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ABSTRACT

This study of response of simple structural systems to earth­

quake ground motion is presented in two parts:

Part One

The response of linear elastic and nonlinear hysteretic systems

having a single degree of freedom to recorded and simulated ground

motions is studied. The objective is to evaluate whether the commonly

used simulated motions are appropriate for predicting inelastic res­

ponse of structures and elastic response of long period structures.

Eight simulated motions were generated to model properties of

horizontal ground motions recorded during four earthquakes. The

simulated motions are sample functions of a white noise process passed

through a SDOF filter and multiplied by a temporal intensity functions.

Two versions, corresponding to parabolic and 'standard' base line

corrections (BLC), of each of the simulated and recorded accelerograms

were considered.

The following general conclusions are deduced. Simulated

ground motions should be subjected to the standard BLC, because it

results in more reliable ground velocities and displacements, which in

turn would lead to more reliable predictions of response of long

period structures. Furthermore, the spectral density of the under­

lying random process, from which the simulated motions are obtained,

should be modified to be more representative of the frequency content

of recorded motions, especially in the low frequency range.. Such an

improved model can be expected to lead to better agreement, over a

broad range of periods, in the average response spectra of simulated

and recorded motions, for elastic as well as inelastic systems.



Part Two

The response of idealized one-story structural systems to

earthquake ground motion is computed with the objective of evaluating

the effects of gravity loads and vertical ground motions. It is shown

that the coupling between lateral and vertical deformations created

by yielding in the system must be considered in order to predict the

plastic part of vertical deformations due to horizontal ground motion.

However, simpler analysis without such deformation coupling, but with

reduction of lateral yield strength due to gravity load, would

generally by satisfactory for predicting the lateral response of the

system.

It is shown that the principal effect of the vertical component

of ground motion is to superpose elastic vertical oscillations about

the gradually growing vertical deformation that resulted from yielding

due to horizontal ground motion alone. Lateral deformations are not

influenced significantly by vertical ground motion; hence they may be

determined from analysis of response to horizontal ground motion only.
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PREFACE

This study of response of simple structural systems to

earthquake ground motion is organized in two parts:

Part One - Structural Response to Simulated Earthquake

Motions, and

Part Two - Effects of Gravity Loads and Vertical Ground

Motion on Earthquake Response of Buildings.
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PART ONE

Structural Response to Simulated Earthquake Motions
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INTRODUCTION

Study of probabilistic aspects of earthquake response of

structures requires at least several ground motions recorded under a

similar set of conditions: Magnitude of the earthquake, source

mechanism, distance to the causative fault, geology between the fault

and the recording station, local soil conditions, etc. From this point

of view, the present collection of strong-motion accelerograms is far

from adequate. Procedures for simulation of earthquake motions have

therefore been developed for probabilistic studies of earthquake

response. The motions are simulated as member functions of a random

process model appropriate for recorded motions under a particular set

of conditions.

Earthquake accelerograms have been modeled by random processes

of varying complexity including stationary white noise (1), stationary

Gaussian process with spectral density derived from average undamped

velocity spectra of recorded accelerograms (2), a nonstationary

process which consists of a stationary process multiplied by an

envelope function which describes the temporal variation of the

intensity of the process (3,4,5,6), and a nonstationary process with

frequency content varying with time (7). Another approach to simulation

of ground motions is to idealize the generation of an earthquake as a

series of closely spaced focii along the rupturing fault (8). Succes­

sively, each focus or small rupture is assumed to radiate seismic waves

with appropriate characteristics. Superposition of the waves from all

the focii results in the complete simulated ground motion. Comparison

of elastic response spectra for recorded and simulated motions have

usually been the basis for evaluating the quality of the simulation
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model. In a recent study, however, parameters for the nonstationary

model mentioned above were determined specifically for inelastic

response studies (9). The durations of the three phases--quadratic

build up, constant value and exponential decay--of the envelope function

for intensity were determined to minimize the mean simulation error in

deformation spectra and dissipated hysteretic energy for elastic­

perfectly-plastic systems.

Ground motions simulated as sample functions of a nonstationary

random process, consisting of a stationary Gaussian process multiplied

by a time dependent intensity function, possess many of the important

properties of recorded earthquake accelerograms. In particular,

simulated and recorded accelerograms have been shown to result in

similar average response spectra for linearly elastic systems with

vibration periods less than 3 secs (5). However, these or similar

simulated motions have also been employed in probabilistic studies of

inelastic response of systems (5,6) and as design earthquakes for

structures with long natural periods of vibration, such as very tall

buildings, offshore oil-drilling platforms and long span bridges. The

objective of this study is to evaluate whether these widely used

simulated motions are indeed appropriate for predicting inelastic

response of structures and elastic response of long period structures.

IDEALIZED SYSTEMS

A one-story building is idealized as a shear type structure with

total mass concentrated at the top deck, which is assumed to be rigid

and the deflection is due only to lateral deformation in the columns,

resulting in a system with one degree of freedom. In addition to a
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linearly elastic case, two bilinear hysteretic force-deformation

relations are considered: Elastic-perfectly-plastic and bilinear

strain hardening with post-yield stiffness equal to one-tenth of the

initial elastic stiffness.

4TI
2

The elastic stiffness k
W

total weight of the= -where W=
e 2 g

T
structure, T = natural period of linear vibration, and g = acceleration

of gravity. The yield strength F = 2KCW where K = a numerical co­
y

efficient in the Uniform Building Code (UBC) depending on the structural

system, selected herein as 0.67, the value recommended for ductile

moment resisting frames; C = 0.05/Tl /
3

is the base shear coefficient in

an earlier edition of the USC (10). The yield strength for the system

has been taken as twice the UBC design values, to account for the

difference between yield and design stresses as well as for the

strengthening influence of non-structural components. Energy dissipa-

tion in the structure due to effects other than yielding is represented

by viscous damping with the damping ratio ~ selected as 0.05.

RECORDED AND SIMULATED MOTIONS

The ground motion records listed in Table 1 are representative

of ground motions on firm ground in the region of strong shaking during

earthquakes of magnitude 6.5 to 7.5. The maximum values of accelera-

tion, integrated velocity and displacement, and spectrum intensity for

5 per cent damping ratio (SI
O

.
05

) are listed in Table 1 for two versions

of each of the eight accelerograms: The original digitization with

parabolic base line correction (11) and the more recent digitization

with "standard" base line correction (12). The latter version, now

considered as the "standard" data for recorded accelerograms,is

presented in Fig. 1.
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Eight simulated motions were generated to model the properties

of the above mentioned recorded motions. The random process model

including its parameter values and the simulation procedure adopted

herein is essentially indentical to earlier studies (4-6). The simula­

tion procedure consisted of generating samples of stationary Gaussian

white noise; multiplying the white noise by an intensity function of

time (Fig. 2) to represent a segment of strong shaking at constant

intensity preceded by a quadratic build-up of intensity and followed

by an exponential decay in intensity; passing the resulting function

through a second order linear filter with frequency = 2.5 cps

(SIT rads/sec) and damping ratio = 60% to impart the desired frequency

content, as indicated by the spectral density (Fig. 2), and finally

performing a baseline correction on the filtered function. The eight

simulated motions were all scaled by the same factor such that the

average spectrum intensity SIO.OS for the ensemble would be 1.36m, the

SI
O

.
05

value for the SOOE component of the El Centro 1940 motion.

The maximum values of acceleration, integrated velocity and

displacement and spectrum intensity for 5% damping of two versions of

the resulting motions are listed in Table 2; the two versions cor­

respond to the two types of base line corrections mentioned above. The

simulated accelerograms with standard base line correction are pre­

sented in Fig. 3.

Each recorded accelerogram was normalized so that its spectrum

intensity SIO•05 = 1.36 m, the SIO•05 value of the SOOE component of

the El Centro 1940 motion. The average values of the ground motion

parameters--maximum acceleration, integrated velocity and displacement,

and spectrum intensity--for the resulting ensemble of normalized
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recorded motions are presented in Table 3, along with the corresponding

values for the ensemble of simulated motions.

The type of base line correction affects recorded and simulated

motions similarly, with little influence on accelerations, some what

more change in velocities, and large influence on displacements (Tables

1, 2 and 3). With standard base line correction, the average values of

maximum displacements are only one-third of the values with parabolic

base line correction (Table 3); also see Ref. (13).

Because of the scaling criteria adopted, the average spectrum

intensity is the same for the two ensembles. However, the average

value of maximum acceleration for simulated motions is significantly

smaller than for recorded motions, maximum velocity is significantly

larger, and maximum displacement is approximately twice as large

(Table 3).

Each of the recorded and simulated accelerograms has a large

number of zero crossings. An acceleration pulse is defined as the

portion of an accelerogram between any neighbor pair of zero crossings.

The area of the acceleration pulse controls the response of structures

with fundamental period much longer than the duration of the pulse.

For this reason it was of interest to examine the statistics of pulse

areas in recorded and simulated motions. Two histograms for areas of

acceleration pulses are presented in Fig. 4. One is the average across

the ensemble of recorded motions and the other across the ensemble of

simulated motions, both with standard base line correction. Simulated

accelerograms contain a larger number of small pulses (area < 5 in/sec)

and a smaller number of large pulses (area > 5 in/sec), relative to

recorded accelerograms.
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ELASTIC RESPONSE SPECTRA

Previous studies (5) have shown that elastic response spectra

for simulated and recorded ground motions, both with parabolic base

line correction, are similar for vibration periods up to 3 sec. In

light of the observed differences in the properties of simulated and

recorded ground motions, especially as influenced by the base line

correction (BLC), it is of interest to re-examine their elastic

response spectra, especially in the range of longer vibration periods.

The pseudo velocity response spectrum for 5% damping ratio was

computed, using a standard computer program (14), for each member of

four ensembles of ground motions: Normalized recorded motions with

parabolic BLC, simulated motions with parabolic BLC, normalized recorded

motions with standard BLC and simulated motions with standard BLC. The

resulting spectra were averaged separately over each ensemble of ground

motions. The average response spectra were plotted on longarithmic

scales with the ordinate representing the pseudo-velocity, PS , and the
v

abcissa the natural period of vibration of the system, T (Figs. 5-8).

The values of pseUdo-acceleration, PS
a

' and displacement, Sd' can be

determined directly from the diagonal scales. Also shown in Figs. 5-8

are the values of maximum ground acceleration, velocity and displacement

averaged separately over each ensemble (Table 3).

When presented in this form, the response spectrum approaches

the maximum ground acceleration at the left end for very short vibration

periods and the maximum ground displacement at the right end for very

long vibration periods. The response spectrum is most influenced by

ground accelerations in the short period region, by ground displacements

in the long period region, and by ground velocities in the intermediate
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period region where the pseudo velocity is essentially independent of

vibration period (15).

Previous comparisons of average response spectra for recorded

and simulated ground motions have usually been for motions with

parabolic BLC and in the vibration period range less than 3 sec. A

similar comparison but for a longer range of vibration periods is

presented in Fig. 5. Consistent with average values of maximum ground

acceleration, velocity and displacement for the two ensembles, the

response spectrum for simulated motions is smaller in the short period

region but larger in the intermediate and long period regions, relative

to the spectrum for recorded motions. In the long period region,

discrepancy between the two spectra tends to increase with vibration

period, and for very long periods would reach a factor of approximately

2, consistent with the ratio of average values of maximum ground dis­

placement for the two ensembles. However, the discrepancy at 15 sec

period is not much larger than it is at some shorter periods, for

example 0.6 sec.

When the average response spectrum for simulated motions with

parabolic BLC is compared with the corresponding spectrum for what are

now considered as standard data for recorded accelerograms, a large

discrepancy is apparent in the long period range, whereas the com­

parison has not changed much in the short and intermediate periods

(Fig. 6). For longer periods, the two spectra diverge so greatly,

because maximum displacements from simulated accelerograms are

approximately six times the value from recorded accelerograms.

The important effect of the base line correction on the response

spectrum in the long period range is seen in Fig. 7. The average
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response spectrum for the ensemble of recorded motions is essentially

the same for vibration periods up to 2 sec., independent of the type-­

parabolic or standard -- of BLC. However, the response spectrum is

increasingly sensitive to the base line correction as vibration periods

increase beyond 2 sec. The standard BLC reduces the ground displace­

ment to approximately one-third the value associated with parabolic BLC

(Fig. 7, Table 3), leading to similar reduction in the response

spectrum at very long periods.

Simulated motions with parabolic BLC are unsatisfactory in the

sense that, in the long period region, their response spectrum is

unacceptably large compared to the response spectrum based on standard

data set for the recorded motions (Fig. 6). Because response spectrum

in the long period range is strongly dependent on the base line cor­

rection employed (Fig. 7), it seemed that the first step in improving

simulated motions would be to subject them to the standard BLC. Com­

parison of the average response spectrum for the resulting ensemble of

simulated motions (Tables 2 and 3) with the corresponding spectrum for

recorded motions indicates that discrepancy in the long period range

has decreased (Fig. 8). Over the entire period range, discrepancy

between the two response spectra is now similar to what was observed

in Fig. 5. This is consistent with the data presented in Table 3,

indicating that the ratio between ensemble averages for simulated and

recorded motions of the ground acceleration, velocity and displacement

are essentially independent of the type of base line correction.

Discrepancy between average response spectra for recorded and

simulated ground motions depends, in part, on how the motions are

normalized. When the two ensembles were normalized to have the same
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average spectrum intensity for 5% damping, the discrepancy is indicated

in Fig. 8: The average response spectrum for simulated motions, as

compared to the spectrum for recorded motions is smaller for vibration

periods less than 1 sec, but larger for longer periods; the area under

the two spectra in the period range 0.1 to 2.5 sec is, of course, the

same because of the normalization criterion. If the two ensembles had

been normalized to have the same average value of maximum ground

acceleration, their response spectra would have been in very good

agreement in the short period region, where they are most influenced

by ground accelerations. However, this would be at the expense of

increased discrepancy between the two spectra in the intermediate and

long period regions. At intermediate periods, response spectra are

most influenced by ground velocities and better agreement between the

two spectra can obviously be achieved by normalizing the two ensembles

to have the same average value of maximum ground velocity. However,

in comparison with Fig. 8, this would worsen agreement between the two

spectra in the short period region. In the long period region, where

response spectra are most influenced by ground displacements, it would

be necessary to match average values of maximum displacement of the two

ground motion ensembles to achieve good agreement between the two

response spectra. However, in comparison to Fig. 8, this would

considerably worsen agreement between the two spectra in the short and

intermediate period regions. Considering the two spectra over a

limited range of vibration periods, normalization based on maximum

acceleration, velocity or displacement--whichever is appropriate for

the particular range--would provide a better agreement than normalization

based on spectrum intensity.
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However, when a broad period range is considered, response

spectra for simulated and recorded motions are significantly different

in shape, indicating that their frequency content, on the average, is

not the same. In order to achieve better agreement between the two

response spectra, the spectral density of the random process employed

as a model for earthquake accelerograms (Fig. 2) should be modified to

be more representative of the frequency content of recorded motions

over a broad range of frequencies.

CHARACTERISTICS OF ELASTIC AND INELASTIC RESPONSES

The computed response of linearly elastic and elastic-perfectly­

plastic hysteretic systems, both with small amplitude elastic vibration

period 0.4 sec, to three simulated motions is presented in Fig. 9. The

deformation response of both systems has been normalized by the yield

displacement of the hysteretic system. (Note that the yield strength

of this hysteretic system = 0.24 W, not the same as indicated in the

section on "idealized systems".) A visual comparison of the time

variation of deformation for the two systems indicates significant

difference in their behavior: Responses of the elastic system are

oscillatory about the initial equilibrium position, and have the

appearance of a sinusoid of frequency equal to the natural frequency of

the system f = 2.5 cps, but with slowly varying random amplitude and

phase. On the other hand, responses of the elastic-perfectly-plastic

hysteretic system are characterized by a few large increments in the

plastic part of the deformation, each causing a shift in the equilibrium

position about which the structure subsequently oscillates until the

next large increment in plastic part of the deformation occurs. Thus,
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there are several equilibrium positions about which the structure

oscillates during the earthquake motion.

In order to identify the factors that influence structural

response, simulated accelerogram no. 5 (Fig. 3) and the responses of

the elastic system and of the elastic-perfectly-plastic hysteretic

system to this simulated motion are all presented in Fig. 10 to the

same time scale. Also included is the time variation of the rate of

the energy input to the system by the ground motion, normalized with

respect to the elastic strain energy at yield point (Appendix A). The

three acceleration pulses immediately preceding the three largest

increments in the plastic part of the drift, as well as the energy

input 6E to the system by these pulses, are identified. Pulses band

c having similar areas produce significantly different incremental

plastic deformation 6V
P

(defined in Fig. 11), whereas pulses a and c

having dissimilar areas produced similar incremental plastic deforma­

tion.

This lack of correlation between pulse area and incremental

plastic deformation is further indicated in Fig. 11 where areas of

pulses and associated incremental plastic deformations are plotted.

Although deformation has a tendency to increase with pulse area, the

relationship between the two is neither simple nor direct. Acceleration

pulses a and c input similar amounts of energy to the inelastic system,

while pulse b inputs less energy (Fig. 10), thus indicating that pulses

with larger areas do not necessarily input greater energy to the

system. However, it is apparent (Fig. 10) that the larger incremental

plastic deformations are roughly proportional to the energy input to

the system by acceleration pulses that immediately preceded the

deformations.
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The other simulated motion shown (Fig. 10) has been obtained

from simulated motion no. 5 by deleting the shaded pulse a' immediately

preceding pulse aj in all other respects the two motions are identical.

This slight modification in the ground motion altered the state-­

displacement, velocity and acceleration--of the system preceding

acceleration pulse a, resulting in significant change in the incre­

mental plastic deformation and the energy input to the system by this

pulse, and the maximum response during the earthquake. However, the

energy input and incremental plastic deformations due to pulses band

c as well as the oscillatory, elastic portion of the response remained

virtually unchanged. In contrast, the response of the elastic system

was virtually unaffected by modification of the ground motion (Fig. 10).

It is therefore concluded that effects of smaller pulses or maximum

response of elastic systems are negligible but they may be significant

in the case of inelastic systems.

INELASTIC RESPONSE SPECTRA

It was seen in the preceding section that earthquake response of

inelastic systems is quite sensitive to details of the ground motion,

in particular to acceleration pulses with small area, whereas response

of elastic systems is relatively insensitive. It has also been noted

that simulated motions considered herein contain many more smaller

acceleration pulses than recorded motions (Fig. 4). It is therefore of

interest to see whether the simulated motions are as suitable to

determine the response of inelastic systems as they are in determining

the response of elastic systems.

Responses of the idealized system described earlier, with

several values of low amplitude vibration period T, varying between 0.2
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and 7 sec., to the ensembles of recorded and simulated ground motions,

both with the standard base line correction, were computed. For each

period value, response was analyzed for two bilinear hysteretic systems:

Elastic-perfectly-plastic and bilinear strain hardening; the response

of corresponding linearly elastic systems had already been computed to

obtain the elastic response spectra presented in a preceding section.

Results are summarized in the form of average response spectra

which were obtained as follows: Maximum displacements for the three

types of systems--elastic, elastic-perfectly-plastic and bilinear

strain hardining--having the same low amplitude vibration period were

normalized by yield displacement of bilinear systems. These normalized

maximum displacements were averaged separately over the two ensembles

of ground motions, and plotted against vibration period in the form of

average response spectra for the three types of systems and two

ensembles of ground motions (Fig. 12). For each type of system, the

ratio of the ordinates of the average response spectra for simulated

and recorded ground motions is presented in Fig. 13 as a function of

vibration period. This figure may also be interpreted as a plot of

error in the average response spectrum for simulated motions, relative

to the corresponding spectrum for recorded motions, expressed as a

percentage of the ordinates of the latter.

For all three types of structural systems, the average response

spectrum for simulated motions is smaller than the spectrum for

recorded motions at shorter vibration periods, but larger for the

longer vibration periods (Fig. 12), with the ratio of maximum displace­

ments due to simulated and recorded motions growing with increase in

vibration period. Errors are largest for elastic-perfectly-plastic
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systems over much of the period range, and roughly the same for

linearly elastic and strain hardening hysteretic systems. Most

structures exhibit strain hardening in plastic deformation, and Fig.

13 therefore indicates that in the average sense, simulated motions

used herein are appropriate for determining the maximum response of

such structures in their inelastic range of behavior, to the same

degree as they are suitable for predicting elastic response.

CONCLUSIONS

The type of base line correction (BLC), whether parabolic

or 'standard', affects recorded and simulated ground motions similarly,

with little influence on accelerations, somewhat more change in

velocities, and large influence on displacements. Simulated ground

motions to be used for response analysis of structures with long natural

periods of vibration should be subjected to the standard BLC, because

it is known to result in more reliable ground velocities and displace­

ments, which in turn would lead to more reliable predictions of response

of such structures.

However, even with the standard BLC, simulated ground motions-­

which are sample functions of a white noise process passed through a

SDOF filter and multiplied by a temporal intensity function--have

significantly different properties compared to recorded motions. On

the average, maximum ground displacements for simulated motions are

about twice of those for recorded motions, and the shape of the two

average response spectra are significantly dissimilar. In order to

achieve better agreement between the two response spectra over a

broad range of periods, the spectral density of the underlying random
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process, from which the simulated motions are obtained, should be

modified to be more representative of the frequency content of recorded

motions.

An improved random process model which leads to better agreement

between elastic response spectra for simulated and recorded motions

over a broad range of periods (0.2 < T < 7 sec.) can be expected to

lead to similarly improved agreement in response spectra for inelastic

systems.
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APPENDIX A: ENERGY INPUT BY GROUND MOTION

The equation of motion for a single-degree of freedom system

is given by

. .
my(t) + 2~mwv(t) + f(v,v) = - my (t)

g
(A.l)

where m is the mass of the system, ~ is the damping ratio, w is the

undamped natural frequency, vet) is the displacement of the mass

.
relative to the base, f(v,v) is the restoring force, and y (t) is the

g

ground acceleration.

The energy input to the system by the ground motion (effective

force my (t)) when the mass moves from position 1 to position 2 is:
g

2

llw = J
1

.
[ - my (t)] vet) dt

g
(A.2)

Dividing by the elastic strain energy at yield point of the structural

system, a dimensionless form of Eq. (A.2) is obtained;

llE = llw-""'--- =
lFV
2 Y y

2

- J
1

.
2v (t))..l(t) dt

g

C g
y

(A.3)

where )..l(t) = v(t)/V , and V = the yield deformation; C = F /mg where. y y y Y

F yield force for the system and mg is the weight of the system.
y

The rate of energy input to the structural system during the

time increment llt is:

llE
llt =

V (t)~(t) dt
g

C gllt
y

(A.4)
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PART TWO

Effects of Gravity Loads and Vertical Ground Motion on

Earthquake Response of Buildings

Preceding page blank
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INTRODUCTION

The response of yielding structures to earthquake ground

motions has been the subject of numerous studies during the preceding

two decades. Most of these studies have been concerned with structur­

al response due to horizontal ground motion, one component at a time,

under the assumption that lateral deformations are not large enough

for the effects of gravity loads to be significant. A building de­

signed for lateral forces specified in building codes is expected to

yield during strong ground shaking, and thus admits the possibility of

some plastic drift; if this drift becomes large enough, gravity will

become the dominant force and the structure will collapse. Studies

aimed at understanding the collapse of structures during strong ground

motion have been reported (1), (2). Most buildings are, however, de­

signed to satisfy drift limits, which are small enough so that collapse

under gravity loads is not a problem; failure under cyclic lateral

forces and deformations is, of course, possible. For such buildings,

the effects of initial gravity forces in the structure, including the

reduction in yield strength of columns, on the ductility demands im­

posed by strong ground motion have been studied (3).

Most of the numerous studies on response of yielding structures

to earthquake ground motion, including those mentioned above, assume

one-dimensional yielding behavior. However, interaction between later­

al motion in two orthogonal directions under the action of two com­

ponents of ground motions in those two directions has been studied

earlier (4). Yielding under the combined action of gravity loads and

lateral forces associated with horizontal ground motion will lead to
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interaction between lateral and vertical motions. This study examines

the influence of such interaction on the structural deformations that

may be caused by strong ground shaking. Vertical forces in the struc­

ture, which are constant and only due to gravity loads when only the

horizontal ground motion is considered, and the overturning effects

are neglected, vary with time when the vertical component of ground

motion is also included. Effects of these fluctuating vertical loads

on the yielding behavior of the system and on lateral and vertical

deformations are also studied.

SYSTEMS, GROUND MOTIONS AND METHOD OF ANALYSIS

Systems

The idealized system considered has its total weight W concen­

trated at the top deck and deforms as shown in Fig. 1, with two de­

grees of freedom: lateral deformation vI and vertical deformation v 2•

The overturning forces associated with lateral response are not con­

sidered in the analysis. Furthermore, the secondary effects of gravity

loads, the so called P-delta effects, are neglected.

The relation between total restoring forces and deformations--f
l

and vI in the lateral direction and f 2 and v2 in the vertical direc-

tion--are shown in Fig. lb. The yield values for the lateral and

vertical forces flY and f 2y are considered to be equal in the two--

positive and negative--directions of deformation. Unloading and re­

loading from regions of inelastic deformation are assumed to take place

along lines parallel to the initial, elastic portion of the diagram.

Under the combined action of lateral and vertical forces, the system

is elastic within the yield surface, assumed to be circular in terms
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of normalized forces, and plastic for forces outside the yield sur-

face (Fig. lc).

The elastic stiffness ken
2 2= (4TI IT ) (wig), n = 1,2, where

n

w = total weight of the structure, Tl and T2 = natural periods of

linearly elastic vibration in lateral and vertical directions, respec-

tively and g = acceleration of gravity. The yield strength in the

lateral direction flY = 2KCW where K = a numerical coefficient in the

Uniform Building Code (UBC) depending on the structural system,

selected herein as 0.67, the value recommended for ductile moment

resisting frames; C = 0.OS/Tl / 3 is the base shear coe~ficient in an

earlier edition of the UBC (5). The lateral yield strength for the

system has been taken as twice the UBC design value, to account for the

difference between yield and design stresses as well as for the strength-

ening influence of non-structural components. Similarly the yield

strength of the structure in the vertical direction is taken as twice

the gravity load, to account for typical load factor values, e.g. 1.7

for steel buildings, and additional strength due to nonstructural com-

ponents.

Energy dissipation in the structure due to effects other than

inelastic action is represented by viscous damping, effective in both

horizontal and vertical motions, with the damping ratio selected as

0.05 for both.

Ground Motions

The ground motions considered are (1) the first 15 seconds of

the East and vertical components of the Esso Refinery record obtained

during the Managua, Nicaragua earthquake of December 23, 1972, and

(2) the first 30 seconds of the SOOE and vertical components of the
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El Centro record obtained during the Imperial Valley earthquake of May

18, 1940. The time history of ground acceleration, maximum accelera­

tion, root mean square value of acceleration, and bracketed duration-­

defined as the time span during which acceleration peaks exceed O.lg-­

for each component of the two records are presented in Fig. 2.

Method of Analysis

The response of each system is determined by solving the equa­

tions of motion (Appendix A) by a numerical integration procedure

(Appendix B). The time scale is discretized into equal time intervals,

small enough (0.01 sec or less) to define the accelerogram accurately

and no more than a small fraction (1/20th) of the natural period for

linearly elastic vibration of the system. Within each small time

interval, the horizontal and vertical accelerations of the mass of the

system were assumed to vary linearly, and the restoring forces f
l

and

f 2 were taken to be constant equal to their values at the beginning of

the time interval. For the time intervals during which transition from

elastic to inelastic state or vice versa occurred, an iterative process

was employed to reduce force unbalance created by the numerical approx­

imation to 1 percent of the effective earthquake load.

RESPONSE TO HORIZONTAL GROUND MOTION

In order to study the effects of gravity loads, the response of

an idealized system to horizontal ground motion is analyzed for three

different conditions: Effects of gravity loads are rigorously con­

sidered including their influence on the inelastic behavior through

interaction with lateral forces; only a part of their effect, that of
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reducing the lateral yield strength, is considered; and gravity loads

are ignored. The structure chosen is the idealized system described

in the preceeding section with specified stiffness, strength and damp­

ing properties and T
I

and T
2

, the natural periods of vibration in

lateral and vertical motions, equal to 0.5 and 0.1 sec, respectively.

The excitation chosen is the East component of the Managua earthquake

record (Fig. 2).

If the effects of gravity loads are rigorously considered, the

two equations of motion, governing the lateral and vertical motions,

are uncoupled only as long as the system is elastic but become coupled

after the initiation of yielding (Appendix A). Coupling arises from

the fact that the incremental plastic deformation vector is normal to

the yield surface (Fig. lc) resulting in lateral and vertical defor­

mations. Numerical integration of the coupled equations, using the

procedure outlined in the preceeding sections and described in Appen­

dix B, led to the results presented in Fig. 3. Lateral deformations

(Fig. 3a) are characterized by a few large increments in the plastic

part of the deformation, each causing a shift in the equilibrium

position about which the system subsequently oscillates until the next

large increment in plastic part of the deformation occurs. Thus, the

structure oscillates about several different equilibrium positions

during the earthquake motion. The vertical deformation before the

beginning of the ground motion (Fig. 3b) is simply the static defor­

mation due to the gravity load (Fig. 3d). It remains unchanged as

long as the system remains elastic but begins to accumulate in the

downward direction (Figs. 3b and 3d) after the initiation of yielding.

This happens when the lateral force reaches 0.87 fly' the lateral yield
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strength reduced due to the effects of vertical load (Figs.3c and 3e).

The plastic deformation is always in the downward direction because of

the presence of the constant downward load (Figs. 3d and 3e).

Accumulation of plastic deformation in the vertical direction,

similar to the predictions of the analyses described above, was ob-

served in experimental tests on steel columns subjected to constant

axial force and slowly varying, cyclic horizontal force (6). Fig. 4a

shows the experimental set up schematically, and the measured relation

between bending moment and axial deformation in the column. For con-

venient comparison, a portion of the analytical results of Fig. 3 is

presented in a different manner: the relation between f
1

, the lateral

force in the system, and v
2

, the vertical deformation (Fig. 4b). The

force and deformation quantities in the analytical and experimental

results (Figs. 4a and 4b) are not exactly the same, but qualitatively,

both results indicate the same phenomenon: plastic deformation

accumulates in the vertical direction when the system, under constant

vertical load, is subjected to cyclic lateral load, large enough to

cause yielding. The only difference in the experimental and analytical

results is in the yield force levels; in the experimental test the

yield moment increased with increasing strain due to the strain hard-

ening property of steel, but the lateral yield force in the analysis

remained constant because perfectly plastic behavior without strain

hardening was assumed.

The time variation of the energy dissipated in plastic action

- -E --E and E are associated with plastic deformations in horizontal
p pi p2

and vertical directions, respectively--; energy dissipated in viscous

-damping ED' the sum of elastic strain energy Es and kinetic energy Ek ,



44

all normalized with respect to the elastic strain energy associated

with horizontal deformation at the yield point--see Appendix C for

definitions--, is presented in figure 3f. Energy dissipated in plastic

action is much larger than the contribution due to viscous damping.

Furthermore, a significant part of the energy dissipated in plastic

action is associated with plastic deformations in the vertical direction.

Ignoring coupling between lateral and vertical motions created

by yielding of the system, response of the system described earlier to

the same excitation is determined by numerical ~ntegration of the

single equation governing lateral motion (Appendix A) i results are

presented in Fig. 5. This is equivalent to analysis of lateral re­

sponse of the system with lateral strength = 0.87 fly (Fig. 5c and 5e),

reduced to account for the vertical load; no other effect of the ver­

tical load is considered. Because coupling between lateral and ver­

tical motions in inelastic response is ignored, there is no plastic

deformation in the vertical direction, and the vertical deformation

remains constant at its initial static value associated with gravity

loads (Figs. 5b and 5d)i there is no energy dissipated in plastic

deformation in the vertical direction (Fig. Sf); however, lateral

deformation response is essentially unaffected (Figs. 3a and Sa). It

appears therefore that the simpler analysis, where the gravity load

effect is limited to reduction of the lateral yield strength, may be

adequate for predicting the lateral response of the system to horizon­

tal ground motion. However, coupling between lateral and vertical

motions created by yielding of the system, must be considered in order

to predict the vertical deformations.

Completely ignoring gravity loads--which reduces the problem to
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the standard case of an inelastic SDOF analysis, the response of the

system described earlier to the same excitation is determined by

numerical integration of the single equation governing lateral motion

(Appendix A); the results are presented in Fig. 6. These results are

compared with those in Fig. 3 to evaluate effects of gravity loads on

dynamic response. The gravity load reduces the lateral yield strength

from flY to 0.87 fly (Figs. 3c and 6b), leading to slight increase in

lateral deformation and elastic strain energy of the system. In con­

junction with lateral forces, the gravity load causes plastic defor­

mation in the vertical direction and significant increase in the

plastic energy dissipated (Figs. 3b, 3f, and 6c); however, the lateral

deformation response is essentially unaffected. It appears therefore

that the standard analysis, where gravity loads are ignored, may be

adequate for approximate predictions of the lateral response of the

system to horizontal ground motion. However, vertical deformations

can be predicted only by considering effects of gravity loads, and,

as seen earlier, these must be treated rigorously and coupling between

lateral and vertical motions should be included.

RESPONSE TO VERTICAL GROUND MOTION

In order to study how vertical ground motion affects response

of structures, the previous analysis of response to horizontal ground

motion in which effects of gravity loads were rigorously considered,

is repeated with the vertical component of the Managua earthquake

record also included as the excitation. Analysis of coupled lateral­

vertical motions by numerical integration of the two equations of

motion (Appendix A) leads to the results presented in Fig. 7.
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Vertical ground motion affects the response of the system as

follows: vertical axial force no longer remains constant at the

gravity load, fluctuations can be observed around that value (Fig. 7d

and e) ; because of the variation in the vertical force, yielding occurs

not always when the lateral force reaches 0.87 fly--the initial (with

gravity loads) value of the lateral yield strength--but at fluctuating

values of the lateral force (Fig. 7c), governed by the yield surface

(Fig. 7e); elastic oscillations--there is no additional yielding

because the strength in vertical direction is rather large--are

superimposed over the gradually growing vertical deformation that

resulted from horizontal ground motion alone (Figs. 3b and 7b); and

because of the velocities associated with elastic oscillations in the

vertical direction, additional energy is dissipated through viscous

damping (Figs. 3f and 7f). However, vertical ground motion has negli­

gible effect on lateral deformations (Figs. 3a and 7a). Furthermore,

because the plastic parts of lateral and vertical deformations are

essentially unaffected (Figs. 3a and 7a, 3b and 7b), there is little

change in the energy dissipated through yielding (Figs. 3f and 7f) .

Whereas, as seen above, vertical ground motion has little

influence on lateral deformations of the system, horizontal ground

motion affects vertical deformations in an important way. This is

evident by comparing vertical deformations due to simultaneous action

of horizontal and vertical ground motions with those due to horizontal

ground motion alone and vertical ground motion alone. The latter was

determined from a separate analysis ofa single equation governing the

vertical motion, with no horizontal deformation (Fig. 7b). Whereas,

the elastic oscillations of vertical deformation are entirely due to
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the vertical ground motion, the gradual accumulation of plastic de­

formations in the downward direction and the resulting shift in the

position around which oscillations occur, are due to the lateral forces

due to horizontal ground motion, large enough to cause yielding (Figs.

3b and 7b). Thus, there would be little meaning in analysis of

vertical deformations due to vertical ground motion alone. On the

other hand, the residual vertical deformation at the end of the

earthquake is primarily due to the effects of yielding due to

horizontal ground motion.

RESPONSE OF SEVERAL SYSTEMS

In the preceding section, dynamic response of the idealized

system described earlier with specified properties to a selected ground

motion was presented and the response behavior was examined in some de­

tail. In this section, results are presented for response of the same

idealized system but with several different period values--Tland T2=

0.25 and 0.13, 0.5 and 0.18, 0.75 and 0.22, 1.0 and 0.25, 1.5 and 0.3,

2.0 and 0.33, 2.5 and 0.37, all in seconds--with the Managua and El

Centro ground motion records as excitation. The values selected for

natural periods of vertical vibration, relative to those for lateral

vibration, were based on Ref. (7). For each system and excitation,

response to horizontal ground motion is analyzed for the following

two conditions: gravity loads are ignored, and effects of gravity

loads are rigorously considered as described in the preceding section;

also analyzed is the response to simultaneous action of horizontal and

vertical ground motion, with the effects of gravity loads rigorously

considered; and the response to vertical ground motion alone including
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gravity loads. For each case, a complete set of results, including

variation of responses with time, were obtained by numerical inte­

gration of the equations of motion. However, only selected response

results-~maximum lateral deformation, maximum vertical deformation,

permanent vertical deformations, and total energy dissipated in plas­

tic deformation--are presented in Figs. 8 and 9.

Gravity loads and vertical ground motion affect the maximum

lateral deformation of the system, but with no consistent trend: For

a particular ground motion, the lateral deformation may increase or

decrease depending on the vibration period of the system; and the

deformation of a particular system may increase for some ground motions,

but decrease for others (Fig. 8a, 9a). Effects of vertical ground

motion on lateral deformation and energy dissipated in plastic action

of the system are generally small. Those due to gravity loads are

relatively significant, with as much as 30% change in deformation for

a system with T
l

= 1 and T2 = 0.25 sec. and El Centro ground motion

as the excitation (Figs. 8a and 9a), and considerable increase in the

energy dissipated in inelastic action (Fig. 8b and 9b).

Values of maximum and permanent deformation in the vertical

direction for each system and the two ground motions are presented in

Figs. 8 and 9. The permanent deformation remaining after the earth­

quake consists of two parts: elastic deformation due to gravity loads

and plastic deformation associated with yielding of the system. The

similarity between maximum and permanent deformations, evident by

comparing Figs. 8c and 8d, 9c and 9d, is because of the fact that

pl~stic part of the deformation is always accumulating in the downward

direction and the difference between maximum and permanent values is



49

only due to elastic oscillations caused by vertical ground motion

(Figs. 3b and 7b).

Vertical deformations--maximum as well as permanent values--are

influenced by horizontal ground motion in an important way (Figs. 8c,

8d, 9c and 9d). Because the plastic part of vertical deformations

arises from yielding of the system under large lateral forces, the

vertical deformations are closely related to the number of yielding

excursions and the extent of yielding during each excursion. Thus,

the vertical deformations are dependent on the vibration period T
l

in

the same way--generally decreasing with increasing period--as ductility

demands for code designed systems. Furthermore, the increase in energy

dissipated due to inelastic deformation in the vertical direction is

an essentially fixed fraction of the energy dissipated in lateral

deformations, independent of the vibration period. Another consequence

of the fact that the plastic part of vertical deformations is due to

yielding under large lateral loads, is apparent from Figs. 8 and 9:

vertical deformations and the associated additional energy dissipated

are similar for the two ground motion records because their horizontal

components are of similar intensity (Fig. 2), and there is essentially

no influence of the large differences in the intensity of the two

vertical ground motions (Fig. 2). Although the horizontal components

of Managua and El Centro ground motions are of similar intensity, the

duration of strong shaking is longer for the latter (Fig. 2), which

results in a large number of yielding excursions resulting in larger

permanent vertical deformations (Figs. 8d and 9d). Accumulation of

these deformations with time is apparent in Fig. 9d.
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CONCLUSIONS

1. The dynamic response of yielding systems to horizontal ground

motion includes lateral deformation of course--this is the response

quantity that has been the subject of numerous studies--and vertical

deformation, which is perhaps not an obvious effect. The vertical

deformation remains constant at the static value due to gravity loads

as long as the system is elastic but gradually accumulates in the

downward direction with ea~h excursion into the yield range. The

plastic part of the vertical deformation is a consequence of the fact

that the incremental plastic deformation vector is normal to the yield

surface and has components in lateral and vertical directions.

2. The principal effect of the vertical component of ground motion

is to superpose elastic vertical oscillations about the gradually

growing vertical deformation that resulted from horizontal ground

motion alone.

3. Permanent vertical deformations remaining after the earthquake,

arise from yielding of the system under large lateral forces, which

are primarily due to horizontal ground motion. Thesedeformations are

therefore controlled by horizontal ground motion and it is closely

related to the number of excursions into the yield range and the extent

of yielding during each excursion. Thus, permanent vertical defor­

mations generally decrease with increasing period, similar to lateral

deformation ductility demands for code designed buildings; furthermore

they increase with duration of strong shaking.

4. The coupling between lateral and vertical deformations created

by yielding of the system must be considered in order to predict the
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plastic part of vertical deformations due to horizontal ground motion.

However, simpler analyses without such deformation coupling, but with

reduction of lateral yield strength due to gravity load, would

generally be satisfactory for predicting the lateral response of the

system. If the gravity loads are completely ignored, i.e. the full

yield strength is used in the analysis, the simpler analysis will not

lead to as good results but they may still give adequate estimates.

5. For the earthquakes considered, lateral deformations are not influ­

enced significantly by vertical ground motion; hence they may usually

be determined from analysis of response to horizontal ground motion

only, unless the vertical ground motion is exceptionally intense.

6. The results presented should not be significantly influenced by

the secondary effects of gravity loads, the so called P-delta effects

or geometric stiffness effects, which were not included in this study.

For short period buildings, the effects of interaction between lateral

and vertical motions are significant but the secondary effects of

gravity loads will be insignificant because the lateral deformations

are small. For long period buildings, the relatively small effects

of interaction between lateral and vertical motions would increase

somewhat because more yielding would be expected due to secondary

effects of gravity loads.
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APPENDIX A - EQUATIONS OF MOTION

EQUATIONS OF l<10TION IN STANDARD FORM

The equations of motion for the system described earlier

and illustrated in Figure 1 are as follows:

..
- m V - W

g2

(A.l)

(A.2)

and the force-deformation equations are, for elastic and plastic

response, respectively:

rfl rV

1

)

if </>(f1 , f 2) < 1 or

K
E

- </>(f
l

, f
2

) d wP < ad f
2 d V

2 = 1 and

rf1 } = ?PrV

11 </>(f
l

, f
2

) P
> aif 1 and d W

d f 2 d V2

where

(A.3)

(A.4)

VI (t) and V2 (t) are the horizontal and vertical deformations,

respectively, of the mass with respect to the base;

V (t) and V (t) are the horizontal and vertical ground
gl g2

displacements, respectively;

f
l

(t) and f 2 (t) are the horizontal and vertical restoring

forces, respectively;

m is the mass of the system;
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c
l

and c
2

are the horizontal and vertical viscous damping

coefficients, respectively;

W is the gravity force equal to m g where g is the acceleration

of gravity;

¢(f
l

, f
2

) defines the yield surface;

~E and ~EP are the elastic and elasto-plastic stiffness

matrices, respectively; and

d wP
is incremental plastic work.

The force-deformation relation is elastic-perfectly plastic. An

elliptical yield surface defines the boundaries of the elastic region.

where flY and f
2y

are the yield horizontal and vertical forces,

respectively (Figure Ib).

FORCE-DEFORMATION EQUATIONS

A general form of the force-deformation equation is (1):

df = K
t

dV

(A.5)

(A.6)

where ~t is the tangent stiffness matrix and df and dV are the incre-

mental force and deformation vectors, respectively.

For elastic response, ¢(f) < 1 and the tangent stiffness is

given by the initial elastic stiffness matrix, ~:

(A.7)
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where K
l

and K
2

are the horizontal and vertical elastic stiffnesses,

respectively. For plastic behavior, ~(~) = 1 and the tangent stiffness

K
EP

•is given by the elasto-plastic stiffness matrix,

assumptions are made in deriving K
EP

1. A yield surface exists.

The following

2. The incremental deformation vector can be decomposed into

an elastic and plastic part:

dV = + (A.8)

with the elastic part of the vector following Hooke's law:

(A.9)

3. The incremental force and plastic deformation vectors are

orthogonal:

= o (A.10)

4. The material of which the system is composed is perfectly

plastic and the incremental force vector is therefore

tangential to the yield surface for plastic response:

o (A.l1)

h E1. h 1 t 11- h ; 1were af ~s a vector w ose e emen s are af. were. equa s
~

1 or 2.

From Eqs. (A.10) and (A.ll) the incremental plastic deformation

vector is given by the flow rule:
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(A.12)

where A is a positive scalar. Equations (A.8), (A.9), (A.II). and

(A.12) are used to obtain A:

(A.l3)

and from Eqs. (A.4), (A.5), (A.8), and (A.9):

or

df = KEP dV

where

(A.14)

For the yield surface described by Eq. (A.5), the elasto-plastic

stiffness matrix is given by:

(A.15 )

LOADING AND UNLOADING CRITERIA

The plastic work increment is used to determine whether the

system is in a state of loading or unloading:
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(A.16)

P
When dW ~ a the system is in a state of loading and the force vector

is on the yield surface. When dW
P < a the system is in a state of

unloading and the force vector is on the elastic region.

Equations (A.l) through (A.4) govern the seismic response of

the two-degree-of-freedom system. The two equations of motion are

uncoupled for elastic response (see Eq. (A.?» and can be integrated

independently, while for plastic response the equations are coupled

(see Eq. (A.IS» and must be integrated simultaneously.

EQUATIONS OF MOTION IN DIMENSIONLESS FORM

The equations of motion can be written in dimensionless form

by using the following transformations (2):

=

]11

=

=

=

21tVJJl~1

T

=

=

(A.I?)

Derivatives with respect to T are denoted by ( ) '. When equations

(A.I?) are substituted into Eqs. (A.I) to (A.4), the resulting

equations of motion are:
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(A.18)

(A.19)

and the force-deformation equations are:

r'j r'j
if ¢(P

I
, P2) < I or

= sE

dP
2 d]J2 ¢(P

I
, P2) = I and dM

P < 0
(A.20)

I and dM
P > 0 (A.21)

where

P~ + P~ = 1 (A.22)

The elastic and e1asto-p1astic stiffness matrices are:

= (A.23)

= (A.24)
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The dimensionless plastic work increment is defined as:

(A.25)
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APPENDIX B - NUMERICAL INTEGRATION OF EQUATIONS OF MOTION

GENERAL APPROACH

The incremental equations of motion for a two-degree~of-freedom

system can be written in general form as:

.. .
m ~V + c ~V + ~f = ~P(t)

and the force deformation equations as:

(B.l)

~f (B.2)

t
where ~, ~, and K are the mass, damping, and tangent stiffness

matrices, respectively, V is the displacement vector, f is the force

vector, and p(t) is the exciting force.

The displacements, velocities, accelerations, and forces at time

t + ~t given those at time t are sought. The equations are solved

numerically using a step-by-step procedure. The numerical method can

be summarized as follows (3):

(1) Linearization Procedure - The tangent stiffness matrix K
t

at time t is formed.

(2) solution Procedure - Response increments 6~, 6V, and 6v

are calculated using the linear acceleration method.

(3) State Determination Problem - Force increments are

calculated given deformation increments, ~f = K
t

~V.

(4) Iterative Procedure to Reduce Unbalanced Forces - Any

unbalanced forces in the system are calculated and the

solution iterated using a Newton-Raphson scheme Q~til
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equilibrium tolerances are satisfied, leading to new

response increments ~v, ~v, ~v, ~f.
,..." """ :...,/

(5) Final Solution - The new state of the system at time

t + ~t is calculated

.
Vet + ~t), Vet + ~t), vet + ~t), f(t + ~t)-

LINEARIZATION AND SOLurION PROCEDURE

The tangent stiffness matrix is calculated using the lineariza-

tion procedure and according to the plasticity laws as described in

Appendix A. For elastic behavior, the tangent stiffness is given by

Eq. (A.7), and for plastic behavior by Eq. (A.15). The response

increments ~V, ~7' ~~ are calculated by the linear acceleration method

(4). If the acceleration is assumed to vary linearly during the time
.

interval ~t, the kinematic equations for ~V and ~V can be written as

follows:

~v V(t)~t +
.. ~t

= ~V-
"" 2

2 2. ~t + .. ~t

~V = V(t)~t + Vet) ~v-,.. 2 6

(8.3)

(B.4)

The equations of motion (B.I) and the kinematic equations (B.3)

and (B.4) represent a system of 3 vectorial equations with 3 unknown

vectors that can be solved for ~V, ~v, and ~V as follows:

where K is the effective stiffness matrix defined by

(B.5)

K = + m +
3
~t

c (B.6)
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and

(B.7)

(B.8)

tN = - 3V(t) - V(t) ..§... + tN _6_
6t ..., 6t2 (B.9)

STATE DETERMINATION PROBLEM

The force increments 6f are calculated given the displacement

increments 6V. The force-deformation relations are (Eq. (B.2»:

6f (B.IO)

For elastic response, K
t

is defined by Eq. (A.7) where K
I

and K
2

are

constant during 6t and 6f may be calculated directly from Eq. (B.IO) •..,

For plastic response, the tangent stiffness matrix ~t (Eq. (A.IS» is

a function of the force vector !, and Eq. (B.IO) is expressed by:

6f = K
EP

(f) 6V (B.ll)

To solve for 6f in Eq. (B. II) , a numerical integration within time

steps must be carried out. The solution process will be described for

two transition states: from plastic to plastic state and from elastic

to plastic state.

a) Plastic To Plastic State

The state determination problem involved when the system

transists from plastic to plastic state is illustrated in Figure (B.la).

The force vector at time t, f(t), is known and is on the yield surface.
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~f must be determined such that Eq. (B.ll) is satisfied and

f(t + ~t) = f(t) + ~f is on the yield surface. A first approximation

for the force vector, fl(t + ~t), is obtained from Eq. (B.ll) using

the tangent stiffness at time t (Figure B.lb) :

To obtain a second approximation, the tangent stiffness at fl is used

in conjunction with a second orrter Runge-Kutta scheme:

2 1 [ EP EP 1 Jf (t + ~t) = f(t) + 2" ~ (~(t)) + K (~(t + ~t)) ~:!

Because the solution is carried out numerically, f2(t + ~t) will not be

exactly on the yield surface and a correction as shown in Figure (B.lb)

must be introduced to obtain the final value for the force vector

f(t + ~t). Finally,
,oJ

~f = f(t + ~t) f(t)

b) Elastic To Plastic State

The state determination problem involved when the system tran-

sists from elastic to plastic state is illustrated in Figure (B.2a).

The force vector at time t is f(t) and is on the elastic region. The

elastic solution results in forces represented by point A on Figure

(B.2a). Assuming this point as the first approximation to the solution,

~f(t + ~t) is determined such that Eq. (B.Il) is satisfied and the-
force vector is on the yield surface.

The procedure to determine f(t + ~t) is carried out in two

steps. First, the force vector, f2(t + ~t) is calculated such that

it is on the yield surface:
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where a is a factor than when used to multiply the second term in the

above equation yields a value for f2(t + 6t) that is on the yield

surface and that defines the transition between elastic and plastic

states. The plastic force vector is then calculated as previously

described for the transition from plastic to plastic state. The

incremental displacement for plastic response of the system is given

by (1 - a)6v. A second order Runge-Kutta scheme is used to calculate,...

f4(t + 6t):

4 2 1 [EP 2 EP 3 Jf (t + 6t) = : (t + 6t) + 2 ~ (~(t + ~t» + ~ (~(t + ~t» (1 - a)~V

where

Because the solution f4(t + ~t) is still not on the yield surface,

a correction is applied as shown in Fig. (B.2b) to obtain the final

value for the force vector !(t + ~t) and

6f f(t + 6t) - f(t)

REDUCTION OF UNBALANCED FORCES

In solving the equations of motion (Eqs. (B.5) to (B.9», the

tangent stiffness matrix is assumed to be constant during each time

step. However, when the system moves from elastic to plastic or

plastic to plastic states, the stiffness varies within the time step,

dynamic equilibrium is violated, and unbalanced forces are introduced

into the system. A Newton-Faphson Iteration is used to reduce the

unbalanced forces thus introduced.
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The restoring forces that satisfy the dynamic equilibrium

equations (B.I) are the first approximations shown in Figures (B.I)

and (B.2). The final values for the restoring forces, f(t + 6t), are

provided by the solution of the state determination problem. The

unbalanced forces introduced into the system are, therefore:

=

The vector 6P in Eq. (B.7) is replaced by the unbalanced force value

and additional displacement increments are calculated using an

iterative procedure. The process is repeated until equilibrium

tolerances are satisfied.

ELASTIC AND PLASTIC DISPLACEMENTS

When the final displacement values have been calculated for

each time step, the elastic and plastic parts of the displacement

vector (Eqs. (A.8) and (A.9)) are calculated as follows:

=

=

ENERGY INTEGRALS

The energy equations derived in Appendix C are calculated

using the trapezoidal rule. The dimensionless energy increments at

each time interval are:
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where 6E
Il

and 6E
I2

are input energy terms;

= ~~('[)

where 6E
KI

and 6E
K2

are kinetic energy terms;

where 6E
DI

and 6E
D2

are darning energy terms;

6E
SI

=

where 6E
SI

and 6E
S2

are strain energy terms; and

=

where 6E
pl

and 6Ep2 are terms for energy dissipated plastically.
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(a) STATEMENT OF THE PROBLEM
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( b) SOLUTION

FIG. B.l SOLUTION OF STATE DETERMINATION PROBLEM: FROM PLASTIC TO
PLASTIC STATE.

f,

( a) STATEMENT OF THE PROBLEM ( b) SOLUTION

FIG. B.2 SOLUTION OF STATE DETERMINATION PROBLEM: FROM ELASTIC TO
PLASTIC STATE.
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APPENDIX C - ENERGY EQUATIONS

The equations used to determine the energy input and dissipated

in response of the system to the input ground motions are derived

below.

The equations of motion (Eqs. (A.I) and (A.2» can be com-

bined as follows:

.. .
mV. + c.V. + f. = Q. (t)

1. 1. 1. 1. 1.

where i = land 2, and

Q
I

(t) = mV (t)
gl

Q
2

(t) mV (t) - W
g2

(C.l)

(C. 2)

To obtain the energy equation, Eq. (C.l) must be multiplied by dV .•
1.

Then, integrating between 0 and V, (t) and decomposing dV. into elastic
1. 1.

and plastic parts, we obtain:

v. (t) v, (t) v. (t)
1. 1. 1.

J J
.

J
EmV,dV. + c.V.dV, + f.dV.

1. 1. 1. 1. 1. 1. 1.

0 0 0

v. (t) v, (t)
1. 1.

J
P

J Q.dV.+ f,dV. =
1. 1. 1. 1.

0 0

The righthand term represents the energy input to the system by the

exciting force during time t, and the lefthand term the energy in the

system at time t and energy dissipated by the system during time t.

The energy equation can be written as:



where

fU

(C.3)

=

v. (t)

t
o

mV.dV.
~ ~

describes the kinetic energy in the system at time t;

=

V. (t)

t
o

.
c.V.dV.
~ ~ ~

describes the energy dissipated by damping during time t;

V. (t)

t
o

E
f.dV.
~ ~

(C.4)

describes the strain energy in the system at time t;

v. (t)

t
a

P
f.dV.
~ ~

describes the energy dissipated plastically during time t; and

=

v. (t)

t
o

Q.dV.
~ ~

describes the energy input to the system during time t.

The energy equation can be written in dimensionless form by

d · 'd' b h 1 . . . h ,th d' .~v~ ~ng y tee ast~c energy capac~ty ~n t e ~ ~rect~on.

For instance:



E . (t)
I~
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E
Ii

(t)

= 1
-2 f. V.

~y ~y

The other terms are similarly derived. Equation (C.3) therefore

becomes:

(c. 5)

By using the definitions of Eq. (A.17) I the following expression for

Eqs. (C.4) are obtained:

=
-2w

1
a
ly

=

·2
11

1
(t)

t

J
o

t

f ~2(t)dt
o

2·2E
K2

(t) = 8 ).12 (t)

t

E
Dl

(t) 4~lwl J
·2

= ).11 (t)dt

0



ou

t

E
Pl

(t) J
P

= 2 PI Ct)dlll
0

t

Ep2 (t) f
P

= 2 P2 Ct)d1l2
0

At t = 0, all energy values are equal to zero with the exception of

the strain energy in the vertical direction which is equal to the work

done by the axial force before the ground motion is applied to the

system.

Total energy values include the contribution of both the

horizontal and vertical directions of motion to the energy input to

and dissipated by the system and are normalized by the elastic energy

capacity in the horizontal direction. The total energy input is

defined as:

In dimensionless form, this expression is:

E
I

(t)

= 1
"2 flyVly

Similarly, the other energy terms, E
K

, ED' Es and Ep are the

dimensionless total kinetic energy, total energy dissipated by

damping, total strain energy, and total energy dissipated plastically,

respectively.
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The above energy formulation holds for a system on a fixed base

subjected to applied forces Q. (t), not for the actual case where the
~

system is excited by base motion. The kinetic energy terms in the

equations therefore represent the energy associated with motions

relative to the base of the system and not the kinetic energy due to

total motion. Because the primary concern in seismic analysis is with

deformation of the system, an energy formulation in terms of relative

motion is more useful.
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