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ABSTRACT

This report presents an analytical study of the seismic response
characteristics of an offshore structure supported on pile foundations.
To allow the basic modeling of the structure-foundaticn system, a simple
mathematical model of pile foundation based on the three-dimensional
theory of elasticity is developed. The earthquake surface ground motion
is prescribed in the time domain, the solution of the system is carried
out in the frequency domain, and the desired response quantities are
transformed back to the time domain., Foundation-structure interaction
effects are examined by comparing response quantities obtained for models
with and without foundation flexibility. The interaction effects are

found to be quite significant.
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1. INTRODUCTION

Man's ever-increasing need for more and cheaper energy has
resulted in various ways of tapping new energy scurces, while the tech-
niques used in extracting traditional energy sources have greatly im-
proved, 011 operations have recently been extended into the continental
shelf, Fixed offshore structures were constructed first off the coast
of Louisiana in 20 feet of water and then in progressively deeper water.
With the new oil discoveries in the North Sea and other areas around the
world, the importance of offshore structures should keep increasing.

The majority of offshore structures has béen and almost certainly
will continue to be land-connected. Although foundations for land-
connected offshore structures, like those on land, can be divided into
many different categories, pile foundations are used for the support of
a large number of the permanent offshore structures in areas where the‘
soil deposits exhibit Tow bearing capacity and medium to high compress-
ibility.

The problems resulting from earthquake forces on offshore struc-
tures supported on pile foundations are complex and extensive. Consider-
ation must be given to the fact that these sitructures are either par-
tially or totally immersed in water and will therefcre exhibit different
dynamic characteristics .than if they were located in air. The structures
will also interact during earthquake shaking w;th the pile foundation
and soil below and adjacent to them. A great deal has been published on
fluid-structure interaction of offshore structures. Numerical procedures
for carrying out dynamic analysis of the complete offshore structure-

foundation system are similar to those for determining the dynamic



response of other types of structures, and these procedures have been
reported in the literature. However, present knowledge and understand-
ing of the dynamic behavior of a pile foundation is far from complete,
although it has been the subject of considerable interest and research

in recent years. Since the actions of structure, pile, and so0il during
earthquakes are interdependent, the behavior of these structures cannot
be realistically predicted if the complete structure-foundation system
has not been modeled accurately. Therefore, it is important to give

full consideration to the problem of defining an appropriate mathematical

model for pile foundations.

1.1 Review of Past Work

Early analytical solutions for piles have been obtained along two

principal lines (1) using a discrete model with lumped masses, springs

and dashpots and (2) using a continuous model and the theory of elasticity.
A discrete model was first used by Penzien et a].(l) With this model,

the nonlinearity of the surrounding soil deposit can be relatively easily
introduced by spec¢ifying arbitrary force deformation characteristics for
the spring. However, it encounters the difficulty of defining equivalent
s01l masses and fictitious dashpots to simulate radiation damping, A

(2) to study the dynamic

simplified discrete model was employed by Sugimura
behavior of long pile foundations. A group of slender piles was found
toc be more effective than a few large-diameter piles in resisting load
applied at the top of piles when the soil deposits';ontain layers with
extremely different dynamic properties. Yamamotoc and Seki(3) used the
same model to study the dynamic interaction of s0il-pile-multistory
building systems.

The continuous model treats the pile as a flexural bar buried in



elastic, isotropic, and homogeneous layers. It has the advantage that
it can automatically incorporate in the formulation the mass density of
soil and pile, as well as the effect of radiation damping. It is, how-
ever, restricted to linear soil behavior. An important step in using &
continuous model is the determination of the soil reaction to the dynam%c
motion of an embedded pile. Baranov(4) derived formulas for evaluating
these reactions for cases that can be viewed as plane strain. Novak(s)
studied the formulas and applied them to stiffnesses of piles under
dynamic¢ surface Toads.

The most versatile approach is the finite element method. It can
readily handle nonhomogeneity and nonlinearity. The method has been
used extensively to model difficult boundary condition probiems in
mechanics. With the recent invention of a semi-analytical energy trans-
mitting boundary element by Kausel(s), the effect of the far field can
be reasonably reproduced; so that the field of application of this method
has been greatly expanded. However, it does have some 1imitations. The
displacement field of the boundary element is based on the exact displace-
ment functions, whereas the field in the vertical direction is based on
low order polynomial functions. Hence the method is more suitable for
problems where waves are propagated mainly in the horizontal direction.
Besides, determination of the stiffness matrix of the boundary element
requires the solution of a quadratic eigen value problem at each discrete
frequency. If directly applied to the pile probiem, the solution quickly
becomes unnecessarily expensive.

Blaney et a1.(7) used a discrete model based on finite elements
to study the response of a pile embedded in a horizontally stratified

soil deposit, where the properties vary with depth but remain constant



in horizontal planes. They aiso compared the lateral stiffness of the
s0il surrounding the pile with the lateral stiffness suggested by Penzien
for the static case, and by Novak for steady state harmonic motion with
various freguencies. Although the cases studied are not exactly the
same, the comparison with Penzien's results can be judged as favorable.
Good agreement with Novak's values is also found to exist in the high
frequency range. However, in the low frequency range, which is of
special interest in earthquake engineering, there are substantial differ-
ences. A comparison of the continuous model and the discrete model has
also been presented by F?ores(s).

The reliability of the results of analytical methods will depend
upon the ability to select, at least approximately, the soil parameters,
whatever method is used for the analysis. Hence the importance of experi-
mental studies where soil characteristics are evaluated becomes apparent.
Soil parameters required for the analysis of piles in clay have been

(]O)i parameters required for

evaluated by Mat?ock(g), Brown and Coyle
the analysis of piles in sand by Reese et a1.(]l), Wright and Coy1e(}2).
While there is some theoretical basis for determining these parameters,
the real behavior of soil around a pile usually does not yield to a
complete analysis. Therefore, a considerable amount of empiricism is
invoived in the process. Moreover, the s¢il parameters obtained at a
particular experimental site are usually not applicable to other locations.

The dynamic behavior of piles was studied by Kubo and Sato(l3)

using a
large-size shaking table.

Field earthquake observations of a building supported on long
pilés extending through soft alluvial deposits were conducted by

(14),

Sugimura He found that the ground and piles behave identically

with each other except in the vicinity of the pile cap. A discrete



model similar to that used by Penzien was employed to obtain analytical
results. The analytical model was able to simulate fairly well the
actual behavior of pile foundations during earthquakes. However, these
findings are not conclusive, since the earthquake under observation
were comparatively weak earthquakes

In this study, a simple, relatively inexpensive model of pile
foundation is developed. The new model is based on the discrete model
used by Penzien and the three-dimensional theory of elasticity. Radiation
damping is included in the new model. It may prove useful as an alterna-
tive to obtaining the dynamic stiffness matrix of pile foundation by

three-dimensional finite element discretization method.

1.2 Scope of Investigation

The basic numerical procedure for carrying out the seismic
analysis of fixed offshore structures in the frequency-domain is
described in Chapter 2. Three-dimensional effects of strong motion
earthquake excitations are included in the formulation of the equations
of motion. In Chapter 3, fhe dynamic behavior of pile foundations sub-
jected to surface loadings is investigated. In Chapter 4, the dynamic
responses of an offshore structure supported on pile foundations sub-
Jected to a recorded strong motion earthquake are obtained. The effects
of interaction between the structure and its pile foundations are
examined. Finally, the conclusions obtained from this investigation

are summarized in Chapter 5.



2. METHOD OF ANALYSIS

Pile-supported offshore structures are constructed in areas where
the soil is relatively soft and the sea conditions are usually rough and
frequently in regions of high seismicity. Since these conditions develop
high dynamic forces in the structure-foundation system, it is important
that such forces be predicted realistically for design purposes. Hence,
the complete structure-foundation system must be modeled accurately,
hydrodynamic forces must be considered properly, and a reliable numerical
procedure must be used. -The basic numerical procedure for determining
the dynamic responses of fixed offshore structures was previously pre-

(15, 16).

sented by Penzien and Tseng For completeness, their procedure

is ‘summarized here.

2.1 Formulation of Equations of Motion

An offshore structure is a continuous structure with an infinite
number of degrees of freedom. For a dynamic analysis, it is convenient
and usually adequats to model such a structure as a Tumped mass system
consisting of discrete masses Jocated at selected nodal points and its
foundation as a set of frequency dependent springs and dashpots. Figure
2.1 shows such an idealized model of an offshore structure. Complete
dynamic analysis of this model requires consideration of various forces
the structure must resist during its lifetime. Among the forces, those
due to waves and strong motion earthquakes are of ;rime importance. For

steady state motion of frequency w, the dynamic equations of motion for

this system with n nodal points can be expressed in matrix form as

FIFE) + () 10R) + Kk(w)1le} e'F = (p} v (2.1)



in which [m] is the diagonal matrix of masses Tumped at nodal points
(including effective water masses contained inside structural members),
[c{w)] and [k{w)] are the total foundation-structure damping and stiff-
ness matrices (including material and radiation damping and structure
and foundation stiffness, respectively). The vector {¥t} represents the
total structure accelerations measured from a fixed reference; vectors
{r} and {r} represent the velocities and displacements, respectively,
measured vrelative to its moving base. Vector {p,(t)} consists of
hydrodynamic forcing functions. Six degrees of freedom a}e assigned to
each nodal point, namely, translational displacements in the two horizon-
tal directions and in the vertical direction, and the three rotational
displacements. Thus, each vector in Eg. (2.1) has N components (N = 6n)
to represent each of the N degrees of freedom, and each matrix is of
order N x N,

The force vector {pw(t)} can be estimated by proper use of the

equation developed by Morison et al.(]7)

The Morison equation was
originally developed to estimate the forces exerted by waves on circular
cylinders. For a vertical cylinder with its axis normal to the direction
of the wave, the horizontal component of force per unit length of the

cylinder is given by

FH = FD 4 FI (2'2)
with
Fp = oKgD|¥(t) [¥(t) (2.3)
and
702,
Fp = oKz (t) (2.4)
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where D is the diameter of the cylinder, p is the density of sea water,
KD and KM afe, respectively, the drag and inertia coefficients, and
v(t) and V(t) are, respectively, the horizontal components of fluid
~ particle velocity and acceleration at the point under consideration.

The Morison equation states that the hydrodynamic force exerted
on a vertical cylinder consists of two components. One component is
the drag force which is proportional to the square of the fluid particle
velocity.: The other component is the inertia force which is proportional
to the fluid particle acceleration. The appropriate use of the Morison
equation depends primarily on the choice'of values of the drag and in-
ertia coefficients. These empirical coefficients are estimated from

(s, 19).

iaboratory and field investigations Although they may vary

considerably for oscillating structures and may be frequency dependent
(20), they are normally considered to have values in the ranges 1.4 g Ky
€ 2.0 and 0.5 < Ky £ 0.7.

With the effect of fluid structure interaction included, the

hydrodynamic forces exerted on the structure, according to the Morison

equation, can be expressed as
P} = olky - DIVIGY, - 755 + o[VILG} +

okp[AIL] (8, - #E) [0, - PO} s (2.5)

where vectors‘{ﬁw} and'{ﬁw} represeﬁt, respectively, the water particle
vélocities and accelerations at the instantaneous deflected positions

of the nodal points, diagonal matrices [V] and [A] represent, respective-
1y, the effective volumes and effective drag areas of the structural

model.



9

The first term on the right hand side of Eq. (2.5) represents the
hydrodynamic inertia forces exerted on the structure due to added mass
based on the relative acceleration between the lumped masses and their
surrounding fluid. The second term represents the inertia forces in-
duced by the mass of the fluid displaced by the structure. The last
term represents the hydrodynamic drag forces exerted on the structure.

When Eq. (2.5) is substituted into Eq. (2.1), the equations of

motion become
(A1) + [e(w) 1P} + k() 10} = (K, - DIVIE, - #5)
+ oLV} + okpLATCICu, - #5)] (0, - #5)3 (2.5)

In £q. {2.6), the fluid particle velocities and accelerations
should be those at the instantaneous deflected positions of the structure.
However, for low frequency components of the input forces, the wave
particle velocities {u } and accelerations {Uw} may be evaluated at the
original undeflected coordinate positions of the nodal points with }ea-
sonable accuracy(Z]).

Since the structural damping and the foundation damping in the
complete structure-foundation system are quite different, it is more
practical and accurate to consider the structure and the foundation as
two substructures of the complete system. Matrices [c(w)] and [k(w)]

can then be decomposed as

[c(w)] = [E] + [E{w)] (2.7)

[k(w)] = [R] + [k(w)] (2.8)

where [c] and [EJ represent the structural damping and stiffness matrices,
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respectively; [c(w)] and [;(m)] represeht the foundation damping and
stiffness matrices, respectively. Matrix [k] can be for@u]ated by the
standard finite element method. The formulation of the structural
damping matrix [c] will be discussed in Section 2.3. Both [c{w)] and
[k(w)] contain non-zero elements only at those degrees of freedom which
are located at the interface of the structure and the foundation. If
subscript "b" denotes quantities related to the base degrees of freedom
and "s" those related to degrees of freedom above the base, then matrices

- [e{w)] and [k(w)] can be partitioned into the following forms

_ "cSS csbﬁ 0 0

[clw)] = = (2.9)
L Chs Cpp - L0 oy |

] koo Kep 0 0

(K}l =1 | = : (2.70)
L Ryg kyp L0 kyp

[ébb(w)] and [Ebb(m)] together define the relationship between
forces and displacements of the foundation subsystem, therefore they can
be obtained together by experimental or analytical methods. Let the
foundation subsystem be excited by steédy state harmonic forces and
moments having a frequency w. The resulting displacements and rotations
will also have the same frequency w, although they will not, in general,
be in phase with the applied forces and moments. The relationship
between forces and displacements of the foundation‘subsystem can be ex-

pressad as

Py} = [x(w)lr} (2.11)

with
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[x(w)] = [y ()] + iwlc,, ()], (2.12)

where {rb} and {pb} are, respectively, the displacement and force vectors
at the base degrees of freedom of the structure. [x{w)] is the impedance
matrix of the foundation subsystem, and is alternatively called tﬁe
dynamic foundation stiffness matrix or the.subgrade stiffness mtrix.

The procedure to determine the elements of the dynamic foundation
matrices for pile foundations, which constitutes an important part of
this investigation, will be discussed in the next chapter.

The vector {rt} representing total structural displacements from

a fixed reference can be separated into two parts as
(" = trd + [0, JMu (£)) (2.13)

where {r} is the vector of displacements with respect to the moving base,
{ug(t)} is a vector containing the three transilational components of the
free-field seismic base displacement, and [bx] is the influence coeffi-

th

cient matrix. Let the i component of {ug(t)} represent the trans--’

iational seismic base displacement in a certain direction, then the cor-

responding ith

vector of matrix [bx] will contain n components equal to
unity representing the n translational components in that direction and
5n components equal to zero representing all the other displacement

components.

Substituting Eq. (2.13) into Eq. (2.5) and rearranging gives
[n1C} + Lelw) 1R + Dk(u) 2 = ~[m1o, 00 3 + oky[VICi,}
N . tyirn L ot
pkg[AT{[ (o, = +*)[ (0, - #°)} (2.14)

where
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[m} = [m] + (K - 1)[V] . - (2.15)

2.2 Linearization of Eguations of Motion

Let {p(t)} denote the entire force vector on the right hand side
of £Eq. (2.14), i.e., let

{p(t)} = -[mllb JMU s + oKy[VI{G,} +
okpAC] (0, - #E)[ (0 - FE)} . (2.16)

Waves generaged by a sudden impulse such as an underwater earth-
quake, landstide, or volcano are known as tidal waves or tsunamis. Once
started, these waves travel great distances at high velocity with little
loss of energy. Although on entering shallow water they are able to rise
to great height to smash and inundate shore areas, their height in deep
" water is only a few feet. Tsunamis have periods of more than 15 minutes

(18)

, Whereas the most destruc-
(22)

and wavelengths of several hundred miles
tive earthquakes recorded usually have durations less than one minute
The probability that a strong motion earthguake éccurs concurrently with
strong wave excitations generated by wind is very small. It is reason-

able therefore to assume a state of quiescent sea (U = ﬁw = 0) when

W
only the seismic responses of the structure are considered. Hence, Eq.

(2.16) can be reduced to
p(e)} = -[milb Bt} - ekgTAICLREFTY L (2.17)

For earthquake excitation alone, the first term on the right hand
side of Eq. (2.17) dominates the response with a relatively small damp-

ing effect coming from the noniinear drag term(z}).
{23)

In this case, the

drag term can be linearized using a technique as reported by Penzien
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and Malhotra(21) that first replaces the nonlinear vector {l?tlﬁt} by a

1inear vector [a]{%t} + {b} and then minimizes the error introduced by

this approximation in the mean square sense. Term a;s the ith element
of the diagonal matrix [a], is given as
eI (02D - beerrt
a; = e (2.18)
EL(+5)?2]
. A . th . .t
in which ry is the i element of the displacement vector {Pi}’ and
E[ ] denotes the time average. Term b., which is the it atlement of
vector {b}, can be obtained through the relation
- -t tyget '
b, = -aiE[ri] + E[Iri[(ri)] ; - {2.19)

With the nonlinear term replaced by the equivalent iinear term, Eq.

(2.17) can now be written as
(p(e)} = ~[mllb, I} ~okg[AILal(F"} -pkp[AT a1 (b (2.20)

Now the first term on the right hand side of Eq. (2.20) dominates
the response under earthquake conditions. If the earthquake excitation

is assumed to be a zero mean Gaussian process, the linearized output of

“the total velocity vector {it} is also a zero mean Gaussian process, i.e.,
the probability density function for r? is
.t
t 1 b
p(¥) = exp [-— (=5)?] (2.21)
2 r;
3

1
(ZTT) 20’;,1:'.

in which a.t is the standard deviation of %E. With p(??) known, the
.i .
expected values of the terms shown in Eqs. (2.18) and (2.19) can be
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calculated giving

[+1]
1}

1.590,t | (2.22)
1

5. =0 . (2.23)

Since every element of the vector {b} is zero, the term associat-
ed with it will vanish from the linearized equations of motion, which

now become

[m]{F} + [e(w)r} + [k(w)){r} = -{m][bxj{ﬁg}

-pKD[AJ[a][bX]{ub} - KD[A][a]{%} . (2.24)

Values of the elements of {fi} and [a] can only be calculated
from the sclution of Eq. (2.24), therefore an iterative procedure is
necessary for the solution of the linearized equations of motion. For-
tunately, the rate of convergence for the iteration process is fast and
only very few cycles are needed, When the total damping in the overall
structure-foundaton system is not well known, one can often justify
simply.increasing the assumed material damping ratios to account for
hydrodynamic damping; thus permitting the elimination of the hydrodynamic
drag terms completely from the equations of motion. In this case, the

equaticns of motion become

[mI{F} + [cl{w){r} + [k(w){r} = -[m][bx]{ﬁg} . (2.25)

2.3 Coordinate Transformation of Equations of Motion

In Eq. (2.25), matrices [c( )] and [k{ )] répresenting respective-
1y the foundation-structure damping and stiffness coefficients are, in
general, frequency dependent. Rather than working directly in the time

domain, it is easier to take a frequency expansion of all the time-
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dependent quantities of the equations of motion and solve it in the
frequency domain. Frequency domain solutions, however, require the
solution of a large number of simultaneous algebraic equations over
a wide frequency range. This is not only time consuming but also re-
gquires a large amount of storage to save the entire set of solutions
for future transformation back to the time domain. Therefore, it is
desirable to reduce the total number of degrees of freedom in the equa-
tions of motion considerably before performing the frequency expansion.

For large systems that possess classical normal modes, it is
well known that using the mode superposition method allows great numer-
ical simplification. In the modal coordinates, the equations of motion
become uncoupled; and even more important, the earthquake responses of
most structures can be adequate]y expressed by retaining only the first
few modes of vibration. When structure-foundation interaction is con-
sidered, the complete structure-foundation system does not possess
normal modes in the classical sense because of the presence of the fre-
" guency dependent matrices [c(w)] and [k(w)] in the equations of motion.
Therefore, the mode superposition method cannot be used directly. A
modified coordinate transformation method developed by Gutierrez(24)
and possessing the same features as the classical mode superposition
method is used in this study to reduce the number of degrees of freedom
in the equations of motion. The number of degrees of freedom is reduced
by introducing a set of generalized coordinates: normal modes of the
associated structure supported on a fixed base plus the base degrees of
freedom.

The structural stiffness matrix [E] can be partitioned into the

following form
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kss ksb

]

k] (2.26)

“ps  Xbb
where matrix [ESS] is the stiffness matrix of the fixed base structure,
matrix [Esb] is the coupling stiffness matrix expressing the forces
developed in the degrees of freedom above the base of the fixed base
structure caused by pseudostatic displacements of the base degrees of

freedom and matrix [Ebb] is the stiffness matrix of the base degrees of

freedom,

The displacement vector {r} can be separated into two parts

rs rg rg
{r} = ’ z = z t + ! { (2.27)
s Ty 0

where {rg} represents the pseudostatic displacements of the degrees of
freedom above the base, and {rg} represents the dynamic response dis-
placements of the degrees of freedom above the base when the pseudo-

static displacement components are excluded.

The pseudostatic displacement vector {rg} can be computed from

the static equilibrium condition

v g o -

ko Jirgd + [k Hrpd = {0} (2.28)
or

rdl = L (2.29)

where

oL - -[Ess}"[isb] . (2.30)
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The displacement vector {rg} can be adequately described by a
combination of the first few modes of the structure supported on a

fixed base, or
rd} = [}z (2.31)

where vector {z} is the normal coordinate vector and the matrix [¢] re-
presents the mode shapes of vibration of the associated structure support-
ed on a rigid foundation. The matrix [¢] usually contains many fewer
columns than rows and its jth column vector is the solution of the eigen-

value problem
[kgg1los3 = wilm  Iles} (2.32)

where the diagonal matrix [mss] is the mass matrix of the associated

fixed base structure and ws is its jth

Combining Eqs. (2.27), (2.29) and (2.32) gives

natural frequency of vibration.

¢ L z
{r} = j ‘ (2.33)
0 I ry ‘

where I is the identity matrix. For clarity, introduce

{¥} (2.34)

1]
et
~
———————————

and

(8] . (2.35)

]
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Equation (2.33) now becomes
{r} = [BI{Y} . (2.36)

If Eq. (2.25) is pre-multiplied by [Bjtthen converted to general-

ized coordinates using Eq. (2.34), the equations of motion become

IM*T{YY + [C*(w) Y} + [K*(w) Y} = {(P*(t)} , (2.37)
where

(<] = [8] [m][8] (2.38)

[6*(0)] = [817[c(w) 1(8] (2.39)

[K*(w)] = (81 [k(w) 18] (2.40)

x(t)) =(81"[mIlb 10 ) (2.41)

in which [M*], [C*(w)] and [K*{w)] represent, respectively, the general-
ized mass, damping and stiffness matrices, and {P*{(t)} represents the
generalized force vector.

Now [c] which represents the structural damping matrix of the free-
free structure, is not yet defined. To determine this matrix, one must
reTy considerably upon experimental evidence and engineering judgement.

A suitable method for evaluating [c] is to use the dynamic properties of
the fixed base structure aang with the pseudostatjc influence matrix
defined by £q. (2.30). The structural damping matrix can be partitioned

into the following form

Css “sb
[E] = (2.42)

“bs  “bb
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where [Ess] is the damping matrix for the fixed base structure and can

be generated using the re1ation(25)
- _ M 25 -w‘]' T
[E,e] = Ing [T =13 6,340,3"Imc ] (2.43)

Jj=1T M j

where M is the number of normal modes of the fixed base structure to be
considered, and gj and M; are the damping ratio and generalized mass,

respectively, of the jth normal mode. The matrices [Esb] and [Ebb] can

be generated using the re]ations(]s)
[egpd = -[eg 0L (2.44)
6] = [LITTEINLD (2.45)

2.4 Solution of Equations of Motion

After the matrices [M*], [C*(w)], and [K*{w)] and the vector
{P*(t)} are determined, Eq. (2.37) can be solved by transforming to the

frequency domain. Then
[-w?[M*] + ielC*(w)] + [K*(w) 1Y (@)} = {P*(w)} (2.46)

where {¥(w)} and {P*(w)} are the direct Fourier transforms of {Y(t)} and
{P*(t)}, respectively, and where w is the variable circular frequency.
Equation (2.46) can be solved simultaneously for the discrete values of
‘w giving the frequency responses {?(m)}. The time histofies of response
{Y(t)} can then be obtained by the inverse Fourier transform of {¥{w)}.
In this solution process, the direct and inverse Fourier transforms can
be obtained very accurately and efficiently using the Fast Fourier Trans-

form (FFT) algorithm developed by Cooley and Tukey(zs’ 27).
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The nodal point displacements {rs(t)} and {rb(t)} are then ob-
tained using the transformation given in Eq. (2.33). The stresses
{rp(t)} in element p at any instant of time are related to the displace-

ments {rp(t)} for that element by means of a stress transformation

matrix [Sp] as

{Tp(t)}; [5,10r(8)) . (2.47)



FIG. 2.1 IDEALIZED OFFSHORE STRUCTURE

2]
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3. MATHEMATICAL MODELING OF PILE FOUNDATION

3.1 Concept of Lateral Seil Modulus

The classical theories of earth pressures are not reliable for
determining lateral resistance of single piles. They assume mobilization
of active and passive pressures, which do not occur except at complete
failure. Satisfactory methods of determining lateral resistances of
single or groups of piles must be applicable to small deflections. In
some cases, the governing design criterion is the permissible lateral
deflection; in other cases, it is the maximum lcad that the pile can
take without overstress.

Figure 3.1 shows a sketch of a single pile with oscillating loads
applied at its top and the spring-dashpot mechanisms that represent the
characteristics of the surrounding scil. The deflection of the pile in
the lateral direction can be computed by numerical solution of the

fourth-order equation of metion

4 2 5
E18Y 4B spre 3Y g (z,y, #)y=0, (3.1
P Pazs  Pagz PP Pyzvge p( d at)y 3.7

in which Eplp is the flexural rigidity of the pile, mp is the mass of

the pile per unit length, ¢_ is the damping coefficient of tne pile, and

p
Eh is the lateral soil modulus.

In the above equation Eh collectively represehts the character-
istics of the reaction of the seoil to lateral pile displacement, and can
be obtainedlfrom the so-called p-y curve. This p-y curve can be obtain-

ed by observing the behavior of the soil in a thin stratum at a depth

z below the surface of the ground, as shown in Figure 3.2a. Figure 3.2b
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shows the earth pressure distribution around the pile after the pile is
driven into the soil and before harmonic surface loadings are applied,
assuming that there is no bending of the pile during driving. Under
these conditions, the free body cut through the soil and pile along the
planes indicated in Figure 3.2a is in equilibrium. If the center of the
pile is deflected a distance y, as shown in Figure 3.2c, a change in
s0il pressure will be generated in the form in the figure. Integration
of the soil pressure and shear around the pile segment would yield an
unbalanced force p per unit length of the pile. Here, the shears on

the outside wall of the pile paraliel to the longitudinal axis of the
pile are assumed to be small in relation to the internal shear developed
in the pile, and can thus be neglected.

The lateral soil modulus at depth Z; is the slope of the secant
of the corresponding p-y curve, as shown in Figure 3.3. The value of the
moduius is not a direct property of the soil, but is a fitting function
to corralate pile behavior with soil properties, as reflected by the p-y
curve., ‘It can be expected to be a function of depth, diameter of pile,
and rate of loading. Among the soil properties that affect the value
of the lateral soil modulus, the shear strength is the domihant parameter.
While there is not a proportional relationship between p-y curves and
shear strength of the soil, weaker p-y curves certainly result from
weaker soil.

Many clays are normally consolidated, or nearly so, and will have
increasing shear strength with depth. For over-consolidated clay the
shear strength is approximately constant with depth,'as in the case of
overconsolidation of the soil caused by glaciation. However, if the

overconsolidation was caused by desiccation, the shear strength may
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decrease with depth. Figure 3.4 shows the shear strengéﬁ distributions
with depth for four different so0il conditions (28).
The concept of the p-y curve, first developed by McClelland and

Focht(zg)

implies that the behavior of the soil at a particular depth

is independent of the soil behavior at all other depths. This assumption,
of course, is not strictly true. However, it has been found by experi-
ment that, for the patterns of the pile def?ectiéns which can occur in
practice, the soil reaction at a point is dependent essentially on the
pile deflection in the immediate vicinity of that point and not on the

pile deflection some distance above or below the point(g’ T]).

3.2 ETasti; Lateral Soil Modulus

Although many researchers(BO’ 31) have attempted to construct the
p-y curves, and hence the lateral:soil modulus, for different soils
using field or laboratory determined soil parameters, no definite com-
prehensive method has yet been established. Accuracy depends heavily upon
the engineer's expérience in assigning values to empirical terms. More-
over, the driving of piles into the soil medium remolds and compresses
the soil, thus greatly changing its properties. The presence of piles
destroys the continuity of the soii; the piles in effect acting as rein-
_ forcing‘bars in the soil. Furthermore, in practice, a pile often pene-
trates various strata, each having a different soil modulus.

Even if the soil medium is modeled as an isotropic, elastic half-
space, only approximate methods of investigaticn are available for deter-
mining the responses of a pile, since the three-dimensional elasticity
problem of a load applied to an elastic medium by an embedded rod has

not been solved theoretically.



25

3.2.1 Degenerated Two-Dimensional Approximation

For a general three-dimensional, homogeneous, isotropic, elastic
solid, the displacement vector, {u} = {urusuz}T, satisfies the following

equation of motion

672} + (1 + (T -u}) = oy L (3.2)
at

jn which ¥ is the divergence, v? is the Laplace operator, ps'is the mass
density of the soil, v-{u} is the dilatation, and X and G are the Lame
constants, respectively.

The main difficulty encountered in solving the above displacement
equation of motion is that the displacement compcnents u

s U u, are

8* "z
coupled in the second term of the equation. The coupling of displace-

r

ment components always exists, no matter which geometric coordinate
system is empioyed. To simplify the solution, it is necessary to either
make some basic assumptions or introduce a number of potentials and then
to transform the equation into a spacé in which it is more easily solved.
The degenerated two-dimensional approximation method empioys both ideas.

Using Helmholtz's theorem, the displacement vector function can
be written in terms of a scalar point function ¢ and a vector point

function {y}-= fw1w2w3}T as
{u} = V¢ + wx{yp} (3.3)

Since v-(vx{u}) = 0, by substituting Eq. (3.3) into Eq. (3.2) the

equation of motion can be reduced to

v [(-’t—i—z—ﬁ)vzq) ) 9-2&] + Tx [(—(-;-—)Vz{w} ; ?ﬁl@-] -0 (3.4)
e at? 0 at?

S TS
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Equation (3.4) is satisfied if ¢ and {y} separately satisfy

2 R

v, 202 = -gfg (3.5)
32

vy = 2 | (3.6)

where VL = velocity of the dilatational wave

(Lt.%ﬁ)y - BNERS

O

and Vs = velocity of the rotational wave

fa\*? |
- (&) (3.0

The original displacement equation of motion is thus transformed
into two uncoupled equations, for which the dependent variables are ¢
and the three components of the vector function {y}.

The following assumptions were first made by Baranov(4) for the
study of the behavior of embedded foundation. The soil medium is assumed
to be composed of a set of independent, infinitesimal, horizontal elastic
layers that extend to infinity and can only transmit plane-strain waves.
The cross-section of the pile. is assumed to be circular and to have per-
fect contact with the soil before and during the application of the
oscillating surface loads.. With these assumptions, the vertical dis-
placement component is equal to zero everywhere in the soil layer and
in the pile segment, and the other two horizontal displacement components
can be completeiy described by the dependent variables ¢ and Uy with
bo = g = 0.

The condition of compatibility at the interface of the soil and



pile segment can be written as

’ur(B,ﬂ,t)i

’y cost l e’wt
ue(B,e,t)

-y $in@

where w represents the angular frequency of the oscillating surface

27

(3.9)

loads, B is the outside radius of the pile, and 8 is measured counter-

clockwise from the Y axis.

where

Equations (3.3), (3.5) and (3.6) can be written as

sw 1y,

u, —t =
ar r 30
AT

Ue y

r 38  ar (3.10)
2 2 = 1 (p23 3 202 4 35 vr -
(v + n3)3(r,8) r2(r e tran t Q r + a92)6’ 0 (3.11)
- _ 1 3 D 3% \— !
(V2 + KZ)Ll)l(Y‘,B) = FZ(Y‘Z-E;F tragt K2r2 + W)\pl =0 (3.12)
h = w_
Vi (3.13)
k = w_ (3.]4)
Vs
7(r.8) = ¢(r,8,t)e 10t (3.15)
v, (r,8) = wl(r,e,t)e_1Mt (3.16)
The general solutions to Egqs. (3.11) and (3.12) are cobtained by
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separation of variables in the forms

=% ; (1) (2)
¢ nio (A, cosne + B sinn®)[EH "/(h.) + H ¥ (h,)] (3.17)
1y )
v, =% , i 1 (2)
i -nzo (Cq cosn + By sinn@)[Fof, "(ky) + By (k)] (3.18)
where Hﬁ}) and Héz) represent Hankel functions of the first and second

kind of order n, and where Ay BosCyD L E

n* Cne Bps Eps and Fn are integration

constants whose values depend upon the boundary conditions.

The displacement Uy is an even function of 6, and the displace-
ment Ug is an odd function. At the interface of the soil layer and the
pile segment, that is at r = B, both displacements satisfy £q. (3.9),
and as r approaches infinity both displacements vanish., After applying

all boundary conditions, Egs. (3.17) and (3.18) reduce to

2
$ = A, coss Hg )(hr) (3.19)

b, =0, coso HP (k) (3.20)

with constants A1 and D1 satisfying the following relations

S0 B ()] + 0 1 P (ke) = y (3.21)
A n) + 0,500 (ke) 1 =
15 ViU =y (3.22)

The stress components 9. and t_. are related to the potentials ¢

ré
and P, through the differential equations
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= -\h? 3% , 3 (131
o, = -Ah?¢p + 26[.0”‘2 t o (r = )] (3.23)
s oely - oerdfy o231 3¢
Teg = "8k, - 2605 - n (L)l (3.24)

The net horizontal soil-pile interaction force p in the positive

y direction is then equal to the integral
2n - '
P = S [- or(B)cose + rre(B)sinBJBde . (3.25)
0 .

The lateral soil modulus can be obtained by dividing the integrat-

t

ed value of the above equation by ye‘w . The result is

s 1a82) (ke)ni®) (ha) + 12 (ne)n{?) (ka)
= 2%
h 132 (kB)HS2) (nB) + HEZ) (hB)HS? (k)

(3.26)

where s = ratio of shear wave velocity to dilatational wave velocity

L.
_h_ |1 -2v)7
K [m] : (3.27)

The lateral soil modulus, as expressed by Eq. (3.26), is a result
from two-dimensional elasticity theory, It is indeed a function of pile
diameter, rate of loading (through h and k) and shear modulus of the soil
and distance from the surface of soil medium (through G). As the plane-

- strain waves generated by the pile movement’propagate radially outward,
they encounter an increasing volume of soil, tﬁus the energy density in
geach wave decreases with distance from the pile. The outward transmission
of energy is usually called geometric damping or radiation damping, and
is properly taken into account by the imaginary part of the lateral soil

modulus.
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3.2.2 Three-Dimensional Static Approximation
(32)

Sezawa derived general solutions for the wave equation,

i.e., Eqs. (3.5) and {3.6). His solutions have been rearranged by

Kanai(33) into the following integral forms:
w ad_(qr) m J_{qr)
_ 1 "m -4z . _m -8z
Up = S A T A "
0 q
J.(qr) i
+C %3- gr =82 2c0smeemt - (3.28a)
® J_(qr) 3d_{qr)
_ A m m -az 1. m -8z
g ~ S 0 daz ; Anpz—r —® Bng? o ©
J_(gr) _ ;
- m_%g-me—w— e le sinmee 9t (3.28b)
® o _-az q® -8z jwt
u, = S ; dq% %Am Pr e -C T e ; Jm(qr)cosmee (3.28¢)
where

a? + h? = g% + k% , (3.29)

[

qz

h and k are defined by Egs. (3.13) and (3.14), and Jm(qr) is Bessel's
function of order m. In Eq. (3.28), terms with constants Am are related
to dilatational waves and terms with constants B or C, are related to
rotational waves. These constants are determined by the appropriate
boundary conditions. The associated stresses are given as

g, = chadqﬁ ;Am'z 2h+ k? oz 2Cm§%; e P2 Jm(qr)cosmeeiwt

z )
(3.30a)
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% ad {ar) J(ar) _;
- 20 ~°m -0z mg “m -8z
Tzr GSO dq,% AmhZ ar © Bn az " r  °©
- Cm R ™ e cosmde (3.30h)
°° J_(qr) 3d_(ar)
_ 2mo m -0z 8 m -Bz
Yoz ~ GSO quZn A v e By qF "ar ¢
m{g* + g2 Jm(qr) -Bz. . jut
+ Cm (g 8 ) - e sinmee (3.30c¢)

A1l the integrals in Eqs. (3.28) and (3.30) are improper integrals
with Bessel functions or derivatives of Bessel functions as the integrand.
Except for a few special cases, their integration requires the use of
Fourier's double integral theorem(34)which is mathematically difficult.

For the static cases, that is when w approaches zero, the degree of dif-
ficulty is much less than for the dynamic cases. The three-dimensional
elasticity problem of a static load applied to a point inside an elastic
half-space, which is one of the static cases, hag,been solved theoretically

by Mindlin(33),

The Mindiin equation, which gives the x component of dis-
placement as produced by a single concentrated force P located at any
arbitrary point (0,0,¢) within an isotropic half-space and acting in the

x direction, is »

+ 4{1-v)}(1-2v)

. P(0,0,c) 3-4v 1 2z
“#XJJ)‘T&WtJE'¥"' TRt R

R, 3 R, 3 R2S b RZ{R2+c+z)2

A [ 1 ,3-4v 6z 4(1-v)(1-2v)}§ (3.31)
1 2

in which v is Poisson's ratio, ¢ is the z distance of the load below the
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surface xy boundary plane, and

]
()
i

1 F x2 +y?2+ (z-2¢)2

N
1]

x2 +y?2+ (z+c)?

The Mindlin equation permits one to characterize completely an
elastic half-space. Penzien (M used this equation to obtain a three-
dimensional approximate static soil modulus. The horizontal interaction
force between soil and pile is assumed to be uniformly distributed along
the length of the pile within each height interval 2h, but the magnitude
of the interaction force varies from one interval to the next. The
general expression for the weighted average deflection at the outside
pile radius B, caused by a unifOfmly distributed interaction force over
the height of one interval, is obtained by substituting the intensity of
the interaction force p{0,0,T £ h) between points (c - h) and (T + h)
for the concentrated load P(0,0,c) in Eq. (3.31) and integrating with
respect to ¢ over this interval. The static modulus is then taken as the
ratio of intensity p and the weighted average deflection at the outside
pile radius. For Poisson's ratic v equal to 0.5, the lateral soil modulus

obtained is

S8mE ) sl Crh -2 L -1T -h+2
Eh(B,z) == 3s1nh 5 sinh 5
+ sinh”) €rhrz sinp™} S=htz
B B
;.2 |B*T +h) - 28%2 + (C+h)z* + 2°
382

/BT F [T ¥ R+ )

b
w
N
|
0}
'
-
—_——
1

282z + (T - h)z? + 23 }
/B2 + (T-h+1z2)?
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_g[ 2-(E+h)  _ z~(6~h)m]
3182 4 (3 + h - 2)2 B2 + (E - h - z)?
+_4_[Bzz+(c‘:+h)zz+z3 _ Bz« (E-h)z2+zs'§'1

SWET+ (G+n+2)2° /BT +(c-h+ 220 (3.32)

Figure 3.5 shows the variation of average static lateral soil

modulus with slenderness ratio L/B of pile.

3.3 Elastic Vertical Soil Modulus

The dynamic responses of the pile pertinent to the vertical motion
of the pile head can be obtained using the same assumptions for the soil
as in the lateral case. The damped equation of motion of the pile in

the vertical direction is

32 | 3?2 33
m 5532'- - ALK, §z—¥ - AL, ‘é’i‘%ﬁ' + E (z,thw = 0 (3.33)

in which w is the vertical displacement of the pile, Ap is the area of
the pile's cross-section, Cy is the damping Eoefficient in the vertical
direction. Ev’ the counterpart of Eh’ defines the vertical s¢il reaction
acting at height z on a pile element dz, and is called the vertical soil
‘modulus.

The vertical soil modulus obtained from the two-dimensional theory
of elasticity, based on the assumption that the cross-section of the pile
is circylar and‘the pile has perfect contact wifh the soil before and

during the application of the oscillating surface load, is

(3.34)
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Like the lateral soil modulus, E, can also be estimated from the
three-dimensional theory of elasticity by assuming that the vertical
interactionvforce between s0i1 and pile is uniformly distributed ;1ong
the length of the pile within each height interval 2h, but that the magni-
tude of the interaction force varies from one interval to the next. For
Poisson's ratio equal to 0.5, the vertical soil modulus for a pile segment
between the elevations (¢ - h) and (¢ + h) is then

_ 8mE .-l C+h -7 . »1C-h=-2
EV = =3 2 sinh - 2 sinh s

-lerh+z 5 syl C-h+z

+ 2 sinh 3 5
¢c-h-z C+h-2z

/82 + (¢ -h -2)? /8% + (¢ +h - 2)?

c+h+z ¢ -h+2z

J3tr G+ h+2)?:  JRr+ (Z-n+a2)?

- 4y ] . 1
/ﬁz + (c+h+z)? /B2 4 (c - h+2z)?
B2 + z2 + z(C + h) B2 + z%2 + z(c - h) -1

+ 2

z - -
JIB2 + (G +h+2)2] /B + (3 -h+2)21%) . (3.35)

Figure 3.6 shows the variation of average static vertical soil

modulus with slenderness ratio of the pile.

3.4 Inelastic Soil Moduld

Although the soil moduli evaluated by assuming that the soil is
composed of a set of ideal elastic plane-strain layers can account for

the geometric distribution of elastic-wave energy, they do preclude the
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loss of energy caused by the inelastic behavior of the real soil, as
reflected in the nonlinear p-y curves. When the soil is set in vibration
by the movement of the pile, some of the elastic energy is always con-
verted into heat, and plastic behavior may take place. The various
mechanisms by which non-radiating energy is lost are collectively termed
internal friction.

The internal friction can be measured by the specific damping
capacity, defined by the ratio of the energy dissipated in taking a
“specimen through a stress cycle to the elastic energy stored in the
specimen when the strain is a maximum. In terms of the p-y curve, specif-
ic damping capacity represents the ratic of the area enclosed by the
hysteresis loop to the total area under the p-y curve when y is a maximum.

A simple method to account for the energy loss due to internal
friction is to model the soil medium as an isotropic viscoelastic
soil which has the same sbecific damping capacity as the real soil. The
problem is then transformed from one in linear elasticity to one in linear
viscoelasticity. The identification of a problem in linear elasticity
with one in Tinear viscoelasticity is guided by the correspondence

(36). The soil medulus for a linear viscoelastic medium can be

principle
obtained by simply replacing the real shear modulus G by a complex shear
modulus G* composed of real and imaginary components, each of which is a

function of frequency, as
6*(w) = Gy{w) + 16,(w) | (3.386)

in which Gl(w) is the elastic component and Gz(m) is the viscous
component.

For a Voigt solid, the stress is the sum of two terms, one
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proportional to the strain and the other proportional to the rate of
change of strain, and the d{splacement equation of motion is similar to
Eq. (3.2) but with the operator A + k‘(%zd in place of A, and G + G‘(%E
takes the place of G. Since four constants A, A", G and G* must be used
for a Voigt solid, simplifying assumptions have often been made about
relations between them in order to treat the problem. Since deformations
involve dilatation as well as'éhear, it 1s logical to specify that the
ratio of G to G equals the ratio of K™ = A7+ %G’ to compressibility

37)

K= A+ 25( K~ is known as the dilatational viscosity, G* being the

3
shear viscosity. In this case, Eq. {3.36) becomes

G*(w) = G(1 + mg—f-) (3.37)

3.5 Dynamic Stiffnesses of a Single Pile

3.5.1 Methad of Caiculation

After the lateral and vertical soil moduli, which define the inter-
action forces between soil and pile, are obtained, one needs to solve
Egs. (3.1) and (3.33) in order to evaluate the impedance functions at
the head of a single pile. The impedance functions of a pile can be de-
fined as the ftransfer functions describing the ratios between the dynamic
complex response displacements on the head of the pile and its surface
harmonic exciting force.

The steady-state solution to Eq. (3.1) can bé written as

y(z, t) = y(z (3.38)

where complex amplitude is

y(z) = y1(z) + iy,(2) . (3.39)
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Substituting Eq. (3.38) into Eq. (3.1) yields an ordinary differ-

ential equation

4
EpIp(I +icpm)ga%égl-+ y(2)(E, - mpmz) =0 (3.40)

In the same way, the steady-state solution to Eq. (3.33) can be

written as
Wiz, t) = w(z)e®t (3.41)
Substituting Eq. (3.41) into Eq. (3.33) yields
g2
-AE (1 +18,0) 2) 4 wiz) (e, - mu?) =0 . (3.42)

Solutions of Eqs. (3.40) and (3.42) Sre straightforward, if the
soil moduli are constant with respect to z. Their general solutions are
the combination of sine and cosine functions, in the case of Eq. (3.42),
plus hyperbolic sine and hyperbolic cosine functions, in the case of
Eq. (3.40). ' The dynamic stiffness of the pile can be determined as the
end force producing unit displacement of the pile head. This unit dis-
placement and the other end conditions represent the boundary conditions
- from which the integration constants can be established.

In this study, Egs. (3.40) and (3.42) are discretized by finite
element method. The masses of the pile are 1umped at n selected points
along the Tength of the pile. The interaction effects between scil medium
and pile are simulated by boundary springs. The spring constants are cal-
culated using Egs. (3.32), (3.35) and (3.48). A two-dimensional beam element
with three degrees of freedom at each end is used to formulate the stiff-

nesses of a pile segment between two neighboring control points. The
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total stiffness and mass matrices are then assembled and combined to-
gether to form the total dynamic stiffness matrix. Finally, a well
established static-condensation subroutine is used to obtain the dyramic

stiffness matrix at the head of a single pile.

3.5.2 Tip Conditions

End conditions theoretically constitute part of the boundary
“conditions in the determination of dynamic pile stiffnesses. At the
embedded end, the movement of the pile generates reactions from the soil
~lying below the level of the tip. It is necessary to determine the de-
gree of fixity at the tip in order to evaluate correctly the responses
of the pile.

For a pile subjected to lateral movement, a study by Novak(s)
shows that the pile stiffnesses and damping are almost the same for a
fixed tip and a pinned tip when the length of the pile is larger than
about twenty-five times its radius. The influence of the tip condition

(38, 39)

appears less than is the case with static loads This conclusion

is in general agreement with results of lateral load tests performed by

the Bureau of Reclamation(4o)

» which concludes that increase in length
does not improve lateral resistance if the pile is embedded enough to
prevent movement in the lower portion.

For a pile subjected to vertical movement, the reaction of the
soil at the tip has been described approximately by‘Novak(54) as the
reaction of an elastic half-space to the vertical motion of a surface-
supported rigid circular disk having the same radius as the pile. Using
this kind of approximation, the continuity of displacements across the
imaginary horizontal plane which is at the same level as the pile tip is

not guaranteed.

For the static case, the degree of fixity at the tip can be
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approximated by, again, using the Mindlin equation. The Mindlin equation,
which gives the vertical component of displacement produced by a single
concentrated force Q located at an arbitrary peint (0,0,c) within an iso-

tropic half-space and acting in the vertical direction is

UZ(X,y,Z) - 2(0,0,c) [3-4v + 8(1-v)? - (3-4v) . (é_g)z

LI B R 1

B3 {3.43)

+ £3-8v)(z+c)? - 2cz 6chz+c)2]
st
2

where

v
1k

L= Lk + 9%+ (e - 2)2)*

[(x+y)2 + (c +2)2]%

R2

Equation (3.43) is singular at the loading point, but this diffi-
culty can be avoided by assuming that the vertical reaction of the soil
below the level of the pile tip is uniformly distributed over the tip
area. After changing Eq. (3.43) from Cartesian coordinates into cylindri-
cal coordinate; and setting z and ¢ equal to the length of the pile, the
vertical displacement at the center of the pile tip caused by a uniformly
distributed reaction force is obtained by substituting the intensity of
the reaction force q for the concentrated lcad Q and integrating with

respect to r from 0 to the outside pile radius B. The result is

w(0,0,L) = 5@%%%3T 3(3-4v)B s+ [8(1~v)? - (3-4v)](8% + 4L2)%

2L2(3-4v) sL ; (3.44)

T [BZ+aL2): T [BZHALE) %
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where L is the 1éngth of the pile. The stiffness constant is then taken
as the ratio of the total reaction force over the tip area to the approxi-

mate deflection at the center of the pile tip as expressed by Eq. (3.44).

3.6 A Suggested Procadure in the Study of Pile Behavior

The soil moduli based on two-dimensional elasticity theory, ex-
pressed by Eqs. (3.26) and (3.34), involve calculation of Hankel functions.
(

To make the solutions accessible to practicing engineers, Novak 5) has trans-
formed these solutions into a dimensionless form and fitted the solutions

by polynomials for a few different values of Poisson's ratio. His results
for lateral soil modulus are presented as curves of parameter S versus

dimensionless frequency a, where S and a are defined as

E

.}
S= g (3.45)

. Bu
2 | (3.46)

The S versus a curve for a Poisson's ratioc of 0.25 is reproduced
in Figure 3.7. S consists of both real and imaginary parts. The real
part, which accounts for the stiffness and inertia effects of the soil
medium surrounding the pile, levels off at high frequency; while the im-
aginary part, which accounts for the radiation damping effect, is almost
a linear function of frequency. The biggest shortcoming in Figure 3.7
is that both the real and imaginary parts of S start from zero at zero
frequency. This means that there is no interaction between pile and soil
medium for'the static case if Baranov's approximation is employed. For
offshore structures, for which responses in the low frequency range are,
in general, more imporiant than responses in the high frequency range,

this shortcoming is-intolerable.
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Although approximate static soil moduli based on three-dimensional
elasticity theory, expressed by Egs. (3.32) and (3.35) are more suitable
for the study of the behavior of piles used in the foundation of offshore
structures, they alone do not account for the inertia and radiational

damping effects of the soil medium.

3.6.1 A Proposed Procedure

As pointed out in Subsection 3.2.2, the calculation of the soil
moduli using three-dimensional elasticity theory involved compliicated
infinite integrals for the dynamic case, but approximate solutions are
available for the static case. It is desirable therefore to extend the
solution for the static case to the dynamic case by making certain assump-
tions which will yield satisfactory solutions for engineering applications
while by-passing the difficult mathematics.

In general, the Tateral soil modulus can be written as
Eh(z,B,G,v,m) = Eh](z,B,G,v,m) + iEhz(z,B,va,m) (3.47)

in which z is the vertical distance from the surface of the soil, B is
the outside radius of the pile, G is the shear modulus of the soi],lv is
the ?oisson’s ratio of the soil, w is the angular frequency at which the
foundation is excited, and Ehl and Eh2 are the real and imaginary parts
of the lateral soil modulus, respectively.

It is proposed here to separate the dynamic soil modulus into two

factors so that

E (Z’B',G,\),w) = Eh(Z’B!G’\)QD)Fh(m) (3'48)

h

where Eh(z,B,G,v,O) js the static lateral soil modulus based on elasticity

theory and Fh(m) is a frequency-dependent shape function. Approximate
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‘value of the static lataral soil modulus Eh(z,B,G,v,O) can be obtained
by using the Mindlin equation. For pile foundation of offshore struc-
ture, it is reasonable to use a Poisson's ratio v of 0.5, because of the
presence 0f the sea water above. Thus, the static lateral soil modulus
can be calculated by using Eq. (3.32).

The frequency-depéﬁdent shape function Fh(m) can be constructed
using the numerical solution of the dynamic Lamb's problem. It's value
equals 1 when w equals 0. So, in essence, Eq. (3.48) is an asymptotic
solution. For the static case, the equation gives the same lateral
soil modulus as that obtained by the static three-dimensional approx-
imation method. The procedure for constructing Fh(m) will be stated
in detail in Subsection 3.6.3

After the static lateral soil modulus and the frequency depen-
dent shape function have been obtained, Eq. (3.48) can then be sub-
stituted into Egq. {3.40), which, in turn, can be discretized by
numerical method to obtain the dynamic stiffnesses of a single pile.
The method of discretization of Eq. (3.40) is already mentioned in
Subsection 3.5.1.

Like the Tateral soil modulus, the vertical soil modulus can be
separated into the product of the static vertical soil modulus and a
frequency-dependent function Fv(m), For Poisson's ratio equals 0.5,
the vertical soil modulus can be calculated by using Eq. (3.35). The
value of Fv(m) also equal 1, when w equals 0. Again, Fv(m) can be
constructed using the numerical solution of the dynamic Lamb's problem.
After the vertical soil modulus is obtained, it is substituted into
Eq. (3:42), which is then discretized to obtain the dynamic stiffness

of a single pile in the vertical direction .
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For a given pile in a given s6i1 medium, the lateral soil modulus
Eh is a function of two parameters: z and w. The Tateral sofl modulus
can be visualized as a complex-valued surface in the space with Eh’ z
and w as its rectangular coordinates. Eq. (3.48) separates the dynamic
Jateral soil modulus 1ntq the product of two functions of one para-
meters. It is similar to the method of separation of variables com-
monly employed in the solution of partial differential equation. All
it says is that the complex-valued surface can be constructed from two
orthogonal functions of a single variable.

Theoretically, approximate value of the dynamic lateral soil
modulus can be obtained by using the solution of the Lamb's problem
directly. The problem of a single harmonic force acting at an interior
point of a homogeneous half-space is called the Lamb's problem. How-
ever, since the closed-form solution of the Lamb's problem is currently
not available, one has to use numerical soiution. Eq. (3.48) is one
way of calculating the dynamic lateral soil modulus by numerical method.
It is desirable since the approximate static lateral soil modulus
obtainéd by using the Mindlin equation has a closed boom, as given by
Eq. (3.32). The Mindlin equation gives the solution of the static
case of the Lamb's problem. Therefore, the procedure for calculating
the dynamic lateral soil modulus mentioned above can be viewed as an
indirect use of the ngmerical solution of the Lamb's problem. For the
Lamb's problem, the only important boundary condition is the stress-
free boundary condition, which will be examined beoth intuitively and
numerically in the next two Subsections.

The basic assumption underlying the proposed procedure is that
the force-displacement relationship of the interaction effect between

the pole and the soil medium will assume the same shape with respect to
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to frequency regardless of which position of this effect is in con-

sideration.

3.6.2 Examination of the Procedure

Measurement of the applicability of the proposed procedure is
tantamount to measurement of the importance of the stree-free surface
boundary condition upon the response of a uniform elastic half-space to
the application of a harmonic concentrated force at a certain depth H
below the surface.

| A procedure, which separates the force~disp1acement relationship
at the point where the external force is applied into the product of a
frequency dependent function and a function of other material and geo-
metric properties, is unsuitable for finite systems such as a beam or a
string of finite length and having any prescribed bouhdary conditions,
For a finite system, rescnance at discrete points along the frequency
axis is possible. If a finite system is forced to vibrate near two
different resonant frequencies, it will, in general, assume two entirely
different vibration shapes. If an external harmonic force happens to be
placed néar one of the nodes of a vibration mode, the response of the
system is very sensitive to the exact location of the force applied
around the'natural vibration frequency of that mode. It is therefore
impossible to separate the force-displacement relationship at the point
where the foréa is applied into the proposed form.” But for an infinite
system where resonance is not possible, such as an elastic half-space or
elastic full-space, the procedure proposed in-much better than for the
finite system. |

From Mindiin's solution of the problem of a static force acting

inside an elastic half-space, it can be shown that except when the force
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is applied near the free surface, the relationship between the force and
the average displacement along a horizontal circle with the loading point
as its center is not sensitive to change in the location of the applied
force. In other words, only in the immediate vicinity of the loading
point does the displacement have a significant magnitude and the stress-
free boundary conditicn of the elastic half-space have Tittle effect.
The problem of a single force acting at an interior point of a
homogeneous half-space is usually called Lamb's problem. we‘consider
the dynamic version of Lamb's problem in the time domain instead of in
the frequency domain, and designate the shortest time for Waves t0 reach
the surface from the loading point inside the elastic half-space as t]’
With a finite wave speed there always exists a finite boundary surface,
at any finite time t < t. which is yet uninfluenced by the Toading
initiated at t = 0. In other words, the response of the elastic half-
space is exactly like an infinite medium with the same material pro-
perties during this time interval. For t > t], only one ray, which
impinges the stress-free boundary at right angles, wiil reflect directly
back to the buried wave source. All other rays, no matter if they are
incident rotational waves or incident dilatational waves, will reflect
and travel away from the surface point directly above the loaded point

after impinging on the stress-free surface(42).

In actual application
to the pile problem, the region where Eq. (3.48) is violated is within
cne to two pile diameters from the surface of soil medium. Because of
the presence of the sea water, the soil properties in that region can
be expected to differ significantly from that of the rest of the soil

medium. So the influence of the stress-free boundary condition is,

intuitively, not significant.
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3.6.3 Frequency-Dependent Shape Functions

The real measure of the applicability of the proposed procedure
is to compare it with results obtained by three-dimensional elasticity
theory. Numerical solutions of the dynamic Lamb's problem have been
obtained by Kida et al.(43) The homogeneous elastic half-space is first
divided into two regions: One region is an elastic layer with the
stress-free surface of the elastic half-space as its~upper boundary and
a plane which contains the point where the external harmonic force is
applied and is parallel to the half-space surface as its lower boundary;
and the other a region which encloses the rest of the elastic half-
spacé. Displécement fields like those expressed by Eq. (3.28) are pre-
scribed for both regions. The unknown constants are then evaluated by
matching displacements and stresses across the interface of the two
elastic regions.

In cylindrical coordinates (r,8,z), the horizontal displacement
component which is produced by a single concentrated, horizontal,
fwt

harmonic force Pe acting at any arbitrary point (0,0,zf) within an

isotropic half-space can be expressed as

_ Pweiwt _ )

in which fll’ f]2, f21, f22 are frequency-dependent displacement functions.
For-most of the cases, the displacement function‘fzz.is negligible when
compared with the values of the other three displacement functions.

A11 the high order terms with respect to 6 have been neglected in Eg.
{3.49). The displacement functions aré more easily expressed in terms

of dimensionless parameters ¢, Ce and a, which are defined as
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c = V— (3.50)
S .
wZ
- f
P . (3.51)
]
. owr
R | (3.52)

Figures 3.8, 3.9 and 3,10 show f11, f12, and f21 for cases where
C=Ce V= 0.5 and a equals 0.1, 0.2, 0.4, respectively. It is
apparent that all three displacement functions converge horizontally
as c exceeds 1.0. This indicates strongly that the stress-free boundary
condition indeed does not play an important role in the response of the
isotropic half-space when the external force is applied away from that
surface. Hence, the proposed procedure appears to be feasible for
engineering applications.

When the value of a is small and the value of ¢ is reasonably
large, the horizontal displacement component in Eg. (3.49) for cases
where c = Ce ;an be adequately approximated by

Peimt
u {r, 8, ¢ = cf) = e [(6 + 2¢0s$20) - 15a] . (3.53)

To actually apply the procedure, it is necessary to have a
reasonably accurate frequency-dependent shape functicn Fh(m). This
can be achieved by first graphing the comp]ei displacement f]1 + sz]
against a, with ¢ = Ce kept large, 10 say. The resulting complex
function fi1 7 ifz] is then normalized such that its value at a = 0 is
~one. The inverse function of the normalized complex function f]1 + ifz]

versus a is a good shape function. Figuré 3.11 presents the shape
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function obtained in this way for Poisson's ratio of 0.5 and for values
of a in the range from 0 to 2.0.

This procedure can also be used to evaluate the vertical responses
of a single pile. For this, one needs a frequency-dependent function
Fv(m) which is the counterpart of Fh(w) in the vertical direction. Fv(w)
can be obtained in exactly the same way as Fh(m). In cylindrical coor-
dinates, the vertical displacement component produced by a single con-
centrated vertical harmonic force Qemt acting at an arbitrary point

(0,0,zf) within an isotropic half-space can be expressed as

iwt |
W (r,8,2) = 9%’-5,-— (F, +iF,) . (3.54)
S

Figure 3.12 presents curves of F] and F2 for three different
cases where ¢ = Ce and Poisson's ratio v = 0.5. In the Tow frequency

range, the vertical displacement can be adequately approximated by

.

Twt

W (r, ¢ =cg) = %&j;—r (4 - i5a) . (3.55)

Figure 3.11 presents the vertical shape function for the case
- where Poisson's ratio equals 0.5 and a ranges from 0 to 1.5.

The degree of approximation involved in deriving the soil modulus
by the proposed'procédure is less than that by the degenerated two-
dimensional theory of elasticity. In the degenerated two-dimensional
approximation, the important parameter z is eliminated in the early
stage of developement as mentioned in Section 3.2. The stress-free
boundary condition is completely ignored. Therefore, the soil modulus
so obtained {s independent of parameter z. Whereas the soil modulus

obtained by the proposed procedure will vary with parameter z the same
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way the static soil modulus varies. The stiffnesses of the pile founda-
tion for an example offshore structure obtained by the two different
approximation methods are given in Figures 4.3 to 4.6. Comparisons of

the results of the two methods are included in Chapter 4.

3.7 Dyhamic Stiffnesses of a Pile Group

3.7.1 Pile Group Without Pile-Cap

Both theory and tests have shown that the total bearing value of
a group of friction piles, particularly in clay, may be less than the
product of the bearing value of an individual pile multiplied by the

number of piles in the group(44’45346,47).

The reduction in value per
pile depends on the size and shape of the pile group and on the size,
shape, spacing, and length of the piies. No reduction due to grouping
occurs when the piles are end-bearing piles; however, for groups which
partake of both actions, only that portion taken in friction is reduced.

For offshore structures, several "efficient formulae" are in use
for assigning reductions to the carrying capacity of piles in a group.
Some of these were established before the actions as explained by soil
mechanics were understood and have been incorporated in building codes.
This fact, together with the desire to keep footings as small as possible
and the wish not to increase footing sizes for one type of pile over
those required for another, have resulted in the general use of the
gspecified minimum spacings as the maximums.

For offshore structures, the factors considered in designing pile
foundations are generally different from those considered when designing
pile foundations for onshore structures. In general, there is no need

to limit either the size of the footing or the size of the piles. Piles

used in the foundations of offshore structures are generally quite_]ong
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and uniformly spaced. It is not uncommon to find these piles exceeding
150 feet in Tength and spaced 5 diameters apart.

To calculate the total dynamic stiffness matrix of the pile group
where there is no reduction of carrying capacity due to grouping, it is
advantageous to choose the centroid of the pile group in the horizontal
plane as the reference point. Then the dynamic stiffness coefficients
are defined as forces that must act at the centroid to produce a sole
unit displacement at the reference point. From this definition, the

dynamic stiffness coefficients of the pile group are

. e
Kpn = % Khin
_ e
Kev = Z Koy
i
- e e 2
Kpp = ; et ; Kov %5
(= T (3.56)
hr 3 hr
in which kﬁh, ksv’ kir are the dynamic stiffness coefficients defined at

the head of an element pile for the horizontal, vertical and rocking
motions, respectively; kgr is the coupling term between horizontal and
rocking motions; x. is the horizontal distance parallel to the plane of

i
action from the center of the cross-section of ith

element pile to the
centroid of the pile group; khh’ kvv’ krr are the dynamic stiffness
coefficients of the pile group for the horizontal, vertical and rocking

motions. The summations are to be taken over all piles in the group..

3.7.2 Group Effect of Laterally Loaded Piles

When piles within a group are spaced less than five diameters '

apart, tike those in most onshore pile foundations, interaction effects
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between individual piles become prominent and can no longer be neglected.
Because of these interaction effects between piles within a group, the
actual dynamic stiffness coefficients at the reference point of the pile
group will be less than those calculated by Eq. (3.56). Each dynamic
stiffness coefficient of a pile group as expressed by Eq. (3.56) has to
be multiplied by a reduction factor in order to obtain the actual dynamic
stiffness coefficient. The reduction factors are, in general, not unique.
For laterally loaded pile groups, the reduction factor, which is
normally called the group efficiency, can be obtained by using Eq. (3.53).
Equation (3.53) gives, approximately, the horizontal component of dis-
placement which is parallel and is produced by a single, concentrated,
horizontal, harmonic force applied at a certain depth below the surface
of a uniform, elastic half-space. When the frequency of the applied
concentrated force is small, i.e., when the applied force is close to
the static force, the imaginary part of Eq. (3.53) can be neglected,
yielding

u {r,8, ¢ = cf) = —pra— (6 + 2cos28) . {3.57)

The above egquation can also be obtained independently from the
Mindlin equation (Eq. (3.31)), thereby giving a cross check between the
numerical solution and the clesed-form static solution. Equation (3.57)
can be rearranged as

P(O,O,cf) 2

. 2
ux(r,e, c - cf) = ——§§;E;—-(8cos 8 + 4sin"s) . (3.58)

26 + 4sin26) expresses the trace of an ellipse

The function (8cos
whose major axis is twice as long as its minor axis. Therefore, the
‘disp1acement field as expressed by Egq. (3.58) depends upon the direction

as well as the distance from the lcading position.
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Consider now the determination of the group efficiency for a
laterally loaded pile group consisting of M individual piles. By apply-
ing a single, concentrated horizontal force at a certain depth of one of
the intended pile axes within the pile group and using Eq. (3,58), oné
can obtain the horizontal displacements of all the other unloaded pile
axes at the same level as the applied force. The displacements are
- denoted by Upg s where r refers to the pile axis being loaded,
S=1,2,..... M, and r #s. The horizontal displacement at the loaded
| pile axis, Uppes can be approximated by taking the weighted average of
the displacement around the outside rédius of the pile. By moving the

concentrated horizontal load to each of the M intended pile axes within
"the pile group, one can obtain M x M displacement functions. The group
efficiency for the laterally loaded pile group can now be approximated

by

z ff (3.59)
u
r=] s=1

3.7.3 Pile Group With Pile-Cap

To calculate the total dynamic stiffness matrix of a pile group
with a pile-cap, the stiffness and damping contributions from the pile-
cap should be considered. After they have been determined, the remain-
ing procedure dces not differ from that required for the case of a pile
group without a pile cap. One simple method is to take the dynamic
stiffnesses of the pile-cap as that for a rigid, massless plate resting
on an elastic half-space. One major assumption in calculating the
impedance functions of a rigid,lmass1ess plate resting on an elastic

half-space has been that the rigid foundation is welded to the supporting
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~ground, that there is no slip between the foundation and the soil
medium. Whether the dynamic stiffnesses of a pile group with a pile-
cap will equal the stiffnesses of the pile group plus the stiffnesses

of the pile-cap on a homogeneous half space is also guestionable. It is
not attempted here fo elaborate on the justification of these assumptions.
The dynamic stiffnesses of the pile-cap are completely neglected in

this investigation.
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4. EXAMPLE PROBLEM SOLUTION

To study the interaction effects between an offshore structure
and its pile foundation during strong motion earthquakes, a problem is
analyzed in this chapter as an example. The»modeling method described
in Chapter 3 is used to calculate the dynamic stiffness matrices of the
pile foundations. These foundation stiffnesses are obtained for two
different soil conditions. The dynamic responses of the complete struc-
ture-foundation system subjected to a recorded strong motion earthquake
are obtained. The effects of interaction are examined by comparing
these responses with responses obtained for the same structure supported

on rigid foundations.

4.1 The Mathematical Mode]l

4,1.1 Structural System

The example offshore structure, shown in Figure 4.1, is a steel
structure consisting of four main vertical legs with cross-bracing members
connected to these legs at 7 different levels. The height from sea floor
to the upmost bracing level is 551.5 feet. The width from centerline of
the main legs at the upmost bracing level is 185 feet. The width at the
lowest bracing level is 250 feet. The still water depth is 460 feet.

A1l members in the main structural system are tubular; member sizes are
given in Table 4.1. The modulus of elasticity of the steel is 4.32 x
109 psf.

The N-S component of the ground acceleration recorded at the 1940

E1 Centro, California, Earthquaka is used as the prescribed excitation.

The orientation of this earthquake excitation is assumed along the X-axis
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and coincides with an axis of structural plan symmetry. Thus, the problem
can be treated as two-dimensional in the X-Y plane.

A mathematical model is selected to simulate the most relevant
features of the response of the structure when subjected to strong motion
earthqdakes. The formulation of equations of motion of the structure is
discussed in Sectfon 2.1, The idealized structure, shown in Figure 4.2,
has 16 nodal points. Each nodal point, in the two dimensional case, has
three degrees o~ freedom--two translational and rotational. Altogether,
there are 48 degrees of freedom in the structure model. Six of them,
associated with two Towest nodal points, are contact degrees of freedom.
The vertical members are allowed to have both axial deformation and
fiexural‘deformation. The level bracing assemblies are idealized as
comparatively rigid diagrams. Although further simplification;of the
structure model that will reduce the total number of degrees of freedom
is possible, it is not made in order to test the general features of
the computer program. The total structural stiffness matrix is given
in Appendix A, A1l the mass of the main vertical legs and cross-bracing
members are lumped at the nodal points. The nodal masses are augmented

- by the so-called added mass of the surrounding water as indicated by Eq.
(2.15) and the mass of the deck structure. The inertia coefficient used
in the calculation of the vertical masses is taken as 2.0. The unit
weight of the water is assumed equal to 62.4 pcf. The weight of the
deck structure is 55,000 kips. The total diagonal mass matrix is also
given in Appendix A.

Since the outside diameter of the main vertical legs of the struc-
ture, 30 feet, is large in comparison with the wave height normally
expected for earthquake excitations, the structure can be classified as

(60)

a Targe volume structure It is, therefore, reasonable fo neglect
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the hydrodynamic damping effects. The structural damping matrix is
calculated assuming Rayleigh damping. Because the complete structure-
foundation system does not posses normal modes in the classical sense,

as discussed in Section 2.3, the damping matrix is calculated using the
properties of the associated undamped fixed base structure. The Rayleigh
damping mass and stiffness coefficients are assigned so that the damping
ratios of the first two modes are equal to 0.05. The damping matrix

can also be calculated using Egqs. (2.43), (2.44) and (2.45).

4.1.2 Pile Foundation

The foundations of the example offshore structure are made of
steel pipe piles. Each foundation contains 8 piles. The piles are
clustered around the perimeter of each main vertical leg of the struc-
ture. After having been driven, they are grouted into the pile sleeves.
The piles are so designed that their friction holding capacity within
the sub-strata is sufficient to support the weight of the deck and their
cross-sectional resistance counteracts the horizontal forces to which
the upper parts of the structure are subjected.

The outside diameter of the piles used is 72 inches and the wall
thickness is 2.5 inches. The depth of penetration of the piles is 200 feet.

Using the 1inear theory of a homogeneocus, isotropic, elastic half-
space, the stiffness of the pile foundations is calculated for two differ-
ent soil conditions. A Poisson's ratio of 0.5 is assumed for both soils.
The characteristic shear wave velocities of the foundation soils are
760 ft./sec. and 1140 ft./séc., corresponding respectively to soil shear
moduli of 2 x 106 psf and 4.5 x 106 psf. From now on, the pile foundation
embedded in soil with characteristic shear wave velocity equal to 76b

ft./sec. is referred to as Foundation A and the one embedded in soil with
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characteristic shear wave velocity equal to 1140 ft./sec. is referred to
as Foundatien B.

The vertical stiffness at zero frequency of a single pile in
Foundation A is found to be 2.34 x 105 kips/ft. Multiplying this stiff-
ness by the number of piles in the pile foundation and the estimated
pile-group efficiency, a static vertical stiffness equal to 1.28 x 106
kips/ft. is obtained for Foundation A. The dynamic vertical stiffness
of Foundation A versus frequency in the range of O to 10 cps is shown
in Figure 4.3 together with the dynamic vertical stiffness of Foundation
A based on two-dimensional elasticity theory.

The static stiffness of a single pile in Foundation A is estimated

to be 7.6 X 104 kips/ft. and the static rotational stiffness is found

to be 9.10 x 106 kip-ft./rad. The frequency-dependént lateral stiff-
nesses, rotational stiffness and the coupling stiffness of Foundation A
based on both two- and three-dimensional elasticity theory are given in

Figures 4.4, 4.5 and 4.6. Their values at zero freguency are 5.56 X 305

kips/ft., 2.57 x 10° kip-ft./rad. and 3.14 x 10°

kips/rad., respectively.
By comparing the curves in Figure 4.3, one can clearly see that
there is considerable difference between the results based on the two
different theories. The stiffness based on the three-dihensional theory
of elasticity has an almost constant real part and a linear imaginary
part in the frequency range of practical interest. The imaginary part
is small in comparison with the real part. The 1ﬁag1nary part of the
stiffness based on two-dimensional elasticity theory is also linear in
shape but its value is much higher than that based on three-dimensional
theory. Around 3 cps, the two real parts are equal; below that, the real

part based on two-dimensional theory is smaller; above that, larger. The

curves in Figures 4.4 through 4.6 also show a similar trend.
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The vertical stiffness at zero frequency of Foundation B is
estimated to be 1.02 x 106-kips/ft. and the static rotational stiffness
is found to be 3.62 x 10° kip-ft./rad.

The real part of any stiffness function of a single pile should
start from its static value at zero frequency. In the Tow frequency
range, it should be a decreasing function of frequency due to the inertia
effect of the soil medipm. From Figures 4.3 to 4.8, one can clearly see
that the stiffnesses based on the degenerated two-dimensional theory of
elasticity fail to observe that two rules. The reason is, as already
mentioned in Section 3.6, there is no interaction forces between pile
and soil medium at zero frequency in the two-dimensional approximation.
At 1 cps, which is close to the resscnance frequency of the first mode
of the example structure, the real part of the vertical stiffness
obtained by two-dimensional approximation is only about 70 percent of
its static value. So, it is better to use the stiffnesses obtained by

the three-dimensional theory of elasticity.

4.2 Results of Analysis

The numerical procedure described in Chapter 2 is used to carry
out the dynamic elastic analysis of the model offshore structure supported
on both Foundation A and foundation B. The seismic responses of the
model structure supported on rigid foundations are also obtained. The
results of all dynamic analysis are based on the combined effects of the
first 3 modes of vibration of the fixed-base structure and the motions

of the 6 contact degrees of freedom.

4.2.1 Mode Shapes and Natural Periods of Vibration

Mode shapes and natural periods of vibration of all modes of

vibration for the associated fixed-base structure are obtained. The
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first three mode shapes are shown in Figure 4.7 and the first ten

natural periods of vibration are given in Table 4.2.

4.2.2 Lateral Deflections and Accelerations

Figure 4.8 shows the lateral deflections at the upmost cross-
bracing level caused by the prescribed earthquake excitation of the
structure on Foundation A. Figure 4.9 shows the lateral deflection
response at the same level of the structure on Foundation B. Figure 4,10
shows the lateral déf]ection response of the structure on a rigid
foundation.

Under dynamic conditions, the lateral level displacements change
continuously and their maximum values usually occur at different times.
To summarize the maximum dynamic displacement response of the structure,
the maximum dynamic displacements for all the cross-bracing levels are
jointed together to obtain an envelope of maximum lateral displacements.
The envelopes for each of the three different foundations are presented
in Figure 4.11.

Comparisons of the curves in Figures 4.8 through 4.11 indicate
that the dynamic responses are significantly different for models with
and without foundation flexibility. The structure-soil-pile interaction
effects are quite prominent. The maximum lateral displacement at the
upmost cross-bracing Tevel of the rigid-base structure model is 0.86
feet which fs about 3.2 times that of the model supported on Foundatien
A. Toe maximum lateral deflections of the structure model supported on
Foundation B are, in general, about 20 percent higher than the maximum
deflections of the model §upported on Foundation A.

To examine further the interaction effects between the structure
and its foundation, the maximum lateral acceleration envelopes are also

plotted and presented in Figure 4.12. The lateral acceleration time
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histories at the lowest cross-bracing level, which is only 10 feet above
the sea floor, are given for the three foundations in Figures 4.13, 4.14
and 4.15. The maximum lateral acceleration envelope of the rigid-base
model is quite similar to the mode shape of vibration of its first
normal mode, whereas the envelopes of the two models with foundation
flexibility are quite different. The large contributions of the second
and the third modes to the lateral accelerations of the models with
foundation flexibility are quite apparent when subjected to the pre-

scribed earthquake excitation.

4.2.3 Maximum Leg Axial Forces

Because of the large distance between the two main vertical legs,
which i1s 250 feet wide at the lowest cross-bracing level, the maximum
axial forces developed in the legs at a certain elevation form a couple
which is considerably larger than the leg bending moments develbped at
the same elevation. The couples formed by the maximum axial forces in
the main legs are almost equal to the maximum dynamic overturning moments.
The envelopes of the maximum axial forces in the main legs of the three
different structure-foundation models are shown in Figure 4.16. These
envelopes show that the maximum dynamic overturning moments of the rigid-
base model are considerably larger than those of models with foundation
flexibility. The maximum dynamic overturning moments developed in the
structure model supported on Foundation B are about 40 percent higher
than those developed in the model supported oﬁ Foundation A below cross-

bracing level 5.

4,3 Discussion of the Results of the Example Problem

A. The real parts of the stiffnesses of the pile foundation cal-

culated by the two-dimensional theory of elasticity are smaller than those
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calculated by the method described in Chapter 3, around the first natural
frequency of‘vibration of the rigid-base structure, while the imaginary
parts are considerably larger. The discrepancies between the stiff-
nesses based on the two different methods will be larger if the diameter
of the piles used in the foundation is reduced or the characteristic
shear wave velocity is increased.

B. The stiffnesses of the pile foundation calculated by the three-
dimensional theory of elasticity will have a constant real and a Tinear
imaginary part in the frequency range of practical interest. The imagin-
ary parts are small in comparison with their associated real parts. This
indicates that for pile foundaticns consisting of pipe piles of large
diameter, 1ike those used in the example structure, the radiation damp-
ing in the foundation system is small. For pile foundations made of
piles of small diameter, however, the radiation damping may be Targer.

C. 'Comparisons of the dynamic responses of the models with and
without foundation f]exibility indicate that the effects of structure-
foundation interaction afe quite prominent for the.exampfe.structure.
Interaction effects are important because the ratio of structure stiff-
ness to foundation stiffness is large for the particular offshore struc-
ture. The contributions of the second and third modes of vibration are
more apparent when the foundation flexibility is included in the model.
The reason for causing the difference in the responses of the three
different strucfure-fcundation models would be more clear if enough
members of the compiex frequency response functions are output and
plotted., Unfortunately, due to the negligance of the author, this has
not been done. From the lateral displacement responses at the first
cross-bracing level, as shown in Figures 4.8 to 4.10, the first periods

of vibration of the three models can be estimated. The estimated first
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periods of vibration do not differ much. So¢, one possible explanation
is that the inclusion of the radiation damping in the foundation model
will increase the damping ratio of the total structure-foundation

system.

D. .A reduction in the foundation stiffness increases the
structure-foundation interaction effects. Correct estimation of the
foundation stiffness is quite important if the dynamic responses of the
structure are to be correctly predicted. This, in turn, depends upon a
correct estimation of the properties of the soil strata in which the

piles are embedded.
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Table 4,1 Details of Tower Members
Member Diameter Thickness
Main Vertical
Level 1 - 2 30'0" 0.0. 8"
2 -3 30'0" 0.0. "
3-14 30'0" 0.D. g"
4 - 5 30'0" 0.D. 10"
5-6 30'0" Q.0. 1
6 - 7 30'0" 0.0. i2n
Horizontals
Up to level 5 72" 0.D. 2"
Below level 5 ; 72" 0.D. 3"
Diagonals
Up to level 5 72" 0.D. 2"
Below level 5 72" 0.0, 3
Foundation
Piles 72* 0.0. 25"
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Table 4.2 Natural Periods of Vibration

of the Fixed-Base Structure

Mode Period of Vibration (sec)
1 0.988
‘2 0.272
3 0.138
4 0.124
5 0.102
6 0.087
7 0.0f6
0.046
9 0.043
10 0.029
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5. CONCLUSIONS

This study has led to the following principal conclusions:

(1) The procedure suggested in Chapter 3 for computing the dynamic
stiffnesses of pile foundations by-passes the expensive and difficult
solution of integral equations involved in a more rigorous approach, yet
gives results within engineering accuracy. It can be used to study the
dynamic response of piles embedded in a soil medium where the energy

attenuation due to wave radiation is an important factor.

(2) In this study, the soil medium is modeled as an isotropic,
elastic half-space; therefore, the mechanism of dissipative attenuation
in the ground is not taken into consideration. To account for this, the
soil medium can be assumed to be an isotropic viscoelastic half-space
f which has the same specific damping capacity as the real soil. By simply
:’replacing the ;hear modulus (a real value) of the soil by a complex shear
modulus, the stiffnesses of piles embedded in an isotropic viscoelastic

haif-space can be cbtained using the same suggested procedure.

(3) In the low frequency range which is of practical interest in
earthquake engineering, the pile foundation stiffnesses calculated have
a constant real part and a linear imaginary part. The imaginary parts
are small in comparison with their associated real parts. This indicates
that for pile foundations consisting of pipe piles of large diameter,
1ike those used in the example structure in Chapter 4, the radiation damp-
ing in the foundation system is small and for most purposes negligible,

The earthquake responses of an offshore structure can be evaluated in
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the time domain if only the freguency independent real parts of the
stiffnesses of its pile foundations are used. Such practical treatment
will result in considerable saving of computer time and should be used
in the preliminary analysis of any structural system supported on pile

foundations.

(4) Study of the dynamic response characteristics of the example
pile supported offshore structure indicates that the effects of structure-
foundation interaction are quite prominent. The contributions of the
second mode and the third mode of vibration also become more apparent if
the foundation flexibility is included in the mathematical model. The
interaction effects between pile foundation and structure are prominent
for the particular offshore structure because its ratio of structure to
foundation stiffnesses is large. The interaction effects will increase
if the foundation stiffness is reduced. Therefore, correct estimation of
the foundation stiffness is very important if the dynamic responses of

the structure are to be carrectly predicted.

(5) Since the reasonableness of the results of the analytical
solutions of pile foundations depends significantly upon the ability to
select the soil parameters, present efforts spent in determining the soil
parameters should be continued. More field observations of the dynamic
responses of piles and pile supported buildings during strong motion earth-
quakes should also be conducted. Furthermore, and analytical model of
pile foundations should be refined continuously to keep up with new find-

ings through field investigations.
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APPENDIX A
STRUCTURAL STIFFNESS AND MASS MATRICES OF EXAMPLE PROBLEM

1. Structural Stiffness Matrix

The structural stiffness matrix [E] may be written in partitioned
form according to the definition of Eq. (2.26). Since the stiffness
matrix is symmetric, only [ESS], [Esb] and [Ebb] need to be generated
and stored. The submatrix [ESS] can always be arranged as a symmetric
band matrix. In many cases, the maximum semi-bandwidth is much smaller
than its order. In this case, a special band algorithm which performs
Gaussian elimination can be used to advantage. Let matrix [d] be the
banded form of submatrix [ESS].

For the example problem, [Ebb] is

BASE STIFFNESS MATRIX

JA9TE+13 L292E+12 - 246E+14
.292E+12  (568E+11  -,148E+13
-.246E+14 -, 748F+13  .165E+15

OO0
DO O
OO O

. 4

0 0. 0. A9TE+13 -.202E412 - pAGETA
0. 0. 0. -.292E+12  .568E+11  .148E+13
0. 0. 0. - .246E+14  148E+13  .165E+15

and [d] equals
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COUPLING STIFFNESS MATRIX
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It should be noted that the large numbers which appear in
the above matrices are contributed by the comparatively rigid

diaphragms. The units of the stiffness matrices are 1b/ft. and 1b-ft./rad,
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2. Mass Matrix

Since the example offshore structure is modeled as a lumped mass

system, all the off-diagonal elements in the total mass matrix [m] are

zero. The diagonal elements of the total mass matrix can be convenient-

1y stored as one-dimensiomal array, giving

DIAGONAL MASS MATRIX

LB74E+06
.642E+05
.262E+06
.277E+06
J77E+06
,709E+04

Tne unit of the mass matrix is 1b-sec?/ft.

.202E+05
.642E+05
121E+06
. 135E+06
.906E+05
.709E+04

OO O0O

*

.874E+06
L221E+06
.262E+06
.296E+06
L 177E+06

.202E+05
.104E+06
JA21E+06
152E+06
.906E+06

DO O O

LBAZE+D5
.221E+06
. 277E+06
.296E+06
.709E+04

.642E+05
. 104E+06
. 135E+06
L162E+06
.709E+04

ODOO OO
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