'PB 281 686

REPORT NO.

UCB/EERC-78/03 EARTHQUAKE ENGINEERING RESEARCH CENTER
FEBRUARY 1978

EXPERIMENTAL RESULTS
OF AN EARTHOUAKE ISOLATION SYSTEM
USING NATURAL RUBBER BEARINGS

by
J. M. EIDINGER

and

J. M. KELLY

Report to National Science Foundation

AL

I , COLLEGE OF ENGINEERING
‘ UNIVERSITY OF CALLEQRNIA - Berkeley, California

'1 REPRODUCED BY ;
! NATIONAL TECHNICAL

i | INFORMATION SERVICE
S B e

. i
) ] : —_—
WO BT 1
i Ry






1. Report No. . 2,
UCB/EERC-78/03

BIBLIOGRAPHIC DATA
SHEET

y é!‘.%:ﬂb‘ .‘) 2ty Qw_.) %

4. Title and Subtitle

Experimental Results of an Earthquake Isolation
System Using Natural Rubber Bearings

'5. Report Date
February 1978

6,

7. Author(s) )
J.M. Eidinger and J.M. Kelly

8. Performing Organization Rept.

No.  78/03

9. Performing Organization Name and Address
Barthquake Engineering Research Center
University of California, Richmond Field Station

47th Street and Hoffman Blvd.
Richmond, California 94804

10. Project/Task/Work Unit No.

11. Contract/Grant No.

ENV 76-04262

12, Sponsoting Organization Name and Address
National Science Foundation
1800 G Street, N.W.
Washington, D. C. 20550

13. Type of Report & Period
Covered

14,

15. Supplementary Notes

16. Absuacts

This report describes the experimental results of a series of earthquake
simulation tests on an earthguake isolation system based on natural rubber bearings.

Three forms of iscolation system were used.

As the primary purpose of the test program

was to examine the effect of damping in the isolation system, the essential difference
between the three forms was the level of the damping in the system.

A large number of simulated earthquake motions were used in the tests inclﬁding

El Centro 1940, Taft 1950, Parkfield 1966 and Pacoima Dam 1971.

The natural rubber

bearings reduced the forces and overturning moments to approximately one tenth of
those in a conventionally fixed structure and the results demonstrated the practical
possibility of this type of isolation system for full scale buildings.

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group .
i
18. Availability Statement 19.. Security Class (This 21. No. of Pages
Report) -
o __ UNCLASSIFIED 25
Release Unlimited 20. Security Class (This 22, Price )

age
UNCLASSIFIED

AQy - AL

FORM MTIS-35 [(REV. 10-73)  ENDORSED BY ANS{ AND UNESCO.

THIS FORM MAY BE REPRODUCED

+
USCOMM-DC 8265-P74







EXPERIMENTAL RESULTS OF AN EARTHQUAKE ISOLATION
SYSTEM USING NATURAL RUBBER BEARINGS

by
John M. Eidinger
Graduate Student

Division of Structural Engineering
and Structural Mechanics

and

James M. Kelly
Professor of Civil Engineering

Report to National Science Foundation

Report No. UCB/EERC - 78/03
Earthquake Engineering Research Center
College of Engineering
University of Catifornia
Berkeley, California

I






ABSTRACT

This report describes the experimental results of a series of
earthquake simulation tests on an earthguake isolation system based on
natural rubber hearinas. Three forms of isolation system were usesd. As
the primary purpose of the test program was to examine the effect of
damping in the isoTation system, the essential difference between the
three forms was the level of the damping in the system.

A Tlarge number of simulated earthquake motions were used in the
tests including E1 Centro 1940, Taft 1950, Parkfield 1966 and Pacoima
Dam 1971. The natural rubber bearings reduced the forces and overturning
moments to approximately one tenth of those in a conventionally fixed
structure and the results demonstrated the practical possibility of this

type of isclation system for full scale buildings.
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1. INTRODUCTION

In this report we summarize experimental findings on the use of
natural rubber foundation bearings to isolate a model building from earth-
quake excitation. This study of the isolation system was designed to
determine the suitability of the system for use in full-scale structures by
investigating: {1) the behavior of the model building when on the system,
(2) the stability of the model rubber bearings under large deflections, and
(3) the effect of introducing large amounts of damping into the system.

The rubber bearings greatly lessened the structural response of the
model building, reducing the base overturning moment of the model building
to 1/10 that for the same model without rubber bearings, and base shear and
interstory drift by over 80% when the E1 Centro 1940 N-S earthquake record
was used as input to the shaking table. Similar results were obtained using
the Taft 1950, Parkfield 1966 and Pacoima Dam 1971 earthquake records. When
time-scaled earthquake records were used to simulate the behavior of a full-
scale structure there were similar reductions in response.

In addition to establishing that the model bui]ding could be effectively
isolated from earthquake-induced vibration, the study demonstrated that the
natural rubber bearings, having performed well in over &5 tests, were well
designed. The bearings were designed and constructed by C. J. Derham and
A. G. Thomas of the Malaysian Rubber Producers Research Association, Hartford,
England. The rubber bearings were linear for shear strains in excess of
100%, and were able to accept lateral deflections of three inches and more.
A similarly designed full-scale rubber bearing could accommodate lateral

deflections of over two feet.



Given the favorable outcome of this experimental study, further
studies will concentrate on the development of complete, practical earth-
guake isolation systems [1]. Wind restraints in the form of mechanical
fuses and energy-absorbing devices will be developed and tested. These
restraints will allow a structure to behave as with a rigid foundation under
service loads, wind forces and 1ight seismic forces, but also allow the

structure to become isolated under severe earthquake loading.



2. ISOLATION CONCEPT

The concept of isolation from harmful vibration is well known.
Isolation has been used to reduce floor vibration induced by machinery.

If the vibrating frequency of the machinery is known, the vibration in the
foundation or floor can be reduced to negligible levels by providing supports
for the machinery, with these supports acting as an isolation system., Build-
ings have also been isolated from groundborne vibration, A number of buildings
have been built on isclation systems to reduce vibration caused by nearby

rail and subway traffic [2]. Of the many materials used from such isolation,
natural rubber has proven to be very effective.

The engineering profession has rarely attempted to extend the concept
of isolation to the design of structures against earthquake vibration. No
well-established criteria exist as to what constitutes an effective earth-
guake isolation system nor as to proper design and construction procedures.
Structures on an earthquake isolation system would require, for instance,
an unconventional foundation design and extensive dynamic analyses. The
foundation isolation system of an isolated structure should remain stiff
under wind loads, thus requiring that behavior under normal circumstances
and under moderate to severe earthquake loading be differentiated.

For a structure to be isolated effectively from earthquake vibration,
two criteria must be fulfilled: (1) the lowest natural frequency of an
isolated structure must be well below most earthquake input frequencies,
and (2) the first mode shape of an isolated structure should approach that
of a single-degree-of-freedom rigid body system so that higher mode contri-
butions will be negligible. 1In order to isolate a body from a particular

input frequency, the frequency of the body must be less than 1/v2 times the
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input frequency (Figure 2;1). Since most earthquake vibration is in the
range 0.3 to 5.0 Hz, according to this criterion the first mode frequency
of an isolated strﬁcture would be approximately 0.2 Hz. However, such a
tow frequency is not ideal for two reasons: (1) for a given earthquake, the
lateral deflection of an isolation system of such a frequency could approach
several feet, and (2) structures need not be isolated from the low-frequency
combonents of earthquake excitations since very long-period structures
typically experience low peak accelerations in their first mode. Thus, it
is essential to strike a balance between reducing acceleration while mini-
mizing displacements and for these reasons a frequency of around 0.5 Hz was
thought to be a suitable compromise.

The model structure used in this study had a first mode frequency of
(.58 Hz on the rubber bearings as constructed for the isolation system.
The design of rubber bearings for such an application involves a trade-off
between minimizing the lateral stiffness while maintaining stability under
vertical Toad. Reducing the lateral stiffness tends to reduce the vertical
stability of the bearings. Due to the Tow mass of the étructure, the first
mode‘frequency could not be further reduced without sacrificing the strength
of the rubber bearings. A simple analysis shows that the first mode frequency
of a full-scale structure could easily be lowered tp approximately 0.35 Hz.
If a scale factor of 2.89 is applied to the model structure to simuiate a
fifty-foot tall prototype structure and an isolated rigid body mode shape is

assumed, then

£ o= '%E M = 0.58 Hz | 1)

for the model structure, and

A vk(2.89) /m(2.89)° = 0.34 Hz (2)

u-—i,
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for the prototype structure.

To simulate the effect of an earthquake on the prototype structure
the time scales of two recorded earthquake motions were divided by the.
scaling factor of 2.89 and these scaled motions were used for the loading
tests on the model structure. As would be expected, the model structure
was more effectively isolated from the scaled than from the unscaled
earthquake inputs. Increased damping, however, had little beneficial effect

when the time-scaled earthquakes were used as input ground motions.



3. ISOLATION SYSTEM

The components of the isolation system consisted of two sets of four
natural rubber bearings and a set of four hydraulic shock absorbers. For
one set of bearings, a low damping rubber compound (designed RL) was used,
and for the other a high damping. rubber compund (RH) was used. The hydraulic
shock absorbers were used in conjunction with the low damping rubber bearings
(together designated R-S). Only the Tow damping bearings were available
when testing began. Until the high damping bearings could be fabricated,
the use of hydraulic shock absorbers, pure viscous dampers, was the simplest
way of achieving a highly damped isolation system.

The bearings used in the experimental program were similar to bearings
currently used for vibration isolation in buildings located in areas of
high traffic disturbance with the difference that a bearing used for earth-
quake isolation must have a lower lateral stiffness and be able to accept
high levels of lateral deflection. Natural rubber is well suited for these
purposes.

Natural rubber can accept strains on the order of several hundred
percent without failure. The ultimate tensile strength of natural rubber
is higher than that of any artificial rubber. The ratio of bulk modulus
to shear modulus can be extremely large; for example, for soft natural
rubber it can be as high as 1000, allowing the design of bearings that are
very soft horizontally and very stiff vertically. Natural rubber performs
well with pegapd to long-term performance because it creeps very little,
is highly resistant to fire [3], and can be made to be effectively immune
from oxidation attack. The bearings used in the experimental program were
designed and constructed by the Malaysian Rubber Producers' Research Associa-

tion. The Tow and high damping bearings were similariy constructed, the only
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difference being the composition of the rubber. The bearing is illustrated
in Figure 3.1, its dimensions given in Figure 3.2, and the composition of
the rubber for éach type of bearing is provided in Table 3.1.

To provide sufficient cross-sectional area for stability under the
1ight experimental dead load, it was necessary to develop specially Tow
modulus rubber compounds [4]. By multilayer construction, it was possible
to increase the rocking stiffness of the isolated model structure suffi-
ciently to prevent rocking of the bearings. At the same time, the multi-
layer construction produced bearings that were four hundred times stiffer
in the vertical than in the horizontal direction. Each lTaminate of rubber
was 0.079 inches (2 mm} thick. Total rubber thickness in each bearing was
2.83 inches (72 mm). Table 3.2 provides the thickness of all laminates in
the bearings. The Tateral stiffness characteristics of the RL and RH bear-
ings were very similar. The first natural frequency of the model structure
on either set of bearings was 0.58 Hz. When the shock absorbers were added,
the frequency increased to 0.60 Hz.

It was not possible to make the experimental bearings by the usual
commercial process of direct chemical rubber-to-steel bonding vulcaniza-
tion. They were hand fabricated from sheets of rubber vulcanization
bonded to aluminum foil. The aluminum was in turn bonded to the mild steel
interleaves using industrial quality double-sided adhesive tape over two-
thirds of the surface area, and epoxy resin for greater shear strength over
the remaining one-third area. The bearings so-fabricated were adequately
strong for the testsldescribed in this report, being capable of sustaining
repeated shear deformation in excess of 100%, but were clearly not as strong

nor as durable as equivalent commercially produced bearings would be. Due



to the controlied conditions of the tests, fire or oxidation attack was
not considered. The theoretical vertical stiffness of these bearings was
approximately 500,000 1bs-per-inch. Due to the 72 layers of adhesive tape,
the measured effective vertical stiffness at the working load was on the
order of 150,000 1bs-per-inch.

The vertical stiffness characteristics of the low damping bearings
are shown in Figure 3.3. The vertical stiffness characteristics of the
high damping bearings were similar. The pronounced soft lead-in is pri-
marily the result of the method of construction and would not normally
be so marked. In a static load test, the bearings were vertically cycled
from 5,000 to 20,000 pounds. The bearings displayed almost no hysteresis
after the first soft lead-in cycle. The slight amount of creep resulted
from creep of the adhesive tape. After three cycles, no discernible creep
occurred. The ultimate vertical strength of each bearing was 30,000 1bs,
three times the static dead load on them due to the weight of the model
structure.

The horizontal stiffness characteristics of the low and high
damping rubber bearings are shown in Figure 3.4. The data are taken from
the dynamic earthquake simulator tests. The hysteresis loops represent
approximately 3 and 10% critical damping. The response of the rubber
bearings was essentially linear to shear strains in excess of 100%. The
dynamic stiffness was about 320 to 360 1bs-per-inch, and the static hori-
zontal stiffness of individual bearings was measured to be between 360 and
400 Tbs-per-inch. Thus, the stiffness of the bearings is essentially

frequency independent.



4. EXPERIMENTAL MODEL AND TESTING FACILITY

The experimental work was carried out using the twenty by twenty foot
shaking table at the Earthquake Engineering Center of the University of
California, Berkeley. The shaking table is described in Reference [5].
The model steel frame building is illustrated in Figures 4.1 and 4.2. The
model weighed 39,500 pounds and was twenty feet tall. More detail on this
model and the data reduction process is provided in References [1, 6 and 7].
Figures 4.3 and 4.4 illustrate the mounting of the model on the rubber
bearings. The heavy W10x49 base floor girders ensured that the rubber bear-
ings would undergo Tittle bending deformation, with the isolation devices
when used placed beneath each of the column legs.

Fifty-eight transducers were used to collect data. The data were
scanned at approximately 50 samples per channel per second.

The span number preceding the specified earthquakes in this text
refer to the intensity of the input motion. A span 1000 input motion cor-
responds to a peak displacement of +5 inches; the peak displacement at a

lower span number is reduced in proportion.



5. EXPERIMENTAL TEST PROGRAM AND DATA REDUCTION

Four foundation conditions were tested on the earthquake simulator
table: (1) with the foundation conventionally bolted and incorporating
no isolation device (referred to as FIX), (2) with the Tow damping rubber
bearings installed (RL), (3) with the high damping rubber bearings installed
(RH), and (4) with the Tow damping rubber bearings and shock absorbers
installed together (R-S). The building model was the same for all four
foundation conditions. For each foundation condition as many as four hori-
sontal and two vertical earthquake simulation tests were performed. In
Table 5.1 the peak displacements and accelerations of the input motions
referred to in this report are given. Comparisons between tests as well
as detailed discussions of selected individual tests are presented in the
following sections.

For purposes of data reduction, the Tong direction of the model
structure was defined as the North-South direétion. The shaking table
motion was in the N-S and vertical directions only. Positive results
represent response to the North. |

Response Spectra - Each response spectrum calculated at 1, 3, 10,

and 15% damping ratio.

Table Displacement and Acceleration - Actual recorded table motions

during testing.

Rubber Pad Displacement Relatijve to Table - The two nearly identical

traces plotted, solid and dashed, represent, respectively, the lateral
deflections of the rubber bearings on the west and east longitudinal frames
(A and B) of the model. Discrepancies between these traces would indicate
torsional response of the structure. Other dashed traces refer to com-
parative data.

10



Ist, 2nd, and 3rd Floor Displacement Relative to Table - These data

were obtained by subtracting the recorded table displacement from the abso-
lute motion of each floor.

Base, 1st, Z2nd, and 3rd Floor Absolute Acceleration - Recorded

accelerations of the concrete blocks on each floor,

Base, 1st, 2nd and 3rd Floor Shear and Overturning Moment - The

first story shear represents the summation of the first, second, and third
story inertia forces. The inertia forces were calculated from the measured
ftoor accelerations. The floor overturning moments are the summation of the
floor inertia forces about the floor level in consideration. Base shears
and overturning moment do not apply to the fixed foundation model.

NA - NB and SA - SB Transverse Displacement - These data are the

transverse displacements along column lines NA - NB and SA - SB, and were
reduced from the square of the potentiometer gage displacement data in the
EW direction Tess the square of the potentiometer data in the NS direction.
The error due to this linear approximation is less than 1%.

Absolute and Relative Vertical Acceleration - The accelerations are

measured at the base of the column legs, directly above the rubber bearings.
Relative acceleration is the absolute minus the acceleration of the table.
A1l tests using a particular earthquake input, regardless of span
setting or base fixity, have been shifted in time so that peak table dis-
placement occurs at the same instant. This is to facilitate comparison

between tests.
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6. RESULTS

Selected test results are discussed below. For each of the four
foundation conditions, the results of one or two tests are discussed in
abbreviated form. For the E1 Centro tests on the low damping rubber bear-
ing foundation, a comprehensive set of figures‘is provided. The complete
test data for other input motions indicated that the response to the EIl
Centro motion was typical, and thus will not be discussed in detail.

Figures 7.1 and 7.2 show the response spectra for the E1 Centro and
time-scaled ET Centro input motions. The first natural period of the
structure was approximately 1.7 seconds (see Table 7.1), thus putting the
model at the Tower end of the acceleration spectrum of the E1 Centro motion,
but well within the magnified portion of the displacement spectrum. How-
ever, for the time-scaled E1 Centro motion, the natural period of the model
is in the portion of the displacement spectrum where peak response dis-
placement is close to the maximum ground displacement. It cannot be assumed
that this is typical; it would be unwise to design prototype bearings only
for maximum expected ground displacement.

For tests of the fixed base structure using the ET Centro 450 and
Parkfield 200 motions, the structure had a period of approximately 0.50
seconds and a damping ratio of less than 1%. Third floor accelerations
were amplified by about 400% from the input ground acceleration (Figures 7.3
and 7.4). Although not shown in the figures, the maximum first story drift
to the E1 Centro motion was 1.4 inches, or 1.7% of first story height. A
great deal of damage to partitions would have occurred in an actual struc-
ture toeven this medium sized  earthquake.

For the rubber bearing isolated structure subjected to the El Centro

450 motion, peak third floor acceleration was only 33% of the maximum

12



input ground motion acceleration (Figures 7.5 and 7.6). The maximum first
story drift was correspondingly small, Tess than 0.1 inches or 0.12% of
first story height. For this case, Tittle or no damage to partitions would
be expected.

The solid and dashed lines in the rubber pad displacement traces
(Figure 7.5) are almost identical, indicating that no significant torsion
occurred despite slight differences in the stiffness of the four rubber
bearings. This was typical of tests on the isolated model.

The floor accelerations (Figure 7.6) indicate a slight second mode
response at approximately 3.8 Hz, also evident in other tests. When
vertical input motion was considered, a third mode lateral response was
induced (Figure 7.14). It is not known why the third mode response occurred.
This third mode did not correspond to a rocking mode. In any event, the
influence of second, third, and higher mode responses on the behavior of
the isolated model was visible only in acceleration traces and was always
very small.

Due to the interstory stiffness proportions of the model, the higher
shear mode contributions for the E1 Centro 450 input motion completely
cancelled out at the base (Figure 7.7 and 7.8). For taller buildings,
in which interstory stiffness decreases with height, the higher mode shear
contributions would not necessarily cancel out at the base. Shears and
overturning moments differed by a factor of approximately eight for the
fixed and isolated systems. (Figure 7.24).

Some transverse and torsional motion was induced in the isolated
model during the E1 Centro 450 motion test (Figure 7.9). The transverse
rigid body displacements had a period of approximately 1.8 seconds, indi-

cating that the stiffness characteristics of the rubber bearings were
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isotropic in both horizontal directions. The rotational inertia of the
building, calculated assuming the model to be a rigid body, resuited in
the analytical ¢a1cuTation of the torsion mode period to be 1.0 seconds.
This was a good assumption, as the experimentally observed torsion mode
period was 0.95 seconds.

The response of the model on the Tow and high damping rubber bearings
to the E1 Centro 400 input motion is indicated by the solid and dashed
Tines, respectively, in Figure 7.10. During the first 6.5 seconds of the
ET Centro motion, the response of the low and high damping bearings differed
little, principally because building response during such strong motion
portions of earthquake records is due to forced vibration. After 6.5
seconds, the input motion decreased and the structuré began to respond in
free vibration. Linear increases in input motion produced proportional
linear increases in peak displacement, as indicated in Table 7.2.

The response of the model structure to .the vertical motion was a
simple rigid body vertical mode between 10 and 12 Hz. By coincidence, the
vertical frequencies of vibration for the four floor beams were between
12 and 15 Hz. The close tuning between these vertical modes made it
impossible to obtain an exact definition of the vertical behavior of the
model by resonance testing. However, no interaction between these tuned
vertical vibration modes was observed under the earthquake excitation. The
relative acceleration data in Figure 7.12 do, however, indicate that the
vertical frequency of the model was in the range 11 to 13 Hz.

For the E1 Centro 400 horizontal and 350 vertical.input ground motion,
peak vertical table acceleration was .267g while the vertical acceleration
of the model was .324g. For the Pacoima Dam 200 horizontal and 100 vertical

input motions corresponding values were .702 and .112g.
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The important points about the vertical response of the structure
are thus: there was almost no amplification of the vertical signal into
the structure; there were no discernible rocking or up-and-down motions;
and no rubber bearings ever uplifted enough to go into tension.

When vertical as well as horizontal input motion was considered, there
was no significant difference in the horizontal disp]acement of the model
(Figure 7.13). Although second and third mode horizontal responses were
excited (Figure 7.14), these higher mode accelerations were in no case
greater than 0.05g. A third mode high-frequency acceleration between
6.5 and 9 seconds into the Taft motion was caused by slippage of a bolt
(Figure 7.15). The model was particularly sensitive to the Parkfield
motion (Figure 7.15) due to the sinewave shape of the input displacement
at the natural period of the model.

For the time-scaled input motions, both the fixed and low damping
rubber bearing foundation model responses included a strong second mode
contribution (Figures 7.17 and 7.18). While higher mode accelerations were
greater than the first mode acceleration for the Tow damping bearing founda-
tion, they were still less than one-sixth peak input ground acceleration.
When higher damping was used, the peak displacement of the model structure
slightly increased (Table 7.2). Figures 7.21 through 7.26 corroborate the

preceding observations.
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7. CONCLUSIONS

The major differences between the response of the fixed foundation
medel and that of the model with natural rubber bearings installed in
the four-story steel frame were: (1) that the isolated structure experienced
far lower shears, accelerations, and overturning moments, and (2) that
the isolated structure underwent large rigid body transiations. The large
translations necessary for a base isclation system to be effective were
easily attained through the use of specially constructed natural rubber
bearings that were capable of undergoing repeated deformation of over 3
inches without deterioration.

For unscaled earthquake motions, peak displacements were reduced by
20-30% when damping was increased from 2 to 10%. For time-scaled motions,
however, increased damping had 1ittle effect on structural response. For
scaled and unscaled motions, increased damping reduced the number of
large displacement cycles. Response was calculated for a prototype struc-
ture, with analyses indicating that increased damping would be most bene-
ficial for unusually long period strong intensity earthquakes. The
tests showed that the most obvious tradeoff for increased damping in the
rubber‘formulations was an increased tendency of the bearings to creep.
This problem ought not to arise, however, when full-scale high damping
bearings are used.

The very stiff vertical characteristics of the rubber bearings
satisfactori1y reduced rocking and vertical response of the structure.
Overall, the simple earthquake isolation system described in this report
isolated the model structure to a high degree from the damaging effects of
the earthquake ground motion inputs used in the testing program. Still

to be developed is a method of accommodating service and wind Toads and
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the large displacements that occur at the base of the sturcture. Work

has already begun on developing an effective energy-absorbing device or
steel fuse to be used in conjunction with the natural rubber bearings. The
system described herein could, with only minor detailing to Timit maximum
displacements, be adapted to provide earthquake protection for special
structures such as nuclear power plants. The possibility of using base

isolation for nuclear power plants has been discussed by Skinner, et al. [8].
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Figure 3.1. Shear Deflection of Rubber Bearings
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Figure 4.7. Model Structure
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