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ABSTRACT

This study of response of simple structural systems to earth-

gquake ground motion is presented in two parts:

Part One

The response of linear elastic and nonlinear hysteretic systems
having a single degree of freedom to recorded and simulated ground
moctions is stud}ed. The objective is to evaluate whether the commonly
used simulated motions are appropriate for predicting inelastic res-
ponse of structures and elastic response of long period structures.

Eight simulated motions were generated to model properties of
horizontal ground motions recorded during four earthquakes. The
simalated motions are sample functions of a white noise process passed
through a SDOF filter and multiplied by a temporal intensity functions.
Two versions, corresponding to parabolic and 'standard! base line
corrections (BLC), of each of the simulated and recorded accelerograms
were considered.

The following general conclusions are deduced. Simulated
ground motions should be subjected to the standard BLC, because it
results in more reliable ground velocities and displacements, which in
turn would lead to more reliable predictions of reséonse of long
period structures. Furthermore, the spectral density of the under-
lving random process, from which the simulated motions are obtained,
should be modified to be more representative of the frequency content
of recorded motions, especially in the low frequency range. Such an
improved model can be expected to lead to better agreement, over a
broad range of periods, in the average response spectra of simulated

and recorded motions, for elastic as well as inelastic systems.
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Part Two

The response of idealized one~story structural systems to
earthquake ground motion is computed with the objective of evaluating
the effects of gravity loads and wvertical ground motions. It is shown
that the coupling between lateral and vertical deformations created
by yielding in the system must be considered in orxder to predict the
plastic part of vertical deformations due to horizontal ground motion.
However, simpler analysis without such deformation coupling, but with
reduction of lateral vield strength due to gravity load, would
generally by satisfactory for predicting the lateral response of tﬁe
system.

It is shown that the principal effect of the vertical component
of ground motion is_to superpose elastic vertical oscillations about
the gradually growing vertical deformation that resulted from yielding
due to horizontal ground motion alone, Lateral deformations are not
influenced significantly by vertical ground motion; hence they may be

determined from analysis of response to horizontal ground motion only.
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PREFACE

This study of response of simple structural systems to
earthquake ground moticn is organized in two parts:
Part One - Structural Response to Simulated Earthquake
Motions, and
Part Two - Effects of Gravity Loads and Vertical Ground

Motion on Earthquake Response of Buildings.






PART ONE

Structural Response to Simulated Earthguake Motions



INTRODUCTION

Study of probabilistic aspects of earthquake response of
structures reguires at least several ground motions recorded under a
similar set of conditions: Magnitude of the earthquake, source
mechanism, distance to the causative fault, geology between the fault
and the recording station, local soil conditions, etc. From this point
of view, the present collection of strong-motion accelerograms is far
from adequate. Procedures for simulation of earthguake motions have
therefore been developed for probabilistic studies of earthquake
response. The motions are simulated as member functions of a random
process model appropriate for recorded motions under a particular set
of conditions.

Barthqguake accelerograms have been modeled by random processes
of varying compliexity including stationary white noise (1}, stationary
Gaussian process with spectral density derived from average undamped
velocity spectra of recorded accelerograms (2}, a nonstationary
process which coﬂsists of a stationary process multiplied by an
envelope funqtion which describes the temporal variation of the
intensity of the process {(3,4,5,6), and a nonstationary process with
frequency content varying with time (7). Another approach to simulation
of ground motions is to idealize the generation of an earthquake as a
series of closely spaced focii along the rupturing fault (8). Succes-
gively, each focus or small rupture is assumed to radiate seismic waves
with appropriate characteristics., Superxposition of the waves from all
the focii results in the complete simulated ground motion. Comparison
of elastic response spectra for recorded and simulated motions have

usually been the basis for evaluating the guality of the simulation



model. In a recent study, however, parameters for the nonstationary
model mentioned above were determined specifically for inelastic
response studies (9). The durations of the three phases—-éuadratic
build up, constant value and exponential decay--of the envelope fun;tion
for intensity were determined to minimize the mean simulation error in
deformation spectra and dissipated hysteretic energy for elastic-
perfectly-plastic systems.

Ground motions simulated as sample functions of a nonstationary
random process, consisting of a s#ationary Gaussian process multiplied
by a time dependent intensity function, possess many of the important
properties of recorded earthquake accelerograms. In particular,
simulated and recorded accelerograms have been shown to result in
similar average response spectra for linearly elastic systems with
vibration periods less than 3 secs (5). However, these or similar
simulated motions have also been employed in probabilistic studies of
inelastic response of systems (5,6) and as design earthquakes for
structures with long natural periocds of vibration, such as very tall
buildings, offshore o0il-drilling platforms and long span bridges. The
objective of this study is to evaluate whether these widely used
simulated motions are indeed appropriate for predicting inelastic

response of structures and elastic response of long period structures.

IDEALIZED SYSTEMS

A one-story building is idealized as a shear type structure with
total mass concentratsd at the top deck, which is assumed to be rigid
and the deflection is due only to lateral deformation in the columms,

resulting in a system with one degree of freedom. In addition to a



linearly elastic case, two bilinear hysteretic force-deformation
relations are considered: Elastic-perfectly-plastic and bilinear
strain hardening with post-yield stiffness equal to one-tenth of the
initial elastic stiffness.
4ﬂ2 1
The elastic stiffness ke = — g-where W = total weight of the

2
T

structure, T = natural period of linear vibration, and g = acceleration
of gravity. The yield strength Fy = 2KCW where K = a numerical co-
efficient in the Uniform Building Code (UBC) depending on the structural
system, selected herein as 0.67, the value recommended for ductile

/3

moment resisting frames; C = 0.05/‘1‘l is the base shear coefficient in
an earlier edition of the UBC (10). The yield strength for the system
has been taken as twice the UBC design values, to account for the
difference between yield and design stresses as well as for the
strengthening influence of non-structural components. Energy dissipa-

tion in the structure due to effects other than yielding is represented

by viscous damping with the damping ratio § selected as 0.05.

RECORDED AND SIMULATED MOTIONS

The ground motion records listed in Table 1 are representative
of ground motions on firm ground in the region of strong shaking during
earthquakes of magnitude 6.5 to 7.5. The maximum values of accelera-
tion, integrated wvelocity and displacement, and spectrum intensity for
5 per cent damping ratio (SIO.OS) are listed in Table 1 for two versions
of each of the eight accelerograms: The original digitization with
parabolic base line correction (11} and the more recent digitization
with "standard" base line correction (12). The latter version, now

considered as the "standard" data for recorded accelerograms, is

presented in Fig. 1.



Eight simulated motions were generated to model the properties
of the above mentioned recorded motions. The random process model
including its parameter values and the simulation procedure adopted
heréin is essentially indentical to earlier studies (4-6)}. The simula-
tion procedure consisted of generating samples of stationary Gaussian
white noise; multiplying the white noise by an intensity function of
time (Fig. 2} to represent a seqgment of strong shaking at constant
intensity preceded by a quadratic build-up of intensity and followed
by an exponential decay in intensity; passing the resulting function
through a second order linear filter with frequency = 2.5 c¢ps
{57 rads/sec) and damping ratio = 60% to impart the desired frequency
content, as indicated by the spectral density (Fig. 2), and finally
performing a baseline correction on the filtered function. The eight
simulated motions were all scaled by the same factor such that the

average spectrum intensity SI for the ensemble would be 1,36m, the

0.05
ST value for the SOOE component of the El Centro 1940 motion.

0.05

The maximum values of acceleration, integrated velocity and
displacement and spectrum intensity for 5% damping of two wversions of
the resulting motions are listed in Table 2; the two versions cor-
respond to the two types of base line corrections mentioned above. The
simulated accelerograms with standard base line correction are pre-
sented in Fig. 3.

Each recorded accelerogram was normalized so that its spectrum
intensity SI

= 1,36 m, the SI value of the SOOE component of

0.05 0.05

the E1 Centro 1940 motion. The average values of the ground motion
parameters--maximum acceleration, integrated velocity and displacement,

and spectrum intensity--for the resulting ensemble of normalized



reccrded moiicns are presented in Table 3, along with the corresponding
values for the ensemble of simulated motions.

The type cf base line correction affects recorded and simulated
motions similarly, with little influence on ac¢celerations, some what
more change in velocities, and large influence on displacements (Tables
l, 2 and é). With standard base line correction, the average values of
maximum displacements are only one-third of the values with parabolic
base line correction (Table 3); also see Ref. (13).

Because of the scaling criteria adopted, tﬁe average spectrum
intensity is the same for the two ensembles. However, the average
value of maximum acceleration for simulated motions is significantly
smaller than for recorded motions, maximum velocity is significantly
larger, and maximum displacement is approximately twice as large
(Table 3).

Each of the recorded and simulated accelerograms has a large
number of zero crossings. An acceleration pulse is defined as the
portion of an accelerogram between any neighbor pair of zero crossings.
The area of the acceleration pulse controls the response of structures
with fundamental period much longer than the duration of the pulse.

For this reason it was of interest to examine the statistics of pulse
areas in recorded and simulated motions. Two histograms for areas of
acceleration pulses are presented in Fig. 4. One is the average across
the ensemble of recorded motions and the other across the ensémble of
simulated motions, both with standard base line correction. Simulated
accelerograms contain a larger number of small pulses (area < 5 in/sec)
and a smaller number of large pulses (area > 5 in/sec), relative to

recorded accelerograms.



ELASTIC RESPONSE SPECTRA

Previcus studies (5) have shown that elastic response spectra
for simulated and recorded ground motions, both with parabolic base
line correction, are similar for vibration periods up to 3 éec. In
light of the observed differences in the properties of simulated and
recorded ground motions, especially as influenced by the base line
correction (BLC), it is of interest to re-examine their elastic
response spectra, especially in the range of longer vibration periods.

The pseudo velocity response spectrum for 5% damping ratio was
computed, using a standard computer program (14), for each menber of
four ensembles of ground motions: Normalized recorded moticons with
parabolic BLC, simulated motions with parabolic BLC, normalized recorded
motions with standard BLC and simulated motions with standard BLC. The
resulting spectra were averaged separately over each ensemble of ground
motions. The average response spectra were plotted on longarithmic
scales with the ordinate representing the pseudo-velocity, Psv' and the
abecissa the natural period of vibration of the system, T (Figs. 5=8).

The values of pseudo-acceleration, PSa, and displacement, S_, can be

|
determined directly from the diagonal scales. Also shown in Figs. 5-8
are the values of maximum grcund acceleration, velocity and displacement
averaged separately over each ensemble (Tables 3).

When presented in this form, the response spectrum approaches
the maximum ground acceleraticn at the left end for wery short vibration
periods and the maximum ground displacement at the right end for very
long vibration periods. The response spectrum is most influenced by

ground accelerations in the short period region, by ground displacements

in the long pericd region, and by ground velocities in the intermediate



periodﬂregion where the pseudo velocity is essentially independent of
vibration period (15).

Previous comparisons of average response spectra for recorded
and simulated ground motions have usually been for motions with
parabolic BLC and in the vibration period range less than 3 sec. 2
similar comparison but for a longer range of vibration periods is
presented in Fig. 5. Consistent with average values of maximum ground
acceleration, velocity and displacement for the two ensembles, the
response spectrum for simulated motions is smaller in the short period
region but larger in the intermediate and long period regions, relative
to the spectrum for recorded motions. In the long periocd region,
discrepancy between the two spectra tends to increase with vibration
period, and for very long periods would reach a factor of approximately
2, consistent with the ratio of average values of maximum ground dis-
placement for the two ensembles. However, the discrepancy at 15 sec
peried is not much larger than it is at some shorter periods, for
example 0.6 sec.

When the average response spectrum for simulated motions with
parabolic BLC is compared with the corresponding spectrum for what are
now considered as standard data for recorded accelerograms, a large
discrepancy is apparent in the long period range, whereas the com-
parison has not changed much in the short and intermediate pericds
(Fig. 6). For longer periods, the two spectra diverge so greatly,
because maximum displacements from simulated accelerxograms are
approximately six times the value from recorded accelerograms.

The important effect of the base line correction on the response

spectrum in the long period range is seen in Fig. 7. The average



response spectrum for the ensemble of recorded motions is essentially
the same for vibration periods up to 2 sec., independent of the type--
parabolic or standard -- of BLC. However, the response spectrum is
increasingly sensitive to the base line correction as vibration periods
increase beyond 2 sec. The standard BLC reduces the ground displace-
ment to approximately one~third the value associated with parabolic BLC
(Fig. 7, Table 3), leading to similar reduction in the response
spectrum at very long periods.

Simulated motions with parabolic BLC are unsatisfactory in the
sense that, in the long pericd region, their response spectrum is
unacceptably large compared to the response spectrum based on standard
data set for the recorded motions (Fig. 6). Because response spectrum
in the long period range is strongly dependent on the base line cor-
rection employed (Fig. 7), it seemed that the first step in improving
gsimilated motions would be to subject them to the standard BIC. Com=-
parison of the average response spectrum for the resulting ensemble of
simulated motions (Tables 2 and 3) with the corresponding spectrum for
recorded motions indicates that discrepancy in the long period range
has decreased (Fig. 8). Over the entire period range, discrepancy
hetween the two response spectra is now similar to what was observed
in Fig. 5. This is consistent with the data presented in Table 3,
indicating that the ratio between ensemble averages for simulated and
recorded motions of the ground acceleration, velocity and displacement
are essentially independent of the type of base line correction.

Discrepancy between average response spectra for recorded and
simulated ground motions depends, in part, on how the motions are

normalized. When the two ensembles were normalized to have the same
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average spectrum intensity for 5% damping, the discrepancy is indicated
in_Fig. 8: The average response spectrum for simulated motions, as
compared to the spectrum for recorded motions is smaller for vibration
periods less than 1 sec, but larger for longex periods; the area under
the two spectra in the period range 0.1 to 2.5 sec is, of course, the
same because of the normalization criterion. If the two ensembles had
been normalized to have the same average value of maximum ground
acceleration, their response spectra would have been in very good
agreement in the short period region, where they are most influenced

by grbund accelerations. However, this would be at the expense of
increased discrepancy between the two spectra in the intermediate and
llong period regions. At intermediate periods, response spectra are
most influenced by ground velocities and better agreement between the
two spectra can obviously be achieved by normalizing the two ensembles
to have the same average value of maximum ground velocity. However,

in comparison with Fig. 8, this would worsen agreement between the two
spectra in the short pericd region. 1In the long period reglon, where
response épectra are most influenced by ground displacements, it would
be necessary to match average values of maximum displacement of the two
ground motion ensembles to achieve good agreement between the two
response spectra. However, in comparison to Fig. 8, this would
considerably worsen agreement bhetween the two spectra in the short and
intermediate period regions. Considering the two spectra over a
limited range of vibration periods, normalization based on maximum
acceleration, velocity or displacement--whichever is appropriate for
the particular range--would provide a better agreement than normalization

based on spectrum intensity.
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However, when a broad period range is considered, response
spectra for simulated and recorded motions are significantly different
in shapé, indicating that thelr frequency content, on the average, is
not the same. 1In order to achieve better agreement between the two
response spectra, the spectral density of the random process employed
as a model for earthquake accelerograms (Fig. 2) should be modified to
be more representative of the frequency content of recorded motions

over a broad range of frequencies.

CHARACTERISTICS OF ELASTIC AND INELASTIC RESPONSES

The computed response of linéarly elastic and elastic-perfectly-
plastic hysteretic systems, both with small amplitude elastic vibration
period 0.4 sec¢, to three simulated motions is pregented in Fig. 9. The
deformation response of both systems has been normalized by the yield
displacement of the hysteretic system. (Note that the yield strength
of this hysteretic system = 0.24 W, not the same as indicated in the
section on "idealized systems".) A visual ccomparison of the time
variation of deformation for the two systems indicates significant
difference in their behavior: Responses of the elastic system are
oscillatory about the initial equilibrium position, and have the
appearance of a sinusoid of frequency equal to the natural frequency of
the system £ = 2.5 cps, but with slowly varying random amplitude and
phase. On the other hand, responses cf the elastic-perfectly-plastic
hysteretic system are characterized by a few large increments in the
plastic part of the deformation, each causing a shift in the equilibrium
position about which the structure subsequently oscillates until the

next large increment in plastic part of the deformation occurs. Thus,
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there are several equilibrium positions about which the structure
oscillates during the earthquake motion.

In ordexr to identify the factors that influence structural
response, simulated accelerogram no. 5 {(Fig. 3) and the responses of
the elastic system and of the elastic-perfectly-plastic hysteretic
system to this simulated motion are all presented in Fig. 10 to the
same time scale. Also included is the time variation of the rate of
the energy input to the system by the ground motion, normalized with
respect to the elastic strain energy at yield point (Appendix A). The
three acceleration pulses immediately preceding the three largest
increments in the plastic part of the drift, as well as the enexgy
input AE to the system by these pulses, are identified. Pulses b and
¢ having similar areas produce significantly different incremental
plastic deformation AVP (defined in Fig. 11), whereas pulses a and cC
having dissimilar areas produced similar incremental plastic deforma-
tion.

This lack of correlation between pulse area and incremental
plastic deformation is further indicated in Fig. 11 where areas of
pulses and associated incremental plastic deformations are plotted.
Although deformation has a teﬁdency to increase with pulse area, the
relationship between the two i1s neither simple nor direct. Acceleration
pulses a and ¢ input similar amounts of energy to the inelastic system,
while pulse b inputs less energy (Fig. 10}, thus indicating that pulses
with larger areas do not necessarily input greater energy to the
system. However, it is apparent (Fig. 10) that the larger incremental
plastic deformations are roughly proportional to the energy input to
the system by acceleration pulses that immediately preceded the

deformations.
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The other simulated motion shown (Fig. 10) has been obtained
from simulated motion no. 5 by deleting the shaded pulse a' immediately
preceding pulse a; in all other respects the two motions are identical.
This slight modification in the ground motion altered the state--
displacement, velocity and acceleration--of the system preceding
acceleration pulse a, resulting in significant change in the incre-
mental plastic deformation and the energy input to the system by this
pulse, and the maximum response during the earthquake. However, the
energy input and incremental plastic deformations due to pulses b and
c as well as the oscillatory, elastic portion of the response remained
virtually unchanged. 1In contrast, the response of the elastic system
was virtually unaffected by modification of the ground motion (Fig. 10).
It is therefore concluded that effects of smaller pulses or maximum
response of elastic systems are negligible but they may be significant

in the case of inelastic systems.

INELASTIC RESPONSE SPECTRA

It was seen in the preceding section that earthgquake response of
inelastic systems is quite sensitive to details of the ground motion,
in particular to acceleration pulses with small area, whereas response
of elastic systems is relatively insensitive. It has also been noted
that simulated motions considered herein contain many more smaller
acceleration pulses than recorded motions (Fig. 4). It is therefore of
interest to see whether the simulated motions are as suitable to
determine the response of inelastic systems as they are in determining
the response of elastic systems.

Responses of the idealized system described earlier, with

several values of low amplitude vibration period T, varying between 0.2
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and 7 sec., to the ensembles of recorded and simulated ground motions,
both with the standard base line correction, were computed. For each
period value, response was analyzed for two bilinear hysteretic systems:
Elastic-perfectly-plastic and bilinear strain hardening; the response
of corresponding linearly elastic systems had already been computed to
obtain the elastic response spectra presented in a preceding section.

Results are summarized in the form of average response spectra
which were cobtained as follows: Maximum displacements fqr the three
types of systems--elastic, elastic-perfectly-plastic and bilinear
strain hardining--having the same low amplitude vibration period were
normalized by yield displacement of bilinear systems. These normalized
maximum displacements were averaged separately over the two engembles
of grouné motions, and plotted against vibration period in the form of
average response spectra for the three types of systems and two
ensembles of ground motions (Fig. 12). For each type of system, the
ratio of the ordinates of the average response spectra for simulated

.and recorded ground motions is presented in Fig. 13 as a function of
vibration period. This figure may also be interpreted as a plot of
error in the average response spectrum for simulated motions, relative
to the corresponding spectrum for recorded motions, expressed as a
percentage of the ordinates of the latter.

For all three types of structural systems, the average response
spectrum for simulated motions is smaller than the spectrum for
recorded motions at shorter vibration periods, but larger for the
longer vibration periods (Fig. 12), with the ratio of maximum displace-
ments due to simulated and recorded motions growing with increase in

vibration period. Errors are largest for elastic-perfectly-plastic
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systems over much of the period range, and roughly the same for
linearly elastic and strain hardening hysteretic systems. Most
structures exhibit strain hardening in plastic deformation, and Fig.
13 therefore indicates that in the average sense, simulated motions
used herein are appropriate for determining the maximum response of
such structures in their inelastic range of behavior, to the same

degree as they are suitable for predicting elastic response.

CONCLUSIONS

The type of base line correction (BLC), whether parabolic
or ‘standard', affects recorded and simulated ground motions similarly,
with little influence on accelerations, somewhat more change in
velocities, and large influence on displacements. Simulated ground
motions to be used for response analysis of structures with long natural
periods of vibration should be subjected to the standard BLC, because
it is known to result in more reliable ground velocities and displace-
ments, which in turn would lead to more reliable predictions of response
of such structures.

However, even with the standard BLC, simulated ground motions—-—
which are sample functions of a white noise process passed through a
SDOF filter and multiplied by a temporal intensity function--have
significantly different properties compared tc recorded motions. On
the average, maximum ground displacements for simulated motions are
about twice of those for recorded motions, and the shape of the two
average response spectra are significantly dissimilar. In order to
achieve better agreement between the two response spectra over &

broad range of periods, the spectral density of the underlying random
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process, from which the simulated motions are cobtained, should be
modified to be more representative of the frequency content of recorded
motions.

An improved random process model which leads to better agreement
between elastic response spectra for simulated and recorded motions
over a broad range of periods (0.2 < T < 7 sec.) can be expected to
lead to similarly improved agreement in response spectra for inelastic

systems.
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IMPERIAL VALLEY EARTHQUAKE, MAY I8, 1940
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APPENDIX A: ENERGY INPUT BY GROUND MOTION

The equation of motion for a single-degree of freedom system

is given by

mv(t) + 28mwv(t) + £(v,v) = - mi}g(t) (A.1)

where m is the mass of the system, § is the damping ratio, w is the
undamped natural -frequency, v(t) is the displacement of the mass
relative to the base, f(v,;) is the restoring force, and Gg(t) is the
ground acceleration.

The energy input to the system by the ground motion (effective
force = - m%g(t)) when the mass moves from position 1 to position 2 is:

2
AW :J [=mi(0)] v(t) dat (A.2)
1

Dividing by the elastic strain energy at yield point of the structural

system, a dimensionless form of Eg. {A.2) is obtained;

2
- 2% (t)u(t) de
J vg( Yu(t)

pE = —2H 1 (A.3)
ey C,9
2 Yy

where (t) = v(t)/v&, and Vy the yvield deformation; Cy = Fy/mg where

Fy = yield force for the svystem and mg is the welght of the system.
The rate of energy input to the structural system during the

time increment At is: EAs

-2 T (t)u(e) at
g u

AR t
_— = . 4
At cqut (A.4)
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PART TWO

Effects of Gravity Loads and Vertical Ground Motion on

Earthquake Response of Buildings

Preceding page bl
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INTRODUCTION

The response of yielding structures to earthquake ground
motions has been the subject of numerous studies during the preceding
two decades. Most of these studies have been concerned with structur-
al response due to horizontal ground moticn, cne component at a time,
under the assumption that lateral deformations are not large encugh
for the effects of gravity loads to be significant. A building de-
signed for laterazl forces specified in building codes is expected to
yvield during strong ground shaking, and thus admits the possibility of
some plastic drift; if this drift becomes large enough, gravity will
become the dominant force and the structure will collapse. Studies
aimed at understanding the collapse of structures during strong grouﬁd
motion have been reported (1), (2). Most buildings are, however, de-
signed to satisfy drift limits, which are small. enough so that collapse
under gravity locads is not a problem; failure under cyeclic lateral
forces and deformations is, of course, possible. For such buildings,
the effects of initial gravity forces in the structure, including the
reduction in yield strength of columns, on the ductility demands im-
posed by strong ground motion have been studied (3).

Most of the numerous studies on response of yielding structures
to earthquake ground motion, including those mentioned abowve, assume
one-dimensional yielding behavior, However, interaction between later-
al motion in two orthogonal directions under the action of two com-
ponents of ground motions in those two directions has been studied
earlier (4). Yielding under the combined action of gravity leoads and

lateral forces associated with horizontal ground motion will lead to
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interaction between lateral and vertical motions. This study examines
the influence of such interaction on the structural deformations that
may be caused by strong ground shaking. Vertical forces in the struc-
ture, which are constant and only due to gravity loads when only the
horizontal ground motion is considered, and the overturning effects
are neglected, vary with time when the vertical cemponent of ground
motion is also included. Effects of these fluctuating vertical loads
on the yielding behavior of the system and on lateral and vertical

deformations are alsc studied.

SYSTEMS, GROUND MOTICONS AND METHOD OF ANALYSIS

Systems

The idealized system considered has its total weight W concen-
trated at the top deck and deforms as shown in Fig. 1, with two de-
grees of freedom: lateral deformation vy and vertical deformation Voo
The overturning forces associated with lateral response are not con-
sidered in the analysis. Furthermore, the secondary effects of gravity
loads, the so called P-delta effects, are neglected.

The relation between total restoring forces and deformations--f

1
and vy in the lateral direction and f2 and Vs in the vertical direc~
tion--are shown in Fig. 1b. The yield values for the lateral and
vertical forces fly and f2y are considered to be equal in the two--~
positive and negative~-directions of deformation. Unloading and re-
loading from regions of inelastic deformation are assumed to take place
along lines parallel to the initial, elastic portion of the diagram.

Under the combined action of lateral and vertical forces, the system

is elastic within the yield surface, assumed to be circular in terms
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of normalized forces, and plastic for forces ocutside the vield sur-
face (Fig. 1lc).

The elastic stiffness ken = (4ﬂ2/Tn2)(W/g), n=1,2, where
W = total weight of the structure, Tl and T2 = naﬁural pericds of
linearly elastic vibration in lateral and vertical directions, respec-
tively and g = acceleration of gravity. The yield strength in the
lateral direction f1y = 2KCW where K = a numerical coefficient in the
Uniform Building Code (UBC) depending on the structural system,
selected herein as 0.67, the value recommended for ductile moment
resisting frames; C = O.OS/T]'/3 is the base shear coefficient in an
earlier edition of the UBC (5). The lateral yield strength for the
system has been taken as twice the UBC design value, to account for the
difference between yield and design stresses as well as for the strength-
ening influence of noﬁ-structural components. Similarly the yield
strength of the structure in the vertical direction is taken as twice
the gravity load, to account for typical load factor values, e.g. 1.7
for steel buildings, and additional strength due to nonstructural com-
ponents.

Energy dissipation in the structure due to effects other than
inelastic action is represented by viscous damping, effective in both

horizontal and vertical motions, with the damping ratio selected as

0.05 for both.

Ground Motions

The ground motions considered are (1) the first 15 seconds of
the East and vertical components of the Esso Refinery record obtained
during the Managua, Nicaragua earthguake of December 23, 1972, and

(2) the first 30 seconds of the SO00E and vertical components of the
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El Centro record obtained during the Imperial Valley earthquake of May
18, 1940. The time history of ground acceleration, maximum accelera-
tion, root mean square value of acceleration, and bracketed duration--
defined as the time span during which acceleration peaks exceed 0.lg--

for each component of the two records are presented in Fig. 2.

Method of Analysis

The responsé of each system is determined by solving the equa-~
tions of_motion (Appendix BA) by a numerical integration procedure
(Appendix B). .The time scale is discretized into egual time intervals,
small enough (0.0l sec or less) to define the accelerogram accurately
and no more than a small fraction (1/20th) of the natural period for
linearly elastic vibration of the system. Within each small time
interval, the horizontal and vertical accelerations of the mass of the
system were assumed to vary linearly, and the restoring forces fl and
f2 were taken to be constant equal to their values at the beginning of
the time interval. For the time intervals during which transition from
elastic to inelastic state or vice versa occurred, an iterative process

was employed to reduce force unbalance created by the numerical approx-

imation to 1 percent of the effective sarthquake load.

RESPONSE TO HORIZONTAL GROUND MOTION

In oxrder to study the effects of gravity loads, the response of
an idealized system to horizontal ground motion is analyzed for three
different conditions: Effects of gravity loads are rigorously con-
sidered including their influence on the inelastic behavior through

interaction with lateral forces; only a part of their effect, that of
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reducing the lateral yield strength, is considered; and gravity loads
are ignored. The structure chosen is the idealized system described
in the preceeding section with specified stiffness, strength and damp-

ing properties and T. and T.,, the natural pericds of vibration in

1 2!
lateral and vertical motions, egual to 0.5 and 0.1 sec, respectively.
The excitation chosen is the East component of the Managua earthguake
record (Fig. 2).

If the effects of gravity loads are rigorously considered, the
two equations of motion, governing the lateral and vertical motions,
are uncoupled only as long as the system is elastic but become cdupled
after the initiation of yielding (Appendix A). Coupling arises from
the fact that the incremental plastic deformation wvector is norxmal to
the yield surface (Fig. le) resulting in lateral and vertical defor-
mations. Numerical integration of the coupled equations, using the
procedure outlined in the preceeding sections and described in Appen-—
dix B, led to the results presented in Fig. 3. Lateral deformations
(Fig. 3a)_are characterized by a few large increments in the plastic
part of the deforﬁation, each causing a shift in the equilibrium
position about which the system subsequently oscillates until the next
large increment in plastic part of the deformation occurs. Thus, the
structure oscillates about several different equilibrium positions
during the earthquake motion. The vertical deformation before the
beginning of the ground motion {Fig., 3b) is simply the static defor-
mation due to the gravity load (Fig. 3d). It remains ﬁnchanqed as
long as the system remains elastic but begins to accumulate in the
downward direction (Figs. 3b and 3d) after the initiation of yielding.

This happens when the laterxral force reaches 0.87 fly’ the lateral vield
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strength reduced due to the effects of vertical load (Figs.3c and 3e).
The plastic deformation is always in the downward direction because of
the presence of the constant downward load (Figs. 3d and 3e).
Accumulation of plastic deformation in the vertical direction,
similar to the predictions of the analyses described above, was ob-
served in experimental tests on steel columns subjected to constant
axial force and slowly wvarying, cyclic horizontal force (6). Fig. 4a
shows the experimental set up schematically, and the measured relation
between bending moment and axial deformation in the colurn. For con-
venient comparison, a portion of the analytical results of Fig. 3 is

presented in a different manner: the relation between £ the lateral

lr

force in the system, and v_, the vertical deformation (Fig. 4b). The

9t
force and deformation quantities in the analytical and experimental
raesults (Figs. 4a and 4b) are not exactly the same, but qualitatively,
hoth results indicate the same phenomenon: plastic deformation
accumulates in the vertical direction when the system, under constant
vertical load, is subjected to cyclic lateral load, large enough to
cause yielding. The only difference in the experimental and analytical
results is in the vield force levels; in the experimental test the
vield moment increased with increasing strain due to the strain hard-
ening property of steel, but the lateral yield force in the analysis
remained constant because perféctly plastic behavior without strain
hardening was assumed.

The time variation of the energy dissipated in plastic action
Ep__ﬁpl and Epz are associated with plastic deformations in horizontal

and vertical directions, respectively--; energy dissipated in viscous

damping ED’ the sum of elastic strain energy ES and kinetic energy Ek'
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all normalized with respect to the elastic strain energy associated
with horizontal deformation at the yield point--see Appendix C for
definitions=--, is presented in figure 3f. Energy dissipated in plastic
action is much larger than the contribution due to viscous damping.
Furthermore, a significant part of the'énergy dissipated in plastic
action is associated with plastic deformations in the vertical direction.
Ignoring coupling between lateral and vertical motions created
by yielding of the system, response of the system described earlier to
the same excitation is determined by numerical integration of the
single equation governing lateral motion (Appendix RA); results are
presented in Fig. 5. This is equivalent to analysis of lateral re-

sponse of the system with lateral strength = 0.87 £ v (Fig. 5¢ and 5e),

1
reduced to account for the vertical lcad; no other effect of the ver-
tical load is considered. Because coupling between lateral and ver-
tical motions in inelastic response is ignored, there is no plastic
deformation in the wvertical direction, and the vertical deformation
remains constant at its initjial static wvalue associated with gravity
loads (Figs. 5b and 5d); there is no energy dissipated in plastic
deformation in the vertical direction (Fig. 5f); however, lateral
deformation response is essentially unaffected (Figs. 3a and 5a). It
appears therefore that the simpler analysis, where the gravity load
effect'is limited to reduction of the lateral yield strength, may be
adequate for predicting the lateral response of the system to horizon-
tal ground motion. However, coupling between lateral and vertical
motions creéted by yielding of the system, must be considered in order

to predict the vertical deformations.

Completely ignoring gravity loads--which reduces the problem to
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the standard case of an inelastic SDOF analysis, the response of the
system described earlier to the same excitation is determined by
numerical integration of the single equation governing lateral motion
(Appendix A); the results are presented in Fig. 6. These results are
compared with those in Fig. 3 to evaluate effects of gravity loads on
dynamic response. The gravity load reduces the lateral yield strength
from fly to 0.87 fly (Figs. 3¢ and 6b), leading to slight increase in
lateral deformation and elastic strain energy of the system. In con-
junction with lateral forces, the gravity load causes plastic defor-
mation in the vertical direction and significant increase in the
plastic energy dissipated (Figs. 3b, 3f, and 6c¢); however, the lateral
deformation response isessentially unaffected. It appears therefore
that the standard analysis, where gravity loads are ignored, may be
adequate for approximate predictions of the lateral response of the
system to horizontal ground motion. However, vertical deformations
can be predicted only by considering effects of gravity loads, and,

as seen earlier, these must be treated rigorously and coupling between

lateral and vertical motions should be included.

RESPONSE TC VERTICAL GROUND MOTION

In order to study how vertical ground motion affects response
of structures, the previous analysis of response to horizontal ground
motion in which effects of gravity loads were rigorously considered,
is repeated with the vertical component of the Managua earthgquake
record alsc included as the excitation. Analysis of coupled lateral-
vertical moticns by numerical integration of the two equations of

motion {Appendix A) leads to the results presented in Fig. 7.
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Vertical ground motion affects the response of the system as
follows: vertical axial force no longer remains constant at the
gravity load, fluctuations can be observed around that value {Fig. 74
and e}; beczuse of the variatipn in the vertical force, yvielding occurs
not always when the lateral force reaches 0.87 fly--the initial (with
gravity loads} value of the lateral yield strength~-but at fluctuating
values of the lateral force (Fig. 7¢), governed by the yield surface
(Fig. 7e); elastic oscillations--there is no additional yielding
because the strength in vertical direction is rather large--are
superimposed over the gradually growing vertical deformation that
resulted from horizontal ground motion alone (Figs. 3b and 7b); and
because of the velocities associated with elastic oscillations in the
vertical direction, additional enerxrgy is dissipated through viscous
damping (Figs. 3f and 7f). However, vertical ground motion has negli-
gikle effect on lateral defoimations (Figs. 3a and 7a). Furthermore,
because the plastic parts of lateral and vertical deformations are
essentially unaffected (Figs. 3a and 7a, 3b and 7b), there is little
change in the energy dissipated through yielding (Figs. 3£ and 7i).

Whereas, as seen above, vertical ground motion has little
influence on lateral deformations of the system, horizontal ground
motion affects vertical deformations in an important way. This is
evident hy comparing vertical deformations due to simultaneous action
of horizontal and vertical ground motions with those due to horizontal
ground motion alone and vertical ground motion alone. The latter was
determined from a separate analysis of a single equation governing the
vertical motion, with no horizontal deformation (Fig. 7b). Whereas,

the elastic oscillations of vertical deformation are entirely due to
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the vertical ground motion, the gradual accumulation of plastic de-
formations in the downward direction and the resulting shift in the
position.around which oscillations occur, are due to the lateral forces
due to horizontal ground motion, large enough to cause yielding (Figs.
3b and 7b). Thus, there would be little meaning in analysis of
vertical deformations due to vertical ground motion alone. On the
other hand, the residual vertical deformation at the end of the
earthquake is primarily due to the effects of yielding due to

horizontal ground motion.

RESPONSE OF SEVERAIL SYSTEMS

In the preceding section, dynamic response of the idealized
system described earlier with specified properties to a selected ground
motion was presented and the response behavior was examined in some de-~
tail. In this section, results are presented for response of the same
idealized system but with several different period values—-Tland T2=
0;25 and 0.13, 0.5 and 0.18, 0,75 and 0.22, 1.0 and 0.25, 1.5 and 0.3,
2.0 and 0.33, 2.5 and 0.37, all in seconds~-with the Managua and‘El
Centro ground moticn records as excitation. The values selected for
natural periods of wvertical vibration, relative to those for lateral
vibration, were based on Ref. (7). For each system and excitation,
response to horizeontal ground motion is analyzed for the following
two coﬁditions: gravity loads are ignored, and effects of gravity
loads are rigorously considered as described in the preceding section;
also analyzed is the response to simultaneous action of horizontal and

vertical ground motion, with the effects of gravity loads rigorously

considered; and the response to vertical ground motion alone including



438

gravity loads. For each case, a complete set of results, including
variation of responses with time, ware obtained by numerical inte-
gration of the equations of motion. However, only selected response
results--maximum lateral deformation, maximum vertical deformation,
permanent vertical deformations, and total energy dissipated in plas-
tic deformation-—are presented in Figs. 8 and 9,

Gravity loads and vertical ground motion affect the maximum
lateral deformation of the system, but with no consistent trend: For
a'particular ground motion, the lateral deformation may increase or
decrease depending on the vibration period of the system; and the
deformation of a particular system may increase for some ground motions,
but decrease for others (Fig. 8a, 9a). Effects of vertical ground
motion on lateral deformétion and energy dissipated_in plastic actién
of the system are generally small. Those due to gravity loads are
relatively significant, with as much as 30% change in deformation for
a system with Tl = 1 and T2 = 0.25 sec. and El Centro ground motion
as the excitation (Figs. 8a and %9a), and considerable increase in the
energy dissipated in inelastic action (Fig. 8b and 9b).

Values of maximum and permanent deformation in the vertical
direction for each system and the two ground motions are presented in
Figs. 8 and 9. The permanent deformation remaining after the earth-
quake consists of two parts: elastic deformation due to gravity loads
and plastic deformation associated with yielding of the system. The
gsimilarity between maximum and permanent deformations, evident by
comparing Figs. 8c and 8d, 9c and 94, is because of the fact that
plastic part of the deformation is always accumulating in the downward

direction and the difference between maximum and permanent values isg
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only due to elastic oscillations caused by vertical ground motion
(Figs. 3b and 7b).

Vertical deformations--maximum as well as permanent values--are
influenced by horizontal ground motion in an important way {(Figs. 8c,
8d, 9c and 9d). Because the plastic part of vertical deformations
arises from vielding of the system under large lateral forces, the
vertical deformations are closely related to the number of vielding
excursions and the extent of vyielding during each excursion. Thus,
the vertical deformations are dependent on the vibration period Tl in
the same way--generally decreasing with increasing period--as ductility
demands for code designed systems. Furthermore, the increase in energy
dissipated due to inelastic deformation in the vertical direction is
an essentially fixed fraction of the energy dissipated in lateral
deformations, independent of the vibration period. Another consequence
of the fact that the plastic part of vertical deformations is due to
yielding under large lateral loads, is apparent from Figs. 8 and 9:
vertical deformations and the associated additional energy dissipated
are similar for the two ground motion records because their horizontal
comporients are of similar intensity (Fig. 2), and there is essentially
no influence of the large differences in the intensity of the two
vertical ground motions (Fig. 2). Although the horizontal components
of Managua and El Centro grocund motions are of similar intehsity, the
duration of strong shaking is longer for the latter (Fig. 2), which
results in a large number of yielding excursions resulting in larger
permanent vertical deformations (Figs. 84 and 24). Accumulation of

these deformations with time is apparent in Fig. 9d.
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CONCLUSIONS

1. The dynamic response of yielding systems‘to horizontal ground
motion includes lateral deformation of course--this is the response
gquantity that has been the subject of numerous studies--and vertical
deformation, which is perhaps not an obvious effect. The vertical
deformation remains constant at the static value due to gravity loads
as long as the system is elastic but gradually accumulates in the |
downward direction with each excursion into the yield range. The
plastic part of the vertidal deformation is a consequence of the fact
that the incremental plastic deformation vector is normal to the yield
surface and has components in lateral and vertical directions,

2. The principal effect of the vertical component of ground moticn
is to superpose elastic vertical oscillations about the gradually
growing vertical deformation that resulted from horizontal ground
motion alone.

3. Permanent vertical deformations remaining after the earthquake,
arise from yvielding of the system under large lateral forces, which
are primarily due to horizontal ground motion. These deformations are
therefore controlled by horizontal ground motion and it is closely
related to the number of excursions into the yield range and the extent
of yielding during each excursion. Thus, permanent vertical defor-~
mations generally decrease with increasing period, similar to lateral
deformation ductility demands for code designed buildings; Ffurthermore
they increase with duration of strong shaking.

4, The coupling between lateral and vertical deformations created

by yielding of the system must be considered in order to predict the
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plastic part of vertical deformations due to horizontal ground motion.
However, simpler analyses Qithout such deformation coupling, but with
reduction of lateral yield strength due to gravity load, would
generally be satisfactory for predicting the lateral response of the
system. If the gravity loads are completely ignored, i.e. the full
vield strength is used in the analysis, the simpler analysis will not
lead to as good results but they may still éive adequate estimates.

5. For the earthquakes considered, laterzal deformations are not influ-
enced significantly by vertical ground motion; hence they may usually
be determined from analysis of response to horizontal ground.motion
only, unless the vertical ground motion is exceptionally intense.

6. The results presented should not be significantly influenced by
the secondary effects of gravity loads, the so called P-delta effects
or geometric stiffness effects, which were not included in this study.
For short period buildings, the effects of interaction between lateral
and vertical motions are significant bu£ the secondary effects of
gravity léads will be insignificant because the lateral deformations
are small. For long period buildings, the relatively small effects

of interaction between lateral and vertical motions would increase
somewhat because more yielding would be expected due to secondary

effects of gravity loads.
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APPENDIX A - EQUATIONS OF MOTION

EQUATICNS OF MOTION IN STANDARD FORM

The equations of motion for the system described earlier

and illustrated in Figure 1 are as follows:

m Vl(t) + clvl(t) + fl(t) -mv_ (t) (a.1)

-mV -W (A.2)

m Vz(t) + °2V2(t) + fz(t) 5,

and the force-deformation equations are, for elastic and plastic

response, respectively:

af, . a v, if ¢(fl, fz) < 1l or
= <
df2 dv24 ¢w1,f£ land d W o}
) P

da f av if ¢(f,, £) =1l and dW >0

1 EP 1 17 72 -

< = I_( (Ao4)

df, a VZJ

where
Vl(t) and Vz(t) are the horizontal and vertical deformations,

respectively, of the mass with respect to the base;

Vg (t) and Vg {t) are the horizontal and vertical ground
1 2
displacements, respectively;

fl(t) and fz(t} are the horizontal and vertical restoring

forces, respectively;

m is the mass of the system;
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cl and c, are the horizontal and vertical viscous damping

coefficients, respectively;

W is the gravity force equal to m g where g is the acceleration

of gravity;
¢(f1, fz) defines the yield surface;

E EP . . .
K and K are the elastic and elasto~plastic stiffness

matrices, respectively; and

P . . .
d W 1s incremental plastic work.

The force~deformation relation is elastic-perfectly plastic. an

elliptical yield surface defines the boundaries of the elastic region.

(b(fll f2) =y — + § — = 1 (A.5)

where fly and f2y are the yield horizontal and vertical forces,

respectively (Figure 1b}.

FCORCE-DEFORMATICN EQUATIONS

A general form of the force-deformation eqguation is (1):

af = x° av (2.6)

~

t . R .
where K~ is the tangent stiffness matrix and 4f and 4V are the incre-
mental force and deformation vectors, respectively.

For elastic response, ¢(f) < 1 and the tangent stiffness is

given by the initial elastic stiffness matrix, KE:

K~ = (A.7)
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where Kl and K2 are the horizontal and vertical elastic stiffnesses,
respectively., For plastic behavior, ${(f) = 1 and the tangent stiffness
: . . . . EP .

is given by the elasto-plastic stiffness matrix, K . The following

. . ‘. E
assumptions are made in deriving K P:
i. A yield surface exists.
2. The incremental deformation vector can be decomposed into
an elastic and plastic part:

av = 4av +  4v (A.8)

with the elastic part of the vector following Hooke's law:

ar = & av (A.9)

- ~

3. The incremental force and plastic deformation vectors are

orthogonal:
P
dft av = 0 ) (A.10)

4. The material of which the system is composed is perfectly
plastic and the incremental force vector is therefore

tangential to the yield surface for plastic response:

£ 3 _

Qf F 0 (aA.11)

where %% is a vector whose elements are g?L where 1 equals
= i

1 or 2.

From Egs. (A.10) and (A.11l) the incremental plastic deformation

vector is given by the flow rule:
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P _ 4 3¢
av: = A F {Ar.12)

where A is a positive scalar. . Equations (2.8), (A.9), {(A.1l1l). and

(A.12) are used to obtain A:

-5

NS N

and from Eqe. (A.4), (A.5), (A.8), and (A.9):

t
) & av (A.13)

Q2
14

-~

or

EP

where

1A

-1
EP _ _E __E 3 [/ _E 3¢ (BQ t E
=K -¥ 3f [(55) T 5e) K (r.14)

For the vield surface described by Eq. (A.5), the elasto-plastic

stiffness matrix is given by:

-
" 2£, 2 £,f,
K% 2 —IK X, 2 g2
2y ly "2y
EP 1
By B > (A.15)
2t i 2f, . £, 2f12
fi 1 fi e S 2 2 KK, 2
Y Y. 1y "2y ly

LOADING AND UNLOADING CRITERIA

The plastic work increment is used to determine whether the

system is in a state of loading or unloading:
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dWP = ft

a P

—

(A.16)

P
When dW > O the system is in a state of loading and the force vector

. . P .
is on the yield surface. When dW < 0 the system is in a state of

unloading and the force wvector is on the elastic region.

Equations (A.l) through (a.4) govern the seismic response of

the two-degree-of-freedom system.

uncoupled for elastic response (see Eg.

The two equations of motion are

(a.7))

and can be integrated

independently, while for plastic response the equations are coupled

(see Eg.

EQUATIONS OF MOTION IN DIMENSIONLESS FORM

The equations of motion can be written

by using the following transformations (2}:

kl/m

2
e, &y

vl/vly

fl/fly

Derivatives with respect to T are denoted by (

(A.17) are substituted into Egs.

equations of motion are:

(A.1) to (A.4)

(A.15)) and must be integrated simultanecusly.

in dimensionless form

= k./m

= 2
™8,

= V. /V

= f£_/f (A.17)

2y

}'. When eguations

, the resulting
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\7 (T/W.)
u ! gl 1
ul(T) + Zilul(r) + le =< g (A.18)
o
, . . gz(T/wl)
8 uZ(T) + 2£2<Su2(T) + Pz(r) = - T -8 (a.19)

and the force-deformation equations are:

dp d i , <
1 . ul if d)(Pl P2) 1l or
= 8 P (&.20)
sz du2 ¢(Pl, P2) =1and dM < 0O
dPl EP dul P
= S if ¢(P,, P.) =1 and daM > 0 (A.21)
ar B a 12 -
2 Ha
where
¢ (P P)=P2+P2—l (a.22}
1’ "2 1 2 :
The elastic and elasto-plastic stiffness matrices are:
1 0
s¥ = (A.23)
0 1
- -
B 2 —sz P
2y 2 112
W
2 a2y a2
EP 1 1y
S = >\ > (A.24)
2{ 1 2 2 2 2
“\a T W\ “.P P 2f F1
1y 2y w f——
2 1 a;
- a2y Y .
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The dimensionless plastic work increment is defined as:

P P P
= + d .
am Pld’ul P2 112 (n.25)
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APPENDIX B - NUMERICAL INTEGRATION OF EQUATIONS OF MOTION

GENERAL APPROACH

The incremental equations of motion for a two-degree-of-freedom

system can be written in general form as:

m AV + ¢ AV + AF = AP (£) (B.1)

-

and the force deformation equations as:

At = X° A (B.2)

~ ~

where m, ¢, and gt are the mass, damping, and tangent stiffness
matrices, respectively, z is the displacement vector, £ is the force
vector, and g(t) is the exciting force,.

The displacements, velocities, accelerations, and forces at time
t + At given those at time t are sought. The equations are solved
numerically using a step~by=-step procedure. The numerical method can

be summarized as follows (3}:

(1) Linearization Procedure - The tangent stiffness matrix Kt

at time t is formed.

(2] Solution Procedure - Response increments AV, AV, and AV

are calculated using the linear acceleration method.

(3) State Determination Problem - Force increments are

calculated given deformation increments, Af = Kt Av.

(4) Iterative Procedure to Reduce Unbalanced Forces - Any
unbalanced forces in the system are calculated and the

solution iterated using a Newton-Raphson scheme until
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equilibrium tolerances are satisfied, leading to new

response increments AV, AV, AV, Af.

~ ~ =~
(5} Final Solution - The new state of the system at time

t + At is calculated
VIt + At), V(t + At), V(t + At), £(t + At)

LINEARIZATION AND SOLUTION PROCEDURE

The tangent stiffness matrix is calculated using the lineariza-
tion procedure and according to the plasticity laws as described in
Appendix A. For elastic behavior, the tangent stiffness is given by
Eg. (A.7}), and for plastic behavior by Eg. (A.15). The response
increments Qy, A?, A? are calculated by the linear acceleration method
(4). If the acceleration is assumed to varv linearly during the time
interval At, the kinematic equations for AV and AV can be written as

~ -~

follows:

AV = V(t)At + AV %‘i (B.3)
2 2
AV = V(£)At + V() %u + AV —QZ— (B.4)

The equations of motion (B.l) and the kinematic ecquations (B.3)
and (B.4) represent a system of 3 vectorial equations with 3 unknown

vectors that can be solved for AV, A&, and AV as follows:

v o= ®7T AP | (B.5)

fm |
H
|~
+
lm

N

i
+

e S (B.6)
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and

AP = Ap + m(i Vit) + 3{}(t)) + c(:ﬂ'z(t) . At i}(t)) (8.7)
.3 . At o
Ay = At Ay - 317(t) -3 Y,(t) (B.8)
" . 6 6
AV = = 3V(t) - V() —A-’E + A "—2 (B.S)

STATE DETERMINATION PROBLEM

The force increments Af are calculated given the displacement

A

increments AV. The force-deformation relations are (Eg. (B.2)):

—

Af = kT A (B.10)

~ ~

t
For elastic response, K is defined by Eg. {A.7} where Kl and K2 are
constant during At and Qﬁ may be calculated directly from Eg. (B,10).
For plastic response, the tangent stiffness matrix EF {Eg. (A.15)) is

a function of the force vector £, and Eq. {B.l0) is expressed by:

Af = KT (8) Y (B.11)

To solve for Af in Eg. (B.11), a numerical integration within time
steps must be carried out. The solution process will be described for
twe transition states: from plastic to plastic state and from elastic

to plastic state.

a} Plastic To Plastic State

The state deterxmination problem involved when the system
transists from plastic to plastic state is illustrated in Figure (B.la).

The force vector at time t, £(t), is known and is on the yield surface.
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Af must be determined such that Egq. (B.1l1l) is satisfied and
£(t + At) = £(¢) + Af is on the yield surface. A first approximation
for the force vector, fl(t + At), is obtained from Eq. (B.l11l) using

the tangent stiffness at time t (Figure B.1lb):

Eh(t + M) = E(E) + KD (E(R) AV

~

. . . . 1.
To obtain a seccond approximation, the tangent stiffness at f is used

in conjunction with a second order Runge-Kutta scheme:
2 E P
£+ a0 = £(0) + 5 [K Pl + K5 (ghie + At))]AV

. . . : 2 .
Because the solution is carried out numerically, £ (t + At) will not be
exactly on the yield surface and a correction as shown in Figure (B.1lb)
must be introduced to obtain the final value for the force vector

£(t + At). Finally,

Af = £t + M) - £(B)

o~

—~

b} Elastic To Plastic State

The state determination problem involved when the system tran-
sists from elastic to plastic state is illustrated in Figure (B.2a).
The force vector at time t is £(t) and is on the elastic region. The
elastic solution results in forces represented by point A on Figure
{(B.2a). Assuming this point as the first approximation to the solution,
Af(t + At) is determined such that Eg. (B.1ll) is satisfied and the
force vector is on the yield surface,

The procedure to determine é(t + At) is carried out in two
steps. First, the force veétor, {?(t + M) is calculated such that

it is on the yield surface:
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£ (t + At) = £(6) + a At

where ¢ is a factor than when used to multiply the second term in the
above equation yields a walue for Ez(t + At) that is on the yield
surface and that defines the transition between elastic and plastic
states. The plastic force vector is then calculated as previously
described for the transition from plastic to plastic state. The
incremental displacement for plastic response of the system is given
by (1 - Q)Qy. A secoﬁd order Runge-Kutta scheme is used to calculate

f4(t + At):

f4(t FAE) = £t 4 At) + %[gEP(fz(t + At)) + _ISE

~

P(f3(t + At))](l - ) Av

where

f3(t + A6 = £2(¢ + At) + E?P(fz(t + At)) (1 - a)dv

. 4 . . .
Because the solution £ (£ + At) is still not on the yield surface,
a correction is applied as shown in Fig. (B.2b} to obtain the final

value for the force wvector E(t + At) and

Af = f£(t + At) - F£()

—~

REDUCTION OF UNBALANCED FORCES

In solving the equations of motion (Egs. (B.5) to (B.9)), the
tangent stiffness matrix is assumed to be constant during each time
step. However, when the system moves from elastic to plastic or
plastic to plastic states, the stiffness varies within the time step,
dynamic equilibrium is viclated, and unbalanced forces are introduced
into the system. A Newton-Raphson Iteration is used to reduce the

unbalanced forces thus introduced.
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The restoring forces that satisfy the dynamic egquilibrium
equations (B.l) are the first approximations shown in Figures (B.1)
and (B.2). The final values for the restoring forces, £{t + At), are
provided by the solution of the state determination problem. The

unbalanced forces introduced into the system are, therefore:

% = Pt + At) - £l b + AL)

The vector AP in Eg. (B.7) is replaced by the wibalanced force value
and additional displacement increments are calculated using an
iterative procedure. The process is repeated until equilibrium

tolerances are satisfied.

ELASTIC AND PLASTIC DISPLACEMENTS

When the final displacement values have been calculated for
each time step, the elastic and plastic parts of the displacement

vactor (Egs. (A.8) and (A.9)) are calculated as follows:

%
i
Lo
—
>
th

=
2
H
>
=
1
B>
'y

ENERGY INTEGRALS

The energy equations derived in Appendix C are calculated
using the trapezoidal rule. The dimensionless energy increments at

each time interval are:

v(J {(T+AT) ul(T+AT) + vg (T) ul (t)

= __ ‘1 1 ,
AEIl P AT
Ly




where AEIl

AEKl

AEKZ
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V62(1+AT) u2(1+Ar) + vgz(r) ug(r)

- AT

a2y

- B[u2(r + AT) + uz(r) At

and Aﬁiz are input energy terms;

il

2 .2
ul(r + A1) -~ ul(T)

2[=2 .2
8 [uz(T + ATy - uz(Tq

where Aﬁkl and Aﬁkz are kinetic energy terms;:

—_— _ 02 52
AEDl = 2Ar£llul(f + A1) + ul(rﬂ
AE. . = 2MATE a['zm + AT) + 'Z(T)]
D2 2°1M2 Mo
where AEDl and AEDZ are daming enerqgy terms;
2 2
- . E _ . E
s1 = ul (T + A1) ul (t)
2 2
- E E
AESZ = ¥, (T + A1) - U, (1)

where Aﬁgl and Aﬁéz are strain energy terms; and

Pl

AEP2

p P
[Pl(T + ATy + Pl(r)][vl(r + AT) - Vl(r)]

I

P P
[Pz(T + AT) + P2(T)}[V2(T + A1) - VZ(T)]

where Aﬁél and Aﬁgg are terms for energy dissipated plastically.
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(a) STATEMENT OF THE PROBLEM (b) SOLUTION

FIG. B.1l SOLUTION OF STATE DETERMINATION PROBLEM: FROM PLASTIC TO
PLASTIC STATE. :

f T
2 2A £t CORRECTION

(a) STATEMENT OF THE PROBLEM (b) SOLUTION

FIG. B.2 SOLUTION OF STATE DETERMINATION PROBILEM: FROM ELASTIC TO
PLASTIC STATE.
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APPENDIX C - ENERGY EQUATIONS

The equations used to determine the energy input and dissipated
in response of the system to the input ground motions are derived

below.
The eguations of motion (Egs. (A.l) and (A.2)) can be com-

bined as follows:

. " . :'
mvi ciVi + fi Qi(t) (C.1)

where i = 1 and 2, and

- v {t)

t
9, (&) 7

{(C.2)

1

Qz(t) - ng £y - w

2
To cbtain the energy equation, Eg. (C.1l) must be multiplied by dVi.
Then, integrating between 0 and Vi(t) and decomposing dVi into elastic

and plastic parts, we obtain:

v, (t) V. (t) v, (t)
1 1 1
J v, av, + f c.V.dv, + J £ avt
i l 1 i 1 1
0 0 0
v, (t) V. (t)
1 i
B
+ f £.4V. = f Q.dv,
1 1 1 1
0 0

The righthand term represents the energy input to the system by the
exciting force during time t, and the lefthand term the energy in the
system at time t and energy dissipated by the system during time t.

The energy equation can be written as:



EKi(t) + EDi(t) + Esi(t) + Epi(t) = EIi(t)

where
V. (©)
i
E_.(t)y = J m§_dv,
Ki 1 i
0

describes the kinetic energy in the system at time t;

describes the energy dissipated by damping during time t;

v, (t)
1
E
Bgi (8 = J £.avy
o

describes the strain energy in the system at time t;

V. (t)
kR
E_ .t} = [ f.dv?
P1 I 1
0

describes the energy dissipated plastically during time t; and

V. (t)
i

B, (8) = f QidVi
0

describes the energy input to the system during time t.

(€.3)

(C.4)

The energy equation ¢an be written in dimensionless form by

dividing by the elastic energy capacity in the ith direction.

For instance:



The other terms are gimilarly derived.

becomes:
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E_. (%)
(t) = Ii

E_,
11 1

2 iyviy

EKi(t) + EDi(t) + ESi(t) + EPi(t) = EIi(t)

By using the definitions of Eg.

Egs. {(C.4) are cobtained:

3l

Il(t)

2]

12(t)

Kl(t)

ft

K2(t)

[l

Dl(t)

D2(t)

Sl(t)

(5]

S2(t)

-Zwl

Vg (t)ul(t)dt

a 1

ly

Ot

ng(t)uz(t)dt - 2Bwl

1
[V N
£
[
O et

*2
ul(t)
242

5 uztt)

t
«2
4glwl J Ul(t)dt
0

4., 6w, ﬁi(t)dt

Ot

oy 2
o)

2
E
{u2<t>]

|

Equation (C.3) therefore

uz(t)dt

{C.5)

{A.17), the following expression for



oV

£
— P
Epl(t) = 2 f Pl(t)dul
0
t
E.(t) = 2 P (£)at
P2 )
0

At t = 0, all energy values are sgual to zero with the exception of
the strain energy in the vertical direction which is equal to the work
done by the axial force befors the ground motion is applied to the

system.

= — 2
ES2(O) = EIZ(O) =g

Total energy values include the contribution of both the
horizontal and vertical directions of motion to the energy input to
and dissipated by the system and are normalized by the elastic energy
capacity in the horizontal direction. The total energy input is

defined as:

EI(t) = EIl(t) + EIZ(t)

In dimensionless form, this expression is:

Similarly, the other energy terms, EK' ED' ES and EP are the

dimensionless total kinetic energy, total energy dissipated by

damping, total strain energy, and total energy dissipated plastically,

respectively.
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The above energy formulation holds for a system on a fixed base
subjected to applied forces Qi(t), not for the actual case where the
system is excited by base rﬁotion. The kinetic energy terms in the
equations therefore represent the energy associated with motions
relative to the base of the sysﬁem and not the kinetic energy due to
total motion. Because the primary concern in seismic analysis is with
deformation of the system, an energy formulation in terms of relative

motion is more useful.
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