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ABSTRACT

An experimental study comparing the results of measurements of

forces on a submerged tank model due to earthquake excitation is pre

sented. The experimental results are compared with analytical solu

tions for the case where the model is submerged in water of depth equal

to 2.5 times the tank height and for the case where the depth exactly

equals the height.

Details are presented for the design of a 1 to 100 scale model

of a circular cylindrical structure which is 34 meters in height with a

mass of approximately 250,000 tons. The model includes a foundation

system which simulates elastic half-space soil stiffness in three degrees

of freedom.

The experimental results are presented in the form of inertia

coefficients measured in harmonic motion at varying amplitudes and over

a frequency range of 0.3 Hz to 2 Hz in prototype scale. Coefficients

are presented for horizontal, vertical, rotational, and horizontal

rotational coupling. The relationship between these coefficients and

the physics of the fluid-structure interaction are discussed in detail.

The study leads to the following conclusions concerning earth

quake induced forces on large submerged, gravity-type structures:

a. Available analytical techniques provide good estimates of

hydrodynamic inertia force coefficients for submerged structures of simple

form.

b. A correct estimate of foundation dampening is likely to be the

most critical point in calculating the hydrodynamic forces on a submerged

gravity structure.
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Foundation stiffness only influences the hydrodynamic force

by changing the resonant frequency.

d. Frequency dependence in the inert~a coefficients is not likely

to be an important consideration.

e. Coupling in the hydrodynamic inertia forces between the hori

zontal and rotational modes is not likely to be an important consideration

in structural design.

f. Hydrodynamic dampening will not be an important factor for

deeply submerged structures but may be significant in near surface and

surface-piercing structures.
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1. INTRODUCTION

The progress of offshore development on the North American west

coast, in Alaska and around the Pacific Ocean in general in recent

years has made it increasingly likely that la4ge volume, gravity-type

structures will be desirable in the near future in some applications

in areas of high seismic activity. Since this type structure has had

little or no prior history in this environment, it was considered

desirable to conduct a series of experiments in as realistic conditions

as possible in a laboratory to confirm or deny currently used analytic

procedures for calculating earthquake forces. The overall purpose of

this study is to reduce the uncertainty associated with the fluid~

structure interaction aspect of these calculations by answering some of

the questions concerning the inertia coefficients. 1*

1.1 Review of Analytical Procedures

The details of the analytical procedures will not be discussed

in this paper, but it is appropriate to give some consideration to the

techniques which are generally used in engineering applications and to

the types of problems which they solve. These procedures can be lumped

broadly into three categories.

a. closed form (or continuum) solutions,

b. diffraction theory based on the use of Green's functions,

c. variational methods (finite element).

Diffraction and variation methods can be considered as closed

form solutions under some circumstances 2
, but in application they

* Superscripts refer to the corresponding items under 'References'.
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involve discretization of the system and are essentially numerical pro-

cedures. Wehausen and Laitone 3 provide a detailed discussion of the

basis for all of these procedures, examples of the application of

diffraction theory are shown by Garrison and Chow4 and by Hogben and

d ' 5Stan lng, Bai 6 and Zienkiewicz and Newton7 show examples of fluid

problem solutions applying the variational principle to finite elements.

Liaw and Chopra8 also present a variational method solution for the

fluid problem along with a closed-form solution for comparison.

Petrauskas 9 presents a similar closed-form solution.

The assumptions that are generally common to these methods are:

a. small amplitude displacements such that linear boundary

conditions may be assumed,

b. invisid fluid (irrotational flow),

c. incompressible fluid (except as shown in Refs. 7 and 8.

However, the effects of compressibility can be shown to be negligible

for the type of structure and motion presently being considered).

Solutions to the fluid problem under these circumstances can be

considered as "linear potential flow" solutions, and it can be shown by

comparison of the results under similar conditions that the solutions

by any of these methods are comparable, as one would hope. All methods

are not, however, available under all circumstances with closed-form

solutions being limited to simple geometries and diffraction and closed-

form solutions being limited to harmonic motions, linear superposition

not withstanding.

It has been shown that all of these methods yield good results

under conditions in waves which satisfy their assumptions (see Refs.

6, 9 and 10, for examples). The experiments presented in this report
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have attempted to test these assumptions under realistic earthquake

conditions. Diffraction calculations were performed by Garrison

specifically for comparison with these experiments in the fully sub

merged condition and a closed-form solution after Liaw was performed

for the condition where the structure penetrated the surface.

1.2 Objectives and Scope of the Investigation

The study has concerned itself with examining the following

factors:

a. The general degree to which analytic procedures can accurate

ly predict hydrodynamic earthquake forces.

b. The existence of significant frequency dependence over the

range of frequencies of interest for earthquakes.

c. The influence of coupling between modes within the hydro

dynamic inertia forces.

d. The sensitivity of the hydrodynamic forces to changes in the

various coefficients.

It was desirable to stay as general and simple as possible in

selecting a prototype system to model so that the results would be inter

pretable and broadly applicable--while retaining enough realism to make

the effort worthwhile. The following system was selected to satisfy

these ends:

a. A circular cylindrical tank, or gravity structure caisson with

out a superstructure, of approximately 250,000 tons with a height approx

imately equal to its radius.

b. An elastic but firm foundation.

c. A water depth of approximately 100 meters.

The idealized prototype system is shown in Fig. 1.1.
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(b) MODEL IDEALIZATION

FIGURE 1.1: PROTOTYPE SYSTEM AND MODEL IDEALIZATION FOR THE SUBMERGED
TANK EXPERIMENT
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2. DYNAMICS OF OFFSHORE GRAVITY STRUCTURES IN EARTHQUAKES

2.1 The Equation of Motion

It is appropriate to consider briefly the general equation of

motion for a structure in the marine environment, in this case general-

ly following the matrix notation of Penzien: 11

P [K -lJ [VJ {li -r
t

}m w

+ p [VJ {li }
w

+ P [K J [AJ {u -r }w w t

(u -i:)}. .... (2.1)
w t

In the general case for an offshore gravity structure, we would

be concerned about flexibility in the platform and legs, but we can

usually treat the base as being rigid. Since we are only considering

the base response in this study we will only concern ourselves with the

rigid body response modes. Therefore, we can define:

[AJ

[CJ

[K]

[KdJ

[K -lJ
m

[K ]
w

[MJ

structure projected area matrix,

foundation damping matrix,

foundation stiffness matrix,

hydrodynamic drag coefficient matrix,

[CmJ = hydrodynamic inertia coefficient matrix,

wave making coefficient matrix,

structure mass matrix,

displacement vector, relative to the moving foundation,

total displacement = {r} + {u },
g



{u }
g

{u }
w

6

foundation displacement vector, relative to a fixed

reference,

instantaneous water particle displacement relative to

a fixed reference,

[v] volume matrix.

The experimental work to be discussed was conducted under con-

ditions of initially still water, and we may, therefore, drop water

particle motions which are normally caused by waves from further con-

sideration.

2.2 Scaling of Forces

At this point, one should consider the relative magnitudes of the

various forces acting on the structure in an earthquake, as defined by

Eq. 2.1. We must, therefore, further define the conditions under which

we will seek a solution.

Physical considerations indicate that there are six parameters

(excluding viscosity) which influence the earthquake forces on marine

structures. These are (see Fig. l.l):

a = amplitude of ground motion = u , etc.,
g

w radial frequency of the motion = 2TI/T, where T is the

period in seconds,

h water depth,

D diameter of the structure 2R,

H height of the structure,

g acceleration of gravity = 9.807 m/sec 2
•
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2.2.1 Forces in Horizontal Motion

Examination of the right-hand side of Eq. 2.1 shows that there

are three types of forces: (a) inertial, (b) drag, and (c) wave making.

If we assume harmonic motion, we can describe the magnitude of these

forces with the following approximate relationships for the horizontal

mode of motion:

F F + F + F
x Ix Dx Wx

and,

F
Ix

P(K -1) vii
fiX

'ITD 2
~ P" Ha w2

4
· (2.2)

F
Dx • .•.••• (2.3)

F
Wx P~x Au - DH'P

Wx • • • • • • • (2.4)

where: P

p
W

mass density of the water,

pressure on the structure due to waves being generated by

the structure motion,

H' effective height of the pressure distribution on the struc-

ture.

MacCamy and Fuchs 2 have shown that there are two components of

pressure due to a structure oscillating horizontally in a fluid; (a) one

associated with the inertia force term and due to local disturbance of

the fluid by the structure, (b) a second in phase with the velocity and

due to creation of progressive waves of the same frequency as the

oscillations and which transmit energy from the system. The progressive

wave pressure term has been shown to extend to an effective depth

approximately equal to the wave length, A.

If we assume a wave amplitude approximately equal to the amplitude

of the ground motion, we can describe the velocity potential for the
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linear progressive wave as follows: 12

aW
k

cosh (kZ)
cosh (kh)

sin (kx - wt). . . . . . .

where: k
2n w2

T = g tanh (kh)
• ..•••. (2.5)

The amplitude of the wave making pressure term then becomes:

_ p ~ = paw
2

at k
• ••.••• (2.6)

We can assume that for all practical cases involving

gravity structures and earthquakes,

kh » 2n.

Therefore,

and

k
2n
A

• • • . • • • (2. 7)

• ••••.• (2.8)

We may now rewrite Eq. 2.4 as follows:

2
F - paw DH' - pag DH'

Wx k

Defining,

• ••••.• (2.9)

L1H = h - H = depth of submergence.

Then, Eq. 2.9 becomes,

F ~ pagD(A-L1H) ,
Wx

· ..••.• (2.10)

where the wave force amplitude is recognized to be positive only.

We are now in position to consider the relative magnitude of the

various forces for horizontal motion. Dividing the sum of the forces
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by the inertia term we now have:

F Fxl Ix
~ 4pDH a

2 w2 + 1 + 4pag ~~=-~)

P1TD 2 Ha w2 P1TD 2 Haw 2

_ a + 1 + g(A - 6H)
D

(2.11)

It is immediately clear that the drag term will not be important,

since we are generally considering amplitudes of ground motion much

less than one meter and structure diameters of approximately 100 meters.

It would appear that structure member diameter would have to be in the

order of one or two meters before drag would need to be considered in

earthquake motion. This agrees with the general range of importance

for drag in waves as found by other investigations. 5

Consideration of the wave making term shows a somewhat more

complex situation. We can, however, see immediately from Eq. 2.10 that

energy will not be dissipated by wave making for any structure where

the depth of submergence exceeds the wave length, or:

6H 2 21Tg (2.12)
u/

For the case where structure height equals water depth (6H 0) ,

the wave making force ratio in Eq. 2.11 becomes:

F
Wx ~ ~

FIx DHW 2

(2.13)

where,

a (2.14)
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We can conclude that where the dimensionless frequency parameter,

0, is large, little energy will be dissipated through wave making,

regardless of the depth of submergence, 6H. However, a considerable

amount of energy could be dissipated by wave making at low frequencies

and shallow submergence depths.

2.2.2 Forces in vertical Motion

The forces due to vertical motion of the structure can be written

approximately as:

F
z

and,

F
Iz

=: P(K -1)
mz vv lTD

2

-- p 4 Ha w2
• •••••• (2.15)

F
Dz

lTD
2

PK Alvlv ~ P a 2 w2
••••••• (2.16)

Dz 4

F
Wz

(2.17)

We note that the wave pressure force again is intended to describe

the effect of waves propagating from the system. Unfortunately, we do

not have a convenient expression to describe this quantity. However, we

can define the region in which it is likely to become important by noting

that the wave length of the highest frequency wave which could propagate

completely from the vicinity of the disturbance caused by structure motion

would be equal to the diameter of the structure, i.e.

A ..
crltlcal

D • •••••• (2.18)

This follows from the relationships between wave length, propagation

speed, and frequency in deep water. 12 We can now define a critical
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frequency above which we would expect energy loss due to wave making

to decrease rapidly: 1
2

W •. = (2'TT g )
crltlcal D

• •••.•• (2.19)

Examination of the ratio of drag to inertia force yields

F
Dz

F
1z

a
H

· •.•.•. (2.20)

Once again we can conclude that the drag force will be negligible for

most gravity structures.

2.3 The virtual Mass Representation of Fluid Effects

We can now rewrite the equation of motion in simplified form as:

· ...••. (2.21)

with notation as before except:

[M*] = matrix of the "virtual" or "added" mass of the surrounding

water

[C*] coefficient of equivalent hydrodynamic damping, due pri-

marily to wave making at shallow water depths.

- P [K ] [A]
w

The purpose of this investigation was primarily to shed addition-

al light on the virtual mass matrix [M*] under earthquake conditions and

to compare the findings with analytical methods for computing these

effects.

The term "virtual mass" is used in this report in the same con-

text as "added mass". Virtual mass is favored as a term for describing

the inertial effect of the surrounding fluid because, depending on the

usage, the effect is not always additive.
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It is now convenient to dispense with the matrix notation and

write Eq. 2.21 as three independent mode equations:

.. ..
-M* B -C~Xt' .(2.22)M x+ + C x + K x -M* x · · · ·x ~ x x xx t xe t

.. ..
-C*z .(2.23)MzZt + C z + K z -M* z . · · · ·z z zz t z

M B + C 8 + K 8 -M
ee

8
t

-M* x -c*8 . . · · · · . (2.24)
e t e e ex t e

It would be expected that the coupled virtual mass terms M~e and

M
ex

are approximately equal and that they are not particularly large.

This last hypothesis will be supported by the test results which we shall

discuss later. The rotational acceleration, B
t

, is also very small in

the experimental system and we would expect that the coupled force term

would drop out of Eq. 2.22.

2.3.1 Hydrodynamic Pressure

Before we proceed with the discussion of the submerged tank ex-

periment, it is enlightening to consider the fundamentals of the virtual

mass representation of fluid effects on structureso The following dis-

cussion will be limited to the rigid body mode of horizontal motion on a

flexible foundation; interested readers are referred to Chapter 2 of Liaw

and Chopra8 for a discussion of the effects of structure flexibility

modes on virtual mass.

The uncoupled equation for horizontal motion including fluid

effects can be written (see Fig. 1.1):

M x(t) + C x(t) + K x(t)
x x x

-Mu (t) - P*(t) .... (2.25)
x g x

where P*(t) represents the force in the horizontal mode of oscillation
x

associated with the hydrodynamic pressure, p (z,¢,t). This quantity
x

is described by the Laplace equation in cylindrical coordinates,



+
1
r

Clp 1
+

Clr

13

o ....... (2.26)

which, after applying appropriate boundary conditions, can be solved

for the dynamic pressure distribution on the surface of simply shaped

8 ,9

structures which pierce the surface. If such a solution is available,

then

p* (t)
x

H 2n
J J p (z,cjJ,t) R cos cjJdcjJ dz (2.27)
o 0 x

2.3.2 The Complex Frequency Response Representation

One characteristic of linear systems with time independent

physical properties is that they respond to simple harmonic excitation

with simple harmonic motion of the same frequency, once steady-state

conditions have been achieved. The amplitude and phase relationship

of this response is frequency dependent in general. This frequency

dependence is conveniently described by the use of complex frequency

response functions. The complex response function x(t) is written as

X(w) and has the property that when the excitation is the real part of

e
iwt

, the response is the real part of x(w) e
iwt

Applying this to the hydrodynamic pressure from Eq. 2.27, we

have for the pressure on the surface of an oscillating structure

P (z,cjJ,t)
x

Ii (z,cjJ,w)
x

iwt
e ....... (2.28)

and for the kinematic quantities in Eq. 2.25,

x(t)
-
X(w)

iwt
e

X (t) -i X(w) iwt--e
w

(2.29)

x (t) -X(w)
2

W

iwt
e
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where all are expressed in terms of the complex acceleration response

function.

It is now convenient "to describe the dynamic pressure on the

surface of the cylinder in terms of total structure acceleration,

assuming that linear superposition applies, and ground acceleration is

iwt
e

p (z,¢,t)
x

iwt
e .... (2.30)

Replacing the time dependent pressure in Eq. 2.27 with Eq. 2.30,

we have:

p* (t)
x

H 2n
[f J p (z,¢,w) R cos ¢d¢ dz

o 0 xo

H 2n
+ x(w) J J p 1 (z,¢,w) R cos ¢d¢ dZ]

o 0 x

iwt
e .(2.31)

We can now see that the first termon the right of Eg. 2.31

represents the complex hydrodyna...'Uic "mass" associated with the rigid

motion of the structure on its foundation and the second term represents

"mass" associated with the relative motion between the structure and the

foundation.

It is more physically relevant to describe these complex "mass"

terms as a real virtual mass and a real dampening which is associated

with the wave making component of pressure acting on the structure.

The terms in Eq. 2.31 become,

H 2n iC* (w)
J J p (z,¢ ,w) R cos ¢d¢ dz M* (w) -

xo
. (2.32a). . .

0 0 xo xo w

H 2n iC*1 (w)
J J p 1 (z,¢,w) R cos ¢d¢ dz M* (w)-

x
. (2.32b). . . .

0 o x xl w
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We note that in the case of horizontal motion the terms for

rigid and relative motion are the same for a rigid structure on an

elastic foundation, however, in general they are not.

Returning to the notation used in Eq. 2.22, we can now describe

the hydrodynamic forces of Eq. 2.27 as

p* (t)
x

[{M* (w) + M* (w) X(w)}
xx xx

i iwt
{C*(w) + C*(w) X(W)}] ew x x

p* (w)
x

iwt
e ....... (2.33)

We emphasize that ln the general case, the coefficients may be frequency

dependent.

2.3.3 The Acceleration Response Function

substituting Eq. 2.33 and Eq. 2.29 into Eq. 2.25, we have

] e
iwt

= [-M -M* (w) -M* (w) X(w)
x xx xx

K X
X

---2
W

_ iC x(w)
[M X(w) x__

x W

+
iC* (w)

x-=--+
W

-
ic* (w) X (w)

x ]
W

iwt
e (2.34)

This expression can be solved for X(w), which represents the

acceleration amplification factor for horizontal motion. The solution

yields:

....... (2.35)

where directional and frequency dependent notation have been dropped in

the coefficients and where
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M M + M*
x xx

and, . . . . . .(2.36)-
C C + C*x x

2.3.4 The Hydrodynamic Pressure Response Function

We can now describe the hydrodynamic pressure in terms of the

acceleration response function as

C*- --
W

C* X (W)}
W R

P*(W) + i P*(W)
R I

... (2.37)

where X
R

and XI are the magnitudes of the real and imaginary parts of

Eq. 2.35, respectively.

We can now describe a convenient expression for the steady-state

harmonic pressure force function of Eq. 2.31 in terms of structure sys-

tem characteristics and hydrodynamic coefficients. Recalling that the

h 1 f h . . iwt. h 1response to t e rea part 0 t e exc1tat1on e 1S t e rea part of

iwt
p*(w) e (Eq. 2.33), we can state the harmonic pressure response as

x

P* (t) = P~ (w) cos (wt) - P~ (w) sin (wt) . . . • . (2.38)

This expression represents hydrodynamic pressure force per unit of

ground acceleration. For the cases where dampening due to wave making

can be ignored, this expression in its entirety becomes:

P* (t)
M*(_W2 M2 -

{M* + MK } (wt)+ cos

W2M2 -2MK + K 2
C2+

w2

{ WM*MC } sin (wt) (2.39)+ . . . . . . .
W

2 M2 -2MK
K

2

C2+ -+
w2
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where,

M total mass as in Eq. 2.35,

M* hydrodynamic virtual mass, the real part of Eq. 2.32,

C foundation damping only,

2S WM where S is percent of critical damping, w is the
n n n n n

natural frequency of the system in that mode, and M is the
n

dry mass of the structure,

K foundation stiffness,

w radial frequency of the excitation.

The magnitude of the hydrodynamic pressure force is
1

Ip* (w) I :=: (p~2 + p~2) 2 • • • • • • • (2.40)

and the phase angle relative to ground acceleration is

p*
I

ARCTAN (p*)
R

..•.... (2.41)

It should be noted that an expression for vertical pressure

force can be developed in a similar manner. The differences occur

because the virtual mass and dampening terms as described in Eq. 2.32a

and 2.32b are not equal for the vertical case. These differences must

be considered in the pressure response function, Eq. 2.37, and when

developing the acceleration response function, Eq. 2.35. The nature

of the vertical virtual mass terms will be discussed further in Chapter

4.
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3. THE SUBMERGED TANK EXPERIMENT

Before proceeding into the details of the submerged tank model

and experiment, we shall take a closer look at the reduced equations

of motion as stated in Eqs. 2.22 - 2.24. We have previously stated

that the coupled terms can be dropped from Eq. 2.22. With this simpli-

fication we can rewrite all of the equations for solution:

M* x ..
-c K -c*x (3.1)-MxXt

x - x . . . · · ·xx t x x x t

..
-c*z (3.2)M* z -MzZt -c z - K Z . . . · · ·zz t z Z Z

M* 8
.

+ MexXt
-Me8

t
-c 8 -K 8 -c*8 · · · (3.3)ee t e e e

3.1 Model Design

The general intent of the model design for the experiment was,

simply stated, to be able to measure or at least accurately estimate

all of the coefficients and kinematic quantities in Eq. 3.1 - 3.3 which

are required for solution for the virtual mass terms in [M*], while

allowing the possibility of varying the foundation stiffness in a con-

trolled manner.

The design was simplified by the fact that the prototype was

axisYmmetric, therefore requiring only three degrees of freedom in a

two-dimensional plane (see Fig. 1.1).

3.1.1 The Elastic Foundation

The single most challenging feature in the model design was to

simulate an elastic foundation such that an appropriate relationship

could be maintained between horizontal and rotational stiffness and
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therefore provide a more realistic framework in which to access the

importance of hydrodynamic coupling and the possible influence of non

linearities. An elastic half-space formulation for foundation im

pedances was chosen from which to derive the stiffness coefficients. 13

An appropriate mean stiffness value for the frequency range tested was

chosen in each case. APPENDIX A contains the details of the foundation

impedances considerations and the approximations which were necessary

to select appropriate stiffness coefficients. The results of this analy

sis are shown in Figures 3.1 - 3.3. The approximate equivalent proto

type stiffnesses for the three foundation conditions examined are

indicated on these figures. It was unnecessary to maintain a consistent

relationship between the vertical stiffness and stiffness in the other

two modes, since no coupling was anticipated with the vertical mode.

The vertical stiffnesses used were somewhat greater than required by

the elastic half-space model for the respective horizontal and rotational

stiffness. This resulted from construction considerations. Elastic

coupling in the foundation was also eliminated so that analysis of hydro

dynamic coupling would be simpler (see APPENDIX B).

The early stages of foundation design included plans for adding

viscous damping to the foundation in approximate agreement with that

called for by the elastic half-space model. Careful consideration of

the dynamics of the system (see Eq. 2.35) revealed, however, that added

foundation dampening would only mask the effect of hydrodynamic dampen

ing, if any existed. Therefore, this feature was excluded from the

final model design. The completed model was found to have approximately

0.8% of critical damBening in all three modes in the dry condition, as

will be discussed in Chapter 4.

Control of the foundation stiffness was accomplished by the
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design of compound cantilever springs, an example of which is shown

in Fig. 3.4. The details of the stiffness analysis of these load cells

and their operation in the model are contained in APPENDIX B. As is

demonstrated, these cells could be assembled to give an appropriate

stiffness in the axial direction and in shear, and produced no rotation

al coupling when assembled in the model with the model center of gravity

adjusted vertically to the midpoint of the four load cells. The load

cells were instrumented with full bridge strain gauge rosettes for force

measurements in both the axial and shear directions, as shown in Fig.

3.5. Each load cell was calibrated on a dynamometer for its exact

stiffness in the two directions and for force-strain relationships.

Examples of these calibrations for the three conditions are contained

in APPENDIX B. Table 3.1 contains a summary of the mean stiffness

values of the three conditions and their approximate equivalent secant

stiffness modulus (G/Su) for the prototype system.

Fig. 1.1 shows the model idealization of the prototype system.

Fig. 3.6 shows the general arrangement of the load cells on the model

base, with typical dimensions indicated.

3.1.2 Model Shell and Instrumentation

The shell of the model was designed to be simple and rigid.

The cylindrical portion was rolled from a 25 rom thick aluminum

plate. The top and bottom plates were of 19 rom thick aluminum

and were fitted with neoprene gaskets to form watertight seals to the

cylinder. The bottom gasket extended out from the model and attached to

the foundation plate on which the model was mounted. This gasket com

pleted the watertight seal and was flexible enough to allow free move

ment of the model. The details of this arrangement are shown in Fig. 3.7.
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The model shell was suspended on the foundation load cells

from the top of the bottom plate, Fig. 3.8, with the upper part of each

load cell being attached to an aluminum center post which was in turn

attached to the shaking table. All of the model structural parts were

reinforced to the fullest extent to hold deformations to a minimum.

The final weight balance in the model was accomplished by

attaching lead weights at appropriate locations such that a mass dis

tribution which was considered reasonable for a structure of this

nature could be achieved. Table 3.2 shows the final dimensions and

weight characteristics of the model and an equivalent prototype on a

scale of 1:100.

Four different types of instrumentation were installed in the

model:

a. accelerometers for recording total accelerations in the three

degrees of freedom of the model and horizontally and vertically on the

foundation. Angular acceleration was recorded on the shaking table

itself.

b. displacement transducers for relative displacements of the

model from the foundation.

c. full bridge strain gauge rosettes on each load cell, one

each for horizontal and vertical directions, calibrated to read

foundation spring forces directly.

d. pressure sensors in one quadrant, arranged at Gaussian

quadrature points for integration of forces.

The general arrangement of the instrumentation is shown in

Figs. 3. 7 and 3.8. Table 3.3 lists the details and specification for

the actual instruments used. The actual model with cover and foundation
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support removed is shown in Figs. 3.9 and 3.10.

The model interior was pressurized to an equivalent hydraulic

head exceeding the actual water depth by approximately 30 em. during

all tests to protect the instrumentation.

3.2 Experimental Setup and Test Procedures

Testing of the submerged tank model was conducted in two test

series on the earthquake simulator, located at the Earthquake Engineer-

ing Research Center, Richmond Field Station, University of California,

Berkeley. The facility contains a 6-by-6-meter, shaking table with a

load carrying capacity of approximately 60 metric tons. The table can

be excited harmonically either horizontally, vertically, or both simul-

taneously at frequencies up to approximately 30 Hz. It has a maximum

horizontal stroke amplitude of approximately 15 em and can achieve

2
accelerations of approximately 1 g (g = 980.7 em/sec) within the stroke

limitation. Random excitations can be induced in the table from mag-

netic tape input. The facility has direct recording capabilities for

128 digitized data channels to computer compatible magnetic tape.

A rigid bulkhead was constructed to surround the shaking table,

and a flexible membrane was placed over the table and bulkhead to form

the test basin. Figure 3.11 shows the experiment arrangement and

Fig. 3.12 shows the basin and model as filling begins.

The test procedure for each foundation condition and water depth

was approximately as follows:

a. shock tests for natural frequencies,

b. vertical and horizontal harmonic tests over the range of

frequencies from 3 to 19 HZ, using at least two different values of



23

acceleration in most cases, up to a maximum of about 0.5 g when con

ditions allowed,

c. vertical and horizontal random excitation with maximum

acceleration of approximately 0.3 g.

This procedure was also carried out for the dry condition for

calibration purposes.

Four water depths were tested in this study, ranging from level

with the model top to a maximum of 2.5 times the height of the model,

a depth of 85 centimeters.

3.3 Data Analysis

Referring to Eq. 3.1 - 3.3, the tests yielded the following

information in our effort to solve for the virtual mass terms:

a. direct measurement of the total structure acceleration,

b. direct measurement of foundation acceleration, {lig}'

c. direct measurement of structure relative displacement, {r},

d. direct measurement of structure mass, [M],

e. determination of material damping in each mode from the dry

shock tests, lc],

f. direct measurement of foundation stiffness, [K],

g. determination of damping due to hydrodynamic effects from

the submerged shock tests, [c*].

The only remaining quantities needed in order to proceed with

the solution were the velocities, and these were calculated from the

acceleration and displacement time series using numerical integration

and differentiation schemes.
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In theory Eqs. 3.1 and 3.2 could be solved at any point in the

response time series for M* and M*, since they are satisfied for
xx zz

all time and regardless of the nature of the motion. In fact, linear

regression techniques 14 must be applied using a large number of data

15
points before reliable results can be achieved. Multiple regression

was used in solving Eq. 3.3 for M
ee

and M
ex

.

The details of the time series analysis and virtual mass cal-

culations are contained in APPENDIX C. The computer program used to

convert the raw experimental data to model response is listed in APPEN-

DIX D. The program used to analyze the

the virtual mass is listed in APPENDIX E.

model response and calculate
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TABLE 3.1: MODEL FOUNDATION CONDITION SUMMARY (MODEL UNITS)

CONDo
APPROX.PROTOTYPE

Kx (N/m) Kz(N/m) Ke (N-m/RAD) SECANT MODULUS (G/Su)
NO. HORIZ.a ROT VERTICAL

I 2.9 x 106 5.2 X 106 3.2 X 10 5 2500 3000

2 1.9x 106 4.8x 106 2.1 X 105 1600 3000

3 5.3x10 5 1.5x 10 6 5.2 X 10 4 500 1000

TABLE 3.2: SUBMERGED TANK MODEL DIMENSIONS AND CHARACTERISTICS

MODEL PROTOTYPE
(SCALE I: 100)

HEIGHT (H) 34.3 em 34.3 m

DIAMETER (D) 80.3 em 80.3 m

C. G. HEIGHT 13.4 em 13.4 m

MASS 249.8 kg 249,800 TONS

RADIUS OF GYR. 26.2 em 26.2 m

CONSTRUCTION MACHINED ALUMIMUM RIGID



TABLE 3.3: INSTRUMENTATION SPECIFICATIONS

TYPE MANU FACTURE MODEL RANGE APPROX.
AS USED ACCURACY

'~S'

ACCELEROM ETERS STATHAM A 39TC-5-350 ± 2.5g 1.0 0/0

01 SPLACEMENT HEWLETT-PACKARD a) 7DCDT-500 ± 1.270cm. 0.5 %

TRANS DUCERS b) 7DCDT- 100 ± 0.254cm. 0.5 0
/ 0

FORCE TRANSDUCERS
* * ± 1000 N ±2 0

/0 (STATIC
(HORIZ. AND VERT.)

HYDRODYNAMIC SUNDSTRAND 206 ± 2 PSI 0.8 0
/0

PRESSURE DATA CONTROL,INC.
TRANSDUCERS

ANALOG TO DIGITAL NEFF SYSTEM-620 128CHANNEL 0.1 0
/0

CONVERTER

* MANUFACTURED AT THE UNIVERSITY OF CALI FORNIA, BERKELEY, AS PER CHAPTER 3 AND APPENDIX B.

N
(j"\
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SPRING STEE L

FIGURE 3.4: A TYPICAL FOUNDATION SPRING

22.86 eM.
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FIGURE 3.5: A FOUNDATION SPRING INSTRUMENTED AS A LOAD CELL
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4. THE EXPERIMENTAL RESULTS

4.1 General Model Response

The resonant response for the model system in the dry state and

at each of the four water depths tested is shown in Table 4.1. The

record of resonant response for foundation condition No. 3 and relative

water depth (h/H) equal 2.5 is shown in Fig. 4.1. It can be seen here

that there is no detectable interference between the horizontal and

rotational modes of oscillation when they are excited simultaneously.

This figure is typical of all of the resonant data recorded. The con-

elusion to be drawn from this result is that hydrodynamic coupling is

not strong, if it exists, and that we were justified in dropping the

coupled term from the analysis of horizontal virtual mass in Eq. 3.1.

Table 4.2 contains a summary of the dampening, expressed as a percent

of critical dampening, derived from the model resonant response data.

These values were found using the following free-vibration decay rela-

tionship:16

where, m

om
2nm

total number of cycles

(4.1)

o ln (a /a ), when a is the amplitude at time
n n+m n

n and a the amplitude m cycles later.
n+m

This expression is exact to within the accuracy of the recorded data

(approximately ~ 2%).

We use the notation ~* when referring to hydrodynamic dampening

in calculations. However, in most cases this is taken to be zero.
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4.2 Virtual Mass

The results of the analysis for virtual mass in the horizontal

mode are shown in Figs. 4.2 - 4.5, vertical mode in Figs. 4.6 - 4.8,

rotational mode'in Figs. 4.9 - 4.12, and the horizontal-rotational

coupled mass in Figs. 4.13 - 4.16.

The virtual mass in these figures has been plotted versus the

dimensionless frequency parameter w2 /DH/g which represents the ratio

of inertia force to wave generation force in the horizontal mode, as

discussed in Chapter 2.

The mass values have been normalized in the following manner:

C
m

M* / (pV) · · · · · · · (4.2a)xx xx

C
m M* / (pV) · · · · · · · (4.2b)zz zz

m
M

ee / (pV R 2) (4.2c)C
ee · · · · · · ·g

m
Mex / (pV R ) (4.2d)C

ex · · · · · · ·g

where,

V displaced volume of the structure

R radius of gyration of the displaced volume
g

of water about its center of gravity

p mass density of fresh water

The results from the diffraction theory calculations by Garrison

for the relative water depth h/H = 2.5 and from the closed-form solution

after Liaw for h/H = 1.0 have been included on the appropriate figures.

Our first calculation of the vertical coefficient yielded a

value of approximately 1.0 at low frequencies and converged to the
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theory at the natural frequencies of the various foundation conditions.

This implied that there was a basic error in our formulation, since one

would not expect to see frequency dependence in the coefficients which

was related so closely to structure response.

This result has caused us to take a closer look at the physical

system we are modeling with Eq. 2.1. We are implying by our use of a

single inertia coefficient with the sum of the relative acceleration

and the foundation acceleration that each of these kinematic conditions

excites the same flow regime above the structure. To put it somewhat

differently, we are saying that relative motion without foundation

motion and foundation-structure motion without relative motion excite

the same flow conditions. If one thinks in terms of an infinite rigid

foundation and an incompressible fluid it is apparent that this is not

true. In the latter case the structure would feel the effect of the

entire mass of the water column above it during foundation vertical

accelerations. This situation is shown graphically in Fig. 4.17.

We can describe the forces due to vertical ground acceleration

as the summation of the force due to rigid body motion of the structure-

foundation system (no relative motion)

F I

Z
v

g

and the force due to the relative motion of the structure above

FI!
Z

(M + P em
z zz

'lTD
2

H -4-) z

with the total force being

F == F I + F"z z z
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We must now rewrite Eq. 3.2 to solve for the vertical virtual

mass as follows:

M* Zzz v -C z -K z
g z z C*zz

(4.3)

The vertical mass coefficients shown have resulted from use of

this formulation.

4.3 Hydrodynamic Pressure Force

Hydrodynamic pressure forces were recorded in some of the har-

monic tests for comparison with the pressure force which would be pre-

dieted using the calculated virtual masses and Eq. 2.40, as discussed

in Section 2.3.4.

For comparison purposes we have calculated the magnitude of the

hydrodynamic force using Eq. 2.39 and the mean virtual mass values for

horizontal and vertical modes. These results for each depth are shown

in Figs. 4.18 - 4.24 plotted as a function of the dimensionless fre-

quency parameter. All values shown are normalized to the 19 (980.7

cm/sec 2
) foundation acceleration level.

Also shown on these figures are the actual magnitude of the

pressure force amplitudes recorded in the testing. These forces were

derived from forces measured on one quarter of the structure, as shown

in APPENDIX C. The plotted values represent the average force ampli-

tudes observed, generally taken for a minimum of 30 cycles.

Hydrodynamic and structural dampening were both very small in

the model system, ranging between approximately 0.8 and 3.0 percent of

critical depending on the condition. This results in the pressure

force being nearly in phase with foundation acceleration and essen-

tially real valued, except near resonance. We have, therefore, not
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presented data on the pressure force phase relationship observed in

the testing. We will discuss the effects of foundation dampening on

the phase angle in Chapter 5 using calculated values based on Eg. 2.39.
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TABLE 4.1: MODEL RESONANT RESPONSE FREQUENCIES (HZ)

FOUNDATION RELATIVE WATER DEPTH (h/H)
CONDITION o (DRY) 1.0 1.5 2.0 2.5

X 17.1 15.4 14.8 14.6 14.6
I Z 22.9 22.9 21.0 19.3 18.9

e 2 I. 7 21.5 20.0 19.9 19.8
X 13.9 12.5 12.1 12.0 11.9

2 Z 22.1 22.1 20.3 18.6 18.2
e 17.6 17.2 16.4 16.2 16.2
X 7.3 6.6 6.5 6.4 6.3

3 Z 12.3 12.3 11.0 10.6 10.5
e 8.8 8.3 8.1 8.0 8.0

TABLE 4.2: MODEL DAMPENING SUMMARY (PERCENT OF CRITICAL)

FOUNDATION RELATIVE WATER DEPTH (h I H )
CONDITION MODE o (DRY) 1.0 1.5 2.0 2.5

X 0.8 0.8 0.8 0.8 0.8
I Z 0.8 0.9 3.0 2.4 2.9

e 0.4 0.5 0.5 0.5 0.5
X 0.7 0.7 0.7 0.7 0.8

2 Z 1.4 1.3 1.6 4.0 4.4
e 0.3 0.3 0.3 0.3 0.3
X 1.9 1.6 1.9 1.8 1.8

3 Z 1.2 0.9 0.7 0.8 0.7
e 1.6 1.4 1.2 1.2 1.2
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5. SUMMARY AND DISCUSSION

5.1 Inertia Coefficients

Summaries of the inertia coefficients resulting from these

experiments are shown in Figs. 5.1 - 5.4 as a function of relative

water depth (h/H). The plotted values are the average of all data

taken in each condition, as presented in Chapter 4.

5.1.1 Comparison with Theoretical Values

Table 5.1 shows a comparison of the data average values with

those predicted by the two analytical techniques considered in this

study. All averages have been taken over the range of the dimension

less frequency parameter (a) from 20 to 1000.

It can be seen that the agreement between the measured and pre

dicted values is quite good. In all cases, the differences are less

than nine percent (9%).

These results are somewhat surprising in some cases, e.g., the

rotational coefficients of Fig. 4.9, in light of the large standard de

viation of data values. The scatter in these data is related to the fact

that the rotational acceleration observed in the tests was very small.

However, the numbers of samples observed was sufficiently large to give

a good approximation of the mean value of quantities which are essen

tially constant. This is apparently the case with the rotational

inertia terms. It is interesting to observe that both the horizontal

and vertical inertia terms decrease rapidly for h/H less than about

2.0, and they appear to approach a constant value for relative water

depths greater than 2.0.
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5.1.2 Frequency Dependence

Examination of the experimental results and theoretical values

shows that frequency dependence in the inertia coefficients is gen

erally very small for 0 greater than 20.

The only appreciable change with frequency occurs in horizontal

motion for the case of the structure piercing the surface (h/H 1. 0) ,

Fig. 4.5. In this case, the coefficient is essentially constant for

values of 0 greater than about 50. For smaller values of this para

meter, the inertia term decreases rapidly with decreasing frequency.

It should be noted that the theoretical solution in this case includes

the effect of wave generation by the structure. The force dissipated

in wave generation exceeds one percent (1%) of the inertia force at

about 0 equal 20 and increases rapidly for lower frequencies.

Ignoring frequency dependence in the surface piercing case would

mean that the inertia coefficient would be overestimated by approxi

mately thirteen percent (13%) at 0 equal 20. This error would be

expected to decrease rapidly with submergence of the structure.

5.1.3 Horizontal-Rotational Coupling

Coupling between the horizontal and rotational modes of motion

in the inertia coefficients is predicted by the theory and can be

measured, Fig. 4.13. However, the value of this coupling is very small.

Eigenvalue calculations with the largest value of hydrodynamic

coupling observed in these tests show that the effect is seen in the
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fifth digit of natural frequency and mode shape.

5.2 Hydrodynamic Pressure Force

Most of the considerations in this report have dealt with de

fining the hydrodynamic inertia coefficients. We would now like to

consider the variation in hydrodynamic pressure force directly be

fore we conclude our study.

5.2.1 Parameter Sensitivity

We have stated previously that the hydrodynamic pressure force

can be related directly to structure response (and vice versa) through

the inertia terms, e.g., Eqs. 2.37 and 2.39. We would now like to

examine which of the system characteristics most affect the pressure

force.

Fig. 5.5 shows the effect of a fifteen percent (15%) increase or

decrease in the value of the horizontal inertia coefficient. These

results show that the pressure force changes approximately in propor

tion to the change in the inertia coefficient (actually ~ 17%). In

addition, there is the resonant frequency shift that would be expected.

Fig. 5.6 shows the effect of a ten percent (10%) increase or

decrease in foundation stiffness. It can be observed that foundation

stiffness changes only shift the location of resonance and have no

influence on the magnitude of the pressure force.

Fig. 5.7 shows the effect of change in foundation dampening

from approximately eight tenths of one percent (0.8%) of critical, the

value observed in the model, to fifteen percent (15%). We note that
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the pressure force decreases by sixty-five percent (65%) as founda

tion dampening is increased from five percent (5%) to fifteen per

cent (15%) of critical.

5.2.2 Phase Angle

Fig. 5.8 shows the phase relationship between hydrodynamic

pressure force and foundation acceleration for varying values of

foundation dampening. The phase angle is seen to be highly dependent

on foundation dampening at frequencies near resonance. It is also

interesting to note that while the pressure force and foundation

acceleration are in phase at frequencies far below resonance, they

are out of phase by a fixed angle dependent on the damping at frequen

cies far above resonance.

5.3 Foundation forces in Random Excitation

We have examined fluid-structure interaction in harmonic motion

in considerable detail and have domonstrated that hydrodynamic inertia

forces can be measured or predicted accurately under these conditions.

However, earthquakes occur as random ground accelerations and

structures must be designed to withstand this condition.

One common method of determining response to random excitation

is step-by-step integration of the equations of motion using a discrete

acceleration time series as the forcing function. A variety of methods

are available to accomplish this calculation. Most of these methods

rely on system coefficients which are constant in frequency and inde

pendent of the magnitude of structure response.
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The hydrodynamic coefficients measured in these experiments meet

the requirements for use in step-by-step integration. Therefore, we

can use this technique to examine the differences between forces

measured during actual random excitations and those that can be cal-

culated using a digitized record of the same ground acceleration.

The above comparison has been performed using the program

SUBTANK which is listed in APPENDIX F. This program is based on in-

tegration methods and subroutines developed by Professor E. L. Wilson

of the Civil Engineering Department at the University of California,

Berkeley. The ground acceleration used in testing was a reproduction

of the N-S component of the 1940 El Centro earthquake, scaled to a

2
maximum acceleration value of approximately 0.31 g (304 em/sec). A

version of this record was used as a control signal for the earthquake

simulator table, and the resulting table and structure responses were

recorded. A digitized record of the actual table acceleration was then

used with the horizontal inertia coefficient determined by Garrison,

as previously discussed, to calculate a foundation shear force time

history.

Fig. 5.9(a) shows a plot of the horizontal foundation accelera-

tion recorded (and used in the step-by-step integration) and Fig. 5.9(b)

shows the measured horizontal shear force between the structure and

foundation. Fig. 5.9(c) shows the calculated shear force time history

assuming hydrodynamic dampening equals two tenths of one percent (0.2%)

of critical and foundation dampening equals eight tenths of one percent

(0.8%), the values determined from the resonant decay tests. Coupling

between horizontal and rotational modes has been neglected in this cal-

culation. The case considered is for horizontal ground acceleration only.
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The maximum shear force measured in this test run was 3745

Newtons compared to a calculated force of 3740 Newtons, for a dif

ference of approximately one tenth of one percent (-0.1%). The con

clusion to be drawn is that the hydrodynamic effects are very linear

and can be properly considered by use of constant coefficients.

Fig. 5.10 shows three additional calculated horizontal shear

force time histories using the ground acceleration record of Fig. 5.9(a).

Fig. 5.10(a) shows the force record achieved when hydrodynamic

dampening is ignored. The maximum shear force calculated was 3834

Newtons, an increase of approximately two and four tenths percent

(2.4%) over the measured value. This would not be an important in

crease in most applications. However, one can see from the effect

of this small amount of dampening that it would only need to be a little

greater before the resulting force reduction would begin to be sig

nificant. This would occur as the depth of submergence was decreased.

Figs. 5.10(b) and 5.10(c) show horizontal shear force time

histories calculated for foundation dampening of five percent (5%) and

fifteen percent (15%) of critical, respectively. The maximum shear

force is seen to increase by approximately fifty percent (-50%) for a

decrease in foundation dampening over this range. It is apparent that

foundation dampening will be a major consideration in properly pre

dicting foundation forces induced by earthquakes.



TABLE 5.1 COMPARISON OF MEAN VALUES OF EXPERIMENTALLY AND THEORETICALLY
DETERMINED INERTIA COEFFICIENTS FOR THE RANGE OF FREQUENCIES

OF THE EXPERIMENT

COEFFICI ENT h/H PREDICTED MEASURED DIFFERENCE

HORIZONTAL 2.5 0.54 0.52 4 0/0

HORIZONTAL 1.0 0.34 0.34 ,.., I 0/0

VERTICAL 2.5 0.64 0.62 3 0/0

ROTATIONAL 2.5 0.26 0.24 8%

COUPLED 2.5 0.037 0.036 3%

--.l
lJ1
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6. CONCLUSIONS

The findings of this study concerning the earthquake response

of large gravity-type offshore structures are summarized as follows:

(a) Available analytical techniques provide good estimates of

hydrodynamic inertia force coefficients in the range of frequencies of

interest for the simple structure configuration considered.

(b) Foundation dampening is a major consideration in determining

the magnitude of the hydrodynamic pressure force and the resulting

foundation force. The sensitivity of foundation force to foundation

dampening indicates that this site characteristic might dominate the

design and placement of large offshore structures.

(c) Foundation stiffness only influences the hydrodynamic force

by changing the resonant frequency. This characteristic does not

influence the magnitude of this force directly.

(d) Frequency dependence in the inertia coefficients is not

likely to be an important consideration.

(e) Coupling in the hydrodynamic inertia forces between the

horizontal and rotational modes is not likely to be important at earth

quake frequencies.

(f) Hydrodynamic dampening will not be an important factor in

the earthquake response of deeply submerged structures, but may be

significant in near surface and surface-piercing structures.
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APPENDIX A

RESPONSE OF ELASTIC FOUNDATIONS

AI. Complex Foundation Impedance Representation

This study has concerned itself with the rigid body response of

large gravity-type structures on elastic foundations. Figure Al shows

such a structure in an exaggerated displaced configuration. The foun-

dation-structure interaction of such system has been described by a

13,17-J.9

number of researchers. In the case of structures which

essentially sit on the bottom, the force-displacement relations of the

system can be equated to those of a rigid massless disk resting on a

homogeneous foundation. These relationships are expressed in the form

of complex frequency dependent functions, the real part of which re-

presents foundation stiffness, and the imaginary part dampening. These

functions relate a set of harmonic forces, see Fig. A3, applied to the

rigid disk at frequency w to the resulting displacements.

The three degree of freedom system subjected to the harmonic

forces

fb(t) -b
F (w)

x x

fb (-t) Fb
(w)

iwt
Al.le . . . . .

z z

f~(t)
-b
F (w)

z

has the following force-displacement I"elations:

\-b -b
0

-b -b
F'x (w) K K X (w)

xx x8

Fb
(w)

iUlt
0

-b -b iwt
e K 0 Z (w) e

( • z
zz

-b -b -b -b
Fe (w) K

ex
0 K

ee
8 (w) Al.2
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-b -b -b
where Fx(W}, Fz(W}, and Fe(W} are, respectively the harmonic exciting

forces and moment at frequency W acting on the rigid massless disk;

-b -b -b
X (w), z (W), and 8 (w) are, respectively, the corresponding harmonic

horizontal , vertical, and angular displacements of the base. It

should be noted that for a linear system response to a real excitation

will also be real valued (see Section 2.3.2). Bars on the above

quantities indicate complex values for the general case.

The foundation impedances may be written in the form

-b -b K
b

0 Kb
K 0 K

xexx xx xe

0 -b 0 0 K
b

0) K
zz zz

-b -b b bK
ex 0 K

ee
K

ex
0 K

ee

C
b

0 cb
xx xe

+ iw 0 cb
0 . . Al.3

zz

b
0

b
C

ex
C

ee

b b
where K.. and C.. terms represent the magnitude of stiffness and

1J 1J

dampening, respectively, in the various modes.

It has been noted that the coupling between horizontal and

rotational motion of the rigid disk is negligible 13 ,19 and will, there-

fore, be dropped from further consideration.

We would now like to relate the impedance functions of the

base to the motions of the structure under consideration, Fig. A2.

This can be accomplished by noting the following relationships:
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Xb
(w) 1 0 Z X(W)

cg

Zb (w) 0 1 0 Z (w) . . . . . . Al.4

-b
1 8(w)8 (w) 0 0

where X(w), Z(w) and 8(w) are displacements of the structure center of

gravity and Z is the height of the center of gravity above the
cg

foundation surface.

We may also write

- pb (w)F (w) 1 0 0
x x

0 1 0
-b

A1.5F (w) F (w) . . . . . .
z z

Fe (w) 0 1
-b

Z Fe (w)cg

Applying Eq. Al.2 (ignoring coupling) and Al.4 to Eq. Al.5,

we have

-b
(w)

-b
X(w)F (w) K 0 Z K (w)

x xx cg xx

F (w)
-b

Z(w)0 K (w) 0
z zz

Fe (w)
-b

(w) K
ee

(w) 8(w)Z K
0cg xx

. . . . . . . Al.6

We are now able to describe the structure foundation impedances

ln terms of the appropriate impedances of the rigid disk.

A2. The Elastic Half-Space Impedance Approximation

Veletsos and Verbic 13 have presented frequency dependent ex-

pressions for the foundation impedances of Eq. Al.6 as follows:
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4.8 GR {l. + i 0.65 a (w)}
o

· A2.l

6.0 GR {1. -
0.224 a 2 (w)

o

+ i (0.75 a (w) +
o

0.179 a 3 (w)
o )}

1. + 0.64 a 2 (w)
o

· . . . . . . A2. 2

-b
K ee (w) 4.0 GR 3 h. -

0.32 a 2 (w)
____0 + i

1 + 0.64 a 2 (w)

0.256 a 3 (w)
( 0 )}

1. + 0.64 a 2 (w)
o

• • . . . . . A2. 3

where Poisson's ratio equal to one third (1/3) has been assumed and

G

R

a (w)
o

soil shear modulus of elasticity in the half space.

radius of the foundation

WR/C , where C is the shear wave velocity
s 5

A3. Evaluation of Foundation Stiffness for the Prototype Offshore

Gravity Structure

It is necessary to make a number of assumptions in order to

evaluate Eqs. A2.l - A2.3, for the prototype system. We shall simplify

these calculations by noting that we will not include additional

foundation damping in our model system, therefore, we will not consider

these coefficients further.

Shear wave velocity can be expressed as 21

C = IG1Ps s · A3.1
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where, Ps= mass density of the soil, we can now write

· •..... A3.2

We will assume that the foundation material in our system has a mean

density of

Ps 2000 kg/m 3

and that we are interested in response in the near vicinity of

w ~ 7.5 radius/sec.
mean

or,

f
mean

1. 2 Hz.

Finally, we will assume a prototype such that

R - 40 meters

Eq. A3. 2 becomes

..!.. 1. 8 X 10 5

G

where G is expressed inKN/m2 (1 KN = 1000 Newton's; 1 KN/m 2 ~ 21 lb/ft2 ).

with these assumptions, we can now write the stiffness portions

of Eqs. A2.l - A2.3 as

- 192 G • A3. 3

4.03 x 104
- 240 G (1 - )

G + 1.152 X 10 5
· A3.4

.... A3.5
)

G + 1.152 x 10 5
_ 2.56 x 10 5 G (1 _ 5.76 x 10

4
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where translational stiffness values are in KN/m and rotational stiff

ness is in (KN-m)/radian.

The stiffness relationships of Eqs. A3.3 - A3.5 are plotted

in Figs. 3.1 - 3.3 and the equivalent prototype stiffnesses used in

this study are indicated. An attempt was made to maintain a consis

tent relationship between horizontal and rotational stiffness but

vertical stiffness was considered to be independent of the other two.

An attempt was made to model three stiffness values which would

represent the range of shear modulus change experienced by a dense

sand undergoing strong shaking such that shear strain varied from

approximately 0.0001 percent to 0.1 percent, as reported by Seed and

Idriss. 20 The stiffnesses actually achieved were in this range but

somewhat short of the extremes on either end. The actual values

were dictated by material availability and space limitations in the

model.

The detail of the analysis of model foundation characteristics

are contained in APPENDIX B.
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APPENDIX B

MODEL FOUNDATION DESIGN

Bl. Analysis of Foundation Spring Characteristics

An example of a typical model foundation spring is shown in Fig.

Bl. This particular configuration was chosen because it allowed for

independent control of stiffness in axial compression and tension

(vertical) and in lateral deflection (horizontal). These stiffnesses

were controlled by varying the individual beam segement sizes and

lengths. This spring design has the added advantage of allowing the

model to be supported without friction surfaces (bearings) and retain

freedom to move in three degrees.

Calculation of the individual spring stiffnesses in the axial

(S ) and shear (S ) directions was performed by a standard two di-
zz xx

mensional frame analysis program using a compound beam idealization

with lumped masses as shown in Fig. B2. Axial and shear flexibility

were calculated by determination of deflection for unit load in each

direction with the upper and lower beam ends clamped against rotation.

The lumped mass idealization allowed the calculation of

individual spring eigenvalues so that it could be determined that the

spring resonant frequencies were well above the frequencies of interest

for the model tests. The lowest natural frequency encountered was 660

radian/sec for the soft foundation condition springs. The highest

excitation frequency encountered during testing was 120 rad/sec.

After the individual springs were manufactured their actual

static stiffness was determined by testing on a dynamometer. An example

of the results for the axial stiffness of one set of springs is shown
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in Figs. B2. The static calibration indicated that the actual spring

stiffness was within fifteen percent (15%) of the stiffness calculated

from the compound beam analysis.

Each spring was instrumented with two full bridge strain gauge

rosetts (see Fig. 3.5, Chapter 3) which were calibrated during the

dynamometer tests to indicate spring force in axial and shear directions

directly. An example of these calibration results are shown in Fig. B2.

Table Bl shows the results of the calibration of all of the load cells

used in the model tests.

It was necessary to calculate the individual spring flexure

characteristics due to end rotation in order to determine the overall

model rotational stiffness and foundation coupling.

The spring system of Fig. Bl can be viewed as a simple beam

in terms of end deflections. It can be easily shown that if the trans-

lational stiffness (force per unit of deflection without rotation) is

S ,then the lateral and rotational stiffness matrix for the beam end
xx

can be represented as

S S 1
L

xx xe 2
S . . . . . Bl.l

xx L L
Sex See - - -

2 3

In our case, the values of S were determined for each spring
xx

system by testing as discussed previously.

B2. Analysis of Overall Model Foundation Stiffness

Fig. B3 shows an idealization of model foundation system, con-

sisting of four springs located in pairs on either side of the model

center of gravity in a two dimensional plane. The model stiffness
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characteristics in the three degrees of freedom in the plane motion can

be described completely by the two individual spring stiffness character-

istics Sand S and by the system dimensional characteristics X
xx zz s

and Z. The spring stiffness characteristics are those of lateral and
s

axial deflection, respectively, of the spring end as discussed in Section

Bl. The dimensions X and Z refer to the horizontal and vertical dis-
s s

tances, respectively, that the moveable ends of the springs are located

from the center of rotation, i.e., the model center of gravity.

It should be noted in intrepretation of Fig. B4 that the upper

ends of the springs are attached to the fixed foundation of the model

and the lower ends are attached to the model. The connection of the

springs to the model and foundation are considered to be rigid, thus

the lower end of each spring deflects with the model motion.

The model stiffness in the horizontal and vertical degrees of

freedom can easily be seen to be

K 4 S
xx xx

K = 4 Szz zz

. . • • . . . B2.1

• • • • • . . B2. 2

The rotational and coupled foundation stiffness require some-

what more consideration. For the purposes of uniformity, all springs

sets were designed with a height (L) of 20. centimeters. with this

dimension and the sign convention of Fig. B4, the moment created due to

a small horizontal deflection (~x) can be written

F
ex

(4 S Z 4 Se) 6x
xx s

4 S L
4 S

xx
Z

xx s 2

K (Z- 10. ) ~x
xx s
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Therefore, the coupled stiffness is

K (Z - 10.)
xx s

. . . . . . . B2. 3

We are thus able to eliminate elastic coupling in the foundation by

adjusting the center of gravity of the model such that the distance

Z equals 10. centimeters. This was accomplished in the model and
s

verified by dry resonant tests.

The moment creat.ed due to a small rotation (fI,8) of the model

about its center of gravity can be written

4{S
xx

Z2 + S
s zz

X2 
s

S L Z
xx s

2
+

S L 2
_x;....x__} fl,8

3

Rotational stiffness is, therefore

L Z L2
K K (Z2 - __s + --) + K X2

88 xx s 2 3 zz s

133. K + K X2
xx zz s

....... B2.4

where Land Z have been taken as 20. and 10. centimeters, respectively.
s

We can summarize by saying that for a given set of foundation

springs with characteristics Sand S , the translational stiffnesses
xx zz

are fixed (Eqs. B2.1 and B2.2) and the rotational and coupled stiffness-

es can be varied by proper selection of the dimension Z and X (Eqs.
s s

B2.3 and B2.4). As mentioned before, Z has been chosen to eliminate
s

the coupled foundation stiffness.
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TABLE Bl: FOUNDATION LOAD CELL

CALIBRATION INFORMATION

(English units, see note

below)

CONDITION CELL STIFFNESS (lb/in) FORCE (lb/j.lE)
HORIZ. VERT. HORIZ. VERT.

1 A 3976.8 6619.1 0.12661 0.10202

B 4040.3 6786.2 0.12618 0.10122

C 4005.8 6467.2 0.12500 0.10134

D 3926.0 6795.7 0.12697 0.10455

2 A 2787.1 6591.8 0.05310 0.09850

B 2697.0 6611. 3 0.05247 0.09752

C 2742.9 6430.4 0.05280 0.09360

D 2767.1 6452.3 0.05332 0.10017

3 A 648.2 1642.1 0.01888 0.03774

B 697.1 1555.1 0.01887 0.03760

C 679.1 1535.7 0.01888 0.03677

D 717.8 1582.5 0.01895 0,03865

NOTE: English units were used for load cell calibration because

current EERC Earthquake Simulator Laboratory procedures and

support software required their use.
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OR

k3

k4 k5 k6 k8 k9 klO

m3 m4 m5 m7
m9
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k7 kl4
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kll kl2 kl3 kl5 kl6 kl7

kl8 NOTE:
EACH NODE HAS 3-DOF
UNLESS RESTRAINED
FOR A TOTAL OF
55- OaF.

FIGURE B1: TYPICAL LUMPED MASS IDEALIZATION OF A FOUNDATION SPRING,
55-DOF
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FIGURE B2: A TYPICAL CALIBRATION CURVE FOR A VERY STIFF FOUNDATION
SPRING/LOAD CELL, HORIZONTAL DIRECTION (IN ENGLISH UNITS)
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FOUNDATION
SPRING

MODEL SHELL

FIGURE B3: MODEL IDEALIZATION FOR FOUNDATION STIFFNESS EVALUATION
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APPENDIX C

DISCRETE DYNAMIC TIME SERIES ANALYSIS

Cl. Processing of the Raw Data Time Series

Sixty-seven (67) channels of discrete data were recorded in each

run of the submerged tank tests, as shown in TABLE Cl. Of these, only

thirty-five (35) channels were of interest in determining model response,

the rest pertaining to shaking table functions. The original data were

collected as a continuous stream of data points such that each channel

was sampled at a constant interval of 6T and the time between sampling

of one channel and the next channel was 6T/67. For this particular

experiment 6T equaled 0.01005 seconds, or a sampling rate of 99.5

samples per second per channel.

This technique is convenient from the standpoint of recording

efficiency but very awkward in analysing the time series data. For a

given channel, data point n + 1 occurs 67 data points after point n in

the recorded data stream. In addition, there is a constant phase shift

(or skew) between any individual data channel and any other channel,

depending on their relative locations. The importance of this can be

quickly seen when one considers the maximum harmonic frequency con-

sidered in these tests, 20 HZ, and notes that there was a phase shift

of

20
.360 = 72 degrees

99.5

between the first and last data channels at this frequency.

The original data were recorded on a nine-track magnetic tape

which became the property of the Earthquake Engineering Research Center



107

and is held in secure storage as a permanent record. A working copy

of the pertinent data channels, as shown in TABLE Cl, was transferred

to seven-track magnetic tape for further conversion using the CDC-6400

computer.

The working tape data was "unpacked", corrected for phase shift

between channels, combined into the fifteen (15) model system parameters

needed for further analysis, and finally restored on a third tape in

individual time series form. The fifteen time series resulting from

this conversion are shown in TABLE C2.

The program CONTAPE which performed this conversion is listed

in APPENDIX D. The algoritlmB used at each step in the conversion

process are indicated by comment statements.

There are several important points concerning the conversion

which should be noted:

a. A second order phase shift (skew) correction was applied

since a linear correction filtered the high frequency response data

excessively.

b. A base-line correction was applied by averaging all of the

data points and then subtracting the average value from the individual

data point values. This simple average correction results in a maximum

error of less than 5% of the amplitude for harmonics of approximately

3 Hz. The error decreases rapidly for higher frequencies, based on a

minimum of 300 data points. The error results when a non-integer

number of cycles is averaged.

c. Conversion from English units to S.I. units (Newton, Centi

meter, Second) was included in the response time series conversion.

d. Hydrodynamic pressure force was calculated based on a two
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dimensional gaussian quadrature arrangement of the pressure sensors.

This allowed the maximum possible efficiency in the use of available

pressure gauges. Fig. Cl shows the gauge locations for the horizontal

pressure and Fig. C2 shows vertical pressure force gauge locations.

e. All other response quantities were calculated based on the

kinematic conditions of the model in three degrees of freedom motion

about the center of gravity and individual instrument locations.

C2. Calculation of the Virtual Masses

The forms of the equations of motion as arranged for solution

were stated in Chapter 3 and are repeated here,

" ..
-C*x C2.lM* x = -M x -C x -K x . · · · · ·xxt x t x x x t

M* Z = -MzZt -C z -K Z -C*z . . · · · · · C2.2
zz t z z z

M* 8 + * ..
-MeGt

-c 8 -K 8 -c*8 C2.3
ee t Mexxt e e e

. · · · · ·

where,

x
t

x u
g

Zt Z + vg

St e e
g

= sum of relative motion and ground displacement

vectors.
And,

C. foundation dampening,
1

C~ hydrodynamic dampening due to wave generation,
1

K. foundation stiffness"
1

M. = dry mass or moment of inertia,
1
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M* virtual mass of mode i due to motion in mode j.
ij

The dots above the displacement quantities indicate first or

second derivatives with respect to time.

TABLE C2 lists the kinematic quantities which are derived as a

direct result of recorded data. These include all of the total accele-

rations and relative displacement of Eqs. Cl - C3. The structure dry

mass and foundation stiffnesses resulted from design considerations

as discussed previously. Foundation and hydrodynamic dampening were

measured in the shock tests, the results of which are shown in Chapter

4, Table 4.2.

The only remaining quantities needed were relative and total

velocities. These were calculated using a fourth order differentiation

and a second order integration scheme, respectively. The algorithms

used are shown in the subroutine VELCAL listed in the program MASSCAL

of APPENDIX E.

The virtual mass quantities of Eqs. Cl and C2 were calculated

using a linear regression technique in one variable (least squares fit)

as described in Benjamin and Cornell. 14 This technique is a special

case of the multiple regression technique used to solve for the ro-

tational and coupled virtual mass in Eq. C3 and, therefore, only the

latter will be discussed in detail.

Eq. C3 represents balance of forces in the dynamic systems which

is, in principle, satisfied at each of the N data points recorded in

the testing. If the masses are assumed to be constant for all time,

then Eq. C3 can be seen to describe a plane in three dimensional space

and can be rewritten as
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Y • . . . . . . C4

where the X. values (rotational and horizontal acceleration) represent
l

two orthogonal horizontal axes and Y (right-hand side of Eq. C3) re-

presents the vertical axis. The coefficients B
l

and B
2

represent the

slope of the plane in the Xl and X
2

directions, respectively. An

additional term could be included in Eq. C4 to describe the point where

the plane crosses the Y axis (Xl = X
2

= 0) but this is assumed to be

zero in our case.

We can summarize our data reduction problem in the following way:

For each test run we have obtained N sample points, each described by a

set of coordinates (Xl" X
2

" Y.). We wish to find the best possible
l l l

fit of a plane through these sample points. The slopes of this plane

are the coupled and rotational masses.

The solution of Eqs. Cl and C2 for horizontal and vertical

virtual mass is essentially the same except that the slope of the plane

in one coordinate is known (or assumed) to be zero. Therefore, we

are solving for the best fit of a straight line through the data points

in this case.

It can be shown 14 ,15 that the solution for the slope coefficients

of Eq. C4 can be achieved by solving a system of simultaneous equations,

• • • • • • • C5
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where
N
L: x.

N
n=l

1n
a .. L: X~ - ( ) 2

11
n=l

1n N
N N
L: x. . L: x.

N
n=l

1n
n=l In

a .. a .. L: (X. X. ) -
J1 1J n=l

1n In N

N N
L: x. L: Y

N
n=l

1n
n=l

n
b. L: (X .. Y )

1y
n=l 1J n N

The slope coefficients are then

-1
[a] {b} . . • . . . . C6

It can be noted that Eqs. C5 and C6 can easily be generalized to systems

of any number of variables. For our case, Eq. C6 becomes

• • • • • • . C7

where the a~. are the respective values of the inverted coefficient
1J

matrix of C5.

This solution process has been implemented in the Program

MASSCAL of APPENDIX E. The regression calculation is performed in

Subroutine SOLMASS and REGRESS.

The accuracy of the regression calculation is directly related

to two factors associated with the characteristics of the variables X.
1

and Y of Eq. C4. These factors are:

a. The relative size of the variance of each X. compared to Y,
1

i.e., the larger the variance of X. relative to Y, the greater will be
1

the accuracy of B..
1
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b. The statistical independence of the Xi' i.e., if Xl and X
2

are highly correlated it would be difficult to find the individual co-

efficients B .• This could occur in dynamics when two variables are in
1

phase at the same frequency.
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TABLE Cl: DATA CHANNEL LISTS FOR THE MASTER AND WORKING TAPES

CHANNEL NR. DATA RECORDED
MASTER WORKING TP. IDENTIFICATION UNITS *

0 BLANK

1 BLANK

2 1 Command horiz. displacement inches

3 2 Command vert. displacement inches

4 3 Av. horiz. table displacement inches

5 4 Av. vert. table displacement g's

6 5 Av. horiz. table acceleration g's

7 6 Av. vert. table acceleration g's

8 7 Table pitch rad/sec 2

9 8 Table roll rad/sec 2

10 9 Table twist rad/sec2

11 Table actuator force HI kips

12 Table actuator force H2 kips

13 Table actuator force H3 kips

14 Table acceleration HI g's

15 Table acceleration H2 g's

16 Table acceleration VI g's

17 Table acceleration V2 g's

18 Table acceleration V3 g's

19 Table acceleration V4 g's

20 Table actuator force VI kips

21 Table actuator force V2 kips

22 Table actuator force V3 kips

23 Table actuator force V4 kips

24 Table displacement VI inches
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TABLE Cl (cant I d.)

CHANNEL NR. DATA RECORDED
MASTER WORKING TP. IDENTIFICATION UNITS *

25 Table displacement V2 inches

26 Table displacement V3 inches

27 Table displacement V4 inches

28 Table displacement HI inches

29 Table displacement H2 inches

30 Table displacement H3 inches

31 BLANK

32 Table support force 1 kips

33 Table support force 2 kips

34 Table support force 3 kips

35 Table support force 4 kips

36 10 Model foundation force AV kips

37 11 Model foundation force AH kips

38 12 Model foundation force BV kips

39 13 Model foundation force BH kips

40 14 Model foundation force CV kips

41 15 Model foundation force CH kips

42 16 Model foundation force DV kips

43 17 Model foundation force DH kips

44 18 Model displacement VI inches

45 19 Model displacement HI inches

46 20 Model displacement V2 inches

47 21 Model displacement H2 inches

48 22 Model acceleration VI g's

49 23 Model acceleration HI g'5

50 24 Model acceleration V2 g'·s



TABLE Cl (cont 'd.) 115

CHANNEL NR. DATA RECORDED
MASTER WORKING TP. IDENTIFICATION UNITS *

51 25 Model acceleration H2 g's

52 26 Hydrodynamic pressure 1 Ib/in2

53 27 Hydrodynamic pressure 2 Ib/in2

54 28 Hydrodynamic pressure 3 Ib/in2

55 29 Hydrodynamic pressure 4 Ib/in2

56 30 Hydrodynamic pressure 5 Ib/in2

57 31 Hydrodynamic pressure 6 Ib/in2

58 32 Hydrodynamic pressure 7 Ib/in2

59 33 Hydrodynamic 8 Ib/in2pressure

60 BLANK

61 BLANK

62 BLANK

63 BLANK

64 34 Model foundation acce1. Vl g's

65 BLANK

66 35 Model foundation accel. Hl g's

*NOTE: Current EERC Earthquake Simulator Laboratory procedures and

support software require use of English units.
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TABLE C2: TIME SERIES RECORDED ON MODEL RESPONSE TAPES

RESPONSE TAPE
CHANNEL NR.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

CHANNEL
IDENTIFICATION

Horizontal foundation acceleration
recorded on the shaking table

Vertical foundation acceleration
recorded on the shaking table

Angular foundation acceleration
recorded on the shaking table

Relative horizontal displacement
of the model

Relative vertical displacement
of the model

Relative angular displacement
of the model

Horizontal foundation force on
the model

Vertical foundation force on
the model

Rotational moment on the model

Total horizontal acceleration
of the model

Total vertical acceleration of
the model

Total angular acceleration of
the model

Horizontal or vertical force due
to integrated hydrodynamic pressure

Horizontal foundation acceleration
recorded on the model foundation

Vertical foundation acceleration
recorded on the model foundation

WORKING TAPE DATA
CHANNELS USED

5

6

7

19,21

18,20

18,20

11,13,15,17

10,12,14,16

18-20

23,25

22,24

22,24

26-33

35

34
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APPENDIX D. CONTAPE--PROGRAM LISTING



FORTRAN COMPILATION

120

RUN 2.3CO-75274 26 APR 78 19:12:33 PAGE N04

PROGRAM CONTAPEITAPE1,TAPE2,INPUT,OUTPUTJ
COMMON INAME,IDRLN,NLCH,TINTV,NRUN,CHANIDlI28J,STPID.DATE,

+ CCAL(128),ITYPEI067J,NCHI35J,EClATPd35),EDT(35,30 7 ),

+ SDATA(35),TEMP(2,35), ZERO(35)
DIMENSION CHLA8ELI15~,CONDATAlI5,3051,D~AXlI5J.DMIN(15)

DATA CHLABEL/6HT XACC.6HT ZACC.8HT ANGACC,lHX,IHZ,5HANG-Y,2HFX,2HF
+Z,2HMY, 4HXACC,4HZACC,6HANGACC,3HFXP,6HF ZACC,6HF XACC/

DATA TMASS,RMASS,ZCG/249.R27,152427.5,5.28509/
COMMON /PLT/CONDATA,OMAX,DMIN
LFET1=LFNl5LTAPEIJ

C I NPUT OAT A E"lTERED IN LB- INCH UNI TS
5 READ IOOO,NPRINT,NFILS,SX,SY,XS

1000 FORMATlI2,13,15X,3FIO.1)
IF{SX.LE.O.l GO TO 9JO
IFlNFILS.LE.OI NFILS=I

C INITIALIZE TAPE FILES FOR READING BLOCK BINARY
DO 500 NF=I,NFILS
CALL FETZFROlLFET1.5LTAPE1)
CALL BLOKll I

C READ HEADING AND CAL. DATA FROM ROUGH DATA TAPE
READli J INAME, NDRLN, NLCH, TINTV ,NRUN
IF l E OF , 1 ) 9 00,1 0 a

100 READll )CH.<\NID,ST~ID.DATE
REAO([ ICCAL, HYPE
NLC=NLCH+ 1

C FO~M A LIST OF DATA CHANNEL NUMBERS
f'.J=1
DO 123 1=1. NLC
IF(ITYPE{IJ.LT.JJ GO TO 120
NCHlN)=I-1
N=N+I

120 CONT INUE
C READ ROUGH DATA AND FORM ZERO VECTOR

NRT=O
DD 130 I=I,NDRLN

13:> ZEROlI)=O.
DO 134 J=I,1 000
READ{I) lEDATA(I), I=I,NDPLN)
I F (EOF, 1) 1 35, 1 3 1

131 DO 133 I=I,NDRLN
ZEROlI )=ZEROlI )+EDATAI I)

C FORM ROUGH DATA MATR1X FOR 307 POINTS
IF INRT-30n 132,1.32 y I33

1"32 EuTll,J)=F:OATAII)
133 CONT INLJE

NRT=NRT+I
1"34 CONTINUE
135 CONTINUE

FNRT=FLOAT(NRT)
DD 140 1=I.NDRLN

C COMPUTE ZEROES
ZERO(I)=ZERO(I)/FNRT

C ESTABLISH INITIAL VALUES FOR SWEEP POSITlnN CORRECTION
TE MP II , I ) = ED T I I ,1 )

TEMPl2,1 )=EDT( 1,2)
140 CONTINUE

DO 1501=1,15
D"IAXI I) =DM INI I 1=0.

150 CONTINUE
NPOI NTS=305
IFINRT.LT.307) NPOINTS=NRT-2

C



FORTRAN COMPILATION

C START ?RJCESSING DATA
C

121

CW N 2 • 3C J - 7 S 2 7 4 26 A:>R 78 19:12:33 PAGE NO.2

C:LCH="'LOAT(NLCH)t-I.
FL CH Z= FLCH*FLC H
NREC =J
DO ZZO K=I,NPOINTS

C INTERPOLATE FOR SWEEP POSITION CORRECTION
::>0 ZOO 1=1 ,NDRLN
KK=K +2

ED ATil. ( I ) =EDT ( I , KK )

C:CH=FLOAT(NCH( I »t-l.
FCHZ=FCH*FCH
5D ATil. ( I ) = TE MP( 1 • I ) "" ( (-FL CI-"~I=CHt-F CH Z) / ( Z. *Fl,.. CHZ ) ) -TEMP ( Z, I ) *( FC HZ

t- -Z.*FLCH*FCHI/FLCH2t-EDATA(I)*(Z.*FLCHZ-3.*FLCH*FCHt-FCH2)/(Z.*
t- FLCHZ)

SO A T A ( 1) =S DA T A ( I ) - Z E R 0 ( I )

TEMP{l, I )=T<::MP( 2, I)
TEMP(Z,I)=EDATA{I)

ZOO CONTINUE
Z)5 CONTINUE

C FORM THE CONVERTED RESJONSE DATA VECTORS
C
C

C EXCITATION (NORMALIZED TO G)
C
C HORIZONTAL TABLE ACC.

CONDATA(I,K)=SDATA(S)
C VERTICAL TABLE 1\.CC.

CONDATA(Z,KI=SOATA(6)
C ANGULAR TABLE Ace.

CONDATA{3,K)=-SDATA(7)
C MODEL FOUNDATION VERT. ACC.

CON!)ATA( 14,K )=SDATA( 34)
C MODEL FOUNDATION HORIZ. ACC.

CCNDATA(15,K)=SDATA(3S1
C

C MODEL !)ISPLACEMENTS (SI UNITS - CENTIMETERS, RADIANS)
C

C HORIZONTAL
CONDA T A(4, K) ={ SO!!> T 11.( Z 1 ) + ( SD AT11.( 19) -SOli. TA( 21 ) ) *.4 1~91 6) *z. 54 0 0 1

C VERTICAL
CO NO ATil. ( 5 • K) =- ( { SDAT A( 1 8 ) + S D AT A( Z0 ) ) / Z • ) * 2 • 54 00 1

C ANGULAR
CONDATA{6,K)=(SDATA(ZOI-SDATA(181)/25.3IZ5

C

C ACCELERATIONS (NORMALIZED TO G=Q80.665)
C

C ANGULAR
CONDATA(12,KI=(SDATA(24)-SDATA{ZZ»/.J734936

C HORIZONTAL
CGNDATA(10,K)=C{-SDATA{Z5)+SDATA(Z3)}/~.)+.OOZ6689*CONDATA(12,~)

C VERTICAL
CONDATA{ll.K)=-(SDATA(ZZI+SOATA(241)/Z.

c
C FORCE AND MOMENT (51 UNITS - NEWTONS, NEWTON-CENTIMETERS)
C

C HORIZONTAL
CONDATA(7,K)=(SDATA( 11)+SDATA(131+SDATA(151+SDATACI7}-CONDATA(6,K}

+ *o00403509*SXI*4448.Z2
C VERTICAL

CONDAT A(8. K ) = ( S DA T A( 10 ) -/-SDA T A( 12) + SDA Til. ( 14} ... SD ATA( 161 ) *4448. 22
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C A"JGULAR
CONDATA(9,K)=CONDATA(6,K)*(SX*2l.4753+SY*XS*XS)*ll.2Q85

C HORIZONTAL FORCE DUE TO PRESSURE ON THF POSIT. HALF-CYLINDER
CONDATA(13,K)=-261.4634*(SDATA(26)+SDATA(Z7»-255.5173*(SDATA(28)+

+ SDATA (29) )-244.3226*( SDATAC 30) +SDATA( 31»- 28.6297*( SDATA( 32) +
+ SDATA(33»

C

C THE FOLLOWING ALGORITHM IS USED WHEN THE VERTICAL PRESSURE FORCE IS
C BEING CALCULATED:
C

C TOTAL VER~lCAL FORCE ON CYLINDER TOP, FROM PRESSURE GAUGES (NEWTONS)
C CONDATA(13,K}=-109.377*(SOATA(26)+SDATA{29»-776.423*(SDATA(27)+
C + SDATA(30»-861.141*{SDATA(28)+SDATA(31)}
C
C NOTE THAT THIS EXPRESSION CO~PUTES THE TOTAL VERTICAL FORCE WHILE
C THE EXPRESSION ABOVE FOR HORIZONTAL PRESSURE FORCE YEILDS ONLY THE
C FORC~ ON HALF THE CYLINDER, I.E., 1/2 OF THE TOTAL FORCE.
C

C

NREC=NREC+l
C FIND THE MAXIMA AND MINIMA FOR THESE FILES

JD 2 10 [ = 1 , 1 5
IF{DMAX( 1) .LT.CONDATA( I,K» DMAX( I )=CONOATA(I,K)

210 IF(DMINC I} .GT.CONDATA( I ,K)} DMIN( I )=CONClATA{ I ,K)
C

220 CONTINUE
C
C WRITE STRING DATA TO THE OUTPUT FILE

RRI"JT 2004,NF.NRT
2034 F~RMAT(/////15,5X,*TOTALNR. DATA PTS.=*,I5/)

WRITE(2) INAME,STRID,NREC,TMASS,RMASS,ZCG,SX,SY,XS
DO 240 1= 1 , 15
PRINT 2001, I,INAME,STRID,DATE,NRUN,CHLABEL(Yl,TINTV,"JREC,DMAX(I),

+ DMIN(I)
2001 FORMAT( * NO.*,I3,10X,* DATA FILE NAME: *,AIO,lOX,*STRUCTURE: *

+ ,AI 0,1 OX,*OATE: * ,A6,lOX,*RUN NO.*. 13/* OATA: *,AIO, lOX, *SAMoLE I
+NTVL:*,F8.5,*SEC.*,lOX,*DATA POINTS:*,YS/* DATA MAX:*,l P ,E12.3,
+ 10X,*DATA MIN:*,E12.3/)

WRITE(2) I,INAME,STRID,DATE.NQUN,CHLABEL([),T[NTV,NREC,DMAX(I),
+ fJMIN{I),(CONDATA(I,K),K:l,NREC)

IF(NPRNT) 240,240,235
235 PRINT 2002,(CONDATA(I,KI,K=l,NREC}

2002 FDRMAT(lP,10E12.3)
240 CONT INUE

ENDFILE ?
4g0 PRINT 2003

2003 FOR~AT(//* END-OF-FILE*)
500 CONTI"JUE

GO TO 5
900 STOP

END
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PROGRAM MASSCAL(TAPE2,TAPE3, INPUT,OUTPUT,PUNCH)
C

C THIS PROGRAM:
C (AI DET~RMINES THE CHAPACTERISTICS OF THE INDIVIDUAL
C MOD~~ HARMONIC RESPONSE TIME SERIES WITH RESPECT TO A~PLITUDE AND
C FRE QUENCY,
C <B) CALCULATES A RELATIVE VELOCITY TIME SERIES FOR
C EACH DEGREE OF FREED~M,

C (Cl CALCULATES THE INERTIA COEFFICIENTS IN
C THREE DEGREES OF FREEDOM AND HORll.-ROT. COUPLING BASED ON A
C STATISTICAL 8EST FIT.
C

C PROGRAMED BY R.C. BY'lD < 1978)
C

COM!o\ ON ') ( 15, 305) , D"1 ( 6 ) ,FM ( 6) ,CHLAB EL ( 151 , l R~ 6, 102) , T [ NTV, NREC,
+ NZR(6),INAME,PHI,RF(3),DEPTH,CD(3),KK
CDM~O~ /REG/ A(Z,2),BYl,8Y2,SSDX,SSDY,SSDYD,FNP,VM(4),Rl,R2,SXl,

+ SX2,SSDXD
COM"IC'J /DAMP/K(3),f)O(3),MASS(3I, C(3),ZCG,SX,SY,XS,G(3)
CO~~O~ /LD/ DMAX( 15)
REAL MASS,K
DATA MASS,G/249.827,249.827,172094.8,980.665,980.665,1./
~ATA VM/173.785,257.454,87116.77,3890.96?/
N'" T= 0

5 READ 1000,KK,NFILS,CD,DEPTH
1)')J FORMATtIl,I4,4FI0.01

II=(NFILS.LE.OI GO TO 900
IF(CD(Z}.EQ.O.} CD(ZI=CD(l)
IF(CD(31.~a.0.) CD(31=CD(I)
V~(2)=5.0681*DEPTH

:>HI=2.;~ASIN(1.)
C _DAD TIME SERIES D~TA FROM TAPE FOR EACH TEST RUN

00 50) NF=I,NFILS
C READ FIL~ HEADING RECORD

qEAD(ZI INAME,STRID,NQEC,TMASS,RMASS,lCG,SX,SY,XS
IF (E OF, 21 900,1 0

10 NFT=NFT+l
C LOAD INDIVIDUAL TIME SERIES

12 CONTINUE
READ(21 [,I~AME,ST~ID,DATE,NRUN,CHLA8EL(I),TINTV,NREC,DMAX(II,

+ DMIN, (O( I,Ll, L=l,NREC)
IF(EOF,2) 20,15

15 GO TO 12
20 CONTINUE

IF(DMAX(2).LT •• 035.0R.DEPTH.LE.O.1 GO TO 25
PRINT I001,NFT,INANlE,DEPTH

1001 FOR~AT(lHl,* FILE NO.*,I4,4X,*TEST NO. *,AIO,~X,*DEPTH=*,F5.1/1

25 CClNTINUE
CALL ~AMPING

IF(DMAX(21.LT ••035.0R.VM(Z).LE.O.) GO TO 500
CALL TMSER
CALL VELCAL
W'lITE(3) INAME,STRID,NREC,MASS,VM,K,FNI,TINTV,DM,D~,CD,OEPTH

CALL SOLMASS
ENDF ILE .'3

50J CONTINUE
KK=O
GO TO 5

900 STOP
END
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c
C COMPUTE HARMONIC TIM~ SERIES CHARACTERISTICS
C

COMMON D(15,3051,~M(6),FMI61,CHLABEL(15),ZRI6,102),TINTV,NREC,

+ NZR("», INAME,PHI,RF(3),OEPTH,CD( 3),KK
NTS=e,
~T=TINTV

DT2 =OT /2.
C FIND AMPLITUDES ANCJ ZERO CROSSING TIMES FOR EXCITATION AND RESPONSE

006) I=I,NTS
NA=NZ=O
T=SA=SAA=ST=STT=AJMAX=?
TEMP=ADMIN=lJOO)OJOOOJ.

C

N\=1
N2=NREC-3
rJO 4') J=Nl,N2

C INS=RT A 3RD ORDER EST. POINT INTO JATA TIME SERIES
T=T+0T
TEMPLST=TEMP
PA=!)(I,Jl
~8=D( I, J+l I
PC=rJ (I ,J+2)
P)=J(I,J+31
TEMP=(-PA+9.*PB+9.*PC-PD)/16.

C CHECK FOR ZERO CROSSING
IF(P9*TEMP) 21,24,22

2\ ZT= (A8S (P8) / (ABS( P'31 +ABS< TEMP) ) ) *DT2
GO TO 25

22 IF(TEMP*PC) 23,24,26
23 ZT=DT2+(ABS(TEMP)/(ABS(TEMP)+ABS(PC1»*DT2

GO TO 25
24 IF(P8.EQ.O.) ZT=O,

IF(TEMP.EQ.O.l ZT=DT2
IF(PC.EQ.O.l GO T~ 40

C RECORD ZERO CROSSING TIME
25 CJNT P.J UE

IF(NZ.GEolJ2) GO TO 4,)

NZ=NZ+l
ZR( I,NZ)=T+ZT
GO TO 40

C CHECK FOP. MAXIMA OR MINIMA
26 PB=ABS(PB)

TFMP=ABS(TE"'IP)
IF(P8.GT.TEMPLST.AND.PB.GT.TEMP) GO TO 27
I~(TEMP.GT.PB.AND.TEMP.GT.ABS(PC» GO TO 28
GCl T~ 40

27 NA=NA+ 1
AM=PB
GO TO 29

28 NA=NA+l
AM=TEMP

C SUM AMPL. AND AMPL. SQUARE FOR STATISTICAL ANALYSIS

29 SA=SA+AM
SAA= SAA+AM*AM
IF(AM.GT.ADMAX) A9MAX=AM
I~(AM.LT.ADMIN) ADMIN=AM

40 CGNT INUE
NZR(I)=NZ



FORTRAN COMPILATION

126

RUN 2.3CO-75274 26 A~R 78 19:12:33 PAGE NO.2

C CALCULATE HALF-PERIOOS ANO SUMS FOR STAT. ANAL.
NHP=NZ-l
00 50 K=l,NHP
H P= Z R I I , K + 1 } - Z R ( I , K )
ST=ST+HP
STT=STT+HP*HP

50 CONTINUE
C CALCULATE PERIOD AND AMPL STATISTICS

FNHP=FL OAT (NHP)
FNA=FLOATINAl
HPM= ST /FNHP
OM{ I) =SA/FNA
DM=2.*HPM
F"I( 1)=1 ./PM
IF(I.LE.:3) RFIII=2.*PHI*FM{I)
HPV=(STT-FNHP*HPM*HPM)/{FNHP-l.)
PSD=2.*SQRT(HPV)
DV=(SAA-FNA*DM( I)*D'HI »/{FNA-l.)
DSO=SQRT{DV)

C NORMALIZ~ STANDARD DEVIATION AS A PERCENTAGE OF THE MEAN VALUE
i)SD= I DSD/DMI I» *1 00.
PSD=(PSD/p"Il*lOa.
P"I NT 1002, I ,C HLA'3:':L I I ), FM I I) ,PSD, DM ( I ) ,OS D, ADM AX, ADM IN, NHP, NA

10J2 FQRMATI15,4X,AIJ,4X,*FM=*,F6.2,* HZ*,~X,*PSD=*,F6.1,5X,

+ *DM=*. E12.3,4X,*DSD=*,F6.1,4X,*MAXMIN=*,EIO.3,EII.3,
+ * NHPNA=*, 15, IS)

60 CONTINUE
RETURN
END
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C
C CALCULATE RELATIVE VELOCITY TIME SERIES FOR EACH DOF
C

CO MMON Q( 15, 305) , OM ( 6) ,F M(6) ,CHLAB EL ( 15) ,Z R( 6, 1021 , T I NTV, NREC,
+ NZR(6), I NAMF, PHI, RF (3). DEPT H, CDr 3 ),KK

CDM"10\l /DAMP/K{3I,DP(),MASS(3), C(3),ZCG,SX,SY,XS,GI)
DT=TINTV

C

N2=NREC-2
00 20) 1=1,3
1)0 100 J=3,N2

C RESTORE FOUNDATION ACCELERATIONS IN POSITIONS 13-15
o ( 13 , J ) =0 I 15 , J )

D{15,J)=D(3.J)
c
C CALCULATE THE RELATIVE VEL. 8Y DIFFERENTIATION OF THE RELATIVE OISPL.
C USING A 4TH OR~ER SCHE~E

DI I , J) = ( ') ( 1+3. J-2 I -8. *Dl 1+3, J-l ) +8 .*'H 1+3, J + 1 )-0 ( 1+3, J +2 ) ) / ( 12. *
... OT)

C

1 0 0 CON TIN UE
200 CONTINUE

R!':TURN
END



FORTRA~ COMPILATION

SUBROUTINE SOLMASS

127

RUN 2.3CO-75274 26 APR 78 19:12:33 0AGE NO.

C

C SOLVE FOR THE VIRTU~L MASS BY LINEAR CR MULTIPLE REGRESSION AND
C RECORD IN COEFFICIENT FORM
C

CCMMO~ D(lS,3051,DM(61,FM(6J,CHLABEL(151,ZR(6,102),TINTV,NREC,
+ NZR(6),INAME,PHI,RF(3),DEPTH,CD(3',KK

COMMON /DAMP/K(3J ,DP(31,MASS(3). C(3),ZCG,SX,SY,XS,G(3)
COMMON /REG/ A(2,2),BYl,BY2,SSOX,SSDy,SSDYO,FNP,VM(4J,Rl,R2,SXl,

+ SX2,SSDXD
REAL MASS,K
NLAST=NREC -2

C INITIALIZE THE SUMS
SHA=SVA=SRA=O.
SYH= SYV=SYR=O.
SSHA=SSRA=SSVA=O.
SSYH=SSYV=SSYR=O.
SPHARA=soHAYH=SPHAYR=O.
SPRAYR=SPVAYV=J.
SYHD=SYVD=O.
SSVHD=SSYVD=O.
SPHAYHD=SPVAYVD=).
SVGA=SSVGA=O.

C FORM THE SUMS OF INDEP. VARIABLES, SQUARES, AND CROSS-PRODUCTS
C

\1°=0
DO 50 J=3,NLAST
ND=NP+ 1

C

C ACCELERATION SUMS AND SUMS OF SQUARES
D ( 1 0 • J I = D ( 1 0 , J J *G ( 1 )

D ( 1 1 , J ) =D ( 1 1 , J ) *G ( 1 )
D( 14, J I =D ( 14, J , *G ( 1 )
ZA=D(11,JJ-D(14,J)
SH A= SH A+ D( 1 0 • J )
SVA=SVATD( 11. J)
SVGA=SVGA+ZA
SRA=SRA+D( 12,Jl
SSHA=SSHA+D( 10, J )*D( 10,J J
SSVA=SSVA+D( II ,Jl*D{ 11, J)
SSVGA=SSVGA+ZA*ZA
SSRA=5SRA+D(12,J)*D(12.Jl

C

C DEPENDENT VARIABLES AND SQUARE SUMS
C

YH = - MAS S ( 1 ) '~D ( 1V , J J -C ( 1) *D ( 1 , J ) -K ( 1 ) '~D ( 4, J )
YV=-MASS(21*O(11,J)-C(21*D{2,JI-K(2)*D(S,Jl
YR=-MASS(3l*D( 12,JI-C(3)*D(3,J)-K(3l*D(Q,J)

C CALCULATE THE UNDAMPED VARIABLE
YHD=YH+C{ll*O(I,J)

C CALCULATE THE DEPEND. VAR. FOP ADDED MASS (CQRPECTED FOR CONST. LOADl
YVD=YV-VM(2l*D(14,Jl

C
SYH= SYH+YH
SYV=SYV+YV
SYP=SYP+YR
SYHD=SYHO+YHD
SYVD =SYVD +YV")
SSYH=S SYH+YH *YH
sSYV=S SVV+YV'~YV
SSYR=SSYR+YR*YR
SSYHD=SSYHD+YHD*YHD
SSYVD=SSYVO+YVD*YVD
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C

C CROSS-PRODUCTS WITH HORIZ ACC.
SPHARA=SPHARA+D(lO,J)*O(12,J)
SPHAYH=SPHAYH+D(10,J)*YH
SPHAYR=SPHAYR+D(lO,J)*YR
SPHAY~D=SPHAYHD+O(lO,J)*YHD

C

C CROSS-PRODUCTS WITH VERT ACC.
SPVAYV=SPVAYV+YV*O( 11, J)
SPVAYVD=SPVAYVO+YVD*ZA

C

C CROSS-PRODUCTS WITH ROT. ACC.
SPRAYR=SPRAYR+D(12,J)*YR

C

50 CONTINUE
FNP=FLOAT(NP)
PRINT g.,) 1 ,FNP

901 FOR~AT(///* NR. OF DATA PTS. USED IN ANALYSIS =*,1"5.0//)
C
C HORIZONTAL MODE

IF(DM(1).LT •• 02) GO TO 55
N=l

C FORM REGRESSION COEF. MATRIX
SSDX=SSHA-SHA*SHA/FNP
SSDXO=SSDX
8Y1=SPHAYH-SHA*SYH/FNP
9Y2=SPHAYHD-SHA*SYHD/F~

SSO Y=S SYH- SYH* S YH/FNP
SSDYD=SSYHD-SYHD*SYHD/FNP
R 1=SYH /FNP
R2=SYHD/FNP
SX1=SHA/FNP
SX2=SX 1
PRINT 1000,N

1000 FORMAT(////* COEFFICIENTS FeR MODE *,11/)
CALL Rf=GRESS(N)

C
55 CoNT I"lUE

C VERTICAL MODE
I F ( DM( 2 I • LT •• 02) GOT 0 60
N=2

C FORM REGRESSION COEF. MATRIX
SSOX=SSVA-SVA*SVA/FNP
SSOXO=SSVGA-SVGA*SVGA/FNP
BY1=SPVAYV-SVA*SYV/FNP
'3Y 2= SP VAYV 0- SV GA *SYVO/F NP
SSDY=SSYV-SYV*SYV/FNP
SSOYO=SSYVO-SYVD*SYVD/FNP
Rl=SYV/FNP
R2=SYVD/FNP
SX1=SVA/FNP
SX2=SVGA/FNP
PRINT lOOO,N
CALL REGRESStN)

C

60 CONTI"lUE
C ROTATIONAL MODE

IF(FM(6).GE.20.5.0R.DM(1l.LT •• 021 GO TO 65
N=3

C FORM REGRESSION COEF. MATRIX
A( 1,1) =SSRA-SRA*SQA/FNP
A(I,2)=A(201 )=SPHARA-SHA'~SRA/FNP

A(2,2)=SSHA-SHA*SHA/FNP
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~Yl=SPRAYR-SRA*SYR/FNP

RY2=SPHAYR-SHA*SVR/FNP
SSDV=SSYP-SYR*SVP/FNP
R1=SYR/FNP
SXl=SPA/ooNP
SX2=SHA/F"lP
PRINT 1001J,N
Ct\LL REGRESS(N)

C

65 CCNTI"lUE
RETURN
END
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C

C CALCULATE DAMPING FOR ~ACH DEGREE OF FR=EDJM USING DATA FROM SHOCK
C TESTS
C

COMMON D(15,305l,D~(6l,FM(6),CHLABEL(15),ZR[6,102),TINTV,NREC.

T NZC;>(6l,INAME,PHI,RF(3l,DEPTH.CD<:3),KK
COMMON /DAMP/K(3l,DP(31,MASS(3l, C(~l,lCG,SX,SY.XS,G(3'

COMMON /LD/ DMAX(1Sl
REAL MASS, K
IF(KK-ll10,5,15

C STIFFNESS INPUT IN KG, CM, SEC UNITS
5 READ 10JO,K

1000 FORMt\T(3F20.0l
KK=KK+l
GO TO IS

1J CClNT INUE
C CONVERT STIFFNESSES TO SI UNITS (KG, C..." SECl

K( 1)=SX*175.126
K(Z)=SV*175.126
VS=ZCG-l.250
CVSS=VS*VS-21.333*(.1875*VS-l.)
K(3)=(SX*CYSS+SV*XS*XS)*1129.85

15 CONTINUE
IF(DMAX(2l.LT ••035.0R.DEPTH.LE.0.l RETURN
PRINT 1001 ,K
PRINT 1002,CD

1001 FORMAT(/3X,*Kl=*,F9.0,5X,*K2=*.F9.0,5X,*K3=*,F12.0l
1002 FJRMAT(3X,*CD=*.3F6.3/l

')0201=1,3
C CALCULATE DRY CRITICAL DAMPING

DP( I l=2.*SQRT(MASS( I l*K( III
C ESTIMATE MATERIAL DAMPING TO BE A PERCENT OF DRV DAMPING

C ( I 1 =C) ( I ) *D P ( I l
20 CONT I"lUE

RETURN
E"lD
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C

C PERFORM THE REGRESSION OPERATION, COMPUTE STATISTICS, AND OUTPUT
C TO CARDS AND TAPE
C

COM MON D( 1 5, 3 J 5 ), DM( 6 ) , F M(6 ) , CHL ABEL ( 15 ) , ZR( 6. 10 2) , T tNT V• NREC ,
+ NZR (6) • INAME.PHI ,RF (3) ,DEPTH.CD( 3), KK

COMMON /DAMP/K(3),DP(3).MASS(31. C(3J,ZCG.SX,SY,XS,G(3)
COMMON /REG/ A(2.21,BY1,BY2,SSDX,SSDY,SSDYO,FNP.V"I(4l,RI.R2,SXl.

+ SX2,SSDX:J
REAL "iASS.K
IF(N.EQ.3) GO TO 100

C CALCULATE THE "iASS COEFFICIENTS WITH AND ~ITHOUT HYDRODYNA~IC ~AMPING

B1=BY1/SSDX
B2=BY2/SSDXD

C CALC. STANDARD DEV.
V1=(SSDY-Bl*9Yl)/(FNP-2.)
V2=(SSDVD-B2*SY2)/IFNP-2.)
S:) 1·= SQR T( ABSt VI /SSDX ) ) / Bl
SD2=SQRT(ABS(V2/SSDXD) )/92
Rl=RI-Al*SXl
R2=R2-B2*SX2
SDRl=SQRT(ABS(Vl/FNP»/RI
SDQ2=SQRT(ABS(V2/FNP»/R2
IF(~.EQ.2oAND.VMt2).LE.0.)GO TO 50
CAMI =Bl/VM(NI
CAM2=B2/VM(N)
GO TO 60

50 CAM 1 =C AM2 = O.
6J CONTINUE

PRINT IJOO.Bl.SDl.R1,SDR1
PQINT 1001.B2.SD2.R2.SDR2
PRINT IJ02.CAMl,CAM2
PUNCH 1003.INAME.FM(N+3),N,FNP.CAMl,CAM2.S01.SD2.DEPTH
WRITE(3) N.FNP,Bl.B2,SDl.SD2.CA~1.CAM2

RETURN
1000 FDRMAT{3X.*MAi=*.F12.2.T25.*SO=*.F12.2,T45,*RES=*.E10.4.5X.*SDR=*,

+ FIJ .. 21
1001 F~RMAT(3X,*MA2=*,F1202.T25.*SD=*,FI2.2,T45.*RES=*.EIO.4.5X,*SO~=*,

+ FIO.2 1
1002 FDRMAT(3X.*CAMl=*.FIO.4,T25,*CAM2=*,FI0.4//)
1003 F DRM AT ( Al 0 ~ F 4. 1 • ! 1 ,F 5.0.4 E I 0 .4 ,F5. 1 )

C CALC. MODE 3 COEF.
100 CONTiNUE

C FORM THE iNVERSE OF MATRIX A

C>E TA =At 1 • I ) * A( 2 • 2 ) - A ( 2 , 1 ) * A( 1 • 2 )
B1=A(2.2)/DETA
B2=AI1,11/DETA
83=-A( 1 ,21 /fJETA

C CALC. REGRESSION COEF.FOR MASSES
R M 1 = B 1 *B V 1 ~ B 3 * BY 2
RM2=B3*8Vl+B2*BV2

C CALC VARIANCE AND STANDARD DEV.
VV=(SSDV-RMl*BVl-RM2*BY2)/(FNP-3.J
SDl=SQRT(ABSIB1*VY»
SD2=SQRT(ABS(B2*VV»
SDl=SDl*iOO./R~l

SD2=SD2*100./RM2
Rl=Rl-RMl*SXI-RM2*SX2
R2=SDQ 2=0.
CAMl=RMl/VM(3)
CAM2=RM2/VM( 4)
SDRl=SQRTIABS(Vy»
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PRINT 1000.RM1,SDl,Rl,SORl
PRINT 1001,RM2,SD2,R2,SDR2
PRINT 1002,CAMl,CAM2
PUNCH 1003.INAME,FM(6).N,FNP.CAMl,CAM2,S01,SQ2,DEPTH
WRITE(3) N.FNP,RMl.RMl,SDl,SD2,CAM1,CAM2
RETUR!\I
END
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PROGRAM SUBTANK( INPUT,OUTPUT,PUNCHl
C A PROGRA~ FOR STEP-BY-STEP INTEGRATION OF A MULTI-DEGREE-OF-FREEDO~

C SYSTEM, BASED ON THE METHODS O~ ~.L. WILSON, CODED BY R.C. BYRD
DIMENSION A(4JJ~)

COMMON FOP,SK(3),DMAX(6),DMIN(6),NA~E

PRINT 990
990 ~ORMAT(IHl,IX, ********************* SUBTANK ******************

+*** /2X,*A PROGRAM FOR CALCULATING THE qESPONSE OF A RIGID*
+ /2X,*SUBMERGED TANK ON A FLEXIBLE FOUNDATION TJ RA~DOM*

+ /2X,*FXCITATION -- CODED BY R.C. BYRD {1978}*
+ /~ *********************************
+*******************//)

C READ THE SYSTEM DIMENSIONS AND OUTPUT FORM\T
READ l~OO,NE,NDOF,NIN,NOUT,FOR

IF(NOUT.LE.NIN} NOUT=NIN+I
PRINTIJOl,NDOF,NIN,NOUT

1000 FORMAT(II ,14,2I5/AI0)
1001 FORMAT( /* NO. OF DOF=*,15/2X,*NO. OF INPUT TIME STEPS=*,I5/

+ 2X,*NO. OF OUTPUT TIME STEPS=*, [5/)
MAX=4000
NM=l
NN=NDOF*NDOF
NC=l+NN
NS=NC+NN
NXT=NS+NN
NU=NXT +2*NDOF
NUI=NU+NDOF*NOUT
NTOT=NUI+NDOF*3-1
IF(NTOT.GT.MAX) GO TO 900

C READ THE INTEGRATION COEFFICIENTS AND TIMF STEP
READ l002,OEL,ALF,THE,DTT

1002 FORMAT(4FI0.0)
PRINT 1~03,DEL,ALF,THE,DTT

1003 FORMAT(/2X,*INTEGRATICN COEFFICIENTS-*,2X,*DEL=*,FIO.6,
+ 5X,*AL~=*,FIO.6, 5X,*THE=*,FI0.6/T30*~TT=*,FI0.6,* SEC.*/)

CALL HYDR03 (A{NMl,A(NC),A(NS),A{NUI,NIN,NOUT,DTT,NE)
CALL STEPS(A(NS),A(NM),A(NC),A(NUI),A{NU),NDOF,NOUT,DTT,DEL,AL~,

+ THE)
CALL OUTPUT(A(NU),A{NXTI,NDOF,NOUT,NE)
GD TO 950

900 PRINT 1004
1004 FORMAT(//* ********** THE PRCBLEM EXCEEDS THE CURPENT STORAGE LIMI

+TS -- ADJUSTMENTS MUST BE MADE ***********1
950 CONTINUE

STOP
END
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SUBROUTINE HYDR03 (XM,C,S,R,NR,NOUT,DT,NE)
C THIS ROUTINE READS THE HYDRODYNA~IC COEFFICIENTS, SYSTEM CONSTANTS,
C AND GROUND ACCELERATION AND ESTABLISHES THE MASS, DAMPING, STIFFNESS,
C AND LOAD MATRICES FOR A SYSTEM WITH 3 RIGID BODY DOF.
C CODED BY R. C. BYRD (1978).

l) I ME NS I ON XM ( 3 ,3) , C ( 3 ,3) ,S ( 3, 3) , R ( 3, 1 ) ,
+ V(3),PB(3l,PC(}).PD(}).DCn,QM(3)

COMMON FOR,SK(3),DMAX(6),DMIN(6),NAME
READ 1000.DMASS,RMASS.HS,RAD

C NOTE: ALL UNITS ARE ( KG, CM )
PRINT 903,RAD,HS,DMASS,RMASS

903 FORMAT(///2X,*TANK CHARACTERISTICS:*//
+ 16X.*RADIUS=*,FIO.1/
+ 16X,*HEIGHT=*,FIO.1/
+ 14X,*DRY MASS=*,FIO.l/
+ 2X,*MASS MCMNT. OF INERT.=*,FIO.l/)

READ 1000,CMXX,CMZZ,CMRR~CMRX,DEPTH

IJO) FORMAT(5F10.0)
PRINT 900,DEoTH.CMXX,CMZZ,CMRR,CMRX

900 FORMAT(12X,*WATER DEPTH=*,F5.1/
+ T19,*CMXX=*,F6.3/T19,*CMZZ=*,F6.3/
+ T19,*CMRR=*,F6.3/T19,*CMRX=*,F6.3/)

READ 1000,CDMAT,CDHX,CDHZ,CDHR
PRINT 901,CDMAT,CDHX,CDHZ,CDHR

901 FORMAT(/2X,*FOUNDATION DAMPING (ALL MODES)=*,F6.3/
+ T28,*CDHX=*,F6.3/T28,*CDHZ=*,F6.3/T28,*CDHR=*,F6.3/)

N=3
C NOTE: STIFFNESSES ARE IN ( KG, CM, SEC l UNITS

READ 1002,SX,SZ,SR
1002 FORMAT(3EI0.41

C
SK( 1 )=SX/I00.
SK(2)=SZ/100.
SK ( 3 ) = So. / 1 00.

C

C ESTABLISH THE MASS, DAMPING AND STIFFNESS MATRICES
C

C INITIALIZE THE MATRICES
DO 10 1=1,3
DOI0J=1,3

lOX.., ( I , J ) =C ( I , J) =S (I , J) =O.

C
C MASS (COUPLED)

DTH=DEPTH-HS
PHI=2.*ASIN( 1 ol
AR =PHI *RAO*RAD
V~WC=AR*DTH/IOOO.

VMT=AR*HS/I000.
RG2=(RAD*RAD/4.)+(HS*rlS/12.)
VMR=VMT*RG2
VMC=SQRT{RG2)*VMT

C
XM(l,ll=XMXX=D..,ASS+CMXX*VMT
XM(2,2)=XMZZ=DMASS+CMZZ*VMT
XM(3,3)=X~RR=RMASS+CMRR*VMR

XM{1,3.=XM(3,1)=XMRX=CMRX*VMC
C

C STIFFNESS (UNCOUPLED)
Sll,l)=SX
S(2,2.=SZ
S( 3,3) =SR

C
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IF(NE.EO.J.DR.NE.EO.3l GO TO 15
C CALCULATE CHARACT~qISTIC VALUES AND V~CTORS (NAT. FREOS. AND MODESl

CALL JACOBI(S,XM,C,PC,3,4,lOl
PRY NT 1009
PRINT FOP,PC
PRINT 101 J

DRINT FOR,«C(I,Jl,J=I,Nl,I=I,Nl
1009 FORMAT(//2X,*SYSTEM FIGENVALUES:*l
1010 I=ORMAT (/2 X,* SY STEM EI GENVECTORS: * I

C RcINITIALIZE THE MATRICES
00 121=1,3
'JO 12 J=1,3

12 XM( (,J)=C( I,J)=S( I ,J )=0.
C RESET STIFFNESS AND MASS MATRICES

XM( 1,1 )=XMXX
XM(2,2)=XMZZ
XM(3,3)=XMRR
XM(l, 3) =X"l( 3,1 )=XMRX
S{l,ll=SX
S( 2,2) =SZ
S(3,3)=SR

15 CONTINUE
C
C DAMPING (UNCOUPLED)
C CDMPUTE CRITICAL DAMPING FOR EACH MODE

DCX=2.*SQRT(XM(1,ll*SX)
DCZ=2.*SQPT{XM(2,2l*SZl
DCR=2.*SORTIXM(3.3)*SR)

C ESTABLISH THE DAMPING MATRIX
Cl 1,1) =1 CDMAT+CDHX) *DCX
CI2.2l=ICDMAT+CDHZ)*DCZ
CI3.3)=(CDMAT+CDHR)*DCR

C
PRI"JT 100]

1003 FJR~AT(/2X,*MASS MATRIX-*)
PR I NT FOR, { I XM( [, J ) , J= 1, N ) • 1=1, N l
PRINT 1004

1004 FORMAT{/2X,*DAMPING ~ATRIX-*)

PRINT FOR.« C{I,J).J=I,N).I=l.N)
DRINT 1005

1005 FORMAT(/2X,*STIFFNESS MATRIX-*)
PR I NT FO P • ({ S ( I • J ) • .J =1 • N) , I =1 • N )

FOR A 2ND ORDER INTEGRATION OF THE

REAl) GROUND ACCELERATIONS
READ 1006,«R{I,J).I=I,N),J=I,NR)
PR INT 10CS
P R I NT 1 007 , ( { R ( I , J ) , I = 1 • N ) , J= 1 ,N R )
FORMAT(6EI2.5)
FORMAT(41]X,3F3.4) I
FORMAT(//ZX,*GROUND ACCELERATION:*)

INITIALIZE THE COEFFICIENTS
GROUND ACCELERATION.

D'J 20 1=1,3
PB( I ) =R ( I , 1)

PC{I)=R(I,2)
PD(I)=R(I,3)

ESTABLISH THE LOAD MATRIX. INCLUDING THE EFFECT OF HYDRODYNAMIC
DAMPINGo ASSUME THAT THE SYSTEM IS AT REST FOR T LESS THAN ZERO.

1006
1007
1008

C

C

C

READ EXCITATION FILE NAME AND ~AX-MINS

READ 1~II,NAME.{(DMAX{I),DMIN(I»,I=1,6)

1011 FORMAT(AI0/6E12.5~6E12.5)

C
C

C

C
C

C

C
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20 CONTINUE
D(l )=DCX*CDHX*98J.665
D(21=O.
O(31=DCR*C.DHR
RMll J=XM(l,l )*980.665
RM(21=(VMWC.OMASSI*980.665
RM(3)=X'>1(3,3)

C

C INITIALIZE THE LOAD MATRIX AT T=O AND a.OT
JO 301=1,3
R ( I, 1) =-R ( I, 1 ) *R"1 ( I I
T E MP =( 9 • *D B ( I I +9 • *PC ( I 1-P D ( I ) ) / 1 6.
V( II =:>T*( oB( I )+2.*TEMP.PClI 1)/4.
R(I,2)=-R(I,21*RM(I)-D(I)*V(II

3,) CCNTINUE
C
C SET ALL VALUES IN RESPONSE MATRIX FOR T GREATER THAN NIN*DT EQUAL J.

\lSTART=NR.l
D~ 40 J=NSTART,NOUT

4::> R( 1, JI =R(2 ,J)=R(3,J)=0.
C
C CALCULATE THE REMAINDER OF THE LOAD MATRIX.

DO 50 J=3,NR
DO 50 1=1,3

C CALCULATE VELOCITIES
PA=PB( II
PB (l I =PC( Il
PC ( I ) = PD ( I J
poe I )=R( I, J+ll
TEMP=( -PA+9.*P8( 1)+9 .*PC( II-PO( I) 1/16.
V( I )=V( I )+DT*( PB( I )+2.*TEMP+oC(I) )/4.
R (I , J I =-R ( I, J) *RiIo1 ( I ) -D ( I ) *V ( 1)

50 CONTI'JUE
V(I)=V(1)*980.665
PRINT 902,V( 11

902 FORMAT(/2X,*HORIZ.GROUNO VELOCITY AT OT*NIN=*,FIO.l/)
RETURN
END
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SUBROUTINE STEPSIS,XM,C, UI,U,N~NOUT,DTT,DEL,ALF,THE)

DI ME 1\SICN SIN, N) • XM( N, N ) , C ( N, N) • U I ( N, 'I I , UIN, NO UTI
C SET THE INITIAL CCNDITIONS TO ZF:RO

DO 1 J 1=1, N

)0 10 J=I, 3

10 UI( I ,J )=0.

C COMPUTE THE INTEGRATION CONSTANTS
I"'(THE.EQ.O.)THE=I.O
DT=THE*ClTT
AO=1 • /1 ALF*DT*DT)
Al=DEL/(ALF*9T)
A2=1 ./1 .... LF*DT I
A3=0.5/ALF-I.
A4=OEL/ALF-I.
A5=0.S*OT*I)EL/ALF-2.)
A6=DTT*1 I.-DEL)
A7=DTT*DEL
A8=(.5-ALF)*OTT*DTT
Aq= ALF*DTT*DTT

C FORM THE TRIANGULARIZED EFFECTIVE STIFFNESS MATRIX
'X) 100 I=I.N
:>0 1)) J=I,N

100 S(I,JI=SI I,JI+AO*XMII,J)+Al*CII.J)
CALL SYMSOLIS,UI,N,I,11

C

C FOR EACH TIME STEP
C

DO 400 I=I,NOUT
C 1. CALCULATE THE EFFECTIVE LOAD AT TIME T+DT
C

DO 250 L= 1, N
X= A0 *U I I L, 1 I +A 2 *U I I L, 2 ) +A"3 *U I (L, 'I)

Y=Al*UIIL,I)+A4*UIIL,21+AS*UI(L,3)
D'J 250 M= 1 ,N

250 :J ( M, I ) = U( M, I I + XM1M, L I * X+ C ( M, L I *V
C 2. SOLVE FOR THE DISDLACEMENT AT T+DT
C

CALL SYMSOL(S,U(I,II,N,l,2)
C

C 3. CALCULATE ACCELERATIONS AND VELOCITIES AT TIME T+OT
DJ 300 L=I,N
A=A0 * ( U( L , I I -U I ( L, 1 I ) - A2 *U I ( L, 2 ) - A3 *U I (L , 3 I
DA=(A-UIIL.311/THE
A=UI(L,3)+DA
v=UI(L.2)+A6*UIIL,31+A7*A
U(L,I)=UIIL,I)+DTT*UI(L,2)+AS*UI(L,31+A9*A
UIIL,3)=A
'J I I L ,2) =V

3JJ UI(L,II=U{L,II
400 CONTINUE

C
RETURN
END
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SUBROUTINE SYMSOL(A,8,NN.LL,M)
C SYMMETRIC EQUATICN SOLVER-AFTER E.L.WILSON (1976)
C M=O TRIANGULARIZE AND SOLVE
C M=1 TRIANGULARIZE ONLY
C M=2 FORWARD RE~UCTION ~ND BACKSUBSTITUTION ONLY

DIMENSION A(NN,NNI,B(NN,LLI
C

iF(M.EQ.2) GO TO 50~

DO 400 N=l, "IN

IF(N.EQ.NN) GO TO 500
D=A(N,NI
IF{D.EQ.O.O} PRINT 2000,"1
Nl=N+l
DO 300 J=Nl,NN
IF(A(N.J).EQ.O.O) GO TO 300
A(N, J)=A(N,J }/D

DO 200 I=J,NN
A( I, Jl =A( I,J )-~( I ,"I) *A(N, J)

20) ~(J,I)=A(I,J)

300 CCNTINUE
400 CONTINUE

C rORW~RD REDUCTION AND BACKSUBSTITUTION
500 IF(M.EQ.l1 RETURN

DO 7J) N=I,NN
DO 600 L= I,LL

60~ 8(N,LI=B(N,L)/A(N,Nl
IF(N.EQ.NNI GO TO 800
Nl=Nl+l
DO 700 L=I,LL
') 0 7 a0 I =N 1 , ''IN

700 B ( I ,L ) = B ( I ,L ) - A( I ,N ) *B ( N, L )
c

80 a "11="1
N=N-l
IF(N.'OQ.OI RETURN
DO 900 L=l,LL
DO 900 J=Nl,NN

900 8(N.L)=B(N,L)-A(N,Jl*B(J,LI
GO TO 800

C
2000 FoR~AT(39HO***ZERO DIAGONAL TERM EQUATION NUMBER 141

END
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5UBROUTI~E JACOBI CA,B,X,E,N,NFIG,NSMAX)
C---------------------------------------------------------------------
C AN EIGENVALUE SOLUTION AFTER E.L. WILSON (1977)
C SUBROUTINE SOLVES EIGENVALUE PROBLE~ AX = BXE WHERE
C A AND BARE N X N SYMMETRIC MATRICES
C E IS A DIAGONAL MATRIX OF EIGENVALUES STORED AS A ROW ARRAY
C X IS A N X N MATRIX OF EIGENVECTORS
C NSMAX IS THE MAXIMUM NUMBER OF SWEEPS TO BE PERFORMED
C ~FIG IS THE NUMBER OF SIGNIFICANT FIGURES TO BE OBTAINED

C---------------------------------------------------------------------
DIMENSION ACN,N) ,B(N ,N) ,XCN,N) ,ECN)

C-----INITIALIZATION-----------------------------
"JT=O
NN=N-l
RTOL=0.I**(2*NFIG)
EPS=O.Ol
J:::J 30 1=1, N
')0 ;:>0 J=l,N

20 XCI,J)=O.
30 X(I,I)=1.

IF{N.EQ.l) GO TO 820
C-----SWEEP OFF-DIAGONAL TERMS FOR POSSIBLE REDUCTIO"J--

00 800 M=1,NSMAX
YMAX=O.O
DO 700 J=l,NN
JJ=J+l
DO 7JO K=JJ,N

C-----COMPARE WITH THRESHOLD VALUE---------------
E A= A8S CCACJ ,K ) * ACJ , K ) ) I' ( A( J , J ) *A ( K ,K ) ) )
E B= A8 S ( CB( J , K ) * 8( J, K ) ) I' ( BCJ, J ) *B (K , K ) ) )
Y= EA +EB
IF(Y.GT.YMAX) YMAX=Y
IFCY.LT.EOS) GO TO 700

C-----CALCULATE TRANSFORMATIONS TERMS-----------
Y=ACJ,J'*B(K,K)-A(K,K)*BCJ,J)
AK=ACK,Kl*BCJ,K)-B(K,K)*ACJ,K)
AJ=A{J,J)*S{J,K)-8(J,J)*ACJ,K)
01=YI'2.
D2=Y**2+4.*AK*AJ
IF(D2.LT.0.0) PRINT 4000,J,K

4000 FGRMATCZOH OFF DI~NGONAL TERM 2(5)
IFCD2.LT.0.) GO TO 7))
C>2=SOR HD2) 1'2.
Z=Dl +02
IFCDl.LT.O.O) Z=01-D2
IF(Z) 80,70,80

70 CA=O.O
CG=-A{J,K)/A{K,K)
GO TO 90

80 CA=AK/Z
CG=-AJI'Z

C-----ZERO TERMS A(J,K) AND ACJ,K)----------------
90 D'J 100 1=1,N

IF( I .EO.J.OR.I .EQ.K) GO TO 100

A(J, [)=A{ I,J)+CG*A( I,K)
A(K, I) =A( I ,K )+CA*A( I ,J)
A( I,J)=ACJ, I)
AC I ,K)=A(K,I)
8 ( J, Il= B( I, J ) + CG*8 ( I ,K )
8 CK, I) =8 ( I ,K ) +C A*B ( I , J )

8CI,J}=B{J,I}
BCI.K)=B(K,I)

100 CONTINUE
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AK=A(K,Kl
8K=8(K,K)
A{K,KI=AK+CA*{A(J,K)+A(J,Kl+CA*A(J,J»
8(K,K)=BK+CA*{8(J,KI+8(J,Kl+CA*8(J,Jl)
A( J, J) = A( J , J 1 +CG * ( A( J, K) + A( J, K) +CG*AK )
8(J,J)=8{J,Jl+CG*{B{J,KI+8(J,Kl+CG*8Kl
A(J,K)=O.
8{J.K)=0.
A(K.Jl=O.O
B{K,J)=O.O

C-----TRANSFORM EIGENVECTORS----------------------
DO 200 I=l.N
XJ=X(I,J)
XK=X{I,K)
X( I , J) =XJ+CG*XK

200 X( I,K)=XK+CA'''XJ
NT=NT+l

700 CONTI\lUE
1F(YMAX.LT.RTOLI GO TO 820
EPS=.01*{YMAX)**2
IF{YMAX.GT.1.0) EPS=O.Ol

800 CCNTINUE
C-----SCALE EIGEN VECTORS

820 00 84J J=l,N
E ( J I =A ( J. J) /8 ( J, J)
9~=SQRT(8(J,J))
DO ~40 K=1,N

840 X(K.JJ=X(K,J)/3B
IF(NN.EQ.O) RETURN

C-----ORDER EIGENVALUES AND EIGENVECTORS --------
DO 9)0 I=l,NN
JL=I+l
H T =E ( 1 I
IM=I
')0 850 J=JL,N
IF(HT.LT.E(J» GO TO 850
HT=E(JI
1"'1= J

850 CONTINUE
E(IM)=E(Il
E( I )=HT
JO 900 J=1,N
HT=X(J.II
X(J. Il=X(J, 1M)

900 X ( J , 1M 1 =H T

RETURN

C---------------------------------------------------------------------
END
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SUBROUTINE OUTPUT(U,XT,N,NOUT,NE)
DIMENSION U(N,NOUT),XT(N,2)
COMMON FOR,SK(3),DMAX(61,OMIN{6),N~ME

C FINO THE EXTREME VALUES
1)050I=I,N

50 XT(I,l)=XT(I,2)=0.
I) (] 1 00 J =1 ,N OU T
DO 90 1= 1, N

IF ( XT ( I , 1 ) .LT • U ( I, J » XT ( I, 1 ) =U ( I, J)
IF ( XT( I ,2) • GT• U(I , J I) XT ( I ,2 ) =U ( I , J)

90 CONTI"lUE
100 CONTINUE

IF(NE.LT.2) GO TO 105
PUNCH FOR,«(U(K,J),K=l,N),J=l,NOUT)

1 05 CONT I NUE
1)0 110 I=I,N
XT ( I ,1 ) =XT ( I ,1 ) '~SK ( I I
XT ( I ,2) = XT( I ,2) *SK ( I )

01" AX ( 1+3) = OM AX ( 1+3 I *SK ( I I
DMIN(I+31=OMIN(I+3l*SK(I)

110 CONTINUF
P'HNT 980,«(I,ONlAX(I),DMIN{I»,I=I,3)
PRINT 990
P.~ IN T 1 000 , ( { I , OM AX ( I +3 ) , OM IN ( 1+3 ) , XT ( I, 1 ) , XT ( I , 2) I, I = 1, NI

980 FORMAT(////2X,*MEASUREO MAX-MIN FOUNDATION ACCELERATIONS:*
+ /( 2X,*OOF: *,I2,3X,*MAX=*,E10.4.3X,*MIN=*,~lO.4»

990 F~RMAT( //2X,*FOUNDATICN FORCES AND MOMENT ABOUT THE C.G. (N AND
+C~ UNITSI*//T25,*MEASURED*,T59,*CALCULATEO* )

10)0 FORMAT(/2X,*DOF: *,I2,3X,*MAX=*,EI0.4,3X,*MIN=*.EIO.4,
+ 5X,*MAX=*,E10.4,3X,*MIN=*,EIO.4)

RETURN
ENO
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