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ABSTRACT 

The frequency response characteristics of two shaking tables 

have been determined experimentally. The lighter table, weighing 

2,000 lb (900 kg), was used primarily to determine the effects of a 

resonant structure on a shaking table's frequency response. The heavier 

table, weighing 100,000 lb (45,300 kg), was used primarily to determine 

the effects of foundation compliance on a shaking table's frequency 

response. 

Mathematical models were formulated for both tables, and the 

models were refined by adjusting parameters to obtain the best cor­

respondence between the computed and experimental frequency responses. 

The mathematical models were then used to study the effects of a 

resonant structure and of foundation compliance on the frequency 

responses of shaking tables and on the ability of shaking tables to 

reproduce earthquake-type motions. 

It was found that the magnitudes of the peak and notch distor­

tions in the frequency response of a shaking table are sensitive to 

the amount of force feedback employed by the control system. In 

addition, the magnitudes depend on the ratio of the mass of the struc­

ture to the mass of the shaking table and to the transmissibility 

function of the structure with respect to the table. Although the peak 

and notch effect may cause difficulties in determining the frequency 

response of structures by means of shaking tables, it has little effect 

on the accuracy to which a shaking table can reproduce earthquake-type 

motions. 

It was found that foundation compliance affects the frequency 

response of a shaking table only at low frequencies, and the magnitude 
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of the effect is limited to an amount which depends on the transmissi­

bility function of the foundation with respect to the table. 
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1. INTRODUCTION 

Shaking tables are being employed with increasing frequency in 

earthquake engineering to study the effects of earthquake type excita-

tions on models of structures and small structures constructed from 

(1) 
realistic structural components • The objective of these tests is to 

determine the responses of the test specimens to earthquake type excita-

tions, especially in cases where the intensity of the excitation is 

strong enough to cause nonlinear behavior in the specimen. 

Shaking tables designed specifically for use in earthquake 

engineering are generally driven by high-performance hydraulic rams, 

or actuators, equipped with servo-valves. In these systems, the 

position of the actuator piston is controlled by means of an electronic 

closed-loop displacement feedback system. The basic displacement feed-

back is supplemented by velocity and force feedback signals to improve 

performance characteristics. 

There are physical limitations to the intensity of motions 

shaking tables may undergo. Generally, at low frequencies the 

limitations are displacements imposed by the actuator strokes, at 

intermediate frequencies the limitations are velocities imposed by the 

maximum flow capacities of the servo-valves or pumps, and at higher 

frequencies the limitations are accelerations imposed by the force 

capacities of the actuators. These limitations for a particular 

shaking table are depicted in Fig. 1.1. 

Within their physical limitations, shaking tables loaded only 

with rigid masses will exhibit frequency responses typical of second-

order systems. If the control system were open loop, the corner 
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frequency would occur at the oil column resonant frequency which is a 

function of the total mass being driven and the compliance of the oil 

contained in the actuators' cylinders. However, in closed-loop systems 

the corner frequency may be significantly lower than the oil column 

resonant frequency. The form of the frequency response limitations is 

also depicted in Fig. 1.1. 

A shaking table loaded with a structure may have a distortion in 

(2) 
its frequency response at the resonant frequency of the structure • 

In addition, compliance in the actuator supports, which is likely in 

the case of large shaking tables, may adversely affect the frequency 

response (3) . Since these two effects may impair the performance of a 

shaking table, the degree to which they can alter frequency response 

characteristics has been investigated by a combination of experimental 

and analytical procedures. 

Experimentally, the effects of a resonant structure on the fre-

quency response characteristics of a shaking table can be investigated 

most conveniently by means of a relatively light table. In contrast, 

the investigation of foundation compliance needs a relatively heavy 

table. Thus two tables, one weighing 2,000 Ib (900 kg) and the other 

100,000 Ib (45,300 kg) were used in the experimental phase of the 

investigation. 

In the analytical phase of the investigation mathematical models 

were formulated for both tables, and the models were refined by altering 

their parameters in order to match the computed frequency responses with 

the experimental ones. The effects of a resonant structure and founda-

tion compliance on the frequency response of shaking tables and on their 

ability to reproduce earthquake type motions were then studied by means 

of the mathematical models. 
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2. EXPERIMENTAL FREQUENCY RESPONSES 

Experimental frequency responses were determined for two shaking 

tables. ~he lighter shaking table, weighing 2,000 Ib (900 kg), was 

used to determine the effects of load resonance on the frequency 

response since a large ratio of structure mass to table mass could be 

achieved easily. The effects of foundation compliance on frequency 

response were investigated experimentally by means of a 100,000 Ib 

(45,300 kg) shaking table because then the table weight is large enough 

relative to the foundation weight that some significant effects might 

be expected. 

2.1 2,000 Ib Shaking Table 

A shaking table with one horizontal direction of motion only, 

driven by a single hydraulic actuator, and loaded by a single degree 

of freedom test structure, is shown in Fig. 2.1. The shaking table is 

a rectangular steel platform with overall dimensions of 10 ft x 7 ft 

(3 m x 2 m) weighing 2,000 lb. The longer sides are formed by two 

10 x 12 WF beams which are connected transversely by four 6 ft (1.8 m) 

lengths of rectangular tubing. Four 10 ft (3 m) lengths of 6 x 2 in. 

(150 x 50 rom) channel sections are welded across the bottom faces of 

the rectangular tubes and run the length of the platform. The table 

is supported on two V and two single Thompson linear bearings. Each 

bearing runs on an 18 in. (450 rom) length of 2 in. (50 rom) diameter 

bar which is grouted into a 3 x 1 1/2 in. (75 x 38 rom) channel bolted 

to a strong floor. 

The single degree of freedom structure shown mounted on the 

table in Fig. 2.1 consists of a platform supported by four columns. 
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The platform, which is identical to the shaking table, weighs 2,000 Ib 

(900 kg). The far two columns have pillow block bearings at both ends 

and thus do not contribute to the horizontal stiffness of the single 

degree of freedom structure. The near two columns also have pillow 

block connections at their tops but are bolted rigidly to the shaking 

table and provide the horizontal stiffness of the single degree of 

freedom structure by bending about their weak axes. 

The table is driven by an hydraulic actuator having an effective 

area of 2S.4 in~ (164 cm
2

) and a stroke of 12 (±6) in. (300(±150)rnrn). 

The actuator is equipped with a two stage servo-valve that can feed oil 

3 
to the actuator at a rate up to 175 gallons (0.67 m ) per minute. The 

position of the actuator's piston is controlled by means ofa closed 

loop feedback system. In addition to the primary displacement feedback 

signal, secondary feedback signals consisting of actuator force and 

piston velocity are used for stabilizing the primary feedback loop. A 

schematic diagram of the control system is shown in Fig. 2.2. MTS 

Systems supplied the hydraulic actuator and its associated hydraulic 

and electronic components. 

Frequency responses were determined for the 2,000 lb (900 kg) 

shaking table loaded with a rigid mass weighing 2,000 lb (900 kg) and 

for the shaking table loaded with the single degree of freedom structure 

shown in Fig. 2.1. Displacement frequency responses for the table 

loaded with the rigid mass and for amplitudes of 0.02S, O.OS, and 0.1 

in. (0.6, 1.3 and 2.S rnrn) are shown in Fig. 2.3. The resonant or 

corner frequency decreases from 24 cps (24 Hz) for the smallest 

amplitude to 18 cps (18 Hz) for the largest amplitude. 

An acceleration frequency response of the single degree of 

freedom structure shown on the table in Fig. 2.1 is shown in Fig. 2.4(a). 
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This frequency response was observed while the shaking table frequency 

response,shown in Fig. 2.4(b), was being observed. The table's frequency 

response contains a peak and notch at the same frequency as the resonant 

frequency of the structure. This effect is caused by the reaction 

loads of the structure on the table and is sensitive to the amount of 

force feedback used to stabilize the primary displacement feedback 

loop, see Fig. 2.2. The effect of varying amounts of force feedback 

on the table's frequency response is illustrated in Fig. 2.5. 

2.2 100,000 lb Shaking Table 

The 100,000 Ib (45,300 kg) shaking table, shown in Fig. 2.6(a), 

is constructed from a combination of reinforced and prestressed 

(4) 
concrete . Structurally, it may be considered as a 1 ft (300 rom) 

thick 20 ft (6 m) square plate. The plate is stiffened by heavy 

central transverse ribs that are 1 ft (300 rom) wide and extend 1 ft 

9 in. (525 rom) below the bottom surface of the plate, and by lighter 

diagonal ribs that are also 1 ft (300 rom) wide and extend 4 in. 

(100 rom) below the bottom surface of the table. The hydraulic 

actuators that drive the table horizontally are attached to the table 

by means of one of the transverse ribs. The vertical actuators, as 

well as test structures, are attached to the table by means of pre-

stressing rods located in 2 in. (50 rom) diameter pipes that run 

vertically through the table on a 3 ft (1 m) square grid. 

The shaking table is driven horizontally by three 50 kip (220 kN) 

hydraulic actuators, one of which is shown in Fig. 2.6(b), and 

vertically by four 25 kip (110 kN) hydraulic actuators, one of which 

is shown in Fig. 2.6(c). The actuators have swivel joints at both ends 

so that they rotate about the foundation swivel joints as the table 
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moves. The total length of each horizontal actuator, including swivel 

joints, is 10 ft 6 in. (3.2 m), and the total length of each vertical 

actuator is 8 ft 8 in. (2.7 m). The length of the actuators helps to 

decouple the vertical and horizontal motions of the table, and further 

decoupling is accomplished by electronic means. The actuators are 

located in a pit beneath the shaking table as shown in Fig. 2.7. 

The horizontal actuators are equipped with 175 gpm (0.67 m
3
/min) 

servo-valves and the vertical actuators with 90 gpm (0.34 m
3

/min) servo-

valves. The flow rate of the servo-valves limits the maximum velocities 

in the horizontal and vertical directions to 20 in/sec (500 rom/sec) and 

15 in./sec (380 rom/sec), respectively. The strokes are 12 in. (±6) 

(300 rom(±150» for the horizontal actuators and 4 in. (±2) (100 rom(±50» 

for the vertical actuators. However, the horizontal actuators will be 

limited to displacements of ± 5 in. (126 rom) to improve the resolution 

of table motion in the horizontal direction. 

In operation, the air in the pit within the foundation and 

beneath the shaking table is pressurized so that the total dead weight 

of the table and the test structure is balanced by the difference in 

air pressure between the air in the pit and the air above the shaking 

table. The pit entrance is sealed by two air-tight doors that provide 

a lock chamber and, thus,access to the pit while the air in the pit is 

pressurized. The 1 ft (300 rom) gap between the shaking table and the 

interior foundation walls is sealed by a 24 in. (600 rom) wide strip of 

vinyl covered nylon fabric. The fabric, in its inflated position, can 

be seen in Fig. 2.6(a). A differential air pressure of 1.55 psi 

(10.7 kN/m2) is required to balance the dead weight of the shaking 

table alone; the maximum air pressure is not expected to exceed 4 psi. 



The actuator forces are counteracted by a massive foundation, 

which is a reinforced concrete structure in the form of an open box 
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with 5 ft (1.5 m) thick sides. The outside dimensions of the box are 

32 ft x 32 ft x 15 ft (10 m x 10 m x 4.5 m), and the inside dimensions 

are 22 ft x 22 ft x 10 ft (7 m x 7 m x 3 m). The shaking table forms 

a closure for the box; the top of the shaking table being flush with 

the top of the foundation walls which in turn are flush with the floor 

slab of the building housing the shaking table, see also Fig. 2.6(a). 

The foundation weighs 1,580 kips (6.6 MN). 

The electronic control system for the shaking table, which was 

supplied by MTS Systems Corporation, Minneapolis, Minnesota, who also 

supplied the hydraulic actuators, is based on controlling five degrees 

of freedom of the shaking table (5) • The sixth degree of freedom, 

translation perpendicular to the direction of the horizontal trans­

lational degree of freedom, is controlled by a sliding mechanism. 

Transducers are installed in each actuator to measure displacements and 

forces. From the displacement signals, feedback signals representing 

the average horizontal and vertical displacement, the pitch, roll and 

yaw (or twist) are derived on the assumption that the table is a rigid 

body. Corresponding force signals are also derived that are used to 

supplement the primary displacement feedback signals. Normally the 

pitch, roll and yaw command signals are zero, and the horizontal and 

vertical command signals represent translational displacement time 

histories of an earthquake record. 

Frequency response functions for vertical and horizontal motions 

of the shaking table are shown in Fig. 2.8. The gain factors exhibit 

varying degrees of flatness and peaking because the control settings 
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were different for each frequency response measurement. The control 

system is quite sensitive to gain settings of the primary loops in the 

translational degrees of freedom, and to the amount of force stabiliza­

tion in the pitch degree of freedom. A particular frequency response 

could be improved slightly by searching for an optimum control setting. 

However, since such adjustments will be difficult to perform with a 

test structure on the shaking table, the curves should be regarded as 

typical. 

The frequency response functions indicate closed loop resonant 

frequencies of about 8 cps (Hz). These resonant frequencies are about 

50% of the open-loop or oil column resonant frequencies which have been 

determined to be 15 and 16 cps (Hz) for vertical and horizontal motions, 

respectively. Although the closed loop resonant frequencies may be 

increased by increasing the loop gain, the improvement is small before 

the system becomes unstable. 

The foundation transmissibility functions have been established 

by operating the table under harmonic motion of constant acceleration 

amplitude and varying frequency. The transmissibility functions for 

vertical and horizontal motions are shown in Fig. 2.9(a) and 2.9(b) 

respectively. The gain factors show that at frequencies below 10 cps 

(10 Hz) the soil stiffness is predominant in counteracting actuator 

forces, while at frequencies above 20 cps (20 Hz) the inertia mass of 

the foundation becomes predominant in counteracting the actuator forces. 

At frequencies between 10 and 20 cps (10 and 20 Hz), there is a 

transition zone where soil stiffness and foundation inertia are 

combining to counteract the actuator forces. In the vertical direction 

of motion the ratio of foundation acceleration to table acceleration 
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reaches 4% at a frequency of 24 cps (24 Hz). At 24 cps (24 Hz) the 

ratio appears to be rapidly approaching its limiting value of 6.3%, 

which is the ratio of table weight to foundation weight. The ratio of 

foundation acceleration to table acceleration for horizontal motion 

reaches the limit of 6.3% at 25 cps (25 Hz) and will probably exceed 

this value because the actuator forces are applied in a plane above 

the center of gravity of the foundation, see Fig. 2. Thus the founda­

tion pitches as well as translates under the action of the horizontal 

actuators. The foundation acceleration measurements for Fig. 2.9(b) 

were made at the level of the horizontal actuators. 

Soil of greater stiffness would have improved the foundation 

transmissibility functions over the complete frequency range(6) Since 

there are resonances in the transmissibility functions at about 8 cps 

(8 Hz), a lighter foundation would have improved the transmissibility 

functions in the frequency region below 10 cps (10 Hz) while making 

them worse at higher frequencies. 
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3. ANALYSIS OF CONTROL SYSTEM FOR 2,000 lb SHAKING TABLE 

Servovalves control the flow of fluid through orifices and 

therefore they are inherently nonlinear devices. The nonlinear 

differential equations governing the behavior of systems incorporating 

servovalves may be solved directly by means of digital computers. But 

such analyses are expensive, and they do not easily impart a physical 

understanding of how a system behaves. On the other hand linear 

analyses, although valid only for small excursions about some operating 

point, are easily interpreted in terms of physical behavior. Since 

linear analyses for excursions about the zero position have been found 

adequate to describe the behavior of many electrohydraulic systems, a 

mathematical model of the 2,000 lb (900 kg) shaking table was formulated 

for such analyses. Frequency responses for the mathematical model are 

then compared with experimental frequency responses of the 2,000 lb 

(900 kg) shaking table. Finally, the response of the shaking table to 

earthquake type excitations when it is loaded with single degree of 

freedom linear and nonlinear structures is discussed. 

3.1 Frequency Response of 2,000 lb Shaking Table 

A schematic diagram of a rigid mass shaking table driven by an 

hydraulic actuator and a two stage servovalve is shown in Fig. 3.1. 

The equations governing such a system incorporating a single state servo­

valve have been derived by Merritt (7) . Following Merritt's assumptions 

the equations for the system shown in Fig. 3.1 may be written as 

follows: 

m x + c x + k x 
P P P P P P 

F. 
1 

(3.1) 

Preceding page blank 
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where 

m 
s 

x , X , x
t p s 

c , c , c
t p s 

k , k 
P s 

q.R,p = f (x , P.R,s) p p 
(3.2) 

V 
A s • 

q.R,p = x + 48 P.R,s s s 
(3.3) 

x + c x + k x = A P.R,s = F 
s s s s s s s 

(3.4) 

q.R,s = f (x , 
s s P.R,a) (3.5) 

V 
A + 

a • 
q.R,s = x

t 48 P.R,a a 
(3.6) 

m
t 

x
t + c

t 
x

t = A P.R,a = F 
a a 

(3. 7) 

= pilot stage spool, slave stage spool, and 

actuator piston displacements, respectively, and 

the dot notation is used to signify differentiation 

with respect to time. 

viscous damping coefficients for the pilot spool, 

slave spool, and actuator piston, respectively. 

stiffness coefficients tending to center the pilot 

and slave spools, respectively. The pilot spool 

coefficient is derived partly from a mechanical 

spring and partly from fluid flow, whereas the 

slave spool coefficient is derived entirely from 

fluid flow. 

= the pilot and slave stage load flows. The load 

flow is the average of the flows entering and 

leaving their respective stages, see ref. (7). 



f , f 
P s 

v,v 
s a 
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= nonlinear functions governing the pilot and slave 

stage load flows. 

= differential pressure across slave spool and 

actuator piston,respectively. 

= volume of oil undergoing differential pressure 

changes in the slave stage and actuator, 

respectively. 

A,A 
s a 

effective areas of pilot spool and actuator piston, 

respectively. 

F , F 
s a = differential pressure force acting on the slave 

F. 
1 

spool and actuator piston, respectively. 

external force applied to move pilot spool. 

= bulk modulus of fluid. 

Equations (3.1) through (3.7) are depicted in block diagram form in 

Fig. 3.2 where S denotes the Laplacian operator. 

Normally, two stage servovalves have some form of feedback from 

the slave stage to the pilot stage, and the servovalve in the control 

system of the 2,000 lb (900 kg) shaking table feeds back a signal from 

a displacement transducer that is proportional to slave spool position 

x. The effect o£ such feedback is to linearize the behavior of the 
s 

servovalve so that the slave spool position is proportional to the 

applied force in the system's operating frequency range: 

x 
s 

k F. 
1 

(3.8) 

In addition, for small slave spool excursions about its central position, 
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the nonlinear function f of equation (3.5) may be linearized by means 
s 

of a Taylor series expansion of the form (see ref. (7» 

where 

K = slave stage flow gain, and 
q 

K = slave stage flow-pressure coefficient. 
c 

Equations (3.1) through (3.7) can be replaced by equations (3.6) 

(3.9) 

through (3.9) and the latter equations solved to determine the transfer 

function relating the position of the actuator piston to the force 

applied to the pilot spool: 

x 
t 

F. 

Since K 
c 

assuming 

where 

x. 
l. 

k' 

l. 

c 

= 

t 
is 

= 

= 

k K A 
q a 

(Va mt (V ct m
t

) S s2 
S 4S + a

4S + K 
c 

negligible in comparison to A2 
a' 

F. = k' x. 
l. l. 

command table displacement 

an electronic amplifier gain, 

+ (A! + 

see ref. 

then the transfer function relating x
t 

and xi is 

x 
t 

x. 
l. 

= 
k K /A 

q a 

c t ) ) K 
c 

(7), and 

(3.10) 

(3.11) 

(3.12 ) 
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where 
2 

2 4 8 A 
a 

Wo ::: 
V m 

a t 
(3.13) 

and 

c 4 f3 K 

So 
t + c 

2 m
t 

Wo 2 V Wo a 
(3.14) 

The open loop natural frequency Wo is commonly referred to as 

the oil column resonant frequency. The oil column resonant frequency 

for the 2,000 Ib (900 kg) shaking table loaded with a 2,000 Ib (900 kg) 

weight (m
t 

= 4,000/386 Ib - sec
2
/in. (1,800/9.81 kg - sec

2
/m), 

A = 25.4 in
2 

(164 cm
2
), V = 25.4 x 12.5 in

3 
(164 x 31.8 cm

3
), and 

a a 

assuming f3 = 2 x 105 psi (1.4 x 106 kN/m2) is 396 rad/sec or 63 

cps (63 Hz). 

The damping factor for the open loop system cannot be evaluated 

reliably from equation (3.13) because neither c
t 

nor Kc are known 

accurately, and there are other sources of damping that have been 

neglected in the analyses. However, the effect of K , the slave stage 
c 

flow-pressure coefficient, is to increase the equivalent damping of 

the open loop system; and the effects of c
t 

and Kc and other sources of 

damping may be incorporated into an equivalent viscous damping co-

efficient s , and its associated equivalent damping coefficient is 
e 

given by 

Thus equations (3.7) and (3.9) become, respectively, 

F 
a 

(3.15) 

(3. 7 a) 
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and 

= K 
q 

x 
s 

and equations (3.6), (3.7a), (3.8), (3.9a), and (3.11) are the 

equivalent linearized equations for the open loop system operating 

about its cent~al position. These equations are depicted in block 

diagram form in Fig. 3.3. 

(3.9a) 

Electrohydraulic shaking tables employ closed loops for control 

in which the position of the actuator piston (which is the same as the 

table's position assuming they are rigidly coupled) is the primary 

feedback and the force the actuator is exerting and the velocity of the 

piston are supplementary feedback signals. These feedback signals are 

shown added to a modified linearized open loop system in Fig. 3.4. The 

transfer function relating actual table displacement and command dis-

placement for the closed loop system is 

x
t K 

= 

K kVf)S + 
x. V m 

3 (V c 
m

t
)s2 +(Aa 

1 a t 
S + 48 

e + K k
ff 

+ K k
ff 

+ K kd 413 c 
A A e 

a a 
........ (3.16) 

where 

K k' k K 
q 

k
ff 

= gain of force feedback 

kvf = gain of velocity feedback, and 

kdf = gain of displacement feedback. 

In practical shaking tables, the equivalent viscous damping 

coefficient is small and velocity feedback does not have much effect. 

Thus c
e 

and kvf may both be assumed equal to zero in equation (3.16), 
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and since the table displacement is required to equal the command 

displacement kdf is unity. Therefore equation (3.16) simplifies to 

(3.17) 

where the subscript a has been dropped from both V and A. The 

associated block diagram is depicted in Fig. 3.5. 

The frequency response function H(iw) of the closed loop system 

may be obtained by substituting iw for S in equation (3.17) so 

H(iw) 
K 

(3.18) 

I H (iw) I e- i ¢ (w) • (3.19) 

The system depicted in Fig. 3.5 was simulated on a digital computer and 

the gain factor IH(iw) I and the phase factor, ¢(w), were determined. 

5 
The values of A, m

t
, V, and S were made 25.4, 4,000/g, 318, and 2 x 10 , 

respectively, so that the system would represent the 2,000 lb (900 kg) 

shaking table loaded with a 2,000 lb (900 kg) mass for which frequency 

responses were presented in Fig. 2.3. The parameters K and k
ff 

were 

varied in order to obtain values that would reproduce these experimental 

frequency responses. 

The effects of varying K while maintaining k
ff 

constant and of 

varying kff while maintaining K constant are shown in Fig. 3.6(a) and 

(b), respectively. The effectiveness of force feedback in controlling 

the resonant response of the system can be seen in Fig. 3.6(b). Once 

the force feedback reaches an adequate level it effectively prevents 
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resonance at the oil-column resonant frequency. However, it also has 

the adverse effect of reducing the corner frequency of the frequency 

response function. It is apparent that values of K in the range 

2,000 to 3,000 and values of k
ff 

in the range 4 x 10-6 to 8 x 10-6 will 

produce frequency responses similar to those obtained experimentally. 

3.2 Effects of Test Specimen Reaction on 2,000 lb Shaking Table 

The mathematical model of the 2,000 Ib (900 kg) shaking table 

was modified to incorporate a single degree of freedom structure 

attached to the shaking table, and the block diagram of the model is 

shown in Fig. 3.7. The transfer function relating table displacement 

to the input is 

K 
= 

Xs )+ A S + K 
x

t 

(3.20) 

The system shown in Fig. 3.7 was simulated on a digital computer. The 

parameters in the system were selected so that it would represent the 

single degree of freedom structure and shaking table to which the 

experimental frequency response of Fig. 2.4 pertains. 

Frequency responses in the form of gain factors versus frequency 

for the system are shown in Fig. 3.8, and peaks and notches similar to 

those shown in Fig. 2.4(b) and Fig. 2.5 are evident. The effect of the 

amount of force feedback on the magnitudes of the peak and notch is 

shown in Fig. 3.8(a). Increasing the amount of force feedback increases 

the magnitudes of the peak and notch. Similarly, as shown in Fig. 3.8(b), 

the magnitudes of the peak and notch increase as the ratio of the mass 

of the structure to the mass of the table (m 1m ) increases. The 
s t 
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magnitudes of the peak and notch also increase if the damping capacity 

of the structure decreases as shown in Fig. 3.8(c). 

The cause of the peak and notch may be seen by examining equation 

3.20. This transfer function is similar to the transfer function for 

the table alone, equation 3.17, except that the table mass m
t 

has been 

replaced by an effective table mass m where 
e 

m 
e 

(3.21) 

The effective mass depends on the ratio of the masses of the structure 

and table, ms/mt' and on the ratio xs/xt , which is the transmissibility 

function relating the absolute displacements of the structure and 

table: 

where 

and 

T(W) 
1 + i 2 1:: w/w 

n 
2 

1 - (w/w) + i 2 ~ w/w 
n n 

w = circular natural frequency of the structure 
n 

s damping factor of the structure. 

(3.22 ) 

The transmissibility function is approximately unity for fre-

quencies up to 70% of the natural frequency of the structure, and it is 

approximately zero for frequencies greater than 1.5 times the natural 

frequency. Thus at the lower frequencies the effective table mass is 

m 
e 

= m (1 + ms) = 
t mt 

and at the higher frequencies it becomes 

(3.23) 
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m = m • 
e t 

(3.24) 

Near the natural frequency of the structure the transmissibility 

function varies rapidly in magnitude and phase depending on the damping 

factor of the structure. At frequencies just less than the natural 

frequency the effective table mass is given approximately by 

m 
e 

(3.25) 

and at frequencies just greater than the natural frequency it is given 

approximately by 

m 
e 

If m /2s is large compared with m , which will be the case when the 
s t 

mass of the structure is nearly as large as, or larger than, the mass 

of the table and the damping capacity of the structure is small, then 

the effective table mass just below and just above the natural fre-

quency is m /2s and - m /2s, respectively. 
s s 

A shaking table loaded with a resonant structure appears to the 

control system as a mass which varies with frequency. However, as 

shown in Fig. 3.9, the gain factor for a shaking table without load is 

a function of the table mass. The curves in this figure were obtained 

by assuming different values, including a negative value, for the mass 

of the shaking table in the system shown in Fig. 3.5. At low fre-

quencies the effective table mass for a table weighing 2,000 lb (900 kg) 

loaded with a structure weighing 2,000 lb (900 kg) is 4,000/g(1800 kg/g) 
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and the frequency response will be curve 2 in Fig. 3.9. Just below 

the natural frequency of the structure the effective table mass may 

increase due to resonance to 20,000/g (9,000 kg/g) and the frequency 

response changes from curve 2 to curve 3, Fig. 3.9. Just above the 

natural frequency, the effective table mass may become a negative 

20,000/g (9,000 kg/g) and curve 4 is the appropriate frequency response. 

Finally, at higher frequencies the effective mass becomes 2,000/g 

(900 kg/g), and curve 1 is the appropriate frequency response. Thus a 

peak and notch are formed in the frequency response function as 

illustrated by the dotted line in Fig. 3.9. 

In practice most shaking tables must use force feedback to 

control the table's resonant response and thus, when loaded with a 

resonant structure, their frequency response contains a peak and notch. 

Because of this effect, caution must be exercised when determining the 

frequency response characteristics of structures by means of shaking 

tables. 

In order to determine the effect of the peak and notch in the 

frequency response on the ability of the shaking table to simulate 

earthquake motions, the acceleration time history of the N-S component 

of the El Centro (1940) earthquake was doubly integrated to obtain a 

displacement command signal. The command signal was then fed to the 

computer model of the shaking table loaded with a resonant structure 

as shown in Fig. 3.7. The amount of force feedback in the model was 

intentionally, made sufficient to produce a significant peak and notch 

in the frequency response of the shaking table. 

The commanded El Centro acceleration time history is compared 

with the simulated earthquake motion in Fig. 3.l0(a), and, although the 
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acceleration peaks tend to be slightly smaller in the simulated earth­

quake, the fidelity of the simulation is excellent. As a further check 

on the fidelity of the simulation the structure's response to the 

simulated shaking table motion and to the commanded motion are compared 

in Figs. 3.l0(b) and (c). Figure 3.l0(b) shows the response of a 

structure in which the spring characteristic remained linear throughout 

the acceleration time history. Figure 3.l0(c) shows the response of a 

structure in which the spring characteristic was bi-linear hysteretic 

and the yield force was low enough so that the response of the structure 

was nonlinear during the simulation. In the case of linear behavior, 

Fig. 3.l0(b), the response of the structure to the simulation is 

slightly smaller than the response of the structure to the commanded 

motion, but in the case of nonlinear behavior, Fig. 3.10(c), there are 

no discernible differences other than the inevitable phase shift. 



4. ANALYSIS OF CONTROL SYSTEM FOR 100,000 Ib SHAKING TABLE 

The 100,000 Ib (45,300 kg) shaking table is driven vertically 

by four 25 kip (110 kN) hydraulic actuators and horizontally by three 
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50 kip (220 kN) hydraulic actuators. The vertical actuators are controlled 

electronically to operate in phase, and the horizontal actuators are 

also synchronized independently of the vertical actuators. The 

actuators are sufficiently long so that horizontal and vertical motions 

are essentially uncoupled. Assuming the synchronization circuits have 

no effect on the main control loops, the horizontal and vertical 

actuators may each be treated as a single independent actuator, and the 

analytical model of Fig. 3.5 may be used for either vertical or 

horizontal motion. 

The frequency response of the analytical model representing 

vertical motion of the 100,000 Ib shaking table was determined by 

digital computer. The area of the equivalent vertical actuator was 

made equal to the sum of the areas of the four 25 kip (110 kN) actuators, 

38.44 in
2 

(248 cm
2
). The volume of oil in the actuators was made equal 

to the total volume of oil in the four 25 kip (110 kN) actuators, 

192.20 in
3 

(3150 cm
3
). The bulk modulus of the oil was chosen so that 

the model would have the same oil column resonant frequency, 16 cps 

(16 Hz), as the 100,000 lb (45,300 kg) shaking table. The amounts of 

main loop gain and force feedback were varied in order to achieve 

optimum frequency responses. 

An optimum frequency response for the analytical model of the 

100,000 Ib (45,300 kg) shaking table is shown in Fig. 3.11. The closed 

loop resonant frequency of this system is approximately 8 cps (8 Hz) 
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which is about half of the oil column or open loop resonant frequency. 

The computed frequency response is very similar to the one shown in 

Fig. 2.8(a) that was obtained for the actual table. 

4.1 Effects of Flexibility in Couplings and Foundation 

In the analytical model shown in Fig. 3.5 it has been assumed 

that the piston is coupled rigidly to a rigid shaking table, and that 

the cylinder of the actuator is attached rigidly to a rigid foundation. 

In practice, the couplings, shaking table, and foundation are not rigid. 

When the flexibilities associated with these components are introduced 

into the block diagram of Fig. 3.7, the analytical model shown in 

Fig. 3.12 is obtained. In the model shown in Fig. 3.12, the subscript 

g refers to the foundation or ground, the subscript c refers to the 

cylinder and its coupling to the foundation, the subscript p refers to 

the piston, the subscript t refers to the table and its coupling to the 

piston, and the subscript s refers to the structure. The coupling 

between the piston and shaking table includes the flexibility of the 

shaking table. The primary feedback, for both the 2,000 Ib (900 kg) 

and 100,000 Ib (45,300 kg) shaking tables, is the displacement between 

the piston and cylinder of the actuator. 

Since the primary function of the shaking table is to reproduce 

an absolute table motion, the transfer function of interest is that 

relating absolute table displacement to input, which is 

= 
x -x ( 1 

(4.1) 

S+K) pc 
x

t 

This transfer function is of the same basic form as the transfer 
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function for the simplified analytical model used previously, with an 

effective table mass given by 

(4.2) 

and with the last two terms of the numerator (A S + K) multiplied by 

(x -x )/x . 
p c t 

In the case of the 100,000 Ib (45,300 kg) table, the coupling 

between the piston and shaking table and the shaking table itself are 

sufficiently rigid that the transmissibility function x Ix is close 
p t 

to unity within the operating frequency of the table. Then, since 

m 1m is very small, the effective mass reduces to 
p t 

m 
e 

(4.3) 

which is the same as that discussed previously for the 2,000 Ib table 

in section 3.2. Thus the 100,000 Ib (45,300 kg) table when loaded with 

a resonant structure will also exhibit a peak and notch in its frequency 

response function. 

Since the transmissibility function xp/xt is approximately unity, 

the multiplier of the last two terms of the numerator (A S + K) in 

equation (4.1) becomes (1 - x Ix). Also, since the cylinders of the 
c t 

actuators in the 100,000 lb (45,300 kg) table are prestressed onto the 

foundation, flexibility in these couplings is negligible so that 

x = x. Thus the multiplier becomes (1 - x Ix ) and the transmissibility 
c g g t 

function xg/xt is shown for vertical motion of the 100,000 lb (45,300 kg) 

table in Fig. 2.9(a). The transmissibility function xg/Xt ranges from 

zero to a maximum value of 0.06, and thus the multiplier (1 - xg/xt) 
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can only range between 1 and 0.94. Thus foundation flexibility in the 

100,000 Ib (45,300 kg) shaking table can reduce the magnitude of the 

terms (A S + K) in the numerator of equation 4.1, by up to 6%. However, 

since these terms are significant only at low frequencies, the effects 

of foundation flexibility on the performance of the 100,000 lb 

(45,300 kg) table are negligible. 
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5. CONCLUSION 

Mathematical models have been formulated that describe adequately 

the small amplitude dynamic behavior of electro-hydraulic shaking tables. 

The accuracy of the models has been confirmed by comparing the computed 

frequency response functions for the models with experimental frequency 

responses for a 2,000 Ib (900 kg) and a 100,000 Ib (45,300 kg) shaking 

table. The models simulated the corner frequency characteristic and 

the peak-and-notch distortion caused by a resonant structure on the 

shaking table. 

Force feedback from the actuator was found to have a significant 

influence on the frequency response characteristics of shaking tables. 

Once the force feedback reaches an adequate level it effectively pre­

vents resonance at the oil-column resonant frequency. However, force 

feedback also reduces the corner frequency and leads to the peak-and­

notch distortion in the frequency response. 

In addition to the amount of force feedback, the magnitudes of 

the peak and of the notch are sensitive to the ratio of the mass of the 

structure to the mass of the shaking table and to the transmissibility 

function of the structure. A shaking table loaded with a resonant 

structure appears to the control system as a mass whose magnitude varies 

with frequency. The variation has the form of the transmissibility 

function of the structure which has a maximum amplitude and change of 

phase at the resonant frequency. The transmissibility function 

increases the effective mass just below the resonant frequency of the 

structure producing the peak in the frequency response. Because of the 

phase change the transmissibility function reduces the effective mass 

just above the resonant frequency response. 
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The peak and notch distortion in the frequency response results 

in difficulties in determining the frequency response of structures by 

means of shaking tables. Corrections for this distortion need to be 

made either during the experimental work or later in the analysis of 

the data. However, it was found that the peak and notch distortion had 

little effect on the accuracy to which a shaking table could reproduce 

earthquake type motions. 

The effect of foundation compliance on the frequency response 

characteristics of shaking tables was also examined. It was found that 

foundation compliance can only affect the frequency response at low 

frequencies, and the magnitude of the effect is limited to an amount 

which depends on the transmissibility function of the foundation with 

respect to the table. 
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(a) GENERAL VIEW 

(b) above, A HORIZONTAL ACTUATOR 

(c) right, A VERTICAL ACTUATOR 

FIG. 2.6 THE 100,000 1b SHAKING TABLE 
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