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EARTHQUAKE SIMULATION TESTS OF A THREE STORY STEEL FRAME WITH
COLUMNS ALLOWED TO UPLIFT

by
Ray W, Clough
and
Arthur A. Huckelbridge Jr.
ABSTRACT

This study represents the preliminary portion of a research program
into the effects of allowing column uplift in steel building frames
responding to severe seismic loading. Included in this report are experi-
mental and analtyical results for a 3-story steel frame both with and
without column uplift allowed. Uplift response reéults are presented
for tests using 2 sets of lmpact elements with stiffnesses differing by
approximately an order of magnitude.

Allowing column uplift ig shown for this frame to significantly
reduce both the seismic loading and ductility demand, when compared to
the fixed base response for a similar input motion. An analytical tech-
nique employing bilinear elastic foundation support elements, with no
tensile capacity or stiffness in the upward direction, is shown to
accurately predict the uplift response of this frame, even in the presence
of large rigid body rotations. An analytical technique using concentrated
bilinear plastic hinges is shown to accurately predict the nonlinear fixed

base response, for moderately nonlinear response.
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1. INTRODUCTION

1.1 The Overturning Effect in Seismic Response

The overturning moment at the base of a structure resulting from the
lateral inertial forces which occur during a major earthquake can easily
exceed the overturning resistance provided by the dead weight of the
system alone. Assuming that no supplementary anchorage is provided, this
condition implies a transient separation of portions of the structure
from its foundation, resulting in a highly nonlinear response.

The usual linear dynamic or equivalent static analysis techniques are
not capable of treating this typé of nonlinear behavior. The stiffness
changes associated with separation or impacting of structure and founda-
tion are very drastic and instantaneous in nature, requiring a more sophis-
ticated nonlinear analysis.

The traditional building code solution to this problem has been to
avoid it by specifying lateral loading conditions low enough so that
overturning complications are not encountered in most designs. The lower
design loading conditions have been re;sonably Justified by requiring
adeguate detailing for local ductile behavior in overload situations.

No rational provisionlhas been incorporated, however, to consider
an overturning overload. Building codes generally regquire full overturn-
ing resisting capacity for whatever overturning moment is computed, even
if this requires supplementary anchorage.

Primarily as a result of the structural failures during the 1971
San Fernando earthguake there has been a trend toward more conservative
seismic design loading conditions, particularly for hospitals and other
essential facilities. This trend now is leading to the necessity for a

rational consideration of the overturning effect; to require full



overturning constraint for a strong earthquake would seem to be both
uneconomical and unnecessary. A rational consideration of overturning
response to severe ground shaking, however, requires a full understanding
of that response, including the nonlinear uplift phenomenon.

Analytical'studies by Beck and Skinner (1) and by Meek (4) indicate
the potential econcmies of allowing transient uplift of structures in
response to strong ground shaking. Indications are that the uplift
phenomenon provides a type of structural fuse, limiting the applied over-
turning forces to those which first produce uplift. This limiting effect
can thus lead to reduced internal forces and/or ductility demand on the
system, making possible a more rational and more economical design for a
realistic seismic loading condition.

Before a general incorporation of uplift capability as a design
feature is undertaken, however, the basic uplift response mechanism must
be thoroughly investigated, including experimental verification of
analytical studies. Once Qerified, adequaﬁe analyticai consideration
should then lead to a more effective design application, with greater
confidence in the intended performance.

1.2 Scope and Objectives of this Study

The primary objective of this study was to investigate the seismically
induced overturning effect in a simple structural system, both with and
without indicated supplementary anchorage provided. The investigation
was to be both experimental and analyvtical in nature, with the experimental
data providing a basis for evaluating currently available nonlinear
analytical techniques. It was felt that a‘simple, well-understood
superstructure system would facilitate the study of the basic uplift

phenomenon, the response feature of greatest interest in this study.



In scope the study has included the conduct of a series of shaking
table tests of an experimental structure in the U.C. Berkeley Earthguake
Simulator Laboratory. These test results, both with and without uplift
allowed, were then compared directly to response predictions by a nonlinear
dvnamic analysis program, utilizing the experimentally measured excitation
as input. The degree of correlation between analytical and experimental
results for the same excitation then provided the means of evaluating the

analyses.



2. EXPERIMENTAL PROGRAM

2.1 The Test Facility

The U.C. Berkeley Earthquake Simulator, shown in Fig. 2.1.1, is
described fully by Rea and Penzien (6). Briefly, the facility consists
of a 20' x 20’ post-tensioned concrete slab shaking table with its
associated control and data acquisition equipment. The shaking table can
move independently in the vertical and one horizontal direetion. The
command displacement signals for the two degrees of freedom are supplied
and test data are recorded through a Nova mini-computer system. Up to
128 channels of data can be sampled discretely, usually at a rate around
50 samples/sec/channel. fThe data, converted immediately to digital form,
are transferred to magnetic tape for detailed reduction‘on the Berkeley
CDC 6400 computer system.

' The range of possible input signals to the shaking table is completely
general withiﬁ the limiting ranges of displacement, velocity and accelera-
tion shown in Fig. 2.1.2. 1In addition to these limits, the maximum
design payload is about 100k and the design overturning moment capacity is
about 1700 kip-ft.

2.2 The Test Model

As mentioned in the intreoduction, 1t was decided to utilize a rela-
tively simple superstructure system for the initial investigation of the
uplift phenomenon. An existing three-story, single-bay steel moment
frame, described fully by Clough and Tang (2), was available for this
purpose. This frame had been utilized in the initial experimental and
analytical test program conducted on the then newly constructed shaking
table, repcorted by Tang (7).

The existing structure had been fabricated from rolled A36 wide flange

sections; the columns were WS x 16 and the girders were W6 x 12. Concrete



weights totaling 24k were distributed equally on the 3 floors; each floor
had sufficient in-plane bracing to provide a rigid diaphram behavior. The
bay width was 12'-0"; the floor heights wexe 6'-8", 5'-4", and 5'-4".

It was decided for reasons of economy to adapt this existing structure
to the uplift test program. As it was considered desirable to achieve a
relatively high amplitude of uplift response, the column bases were pinned
to allow rigid body rotation immediately upon separation of the column
base and foundation. Braces to the lst floor were introduced to restore
stiffness lost through this modification; these also provided a local
critical section for study at each column midheight, as shown iﬁ Fig, 2.2.1.

The uplift mechanism designed to accommodate the anticipated high
amplitude uplift response is shown in Fig. 2,2,.2, The vertical roller
bearings provided a "shear key" for each column, essential to prevent the
structure fxom "walking” off the foundation, yvet with only negligible
resistance to uplift motion.

Neoprene impact pads of two different stiffnesses were provided
beneath the column bases during uplift testing. For phase I testing,
relatively soft pads with an effective stiffness of approximately 44 ki/in
were emploved. For phagse II testing, pads of approximately an order of
magnitude greater stiffness were fabricated. As mentioned previously.
provision was made to restrain the uplift motion for comparative purposes.
This was accomplished by removing the impact pads and bolting the pin
mechanism securely to the foundation. The pinned nature of the column base
was thus retained while the relative vertical motion was prevented.

2.3. Instrumentation

For the phase I uplift tests a total of 124 data channels were
monitored, 36 of which were devoted to various table functions. For

phase TII uplift tests an additional 4 channels were monitored. These



additional channels were devoted to extra strain readings near the critical
section of a first floor column. The instrumentation servea to define the
table and.individual horizontal story accelerations and displacementé,‘tﬁe
member force distributions, the local member inelastic deformations and
the column base relative vertical displacements during each test. Complete
channel listings and descriptions are given for all tests in Appendix A.

Data sign conventions are shown in Figs., 2.3.1 and 2.3.2, All data
channels were sampled at a rate of approximately 50 points per second
during these tests.

Transducer types utilized for these tests consisted of accelerometers,
linear potentiometers, linear DC displacement transducers, strain gages and
on-off contact switches between the column bases and their respective
impact elements. Descriptions of these transducers are given briefly in
the following paragraphs.

The accelerometer type used was the Kistler model 305T non-pendulous,
force balance servo accelerometer, with a Xistler model 5157 servo
amplifier attached. The amplifiers were set to give a data range of
+ 5 g's.

Two different models of linear potentiometers were used in testing.

To measure the absolute horizontal story displacements, Houston Scientific
Inc. model 1800-30A potentiometers were used. This model has a travel
range of + 15 in. Houston Scientific model 1800-15A potentiometers

were used to measure the relative column base vertical displacements.

This model has a travel range of + 7.5 in.

Sanborn model 7DCDT-500 displacement transducers with a stroke of
+.5 in. were used in opposing pairs to measure local member average
curvatures. For this purpose the transducers were mounted in aluminum

frames set at-distances of 4 and 6 in. from corresponding target frames.



Typical setups of these devices are shown in Fig. 2.3.3.

Two types of resistance strain gages were utilized in the tests. Tor
strains in elastic regions, foil gages were utilized to derive resultant
force quantities. These were manufactured by Micro-Measurements, model
EA-06-250BG~120, options L and W. For strains in the plastic regions,
post yield gages of types YI-10 and YL-20 by Tokyo Sokki Kenkyuje Co.
were utilized to estimate ductility demands. The latter gages employ a
nickel-copper alloy wire, reportedly accurate to strains of 20%,

In addition to the above mentioned instruments, mechanical strain
gages manufactured by Prewitt Associates were colocated with standard
resistance strain gages at several critical sections. These "scratch
strain gages" are self~driven and produée a trace on a polished brass
target, which is ihterpreted with a 100X microscope. One of these gages

is shown in Fig. 2.3.4.

2.4 Input Signals

As previously mentioned, the family of possible input signals to the
shaking table is practically limitless, making necessary a decision as to
appropriate signals. For this test series, it was decided to use signals
derived from actual strong-motion accelerograms. The two basic signals
chosen were the 1940 El1 Centro N-S and the 1971 Pacoima Dam S74W records.
Fach signal was run at a wide range of intensities, and the Fl1 Centro
record was used both with and without the corresponding vertical component
of motion. Because the table ig displacement controlled, the table motion
acclerograms are not exact duplicates of the field-recorded accelerograms,
but they do represent well the intensity and fredquency content of typical
ground motions. The acceleration time histories in the horizontal direc-
tion, along with the displacement records and response spectra of all the

different test intensitites and motions discussed in this report, are



presented in Figs. 2.4.2 th;ough‘2.4.ll. The El Centro earthguake motions
are designated EC and the éacoima earthguake inputs are labeled PAC. The
nﬁmber following these designatigns is the "span" setting for the test: a
control system.sefting indicating the "intensity" of the test, and linearly
proporticnal to the table displacement. Roman numerals I and IT identify
the two different stiffrnesses of rubber impact cushions used in test phases
I and II. Where no Roman numeral is shown, the structure was fully con-
strained against uplift.

The response spectra for each test were obtained using a program
'developed by Nigam and Jennings {5). The spectral ordinates weie computed
at the following period intervals:

.10 sec. to .30 sec. @ intervals of .025 sec.

.30 sec. to 0 sec. @ intervals of .050 sec.

0

1.0 sec. to sec. @ intervals of .250 sec.
3.0 sec. to 0 sec. @ intervals of .500 sec.

Ut W e

The response ordinates were computed using the accelerations as digitized
during each test.

Because this test series was not intended as a model test of any
prototype Struqture, no time scaling of the input was performed. Use of
normal time scale would tend to exaggerate the amplitude of the uplift
response, presuming a 1arget brototype. Therefore, it was felt that very
useful data for analytical comparison could be obtained in this manner.

2.5 Experimental Results

A totai‘of 52 dynamic tests was conducted on the test model, and the
data were stored permanently on 9 track magnetic tape. A complete list of
 these tests in thé sequence conducted is given in Appendix B. From this
total of 52 tests, however, only 11 representative cases were selected
for detailed data reduction. Table 2.5.1 shows in summary a number of

the more interesting features of these 11 tests. From this table, it is



apparent that a wide range of excitations and response levels i1s represented
in the data to be discussed in this report.

Global response parameters only were examined for 6 of the selected
tests; however, both global and certain local response parameters were
examined for the 5 tests exhibiting the greatest extent of nonlinear
behavior. The results of each individual test are presented in the follow-
ing sedquence:

1. Table motions.

2. Global response.

3. TLocal response (if applicable).

The general method of data presentation is in the form of time-history .
plots of the pertinent parameters. Moment-curvature plots demonstrating
nonlinear hysteretic behavior are presented where they are deemed most
illustrative.

2.5a EC 200 I

This test, with the input signal scaled to produce a maximum accelera-
tion about 1/3 that of the actual El Centro signal, produced a response‘
entirely within what can be considered the linear behavior range. No
vertical component of excitation was applied.

Only global response quantities were examined in detail, for this
case. Fig. 2.5a.l shows the table motion and response spectra. Fig.
2.5a.2 shows the floor accelerations along with the table acceleration.

The response is seen to be dominated by the first mode, although ron-
siderable 2nd mode response is. evident in the lst floor acceleration.

The vibration periods of the three modes while the structure was supported
on the soft pads for phase T were experimentally observed to be .463, .130
and .067 seconds respectively, as determined by a Fast Fourier Transform

analysis of the 3rd floor acceleration during free vibration. The
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displacements shown in Fig. 2.5a.3 again point out the predominant lst
mode contribution, and the story forces shown in Fig. 2.5a.4 verify the
overturning moment did not exceed the limiting value of 180 kip-ft requifed
to initiate uplift.
2.5b EC 100 IZ
In this test the input signal was scaled to produce a maximum accelera-
tion about 2/3 that of the actual El1 Centro record. The table motions,
shown in Fig. 2.5b.1 thus are all nearly twice the amplitudes of Fig. 2.5a.l.
The floor accelerations, shown in Fig. 2.5b.2 again show a 1st mode pre-
dominance, with the 2nd mode still wisible, particularly in the lst floor
acceleration. With the stiffer rubber pads for this phase II test, the
observed modal periods were .379, .133 and .068 secondsf determined in
the same manner as previously described. It is interesting to note,
that onlj the first mode periocd was reduced by the stiffer support system.
Fig. 2.5b.3 shows the relative gtory displacements and Fig. 2.5b.4
shows the momentary colump base separations that océurred during this
test. Fig. 2.5b.5 verifies that the base overturning moment did reach
the uplift limit of 180 kip-ft. The momentarv base separations observed
in this test, however, had very little effect on the response; it was
still essentially a linear behavior.
2.5¢ EC 200
This test very nearly duplicated the excitation of EC 200 I, This
test, however, was conducted with the column base fixtures attached
securely to the foundation, preventing any relative vertical motion.
This resulted in a lowering of the mocdal pericds to observed values of

.339, .130 and .068 seconds respectively.
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The response observed during this test was also well within what can
be considered the linear range. Any nonlinearity in the base constrained
case, of course, would have to be due to material yielding and not to any
uplift response.

Fig. 2.5c¢c.l shows the table motions, nearly identical to Fig. 2.5a.1.
FPig., 2.5¢.2 shows the floor accelerations. The differing base conditions
did not alter greatly the mocde shapes, thus the 2nd mode still shows up
most significantly in the first floor. The relative floor displacements,
shown in Fig. 2.5¢.3 were again predominantly lst mode, as were the story
forces shown in Fig. 2.5c.4. These story forces did not differ greatly
in amplitude from the phase I test, even though the relative displacements
of Fig. 2.5¢.3 were considerably lower in amplitude than those observed in
phase I. The reason for this was the rigid body rotation possible in the
case where the column bases were not restrained vertically, but were
supported on the relatively soft, neoprene pads.

2.5 EC 1000 T

For this test the input was scaled S0 as to produce a maximum
acceleration more than twice that of the actual E1 Centro record:; this
excitation produced a significant nonlinear uplift response.

Fig. 2.5d4.1 illustrates the greater intensity of the excitation for
this test and Fig. 2.5d.2 displays the nonlinear nature of the response
as evidenced by the changing response periocd. In particular the intervals
of response between 3 and & seconds and around 11 seconds of the time
history were obvicusly of a complex nonlinear nature. These were, in
fact, the intervals in which the uplifting phenomenon was observed to
occur, Higher order flexural response may be seen to be superposed on
the rigid body rotations that are associated with the column.uplift for
this structure. Again the elastic 2nd mode contribution is evident in

the 1lst f£loor acceleration.
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Fig. 2.5d.3 shows the large displacements possible with a rigid body
response mode, Fig. 2.5d.4 shows the relative column base separations,
indicative of the larée rotations which occurred. In Fig. 2.5d.5 the
performance of the uplift phenomenon as a structural "fuse" is exhiﬁited;
the overturning moment only momentarily exceeded the limit corresponding
to initiation of uplift response.

Fig. 2.5d.6 shows the character of the local response quantities in
the lst floor columns. ' Because the recorded force quantities represent
only dynamic forces, the column axial forces in tension were clipped off
at a level representing the magnitude of the dead weight or stafic
compression.

Fig. 2.5d.7 shows some additiconal local response quantities, namely
the lst floor column moments and average curvatures. These curvatures
were measured over a 6" gage length near the column midheights, the most
critical section of these columns due to the brace connection at that
point. The hysteresis plot of these quantities, shown in Fig. 2.5d4.8,
demonstrates that the member distortions were still generally within what
can be called a linear range, despite the high intensity of the excita-
tion. This again is demecnstrative of the fuse effect of the uplift
phenomenon.

2.5e EC 1000/850 1

This test had essentially the same horizontal excitation as the
EC 1000 ;‘test, with the addition of the appropriately scaled vertical
component of table motion. Comparison of Fig. 2.5e.l with Fig. 2.54.1
indicates the close resemblance of the two horizontal table motions. The
acceleration response shown in Fig. 2.5e.2 similarly is nearly a duplicate

of Fig. 2.5d.2.
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Fig. 2.5e.3 shows that the relative story displacements were only
slightly greater than in the previous test, indicating a slightly larger
amplitude of rigid body rotation, This same observation can be made for
the vertical displacements of Fig. 2.5e.4, and the overturning moment
plots of Fig. 2.5e.5 are again nearly duplicates of Fig. 2.54.5.

These observations demonstrate that the vertical component of
excitation had little effect on the regponse. This effect, or lack
thereof, was consistently noted with regard to any vertical excitations
introduced throughout the test program.
2.5f EC 300 IT

The input signal for this test was again scaled to produce a maximum
acceleration more than twice that of the actual El Centro record. As
shown in Pig. 2.5f.1 the table motion was very similar to the previous
El Centro tests. Actually a few variances are gpparent in the response
spectra; these were probaﬁly due largely to the time interval of several
months which elapsed between phase I and phase II testing. The analog
integrator used to generate the system command signals demonstrated
léome inconsistency over the relatively long time period involved. The
signals did not vary significantly, however, and it is believed that valid
comparisons still can be made,

As seen from Fig. 2.5£.2, the response observed during this test was
very similar to that seen in the previous tests. There were essentially
the same number of uplift "cycles" at around the same relative times.

The response during uplift perhaps showed slightly more impact effect
with the stiffer foundation pads, and the response outside the uplifting

intervals seemed to be more dominated by the fundamental mode.
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The relative displacements, shown in Fig. 2,5f.3, were again very
similar to those seen .in previdus tests, as were the column base vertical
displacements of Fig. 2.5f.4. As shown in this figure also, the stiffer
foundation pads allowed very little relative vertical motion outside the
uplifting intervals. The story forces of Fig. 2.5£.5 differed little from
previous cbservations, as did the local member forces of Fig. 2.5f.6. The
column axial forces again were.clipped at the level of static compression.
The column moments and average curvatures, shown in Figs. 2.5£.7 and
2.5f.8, were again within the linear range despite the high intensity of
the input.

By comparison of these test results with those of’EC 1000 I, it may
be seen that the stiffness of the rubber support pads had little effect on
the response behavior even when rather large uplift displacements were
induced.

2.5 EC 300/675 II

This test was identical to EC 300 IT except for the addition of the
appropriately scaled vertical component of input. As shown in Fig. 2.5g.1,
the horizontal table motions had no significant differences from the
previous test. Fig. 2.5g.2, showing response accelerations, indicates
very little difference in the response, when compared to the preceding
test result shown in Fig. 2.5f.2. The same similarity of response was
evident in the displacements shown in Figs. 2.5g.3 and 2.5g.4 when compared
to Figs. 2.5f.3 and 2.5f.4. As might be expected, the story forces shown
in Fig. 2.5g.5 were also very similar in nature to those shown in Fig. 2.5£.5

From these observations it is appareﬁt that the wertical excitation
had little effect in either phase I or phase II testing. Although not

shown, tests also were run including vertical excitation for the base
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constrained case, with a similar lack of any observable effect. It should
be noted here, however, that the gravity load stregsses in this model were
very low. Hence this evidence sﬁould not be construed to indicate.that
vertical excitation should never be a design consideration in prototype
structures.

2.5h EC 1000

This test, for which the input was again scaled to preduce a maximum
acceleraticn more than twice that of the original El Centro record, was
the first instance in which some material yielding wags observed. The
input motions, shown in Fig. 2.5h.1l, were very.similar to the preceding
high intensity El Centro tests, shown in Figs. 2,5d4.1, 2.5e.l, 2.5f.1 and
2.5g.1.

However, the response accelerations, shown in Fig. 2.5h.2, demonstrated
a marked difference from the previous tests where column uplift was
allowed. The floor accelerations did not show the obvious nonlinearity
associated with uplift in the previcus tests; local material yielding
produces more gradual global stiffness changes which are not so immediately
apparent in the response.

The relative floor displacements, shown in Fig. 2.5h.3, were consid-
erably less than in the uplifting case due to the elimination of rigid
body motion. It should be noted, however, that even though the relative
displacements are less, the accelerations and consequent forces are
considerably greater than those of the uplift tests. This increase can
be attributed to the lack of a fuse effect associated with the uplift
mechanism. The differing response is shown clearly by comparing the

story forces of Fig. 2.5h.4 with those of Pig. 2.54.5.
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Local member forces, shown in Fig. 2.5h.5, were also correspondingly
higher than those observed in the uplift tests. As can be seen in the
north column average curvature plot, shown in Fig. 2.5h.6, some nonlinearity
was present, evidenced by the permanent set remaining at this location
following the test. This yield phenomenon also is evident in the hysteresis
plots of Fig. 2.3h.7. The south column did not display a significant set
due to the differing sense of the static load.

Fig. 2.5h.8 shows strain data comparisons for the co-located mechanical
and resistance strain gages. The correlation seems very good, considering
the uncertainties inherent in the optical digitization of the mechanical’
gage data.

2.51 PAC 400 1T

This test used the input signal shown in Fig. 2.51i.1, which was based
upon the Pacoima Dam record. This motioh had a relatively short duration
but was wvery intense and produced zsome interesting results.

From the floor accelerations shown in Fig. 2.51.2, it can be seen
that tbe response was similar in most respects to that observed in the
previous El Centro tests. There were more "cycles" of uplifting response;
the rigid body rocking was essentially continuous over the time interval
between 3 and 9 seconds of the response. Again a lot of 2nd mode response
showed up in the lst floor acceleration.

Although more uplift cveles were obgserved for this test, Fig. 2.5i.3
shows that the magnitude of rigid body rotation was not as large as that
seen in the El Centro tests. Once uplift begins for this structure, the
subsequent ground displacement determines the extent of rigid body rotation
which takes place. The uplift plets of FPig. 2.5i.4 confirm the continuous
uplifting response over the previously mentioned time interval. Fig.
2.5i,5 again aemonstrates the action of_uplift as a strﬁctural fusé in

limiting the applied loads.
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2.5 PAC 700 II

The input for this test was scaled slightly higher than that of the
phase I Pacoima test. As mentioned previously, a long term lack of
stability observed in the analog integrator used to generate command
displacement signals may have led to slight variances between the phase I
and phase II signals. The phase II table motions shown in Pig. 2.5j.1
are very similar in nature, however, to the phase I input with the possible
exception of the lowest frequency range.

The floor acceler§tion responses of Fig. 2.5j.2 again were similar
to the phase I results. The uplift motion, however, lasted a few seconds
longer for the phase II test. The relative displacements, shown in
Figs. 2.55.3 and 2.53.4, indicate that the envelope displacement values
were comparable to the phase I test, but occurred later in the response
history. The story forces plotted in Fig. 2.53.5 indicate the same
general phenomena menticned previocusly.

The local member forces, shown in Figs, 2.53.6 and 2.5j.7 bear out
the previously described advantage of allowing column uplift. The column
axial forces were not cbserved to be appreciably greater in the phase II
tests as compared to the phase 1 tests. It should be pointed cut that the
small apparent permanent deformations shown in the average column curva-
tures of Figure 2.57.7 are somewhat misleading. The first flcor columns
already had been subjected to relatively large inelastic strain during
previous "base constrained" tests, and were exhibiting considerable
Bauschinger effect. The hysteresis plots of Figs. 2.5j.8 and 2.53.9
indicate that the local response was very nearly linear.

Fig. 2.573.10 shows further strain data comparisons of the mechanical
and resistance strain gages. It can be seen that the impact induced

transients caused some difficulty in the optical digitization of the
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gage trace. The correlation was still relatively good, howevex.
2.5k PAC 700

The input signal for this fixed base test was scaled to approximately
reproduce the phase II Pacoima Dam test. The table motion shown in
Fig. 2.5k.1, indicates that the two excitations were indeed very similar.
The low frequency variance in the phase II regponse spectra from that of
the phase I test and of this test may perhaps be attributable +o some
instrument zero drift.

The floor accelerations, shown in Fig. 2,5k.2, indicate the high
intensity of the loads imposed on the structure during this test. These
forces were well beyond those required to iﬁitiate vielding of critical
sections of the structure. The relative floor displacements of Fig. 2.5k.3
show a permanent set, indicative of the nonlinearity of the response. The
story forces of Fig. 2.5k.4 show convincingly the increased loading result-
ing from anchoring the columns to the foundation; these forces were
approximately 1 1/2 times greater than those of theé uplift tests. A
similar difference is apparent in the local member forces, shown in
Figs. 2.5k.5 and 2.5k.6 when compared to those of Figs. 2.5j.6 and 2.53j.7.

As a consequence of increasing the loads acting on the structure,
anchoring the columns also can increase considerably the ductility demand
on critical sections of the structure. This can be seen quite readily by
comparing the plots of Figs. 2.5k.7 and 2.5k.8 to those of the correspond—‘
ing uplift test shown in Figs. 2.5j.8 and 2.5j.9.

Fig. 2.5k.9 shows additional comparisons of mechanical and colocated
electrical strain gage data. PFig. 2.5k.10 indicates a potential problem
in interpreting the mechanical gage data. Their gage length, in order to
produce a readable trace, must by necessity be rather long (6" in this

case). By comparing the mechanical gage data to that of resistance gages
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of 10 mm gage length distributed along this 6" distance, one can see the
problem which occcurs when the mechanical gage spans a region of varying
strain gradient.. The very high strains in the upper portion of the 6"
gage length, associated with the plastic hinge formation at the column
midheight, are averaged in with the lower elastic strains below the hinge
region. As a consequence of this averaging process, the local strain
ductility demand is considerably underestimated by the mechanical gage;
one should therefore use some judgﬁent in locating these gages on a
structure and ip the interpretation of data if obtained in regions of

varying strain gradients.
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(a) Control Roocm

(b) Shaking Table

Fig. 2.1.1 Earthguake Simulator
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Fig. 2.2.2 Uplift Mechanism Detail
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a. Column b. Girder

Fig. 2.3.3 Average Curvature Measurement
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3. ANALYTICAL CORRELATION OF TEST DATA

As was mentioned in the introduction, a primary impetus for this
initial experimental program was to provide a basis for the evaluation
of currently available nonlinear analvtical techniques in predicting
uplift behavior. In addition to this initial study of the uplift pheno-
menon, the data obtained in the nonlinear fixed-base tests were also to
be used to evaluate nonlinear frame analysis procedures employing concen-
trated plastic hinges at the member ends. To carry out these evaluations,
selected test accelerograms were used as the input records for the non-
linear analysis of the appropriate mathematical models. The analytical
responses obtained were then compared directly with the corresponding
experimental data.

The computer program utilized for the analytical work was DRAIN-2D,
described fully by Xanaan and Powell (3). DRAIN-2D is a general two-
dimensional structure program for nonlinear earthquake response analysis.
It is aéplicable to cases having identical seismic excitation of all
support points. The full set of incremental equations of motion are
numerically integrated using the assumption of constant average nodal
accelerations within each integration time step. Unbalanced loads result-
ing from stiffness changes are corrected in the following time step,
necessitating fairly small time steps to avoid large "overshoots” at
instants of significant stiffness change. Damping capabilities presently
available in the program include arbitrary combinations of mass propoxr-—
tional, original stiffness proportional, and tangent stiffness proportional

viscous damping.
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3.1 Uplift Response

The basic uplifting mathematical model is shown in Fig. 3.1.1. The
uplift phenomenon was approximated by specifying the vertical foundation
support elements to be bilinear elastic, with zero tensile force capacity
and with zero stiffness in the upward direction. All structural members
in the frame, except these support elements, were assumed to behave in a
linear manner. Static loads were applied prior to all dynamic analyses
so their influence was considered in the nonlinear support response.

Table interaction in the pitching mode was not considered directly’
in the uplift analysis, but could be accommodated partially by adjusting
the structure support spring stiffnesses. This omission quite possibly
could account for the greater difficulty encountered in achieving good
correlation of data for the phase IT tests, where the stiffer set of
impact pads were employed. More will he said of this later.

The improvement of data correlation was accomplished by adjustment
of the damping assumed for the basic mathematical model already described.
This adjustment process was performed solely on the basis of physical
insight into the model's behavior. The more systematic approaches of
system identification have not vet been applied to the seismic response of
systems with this degree of complexity.

The uplift tests for which analyses were performed were the‘EC 1000 1
test and the EC 300 IT test. It was felt that these tests were represen-—
tative of phase I and phase II nonlinear tests. Integration time steps
of .01 and .005 seconds were used for the phase I and phase II tests,
respectively. The smaller time step for phase II analysis was utilized to
avert potential analytical complications due to the more severe impact

conditions in that case.
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As was indicatéd by the experimental results, the stiffness of the
impact pads beneath the column bases had a very pronounced effect on the
fundamental fregquency of vibration of the structure. This analytical
relationship, assuming a rigid support beneath the impact pads, is shown
in Fig. 3.1.2.

In Fig. 3.1.3 are shown the analytical mode shapes and frequencies
of the mathematical models used for phase I and phase II calculations.
From these mode shapes, it is apparent why a great deal of 2nd mode
response was evident in the 1lst floor accelerations, as was mentioned
previously in Chapter 2. The verv slight influence of the pad stiffness
on the mode shapes is interesting to note, in view of its rather signi-
ficant effect on the first mode frequency.

3.1a Phase I Computations

As was mentioned previously, the EC 1000 I test was selected as an
app:opriate signal for the phase I nonlinear analysis. B&n effective
impact paa stiffness of 40 kip/in in the mathematical model matched very
closely the observed fundamental frequency, although this is nearly 10%
below the actual value. A damping estimate of 2% critical for the
cbserved first mode frequency was selected as a reasonable preliminary
estimate, based on observed decay curves for the structure.

The mass proportional, original stiffness proportional and tangent
stiffness proportional viscous damping coefficients emploved in the
computer analysis are designated o, BO, and B, respectively. Since a
rigid body motion was possible for this structure, and it would not be
expected to exhibit much damping in this type of response, mass propor-
tional damping, which increases with decreasing frequency, was not deemed
a reasonable type of damping to employ. For the first analysis, therefore,

it was decided to try original stiffness porportional viscous damping,
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with Bo equal to .00293, corresponding to about 2% critical first mode
damping. The results of this analysis are shown in Fig. 3.1a;1; the
response quantities plotted are the top floor displacement relative to
the table and the relative vertical displacements of the two column bases.
As can be seen in the time history plots, the rigid body motion evidently
was damped too heavily in this analysis.

Based on the results of this first analysis it was decided to reduce
the effective damping of the rigid body motion. For this reason, the
type of damping was changed to tangent stiffness proportional, with B
equal to the same value of .00293. Because the effective tangent stiffness
of the rigid body motion is zero, this mechanism should have produced less
damping in the uplifting portion of the response. The results of this
second analysis are shown in Fig, 3.la.2 and, indeed, the results are
considerably improved.

From the results of this second analysis, however, it seemed that
there still was too much damping in the system. Therefore, for the third
analysis B was reduced from .00293 to .002196, corresponding to a reduc-
tion in the first mode critical damping ratio to about 1 1/2%. The results
of this analysis are shown in Fig. 3.1a.3. Here the correlation between
analysis and experiment is much improved, and was in factldeemed satis-
factory from an engineering viewpoint. The shear and axial forces developed
in the two lst floor columns during this analyéis are shown in Fig. 3.la.4.

3.1b Phase II Computations

The phase II correlation was more complicated than the phase i case
due largely, it was felt, to two separate problems. The stiffer impact
pads, as fabricated did not exhibit a consistent behavior from one pad to
another, nor for each individual pad throughout the test sequence. Most

of this problem was associated with bond deterioration between the neoprene
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material and the steel plates used to attach the pads to the structure's
foundation. Secondly, the stiffer impact pads resulted in a more ocbvious
pitching mode interaction problem between the structure and the shaking
table. This problem was treated by reducing the effective stiffness of

the spring support elements in the basic mathematical uplift model to

about 50 per cent of the actual value, so that the observed first mode
frequency was reasonably well matched; this is not a completely satisfactory
solution but it eventually gave acceptable results.

As was mentioned previously, the EC 300 IT test was selected as the
basis of analytical correlation for phase II tests. It seemed reasonable
that the same type of damping, i.e. tangent stiffness proportional viscous
damping, should be used for this analysis as was used successfully in the
phase I computations. As a first attempt, the same damping coefficient,
.002196, was used. The results of this analysis, which had an effective
first mode damping coefficient of 1.8%, are shoﬁn in Fig. 3.1b.1l. They
indicate that the damping was too high, so the damping ratio was reduced
to about 1 1/2% for the next analysis by lowering B to .001758. The
results of this analysis are shown in Fig, 3.1b.2; there is some improve-
ment in the correlation, but it was not vet deemed acceptable.

As the correlation seemed to be improving, it was decided to continue
lowering the damping in the system. Fig. 3.1b.3 shows the results of an
analysis with B  equal to .001621, corrxesponding to an effective first
mode damping ratio of 1.4%. Fig. 3.1b.4 shows the results of an analysis
with B equal to .0015, corresponding to a first mode damping ratic of
1.26%. This analysis appeared to have reduced the damping too far.

Fig. 3.1b.5 shows the results of the final analysis, performed with B
equal to .00153, corresponding to an effective first mode damping ratio of

1.3%. It was felt that this was about the best results obtainable without
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modeling the table interaction, and due to the other complications
mentioned earlier, it was decided to assume these results were within
reasonable engineering accuracy. The local force comparisons shown in
Fig. 3.1b.6 again depict the first flocor column shears and axial forces.

3.2 Pixed-Base Response

The basic "fixed-base" mathematical model is shown in Fig. 3.2.1.

As can be seen, the shaking table pitching mode was considered in this
model. The spring elements supporting the table were taken to be linear
in both tension and compression, within the force limits expected in tﬁe
analygis. The table itself was assumed to rotate as a rigid body. One
additional modification from the mathematical model used in the uplift
analyses was the addition of a second beam-column element, parallel to

the lower half of each first floor column. Since both beam-column elements
used in the analysis were bilinear in nature, this parallel configuration
allowed a more general trilinear or quadrilinear moment-curvature relation-
ship.

The model parameters which were available for adjustment were the
moment-curvature relationship for the first floor columns, the support
spring stiffness for the shaking table and the viscous damping coefficients.
In preliminary studies, it was found that a table support spring stiffness
of 400 kip/in matched well the lst mode frequencf of vibration. The
frequencies and mode shapes of the resulting mathematical model are shown
in Fig. 3.2.2.

From experimental observation, it was concluded that a trilinear
moment-curvature relationship would adequately model the first floor
column members. The moment values used for the "corners", M., and M, in

1 2

Figure 3.2.3, were taken initially to roughly fit the experimental curve
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of Figure 2.5k.8, fo; the hysteresis cycle of greatest amplitude. It was
also decided rather arbitrarily to bkegin analysis ﬁsing only original
stiffness proportional viscous damping.

FPor the first attempt at analytical correlation, the EC 1000 test
signal was used as the input. A value of .0014 was chosen as the initial
value of BO, and values of 100 kip-in and 350 kip-in were used as M1 and
M2, respectively. The results of this analysis for the 3rd floor relative
displacement are shown in Figure 3.2.4.

From the first analysis it appeared there was too much damping present
in the system, so the value of R was lowered to .00125; this lowered the
Ist mode damping ratio from 1.3% to approximately 1.2%. The results of
this analysis are shown in Figure 3.2.5.

IIt still appeared that too much damping was present in the system, so
analyses were carried out with values of BO of .00108 and .0008. These
results are shown in Figg. 3.2.6 and 3.2.7, respectively. There was no
significant improvement in the correlation between analytical and experi-
mental results., Even though the first mode damping ratio was down to
.75% for the last analysis, apparently too much damping still was present.

At this point, it was decided that the excessive energy dissipation
noted above might be due to the hysteretic characteristics of the moment-
curvature relationship of the lst floor columns rather than to the damp-
ing coefficient. Another analysis was carried out with the value of M1
increased to 200 kip-in and Bo again set to .00108. This value of Bo
produces a first mode damping ratio of 1%. The results of this analysis
are shown in Figure 3.2.9; the three plots depict the 3rd floor relative

displacement, the north column shear and the north column axial force,

respectively. The correlation appears excellent, and no futher analyses
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were carried out for this input signal.

It was decided, however, to attempt another analysis using the PAC 700
input signal, during which the greatest amplitude plastic hinge rotation
was observed. For this analysis, values of 100 kip-in and 300 kip-in were

used for M, and M

1 5 respectively. A value of .00196 was specified for BO.

The results of this analysis are shown in Figure 3.2.9; the quantities
plotted were the same as for Figure 3.2.8.

From the results of this last analysis, one deficiency of the analyti-
cal model is pointed out; the lack of any form of stiffness degradation
mechanism. The large amplitude response was matched relatively well, but
there was again too much hysteretic energy dissipation for the lower
amplitude portion of the response. The moment-curvature relationship used
in the analysis matched well the large amplitude response, where consider-
able Bauschinger effect was bbserved, but did not match well the low
amplitude response. This fact can be seen by examination of the hysteretic

behavior shown in Figure 2.5k.7 and Figure 2,5k.8B.
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4, SUMMARY AND CONCLUSIONS

In this test program the uplifting response of a three story single-
bay steel frame under simulated éarthquake excitation was investigated,
both experimentally and analytically. In addition, this uplift response
was compared with the response to similar excitations during which the
column bases were securely anchored to the foundation to prevent uplift.

It was demohstrated that thé uplift phenomenon resulted in a definite
reduction in the structural force response quantities, as compared to the
cases for which uplift was prevented. The action of the uplift response
mechanism as a structural "fuse" was clearly evident. For this frame,
the internal forces were reduced by about one-third through allowing
uplift, and local strain ductility demands on the structure were reduced
from values of about 5 to less than unity. It was noted, however, that
the rigid body motions possiblelfor this single-bay frame with pinned
column bases led to considerablyv larger relative story displacements when
uplift was allowed.

It was also demonstrated that the uplift response for this frame was
very accurately represented by means of an analytical procedure utilizing
bilinear elastic support elementé having zero tensile stiffness and force
capacity in the upward directicﬁ. Good.agreement with experimental results
was achieved even when the column basehsepafations approached four inches
in amplitude, for this approximately one-half scale frame. The analtyical
procedure predicted accurately the large rigid body rotations when a

tangent stiffness proportional viscous damping matrix was employed.
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Good agreement between experimental and analytical results also was
achieved for the inelastic response tests with no uplift allowed. It
was obsexrved, however, that some problems occurred during the‘largest
plastic hinge rotations due to the Bauschinger effect, which was not well
simulated in the analytical model.

The results of this test program validate the hypothesis stated in
the introduction that allowing column uplift in building frames can lead
to more rational and economical designs. At least for the type of frame
tested, analytical procedures are currently available to accurately predict
the uplift behavior which is developed during very severe earthguake
excitation.

As a consequence of the promising results reported in this preliminary
study, it was decided to extend the research program to include a super=~
structure system more representative of a realistic prototype. The results
of that combined experimental and analytical investigation are presented
in a subsequent EERC report entitled "Earthquake Simulation Tests of a

Nine-Story Steel Frame with Columns Allowed to Uplift."
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Appendix A

Data Channel Listings
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Table A-1 Phase I Data Channel Schedule

CHANNEL CHANNEL MNEMONIC CHANNEL DESCRIPTION

0 cmd H Acc Command horizontal accl. signal

1 Cmd V Acc Command wvertical accl. signal

2 Cmd H Disp Command horizontal displ. signal

3 Cmd V Disp Command vertical displ. signal

4 Av H T Displ Average horizontal table displ.

5 Av V T Displ Average vertical table displ.

6 Ay H T Acc Average horitontal table accl.

7 Av V T Acc Average vertical table accl.

8 Pitch Angular accl. in pitching mode

9 Roll". Angular accl. in rolling mode

10 Twist Angular accl. in twisting mode

11 Force H1 Force in horizontal actunator

12 Force H2 : Force in horizontal actuator

13 Force H3 Force in horizontal actuator

14 Acc H1 Individual table accelerometer (hor)
15 Acc H2 Individual table accelerometer (hor)
16 Acc V1 Individual table accelerometer (vert)
17 Acc V2 Individual table accelerometer (vert)
18 Ace V3 Individual table accelerometer (vert)
19 Acc V4 Individual table accelerometer {(vert)
20 o Force V1 Force in vertical actuator

21 Force V2 Force in vertical actuator

22 Force V3 Force in vertical actuator

23 Force V4 Force in vertical actuator

24 Displ V1 Individnal table vertical displ.

25 Displ V2 Individual table vertical displ.

26 Displ V3 Individual table vertical displ.

27 Displ V4 Individual table vertical displ.

28 Displ H1i Individual table horizontal displ.

29 Displ H2 Individual table horizontal displ.

30 Displ H3 Individual table horizontal displ.

31 blank

32 PS Force-1 Force in pasgive stabilizer

33 PS Force-2 Force in passive stabllizer

34 PS Force-3 Force in passive stabilizer

35 PS Force-4 Force in passive stabilizer

36 Fir Acc 1 1st floor acceleration

37 Flr Acc 2 . 2nd floor acceleration

38 Flr Acc 3 3rd floor acceleration

39 blank

40 Flr Disp 1 1st floor absolute displacement

41 Fir Disp 2 ’ 2nd ¥Floor absolute displacement

42 Flr Disp 3 3rd floor absolute displacement

43 Uplift NA Vertical displacement of column base NA
a4 Uplift NBO Vertical displ. of outside column base NB

45 Uplift NBI Vertical displ. of inside column base NB
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47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
o8
99

Uplift SA

Uplift SB

Contact Na

Contact NB

Contact 52

Contact SB

Clstr-NAC-1
Clstr-NAI-1
Clstr~SAC-1
CLstr-SAI-1
Clrot-NAO-1
Clrot~NAI~1l
Clrot-SA0-~1
Clrot-SAT-1
Clflx-NAM-1
Clflx-sam-1
Clflx-NBM~1
Clflx~SBM=;
Clstr=-NBO-1
Clstr-NBI-1
Clstr—-SBO~1
Clstxr—-58BI-1
Clrot-NBO-1
Clrot~NBI-1
Clrot~SBO-1
Clrot-SBI-1
Clflx-NAB-1
Clflx-NAT-1
S1f1x-SAB-1
Clflx-SAT-1
Bmflx-NO-1

Bmflx~-NT-1

Bmflx-sI-1

Buflx-S0-1

Clrot—-NBO--2
Clrot-NBI-2
Clrot~SBO-2
Clrot-SBI-2
C1lf1x-NBT-2
Clflx-NBB-2
Clflx-SBT-2
Clflx-SBB-2
Clf1x-NAY-2
Clflx-NBY-2
Clflx-SAY-2
Clflx-sBY-2
Clflx~-NAT-2
Clfix-NAB-2
Clflx-SAT-2
Clflx-sSAB-2
Clrot~NAO-2
Clrot-NAI-2
Clrot-SAQ-2
Clrot-SAI-2

143

Vertical displ. of column base SA
Vertical displ. of column base SB

Contact
Contact
Contact
Contact
Col. NA
Col. NA
Col. SA
Col. sA
Col. NA
Col. NA
Col. 8A

switch under column NA

switch under column NB

switch under column SA

switch under column SB
strain outside face lst floor
strain inside face 1lst floor
strain outside face 1lst floor
strain inside face lst floor
DCDT ocutside face 1lst floor
DCDT inside face 1lst floor
DCDOT outside face 1st floor

Col SA DCDT inside face lst floor

Col. NA
Col. SA

Col. NB
Col. 8B
Col. NB

Col. NB
Col. SB
Col. SB
Col. NB
Col. NB
Col. SB
Col. 8B
Col. NA
Col. NA
Col. SA
Col. SA

flex. strain @ midheight lst floor
flex. strain @ midheight lst floor
flex. strain @ midheight 1st floor
flex. strain @ midheight 1st floor
strain outside face lst floor
strain inside face 1lst floor
strain oustide face lst floor
strain inside face lst floor

DCDT outside face lst floor

DCDT inside face 1lst floor

DCDT outside face 1st floor

DCDT inside face lst floor

flex. strain bottom station 1lst flr.
flex strain top station lst flr.
flex strain bottom station lst flr.
flex. strain top station 1lst flr.

Beam flex. strain north end outside station
Beam flex. strain north end inside station
Beam flex. strain south end inside station
Beam flex. strain south end outside station

Col. NB
Col. NB
Col. SB
Col. SB
Col. NB
Col. NB
Col. SB
Col. SB
Col. NA
Col. NB
Col. SA
Col. SB
Col. NA
Col. NA
Col. SA
Col. SA
Col. NA
Col. NA
Col. SA
Col. SA

DCDT outside face 2nd floor

DCDT inside face 2nd floor

DCDT outside face 2nd floor

DCDT inside face 2nd floor

flex. strain top station 2nd flr.
flex. strain bottom station 2nd flr.
flex. strain top station 2nd flr.
flex. strain bottom station 2nd flr.
post-yield strain 2nd floor
post~-yield strain 2nd floor
post-yield strain 2nd floox
post-yvield strain 2nd floor

flex. strain top station 2nd flr.
flex. strain bottom station 2nd flr.
flex. strain top station 2nd flr.
flex. strain bottom station 2nd flr.
DCDT outside face 2nd floor

DCDT inside face 2nd floor

DCDT outside face 2nd floor

DCDT inside face 2nd floor



100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
11¢
120
121
122
123

Bmflx~-NAY-2
Bmflx-NBY-2
Bmflx-SAY-2
Bmf1x-SMY-2
Bmf£1x~NO~2
Bmf1x-NI-2
Bmflx-81I-2
Bmflx-80-2
Bmrot-NOT~2
Bmrot~NOB-2
Bmrot~-S0T=-2
Bmrot-S0B-2
Jtrot-NT
Jtrot-~-NB
Jtrot-ST
Jtrot-SB
Bmrot-NIT
Bmrot-NIB
Brrot-SIT
Bmrot-SIB
C1lf1x-NAT-3
C1f1x~NAB-3
Clflx-SAT-3
Clflx-8SAB-3
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Beam
Beam
Beam
Beam
Beam
Beam
Beam
Bean
Beam
Beam
Beam
Beam

post-yield strain
post-yield strain
post-yield strain
post-yield strain
flex. strain north
flex. strain north
flex. gtrain south
flex. strain south
DCDT north outside
DCDT north cutside
DCDT south ocutside
DCDT south soutsid

north end frame
north end frame
south end frame
south end frame
end outside station
end inside station
end inside station
end outside station
station top face
station bottom face
station top face
e station bottom face

[os I e I

Joint DCDT north end top side
Joint DCDT north end bottom side
Joint DCDT south end top side
Joint DCDT south end bottom side

Beam
Beam
Beam
Beam
Col.
Col.
Col.
Col.

PCDT north inside
DCDT north inside
DCDT south inside
DCDT south inside

station top face
station bottom face
station top face
station bottom face

NA flex. strain top station 3rd flr.

NA flex. strain bo

ttom station 3rd flr.

SR flex. strain top station 3rd flr.

8A flex. strain bo

ttom station 3rd flr.
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Table A—-2 Phase II Data Channel Schedule

CHANNEL CHANNEL MNEMONIC CHANNEL DESCRIPTION

0 Cmd H Acc Command horizontal accl. signal

1 Cmd V Acc Command vertical accl. signal

2 Cmd H Disp Command horizontal displ. signal

3 Cmd V Disp Command vertical displ. signal

4 Av H T Displ Average horizontal table displ.

5 Av V T Displ Average vertical table displ.

6 Av H T Acc Average horizontal table accl.

7 AV V T Acc Average vertical table accl.

3 Pitch Angular accl. in pitching mode

g Roll Angular accl. in rolling mode

10 Twist Angular accl. in twisting mode

i1 Force H1 Force in horizontal actuator

12 Force H2 Force in horizontal actuator

13 Force H3 Force in horizontal actuator

14 Acc HL Individual table accelerometer (hor)
i5 Acc H2 Individual table accelerometer (hor)
16 Acc V1 Individual table accelercmeter (vert)
17 Acc V2 Individual table accelercmeter (vert)
18 Acc V3 Individual table accelerometer (vert)
19 Acc V4 Individual table accelerometer (vert)
20 Force V1 Force in vertical actuator

21 Force V2 Force in vertical actuator

22 Forxce V3 Force in vertical actuator

23 Force V4 Force in vertical actuator

24 Displ V1 Individual table vertical displ.

25 Displ V2 Individual table vertical displ.

26 Displ V3 Individual table vertical displ.

27 Displ V4 Individual table vertical displ.

28 Displ H1 Individual table horizontal displ.
29 Displ H2 Individual table horizontal displ.
30 Displ H3 Individual table horizontal displ.
31 blank :

32 PS Force-1 Force in passive gtabilizer

33 PS Force-2 Force in passive stabilizer

34 PS Force-3 Force in passive stabilizer

35 PS Force-4 Force in passive stabilizer

36 Fir RAcc 1 i1st floor acceleration

37 Flr Acc 2 2nd floor acceleration

38 Flr Acc 3 3rd floor acceleration

39 blank

40 Flr Disp 1 lst floor absolute displacement

431 Flrx Disp 2 2nd floor absolute displacement

42 Flr Disp 3 3rd floor absolute displacement

43 blank

44 Uplift NA Vertical displacement column base NA
45

Uplift NB Vertical displacement column base NB



46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
24
95
96
97
98
99

Uplift SA
Uplift SB
Clstr-NBO-TI,
Clstr-NBO-M
Clstr-NBO-U
Clstr-NBI-U
Clstr-NAC~-1
Clstr-NAI-1
Clstr-SAQ-1
Clstr-SAI-1
Clrot-NAC-1
Clrot-NAT-1
Clrot-5A0-1
Clrot-SAI-1
Clflx-NAM-1
Ciflx-s5aM-1
Clstr-NBI-M
Cl£lx-SBM~-1
Clstr-NBO~1
Clstr-NBI-1
Clstr-SBO-1
Clstr-SBI1I-1
Cirot-NBO-1
Clrot-NBI-1
Clrot-SBO-1
Clrot-sSBI-1
Clflx-NAB-1
Clflx~NAT-1
C1£f1x-SAB-1
Cl1fix-SAaT-1
Bmf1x-NO-1
Bflx-NI-1
Bmflx-SI-1
Buflx-50~1
Clrot-NBO~2
Clrot-NBI~2
Clrot-SBO-2
Clrot-SBI-~2
Clflx~NBT-2
C1f1x~NBB-2
Clflx~SBT-2
Cl£1x-SBB-~-2
Clflx~-NAY-2
Cl1f1x-NBY-2
Clflx~5AY-2
Clflx-sBY-2
Clflx~NAT-2
Clflx~-NAB~2
Clf1x-SAT-2
Cl1f1x~SAB-2
Clrot-NAC-2
Clrot—-NAI-2
Clrot-SA0-2
Clrot~SAI-2
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Vertical displ. of column base SA
Vertical displ. of column base SB

Col NB midheight strain out face lower station

Col NB midheight strain out face mid station

Col Nb midheight strain out face upper station

Col NB midheight strain in face upper station

Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col,
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Beam
Bean
Beam
Beam
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.

NA
NA
SA
SA
NA
NA
SA
SA
NA
SA
NB
SB
NB
NB
SB
5B
NB
NB
SB
SB
NA
NA
SA
SA

strain outside face 1lst floor
strain inside face lst floor

strain outside face 1st floor
strain inside face 1lst floor

DCDT outside face 1lst floor

DCDT inside face 1lst floor

DCDT outside face lst floor

DCDT inside face lst floor

flex. strain @ midheight 1lst floor
flex. strain @ midheight 1lst floor
midheight strain in face mid station
flex. strain @ midheight 1st floor
strain outside face 1st floor
straln inside face lst floor

strain outside face 1lst floor
strain inside face 1lst floor

DCDT outside face 1st floor

DCDT inside face 1st floor

DCDT outside face lst floor

DCDT inside face lst floor

flex. strain bottom station lst flr.
flex. strain top station 1lst flr.
flex. strain bottom station lst flr.
flex. strain top station lst flr.

flex. strain north end outside station
flex. strain north end inside station
flex. strain south end inside station
flex. strain south end outside station

NB
NB
SB
SB
NB
NB
SB
SB
NA
NB
SA
SB
NA
NA
SA
SA
NA
NA,
SA
SA

DCDT ocutside face 2nd floor

DCDT inside face 2nd floor

DCDT outside face 2nd floor

DCDT inside face 2nd floor

flex. Strain top station 2nd flr.
flex. strain bottom station 2nd flr.
flex. strain top station 2nd flr.
flex. strain bottom station 2nd flr.
post—-yield strain 2nd floor
post-yield strain 2nd floor
post-yield strain 2nd floor
post-yield strain 2nd floor

flex. strain top station 2nd flr.
flex. strain bottom station 2nd flr.
flex. strain top station 2nd flr.
flex. strain bottom station 2nd flr.
DCDT outside face 2nd floor

DCDT inside face 2nd floor

DCDT outside face 2nd floox

DCDT inside face 2nd floor



100
101
102
103
104
105
10¢
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Bmflx-NAY-2
Bmfl1x~NBY~2
Bmf1x-SAY-2
Bmflx-SMY-2
Bmflx-NO~2
Brflx-~NI-2
Bmflx~SI-2
Bmflx~50-2
Bmrot-NOT-2
Bmrot-NOB~2
Bmrot-s0T-2
Bmrot-S0B-2
Jtrot—-NT
Jtrot~NB
Jtrot-ST
Jtrot-SB
Bmrot-NIT
Bmrot-NIB
Bmrot-SIT
Bmrot-ST1B
Clf1x-NAT-3
Clflx~NAR-3
Clflx-SAT-3
Clflx-SAB-3
Contact NA
Contact NB
Contact SA
Contact SB
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Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam

post-yield strain

post-yield strain

post-yvield strain

flex. strain north
flex. strain north
flex. strain south
flex. strain south
DCDT north outside
DCDT north outside
DCDT south outside
DCDT south outside

north end frame
post=yield strain north end frame
south end frame
south end frame

Juslis—Rivs S

end outside station
end inside station
end inside station
end outside station
station top face

station bottom face
station top face

station bottom face

Joint DCDT north end top side

Joint DCDT north end bottom side

Joint DCDT south end top side

Joint DCDT south end bottom side

DCDT north inside station top face
DCDT north inside station bottom face
DCDT south inside station top face
DCDT south inside station bottom face
NA flex. strain top station 3rd flr.
NA flex. strain bottom station 3rd flr.
SA flex. strain top station 3rd flr.

SA flex. strain bottom station 3rd flr.
Contact switch under column base NA

Contact switch under column base NB

Contact switch under column base SA

Contact switch under column base S$B

Beam
Beam
Beam
Beamnm
Col.
Col.
Col.
Col.
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Table A-3 Data Channel Schedule for EC 200 and EC 1000

CHANNEL CHANNEL MNEMONIC CHANNEL DESCRIPTION

0 Cmd H Acc Command horizontal accl. signal

1 Cmd V. Acc Command vertical accl. signal

2 Cmmd H Disp Command horizontal displ. signal

3 Cmd V Disp Command vertical displ. signal

4 Av H T Displ Average horizontal table displ.

5 Av V T Displ Average vertical table displ.

6 Av H T Acc Average horizontal table accl.

7 Av V T Acc Average vertical table accl.

8 Pitch Angular accl. in putching mode

9 Roll ' Angular accl. in rolling mode

10 Twist Angular acel. in twisting mode

il Force Hl Force in horizontal actuator

12 Force H2 Force in horizontal actuator

13 Force H3 Force in horizontal actuator

14 Acc H1 Individual table accelerometer (hor)
15 Acc H2 Individual table accelerometer (hor)
16 Acc V1 Individual table accelercmeter (vert)
17 Acc V2 Individual table accelercmeter (vert)
18 Acc V3 Individual table accelerometer (vert)
19 Acc V4 Individual table accelerometer (vert)
20 Force V1 Force in vertical actuator

21 Force V2 Force in vertical actuator

22 Force V3 - Force in vertical actuator

23 Force V4 Force in vertical actuator

24 Displ V1 Individual table vertical displ.

25 Displ V2 Individual table vertical displ.

26 Displ V3 Individual table vertical displ.

27 Displ V4 Individual table vertical displ.

28 bispl H1 Individual table horizontal displ.

29 bispl H2 Individual table horizontal displ.

30 Displ H3 Tndividual table horizontal displ.

31 blank

32 PS Force-i Torce in passive stabilizer

33 PS Force-2 Force in passive stabilizer

34 PS Force-3 Force in passive stabilizer

35 PS Force-4 Force in passive stabilizer

36 Flxr Acc 1 lst floor acceleration

37 ¥Flr Acc 2 2nd floor acceleration

38 Flr Acc 3 3rd floor acceleration

39 blank

40 Flr Disp 1 1lst floor absolute displacement

41 Flr Disp 2 2nd floor absolute displacement

42 Fly Disp 3 \ 3rd floor absolute displacement

43 Uplift NA Vertical displacement of column base NA
44 Uplift NBC Vertical displ. of outside column base NB

45 Uplift NBI Vertical displ. of inside column base NB



486
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
82
S0
91
92
93
24
95
96
97
28
99

Uplift SA
Uplift SB
blank
blank
blank
blank
Clstr-NAO-1
Clstr-NATI-1
Clstr-sac-1
Clstr-SAIl-1
Clrot~NAO-1
Clrot-NAI-1
Clrot-5SA0-1
Clrot-SAT~1

C1f1x-NAM-1

Clflx~-SaM—-1
Clflx-NBM~1
C1fl1x~SBM~1
Clstr-NBO-1
Clstr-NBI-1
Clstr-SBO-1
Clstr~SBI-1
Clrot-~NBO=-1
Clrot-NBI-1
Clrot-SBO~1
Clrot-8SBIi-1
Clflx-NAB-1
Clflx-NAT-1
Clfl1x~SAB-1
Clflx-SAT-1
Bmfl1x-NC~-1

Bmflx-NT-1

Bmflx-SI~1

Bmflx~SO-1

Clyot-NBO-2
Clrot-NBI-2
Clrot-SBO-2
Clrot-SBI~2
C1f1x~NBT-2
C1f1x-NBB-2
C1flx-SBT-2
Clflx-SBB=-2
Clflx-NAY-2
Clflx-NBY-2
Clflx-SAY-2
Clflx-5BY-2
Clfl1x~-NAT-2
C1flx-NAB-2
Clflx-SAT-2
Clf1x—SAB~-2
Clrot-NAO-2
Clrot-NAT-2
Clrot—-SA0-2
Clrot—-SAI-2
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Vertical displ. of column base SA
Vertical displ. of column base SB

Col. NA strain outside face 1lst floor

Col. NA strain inside face lst floor

Col. SA strain outside face lst floor

Col. SA strain inside face 1lst floor

Col. NA DCDT outside face 1st floor

Col. NA DCDT inside face 1lst floor

Col. SA DCDT outside face lst floor

Col. SA DCDT inside face lst floor

Col. NA flex. strain @ midheight lst floor
Col. SA flex. strain @ midheight lst floor
Col. NB flex. strain @ midheight lst floor
Col. SB flex. strain @ midheight lst floor
Col. NB strain outside face lst floor

Col. NB strain inside face lst floor

Col, SB strain outside face lst floor

Col. SB strain inside face 1st floor

Col. NB DPCDT outside face 1st floor

Col. NB DCDT inside face lst floor

Col. SB DCDT outside face lst floor

Col. SB DCDT inside face lst floor

Col. NA flex. strain bottom station 1lst flr.
Col. NA flex. strain top station 1lst fir.
Col. sA flex. strain bottom station 1lst fir.
Col. S8A flex. strain top station 1lst flr.
Beam flex. strain north end outside station
Beam flex. strain north end inside station
Beam flex. strain south end inside station
Beam flex. strain south end outside station
Col. NB DCDT outside face 2nd floor

Ccl. NB DCDT inside face 2nd floor

Col. SB DCDT outside face 2nd floor

Col. SB DCDT inside face 2nd floor

Col. NB flex. strain top station 2nd flr.
Col. NB flex. strain bottom station 2nd flr.
Col. 8B flex. strain top station 2nd flr.
Col. 8B flex. strain bottom station 2nd flr.
Col. NA post-yield strain 2nd floor

Col. NB post-vield strain 2nd floor

Col. SA post-yield strain 2nd floox

Col. SB post-yield strain 2nd floor

Col, NA flex. strain top station 2nd flr.
Col. NA flex. strain bottom station 2nd flr.
Col. SA flex. strain top station 2nd flr.
Col. SA flex. strain bottom station 2nd flr.
Col, NA DCDT outside face 2nd floor

Col. NA DCDT inside face 2nd floor

Col. SA DCDT outside face 2nd. floor

Col. SA DCDT inside face 2nd floor



1¢0
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115

116
117
118
119
120
121
122
123

Bmfix-NAY-2
Bmflx-NBY~2
Buflx-SAY-2
Bmfl1x~-SMY-2
Bmf 1 x-NO-2
Braf 1x-NT-2
Bmflx-SI-2
Bmf1x-S0-2
Bmrot-NOT--2
Brurot-NOR-2
Bmrot-S0T-2
Bmrot—~S0OB-2
Jtrot-NT
Jtrot—NB
Jtrot-ST
Jtrot-8B
Brmrot~NIT
Bmrot-NIB
Bmyot~SIT
Bmrot-SIB
Clflx~NAT-3
Ciflx~NAB-3
Clf1x-SAT-3
Cl1f]lx=-SABR-3
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Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam

post-yield strain
post-yield strain
post-yield strain
post-vield strain
flex, strain north
flex. strain north
flex. strain south
flex. strain south
DCDT north outside
DCDT north outside
DCDT scuth outgside
DCDT south outside

north end frame
north end frame
south end frame
south end frame

W W

end outside station
end inside station
end inside station
end cutside station
station top face
station bottom face
station top face
station bottom face

Joint DCDT north end top side

Joint DCDT north end bottom side

Joint DCDT south end top side

Joint DCDT south end bottom side

DCDT neorth inside station top face
DCDT north inside station bottom face
DCDT south inside station top face
DCDT south inside station hottom face
NA flex. strain top station 3rd flr.
NA flex. strain bottom station 3rd flr.
SA flex, strain top station 3rd flr.
8A flex. strain bottom station 3rd flr.

Beam
Ream
Beam
Beam
Col.
Col.
Col.
Col.
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Table A-4 Data Channel Schedule for PAC 700

CHANNEL CHANNEIL MNEMONIC CHANNETL, DESCRIPTION

0 Cmd H Acc Command horizontal accl. signal

1 Cmd V Acc Command vertical accl. signal

2 Cmd H Disp Command horizontal displ. signal

3 Cmd V. Disp Command vertical displ. signal

4 Av H T Displ Average horizontal table displ.

5 Av V T Displ Average vertical table displ.

6 Ay H T Ace Average horizontal table accl.

7 Av V T Acc Average vertical table acel.

8 Pitch Angular accl. in pitching mode

9 Roll Angular accl. in rolling mode

10 Twist Angular accl. in twisting mode

11 Force H1 Force in horizontal actuator

12 Force H2 Force in horizontal actunator

13 Force H3 Force in horizontal actuator

14 Acc H1 Individual table accelerometer {(hor)
15 Acc H2 Individual table accelerometer (hor)
16 Aoc V1 Individual table accelerometer (vert)
17 Acc V2 Individual table accelerometer (vert)
i8 Acc V3 Individual table accelerometer (vert)
19 Acc V4 Individual table accelerometer {(vert)
20 Force V1 Force in vertical actuator

21 Force V2 Porce in vertical actuator

22 Force V3 Force in vertical actuator

23 Force V4 Force in vertical actuator

24 Displ V1 Individual table vertical displ.

25 Displ V2 Individual table vertical displ.

26 Displ V3 Individual table vertical displ.

27 Displ V4 Individual table vertical displ.

28 Displ H1 Individual table horizontal displ.
29 Displ H2 Individual table horizontal displ.
30 Displ H3 Individual table horizontal displ.
31 blank

32 PS Force-1 Force in passive stabilizer

33 PS Force-2 Force in passive stabiligzer

34 PS Force-3 Force in passive stabilizer

35 PS Force-4 Force in passive stabilizer

36 Flr Acc 1 lst floor acceleration

37 Fir Acc 2 2nd floor acceleration

38 Flr Acc 3 3rd floor acceleration

39 blank

40 Flr Disp 1 1st floor absolute displacement

41 Flr Disp 2 2nd floor absolute displacement

42 Plr Disp 3 3rd floor absolute displacement

43 blank

44 Uplift NA Vertical displacement column base NA
45 Uplift NB Vertical displacement column base NB



46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
€8
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
91
92
93
94
95
96
97
98
99

Uplift SA
Uplift SB
Clstr-NBO~L
Clstr-NBO-M
Clstr=-NBO-U
Clstr-NBI-U
Clstr—-NAO-1
Clstr-NAI-1
Clstr-SAO-1
Clstr-SAI~1
Clrot-NAO-1
Clrot-NAT-1
Clrot-SA0Q-1
Clrot-SAI-1
Clflx-NAM~1
Clflx—-SAM-1
Clstr-NBI-M
Cif1x~SBM~1
Clstr~NBOC-1
Clstr—-NBI-1
Clstr-8SBO-1
Clstr-SBI-1
Cirot~NBO-1
Clrot-NBI~-1
Clrot—-SBO-1
CLrot-8SBI-1
Clflx-NAB-1
Clflx~NAT~1
Clflx~SAB-1
Ciflx~-SAT-1
Brflx~-NO-1
Bmflx-NI-1
Bmflx~s1-1
Bnufix~50~-1
Clrot-NBO-2
Clrot~-NBI-2
Clrot-8R0O-2
Clrot-8BI-2
Clflx~NBT-2
CLflx~-NBB-2
Clf1x-5BT-2
Cif1x~5BBR-2
Ciflx-NAY-2
Clfix-NBY-2
Clfix-SAY-2
Cilflx-SBY-2
S1flx-NAT=2
Clflx~NaAB~2
CLE1x-SAT-2
Clf1x-SAB-2
Clrot-Nao=2
Clrot—-NAI-2
Clrot-NAO~2
Clrot-SAI-2
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Vertical displ. of column base SA
Vertical displ. of column base SB

Col.
Col.
Cel.
Cel.
Col.
Col.
Col.
Cel.
Cel.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Beam
Beam
Beam
Beam
Col.
Col.
Col,
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.

NB
NB
NB
NB
NA
NA
SA
52
NA
NA
SA
SA
NA
5A
NB
SB
NB
NB
SB
SB
NB
NB
3B
SB
NA
NA
SA
SA

midheight strain out face lower station

midheight strain out face mid station

midheight strain out face upper station
midheight strain in face upper station

strain outside face 1st floor
strain inside face lst floor

strain outside face 1lst floor
strain inside face 1lst floor

DCDT outside face 1st floor

DCDT inside face 1st floor

DCDT outside face lst floor

DCDT inside face 1st floor

flex. strain @ midheight lst floor
Flex. strain @ midheight lst floor
midheight strain in face mid station
flex. strain @ midheight 1st floor
strain outside face 1lst floor
strain inside face 1st floor

strain cutside face lst floor
strain inside face lst floor

DCDT outside face lst floor

DCDT inside face lst floor

DCDT outside face 1lst floor

DCDT inside face lst floor

flex. strain bottom station 1lst flr.
flex. strain top station 1lst flr.
flex. strain bottom station lst flr.
flex. strain top station 1lst flr.

flex. strain north end outside station
flex. strain north end inside station
flex. strain south end inside station
flex. strain south end outside station

NB
NB
SB
SB
NE
NB
SB
SB
NA
NB
SA
SB
NA
NA
SA
SA
NA
NA
SA
SA

DCDT outside face 2nd floor

DCDT inside face 2nd floor

DCDT outside face 2nd floor

DCDT inside face 2nd floor

flex. strain top station 2nd flr.
flex. strain bottom station 2nd flr.
flex. strain top station 2nd flr.
flex. strain bottom station 2nd flr.
post~yield strain 2nd floor
post-yeild strain 2nd floor
post-yield strain 2nd floor
post-yield strain 2nd floor

flex. strain top station 2nd flr.
flex. strain bottom station 2nd flr.
flex. strain top station 2nd flr.
flex. strain bottom station 2nd flr.
DCDT outside face 2nd floor

DCDT inside face 2nd floor

DCDT outside face 2nd floor

DCDT inside face 2nd floor



100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
i18
119
120
121
122
123

Bmflx-NAY-2
Bmflx-NBY-2
Bmflx~SAY-2
Bmf1x-SMY-2
Bmnflx~NO-2
Binflx-NI-2
Bmflx~SI-2
Bmf1x-50-2
Bmrot~NOT-2

‘Bmrot-NOR-2

Bmrot-8S0T-2
Bmrot—-SOB-2
Jtrot-NT
Jtrot-NB
Jtrot-5T
Jtrot-SB
Bmrot-NIT
Brrot~-NIB
Brrrot-SIT
Bmrot-SIB
Clfix-NAT-3
Clflx~NAB-3
Clflx-saT-3
Clflx-SAB-23
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Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam
Beam

post-yield strain
post-yield strain
post-yield strain
post-yield strain
flex. strain north
flex. strain north
flex. strain south
flex. strain south
DCDT north ocutside
DCDT north outside
DCDT south outside
DCDT south ocutside

north end frame
north end frame
south end frame
south end frame
end outside station
end inside station
end inside station
end outside station
station top face
station bottom face
station top face
station bottom face

W o

Joint DCDT north end top side
Joint DCDT north end bottom side
Joint DCDT south end top side
Joint DCDT south end bottom side

Beam
Bean
Beam
Beam
Col,
Col.
Col.
Col.

DCDT north inside
DCDT north inside
DCDT south inside
DCDT south inside

station top face
station bottom face
station top face
station bottom face

NA flex. strain top station 3rd flr.

NA flex. strain bo
SA flex. strain to
sAa flex. strain bo

ttom station 3xrd flr.
r station 3rd flr.
ttom station 3rxrd flr.
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Appendix B

List of Dynamic Tests Pexformed
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SEQUENCE  FILE NAME  SIGNAL SPANS
1 200875.2 EC 100/000
2 200875.3 EC 300/000
3 220875.2 EC 400,/000
4 220875.2 EC 500/000
5 220875.6 EC 600,/000
& 220875.8 EC 700/000
7 220875.10 EC 800/000
8 220875.12 EC 900/000
9 250875.2 EC 200/000
10 250875.4 EC 1000/000
11 250875.6 EC 200/200
12 250875.8 EC 200/400
13 250875.10 EC 200/200
14 250875.12 EC 500/330
15 250875.14 EC 600/500
16 270875, 2 EC 700/595
17 270875.4 EC 200/680
18 270875.6 EC 900/765
19 270875.8 EC 1000/850
20 270875.10 PAC 100/000
21 270875.12 PAC 200/000
22 270875.14 PAC 300/000
23 270875.16 PAC 350,/000
24 270875.18 - PAC 400/000
25 280875.2 EC 200/000
26 280875.4 EC 400/000
27 280875.6 EC 600/000
28 280875.8 EC 800/000
29 280875.10 EC 9007000
30 2B0875.12 EC 1000/000
31 290875.2 EC 400/340
32 290875.4 EC 800,680
33 290875.6 EC 1000/850
34 280875.8 PAC 100/000
35 290875.10 PAC 200/000
36 290875.12 PAC 300/000
37 020975.2 PAC 400/000
38 160175.1 PAC 400/000
39 160175.2 PAC 600/000
40 160175.3 PAC 700/000
41 200176.3 PAC 150/000
42 200176.4 PAC 400/000
43 200176.5 PAC 500/000
44 200176.6 PAC 600/000
45 200176.7 PAC 700 /000
46 210176.1 EC 100/000
a7 210176.2 EC 200/000
48 210176.3 EC 250/000
42 210176.4 EC 300/000
50 220176.1 EC 100/300
51 220176.2 EC 200/500
52 220176.3 EC 300/675

Phase T

EC 200 I in this report

COMMENTS

EC 1000 I in this report (filmed)

Phase I

" (V. Signal gain doubled)

EC 1000/850 I in this report

Phase T

PAC 400 I in this report

EC 200 in this report (Base Fixed)

Base Fixed

EC 1000 in this report
Base Fixed

" "

PAC 700 in this report

Phase II

" ”"
" "

(filmed)

(Base Fixed)

PAC 700 IT in this report
EC 100 IT in this report

Phase II

1" "

EC 300 IT in this report

Phase II

" 1

EC 300/675 in this report
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NEERING RESEARCH

REPOBRTS

Numbers in parentheses are Accession Numbers assigned by the National Technical Information

Technical Information Service, 5285 Port Royal Road, Springfield, Virginia, 22161.
should be quoted on orders for reports (PB--- --- ) and remittance must accompany each order.
without this information were not available at time of printing.
inquirers this information when it becames available.

EERC
EERC
EERC
EERC
EERC
EERC
EERC
| EERC
EERC
EERC
EERC
EERC
EERC
EERC
EERC
EERC
EERC
EERC
EERC
EERC

EERC

67-1
68-1
68-2
68-3
68-4
£8-5
69-1
£9-2
69-3
69-4
§9-5
69-6
69-7
69-8
69-9
69-10
69-11
63-12
69-13
69-14

69-15

Copies of the reports may be ordered from the National

Accession Numbers

Upon request, EERC will mail

"Feasibility Study of Large-Scale Earthquake Simulator Facility," by J. Penzien,

d. G. Bouwkamp, R. W. Clough, and D. Rea - 1967 (PB 187 905)A07

Unassigned
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"Seismic Response of Soil Deposits Underlain by Sloping Rock Boundaries," by H. Dezfulian
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and E. L. Wilson ~ 1969 (PB 189 026)A10

"Seismic Behavior of Multistory Frames Designed by Different Philosophies,” by
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"The Behavior of Sands under Seismic Leading Conditions," by M. L. Silver and H. B. Seed -
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"Earthquake Response of Gravity Dams," by A. K. Chopra - 1970 (AD 709 640)A03
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EERC 73-4 "Experimental Investigation into the Seismic Behavior of Critical Regions of Reinforced
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EERC 73-8 “Behavior of Reinforced Concrete Deep Beam-Column Subassemblages under Cyclic Loads,"
by 0. Kusti and J. G. Bouwkamp - 1973 (P8 246 117)Al2

EERC 73-9  "Earthquake Analysis of Structure-Founation Systems," by A. K. Vaish and A. K. Chopra -
1973 (AD 766 272)A07

EERC 73-10 ‘"Deconvelution of Seismic Response for Linear Systems," by R. B. Reimer - 1973
{PB 227 179)A08B

EERC 73-11 "SAP IV: A Structural Analysis Program for Static and Dynamic Response of Linear
Systems," by K.-J. Bathe, E. L. Wilson, and F. E. Peterson - 1973 (PB 221 967)A09

EERC 73—12 "Analytical Investigations of the Seismic Response of long, Multiple Span Highway
Bridges," by W. 5. Tseng and J. Penzien - 1873 (PB 227 816)Al10

EERC 73-13 "Earthguake Analysis of Multi-Story Buildings Including Foundation Interaction," by
A. K. Chopra and J. A. Gutierrez - 1973 (PB 222 $70)A03

EERC 73-14 *"ADAP: A Computer Program for Static and Dynamic Analysis of Arch Dams," by R. W. Clough,
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EERC 73-15 "Cyclic Plastic Amalysis of Structural Steel Joints,” by R. B. Pinkney and R. ¥. Clough -
1973 (PB 226 843)A08

EERC 73-16 ™"QUAD-4: A Computer Program for Evaluating the Seismic Response of Soil Structures by
Yariable Damping Finite Element Procedures,® by I. M. Idriss, J. Lysmer, R.. Hwang, and
H. B. Seed - 1973 (PB 229 424)A0S
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EERC 73-17 “Dynamic Behavior of a Multi-Story Pyramid Shaped Building," by R. M. Stephen,
J. P. Hollings, and J. G. Bouwkamp - 1973 {PB 240 718)A06

EERC 73-18 "Effect of Different Types of Reinforcing on Seismic Behavior of Short Concrete Columns,"
by V. V. Bertero, J. Hollings, 0. Kistii, R. M. Stephen, and J. G. Bouwkamp - 1973

EERC 73-19 "Olive View Medical Center Materials Studies, Phase I," by B. Bresler and V. V. Bertero -
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EERC 73-21 "Constitutive Models for Cyclic Plastic Deformation of Engineering Materiais," by
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EERC 73-26 "Investigation of the Failures of the Olive View Stairtowers during the San Fernando
Earthquake and Their Implications on Seismic Design," by V. V. Bertero and R. G. Collins -
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EERC 73-27 ‘“Further Studies on Seismis Behavior of Steel Beam-Column Subassemblages," by V. V. Bertero,
H. Krawinkler, and E. P. Popov - 1973 {PB 234 172)A06

EERC 74-1 "Seismic Risk Analysis," by C. S. Oliveira - 1974 (PB 235 920)A06
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C. K. Chan, and H, B. Seed - 1974

EERC 74-3  "Optimum Design of Earthquake Resistant Shear Buildings," by D. Ray, K. S. Pister, and
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EERC 74-4 "LUSH - A Computer Program for Complex Response Analysis of Soil-Structure Sysiems," by
J. Lysmer, T. Udaka, H. B. Seed, and R. Hwang - 1974 (PB 236 796}A05

EERC 74-5 “Sensitivity Analysis for Hystsretic Dynamic Systems: Applications to Earthguake
Engineering." by D. Ray - 1974 (PB 233 213)406

FERC 74-6 "Soil Structure Interaction Analyses for Evaluating Seismic Response,” by H. B. Seed,
J. lysmer, and R. Hwang - 1974 (PB 236 519)A04
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ment," by V. V. Bertero, E. P. Popov, and T. Y. Wang - 1974 {PB 236 797}A07
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EERC 74-11 "Liquefaction of Gravelly Soils under Cyclic Loading Conditions," by R. T. Wong,
H. B. Seed, and C. K. Chan - 1974 (PB 242 042)A03

EERC 74-12 “Site-Dependent Spectra for Earthquake-Resistant Design,” by H. B. Seed, . Ugas, and
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"Modeling and Identification in Nonlinear Structural Dynamics - I. One Degree of Freedom
Models," by N. Distefano and A. Rath - 1974 (PB 241 548)A06

"Determination of Seismic Design Criteria for the Dumbarten Bridge Replacement Structure,
Vol. I: Description, Theory and Analytical Modeling of Bridge and Parameters," by
F. Baron and S.-H. Pang - 1975 {PB 259 407)Als

"Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure,
Vol. II: Numerical Studies and Establishment of Seismic Design Criteria,” by F. Baron
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"Seismic Risk Analysis for a Site and a Metropolitan Area,” by C. 5. Oliveira - 1975
(PB 248 134)A09

"Analytical Investigations of Seismic Response of Short, Single or Multiple-Span
Highway Bridges," by M.-C. Chen and J. Penzien - 1975 {PB 241 454)A09

"An Evaluation of Some Methods for Predicting Seismic Behavior of Reinforced Concrete
Buildings,” by S. A. Mahin and V. V. Bertero - 1975 (PB 246 306)A16

"Farthquake Simulator Story of a Steel Frame Structure, Vol. I: Experimental Resuylts,”
by R. W. Clough and D. T. Tang - 1975 (PB 243 981)AT13

"Dynamic Properties of San Bernardino Intake Tower,” by D. Rea, C.-Y Lijaw and A, K. Chopra -
1975 {AD/A 008 406)A05

"Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure,
Vol. 1: Description, Theory and Analytical Modeling of Bridge Components," by F. Baron
and R. E. Hamati - 1975 (PB 251 539}A07

“Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure,
Vol. 2: Numerical Studies of Steel and Concrete Girder Alternates,™ by F. Baron and
R. E. Hamati - 1975 {PB 251 540)A10

"Static and Dynamic Analysis of Nonlinear Structures," by D. P. Mondkar and G. H. Powell -
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"Hysteretic Behavior of Steel Columns," by E. P. Popov, V. V. Bertero, and S. Chandramouli -
1975 {PB 252 365)Al1

“Earthquake Engineering Research Center Library Printed Catalog * - 1975 (P8 243 711)A26

"Three Dimensional Analysis of Building Systems (Extended Version)," by E. L. Wilson,
J. P. Hollings, and H. H. Dovey - 1975 (PB 243 989)A07

"Petermination of Scil Liquefaction Characteristics by lLarge-Scale Laboratory Tests,”
by P. De Alba, C. K. Chan, and H. B. Seed - 1975 {XUREG 0027)A08

"A Literature Survey - Comprassive, Tensile, Bond and Shear Strength of Masonry," by
R. L. Mayes and R. W. Clough - 197% (PB 246 292)AT0

"Hysteretic Behavior of Ductile Moment-Resisting Reinforced Concrete Frame Components,"
by V. V. Berterc and E. P. Popov - 1975 (PB 246 388)A05

“Relationships Between Maximum Acceleration, Maximum Velocity, Distance from Source,
Local Site Conditions for Moderately Strong Earihquakes," by H. B. Seed, R. Murarka,
J. Lysmer, and 1. M. ldriss - 1975 {PB 248 172)A03

"The Effects of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of
Sands," by J. Mulilis, C. K. Chan, and H. B. Seed - 1975 (Sunmarized in EERC 75-28)

"The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced
by Moment, Shear and Axial Force," by M. B. Atalay and J. Penzien - 1975 (PB 258 842)Al1}

"Dynamic Properties of an Eleven Story Masonry Building," by R. M. Stephen, J. P. Hollings,
J. 6. Bouwkamp, and D. Jurukovski - 1875 {PB 246 945)A04

"State-of-the~Art in Seismic Strength of Masonry - An Evaluation and Review," by R. L. Mayes
and R. W. Clough - 1975 (PB 249 040)A07

"Frequency Dependent Stiffness Matrices for Visccelastic Half-Plane Foundations," by
A. K. Chopra, P. Chakrabarti, and G. Dasgupta - 1975 (PB 248 121)A07
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EERC 75-23 “Hysteretic Behavior of Réinforced Concrete Framed Walls," by 7. Y. Wang, V. V. Bertero,
and E. P. Popov - 1975

EERC 75-24 "Testing Facility for Subassemblages of Frame-Wall Structural Systems," by V. V. Bertero,
E. P. Popov, and T. Endo - 1975

EERC 75-25 "Influence of Seismic History on the Liguefaction Characteristics of Sands," by H. B. Seed,
K. Mori, and C. K. Chan - 1975 (Summarized in EERC 75-28)

EERC 75-26 VThe Generation and Dissipation of Pore Water Pressures during Soil Liquefaction,” by
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EERC 75-27 "ldentification of Research Needs for Improving Aseismic Design of Building Structures,"
by V. V. Bertero - 1975 {PB 248 136)A05

EERC 75-28 "Evaluation of Soil Liquefaction Potential during Earthquakes,"” by H. B. Seed, I. Arango,
and C. K. Chan - 1975 (NUREG 0026)A13

EERC 75-29 ‘"Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in
Liquefaction Analyses," by H. B. Seed, I. M. Idriss, F. Makdisi, and K. Banerjee - 1975
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Systems," by E. Berger, J. Lysmer, and H. B. Seed - 1975

EERC 75-32 “TRIP and TRAVEL - Computer Programs for Soil-Structure Interaction Analysis with Hori-
zontally Travelling Waves," by T. Udaka, J. Lysmer, and H. B. Seed - 1975

EERC 75-33 "Predicting the Performance of Structures in Regions of High Seismicity," by J. Penzien -
1975 (PB- 248 130}A03

EERC 75-34 “Efficient Finite Element Apalysis of Seismic Structure-Soil-Dirvection," by J. Lysmer,
H. B. Seed, T. tdaka, R. N. Hwang, and C.-F. Tsai - 1975 (PB 253 570)A03
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by D. P. Mondkar and G. H. Powell - 1975 (PB 252 386)A08
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Subjected to Earthquake Loading,” by N. D. Walker and K. S. Pister - 1975 (PB 247 781)AD6

EERC 75-40 ™An Alternative Representation of the Elastic-Viscoelastic Analogy,” by G. Dasgupta and
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"Time and Frequency Domain Analysis of Three-Dimensional Ground Motions,San Fernando
Earthquake," by T. Kubo and J. Penzien - 1976 (PB 260 556)A11

"Expected Performance of Uniform Building Code Design Masonry Structures,"” by R. L. Mayes,
Y. Omote, S. W. Chen, and R, W. Clough - 1976

“Cyclic Shear Tests on Concrete Masonry Piers, Part I - Test Results," by R. L. Mayes,
Y. Omote, and R. W. Clough - 1976 (PB 264 424)A06

"A Substructure Method for Earthquake Analysis of Structure-Soil Interaction," by
J. A. Gutierrez and A. K. Chopra - 1976 (PB 247 783)A08

“Stabilization of Potentially Liquefiable San Deposits using Gravel Drain Systems," by
H. B. Seed and J. R. Booker - 1976 (PB 248 820)A04

"Influence of Design and Analysis Assumptions on Computed Inelastic Response of
Moderately Tall Frames," by G. H. Powell and D. G. Row - 1976

"Sensitivity Analysis for Hysteretic Dynamic Systems: Theory and Applications,” by
D. Ray, K. 5. Pister, and E. Polak - 1976 (PR 262 853)A04

“Coupled Lateral Torsional Respense of Buildings to Ground Shaking,” by C. L. Kan and
A. K. Chopra - 1976 (PB 257 S07)A09

"Seismic Analyses of the Banco de America,” by V. V. Bertero, 5. A. Mahin, and
J. A. Hollings - 1976

"Reinforced Concrete Frame 2: Seismic Testing and Analytical Correlation,” by R. W. Clough
and J. Gidwani - 1976 (PB 261 323)A08

"Cyclic Shear Tests on Masonry Piers, Part II - Analysis of Test Results,” by R. L. Mayes,
Y. Omote, and R. W. Clough - 1976

"Structural Steel Bracing Systems: Behavior under Cyclic Loading," by‘E. P. Popov,
K. Takanashi, and C. W. Roeder - 1976 (PB 260 715)A05
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