were tested with a horizontal span 

of 8 ft. with a test setup similar to Fig. 2.1. 

A comparison of the results obtained for the unreinforced walls 

for different bonding patterns is shown in Table 3.12. The horizontal 

joint reinforcement had the most dramatic effect on the horizontally 

stack-bonded walls. For type M mortar and reinforcement 16 inches 

center to center, the transverse strength increased from 47.7 lb/sq. 

ft. to 130 Ib/sq. ft., a 171% increase. For the type S mortar the 

increase was from 29.2 Ib/sq. ft. to 131.3 Ib/sq. ft. a 333% increase. 

The corresponding transverse strengths with reinforcement 8 inches 

center to center were 191.2 lb/sq. ft. and 190 Ib/sq. ft., respectively. 

For the 8 inch high standard running bond walls, the percentage 

increase in transverse strengths over unrein forced walls for reinforce-

ment placed at 16 inches center to center and 8 inches center to center 

were 15% and 54%, respectively. For the 4 inch high unit standard 

running bond walls the corresponding increases in transverse strength 

were 10% and 20%, respectively. It should be noted that all three walls 

with different bonding patterns had approximately the same transverse 

strength when horizontal reinforcement was placed at 8 inches center to 

center - the range of values was 190 to 203 Ib/sq. ft. 
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Table 3.13 

Summary of Recommendations 

Average moment 
L in ft Wall at rupture, L=~ for a safety Remarks 

type ft-lb per ft factor of 2 
of height 

A S60 IS' 6" 13 

B 1200 22' 0" -- IS' 0" design span 

C 1140 21' 4" 15 

D 12S0 22' 7" -- IS' 0" design span 

from reference (S) 
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Cox and Ennega(8} investigated the effect of horizontal joint 

reinforcement on two different types of masonry construction. They 

used a test setup similar to that shown in Fig. 2.1, where the walls 

spanned (8 ft.) horizontally between vertical supports. The two types 

of construction used in the investigation were a 4 in. x 2 in. x 4 in. 

clay brick cavity wall and an 8 in. x 8 in. x 16 in hollow 

concrete block wall. The panels were 3 ft. 4 in. high and 8 ft. long. 

The cavity walls were designated as type A and B. The type A specimen 

had minimal horizontal joint reinforcement consisting of 1/4 inch Z bar 

ties for each 3 sq. ft. of wall area. The type B specimen had rein­

forcement in each bed joint consisting of 3/16 inch longitudinal wire 

with 9 gage web members with a drip or crimp located at the center of 

each web member. The C and D type walls were constructed from hollow 

concrete block units. The C walls were unreinforced while the D walls 

had standard joint reinforcement consisting of 9 gage longitudinal 

wires with 9 gage web members in each joint. 

A summary of the results is given in Table 3.13 and the moment­

deflection curves for the four types of walls are given in Fig. 3.5. 

The results for cavity walls (A and B) indicate that the joint rein­

forcement increases the load at which rupture occurs by approximately 

40%, and the ultimate strength by approximately 100%. Furthermore, 

failure of the unreinforced walls occurs at a deflection soon after 

rupture (i.e. brittle failure) whereas the reinforced walls are able to 

carry load from a deflection of 0.04 inch at rupture to 0.25 inch 

at ultimate load (i.e. ductile behavior). A similar type of behavior 

was observed for the hollow concrete block walls. Joint reinforcement 

increased the rupture load by 12% and the ultimate strength by 36%. 
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For the unreinforced walls the rupture and ultimate loads and 

deflections are the same indicating a brittle failure whereas for the 

reinforced walls there is an increase of 20% from the rupture to the 

ultimate load. The deflection at rupture is 0.03 inch and 0.27 inch 

at ultimate, indicating a ductile type of behavior. 

Cox and Ennega included in their results spans at which a 20 psf 

wind loading would cause failure, see Table 3.13. Applying a factor 

of safety of two would result in spacing ~ransverse supports 13 to 15 ft. 

apart for nonreinforced walls; however, they recommended 12 ft. spacing 

in compliance with the "American Standard Building Code Requirements 

(26) 
for Masonry" . They also considered a span of 18 ft. to be reason-

able for walls with horizontal reinforcement in each bed joint for 

both types of walls. 

Scrivener (24) conducted two series of tests on 10 ft. high walls 

with 4 1/2 inch thick clay brick units and vertical reinforcing in the 

cores of the bricks. In the first series of tests the walls were 

tested in a horizontal plane with a face load applied by an air bag. 

The air bag reacted against the floor slab and the walls were simply 

supported at their ends. This was a somewhat artificial test as the 

dead load of the walls was incorrectly applied. In the second series 

(27) 
of tests the walls were kept in their natural vertical orientation 

and the face load was applied by an air bag in a manner similar to that 

shown in Fig. 2.1. The load was applied cyclically by changing the air 

bag from one face to the other. The walls contained varying amounts 

of vertical reinforcement as shown in Table 3.14. A typical cyclic 

load-deflection curve is given in Fig. 3.6. Included in the results 

of Table 3.14 are the theoretical yield loads which were calculated by 

the method described in Section 4.5. 
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Table 3.14 

Cyclic Face Loading of Reinforced Brick Walls 

- Test Results and Wall Details 

yield Loads (lb/ft2) 
Wall Reinforcement 

Theoretical Experimental 

None - 32 

2 - 3/8" diam. 31 33 

3 - 3/8" diam. 46 42 

4 - 3/8" diam. 61 64 

3 - 1/2" diam. 77 84 

Bricks: McSkimmings 4~" reinforcing and lattice bricks. 

Walls: Brickwork 10' high x 5' wide supported on RC beams at base and 
top. 

Reinforcing: vertical deformed bars in grouted cores, lapped with 
starter bars from RC beams. 

from reference (23) 
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The two main points resulting from this test series are as 

follows: First, the theoretical yield load was within 10% of the 

experimental yield load for all walls. Secondly, the cyclic load 

deflection curves showed highly ductile behavior characterized by 

large inelastic deflections. Scrivener noted that even with deformations 

of 6 inches and greater there was never any sign of bricks separating 

from the wall. The hysteresis loops were narrow because of the 

positioning of the reinforcement at the center of the wall. 

In a series of eight tests performed by Dickey and Mackintosh(25) 

the spacing of vertical reinforcement in hollow concrete block walls 

was evaluated. The test specimens were 20 ft. high and 8 ft. 8 in. 

long constructed from both 8 inch and 6 inch units. The walls were 

tested in a manner similar to that shown in Fig. 2.1. Each wall had a 

bond beam at the top and a bond beam at 7 ft. 2 in. from the founda­

tions. 

The objective of the test series was to determine the effect of 

the spacing of vertical reinforcing on the flexural resistance of 

reinforced concrete masonry walls. All walls contained the same area 

of vertical steel 1.2 sq. in. and only the spacing varied. Also 

included was a stack bonded test specimen. The force-deflection 

relationships for the walls with re-bar at 8 ft. and 2 ft. spacing are 

shown in Figs. 3.7 and 3.8, respectively. It is clear that the wall 

with bars 2 ft. center to center was able to maintain load over a 

larger deflection (5 inches) as compared to 4 inches for the wall with 

bars 8 ft. center to center, but the ultimate load of the two walls 

was the same. It is interesting to compare the force-deflection 

relationships obtained in the cyclic tests (Fig. 3.6) and the mono­

tonic tests (Fig. 3.7). There appears to be a more ductile behavior 
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in the walls tested cyclically. Dickey and Mackintosh concluded that 

vertical reinforcing for walls laid in running bond functions for stress 

and deflection over the total width as effectively at 8 ft. spacing 

as it does at 2 ft. spacing 

3.6 Effect of Added Vertical Load 

(6) 
Yokel et ale performed an extensive series of tests on the 

transverse strength of masonry walls with a combination of transverse 

and vertical loads. The relationships between the vertical com-

pressive load and the transverse load for ten types of construction 

(listed in Table 3.6) are shown in Figs. 3.9 (1) to (10). The walls 

were loaded axially with a uniform load and the transverse load was 

applied uniformly over the face of the wall with the test setup shown 

in Fig. 2.1. 

A brief summary of the manner in which the walls failed is now 

given. Both the 8 in. hollow concrete block walls with 1:3 mortar and 

high-bond mortar failed by tensile cracking along horizontal joints 

near midspan when the compressive bearing stress ranged from 0 to 359 

psi to 449 psi, respectively. For vertical compressive loads greater 

than these values, vertical splitting occurred along the ends of the 

walls near the top or the bottom as shown in Fig. 3.10. Eight inch 

solid concrete block walls with 1:3 mortar failed along a horizontal 

joint at or near midspan, under combined loading in which the super-

imposed vertical compressive load ranged from 0 to 552 psi, as shown 

in Fig. 3.11. 

The general trend in the failure of the 4-inch brick walls, as 

listed in Table 3.8, is similar to that of concrete block walls. Under 

combined loading conditions with small vertical compressive loads, 
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FIG. 3.12 TYPICAL FAILURE OF BRICK WALLS WITH 
LOW VERTICAL COMPRESSIVE LOADS 

From Reference (6) 



63 

failure occurred on the tensile face of the wall with cracking along 

a horizontal joint near midspan, as shown in Fig. 3.12. An increase 

in the vertical compressive load resulted in flexural failures that 

were initiated on the compressive side of the specimen. At very high 

vertical loads failure occurred suddenly with crushing as shown in 

Fig. 3.13. 

For the 4-2-4 in. cavity hollow concrete block or brick-block 

walls, tensile failure due to combined loading occurred near midspan 

in walls to which a low compressive load was applied. An increase in 

the vertical compressive load resulted in buckling of the ties and 

subsequent crushing of the masonry for the brick-block walls. At high 

vertical compressive loads, failure occurred by crushing accompanied by 

some splitting of the concrete masonry units near the top of the wall 

as shown in Fig. 3.14. 

In the case of 8 inch composite brick and hollow concrete block 

walls, tensile failure occurred on the block face along a horizontal 

joint near midspan for walls having low vertical loads. For high 

compressive loads, these walls either failed by crushing of the concrete 

units or flexural loading had to be suspended because of the limited 

capacity of the horizontal loading equipment. 

It is clear from these test results that the addition of a 

vertical compressive load to the walls increases the transverse strength 

of the walls which fail in flexure. Figure 3.15 shows load-deflection 

curves for 20, 60 and 120 kip compressive loads, with the dashed line 

referring to the 20-kip case. Note that at this small vertical load 

the wall apparently exhibits considerable ductility. This may be 

attributed to the loss in stiffness with section cracking and not to 
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any. real ductility of the materials. Large additional deflections 

can then develop without a significant increase in moment. At higher 

compressive loads, failure tends to be more brittle, as is illustrated 

in Fig. 3.15 by the dashed-dotted line which refers to the 120 kip 

vertical load. 

In tests performed by the Portland Cement Association six walls 

that had been tested by transverse loads on a vertical span were 

repaired by a polyester resin adhesive and were then retested with a 

combined transverse load and an 85 psi uniform compressive load. The 

test results are shown in Table 3.12. The addition of a vertical 

compressive load to the walls tested in flexure across a vertical span 

proved to be an effective method of increasing the flexural strength. 

These tests show that use of the bearing load carrying capacity of a 

wall is one way of increasing the stability of the wall for transverse 

loads. 

3.7 Comparison Between Small Scale Wallette Tests and Full Scale Wall 
Tests 

While performing expensive full-scale tests it is important to 

determine their correlation with small-scale tests that can easily be 

performed in test laboratories. The most simple test having a failure 

mechanism similar to the mortar joint tensile failure in flexural tests 

is the wallette test shown in Fig. 2.3. Three different series of 

investigations have been performed to evaluate the correlation that 

exists between wallette and full scale transverse tests. 

. (20) 
The Structural Clay Products Inst~tute performed a series of 

tests on 6 inch and 8 inch thick clay brick walls. The wallettes were 

24 in. x 24 in. and were tested with the setup shown in Fig. 2.3 
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The walls were wide and spanned 7 ft. 6 in. between vertical supports. 

They were tested with the air-bag system shown in Fig. 2.1. The results 

of the two series of tests are given in Table 3.15. The 4S, 6S and 8S 

specimens were all solid clay units with full bed joints. The range of 

the ratio 

(modulus of rupture of walls)/(modulus of rupture of wallettes) 

was 1.1 to 1.3. For hollow units, 6H and BH,the ratio was 0.92 for the 

6 inch units and 1.6 for the 8 inch units. Except for the 6 inch hollow 

units the modulus of rupture of the wallettes was lower than that of the 

full scale walls with the best correlation found with the solid units. 

. (28) 
The Structural Clay Products Research Foundat~on performed 

a similar series of tests of 4 inch wide structural clay facing tiles. 

The wallettes were 16 inches high and the walls were 4 ft. wide and 

spanned 7 ft. 6 in. between vertical supports. The results are 

given in Table 3.16. The ratios of the modulus of rupture of the walls 

to wallettes varied between 0.47 and 0.7. For this series of tests, 

the modulus of rupture of the wallettes was substantially higher than 

that of the walls. This is opposite to the trend observed in the tests 

on the clay brick units. 

(29) 
Johnson and Mathys performed a series of comparative tests 

using various types of hollow clay tiles with a type S mortar. All 

the horizontally cored units, designated with an H, were laid with full 

bed joints while the vertically cored units, designated with a V, were 

laid with a face shell bedding. Three flexural wallettes two units 

high were built with each type of unit and were tested according to 

ASTM-E 149. For each type of unit six wall specimens 4 ft. x 8 ft. 

were constructed. Three of the specimens were tested with the span 



T
a
b

le
 

3
.1

5
 

T
ra

n
sv

e
rs

e
 

(F
le

x
u

ra
l)

 
s
tr

e
n

g
th

 
o

f 
S

in
g

le
-W

y
th

e
 

6 
a
n

d
 
8

-i
n

. 
C

la
y

 M
as

o
n

ry
 
W

a
ll

s 

S
p

e
c
im

e
n

 
W

a
ll

e
tt

e
s
 

(2
4

 
in

. 
b

y
 

2
4

 
in

.)
 (

1
) 

W
a
ll

s 
(7

-f
t 

6
-i

n
. 

S
p

an
) 

T
h

ic
k

-
U

lt
im

a
te

 
M

o
d

u
lu

s 
o

f 
A

v
e
ra

g
e
 

U
lt

im
a
te

 
M

o
d

u
lu

s 
o

f 
A

v
e
ra

g
e
 

S
e
ri

e
s
 

R
u

p
tu

re
 

(2
) 

f'
" 

v 
L

o
a
d

, 
q 

R
u

p
tu

re
 

(2
) 

f'
" 

n
e
s
s
, 

t 
L

o
a
d

, 
P 

t 
%

 
t. 

in
. 

Ib
 

f'
" 

p
s
i 

p
s
i 

p
s
f 

f'
" 

p
s
i 

p
s
i 

t 
t 

4
4

4
 

1
1

8
 

4
5

 
1

4
3

 
4

S
 

3
.6

3
 

4
4

9
 

1
1

9
 

1
0

4
 

2
4

 
5

5
 

1
7

5
 

1
3

8
 

(c
o

n
tr

o
l)

 
2

8
0

 
7

5
 

3
0

 
9

5
 

2
0

3
5

 
1

5
5

 
7

6
 

1
0

6
 

6S
 

5
.5

0
 

1
2

3
0

 
9

4
 

1
3

1
 

2
5

 
I
I
I
 

1
5

5
 

1
4

1
 

1
8

8
5

 
1

4
4

 
1

1
6

 
1

6
2

 

4
2

6
5

 
1

6
5

 
2

2
9

 
1

7
2

 
8S

 
7

.5
0

 
3

5
0

0
 

1
3

5
 

1
4

6
 

1
1

 
2

1
7

 
1

6
3

 
1

7
5

 
3

5
8

5
 

1
3

8
 

2
5

3
 

1
9

0
 

1
0

3
0

 
7

7
 

4
2

 
5

7
 

6H
 

5
.5

6
 

1
1

2
4

 
8

4
 

8
4

 
8 

5
9

 
8

1
 

7
7

 
1

2
1

5
 

9
1

 
6

8
 

9
2

 

5
4

8
 

2
1

 
8

0
 

5
9

 
8H

 
7

.5
6

 
8

7
3

 
3

4
 

3
4

 
36

 
6

4
 

4
7

 
53

 
1

1
7

2
 

4
6

 
7

3
 

5
4

 
~
~
 

-
-
-
-
-

-
-
-
-

-
-
-
-

-
~
-
.
-
-
~
 
L

-
_

_
_

_
_

_
_

_
_

_
 

~
 

-
-
~
-

-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-

-
-

--
-

(1
) 

E
x

c
e
p

t 
fo

r 
4S

 
s
e
ri

e
s
 
w

h
ic

h
 
w

e
re

 
n

o
m

in
a
l 

1
6

 
in

. 
b

y
 

1
6

 
in

. 
(2

) 
. 

1 
B

a
se

d
 o

n
 
g

ro
s
s
 
c
ro

s
s
-s

e
c
tl

o
n

a
 

a
re

a
s
 

-
-
-
-

-
-

v %
 

2
9

 

22
 8 2
4

 

1
1

 

~
-

0
\ 

O
J 



W
a
ll

e
tt

e
s
 

T
o

ta
l 

M
o

d
u

lu
s 

-
L

o
ad

 
o

f 
X

 
s 

R
u

p
tu

re
 

S
e
ri

e
s
 

N
o.

 
f
~
 t 

lb
. 

p
s
i 

p
s
i 

p
s
i 

1 
5

6
8

 
1

9
4

 

6T
 

2 
5

2
3

 
1

7
9

 
1

8
4

 
8

.9
5

 

3 
5

1
9

 
1

7
8

 

1 
5

4
2

 
1

8
6

 

6T
C

 
2 

5
3

3
 

1
8

2
 

1
7

5
 

1
5

.7
2

 

3 
4

5
7

 
1

5
7

 

1 
8

2
7

 
2

1
0

 

8W
C 

2 
9

2
5

 
2

3
4

 
2

2
1

 
1

2
.2

3
 

3 
8

6
0

 
2

1
8

 

-
-
-
'-

lo
v

e
r 

7
.5

-f
t 

sp
a
n

. 

T
a
b

le
 

3
.1

6
 

T
ra

n
sv

e
rs

e
 s

tr
e
n

g
th

 
o

f 
4

-i
n

. 
S

tr
u

c
tu

ra
l 

C
la

y
 

F
a
c
in

g
 
T

il
e
 W

a
ll

e
tt

e
s
 

a
n

d
 W

a
ll

s 

W
a
ll

s X
 

U
lt

im
a
te

 
M

o
d

u
lu

s 
U

lt
im

a
te

 
v 

L
o

ad
l 

o
f 

L
o

ad
 

R
u

p
tu

re
 

N
o

. 
f
~
 t 

%
 

p
s
f 

p
s
i 

p
s
f 

T
T

-I
O

 
25

 
7

5
 

4
.9

 
T

T
-l

l 
2

7
 

8
0

 
2

9
 

T
T

-1
2

 
34

 
1

0
3

 

T
T

-4
 

43
 

1
3

0
 

9
.0

 
T

T
-5

 
4

4
 

1
3

2
 

4
1

 

T
T

-6
 

3
6

 
1

0
8

 

T
T

-l
 

4
4

 
1

3
7

 

5
.5

 
T

I'
-2

 
5

1
 

1
5

7
 

4
7

 

T
T

-3
 

4
7

 
1

4
6

 

s 

M
o

d
u

lu
s 

U
lt

im
a
te

 
M

o
d

u
lu

s 
o

f 
L

o
ad

 
o

f 
R

u
p

tu
re

 
R

u
p

tu
re

 

p
s
i 

p
s
f 

p
s
i 

8
6

 
4

.7
3

 
1

4
.9

3
 

1
2

3
 

4
.3

6
 

1
3

.3
4

 

1
4

7
 

3
.5

1
 

1
0

.0
2

 

fr
o

m
 

re
fe

re
n

c
e
 

(2
8

) 

v %
 

1
6

.5
 

1
0

.6
 

7
.4

 

(j
\ 

\.0
 



T
a
b

le
 

3
.1

7
 

U
lt

im
a
te

 
T

ra
n

sv
e
rs

e
 
S

tr
e
n

g
th

 

W
A

L
L

E
T

T
E

S 
W

A
LL

S 
SP

A
N

 
N

O
R

M
A

L 
TO

 
B

E
D

 
JO

IN
T

 
M

o
d

u
lu

s 
R

u
p

tu
re

 
M

o
d

u
lu

s 
R

u
p

tu
re

 
F

 
G

ro
ss

, 
N

e
t,

 
V

 
G

ro
ss

, 
N

e
t,

 
n

e
t 

x 
1

0
6 

V
 

T
y

p
e 

p
e
r 

p
e
r 

a
s 

a 
p

e
r 

p
e
r 

p
e
r 

a
s 

a 
s
q

. 
in

. 
sq

. 
in

. 
%

 
s
q

. 
in

. 
s
q

. 
in

. 
V

 
s
q

. 
in

. 
%

 

(1
) 

(2
) 

(3
) 

(4
) 

(5
) 

(6
) 

(7
) 

(8
) 

(9
) 

4 
in

. 
H

 
9

1
.5

 
7

9
.2

 
1

9
.6

 
l3

0
.5

 
1

7
8

.3
 

1
3

.3
 

2
.2

5
 

5
.7

 

4 
in

. 
V

 
4

4
.4

 
5

4
.9

 
6

.5
 

6
3

.1
 

8
6

.0
 

1
6

.9
 

--
--

6 
in

. 
H

 
1

1
1

.2
 

7
4

.6
 

2
3

.0
 

6
4

.4
 

1
0

9
.0

 
1

7
.8

 
1

.1
6

 
1

4
.1

 

1
6

 
in

. 
V

 
9

8
.4

 
1

8
9

.9
 

2
3

.1
 

7
7

.2
 

1
1

4
.5

 
2

3
.4

 
--

--
I E

 7
2

.8
 

4
7

.3
 

3
3

.5
 

5
7

.1
 

1
2

4
.9

 
1

2
.2

 
--

--
8 

in
. 

V
 

1
0

7
.4

 
1

6
6

.8
 

3
1

.8
 

4
0

.5
 

8
8

.5
 

2
3

.5
 

--
--

-
-
-
-
~
-

-
-
-
-
-

-
~
 

-
-
~
-
-
.
-
-

-
-
-

W
A

LL
S 

SP
A

N
 

PA
R

A
L

L
E

L
 

TO
 

B
ED

 
JO

IN
T

 
M

o
d

u
lu

s 
R

u
p

tu
re

 
F

 
G

ro
ss

, 
N

e
t,

 
n

e
t 

x 
1

0
6 

p
e
r 

p
e
r 

p
e
r 

s
q

. 
in

. 
s
q

. 
in

. 
V

 
s
q

. 
in

. 

(1
0

) 
(1

1
) 

(1
2

) 
(1

3
) 

2
5

3
.3

 
3

6
0

 
2

1
.6

 
2

.9
3

 

1
4

9
.3

 
2

0
3

.6
 

1
6

.9
 

2
.3

5
 

9
4

.0
 

1
5

9
.2

 
4

.8
 

1
.5

5
 

2
1

0
.1

 
3

1
0

.9
 

7
.3

 
1

.5
2

 

8
0

.8
 

1
7

6
.5

 
1

5
.8

 
6

.7
5

 

6
4

.9
 

1
4

1
. 7

 
9

.2
 

6
.1

1
 

fr
o

m
 
re

fe
re

n
c
e
 

(2
5

) 

V
 

a
s
 

a 
%

 

(1
4

) 

7
.5

 

1
1

.9
 

3
.6

 

2
.6

 

3
0

.0
 

2
5

.5
 

, , 

--.
1 o 



71 

perpendicular to the bed joints (vertical span) and three were tested 

with the span parallel to the bed joints (horizontal span). The 

typical mode of failure of both the wallettes and walls (vertical span) 

was a bond failure at the tile-mortar interface near the mid-height of 

the vertical span. The results of the tests are given in Table 3.17. 

The ratio of the modulus of rupture of the walls (vertical span) to 

wallettes ranged from 0.38 to 1.4, which is a clear indication that 

for this series of tests no correlation exists between the two types 

of tests. 

In conclusion, it is apparent from the limited number of tests 

performed that no definite trend exists between the results obtained 

from wallette and full size wall tests. 

A comparison of the transverse strengths of standard running 

bond walls for vertical span and horizontal span shows that the 

horizontally spanned walls are more than two times stronger than the 

vertically spanned walls using type M mortar. The same observation 

was made in reference (8), which states that "the strength in 

horizontal span was found to be several times greater than the strength 

reported by other experimenters for vertical span". 
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4. FORMULATIONS TO PREDICT THE TRANSVERSE STRENGTH OF MASONRY WALLS 

4.1 Introduction 

The objective of most experimental research projects is to 

validate or improve a theoretical model. Because of the complexities 

associated with the non-homogeneity of masonry structural members, 

accurate theoretical models are difficult to develop and in many cases 

empirical or simplified relationships have been developed in their 

place. With respect to the transverse strength of masonry walls, 

several different theoretical approaches have been used. The most 

1 
(6,30,31) 

extensive work has been performed by Yokel et a • who evaluated 

the theoretical capacity of unreinforced walls in a manner similar to 

that for concrete columns. In a correlation of the experimental results 

with their theory, inclusion of the slenderness effect of the walls 

produced reasonable agreement. 

. (27) . (25) 
Both Scrlvener and Dlckey worked with reinforced masonry 

walls; they used formulations similar to those used for reinforced 

concrete beams and obtained reasonable correlation with experiments. 

. (41) . (42) 
CaJdert and Losberg and Haseltine and Hodgklnson used an analogy 

with the yield line theory for reinforced concrete slabs and performed 

tests on both reinforced and unreinforced walls with several different 

boundary conditions. 
(43) 

Baker used another method commonly used for 

reinforced concrete slabs; that of assuming the strength of a wall is 

given by the strength of two independent strips spanning in either 

direction. Baker performed experiments with one-third scale model 

panels simply supported on all edges. 

Each of the above formulations and its correlation with experiments 

are described in the following sections. 
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4.2 Cross-Sectional Capacity of Unreinforced Walls 

The moment capacity of a cross section of a wall is not only a 

function of the tensile and compressive strengths of the masonry but 

also of the vertical load acting on the cross section. If the flexural, 

tensile and compressive strengths and the stress-strain properties of 

the masonry are known, an interaction curve between vertical load and 

moment can be drawn. 

Yokel et al. show typical stress-strain curves for three 

different types of masonry,see Fig. 4.1. In order to simplify the 

analysis, a linear stress-strain relationship is assumed as shown by 

the dashed line in Fig. 4.1. Instead of this basic assumption, 

. h . (32) h .... h 
Me~n e~t suggested t at a stress-stra~n relat~onsh~p more l~ke t at 

of concrete would give better agreement with experimental data. 

If it is assumed that a plane section of the wall remains plane 

in flexure, and that a linear stress-strain relationship as shown in 

Fig. 4.1 is a valid approximation for masonry up to the point of failure, 

then the stress distribution at failure over a cross section under an 

eccentric vertical load can be determined as shown in Fig. 4.2. Figure 

4.2(a) shows the stress distribution at failure under axial loading. 

In Fig. 4.2(b), the load eccentricity is increased to a point where, 

at failure, the section develops its flexural tensile strength at one 

wall face and its flexural compressive strength at the other wall face. 

If the load eccentricity is increased further, the stress distribution 

at failure will be associated with a cracked section as shown in 

Fig. 4.2(c). Finally, Fig. 4.2(d) shows the stress distribution at 

failure for pure flexure, when no resultant vertical load acts on the 

cross section. In this last case, the capacity depends entirely on 

the flexure tensile strength of the masonry. 
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Figure 4.3 shows an interaction curve for a solid rectangular 

section. The interaction curve is based on the assumption that flexural 

80mpressive strength equals the compressive strength under axial com-

Dression (fl = a f', or a = 1). Typical stress distributions, associated 
~ m m 

with different portions of the curve, are shown in the figure and also 

-the equations of these curves are shown. Further details of these 

. (30) 
interaction curves are discussed by Yokel and D~kkers . 

4.3 Slenderness Effects Of Unreinforced Walls 

The effects of slenderness on the moment capacity of walls are 

shown in Figs. 4.4 and 4.5. Figure 4.4 shows the free body of the 

upper half of a deflected wall under axial and transverse loads. The 

effective moment at any point along the height of this wall will be 

deteL~ned by the location of the line of action of the vertical force, 

relative to the location of the deflected centerline of the wall. 

Figure 4.5 shows a wall which is free to rotate at its upper and lower 

ends and is subjected to an eccentric vertical load which has a thrus·t 

line parallel to the axis of the wall. The moment acting on this wall 

is Peat the upper and lower ends of the wall. At midheight, the 

moment is equal to Pee + ~). Thus the deflection of the slender wall 

causes a moment magnification equal to P~. The moment magnification 

can be predicted approximately as 

vlhere P 
cr 

PCe + M Pe 

2 2 = ~ EI/h (Euler load) 

E = modulus of elasticity 

I 
P 

I - P 
cr 

I moment of inertia of cross section 

h total height of wall. 

(4.1) 
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The condition shown in Fig. 4.5 is not likely to occur in an 

actual building. A more realistic case is shown in Fig. 4.6 which 

shows an eccentrically loaded wall which is more or less fixed at its 

base and more or less free to rotate at the top. In this case the 

moment is not magnified as much as in Fig. 4.5, and if the wall is 

very stiff the moment may not be magnified at all. 

An approximate prediction of moment magnification for any com­

bination of end eccentricities and end fixities is given by(6,3l,33) 

where 

where 

M 

M M 
o 

C 
m 

P 
I - p 

cr 

maximum moment acting on the wall, 

M maximum moment imposed by external force. 
o 

C m 

MI 

M2 

p = cr 

(For an eccentric vertical load M 
2 0 

wh 
for a transverse load Mo = 8 ). 

0.6 + 0.4 M
I

/M
2 

> 0.4, 

the smaller end moment acting on 

the greater end moment acting on 

'fT2 EI/(kh)2 critical load 

P e and 

the wall 

the wall 

k length coefficient by which height is adjusted to 
equivalent height as shown in Fig. 4.7. 

(4.2) 

In Eq. (4.2), c is equal to zero for the case shown in Fig. 4.5 
m 

and for the case of transverse loading. 

In order to estimate the value of the critical load P in 
cr 

Eq. (4.2), the flexural wall stiffness EI is also important. Yokel 

I 
(31) 

et a • in a study of vertically loaded unreinforced and reinforced 
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concrete masonry walls suggested the following expressions to 

approximate to EI: 

EI 

EI 

E.I /2.5 (reinforced masonry) 
1 n 

E.I /3.5 (unreinforced masonry) 
1 n 

E. 
1 

initial tangent modulus of elasticity 

I = moment of inertia of uncracked net section. 
n 

81 

(4.3) 

(4.4) 

For transverse loading combined with a vertical load for brick walls, 

(6) 
Yokel proposed that 

where P 
o 

EI E.I (0.2 +~) < 0.7 E.I , 
1 n P 1 n 

o 

= short wall axial load capacity determined on the basis of 
prism strength. 

4.4 Correlation Between Theory And Experiments For Unreinforced Walls 

Figure 4.8 shows an example of correlation of theory developed 

from Sections 4.2 and 4.3 with the combined vertical and transverse 

load tests on 4 inch brick walls with type N mortar conducted by Yokel 

(6) 
et ale • The test results are shown by solid circles and heavy 

horizontal lines. The left ends of these heavy lines represent the 

maximum moment caused by transverse load. The length of the horizontal 

line itself represents the added moment, equal to the product of the 

vertical load and the wall deflection at the point of maximum moment 

(mid-height). The magnitude of this added moment was computed using 

the horizontal deflections, measured at the time of wall failure. 

The solid curve in Fig. 4.8 is the calculated cross-sectional 

capacity which is shown in Fig. 4.3 and should be compared with the 
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right end of the horizontal line. The broken curve represents the 

wall capacity, computed by reducing the cross sectional capacity for 

slenderness effect in accordance with the theory discussed in Section 

4.2. This reduced curve corresponds to the left ends of the horizontal 

solid lines. The intersection of the broken curve with the vertical 

load axis corresponds to the two solid circles on the load axis, which 

show the test results under vertical load without transverse load. 

Note that the theoretical curves closely predict the actual magnitude, 

as well as the trend of the test results. Slenderness effects are 

considerable in this case and their magnitude is well predicted by 

theory. 

Similar comparisons are shown in Fig. 4.9 for 4 inch brick walls 

with high-bond mortar, and in Figs. 4.10 and 4.11 for 8 inch hollow 

block walls with type N mortar and high-bond mortar, respectively. The 

4 inch brick walls with high-bond mortar show fair agreement between 

theoretical curves and test results, whereas the 8 inch hollow concrete 

walls show that the theoretical short-wall interaction curves (solid 

curves in Figs. 4.10 and 4.11) underestimate the wall strength for all 

panels. The reduced interaction curves (broken curves) predict moment 

capacities equal to or smaller than the observed reduced capacity 

Figure 4.12 also compares the observed transverse strength of 

the walls with the theoretical interaction curves for 8 inch solid 

concrete block walls with type N mortar. All panels except one exceed 

the reduced moment capacity (dashed line) predicted on the basis of 

the axial prism test. 

In the case of cavity walls or composite walls, theoretical 

interaction curves are somewhat different from those of single wythe 
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walls, but similar comparisons can be developed. The results of 

tests (6) of 4-2-4 in. concrete block cavity walls are plotted in Fig. 

4.13 together with interaction curves computed on the basis of prism 

tests. The assumption was made that each wythe takes one half the 

vertical load and one half the moment. P was computed on the basis 
o 

of the average strength obtained from prism tests on the 4 inch hollow 

block. Moments were computed conservatively, assuming that partial 

top-end fixity existed and this produced about one half the pin-ended 

moment, see, Fig. 4.13(a). The analytical curve for section capacity 

reflects the tests reasonably well. It can be seen from the magnitude 

of the observed added moments which are due to deflection at failure 

(length of the horizontal solid line), that slenderness effects are an 

important factor in this wall system. 

The prediction of wall capacity for brick-block cavity walls is 

more difficult and complicated because of the two different material 

properties and associated load transfer mechanism. Details of these 

prediction formulae are given by Yokel et ale (6) , whose final results 

are shown in Fig. 4.14. Figure 4.14 shows that up to P = 100 kip, the 

moment capacity is controlled by the brick. In this range the computed 

reduced moment capacity (dashed line) agrees well with the test. The 

total moment capacity, which is shown by the solid line is somewhat 

less than observed capacity (right ends of the solid horizontal lines) 

and consequently the magnitude of the measured slenderness ef£ect is 

larger than that of the computed effect. Above an axial load of 100 

kips the computed strength underestimates observed wall strength 

considerably. In this range it is thought that strength is controlled 

by the concrete block which. forms the back face with respect to the 

transverse load. 
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Yokel et al. summarized their extensive investigations with the 

following conclusions: 

(1) Transverse strength of masonry walls is reasonably predicted 

by evaluating the cross-sectional capacity and reducing that capacity 

to account for the" added moment caused by wall deflection. The general 

trend of the test results is in good agreement with theory, and the 

magnitude of individual test results is conservatively predicted. 

(2) Cross-sectional moment capacity of wall panels was con­

servatively predicted by a theoretical interaction curve which was 

based on compressive prism strength and linear strain gradients. 

(3) Slenderness effects, computed by the moment magnifier method 

as modified to account for section cracking, predicted closely the 

slenderness effects observed in the 4 inch thick brick walls, and 

reasonably predicted these effects for concrete masonry walls, concrete 

block cavity walls, and brick and block cavity walls. 

(4) The qualitative observation was made that with large 

eccentricities the flexural compressive strength of masonry exceeds 

the compressive strength. developed in pure one-dimensional compression 

by a significant margin, and that flexural compressive strength 

increases with increasing strain gradients. 

(5) The transverse strength of cavity walls was conservatively 

predicted by assuming that each wythe carries its proportional share of 

vertical loads and moments, and that transverse loads, but not shear 

forces parallel to the plane of the wall, are transmitted by the ties. 

(6) The transverse strength of composite brick and block walls 

was approximately predicted by assuming that the walls act monolithically. 

(7) Whenever walls did not fail by stability-induced compression 

failure, their axial compressive strengths were reasonably predicted by 
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prism tests. In the case of concrete masonry with high-bond mortar, 

compressive tests with prisms capped with high strength plaster over-

estimated wall strength, while prisms set on fiberboard showed good 

correlation with wall strength. 

(8) Flexural tensile strength of all the wall panels tested 

equaled or exceeded 1/2 of the flexural strength as determined by prism 

tests. 

4.5 Flexural Capacity Of Reinforced Masonry Walls 

. (27) d h . f db' k 11 ld b Scr~vener suggeste t at a re~n orce r~c wa cou e 

considered as a lightly reinforced wide beam, with the brick weak in 

tension similar to concrete. The yield load (ultimate load) can be 

predicted to within a few percent by considering the section in this 

way and applying ultimate moment theory (as for reinforced concrete). 

The stress strain curve for brick is assumed to be the same as that 

for concrete so that the concrete constant 0.59 in the Whitney equation 

can be used. The ultimate moment M is 
u 

where 

M 
u 

A f (d - 0.59 A f /£' b) 
s Y s Y c 

A = cross-sectional area of steel 
s 

f yield stress of steel 
y 

d depth to center of gravity of steel 

b beam width 

fl brick crushing strength. 
c 

(4.5) 

A comparison between the theoretical ultimate loads calculated 

by Eq. 4.5 and the transverse load tests performed by Scrivener are 

discussed in Section 3.4 and are shown in Table 3.12. 
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The maximum difference between the predicted and experimental 

results for the four tests performed is 11%. Although only a few tests 

were performed the agreement between the predicted and experimental 

results is good. As the walls did not have a vertical load, the 

formulation used by Scrivener is only applicable for low rise walls. 

Development of a formulation for reinforced walls with a vertical load 

is obviously required and this should be validated with tests. 

4.6 Reinforced Concrete Slab Theories Applied To Masonry Walls 

. (41) CaJdert and Losberg conducted transverse load tests of 

3.5m (11.5 ft) wide, 2.0m (6.5 ft) high and 0.25m (9.8 in.) thick clay 

block walls. Two of the walls were supported along three edges (upper 

edge free) I the other two walls were supported along four edges. For 

each support condition, an unreinforced wall and a wall reinforced 

with 2-¢10 rom deformed bars in every third horizontal joint (0.1% of 

total area) were tested as shown in Fig. 4.15. The transverse load 

was applied uniformly by a plastic air-bag system. The crack loads 

and ultimate loads of the four walls are shown in Table 4.1. 

The theoretical crack loads in Table 4.1 were calculated 

according to the theory of elasticity for isotropic plates with 

Poisson's ratio assumed to be 0.20. This value is based on individual 

tests of unreinforced masonry beams. The measured wall crack loads are 

in good agreement with theoretical values, except for the reinforced 

wall laterally supported along three edges (No. 865:10 in the Table), 

where the horizontal reinforcement obviously delayed the crack formation 

at the free edge. The horizontal strain for an unreinforced masonry 

wall is mainly concentrated at the head joints while, in the reinforced 

wall, the strain shows a smoother distribution along the wall because 
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of the reinforcement, (see Fig. 4.16). The theoretical ultimate loads 

in Table 4.1 were derived by using an analogy with the yield line theory 

for reinforced concrete slabs. This simple analogy gives about ± 20% 

deviation between measured and calculated ultimate loads. The assumed 

yield line pattern is shown in Fig. 4.17. 

(42) 
Haseltine and Hodgkinson also carried out transverse load 

tests of masonry walls which were supported along two, three and four 

edges. They concluded that the yield line theory could be a satisfac-

tory means of designing panel walls in brick work, although this is 

surprising in view of the brittle nature of the material. They stated 

that the calculations for random yield line cases would probably be 

very tedious, and suggested that using elastic plate theory as 

developed by Timoshenko provides a safe estimation of the strength of 

a wall which would be considerably easier for the designer. 

Baker(43) carried out some experimental work with one-third 

scale models of brick panels with simple supports on all sides and no 

in-plane restraint. The models were subjected to a uniform lateral 

face load and Baker proposed a simple empirical method to predict the 

load capacity of masonry walls under transverse loadings. In this 

method the total load capacity of a panel is assumed to be the sum of 

the load capacity of two independent strips spanning vertically and 

horizontally. That is, 

where 

w = + (4.6) 

w ~ load capacity of the wall 

M 
v 

~ Ultimate moment of resistance per unit width of brick work 
spanning vertically 
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MH = ultimate moment of resistance per unit width of brick work 
spanning horizontally 

h = vertical span of panel 

Q. = horizontal span of panel. 

This theory is compared with experimental results in Fig. 4.18, and with 

results by the elastic theory and the yield line theory. In the figure 

the ordinate is the non-dimensional moment coefficient k ,where k = 
u u 

(section modulus) x (modulus of rupture, spanning vertically)/w Q.2 
u 

or 

k 
u 

2 
= M /wQ. • 

v 
The aspect ratio of the wall is Q./h. Elastic theory 

underestimates the ultimate load"but gives a reasonable prediction of 

cracking load, shown in Fig. 4.19. The ultimate load is overestimated 

by the yield line theory for a strength ratio (MH/Mv) equal to 2, the 

value specified by most codes. Ultimate load was closely predicted by 

the strip theory of Eq. (4.6). Baker concluded that this theory may 

allow for the reserve strength after initial cracking in an empirical 

way with sufficient accuracy for practical design. 
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5. DISCUSSION OF TEST RESULTS IN RELATION TO CURRENT DESIGN PRACTICE 

5.1 Introduction 

The ultimate objective of most experimental masonry research 

projects has been to ensure that design codes provide sufficient safety 

in the design of masonry buildings. Code provisions are formulated or 

changed by the collective judgment of groups of competent engineers 

based on relevant available information. Inherent in this procedure 

is a significant time lag between the availability of relevant research 

results and their inclusion in an appropriate form in code provisions. 

Consequently the purpose of this chapter is to examine code requirements 

and design practices to see how they relate to research information 

currently available. Part of the material (Sections 5.2, 5.3 and 5.6) 

for this chapter is taken directly from the summaries and conclusions 

(6) 
of an extensive investigation performed by Yokel et ala 

5.2 Determination Of The Transverse Strength Of Unreinforced Masonry 
Walls 

The material in this section is a direct reproduction of material 

presented in reference 6. 

Two wall properties must be evaluated in order to determine the 

transverse strength of masonry walls: 

1. The capacity of the wall cross section to resist combined 

bending and axial loads. 

2. The effect of wall slenderness on load capacity. 

It has been shown by Yokel (6) that the moment capacity of a wall 

cross section is not only a function of the tensile and compressive 

strength of the masonry but also of the vertical load acting on the 
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cross section. Thus an interaction curve can be developed which shows 

the maximum moment capacity as a function of vertical load. Such an 

interaction curve can be developed if flexural tensile and compressive 

strengths and the stress-strain properties of the masonry are known. 

The cross-sectional capacity can be conservatively determined by 

assuming a flexural compressive strength equal to the compressive 

strength of prisms under axial loading, a linear stress-strain 

relationship for masonry, and a flexural tensile strength equal to 50 

percent of the modulus of rupture as determined by prism tests. This 

procedure is conservative since it appears that most specimens 

developed flexural compressive strengths in excess of the strength of 

axially loaded prisms, and that the assumption of a linear stress-strain 

relationship will underestimate the moment that the cross section is 

actually capable of developing. 

In Yokel's study, the capacity of wall cross sections was evaluated 

directly, by testing eccentrically loaded prism specimens and indirectly, 

by adding the moment exerted by the axial load on the deflected wall to 

the moment exerted by transverse loads. 

Slenderness effects were caused by the additional moments which 

the vertical loads impose on the deflected wall. Not only will the 

vertical load impose added moments on the walls, which will equal the 

product of the vertical load and transverse deflections relative to the 

line of action of the vertical load, but the vertical load will also 

act to increase the magnitude of transverse deflections. These 

slenderness effects, which will magnify the moments acting on the wallS, 

can be approximately predicted by the moment magnifier method, provided 

that Elf the stiffness of the wall, is correctly estimated. 
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Slenderness effects have been successfully and conservatively 

predicted for slender brick walls by using the moment magnifier method 

with an equivalent stiffness which may be predicted either by Eq. 5.1 

or Eq. 5.2. Equation 5.1 is somewhat simpler while Eq. 5.2 shows 

better agreement with test results for the entire range of vertical 

loads that the wall can support. No extensive data are available on 

slender concrete block walls. Transverse strength can be reasonably 

well predicted however, by using Eq. 5.1 or Eq. 5.2 to predict 

slenderness effects for solid block walls, and by making the conservative 

assumption for hollow block that the cracking line represents ultimate 

strength. 

where 

and 

or 

M' = M (1 - ~) 
0 e P cr 

2 
p 1T EI = cr (0. 8h) 2 

E. I. 
EI ~ ~ = 3 

(5.1) 

EI = E. I. (0.2 + .R....) < 0.7 E. I. 
~ ~ p ~ ~ 

(5.2) 
0 

The moment magnifier equation [Eq. 4.2] uses a coefficient C I 
m 

which accounts for the shape of the deflection curve and a coefficient 

k, which accounts for end fixity. In the special case where moments 

are caused by transverse loads, the coefficient C is taken as 1. How­
m 

ever, in the case where transverse moments are caused by eccentric 

vertical loads, a case which was not covered by Yokel's investigation, 

the moment magnifier equation is also applicable,with a factor C which 
m 
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will depend on the relationship between vertical load eccentricities 

at the wall supports. Thus the moment magnifier method could be 

applied to determine transverse strength under all practical loading 

conditions. 

The practical procedure in an actual design problem would be to 

determine cross-sectional capacity on the basis of flexural compressive 

and tensile strengths, cross-sectional geometry, and the vertical load 

at which transverse strength is to be determined, and then to reduce 

this capacity to account for slenderness, on the basis of wall length, 

end-support conditions, and wall stiffness "EI" at the design vertical 

load. 

Yokel suggested that the following equations may be used to 

predict ultimate and cracking strength. The ultimate transverse moment 

imposed on the wall in the direction of transverse loads, M~, can be 

taken as 

M (l - ~) 
e P cr 

The maximum e~d moment opposite to the direction of transverse 

loads, M d' will be en 

where M 
e 

, 
M e 

P 

P cr 

M = M' 
end e 

= maximum moment capacity of the wall in the direction 
of transverse loads, 

= maximum moment capacity of the wall opposite to the 
direction of transverse load, 

= applied axial load, 

= critical load for stability-induced compressive failure, 
computed on the basis of a modified EI, accounting for 
section cracking and reduced stiffness at maximum stress, 
where 



EI = E. I 
1. n 

or EI = 

E. = initial tangent modulus of elasticity of masonry, 
1. 

I = moment of inertia based on uncracked net section, 
n 

P = short-wall axial load capacity. 
o 

E. I 
1. n 

3 
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The transverse cracking strength of a wall, M , can be determined 
c 

by the following equation: 

where 

M 
c 

P cro 

M = (H + Pe ) (1 - P ) 
c t k 0.7 P 

cro 

= moment at which cracking occurs, 

maximum moment considering tensile strength with zero 
vertical load, 

= distance from centroid to edge of kern, 

= critical load for stability-induced compression failure 
computed on the basis of E. and In i 0.7 P is recommended 
as critical load for uncrabked walls. cro 

In view of the loss of moment of inertia after cracking of hollow 

block walls, it is recommended that the ultimate strength of slender 

hollow concrete block walls equals the cracking strength. 

5.3 Discussion Of Present Design Practice For Unreinforced Walls 

The material in this section is a direct reproduction of material 

presented in reference 6. 

Present masonry design is based entirely on working stresses. 

Even though design provisions were developed with specific margins of 

safety relative to ultimate strength in mind, comparison of hypothetical 
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ultimate strength computed on the basis of design practice standards 

with ultimate strength actually achieved is not necessarily the only 

criterion by which the design provisions should be judged. 

Three different design standards will be considered: 

(1) 

(2) 

(3) 

. (26) 
The ANSI Standard Building Code Requ~rements for Masonry 

Building Code Requirements for Engineered Brick Masonry 

developed by SCPI(34) 

Design Specifications for Load-Bearing Concrete Masonry 
(35) 

developed by NCMA and proposed recommendations developed 
. (36) 

by ACI Comm~ttee 531 

5.3.1 ANSI Standard Building Code Requirements 

The ANSI building code requirements (A4l.l-l953) limit allowable 

slenderness as follows: 

Type of masonry hit Ratio (based on 
nominal dimensions) 

Hollow unit walls 18 

Solid unit walls 20 

Cavity walls 18* 

These limits may be compared with a nominal hit of 24 for the brick 

walls, and a nominal hit of 12 for the block walls as well as the 

• • I (6) 1 h d' cav~ty walls tested ~n Yokel s program. Consequent y, t ese es~gn 

requirements permit the construction of walls that will be subject to 

considerable slenderness effects, particularly in the case of cavity 

walls. On the other hand, this standard does not contain any provisions 

for stress reduction to account for these slenderness effects. To assure 

* t in cavity walls is the sum of both wythe thicknesses. 
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a safe design, permitted allowable stresses are extremely low, com-

pensating for potential slenderness effects. Such a procedure, which 

does not account for such an important variable, requires a very high 

margin of safety which penalizes short walls and therefore leads to 

uneconomical design. 

For composite walls, this standard limits the allowable stress 

to that permitted for the weakest of the combinations of units and 

mortars of which the member is composed. There are no provisions for 

considering the location of the vertical load with respect to the 

weakest wall materials. 

5.3.2 SCPI Standard For Engineered Brick Masonry 

In the present SCPI Standard (1969), the following equation is 

used for the computation of allowable vertical loads on nonreinforced 

brick walls: 

, 
P = C C (0.20 f ) A 

e s m g 

where C and C are determined from the following equations: 
e s 

For e <1-- C =10 - 20' e • 

For ~<e<! C = 
20 - 6' e 

1. 3 + l (£. _ ~)(l _ el) 
1 + 6e 2 t 20 e 2 

t 

For = 1.95 (l_ ~)+ l(~ _ l)(l _ e l ) 
2 t 2 t 20 e

2 

where 

e = maximum eccentricity, 

e
l 

= smaller eccentricity at lateral supports, 

e
2 

larger eccentricity at lateral supports, 

t wall thickness. 
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Value of e
l
/e

2 
is positive for walls bent in single curvature and 

negative for walls bent in double or reverse curvature. For members 

subjected to transverse loads greater than 10 psf, e
l
/e

2 
is assumed 

as +1.0 in the computation of C • 
e 

h 

Cs = 1.20 - 3~0 [5.75 + (1.5 + :~Y]::. 1.0 

Loads and moments at eccentricities in excess of t/3 are limited by 

allowable flexural tensile stresses. 

Test results on Brick A walls with 1:1:4 mortar from Yoke1's(6) 

work are compared in Fig. 5.1 with hypothetical ultimate strength curves 

based on the 1969 SCPI Standard. These curves were developed on the 

assumption that the ultimate loads are equal to C C f' A . 
e s m g 

The dashed curve applicable to eccentric vertical loads was 

based on e
l
/e

2 
= - 0.4 (assuming partial fixity at one end and a 

pinned condition at the other end). The axial load capacity predicted 

by this curve is in fair agreement with the test results obtained in 

this investigation and the capacity predicted by Eq. 5.2. However for 

smaller values of vertical load, there is considerable difference in 

the moment capacities. The reasons for these differences are discussed 

in the following paragraphs. 

Figure 5.2 shows a comparison between -the loading condition on 

the tested wall panels and the loading conditions which were used in 

SCPI tests. As shown, brick walls were subjected to eccentric vertical 

loads in the SCPI tests. If the moment magnifier method is applied to 

these two cases of loading, the following coefficients would be used: 

Lateral loading: C = 1, k = 0.8 
m 

Vertical loading: C = 0.5, k = 0.8. 
m 
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The resulting predicted slenderness effects would be quite 

different for the two cases. 

Figure 5.3 compares the SCPI curve with transverse strength 

predicted by the moment magnifier method using the coefficients 

C = 0.5 and k = 0.8. The predicted interaction curve for lateral m 

loading is also shown for the sake of comparison. It can be seen that 

the moment magnifier curve for vertical load eccentricity approximately 

agrees with the SCPI curve. 

It should be recognized that the SCPI test curve was developed 

on the basis of tests with eccentric vertical loads only. When slender-

ness effects are analyzed by considering added moments caused by 

deflections, it can be demonstrated that the case of lateral loading is 

not correctly simulated by eccentric vertical loads. However, this 

difference is generally not recognized in present design practice. 

Thus the moment magnifier method provides a more flexible approach for 

the prediction of slenderness effects under all loading conditions. 

In the 1969 SCPI Standard, the case of transverse loading has 

been recognized as a result of Yokel's investigation. This loading 

condition corresponds to the dashed-dotted curve in Fig. 5.1 and is 

in reasonable agreement with the results obtained in Yokel's 

investigation. 

The shaded area in Fig. 5.1 shows the allowable loads and 

moments in accordance with the case of transverse loading specified in 

the SCPI 1969 standard. These values are safe, however the margin of 

safety seems to decrease with increasing e/t. It is obvious that these 

recommendations provide a margin of safety by "scaling down" a 

hypothetical ultimate strength curve. This scaling down is along 

constant elt lines. At the eccentricity of elt = 1/3 the interaction 
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curve is scaled down radially, which provides a rather slim margin of 

safety at that eccentricity. For loads larger than P
2 

(Fig. 5.1), the 

margin of safety for transverse moments gradually increases. At load 

PI no moment is permitted, while actually a wall would be capable of 

supporting a much greater moment at that load than at load P
2

, where 

the maximum transverse moment is permitted. The philosophy behind the 

method of scaling down the ultimate interaction curve is questionable 

and should be reexamined, considering all possible combinations of 

vertical loads and moments at ultimate loads, as well as at service 

loads. 

5.3.3 NCMA and ACI Recommendations 

These recommendations account for slenderness effects, but do 

not account for end or loading conditions. The following equations 

are recommended by NCMA and ACI for nonreinforced walls: 

Axial load: 

where 

A = net cross-sectional area of the masonry. 
n 

Eccentric loads: 

where 

f f 
~ + m shall not exceed 1 
F F 

a m 

f = computed axial compressive stress, 
a 

F 
a 

P = -= 
A 

n 
allowable axial compressive stress, 

f = computed flexural compressive stress, 
m 

F = 0.3 f' = allowable flexural compressive stress. 
m m 
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Up to an eccentricity of elt = 1/3, a cracked section may be assumed 

to compute bending strength in solid unit walls, neglecting the 

flexural tensile strength. In hollow unit walls, eccentricity is 

limited to a value which would produce tension. 

In Fig. 5.4 allowable axial load (Pall) computed by the NCMA 

standard is compared with critical axial load computed for the 8 inch 

solid concrete block walls used in Yokel's program, where critical 

axial loads were assumed to equal 0.7 P , (Eq. 5.2). Critical loads 
cro 

were computed for different hit ratios for the pin ended case and for 

partial fixity as assumed in the interpretation of test results. It 

appears that the pin ended case is fairly close to the NCMA equation. 

The slenderness reduction equation used by NCMA and ACI, which 

is also termed "empirical equation," considers only the geometry of 

the wall gross section. Variables which influence slenderness effects 

and which are not considered by the equation are 
, 

f IE, cross-sectional 
m 

geometry, end fixity, and loading conditions. The justification for not 

considering some of these variables may be in part attributed to the 

fact that there is a linear relationship between f' and E within a 
m 

certain range of masonry strength, and that end conditions are similar 

for most conventional masonry structures. It is questionable whether, 

with the increasing use of high strength masonry and of high rise 

masonry construction, it is still possible to disregard these variables 

without the use of unduly high margins of safety. 

Interaction curves for ultimate and allowable loads are compared 

in Fig. 5.5 with test results and with interaction curves constructed 

in accordance with Yokel'· s investigation. It should be noted that the 

NCMA allowable flexural stress is 0.3 f' and the allowable compressive . m 

O 2 f '. stress only . 
m 

These stresses when multiplied by 5, which may be 
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considered the axial load margin of safety and assumed constant through-

out the eft range, will result in a short-wall interaction curve. This 

curve assumes an "a" value greater than 1 (flexural compressive strength 

is aft where f' is the prism compressive strength) for large eft values, 
m m 

with a peak at P and a distortion which will result in greater ultimate 
o 

moments at higher eft ratios. This short-wall interaction curve is 

modified for slenderness by reducing the part of the total stress due 

to axial load (P/A), without at the same time reducing the stress 

caused by moments (Mc/I). 

For the slenderness of the walls tested, the modification of 

the interaction curves is relatively minor. Curves were therefore 

constructed for an hit ratio of 30, to provide a better comparison 

between Eq. 5.2 and the NCMA equation. 

For the small slenderness ratio the moments predicted by the 

NCMA equation are greater, accounting for an "a" value which is 

greater than 1. These increased moments are less conservative than the 

moments predicted by the interaction curve at a = 1, and seem to show 

fairly good agreement with some of the tested panels, while over-

estimating the strength of other specimens. 

Comparison of the two theoretical curves for hit = 30 shows that 

the NCMA curve predicts a smaller axial load, but greater moments. 

While no slender concrete masonry walls were tested, it appears on the 

basis of the agreement between predicted and observed strength of the 

more slender brick walls that the NCMA curve probably overestimates the 

transverse strength of transversely loaded slender walls, even though 

the curve plotted by Eq. (5.2), which assumes a = I, is very con-

servative. However, the NCMA equation is probably conservative for the 

case of eccentric vertical loads. 



114 

Allowable moments by the NCMA equation for an hit ratio of 13 

are shown in the shaded area in Fig. 5.5. As in the case of the SCPI 

equation, the philosophy of scaling down predicted ultimate inter-

action curves should be reexamined. 

5.4 Determination Of The Transverse Strength Of Reinforced Masonry 
Walls 

As with unreinforced walls, two wall properties must be 

evaluated in order to determine the transverse strength of reinforced 

masonry walls: 

(1) the capacity of the wall cross-section to resist combined 

bending and axial loads, 

and (2) the effect of wall slenderness on load capacity. 

. (27) 
It has been shown by Scr~vener that the moment capacity of 

a reinforced wall cross-section with no vertical load is a function of 

the amount of reinforcement and the compressive strength of the masonry. 

(6) 
Yokel has further shown that for unreinforced walls the moment capacity 

is a function of the vertical load. This relation is clearly applicable to 

reinforced walls as well. Amrhein in his reinforced masonry engineering 

(37) handbook . has developed working stress design formulations for the 

moment versus vertical load interaction diagram for reinforced walls. 

His formulations do not include the slenderness effects of the walls, 

however. 

5.4.1 Discussion Of Present Design Practice For Reinforced Walls 

The major U.S. code requiring reinforcement of masonry is the 

Un ' form Bu'ld'ng Code(38}. Th UBC . t f .. . f • •• e requ~remen s or ~n~mum re~n orce-

ment in walls are as follows: 



where 
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Reinforcement. All walls using stresses permitted for 

reinforced masonry shall be reinforced with both vertical 

and horizontal reinforcement. The sum of the areas of 

horizontal and vertical reinforcement shall be at least 

0.002 times the gross cross-sectional area of the wall and 

the minimum area of reinforcement in either direction shall 

be not less than 0.0007 times the gross cross-sectional area 

of the wall. The reinforcement shall be limited to a maximum 

spacing of 4 feet on center. The minimum diameter of rein-

for cement shall be 3/8 inch except that joint reinforcement 

may be considered as part of the required minimum reinforce-

ment. 

Further, the allowable axial stress for a wall is given by 

f = compressive unit axial stress in masonry wall, 
m 

f' ultimate compressive masonry stress. The value of f' 
m m 

shall not exceed 6000 pounds per square inch, 

t thickness of wall in inches, 

h clear unsupported distance between supporting or enclosing 
members (vertical or horizontal stiffening elements). 

For combined axial and flexural loads the following interaction 

framework is used: 

f 
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where 

f 
a = computed axial compressive stress on the net area, 

F 
p 

f given above for walls, = -= 
a A m 

n 

fb = computed compressive flexural stress, 

= 0.33 f' = allowable flexural compressive stress n. 
m 
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The allowable load requirements are almost identical to those 

of the NCMA and ACI recommendations for unreinforced walls discussed 

in Section 5.3.3. The reinforcement requirements are additional and 

only affect the allowable loads in regions of low vertical load, as 

shown in the following three cases from reference 37. 

Case I (Figure 5.6) 

Compression on total cross-section of wall. Steel not credited 

with resisting any compression. 

f 
p 

psi = a bt 

fb 
M 6M 

psi. = = S 
bt

2 

The load may have a maximum eccentricity of t/6 or eft = 0.167, 

which is the location of the kern point, and there would then be zero 

stress on one edge. 

Case II (Figure 5. 7) 

Compression on part of the wall with some compression between 

the face of the wall and steel. Line of zero stress is between the 

outside edge of the wall and the steel. The steel is not credited 

with resisting any compression. The moment is great enough or the 

load would have an eccentricity large enough, eft > 0.167, to create 
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an area that has no stress on it. Masonry is assumed not to resist 

tension. 

Case III (Figure 5.8) 

f 
a 

= 

= 

P 

bt 
psi 

2M 

bt
2 

kg (t -\g) -
f psi. 

a 

The moment is large enough to cause the steel to act in tension. 

The moment capacity is determined by the amount of steel (np) in the 

section. 

f 
a 

p 
=-

bt 
psi 

psi. 

It is clear from Figure 5.8 that the wall reinforcement only 

affects the region of low vertical loads. 

Slenderness effects are accounted for in the Uniform Building 

Code in the same way as in the NCMA criteria (Section 5.3.3) and the 

same comments are applicable. Only a small amount of research has 

been performed on lateral loadings on reinforced walls and it is clear 

that additional research is required. Scrivener's work indicates that 

the ultimate strength design concept is promising and justifies further 

research. 

5.5 Flexural Tensile Stess 

As the design of unreinforced masonry walls for transverse loads 

is often governed by the flexural tensile strength of mortar bed joints, 
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it is of interest to compare the allowable tensile stresses specified 

in various national codes and to compare these values with test 

results. 

Table 5.1 presents a list of allowable flexural tensile stresses 

specified in several current national codes. 

It would appear that the 1973 Uniform Building Code (USA) and 

1970 Canada Code permit considerably higher tensile stresses than are 

normal in Europe and other countries. The Switzerland Code is the most 

conservative, although it allows for the beneficial effect of dead 

load stress, with a maximum allowable stress of 56 psi. All codes 

except the British and Australian (which is based on the British) 

allow for different mortar strengths. 

A plot of mortar compressive strength versus modulus of rupture 

from various investigations is given in Fig. 5.9. Also included in 

the figure are the Uniform Building Code allowable flexural tensile 

stresses normal to the bed joint for inspected masonry construction. 

As can be seen, a factor of two separates the code allowable values 

and the lowest test results. 

5.6 Comparison Of Test Results With Existing Design Practice 

These conclusions are directly reproducted from reference (6) 

(1) The ANSI American Standard Building Code Requirements for 

Masonry do not take into account slenderness and end conditions and 

compensate for variability in wall strengths by high margins of safety. 

(2) The design equations in the 1969 SCPI Standard account for 

end conditions as well as slenderness. The equations were developed 

on the basis of eccentric vertical load tests but also provide for 

the case of transverse loading. 
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Code 

1973 USA 
Uniform Building 
Code 
Ref. (38) 

1970 Canada 
National 
Building Code 
Ref. (39) 

Britain (and 
Australia) 
Ref. (39) 

Germany 
Ref. (39) 

Switzerland 
Ref. (39) 

Japan 
Ref. (44) 

* 

Table 5.1 

Allowable Flexural Tensile 

Stresses in National Codes 

(Unreinforced Brick Masonry) 

Mortar Type, Allowable Stress in 
Mortar Mix (C:L:S) Tension in Flexure 
or Strength (psi) 

Parallel to Normal to 
bed joints bed joints 

M or S 72* (36)** 36* (18)** 
. (2500 psi or 1800 psi) 56* (28) ** 28* (14)** 

M or S 72 36 
N 56 28 

1: 1:6 or better 20 10 
(to be used with caution) 

1:0:4 28 
Only exceptionally 
permitted 

1:2:8 14 
Not permitted 1:0:3.2-3.7 5.95-12.4*** 

1:0:3 
f' 

or 32 or less than m 
1:2:5 53 

Special inspection required 

** No special inspection required 

*** 
At mid-height of a story height panel 
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(3) The NCMA, ACI and DBC recommendations consider slenderness 

but not end conditions. The NCMA equations probably overestimate wall 

strength under transverse loading conditions. 

(4) The interaction diagrams for ultimate transverse strength 

as a function of lateral loads, developed by SCPI and NCMA were scaled 

down radially to determine allowable working load. This scaling down 

in some cases results in extremely low factors of safety in bending, 

while the factor of safety under vertical loads is v~ry high. 

(5) Neither the NCMA nor the SCPI Standard provide for the 

design of composite (brick and block) walls. This type of construction 

is widely used. 

(6) While existing design standards are primarily intended for 

the case of eccentric vertical loads, and in most cases do not account 

for end conditions, the moment magnifier method, if used for the pre­

diction of transverse wall strength, could cover both the case of 

eccentric vertical loading and the case of transverse loading and 

could also account for end conditions. 
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6. SUMMARY AND CONCLUSIONS 

The survey of forty-seven references presented in the preceding 

chapters indicates the extent of information currently available on 

transverse strength of masonry walls. Several trends and conclusions 

can be drawn from the results presented and these are summarised in 

the following paragraphs. Some areas, where additional information is 

desirable, are also included. 

The three major factors influencing the transverse strength of 

masonry walls are applied vertical load, bond strength between the 

masonry unit and the mortar and amount and distribution of reinforce-

ment 

(1) Vertical Load. Below the vertical load P , (designated on 
c 

a moment vs vertical load interaction diagram as the cracking load) , 

an increase in compressive load increases the transverse strength of a 

wall. This increase in strength is associated with a trend towards 

a more brittle mode of failure. For critical loads greater than P , 
c 

an increase in vertical load causes a decrease in the transverse 

strength of a masonry wall. 

(2) Reinforcement. The addition of reinforcement increases 

both the strength and ductility of masonry walls loaded transversely. 

As might be expected horizontal or joint reinforcement is most 

effective for walls spanning horizontally whereas vertical reinforce-

ment is most effective for walls spanning vertically. 

(3) Bond Strength. An increase in the bond strength between 

the masonry unit and the mortar increases the transverse strength of 

a masonry wall. The bond strength between the mortar and masonry unit 
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is affected by several parameters including the strength and surface 

roughness of the masonry unit; the initial rate of absorption of the 

masonry uniti the strength, width and thickness of the mortar joint, 

and the workmanship. Because of the interrelationship of some of 

these variables conclusions with respect to their effects on the trans­

verse strength of a wall are not well defined. Some of the definite 

trends of the test results are as follows: 

(a) The transverse strength of masonry walls increases 

with an increase in the tensile strength of the mortar. An 

increase in the tensile strength of mortar is also associated 

with an increase in the mortar compressive strength. 

(b) The transverse strength of a masonry wall varies 

inversely with the thickness of the mortar joint. 

(c) A decrease in the width of a mortar joint decreases 

the transverse strength of a masonry wall. This decrease in 

strength is attributed to the more rapid drying of the 

narrower bed and is more pronounced in hollow units because 

of the even more rapid drying created by the internal 

chimney effect of the hollow units. 

Cd) Initial rates of absorption of masonry units below 

5 and above 30 grams per min. per 30 sq. in. decrease the 

transverse strength of masonry walls. 

(e) The effect of the compressive strength of the masonry 

unit is not clear. Investigations in this area have led to 

the conclusion that other variables, such as surface roughness, 

may be more important. 



125 

(f) The quality of workmanship affects the width and thick­

ness of the mortar joint, the quality of the mortar and the 

initial rate of absorption of the masonry unit. Each of these 

variables affects the transverse strength of a masonry wall 

and consequently the overall effect of quality of workmanship 

is difficult to quantify. 

Several theoretical approaches have been used to correlate 

calculated and test flexural strengths of masonry walls. The moment 

magnifier method used by Yokel on unreinforced walls produced reasonable 

correlation with test results. The most promising method used for 

reinforced walls with no vertical load is similar to that used for 

determining the ultimate capacity of a reinforced concrete beam. 

From the work that has been performed to date it is clear that 

additional information is required in the following areas: 

(a) The cyclic behavior of transversely loaded masonry walls. 

(b) The effect of reinforcement including correlation with 

methods for predicting the strength of the tested walls. 

(c) The degree of fixity provided by typical wall-slab and 

wall-footing connections. 

(d) An adequate small-scale test method to predict the flexural 

strength of full-scale masonry walls. 
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