
REPORT NO.

UCB/EERC-78/03

FEBRUARY 1978

. ". \

PB 281 686

EARTHQUAKE ENGINEERING RESEARCH CENTER

EXPERIMENTAL RESULTS
OF AN EARTHQUAKE ISOLATION SYSTEM
USING NATURAL RUBBER BEARINGS

by

J. M. EIDINGER

and

J. M. KELLY

Report to National Science Foundation

.1

COLLEGE OF ENGINEERING

UNIVERSITY OF CAUEQRNIA . Berkeley, California
i REPRODUCED BY :

: NATIONAl. TECHNICAL '
l INFORMATION SERVICE

u. s. DEPA~:n, ENT Of COMNIERCE
SPRiU'3F all, V~,. nl"j

I





Experimental Results of an Earthquake Isolation
System Using Natural Rubber Bearings

BIBLIOGRAPHIC DATA
SHEET

4. Title and Subtitle
1

1. Report No.
UCB/EERC-78/03

5. Report Date

February 1978
6.

7. Author(sl
J.M. Eidinger and J.M. Kelly

9. Performing Organization Name and Address

Earthquake Engineering Research Center
University of California, Richmond Field Station

47th Street and Hoffman Blvd.
Richmond, California 94804

12. Sponsoring Organization Name and Address

National Science Foundation
1800 G Street, N.W.
Washington, D. C. 20550

15. Supplementary Notes

16. Abstracts

8. Performing Organization Rept.
No. 78/03

10. Project/Task/Work Unit No.

11. Contract/Grant No.

ENV 76-04262

13. Type of Report & Period
Covered

14.

This report describes the experimental results of a series of earthquake
simulation tests on an earthquake isolation system based on natural rubber bearings.
Three forms of isolation system were used. As the primary purpose of the test program
was to examine the effect of damping in the isolation system, the essential difference
between the three forms was the level of the damping in the system.

A large number of simulated earthquake motions were used in the tests including
El Centro 1940, Taft 1950, Parkfield 1966 and Pacoima Dam 1971. The natural rubber
bearings reduced the forces and overturning moments to approximately one tenth of
those in a conventionally fixed structure and the results demonstrated the practical
possibility of this type of isolation system for full scale buildings.

17b. Idenrifien,/Open-Ended Terms

-

17c. COSATI Field/Group

18. Availability Statement

Release Unlimited

FORM NTI5-35 (REV. 10-73) ENDORSED BY ANS[ AND UNESCO.

.
j

19•. Security Class (This
Report)

-TJNrl ASSIFIEn
20. Security Class (This

Page
UNCLASSIFIED

THIS FORM MAY BE REPRODUCED

21. No. of Pages

22. Price

17 (j) if - 17¢t
USCOMM·DC 8265·P74





EXPERIMENTAL RESULTS OF AN EARTHQUAKE ISOLATION

SYSTEM USING NATURAL RUBBER BEARINGS

by

John M. Eidinger
Graduate Student

Division of Structural Engineering
and Structural Mechanics

and

James M. Kelly
Professor of Civil Engineering

Report to National Science Foundation

Report No. UCB/EERC - 78/03
Earthquake Engineering Research Center

College of Engineering
University of California

Berkeley, California

.
/- tI..-





ABSTRACT

This report describes the experimental results of a series of

earthquake simulation tests on an earthquake isolation system based on

natural rubber bearinqs. Three forms of isolation system were used. As

the primary purpose of the test program wasta examine the effect of

dampinq in the isolation system, the essential difference between the

three forms was the level of the damping in the system.

A large number of simulated earthquake motions were used in the

tests includinq El Centro 1940, Taft 1950, Parkfield 1966 and Pacoima

Dam 1971. The natural rubber bearings reduced the forces and overturning

moments to approximately one tenth of those in a conventionally fixed

structure and the results demonstrated the practical possibility of this

type of isolation system for full scale buildings.
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1. INTRODUCTION

In this report we summarize experimental findings on the use of

natural rubber foundation bearings to isolate a model building from earth­

quake excitation. This study of the isolation system was designed to

determine the suitability of the system for use in full-scale structures by

investigating: (1) the behavior of the model building when on the system,

(2) the stability of the model rubber bearings under large deflections, and

(3) the effect of introducing large amounts of damping into the system.

The rubber bearings greatly lessened the structural response of the

model building, reducing the base overturning moment of the model building

to 1/10 that for the same model without rubber bearings, and base shear and

interstory drift by over 80% when the El Centro 1940 N-S earthquake record

was used as input to the shaking table. Similar results were obtained using

the Taft 1950, Parkfield 1966 and Pacoima Dam 1971 earthquake records. When

time-scaled earthquake records were used to simulate the behavior of a full­

scale structure there were similar reductions in response.

In addition to establishing that the model building could be effectively

isolated from earthquake-induced vibration, the study demonstrated that the

natural rubber bearings, having performed well in over 65 tests, were well

designed. The bearings were designed and constructed by C. J. Derham and

A. G. Thomas of the Malaysian Rubber Producers Research Association, Hartford,

England. The rubber bearings were linear for shear strains in excess of

100%, and were able to accept lateral deflections of three inches and more.

A similarly designed full-scale rubber bearing could accommodate lateral

deflections of over two feet.
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Given the favorable outcome of this experimental study, further

studies will concentrate on the development of complete, practical earth­

quake isolation systems [1]. Wind restraints in the form of mechanical

fuses and energy-absorbing devices will be developed and tested. These

restraints will allow a structure to behave as with a rigid foundation under

service loads, wind forces and light seismic forces, but also allow the

structure to become isolated under severe earthquake loading.
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2. ISOLATION CONCEPT

The concept of isolation from harmful vibration is well known.

Isolation has been used to reduce floor vibration induced by machinery.

If the vibrating frequency of the machinery is known, the vibration in the

foundation or floor can be reduced to negligible levels by providing supports

for the machinery, with these supports acting as an isolation system. Build­

ings have also been isolated from groundborne vibration. A number of buildings

have been built on isolation systems to reduce vibration caused by nearby

rail and subway traffic [2J. Of the many materials used from such isolation,

natural rubber has proven to be very effective.

The engineering profession has rarely attempted to extend the concept

of isolation to the design of structures against earthquake vibration. No

well-established criteria exist as to what constitutes an effective earth­

quake isolation system nor as to proper design and construction procedures.

Structures on an earthquake isolation system would require, for instance,

an unconventional foundation design and extensive dynamic analyses. The

foundation isolation system of an isolated structure should remain stiff

under wind loads, thus requiring that behavior under normal circumstances

and under moderate to severe earthquake loading be differentiated.

For a structure to be isolated effectively from earthquake vibration,

two criteria must be fulfilled: (1) the lowest natural frequency of an

isolated structure must be well below most earthquake input frequencies,

and (2) the first mode shape of an isolated structure should approach that

of a single-degree-of-freedom rigid body system so that higher mode contri­

butions will be negligible. In order to isolate a body from a particular

input frequency, the frequency of the body must be less than 1/12 times the
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input frequency (Figure 2.1). Since most earthquake vibration is in the

range 0.3 to 5.0 Hz, according to this criterion the first mode frequency

of an isolated structure would be approximately 0.2 Hz. However, such a

low frequency is not ideal for two reasons: (1) for a given earthquake, the

lateral deflection of an isolation system of such a frequency could approach

several feet, and (2) structures need not be isolated from the low-frequency

components of earthquake excitations since very long-period structures

typically experience low peak accelerations in their first mode. Thus, it

is essential to strike a balance between reducing acceleration while mini­

mizing displacements and for these reasons a frequency of around 0.5 Hz was

thought to be a suitable compromise.

The model structure used in this study had a first mode frequency of

0.58 Hz on the rubber bearings as constructed for the isolation system.

The design of rubber bearings for such an application involves a trade-off

between minimizing the lateral stiffness while maintaining stability under

vertical load. Reducing the lateral stiffness tends to reduce the vertical

stability of the bearings. Due to the low mass of the structure, the first

mode frequency could not be further reduced without sacrificing the strength

of the rubber bearings. A simple analysis shows that the first mode frequency

of a full-scale structure could easily be lowered to approximately 0.35 Hz.

If a scale factor of 2.89 is applied to the model structure to simulate a

fifty-foot tall prototype structure and an isolated rigid body mode shape is

assumed, then

f = irr Ik/m = O. 58 Hz

for the model structure, and

f = irr ;k(2.89)2/m(2.89)3 = 0.34 Hz

4
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for the prototype structure.

To simulate the effect of an earthquake on the prototype structure

the time scales of two recorded earthquake motions were divided by the

scaling factor of 2.89 and these scaled motions were used for the loading

tests on the model structure. As would be expected, the model structure

was more effectively isolated from the scaled than from the unscaled

earthquake inputs. Increased damping, however, had little beneficial effect

when the time-scaled earthquakes were used as input ground motions.
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3. ISOLATION SYSTEM

The components of the isolation system consisted of two sets of four

natural rubber bearings and a set of four hydraulic shock absorbers. For

one set of bearings, a low damping rubber compound (designed RL) was used,

and for the other a high damping rubber compund (RH) was used. The hydraulic

shock absorbers were used in conjunction with the low damping rubber bearings

(together designated R-S). Only the low damping bearings were available

when testing began. Until the high damping bearings could be fabricated,

the use of hydraulic shock absorbers, pure viscous dampers, was the simplest

way of achieving a highly damped isolation system.

The bearings used in the experimental program were similar to bearings

currently used for vibration isolation in buildings located in areas of

high traffic disturbance with the difference that a bearing used for earth­

quake isolation must have a lower lateral stiffness and be able to accept

high levels of lateral deflection. Natural rubber is well suited for these

purposes.

Natural rubber can accept strains on the order of several hundred

percent without failure. The ultimate tensile strength of natural rubber

is higher than that of any artificial rubber. The ratio of bulk modulus

to shear modulus can be extremely large; for example, for soft natural

rubber it can be as high as 1000, allowing the design of bearings that are

very soft horizontally and very stiff vertically. Natural rubber performs

well with regard to long-term performance because it creeps very little,

is highly resistant to fire [3], and can be made to be effectively immune

from oxidation attack. The bearings used in the experimental program were

designed and constructed by the Malaysian Rubber Producers' Research Associa­

tion. The low and high damping bearings were similarly constructed, the only
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difference being the composition of the rubber. The bearing is illustrated

in Figure 3.1, its dimensions given in Figure 3.2, and the composition of

the rubber for each type of bearing is provided in Table 3.1.

To provide sufficient cross-sectional area for stability under the

light experimental dead load, it was necessary to develop specially low

modulus rubber compounds [4]. By multilayer construction, it was possible

to increase the rocking stiffness of the isolated model structure suffi­

ciently to prevent rocking of the bearings. At the same time, the multi­

layer construction produced bearings that were four hundred times stiffer

in the vertical than in the horizontal direction. Each laminate of rubber

was 0.079 inches (2 mm) thick. Total rubber thickness in each bearing was

2.83 inches (72 mm). Table 3.2 provides the thickness of all laminates in

the bearings. The lateral stiffness characteristics of the RL and RH bear­

ings were very similar. The first natural frequency of the model structure

on either set of bearings was 0.58 Hz. When the shock absorbers were added,

the frequency increased to 0.60 Hz.

It was not possible to make the experimental bearings by the usual

commercial process of direct chemical rubber-to-steel bonding vulcaniza­

tion. They were hand fabricated from sheets of rubber vulcanization

bonded to aluminum foil. The aluminum was in turn bonded to the mild steel

interleaves using industrial quality double-sided adhesive tape over two­

thirds of the surface area, and epoxy resin for greater shear strength over

the remaining one-third area. The bearings so-fabricated were adequately

strong for the tests described in this report, being capable of sustaining

repeated shear deformation in excess of 100%, but were clearly not as strong

nor as durable as equivalent commercially produced bearings would be. Due
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to the controlled conditions of the tests, fire or oxidation attack was

not considered. The theoretical vertical stiffness of these bearings was

approximately 500,000 lbs-per-inch. Due to the 72 layers of adhesive tape,

the measured effective vertical stiffness at the working load was on the

order of 150,000 lbs-per-inch.

The vertical stiffness characteristics of the low damping bearings

are shown in Figure 3.3. The vertical stiffness characteristics of the

high damping bearings were similar. The pronounced soft lead-in is pri­

marily the result of the method of construction and would not normally

be so marked. In a static load test, the bearings were vertically cycled

from 5,000 to 20,000 pounds. The bearings displayed almost no hysteresis

after the first soft lead-in cycle. The slight amount of creep resulted

from creep of the adhesive tape. After three cycles, no discernible creep

occurred. The ultimate vertical strength ~f each bearing was 30,000 lbs,

three times the static dead load on them due to the weight of the model

structure.

The horizontal stiffness characteristics of the low and high

damping rubber bearings are shown in Figure 3.4. The data are taken from

the dynamic earthquake simulator tests. The hysteresis loops represent

approximately 3 and 10% critical damping. The response of the rubber

bearings was essentially linear to shear strains in excess of 100%. The

dynamic stiffness was about 320 to 360 lbs-per-inch, and the static hori­

zontal stiffness of individual bearings was measured to be between 360 and

400 lbs-per-inch. Thus, the stiffness of the bearings is essentially

frequency independent.
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4. EXPERIMENTAL MODEL AND TESTING FACILITY

The experimental work was carried out using the twenty by twenty foot

shaking table at the Earthquake Engineering Center of the University of

California, Berkeley. The shaking table is described in Reference [5J.

The model steel frame building is illustrated in Figures 4.1 and 4.2. The

model weighed 39,500 pounds and was twenty feet tall. More detail on this

model and the data reduction process is provided in References [1! 6 and?J.

Figures 4.3 and 4.4 illustrate the mounting of the model on the rubber

bearings. The heavy W10x49 base floor girders ensured that the rubber bear­

ings would undergo little bending deformation, with the isolation devices

when used placed beneath each of the column legs.

Fifty-eight transducers were used to collect data. The data were

scanned at approximately 50 samples per channel per second.

The span number preceding the specified earthquakes in this text

refer to the intensity of the input motion. A span 1000 input motion cor­

responds to a peak displacement of ~5 inches; the peak displacement at a

lower span number is reduced in proportion.
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5. EXPERIMENTAL TEST PROGRAM AND DATA REDUCTION

Four foundation conditions were tested on the earthquake simulator

table: (1) with the foundation conventionally bolted and incorporating

no isolation device (referred to as FIX), (2) with the low damping rubber

bearings installed (RL), (3) with the high damping rubber bearings installed

(RH), and (4) with the low damping rubber bearings and shock absorbers

installed together (R-S). The building model was the same for all four

foundation conditions. For each foundation condition as many as four hori­

zontal and two ,vertical earthquake simulation tests were performed. In

Table 5.1 the peak displacements and accelerations of the input motions

referred to in this report are given. Comparisons between tests as well

as detailed discussions of selected individual tests are presented in the

following sections.

For purposes of data reduction, the long direction of the model

structure was defined as the North-South direction. The shaking table

motion was in the N-S and vertical directions only. Positive results

represent response to the North.

Response Spectra - Each response spectrum calculated at 1, 3, 10,

and 15% damping ratio.

Table Displacement and Acceleration - Actual recorded table motions

during testing.

Rubber Pad Displacement Relative to Table - The two nearly identical

traces plotted, solid and dashed, represent, respectively, the lateral

deflections of the rubber bearings on the west and east longitudinal frames

(A and B) of the model. Discrepancies between these traces would indicate

torsional response of the structure. Other dashed traces refer to com-

parative data.
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1st, 2nd, and 3rd Floor Disp1ac~ment Relative to Table - These data

were obtained by subtracting the recorded table displacement from the abso­

lute motion of each floor.

Base, 1st, 2nd, and 3rd Floor Absolute Acceleration - Recorded

accelerations of the concrete blocks on each floor.

Base, 1st, 2nd and 3rd Floor Shear and Overturning Moment - The

first story shear represents the summation of the first, second, and third

story inertia forces. The inertia forces were calculated from the measured

floor accelerations. The floor overturning moments are the summation of the

floor inertia forces about the floor level in consideration. Base shears

and overturning moment do not apply to the fixed foundation model.

NA - NB and SA - SB Transverse Displacement - These data are the

transverse displacements along column lines NA - NB and SA - SB, and were

reduced from the square of the potentiometer gage displacement data in the

EW direction less the square of the potentiometer data in the NS direction.

The error due to this linear approximation is less than 1%.

Absolute and Relative Vertical Acceleration - The accelerations are

measured at the base of the column legs, directly above the rubber bearings.

Relative acceleration is the absolute minus the acceleration of the table.

All tests using a particular earthquake input, regardless of span

setting or base fixity, have been shifted in time so that peak table dis­

placement occurs at the same instant. This is to facilitate comparison

between tests.
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6. RESULTS

Selected test results are discussed below. For each of the four

foundation conditions, the results of one or two tests are discussed in

abbreviated form. For the El Centro tests on the low damping rubber bear­

ing foundation, a comprehensive set of figures is provided. The complete

test data for other input motions indicated that the response to the El

Centro motion was typical, and thus will not be discussed in detail.

Figures 7.1 and 7.2 show the response spectra for the El Centro and

time-scaled El Centro input motions. The first natural period of the

structure was approximately 1.7 seconds (see Table 7.1), thus putting the

model at the lower end of the acceleration spectrum of the El Centro motion,

but well within the magnified portion of the displacement spectrum. How­

ever, for the time-scaled El Centro motion, the natural period of the model

is in the portion of the displacement spectrum where peak response dis­

placement is close to the maximum ground displacement. It cannot be assumed

that this is typical; it would be unwise to design prototype bearings only

for maximum expected ground displacement.

For tests of the fixed base structure using the El Centro 450 and

Parkfield 200 motions, the structure had a period of approximately 0.50

seconds and a damping ratio of less than 1%. Third floor accelerations

were amplified by about 400% from the input ground acceleration (Figures 7.3

and 7.4). Although not shown in the figures, the maximum first story drift

to the El Centro motion was 1.4 inches, or 1.7% of first story height. A

great deal of damage to partitions would have occurred in an actual struc­

ture to even this medium sized earthquake.

For the rubber bearing isolated structure subjected to the El Centro

450 motion, peak third floor acceleration was only 33% of the maximum

12



input ground motion acceleration (Figures 7.5 and 7.6). The maximum first

story drift was correspondingly small, less than 0.1 inches or 0.12% of

first story height. For this case, little or no damage to partitions would

be expected.

The solid and dashed lines in the rubber pad displacement traces

(Figure 7.5) are almost identical, indicating that no significant torsion

occurred despite slight differences in the stiffness of the four rubber

bearings. This was typical of tests on the isolated model.

The floor accelerations (Figure 7.6) indicate a slight second mode

response at approximately 3.8 Hz, also evident in other tests. When

vertical input motion was considered, a third mode lateral response was

induced (Figure 7.14). It is not known why the third mode response occurred.

This third mode did not correspond to a rocking mode. In any event, the

influence of second, third, and higher mode responses on the behavior of

the isolated model was visible only in acceleration traces and was always

very small.

Due to the interstory stiffness proportions of the model, the higher

shear mode contributions for the El Centro 450 input motion completely

cancelled out at the base (Figure 7.7 and 7.8). For taller buildings,

in which interstory stiffness decreases with height, the higher mode shear

contributions would not necessarily cancel out at the base. Shears and

overturning moments differed by a factor of approximately eight for the

fixed and isolated systems. (Figure 7.24).

Some transverse and torsional motion was induced in the isolated

model during the El Centro 450 motion test (Figure 7.9). The transverse

rigid body displacements had a period of approximately 1.8 seconds, indi­

cating that the stiffness characteristics of the rubber bearings were

13



isotropic in both horizontal directions. The rotational inertia of the

building, calculated assuming the model to be a rigid body, resulted in

the analytical calculation of the torsion mode period to be 1.0 seconds.

This was a good assumption, as the experimentally observed torsion mode

period was 0.95 seconds.

The response of the model on the low and high damping rubber bearings

to the El Centro 400 input motion is indicated by the solid and dashed

lines, respectively, in Figure 7.10. During the first 6.5 seconds of the

El Centro motion, the response of the low and high damping bearings differed

little, principally because building response during such strong motion

portions of earthquake records is due to forced vibration. After 6.5

seconds, the input motion decreased and the structure began to respond in

free vibration. Linear increases in input motion produced proportional

linear increases in peak displacement, as indicated in Table 7.2.

The response of the model structure to .the vertical motion was a

simple rigid body vertical mode between 10 and 12 Hz. By coincidence, the

vertical frequencies of vibration for the four floor beams were between

12 and 15 Hz. The close tuning between these vertical modes made it

impossible to obtain an exact definition of the vertical behavior of the

model by resonance testing. However, no interaction between these tuned

vertical vibration modes was observed under the earthquake excitation. The

relative acceleration data in Figure 7.12 do, however, indicate that the

vertical frequency of the model was in the range 11 to 13 Hz.

For the El Centro 400 horizontal and 350 vertical input ground motion,

peak vertical table acceleration was .267g while the vertical acceleration

of the model was .324g. For the Pacoima Dam 200 horizontal and 100 vertical

input motions corresponding values were .102 and .112g.
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The important points about the vertical response of the structure

are thus: there was almost no amplification of the vertical signal into

the structure; there were no discernible rocking or up-and-down motions;

and no rubber bearings ever uplifted enough to go into tension.

When vertical as well as horizontal input motion was considered, there

was no significant difference in the horizontal displacement of the model

(Figure 7.13). Although second and third mode horizontal responses were

excited (Figure 7.14), these higher mode accelerations were in no case

greater than 0.05g. A third mode high-frequency acceleration between

6.5 and 9 seconds into the Taft motion was caused by slippage of a bolt

(Figure 7.15). The model was particularly sensitive to the Parkfield

motion (Figure 7.16) due to the sinewave shape of the input displacement

at the natural period of the model.

For the time-scaled input motions, both the fixed and low damping

rubber bearing foundation model responses included a strong second mode

contribution (Figures 7.17 and 7.18). While higher mode accelerations were

greater than the first mode acceleration for the low damping bearing founda­

tion, they were still less than one-sixth peak input ground acceleration.

When higher damping was used, the peak displacement of the model structure

slightly increased (Table 7.2). Figures 7.21 through 7.26 corroborate the

preceding observations.
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7. CONCLUSIONS

The major differences between the response of the fixed foundation

model and that of the model with natural rubber bearings installed in

the four-story steel frame were: (1) that the isolated structure experienced

far lower shears, accelerations, and overturning moments, and (2) that

the isolated structure underwent large rigid body translations. The large

translations necessary for a base isolation system to be effective were

easily attained through the use of specially constructed natural rubber

bearings that were capable of undergoing repeated deformation of over 3

inches without deterioration.

For unscaled earthquake motions, peak displacements were reduced by

20-30% when damping was increased from 3 to 10%. For time-staled motions,

however, increased damping had little effect on structural response. For

scaled and unscaled motions, increased damping reduced the number of

large displacement cycles. Response was calculated for a prototype struc­

ture, with analyses indicating that increased damping would be most bene­

ficial for unusually long period strong intensity earthquakes. The

tests showed that the most obvious tradeoff for increased damping in the

rubber formulations was an increased tendency of the bearings to creep.

This problem ought not to arise, however, when full-scale high damping

bearings are used.

The very stiff vertical characteristics of the rubber bearings

satisfactorily reduced rocking and vertical response of the structure.

Overall, the simple earthquake isolation system described in this report

isolated the model structure to a high degree from the damaging effects of

the earthquake ground motion inputs used in the testing program. Still

to be developed is a method of accommodating service and wind loads and
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the large displacements that occur at the base of the sturcture. Work

has already begun on developing an effective energy-absorbing device or

steel fuse to be used in conjunction with the natural rubber bearings. The

system described herein could, with only minor detailing to limit maximum

displacements, be adapted to provide earthquake protection for special

structures such as nuclear power plants. The possibility of using base

isolation for nuclear power plants has been discussed by Skinner, et al. [8].
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OEN R A '75/25
Zinc Oxide
Stearic Acid
SRF Black

Antidegradant 1

Antioxidant 2
CBS
SUlphur
Dicumyl Peroxide

I

:Cure Time! at Temperature

I

:Low Damping High Damping
I
I 100 100I
I

3I
I 2I
I 30I
I
I 1I
I
I
I
I 0.34I
I 1. 40I
I
I
I
I 40 min 50 minI
I 140°C 160°CI

Notes

1. N-Isopropyl-N'-phenyl-p-phenylenediamine,
Nonox ZA, now Permanax IPPD
(Vulnax International Ltd).

2. 2,2'-Methylenebis-(4-methyl-6-t-butylphenol),
Antioxidant 2246 (Anchor Chemical Co).

TABLE 3.1. Formulations For The Rubber Bearings

I
I
I

: l.AM IN ,'\T E
I
I
i

: R'Jooer Sl1eets
I

:v1ild Steel
Inn er Pia tes

:"1ild St.eel
E){terior Pl.ates

Alu,ninu,n Foil
and

Adhesive Tape

HUi"13ER 0['"

l.l\ Y~R3

36

30

12

72

THICKNE.33,
EACH l.A YE:R

(inch)

.01lJ.!

.0625

.0625

.Ql+

TOTAL
THICK:~E:S3

( inch)

2. 83.!

1. 33

0.75

0.72+

TOTAl. THICKJES3, UNl.O~DED STATE = 6.25 inch

Table 3.2. Thickness of RUbber Bearing l.aminates
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I I
I I
I I i) I SPLA CEi'1EN T AGCEL ERATIOl'JI I
I
EARTH~UAKE

I :3PANI I :-1ax • \-1 in. Max. .1in.I I
I I (inch) ( inc h) (inch) (inch)I I
I I
I I 4JO 2. 11 -1.70 .241 -.292I

2:L CEi~TR:J
I

I I 450 2.33 -1.76 .251 -.310I I

"' I
I I
I Sf.. CENTRO I

350 0.87 -1 • 12 .251 -. 156I I
I Vertical I
I I
I I
I SL ::EWTiD I 120 0.56 -0.59 .5JO -.63:5I I

: TLne Scaled I
I, J

I I
I PAR Ki' I El. l) I 200 0.93 -0.52 .034 -.092I I
i i
I PAR Ki' I El. D I
I I 230 1. 46 -1 • 13 .852 -1 .23lTime Scaled I

I
I I
i i

TAFT 350 1. 76 -1 • 15 .203 -.133

I PAC aH1.!I. DAM 200 1.09 -0.94 .245 -.261
I

: PACOL-1A Dl\:1 100 0.26 -0.25 • 102 -.033
I iTerticalI

Tabla 5. 1. Inpu t Earthquake Records

FIX 2'OU;WATIO;~

4 ? 10 0 r Mo del

RUBBER FOJNJATION
I~ Floor Mod,el

I
I i'REQUSNCY
I

1ST
Mode

2.05 ilz

1. 00
0.73
8.46

2;~O

Hode

7.33 dz

1. 00
-0.25
·-1 .00

1ST 2NJ 3RD
t'1ode Mode Mode

0.58 dz 3.84 jz 8.89 ]z I

1. 00 1. 00 1. 00
0.93 0.42 -0.85
0.96 -0.33 -1 • 1J
0.92 -1.02 0.83

Table 1.1. rrequencies and :1ode Shapes
for FIX and Rl. ~oundations
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1 I I I i f

:: : : ~O;~ DAi-tPIN:; + : RL :
: : Ti\8L<;" 'A'JTII);': L..)~ D;\r-tPLf:; (RL) : 3JOCK ABSORBER : vs. :
I In.... ."" .•~ I I (R ... ) I R '"' I
I I I I:-;) I -.::> I
I I I I I I
I I I I I I

: : MAX. TA3LE '-tAX. TABLE : :UX. 3RD :-tI\X. RUBBER : ~1AX. _~nD iUX. RU3BER: No :
: E;\RTHQUAKE: : ACCL. DISP.: Floor Keel. DISP. : i'l()Qr~ee1. DISP. : DISP. :
: : (G ) ( I rL; H) : ( ~ ) ( I J GH) : (G ) (I NGH): :
I I I I I I

.062 • 52~ - 7.9'70
• 11 3 1.076 - 5.4%

.093 .906 + • 9~
• 11 9 1. 312 + 1.2%
• 171 2. 155 + 1.2%

...-------- -_._---_._------~- -- i ------- ---- --- ----- -'. -

----- - --- ----- - --------- --.
E~ CE(lTR:) 1)) I .072 .523 .033 .707 I .035 .542 I

I I I
200 I • 137 1.0:52 .064 1.401 I .065 1. 102 I

I I I
30:) I .204 1.532 .031 2. 144 I .032 1. 755 ,

I I
1.lJO , .273 2. 112 .110 3.015 I • 113 2.413

I I
li50 ! .31 a 2.377 • 122 3.243 ! • 126 2.714

?ARKFIE~D 200 I .092 .931 I .073 1• 839
I I
I ,

350
I

.202 1 .761
I

3.0'7 ').TAFT ! ! .22)
I
I
: PACOHl1\

200 .261 1. 09 • 106 1. 03: DAM ! !
I

: EL CENTR:) 60 I .299 .2.35 , .045 .569
I I

Time 120 , • 634 .533 ! • 10,) 1 • 149
I

Scaled , ., I
I

.431 .630
I

.056 .893PARKF IEt.D 120 I I
I I

rime 180 I .685 .943 I .035 1.356
I I

3caled 280 ! 1.226 1.460 ! • 143 2. 139

.053

• 102

1 • 310

2.231

-23.3'%
-21.3%
-18.2%
-19.8';t
-14.5%

-3'7%

-34.5%

Table 7.2. Effect of Increased Dampin3 on Maxim~m Rubber Bearing
Displacements and Accelerations
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Figure 4.1. Model Structure
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